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Abstract  

The work presented herein describes a novel and practical methodology for the synthesis of 

diarylamines and diarylethers using diaryliodonium salts and the selectivity between N-, and 

O-nucleophiles using continuous flow chemistry protocols with the FlowSyn™ automated 

reaction system (Scheme 1).1 

 

 

Scheme 1: N-, O-Arylation using diaryliodonium salts 

The translation from batch conditions successfully reduced the time for the reaction (24 h to 

80 min) and a further refinement of using a copper coil as both reactor and catalyst generated 

the desired products under even milder conditions (130 °C to RT). 

 

 

Scheme 2: Diaryliodonium salt synthesis 

The diaryliodonium salts were easily synthesised from commercial, inexpensive, starting 

materials and purified by recrystallization (Scheme 2).2, 3 The stability of these salts allowed 

us to investigate a range of diaryliodonium salts to determine which aromatic ring reacted 

with the nucleophile, their solubility and that of the aniline/phenol in DMF allowed us to use 

flow chemistry as the reaction mixture was homogeneous. 



iv 
 

 

Scheme 3: Selectivity of N-, O-arylation using diaryliodonium salts 

The methodology was extended to also investigate the arylation of O-nucleophiles under the 

same reaction conditions using the FlowSyn™ (Scheme 1) however the selectivity between 

the two types of nucleophiles was unknown and a range of hydroxyanilines were used to 

explore this (Scheme 3). The method gave high yields of the arylated product with a notable 

preference for N-arylation over O-arylation, although some N, O-diarylation was observed. Of 

particular interest was the production of N-phenylazaquinone 82% when 4-hydroxyaniline 

was used with two equivalents of diphenyliodonium trifluoroacetate indicating a two-step 

process was present, the first equivalent resulting in N-arylation and the second oxidising the 

product.4, 5  

 

 

Scheme 4: Arylation of aliphatic amines 

The methodology has also proven to be valuable for the arylation of aliphatic amines for 

instance those examples shown in Scheme 4, however the yield of the desired product was 

lower than that obtained for the aromatic amines. This project has indicated that aromatic 

amines are more suitable substrates for arylation with diaryliodonium salts and in the case 

where both N- and O-nucleophiles are present the nitrogen was always selectively arylated 

over the oxygen nucleophile. 
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Figure 1: HPLC chromatogram of crude 3, 4-dimethoxydiphenylamine, 1H NMR of pure 

product (left), FlowSyn™ (right). 

The translation of the reaction methodology to flow chemistry protocols has also allowed us 

to scale up the production, for example 3, 4-dimethoxydiphenylamine was prepared in a high 

yield (80%) at room temperature using diphenyliodonium trifluoroacetate (13.79 g, 35 mmol) 

and 3,4-dimethoxyaniline (5.36 g, 35 mmol). Simple washing of the precipitated product with 

ether gave the pure material (Fig. 1). 

 

1. www.uniqsis.com. 
2. M. A. Carroll and R. A. Wood, Tetrahedron, 2007, 63, 11349-11354. 
3. M. Bielawski, M. Zhu and B. Olofsson, Adv. Synth. Catal, 2007, 349, 2610-2618. 
4. A. Varvoglis, Tetrahedron, 1997, 53, 1179-1255. 
5. T. Dohi, M. Ito, N. Yamaoka, K. Morimoto, K. Morimoto, H. Fujioka and Y. Kita, Tetrahedron, 

2009, 65, 10797-10815. 
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Abbreviations 

AcOH     Acetic acid 

Ac2O     Acetic acid 

ACPI     Atmospheric pressure chemical ionization 

aq.     Aqueous  

Ar     Aryl 

ASAP     Atmospheric solids analysis probe 

BINAP     (2,2′-Bis(diphenylphosphino)1,1′-binaphthyl) 

Boc     Tert-butyloxycarbonyl 

Bu4NBr     Tetrabutylammonium bromide 

CDCl3     Deuterated chloroform 

CD3CN     Deuterated acetonitrile  

COX-2     Cyclooxygenase 

CTRF     Copper tube flow reactor 

Cu(acac)2    Copper acetylacetonate 

CyDA     Rac-trans-1,2-cyclohexanediamine  

d     Doublet 

DAB     3,3′-Diaminobenzidine 

DBU     1, 8-Diazabicyclo[5.4.0]undec-7-ene 

DCC     N,N-Dicyclohexylcarbodiimide 

DCE     1,2-Dichloroethane 

DCM     Dichloromethan 

dd     Double doublet 

ddd     Double doublet of doublets 

Dioxane    1, 4-Dioxane 

DMEDA    N,N-Dimethylethylenediamine 

DMF     N,N-dimethylformamide 

DMAP     4-(Dimethylamino)pyridine 

DMSO     Dimethylsulfoxide 
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d6-DMSO    Deuterated dimethylsulfoxide 

DTBP     Di-tert-butyl peroxide 

EDG     Electron-donating group 

EDTA     Ethylene diaminetetraacetic acid 

EI     Electron impact ionization 

Equiv.     Equivalent 

EtOH     Ethanol 

Et3N     Triethylamine 

EWG     Electron-withdrawing group 

g     Gram 

H     Hours 

HBDs     Hydrogen bond donors  

Het     Heteroaromatic 

HPLC     High-performance liquid chromatography 

Hz     Hertz 

IR     Infra red 

J     Coupling constant 

L     Ligand (generic) 

M     Molar 

m     Multiplet  

Me     Methyl 

MeCN     Acetonitrile 

MeO     Methoxy 

Mes     Mesitylene/mesityl  

mCPBA     meta-Chloroperoxybenzoic acid 

[M +H]+    Molecular ion peak + a proton 

min     Minutes  

mL     Millilitre  

mmol     Millimole 
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MS     Mass spectrometry 

MsO     Methane sulfonate  

Mp     Melting point 

MW     Microwave 

m/z     Mass/charge ratio 

NaAsc     Sodium ascorbate 

NBS     N-bromosuccinimide 

NMR     Nuclear magnetic resonance spectroscopy 

NP     Nano particles  

NSI     Nano-electrospray ionization 

Nu     Nucleophile 

OAc     Acetate 

OTf     Trifluoromethane sulfonate (triflate) 

OTs     para-Tolylsulfonate (tosylate) 

PEEK     Polyetheretherketone 

Ph     Phenyl 

Phen     1-10-phenanthroline 

PFA     Polyfluoroacetate 

psi     Pressure unit 

PTFE     Polytetrafluoroethylene 

Rf     Retardation factor 

Rt     Retention time 

RT     Room temperature 

S     Singlet 

SET     Single electron transfer 

SnBu3     Tributyltin 

SNAr     Nucleophilic aromatic substitution 

t     Triplet 

tt     Triple triplet   
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TBAA     tert-Butyl acetoacetate 

TBAF     Tetra-n-butylammonium fluoride 

TBDMS     tert-Butyldimethylsilyl ether 

TBME     tert-Butyl methyl ether 

t-BuOK     Potassium tert-butoxide 

t-BuONa    Sodium tert-butoxide 

t-BuONO    tert-Butyl nitrite 

Temp.     Temperature  

TEMPO    2,2,6,6-Tetramethyl-1-piperidinyloxy 

TFA     Trifluoroacetic acid/trifluoroacetate 

TFE     Trifluoroethanol 

TfOH     Triflic acid 

TLC     Thin layer chromatography 

TMEDA    Tetramethylethylenediamine 

TMS     Trimethylsilyl 

p-xylene    1,4-Dimethylbenzene 

UV     Ultra violet 

Vioxx     Rofecoxib 
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1 Introduction 

1.1 Arylation of nitrogen 

 

 

Figure 1: Examples of biological active arylamines 

 

Diarylamines are useful compounds due to their wide range of biological activity for example 

Figure 1,6-8 the functionality is also found in natural products and as a structural component 

in material science. They have been synthesized using Ullmann-type conditions9 which involve 

the reaction of amines with aryl halides in the present of copper and/or palladium but the 

reaction conditions may be harsh, provide low yields and may also require large (for example 

stoichiometric) amounts of catalyst. Copper and palladium catalysts have also been used in 

the arylation of nitrogen in a method reported by Buchwald and Hartwig.9-11 They have also 

been synthesised under metal-free conditions as well as Friedel-Crafts or SNAr-type 

mechanisms and Chan-Lam-type N-arylations.12 The arylation of nitrogen nucleophiles has 

been reported under both metal-free2 and metal catalysed conditions13-15 using 

diaryliodonium salts and it is this methodology that the research group continues to pursue.  
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1.2 Iodine  

 

Iodine was discovered by the industrial chemist Bernard Courtois and it was separated from 

the ash of seaweed for the first time in 1811.16 It has a large size, is polarisable and is of limited 

electronegativity, therefore it has the ability to make polycoordinate, multivalent 

compounds. The dissociation bond energy between carbon and iodine is 55 Kcal/mol 

therefore it is a weak bond which is also helpful for taking part in organic reactions.16, 17 

Hypervalent iodine reagents such as (dichloroiodo)benzene were first reported by Willgerodt 

in 1886 and he published a book on these materials in 1914. The chemistry of hypervalent 

iodine has gained much interest within the chemistry community and some further 

compounds were published in 1960. Hypervalent molecules are described as elements of 

groups 15 – 18 which have more than eight electrons in the valence shell, and thus form a 3-

centre-4-electron (3c-4e) system which is known as hypervalent bond.18 

 

 

Figure 2: Structures of hypervalent iodine compounds.16 

There are different types of hypervalent iodine compounds and they are classified according 

to the oxidation state of the iodine such as monovalent iodine (I), iodine (III) which are known 

as λ3-iodanes, the most common species among hypervalent iodine compounds and iodine 

(v) species known as λ5-iodanes. Polyvalent iodine is distinguished by the number of electrons 

surrounding the iodine centre, the number of ligands and their resultant chemistry.16, 18, 19 

Figure 2 shows the structure of two λ3-iodanes (4, 5) a λ4-iodane (6) and a λ5-iodane (7).  
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Figure 3: Structure of iodine (v) λ5-compounds 

λ5-Aryliodanes (ArIL4) which have a dodecet structure typically adopt a square based 

pyramidal geometry, where it has orthogonal hypervalent 3c-4e bonds with an aryl group in 

apical position and four heteroatom ligands in the basal positions. The bonds between iodine 

and the ligands are as follows; a covalent bond to the Ar group, and two orthogonal 

hypervalent 3c-4e bonds which provide the links to the remaining four ligands18. For example 

the Dess-Martin periodinane (9), which is used in the selective oxidation of alcohols to 

aldehydes, and (10) IBX (2-iodoxybenzoic acid) which is used as an oxidising agent for a wide 

range of functional groups adopt this structure.19, 20 

 

1.3 Iodine (III) compounds 

1.3.1 Structure and bonding 

 

 

Figure 4: Iodine (III) aryliodanes 

λ3-Aryliodanes are classified into three types (Figure 4), the first type of which is ArIL2 which 

has one carbon – the aromatic group – and two heteroatom ligands, where the two 

heteroatom ligands sit in the pseudoaxial positions with the two remaining equatorial 

positions occupied by the lone pairs of electrons. They are mild oxidising agents typically used 

in the oxidation of alcohols, alkenes and α-hydroxyl carbonyl compounds where one 

heteroatom ligand undergoes exchange with the substrate and the second heteroatom ligand 

undergoes a subsequent elimination reaction as the iodine containing fragment is a good 

leaving group.18 The C-I bond length in this class of hypervalent iodine species is the sum of 

the covalent radii of iodine and carbon (2.00 to 2.10 Å). The length of the iodine to 

heteroatom bonds in these 10-I-3 structures is longer than the covalent C-I bond but shorter 
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than an ionic bond, for instance in PhICl2 the I-Cl bond lengths are 2.45 Å and in PhI(OAc)2 the 

I-O bond lengths are 2.15–2.16 Å, which is longer than the combination of the I and O covalent 

radii which is 1.99 Å.16 

In the λ3-aryliodanes (ArIL2), the iodine (III) keeps its T-shaped geometry as indicated by X-ray 

structural analysis as the iodine and two heteroatom ligand share a hypervalent bond. It 

adopts a decet trigonal bipyramidal geometry, with the aryl group and the two lone pairs of 

electrons in the pseudoequatorial positions and the two heteroatom ligands in the 

pseudoaxial position. The λ3-iodanes use a 5p orbital in the linear L-I-L bond, this 3c-4e bond 

is formed from the bonding and non-bonding orbitals as shown in Figure 5. It has a node at 

the central iodine atom and there is therefore a partial positive charge on the central iodine 

and corresponding partial negative charges on the two heteroatom ligands.21 18, 22  

 

 

 

Figure 5: From left to right: structure of ArIL2, the associated molecular orbitals and electron 

occupancy.18 

In the hypervalent iodine structure the 3c-4e bonds are not only weaker than the Ar-I bond 

but are also longer. 

The second type of λ3-aryliodanes, Ar2IL, has two carbon based ligands and one heteroatom 

ligand derived ligand.18 They are commonly known as a diaryliodonium salts, it is indicated 

that the structure is similar to type 1, has trigonal bipyramidal geometry and the bond angle 

Ar-I-Ar is about 90° and the covalent bond length is 2.3 to 2.7 Å between the iodine atom and 

heteroatom ligand L.23 

As a consequence of this bonding, and subsequent reactivity this class of species is the most 

common within the range of possible hypervalent iodine species. Due to its highly electron-
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deficient nature and the presence of a very good leaving group, they have found use as 

arylating agents with many different types of nucleophiles. They are used in organic synthesis 

for carbon-carbon bond formation and as an alternative to toxic heavy metal-based oxidants. 

These species are also used in the copper and palladium catalysed cross-coupling reactions 

and often perform better than aryl halides.22  

Finally Ar3I has three carbon based ligands, the chemistry of these species has been 

considered less than the other types because they are less stable thermally and therefore 

more difficult to use.16, 18 

 

Figure 6: Structures of some iodine (III) compounds.21 

The examples in Figure 6 shows some of the iodine (III) compounds, compound 11 is a 

fluorinating reagent and 12 is a chlorinating.agent. The compounds 13, 14 are oxidising 

reagents and 15 is used commonly as an arylating reagent. 

 

1.3.2 Iodanes: Reactivity 

1.3.2.1 Ligand exchange 

 

The heteroatom ligands of λ3-aryliodanes facilitate the reaction between iodine (III) and 

nucleophiles by ligand exchange with the nucleophile. The iodine centre behaves as an 

electrophile because of the node in the non-bonding orbitals making up the hypervalent 

bond. The two major possible mechanistic pathways for this reaction are an associative and 

a dissociative process.18 
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Scheme 1: Nucleophilic substitution of ArIL2 

In the associative pathway the nucleophile reacts with the λ3-aryliodanes leading to an 

intermediate (12-I-4) having the resultant groups in a square planar arrangement which 

allows the relationship between the heteroatom ligands to change from trans (17) to cis (18). 

One of the original heteroatom ligands (L) then leaves forming the λ3-aryliodanes ArILNu (19). 

 

 

Scheme 2: Reaction of ArIL2 with a nucleophile, Nu.18 

If an excess of the nucleophile is available the second heteroatom ligand (L) will also exchange 

through this addition–elimination reaction forming ArI(Nu)2 (22) (Scheme 2). 
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Scheme 3: Ligand exchange of 23 in CD3OD 

An example of this ligand exchange with an oxygen nucleophile is seen by 360 MHz NMR when 

(methoxy(tosyloxy)iodo)benzene (23) is dissolved in deuterated methanol 2.28 (s, 3H, 

tosyloxy), 3.92 (s, 3H, OMe), 8.2 (m, 9H, aromatic)24 when the tetracoordinated intermediate 

species is observed (Scheme 3).18 

 

1.3.2.2 Reductive elimination 

 

The hypervalent λ3-iodanes have the potential to spontaneously generate monovalent iodide 

without the presence of additional reagents, via a reductive elimination process. The leaving 

group – aryliodanyl – is known as a hyper/supernucleofuge as it is ~106 times better as a 

leaving group than triflate. For example Table 2 shows the leaving group ability for some 

hypernucleofuges.18  
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Table 1. Leaving group ability 

Nucleofuge Krel Nucleofuge Krel 

AcO 1.4 × 10-6 I 9.1 × 10 

F 9.0 × 10-6 MsO 3.0 × 104 

Me2S+ 5.3 × 10-2 TsO 3.7 × 104 

Cl 1.0 TfO 1.4 × 108 

F3CCO2 2.5 4-MeC6H4(BF4)I 6.2 × 1013 

NO3 7.2 C6 H5(BF4)I 1.2 x 1014 

Br 1.4 × 10 4-ClC6H4(BF4)I 2.9 × 1013 

 

 

Scheme 4: Reductive elimination 

The example shown in Scheme 4 also demonstrates that entropy favours this process where 

a λ3-aryliodane is used as the leaving group as two species are generated rather than the 

usual one. Electron-withdrawing substituents on the aromatic ring also enhance this reaction 

pathway.18 

 

1.3.2.3 Reductive α-elimination  

 

 

Scheme 5: Reductive α-elimination in alkenyl-λ3-iodanes 

Carbenes are formed from α-elimination on a single carbon atom and proceed via abstraction 

of an α-hydrogen followed by reductive elimination, an example is in the reaction of 
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alkenyliodonium salts which decompose to form carbene which then undergoes a 

rearrangement to give an alkyne (Scheme 5).18 

 

1.3.2.4 Reductive β-elimination  

 

 

 

 

Scheme 6: Reductive β elimination on (A) carbon, (B) oxygen and (C) nitrogen. 

Reductive β-elimination in species with a C-I bond results in the formation of carbon-carbon 

double bonds however in the presence of I-O and I-N bonds the reductive β-elimination 

generates carbonyl and imine functionality effectively resulting in an oxidation reaction 

(Scheme 6).18, 25, 26 

 

1.3.3 Diacetoxyiodoarene compounds 

 

Scheme 7: Ligand exchange between diacetoxyiodobenzne (24) and carboxylic acid18 
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The diacetoxyiodoarenes are important compounds in organic synthesis and used not only as 

oxidising agents but also for the preparation diaryliodonium salts and hence the arylation of 

nucleophiles. They are prepared by oxidation of the corresponding iodoarene, with 

H2O2/AcOH/Ac2O being the first recorded reagents for this transformation. Other oxidising 

agents can be used, for instance NaBO3·4H2O in AcOH.18, 27 The phenyl derivative is 

diacetoxyiodobenzene and is commercially available and inexpensive, the acetate ligands can 

be exchanged in situ for other groups, such as trifluoroacetate, which may make the iodine 

more electrophilic and hence the reagent more reactive.21, 28 In addition it is a much safer 

source of iodine (III) than iodosybenzene which is insoluble in organic solvents and has also 

demonstrated explosive properties.21, 29 

 

 

Scheme 8: Ligand exchange in the preparation of diaryliodonium salt 

As stated the acetate group can also be exchanged with trifluoroacetate, which enhances the 

positive charge on iodine, and has found use in the preparation of diaryliodonium 

trifluoroacetates (e.g. Scheme 8).17 
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1.4 Synthesis of diaryliodonium salts 

 

Scheme 9: Synthesis of diaryliodonium salt using different strategies 

There are many different methods for the preparation of diaryliodonium salts, early methods 

used iodosylarene and iodooxyarene. Diaryliodonium salts were prepared for the first time 

by Hartmann and Meyer in 1894 iodosylarene and sulfuric acid but this strategy was low 

yielding and involved long reaction times.22 30 Other methods, it involves two or three steps, 

for example oxidation of the aryliodide to iodine (III) in the form of ArIL2 and then ligand 

exchange replacing one of the labile ligands (L) with an arene. Diaryliodonium salts can also 

be obtained direct from arenes or iodoarenes which also involves an oxidation and ligand 

exchange step as shown in Scheme 9.22, 31 

Symmetrical diaryliodonium salts are readily prepared by the methods described above as 

they avoid chemoselectivity issues whereas the selective preparation of unsymmetrical 

diaryliodonium salts present complications as control of the reaction needed. 

To control the regioselectivity of the diaryiodonium salt formation iododestannylation and 

iododesilylation are commonly used. For example a diacetoxyiodoarene or iodosylbenzene 

are reacted with tributylphenylstannane or trimethylsilylbenzene in the presence of boron 

trifluoride etherate. Perfluoroaryliodonium salts may be prepared by electrophilic arylation 

of C6F5I with a pentafluorophenylxenonium hexafluoroarsenates described by Frohn and co-

workers. The most common method using iodosylbenzene or diacetoxyiodobenzene for the 

preparation of unsymmetrical diaryliodonium triflates uses arenes with triflic acid (Scheme 
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10) but this method is limited because some arenes are sensitive to strong acid and may also 

result in the formation of regioisomeric by-products. However this aspect may be improved 

by using an arylboronic acids as the substrate23, 32 as electron-rich substrates such as 

methoxyarenes also suffer from complications when using TfOH leading to polymeric quinone 

derived materials.  

 

Scheme 10: Synthesis of unsymmetrical diaryliodonium triflates 

 

An example of one-pot oxidation and arylation was used for preparing symmetrical 

diaryliodonium salts, introduced by Kitammura and Hossain. This used aromatic substrates, 

iodine and an oxidant such as K2S2O8 in TFA (Scheme 11).23 

 

 

Scheme 11: Synthesis of diaryliodonium salts in one pot oxidation 

The one-pot synthesis has been improved by Olofsson and co-workers for preparing both 

symmetrical and unsymmetrical diaryliodonium salts, where both electron-rich and electron-

deficient arenes are reacted with aryl iodides in the presence of an oxidant such as mCPBA, 

and triflic acid.22, 33 

The reactivity and yield depends on the electronic properties of an arene, sulfuric acid is good 

for electron-deficient substrates whereas trifluoroacetic acid is needed for electron-rich 

arenes and heteroarenes.7 Koser and co-workers improved the regioselective control of the 
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reaction by using the less reactive Koser’s reagent (hydroxy(tosyloxy)iodobenzene) with 

arylsilanes under neutral conditions. Thiophene reacts directly with Koser’s reagents and does 

not need activating groups such as trimethylsilyl22 allowing the formation of 2-

thienyliodonium salts directly. 

 

 

Scheme 12: Synthesis of diaryliodonium salts using different iodine (III) reagents 

The triflic acid is useful in organic solvents for the preparation of simple diaryliodonium salts 

as it is forms triflate salts directly and does not need an anion exchange step and they are 

generally easy to isolate. Beringer and co-workers published a large number of diaryliodonium 

salts in 1950 and used both iodosylarenes and iodoxyarenes with a range of acids as shown 

in Scheme 12.22, 34-39  

Aryl stannanes are also used in the preparation diaryliodonium salts as they are more reactive 

than the corresponding arylsilane, they also react with Koser’s reagent directly to give 

diaryliodonium tosylates.22 
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Scheme 13: Preparation of cyclic diaryliodonium salts 

Synthesis of cyclic diaryliodonium salts can be achieved using a one-pot synthesis (via a ring 

closing process) which includes two steps, in the first step the iodoarene is oxidised to the 

diacetoxyiodoarene and in the presence of strong acid subsequently converted to a cyclic 

diaryliodonium salt (Scheme 13). This may also be achieved in the presence of potassium 

persulfate and sulfuric acid.40 41 

 

1.4.1 An overview of diaryliodonium salt reactivity 

 

Diaryliodonium salts are typically non-explosive, non-toxic and stable crystalline solids and 

can be used for arylating a wide variety of both organic and inorganic nucleophiles. They are 

also used instead of toxic, and often expensive, heavy metal containing 

reagents/intermediates such as those based on Hg, Pb and Pd, and also act as successful 

partners in a range of metal catalysed reactions such as the Suzuki, the Stille and the Heck 

reaction. 

The mechanism of the reaction of diaryliodonium salts with nucleophiles may be via a polar 

(two electron process) or radical mechanism. Under metal-free conditions the diaryliodonium 

salt initially forms a T-shaped intermediate where the nucleophile replaces the counter-ion, 

and the following step involves the nucleophile and the adjacent aryl group (the one in the 

equatorial position) which proceeds via a ligand coupling/ reductive elimination process. 

However in unsymmetrical diaryliodonium salts, there are two possible T-shaped 

intermediates (Scheme 14),42 however it has been shown that the most electron-deficient 
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group reacts with the nucleophile. This can be achieved as Berry pseudorotation may occur 

allowing interchange between the two possible intermediates and hence the two possible 

different transition states. The most favourable transition state is when the positive charge 

on the iodine is stabilised the most by the most electron-rich aromatic ring adopting the 

pseudoaxial position. If the ortho-position of the aromatic substituent bears bulky 

substituents, such as methyl groups, this ring then prefers to adopt the least hindered 

pseudoequatorial position, as a result the nucleophile reacts with this aromatic group and this 

is called the ortho-effect. This offers the possibility of controlling the selectivity of the reaction 

by both the relative electronic nature of the two aromatic rings and/or their relative size close 

to the iodine centre. 30 

 

Scheme 14: Proposed mechanism of nucleophile with diaryiodonium salt (electronic control 

and steric control). 
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1.5 Arylation of nitrogen nucleophiles using arylhalide 

 

 

Scheme 15: Proposed mechanism of the copper catalysed arylation using aryl halide  

The Ullmann reaction is a nucleophilic substitution reaction between an aryl halide and 

nucleophile in the present of a copper catalyst and was discovered by Ullmann and Goldberg 

in the early 1900.43 These reactions usually required harsh conditions, for instance high 

temperature, long reaction times and large amounts of catalyst. The proposed mechanism 

generates various organo copper intermediates (via single electron transfer SET, atom 

transfer from the arylhalide or sigma bond metathesis) from the arylhalides and the 

nucleophile through an oxidative addition process which then undergoes reductive 

elimination to give the product (Scheme 15).44-48 

  



22 
 

1.5.1 Arylation of alkylamines  

 

 

Scheme 16: Arylation of benzylamine 

Another study used iodobenzene for the arylation of benzylamine in the presence of copper 

iodide (as it is stable to air and an inexpensive source of CuI) and a solvent such as isopropanol 

which is less toxic than the DMF traditionally used (Scheme 16). 3- and 4-Substituted 

iodobenzenes gave good yields of the desired product but 2-substituted substrates were less 

successful as they required high amounts of the copper catalyst.49 

 

1.5.2 Arylation of arylamines  

 

 

Scheme 17: Arylation of aniline using aryl halide 

Aniline may be arylated with arylhalides using palladium catalysis in the Buchwald-Hartwig 

reaction. The aryl halide with either electron-donating groups or electron-withdrawing groups 

gave the desired product in good yield, however the presence of ortho-substituents resulted 

in a much decreased yield, probably due to the increased steric hindrance in the transition 

state.50 
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Scheme 18: Arylation of N-phenylaniline using copper complex 25 

It has been reported that the copper complex 25 [K3(phen)8][Cu(NPh2)2]3 (Scheme18), also 

catalyses the arylation of N-phenylaniline. The complex was formed from the reaction of 

copper iodide-phen-t-BuOK and [Na(phen)3][Cu(NPh2)2]copper complex 26 from iodide-phen-

t-BuONa. The best results were obtained from using complex 25 rather than complex 26.51 It 

was observed that a SET mechanism was in operation with complex 25 as the addition of 

TEMPO resulted in a decreased yield whilst the yield was only slightly deceased in presence 

of TEMPO when using complex 26 suggesting alternative mechanisms are operating for the 

two catalysts and that it is two-electron process with complex 26.51, 52 

 

 

Scheme19: Synthesis of triarylamines using arylhalide, DAB ligand 

Other triarylamine compounds have also been synthesised using this copper catalysed 

reaction as they are useful building blocks for organic materials with electronic, photo-

electronic and magnetic properties. It has been reported that triarylamines may be prepared 

in the presence of a ligand such as N,N-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene 

(DAB: prepared from the condensation of glyoxal with primary amines). This complex is stable 

to moisture and air making it easy to use however it was reported that iodoarenes with 

electron-donating groups result in a lower yield while diarylamines having increase steric 
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hindrance also led to a reduced yield. This method was also used for the arylation of primary 

arylamines such as aniline however four equivalent of aryl iodides was used to prevent the 

formation of a mixture of diarylamine and triarylamine (Scheme 19). 53 

 

 

Scheme 20: Synthesis of arylamines using Fe/Pd catalysis 

Another report observed arylation of diphenylamine using arylbromides in the presence of 

palladium supported on magnetic nanoparticles covered by oleic acid (Fe@OA-Pd), the base 

t-BuONa was also required (Scheme 20). The arylation was successful however arylbromides 

with electron-withdrawing groups resulted in a lower yield of the product because of the 

competing dehalogenation reaction, the ortho-effect was also observed limiting the yield for 

sterically demanding substrates.54 

 

1.5.3 Arylation of heteroaromatics  

 

 

Scheme 21: Arylation of pyrazole with iodobenzene 

Heteroaromatic compounds for instance, pyrazoles have been arylated using arylhalides in 

the presence of copper and DMEDA55-57 (Scheme 21), as an alternative method to the classical 

Ullmann reaction although which requires high load of catalyst, high temperature and is 

limited to certain substrates. The diamine-ligated Cu(I) catalyst used in the reaction catalyses 

the coupling of arylhalides and amides and proceeds through a three-centered-oxidative 

addition and reductive elimination mechanism.58 It has been reported that the strength of 
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the halogen bond in the aryl halide and the ligand-copper-nucleophile complex have an 

influence on the coupling reaction.59 Only trace amounts of the copper was needed compared 

to the DMEDA which was used in combination with a polar solvent. It was demonstrated that 

the reaction did not work at room temperature and without large quantities of ligand. 

 

 

X R % 

Br 4-Me 80 

Br 2-OMe 57 

Br 4-OH 85 

Br H 91 

Br 4-NH2 79 

Cl 4-NO2 95 

Cl 4-CN 90 

Scheme 22: Coupling between imidazole and aryl halide or heteroaryl 

Another study reported the arylation of imidazole using copper iodide in the presence of 

Cs2CO3 and the solvent DMF (Scheme 22). It has been found that both DMF and/or imidazole 

could have acted as the ligand for the copper however both were successful with various 

functional groups, with the products obtained in good yield. The substrates with ortho-

substituents also gave the desired product. Other heteroaromatics for instance indazoles, 

triazoles and benzimidazole were also arylated under these reaction conditions.60 
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Scheme 23: N-Arylation of imidazole and heteroaromatic with arylhalide 

N-Arylation of imidazole has also been achieved with copper catalysis (Scheme 23) but this 

time in the presence of a ligand for instance (S)-1-((1-benzylpyrrolidin-2-yl)methyl)-2-methyl-

1-H-imidazole. This method was applicable to aryl halide with different functional group for 

example esters as it prevents hydrolysis to benzoic acids at high temperature and conversion 

of nitriles to amides, this method also selectively arylated the nitrogen of imidazole. The use 

of 2-bromophenol, 4-bromophenol and 3-bromoaniline avoids the need of protecting groups, 

also mono arylation has been achieved when 1-4-dibromobenzene was used and a high yield 

of product obtained. The optimized conditions were successfully applied to other 

heteraromatic compounds for instance pyrroles, pyrazoles, indazole and triazole and gave the 

desired product in high yield.61  
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X R % 

I H 95 

I 4-OMe 89 

I 2-OMe 40 

Br 4-COMe 70 

Br H 70 

Cl 4-NO2 95 

Cl 4-COMe 50 

Cl H 20 

Scheme 24: Arylation of imidazole with substituent aryl halide  

The arylation of imidazole has also been carried out using cellulose supported copper as 

cellulose stabilises the metal nanoparticles in the presence of base and DMSO as the solvent. 

A range of arylhalides were used with ortho-substituted substrates giving low yields possibly 

due to increased steric hindrance, as expected arylchlorides also gave lower yields than 

bromides and iodides, however imidazole with 4-nitrochlorobenzene gave a good yield of 

product probably due to the presence of the strong electron-withdrawing group over coming 

the less labile C-Cl bond (Scheme 24).62 
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X R % 

Br 4-CN 0 

Br 4-NO2 41 

Cl 4-CN 42 

Cl 4-NO2 63 

Cl 4-NH2 76 

Scheme 25: Coupling of piperidine and aryl halides  

Another study reported arylation of piperidine using arylbromides and arylchlorides in the 

presence of a palladium catalyst, which was supported on magnetic nanoparticles, to improve 

the activity of the palladium and potentially to aid recovery of the catalyst, this system has 

been recently used in the arylation of other amines as described in Section 1.5.2 (Scheme 20), 

this time the reaction was carried out using piperidine in the presence of toluene solvent. It 

was noted the base t-BuONa reduced the reaction time significantly.54, 63, 64 The arylation of 

aniline however gave a low yield of the product and also generated triphenylamine as a by-

product whereas using piperdine gave high yields. The reaction was unsuccessful in the 

presence of some electron-withdrawing groups, for instance with 4-bromobenzonitrile the 

reaction did not happen at all probably due to the dehalogenation reaction, whereas 4-

chlorobenzonitrile gave 42% of the desired product (Scheme 25). The reaction was selective 

for instance 4-chloroaniline (76 %) of the desired product and also sterically hindered 

arylhalide for instance 1-chloronaphthalene gave a high yield of the desired product (90%).54  
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Scheme 26: Arylation of imidazole with aryl halides 

Arylation of imidazole was also observed using aryl halides in the presence of copper iodide 

in association with Bu4NBr as a phase transfer catalyst (Scheme 26), the presence of the phase 

transfer catalyst was important as without it the reaction did not work very well. The 

reactivity of the arylhalides was examined with I>Br>Cl>F being found, the coupling process 

was successful and the electronic nature of aryliodide did not affect the yield. 2-

Methyliodobenzene gave a low yield (63%) of the product indicating steric hindrance was 

important, arylation of hindered 2-acetylpyrrole also resulted in a low yield (50%).65  

 

 

Scheme 27: Cu-NP catalysed reaction of aryl iodides with pyrrole, indole and azaindole 

These product heteroaromatic compounds N-arylindoles, N-arylpyrroles and N-arylimidazole 

have been shown to have useful biological activity66 and many methods have been used for 

their synthesis. N-arylindoles and N-arylpyrroles have been synthesised in the presence of 

copper nanoparticles and  aryl halide (Scheme 27) as these metal nanoparticles provide a 

great surface to volume ratio limiting the amount required.67  The reaction also required a 

base and the solvent DMSO was found to be the best, however increasing the time resulted 

in a drop in yield from 82% to 68% due to an increase in side reactions. Aryliodides bearing 

different electron-withdrawing groups at all the positions gave good yields however 
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substituents in the 2-position gave lower yields than when the substituent was in the 

corresponding 4-position, probably due to steric hindrance.68 

 

 

Scheme 28: Arylation of imidazole with aryl halides 

The arylation of heterocycles using aryl halides was also reported in the presence of Cu2O 

(Scheme 28), the advantages of using Cu2O is that it costs less than CuI, is not soluble in DMSO, 

meaning that the copper catalyst can be then used again as the recovery process is a simple 

filtration.69, 70 As expected, and evident from previous methods, the aryliodide was more 

reactive than the arylbromide which in turn was more reactive than the arylchloride. 

Reactions gave high yields with aryl subsistents at the ortho-, para- and meta-positions, 3-

amino imidazole was selectively arylated on the nitrogen of imidazole, however ethyl 4-

iodobenzoate gave a low yield even in the presence of molecular sieves and due to hydrolysis 

of ester (base was KOH) whereas a change to Cs2CO3 as the base gave a good yield of the 

product. These reaction conditions were applied to benzimidazole, pyrrole, indole and 

pyrazole which were all found to give good yields of the desired products.70 

 

 

Scheme 29: Arylation of sulfoximine and N-heteroaromatic with aryl halide  
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Table 2 

Entry  Arylhalide  Cu source Yield %[a] 

1 27a Cu 32 

2 27a CuI 26 

3 27a[b] CuI 56 

4 27a CuO 8 

5 27a Cu2O 95 

6 27a[c] Cu2O 76 

7 27a CuBr 76 

8 27a Cu(acac)2 77 

9 27b[d] Cu2O 89 

[a] yield after flash chromatography. [b] 20% CuI. [c] 5 mol% Cu2O. [d] Temp. 110 °C 

Using Cu2O as a catalyst has also been reported under ligand free conditions (Scheme 29). The 

reaction was also observed using different sources of copper, the N-arylation of 

methylphenylsulfoximine was used as a screening test for the copper source and Cu2O was 

found to be the best (Table 2), it is of note that no formation of biaryl by-products or reduction 

of the iodobenzene was observed. Cu2O has also been used for the arylation of imidazole, 

pyrazole, pyrrole, triazole, indole and benzimidazole. The optimized conditions were applied 

to pyrazole successfully with various aryl halides (Scheme 29). The presence of ortho 

substituents on the aryl halide did not affect the product yield, however for instance 

benzylaniline did not work under the reaction condition.71 72  

 

 

Scheme 30: N-Arylation of imidazole using Cu2O/ZnO catalysis 
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N-Arylation of imidazole using Cu2O/ZnO nano flake particles under ligand free conditions has 

also been investigated (Scheme 30). The system was stable to air and the optimized 

conditions were applicable for both electron-donating and electron-withdrawing groups at 

the 2-,3- and 4-positions of the arylhalide. The reaction was also compatible with sterically 

hindered arylhalides. The reaction was also selective, for instance 1-bromo-4-chlorobenzene, 

1-bromo-4-fluorobenzene resulted only in 1-(4-chlorophenyl)-1H-imidazole and 1-(4-

fluorophenyl)-1H-imidazole respectively. The aryl chloride was less reactive than either the 

aryl bromide or the aryl iodide.73 

 

 

R % 

H 91 

4-Me 90 

2-Me 0 

4-Cl 74 

2-Cl 0 

3-OMe 87 

2-OMe <5 

3,4-(OMe)2 86 

4-n-Bu 94 

Scheme 31: Synthesis of N-arylated 2-phenylindoles 

N-Arylation of 2-arylindoles has been achieved using an aryl halide, copper iodide and a 

suitable ligand. The N-arylation of heterocycles in the presence of copper and a ligand had 
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already been reported – first copper catalysed of indoles in the presence diamine ligand was 

reported by Buchwald in 2002,74 with other ligands also having been used in the arylation 

processes for instance L-proline,75 benzotriazole,76 8-hydroxyquinalidine77 and tetrazole-1-

acetic acid.78 N-Arylation of 2-arylindole was based on using the DMEDA ligand and CuI which 

is stable to moisture when in association with a base. The arylation was successful with 

arylhalides bearing different substituent at the 4- and 3- positions, however a substituent in 

the 2-position resulted in trace amounts or no arylation product at all (Scheme 31).79 

 

 

Scheme 32: Coupling of adenine and aryl halides 

Arylation of N9-aryl purines has been reported using aryl halides as purine-based compounds 

are important building blocks in medicinal chemistry, for instance as antiviral, antibacterial 

and anticancer compounds80, 81 and have been used for the treatment of HSV, HIV, and 

hepatitis infections. The arylation of purine was achieved in the presence of 4,7-bis(2-

hydroxyethylamino)-1,10-phenanthroline (BHPhen), sodium ascorbate (NaAsc) and a copper 

catalyst (Scheme 32),82, 83 The direct coupling between purine and aryl halides with a variety 

substituents, for example electron-donating and electron-withdrawing groups, were 

successful except for those with substituents in the 2-position. The reaction was selective for 

the adenine and 2,6-diaminopurine N9 position as the N7 position is blocked by the 6-amino 
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group whereas theophylline is selective for N7 position due to steric hindrance at the N9 

position by N3–methyl substituent.82 

 

1.5.4 N-Arylation of amides  

 

 

R R1 R2 % 

4-NH2 Phenyl Me 81 

2-OMe H Me 94 

2-NO2 H Phenyl 69 

Scheme 33: N-Arylation of amides 

N-Arylation of amides uses the Goldberg reaction which is carried out in the presence of a 

copper catalyst as an alternative to palladium due to the high cost and sensitivity to electron-

rich or 2-substituted aryl halides. It can also be used for arylation of azoles under the following 

conditions:- CuI (1 mol%), a diamine ligand, aryl iodide, and K3PO4 or Cs2CO3 as the base 

(Scheme 33). It was reported that the use of strong bases will retard the catalytic process as 

the amides produced bind to the copper and retard the catalytic process. The process is 

chemoselective for primary amides and can be done at room temperature, aryl bromide can 

also be used with a higher loading of catalyst (10 mol%).11, 84, 85 
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R1 R2 % 

H Phenyl 97 

Me  Me 66 

Ethyl Me 23 

Phenyl Phenyl 5 

Scheme 34: Coupling of amide and iodobenzene under ligand free condition  

N-Arylation of amides has also been reported under similar conditions, however the presence 

of aprotic solvent in this case is important for the reaction as it increase the solubility of the 

base and also works as a ligand as it is donating electron. The optimized reaction conditions 

were suitable for both primary aromatic amides and aliphatic amides as the reaction was 

sensitive to steric hindrance of secondary amides and gave low yields and in acyclic secondary 

amide cross-coupling reaction was observed for instance N-methylacetamide and N-

ethylacetamide gave 66% , 23% respectively of the desired product (Scheme 34).86 
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1.6 Arylation of nitrogen nucleophiles using arylboronic acids 

 

 

Scheme 35: Synthesis of arylamine and hetroaromatic amine using Chan-Lam strategy. 

