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Abstract

A mixture model can be used to represent two or more sub-populations. A special case is
when one of the sub-populations has a degenerate (or discrete) distribution, and another
has a continuous distribution. This leads to a mixed distribution. For example, daily
rainfall data contain zero and positive values. This can be represented using two processes:
an amount process and an occurrence process.

This thesis is concerned with Bayesian time series models for non-independent mixture-
distributed data, especially in the case of mixed distributions. Particular attention is given
to the relationship between the occurrence and amount processes.

The main application in the thesis is to daily rainfall data from weather stations in Italy
and the United Kingdom. Firstly, the models for univariate rainfall series are developed.
These are then extended to multivariate models by developing spatiotemporal models for
rainfall at several sites, giving attention to how the spatiotemporal dependencies affect
both the occurrence and amount processes. For the case of the British data, the models
involve dependence on the Lamb weather types. Seasonal effects are included for all
models.

Posterior distributions of model parameters are computed using Markov chain Monte
Carlo (MCMC) methods.
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Chapter 1

Introduction

1.1 Introduction

This research is concerned with the development of Bayesian approaches to the mod-
elling and analysis of univariate and multivariate time series data. The specific idea of
this research is to look at the case where the observational distribution is a mixture dis-
tribution and, in particular, the special case of a mixture distribution where one of its
sub-populations has a degenerate, or discrete, distribution and another component fol-
lows a continuous distribution. In some time series data, the observations of this special
case do not only take positive values but may also include many zero values. This leads
to a mixed distribution. A well-known example is daily rainfall data which contain zero
(discrete) values if rain is absent and positive values (continuous) if rain occurs.

Daily rainfall data can be modelled using a two-stage approach which has two pro-
cesses: the amount and occurrence processes. The amount process is a process that models
the amount of rainfall which occurs during a rainy day. On the other hand, the occurrence
process is a process that governs the probability of rainfall occurrences. In this thesis, par-
ticular attention is given to the relationship between the occurrence and amount processes
so that no important information about rainfall amount and occurrence is lost. This has
already been emphasized by Tooze et al. (2002) who stressed that the relationship between
the amount and occurrence processes is important to improve the accuracy and adequacy
of the model. Another important feature in modelling daily rainfall data is the way we
deal with seasonal effects, especially when the rainfall data are expected to have a cycli-
cal pattern. As a consequence, we will utilise a truncated Fourier series to capture the
seasonal variability over the year.

The main application in this research is to daily rainfall data from weather stations
in Italy and the United Kingdom. Firstly, the univariate models for rainfall data will be

1



Chapter 1. Introduction

developed. These are then extended to multivariate models by developing spatiotemporal
models for rainfall at several sites, with a particular attention to how the spatiotemporal
dependencies affect both the occurrence and amount processes. For the British daily
rainfall application, the atmospheric circulation patterns will be directly incorporated into
the model to provide a relationship between rainfall and climate. This is in contrast with
the previous works by Heaps et al. (2015) and Germain (2010) who linked the atmospheric
circulation patterns to latent weather states to influence the daily rainfall pattern. Hence,
the model for the British daily rainfall is an alternative to the models developed by Heaps
et al. (2015) and Germain (2010).

1.2 Research objectives

An important feature in this research is that we aim to develop and modify the work of
Heaps et al. (2015) and Germain (2010) on spatiotemporal models for daily rainfall at a
network of weather stations. The following developments will be investigated:

1. Removing the hidden weather states from the model and using the Lamb Weather
Type (LWT) as the actual weather states.

2. The modelling approach will cover rainfall data over the whole year including the
seasonal effects, extending the work of Heaps et al. (2015) and Germain (2010) who
only used the winter data in their model development. When looking at daily rainfall
data for the whole year, the transition probabilities in a Markov chain for the LWT
will depend on the particular time of year.

3. A careful examination of the conditional distribution of the rainfall amount and
how the mixed distribution of rainfall should be parameterised, how the parameters
should change under different conditions and how the dependence between sites and
between times should be modelled in terms of these parameterisations.

The methods are illustrated using daily rainfall data from the UK and Italy.

The main objectives of this research are:

1. To investigate Bayesian time series modelling in mixed or mixture distribution ap-
plications.

2. To develop novel approaches in modelling dependence, on both covariates and be-
tween realisations, and how this affects both the between-component distribution
(eg the occurence process in the rainfall case) and the conditional within-component
distribution (eg for the amount process in the rainfall case).

2
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3. To investigate the computation of posterior distributions in univariate and multi-
variate models for mixture and mixed distributions.

4. To apply the developed methods to a number of practical problems and assess the
strengths and weaknesses of each approach.

1.3 Outline of the thesis

The structure of this thesis is organised as follows. Chapter 2 describes the general idea
of Bayesian inference and time series. We introduce some suitable models that can be
used for modelling time series data. Particular attention is given to Markov chains and
state space models. The state space models can be regarded as an alternative approach
to autoregressive integrated moving average (ARIMA) models in the time series context.
After that, we review Bayesian inference including the use of Bayes’ theorem and some
Markov chain Monte Carlo (MCMC) techniques which include the Metropolis-Hastings
algorithm and Gibbs sampling. The data augmentation approach is also introduced in
this chapter that can be used in the MCMC scheme to make the posterior sampling for
some models more tractable.

Chapter 3 describes the introduction of Bayesian inference in mixture models with
particular emphasis given to finite mixture models. The MCMC scheme for finite mixture
models is then introduced with some discussion on the label switching problem. In addi-
tion, we also introduce the mixed distribution which is a special case of mixture models.
Using the Bayesian framework, we then develop a mixture model for some ultrasound data
with some discussion on the prior elicitation and posterior distribution.

In Chapter 4, we present the idea of modelling daily rainfall data within the Bayesian
framework. We start with the general idea of how to develop a model for the amount and
occurrence processes. We then discuss the seasonal effects and their utility in capturing
the seasonal variations of daily rainfall over the year. To assess the adequacy of the
model, we introduce a diagnostic checking procedure for mixed distribution time series.
For the Italian daily rainfall dataset, three different probability density functions (pdfs)
are considered for modelling the amount process, and these three pdfs are subsequently
compared by using the posterior predictive distribution. A first-order Markov chain is also
used to model the occurrence process. For a British daily rainfall dataset, we propose an
alternative model to the models developed by Heaps et al. (2015) and Germain (2010).
Instead of using hidden weather states, we incorporate atmospheric circulation patterns
directly to the amount and occurrence processes. The atmospheric circulation patterns for
the British daily rainfall application are represented by the Lamb weather types (LWTs).
For preliminary investigation, we will solely focus on a single site before extending the

3
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work to multiple sites in Chapter 5.

Chapter 5 introduces a spatiotemporal model for the daily rainfall data at multiple
sites within the United Kingdom. This model is an extended version of the univariate
model in Chapter 4. The multivariate model is more challenging to develop than the
univariate model since it involves a large number of parameters and a high computational
cost is required to fit the model. The exploratory examination of the dataset and the
summary of investigations into the spatial and temporal characteristics of the data will
also be discussed in this chapter. The adequacy of the model will then be assessed using
a similar diagnostic checking method as introduced in Chapter 4.

Finally, Chapter 6 summarises our conclusions about the whole thesis and these include
suggestions for future work.
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Chapter 2

Introduction to Bayesian Inference
and Time Series

2.1 Introduction

In this chapter, we will introduce some models that are suitable to use for modelling time
series data. We will introduce Markov chains in Section 2.2.2 and state space models
in Section 2.2.3. The Markov chain has two different types of states: discrete (Section
2.2.2.2) and continuous (Section 2.2.2.3). The state space model presents an alternative
approach to autoregressive integrated moving average (ARIMA) models in building time
series models. If the model is linear and the observations follow a Gaussian distribution,
then we can use dynamic linear models (DLMs) to analyse the data as in Section 2.2.3.2.
Alternatively, we can use dynamic generalised linear models (DGLMs) to model both non-
normal and nonlinear time series (see Section 2.2.3.3). Hidden Markov models (HMMs)
are another type of state space model which contain two different layers of a system: an
observed process and an unobserved process. The behaviour of the observed process can be
reproduced by modelling the unobserved process as a Markov chain (see Section 2.2.3.4).

We will also describe briefly Bayesian inference including Bayes’ theorem (Section 2.3.2)
and prior distributions (Section 2.3.3). After that, we will discuss the use of sampling
techniques, specifically Markov chain Monte Carlo (MCMC) to obtain posterior samples
for parameters in Section 2.3.4. We will also introduce the data augmentation technique
in Section 2.3.5 which can be used in the MCMC scheme when the direct computation of
the posterior samples for some models is difficult to handle. In Section 2.3.6, we review
the application of the Bayesian approach in time series models.
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2.2 Time Series Models

2.2.1 Introduction

A time series is a collection of observations that are generated sequentially in time. It
can also be considered as a realisation of a stochastic process. The order of a time series
is crucial because the observations are ordered with respect to time. The applications of
time series can be found widely in various fields such as monthly rainfall, the number of
accidents in a week, daily stock market prices, and annual series of the number of cancer
patients in a hospital. The observations of a time series are given as

y1, y2, ..., yT

where t ∈ {1, 2, · · · , T}. The observation yt is regarded as a realisation of a random
variable Yt and can be either continuous or discrete. For the time index t, it can also have
continuous and discrete values. However, in this thesis we only consider a discrete time
index t, where the observations are drawn at fixed intervals.