The arylation of nitrogen nucleophiles discovered by Chan and Lam uses arylboronic acids 

under cross-coupling reaction conditions, arylboronic acids have been commonly employed 

in organic synthesis due to their stability, structural diversity, low toxicity and wide 

availability.87 However the reaction required long reaction times and used large amounts of 

arylboronic acid, some reactions were carried out in the presence of additional reagents for 

instance TEMPO, molecular oxygen and pyridine-N-oxide to determine a possible mechanism 

for the process.88 The arylation of aniline and imidazole was observed under these conditions 

using water as the solvent as the arylboronic acid is very stable in water. The arylboronic acid 

may have electron-rich groups and/or electron-deficient groups with both giving the final 

product in high yield, however only electron-donating groups in the 3-position gave good 

yields of product and electron-deficient groups in the 4-position only produced the desired 

product in moderate yields. The reaction was selective in the case of two nucleophiles being 

present, for instance with 3-hydroxyaniline reaction only occurred at nitrogen and did not 

take place at OH. The optimized conditions were achieved using imidazole in isopropanol as 
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the solvent (Scheme 35) and in the case of imidazole  the reaction did need longer reaction 

times as the substrate is no longer a primary amine.89 

 

1.6.1 Arylation of heteroaromatic compounds  

 

 

Scheme 36: Arylation of imidazole using arylboronic acids 

It was observed in the arylation of imidazole using arylboronic acids that in water and in the 

presence of copper supported by appropriate an amphiphilic surfactant prevented oxidation 

of the arylboronic acid to phenol.90, 91 It was reported that using different surfactants, 

including the fluorous surfactant (F-PEG) which has been used commonly in organic 

synthesis92, 93 was also possible. The conditions were applicable for a whole range of different 

functional groups, for instance alkoxycarbonyl, cyano groups and halogens, by using 

appropriate surfactant (Scheme 36).94 However water is not as commonly used as a solvent 

as not all polar organic molecules dissolve in water. Water has also not been used as the 

solvent in the arylation of nitrogen with arylboronic acids as the arylboronic acid readily 

oxidised to phenol. The use of a surfactant allows microhydrophobic regions to be formed – 

micelles – and it is in these that the reaction takes place. The Chan-Lam conditions have been 

successfully used with different surfactants for example F-PEG (50), Brij 30, and TritonX-100 

with a range of substituted arylboronic acids. Not all functionality on the arylboronic acid did 

work, for instance 3-aminophenylboronic acid gave low yield of the product. In addition to 

imidazole,  benzimidazole and phenylimidazole were also arylated under the conditions 

used.94 
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Scheme 37: Arylation of imidazole with arylboronic acid 

Arylation of imidazole has been done via nucleophilic aromatic substitution using several 

methods including a combination of an aryl halide and imidazole, however it requires an aryl 

halide with electron-withdrawing groups. A method was described by Chan-Lam using an aryl 

boronic acid, imidazole, copper acetate and triethylamine or pyridine under ambient 

conditions. Arylation of imidazole was reported under catalytic conditions using 

[Cu(OH)TMEDA]2Cl2 in dry DCM under ambient oxygen levels as dioxygen can regenerate the 

[Cu(OH)TMEDA]2Cl2 (Scheme 37). Arylboronic acids with different substituents were used, 

methyl groups gave good yield when in the 2- and 4-positions, however the methoxy group 

gave lower yields when in these two positions. Using 4-phenylimidazole and 2-tolylboronic 

acid was not as selective and gave a mixture of two N-arylated products.95 

 

 

Scheme 38: Arylation of a benzimidazolinone with 4-tolylboronic acid 

The method described above was not suitable for aniline, amines and phenol, the presence 

of oxygen in the reaction oxidized the Cu(II) to Cu(III) where the resultant complex which can 

then undergo the reductive-elimination,96 therefore it has been observed that the use of an 

oxidizing agent, for instance pyridine N-oxide (PNO) and TEMPO facilitated the Cu (II) to Cu 

(III) conversion more than oxygen and not the oxidation of the arylboronic acid to phenol.96 

Three catalytic systems were used 1) Cu(OAc)2/TEMPO, 2) Cu(OAc)2/PNO and 3) Cu(OAc)2/O2 

for the arylation of benzimidazolinone (Scheme 38) and it was found that the first two 

catalytic systems gave higher yields. Catalytic [Cu(OH)TMEDA]2Cl2/O2 did not work as had 
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been previously reported. The conditions were also successfully applied to the aniline, 

pyridine, sulfonamide and benzimidazole etc.97 

 

 

Scheme 39: Arylation of imidazole with arylboronic acid 

It has been reported that the arylation of imidazole under simple copper catalysed conditions 

without the addition of ligand and base was also successful. The CuCl had to be used in the 

presence of a protic solvent such as methanol or a water/methanol mixture and proved that 

protic solvents are important for the cross-coupling reaction when using arylboronic acids, 

heating was also required as room temperature did not work (Scheme 39). The conditions 

were also used for different type of arylboronic acids and produced high yields of product, 

however hindered arylboronic acids needed longer reaction times for instance 2-tolylboronic 

acid.98 

 

 

Scheme 40: Arylation of imidazole with arylboronic acid 

Arylation of imidazole using arylboronic acids in the presence of catalyst Cu2O/ZnO nano flake 

has also been reported, the advantages of using Cu2O is that it costs less than CuI,70 it is not 

soluble in DMSO and can therefore be readily used again (Scheme 40). It gave the desired 

product in high yield with both electron-withdrawing groups and electron-donating groups 

on the arylboronic acid.99 

 

 

Scheme 41: Arylation of hetroaromatic with 4-tolyboronic acid 
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Arylation of different heteroaromatics has been demonstrated in the presence of copper 

acetate, a tertiary amine such as triethylamine or pyridine at room temperature (Scheme 41). 

The yield was high in the case of strong nucleophiles such as pyrazole, imidazole and indazole 

whereas for the less nucleophilic ones, for example triazoles and tetrazole, the reaction yield 

was low.100 

 

1.6.2 Arylation of aniline and aliphatic amines 

 

 

R1 R2 Temp. % 

Butyl H RT 92 

4-Bromophenyl H 40 53 

t-Butyl H 40 39 

Cyclohexane H 40 85 

 

Scheme 42: Coupling of aliphatic amines and aniline with arylboronic acid 

As described in section 1.6.1 Scheme 37, the method by Collman using [Cu(OH)TMEDA]2Cl2 

catalyst has so far been limited to the arylation of imidazole derivatives.95, 101 Lam had 

observed arylation, using arylboronic acids, in the presence of molecular oxygen, TEMPO, and 

pyridine-N-oxide as in situ oxidants to regenerate the copper catalyst, however the oxidant 

can result in the oxidation of some arylboronic acids giving phenols as unwanted by-products. 

It has been reported that the arylation of the aliphatic amines (e.g. n-butylamine), with 

arylboronic acid also proceeds under the original Chan-Lam conditions, however a second 

side reaction was noted – copper promoted N-dialkylation as the first arylation product went 

on to react with a second equivalent of arylboronic acid. Diarylation results from the presence 

of the bis (μ-oxo) copper complex102 which can be avoided by using a lower amount of copper 

and also diluting the reaction. The use of tertiary alkylamines did not result in the arylation 
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product at room temperature, however the reaction conditions were successful for different 

types of alkyl and arylamines with different functional group (Scheme 42), however aniline 

gave only a low/average yield of the product. Arylboronic acids with different substituents 

were also used and the 2-substituted derivatives did give reasonable yields of the product but 

the presence of very sterically hindered groups, for instance 2, 6-dimethylphenylboronic acid 

gave a very low yield of the desired product when 1,4-dioxa-8-azaspiro[4.5]decane was used 

as a nucleophile but in the case of 2-methylphenylboronic acid gave good yield of the desired 

product.103 

 

1.6.3 Arylation of anilines  

 

 

R1 R2 % 

H H 86 

H  4-Me 79 

4-OMe H 77 

4-Cl 4-OMe 58 

H 2-Br 55 

H 4-Cl 50 

Scheme 43: Coupling of aniline with arylboronic acid 

It was reported that arylation of amines under solvent -free conditions using high speed ball 

milling (HSBM) reduces the hazards from the reaction (Scheme 43), lowers the reaction time 

and also stimulates some solid-state reactions.104 The reaction was performed with an 

arylboronic acid, copper catalyst, a base, for instance K2CO3, and a grinding auxiliary such as 

KF-Al2O3. It was found Cu(II) worked better than Cu(I). Different aromatic amines were used 

with different substituents, electron-rich and electron-deficient groups at the 2- and 4-

positions, and it was found that electron-withdrawing groups gave lower yields than electron-

rich groups, in particular the 2-bromo group gave the desired product at a low yield. The scope 
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of the reaction was also investigated for alkylamines, however aliphatic secondary amines 

such as diethylamine did not undergo cross-coupling with the arylboronic acid whereas 

phenylethyl-2-amine gave a good yield of the desired product (70%).105 

 

 

R1 R2 % 

4-Me H 91 

4-Me  4-OMe 82 

4-Me 2-t-Butyl 79 

4-Cl H 10 (GC) 

 

Scheme 44: Coupling of anilines with arylboronic acid 

The arylation of nitrogen nucleophiles under Ullmann conditions using an aryl halide often 

required high temperatures106 and a transmetallating agent, for instance aryllead triacetate107 

and arylbismuth108 have both been used. Chan and Lam conditions using arylboronic acid 

required stoichiometric quantities of copper acetate therefore catalytic conditions were 

developed, (20 mol% of Cu) for the cross-coupling reaction, for example between 4-

tolylboronic acid with aniline which was carried out under an air atmosphere and at ambient 

temperature (Scheme 44). The reaction was improved further by the addition of myristic acid. 

Many functional groups are tolerated on the aniline component, for example electron-rich, 

electron-deficient and sterically hindered groups all gave desired product in high yield, 

however arylboronic acids with electron deficient groups, for instance chloride gave low 

yields. and also sterically demanding group gave low yields.109 The conditions were also 

applied to primary alkylamines and secondary amines and both types of substrate were found 

to give reasonable yields of the arylated product. 
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1.6.4 Arylation of sulfoximine  

 

 

 

Scheme 45: Coupling of sulfoximine with arylboronic acid 

The arylation of sulfoximines has also been reported using arylboronic acid under copper 

catalysed conditions, with 10 mol% of copper (II) found to be more effective than copper (I) 

under the anhydrous conditions used, the reaction was completed with two equivalent of 

arylboronic acid as using less affected the product yield. The reaction was also carried out 

with different substituent on the arylboronic acid and any in the 2-position reduced the 

yield.110 The compound 28 was also arylated and the reaction was selective for N-arylation 

over carbon arylation (Suzuki coupling reaction),111 increasing the steric hindrance of the 

aliphatic substituent at the alpha-carbon of the sulfoximine compound, e.g. 29, did not affect 

the reaction and gave the desired product as expected (Scheme 45).110 
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1.6.5 Arylation of primary amides to synthesise secondary amides 

 

 

Scheme 46: General methods towards monoalkylation 

Secondary amides are useful compounds as their functionality is found in the backbones of 

all natural peptides and proteins and also many therapeutic molecules and synthetic 

intermediates.112 The methods to form such amides from alkyhalides/alkylboronic acids is 

limited due to the lower reactivity of the primary amide compared to the amine, intermediate 

alkylmetal complexes tend to undergo β-hydride elimination instead of reaction with the 

amide (Scheme 46: Eq. A).113 Traditional methods has  been used in the alkylation of aniline 

stoichiometric amount of copper, alkylboronic acid about 4 equivalent114 and also prepared 

from acylation of primary amide with an alky halide but over alkylation was observed (Scheme 

46: Eq. B).115 

 

 

Scheme 47: Synthesis of secondary amide 

It has reported that the alkylation of primary amine using Chan-Lam conditions proceeded in 

the presence of a base (e.g. NaOSiMe3). As the yield was higher with this base, it was 

suggested that a weak base might slow deprotonation of the amide therefore it prevented 



45 
 

degradation of the copper catalyst. 116, 117 Oxidants other than DTBP were unsuccessful, for 

instance diacetoxyiodobenzene, benzoquinone, hydrogen peroxide and mCPBA, CuBr was 

also preferred as it gave a good yield, higher than when using copper acetate (Scheme 47). 

The reaction also tolerated different functional groups on the amide for example alkyl group, 

aromatic ethers and tertiary amides, amides with fluoro and chloro substitunets were also 

arylated whereas amides with strongly electron-withdrawing groups were not arylated. 

Substrates with aromatic and aliphatic esters were not arylated, whereas boronic acids were 

used with many different functional groups, for instance arenes, ethers, and alkenes and also 

sterically hindered groups such as in neopentylboronic acid whereas other tertiary boronic 

acids were not successful. Secondary boronic acids, for example isopropylboronic acid were 

successful but additional quantities of reagent and catalyst was necessary to affect the 

reaction yet still giving a lower yield than with primary boronic acids.117  

 

 

Scheme 48: Arylation of secondary amine using pinacol aryboronate 

Arylation of secondary amines has also been reported under Chan-Evans-Lam reaction 

conditions using a copper catalyst in the presence of MeCN, molecular sieves were used to 

remove water therefore the by-products being formed from the pinacol arylboronate ester 

starting material by protodeboronation 32 and/or phenol 31 resulting from oxidation were 

decreased. The addition of ethanol led to produce ether by-product due to alcoholic nature, 

however mixture of Et3N/EtOH decrease the ether 33 by-products observed during reaction 

optimization such as those shown in Scheme 48.118 
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Scheme 49: Copper catalyst coupling of N-H bonds of TRH tripeptide with arylboronic acid 

Polypeptides are often found in drug development, biomaterial design, and biological 

structures,119, 120 however selective N-arylation of the back bones of polypeptides is limited. 

Therefore selective modification has been observed for the N-H bonds through neighbouring 

TRH residue by using copper acetate and arylboronic acid (Scheme 49), arylboronic acids with 

different substituents were also used however the yield was low for these derivatives.121-123 

 

1.7 Arylation of nitrogen nucleophiles using diaryliodonium salt  

 

The use of diaryliodonium salts both symmetrical and unsymmetrical has been used as 

arylating agent widely under metal-free and metal conditions. The transfer of aryliodonium is 

related to the electronic and steric effect and the reactivity of these is influenced by the 

functional group and the nature of nucleophile.124 

 

 

Scheme 50: Arylation of nucleophile using aryliodonium salt as arylating agent 

Metal-free arylation of aniline using diaryliodonium salts has been reported, in this study, it 

appeared increasing reaction time had a positive effect on the yield and the best temperature 

was 130 °C. Also the effect of the counter ion was also studied; in general and subject to the 

stability of the diaryliodonium salt the less nucleophilic counter ion was preferred, for 

example trifluoroacetate, however tetrafluoroborate did not give a high yield of the product. 

The use of unsymmetrical diaryliodonium salts will generally result in the nucleophilic 
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substitution occurring on the sterically demanding aromatic ring (the ortho-effect) or the 

electron-deficient ring (Scheme 51).2 

 

 

Scheme 51: Synthesis of diarylamines using diaryliodonium salts 

 

1.7.1 Synthesis of N-Arylurea  

 

 

Scheme 52: Synthesis of N-arylurea 

A method towards the synthesis of triarylurea derivatives has also been reported as these 

have shown activity as inhibitors of HIV protease.125 Phosgene and the derivatives of 

phosgene which are typically used in the preparation of these materials126, 127 produce toxic 

waste128 therefore diaryliodonium salts have been developed as an efficient and practical way 

for the formation of triarylureas, (from N-arylcyanamide with diaryliodonium salts, Scheme 

52). The N-arylcyanamide tolerated a range of substituents, both electron-donating groups 

and electron-withdrawing groups did not affect the reaction and only slight decreases in yield 

was observed with sterically demanding groups. Unsymmetrical diaryliodonium salts were 

also used with both electron-donating and electron-withdrawing groups, the product was 

obtained in a good yield however in this case the increased steric hinderance affected the 

yield and also the chemoselectivity of the process.129 The proposed mechanism was 

elucidated based on these results (Scheme 53).130, 131 
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Scheme 53: Proposed mechanism for the synthesis of N-arylureas 

The Cu(OTf)2 was initially reduced to Cu(I)OTf, oxidative addition of the diaryliodonium salt to 

the Cu(I)OTf results in a Ph-Cu(III) species, transfer of the aryl group generates intermediate 

A, addition of water results the product.129 

 

1.7.2 Synthesis of N-arylated carbazoles 

 

Scheme 54: Proposed mechanism between cyclic diaryliodonium salt and aniline 
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Carbazoles are useful compounds in pharmaceuticals and the ring system is also present in 

alkaloids132 and it has been synthesised successfully by the reaction of a cyclic diaryliodonium 

salt with anilines as shown in Scheme 54.133 It has been synthesised through ring-opening of 

the cyclic diaryliodonium salt followed by ring closing where the introduced nitrogen from 

the aniline acts as an intramolecular nucleophile. 

 

 

Scheme 55: N-Arylation of 4-fluoroaniline using cyclic diaryliodonium salt  

The method shown in Scheme 54 was less successful when cyclic diarylbromonium salts were 

used as it resulted in by-products as the key intermediate is less reactive then its iodo 

counterpart reducing the chance of nucleophilic attack at the 6-position. The second by-

product, the meta-derivative, was suggested to be because of a benzyne intermediate 

resulting from the reaction of diaryliodonium salt with a base, aniline in this case promoting 

the β-elimination path-way (Scheme 55).133 

 

1.7.3 Arylation of pyrazoles  

 

 

Scheme 56: Arylation of pyrazoles 
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Diaryliodonium salts have also been used for the formation of N-arylated pyrazoles which are 

useful building blocks and also have agrochemistry and pharmaceutical applications.134 The 

arylation of pyrazole was reported with diaryliodonium salts under metal-free conditions 

(Scheme 56)135 and the selectivity of the reaction is as would be expected in that the sterically 

hindered and/or electron-deficient aromatic is transferred. 

 

 

Scheme 57: Proposed mechanism of arylation of pyrazole with diaryliodonium salt 

As it was initiated that the 2,3 rearrangement (transfer of Ar1 group) more favourable than 

the 1,2 rearrangement (transfer of Ar2 group) and also neighbouring effect of the pyrazole 

nitrogen will be more nucleophilic as a consequence of diaryliodonium salt and results in an 

intermediate T-shaped N-iodo species which undergoes reductive elimination via [2,2] 

rearrangement which is more favourable than [1,2 ] (Scheme 57).135 
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1.7.4 Arylation of N-substituent imidazole 

 

  

R1 R2 % 

2-Me H 91 

4-Br H 95 

3-OMe 3-OMe 83 

4-OH H 64 

Scheme 58: Synthesis of unsymmetrical diarylimidazolium salts 

As has already been highlighted diaryliodonium salts have been used for the N-arylation of 

imidazole, N-substituted imidazoles may also undergo arylation in the presence of a copper 

catalyst, it was noted that the counter ion of the diaryliodonium salt affected the yield and 

the reaction was most successful with non-nucleophilic anions. High yields were obtained 

with electron-rich diaryliodonium salts in combination with electron-deficient imidazoles. The 

reaction is useful as it is also tolerant of many functional groups on the imidazole moiety for 

example acetyl, formyl, ester and hydroxyl groups do not affect the yield but the reaction was 

affected by high steric hindrance on the imidazole such as an N-(2,6-

diisopropylphenyl)imidazole, which gave a yield of only 56%. In addition the reaction does not 

need strong acid or base and is therefore carried out under mild conditions (Scheme 58).136 
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1.7.5 Arylation of N-hydroxylamines 

 

 

R1 R2 X % 

H Mes TfO- 86 

4-OMe 4-OMe TfO- 61 

3-NO2 3-NO2 Br- 45 

4-OMe 4-NO2 TsO- 58 

4-Me 4-Me TfO- 90 

Scheme 59: Arylation of N-hydroxylamines 

The arylation of N-hydroxylamines with diaryliodonium salts was observed and the process 

was successful with range of unsymmetrical diaryliodonium salts under metal-free conditions. 

The hydroxyl group was protected as its t-butyldimethylsilyl/TBDMS ether (Scheme 59) and it 

was found that in the case of sterically hindered diaryliodonium salts the reaction was 

selective with, the hindered group being transferred, for instance mesityl. Electronic 

selectivity was also achieved with the most electron-deficient group being transferred, for 

instance the 4-nitrophenyl group. Both electron-donating groups and electron-deficient 

groups (e.g. methoxy and chloro groups in the examples reported Scheme 59) are tolerated 

in the reaction. The type of counter ion did not affect the reaction, however of those 

investigated triflate afforded higher yields.137 
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1.7.6 Arylation of indoline 

 

 

R % 

4-OMe 0 

4-Me 41 

4-Br 65 

4-CF3 62 

Scheme 60: Arylation of indoline with diaryliodonium salts 

Indoline is an important functionality in both alkaloid natural products and also in 

pharmaceuticals,138, 139 it has been N-arylated under metal-free conditions using 

diaryliodonium salts in an acidic fluorinated solvent (e.g. TFE), as it was found that the use of 

aprotic solvents, for instance DMSO, did not give good yields. Diaryliodonium salts with 

electron-donating groups gave lower yields than those with electron-deficient groups,  for 

instance those with the 4-methoxyphenyl group did not give the arylation product whereas 

those with electron-deficient groups, for instance 4-bromophenyl and 4-

trifluoromethylphenyl, gave the desired product (Scheme 60).140 

 

 

Scheme 61: Arylation 2-substituent indoline with diaryliodonium triflate 
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The counter ion of the diaryliodonium salt also influenced the outcome of the reaction, 

tosylate gave a lower yield while trifluoroacetate and tetrafluoroborate gave a similar result 

to the triflate counter ion. These reactions using N-heteroaromatic substrates, for instance 

1H-indazole, result in a very low yield of the N-arylated product whereas for 1H-benzotriazole 

the reaction was selective for N-2 position141, some indolines were also oxidised and gave 

indoles (Scheme 61).140 

 

1.7.7 Arylation of secondary amides 

 

 

R1 R2 R3 % 

Me H H 83 

Ethyl 4-NO2 H 77 

Me 4-Br H 40 

Me H 4-NO2 99 

Scheme 62: Secondary amide coupling with diaryliodonium salt 

Aryl amides are important compounds for the synthesis of peptodomimetics, polymers and 

inflammatory compounds,142 as a result many methods have been introduced for their 

preparation. Metal-free N-arylation and the metal-catalysed related process, for instance 

using Pd-catalysis or Cu-catalysis, have been used for the synthesis of tertiary amide.143 This 

report has described the metal-free N-arylation of secondary amides using diaryliodonium 

salts in combination with a base, for instance NaH. The arylation of acetanilide with 

diaryliodonium salts bearing different counter ions such as trifluoroacetate, tosylate and 

tetrafluoroborate all result in similar yields. From the optimization process arylamides with 

electron-donating groups gave better yields and in those examples of diaryliodonium salts 

bearing ortho-substituents, it was the hindered group that was transferred, and where there 
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was an electronic difference between the two arenes it was the more electron-deficient arene 

that was transferred.144 

 

 

Scheme 63: Proposed SET mechanisim and [1,2], [2,3] rearrangement mechanism of 

arylation of secondary amide with diaryliodonium salt 

The mechanism could happen by a SET mechanism, in which a single electron transfers from 

nucleophile to the diaryliodonium cation which then reduced to intermediate 9-I-2, the 

intermediate decomposes to radical benzene and iodobenzene. The radical benzene reacts 

with radical nucleophile or absorb hydrogen from solvent to form benzene (Scheme 66)5, 40or 

via a two possible T-shaped intermediates rearrangements A and B, it is [1,2]-rearrangement 

or [2,3]-rearrangement as shown in the (Scheme 63).144 
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1.7.8 Arylation of sulfonamide  

 

 

Figure 7: N-Arylsulfonamides compounds 

N-Arylsulfonamides are a popular functionality found in anti-cancer drugs, anti-HIV, 

antibacterial and anti-convulsant compounds, for instance Dofetillide and Pediazole (Figure 

7).145, 146 A method has been described for their synthesis using diaryliodonium salts as a safer 

method as alternatives use mutagenic or genotoxic species such as aniline and sulfonyl 

chlorides (Scheme 64).147 

 

 

R1 R2 % 

H 4-Me 97 

H 4-CF3 87 

4-Mes 4-Mes 0 

H 4-OMe 96 

Scheme 64: Arylation of tert-butyl-N-sulfonycarbamates using diaryliodonium salt 
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In this study t-butyl-N-tosylcarbamate was reacted with diaryliodonium triflates in the 

presence of a Cu(I) catalyst. A range of substituent of t-butyl-N-sulfonylcarbamates were used 

and gave the desired product in a good yield, also unsymmetrical diaryliodonium triflates 

were used and the chemoselectivity was observed for example when using mesityl derived 

diaryliodonium triflates and the other aryl group was selectively transferred, the symmetrical 

dimesityliodonium triflate did not give the desired product as both groups are too hindered 

for the reaction to take place.148 

 

 

Scheme 65: Proposed mechanism of tert-butyl-N-sulfonylcarbamates and diphenliodonium 

triflate 

In the proposed mechanism149, 150 for arylation tert-buty-N-sulfonycarbamates with 

diaryliodoniumtriflate under copper-catalysed conditions, the Cu(I) is oxidised to Cu(III) by 

reaction with the diaryliodonium salt resulting in an aryl copper species, nucleophilic addition 

of the sulphonamide with coordination of the copper with the oxygen lone pair of the Boc 

group leads to removal of the acidic proton by the base, then rearrangement to the Cu(III) 

complex and reductive elimination gives the product regenerating the copper catalyst 

(Scheme 65).148 
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Scheme 66: Synthesis of N-arylsulfonamide using a diphenyliodonium triflate 

In other research an N-arylsulfonamide was also observed using diaryliodonium salts in the 

presence of the base K3PO4 rather than Et3N as used here (Scheme 66).151 When 

diaryliodonium triflates were used in the reaction a good yield of the product was obtained 

however when tosylate or the bromide salts were used lower but still acceptable yields were 

observed. Unsymmetrical diaryliodonium salts bearing halo substituents resulted in a good 

yield except for the 4-fluoro derivative due to its low solubility whereas diaryliodonium salts 

with weakly electron-donating group such as 4-t-butyl gave only moderate yields. 

Unsymmetrical diaryliodonium salts led to transfer of the less hindered group as this is a 

copper catalysed mechanism. The N-arylsulfonamide tolerated both electron-withdrawing 

groups and electron-donating groups and gave the product in a good yield except the 

combination of N-cyclohexylsulfonamide and 4-methoxyphenylsulfonamide which gave a 

very low yield of the product.151 

 

 

Scheme 67: N-Arylation of sulfoximine with diaryliodonium salt using ultra sonication  
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In further research, arylation of N-sulfoximine was performed using ultrasonication, 

ultrasound in organic reaction may activate the reaction by acoustic cavitation,152 where 

micro regions of high temperatures and high pressures in the liquid result in a decrease in 

reaction time.152 The reaction was demonstrated by using a diaryliodonium salt, CuBr, 

aqueous PEG-400 and N-arylsulfonamides, and the reaction was finished in 5 min. Another 

advantage of this process modification is that the iodobenzene was readily separated from 

the reaction mixture at end of the reaction as a layer of iodobenzene was formed at the 

bottom of the beaker which could then be recycled by conversion into further quantities of 

the diaryliodonium salt (see Scheme 67).153 

 

1.7.9 Arylation of pyridinium sulfonamidates 

 

 

R % 

4-Br 0 

4-CF3 0 

4-Cl 63 

4-Me 77 

Scheme 68: Arylation of pyridinium sulfonamidates 

Another report also demonstrated arylation of N-pyridinium sulfonamidates under copper 

catalysed conditions, for diaryliodonium salts with electron-donating groups the reaction 

worked well when electron-withdrawing groups were present, for instance bromo and  

trifluoromethyl groups the arylated product was not produced. The chemoselectivity for this 

reaction when unsymmetrical diaryliodonium salts were used was as expected in that the less 

hindered group was coupled to the nitrogen of pyridinium sulfonamidate (Scheme 68).154 
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Scheme 69: Arylation of pyridinium sulfonamidates 

The pyridinium sulfonamidates with electron-donating substitutes worked well with 

diaryliodonium salts which also had electron-donating groups however in the case of 

electron-withdrawing groups on the diaryliodonium salt these did not give the arylated 

product (Scheme 69). The pyridinium sulfonamidates with halogens substituents were also 

reactive and gave the re-arrangement product.154 

 

 

Scheme 70: Proposed mechanism of N-arylation of pyridinium sulfonamidates 

This rearrangement follows the homolytic-cleavage of the C-N bond which gives radical pair: 

the tosylate aniline 39 and the pyridinium radical 38 and recombination of the two radical 

furnished the rearrangement product 42. The electronic effect of the substituent on the 
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phenyl ring effects this radical rearrangement for instance electron deficient group such as 

CF3 did not afford the rearrangement product (Scheme 70).154-156 

 

1.7.10 Synthesis of N-aryl benzo[1,2,3]triazin-4(1H)-one derivatives 

 

Entry R 1 R2  % 

1 3,5-Me2 3,5-Me2 5 

2 4-Br 4-MeO 63 

3 4-iPr 4-MeO 78 

4 4-Cl 4-Cl 85 

5 3-NO2 3-NO2 59 

6 2-Me 2-Me 42 

Scheme 71: Arylation of N-hydroxybenzole [1,2,3]-triazin-4-(3H)-one using diaryliodonium 

salt 

The benzo[1,2,3]triazin-4-one derivatives 43 are important compounds in pharmaceutical 

sector and typically synthesised by a [3,3]-rearrangement through a one-pot reaction initially 

involving N-O-arylation followed by  a [3,3]-rearrangement. 157, 158 The [3,3]-rearrangement 

process has gained much attention in organic chemistry159 as it allows accesses to some 

compounds which are difficult to synthesise by other methods for instance Claisen 

rearrangement.157 The diaryliodonum salt was used for this purpose, in the presence of base 

with no additional catalyst required, the diaryliodonium salt may be used with both electron-

donating and electron-withdrawing substituents, the presence of 2- and 3-substituents giving 



62 
 

a lower yield (entries 5,6 Scheme 71) might have subject to  steric hindrance and electronic 

effect respectively. The more electron-deficient aromatic ring was transferred under these 

metal-free conditions which is expected and opposite to the metal catalysed process. The 

reaction was also dramatically affected by steric hindrance with these salts giving only 5% of 

the product (Entry 1, Scheme 71).160 

 

 

Scheme 72: Proposed mechanism of arylation of N-hydroxybenzole [1,2,3]-triazin-4-(3H)-

one and diaryliodonium salt 

The radical trap TEMPO was added under optimized condition and proved that the N-O bond 

cleavage did not proceed via a radical mechanism as when the reaction was heated at 50 °C 

the O-arylation intermediate was still obtained and increasing the temperature to 80 °C the 

N-arylation product was obtained,160 the proposed mechanism is shown in Scheme 72.160-162 
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1.8 Arylation of oxygen 

 

Figure 8: Bioactive compounds containing diarylether 

The diarylether is a widespread functionality in pharmaceutically active compounds and in 

the fine chemicals and polymer industry. Diarylethers are also found in many natural products 

for instance vancomycin, glycopeptide antibiotics and also as anti-HIV agents for example 

chloropeptin, and also in compound 44 and compound 45 (Figure 8).163-166 

The early method for the preparation of diarylethers is the Ullmann coupling reaction which 

involves the reaction of phenol with aryl halides167 but it requires high temperatures and uses 

aryl compounds that are sensitive to oxidation, for example phenol. Diarylethers have also 

been synthesised from phenol and arylboronic acids168 in the presence of a copper-catalyst 

at room temperature but it requires an excess of copper.169, 170 Another method using a 

palladium catalysed cross-coupling reaction is carried out at high temperature, uses 

expensive reagents and non-commercial ligands increasing the cost still further.163 As a result 

there remains much scope to improve the formation of these materials.  
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1.8.1 Arylation of phenol 

 

Scheme 73: Arylation of phenol using diaryliodonium salt 

In a similar manner to the preparation of diarylamines, diarylethers have been synthesised 

using diaryliodonium salts171-173 under both metal-catalysed conditions and metal-free 

conditions, the choice of counter-ion and polarity of solvent also effect the outcome of the 

reaction. The metal-free synthesis of diarylethers has been reported using diaryliodonium 

salts which allowed the synthesis of a wide range of diarylethers having electron-donating 

and electron-withdrawing groups, phenols bearing electron-withdrawing groups achieved 

lower yields than those with electron-donating groups, halo substituted phenols gave high 

yields of  products such as 46 and 47, it was reported that these products are difficult to obtain 

by conventional metal-catalyst processes (Scheme 73). The iodobenzene by-product can be 

recovered and used with an oxidant to reform a diaryliodonium salt increasing the efficiency 

of the process. The arylation of phenol with unsymmetrical salts such as 4-

tolyphenyliodonium salt led to a mixture but the chemoselectivity for 4-

methoxypheny(phenyl)iodonium salt was good suggesting some electronic control in the 

process.163 
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Scheme 74: Proposed catalytic cycle 96 

The mechanism of the copper-catalysed process is unclear and there are different options 

regarding the catalytic cycle, however they all involve transmetallation/ oxidative addition, 

followed by reductive elimination although the order of the steps unknown.11 It was also 

reported that catalytic cycle for copper(I) starts with oxidative addition to the aryl halide and 

results in a copper (III) intermediate and finally reductive elimination to give the product. The 

transmetalation step, transferring the ligands from the metal to the arylhalide results in a 

copper (II) intermediate and finally reductive elimination to give the product (Scheme 74).174 
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Scheme 75: Coupling of 3-methoxy phenol with diaryliodonium triflate 

The chemoselectivity when using unsymmetrical diaryliodonium salts in the arylation of 

phenol was also studied, as described earlier it is the more electron-deficient group that will 

be transferred under metal-free conditions.2, 175, 176 The diaryliodonium trifluoroacetate with 

a 4-methyl group gave an unselective reaction gave a mixture of 2.9 compound 48 (78 %) to 

1 of compound 49 which is not surprising as the two aromatic groups are similar. The 4-methyl 

is affected by electronic and steric factor whereas the 4-methoxyphenyl derivative gave 

selective reaction (Scheme 75), the ortho-effect was also observed (Scheme 75).162 
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Scheme 76: Synthesis of polybrominated diphenylether 

Polybrominated diphenylethers have been synthesised from brominated diaryliodonium salts 

and brominated phenols (e.g. Scheme 76),177 these brominated ethers have found many 

applications in industry for example as flame-retardants in electronics, plastics, textiles and 

finishing foam.178, 179 

 

 

Scheme 77: Arylation of phenol using diaryliodonium fluorides 

As described earlier, and in some cases the counter-ion of diaryliodonium salts has an effect 

on the reaction outcome, the counter-ion may not act as just a leaving group alone. In the 

case of diaryliodonium salt with fluoride counter-ion the fluoride could act as a base and 

stimulate the nucleophilic activity180 of an additional species through formation of a F-H bond 

which facilitates attack on the iodine (III) centre (Scheme 77). 
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Scheme 78: Synthesis of substituted diarylethers 

Using this approach the phenols were arylated with diphenyliodonium fluoride, phenols with 

electron-deficient groups and electron-donating groups are both tolerated and gave the 

desired product in a good yield. Also sterically hindered species with ortho substituents were 

used and the product was still obtained in excellent yield (Scheme 78).181 The diaryliodonium 

triflate did not work under these conditions whereas addition of TBAF to the diaryliodonium 

triflate did result in arylation of the phenol. When unsymmetrical diaryliodonium triflates 

were used the selectivity observed was that the more electron-deficient aryl was transferred. 

It was also observed that arylation of L-tyrosine under optimised condition182 using 

diaryliodonium fluorides was possible,181 this is useful as these material have demonstrated 

applications in the pharmaceutical industry, as dietary supplements and food additives.181 
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1.8.2 Synthesis of alkylarylethers 

 

Scheme 79: Synthesis of alkylarylethers 

In the addition to the formation of diarylethers the general arylation of alcohols using 

diaryliodonium salts has been reported at room temperature, whereas most of methods such 

as the Williamson ether synthesis,183 SNAr reactions184-189 and the use of Mitsunobu type 

reagents190 usually require high temperatures, toxic reagents and/or have restricted range of 

substrates191. Diaryliodonium salts are less toxic than some metal catalysts and therefore they 

are a suitable reagents for the arylation of allylic alcohols, however allylic alcohols are readily 

oxidised to aldehydes, ketones and carboxylic acids with powerful oxidants such as 

hypervalent iodine species so this needs to be considered. This reaction was carried out in the 

presence of a base and water at room temperature to also prevent arylation of the base. The 

observed chemoselectivity was that ortho-substituted diaryliodonium salts were less 

selective while those with electron-withdrawing groups gave a good yields of the product. 

This method was not suitable for the arylation of normal aliphatic alcohols as their pKa is too 

high.192 

 

 

Scheme 80: Synthesis of alkyl-aryl ethers 
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The arylation of secondary alcohols remains a challenge since oxidation was observed and 

resulted in ketone by-products. When unsymmetrical diaryliodonium salts were used to 

arylate alkyl alcohols under metal-free conditions, with NaH as the base, and TBME as a 

solvent (Scheme 80)191 the usual chemoselectvity was observed and the less electron-rich aryl 

group was transferred forming the alkylaryl ether. The alkylaryl ether with a fluorinated group 

was observed under these conditions for instance compound 50 which is difficult to obtain 

under other methods, for example in SNAr reaction as the fluoride is good leaving group.191 

 

 

Scheme 81: Arylation of aliphatic alcohol with diaryliodonium salts 

It has also been shown that the arylation of aliphatic alcohols in  toluene is possible as some 

of the aliphatic alcohols do not react as desired in the presence of water under metal-free 

conditions163, 193 or at room temperature and without an excess of reagent.193 

Diphenyliodonium triflate was used for arylation of a number of different aliphatic alcohols, 

however the benzyl ether and cinnamyl ether were not produced in high yield. When 4-

nitrodiphenyliodonium triflate was used for formation of a range of alkylaryl ethers, the usual 

chemoselectivity was observed and the 4-nitropheyl group was coupled to the alcohol. When 

diaryliodonium salt 51 was used the same pattern was followed and the 3-

trifluoromethylphenyl was coupled to the alcohol whereas diaryliodonium salt 52 (Scheme 

81) with two electron-withdrawing groups present successfully arylated 1-pentanol and 
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geraniol and was also used to synthesise fluoxetine. Whereas the diaryliodonium salt with 

only electron-donating groups and those with ortho-substituents did not work.193 

 

 

Scheme 82: Synthesis of Butoxycaine (53) 

The synthesis of 53 was also achieved using a diaryliodonium salt triflate under these 

conditions (Scheme 82).193, 194 
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1.8.3 Synthesis of O-aryl carbamates 

 

 

Scheme 83: Synthesis of O-aryl carbamates and the proposed mechanism for the reaction 

It has been reported that the synthesis of O-aryl carbamates maybe achieved from the 

reaction of an amine, CO2 and diaryliodonium salts.195 The carbamate functionality is found 

in natural products,196 agricultural chemicals197 and pharmaceuticals,198 for instance the anti-

Alzheimer’s drug, rivastigmine. The dimesityliodonium salt was used with two equivalents of 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and diethylamine under 4 MPa of CO2 (Scheme 83). 

The effect of the anion was also studied and the triflate was best among tetrafluoroborate, 

bromide and tosylate. Unsymmetrical diaryliodonium salts were used and the 

chemoselectivity observed was that the more electron-deficient group and the most hindered 

group was transferred. A proposed mechanism for this reaction has been reported (Scheme 

83).195 
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1.8.4 Arylation of carboxylic acids 

 

 

Scheme 84: Arylation of carboxylic acids using diaryliodonium salts 

Aryl esters are also important building blocks in pharmaceuticals, agrochemicals and 

polymers, they also occur in natural compounds and are widely used in organic synthesis. The 

reaction conditions required by the early methods were long reaction times, stoichiometric 

amounts of reagents and also the use of protic solvents and reflux temperatures. The Chan-

Lam reaction, copper catalysed carbonylation using aryl halides and phenol addresses some 

of these limitations.199  

Arylation of carboxylic acids with diaryliodonium salts in the presence of sodium carboxylates 

was reported in 1950s. Early methods used stoichiometric amounts of sodium benzoate in 

the presence of protic solvents, examples where enolizable carbonyl groups were present 

were not suitable substrates under these conditions thereby restricting the utility of the 

process. Diaryliodonium salts with different anions can also be used but the bromide anion 

resulted in the by-product bromobenzene being formed from intramolecular coupling of the 

bromide anions and phenyl ring of the diaryliodonium salt. As is often seen in diaryliodonium 

salts the electron-deficient aromatic group is coupled to the nucleophile – carboxylic acid in 

this case, whilst in the presence of a metal catalyst and one arene being sterically demanding, 

such as mesityl, the opposite chemoselectivity is observed, enabling an electron-rich to 

couple to the carboxylic acid. Carboxylic acids bearing strong electron-withdrawing groups 

such as nitro gave the product in low yields as it had a detrimental effect on the nucleophilicity 

of carboxylic acid. Bulky ortho-substituent diaryliodonium salts and carboxylic acids gave good 

yields of the product.163, 199 
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Scheme 85: Arylation of carboxylic acids with diaryliodonium salt 

Arylation of carboxylic acids was reported in the presence of hydrogen bond donors (HBD) for 

example thiophosphoramides in the presence of copper catalyst, which stimulates ion pairs 

by making three hydrogen bonds with anions,200 the reaction also required a non-polar 

solvent to favour the hydrogen bond formation. The HBDs also worked with non-coordinating 

anions, for instance when using diaryliodonium tetrafluoroborates, the lack of these HBDs 

meant the reaction did not work. The reaction was also affected by the type of catalyst used, 

in the case of Cu(BF4)2 this resulted in a decreased yield as the HBD failed to coordinate the 

tetrafluoroborate anion which did not therefore activate the catalyst. The optimised 

conditions worked successfully for the electron-deficient substituted substrates such instance 

compound 54 and compound 55 (Scheme 85), it should be noted that the yields of these two 

products are higher than under metal-free reaction conditions. The system is also active for 

the arylation of aliphatic acids and α ,β-unsaturated acids for example compounds 56 and 57 

(Scheme 85).201 
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1.8.5 Arylation of sulfonic acids  

 

 

Figure 9: Anti-inflammatory drugs COX-2 containing arylsulfones 

Drugs such as the COX-2 inhibitor Vioxx 58 and prostaglandin D2 antagonist Laropiprant 59 

contain arylsulfones in their structure (Figure 9), diarylsulfones have also been shown to have 

antitumor activity and hamper the HIV-1 reverse transcriptase therefore arylsulfones are 

useful compounds in medicinal chemistry.202 Different methods have been used to synthesise 

diarylsulfones, both in the presence of metal catalysts and using metal-free synthetic routes. 

The method above which described the synthesis of an aryl ester may also be used to 

synthesise aryl sulfonate esters, however in lower yields using diaryliodonium triflate as the 

attack on iodine by the less nucleophilic sulfonate anion is the rate determining step in the 

reaction (Scheme 86).163 

 

 

Scheme 86: Arylation of sulfonic acids using diaryliodonium salts 

 

The synthesis of diarylsulfones may also be achieved from lithium sulfinates which are easily 

prepared in situ via lithiation of a haloarene in the presence of sulfur dioxide. The reaction is 

sensitive to the choice of counter-ion with a more nucleophilic counter ion, such as Cl‒ and 
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TsO‒ resulting in lower yield. Like many reactions the process was selective when 

unsymmetrical diaryliodonium salts were used.202 

 

Scheme 87: Formation of diarylsulfonates 

 

1.8.6 Synthesis of aryl N-aryloxyimides and aryloxamines 

 

 

Scheme 88: Synthesis of aryl N-aryloxyimide using diaryliodonium salts 

As discussed in Section 1.8.1 the arylation of oxygen, aryloxamines also have been synthesised 

under metal-catalysed conditions, however it was observed that the arylation of N-

hydroxysuccinimide (NHS) using diaryliodonium salts and a base proceeded under metal-free 

conditions.3, 33, 203-206 For unsymmetrical diaryliodonium salts was used, the usual 

chemoselectivity was observed with the 2-methyl-substituted arene or the more electron-

deficient group 3-NO2 was transferred  (e.g. 60 and 61 in Scheme 88).207 
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1.9 Summary 

 

As discussed above the arylation of N-nucleophiles has been achieved using a variety of 

different methods, for instance the palladium-catalysed Buchwald-Hartwig type reaction, 

copper mediated Ullmann type and Chan-Lam reactions either with aryl halides or arylboronic 

acids as the source of the aromatic ring, however the conditions often required a strong base, 

high temperatures, and also limited the functionality of the substrate and the yields were low 

in the presence of electron-withdrawing groups. 

As iodine (III) compounds are very electrophilic at the iodine because of the node in the non-

bonding orbital they are therefore very reactive towards nucleophiles. The diaryliodonium 

salts were used widely for the arylation of nucleophiles, as discussed for example nitrogen 

and oxygen, diaryliodonium salts have also been used in the arylation of sulfur,208 carbon209 

and fluorine17 which have not been discussed in this review. The reaction conditions depend 

on both the nature of nucleophile and the counter-ion of the diaryliodonium salt, the latter 

also has an effect on the stability of the diaryliodonium salt itself. The counter-ion triflate was 

used in most cases as simple diaryliodonium salts are readily prepared although poly-

functional derivatives are much more difficult. It is the exploration of this area and the actual 

reaction conditions that forms the basis of this thesis particularly as our research group2, 210, 

211 and others have reported that these parameters can greatly influence the outcome of such 

reactions. 

Despite many studies using diaryliodonium salt in the arylation of nucleophiles finding an 

efficient general method which provides shorter reaction times and also has the potential to 

scale up the production of the target material remains of interest as it is this that will see 

diaryliodonium salts adopted as routine arylating agents in a commercial setting. 

In addition there has not been any reports on the arylation of oxygen nucleophiles using 

diaryliodonium salts in the absence of base and extremely limited studies on functional group 

selectivity given the ultimate application is the efficient preparation of diverse polyfunctional 

molecules (for example selectivity between N- and O-nucleophiles). 
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2 Results and Discussion 
 

2.1 Aims 

 

As discussed in Chapter 1, palladium and copper are used widely in organic synthesis to 

catalyse N-arylation reactions which it is also possible to make under metal-free conditions, 

this range of methodology is a result of the importance of this functionality as it has been 

used in numerous products such as pharmaceuticals. The arylation of both aliphatic and 

aromatic amines has been reported using a Buchwald-Hartwig type reaction212, 213 and also 

with or without the presence of a phosphine ligand, such as the chelating phosphine 

BINAP.214, 215 However, as mentioned in Chapter 1, these methods often require high 

temperatures, long reaction times, stoichiometric amounts or an excess of reagents (e.g. base 

and ligands). Yet these methods have become standard procedures for the arylation of 

nitrogen, oxygen and carbon centres. 

 

Scheme 89: Synthesis of diarylamines 

Most recently diaryliodonium salts were used in the arylation of aromatic amines as they are 

non-toxic, stable and easy to prepare and are also extremely electrophilic and therefore have 

been used widely in the arylation of a range of nucleophiles.16, 18, 19, 22, 23, 28, 29 

The N-arylation of aniline has been reported under metal-free conditions by our group2 which 

required 24 h at 130 °C so there was an opportunity to reduce this time and/or the 

temperature required by the translation of the method to a flow chemistry protocol. 

A wide range of methods have been used to synthesise arylamines as mentioned in Chapter 

1, however to date no publication highlighted the use of diaryliodonium salts to synthesise 

these materials under continuous reaction conditions. Only two studies have reported the 

synthesis of arylamines in the flow chemistry216, 217 and these employed the reaction of an 

arylhalide and arylboronic acid, therefore finding a reliable method towards the synthesis of 
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arylamines and assess its potential for the production of large quantities would be beneficial 

to industry. It also highlighted the opportunity to develop a generic ‘flow chemistry’ route 

towards the synthesis of this functionality as an alternative to the conventional batch 

reaction. 

 

 

Scheme 90: Synthesis of grossamide using flow chemistry 

Transfer of the chemistry from batch conditions to flow chemistry offers the opportunity to 

improve safety, efficiency, reproducibility and product purity. It also allows the products to 

be made in useful quantities, for example for biological evaluation, without further 

optimization due to the increase in scale. The flow system also allows multi-step reactions to 

be done and avoids large scale use of hazardous substances at a particular point in the 

process. It also has the potential for improving the yields and solid reagents can also be easily 

used in flow processes simplifying the purification of the product, the recycling/regeneration 

of reagents and the handling of waste.218 For instance the increased range of process 

parameters means that safer methods may be used for the reaction optimization, quenching 

of a reaction and eventually scale-up, for instance grossamide has been synthesized using a 

continuous flow process giving the final product in a high yield (Scheme 90) therefore with 

this feature automated computer control, LC-MS optimization and UV monitoring, flow 

chemistry has provided synthesis of a complex molecule.219 
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2.2 Flow chemistry 

 

 

Figure 10: Flow chemistry systems219 

Flow chemistry systems (for examples see Fig. 10), using both micro and mesoscale methods 

have been widely used for the organic and inorganic synthesis, compared to some batch 

reactions they allowed easy scale-up, product separation and demonstrated increased 

tolerance of multiple functional groups. Flow chemistry systems started with inexpensive 

syringe or HPLC pumps connected to a reactor, for example a coil which may be made from 

steel, glass, PEEK, PTFE and PFA (polyfluoroacetate) polymer, copper, palladium alloys and 

stainless steel or a micro or meso-fluidic reactor chip. The system has safety advantages as 

the reaction process takes place in sealed system which also limits the amounts of hazardous 

substance under the reaction conditions at any one time. The system may also have input 

pumps and/or reagent sample loops which are controlled through the computer software or 

manually. The use of small diameter tubing and reactors provides excellent heat transfer, 
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efficient mixing of reagents and hence improves reproducibility, this automation coupled with 

reduced reaction times and the scale of the reaction allows for rapid reaction optimization.219 

The technology allows for multiple flow paths to be incorporated, either with additional 

reagents, reactors under different conditions or to allow in-line purification, such as by using 

bespoke in-line cartridges or packed omnifit tubes containing solid-supported reagents 

and/or scavenging resins, with a further advantage being limiting the amount of solvent used 

in the whole process.219-221 

 

 

Scheme 91: Flow reactor configuration and its components219 

Use of back pressure regulator allows super heating of the solvent enabling reactions to be 

conducted at temperatures above the usual boiling point of the solvent which is often a 

limiting factor in process design. The flow pathway, and variation in the combination of 

reactors/cartridges etc. provides a flexible system, different configurations may also offer 

additional criteria to optimize a process in comparison to the relevant batch reaction. Scheme 

91 shows an example configuration of a flow reactor with the pumps and injection loops 

which can be controlled through the computer software, and an IR detector222 within the 

system which monitors the reaction in real time allowing in situ refinement of the reaction 

conditions.219 
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Flow chemistry has been used for the synthesis of natural products using a range of 

chemistries such as Sonogashira C-C coupling, ring closing synthesis of heterocycles, Ullmann 

couplings, 1,3-dipolar cycloadditions and C-N bond formations.223  

 

 

Figure 11: T-shape mixture of the flow chemistry224  

To summarize the advantages of flow chemistry are:- 

 Industrial and academic applications 

 Micro, meso and very large scale processes possible 

 Excellent mixing, heat and mass transfer (e.g. Figure 11, A: Y-mixer, B:T-mixer) 

 Increase production without additional optimization (e.g. Figure 11, C multi-channel 

process) 

 Wider range of reaction parameters compared to traditional batch methods 

 Multi-step reactions possible 

 Enhanced safety as it limits the amount of hazardous substances under the reaction 

conditions at any one time 

 The flow chemistry also include the automation of the system allowing 24/7 working 

 it also reduces the amount of solvent used and continuous processes provide an 

alternative method to the batch reaction.217, 219 
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Scheme 92: Synthesis of 2-arylhydrazonomalonitriles using flow chemistry 

Synthesis of 2-arylhydrazonomalonitriles using flow chemistry is shown in Scheme 92225 and 

is carried using the oxidant tBuONO which is a stable, non-explosive reagent and therefore is 

more reliable than the traditional sodium nitrite. In addition the diazonium product is 

potentially explosive reagent and presents safety concerns under large scale batch conditions, 

therefore the translation to a flow chemistry protocol also enables a safer process.225-227 

 

2.3 Synthesis of arylamine using Vapourtec R4 system 

 

 

Scheme 93: Synthesis of arylamine using Vapourtec R4 system 

Synthesis of arylamines using the Vapourtec R4 system has been reported based on the 

Ullmann condensation reaction but without the need for a ligand, the reaction was performed 

in the presence of arylhalide in a copper tube flow reactor (CTFR) with inner diameter is 1.0 

mm which was wound around a mesh support and inserted into a glass jacket, the reaction 

was heated at 150 °C but can also be heated to 250 °C by using a metal rather than glass jacket 

, the copper tube acted as both the reactor and as a source of fresh copper catalyst and gave 

good yields of the desired products.216 
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R1 R2 % 

H H 71 

H 4-Cl 68 

4-Me H 71 

4-Me 2-OMe 45 

4-Cl H 39 

H 2-OMe 66 

Scheme 94: Synthesis of arylamine 

The synthesis of diarylamines has also been reported using flow chemistry (Vapourtec R4 

reactor) in the presence of arylboronic acid, acetic acid, TEMPO and copper (as a 10 mL copper 

tube reactor or copper powder packed in a column). However the yield observed was low in 

the case of 4-chlorophenylboronic acid and 4-methoxyphenylboronic acid, however the 

desired product was obtained in a good yield in the case of phenylboronic acid, the yield was 

improved to 75% with the addition of TEMPO along with acetic acid. It was suggested the use 

of oxygen as an oxidant in the N-arylation using arylboronic acids could improve the yield.217, 

228  

 

  

 

 

 

 

Scheme 95: The Hofmann rearrangement of arylamide using Advion NanoTek™ 

R1 R2 % 

4-OMe Me 80 

2-OMe Me 62 

4-Me Me 80 
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The Hofmann rearrangement was performed using a continuous flow process using a primary 

amide, 1, 8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the base and alcohol as the solvent in 

the Advion NanoTek™ microreactor platform. A series of primary aromatic amides was used 

generating a range of carbamates (Scheme 95).229 

 

2.4 Diarylamines from diaryliodonium salts - Results 

2.4.1 Synthesis of diaryliodonium salts 

 

 

Scheme 96: Synthesis of diphenyliodonium trifluoroacetate (62)2 

The project started with the synthesis of a symmetrical diaryliodonium salt following the 

literature procedure2 (Scheme 96) and using this diaryliodonium salt for the arylation of a 

nitrogen nucleophile, in the form of aniline. Diaryliodonium salts are generally air and 

moisture stable, can be prepared from inexpensive starting materials, are reactive in their 

own right and are also suitable for use in reactors with or without metal a catalyst.7 The good 

solubility of diaryliodonium salts in many organic solvents is another feature which allowed 

them to be used with a flow chemistry protocol. 
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Scheme 97: Proposed mechanism of formation of 62 

The diphenyiodonium trifluoroacetate was successfully synthesised in a good yield (74%) and 

the purity of the product was confirmed by 1H NMR, 13C NMR, mp, mass spectrum and 

elemental analysis. The mechanism involves multiple exchanges of the groups on iodine 

(acetate to trifluoroacetate to phenyl) giving the diphenyliodonium salt, there is no 

chemoselectivity issue in this case as it is symmetrical salt. Trifluoroacetic acid was added as 

it generates a very good leaving group compared to more stable acetate thus facilitating the 

reaction. It should be noted that trifluoroacetate salts are generally more stable than the 

corresponding triflates, particularly for polyfunctional and/or electron-rich arene derivatives, 

making this the initial counter ion of choice (Scheme 97). 

 

2.4.2 Arylation of aniline 

 

Diphenylamine was successfully synthesised by the reaction of diphenyliodonium 

trifluoroacetate with aniline, substituted anilines were also successfully used as substrates, 

and as a symmetrical diaryliodonium salt was used there was no chemoselectivity issues 

observed. 
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Scheme 98: Proposed mechanism of formation of (64) 

The accepted mechanism involves addition of the nucleophile (PhNH2) to the hypervalent 

iodine centre followed by reductive elimination of iodobenzene and thus transfer of 

nucleophile to the phenyl ring forming diphenylamine (Scheme 98). 

 

Table 3: Synthesis of diarylamine under the batch condition 

 

Entry  R  Isolated yield, % 

1 H 61 

2 4-F 55 

3 4-Cl 47 

4 2,4,6-Me3 57 

Diphenyliodonium trifluoroacetate (5 mmol), ArNH2 (5 mmol), DMF (50 mL), 130 °C , 24 h 

Method A 

The synthesis of diarylamine was initially carried out under the reported batch conditions 

using diphenyliodonium trifluoroacetate and aniline. The metal-free arylation proceeded as 
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expected, the yield was good using reaction conditions of 130 °C and a reaction time of 24 h.2 

The diphenylamine and a range of substituted of diphenylamines were successfully 

synthesised (Table 3).The reaction gave the products in moderate yields, for instance 

diphenylamine was obtained in 61%, whilst 4-fluoro and 4-chloroaniline gave 55% and 47% 

respectively due to the electron-withdrawing group resulting in a less nucleophilic aniline, 

however the use of a sterically hindered aniline such as 2,4,6-trimethyaniline gave a 57% yield 

of the desired product as the diaryliodonium salt structure tolerates large groups in proximity 

to the iodine due to the T-shaped geometry. 

 

Method B 

In this method a catalyst was used to make the reaction faster. Copper catalysts have been 

used widely in the arylation of aromatic amines, such as in the Ullmann reaction, and a wide 

range of other reactions mentioned in Chapter 1. Two types of copper (I) catalyst were 

investigated, copper bromide, CuBr and copper chloride, CuCl to find out if the copper source 

had an effect on the reaction. Copper chloride has been used in the formation of C-P bonds230 

and has also been used in the carboarylation of alkynes in the presence of diaryliodonium 

salts. The catalytic copper cycle is via oxidative addition and transmetallation as mentioned 

in Section 1.5.231 
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Table 4: Reaction profiling data for copper catalysed arylation of aniline under batch 

conditions. 

Entry  Catalyst  

(mol%) 

64 Yield/% 

RT 

64 Yield/% 

 130 °C 

Time  

(h) 

1 CuCl (1) 83a 83a 24 

2 CuCl (10) 79a 83a 24 

3 CuBr (1) 80b 85c 24 

4 CuBr (10) 75b 84a 7 

Diphenyliodonium trifluoroacetate (5 mmol), aniline (5 mmol), DMF (50 mL), RTand 130 °C  

a by HPLC; b by 1H NMR; c isolated. 

The copper catalyst was used with the initial reactions carried out using batch conditions and 

the product was obtained in a good yield (85%, Table 4; entry 3) in the presence of CuBr and 

also (Table 4; entry 1) in the presence of CuCl, 83%. The results for both types of copper 

catalyst were similar as indicated by 1H NMR and HPLC analysis of the resultant reaction 

mixtures. 

To further investigate the effect of the copper catalyst, the reaction was carried out with 

different amounts and analysed by HPLC. This study also highlighted the formation of 

biphenyl (for its origin see Scheme 99), when a 10 mol% loading of the catalyst was used 

whereas formation of this by-product was not observed with a loading of only 1 mol% of the 

catalyst, however the yields were similar in all of the reactions. The reaction was also 

performed at room temperature rather than 130 °C and continued to give high yields of the 

desired product (Table 4), demonstrating the advantages of adding copper. 
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Figure 12: HPLC Chromatogram of diphenylamine synthesis at 130 °C 7 h (left) and 24 h 

(right) under batch reacton conditions, diphenyliodonium trifluoroacetate (5 mmol), aniline 

(5 mmol), DMF ( 50 mL).  

The reaction was also performed over a shorter time period (7 h), with 10 mol% of CuBr at 

130 °C, the diphenylamine was again obtained in high yield (84%) with reduced formation of 

the by-product biphenyl (Fig. 12), however in this case phenol was also formed as a by-

product in the reaction. The amount of by-products, for example biphenyl and phenol 

increased with increasing reaction time as evident from the HPLC chromatograms of the crude 

reaction (Fig. 12). 
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Figure 13: Chromatogram of  anline batch reaction at RT, CuCl 1 mol% (left) and 10 mol% 

(right), diphenyliodonium salt (5 mmol), aniline (5 mmol), DMF (50 mL). 

The amount of the by-product phenol generated was reduced when the reaction was 

performed at room temperature. The phenol may arise from the addition of water, as a 

competing nucleophile, to the diphenyliodonium salt but also from hydrolysis of 

phenyltrifluoroacetae which results from the counter-ion adding as a nucleophile, the latter 

being an intramolecular process. Biphenyl was detected but in a very small amount with 1 

mol% of the catalyst (Figure 13). 

These results suggested that the reaction benfits from a shorter time and a lower 

temperature as these conditions gave an improved yield of the desired product coupled with 

a reduced formation of by-products facilitating purification. The reaction also proceeded best 

when less of the copper catalyst was used. 
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2.4.3 Transfer to flow chemistry 

 

 

Figure 14: Optimisation of diphenylamine synthesis (n = 3), diphenyliodonium 

trifluoroacetate (5 mmol), aniline (5 mmol), DMF (50 mL). 

The next step was to transfer the arylation of aniline to flow chemistry in this case using the 

Uniqsis FlowSyn™ platform (see section 4, Figure 44).1 The reaction was investigated at 

different flow rates and temperatures using a reactor coil starting with a steel coil (20 mL). 

The results from using flow chemistry were initially analysed by 1H NMR but the reaction 

outcome was not clear due to overlapping signals and therefore the reaction was repeated 

and analysed by HPLC as it gave a clearer understanding of the results. Commercial 

diphenylamine was used as a standard to establish the appropriate calibration curve. The 

reaction was performed at three different temperatures and the results are shown in Figure 

14. 

The results indicated that longer reaction times (slower flow rates) gave higher yields, with a 

flow rate of 0.25 mL/min giving about a 65% yield of the desired product at 130 °C. The faster 

flow rate resulted in a low recovery of the diphenyliodonium salt as the reaction is incomplete 

at faster flow rate and the decomposition reaction becomes more important therefore the 

reaction of aniline with diphenyliodonium salt is the slower process. 
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Figure 15: Chromatogram of diphenylamine synthesis, diphenyliodonium trifluoroacetate 

(5 mmol), aniline (5 mmol), DMF (50 mL), flow rate 0.25 mL/min, 130 °C. 

The chromatogram shown in Figure 15 is for the reaction flow rate 0.25 mL/min at 130 °C, 

and a residence time of 80 min using a steel coil, one of the major by-products of this process 

is benzene. 

 

 

Scheme 99: Proposed mechanism of arylation of nucleophile using diaryliodonium salt40 

The presence of benzene suggested the formation of the aromatic radical as an alternative 

reaction pathway rather than the desired nucleophilic substitution mechanism leading to the 

arylation of aniline (Scheme 99). However good yield (65%) of the target diphenylamine was 

also achieved under these conditions. 
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Figure 16: Optimisation of diphenylamine synthesis (n = 3), diphenyliodonium 

trifluoroacetate (5 mmol), aniline (5 mmol), DMF (50 mL). 

As the batch reaction using the copper catalyst gave a higher yield than using metal-free 

conditions the reaction of diphenyliodonium trifluoroacetate with aniline was also performed 

using a copper coil reactor. The results also indicated that a flow rate 0.25 mL/min gave an 

excellent yield of the desired product (93%) however in this case the other flow rates also 

gave good yields of the product, but it should be noted that as the flow rate increased and/or 

the temperature increased the yield dropped(see Figure 16). As before the faster flow rate 

was leading to formation of the by-product biphenyl (Figure 17) 

 

 

 

 

 

Figure 17: HPLC chromatogram of aniline reaction at flow rate 0.25 mL/min (left), flow rate 

1 mL/min (right), diphenyliodonium trifluoroacetate (5 mmol), aniline (5 mmol), DMF (50 

mL), 130 °C. 

70

75

80

85

90

95

100

0.25 0.5 0.75 1

%
 D

ip
h

en
yl

am
in

e

Flow Rates (mL/min)

Copper coil

 110 °C

 130  °C

150 °C

R
e

g
io

n
 1

R
e

g
io

n
 2

0:00 10:00 20:00 mm:ss

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0
mAU

R
e

g
io

n
 1

R
e

g
io

n
 2

0:00 10:00 20:00 mm:ss

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

mAU

A = PhOH 

B = PhI 

C = Ph2NH 

D = Ph2 

E = PhNH2 

F = PhH 

 

 

A 

C 

B D E F 

B 

C 

D 



95 
 

 

Figure 18: Effect of concentration on diphenylamine synthesis, flow rate 0.25 mL/min, 130 

°C (n =1) 

From these optimization reactions, the copper coil was found to give an excellent yield of 

diphenylamine. In order to improve the process still further the effect of concentration was 

therefore studied at the best conditions of 0.25 mL/min and 130 °C, it was found a 

concentration of 0.1 M of starting material diaryliodonium trifluoroacetae and aniline gave 

the highest yield, it was evident that as the concentration increased more starting material 

was left in the crude reaction mixture according to the HPLC analysis (Figure 18). 
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Figure 19: HPLC chromatogram of aniline reaction at 0.1 M (left), 0.4 M (right) at 130 °C, 

flow rate 0.25 mL/min, 130 °C. 

 

For instance the HPLC chromatogram for the reaction mixture obtained using a concentration 

of 0.4 M, more of the staring material aniline (at retention time 13 min) was left in the 

reaction mixture (Figure 19) and as such the lower concentration was preferred. 

 

2.4.4 Substrate control 

 

 

 

 

 

 

Figure 20: X-ray crystal structure of 2-methoxyphenyl(mesityl) triflate 

Diaryliodonium salts, Ar2IX, adopt a trigonal bipyramidal geometry23 and it is the relative 

orientation of the two aromatic rings, in the transition state, which is critical in the arylation 

process (to note that the relative arrangement in the transition state may not always be the 

same as in the ground state as determined by X-ray crystallography). Preferential reaction 

occurs between the nucleophile/counter-ion (X) and the aromatic ring in the syn-position 

(pseudo-equatorial). Figure 20 shows the crystal structure of 2-
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methoxyphenyl(mesityl)iodonium triflate, the 2-methoxylphenyl group is in the pseudo-axial 

position and the mesityl group in the pseudo-equatorial position. 

 

2.4.5 Effect of counter ion 

Table 5: Synthesis of diphenylamine using a diphenyliodonium salt with different counter 

ions 

 

X 64 (%) 

 130 °C (n = 3) 

64 (%) 

 RT (n = 3) 

TfO 90 ± 3 (64a) 51 ± 4(64a) 

TsO 88 ± 5 (64b) 1 ± 1(64b) 

TFA 92 ± 4 (64c) 94 ± 2(64c) 

Diphenyliodonium salt (5 mmol), aniline (5 mmol), DMF (50 mL), flow rate 0.25 mL/min, 130 

°C and RT. 

The counter ion of the diaryliodonium salt may also influence the out-come of the reaction232 

and therefore a range of counter-ions were investigated at the optimised reaction conditions. 

Diphenyliodonium tosylate was prepared, and the diphenyliodonium triflate was 

commercially available, and as before the reaction was then performed at 130 °C and room 

temperature. The diphenyliodonium trifluoroacetate gave excellent yields of the product at 

both temperatures whereas diphenyliodonium triflate and diphenyliodonium tosylate gave 

diphenylamine in an excellent yield at 130 °C whereas at room temperature diphenyliodonium 

tosylate gave only a low yield of the product (about 2%). The diphenyliodonium triflate gave 

moderate yield at room temperature (51%) of diphenylamine, however it should be noted 

that with the reaction using diphenyliodonium tosylate the back pressure regulator became 

blocked probably due to the formation of tosic acid (Table 5) which may have influenced the 
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outcome or maybe due to the addition of counter ion to the iodonium rather than aniline. The 

effect of the counter-ion in the batch reactions has also been reported, indicating the 

trifluoroacetate was the best choice for both the fluoridation of diaryliodonium salts17 and 

the reactions alkynyiodonium salts.211 

 

     

 

 

 

 

 

Figure 21: HPLC chromatogram of aniline and diphenyliodonium salts, diphenyliodonium 

salt (5 mmol), aniline (5 mmol), DMF (50 mL), flow rate 0.25 mL/min, RT. 

The HPLC chromatogram of the reaction of diphenyliodonium trifluoroacetate with aniline at 

room temperature is very clean with traces of side-products evident therefore this substrate 

was able to perform the reaction at room temperature. The HPLC chromatogram for the 

reaction of the diphenyliodonium salt with the other counter-ions, triflate and tosylate shows 

a small peak for diphenylamine with the major peak present being unreacted aniline which 

would be expected given the lower yield of the product (Figure 21) suggesting that the 

nucleophilic addition step is more difficult in these cases, it may be due to the addition of 

counter ion to the iodonium rather than aniline or the diphenyl iodonium salt decompose 

before the addition of aniline to iodobenzene and triflic acid or tosic acid as it is not stable 

such as the counter ion trifluoroacetate. 
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Figure 22: HPLC chromatogram of the reaction of aniline (5mmol) with diphenyliodonium 

triflate (5 mmol), anline (5 mmol) DMF (50 mL)at RT, flow rate 0.25 mL/min (left), under 

batch conditions (right), 24 h RT. 

The reaction of diphenyliodonium triflate was also investigated under batch conditions at 

room temperature, and the reaction gave a similar yield (49%) to the reaction performed using 

the FlowSyn™ as shown in the HPLC chromatogram (Figure 22). Some starting material, 

aniline, is left which may be because the diphenyliodonium triflate decomposes at room 

temperature as it is less stable than diphenyliodonium trifluoroacetate as the starting material 

aniline has not reacted as it shown in Figure 22. 

 

2.4.6 Synthesis of mesityl aryliodonium salts 

Method A: 

 

Scheme 100: Synthesis of mesityl(phenyl)iodonium triflate 

The phenyl(mesityl)iodonium triflate was synthesised2 to study the effect of steric factors on 

the reactions of aniline with diaryliodonium salts as the mesitylene group should provide high 

selectivity for controlling the reaction and only transferring the smaller group in the case of 

the copper catalysed process. The preparation was carried out by the reaction of iodobenzene 

biacetate and mesitylene in the presence of triflic acid, it gave a yield of 51% of the desired 

product (Scheme 100). 
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Method B 

Table 6: Synthesis of mesityl(phenyl)iodonium triflate 

 

Entry  R Product % 

1 H 76 

2 4-Me 67 

3 2-Me 81 

4 4-OMe 2a 

5 2-OMe 76 

6 4-Cl 73 

7 2-Cl 82 

 Aryliodide (7.77 mmol), mesitylene (7.77 mmol), mCPBA (7.77 mmol), TfOH (15.54 mmol), 

DCM (70 mL) 

aYield by crude 1H NMR 

An alternative procedure3, 233, 234 is a one-pot synthesis using iodobenzene, mesitylene and an 

oxidant, such as mCPBA, the resultant product was recrystallized directly using ether and no 

further purification was necessary, this approach giving a higher yield than Method A at about 

76% (Table 6). 

Substituted phenyl(mesityl)iodonium triflates were also synthesised successfully using this 

method. Ortho- and para-electron-rich for instance 2-, or 4-methyl and electron-deficient 

substituents were used, all gave good yields of the desired product, surprisingly the presence 

of an electron-deficient group at the ortho-position also gave a good yield of the product, for 

instance 2-chloroiodobenzene gave the diaryliodonium salt in 82% yield. 
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Figure 23: 1H NMR of the crude reaction of synthesis 4-methoxyphenyl(mesityl)iodonium 

triflate 

It is noted that when using anisole (entry 4, Table 6) only 2% product, even though the 

reaction was run at -75 °C, the reaction mixture turned black highlighting the lack of the 

stability of electron-rich diaryliodonium triflates under the reaction conditions or may be due 

to the 4-methoxy iodine (III) species generated in situ is less stable regenerating iodine and 4-

methoxybenzene, the 1H NMR analysis of the crude reaction confirmed about 2% of the 

desired product was present but it was not possible to isolate the desired product (Figure 23). 

Therefore an attempt to synthesis 4-methoxyphenyl(mesityl)iodonium triflate was made 

using method A which also proved unsuitable. 
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2.4.7 Synthesis of 4-methoxyphenyl(mesityl)iodonium trifluoroacetate (65) 

 

 

Scheme 101: Synthesis of 65 

As the synthesis of 4-methoxyphenyl(mesityl)iodonium triflate 65 was not successful using 

the above methods it was decided to prepare the trifluoroacetate derivative as they have 

been shown to be much more stable than the corresponding triflate. Using iodomesitylene 

diacetate which prepared from iodomesitylene (formed by iodination of mesitylene) acetic 

acid and sodium perborate, as show in Scheme 101, the reaction was successful and gave a 

yield of 50% of the desired product demonstrating the increased stability of the 

trifluoroacetate salts. 
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2.4.8 Diphenylamine synthesis using mesityl(aryl)iodonium salt using the FlowSyn™ 

 

 

Scheme 102: Proposed mechanism of copper catalysis using mesityl(phenyl)iodonium 

salts235 

Diphenylamine has been synthesised from mesityl(phenyl)iodonium triflates and aniline using 

the FlowSyn™ at the optimized conditions of 0.25 mL/min at both 130 °C and room 

temperature. Arylation of the mesityl group has not been included in the process as this is 

copper catalysed mechanism which has been shown to be selective for the least hindered ring 

(Scheme 102).138, 235, 236 
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Table 7: Synthesis of diphenylamine using mesitylene aryliodonium triflate 

 

Entry  R RT (%) 130 °C (%)a,b 

1 H 84 72 (67) 

2 4-Me  4 86 (75) 

3 2-Me 38 75 (64) 

4 2-OMe 4 86 (73) 

5 4-Cl 4 75 (65) 

6 2-Cl 2 67 (56) 

Diaryliodonium triflate (5 mmol), aniline (5 mmol), DMF (50 mL), 0.25 mL/min, in flow  

a
Yields by HPLC, 

b
 isolated yield in parenthesis 

The reaction was also carried out with the substituents of phenyl(mesityl)iodonium triflates, 

with the less hindered group is transferred to the aniline, the reaction at room temperature 

gave low yields of the product but higher yields were obtained at 130 °C. As discussed earlier 

the diphenyliodonium triflate also gave a low yield at room temperature, those reagents with 

more electron-rich groups gave slightly higher yields than those with substrates bearing 

electron-deficient groups (Table 7). 
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Figure 24: Chromatogram of formation of 4-methoxydiphenylamine at RT (left) and 130 °C   

(right), 4-methoxyphenyl(mesityl)iodonium trifluoroacetate (5 mmol), aniline (5 mmol), 

DMF (50 ml), flow rate 0.25 mL/min. 

 

Synthesis of 4-methoxydiphenylamine 66 from 4-methoxyphenyl(mesityl)iodonium 

trifluoroacetate 65 and aniline has given only a 23% yield of the desired product as there is 

more formation of by-products at both room temperature and 130 °C, probably due to the 

lower stability of the electron-rich intermediates. The reaction gave a low yield of the product 

at room temperature due to the lack stability and therefore the faster decomposition pathway 

is preferred (Figure 24). 
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2.4.9 Synthesis of analogues of diphenylamine using the FlowSyn™ 

 
Table 8: synthesis of analogues of diphenylamine 

 

Entry  R Yield at RT (%)a,b Yield at 130 °C (%) 

1 H 72 (67) 84 

2 4-F 96 (83) 80 

3 4-Cl 81 (72) 70 

4 4-Br 78 (73) 67 

5 4-NO2 73 (64) 65 

6 4-OMe 88 (78) 81 

7  3,5-(OMe)2 92 (83) 78 

8 3,4-(OMe)2 86 (79) 79 

9 2,4,6-Me3 95 (81) 87 

10 2-t-Bu 89 (81) 78 

11 1-naphthaleneamine 77 (66) 70 

Diaryliodonium trifluoroacetate (5 mmol), ArNH2 (5 mmol), DMF (50 mL), flow rate 0.25 
mL/min. 
a
 Yields by HPLC, 

b
 isolated yield in parenthesis 

Synthesis of a range of diphenylamines was successfully carried out using the FlowSyn™ under 

the optimised condition of 0.25 mL/min at both temperature 130 °C and room temperature. 

A series of anilines was investigated with electron-deficient, electron-rich and bulky 

substituents and all were successful (Table 8). The reaction gave excellent yields of the desired 

product and there was no significant difference between any of the substituents at either 

temperature. As this process used a symmetrical diaryliodonium salt no chemoselectivity was 
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observed. As shown in Table 8, for instance 4-fluoroaniline (entry 2) gave the product in a 

83% yield, 4-chloroaniline (entry 3) gave 72% and the presence of a very electron-deficient 

group, for example 4-nitroaniline (entry 5), still gave the product in a moderate yield of 64%. 