There are some reasons why we look at time series analysis. Firstly, we want to analyse
the data and describe what has happened in the past in terms of the components of interest
such as trends, seasonal effects, patterns and fluctuations. From here, the information will
be gathered and then we will make some inferences from the data. Time series can also
be used to assess the effects of other variables and interventions based on the behaviour
of data, for example the effect of weather on gas consumption. Of course, time series can
also be used to make some predictions about the future based on the observed data.

The modelling and analysis of time series are mainly focused on two main approaches
which are autoregressive integrated moving average (ARIMA) models (Box & Jenkins,
1976) and state space models, e.g. dynamic linear models (DLMs) (West & Harrison,
1997). We will use some of these approaches in our analysis. For instance, we will use the
first order autoregressive model AR(1) for the random effect in our daily rainfall model in
Chapter 4. In the next section, we will review some basic theory about state space models.
For an introductory survey of approaches to time series analysis, see Chatfield (2003).

2.2.2 Markov chains

2.2.2.1 Introduction

In this section, we review some basic ideas about Markov chains. A Markov chain is a
sequence of random variables, X(0), X(1), X(2), · · · where the future states are conditionally
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independent of the past states given the present state. This process is also known as a
“memoryless” process because it has no information about where it has been in the past.
Beyond the present state, the process must satisfy the Markov property for all t ∈ N and
the conditional probabilities can be written as

Pr(Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, · · · , X0 = x0)

= Pr(Xt+1 = xt+1|Xt = xt). (2.1)

Figure 2.1 shows the directed acyclic graph (DAG) for the dependence structure of a
Markov chain where Xt ∈ S denotes the state of the process at time t and S is a state
space.

XtXt−1 Xt+1

Figure 2.1: A directed acyclic graph (DAG) showing the dependence structure of a Markov chain

2.2.2.2 Discrete state

When dealing with discrete state spaces, the notation for the states of a Markov chain in
(2.1) can be substituted by a single letter such as i, j, k ∈ S:

Pr(Xt+1 = j|Xt = i) = pij .

The conditional probabilities for a Markov chain are known as transition probabilities
from state i to state j. If we have a finite state system, that is a system with J states
where J <∞, then the transition matrix can be written as

P (t) =


p1,1(t) · · · p1,J(t)

... . . . ...
pJ,1(t) · · · pJ,J(t)

 .
The elements of the matrix must satisfy these two properties:

1. 0 ≤ pij(t) ≤ 1

2.
∑J
j=1 pij(t) = 1 where i, j ∈ J .

The matrix P (t) is called a Markov matrix or stochastic matrix at time t if it fulfills these
properties. If these probabilities depend on time t, the process is called a nonhomogeneous
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Markov chain where, for example,

pij(1) = P [X1 = j|X0 = i] 6= P [X2 = j|X1 = i] = pij(2).

On the other hand, the process is described as a homogeneous Markov chain if these
probabilities do not depend on time t where

P [X1 = j|X0 = i] = P [X2 = j|X1 = i] = · · · = P [Xt+1 = j|Xt = i] = pij .

with constant transition matrix

P =


p1,1 · · · p1,J

... . . . ...
pJ,1 · · · pJ,J

 .

Subject to certain conditions, a homogeneous Markov chain can be described further by
finding the unconditional probabilities of the Markov chain. Let π(t) =

(
π

(t)
1 , π

(t)
2 , · · · , π(t)

J

)
represents the row vector of probabilities for states at time t where

π
(t)
j = Pr(Xt = j); j ∈ J.

Using the theorem of total probability, the probability distribution at time t + 1 is given
as

π
(t+1)
1 = p11π

(t)
1 + p21π

(t)
2 + · · ·+ pJ1π

(t)
J ,

and similarly for π(t+1)
2 , · · · , π(t+1)

J . These probability distributions can be converted into
matrix form as

(
π

(t+1)
1 , π

(t+1)
2 , · · · , π(t+1)

J

)
=
(
π

(t)
1 , π

(t)
2 , · · · , π(t)

J

)
×


p1,1 · · · p1,J

... . . . ...
pJ,1 · · · pJ,J


which is equivalent to

π(t+1) = π(t)P

= π(0)P t+1

where π(0) is the initial distribution and P represent the transition probability matrix.
This is known as the Chapman-Kolmogorov equation. Hence, a homogeneous Markov
chain with transition matrix P is said to have stationary distribution π if there exists π
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such that
π = πP

with π × 1
′ = 1. It is called a stationary distribution because the distribution π(t) stays

the same as the time moves at any number k-steps:

π(t) = π(t+k) = π ∀k > 0.

Under certain conditions (see Stewart (2009)),

π(0)P t −→ π as t −→∞. (2.2)

However, in some cases, for example, P =
( 0 1

1 0
)
, (2.2) does not hold. The unconditional

probability of a homogeneous Markov chain can be found by solving

π(I − P ) = 0

where I is the J × J identity matrix. A comprehensive description of Markov chains can
be found in Zucchini (2009) and Stewart (2009).

In a hidden Markov model (see Section 2.2.3.4), the application of a Markov chain
is important to model the values of the hidden process. The stationary distribution of
a Markov chain is also used in Bayesian inference to draw samples from the posterior
distribution. Markov chains are widely used in applications such as analysing rainfall
occurrence (Gabriel & Neumann, 1962), queues of customers (Kendall, 1953) and exchange
rates of currencies (Masson, 2001). In the rainfall case, the homogeneous Markov chain
is a favoured method to find the probability of rainfall occurrence. However, the non-
homogeneous Markov chain is also employed if we believe that the probability of rainfall
at time t may depend, for example, on seasonal factors. In Chapter 3, we will use both
homogeneous and nonhomogeneous Markov chains to analyse the rainfall occurrence and
the Lamb weather types (LWTs).

2.2.2.3 Continuous state

Now, let the state space S be continuous (S ⊂ R) where the time is still discrete. For any
A ⊂ S and x ∈ S, a homogeneous chain for continuous state space is defined in a similar
way to the discrete case as follows:

P (x,A) = Pr(Xt+1 ∈ A|Xt = x).
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In the discrete case, this is equivalent to

P (x, x̂) = Pr(Xt+1 = x̂|Xt = x)

for x, x̂ ∈ S. For the continuous case, we can not use this form because P (x, {x̂}) = 0.
Instead, the notation P (x, x̂) can be defined as:

P (x, x̂) = Pr(Xt+1 ≤ x̂|Xt = x) = Pr(X1 ≤ x̂|X0 = x)

for x, x̂ ∈ S. This form represents the transition matrix for the continuous case and the
conditional density is given by

p(x, x̂) = ∂

∂x̂
P (x, x̂)

which defines the density form of the transition kernel of the chain. Assume that the
conditional transition probability moves to k-steps as follows:

P k(x, x̂) = Pr(Xt+k ≤ x̂|Xt = x),

where the transition kernel is given by

pk(x, x̂) = ∂

∂x̂
P k(x, x̂)

for x, x̂ ∈ S. This can be further extended by using the theorem of total probability where
the conditional distribution at any step t+ k has the form

P t+k(x, x̂) =
∫
S
P k(ẍ, x̂)pt(x, ẍ)dẍ

which is a continuous version of the Chapman-Kolmogorov equations. At k = 1, we have

P t+1(x, x̂) =
∫
S
P (ẍ, x̂)pt(x, ẍ)dẍ.

Then, the marginal distribution at any time t+ 1 can be obtained as follows:

π(t+1)(x̂) =
∫
S
p(x, x̂)π(t)(x)dx.

A distribution π(x̂) on continuous state spaces is said to be a stationary distribution if it
satisfies

π(x̂) =
∫
S
p(x, x̂)π(x)dx.
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A full comprehensive discussion about the continuous state space Markov chains can be
found in Gamerman & Lopes (2006).

2.2.3 State space models

2.2.3.1 Introduction

In this section, we review some basic theory of state space models in time series analysis.
State space models are an alternative to ARIMA models for constructing time series models
and forecasting. It is a flexible model where computations for monitoring and forecasting
can be done recursively. Originally, it was developed in the engineering field for updating
information about the system continuously from the current position (Kalman & Bucy,
1961). This is one of the reasons why the state space model literature can be found more
in engineering applications. However, it is still applicable to use in many other fields such
as economics and computer sciences. For example, state space models can be used to
forecast the unemployment rate as an “output” of the underlying state of the economy.
This technique is also very popular among Bayesian statisticians and some of the notations
used in state space models are expressed in Bayesian terms. For instance, the expectation
of future values can be considered as our belief about the future and can be updated after
we observe the data.