The electron-rich derivatives (entries 6, 7, 8) gave excellent yields of the products. The 

hindered and bulky aniline (entry 9 and 10) gave 81% and 66% respectively of the desired 

product with the 2-t-Bu (entry 10) giving the desired product in 81% yield. 

 

2.4.10 Scale up of 3,4-dimethoxydiphenylamine (67) 

 

 

 

 

Scheme 103: Synthesis of 3, 4-methoxydiphenylamine (67) 

We have shown that diaryliodonium salts are suitable arylating agents for a range of 

substrates, including anilines, but this process required extended reaction times (24 h) limiting 

its application. The processes we have developed allows the production of these materials at 

room temperature using a copper coil as both catalyst and reactor thereby allowing the 
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formation a range of diarylamines under more practical conditions. One of the benefits of flow 

chemistry is the potential to scale-up the process without any additional optimization of the 

reaction conditions and we have demonstrated this through the production of larger amounts 

of 3,4-dimethoxydiphenylamine (Table , entry 8) simply by running the system for longer. 

This was achieved by using diphenyliodonium trifluoroacetate (13.79 g, 35 mmol) dissolved 

in dimethylformamide (175 mL) and 3,4-dimethoxyaniline (5.36 g, 35 mmol) also dissolved in 

dimethylformamide (175 mL). The FlowSyn™ was fitted with a 20 mL copper reactor coil and 

the two reagent solutions were passed through a T-mixer, the copper coil and then a fixed 

back pressure regulator (100 psi) at room temperature. The outflow of the reactor was 

directed into an Erlenmeyer flask (5.0 L) containing water (2.5 L) that was continually stirred 

using a magnetic stirrer. 

Table 9 

 Mass Recovered Yield  1H NMR purity 

Run 1 6.21 g 80% >98% 

Run 2 6.11 g 78% >98% 

Run 3 6.23 g 81% >98% 

Diphenyliodonium trifluoroacetate (35 mmol), 3,4-dimethoxyaniline (35 mmol), DMF (350 

mL), 0.25 mL/min, RT 

Once the reagent solutions had passed into the reactor the inlet valves were switched to just 

solvent and pumped for 15 min (30 mL) to allow all of the reaction mixture to pass through 

the reactor, the contents of the Erlenmeyer flask (reaction mixture and water) was filtered 

and the precipitate washed with water (500 mL) and then with petrol (500 mL). The 

precipitate was then dissolved in ether (1500 mL) and concentrated under reduced pressure 

to give the product as a dark brown solid which on a single crystallisation (diethylether–

petrol) provided the pure product. The reaction gave high yields of the product (see Table 

9).237 
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Figure 25: HPLC chromatogram of crude 3,4-dimethoxydiphenylamine 67 (left) and x-ray 

crystal structure of the product(right), diphenyliodonium trifluoroacetate (35 mmol), 3,4-

dimethoxydiphenylamine (35 mmol), DMF (350 mL), 0.25 mL/min, RT 

 

 

   

Figure 26: 1H NMR and 13C NMR of 3,4-dimethoxydiphenylamine after washing with ether 

The reaction was run three times and gave a consistent high yield of the desired product, the 

purity and identity of the material was proven by the analytical data (NMR and HPLC) and 
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determination of the crystal structure (Figures 25 and 26). For assignment of the NMR data 

see Section 4.19). 

 

2.4.11 Synthesis of diarylamines using heteroaromatic amines  

As the optimized conditions were successfully applied to aniline and its derivatives at room 

temperature and 130 °C we then decided to investigate some of the heteroaromatic amines 

in order to determine the range of the process. 
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Table 10: Synthesis of heteroaromatic amines 

 

 Entry  Ar   Isolated yield at 130 °C, % 

 1  

  

 43 

 2  

  

  69 

 3  

  

  75 

 4  

  

  69 

 5  

 

 61 

 6  

  

  43 

 7  

 

 9a 

Diphenyliodonium trifluoroacetate (5 mmol), HetNH2 (5 mmol), DMF (50 mL), 0.25 mL/min, 

130 °C, a Yield by HPLC 

As shown in Table 10, both aminopyridines were successful with the 2-aminopyridine (entry 

1) giving a lower yield than 4-aminopyridine (entry 3) at 43% and 75% respectively, probably 

due to the increased steric hindrance due to the ortho-substituent. However 2-
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aminopyrimidine (entry 2) gave 69% of the desired product, as did 2-aminopyrazine. (entry 4) 

3-Aminoquinoline (entry 5) gave 61% whereas the 2-aminobenzoxazole (entry 6) gave 43% of 

the product indicating that the process was compatible with a range of heteroaromatic 

amines. 

 

 

 

                                                                                  

 

 

 

 

Figure 27: HPLC chromatogram of reaction 2-aminobenzimidazole at RT (left) and 130 °C 
(right), diphenyliodonium trifluoroacetate (5 mmol), 2-aminobenzimidazole (5 mmol), DMF 
(50 mL), 0.25 mL/min. 
 

The 2-aminobenzimidazole gave 9% of the desired product when analysed by HPLC however 

no product could be isolated. There is also the possibility of alternative N-arylation sites 

however the primary amine would be expected to be preferred. 
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Figure 28: Chromatogram of reaction 3-aminoquinoline at RT (left) and 130 °C (right), 
diphenyliodonium trifluoroacetate (5 mmol), 3-aminoquinoline (5 mmol), DMF (50 mL), 
0.25 mL/min. 
 

The reaction was also performed at room temperature but the yield was slightly lower than 

130 °C, for instance the reaction of 3-aminoquinoline gave 56% at room temperature and 61% 

of the desired product at 130 °C as there was more starting material left in the reaction 

mixture at room temperature (Figure 28). 
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2.4.12 Synthesis of N-benzylaniline, N-alkylaniline and diphenylamine using arylhalide 

Table 11: Synthesis of N-benzylaniline, N-alkylamine and diphenylamine using 

diphenyliodonium trifluoroacetate 

 

Entry R1R2NH Product 
130 °C 

(%)a,b 

 

1  
 

79 (74) 

2 

  

96 (83) 

3 
 

 

87 (74) 

4  
 

85 (72) 

5 
 

 

82 (67) 

6 

  

55 (52) 

Diphenyliodonium trifluoroacetate (5 mmol), ArNH2 (5 mmol), DMF (50 mL),flow rate 0.25 

mL/min, 130 °C, 
a
 Yields by HPLC, 

b
Isolated yield in parenthesis  
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As mentioned in Section 2.3, the synthesis of N-arylamines has been reported using a copper 

coil as both reactor and catalyst and an aryl halide,223 with tetra-n-butylammonium acetate 

(TBAA) present as a base, therefore we carried out the synthesis of N-phenylbenzylamine 

using diphenyliodonium trifluoroacetate and the copper coil flow reactor. The reaction was 

successful at 130 °C and gave a high yield of the desired product (Table 11, entry 1), however 

when using N-methylaniline a low yield was obtained compared to aniline suggesting that 

primary aromatic amines are much more reactive than secondary derivatives. N-

methylhexylamine gave 67% yield of the product (entry 5) whereas the primary amine, 

hexylamine, gave 72% of the desired product (entry 4) probably due to an increase in steric 

hindrance however, unlike the aromatic amines, there is little difference in the case of 

aliphatic amines. 

 

 

 

 

 

 

Figure 29: HPLC chromatogram of reaction aniline and iodobenzene at 130 °C (left) and 230 

°C (right), diphenyliodonium trifluoroacetate (5 mmol), ainline (5 mmol), DMF (50 mL), flow 

rate 0.25 mL/min 

We also examined the direct reaction of aniline with iodobenzene under these conditions as 

PhI may be acting as the arylating agent rather than the diphenyliodonium salt however the 

results indicate that the reaction did not occur at 130 °C but was possible at 230 °C which 

gave about 7% of diphenylamine by HPLC analysis. These results confirm that the 

diaryliodonium salt is indeed the arylating agent supporting the mechanistic rationale 

(increased electrophilic character of the hypervalent iodine reagent facilitating the addition 

of the nucleophile and enhanced leaving group ability of iodobenzene compared to iodide). 
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Table 12: Synthesis of N-benzylaniline, N-alkylamine and diphenylamine using arylhalide 

 

Entry R1R2NH Product 
Yield by HPLC 

130 °C (%) 

1 
 

 

57 

2 
 

 

7 

3 
 

 

2 

4  

 

66 

5 
 

  

1 

 

6 
 

 

8 

7 
 

 

0 

Iodobenzene (5 mmol), R1R2NH (5 mmol), TBAA (5.5 mmol), DMF (50 mL), flow rate 0.25 

mL/min, 130 °C 
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As the reaction was attempted using just iodobenzene and without any additive, the reaction 

was also carried out using added base (e.g. TBAA) following the literature conditions to 

determine if this had an influence on the outcome. The reaction gave a moderate yield of 

some products, albeit lower than using diphenyliodonium trifluoroacetate on its own at 130 

°C, while the TBAA containing reaction at room temperature gave no product at all. As shown 

in Table 12, benzylamine (entry 1) gave a moderate yield of the product 57% whereas entries 

2, 3, 5 gave very low yields again suggesting that the diaryliodonium salt is the critical reagent, 

particularly giving the outcome of the reactions carried out at room temperature. The less 

reactive aromatic amines (entries 6 and 7) are less nucleophilic and more sensitive to the 

reactivity of the arylating agent and as a result only trace amounts of product was formed 

with aniline and no product at all with N-methylaniline. 

 

 

 

Figure 30: HPLC chromatogram of reaction hexylamine and iodobenzene at RT (left) and 130 

°C (right) diphenyliodonium trifluoroacetate (5 mmol), hexaylamine (5 mmol), DMF ( 50 

mL), flow rate 0.25 mL/min. 

All the reactions did not work at room temperature for instance the HPLC chromatogram from 

the reaction with hexylamine shows no formation of product, it only shows the peak for the 

starting material iodobenzene and as hexylamine is not UV active, it does not show in the 

chromatogram (Figure 30). 
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2.4.13 Synthesis of diarylamines: Summary  

In summary, we have developed the first practical method for the synthesis of diarylamines 

using diaryliodonium salts. Unlike the literature methods for the synthesis of diarylamines, 

our method does not use a base or any additive thereby simplifying the process. The reactions 

were also largely carried out at room temperature and thus do not require heating, in addition 

the reaction time was improved from 24 h to 80 min. 

 

2.5 Synthesis of diarylethers 

 

Scheme 104: Synthesis of diarylether 

The next step in the development of this methodology was to transition from N to O-

nucleophiles as a range of diarylamines were successfully synthesised. The synthesis of 

diarylethers was also investigated in the similar manner to the diphenylamine using the 

FlowSyn™ in combination with the copper coil reactor, as discussed earlier in the section 

(1.8.1), the functionality is widespread in pharmaceuticals, for example in the anti-cancer 

agents which act as sulfatase-2 inhibitors 69 (Figure 31).238 

 

Figure 31: Biological compound contain arylether  
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Figure 32: Optimization of the production of 68 (n = 3) diphenyliodonium trifluoroacetate 

(5 mmol), phenol (5 mmol), DMF (50 mL). 

From the data shown in Figure 32, the best conditions are 0.25 mL/min and 130 ᴼC, the same 

for the preparation diarylamines as it gave the highest yield of the product. As the flow rate 

increased the yield of diarylether decreased, increasing temperature also led to a decrease in 

the yield of the product probably through facilitating the thermal decomposition pathway. 

The Olofsson group have used diaryliodonium triflates in the formation of diarylethers 

therefore we examined the effect of counter ion on the reaction given the advantages 

demonstrated for the trifluoroacetate counter-ion in the formation of diarylamines. 
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2.5.1 Effect of counter ion 

Table 13: Synthesis of diphenylether using diphenyliodonium salts 

 

X 68 (%) 

 RT (n = 3) 

68 (%) 

 130 °C (n = 3) 

TfO 19 ± 4 42 ± 3 

TsO 7 ± 1 23 ± 5 

TFA 62 ± 2 85 ± 4 

Diphenyliodonium salt (5 mmol), phenol (5 mmol), DMF (50 mL), flow rate 0.25 mL/min. 

As shown in Table 13, the reaction of diphenyliodonium salts with three different counter ions 

were run at the conditions defined earlier (flow rate 0.25 mL/min) and at temperatures of 

130 °C and room temperature. From the results for the reactions at 130 °C the counter ion 

trifluoroacetate gave highest yield 85% with the triflate, tosylate giving diphenylether at 42% 

and 23% respectively. The reaction was also run at room temperature and these conditions 

gave a much lower yield than those carried out with 130 °C with only the diphenyliodonium 

trifluoroacetate giving a practical yield of 62 % yield. The counter-ions, triflate and tosylate 

gave only very low yields of the product at room temperature which is the same trend 

observed for the N-nucleophiles further demonstrating the importance of the 

trifluoroacetate counter-ion under these mild reaction conditions. 
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Figure 33: HPLC chromatogram of reaction diphenyliodonium salts and phenol at RT (left) 

and 130 °C (right) diphenyliodonium salt (5 mmol), phenol (5 mmol), DMF (50 mL), flow rate 

0.25 mL/min. 

The HPLC chromatogram of the reactions of diphenyliodonium triflate at 130 °C, and at room 

temperature, show more of starting material, phenol, remains in the reaction (Figure 33). 

When phenol was mixed with iodobenzene, rather than the diphenyliodonium salt, at the 

optimized reaction conditions (flow rate 0.25 mL/min and 130 °C) no product was observed 

by the HPLC analysis. In a similar fashion to the N-arylation reactions it was possible that 
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phenol would react directly with iodobenzene and this result demonstrates that this is not 

the case. 

 

2.5.2 Selectivity of N, O-nucleophile  

 

 

Figure 33: N- and O-arylated aminophenol derivatives239 

As we have successfully synthesised both diarylamines and diarylethers using diaryliodonium 

salts in a continuous process we decided to study the N,O-selectivity of this process under 

these conditions, as a number of potential targets for this methodology have both type of 

nucleophile present (for example see over Figure 33)239 yet the reaction and hence di 

functional substrates remain unstudied using Flow chemistry however recent study has 

highlighted the regioselectivity of synthesis N-arylquinolones and O-quinolines under metal-

free batch conditions.240 
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Scheme 105: Arylation of 3-aminophenol239 

The synthesis of 3-hydroxydiphenylamine and 3-aminodiphenylether has been reported using 

a palladium catalyst, arylhalide, base and ligand. The selectivity was related to the type of 

ligand, catalyst and the base as shown in Scheme 105.239 The selective O-arylation has also 

been reported for 2-aminophenol but was not possible under the optimized condition and 

the N,N-diarylated product was also observed. The conditions were also applied to 4-

aminophenol and selective N- and O-arylated products were prepared but this was very 

dependent on the reaction conditions similar to that observed for the 3-aminophenol 

reaction described above. 

 

 

Scheme 106: Arylation of 3-aminophenol 

It has also been reported that the reaction of 3-hydroxyaniline with phenylboronic acid in the 

presence of Fe3O4-EDTA-Cu(II) nanoparticles was N-selective (Scheme 106).241 
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Scheme 107: Proposed mechanism of N-arylation using Fe3O4-EDTA-Cu(II)241  

The proposed mechanism is copper catalysed (the copper being attached to the nanoparticle 

via EDTA coordination),the initial copper (II) species is oxidised by O2 to copper (III) with 

coordination of the amine, this is then followed by the trans metalation with the arylboronic 

acid and subsequent reductive elimination to give the product (Scheme 107).109, 241 
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2.5.3 Arylation of 4-aminophenol 

 

  

 

Scheme 108: Effect of flow rate on 4-hydroxyldiphenylamine (70) production (n = 3) (left) 

HPLC chromatogram of reaction of 4-aminophenol at 130 °C (right), diphenyliodonium 

trifluoroacetate (5 mmol), 4-aminophenol (5 mmol), DMF (50 mL). 
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N-, O-selectivity of the nucleophile using diphenyliodonium trifluoroacetate, under the 

continuous process with a copper coil reactor, was investigated with 4-aminophenol and the 

result indicates N-selectivity as shown in Scheme 108, all flow rates gave the product in high 

yield and the best conditions were 0.25 mL/min at 130 °C – the same as for the individual 

processes. Trace amounts of the product resulting from N, O-diarylation were also observed 

(Scheme 108) although none of just the O-arylated product suggesting that N-arylation is the 

much more facile process. 

 

Figure 35: X-ray crystal structure of N-phenylazaquinone 71 (left)  

Hypervalent iodine reagents are also used as oxidising agents4 such as the Dess-Martin 

periodane and the aryliodine (III) dicarboxylates, they have found many applications due to 

their tolerance of a wide range of functional groups. Therefore it was no surprise that a trace 

amount of N-phenylazaquinone 71 was detected using 1 equivalent of diphenyliodonium 

trifluoroacetate which would result from oxidation of the 4-hydroxydiphenylamine, this 

material was isolated and x-ray crystal structure analysis confirmed the structure. 
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2.5.4 Arylation of 3-aminophenol  

 

 

 

 

Scheme 109: Optimization of 3-hydroxyldiphenylamine 72 (n = 3), HPLC chromatogram for 

3-aminophenol reaction) diphenyliodonium trifluoroacetate (5 mmol), 3-aminophenol (5 

mmol), DMF (50 mL). 

 

The amine of 3-aminophenol was also selectively arylated (Scheme 109), and gave similar 

results to those seen when 4-aminophenol was used as the substrate, as before the best 

conditions were 0.25 mL/min at 130 °C. The N, O-diarylation product was not observed in this 
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case but the formation of biphenyl was deticted on the HPLC, probably formed from phenyl 

radicals resulting from the degradation of the diphenyliodonium trifluoroacetate. 

 

2.5.5 Arylation of 2-aminophenol 

 

 

 

Scheme 110: Optimization of 2-hydroxyldiphenylamine 73 production (n = 3) (left) HPLC 

chromatogram for 2-aminophenol reaction (right), ),diphenyliodonium trifluoroacetate (5 

mmol), 2-aminophenol (5 mmol), DMF ( 50 mL). 
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The arylation of 2-aminophenol was also successfully carried out and gave the desired product 

in high yield, this time the optimisation was carried out at different elevated temperatures 

(110 °C and 130 °C) and a range of flow rates and gave similar results to those observed with 

3- and 4-aminophenol (Scheme 110), trace amounts of the N, O-diarylated product were also 

present in this case. 

 

Table 14: Arylation of substituent of aminophenol in Flow™  

 

Entry  R 70, 72, 73 (%) 

 RT (n = 3) 

70, 72, 73 (%) 

130 °C (n = 3) 

1 4-OH (70) 78 82 

2 3-OH (72) 89 82 

3 2-OH (73) 85 78 

Diphenyliodonium trifluoroacetate (5 mmol), Ar(NH2) (5 mmol), DMF (50 mL), flow rate 0.25 

mL/min. 

 

The reaction was also performed at room temperature using the FlowSyn™ (see Table 14) and 

the products were obtained in a high yield at flow rate 0.25 mL/min. 
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Figure 36: HPLC chromatogram 2-aminophenol, 3-aminophenol and 4-aminophenol 

reaction, diphenyliodonium trifluoroacetate (5 mmol), Ar(NH2) (5 mmol), DMF (50 mL), flow 

rate 0.25 mL/min. 

The HPLC chromatogram shows the major peak is for the desired product at a flow rate of 

0.25 mL/min carried out at room temperature, for instance the reaction of 4-aminophenol 

did not now give the oxidised by-product N-phenylazaquinone and the N, O-diarylation by-

product was also not detected. In the 3-aminophenol reaction a very small peak for the 

biphenyl by-product was detected and in the case of 2-aminophenol a very small peak for the 

N, O-diarylation by-product was observed (Figure 36) suggesting that the lower reaction 

temperature dramatically reduced the incidence of side reactions. 
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Table 15: Arylation of 2-, 3- and 4-aminophenol with diaryliodonium trifluoroacetate (62) 

 

Entry R No 

copper/130°C 

CuBr(1 mol%)/% 

130 °C  

1 4-OH (70) 93 74 

2 3-OH (72) 87 74 

3 2-OH (73) 58 59 

Diphenyliodonium trifluoroacetate (5 mmol), Ar(NH2) (5 mmol), DMF (50 mL), 24 h 

The reactions of 2-, 3- and 4-aminophenol were also carried out under batch condition at 130 

°C both with copper catalysis and without added copper, the reactions for 3- or 4-

aminophenol gave higher yields without copper whereas 2-aminophenol gave a lower yield 

of the desired product may due to steric hindered (Table 15) 
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Figure 37: HPLC chromatogram 2-aminophenol/ no copper, 4-aminophenol/no copper and 

3-aminophenol/no copper, diphenyliodonium trifluoroacetate (5 mmol), Ar(NH2) (5 mmol), 

DMF (50 mL), 24 h 

 

The HPLC chromatograms for the reactions of 2- and 3-aminophenol respectively (Figure 37) 

show traces of the unknown by-product at retention time 8, 11, 13, 14, 16.5 min from the 

degradation of diphenyliodonium trifluoroacetate whereas the 4-aminophenol shows the 

peak of trace starting material 4-aminophenol. 

  

R
e

g
io

n
 1

0:00 10:00 20:00 mm:ss

0.0

1000.0

2000.0

3000.0

4000.0

mAU

R
e

g
io

n
 1

0:00 10:00 20:00 mm:ss

0.0

500.0

1000.0

1500.0

2000.0

2500.0

mAU

R
e

g
io

n
 1

0:00 10:00 20:00 mm:ss

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

mAU

B 
B 

B 

B = PhI 

 

 



133 
 

 

                                                              

 

 

 

 

Figure 38: HPLC chromatogram 2-aminophenol/ copper, 3-aminophenol/ copper and 4-

aminophenol/ copper diphenyliodonium trifluoroacetate (5 mmol), Ar(NH2) (5 mmol), DMF 

(50 mL), CuBr (1% mol), 24 h 

The HPLC chromatograms for the batch reactions of 2-, 3-and 4-aminophenol with 

diphenyliodonium trifluoroacetate at 130 °C in the presence of copper catalyst for 24 hours 

are shown in Figure 38. It is interesting to note that the 2-aminophenol reaction gave similar 

results in both cases; the presence and absence of the copper catalyst. 
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Table 16: Arylation of 2-, 3- and 4-aminophenol with 2 equivalent diphenyliodonium 

trifluoroacetate 

 

Entry  R  70, 72, 73 (%) 

 RT (n = 3) 

70, 72, 73 (%) 

 130 °C (n = 3) 

71 (%) 

 130 °C (n = 3) 

1 4-OH 53 (70) 0 82 

2 3-OH 59 (72) 64 0 

3 2-OH 46 (73) 33 0 

Diphenyliodonium trifluoroacetate (5 mmol), Ar(NH2) (5 mmol), DMF (50 mL), flow rate 0.25 

mL/min. 

In an alternative process to favour the generation of N-phenylazaquinones the reactions of 2-

, 3-and 4-aminophenol were carried out with 2 equivalents diphenyliodonium 

trifluoroacetate at 130 °C and a flow rate of 0.25 mL/min using the Flowsyn ™as the addition 

of extra hypervalent iodine reagent to the reaction would facilitate the oxidation of the initial 

N-arylation product. The results are shown in (Table 16).  

It was pleasing to see that this process modification with 4-aminophenol gave about 82% of 

N-phenylazaquinone 71 at 130 °C (Table 16, entry 1) supporting the premise that the 

diphenyliodonium salt was also acting as an oxidising agent. It is also of note that the 

oxidation only takes place at the higher reaction temperature with none of the azaquinone 

detected at room temperature. Given the diversity of functionality and reactions possible 

with azaquinones it is surprising that this compound class remains unexplored as a building 

block in synthetic chemistry – this potential new application will continue to be investigated 
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by the research group. The 2-amino phenol gave a low yield of the N-arylation product at both 

temperatures and also 3-amino phenol gave a moderate yield of the N-arylation product at 

both temperatures (Table 16). 

 

 

 

 

 

  

 

Figure 39: HPLC chromatogram of the 4-aminophenol reaction at room temperature (left) 

and 130 °C (right), diphenyliodonium trifluoroacetate (5 mmol), 4-aminophenol (5 mmol), 

DMF (50 mL), flow rate 0.25 mL/min. 

From Figure 39, the HPLC chromatogram of the 4-amino phenol reacted with two equivalents 

of diphenyliodonium trifluoroacetate, the major peak is now N-phenylazaquinone, with the 

N, O-diarylation by-product also being obtained, however at room temperature only a trace 

of the N-phenylazaquinone was observed despite the extra hypervalent iodine reagent. The 

reaction did give the by-product biphenyl resulting from the degradation of diphenyliodonium 

trifluoroactate. 
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Figure 40: HPLC chromatogram of the 2-aminophenol reaction at room temperature (left) 

and 130 °C (right) diphenyliodonium trifluoroacetate (5 mmol), Ar(NH2) (5 mmol), DMF ( 50 

mL), flow rate 0.25 mL/min. 

The HPLC chromatogram for the 2-aminophenol reacted with two equivalents of 

diphenyliodonium trifluoroacetate, an increase in the by-products, for instance the N, O-

diarylation product and biphenyl, results in a decreasing yield of the N-arylated product 

probably due to the increased steric hindrance associated with the ortho-substituents (Figure 

40). 
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Figure 41: HPLC chromatogram of the 3-aminopheNol reaction at room temperature (left) 

and 130 °C (right), diphenyliodonium trifluoroacetate (5 mmol), 3-aminophenol (5 mmol), 

DMF (50 mL), flow rate 0.25 mL/min. 

When 3-aminophenol was reacted with two equivalents of diphenyliodonium trifluoroacetate 

a moderate yield of the N-arylation product at both temperatures (room temperature and 

130 °C) was obtained probably due to lower steric hindrance than is present in the 2-hydroxy 

derivatives but reduced nucleophilicity compared to the 4-hydroxy derivative (Figure 41). 
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aliphatic amines. Therefore to determine this selectivity between N- and O-nucleophiles 

studies using tyramine and 4-aminophenethyl alcohol were carried out. Tyramine which has 

an aliphatic amine nitrogen and an aromatic oxygen was reacted with diphenyliodonium 

trifluoroacetate under batch conditions at 130 °C for 24 hours (38%) of the desired product, 

the reaction did not give the desired product under metal-free conditions however under 

metal catalysed conditions the reaction gave the N-arylation product only 74, as shown in the 

Scheme 112 . 

 

 

 

 

 

 

 

 

Scheme 112: N-arylation of tyramine under batch condition HPLC chromatogram for 

tyramine reaction/ copper free (left) and copper (right), diphenyliodonium trifluoroacetate 

(5 mmol), tyramine (5 mmol), DMF (50 mL), 130 °C. 24h. 

The reaction was then transferred to the FlowSyn™ using the copper coil reactor at a flow 

rate of 0.25 mL/min, at 130 °C, the reaction gave 43% of the N-arylated products, however 

the reaction at room temperature only gave these desired products in trace amounts. 

Unfortunately attempts to isolate these materials using column chromatography were not 

successful for the room temperature reaction (Figure 42).  
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Figure 42: HPLC chromatogram for the reaction of tyramine using FlowTM at RT (left) and 

130 °C (right), diphenyliodonium trifluoroacetate (5 mmol), tyramine (5 mmol), DMF (50 

mL), flow rate 0.25 mL/min. 

Using 4-aminophenethyl alcohol with diphenyliodonium trifluoroacetate was also carried out 

under the same conditions, the reaction was carried out three time at both temperatures 

with 130 °C giving 79% of only the N-arylated product 75 (Figure 43), whereas the reaction at 

room temperature gave about 91%. As is shown in Figure 43 the reaction at room 

temperature is also much cleaner than the reaction at 130 °C, although the high temperature 

makes the reaction faster it also results in more degradation of the hypervalent iodine starting 

material resulting in the generation of more by-products. 

 

 

Scheme 113: N-Arylation reaction of 4-aminophenethyl alcohol 75. 
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Figure 43: HPLC chromatogram for the reaction of 4-aminophenethyl alcohol at RT (left) and 

130 °C (right) diphenyliodonium trifluoroacetate (5 mmol), 4-aminophenethyl alcohol (5 

mmol), DMF (50 mL), flow rate 0.25 mL/min. 

From the results obtained the reaction of 4-aminophenethyl alcohol gave more of the N-

arylated product than tyramine and also the 4-aminophenethyl alcohol worked better at 

room temperature as the aromatic amine is more reactive than the aliphatic nitrogen 

therefore reaction of 4-aminophenethyl alcohol gave higher yield than the reaction of 

tyramine just as aniline and its derivatives gave higher yield of the desired than the reaction 

of for instance N-hexylamine. These results suggest that there is a preference for N-arylation 

over O-arylation irrespective of whether the amino group is aromatic or aliphatic in nature. 

The reaction using 4-aminophenethyl alcohol gave more biphenyl (from the degradation of 

the diphenyliodonium trifluoroacetate) as a by-product than the corresponding tyramine 

reaction, suggesting the N-arylation of the aliphatic amine was more difficult than N-arylation 

of aniline. 
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2.5.7 N-, O-selectivity: Summary 

 

 N, O-Arylation was carried out using diphenyliodonium trifluoroacetate and a copper 

coil reactor on the FlowSyn™ flow chemistry platform, the reaction was found to 

selective for nitrogen nucleophiles over oxygen nucleophiles irrespective of whether 

they were aromatic or aliphatic. 

 Anilines were more reactive than the aliphatic amines giving a high yield of the desired 

product, from the results it conclude the order of reactivity. 

 

 

 

 Reaction conditions were also identified to allow selective formation of N-phenyl 

azaquinone by using 2-equivalents of the diaryliodonium salt utilising both its property 

as an arylating agent and an oxidising agent. 

 

Recently the nitrogen oxygen selectivity has been carried out using diaryliodonium 

salt.242 N-arylation of 4-methylquinolin-2(1H)one under mild condition using 

microwave heating, the diaryliodonium salt was used with different groups, electron-

donating groups and electron-defcient groups and gave the desired product in a 

moderate yield (Scheme 114). It has suggested that the oxgen may be rendered less 

reactive through hydrogen bonding with water and therefore the arylation is selective 

for the nitrogen.  
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R1 R1 % 

H H 91 

4-Cl 4-Cl 88 

3-Br Mes 75 

4-Me Mes 67 

Scheme 114: N-Arylation of quinolin-4(1H)one 

The selectivity for oxygen was observed when the presence of two carbon substituents 

effectively hindered the nitrogen resulting in the oxygen being successfully arylated 

(Scheme115). 

 

Scheme 115: OArylation of quinolin-4(1H)one 
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3 Conclusions and Future Work 

3.1 Conclusion  

 

It can be concluded from the work presented here, that one of the best methods for the 

synthesis of diarylamines is the Ullmann type coupling using diaryliodonium salts under flow 

chemistry conditions using a copper coil reactor due to its simplicity, no added extra reagents 

are needed such as a base or the ligands necessary for a traditional homogeneous catalyst, 

and the desired product is obtained in a high yield. The reaction may also be carried out faster 

and at a lower temperature (e.g. RT) compared to conventional methods, these parameters 

coupled with the observation that the reaction is not sensitive to air makes for a simple yet 

practical process.  

The trifluoroacetate derivative of diaryliodonium salts has proven to be the best electrophilic 

arylating reagent for the preparation of arylamines and arylethers compared to the more 

usual arylhalide and arylboronic acids. The synthesis of diaryliodonium trifluoroacetates was 

achieved using a simple method using inexpensive starting material and stirring the reaction 

at room temperature where the product can be crystalized directly with no further 

purification required. The route also enabled the synthesis of unsymmetrical diaryliodonium 

salts such as those with electron-rich groups, for instance the 4-methoxy group, as it was not 

practical to synthesise electron-rich diaryliodonium triflates due to their lack of stability. 

Another practical advantage is that the diaryliodonium trifluoroacetates enable the reaction 

to be performed at room temperature giving the product in excellent yield whilst the more 

typical diaryliodonium triflate only gave a moderate yield of the desired product at this 

temperature. 

Further advantages of the flow chemistry protocol is that the reaction time decreased from 

24 h to 80 min, and by the use of mild reaction conditions it also improved the safety of the 

process. Flow chemistry methods have also been demonstrated to have a high degree of 

reproducibility and associated product purity, for example in the synthesis of 3,4-

dimethoxydiphenylamine no further purification was required and the process was straight 

forward to scale up. The translation to flow chemistry also reduced the amount of solvents 

used as no additional purification was required which would be particularly useful for 

industrial applications. Although not the optimized conditions in this particular case the flow 
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chemistry protocol also allowed the reaction to be carried out at 230 °C, which would be 

difficult to do under batch conditions, giving a wider range of reaction parameters to be 

investigated as part of the development of any new method. Determination of the N, O-

selectivity has also been carried out with diaryliodonium trifluoroacetates using the FlowSyn™ 

which has never been established previously. The nitrogen nucleophile proved to be more 

reactive than the oxygen nucleophile as the reaction selectively allowed N-arylation. It also 

found that in the case of phenyl(mesityl)iodonium salts, the mesityl group was not coupled 

to the nucleophile and it was possible to couple the more electron-rich group when using the 

copper catalyzed mechanism. 

The copper coil reactor played an important role in the arylation of both anilines and phenol 

and a key feature for this process is that, it is easy to use, and a separate catalyst does not 

need to be prepared. It is also more economic than the copper powder as the coil reactor can 

be used for many reactions and at a maximum temperature higher than used in batch reaction 

e.g. upto 250 °C, thereby increasing throughput. 

It can also be concluded from the results that aromatic amines are more likely to be arylated 

than aliphatic amines, the analogues of aniline gave the product in excellent yield whether 

they had electron-withdrawing groups, electron-donating groups or sterically demanding 

groups such as 2-tert-butyl present. The use of tyramine and 4-aminophenethyl alcohol as 

substrates reinforced this selectivity. 
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Scheme 116: Arylation of nitrogen and oxygen nucleophiles using diphenyliodonium 

trifluoroacetate 

 

3.2 Future Work  

 

A large fraction of the research reported herein has been directed towards the development 

of robust and practical methodology for the arylation nitrogen and oxygen nucleophile using 

diaryliodonium salt, further extension of experiments towards the unsymmetrical 

diaryliodonium trifluoroacetate and aryl(mesityl)iodonium trifluoroacetates, these huge 

potential in this methodology remains for the arylation of arylamine. 

Further to these initial experiments, it would be useful to extend the range of anilines, and in 

particular N-heteroaromatic compounds to provide a better understanding of the scope of 

the reaction. Application of the methodology to the five membered rings, for instance 

imidazole, would be useful due to their extensive use in pharmaceuticals, to date they have 

been arylated with arylhalides or arylboronic acids (as described in Chapter 1) but the 

advantages of using diaryliodonium salts remains to be exploited. 
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Although the selectivity of between N- and, 0-arylation for 2-, 3- and 4-aminophenol has been 

investigated here, as has comparison between aromatic and aliphatic functionality, there 

remains many combinations/variations left to explore. The realization of  multi-step reactions 

is also possible using the FlowSyn™ or any automated reaction platform (as mentioned in 

Section 2.2) to extend the utility of the methodology still further, for example the reaction 

using two equivalents of diaryliodonium salt with 1- equivalent of 4-aminophenol gave 82% 

of N-phenylazaquinone (from arylation and oxidation), which could then be used further to 

rapidly generate polyfunctional molecules in a single process without isolation of any of the 

intermediates. For instance selective nucleophilic addition to the various electrophilic centres 

of the azaquinone system (all six carbon atoms in the azaquinone ring are different). 

 

 

Scheme 117: Possible reactions of N-phenylazaquinone (71) with nucleophiles 

The formation of N-phenylazaquinone suggested that further reactions of this material with 

a range of nucleophiles were now possible, this methodology combined with the benefits of 

flow chemistry offers the exciting prospect of multi-step reactions during this single 

automated process. For instance cycloaddition reactions, nucleophilic additions to the 

different α, β-conjugated systems and oxidative cyclization (Scheme 117: A, B, and C 

respectively).243-245 
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N-Arylation of benzamides with diaryliodonium salts should also be considered as this is 

another critical functionality although this may possibly require the presence of a base (see 

Section 1.7.7).  

 

 

 

 

Scheme 118: Arylation of different nitrogen and oxygen nucleophiles using unsymmetrical 

iodonium salts 
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4 Experimental 
 

Reactions requiring anhydrous conditions were performed using oven-dried glassware and 

conducted under a positive pressure of nitrogen. Anhydrous solvents were prepared in 

accordance with standard protocols. Infrared spectra were recorded on Varian Scimitar Series 

800 FT-IR spectrometer with internal calibration. 1H, 13C and 19F–NMR were recorded on 

Bruker Advance 300 MHz and 500 MHz spectrometers, Jeol 400 and 700 spectrometers with 

residual protic solvent as an internal reference. Mass spectra were recorded at the EPSRC 

mass spectrometry service, Swansea. Elemental analyses were recorded at London 

Metropolitan University. Melting points were recorded on a Gallenkamp MF-370 melting 

point apparatus and are uncorrected. Automated flash chromatography was performed using 

a Varian Intelliflash 971-FP discovery scale flash purification system. The Uniqsis FlowSynTM 

system was used to carry out continuous flow reactions, and an Agilent 1200 HPLC system 

provided with a UV absorbance detector (λmax 254 nm) was used for HPLC analysis. TLC Silica 

gel 60 F254, 25 Aluminium backed were used to measure the Rf values for the compounds 

which were purified by Flash chromatography. Diphenyliodonium triflate is commercially 

available. 

Caution: Some hypervalent iodine compounds are potentially explosive and should be used 

taking the appropriate precautions.246-248 

 

4.1 Iodo mesitylene (76)249 

 

Iron nitrate nonahydrate (8.01 g, 19.83 mmol) and silica gel (8.01 g, 19.83 mmol) were 

combined and ground together to give a fine powder which was added to a solution of iodine 

(5.57 g, 21.96 mmol) in DCM (500 mL). After stirring the mixture for 5 minutes mesitylene 

(4.74 g, 39.47 mmol) was added and the whole mixture then stirred overnight. The reaction 

mixture was filtered and aqueous sodium thiosulfate (2 M, 300 mL, 600 mmol) was added to 

the filtrate and the mixture stirred until a colourless solution was observed. The organic layer 
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was washed with brine (200 mL) and extracted with DCM (3 × 200 mL). The organic layer was 

dried (MgSO4) and the solvent removed in vacuo to give the product as a colourless crystalline 

solid (6.90 g, 28 mmol, 71%); mp 27–29 °C (from DCM) (lit.,250 mp 30 °C from ethanol); IR 

νmax/cm-1 (neat) 2978, 2929, 2409, 2196, 1843, 1645, 1368, 1266, 1011, 925; 1H–NMR (300 

MHz, CDCl3) δ 6.94 (2H, s, H3/H5), 2.49 (6H, s, 2-Me/6-Me), 2.29 (3H, s, 4-Me); 13C–NMR (75 

MHz, CDCl3) δ 147.8 (C2/C6), 137.3 (C4), 128.0 (C3/C5), 104.3 (C1), 29.5 (2-Me/6-Me), 20.7 

(4-Me); m/z (EI) 245 ([M+H]+, 100%) 117 (50), 115 (30), 103 (35), 91 (15), 65 (3), 63 (5). Found 

[M+H]+ 245.9906. C9H11I requires 245.9914. Anal. Calcd. for C9H11I: C, 43.93; H, 4.51. Found: 

C, 43.71; H, 4.62. 

 

4.2 Mesityl iodobenzenebisacetate (77)17, 251 

   

Iodomesitylene 76 (5.51 g, 16 mmol) was dissolved in acetic acid (160 mL) and sodium 

perborate tetrahydrate (24.62 g, 160 mmol) added portion-wise at 45°C over 1 hour. The 

solution was stirred at this temperature for a further 3.5 hour. The reaction mixture was 

allowed to attain room temperature when cold water (500 mL) was added. The crude product 

was washed with water (500 mL) and extracted with DCM (3 × 500 mL). The combined organic 

layers were dried (MgSO4) and the solvent removed in vacuo and the crude product 

crystallised from DCM–ether to give the product as a white crystalline solid (3.34 g, 9 mmol, 

57%); mp 160–162 °C (from DCM–ether) (lit.,251 mp 160–163 °C from hexane); IR νmax/cm-1 

(neat) 2930, 2286, 1645, 1455, 1368, 1264, 1011, 925, 665; 1H–NMR (300 MHz, CDCl3) δ 7.28 

(2H, s, H3/H5), 2.73 (6H, s, 2-Me/6-Me), 2.38 (3H, s, 4-Me), 1.99 (6H, s, OAc); 13C–NMR (75 

MHz, CDCl3) δ 176.4 (CO), 143.2 (C4), 141.3 (C2/C6), 129.6 (C1), 129.0 (C3/C5), 26.7 (2-Me/6-

Me), 21.2 (4-Me), 20.33 (OAc).  Anal. Calcd. for C13H17IO4: C, 42.88; H, 4.71. Found: C, 42.77; 

H, 4.59 
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4.3 4-Methoxyphenyl(mesityl)iodonium trifluoroacetate (65)  

  

Trifluoroacetic acid (0.92 mL, 12 mmol) was added slowly, at −30 °C to a solution of 

iodomesitylenebisacetate 77 (2.24 g, 6 mmol) in dichloromethane (100 mL) and the mixture 

stirred for half an hour which was then allowed to attain room temperature for 1 h. After one 

hour, anisole (0.65 mL, 6 mmol) was then added to the recooled mixture (−30 °C). The reaction 

mixture was allowed to attain room temperature again and stirred overnight. The solvent was 

removed in vacuo and the crude product crystallised from DCM–ether to give the product as 

a white crystalline solid (1.4 g, 3.0 mmol, 50%); mp 190–192 °C (from DCM–ether); IR νmax/ 

cm-1 (neat) 2842, 1658, 1572, 1487, 1297, 1253, 1179, 1127, 829; 1H–NMR (300 MHz, CD3CN) 

δ 7.82 (2H, d, H2/H6, J 9 Hz), 7.16 (2H, s, H3′/H5′), 6.99 (2H, d, H3/H5, J 9 Hz), 3.81 (3H, s, 

OMe), 2.33 (6H, s, 2-Me/6-Me), 1.95 (3H, s, 4-Me); 13C–NMR (75 MHz, CD3CN) δ 162.9 (C4), 

161.4 (q, C=O, J 37 Hz), 144.3 (C4′), 142.3 (C2′/C6′), 136.8 (C2/C6), 130.3 (C3′/C5′), 124.3 (q, 

CF3, J 192 Hz), 56.1 (4-OMe), 26.7 (2-Me/6-Me), 20.6 (4-Me); 19F–NMR (282 MHz, CD3CN) δ 

−79.32; m/z (NSI) 353 ([M−TFA], 100%), 226 (15). Found [M−TFA]+ 353.0397. C16H18I requires 

353.0397. Anal. Calcd. for C18H18F3IO3 requires C, 46.37; H, 3.89. Found: C, 46.19; H, 3.82. 

 

4.4 Diphenyliodonium trifluoroacetae (62)2 

 

Trifluoroacetic acid (0.77 mL, 10 mmol) was added slowly, at −30 °C, to a solution of 

diacetoxyiodobenzene (1.61 g, 5 mmol) in dichloromethane (50 mL) and the mixture stirred 

for half an hour which was then allowed to attain room temperature for 1 h. After one hour, 

benzeneboronic acid (0.61 g, 5 mmol) was then added to the recooled mixture (−30 °C). The 

reaction mixture was allowed to attain room temperature and stirred overnight. The solvent 
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was removed in vacuo and the crude product crystallised from DCM–ether to give the product 

as a white crystalline solid (1.45 g, 3.7 mmol, 74%); mp 190–192 °C (from DCM–ether) (lit.,2 

mp 186–190 °C from acetone–ether); IR νmax /cm-1 (neat) 3059, 1648, 1477, 1444, 1411, 1178, 

1126; 1H–NMR (300 MHz, d6-DMSO ) δ 8.26 (4H, d, H2/H2′/H6/H6′, J 8 Hz), 7.64 (2H, t , H4/H4′, 

J 8 Hz), 7.51 (4H, m, H3/H3′/H5/H5′); 13C–NMR (75 MHz, d6-DMSO) δ 159.3 (q, C=O, J 96 Hz), 

135.6 (C2/C2′/C6/C6′), 132.2 (C4/C4′), 132.0 (C3/C3′/C5/C5′), 123.6 (q, CF3, J 184 Hz); 19F–NMR 

(282 MHz, d6-DMSO) δ −73.42; m/z (NSI) 281 ([M−TFA]+, 100%), 154 (45). Found: [M−TFA]+, 

280.9815. C12H10I requires 280.9822. Anal. Calcd. for C14H10F3IO2 requires C, 42.66; H, 2.56. 

Found: C, 42.52; H, 2.57. 

 

4.5 Diphenyliodonium tosylate (78) 

 

Tributylphenyl stannane (1.6 mL, 5 mmol) was added slowly to a solution of Koser’s reagent 

(1.96 g, 5 mmol) in DCM (50 mL). The reaction mixture was heated for 3 h at 35 °C and it was 

left to stir over night at RT. The solvent was removed in vacuo and the crude product was 

crystallised from DCM–ether–petrol to give the product as a white solid (1.32 g, 2.92 mmol, 

58%); mp 188–192 °C (from DCM–ether) (lit.,252 mp 179–180 °C from DCM–hexane); IR νmax 

/cm-1 (neat) 3078, 1660, 1598, 1441, 1208, 1166, 118, 1008, 989, 734; 1H–NMR (300 MHz, 

CD3CN) δ 8.08 (4H, m, H2/H2′/H6/H6′), 7.71 (2H, m, H4/H4′), 7.52 (6H, m, H3/H3′/H3ʺ 

/H5/H5′/H5ʺ), 7.15 (2H, d, H2ʺ/H6ʺ, J 6.5 Hz), 2.35 (3H, s, Me); 13C–NMR (75 MHz, DMSO-d6) δ 

146.15 (C1ʺ), 138.1 (C4ʺ), 135.7 (C2/C2′/C6/C6′), 132.4, 132.2 (C4/C4′), 128.5 (C3/ C3′/C5/C5′), 

126.0 (C3”/C5”), 117.1 (C1/C1′), 21.3 (Me); m/z (NSI) 281 ([M−TsO]+, 100%), 154 (100). Found: 

[M−TsO]+, 280.9825. C12H10I requires 280.9822. Anal. Calcd. for C19H17IO3S requires C, 50.45; 

H, 3.79; Found: C, 50.38; H, 3.74. 
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4.6 4-Methylphenyl(mesityl)iodonium triflate (79)3  

 

A round bottom flask was charged with mCPBA (2.4 g, 7.77 mmol), it was dried under vacuum 

for 3 h and then dissolved in dry DCM (70 mL). To this solution 4-iodotoluene (1.54 g, 7.77 

mmol) was added along with mesitylene (1.1 mL, 7.77 mmol) under nitrogen. The resulting 

solution was cooled to 0 °C and trifluoromethane sulfonic acid (1.4 mL, 15.54 mmol) was 

added drop-wise over a period of 10-15 min. The reaction mixture was stirred for 6 h. The 

solvent was removed in vacuo and the crude product was crystallised from DCM–ether to give 

the product as a white crystalline solid (2.30 g, 4.73 mmol, 67%); mp 178–180 °C (from DCM–

ether) (lit.,253 mp 183–184 °C); IR νmax/cm-1 (neat) 3060, 2360, 1582, 1248, 1222, 1158, 1026, 

984; 1H–NMR (300 MHz, CD3CN) δ 7.79 (2H, d, H2′/H6′, J 8 Hz), 7.35 (2H, d, H3′/H5′, J 8 Hz), 

7.23 (2H, s, H3/H5), 2.63 (6H, s, 2-Me/6-Me), 2.40 (3H, s, 4-Me), 2.36 (3H, s, 4′-Me); 13C–NMR 

(300 MHz, CD3CN) δ 145.3 (C4′), 144.3 (C4), 143.0, 134.9, 133.6 (C2/C6), 130.8 (C3′/C5′), 123.6 

(q, CF3, J 158 Hz), 121.4 (C1′), 117.9 (C3/C5), 119.3 (C1), 26.8 (2-Me/6-Me), 20.9 (4-Me), 20.7 

(4′-Me); 19F–NMR (282 MHz, CD3CN) δ −79.17; m/z (NSI) 338 (M−TfO]+, 100%), 210 (15), 195 

(66), 180 (10). Found: [M−TfO]+ 337.0449. C16H18I requires 337.0448. Anal. Calcd. for C17H18 

F3IO3S requires C, 41.99; H, 3.73. Found: C, 42.07; H, 3.73. 

 

4.7 2-Methylphenyl(mesityl)iodonium triflate (80)3 

 

The product prepared according to procedure 79 (Section 4.6). White crystalline solid (2.80 g, 

5.76 mmol, 81%); mp 160–162 °C  (from DCM–ether) (lit.,3 mp 164–166 °C from DCM–ether); 

IR νmax/cm-1 (neat) 3054, 2919, 2361, 1467, 1387, 1246, 1165, 1028, 1027, 1001,855; 1H–NMR 
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(300 MHz, CD3CN) δ 7.74 (1H, d, H6′, J 9 Hz), 7.61 (2H, m, H4′/H5′), 7.27 (1H, d, H3′, J 3 Hz), 

7.25 (2H, s, H3/H5), 2.60 (9H, d, 2-Me/2′-Me/6-Me, J 4 Hz), 2.37 (3H, s, 4-Me); 13C–NMR (75 

MHz, CD3CN) δ 145.4 (C4), 143.2 (C2/C6), 141.6 (C2′), 135.9 (C4′), 133.5 (C5′), 133.0 (C3′), 

131.1, 130.4 (C6′), 123.7 (q, CF3, J 176 Hz), 120.3 (C1′), 117.9 (C3/C5), 117.0 (C1), 26.7 (2-Me/6-

Me), 24.9 (4-Me), 20.6 (2′-Me); 19F–NMR (282 MHz, CD3CN) δ −79.23; m/z (NSI) 338 ([M−TfO]+, 

100%), 244 (7), 216 (22), 210 (21), 195 (66), 180 (11). Found: [M−TfO]+ 337.0448. C16H18I 

requires 337.0448. Anal. Calcd. for C17H18F3IO3S requires C, 41.99; H, 3.73. Found: C, 41.96; H, 

3.69.  

 

4.8 Phenyl(mesityl)iodonium triflate (81)3 

 

The product prepared according to procedure for 79 (Section 4.6). White crystalline solid 

(2.70 g, 5.38 mmol, 76%);  mp 144–146 °C (from DCM–ether) (lit.,254 mp 137–138 °C); IR 

νmax/cm-1 (neat) 2983, 2844, 2361, 1654, 1590, 1478, 1436, 1382, 1277, 1237, 1157, 1023, 

986; 1H–NMR (300 MHz, CD3CN) δ 7.87 (2H, d, H2′/H6′, J 9 Hz), 7.69 (1H, t, H4′, J 9 Hz), 7.53 

(2H, m, H3’/H5′), 7.25 (2H, s, H3/H5), 2.63 (6H, s, 2-Me/6-Me), 2.37 (3H, s, 4-Me); 13C–NMR 

(75 MHz, CD3CN) δ 145.5 (C4), 143.2 (C4′), 134.8 (C2/C6), 133.0 (C2′/C6′), 130.9 (C3′/C5′), 123.7 

(q, CF3 196 Hz), 121.1 (C1), 119.4 (C3/C5), 112.5 (C1′), 26.8 (2-Me/6-Me), 20.7 (4-Me); 19F–

NMR (181 MHz, CD3CN) δ −79.25; m/z (NSI) 324 ([M−TfO]+, 100%), 196 ((19), 181 (6), 166 (5). 

Found: [M−TfO]+, 323.0291. C16H18I requires 323.0291. Anal. Calcd. for C17H18F3IO4S requires 

C, 40.65; H, 3.61. Found: C, 40.71; H, 3.68.  
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4.9 2-Methoxyphenyl(mesityl)iodonium triflate (82)3 

 

The product prepared according to procedure for 79 (Section 4.6). White crystalline solid 

(2.70g, 5.38 mmol, 76%); mp 126–128 °C (from DCM–ether); IR νmax/cm-1 (neat) 2983, 2844, 

2361, 1654, 1590, 1478, 1436, 1382, 1277, 1237, 1157, 1023, 986; 1H–NMR (300 MHz, CD3CN) 

δ 7.70 (2H, m, H3′/H5′), 7.25 (1H, d, H6′, J 2 Hz), 7.24 (2H, s, H3/H5), 7.09 (1H, q, H4′, J 7 Hz ), 

3.95 (3H, s, 2-OMe), 2.62 (6H, s, 2-Me/6-Me), 2.37 (3H, 4-Me); 13C–NMR (75 MHz, CD3CN) δ 

145.3 (C2′), 144.3 (C4), 143.0 (C6′), 134.9 (C2/C6), 133.6 , 130.6, 130.8, 123.6, (q, CF3, J 195 

Hz), 121.4 (C1′), 108.8 (C1), 26.8 (2-Me/6-Me), 20.9 (2-OMe), 20.7 (4-Me); 19F–NMR (282 MHz, 

CD3CN) δ −79.23; m/z (NSI) 354 ([M−TfO]+ 100%), 226 (11), 211 (34), 195 (20), 183 (7). Found: 

[M−TfO]+, 353.0397. C16H18I requires 353.0397. Anal. Calcd. for C17H18F3IO4S requires C, 40.65; 

H, 3.61. Found: C, 40.71; H, 3.68.  

 

4.10 2-Chlorophenyl(mesityl)iodonium triflate (83)3  

 

The product prepared according to procedure for 79 (Section 4.6). White crystalline solid (2.7 

g, 5.19 mmol, 73%); mp 168–170 °C (from DCM–ether) (lit.,255 mp 179–181 °C); IR νmax/cm-1 

(neat) 3064, 2985, 1590, 1450, 1218, 1278, 1241, 1162, 1026, 1002, 942,633; 1H–NMR (300 

MHz, CD3CN) δ 7.77 (1H, dd, H6′, J 2, 6 Hz), 7.72 (2H, m, H3′/H5′), 7.41 (1H, m, H4′), 7.28 (2H, 

s, H3/H5), 2.62 (6H, s, 2-Me/6-Me), 2.39 (3H, s, 4-Me); 13C–NMR (75 MHz, CD3CN) δ 145.8 

(C4), 143.6 (C2/C6), 136.3 (C4′), 136.3 (C3′/C5′), 131.8 (C2′/C6′), 131.2 (C3/C5), 123.6 (CF3, q, J 

181 Hz), 121.0 (C1′), 119.4, 113.7 (C1), 26.8 (2-Me/4-Me), 20.7 (4-Me); 19F–NMR (282 MHz, 
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CD3CN) δ −79.18; m/z (NSI) 358 ([37Cl] M+, 32%), 356 ([35Cl] M+, 100%), 230 (11). Found: 

[M−TfO]+ 356.9895 C15H16
35ClI requires 356.9901. Anal. Calcd. for C16H15 ClF3IO3S requires C, 

37.93; H, 2.98. Found: C, 38.03; H, 3.05.  

 

4.11 4-Chlorophenyl(mesityl)iodonium triflate (84)3 

 

 

The product prepared according to procedure for 79 (Section 4.6). White crystalline solid 

(3.01 g, 5.78 mmol, 82%); mp 176–178 °C (from DCM–ether) (lit.,253 mp 177–178 °C); IR 

νmax/cm-1 (neat) 3063, 2975, 1748, 1473, 1245, 1222, 1162, 1088, 1024, 1000, 806, 631; 1H–

NMR (300 MHz, CD3CN) δ 7.86 (2H, m, H2′/H6′), 7.54 (2H, m, H3′/H5′), 7.24 (2H, s, H3/H5), 

2.62 (6H, s, 2-Me/6-Me), 2.36 (3H, s, 4-Me); 13C–NMR (75 MHz, CD3CN) δ 145.5 (C4), 143.2 

(C2/C6), 139.1 (C4′), 136.4 (C3′/C5′), 132.9 (C2′/C6′), 130.9 (C3/C5), 127.8 (q, CF3, J 172), 121.5 

(C1′), 109.7 (C1), 26.8 (2-Me/6-Me), 20.7 (4-Me); 19F–NMR (282 MHz, CD3CN) δ −79.18; m/z 

(NSI) 358 ([37Cl] M+, 32%), 356 ([35Cl] M+, 100%), 230 (18). Found: M+ 356.9900 C15H15 
35ClI 

requires [M−TfO]+ 356.9901. Anal. Calcd for C16H15 ClF3IO3S requires C, 37.93; H, 2.97. Found 

C, 38.02; H, 3.01. 
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4.12 General Procedure using the FlowSyn™ 

 

                                       

Figure 44 

A series of experiments was carried out under manual control using the Uniqsis FlowSyn™ at 

different temperatures RT, 110 °C, 130 °C, and 150 °C. The FlowSyn™ was furnished with a 20 

mL Uniqsis copper coil tube reactor (Figure 44) and the inlets were both set to the solvent 

and the outlet to the waste. The lines for both solvents and reagents were primed with solvent 

e.g. DMF, for 10 minutes, between runs and at the end of experiments for 10 minutes and 

finally with isopropanol for 10 minutes. The flow reactor was allowed to equilibrate (20 min) 

to the required temperature each time.  

Series A (N-Arylation of aniline) 

Sample bottle A was filled with a stock solution of diaryliodonium salt (5 mmol) in DMF (25 

mL) and sample bottle B filled with ArNH2 (5 mmol) also in DMF (25 mL). The solutions were 

pumped, through a T-mixer, by pump A and pump B respectively with DMF as the following 

solvent at 0.25 mL/min. The reaction solution was then passed through the copper coil reactor 

(20 mL) and the outflow through a 100 psi back pressure regulator. The crude product was 

collected in a measuring cylinder, which was cooled to 0 °C for the reactions at 110 °C, 130 

°C, and 150 °C and the resultant mixture analysed by HPLC. The product was isolated by the 

addition of water, extraction with ether and then purification by flash chromatography.  
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Series B (N & O-selectivity) 

Sample bottle A was filled with a stock solution of diaryliodonium trifluoroacetate (5 mmol) 

in DMF (25 mL) and sample bottle B filled with the nucleophile (5 mmol e.g. ArOH) also in 

DMF (25 mL). The solutions were pumped, through a T-mixer, by pump A and pump B 

respectively with DMF as the following solvent at 0.25 mL/min. The reaction solution was 

then passed through the copper coil reactor (20 mL) and the outflow through a 100 psi back 

pressure regulator. The crude product was collected in a measuring cylinder, which was 

cooled to 0 °C for the reactions at 110 °C, and 130 °C and the resultant mixture analysed by 

HPLC. The product was isolated by the addition of water, extraction with ether and then 

purification by flash chromatography. 

Table 1: System configuration and manual setup  

 System Configuration  
RH reactor:  LH reactor:  
Type  Coil Type No 
Material Copper Material   
Volume  20 mL Volume  
Max  Tem 150 °C Max Temp  
System Dead 
Volume 

0.0 mL Heat Exchanger Yes 

Minimum Pressure  -15 psi Pump Start Delay 5 s 
Maximum  Pressure 500 psi Pressure Unit psi 
Pressure Threshold Off  Equil. Flow Rate 0.5 mL/min 
Wash Flow Rate 5.0 mL/min   

 Manual Setup  

   
Inlet A Reagent  Pump A 0.125 mL/min 
Inlet B Reagent  Pump B 0.125 mL/min 
Outlet Collect  Total flow rate 0.25 mL/min 
Loop A Load  Coil temperature RT,110, 130,150 
Loop B Load  Column temp RT 
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4.13 Diphenylamine (64) 

 

Using aniline gave the product as a white crystalline solid (0.16 g, 0.95 mmol, 85%); mp 50–

52 °C (from ether–petrol) (lit.,2 mp 51–53 °C); Rf = 0.33 (1:9 ether/petrol); IR νmax/cm-1 (neat), 

3383, 3042, 1584, 1484, 1307, 1172, 1023; 1H–NMR (400 MHz, CDCl3) δ 7.84 (4H, m, 

H3/H3′/H5/H5′), 7.59 (4H, d, H2/H2′/H6/H6′, J 9 Hz), 7.42 (2H, t, H4/H4′, J 9 Hz,), 5.87 (1H, s, 

br, N-H); 13C–NMR (100 MHz, CDCl3) δ 154.0 (C1/C1′), 137.0 (C3/C3′/C5/C5′), 126.3 (C4/C4′), 

122.6 (C2/C2′/C6/C6′); m/z (NSI) 170 ([M+H]+, 100%). Found: [M+H]+, 170.0963 C12H12N 

requires 170.0964. 

 

4.14 4-Fluorodiphenylamine (85) 

 

Using 4-fluoroaniline gave the product as a white crystalline solid (0.17 g, 0.91 mmol, 83%); 

mp 33–35 °C (from ether–petrol) (lit.,2 mp 36–38 °C from petrol); Rf = 0.34 (15: 85 

ether/petrol); IR νmax/cm-1 (neat), 3382, 3052, 1595, 1505, 1321, 1216, 1447, 1320, 1217, 

1098; 1H–NMR (300 MHz, CDCl3) δ 7.19 (2H, t, H3′/H5′, J 8 Hz), 6.99 (6H, m, 

H2/H2′/H3/H5/H6/H6′), 6.84 (1H, t, H4′, J 7 Hz), 5.47 (1H, s, br, N-H); 13C–NMR (75 MHz, CDCl3) 

δ 159.7 (C4, d, J 160 Hz), 143.5 (C1′), 138.9 (C1), 129.4 (C3′/C5′), 120.6 (C2/C6), 120.5 (C2′/C6′), 

116.8 (C3/C5), 115.8 (C4′); 19F–NMR (282 MHz, CDCl3) δ 121.89; m/z (NSI) 188 ([M+H]+, 100%), 

149 (4). Found: [M+H]+, 188.0870. C12H11FN requires 188.0870. Anal. Calcd for C12H10FN C, 

76.99; H, 5.38; N, 7.48. Found: C, 76.93; H, 5.47; N, 7.47. 
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4.15 4-Chlorodiphenylamine (86) 

 

 Using 4-chloroaniline gave the product as a white crystalline solid (0.16 g, 0.79 mmol, 71%); 

mp 60–62 °C (from ether–petrol) (lit.,256 mp 64–66 °C from hexane); Rf = 0.52 (1.5:8.5 

ether/petrol); IR νmax/cm-1(neat) 3403, 1586, 1483, 1444, 1307, 1307, 1238, 1171, 1089; 1H–

NMR (400 MHz, CDCl3) δ 7.15 (4H, m, H3/H3′/H5/H5′), 6.99 (5H, m, H2/H2′/H4′/H6/H6′), 5.61 

(1H, s, br, N-H); 13C–NMR (100 MHz, CDCl3) δ 153.4 (C1′), 152.1 (C1), 137.0 (C3/C5), 136.4 

(C3′/C5′), 131.9 (C4), 127.1(C4′), 123.6 (C2/C6), 122.7 (C2′/C6′); m/z (APCI) 206 ([37Cl]M+, 32%), 

204 ([35Cl]M+, 100%), 202 (3), 123 (14), 117 (44), 111 (60), 109 (44),103 (19). Found: [M+H]+, 

204.0577. C12H11
35ClN requires 204.0575. Anal. Calcd for C12H10ClN; C, 70.77; H, 4.95; N, 6.88. 

Found: C, 70.69; H, 5.04; N, 6.91. 

 

4.16 4-Bromodiphenylamine (87) 

 

Using 4-bromoaniline gave the product as a white crystalline solid (0.19 g, 0.77 mmol, 70%); 

mp 84–88 °C (from ether–petrol) (lit.,10 mp 87–89 °C from petrol); Rf = 0.42 (1:9 ether/petrol); 

IR νmax/cm-1 (neat): 3400, 2536, 1580, 1481, 1309, 1239, 1071, 1001, 802, 747, 690; 1H–NMR 

(300 MHz, CDCl3) δ 7.27 (4H, m, H3/H5/H3′/H5′), 6.96 (2H, dd, H2′/H6′, J 1, 7Hz), 6.88 (1H, t, 

H4′, J 7 Hz), 6.86 (2H, m, H2/H6), 5.57 (1H, s, NH); 13C–NMR (75 MHz, CDCl3) δ 142. 4 (d, C1/C1′, 

J 3 Hz) 132.2 (C3/C5), 129.5 (C3′/C5′), 121.7 (C4′), 119.0 (C2′/C6′), 118.3 (C2/C6), 112.6 (C4); 

m/z (NSI) 250 ([81Br] [M+H]+, 99%), 248 ([79Br] [M+H]+, 100%), 186 (13), 149 (26), 136 (5). 

Found: M+H+, 248.0071 C12H11
79BrN; requires M+H+, 248.0069; Anal. Calcd for C12H10BrN; C, 

58.09; H, 4.06; N, 5.65. Found: C, 57.91; H, 3.93; N, 5.74. 
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4.17 4-Nitrodiphenylamine (88) 

 

Using 4-nitroaniline gave the product as a yellow crystalline solid (0.15, 0.70 mmol, 64%); mp 

131–134 °C (from ether–petrol) (lit.,10 mp 135–136 °C); Rf = 0.34 (2:8 ether/petrol); IR νmax/cm-

1 (neat): 3337, 1661, 1494, 1295, 1186, 1111, 1001, 829; 1H–NMR (300 MHz, CDCl3) δ 8.05 

(2H, d, H3/H5, J 9Hz), 7.35 (2H, m, H3′/H5′), 7.16 (3H, m, H2′/H4′/H6′), 6.88 (2H, d, H2/H6, J 

9Hz), 6.18 (1H, s, NH); 13C–NMR (75 MHz, CDCl3) δ 150.1 (C1), 140.0 (C1′), 139.5 (C4), 129.8 

(C3′/C5′), 126.3 (C3/C5), 124.7 (C2/C6), 117.2 (C4′) 113.7 (C2′/C6′); m/z (APCI) 215 ([M+H]+, 

100%), 123 (16), 117 (12), 111 (50), 107 (5), 102 (35). Found [M+H]+ 215.0818. C12H11N2O2 

requires 215.0815. 

 

4.18 4-Methoxydiphenylamine (66) 

 

 

Method A 

Using diphenyliodonium trifluoroacetate 62 and 4-methoxy aniline gave the product as a 

white crystalline solid (0.18 g, 0.90 mmol, 82%); mp 102–104 °C (from ether–petrol) (lit.,10 mp 

101–102 °C), Rf = 0.34 (1.5:8.5 ether/petrol); IR νmax/cm-1 (neat): 3387, 3009, 2960, 2538, 

1867, 1595, 1500, 1402, 1297, 1236, 1177, 1297, 1236, 1024, 749; 1H–NMR (400 MHz, CDCl3) 

δ 7.27 (2H, t, H3′/H5′, J 8Hz), 7.11 (2H, d, H3/H5, J 8 Hz), 6.95 (2H, d, H2/H6, J 9 Hz), 6.92 (3H, 

m, H2′/H4′/H6′), 5.53 (1H, s, NH), 3.84 (3H, s, OMe); 13C–NMR (100 MHz, CD3CN) δ 155.3 (C4), 

145.2 (C1′), 135.7 (C1), 129.3 (C3′/C5′), 122.2 (C2/C6), 119.6 (C4′), 115.6 (C2′/C6′), 114.7 

(C3/C5), 55.6 (OMe); m/z (NSI) 200 ([M+H]+, 100%), 199 (6), 186 (8), 169 (2), 149 ((4). Found: 

[M+H]+, 200.1065 C13H14 NO requires, 200.1070. Anal. Calcd for C13H13 NO; C, 78.22; H, 6.58; 

N, 7.03. Found C, 78.29; H, 6.46; N, 6.98.  
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Method B 

Using 4-Methoxyphenyl(mesityl)iodonium trifluoroacetate 65 and aniline gave the product as 

white crystalline solid (0.05 g, 0.25 mmol, 23%). 

 

4.19 3,4-Dimethoxydiphenylamine (67) 

 

Using 3,4-dimethoxy aniline gave the product as a white crystalline solid (0.22 g, 0.95 mmol, 

87%); mp 98–100 °C (from ether–petrol) (lit.,2 mp 96–98 °C); Rf = 0.31 (1.5:8.5 ether/petrol), 

IR νmax/cm-1 (neat): 3380, 2957, 2928, 1592, 1500, 1458, 1308, 1230, 1165, 1024; 1H–NMR 

(CDCl3, 700 MHz) δ 7.27 (2H, t, H3′/H5′, J 7 Hz), 6.98 (2H, d, H2′/H6′, J 7 Hz), 6.90 (1H, t, H4′, J 

7 Hz), 6.85 (1H, d, H5 or H6, J 8 Hz), 6.75 (1H, d, H2, J 2 Hz), 6.70 (1H, dd, H6 or H5, J 2, 8 Hz), 

5.39 (1H, s,br, NH) 3.89 (3H, s, 4-OMe) 3.85 (3H, s, 3-OMe);13C–NMR (175MHz, CDCl3) δ 149.6 

(C1’), 144.9 (C3), 144.7 (C4), 136.3 (C1), 129.4 (C3′/C5′), 119.8 (C4′), 116.0 (C2′/C6′), 112.1 

(C5/C6), 105.3 (C2), 56.3 (3-OMe), 55.9 (4-OMe); m/z: (NSI) 252 ([M+Na]+, 100%), 230 (36). 

Found: [M+H]+ 230.1175. C14H16NO2 requires 230.1176. Anal. Calcd. For C14H15NO2; C, 73.34; 

H, 6.59; N, 6.11. Found: C, 73.40; H, 6.59; N, 6.13. 

 

4.20 3,5-Dimethoxydiphenylamine (89) 

 

 

Using 3,5-dimethoxyaniline gave the product as a white crystalline Solid (0.20 g, 0.87 mmol , 

79%); mp 100–102 °C (from ether–petrol) (lit.,257 mp 72–73 °C); Rf = 0.31 (1.5:8.5 

ether/petrol); IR νmax/cm-1 (neat) 3352, 3047, 2943, 1590, 1536, 1482, 1290, 1251, 1203, 1146, 

1053, 928, 810; 1H–NMR (300 MHz, CDCl3) δ 7.32 (2H, t, H3′/H5′, J 8 Hz), 7.13 (2H, d, H2′/H6′, 

J 8 Hz), 7.00 (1H, t, H4′, J 8 Hz), 6.27 (2H, s, H2/H6), 6.10 (1H, s, H4), 5.74 (1H, s, NH), 3.79 (6H, 



162 
 

s, 3-OMe/5-OMe); 13C–NMR (75 MHz, CDCl3) δ 161. 6 (C3/C5), 142.3 (C1), 142.5 (C1′), 129.4 

(C3′/C5′), 121.5 (C4′), 118.8 (C2′/C6′), 95.8 (C2/C6), 93.0 (C4), 55.3 ( 3-OMe/5-OMe); m/z (NSI) 

230 ([M+H]+, 100%), 229 (6), 220 (8), 198 (5), 187 (14), 172 (24), 149 (6). Found: [M+H]+, 

230.1177. C14H16 NO2 requires 230.1176. Anal. Calcd. for C14H15NO2; C, 73.34; H, 6.59; N, 6.11. 

Found: C, 73.27; H, 6.95; N, 6.19. 

 

4.21 2,4,6-Trimethyldiphenylamine (90) 

 

Using 2,4,6-trimethylaniline gave the product as a white crystalline solid (0.19 g, 0.90 mmol, 

81%); mp 52–54 °C (from ether–petrol) (lit.,10 mp 54–56 °C); Rf = 0.4 (1:9 ether/petrol); IR 

νmax/cm-1 (neat), 3390, 2964, 1599, 1496, 1376, 1312, 1254, 1069; 1H–NMR  (300 MHz, CDCl3 

) δ 7.18 (2H, t, H3′/H5′, J 7 Hz), 6.97 (2H, s, H3/H5), 6.96 (1H, t, H4′, J 8 Hz), 6.51 (2H, d, H2′/H6′, 

J 8 Hz), 5.12 (1H, s, br, N-H), 1.76 (3H, s, 4-Me), 1.59 (6H, s, 2-Me/6-Me); 13C–NMR (75 MHz, 

CDCl3) δ 158.5 (C1′), 145.3 (C2/C6), 144.6 (C1), 144.4 (C4′),136.7(C3′/C5′),122.8 (C3/C5), 166.7 

(C2′/C6′), 21.9 (4-Me), 18.6 (2-Me/6-Me); m/z (NSI) 212 ([M+H]+, 100%), 211 (42), 197 (6), 180 

(2), 149 (4). Found: [M+H]+, 212.1434. C15H18N requires 212.1434. Anal. Calcd. for C15H17N; C, 

85.26; H, 8.11; N, 6.63. Found: C, 85.15; H, 8.24; N, 6.72. 
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4.22 2-tert-Butyldiphenylamine (91) 

 

Using 2-tert-butylaniline gave the product as a white crystalline solid (0.20 g, 0.89 mmol, 

80%); mp 65–68 °C (from ether–petrol) (lit.,10 mp 64–65 °C); Rf = 0.42 (5:95 ether/petrol); IR 

νmax/cm-1 (neat) 3440, 2965, 1594, 1504, 1441, 1308, 1259, 1177, 744; 1H–NMR (300 MHz, 

CDCl3) δ 7.36 (1H, dd, H3, J 2, 6 Hz), 7.22 (4H, m, H2′/H3′/H5′/H6′), 7.02 (1H, m, H4′), 6.77 (3H, 

m, H4/H5/H6) 5.33 (1H, s, NH), 1.36 (9H, s, 3 × Me); 13C–NMR (75 MHz, CDCl3) δ 145.9 (C1’), 

143.4 (C2), 141.2 (C1), 129.3 (C3′/C5′), 127.1 (C5), 126.9, 125.9, 123.9, 119.2, 115.9 (C2′/C6′), 

34.9 (C-Me3). 30.6 (3 × Me); m/z (NSI) 226 ([M+H]+, 100%), 220 (3), 210 (5), 194 (7), 149 (4). 

Found: 226.1591. C16H20 N requires 226.1590. Anal. Calcd. for C16H19N; C, 85.28; H, 8.50; N, 

6.22. Found: C, 85.34; H, 8.53; N, 6.2 

 

4.23 N-Phenylnaphthalen-1-amine (92) 

 

Using 1-naphthylamine gave the product as a white solid (0.16 g, 0.73 mmol, 67%); mp 51–54 

°C (from ether–petrol) (lit.,258 mp 54–56 °C); Rf = 0.42 (5:95 ether/petrol); IR νmax/cm-1 (neat) 

3407, 3053, 2411, 1574, 1523, 1492, 1306, 1270, 1095, 734; 1H–NMR (300 MHz, CDCl3) δ 7.95 

(1H, m, H8), 7.80 (1H, m, H9), 7.48 (1H, m, H4), 7.42 (2H, m, H2/H3), 7.32 (2H, m, H3′/H5′), 

7.21 (2H, m, H6/H7), 6.93 (2H, m, H2′/H6′), 6.84 (1H, tt, H4′, J 1, 6 Hz), 5.46 (1H, s, NH); 13C–

NMR (75 MHz, CDCl3) δ 144.8 (C1′), 138.8 (C1), 134.7 (C5), 129.4 (C3′/C5′), 128.6 (C10), 127.8, 

126.2 (d, C7/C9, J 8 Hz), 125.7 (C4′), 123.0, 121.8, 120.5 (C4), 117.4 (C2′/C6′), 115.9 (C2); m/z 

(NSI) 220 ([M+H]+, 100%), 219 (2), 186 (4), 149 (3). Found: [M+H]+, 220.1122. C16H14N requires 

[M+H]+  220.1121. Anal. Calcd. for C16H13N; C, 87.64; H, 5.98; N, 6.39. Found: C, 87.55; H, 6.08; 

N, 6.48. 
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4.24 4-Methyldiphenylamine (93) 

 

Using 4-methylphenyl(mesityl)iodonium triflate gave the product as a white crystalline solid 

(0.15 g, 0.82 mmol, 75%); mp 78–80 °C (from ether–petrol) (lit.,259 mp 86–89 °C); Rf = 0.40 

(1:9 ether/petrol);  IR, νmax/cm-1 (neat) 3395, 3015, 2918, 2360, 1594, 1499, 1307, 1241, 1078, 

807, 745; 1H–NMR (300 MHz, CDCl3) δ 7.13 (2H, t, H3′/H5′, J 8 Hz), 6.99 (2H, d, H2′/H6′, J 8 Hz), 

6.91 (4H, d, H2/H3/H5/H6, J 7 Hz), 6.80 (1H, t, H4′, J 8 Hz), 5.49 (1H, s, NH), 2.21 (3H, s, Me); 

13C–NMR (75 MHz, CDCl3) δ 148.3 (C1), 142.8 (C1′), 133.0 (C4), 129.3 (C3/C5), 121.2, 120.8 

(C4′), 119.9, 118.6 (C2/C6), 114.7, 110.6, 55.6 (Me); m/z (NSI) 184 ([M+H]+, 100%), 183 (2), 

180 (2), 169 (6), 156 (2), 149 (20), 129 (2). Found: [M+H]+, 184.1120. C13H14N requires 

184.1121. Anal. Calcd for C13H13N; C, 85.21; H, 7.15; N, 7.64. Found: C, 85.19; H, 7.21; N, 7.69. 

 

4.25 2-Methyldiphenylamine (94) 

 

Using 2-methylphenyl(mesityl)iodonium triflate gave the product as a white crystalline solid 

(0.13 g, 0.71 mmol, 64 %); mp 38–40 °C (from ether–petrol) (lit.,259 mp 39–40 °C); Rf = 0.40 

(1:9 ether/petrol); IR νmax/cm-1 (neat) 3403, 1930, 1493, 1386, 1315, 1258, 1175, 114, 1042, 

742; 1H–NMR (300 MHz, CDCl3) δ 7.20 (4H, m, H2′/H3′/H5′/H6′), 7.07 (1H, t, H4′, J 6 Hz), 6.90 

(4H, m, H3/H4/H5/H6), 5.30 (1H, s, NH), 2.18 (3H, s, Me); 13C–NMR (75 MHz, CDCl3) δ 143.9 

(C1′), 141.2, (C1), 131.0 (C2), 129.3 (C3′/C5′), 128.3 (C3), 126.8 (C5), 122.0 (C4), 120.5 (C6), 

118.7 (C4′), 117.5 (C2′/C6′), 18.0 (Me); m/z (NSI) 184 ([M+H]+, 100%) 169 (8), 149 (4). Found: 

[M+H]+, 184.1120 C13H14N requires  184.1121. 
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4.26 2-Methoxydiphenylamine (95) 

 

Using 2-methoxyphenyl(mesityl)iodonium triflate gave the product as a white crystalline solid 

(0.16 g, 0.80 mmol, 73%); mp 29–30 °C (from ether–petrol) (lit.,260 mp 31–32 °C); Rf = 0.33 (1:9 

ether/petrol); IR νmax/cm-1 (neat) 3407, 3047, 2834, 1590, 1513, 1463, 1232, 1115, 1026, 738; 

1H–NMR (400 MHz, CDCl3) δ (3H, m, H3′/H4′/H5′), 7.08 (2H, m, H2/H6), 6.86 (1H, t, H6′, J 8 Hz), 

6.82 (3H, m, H3/H4/H5), 6.06 (1H, s, NH), 3.79 (3H, s, OMe); 13C–NMR (100 MHz, CDCl3) δ 

148.3 (C2′), 142.7 (C1), 133.0 (C1′), 129.3 (C3/C5), 121.2, 120.8, 119.9, 118.6 (C2/C6), 114.7 

(C3′), 110.5 (C6′), 55.6 (OMe); m/z (NSI) 200 ([M+H]+, 100%), 185 (74) 180 (4) 168 (52), 156 

(7). Found: [M+H]+, 200.1068 C13H14 NO requires 200.1070. Anal. Calcd. for C13H13NO; C, 

78.36; H, 6.58; N, 7.03. Found: C, 78.38; H, 6.49; N, 7.04. 