The basic idea of a state space model is to have a probabilistic dependence between
the observation, Yt and an unobserved state variable Xt:

Yt = h(Xt) + ηt

where h(.) is some function. Often h(.) is a linear function that contains a linear com-
bination of several components such as trend, seasonal or regressive components. The
unobserved state variable Xt is also known as the signal and the random variable ηt is
called the noise. In most cases, ηt is assumed to be independent from ηs when s 6= t.
Therefore Yt is conditionally independent of Ys given Xt where s 6= t. The observations Yt
can be either univariate or multivariate. Typically, the sequence {Xt} is a Markov chain.
In this case, in terms of the joint probability density, the state space model can be written
as

π(x1:T , y1:T ) =π(x1)π(x2|x1)π(x3|x2) · · · × π(y1|x1)π(y2|x2)π(y3|x3) · · ·

= π(x1)π(y1|x1)
T∏
t=2

[π(xt|xt−1)π(yt|xt)]

where the conditional distributions often stay the same over time. By introducing the
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initial distribution π(x0), the state space model can be simplified to

π(x0:T , y1:T ) = π(x0)
T∏
t=1

[π(xt|xt−1)π(yt|xt)] . (2.3)

The state space model can help to solve a broad range of time series problems such as
inference for unknown parameters, smoothing and prediction. For details, see Kitagawa
(1998), Durbin & Koopman (2000), and Christensen et al. (2012). It is considered to be
one of the best approaches in time series at handling missing values. A particular example
of a state space model in time series is a hidden Markov model. We will discuss hidden
Markov models in Section 2.2.3.4. In addition, the parameterisation of ARIMA models
can be converted into state space form.

2.2.3.2 Dynamic linear models

Dynamic linear models (DLM) form an important class of state space models to represent
linear Gaussian processes. The observations are assumed to follow normal distributions
where the mean µ is a linear combination of the elements of a system vector. The system
vector either consists of an intercept term only or includes some other terms representing
trend or seasonal components. The DLM can also be defined as a system of equations that
has two stages: an observation equation and system equation. The equations are given as
follows:

Observational equation : Yt = F ′tXt + υt; υt ∼ Nr(0, Vt) (2.4a)

System equation : Xt = GtXt−1 + ωt; ωt ∼ Nn(0,Wt) (2.4b)

with Xt is defined as the state vector where F ′t and Gt are known matrices (of order r×n
and n × n respectively) and υt and ωt are vectors of normal errors with mean zero and
known variance matrices Vt and Wt. In this case, µt = F ′tXt represents the mean response
of the model given Xt−1 and the error sequences υt and ωt are independent. So, υt and ωs
are independent, υt and υs are independent, and ωt and ωs are independent for all t and
s with t 6= s. The observation Yt could be a vector or a scalar.

In general, all of the information can be characterised by a quadruple, (F t, Gt, Vt,Wt)
for each time t. However, in some circumstances, each of the elements is constant for all
time t as (F ,G, V,W ). The DLM structure can be simplified:

(Yt|Xt) ∼ N(F ′tXt, Vt); (Xt|Xt−1) ∼ N(GtXt−1,Wt). (2.5)

Inference about the current state and forecasting of a DLM can be obtained recursively

12



Chapter 2. Introduction to Bayesian Inference and Time Series

by using the Kalman filter. Detailed explanations and examples of DLM can be found in
West & Harrison (1997) and Petris et al. (2009).

2.2.3.3 Dynamic generalised linear models

Dynamic generalised linear models (DGLM) are an extension of the DLM for application
in non-normal and nonlinear time series. Originally, they were proposed by West et al.
(1985) based on the framework of generalised linear models (Nelder & Wedderburn, 1972;
McCullagh & Nelder, 1989) to provide an alternative dynamic approach when the data
distribution is non-normal. The non-normal distribution could be from another member
of exponential family distributions such as gamma, binomial or Poisson distributions that
can be characterised by

f(yt|γt, φ) ∝ exp
{ [ytγt − b(γt)]

φ

}
where γt is the natural parameter and φ is known as the scale parameter. Let E(Yt|γt, φ) =
µt, then the DGLM structure is defined by the following components:

Observational model : f(Yt|γt, φ) and g(µt) = ηt = F ′tXt (2.6a)

Evolution equation : Xt = GtXt−1 + ωt with ωt ∼ [0,Wt]. (2.6b)

In this structure, the mean µt of the observation model is determined by relating it through
a link function g(.) to the linear predictor ηt. Typically, the choice of the link function
depends on the error distribution. For example, if the observations Yt follow a Poisson
distribution, then we can use a log-link function to provide the relationship between the
linear predictor and the mean as:

log(µ) = ηt = F ′tXt.

The underlying state equation for a DGLM is precisely the same as the standard DLM in
(2.4b).

The analysis of a DGLM is more challenging than that of a DLM since we have lost
the normality and linear framework, and there is no closed form solution for updating
inferences. However, there are some possible approximations that can be used to solve
this problem. For instance, West et al. (1985) suggested using a conjugate prior and
posterior distribution for the exponential family parameters which can help to simplify
the computational problem. The authors used a linear Bayes model for the system vector
with only moments specified. We might now give the system vector a Gaussian model
and lose the conjugacy but use MCMC to fit the model and possible methods such as a
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particle filter for filtering. The full comprehensive development of DGLMs can found in
West et al. (1985) and West & Harrison (1997).

2.2.3.4 Hidden Markov models

A hidden Markov model (HMM) presents a framework to develop a complex model for
time series data as one of the ingenious statistical modelling approaches. It can be used
in many areas such as communications, engineering, bioinformatics, finance, medicine,
meteorology and speech recognition. A HMM is a bivariate discrete-time stochastic pro-
cess, {Xt,Yt}t≥1 that is split into two components: firstly, the observed process where
the sequence of observations can be discrete or continuous and secondly, the unobserved
(hidden) process which is usually assumed to be discrete with a finite state space that can
be denoted by integers {1, · · · , J}. The unobserved variable of the hidden process, Xt is
called the state and can also be regarded as missing data or a latent variable. The inference
on the parameters of the model can only be achieved through Yt where the conditional
distribution of Yt is dependent on the state Xt. This means that every observation at time
t was produced by some process whose state Xt is hidden from the observer. However,
the output of Yt given Xt is visible to the observer with each state having a probability
distribution and the sequence of states Xt comprising a Markov chain. Then, the states
{Xt}t≥1 are said to fulfill the Markov property if the future state, Xt+1 is conditionally in-
dependent of Xt−1, Xt−2, · · · given the current state, Xt. The assumptions of a “standard”
hidden Markov model are given as follows:

1. The assumption for the hidden process can be written as

Pr(Xt = j|X1:t−1,θ) = Pr(Xt = j|Xt−1 = i, P ) = pij i, j ∈ {1, · · · , J}

where θ is the collection of parameters and the states {Xt}t≥1 are a first order
homogeneous J-state Markov chain with transition matrix P and the summation of
each row pi = (pi1, · · · , pij) is equal to 1.

2. The assumption for the observation process can be summarised as

(Yt|Y1:t−1, X1:T ,θ) ≡ (Yt|Xt = j,θ) ∼ F(θj)

where F(.) is a parametric distribution family that has density p(yt|Xt = j,θ) ≡
p(yt|θj). From this assumption, the outputs {Yt}t≥1 are considered to be condition-
ally independent given the hidden states {Xt}t≥1.

The relationship between variables in a HMM can be understood by illustrating the de-
pendence structure using a graphical model as in Figure 2.2. In this graph, each node
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XtXt−1 Xt+1

YtYt−1 Yt+1

Figure 2.2: A DAG showing the dependence structure of a “standard” hidden Markov model

represents a random variable. The arrows correspond to the structure of the joint proba-
bility distribution. A hidden Markov model is said to be homogeneous when the transition
probabilities of the Markov chain for the underlying process are constant over time and
the conditional distributions of Yt|Xt remain constant over time.

There are a few extensions for HMM which have been reviewed by Germain (2010)
and Cappé et al. (2005). For example, the order of the Markov chain for the hidden
process can be more than one. Let the hidden state sequence {Xt}t≥1 be a d-th order
Markov process. Then, we can say that the conditional distribution of the future state,
Xt+1 depends on the previous d values, Xt−d, Xt−d+1, · · · , Xt−1. Conceptually, models
with d > 1 are as straightforward as in a standard hidden Markov model but we will
not consider this case in our study. The hidden Markov model can be further extended
by allowing the model to have non-homogeneous transition probabilities for the hidden
process or non-homogeneous observation distributions for the observation process. Then,
we can say that the distribution of Xt+1 given Xt or Yt given Xt is changed for every
time-step t.

2.2.3.5 Markov switching models

A notable generalisation for hidden Markov models is Markov switching models. For
this generalisation, the observed process allows the conditional distribution of Yt+1 given
the history of past variables to depend not only on Xt+1 but also on the previous q
observations, Yt−q,Yt−q+1, · · · ,Yt−1. The dependence structure of this model is illustrated
as in Figure 2.3. The statistical analysis for a Markov switching model is more complicated
than for a HMM since Yt does not simply depend on Xt only but also on Yt−q, · · · ,Yt−1.
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XtXt−1 Xt+1

YtYt−1 Yt+1

Figure 2.3: A DAG showing the dependence structure of Markov switching model with q = 1

2.3 Bayesian Inference

2.3.1 Introduction

In the Bayesian framework, probability distributions are used to describe uncertainty
about the values of unknown quantities, whether these are parameters, missing data,
latent variables or future observations. This is in contrast with the frequentist approach
where, for example, the value of a parameter is regarded as fixed but unknown and no
distinction is made between possible values which are more or less likely.

In Bayesian inference, the distribution given to the value of an unknown quantity
before data are observed is called a prior distribution. When data are observed, the
likelihood function from these data is combined with the prior distribution to give a
posterior distribution which describes the new state of uncertainty about the value of the
unknown quantity. The information from the posterior distribution can be summarised to
make statistical inferences.

2.3.2 Bayes’ theorem

Bayes’ theorem or Bayes’ rule plays a central role in Bayesian inference where it combines
prior belief with observed data to obtain the conditional probability of a given hypothesis.
Let A1, A2, ..., An be a set of mutually exclusive events that form the sample space S.
Given an additional event B from the same sample space with Pr(B) > 0, Bayes’ theorem
can be written as:

Pr(Aj |B) = Pr(Aj ∩B)
Pr(A1 ∩B) + Pr(A2 ∩B) + ...+ Pr(An ∩B) = Pr(Aj ∩B)∑n

i=1 Pr(Ai ∩B)
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Using the fact that Pr(Aj ∩B) = Pr(Aj) Pr(B|Aj), Bayes’ theorem can then be rewritten
as:

Pr(Aj |B) = Pr(Aj) Pr(B|Aj)∑n
i=1 Pr(Ai) Pr(B|Ai)

Suppose we have a set of observations y=(y1, y2, ..., yn) which depend on a set of k unknown
quantities, θ = (θ1, θ2, ..., θk) and we are interested in making inference about θ. The
likelihood of parameter θ can be expressed as

L(θ|y) = f(y|θ).

If y1, · · · , yn are conditionally independent given θ, then we can write

L(θ|y) =
n∏
i=1

fi(yi|θ).

The prior beliefs for θ can be represented as a probability density or probability mass
function, π(θ). Hence, we can summarise our beliefs about θ using information from
the prior and this is subsequently updated by the likelihood, resulting in a posterior
distribution, π(θ|y). Using Bayes’ theorem, the posterior density π(θ|y) can be expressed
as:

π(θ|y) = π(θ)f(y|θ)
f(y) (2.7)

where

f(y) =


∫
Θ π(θ)f(y|θ)dθ if θ is continuous

∑
Θ π(θ)f(y|θ) if θ is discrete

and Θ is the set of possible values of θ. From (2.7), f(y) is a normalising constant or
marginal likelihood of the data which ensures that the posterior density always integrates
to one (if continuous) or sums to one (if discrete). Since this is not a function of θ, then
the posterior distribution can be simplified as

π(θ|y) ∝ π(θ)× f(y|θ) (2.8)

that is
Posterior ∝ Prior × Likelihood.

In many cases, the normalising constant p(y) is not available in analytical closed form.
Numerical integration or analytic approximation is hence required to solve the difficulty
of not having a closed form especially when we have an integral for continuous unknowns.
There are several techniques that can be used to solve this problem but the most popular
one is known as Markov Chain Monte Carlo (MCMC) which generates samples of the
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values of parameters from the posterior distribution in complex models without computing
the integral for the normalising constant f(y) in Bayes’ rule. As this technique is easier
and more practical to use, MCMC techniques will be used for analysis in this study.

2.3.3 Prior distributions

In Bayesian analysis, the prior specification for unknown quantities is required to obtain
the posterior distribution by combining it with the likelihood of the data. Hence, the choice
of prior density for unknown quantities has to be taken into account in Bayesian analysis.
The prior distribution should manifest the information about unknown quantities in the
form of a probability distribution before looking at the data. Often, prior information
is gathered from the opinion or subjective belief from an “expert” in the field in which
we are interested. For example, we can obtain prior information about the rainfall or
wind speed from a meteorologist who is an expert in the meteorological area. Therefore,
elicitation of opinion or information from the expert can be regarded as an essential step
in the Bayesian analysis. An expert in the application field is not necessarily an expert in
statistics and probability so care is required in elicitation.

The prior elicitation is a process which transforms the information about one or more
uncertain quantities gathered from the expert into a probability distribution or a moment.
The elicitation process can be illustrated as a facilitator that helps the expert to express his
knowledge in probabilistic form (Garthwaite et al., 2005). To help the expert, Kadane &
Wolfson (1998) suggested that the elicitation questions should always ask about observable
quantities.

It is crucial to brief the expert about the type of questions before starting the procedure.
This will help them to be familiar with the process. In most cases, the elicitation procedure
will involve with the first and second moments (i.e. means, variances and covariance).
People tend to do well in assessing the mean for a symmetric distribution but not for a
skewed distribution. For a skewed distribution, assessing the mode or median is a better
choice to be more accurate. Elicitation of the variances of unknown quantities is also
important to determine a prior distribution. However, most of the time, eliciting the
variance is quite difficult for people to interpret accurately. Hence, Garthwaite et al.
(2005) proposed to use other quantities such as credible intervals to elicit the spread of
a distribution. A considerable and comprehensive discussion about the prior elicitation
can be found in O’Hagan (1998), Kadane & Wolfson (1998), Garthwaite et al. (2005), and
O’Hagan et al. (2006). An alternative to using expert opinion might be using some kind
of “representative” prior or a vague prior.

It is often convenient to use a conjugate prior. Suppose that we have a prior distribu-
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tion for θ that has probability density function π(θ). When we have observed data, the
likelihood function is given as L(θ|y). By combining the prior distribution and likelihood,
we can obtain the posterior distribution as

π(θ|y) ∝ π(θ)L(θ|y).

If π(θ) and π(θ|y) belong to the same family of distributions, then π(θ) is said to be a
conjugate prior distribution. The form of the conjugate prior relies closely on the form of
the likelihood. Hence we will have a different conjugate distribution if we have a different
data distribution. Prior beliefs might not always be well represented by a conjugate
distribution. However, sometimes a conjugate prior will represent prior beliefs sufficiently
closely and this will help to make the calculations easier.

2.3.4 Markov Chain Monte Carlo (MCMC) methods

2.3.4.1 Introduction

In Bayesian analysis, computing the posterior density is relatively straightforward when
we use a conjugate prior. However, it may become difficult if the distributions are complex
and analytically intractable especially in higher dimensions. Markov chain Monte Carlo
(MCMC) is a technique to tackle this problem by drawing samples from the complex
posterior distributions without computing the integral in Bayes’ rule. The basic idea of
MCMC techniques is to construct a Markov chain which has the posterior distribution as
its stationary distribution. Then, by generating a realisation of the Markov chain for a
sufficiently long number of steps and provided that the chain has converged, the samples
will be generated from the posterior distribution. The introduction of MCMC gives an
alternative for us to make any inference of interest by generating the whole distribution
numerically. For comprehensive theory, developments and applications of MCMC, the
reader can refer to Besag et al. (1995), Gamerman (1997), Brooks & Gelman (1998),
Gamerman & Lopes (2006) and Brooks et al. (2011). In the following sections, we will
briefly define two fundamental MCMC techniques: the Gibbs sampler and Metropolis-
Hastings algorithms, to generate samples from posterior distributions.

2.3.4.2 Metropolis-Hastings Algorithm

The Metropolis algorithm was developed by Metropolis et al. (1953) before it was gen-
eralised by Hastings (1970) to be the Metropolis-Hastings algorithm. Suppose we are
interested in sampling realisations from the posterior distribution π(θ|y) which has a non-
standard form. By introducing a proposal distribution with density q(θ∗|θ), it makes
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the sampling of the posterior density π(θ|y) simple or feasible. The Metropolis-Hastings
algorithm is given by Algorithm 1.

Algorithm 1: Metropolis-Hastings Algorithm
1. Set the initial state of the chain to θ(0) = (θ(0)

1 , ..., θ
(0)
k )T and set iteration counter

to j = 1.

2. Generate a proposal θ∗ from the proposal distribution q(θ∗|θ(j−1)).

3. Evaluate the acceptance probability α(θ(j−1),θ∗) of the proposed move as follows:

α(θ,θ∗) = min
{

1, π(θ∗|y)q(θ|θ∗)
π(θ|y)q(θ∗|θ)

}
.

4. Then set θ(j) = θ∗ if we accept the proposal with probability α(θ(j−1)|θ∗).
Otherwise, we reject the proposed value and set θ(j) = θ(j−1).

5. Change the counter to j + 1 and return to step 2.

In this algorithm, a new value is proposed at every iteration from the proposal distri-
bution. Then, the proposal is accepted or rejected according to the acceptance probability
and, if it is accepted, the chain moves or, if it is rejected, it stays at the same position.
By generating the values for θ(1), θ(2), . . . , the above algorithm forms a Markov chain with
π(θ|y) as the stationary distribution.

In a Metropolis-Hastings algorithm, it is important to choose a suitable proposal dis-
tribution so that realisations from the parameters of interest can be generated. There
are several types of proposal distributions that are commonly used in Metropolis-Hastings
algorithms.