 

4.27 2-Chlorodiphenylamine (96) 

 

Using 2-chlorophenyl(mesityl)iodonium triflate gave the product as a white crystalline solid 

(0.13 g, mmol, 0.64, 58%); mp 98–99 °C (from ether–petrol) (lit.,261 mp 101–102 °C); Rf = 0.34 

(1.5:8.5 ether/petrol); IR νmax/cm-1 (neat) 3405, 3041, 2401, 1931, 1591, 1497, 1314, 1219. 

1035, 741; 1H–NMR (300 MHz, CDCl3) δ 7.40 (4H, m, H2/H3/H5/H6), 7.20 (3H, m, H3′/H5′/H6′), 

7.09 (1H, m, H4), 6.86 (1H, ddd, H4′, J 2, 2, 7 Hz); 13C–NMR (75 MHz, CDCl3) δ 141.5 (C1′)140.3 

(C1), 129.7 (C3′), 129.4 (C3/C5), 127.4 (C5′), 122.7 (C2′), 121.5 (C6′), 120.3, 120.2 (C2/C6), 115.7 

(C4); m/z (NSI) 206 ([37Cl]M+, 32%), 204 ([35Cl]M+, 100%), 202 (2). Found [M+H]+ 204.0574. 

C12H11
35ClN requires 204.0575. 
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4. 28 N-Phenyl2-aminopyrazine (97) 

        

Using 2-aminopyrazine gave the product as a white crystalline solid (0.13 g, 0.76 mmol, 69%); 

mp 133–135 °C (from ether–petrol) (lit.,262 mp 130–132 °C); Rf = 0.25 (4:6 ether/petrol); IR 

νmax/cm-1 (neat) 3277, 3211, 3100, 3053, 2923, 1584, 1520, 1444, 1327, 1197; 1H–NMR (300 

MHz, CDCl3) δ 8.17 (1H, s, H6), 8.04 (1H, m, H3), 7.91 (1H, d, H4, J 3 Hz), 7.38 (4H, m, 

H2′/H3′/H5′/H6′) 7.06 (1H, m, H4′), 6.72 (1H, s, N-H); 13C–NMR (75 MHz, CDCl3) δ 152.3 (C1), 

142.0 (C3), 139.2 (C1′), 134.9 (C4), 132.9 (C6), 129.4 (C3′/C5′), 123.6 (C4′), 120.3 (C2′/C6′); m/z 

(NSI) 172 ([M+H]+, 100%), 149 (2). Found [M+H]+ 172.0866. C10H10N3 requires 172.0869. Anal. 

Calcd. for C10H9N3 requires C, 70.16; H, 5.30; N, 24.50. Found: C, 70.25; H, 5.35; N, 24.53. 

 

4.29 N-Phenyl-2-aminopyridine (98) 

 

Using 2-aminopyridine gave the product as a white crystalline solid (0.08 g, 0.47 mmol, 43%); 

mp 141–143 °C (from ether–petrol) (lit.,118 mp 140–141°C); Rf = 0.22 (3:7 ether/petrol); IR 

νmax/cm-1 (neat): 3226, 3178, 3098, 3011, 254, 2855, 1589, 1443, 1327, 1160; 1H–NMR (300 

MHz, CDCl3) δ 8.14 (1H, d, H3, J 6 Hz), 7.44 (1H, m, H4′), 7.26 (3H, m, H2′/H5/H6′ ) 7.00 (1H, m, 

H6), 6.82 (1H, t, H4, J 8 Hz), 6.68 (2H, m, H3′/H5′); 13C–NMR (75 MHz, CDCl3) δ 156.0 (C1), 

148.4 (C3), 140.5 (C1′), 137.7 (C5), 129.3 (C3′/C5′), 122.8 (C4′), 120.4 (C2′/C6′), 115.0 (C4), 

108.2 (C6); m/z (NSI) 171 ([M+H]+, 100%). Found [M+H]+ 171.0913. C11H11N2 requires 

171.0917. Anal. Calcd. for C11H10N2 requires C, 77.62; H, 5.92; N, 16.46. Found: C, 77.67; H, 

5.99; N, 16.32 
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4.30 N-Phenyl-2-aminopyrimidine (99) 

 

Using 2-aminopyrimidine gave the product as a white crystalline solid (0.13 g, 0.76 mmol, 

69%); mp 104–106 °C (from ether–petrol) (lit.,262 mp 106–108 °C); Rf = 0.23 (4:6 ether/petrol); 

IR νmax/cm-1 (neat): 3339, 3268, 2926, 2358, 2166, 1980, 1594, 1498, 1460, 1416, 1285, 1156, 

1034, 891; 1H–NMR (300 MHz, CDCl3) δ 8.36 (2H, d, H3/H5, J 4 Hz), 7.56 (2H, d, H2′/H6′  J 7 

Hz), 7.30 (2H, t, H3′/H5′, J 8 Hz), 7.07 (1H, s, NH), 7.01 (1H, t, H4′, J 7 Hz), 6.67 (1H, t, H4, J 5 

Hz); 13C–NMR (75 MHz, CDCl3) δ 158.0 (C3/C5), (139.3 (C1), 136.4 (C1′), 129.0 (C3′/C5′), 122.7 

(C4′), 119.5 (C2′/C6′), 112.6 (C4); m/z (NSI) 172 ([M+H]+, 100%), 171 (5). Found [M+H]+ 

172.0867. C10H10N3 requires 172.0869. Anal. Calcd. for C10H9N3requires C, 70.16; H, 5.30; N, 

24.54. Found: C, 69.99; H, 5.25; N, 24.42. 

 

4.31 N-Phenyl-4-aminopyridine (100) 

  

Using 4-aminopyridine gave the product as a white crystalline solid (0.14 g, 0.82 mmol, 75%); 

mp 174–176 °C (from ether–petrol) (lit.,263 mp 175 °C from water); Rf = 0.23 (4:6 ether/petrol). 

IR νmax/cm-1 (neat): 3344, 2925, 1602, 1446, 1221, 1015, 836; 1H–NMR (300 MHz, CDCl3) δ 

7.13 (2H, m, H3′/H5′), 7.04 (2H, d, H3/H5, J 9 Hz), 6.73 (2H, d, H2′/H6′, J 9 Hz), 6.66 (1H, t, H4′, 

J  7 Hz), 6.56 (2H, m, H2/H6), 4.55 (1H, s, NH); 13C–NMR (75 MHz, CDCl3) δ 148.0 (C1), 131.5 

(C1′), 129.9 (C3/C5), 129.3 (C3′/C5′), 117.5 (C4′), 115.4 (C2′/C6′), 113.0 (C2/C6). 
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4.32 N-Phenyl-2-aminobenzoxazole (101) 

 

Using 2-aminooxazole gave the product as a white crystalline solid (0.10 g, 0.47 mmol, 43%); 

mp 173–175 °C (from ether–petrol) (lit.,264 mp 176–179 °C); Rf = 0.26 (4:6 ether/petrol); IR 

νmax/cm-1 (neat): 3564, 3390, 2925, 1981, 1599, 1498, 1446, 1243, 1057, 1031, 802; 1H–NMR 

(300 MHz, CDCl3) δ 7.57 (2H, m, H4/H5), 7.45 (1H, d, H2′, J 7 Hz), 7.36 (3H, m, H3/H6/H6′), 

7.17 (1H, m, H4′), 7.09 (2H, m, H3′/H5′); 13C–NMR (75 MHz, CDCl3) δ 147.8 (C1), 146.3 (C2), 

142.4 (C7), 137.7 (C1′), 129.4 (C3′/C5′), 124.3 (C5), 123.4 (C4′), 122.0 (C4), 118.3 (C2′/C6′), 

117.3 (C6), 109.1 (C3); m/z (ASAP) 211 ([M+H]+, 100%), 179 (28), 169 (45), 161 (37), 137 (46), 

135 (8),  120 (4), 90 (5). Found [M+H]+ 211.0871. C13H11N2O requires 211.0869. 

 

4.33 N-Phenyl-3-aminoquinoline (102) 

 

Using 3-aminoquinoline gave the product as a white crystalline solid (0.15 g, 0.68 mmol, 61%); 

mp 124–126 °C (from ether–petrol) (lit.,265 mp 116 °C); Rf = 0.33 (4:6 ether/petrol); IR νmax/cm-

1 (neat) 3273, 3194, 3032, 2927, 1595, 1494, 1307, 734; 1H–NMR (300 MHz, CDCl3) δ 8.73 (1H, 

d, H2, J 3 Hz), 8.04 (1H, d, H6, J 8 Hz), 7.76 (1H, d, H9, J 4 Hz), 7.68 (1H, dd, H7, J 2,  8 Hz), 7.55 

(2H, m, H3′/H5′), 7.41 (2H, m, H2′/H6′), 7.23 (2H, m, H4/H5), 7.10 (1H, m, H4′), 5.96 (1H, s, NH); 

13C–NMR (75 MHz, CDCl3) δ 145.0 (C2), 143.6 (C1′), 141.8 (C1), 137.0 (C3), 129.7 (C3′/C5′), 

129.0 (C5), 128.8 (C4), 127.2 (C9), 126.6 (C6), 126.5 (C7), 122.4 (C8), 118.6 (C2′/C6′), 117.0 

(C4′); m/z (NSI) 221 ([M+H]+, 100%) 219 (4), 206 (5). Found [M+H]+ 221.1071. C10H10N2 

requires 221.1073. Anal. Calcd. for C10H9N2 requires C, 81.79; H, 5.49; N, 12.72. Found: C, 

81.78; H, 5.40; N, 12.65. 
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4.34 N-Benzylaniline (103) 

 

Using benzylamine gave the product as a white crystalline solid (0.15 g, 0.82 mmol, 74%); mp 

38–40 °C (lit.,266 mp 39–40 °C); Rf = 0.36 (1:9 ether/petrol); IR νmax/cm-1 (neat) 3419, 2849, 

1601, 1505, 1452, 1324, 1266, 1180, 1028, 747, 691; 1H–NMR (300 MHz, CDCl3) δ 7.31 (5H, 

m, H2/H3/H4/H5/H6), 7.13 (2H, t, H3′/H5′, J 8 Hz), 6.66 (1H, t, H4’, J 8 Hz), 6.58 (2H, d, H2′/H6′ 

J 8 Hz), 4.25 (2H, s, CH2), 3.94 (1H, s, N-H); 13C–NMR (75 MHz, CDCl3) δ 148.1 (C1′), 139.4 (C1), 

129.3 (C3′/C5′), 128.7 (C3/C5), 127.5 (C2/C6), 127.3 (C4), 117.6 (C4′), 112.9 (C2′/C6′), 48.4 

(CH2); m/z (NSI) 184 ([M+H]+, 100%) 181 (2), 163 (2), 149 (4). Found [M+H]+ 184.1119. C13H14N 

require 184.1121. Anal. Calcd for C13H13N requires C, 85.21; H, 7.15; N, 7.64. Found: C, 85.14; 

H, 7.23; N, 7.61. 

 

4.35 (±)-α-Methylbenzylaniline (104) 

 

Using (±)-α -methylbenzylamine gave the product as a white crystalline solid (0.18 g, 0.91 

mmol, 83%); mp 50–52 °C (from ether–petrol) (lit.,267 mp 39–41°C); Rf = 0.41 (1:9 

ether/petrol); IR νmax/cm-1 (neat) 3411, 2964, 2867, 2410, 1600, 1503, 1316, 1257, 747, 691; 

1H–NMR (300 MHz, CDCl3) δ 7.30 (4H, m, H2/H3/H5/H6), 7.16 (1H, ttt, H4, J 2, 5, 7 Hz), 7.03 

(2H, m, H3′/H5′ ), 6.58 (1H, t, H4′, J 7 Hz), 6.44 (2H, d, H2′/H6′, J 8 Hz), 4.43 (1H, q, CH, J 7 Hz), 

3.93 (1H, s, NH), 1.43 (3H, d, Me, J 7 Hz); 13C–NMR (75 MHz, CDCl3) δ 147.3 (C1′), 145.3 (C1), 

129.2 (C3′/C5′), 128.7 (C3/C5), 126.9 (C2/C6), 125.9 (C4), 117.3 (C4′), 113.3 (C2′/C6′), 53.5 (CH), 

25.1 (Me); m/z (NSI) 198 ([M+H]+, 100%), 193 (2), 178 (2), 163 (3), 149 (6). Found [M+H]+ 

198.1277. C14H16N requires 198.1277. Anal. Calcd. for C14H15N requires C, 85.24; H, 7.66; N, 

7.10. Found C, 85.17; H, 7.74; N, 7.09. 
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4.36 N-Methylbenzylaniline (105) 

 

Using N-methylbenzylamine gave the product as a white crystalline solid (0.16 g, 0.81 mmol, 

74%); mp 37–39 °C (lit.,268 mp 38 °C);  Rf = 0.40 (1:9 ether/petrol); IR νmax/cm-1 (neat) 3062, 

3026, 2870, 2818, 1598, 1505, 1451, 1353, 1250, 1116, 1028, 747, 727, 690; 1H–NMR (300 

MHz, CDCl3) δ 7.23 (2H, m, H3/H5), 7.14 (5H, m, H2/H2′/H4/H6/H6′), 6.67, (3H, m, 

H3′/H4′/H5′), 4.42, (2H, s, CH2), 2.90 (3H, s, Me); 13C–NMR (75 MHz, CDCl3) δ 149.9 (C1), 139.2 

(C1′), 129.3 (C3′/C5′), 128.7 (C3/C5), 126.7 (C2/C6), 126.9 (C4), 116.7 (C4′), 112.5 (C2′/C6′), 56.7 

(CH2), 38.6 (Me); m/z (NSI) 198 ([M+H]+, 100%). Found [M+H]+ 198.1275. C14H16N requires 

198.1277. Anal. Calcd. for C14H15N requires C, 85.24; H, 7.66; N, 7.10. Found: H, 85.17; H, 7.81; 

N, 7.17. 

 

4.37 N-Hexyl aniline (106) 

 

Using N-hexylamine gave the product as a white solid (0.14 g, 0.79 mmol, 72%); mp 170–172 

°C (from ether–petrol); Rf = 0.42 (0.5:9.5 ether/petrol); IR νmax/cm-1 (neat) 3416, 2926, 2856, 

1912, 1602, 1506, 1476, 1320, 1256, 1179, 746, 691; 1H–NMR (300 MHz, CDCl3) δ 7.13 (2H, 

m, H3/H5), 6.63 (1H, ttt, H4, J 1, 6, 7 Hz), 6.52 (2H, m, H2/H6), 3.49 (1H, s, NH), 3.03 (2H, t, 

H1′, J 7 Hz), 1.57 (2H, q, H2′, J 7 Hz), 1.29 (6H, H3′/H4′/H5′), 0.85 (3H, t, H6, J 7 Hz); 13C–NMR 

(75 MHz, CDCl3) δ 148.6 (C1), 129.3 (C3/C5), 117.1 (C4′), 112.7 (C2/C6), 44.1 (C1′), 31.7 (C2′), 

29.6 (C3′), 26.9 (C4′), 22.7 (C5′), 14.1 (C6′); m/z (NSI) 178 ([M+H]+, 100%). Found [M+H]+  

178.1586. C12H20N requires 178.1590. Anal. Calcd. for C12H19N requires C, 81.30; H, 10.80; N, 

7.90. Found: H, 81.42; C, 10.91; N, 7.81. 
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4.38 N-Methyl-N-hexylaniline (107) 

 

Using N-methylhexylamine gave the product as a white solid (0.14 g, 0.78 mmol, 67%); mp 

97–98 °C (from ether–petrol); Rf = 0.47 (0.5:9.5 ether/petrol); IR νmax/cm-1 (neat) 2925, 1599, 

1506, 1466, 1367, 1192, 1091, 990, 858; 1H–NMR (300 MHz, CDCl3) δ 7.16 (2H, m, H3/H5), 

6.62 (3H, m, H2/H4/H6), 3.23 (2H, t, H1′, J 8 Hz), 2.83 (3H, s, Me), 1.53 (2H, m, H2′), 1.29 (6H, 

m, H3′/H4′/H5′), 0.84 (3H, m, H6′); 13C–NMR (75 MHz, CDCl3) δ 149.4 (C1), 129.2 (C3/C5), 115.8 

(C4), 112.1 (C2/C6), 52.9 (C1′), 38.3 (Me), 31.8 (C3′), 26.9 (d, C2′/C4′, J 18 Hz ), 22.7 (C5′), 14.1 

(C6′); m/z (NSI) 192 ([M+H]+, 100%) 191 (10). Found [M+H]+ 192.1742. C13H22N requires 

192.1747. Anal. Calcd. for C13H21N requires C, 81.61; H, 11.06; N, 7.32. Found: C, 81.54; H, 

11.17; N, 7.26.  

 

4.39 Diphenylether (68) 

 

Using phenol gave the product as a white crystalline solid (0.13 g, 0.76 mmol, 69%); mp 26–

27 °C (from ether–petrol) (lit.,269 mp 28 °C); Rf = 0.35 (1:9 ether/petrol); IR νmax/cm-1 (neat) 

3059 3038, 2939, 2284, 1583, 1485, 1233, 1163, 1022; 1H–NMR (300 MHz, CDCl3) δ 7.29 (4H, 

m, H3/H3′/H5/H5′), 7.05(2H, ttt, H4/H4′ J 2, 7, 7 Hz ), 6.95 (4H, m, H2/H2′/H6/H6′); 13C–NMR 

(75 MHz, CDCl3) δ 157.3 (C1/C1′), 129.8 (C3/C3′/C5/5′), 123.3 (C4/C4′), 119.0 (C2/C2′/C6/C6′).  

 

4.40 4-Hydroxydiphenylamine (70) 

 

Using 4-hydroxyaniline gave the product as a white crystalline solid (0.15 g, 0.81 mmol, 74%); 

mp 72–74 °C (from ether–petrol) (lit.,239 mp 70 °C); Rf = 0.25 (4:6 ether/petrol); IR νmax/cm-1 
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(neat) 3407, 3371, 3279, 3038, 2468, 1835, 1595, 1450, 1103, 815; 1H–NMR (400 MHz, CDCl3) 

δ 7.16 (2H, m, H3′/H5′), 6.95 (2H, m, H2/H6), 6.83 (2H, m, H3/H5), 6.78 (1H, ttt, H4′, J 1, 2, 6 

Hz), 6.72 (2H, m, H2′/H6′), 5.37 (1H, s, NH), 4.86 (1H, s, OH); 13C–NMR (100 MHz, CDCl3) δ 

151.1 (C4), 145.2 (C1′), 135.8 (C1), 129.3 (C3′/C5′), 122.5 (C2/C6), 119.7 (C4′), 116.1 (C2′/C6′), 

115.7 (C3/C5); m/z (NSI) 186 ([M+H]+, 100%) 184 (5). Found [M+H]+ 186.0913. C12H12NO 

requires 186.0913. Anal. Calcd. for C12H11NO requires C, 77.81; H, 5.99; N, 7.56. Found: C, 

77.69; H, 5.90; N, 7.42. 

The by-products below were also produced during this reaction. 

 

4-Phenoxy-N-phenylaniline (108) 

 

Obtained as a by-product as an off white solid (0.01 g, 0.04 mmol, 3%); mp 96–97 °C (from 

ether–petrol) (lit.,270 mp 95–98 °C); Rf = 0.34 (4:6 ether/petrol); IR νmax/cm-1  (neat) 3346, 

3046, 2958, 2926, 1948, 1592, 1494, 1457, 1280, 1103, 888; 1H–NMR (300 MHz, CDCl3) δ 7.28 

(4H, m, H2/H2′/H6/H6′), 7.03 (3H, m, H3ʺ/H4ʺ/H5ʺ), 6.96 (6H, m, H2ʺ/H3/H3′/H5/H5′/H6ʺ), 6.85 

(1H, m, H1), 5.52 (1H, s, NH); 13C–NMR (75 MHz, CDCl3) δ 158.2 (C4), 151.2 (C4′), 143.9 (C1ʺ), 

138.8 (C1′), 129.7 (C3ʺ/C5ʺ), 129.4 (C2/C6), 122.6 (C4ʺ), 120.5 (C2′/C6′), 120.4 (C2ʺ/C6ʺ), 117.9 

(C3/C5), 116.9 (C3′/C5′); m/z (NSI) 262 [(M+H]+, 100%) 239 (10), 226 (5), 199 (5), 185 (30), 169 

(10), 149 (12). Found [M+H]+ 262.1229. C18H16NO requires 262.1226; Anal. Calcd. for C18H15N 

requires C, 82.73; H, 5.79; N, 5.42. Found: C, 82.66; H, 5.80; N, 5.42. 
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N-Phenylazaquinone (71) 

 

 

Obtained as a by-product an orange crystalline solid (0.01 g, 0.05 mmol, 5%); mp 130–132 °C 

(from ether–petrol) (lit.,243 mp 132–133 °C; Rf = 0.33 (4:6 ether/petrol); IR νmax/cm-1 (neat) 

3049, 1643, 1612, 1576, 1476, 1446, 1319, 1163, 1096, 951; 1H–NMR (300 MHz, CDCl3) δ 7.37 

(2H, m, H3′/H5′), 7.26 (1H, dd, H4′, J 3, 7 Hz), 7.20 (2H, m, H2′/H6′), 7.04 (1H, dd, H2, J 3, 7 Hz), 

6.84 (1H, m, H6), 6.65 (1H, dd, H3, J 3, 7 Hz), 6.49 (1H, dd, H5, J 3, 7 Hz); 13C–NMR (75 MHz, 

CDCl3) δ 187.6 (C4), 157.4 (C1), 149.4 (C1′), 141.9 (C2), 135.5 (C6), 132.3 (C4′), 129.1 (C3/C5), 

128.2 (C5′), 126.2 (C3′) 120.6 (C2′/C6′); m/z (ESI) 184 [(M+H]+, 100%) Found [M+H]+  184.0756. 

C12H10NO requires 184.0757. 

 

4.41 3-Hydroxydiphenylamine (72) 

 

Using 3-Hydroxyaniline gave the product as a white crystalline solid (0.16 g, 0.85 mmol, 78%); 

mp 78–80 °C (from ether–petrol) (lit.,239 mp 81°C); Rf = 0.33 (4:6 ether/petrol); IR νmax/cm-1 

(neat) 3379, 3327, 3044, 1595, 1494, 1460, 1337, 1244, 1160, 1024, 969; 1H–NMR (300 MHz, 

CDCl3) δ 7.33 (2H, m, H3′/H5′), 7.16 (3H, m, H2′/H4′/H6′), 7.00 (1H, t, H6, J 7 Hz), 6.65 (2H, m, 

H2/H4), 6.42 (1H, dd, H5, J 6, 2 Hz), 5.71 (1H, s, NH), 4.63 (1H, s, OH); 13C–NMR (75 MHz, 

CDCl3) δ 156.5 (C3), 145.0 (C1), 142.5 (C1′), 130.4 (C5), 129.4 (C3′/C5′), 121.5 (C4′), 118.7 

(C2′/C6′), 110.0 (C6), 107.6 (C4), 103.9 (C2); m/z (NSI) 186 ([M+H]+, 100%) 185 (5). Found 

[M+H]+ 186.0912. C12H12NO requires 186.0913. Anal. Calcd. for C12H11NO requires C, 77.81; H, 

5.99; N, 7.56. Found: C, 77.90; H, 6.04; N, 7.47. 
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4.42 2-Hydroxydiphenylamine (73) 

 

Using 2-hydroxyaniline gave the product as a white crystalline solid (0.14 g, 0.76 mmol, 69%); 

mp 65–67 °C (from ether–petrol) (lit.,239 mp 57 °C); Rf = 0.45 (4:6 ether/petrol);  IR νmax/cm-1 

(neat) 3383.4, 3337, 2361, 1593, 1492, 1456, 1282, 1102, 747; 1H–NMR (300 MHz, CDCl3) δ 

7.16 (3H, m, H3′/H4′/H5′), 7.03 (1H, t, H2′, J 8 Hz), 6.91 (1H, d, H6′ J 7 Hz ), 6.82 (2H, m, H3/H5), 

6.70 (2H, d, H4/H6, J 8 Hz), 5.70 (1H, s, OH), 5.15 (1H, s, NH); 13C–NMR (75 MHz, CDCl3) δ 151.1 

(C2), 145.5 (C1′), 129.5 (C3′/C5′), 129.1 (C1), 126.2 (C5), 124.8 (C3), 121.1 (C4), 120.4, 115.9, 

115.4 (C2/C6); m/z (NSI) 186 ([M+H]+, 100%). Found [M+H]+ 186.0912. C12H12N requires 

186.0913. Anal. Calcd for C12H11 NO requires C, 77.81; H, 5.99; N, 7.56. Found: C, 77.69; H, 

5.88; N, 7.48. 

The by-product below was isolated from this reaction. 

 

2-Phenoxy-N-phenylanline (109) 

 

Obtained as by-product as an off white solid (0.03 g, 0.14 mmol, 13%); mp 93–94 °C (from 

ether–petrol); Rf = 0.56 (4:6 ether/petrol); IR νmax/cm-1 (neat) 3346, 3047, 1912, 1708, 1592, 

1494, 1457, 1281, 1102, 888; 1H–NMR (300 MHz, CDCl3) δ 7.33 (2H, m, H3/C5), 7.26 (4H, m, 

H2/H3/H5/H6), 7.08 (2H, m, H2ʺ/H6ʺ), 7.01 (4H, H4/H4ʺ/H5′/H6′), 6.89 (2H, m, H3′/H4′); 13C–

NMR (75 MHz, CDCl3) δ 157.2 (C1), 144.9 (C2′), 142.2 (C1ʺ), 135.6 (C1′), 129.8 (C3ʺ/C5ʺ), 129.3 

(C3/C5), 124.3 (C4ʺ), 123.1 (C4), 121.7 (C4′), 120.1 (C3′), 119.6 (C5’), 119.1 (C2ʺ/C6ʺ), 117.8 

(C2/C6), 115.8 (C6’). Anal. Calcd. for C18H15NO requires C, 82.73; H, 5.79; N, 5.36. Found: C, 

82.60; H, 5.70; N, 5.35. 
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4.43 4-(2-Phenylaminoethyl) phenol (74) 

  

Using tyramine gave the product as a white crystalline solid (0.10 g, 0.47 mmol, 43%); mp 46–

48 °C (from ether–petrol) (lit.,241 mp 50–51°C); Rf = 0.28 (4:6 ether/petrol); IR νmax/cm-1 (neat): 

3391, 3343, 3050, 2925, 2857, 2577, 1889, 1738, 1600, 1490, 1220, 1056; 1H–NMR (300 MHz, 

CDCl3) δ 7.14 (2H, m, H3/H5), 7.04 (2H, m, H2′/H6′), 6.66 (2H, m, H3′/H5′), (1H, ttt, H4, J 1, 6, 

1 Hz), 6.56 (2H, m, H2/H6), 4.62 (1H, s, NH), 3.61 (1H, s, OH), 3.31 (2H, t, H7, J 7 Hz), 2.80 (2H, 

t, H8, J 7 Hz); 13C–NMR (75 MHz, CDCl3) δ 154.1 (C4′), 148.0 (C1), 131.4 (C1′), 129.9 (C2′/C6′), 

129.3 (C3/C5), 117.5 (C4), 115.4 (C3′/C5′), 113.1 (C2/C6), 45.2 (C7), 34.6 (C8); m/z (NSI) 214 

([M+H]+, 100%) 199 (10) 167 (8), 149 (20). Found [M+H]+ 214.1227. C14H16NO requires 

214.1226. Anal. Calcd. for C14H15NO requires C, 78.84; H, 7.09; N, 6.57. Found: C, 78.90; H, 

7.02; N, 6.68. 

 

4.44 2-(4-(Phenylamino)phenyl)ethanol (75) 

  

Using 4-Aminophenethanol gave the product as a white crystalline solid (0.8 g, 0.84 mmol, 

80%); mp 74–76 °C (from ether–petrol); Rf = 0.25 (4:6 ether/petrol); IR νmax/cm-1 (neat): 3564, 

3391, 2926, 1594, 1513, 1311, 1052, 1019; 1H–NMR (300 MHz, CDCl3) δ 7.32 (2H, m, H3′/H5′), 

7.18 (2H, m, H2/H6), 7.09 (4H, m, H3/H5/H2′/H6′), 6.97 (1H, ttt, H4, J 1, 6, 1 Hz), 5.69 (1H, s, 

NH), 3.90 (2H, t, H7, J 7 Hz), 2.87 (2H, t, H8, J 7 Hz); 13C–NMR (75 MHz, CDCl3) δ 143.4 (C1), 

141.5 (C1′), 131.0 (C4), 129.9 (C3′/C5′), 129.4 (C3/C5), 120.8 (C4′), 118.4 (C2/C6), 117.4 

(C2′/C6′), 63.8 (C7), 38.5 (C8); m/z (NSI) 214 ([M+H]+, 100%), 196 (5) ), 180(2), 149 (6). Found 

[M+H]+ 214.1226. C14H16NO requires 214.1226. Anal. Calcd. for C14H15NO requires C, 78.84; 

H,7.09; N, 6.57. Found: C, 79.01; H, 7.03; N, 6.68. 
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4.45 HPLC Method 

The HPLC methods were carried out by using an Agilent 1200 HPLC system provided with a 

UV absorbance detector (λmax 254 nm). The fluorophase PFP, part number 82705-154630, 

particle size 5 µm, 150 mm × 4.6 mm column was used to separate the compounds of reaction 

mixture, it was eluted at 1 mL/min using water/acetonitrile and the mobile phase 

configuration started at 10% acetonitrile which increased linearly to 75% acetonitrile over 20 

min with a pre-run of 5 min. 

For example the HPLC chromatogram for the starting material and product standard at a 

concentration of 0.1 M. 

 

 

 

 

 

 

Figure 45: HPLC chromatogram water/MeCN (left), water:1% TFA/MeCN (right): A = PhOH, 

B = PhI, C = Ph2NH, D = Ph2ITAF, E = PhNH2, F = PhH, G = Ph3N 

 

The standard commercial diphenylamine, diphenylether and 4-hydroxydiphenylamine were 

used to determine the calibration curve. 
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Figure 46: Calibration curve, diphenylamine 64 

 

Figure 47: Calibration curve diphenylether 68 
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Figure 48: Calibration curve 4-Hydroxydiphenylamine 70 
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Table 17: HPLC Retention time (Rt), water/MeCN , (90/10) 

Compound Rt/ min  Compound Rt/min  

Aniline (63) 13.0 Diphenylamine (64) 20.0 

4-Fluoroaniline (110) 13.2 4-Fluorodiphenylamine (85) 21.0 

4-Chloroaniline (111) 16.1 4-Chlorodiphenylamine (86) 22.0 

4-Methoxyaniline (112)  13.3 4-Methoxydiphenylamine (66) 21.4 

1-Naphthylamine (113) 18.1 N-Phenylnaphthalen-1-

amine(92) 

22.3 

4-Nitroaniline (114) 9.2 4-Nitrodiphenylamine (88) 20.5 

4-Bromoanline (115) 18.1 4-Bromodiphenylamine (87) 22.5 

3,5-Dimethoxyaniline (116) 13.1 3,5-Dimethoxydiphenylamine 

(89) 

20.1 

3,4-Dimethoxyaniline (117) 10.5 3,4-Dimethoxydiphenylamine 

(67) 

18.3 

2-tert-Butylaniline (118) 18.2 2-tert-Butyldiphenylamine (91) 22.3 

2,4,6-Trimethylaniline (119) 18.1 2,4,6-Trimethyldiphenylamine 

(90) 

22.0 

Phenol (120) 11.5 Diphenylether (68) 20.4 
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Benzylamine (121) 14.0 N-Benzylaniline (103) 19.5 

(±)-α-Methylbenzylamine (122) 15.0 (±)-α-Methylbenzylaniline(104) 20.20 

N-Methylaniline (123) 15.0 N-Methyldiphenylamine (143) 21.1 

Hexylamine (124) Not UV active N-Hexylaniline (106) 22.0 

N-Methylbenzylamine (125) 14.0 N-Benzylmethylaniline (105) 21.3 

N-Methylhexylamine (126) Not UV active N-Methylhexylaniline (107) 23.3 

2-Methoxydiphenylamine (95) 20.3 4-Methyldiphenylamine (93) 21.0 

2-Chlorodiphenylamine (96) 21.3   

 

Table 18: HPLC Retention time (R.T), water:1% TFA/MeCN , (90/10) 

Compound Rt/min Compound  Rt/min 

3-Aminophenol (127) 4.5 3-Hydroxydiphenylamine (72) 16.2 

4-Aminophenol (128) 5.9 4-Hydroxydiphenylamine (70) 14.2 

2-Aminophenol (129) 5.0 2-Hydroxydiphenylamine (73) 17.1 

Tyramine (130) 5.9 4-(2-Phenylaminoethyl) phenol (74) 11.4 

4-Aminophenethanol (131) 4.5 2-(4-(Phenylamino)phenyl)ethanol 

(75) 

15.5 
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3-Aminoquinoline (132) 9.0 N-Phenyl-3-aminoquinoline (102) 15.1 

4-Aminopyridine (133) 4.0 N-Phenyl-4-aminopyridine (100) 11.4 

2-Aminopyridine (134) 4.4 N-Phenyl-2-aminopyridine (98) 10.4 

2-Aminopyrimidine (135) 4.1 N-Phenyl-2-aminopyrimidine (99) 11.0 

2-Aminopyrazine (136) 4.0 N-Phenyl-2-aminopyrazine (97) 11.2 

2-Aminobenzoxazole (144) 9.0 N-Phenyl-2-aminobenzoxazole 

(101) 

17.8 

2-Aminobenzimidazole (137) 9.0 N-Phenyl-2-aminobenzimidazole 

(138) 

11.3 

Diphenyliodonium trifluoroacetate 

(62) 

12.0 Diphenyliodonium triflate ((139) 11.9 

Phenyl(mesityl)iodonium triflate 

(81) 

16.0 Diphenyliodonium tosylate (78) 12.0 

2-Methylphenyl(mesityl)iodonium 

triflate (80) 

17.0 4-Methylphenyl(mesityl)iodonium 

triflate (79) 

16.0 

2-Chlorophenyl(mesityl)iodonium 

triflate (83) 

16.9 4-Chlorophenyl(mesityl)iodonium 

triflate (84) 

17.5 

2-

Methoxyphenyl(mesityl)iodonium 

triflate (82) 

17.0 Triphenylamine (141) 23.0 
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Iodobenzene (140) 16.1 Biphenyl (142) 20.6 

N-Phenylazaquinone (71) 7.5 4-Phenoxy-N-phenylaniline (108) 22.0 
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6 Appendices  

6.1 X-ray crystal structure of phenyl(mesityl)iodonium triflate (81) 
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Table 1 Crystal data and structure refinement for mac150013_fa.  

 

Identification code  mac150013_fa  

Empirical formula  C36H42F6I2O7S2  

Formula weight  1018.61  

Temperature/K  180.0(2)  

Crystal system  triclinic  

Space group  P-1  

a/Å  8.7684(3)  

b/Å  10.4450(4)  

c/Å  11.9460(5)  

α/°  92.881(3)  

β/°  102.190(3)  

γ/°  102.030(3)  

Volume/Å3  1040.84(7)  

Z  1  

ρcalcg/cm3  1.625  

μ/mm-1  1.681  

F(000)  506.0  

Crystal size/mm3  0.29 × 0.27 × 0.07  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  6.196 to 57.374  

Index ranges  -11 ≤ h ≤ 11, -13 ≤ k ≤ 13, -15 ≤ l ≤ 14  

Reflections collected  16698  

Independent reflections  4719 [Rint = 0.0555, Rsigma = 0.0639]  

Data/restraints/parameters  4719/24/252  

Goodness-of-fit on F2  1.067  

Final R indexes [I>=2σ (I)]  R1 = 0.0434, wR2 = 0.0718  

Final R indexes [all data]  R1 = 0.0684, wR2 = 0.0823  

Largest diff. peak/hole / e Å-3  0.72/-0.48  

 

 

 

 

 

 

  



193 
 

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for mac150013_fa. Ueq is defined as 1/3 of of the trace of the 

orthogonalised UIJ tensor. 

 

Atom x y z U(eq) 

 

I1 

 

3110.8(3) 

 

5528.9(3) 

 

1455.6(2) 

 

34.71(10) 

S1 5595.3(12) 2971.8(11) 1162.0(9) 42.0(3) 

F1 7356(3) 2119(3) 2864(2) 68.0(8) 

F2 6789(4) 873(3) 1293(3) 82.9(9) 

F3 5029(4) 911(3) 2283(3) 98.8(12) 

O1 7037(4) 3699(3) 921(3) 56.3(8) 

O2 4429(4) 2304(4) 172(3) 87.3(12) 

O3 4985(4) 3638(3) 1987(3) 57.5(9) 

O4 0 10000 5000 118(2) 

C1 -927(5) 7354(5) 1184(3) 50.6(12) 

C2 -294(6) 8650(6) 1086(4) 59.3(14) 

C3 1296(6) 9060(5) 1089(4) 55.7(13) 

C4 2290(5) 8186(4) 1197(4) 44.7(10) 

C5 1628(5) 6892(4) 1300(3) 34.9(9) 

C6 33(5) 6448(4) 1293(3) 39.2(10) 

C7 2660(4) 4980(4) 3055(3) 31.0(9) 

C8 3385(5) 5850(4) 4025(3) 40.4(10) 

C9 2972(5) 5485(5) 5050(4) 49.5(12) 

C10 1907(5) 4326(5) 5094(3) 47.9(12) 

C11 1254(5) 3486(5) 4100(4) 45.2(11) 

C12 1607(4) 3765(4) 3042(3) 33.6(9) 

C13 898(5) 2796(4) 1998(3) 43(1) 

C14 1445(7) 3993(6) 6220(4) 74.7(17) 

C15 4561(6) 7118(5) 4027(4) 58.2(13) 

C16 6215(6) 1640(5) 1940(4) 50.6(12) 

C17 -822(15) 10390(13) 5767(12) 99(3) 

C18 -2448(18) 10400(20) 5309(18) 108(4) 

C19 1600(14) 10191(13) 5291(12) 99(3) 

C20 2320(20) 10080(20) 4278(17) 108(4) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for mac150013_fa. The 

Anisotropic displacement factor exponent takes the form: -

2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

 

I1 

 

40.01(16) 

 

38.73(16) 

 

31.55(16) 

 

6.63(11) 

 

12.76(11) 

 

17.10(12) 

S1 43.2(6) 53.5(7) 36.3(6) 8.5(5) 9.4(5) 24.8(5) 

F1 72.7(18) 80(2) 55.6(18) 17.1(16) 1.7(15) 35.9(16) 

F2 110(2) 60.2(19) 90(2) -0.8(18) 22(2) 48.4(19) 

F3 87(2) 68(2) 148(3) 43(2) 46(2) 4.3(18) 

O1 71(2) 56(2) 54(2) 18.0(17) 33.8(17) 17.8(17) 

O2 69(2) 124(4) 60(2) -11(2) -18.4(19) 40(2) 

O3 70(2) 73(2) 50.6(19) 15.4(17) 28.1(17) 44.7(18) 

O4 95(4) 125(6) 142(6) -7(5) 50(4) 25(4) 

C1 49(3) 88(4) 27(2) 13(2) 8(2) 39(3) 

C2 79(4) 81(4) 36(3) 15(3) 12(2) 57(3) 

C3 83(4) 48(3) 43(3) 7(2) 12(3) 33(3) 

C4 52(3) 45(3) 38(3) 4(2) 7(2) 17(2) 

C5 44(2) 43(2) 24(2) 7.0(18) 7.5(17) 24(2) 

C6 42(2) 55(3) 25(2) 8.0(19) 8.6(18) 20(2) 

C7 29.8(19) 43(2) 23(2) 1.6(18) 5.7(16) 15.5(18) 

C8 45(2) 46(3) 32(2) -1(2) 1.8(19) 22(2) 

C9 57(3) 65(3) 28(2) -7(2) 3(2) 28(3) 

C10 52(3) 78(4) 25(2) 12(2) 15(2) 33(3) 

C11 43(2) 61(3) 36(3) 12(2) 12(2) 17(2) 

C12 34(2) 43(2) 27(2) 4.4(18) 5.6(17) 15.9(19) 

C13 47(2) 43(3) 36(2) 5(2) 8(2) 6(2) 

C14 85(4) 120(5) 36(3) 20(3) 26(3) 44(4) 

C15 64(3) 45(3) 55(3) -5(2) -3(2) 7(2) 

C16 50(3) 42(3) 63(3) 9(2) 19(3) 11(2) 

C17 103(5) 70(6) 131(7) 25(5) 41(5) 22(5) 

C18 111(5) 104(13) 130(10) 26(6) 42(6) 52(6) 

C19 103(5) 70(6) 131(7) 25(5) 41(5) 22(5) 

C20 111(5) 104(13) 130(10) 26(6) 42(6) 52(6) 
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Table 4 Bond Lengths for mac150013_fa. 

 

Atom Atom Length/Å   Atom Atom Length/Å 

 

I1 

 

C5 

 

2.109(4) 
  

 

C3 

 

C4 

 

1.381(6) 

I1 C7 2.114(3)   C4 C5 1.377(6) 

S1 O1 1.426(3)   C5 C6 1.377(5) 

S1 O2 1.428(4)   C7 C8 1.384(5) 

S1 O3 1.432(3)   C7 C12 1.402(5) 

S1 C16 1.824(5)   C8 C9 1.397(6) 

F1 C16 1.319(5)   C8 C15 1.499(6) 

F2 C16 1.328(5)   C9 C10 1.377(6) 

F3 C16 1.307(5)   C10 C11 1.381(6) 

O4 C17 1.374(12)   C10 C14 1.521(6) 

O4 C19 1.341(12)   C11 C12 1.394(5) 

C1 C2 1.372(7)   C12 C13 1.500(6) 

C1 C6 1.385(6)   C17 C18 1.418(16) 

C2 C3 1.370(7)   C19 C20 1.488(16) 
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Table 5 Bond Angles for mac150013_fa. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

 

C5 

 

I1 

 

C7 

 

94.24(14) 
  

 

C7 

 

C8 

 

C9 

 

116.1(4) 

O1 S1 O2 114.6(2)   C7 C8 C15 124.1(4) 

O1 S1 O3 114.7(2)   C9 C8 C15 119.8(4) 

O1 S1 C16 103.97(19)   C10 C9 C8 122.0(4) 

O2 S1 O3 115.4(2)   C9 C10 C11 119.1(4) 

O2 S1 C16 103.7(2)   C9 C10 C14 120.1(5) 

O3 S1 C16 102.1(2)   C11 C10 C14 120.8(5) 

C19 O4 C17 120.5(8)   C10 C11 C12 122.9(4) 

C2 C1 C6 120.6(4)   C7 C12 C13 124.6(3) 

C3 C2 C1 120.2(4)   C11 C12 C7 114.9(4) 

C2 C3 C4 120.9(5)   C11 C12 C13 120.5(4) 

C5 C4 C3 117.8(4)   F1 C16 S1 110.4(3) 

C4 C5 I1 118.7(3)   F1 C16 F2 107.5(4) 

C4 C5 C6 122.7(4)   F2 C16 S1 111.3(3) 

C6 C5 I1 118.5(3)   F3 C16 S1 111.7(3) 

C5 C6 C1 117.8(4)   F3 C16 F1 107.4(4) 

C8 C7 I1 118.1(3)   F3 C16 F2 108.5(4) 

C8 C7 C12 125.0(3)   O4 C17 C18 116.1(13) 

C12 C7 I1 116.9(3)   O4 C19 C20 112.8(12) 
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Table 6 Torsion Angles for mac150013_fa. 

 

A B C D Angle/˚   A B C D Angle/˚ 

 

I1 

 

C5 

 

C6 

 

C1 

 

-179.6(3) 
  

 

C3 

 

C4 

 

C5 

 

C6 

 

0.3(6) 

I1 C7 C8 C9 175.9(3)   C4 C5 C6 C1 -0.4(6) 

I1 C7 C8 C15 -4.4(5)   C6 C1 C2 C3 0.4(7) 

I1 C7 C12 C11 -175.5(3)   C7 C8 C9 C10 0.1(6) 

I1 C7 C12 C13 5.3(5)   C8 C7 C12 C11 2.7(5) 

O1 S1 C16 F1 57.2(4)   C8 C7 C12 C13 -176.5(4) 

O1 S1 C16 F2 -62.0(4)   C8 C9 C10 C11 1.4(6) 

O1 S1 C16 F3 176.6(4)   C8 C9 C10 C14 -177.8(4) 

O2 S1 C16 F1 177.4(3)   C9 C10 C11 C12 -0.9(6) 

O2 S1 C16 F2 58.1(4)   C10 C11 C12 C7 -1.0(6) 

O2 S1 C16 F3 -63.3(4)   C10 C11 C12 C13 178.2(4) 

O3 S1 C16 F1 -62.4(3)   C12 C7 C8 C9 -2.3(6) 

O3 S1 C16 F2 178.4(3)   C12 C7 C8 C15 177.3(4) 

O3 S1 C16 F3 57.0(4)   C14 C10 C11 C12 178.3(4) 

C1 C2 C3 C4 -0.5(7)   C15 C8 C9 C10 -179.5(4) 

C2 C1 C6 C5 0.0(6)   C17 O4 C19 C20 
-

163.2(12) 

C2 C3 C4 C5 0.2(6)   C19 O4 C17 C18 167.3(12) 

C3 C4 C5 I1 179.6(3)             
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for mac150013_fa. 

 

Atom x y z U(eq) 

 

H1 

 

-2032 

 

7076 

 

1176 

 

61 

H2 -961 9264 1017 71 

H3 1720 9958 1014 67 

H4 3394 8467 1201 54 

H6 -396 5549 1360 47 

H9 3439 6054 5738 59 

H11 532 2682 4139 54 

H13A 139 3156 1448 65 

H13B 338 1971 2225 65 

H13C 1753 2628 1639 65 

H14A 2199 4574 6859 112 

H14B 1479 3076 6334 112 

H14C 360 4114 6193 112 

H15A 5414 6949 3667 87 

H15B 5025 7507 4822 87 

H15C 4012 7728 3595 87 

H17A -257 11287 6121 118 

H17B -780 9799 6390 118 

H18A -2529 11288 5114 162 

H18B -3076 10142 5881 162 

H18C -2861 9781 4614 162 

H19A 1893 9536 5818 118 

H19B 2055 11076 5710 118 

H20A 3461 10100 4541 162 

H20B 2186 10815 3817 162 

H20C 1781 9248 3807 162 
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Table 8 Atomic Occupancy for mac150013_fa. 

 

Atom Occupancy   Atom Occupancy   Atom Occupancy 

 

C17 

 

0.5 
  

 

H17A 

 

0.5 
  

 

H17B 

 

0.5 

C18 0.5   H18A 0.5   H18B 0.5 

H18C 0.5   C19 0.5   H19A 0.5 

H19B 0.5   C20 0.5   H20A 0.5 

H20B 0.5   H20C 0.5       
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6.2 X-ray crystal structure of 2-methylPhenyl(mesityl)iodonium triflate (80) 
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Table 1 Crystal data and structure refinement for mac150011_fa.  

 

Identification code  mac150011_fa  

Empirical formula  C17H18F3IO3S  

Formula weight  486.27  

Temperature/K  180.0(2)  

Crystal system  triclinic  

Space group  P-1  

a/Å  8.6352(4)  

b/Å  11.0670(7)  

c/Å  11.3887(6)  

α/°  115.965(6)  

β/°  100.808(4)  

γ/°  98.135(4)  

Volume/Å3  929.83(10)  

Z  2  

ρcalcg/cm3  1.737  

μ/mm-1  1.876  

F(000)  480.0  

Crystal size/mm3  0.31 × 0.19 × 0.12  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  6.488 to 57.502  

Index ranges  -10 ≤ h ≤ 11, -14 ≤ k ≤ 14, -14 ≤ l ≤ 15  

Reflections collected  15226  

Independent reflections  4259 [Rint = 0.0560, Rsigma = 0.0678]  

Data/restraints/parameters  4259/0/230  

Goodness-of-fit on F2  1.054  

Final R indexes [I>=2σ (I)]  R1 = 0.0441, wR2 = 0.0678  

Final R indexes [all data]  R1 = 0.0752, wR2 = 0.0790  

Largest diff. peak/hole / e Å-3  0.96/-0.53  
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for mac150011_fa. Ueq is defined as 1/3 of of the trace of the 

orthogonalised UIJ tensor. 

 

Atom x y z U(eq) 

 

I1 

 

3276.0(3) 

 

7300.4(3) 

 

1439.2(3) 

 

37.53(11) 

S1 6588.3(12) 5229.7(12) 2220.2(11) 39.2(3) 

F1 7827(4) 6051(3) 4796(3) 87.6(10) 

F2 5845(4) 4241(4) 3794(4) 91.7(11) 

F3 8190(4) 4107(3) 3489(3) 70.7(8) 

O1 5551(3) 6146(3) 2630(3) 54.0(8) 

O2 5772(4) 3879(3) 1093(3) 57.5(9) 

O3 8115(4) 5835(4) 2150(4) 70.8(11) 

C1 -125(6) 8212(5) -1220(5) 51.3(12) 

C2 -1598(6) 7616(5) -1176(5) 49.9(12) 

C3 -1694(5) 6989(4) -383(4) 42.1(11) 

C4 -272(5) 6931(4) 356(4) 34.3(9) 

C5 1207(5) 7528(4) 287(4) 33.6(9) 

C6 1345(5) 8190(4) -481(4) 41.7(11) 

C7 2784(4) 8394(4) 3335(4) 34.0(9) 

C8 2155(4) 7628(4) 3915(4) 36.4(10) 

C9 1765(5) 8380(4) 5124(4) 39.2(10) 

C10 1992(5) 9801(5) 5724(4) 42.5(11) 

C11 2650(5) 10505(5) 5109(4) 44.0(11) 

C12 3062(5) 9837(5) 3904(4) 39.5(10) 

C13 3733(6) 10665(5) 3277(5) 50.4(12) 

C14 1564(6) 10603(5) 7034(5) 57.3(13) 

C15 1904(5) 6076(4) 3318(4) 38.6(10) 

C16 2941(5) 8882(5) -547(5) 52.0(12) 

C17 7126(6) 4892(5) 3648(5) 48.0(12) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for mac150011_fa. The 

Anisotropic displacement factor exponent takes the form: -

2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

 

I1 

 

33.59(16) 

 

49.02(19) 

 

39.59(17) 

 

25.94(14) 

 

13.63(12) 

 

17.77(12) 

S1 31.4(6) 55.5(7) 47.3(7) 35.3(6) 14.7(5) 17.6(5) 

F1 122(3) 75(2) 47.1(19) 22.1(17) -6.2(18) 32(2) 

F2 89(2) 131(3) 97(3) 86(2) 46(2) 17(2) 

F3 87(2) 80(2) 72(2) 54.4(18) 19.6(16) 44.6(18) 

O1 47.6(18) 58(2) 62(2) 30.3(18) 12.9(16) 29.5(16) 

O2 57(2) 64(2) 46(2) 22.0(18) 9.6(16) 20.7(17) 

O3 37.4(18) 110(3) 108(3) 85(3) 29.9(19) 20.0(19) 

C1 57(3) 57(3) 58(3) 43(3) 12(2) 22(2) 

C2 44(3) 50(3) 50(3) 24(2) -3(2) 18(2) 

C3 34(2) 40(3) 45(3) 14(2) 11(2) 10.4(19) 

C4 37(2) 36(2) 34(2) 17.3(19) 13.4(19) 12.1(18) 

C5 32(2) 41(2) 32(2) 18(2) 9.0(18) 15.5(18) 

C6 43(3) 46(3) 45(3) 27(2) 16(2) 17(2) 

C7 28(2) 37(2) 34(2) 15(2) 4.7(17) 10.1(17) 

C8 25(2) 48(3) 38(2) 23(2) 4.8(18) 13.2(19) 

C9 45(3) 46(3) 35(2) 24(2) 13(2) 17(2) 

C10 41(3) 54(3) 38(3) 25(2) 10(2) 21(2) 

C11 47(3) 42(3) 36(3) 16(2) 3(2) 13(2) 

C12 33(2) 50(3) 38(3) 25(2) 5.0(19) 12(2) 

C13 54(3) 45(3) 56(3) 29(2) 15(2) 9(2) 

C14 78(4) 61(3) 40(3) 24(3) 23(3) 32(3) 

C15 40(2) 41(3) 40(2) 22(2) 14(2) 12.6(19) 

C16 52(3) 59(3) 65(3) 43(3) 23(2) 14(2) 

C17 56(3) 50(3) 44(3) 27(3) 12(2) 18(2) 
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Table 4 Bond Lengths for mac150011_fa. 

 

Atom Atom Length/Å   Atom Atom Length/Å 

 

I1 

 

C5 

 

2.125(4) 
  

 

C4 

 

C5 

 

1.384(5) 

I1 C7 2.123(4)   C5 C6 1.374(6) 

S1 O1 1.431(3)   C6 C16 1.511(6) 

S1 O2 1.436(3)   C7 C8 1.395(6) 

S1 O3 1.425(3)   C7 C12 1.399(6) 

S1 C17 1.816(5)   C8 C9 1.397(5) 

F1 C17 1.318(5)   C8 C15 1.509(5) 

F2 C17 1.311(5)   C9 C10 1.378(6) 

F3 C17 1.335(5)   C10 C11 1.387(6) 

C1 C2 1.368(6)   C10 C14 1.514(6) 

C1 C6 1.396(6)   C11 C12 1.388(6) 

C2 C3 1.365(6)   C12 C13 1.504(6) 

C3 C4 1.379(5)         
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Table 5 Bond Angles for mac150011_fa. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

 

C7 

 

I1 

 

C5 

 

94.73(14) 
  

 

C12 

 

C7 

 

I1 

 

117.8(3) 

O1 S1 O2 114.47(18)   C7 C8 C9 116.3(4) 

O1 S1 C17 102.5(2)   C7 C8 C15 123.7(4) 

O2 S1 C17 103.6(2)   C9 C8 C15 120.0(4) 

O3 S1 O1 115.3(2)   C10 C9 C8 122.4(4) 

O3 S1 O2 114.6(2)   C9 C10 C11 118.5(4) 

O3 S1 C17 104.0(2)   C9 C10 C14 121.8(4) 

C2 C1 C6 122.0(4)   C11 C10 C14 119.7(4) 

C3 C2 C1 121.2(4)   C10 C11 C12 122.8(4) 

C2 C3 C4 118.8(4)   C7 C12 C13 124.1(4) 

C3 C4 C5 119.1(4)   C11 C12 C7 116.0(4) 

C4 C5 I1 114.4(3)   C11 C12 C13 119.9(4) 

C6 C5 I1 122.1(3)   F1 C17 S1 111.5(3) 

C6 C5 C4 123.5(4)   F1 C17 F3 106.3(4) 

C1 C6 C16 119.9(4)   F2 C17 S1 111.6(3) 

C5 C6 C1 115.4(4)   F2 C17 F1 108.3(4) 

C5 C6 C16 124.7(4)   F2 C17 F3 107.5(4) 

C8 C7 I1 118.2(3)   F3 C17 S1 111.4(3) 

C8 C7 C12 124.0(4)           
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Table 6 Torsion Angles for mac150011_fa. 

 

A B C D Angle/˚   A B C D Angle/˚ 

 

I1 

 

C5 

 

C6 

 

C1 

 

177.7(3) 
  

 

C2 

 

C3 

 

C4 

 

C5 

 

1.0(6) 

I1 C5 C6 C16 -3.1(6)   C3 C4 C5 I1 -178.4(3) 

I1 C7 C8 C9 -176.6(3)   C3 C4 C5 C6 0.3(6) 

I1 C7 C8 C15 4.1(5)   C4 C5 C6 C1 -0.8(6) 

I1 C7 C12 C11 177.0(3)   C4 C5 C6 C16 178.4(4) 

I1 C7 C12 C13 -1.9(5)   C6 C1 C2 C3 1.1(7) 

O1 S1 C17 F1 -57.6(4)   C7 C8 C9 C10 -0.4(6) 

O1 S1 C17 F2 63.7(4)   C8 C7 C12 C11 -0.9(6) 

O1 S1 C17 F3 -176.1(3)   C8 C7 C12 C13 -179.7(4) 

O2 S1 C17 F1 -176.9(3)   C8 C9 C10 C11 -0.8(6) 

O2 S1 C17 F2 -55.7(4)   C8 C9 C10 C14 -180.0(4) 

O2 S1 C17 F3 64.5(4)   C9 C10 C11 C12 1.2(6) 

O3 S1 C17 F1 62.9(4)   C10 C11 C12 C7 -0.4(6) 

O3 S1 C17 F2 -175.8(3)   C10 C11 C12 C13 178.5(4) 

O3 S1 C17 F3 -55.6(4)   C12 C7 C8 C9 1.2(5) 

C1 C2 C3 C4 -1.6(7)   C12 C7 C8 C15 -178.1(4) 

C2 C1 C6 C5 0.1(7)   C14 C10 C11 C12 -179.6(4) 

C2 C1 C6 C16 -179.1(4)   C15 C8 C9 C10 179.0(4) 
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for mac150011_fa. 

 

Atom x y z U(eq) 

 

H1 

 

-103 

 

8654 

 

-1770 

 

62 

H2 -2572 7639 -1706 60 

H3 -2723 6599 -341 50 

H4 -306 6488 904 41 

H9 1327 7895 5548 47 

H11 2827 11487 5531 53 

H13A 4737 10430 3074 76 

H13B 3969 11659 3915 76 

H13C 2929 10446 2435 76 

H14A 2503 10872 7811 86 

H14B 637 10017 7079 86 

H14C 1275 11438 7061 86 

H15A 1155 5614 2398 58 

H15B 1440 5763 3890 58 

H15C 2952 5843 3278 58 

H16A 3239 9875 109 78 

H16B 2824 8765 -1467 78 

H16C 3795 8456 -328 78 
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6.3 4-Chlorophenyl(mesityl)iodonium triflate (84) 
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Table 1 Crystal data and structure refinement for mac150006_fa.  

 

Identification code  mac150006_fa  

Empirical formula  C36H40Cl2F6I2O7S2  

Formula weight  1087.50  

Temperature/K  150.0(2)  

Crystal system  triclinic  

Space group  P-1  

a/Å  8.5843(4)  

b/Å  11.5417(5)  

c/Å  11.8946(5)  

α/°  101.572(4)  

β/°  105.069(4)  

γ/°  100.878(4)  

Volume/Å3  1078.08(9)  

Z  1  

ρcalcg/cm3  1.675  

μ/mm-1  14.118  

F(000)  538.0  

Crystal size/mm3  0.25 × 0.15 × 0.07  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  7.98 to 133.798  

Index ranges  -10 ≤ h ≤ 10, -13 ≤ k ≤ 13, -14 ≤ l ≤ 14  

Reflections collected  15495  

Independent reflections  3807 [Rint = 0.0439, Rsigma = 0.0347]  

Data/restraints/parameters  3807/209/261  

Goodness-of-fit on F2  1.015  

Final R indexes [I>=2σ (I)]  R1 = 0.0304, wR2 = 0.0711  

Final R indexes [all data]  R1 = 0.0404, wR2 = 0.0767  

Largest diff. peak/hole / e Å-3  1.08/-0.58  

 

 

 

 

 

 

 

  



210 
 

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for mac150006_fa. Ueq is defined as 1/3 of of the trace of the 

orthogonalised UIJ tensor. 

 

Atom x y z U(eq) 

 

I1 

 

6590.4(3) 

 

4319.8(2) 

 

8250.1(2) 

 

42.77(10) 

Cl1 11173.1(16) 369.9(11) 8508.6(14) 70.6(4) 

S1 4062.6(12) 6596.5(8) 9015.7(9) 39.1(2) 

F1 5531(4) 8645(3) 8688(3) 73.3(8) 

F2 3561(4) 8789(2) 9459(3) 73.7(8) 

F3 2992(4) 7914(3) 7580(3) 71.7(8) 

O1 5177(4) 6913(3) 10220(3) 54.4(7) 

O2 4673(4) 5998(3) 8103(3) 52.0(7) 

O3 2361(4) 6078(3) 8902(3) 59.9(8) 

O4 10000 0 5000 110(2) 

C1 10680(5) 2583(4) 8410(4) 42.7(9) 

C2 9954(5) 1401(4) 8394(4) 46.1(9) 

C3 8295(6) 1036(4) 8330(5) 53.6(11) 

C4 7317(6) 1868(4) 8258(4) 50.4(10) 

C5 8051(5) 3042(3) 8271(4) 39.7(8) 

C6 9702(5) 3417(3) 8349(3) 40.4(8) 

C7 7294(5) 5012(4) 6884(4) 40.8(8) 

C8 6695(6) 4252(4) 5718(4) 48.8(10) 

C9 7238(6) 4730(5) 4854(4) 59.6(12) 

C10 8281(6) 5875(6) 5132(4) 61.5(12) 

C11 8789(6) 6593(5) 6306(4) 55.4(11) 

C12 8321(5) 6189(4) 7224(4) 42.9(9) 

C13 8903(6) 7020(4) 8483(4) 49.2(10) 

C14 8848(8) 6326(7) 4159(5) 89(2) 

C15 5555(7) 2994(5) 5352(5) 65.9(13) 

C16 4038(6) 8068(4) 8669(4) 49.2(10) 

C17 11496(17) 433(14) 5117(18) 107(3) 

C18 12697(19) -284(15) 5350(30) 127(5) 

C19 8655(18) 445(14) 4768(17) 107(3) 

C20 7055(17) -295(15) 4430(30) 127(5) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for mac150006_fa. The 

Anisotropic displacement factor exponent takes the form: -

2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

 

I1 

 

52.82(17) 

 

44.73(14) 

 

47.92(16) 

 

22.85(11) 

 

25.84(12) 

 

26.94(11) 

Cl1 67.0(7) 51.5(6) 109.6(10) 33.5(6) 29.5(7) 37.2(6) 

S1 38.4(5) 37.2(4) 54.5(6) 21.0(4) 23.2(5) 17.5(4) 

F1 62.8(17) 61.1(16) 109(2) 44.3(16) 38.0(17) 5.9(13) 

F2 102(2) 47.1(14) 97(2) 27.8(14) 52.4(19) 39.1(15) 

F3 78.2(19) 66.5(16) 80.0(19) 40.3(15) 13.5(16) 33.9(15) 

O1 58.6(18) 62.9(18) 52.2(17) 25.8(14) 21.6(15) 22.5(15) 

O2 64.5(19) 56.9(17) 55.8(17) 25.9(14) 30.2(15) 37.3(15) 

O3 43.1(16) 49.0(16) 100(3) 30.1(17) 34.7(17) 12.3(13) 

O4 115(5) 112(5) 139(6) 57(5) 56(5) 60(4) 

C1 43(2) 46(2) 46(2) 18.9(17) 15.6(19) 17.6(17) 

C2 49(2) 44(2) 54(2) 19.0(18) 17(2) 24.3(18) 

C3 57(3) 39(2) 76(3) 22(2) 27(2) 19.7(19) 

C4 47(2) 43(2) 69(3) 19(2) 23(2) 16.6(18) 

C5 44(2) 40.1(18) 44(2) 17.3(16) 17.8(18) 21.2(16) 

C6 51(2) 38.0(18) 41(2) 17.7(16) 19.0(18) 16.6(17) 

C7 44(2) 54(2) 40(2) 22.3(16) 20.6(17) 27.8(17) 

C8 56(3) 60(2) 41(2) 16.0(18) 16.8(19) 34(2) 

C9 63(3) 90(3) 41(2) 24(2) 21(2) 41(2) 

C10 53(3) 104(3) 50(2) 38(2) 27(2) 38(2) 

C11 45(2) 83(3) 53(2) 36(2) 22(2) 23(2) 

C12 38(2) 58(2) 47(2) 24.9(18) 17.7(18) 26.2(18) 

C13 49(2) 54(2) 49(2) 18.6(19) 18(2) 16(2) 

C14 76(4) 151(6) 66(3) 58(4) 40(3) 32(4) 

C15 87(4) 59(3) 51(3) 10(2) 14(3) 32(3) 

C16 51(2) 42(2) 67(3) 26.4(19) 26(2) 17.6(18) 

C17 101(5) 92(6) 152(9) 52(6) 53(6) 41(5) 

C18 109(6) 81(9) 215(14) 46(11) 69(7) 51(6) 

C19 101(5) 92(6) 152(9) 52(6) 53(6) 41(5) 

C20 109(6) 81(9) 215(14) 46(11) 69(7) 51(6) 
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Table 4 Bond Lengths for mac150006_fa. 

 

Atom Atom Length/Å   Atom Atom Length/Å 

 

I1 

 

C5 

 

2.108(4) 
  

 

C3 

 

C4 

 

1.391(6) 

I1 C7 2.119(4)   C4 C5 1.377(6) 

Cl1 C2 1.730(4)   C5 C6 1.375(6) 

S1 O1 1.431(3)   C7 C8 1.389(6) 

S1 O2 1.436(3)   C7 C12 1.389(6) 

S1 O3 1.430(3)   C8 C9 1.399(7) 

S1 C16 1.829(4)   C8 C15 1.498(7) 

F1 C16 1.320(5)   C9 C10 1.371(8) 

F2 C16 1.326(5)   C10 C11 1.382(7) 

F3 C16 1.327(5)   C10 C14 1.512(7) 

O4 C17 1.247(13)   C11 C12 1.391(6) 

O4 C19 1.337(12)   C12 C13 1.505(6) 

C1 C2 1.383(6)   C17 C18 1.445(19) 

C1 C6 1.392(5)   C19 C20 1.38(2) 

C2 C3 1.384(6)         
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Table 5 Bond Angles for mac150006_fa. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

 

C5 

 

I1 

 

C7 

 

95.67(14) 
  

 

C12 

 

C7 

 

I1 

 

117.5(3) 

O1 S1 O2 114.92(19)   C7 C8 C9 115.5(4) 

O1 S1 C16 104.2(2)   C7 C8 C15 124.7(4) 

O2 S1 C16 101.95(19)   C9 C8 C15 119.8(4) 

O3 S1 O1 114.3(2)   C10 C9 C8 122.6(5) 

O3 S1 O2 115.3(2)   C9 C10 C11 118.7(4) 

O3 S1 C16 103.82(19)   C9 C10 C14 119.9(5) 

C17 O4 C19 132.8(9)   C11 C10 C14 121.4(6) 

C2 C1 C6 118.6(4)   C10 C11 C12 122.6(5) 

C1 C2 Cl1 118.9(3)   C7 C12 C11 115.5(4) 

C1 C2 C3 121.7(4)   C7 C12 C13 124.4(4) 

C3 C2 Cl1 119.3(3)   C11 C12 C13 120.1(4) 

C2 C3 C4 119.5(4)   F1 C16 S1 111.2(3) 

C5 C4 C3 118.3(4)   F1 C16 F2 108.0(4) 

C4 C5 I1 118.0(3)   F1 C16 F3 107.7(4) 

C6 C5 I1 119.3(3)   F2 C16 S1 111.2(3) 

C6 C5 C4 122.6(4)   F2 C16 F3 107.8(4) 

C5 C6 C1 119.3(4)   F3 C16 S1 110.8(3) 

C8 C7 I1 117.5(3)   O4 C17 C18 120.7(13) 

C8 C7 C12 125.0(4)   O4 C19 C20 122.1(13) 
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Table 6 Torsion Angles for mac150006_fa. 

 

A B C D Angle/˚   A B C D Angle/˚ 

 

I1 

 

C5 

 

C6 

 

C1 

 

177.5(3) 
  

 

C3 

 

C4 

 

C5 

 

C6 

 

0.2(7) 

I1 C7 C8 C9 -177.8(3)   C4 C5 C6 C1 0.5(6) 

I1 C7 C8 C15 1.7(6)   C6 C1 C2 Cl1 -178.3(3) 

I1 C7 C12 C11 178.2(3)   C6 C1 C2 C3 -0.6(7) 

I1 C7 C12 C13 -2.7(5)   C7 C8 C9 C10 -0.5(6) 

Cl1 C2 C3 C4 179.0(4)   C8 C7 C12 C11 -1.6(6) 

O1 S1 C16 F1 62.7(4)   C8 C7 C12 C13 177.4(4) 

O1 S1 C16 F2 -57.7(4)   C8 C9 C10 C11 -1.3(7) 

O1 S1 C16 F3 -177.7(3)   C8 C9 C10 C14 178.8(5) 

O2 S1 C16 F1 -57.2(4)   C9 C10 C11 C12 1.7(7) 

O2 S1 C16 F2 -177.6(3)   C10 C11 C12 C7 -0.3(6) 

O2 S1 C16 F3 62.5(3)   C10 C11 C12 C13 -179.4(4) 

O3 S1 C16 F1 -177.4(3)   C12 C7 C8 C9 2.0(6) 

O3 S1 C16 F2 62.3(4)   C12 C7 C8 C15 -178.5(4) 

O3 S1 C16 F3 -57.7(4)   C14 C10 C11 C12 -178.4(5) 

C1 C2 C3 C4 1.3(7)   C15 C8 C9 C10 180.0(4) 

C2 C1 C6 C5 -0.2(6)   C17 O4 C19 C20 166(2) 

C2 C3 C4 C5 -1.0(7)   C19 O4 C17 C18 
-

178.7(19) 

C3 C4 C5 I1 -176.9(3)             
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for mac150006_fa. 

 

Atom x y z U(eq) 

 

H1 

 

11823 

 

2821 

 

8461 

 

51 

H3 7828 223 8337 64 

H4 6171 1633 8201 60 

H6 10171 4235 8361 48 

H9 6870 4243 4044 72 

H11 9487 7394 6493 66 

H13A 7937 7086 8762 74 

H13B 9499 7832 8482 74 

H13C 9652 6682 9025 74 

H14A 9092 5657 3638 134 

H14B 9855 7002 4534 134 

H14C 7963 6612 3675 134 

H15A 6137 2455 5738 99 

H15B 5219 2675 4473 99 

H15C 4562 3030 5606 99 

H17A 11897 1191 5784 128 

H17B 11534 680 4372 128 

H18A 12831 -686 4582 190 

H18B 12302 -905 5732 190 

H18C 13772 252 5881 190 

H19A 8713 865 4126 128 

H19B 8783 1086 5502 128 

H20A 6897 -643 5086 190 

H20B 6884 -957 3710 190 

H20C 6248 191 4236 190 
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Table 8 Atomic Occupancy for mac150006_fa. 

 

Atom Occupancy   Atom Occupancy   Atom Occupancy 

 

C17 

 

0.5 
  

 

H17A 

 

0.5 
  

 

H17B 

 

0.5 

C18 0.5   H18A 0.5   H18B 0.5 

H18C 0.5   C19 0.5   H19A 0.5 

H19B 0.5   C20 0.5   H20A 0.5 

H20B 0.5   H20C 0.5       
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6.4 X-ray of crystal structure of 2-chlorophenyl(mesityl)iodonium triflate (83) 
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Table 1 Crystal data and structure refinement for mac150012_fa.  

 

Identification code  mac150012_fa  

Empirical formula  C16H15ClF3IO3S  

Formula weight  506.69  

Temperature/K  150.0(2)  

Crystal system  triclinic  

Space group  P-1  

a/Å  8.4163(2)  

b/Å  10.9826(3)  

c/Å  11.3719(3)  

α/°  114.968(3)  

β/°  99.049(2)  

γ/°  94.766(2)  

Volume/Å3  927.83(5)  

Z  2  

ρcalcg/cm3  1.814  

μ/mm-1  2.023  

F(000)  496.0  

Crystal size/mm3  0.32 × 0.18 × 0.11  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  5.92 to 58.802  

Index ranges  -11 ≤ h ≤ 11, -14 ≤ k ≤ 14, -15 ≤ l ≤ 15  

Reflections collected  29814  

Independent reflections  4457 [Rint = 0.0428, Rsigma = 0.0332]  

Data/restraints/parameters  4457/0/229  

Goodness-of-fit on F2  1.057  

Final R indexes [I>=2σ (I)]  R1 = 0.0291, wR2 = 0.0503  

Final R indexes [all data]  R1 = 0.0408, wR2 = 0.0546  

Largest diff. peak/hole / e Å-3  0.65/-0.43  
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for mac150012_fa. Ueq is defined as 1/3 of of the trace of the 

orthogonalised UIJ tensor. 

 

Atom x y z U(eq) 

 

I1 

 

3374.5(2) 

 

7187.0(2) 

 

1312.1(2) 

 

27.85(6) 

Cl1 3188.8(9) 8885.8(8) -649.9(8) 44.16(18) 

S1 6660.9(8) 5359.1(7) 2267.3(6) 28.15(14) 

F1 7967(3) 6053(2) 4743.2(19) 84.2(8) 

F2 5873(3) 4472(3) 3925(2) 87.6(8) 

F3 8156(3) 4034(2) 3426.9(19) 59.8(5) 

O1 5799(2) 6484(2) 2785(2) 43.6(5) 

O2 5673(3) 4137(2) 1243(2) 45.3(5) 

O3 8199(3) 5683(3) 2006(3) 58.5(7) 

C1 -100(4) 8279(3) -1223(3) 41.8(7) 

C2 -1578(4) 7730(3) -1124(3) 41.9(7) 

C3 -1641(3) 7082(3) -322(3) 35.4(6) 

C4 -213(3) 6961(3) 374(2) 29.2(6) 

C5 1274(3) 7501(3) 266(2) 26.3(5) 

C6 1346(3) 8169(3) -523(3) 32.5(6) 

C7 2834(3) 8284(3) 3202(2) 26.0(5) 

C8 2220(3) 7544(3) 3825(2) 27.7(6) 

C9 1823(3) 8314(3) 5042(3) 31.1(6) 

C10 2034(3) 9727(3) 5616(3) 32.9(6) 

C11 2667(3) 10398(3) 4956(3) 32.1(6) 

C12 3092(3) 9708(3) 3736(2) 28.2(6) 

C13 3761(4) 10496(3) 3066(3) 37.5(7) 

C14 1583(4) 10525(3) 6930(3) 41.8(7) 

C15 2006(3) 6023(3) 3281(3) 32.8(6) 

C16 7187(4) 4963(3) 3667(3) 43.3(7) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for mac150012_fa. The 

Anisotropic displacement factor exponent takes the form: -

2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

       

I1 28.45(10) 30.32(10) 25.12(9) 10.88(7) 7.12(7) 11.66(7) 

Cl1 44.9(4) 47.5(4) 51.5(4) 31.2(4) 15.8(3) 5.1(3) 

S1 25.6(3) 34.3(4) 29.4(3) 17.1(3) 8.0(3) 9.9(3) 

F1 127(2) 67.1(15) 35.8(11) 10.5(11) -18.4(12) 34.7(14) 

F2 85.7(16) 139(2) 92.8(18) 88.0(18) 53.2(14) 34.5(16) 

F3 79.4(14) 62.1(13) 55.2(12) 38.4(10) 12.7(10) 35.4(11) 

O1 43.9(12) 38.2(12) 39.2(11) 9.2(10) -0.9(9) 19.1(9) 

O2 47.8(12) 41.2(12) 35.3(11) 8.5(10) 1.5(9) 8.4(10) 

O3 36.6(12) 87.7(19) 83.3(18) 62.3(16) 25.3(12) 17.5(12) 

C1 50.6(19) 40.7(17) 41.8(17) 26.3(15) 4.7(14) 13.2(14) 

C2 39.7(17) 38.4(17) 42.3(17) 15.7(14) -3.2(13) 13.9(14) 

C3 30.2(15) 33.0(15) 35.8(15) 8.6(13) 6.3(12) 6.6(12) 

C4 34.3(14) 27.2(14) 24.5(13) 8.6(11) 8.4(11) 7.8(11) 

C5 29.7(13) 26.2(13) 21.7(12) 8.9(11) 4.1(10) 9.8(11) 

C6 36.9(15) 29.5(14) 32.2(14) 13.5(12) 9.1(12) 8.9(12) 

C7 25.3(13) 28.3(14) 21.3(12) 7.5(11) 3.7(10) 9.7(11) 

C8 25.6(13) 29.6(14) 26.5(13) 11.9(11) 1.6(10) 7.4(11) 

C9 33.0(14) 39.4(16) 25.1(13) 17.8(12) 5.8(11) 8.7(12) 

C10 34.3(15) 36.7(16) 24.9(13) 11.3(12) 2.8(11) 11.8(12) 

C11 35.6(15) 25.8(14) 28.5(14) 7.0(12) 1.2(12) 10.4(12) 

C12 27.6(13) 28.0(14) 27.0(13) 10.9(11) 2.2(11) 8.0(11) 

C13 42.9(17) 30.2(15) 38.6(16) 15.1(13) 7.0(13) 6.3(13) 

C14 50.9(18) 44.0(18) 28.4(15) 11.9(13) 11.5(13) 14.8(14) 

C15 34.4(15) 31.9(15) 33.9(15) 16.0(13) 6.2(12) 8.0(12) 

C16 51.1(19) 52(2) 35.4(16) 24.7(15) 12.6(14) 19.8(16) 
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Table 4 Bond Lengths for mac150012_fa. 