Symmetric chain
A special case of a proposal distribution for the Metropolis-Hastings algorithm is a
symmetric proposal distribution with q(θ∗|θ) = q(θ|θ∗), ∀θ,θ∗. Then, the accep-
tance probability can be simplified as follows:

α(θ|θ∗) = min
{

1, π(θ∗|y)
π(θ|y)

}
,

and so the acceptance probability does not involve this proposal density at all.
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Random walk proposals
It is possible to introduce the proposed value θ∗ from a random walk as follows:

θ∗ = θ(j−1) +wj

where wj are independent and identically distributed random p × 1 vectors which
have density f(.) and are easily sampled. Usually, the distribution of wj has a mean
of 0 and is symmetric about its mean. Then the proposal distribution can be set as
q(θ∗|θ) = f(|θ∗ − θ|). We can choose any suitable distribution for f(.), typically,
a uniform or normal distribution. An important consideration for a random walk
proposal is to determine a suitable variance for the chosen distribution since it will
affect the acceptance probability and the overall proportion of accepted moves. The
chain is said to be too “cold” if the variance for the innovation wj is too low, making
the proposed values mostly accepted. Conversely, the chain is said to be “hot” if the
variance for the innovation is too large, so that only a few proposed values will be
accepted. Acceptance rates between 20% and 50% are considered acceptable (Besag
et al., 1995; Bennett et al., 1996; Gamerman & Lopes, 2006) although Gelman et al.
(1996) found out that the acceptance rate should be optimally around 25%. It
is suggested that to get an acceptance rate within this range, the variance of the
innovation should be “tuned” first.

Independence chain
Suppose that the proposal distribution is formed independently of the position of
the chain and so q(θ∗|θ) = f(θ∗) for some density f(.). As a result, the acceptance
probability is:

α(θ|θ∗) = min
{

1, π(θ∗|y)
π(θ|y)

/
f(θ∗)
f(θ)

}
.

If f(.) is set to be as close as possible to π(.|y), this will optimize the acceptance
probability of the chain.

Componentwise transitions
In some circumstances, constructing a suitable proposal density q(.|θ) could be diffi-
cult. Suppose we have parameters θ = (θ1, · · · , θk). The full conditional distribution
(FCD) of θi is given by

π(θi|θ1, · · · , θi−1, θi+1, · · · , θk,y).

This FCD is not only dependent on the data y, but also on the current values of
other parameters. For many problems of interest, the FCD for a subset of θ may be
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suitable for sampling. Let the FCD for the ith component of θ be denoted by

π(θi | θ1, . . . , θi−1, θi+1, . . . , θk,y) = π(θi | θ−i,y); i = 1, · · · , k.

The algorithm for componentwise transitions is given by Algorithm 2.

Algorithm 2: Metropolis-Hastings: Componentwise Transitions
1. Set the initial state of the chain to θ(0) = (θ(0)

1 , ..., θ
(0)
k )T and set the iteration

counter to j = 1.
2. For every iteration j, we obtain a new value of θ(j) from θ(j−1) by successive

generation from distributions:

• θ(j)
1 ∼ π(θ1|θ(j−1)

2 , θ
(j−1)
3 , ..., θ

(j−1)
k ,y) using a Metropolis-Hastings step with

proposal distribution q1(θ∗1|θ
(j−1)
1 )

• θ(j)
2 ∼ π(θ2|θ(j)

1 , θ
(j−1)
3 , ..., θ

(j−1)
k ,y) using a Metropolis-Hastings step with

proposal distribution q2(θ∗2|θ
(j−1)
2 )

...
• θ(j)

k ∼ π(θk|θ
(j)
1 , θ

(j)
2 , ..., θ

(j)
k−1,y) using a Metropolis-Hastings step with proposal

distribution qk(θ∗k|θ
(j−1)
k ).

3. Change the iteration counter from j to j + 1 and return to step 2.

This is in fact the original form of the Metropolis algorithm where the Metropolis-
Hastings algorithm presented in Algorithm 1 can be regarded as a special case of
this algorithm. If the full conditional distribution for the particular component θi is
available for sampling directly, then it is easy to show that the resulting acceptance
probability is one. For this reason, this algorithm can also be called Metropolis-
within-Gibbs. When all full conditional distributions are completely known and
available for sampling from, then we can obtain an algorithm known as the Gibbs
sampler which is presented in the next section.

2.3.4.3 Gibbs Sampler

The Gibbs sampler was originally developed by Geman & Geman (1984) for image pro-
cessing before Gelfand & Smith (1990) brought this approach to the larger statistical
community (Gamerman & Lopes, 2006). Suppose we have a posterior density π(θ|y),
where θ = (θ1, θ2, ..., θk)T . To generate realisations from this posterior density, samples
are drawn from full conditional distributions, with densities

π(θi|θ1, ..., θi−1, θi+1..., θk,y) = π(θi|.), i = 1, 2, ..., k.
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The algorithm for Gibbs sampler is hence given by Algorithm 3.

Algorithm 3: The Gibbs Sampler
1. Set the initial state of the chain to θ(0) = (θ(0)

1 , ..., θ
(0)
k )T and set the iteration

counter to j = 1.

2. For every iteration j, we obtain a new value of θ(j) from θ(j−1) by successive
sampling from the full conditional distributions as follows:

θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , θ
(j−1)
3 , ..., θ

(j−1)
k ,y)

θ
(j)
2 ∼ π(θ2|θ(j)

1 , θ
(j−1)
3 , ..., θ

(j−1)
k ,y)

...
...

...

θ
(j)
k ∼ π(θk|θ

(j)
1 , θ

(j)
2 , ..., θ

(j)
k−1,y)

3. Change the iteration counter from j to j + 1 and return to step 2.

2.3.4.4 Analysing MCMC output

By taking a sufficient number of iterations, the MCMC scheme will give a representative
sample from the posterior distribution. However the number is only sufficient if conver-
gence has been reached. There is a possibility that the output from a MCMC scheme can
lead to inaccuracy and computational inefficiency. Therefore, it is important to monitor
the convergence carefully to ensure that the convergence has been reached. We can assess
convergence of the output by doing some diagnostic checks. A “burn-in” period is a pro-
cess where we discard some number of iterations of the samples at the beginning of the
MCMC run. Since we are interested only in samples from the posterior distribution, it is
appropriate to remove these samples which are obtained before the chain has converged.
Next, we can use a trace plot to check the convergence informally where the chain will
show the same qualitative behaviour if it has converged. Otherwise, the chain will display
a trend over the sample space. However, there are some circumstances where the chain
has converged but it was trapped in a local mode rather than exploring the full posterior.
Therefore, running two or more chains simultaneously from different starting points can
be helpful. The lack of convergence can be detected if the chains fail to overlap after
comparing their trace plots. It is also dangerous to look at selected trace plots only be-
cause every parameter might have a different outcome. Then, it is crucial for us to check
the trace plot for all parameters. In some cases, a bad trace plot for one parameter can
undermine the inference of other parameters. Hence, we should treat results with caution

23



Chapter 2. Introduction to Bayesian Inference and Time Series

if there is evidence of non-convergence in any of the trace plots. There are also various
formal diagnostic checks available such as those recommended by Heidelberger & Welch
(1983), Geweke (1992), Raftery & Lewis (1992) and Gelman & Rubin (1992) and these
had been thoroughly reviewed by Cowles & Carlin (1996).

Apart from that, we can also use kernel density plots to identify multimodality in the
posterior distribution. If multimodality of the marginal posterior is detected, then we may
need to take an action by running the MCMC algorithm longer to ensure that the entire
sample space is covered adequately.

Samples of the MCMC scheme will be dependent, meaning successive draws are au-
tocorrelated. This can be observed by looking at an autocorrelation plot. When there
is little dependence between successive samples, the chain is said to mix well. If there is
strong correlation between successive values in the chain, it will take longer to explore the
entire region of the parameter space which is described as poor mixing in the chain.

In general, the distribution of the chain θ(i)|y tends to the posterior distribution θ|y
by increasing the number of iterations until convergence is reached.

2.3.5 Data augmentation

In some circumstances, the direct computation of the posterior density for some models
is difficult to handle because it is laborious to compute the likelihood. In some cases,
it is possible to simplify this problem by using data augmentation. Data augmentation
is a common approach in Bayesian statistics to construct an iterative algorithm for the
posterior sampling by introducing unobservable variables, known as auxiliary variables. If
these variables were observed, then the computation of the posterior density would become
straightforward. This approach was demonstrated by Tanner & Wong (1987) and MCMC
methods are well suited to this approach.

Suppose we have observed data, y from a distribution which is conditional on the
parameter vector, θ. The idea of this approach is to augment y with the auxiliary data,
z. Thus, the posterior density is given as follows:

π(θ|y) =
∫
π(θ|y, z)π(z|y)dz (2.9)

where
π(z|y) =

∫
π(z|θ,y)π(θ|y)dθ. (2.10)

Tanner & Wong (1987) then introduced an iterative sampling scheme to construct approx-
imations for π(θ|y) and π(z|y) using two steps:
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1. draw samples for z using π(z|θ,y),

2. then, based on z, draw samples for θ using π(θ|y, z).

The first step is known as “imputation” step and the later is called “posterior” step.
Often, the data augmentation is used to handle missing data using an MCMC scheme. It
can also be applied in mixture distributions by introducing a group-membership variable
which is unobserved. In this case, z can be expressed as the component of the mixture
which generates the observed data. If z is known, then the computational analysis become
simpler by considering that zi = j, where j ∈ {1, · · · , J} is a component of the mixture
distribution. This will be discussed in Chapter 3, Section 3.2.

2.3.6 Bayesian inference for time series models

In time series analysis, the Bayesian approach can provide a systematic framework which
offers a complete way to analyse data by combining the prior information with the data.
Then, Bayesian analysis can be applied to various types of time series models. For instance,
a Bayesian approach can be used to analyse the uncertainty of missing values in the
sequence of any observations. Kong et al. (1994) showed that the posterior distribution for
missing data could be generated by applying the data augmentation and a Gibbs sampler
to the model. Originally, the Bayesian approach was not very popular in time series
analysis since it is analytically intractable especially when the conjugate distributions do
not represent the prior distribution of the parameters. However, this difficulty has been
resolved in the 1990s due to more advanced computing power and the introduction of
MCMC for sampling from Bayesian posterior distributions. Some of the Bayesian methods
to compute the posterior distribution have already been discussed in Section 2.3.4.

Traditionally, the DLM approach tends to be favoured by Bayesian statisticians for
modelling time series, probably for historical reasons (see Harrison & Stevens (1971) and
West & Harrison (1997)). The DLM approach is more easily described in Bayesian terms.
For instance, our beliefs about the future can be represented by the expectation of future
values and can be updated when we observe data. The Bayesian approach can also be
extended to other types of state space model such as DGLM (see West et al. (1985)) and
HMM (see Scott (2002)). Consider a DGLM where the observational distribution at time
t has a density fy (yt|µt, φ), where φ is a scale parameter and µt is a location parameter.
Let ηt = g(µt) = F

′
tXt and the evolution is given in (2.6b). Using the ideas of data

augmentation, as in Section 2.3.5, the full-data likelihood is

f0(X0)
T∏
t=1

fY (yt|µt, φ)fX(Xt|Xt−1).
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The system vectors X0, X1, · · · , XT are unobserved and can be treated as auxiliary data
in an MCMC scheme.

However, there is no reason why Bayesians can not use other models in time series
such as ARMA models. A considerable amount of early literature has been published
on ARMA models within a Bayesian framework, for example, Zellner (1971), Harrison
& Stevens (1976), and Monahan (1983). The ARMA models can also be found in some
application of microeconomics time series such as unemployment rates using Bayesian
approach (de Alba, 1993; Rosenberg & Young, 1999). Thus, there is strong evidence that
the Bayesian approach can be applied to any time series models.

2.4 Conclusion

This chapter has briefly discussed the general approaches in time series models and
Bayesian inference. We have presented a simple discussion in Section 2.3.6 about the
application of Bayesian approach in time series models. There are a few time series meth-
ods that we will apply to build a daily rainfall model within the Bayesian framework. It
is important to introduce some of the preliminary ideas that we will use in this study. We
have also emphasised the use of MCMC techniques to generate posterior samples for the
unknown parameters. Next, we will discuss the application of the Bayesian approach in a
mixture model.
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Chapter 3

Introduction to Bayesian inference
in mixture models

3.1 Introduction

Mixture models were introduced by Newcomb (1886) and Pearson (1894) as a tool for
statistical modelling. There are two main reasons why we want to use a mixture model
as a sampling distribution. Firstly, we believe that there are two or more sub-populations
and it is therefore reasonable to represent them as mixture components. For example, the
size of starlings might be different for resident birds and migrants. Thus, it is sensible to
assume that there are two sub-populations of starlings in the samples. Secondly, a mixture
distribution gives greater flexibility in the sampling model and the shape of the distribution
in spite of not having the “physical” interpretation for the mixture components.

In this chapter we will review the application of Bayesian inference in mixture mod-
els, focusing on finite mixtures. The form of the likelihood for the finite mixture model
will be discussed in Section 3.2. Section 3.3 illustrates the construction of Monte Carlo
Markov Chain (MCMC) schemes for the finite mixture model with discussions on the label
switching problem. We will discuss the special case of mixture models which is also known
as a mixed distribution in Section 3.4. The observations in this model type contain both
discrete and continuous components for example zero values and positive values. Then, we
will apply the developed mixture models to data on ultrasound measurements within the
Bayesian framework in Section 3.5. In this section, two types of mixture models will be
considered in this application. The construction of the prior distribution and the resulting
posterior distribution for both models will also be discussed in this section.
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3.2 Finite mixture model

In general, the distribution of Yi given the parameter θj is called a finite mixture model if
the probability density function of Yi is

f(yi|π,θ) =
J∑
j=1

πjfj(yi|θj) (3.1)

where
∑J
j=1 πj = 1 and πj ≥ 0 is the probability of each component j membership

with J as the number of components. Then, if we have independent observations y =
(y1, y2, · · · , yn)T , the likelihood for the mixture model can be written as:

f(y|π,θ) =
n∏
i=1


J∑
j=1

πjfj(yi|θj)

 (3.2)

which is known as the observed data likelihood.

For instance, suppose that we have a simple two-component mixture model. Then the
density of Yi is given as:

f(yi|π, θ1, θ2) = πf1(yi|θ1) + (1− π)f2(yi|θ2)

where fj(y|θj) is the density for component j which depends on parameters θj . In this
model, the probability for the first component is represented by π and the probability
of second component is (1 − π), with 0 ≤ π ≤ 1. Thus, the likelihood of independent
observations y is given as:

f(y|π, θ1, θ2) =
n∏
i=1

[πf1(yi|θ1) + (1− π)f2(yi|θ2)].

However, if we have more than two components, the likelihood in (3.2) could be very
complicated. One way to simplify inference for this model is by using data augmentation
(Tanner & Wong, 1987). Using this approach, we can introduce a group-membership
variable for mixture components which is unobserved. Suppose that we have a set of
auxiliary variables z = (z1, · · · , zn)T which corresponds to the unknown component of
mixture with zi ∈ {1, · · · , J}. Given zi = j, the conditional likelihood can be written as

f(y|z,π,θ) =
n∏
i=1

fzi(yi|θzi).

If z is known, the conditional density for yi can thus be simplified as fzi(yi|θi). Given the
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probability of each unknown component of mixture, Pr(zi = j) = πj , the variables z have
a multinomial or categorical distribution. Then, by observing y and z, the likelihood is
given as

f(y, z|π,θ) =
n∏
i=1

πzifzi(yi|θzi).

This likelihood is called the complete data likelihood, which is in contrast to the likelihood
in (3.2), which only assumes the knowledge of the observed data and not the auxiliary
variables. Nonetheless, the marginal likelihood of the observed data, y can be obtained by
summing the complete data likelihood over all possible z. Here, we can either use a Gibbs
sampler or Metropolis-within-Gibbs algorithm to sample the correct marginal posterior
distribution of the parameters and the auxiliary variables.

A considerable amount of literature has been published on mixture models. McLachlan
& Peel (2001), Jasra et al. (2005), Marin et al. (2005), and Frühwirth-Schnatter (2006) give
a comprehensive review for finite mixture models. Finite mixture models can be used in
wide-ranging application areas such as economics, medicine, biology and physics, and this
can be further extended to bioinformatics and genetics (Frühwirth-Schnatter, 2006). For
further information, see Delmar et al. (2004) and Tadesse et al. (2005). A fine example on
the use of a finite mixture model for the modelling of the time intervals between eruptions
at the “Old Faithful” geyser in the Yellowstone National Park, Wyoming, USA is given by
Azzalini & Bowman (1990). The data are illustrated in Figure 3.1. From this figure, we
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Figure 3.1: Density plot and histogram of mixture model example from “Old Faithful” geyser data
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can see clearly that there are two distinct modes. Thus, it is possible to infer that there
are two sub-populations in the data, justifying the use of a mixture model for this kind of
problem.

3.3 Markov chain Monte Carlo (MCMC) for mixture model

3.3.1 Algorithm

In this section, we will briefly describe the Markov chain Monte Carlo (MCMC) steps
for a mixture model. Suppose that we have a joint prior density π(π,θ) where π =
(π1, · · · , πJ)T and θ = (θ1, · · · ,θJ). In general, the joint density for all quantities is given
by:

π(y, z,π,θ) = f(y, z|π,θ)π(π,θ)

=
{

n∏
i=1

πzifzi(yi|θzi)
}
π(π,θ).

To draw posterior samples for θ, π and z, we can use an MCMC scheme and draw samples
from their full conditional distributions which are in turn dependent upon the form of the
joint prior for θ and π. Consider that we have a case where θj and π are independent
from each other and θj is independent of θk for k 6= j. The joint prior distribution can be
written as

π(π,θ) = π(π)
J∏
j=1

π(θj).