 

Atom Atom Length/Å   Atom Atom Length/Å 

I1 C5 2.109(2)   C3 C4 1.381(4) 

I1 C7 2.119(2)   C4 C5 1.385(4) 

Cl1 C6 1.735(3)   C5 C6 1.383(4) 

S1 O1 1.4383(19)   C7 C8 1.399(4) 

S1 O2 1.428(2)   C7 C12 1.401(4) 

S1 O3 1.423(2)   C8 C9 1.395(4) 

S1 C16 1.821(3)   C8 C15 1.500(4) 

F1 C16 1.320(4)   C9 C10 1.388(4) 

F2 C16 1.317(4)   C10 C11 1.385(4) 

F3 C16 1.324(3)   C10 C14 1.508(4) 

C1 C2 1.379(4)   C11 C12 1.393(4) 

C1 C6 1.389(4)   C12 C13 1.503(4) 

C2 C3 1.378(4)         
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Table 5 Bond Angles for mac150012_fa. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

 

C5 

 

I1 

 

C7 

 

94.41(9) 
  

 

C12 

 

C7 

 

I1 

 

117.46(18) 

O1 S1 C16 102.69(13)   C7 C8 C15 124.4(2) 

O2 S1 O1 114.50(12)   C9 C8 C7 115.8(2) 

O2 S1 C16 104.30(14)   C9 C8 C15 119.8(2) 

O3 S1 O1 115.24(14)   C10 C9 C8 122.6(3) 

O3 S1 O2 114.22(15)   C9 C10 C14 121.1(3) 

O3 S1 C16 103.81(14)   C11 C10 C9 118.7(2) 

C2 C1 C6 120.1(3)   C11 C10 C14 120.2(3) 

C3 C2 C1 120.6(3)   C10 C11 C12 122.4(2) 

C2 C3 C4 119.9(3)   C7 C12 C13 124.1(2) 

C3 C4 C5 119.6(3)   C11 C12 C7 116.1(2) 

C4 C5 I1 116.29(18)   C11 C12 C13 119.8(2) 

C6 C5 I1 122.82(19)   F1 C16 S1 111.2(2) 

C6 C5 C4 120.9(2)   F1 C16 F3 107.0(3) 

C1 C6 Cl1 119.2(2)   F2 C16 S1 111.1(2) 

C5 C6 Cl1 121.8(2)   F2 C16 F1 108.8(3) 

C5 C6 C1 119.0(3)   F2 C16 F3 107.0(3) 

C8 C7 I1 118.22(18)   F3 C16 S1 111.6(2) 

C8 C7 C12 124.3(2)           
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Table 6 Torsion Angles for mac150012_fa. 

A B C D Angle/˚   A B C D Angle/˚ 

 

I1 

 

C5 

 

C6 

 

Cl1 

 

-3.3(3) 
  

 

C2 

 

C3 

 

C4 

 

C5 

 

0.4(4) 

I1 C5 C6 C1 177.2(2)   C3 C4 C5 I1 
-

177.66(19) 

I1 C7 C8 C9 
-

177.50(17) 
  C3 C4 C5 C6 0.5(4) 

I1 C7 C8 C15 3.7(3)   C4 C5 C6 Cl1 178.6(2) 

I1 C7 C12 C11 177.61(17)   C4 C5 C6 C1 -0.8(4) 

I1 C7 C12 C13 -1.4(3)   C6 C1 C2 C3 0.7(4) 

O1 S1 C16 F1 -53.7(3)   C7 C8 C9 C10 -0.6(4) 

O1 S1 C16 F2 67.6(3)   C8 C7 C12 C11 -1.3(4) 

O1 S1 C16 F3 -173.0(2)   C8 C7 C12 C13 179.7(2) 

O2 S1 C16 F1 -173.5(2)   C8 C9 C10 C11 -0.2(4) 

O2 S1 C16 F2 -52.1(3)   C8 C9 C10 C14 179.7(2) 

O2 S1 C16 F3 67.2(3)   C9 C10 C11 C12 0.3(4) 

O3 S1 C16 F1 66.6(3)   C10 C11 C12 C7 0.4(4) 

O3 S1 C16 F2 -172.0(2)   C10 C11 C12 C13 179.5(2) 

O3 S1 C16 F3 -52.7(3)   C12 C7 C8 C9 1.4(4) 

C1 C2 C3 C4 -1.1(4)   C12 C7 C8 C15 -177.4(2) 

C2 C1 C6 Cl1 -179.3(2)   C14 C10 C11 C12 -179.6(2) 

C2 C1 C6 C5 0.2(4)   C15 C8 C9 C10 178.2(2) 
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for mac150012_fa. 

 

Atom x y z U(eq) 

     

H1 -71 8723 -1760 50 

H2 -2542 7798 -1603 50 

H3 -2644 6728 -249 42 

H4 -248 6519 912 35 

H9 1401 7864 5486 37 

H11 2813 11344 5342 39 

H13A 4786 10242 2868 56 

H13B 3917 11454 3644 56 

H13C 3005 10297 2257 56 

H14A 2314 10443 7621 63 

H14B 484 10174 6896 63 

H14C 1663 11467 7110 63 

H15A 1289 5614 2420 49 

H15B 1545 5745 3867 49 

H15C 3048 5735 3207 49 
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6.5 X-ray crystal structure of 2-methoxyphenyl(mesityl)iodonium triflate (82) 
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Table 1 Crystal data and structure refinement for mac150005.  

 

Identification code  mac150005  

Empirical formula  C38H46F6I2O9S2  

Formula weight  1078.67  

Temperature/K  150.0(2)  

Crystal system  monoclinic  

Space group  P21/n  

a/Å  14.31878(17)  

b/Å  10.45390(9)  

c/Å  15.38049(16)  

α/°  90  

β/°  109.5753(12)  

γ/°  90  

Volume/Å3  2169.19(4)  

Z  2  

ρcalcg/cm3  1.651  

μ/mm-1  12.955  

F(000)  1076.0  

Crystal size/mm3  0.22 × 0.15 × 0.12  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  7.304 to 133.768  

Index ranges  -16 ≤ h ≤ 17, -9 ≤ k ≤ 12, -17 ≤ l ≤ 18  

Reflections collected  15924  

Independent reflections  3845 [Rint = 0.0318, Rsigma = 0.0242]  

Data/restraints/parameters  3845/38/271  

Goodness-of-fit on F2  1.043  

Final R indexes [I>=2σ (I)]  R1 = 0.0227, wR2 = 0.0538  

Final R indexes [all data]  R1 = 0.0264, wR2 = 0.0556  

Largest diff. peak/hole / e Å-3  0.47/-0.53  
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for mac150005. Ueq is defined as 1/3 of of the trace of the 

orthogonalised UIJ tensor. 

 

Atom x y z U(eq) 

     

I1 5664.0(2) 5859.8(2) 6802.1(2) 23.02(6) 

S1 4031.7(5) 3222.0(7) 5478.0(4) 32.65(16) 

F1 3990(2) 950.9(19) 6161.9(18) 74.8(7) 

F2 3608.5(18) 2468(2) 6918.3(13) 63.9(6) 

F3 2581.9(16) 1839(3) 5626.8(15) 69.6(7) 

O1 7392.2(15) 6329.4(19) 8606.1(14) 36.1(5) 

O2 5058.0(16) 3317(2) 6033.7(16) 43.3(5) 

O3 3474(2) 4371(2) 5488.9(19) 59.7(7) 

O4 3820(2) 2647(3) 4586.7(15) 65.2(9) 

O5 5000 10000 10000 88.8(15) 

C1 7349(2) 8634(3) 8807(2) 36.7(7) 

C2 6896(2) 9774(3) 8453(3) 46.2(8) 

C3 6114(3) 9828(3) 7632(3) 49.5(9) 

C4 5754(2) 8706(3) 7156(2) 38.6(7) 

C5 6195(2) 7563(3) 7515.5(19) 27.1(6) 

C6 7007(2) 7499(3) 8336.7(19) 28.2(6) 

C7 5106(2) 5050(3) 7786.7(17) 25.8(6) 

C8 4226(2) 5545(3) 7844(2) 34.1(7) 

C9 3877(3) 4976(4) 8496(2) 45.6(8) 

C10 4368(3) 3972(4) 9052(2) 46.4(8) 

C11 5225(3) 3513(3) 8947(2) 42.0(8) 

C12 5621(2) 4028(3) 8310.4(19) 31.2(6) 

C13 6536(2) 3444(3) 8206(2) 38.6(7) 

C14 3948(4) 3388(5) 9743(3) 71.1(14) 

C15 3657(3) 6609(3) 7244(3) 49.3(9) 

C16 8277(3) 6239(4) 9396(2) 46.7(8) 

C17 3527(2) 2066(3) 6081(2) 39.0(7) 

C19 5936(7) 10229(12) 10500(6) 81(2) 

C20 6230(9) 10076(12) 11511(7) 70(2) 

C21 4629(7) 9823(12) 9136(6) 81(2) 

C22 3619(8) 9382(11) 8761(8) 70(2) 

  

 

 

  



228 
 

Table 3 Anisotropic Displacement Parameters (Å2×103) for mac150005. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

       

I1 25.52(10) 23.29(10) 21.94(9) -5.26(6) 10.19(7) -7.18(6) 

S1 37.1(4) 37.9(4) 21.7(3) -1.4(3) 8.2(3) -16.5(3) 

F1 103(2) 29.6(11) 75.1(16) 8.2(10) 7.6(15) -1.5(11) 

F2 90.9(17) 74.8(15) 33.5(10) -7.6(10) 30.7(11) -37.3(13) 

F3 46.2(12) 99.1(18) 56.2(12) 8.2(12) 7.4(10) -44.3(12) 

O1 34.4(12) 33.0(11) 34.2(11) 1.3(9) 2.7(9) -9.6(9) 

O2 30.0(11) 48.6(13) 53.2(13) -24.3(11) 16.5(10) -13(1) 

O3 62.3(17) 36.9(13) 63.1(16) 14.1(12) -1.2(14) 3.3(12) 

O4 92(2) 79.0(19) 30.5(12) -18.8(12) 28.9(13) -58.3(17) 

O5 52(3) 123(4) 82(3) -36(3) 11(2) 12(3) 

C1 31.1(16) 44.0(18) 35.6(15) -14.1(14) 12.0(13) -13.0(13) 

C2 37.3(18) 33.9(18) 65(2) -26.3(16) 14.3(17) -11.7(14) 

C3 41.4(19) 27.7(16) 72(2) -13.8(16) 9.1(18) -0.9(14) 

C4 32.5(16) 32.2(16) 45.9(18) -6.7(14) 6.3(14) -2.5(13) 

C5 28.7(14) 25.5(14) 30.1(14) -9.9(11) 13.7(12) -10.3(11) 

C6 26.8(14) 32.8(15) 29.2(14) -6.1(12) 14.9(12) -10.7(12) 

C7 26.3(13) 32.1(14) 21.4(12) -5.9(11) 11.2(11) -11.1(11) 

C8 32.0(15) 37.3(16) 36.9(15) -16.8(13) 16.6(13) -9.9(12) 

C9 45.2(19) 59(2) 44.6(18) -25.4(16) 30.9(16) -23.2(16) 

C10 53(2) 63(2) 27.4(15) -16.1(14) 19.0(15) -34.1(16) 

C11 45.1(18) 52.2(19) 26.0(14) -1.2(14) 8.4(13) -23.8(15) 

C12 31.2(15) 35.5(15) 23.0(13) -2.9(11) 3.8(12) -13.3(12) 

C13 31.4(17) 36.1(17) 42.2(17) 7.7(14) 3.9(14) -4.7(13) 

C14 87(3) 98(3) 45(2) -18(2) 43(2) -51(3) 

C15 35.8(19) 45.6(19) 75(2) -8.6(18) 29.1(18) 3.3(15) 

C16 35.2(18) 58(2) 37.5(17) 8.5(16) 0.4(14) -10.8(16) 

C17 45.4(19) 41.8(18) 25.5(14) 3.8(13) 6.1(13) -14.2(15) 

C19 65(5) 108(6) 64(5) -2(4) 13(3) -12(4) 

C20 59(4) 79(7) 65(6) -4(4) 12(4) -6(5) 

C21 65(5) 108(6) 64(5) -2(4) 13(3) -12(4) 

C22 59(4) 79(7) 65(6) -4(4) 12(4) -6(5) 
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Table 4 Bond Lengths for mac150005. 

 

Atom Atom Length/Å   Atom Atom Length/Å 

       

I1 C5 2.096(3)   C2 C3 1.380(5) 

I1 C7 2.112(2)   C3 C4 1.388(5) 

S1 O2 1.435(2)   C4 C5 1.378(4) 

S1 O3 1.446(3)   C5 C6 1.403(4) 

S1 O4 1.433(2)   C7 C8 1.392(4) 

S1 C17 1.814(3)   C7 C12 1.391(4) 

F1 C17 1.326(4)   C8 C9 1.395(4) 

F2 C17 1.322(4)   C8 C15 1.500(5) 

F3 C17 1.321(4)   C9 C10 1.387(6) 

O1 C6 1.348(4)   C10 C11 1.375(5) 

O1 C16 1.435(4)   C10 C14 1.515(4) 

O5 C19 1.324(9)   C11 C12 1.394(4) 

O5 C21 1.269(9)   C12 C13 1.504(4) 

C1 C2 1.378(5)   C19 C20 1.477(11) 

C1 C6 1.391(4)   C21 C22 1.442(12) 
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Table 5 Bond Angles for mac150005. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

         

C5 I1 C7 97.08(10)   C12 C7 C8 124.3(3) 

O2 S1 O3 113.25(14)   C7 C8 C9 115.9(3) 

O2 S1 C17 104.19(15)   C7 C8 C15 123.6(3) 

O3 S1 C17 103.41(17)   C9 C8 C15 120.5(3) 

O4 S1 O2 116.40(16)   C10 C9 C8 122.4(3) 

O4 S1 O3 114.79(18)   C9 C10 C14 119.9(4) 

O4 S1 C17 102.55(14)   C11 C10 C9 118.7(3) 

C6 O1 C16 118.3(2)   C11 C10 C14 121.4(4) 

C21 O5 C19 128.4(6)   C10 C11 C12 122.4(3) 

C2 C1 C6 119.7(3)   C7 C12 C11 116.3(3) 

C1 C2 C3 121.8(3)   C7 C12 C13 124.2(3) 

C2 C3 C4 119.5(3)   C11 C12 C13 119.5(3) 

C5 C4 C3 118.8(3)   F1 C17 S1 111.2(2) 

C4 C5 I1 119.3(2)   F2 C17 S1 111.5(2) 

C4 C5 C6 122.3(3)   F2 C17 F1 108.1(3) 

C6 C5 I1 118.5(2)   F3 C17 S1 111.2(2) 

O1 C6 C1 125.3(3)   F3 C17 F1 106.4(3) 

O1 C6 C5 116.8(2)   F3 C17 F2 108.2(3) 

C1 C6 C5 117.9(3)   O5 C19 C20 117.9(9) 

C8 C7 I1 117.7(2)   O5 C21 C22 118.5(9) 

C12 C7 I1 117.9(2)           
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Table 6 Torsion Angles for mac150005. 

 

A B C D Angle/˚   A B C D Angle/˚ 

           

I1 C5 C6 O1 0.3(3)   C3 C4 C5 C6 -1.2(5) 

I1 C5 C6 C1 -179.6(2)   C4 C5 C6 O1 -178.3(3) 

I1 C7 C8 C9 179.4(2)   C4 C5 C6 C1 1.8(4) 

I1 C7 C8 C15 0.3(4)   C6 C1 C2 C3 -1.0(5) 

I1 C7 C12 C11 -179.5(2)   C7 C8 C9 C10 -0.4(4) 

I1 C7 C12 C13 -1.4(4)   C8 C7 C12 C11 -2.0(4) 

O2 S1 C17 F1 -59.2(2)   C8 C7 C12 C13 176.0(3) 

O2 S1 C17 F2 61.5(3)   C8 C9 C10 C11 -0.8(5) 

O2 S1 C17 F3 -177.6(2)   C8 C9 C10 C14 -179.6(3) 

O3 S1 C17 F1 -177.8(2)   C9 C10 C11 C12 0.7(5) 

O3 S1 C17 F2 -57.1(3)   C10 C11 C12 C7 0.7(4) 

O3 S1 C17 F3 63.8(3)   C10 C11 C12 C13 -177.5(3) 

O4 S1 C17 F1 62.6(3)   C12 C7 C8 C9 1.9(4) 

O4 S1 C17 F2 -176.7(3)   C12 C7 C8 C15 -177.2(3) 

O4 S1 C17 F3 -55.8(3)   C14 C10 C11 C12 179.5(3) 

C1 C2 C3 C4 1.7(6)   C15 C8 C9 C10 178.7(3) 

C2 C1 C6 O1 179.4(3)   C16 O1 C6 C1 -5.7(4) 

C2 C1 C6 C5 -0.7(4)   C16 O1 C6 C5 174.4(3) 

C2 C3 C4 C5 -0.6(5)   C19 O5 C21 C22 169.9(10) 

C3 C4 C5 I1 -179.7(3)   C21 O5 C19 C20 
-

164.7(10) 
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for mac150005. 

 

Atom x y z U(eq) 

     

H1 7893 8625 9369 44 

H2 7128 10543 8784 55 

H3 5825 10627 7394 59 

H4 5212 8725 6592 46 

H9 3281 5287 8562 55 

H11 5558 2819 9323 50 

H13A 6360 2990 7615 58 

H13B 6829 2840 8712 58 

H13C 7016 4119 8222 58 

H14A 3415 2791 9426 107 

H14B 3684 4067 10035 107 

H14C 4474 2928 10217 107 

H15A 4064 7385 7362 74 

H15B 3049 6772 7384 74 

H15C 3486 6366 6594 74 

H16A 8802 6753 9292 70 

H16B 8490 5343 9493 70 

H16C 8145 6558 9942 70 

H19A 6092 11117 10372 97 

H19B 6358 9655 10277 97 

H20A 5822 10634 11749 105 

H20B 6930 10309 11796 105 

H20C 6135 9184 11658 105 

H21A 5053 9198 8959 97 

H21B 4675 10641 8828 97 

H22A 3601 8452 8829 105 

H22B 3348 9607 8105 105 

H22C 3221 9788 9093 105 
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Table 8 Atomic Occupancy for mac150005. 

 

Atom Occupancy   Atom Occupancy   Atom Occupancy 

        

C19 0.5   H19A 0.5   H19B 0.5 

C20 0.5   H20A 0.5   H20B 0.5 

H20C 0.5   C21 0.5   H21A 0.5 

H21B 0.5   C22 0.5   H22A 0.5 

H22B 0.5   H22C 0.5       
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6.6 X-ray crystal structure of 3,4-dimethoxydiphenylamine (67) 
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Table 1 Crystal data and structure refinement for mac150002_fa.  

 

Identification code  mac150002_fa  

Empirical formula  C14H15NO2  

Formula weight  229.27  

Temperature/K  150.00(10)  

Crystal system  orthorhombic  

Space group  Pbca  

a/Å  9.1183(3)  

b/Å  7.2016(3)  

c/Å  35.4587(12)  

α/°  90  

β/°  90  

γ/°  90  

Volume/Å3  2328.42(14)  

Z  8  

ρcalcg/cm3  1.308  

μ/mm-1  0.088  

F(000)  976.0  

Crystal size/mm3  0.44 × 0.11 × 0.05  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/°  6.894 to 55.652  

Index ranges  -11 ≤ h ≤ 12, -8 ≤ k ≤ 9, -42 ≤ l ≤ 45  

Reflections collected  17480  

Independent reflections  2538 [Rint = 0.0618, Rsigma = 0.0382]  

Data/restraints/parameters  2538/0/159  

Goodness-of-fit on F2  1.097  

Final R indexes [I>=2σ (I)]  R1 = 0.0488, wR2 = 0.0927  

Final R indexes [all data]  R1 = 0.0699, wR2 = 0.1005  

Largest diff. peak/hole / e Å-3  0.19/-0.17  
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for mac150002_fa. Ueq is defined as 1/3 of of the trace of the 

orthogonalised UIJ tensor. 

 

Atom x y z U(eq) 

     

O1 6093.0(14) 6705.0(16) 4703.9(3) 34.4(3) 

O2 4575.5(13) 9236.9(15) 4372.5(3) 32.2(3) 

N1 6264.9(16) 2905.2(18) 3582.0(4) 26.0(3) 

C1 5783.1(16) 4528(2) 3763.3(4) 21.7(3) 

C2 6163.4(17) 4762(2) 4143.9(4) 22.9(3) 

C3 5763.0(17) 6351(2) 4336.5(4) 23.9(4) 

C4 4950.8(17) 7746(2) 4152.6(4) 22.8(3) 

C5 4601.9(17) 7523(2) 3777.4(4) 23.4(3) 

C6 5019.6(17) 5924(2) 3581.7(4) 23.6(3) 

C7 6976(2) 5363(3) 4896.5(5) 44.7(5) 

C8 3650(2) 10595(2) 4205.6(5) 35.5(4) 

C9 5596.7(17) 1957(2) 3284.4(4) 21.2(3) 

C10 4106.8(17) 2122(2) 3200.1(4) 23.8(4) 

C11 3489.2(18) 1036(2) 2918.9(5) 26.2(4) 

C12 4329.4(18) -224(2) 2718.3(4) 27.5(4) 

C13 5808.8(18) -381(2) 2801.0(4) 27.1(4) 

C14 6438.7(17) 707(2) 3077.7(4) 24.2(4) 

  

 

 

 

 

 

 

 

 

 

  



237 
 

Table 3 Anisotropic Displacement Parameters (Å2×103) for mac150002_fa. The 

Anisotropic displacement factor exponent takes the form: -

2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

       

O1 48.7(8) 29.5(6) 25.0(6) -3.7(5) -9.6(6) 9.0(6) 

O2 38.3(7) 25.6(6) 32.7(6) -4.4(5) -1.8(5) 8.8(5) 

N1 22.2(7) 26.3(7) 29.6(8) -4.6(6) -5.8(6) 6.8(6) 

C1 18.7(8) 21.0(8) 25.5(8) -0.9(6) 1.3(6) -2.1(6) 

C2 21.4(8) 21.1(7) 26.1(8) 2.1(6) -3.2(7) 1.0(7) 

C3 23.8(9) 25.0(8) 22.9(8) -0.4(6) -1.1(7) -2.8(7) 

C4 20.2(8) 18.8(7) 29.4(8) -0.8(6) 4.1(7) -1.1(6) 

C5 19.2(8) 21.0(7) 30.0(9) 4.0(6) -0.2(7) 0.8(7) 

C6 21.8(8) 26.7(8) 22.3(8) 1.4(6) -1.2(6) -1.1(7) 

C7 66.7(14) 37.6(10) 29.7(10) -2.4(8) -17.9(9) 13.3(10) 

C8 47.3(11) 22.7(8) 36.5(10) 4.5(7) 9.5(9) 11.0(8) 

C9 24.1(8) 19.0(7) 20.5(8) 4.0(6) 0.9(6) -1.6(6) 

C10 22.3(8) 22.9(8) 26.3(8) 1.8(6) 3.7(6) 1.0(7) 

C11 21.9(8) 27.3(8) 29.4(9) 4.8(7) -1.3(7) -3.0(7) 

C12 30.7(10) 26.4(8) 25.4(9) -1.4(7) -1.6(7) -4.4(7) 

C13 29.7(9) 23.5(8) 27.9(9) -3.8(7) 5.3(7) 1.8(7) 

C14 20.1(8) 25.2(8) 27.4(8) 1.2(7) 1.2(7) 1.5(7) 
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Table 4 Bond Lengths for mac150002_fa. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C3 1.3609(18)   C3 C4 1.408(2) 

O1 C7 1.431(2)   C4 C5 1.377(2) 

O2 C4 1.3705(18)   C5 C6 1.397(2) 

O2 C8 1.421(2)   C9 C10 1.396(2) 

N1 C1 1.404(2)   C9 C14 1.392(2) 

N1 C9 1.397(2)   C10 C11 1.387(2) 

C1 C2 1.404(2)   C11 C12 1.384(2) 

C1 C6 1.382(2)   C12 C13 1.385(2) 

C2 C3 1.382(2)   C13 C14 1.381(2) 

  

 

 

  



239 
 

Table 5 Bond Angles for mac150002_fa. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

         

C3 O1 C7 117.04(13)   C5 C4 C3 119.06(14) 

C4 O2 C8 116.78(13)   C4 C5 C6 120.87(14) 

C9 N1 C1 128.04(14)   C1 C6 C5 120.34(14) 

C2 C1 N1 117.55(14)   C10 C9 N1 122.99(14) 

C6 C1 N1 123.35(14)   C14 C9 N1 118.26(14) 

C6 C1 C2 119.03(14)   C14 C9 C10 118.63(14) 

C3 C2 C1 120.62(14)   C11 C10 C9 120.07(15) 

O1 C3 C2 124.73(14)   C12 C11 C10 120.96(15) 

O1 C3 C4 115.22(14)   C11 C12 C13 118.94(15) 

C2 C3 C4 120.05(14)   C14 C13 C12 120.60(15) 

O2 C4 C3 115.26(14)   C13 C14 C9 120.78(15) 

O2 C4 C5 125.68(14)           
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Table 6 Torsion Angles for mac150002_fa. 

 

A B C D Angle/˚   A B C D Angle/˚ 

           

O1 C3 C4 O2 -1.7(2)   C4 C5 C6 C1 0.5(2) 

O1 C3 C4 C5 178.33(14)   C6 C1 C2 C3 1.0(2) 

O2 C4 C5 C6 
-

178.82(14) 
  C7 O1 C3 C2 3.0(2) 

N1 C1 C2 C3 178.08(14)   C7 O1 C3 C4 
-

177.16(15) 

N1 C1 C6 C5 
-

178.55(14) 
  C8 O2 C4 C3 

-

174.79(14) 

N1 C9 C10 C11 
-

175.12(14) 
  C8 O2 C4 C5 5.2(2) 

N1 C9 C14 C13 174.63(14)   C9 N1 C1 C2 150.50(15) 

C1 N1 C9 C10 -21.9(2)   C9 N1 C1 C6 -32.5(2) 

C1 N1 C9 C14 162.09(15)   C9 C10 C11 C12 0.1(2) 

C1 C2 C3 O1 
-

179.41(15) 
  C10 C9 C14 C13 -1.6(2) 

C1 C2 C3 C4 0.8(2)   C10 C11 C12 C13 -0.3(2) 

C2 C1 C6 C5 -1.6(2)   C11 C12 C13 C14 -0.3(2) 

C2 C3 C4 O2 178.18(14)   C12 C13 C14 C9 1.3(2) 

C2 C3 C4 C5 -1.8(2)   C14 C9 C10 C11 0.9(2) 

C3 C4 C5 C6 1.2(2)             
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for mac150002_fa. 

 

Atom x y z U(eq) 

     

H1 7100(20) 2480(20) 3650(5) 31 

H2 6690 3839 4268 27 

H5 4082 8448 3653 28 

H6 4783 5799 3328 28 

H7A 7876 5183 4761 67 

H7B 6455 4207 4911 67 

H7C 7189 5799 5146 67 

H8A 4143 11148 3994 53 

H8B 3423 11536 4388 53 

H8C 2760 10017 4122 53 

H10 3528 2961 3333 29 

H11 2496 1155 2864 31 

H12 3907 -953 2531 33 

H13 6383 -1228 2669 32 

H14 7438 603 3127 29 
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6.7 X-ray crystal structure of N-phenylazaquinone (71) 
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Table 1 : Crystal data and structure refinement for mac150015.  

Identification code  mac150015  

Empirical formula  C12H9NO  

Formula weight  183.20  

Temperature/K  150.01(10)  

Crystal system  orthorhombic  

Space group  Pca21  

a/Å  20.3364(2)  

b/Å  6.79390(10)  

c/Å  13.52620(10)  

α/°  90  

β/°  90  

γ/°  90  

Volume/Å3  1868.83(4)  

Z  8  

ρcalcg/cm3  1.302  

μ/mm-1  0.669  

F(000)  768.0  

Crystal size/mm3  0.25 × 0.22 × 0.19  

Radiation  CuKα (λ = 1.54184)  

2Θ range for data collection/°  8.696 to 133.942  

Index ranges  -24 ≤ h ≤ 24, -8 ≤ k ≤ 8, -16 ≤ l ≤ 16  

Reflections collected  47877  

Independent reflections  3313 [Rint = 0.0439, Rsigma = 0.0129]  

Data/restraints/parameters  3313/1/254  

Goodness-of-fit on F2  1.055  

Final R indexes [I>=2σ (I)]  R1 = 0.0279, wR2 = 0.0759  

Final R indexes [all data]  R1 = 0.0298, wR2 = 0.0772  

Largest diff. peak/hole / e Å-3  0.16/-0.14  

Flack parameter 0.01(10) 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for mac150015. Ueq is defined as 1/3 of of the trace of the 

orthogonalised UIJ tensor. 

 

Atom x y z U(eq) 

     

O1 5547.0(8) 3234(2) 3887.7(14) 43.6(4) 

O2 5932.1(8) -2165(2) 6360.3(17) 47.1(4) 

N1 3909.5(8) 9447(2) 3855.3(13) 27.3(4) 

N2 4375.6(8) 4221(2) 6301.9(15) 29.2(4) 

C1 5167.9(11) 4636(3) 3855.0(17) 31.5(5) 

C2 4468.5(11) 4363(3) 3650.1(16) 31.4(5) 

C3 4047.4(10) 5871(3) 3636.3(16) 28.3(5) 

C4 4271.2(10) 7886(3) 3830.9(15) 26.1(4) 

C5 4978.6(10) 8174(3) 3977.8(17) 29.6(5) 

C6 5398.9(10) 6663(3) 3996.9(18) 32.6(5) 

C7 3216.4(10) 9370(3) 3788.9(16) 25.4(4) 

C8 2831.0(11) 8164(3) 4391.9(17) 29.4(5) 

C9 2151.5(11) 8242(3) 4322.9(18) 32.3(5) 

C10 1849.3(11) 9529(3) 3673.0(18) 32.0(5) 

C11 2232.7(11) 10756(3) 3089.3(18) 32.4(5) 

C12 2910.6(11) 10693(3) 3148.9(17) 29.2(5) 

C13 5569.0(11) -723(3) 6372.9(19) 31.9(5) 

C14 4854.3(11) -934(3) 6479.8(18) 33.3(5) 

C15 4454(1) 608(3) 6465.6(17) 29.9(5) 

C16 4713.4(10) 2615(3) 6339.7(17) 26.3(4) 

C17 5428.4(10) 2831(3) 6284.2(18) 30.2(4) 

C18 5828.4(10) 1278(3) 6293.5(18) 31.9(5) 

C19 3679.8(9) 4246(3) 6286.9(17) 26.8(4) 

C20 3309.6(10) 3127(3) 5625.8(18) 29.3(5) 

C21 2629.5(11) 3291(3) 5623.1(19) 33.6(5) 

C22 2316(1) 4561(3) 6265(2) 33.1(5) 

C23 2685.6(11) 5707(3) 6906.9(18) 32.4(5) 

C24 3362.4(10) 5572(3) 6914.4(17) 29.4(5) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for mac150015. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

       

O1 37.3(9) 35.2(8) 58.2(11) 6.0(8) 7.7(8) 11.7(7) 

O2 39.6(9) 33.1(8) 68.5(11) -4.6(9) -10.3(9) 11.4(7) 

N1 27.5(9) 22.2(8) 32.2(10) -0.7(8) -1.6(8) 0.5(7) 

N2 26.8(8) 24.6(8) 36.1(9) -0.3(8) 1.0(9) -1.3(6) 

C1 34.4(12) 28.1(11) 32.1(12) 5.5(10) 5.9(10) 6.8(9) 

C2 36.1(12) 22.6(10) 35.7(12) -0.5(9) 4.2(10) -1.1(9) 

C3 26.8(10) 24.1(10) 34.1(12) 0.4(9) 0.9(9) -1.7(8) 

C4 28.2(10) 23.4(10) 26.6(10) 0.5(9) -0.9(9) -0.5(8) 

C5 27.8(10) 26.1(10) 34.9(11) -0.5(9) -0.7(9) -1.4(8) 

C6 24.2(10) 34.4(12) 39.1(13) 0.4(10) 0.5(9) -2.2(9) 

C7 25.9(10) 19.6(9) 30.6(12) -5.0(9) -2.2(9) 0.0(7) 

C8 34.6(11) 23.5(10) 30.1(11) 0.8(9) 0.0(9) 1.3(8) 

C9 32.4(11) 26.4(10) 38.1(12) 0.9(9) 8.0(9) -1.3(9) 

C10 25.8(10) 27.8(10) 42.3(13) -4.8(10) -1(1) 1.1(8) 

C11 29.6(11) 26.3(10) 41.3(13) 2.7(10) -5.3(9) 4.4(9) 

C12 30.1(11) 22.4(10) 35.0(12) 2.4(9) -1.5(9) -1.6(8) 

C13 34.9(11) 28.8(10) 32.1(11) -3.1(10) -4.8(10) 6.9(9) 

C14 35.2(11) 23.7(10) 40.9(13) -0.2(9) -0.2(10) -2.7(8) 

C15 27.1(10) 26.7(10) 35.9(12) 1.0(9) 3.8(9) -2.5(8) 

C16 28.4(9) 23.0(9) 27.7(10) -0.7(9) 0.5(9) -1.5(8) 

C17 29.8(10) 28.3(10) 32.5(11) 0.7(10) 0.9(10) -4.2(8) 

C18 26.9(10) 34.9(10) 33.9(12) 1.4(10) -0.6(10) 0.0(9) 

C19 27.6(10) 20.1(9) 32.7(11) 3.8(9) 2.3(10) -1.6(8) 

C20 33.7(11) 21.6(10) 32.6(11) -1.6(9) 2.3(9) -1.1(8) 

C21 34.9(12) 26.7(11) 39.3(12) 0.6(10) -6.2(10) -6.1(9) 

C22 27.8(10) 28.4(10) 42.9(13) 6.7(10) 1.1(11) -2.1(8) 

C23 33.7(12) 26.2(10) 37.4(12) -0.7(10) 5.3(10) 1.3(9) 

C24 32.1(11) 23.1(10) 32.8(11) -2.4(9) -0.7(9) -1.3(8) 
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Table 4 Bond Lengths for mac150015. 

 

Atom Atom Length/Å   Atom Atom Length/Å 

       

O1 C1 1.226(2)   C9 C10 1.384(3) 

O2 C13 1.227(2)   C10 C11 1.388(3) 

N1 C4 1.291(3)   C11 C12 1.382(3) 

N1 C7 1.413(3)   C13 C14 1.468(3) 

N2 C16 1.290(3)   C13 C18 1.462(3) 

N2 C19 1.415(3)   C14 C15 1.327(3) 

C1 C2 1.461(3)   C15 C16 1.473(3) 

C1 C6 1.468(3)   C16 C17 1.463(3) 

C2 C3 1.335(3)   C17 C18 1.332(3) 

C3 C4 1.467(3)   C19 C20 1.394(3) 

C4 C5 1.465(3)   C19 C24 1.396(3) 

C5 C6 1.336(3)   C20 C21 1.388(3) 

C7 C8 1.397(3)   C21 C22 1.380(3) 

C7 C12 1.394(3)   C22 C23 1.387(3) 

C8 C9 1.386(3)   C23 C24 1.380(3) 
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Table 5 Bond Angles for mac150015. 

 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

         

C4 N1 C7 122.43(16)   C11 C12 C7 120.1(2) 

C16 N2 C19 122.90(16)   O2 C13 C14 121.3(2) 

O1 C1 C2 121.4(2)   O2 C13 C18 121.63(19) 

O1 C1 C6 121.5(2)   C18 C13 C14 117.10(18) 

C2 C1 C6 117.07(17)   C15 C14 C13 121.9(2) 

C3 C2 C1 122.01(19)   C14 C15 C16 120.88(19) 

C2 C3 C4 120.96(19)   N2 C16 C15 126.66(17) 

N1 C4 C3 126.49(18)   N2 C16 C17 116.26(18) 

N1 C4 C5 116.49(17)   C17 C16 C15 117.04(18) 

C5 C4 C3 116.98(17)   C18 C17 C16 121.81(19) 

C6 C5 C4 121.88(19)   C17 C18 C13 121.11(19) 

C5 C6 C1 120.92(19)   C20 C19 N2 122.85(19) 

C8 C7 N1 122.96(18)   C20 C19 C24 119.49(18) 

C12 C7 N1 117.41(18)   C24 C19 N2 117.47(19) 

C12 C7 C8 119.4(2)   C21 C20 C19 119.7(2) 

C9 C8 C7 119.8(2)   C22 C21 C20 120.6(2) 

C10 C9 C8 120.6(2)   C21 C22 C23 119.62(18) 

C9 C10 C11 119.4(2)   C24 C23 C22 120.5(2) 

C12 C11 C10 120.6(2)   C23 C24 C19 120.0(2) 
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Table 6 Torsion Angles for mac150015. 

 

A B C D Angle/˚   A B C D Angle/˚ 

           

O1 C1 C2 C3 178.3(2)   C8 C7 C12 C11 -2.3(3) 

O1 C1 C6 C5 -178.7(2)   C8 C9 C10 C11 -0.3(3) 

O2 C13 C14 C15 -178.0(3)   C9 C10 C11 C12 0.3(3) 

O2 C13 C18 C17 178.4(3)   C10 C11 C12 C7 1.0(3) 

N1 C4 C5 C6 178.0(2)   C12 C7 C8 C9 2.4(3) 

N1 C7 C8 C9 176.52(19)   C13 C14 C15 C16 0.1(4) 

N1 C7 C12 C11 
-

176.76(19) 
  C14 C13 C18 C17 -2.3(4) 

N2 C16 C17 C18 -178.5(2)   C14 C15 C16 N2 179.1(2) 

N2 C19 C20 C21 -177.1(2)   C14 C15 C16 C17 -3.1(3) 

N2 C19 C24 C23 177.84(19)   C15 C16 C17 C18 3.5(3) 

C1 C2 C3 C4 -0.2(3)   C16 N2 C19 C20 -51.1(3) 

C2 C1 C6 C5 2.7(3)   C16 N2 C19 C24 134.0(2) 

C2 C3 C4 N1 -178.6(2)   C16 C17 C18 C13 -0.8(4) 

C2 C3 C4 C5 3.7(3)   C18 C13 C14 C15 2.7(4) 

C3 C4 C5 C6 -4.1(3)   C19 N2 C16 C15 -6.1(4) 

C4 N1 C7 C8 51.7(3)   C19 N2 C16 C17 176.1(2) 

C4 N1 C7 C12 -134.0(2)   C19 C20 C21 C22 0.4(3) 

C4 C5 C6 C1 0.9(4)   C20 C19 C24 C23 2.8(3) 

C6 C1 C2 C3 -3.1(3)   C20 C21 C22 C23 1.1(3) 

C7 N1 C4 C3 6.5(3)   C21 C22 C23 C24 -0.6(3) 

C7 N1 C4 C5 
-

175.80(19) 
  C22 C23 C24 C19 -1.3(3) 

C7 C8 C9 C10 -1.1(3)   C24 C19 C20 C21 -2.3(3) 

  

 

 

 

 

 

 

 

  



249 
 

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 

(Å2×103) for mac150015. 

 

Atom x y z U(eq) 

     

H2 4308 3074 3523 38 

H3 3596 5634 3498 34 

H5 5143 9472 4062 36 

H6 5853 6904 4104 39 

H8 3034 7292 4848 35 

H9 1891 7403 4726 39 

H10 1383 9572 3627 38 

H11 2027 11646 2645 39 

H12 3169 11553 2754 35 

H14 4673 -2213 6562 40 

H15 3994 414 6538 36 

H17 5612 4113 6240 36 

H18 6290 1474 6248 38 

H20 3522 2256 5179 35 

H21 2377 2522 5175 40 

H22 1850 4650 6268 40 

H23 2471 6592 7345 39 

H24 3613 6382 7347 35 

 

 