Therefore, an MCMC scheme for a mixture model is given as follows:

1. Sample a new value for θ.

Let θ−j = (θ1, · · · ,θj−1,θj+1, · · · ,θJ). The full conditional distribution for θj is
given as

π(θj |θ−j ,y, z,π) ∝ π(y, z,π,θ)

∝
{

n∏
i=1

πzifzi(yi|θzi)
}
π(π)

J∏
j=1

πj(θj)

∝ πj(θj)
∏
i∈Cj

fj(yi|θj)

where Cj = {i : zi = j} represents the subset of observations belonging to component
j. The parameterisation of π(θj |θ−j ,y, z,π) can be simplified as π(θj |y, z,π) since
the full conditional distribution does not depend on θk where k 6= j. Then, the new
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value for θ is obtained by taking an independent realisation from each of π(θj |y, z,π)
with j = 1, · · · , J .

2. Sample a new value for π

The full conditional distribution of π can be written as

π(π|y, z,θ) ∝ π(y, z,π,θ)

∝
{

n∏
i=1

πzifzi(yi|θzi)
}
π(π)

J∏
j=1

π(θj)

∝ π(π)
J∏
j=1

π
nj
j

where nj represents the number of observations belonged to component j. Typically,
the density of π(π) is that of a Dirichlet distribution and since the full conditional
distribution is also multinomial, then this is a conjugate update.

3. Sample a new value for z

Let z−i = (z1, · · · , zi−1, zi+1, · · · , zn) and then, the full conditional distribution for
zi is a discrete distribution with

π(zi = j|yi,π,θ) ∝ π(y, z,π,θ)

∝
{

n∏
i=1

πzifzi(yi|θzi)
}
π(π)

J∏
j=1

π(θj)

∝ πjfj(yi|θj).

where π(zi = j|yi,π,θ) = π(zi = j|z−i,y,π,θ) since the full conditional distribution
does not depend on zk with k 6= i. The new value for z can then be sampled by taking
independent realisations from each π(zi = j|yi,π,θ), j = 1, · · · , J for i = 1, · · · , n.

3.3.2 Label switching

Label switching in mixture models was first described by Redner & Walker (1984). Label
switching causes difficulties in MCMC sampling, making the posterior distribution difficult
to summarize. This usually occurs in a mixture model because of the unchanged likeli-
hood under relabelling of mixture components (Stephens, 2000). For example, consider J
components in (3.2) where each component is set to the same distribution family. Then,
the likelihood value for all J ! possible permutations will all be the same and the posterior
will become multimodal unless we have a strong prior that can distingush between the
components of the mixture.
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Label switching happens when the sampler starts to jump from one component to
another, causing switching from one permutation of the labels to another. One solution
to prevent label switching is to restrict the order of the J parameters such as θ1 < θ2 <

. . . < θJ . This solution is effective but it has the disadvantage when our model contains
more components than we actually need. Hence, we might encounter another problem
where label switching occurs between different possibilities. At present, there are several
advanced solutions that can be used to prevent label switching in mixture models. For
example, see Stephens (2000) and Puolamäki & Kaski (2009).

3.4 Mixed Distribution

In most discussion of time series, the data are either discrete or continuous. However,
there is a special case of mixture models where the data are composed of both discrete
and continuous components and this is called a mixed distribution. An important case
of a mixed distribution occurs when the observations may not only take positive values
but also include a lot of zero values. As a result, the observations of the time series are a
combination of a discrete component at zero and a continuous component on the positive
real line. A distribution of this type commonly has the features of a spike or a discrete
probability mass at zero, followed by a bump or ramp for the positive values on the real
line as demonstrated in Figure 3.2. In this figure, the area of the ellipse at y = 0 represents
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Figure 3.2: The example of the features for zero-continuous distribution

the probability of a zero observation and the total area of this circle and the area under the
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density curve is equal to one. Frequently, this happens in many application areas such as
meteorology, ecology, economics, and environmental sciences. An example is daily rainfall
amounts.

The majority of literature suggests that data of this type can be conceptually modelled
using a “two-part framework” (Tooze et al., 2002; Grunwald & Jones, 2000; Stern &
Coe, 1984). The model can be separated into two parts that represent two different
processes. The first part is the occurrence process which governs the probability of a
positive observation whilst the second part corresponds to the amount process which
characterizes the amount of each positive observation. To fit the amount process, the choice
of distribution is critical to ensure a good fit and an accurate predictive distribution. For
rainfall data, Heaps et al. (2015) used a log-normal distribution, while Grunwald & Jones
(2000) and Stern & Coe (1984) used a gamma distribution. On the other hand, Sanso &
Guenni (1999) used a power transformed truncated normal distribution for fitting rainfall
amounts.

In general, the likelihood for independent observations from a zero-positive mixed
distribution with parameters π and θ can be represented as follows:

L(π,θ|y) =
n∏
i=1

[πf(yi|θ)]ri [(1− π)]1−ri (3.3)

where f(.) is the probability density function for the amount process and r = 1 if y > 0
and otherwise r = 0. The binomial distribution is employed for the occurrence process
and this is used for finding the probability for each component. To relax the assumption
of independence in the occurrences, a Markov chain is often used to model the sequence of
zero and positive components. For example, Grunwald & Jones (2000) and Stern & Coe
(1984) employ a Markov chain for the occurrence process when modelling rainfall data.

3.5 Application: Mixture Model for Ultrasound Data

3.5.1 Background

Ultrasound can be used as a means to monitor and characterize fluid systems in research
and industry for example in fermentation processes, since ultrasound can be propagated
through fluid systems. Normally, the propagation is characterized by the time-of flight
and the voltage amplitude attenuation of the wave. However, the existence of large-scale
dynamic fluctuations such as the presence of bubbles crossing the ultrasound path in the
ultrasonic data is inevitable due to the nature of the system. One way to ensure that the
ultrasonic properties of the background fluid are accurately isolated is by removing these
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“rogue” measurements.

Cowburn et al. (2018) set up an experiment to measure the time-of-flight and voltage
of the ultrasound pulse traveling through water containing bubbles. The experiment is set
up by housing the ultrasound transducer near to an aluminum vessel which contained the
sample fluid. To maintain an ambient temperature of 25◦C (±0.5◦C), the vessel needed
to be submerged in a heated water bath. The sample fluid was stirred to ensure the
horizontal positions of the bubbles are randomized. To produce a broadband ultrasound
pulse, a USB-connected pulser-receiver played a role to stimulate the transducer using a
narrow Radio Frequency (RF) pulse with a duration of 1 µs. Subsequently, the pulse was
repeated at a frequency of 1 kHz (for details, see Cowburn et al. (2018)).

The ultrasonic data are collected by recording the measurement of returning ultrasound
waves which generate a voltage signal. These returning ultrasound waves occur because of
two conditions. Firstly, the echo occurs secondary to the reflection off the container’s wall
and secondly, from the bubbles in the container. In this experiment, monitoring the peak
of the voltage trace and recording its time-of-flight and voltage amplitude are important.
Two voltage peaks can be seen at the early and late times of flight, corresponding to the
reflections off the container’s wall and bubble surfaces.

3.5.2 The model

In this section, we will introduce the mixture model for the ultrasound data. As we believe
that there are two distinct types of observations (bubble reflections - rogue measurement
and the real reflection off the container’s wall), it makes sense to represent each component
using a mixture model. For this case, the first component is represented by the ultrasound
waves reflected from bubbles and the second component is represented by the ultrasound
waves that were being reflected from the container’s wall. Figure 3.3 shows a histogram of
the ultrasound data. The figure shows that the data are mostly concentrated around 0.13
and the other observations are scattered between 0 and 0.12. Even though we do not have
strong evidence from these data, we will still consider fitting a two-component mixture
model to these data. We hence propose to fit the data using a two-component lognormal
mixture model since the observations are always positive. Furthermore, the lognormal
distribution is similar in shape to a gamma distribution. Therefore we also consider
applying a two-component gamma mixture to these data. There are five parameters in
total for each mixture model: one for the mixing probability and two for each component
distribution. We note that the likelihood might not clearly distinguish all possible values
of these parameters. Therefore, the prior specification for each parameter is important
because this may affect the separation and identification of each component in the mixture.
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Histogram for ultrasound data
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Figure 3.3: Histogram for Ultrasound data

3.5.2.1 Lognormal mixture model

Let Yi ∈ R+ be a random variable for the time-of-flight of the ultrasound data with
observed value, yi. Suppose that Zi represent the occurrence variable and serve as an
indicator function for Yi where

Zi =
{ 1, reflected from bubbles

2, reflected from the container’s wall. (3.4)

The variable Zi has conditional probabilities which follows a Bernoulli distribution:

Zi|p ∼ Bern(p)

and so

f(zi|p) =

p, (zi = 1)

1− p, (zi = 2)
(3.5)

where p is a probability for the first component.

In this preliminary analysis, we assume Yi follows a lognormal distribution:

Yi|µj , τj , zi = j ∼ LN(µj , 1/τj)

where the mean and variance of Yi are given as λj = eµj+1/2τj and Vj = e2µj+1/τj (e1/τj−1)
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with j ∈ {1, 2}. In this model, the priors for the parameters are given as follows:

p ∼ Beta(ap, bp)

µj ∼ N(µ0,j , ν0,j)

τj ∼ Ga(gτj , hτj )

Then, the joint density is given by:

π(y, z,µ, τ , p) =
I∏
i=1

f(yi|µzi , τzi)×
2∏
j=1

π(µj)×
2∏
j=1

π(τj)×
I∏
i=1

f(zi|p)× π(p).

According to Bayes’ rule, the posterior distribution can be written as

π(µ1, µ2, τ1, τ2, p|y) ∝ π(µ1, µ2)π(τ1, τ2)π(p)L(y|µ1, µ2, τ1, τ2, p)

where L(y|µ1, µ2, τ1, τ2, p) is the likelihood for y.

3.5.2.1.1 Prior distributions The prior specification for the parameters is chosen
carefully by giving numerical values to µ0,j , ν0,j , gτj , hτj , ap and bp. Suppose that, for
component j, we give µj a normal prior and τj a gamma prior, where µj and τj are deemed
independent. Suppose that we imagine a large sample Y1j , · · · , Ynj from component j,
and let Xij = log Yij where n is large enough so that the sample mean X̄j = 1

n

∑
Xij is

approximately µj and the sample variance S2
xj = 1

n−1
∑n
i=1

(
Xij − X̄j

)2
is approximately

σ2
j = τ−1

j . Suppose that our three quartiles for X̄j are Qm1j , Qm2j and Qm3j . To obtain
these values, we can ask the expert as follows:

Q1 “Please think about the sample mean X̄j from component j. Can you give a value
such that you think that it is equally likely that X̄j will be less than or greater than
this value?” Let the given value be Qm2j .

Q2 “Please think about the sample mean X̄j from component j. Suppose that you were
told that X̄j is less than Q̄m2j. Can you give a new value such that you think that it
is equally likely that X̄j will be less than or greater than this value?” Let the given
value be Qm1j .

Q3 “Still thinking about the sample mean X̄j from component j. Suppose that you were
told that X̄j is greater than Q̄m2j. Can you give a new value such that you think
that it is equally likely that X̄j will be less than or greater than this value. Let the
given value be Qm3j .
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Then our prior mean for µj is µ0j = 1
2 (Qm1j +Qm3j) and our prior variance for µj is

v0j = [(Qm3j −Qm1j) /1.349]2.

Suppose that our three quartiles for S2
xj are QS1j , QS2j and QS3j where we can gain

these point values using these questions:

Q4 “Please think about the sample variance S2
xj from component j. Please give a value

such that S2
xj is equally likely to be less than or greater than this value.” Let the given

value be QS2j .

Q5 “Still thinking about the sample variance S2
xj from component j. Suppose that you

were told that S2
xj is less than QS2j. Please give a new value such that it is equally

likely that S2
xj is less than or greater than this value.”.Let the given value be QS1j .

Q6 “Still thinking about the sample variance S2
xj from component j. Suppose that you

were told that S2
xj is above than QS2j. Please give a new value such that it is equally

likely that S2
xj is less than or greater than this value.” Let the given value be QS3j .

Then our three quartiles for τj are Q−1
S3j , Q

−1
S2j and Q−1

S1j . The parameter τj has a
Ga (gτj , hτj) distribution where gτj is chosen by iteratively solvingQ−1

S1j/Q
−1
S3j = R3 (gτj) /R1 (gτj),

where Rq(a) is quartile q for a Ga(a, 1) distribution, and hτj = R2 (gτj) /Q−1
S2j .

Using this method, we have reasonable values which can be used for illustration as
follows:

Qm11 = −3.5 Qm31 = −2.5

Qm12 = −2.05 Qm32 = −1.95

QS11 = 0.5 QS21 = 0.8 QS31 = 1.2

QS12 = 0.0002 QS22 = 0.0004 QS32 = 0.0008

and hence
µ01 = −3 v01 = 0.55

µ02 = −2 v02 = 0.005

gτ1 = 2.64 hτ1 = 1.85

gτ2 = 1.22 hτ2 = 0.0004.

Now, suppose that the probability of component 1 is given by p which follows a beta
distribution. To elicit the prior for p, we can use these questions to ask the expert, based
on the hypothetical future sample method of Winkler (1967):

Q7 “Please give your assessment of the probability that a randomly chosen observation
belongs to component j.” Let the given value be m0 which is the prior mean for p.
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Q8 “Suppose that you were given a random sample of nf observations and that xf of
these belonged to component j. With these additional data, what would now be your
assessment of the probability that a new observation would belong to component j?”
Let the given value be mf . Note that actual numerical values are given for nf and xf .
These are chosen in the light of the value given for m0, so that xf/nf is sufficiently
different from m0 and an initial judgement about the expert’s certainty about p.
Larger values of nf are required if the expert has greater prior precision.

Then we have

ap
ap + bp

= m0 and ap + xf
ap + bp + nf

= mf .

Solving these, we obtain

ap = m0

(
nfmf − xf
m0 −mf

)
and bp = (1−m0)

(
nfmf − xf
m0 −mf

)
.

Using this method, we obtain illustrative values as follows:

m0 = 1/6 = 0.167, mf = 1/5 = 0.2

with nf = 12 and xf = 4. Hence

ap = 8, bp = 40.

For further discussion of relevant elicitation methods, see, for example, O’Hagan et al.
(2006).

3.5.2.1.2 Posterior distributions The joint posterior distribution has been demon-
strated in Section 3.5.2.1. To draw the posterior samples for the unknown parameters, an
MCMC scheme was applied using the R JAGS package (Plummer, 2012). We also impose
the restriction µ1 < µ2 to avoid label switching. Following a burn-in of 5000 iterations, a
further 10000 iterations were taken to draw the posterior samples. The computing time
that was required to generate 10000 posterior draws was around 40 seconds by using R
software on a 2.00GHz Samsung laptop 300V3A model with Intel Core i7-2630QM pro-
cessor and 12 Gbytes of random-access memory. Based on the analysis, 10000 iterations
are sufficient to obtain the realisations from the posterior distribution since the chains
converge after the initial burn-in period. The trace plots in Figure 3.4 indicate that the
mixing for all parameters is very satisfactory. Figure 3.5 shows the differences between
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prior and posterior densities for the unknown parameters. A full summary of the posterior
distributions for the unknown parameters is given in Table 3.1.

Parameter Prior mean Prior SD Posterior mean Posterior SD
µ1 -3 0.74 -2.7970 0.0736
µ2 -2 0.07 -1.9884 0.0005
τ1 1.43 0.88 1.8801 0.2563
τ2 3050 2761.34 5021.5155 304.4
π 0.17 0.05 0.1086 0.0103

Table 3.1: The prior and posterior means and standard deviations (SD) of the unknown parameters
for the lognormal mixture model

3.5.2.2 Gamma Mixture Model

The second mixture model is a two-component gamma mixture which is an alternative to
the lognormal mixture. In this model, we assume Yi follows a gamma distribution:

Yi|αj , βj , zi = j ∼ Ga(αj , βj)

where βj = αj/λj and λj = exp(µj). The variables αj and βj are the shape and scale
parameters for the gamma distribution where λj represent the mean of Yi for j ∈ {1, 2}.
The priors for the parameters in this model are provided as follows:

µj ∼ N(µ0,j , v0,j)

αj ∼ Ga(gαj , hαj ).

The parameterisation for f(zi|p) is similar to that for the lognormal mixture model. Then,
the joint density can be expressed as:

π(y, z,µ,α, p) =
I∏
i=1

f(y|µzi , αzi)×
2∏
j=1

π(µj)×
2∏
j=1

π(αj)×
I∏
i=1

f(zi|p)× π(p).

Hence, the posterior distribution for the gamma mixture model can thus be written as

π(µ1, µ2, α1, α2, p|y) ∝ π(µ1, µ2)π(α1, α2)π(p)L(y|µ1, µ2, α1, α2, p).

3.5.2.2.1 Prior Specification The parameter µj here is not the same as in the log-
normal mixture model. In the lognormal case it is the mean of the logarithms of the
observations and also the logarithm of the median of the observations. In the gamma
case, on the other hand, it is the logarithm of the mean of the observations.
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Figure 3.4: The trace plots for the first 1000 iterations of µ1, µ2, τ1, τ2 and p for the lognormal
mixture model
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Figure 3.5: The prior (red dashed) and posterior (black solid) densities of µ1, µ2, τ1, τ2 and p for
the lognormal mixture model
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Suppose that we imagine a large sample Y1j , · · · , Ynj from component j, where n is
large enough so that the sample mean Ȳj = 1

n

∑n
i=1 Yij is approximately λj = αj/βj and the

sample variance S2
Y j = 1

n−1
∑n
i=1

(
Yij − Ȳj

)2
is approximately Var (Yij |αj , βj) = αj/β

2
j .

The sample coefficient of variation Cj = SY j/Ȳj is then approximately α−1/2
j .

Suppose that we judge that our prior median for Ȳj is Lj and our prior lower and
upper quartiles for Ȳj are respectively Lj/Kj and KjLj . To obtain these point values, we
can ask the expert as follows:

Q9 “Please think about the sample mean Ȳj from component j. Please give a value such
that Ȳj is equally likely to be less than or greater than this value.” Let the given value
be Lj .

Q10 “Still thinking about the sample mean Ȳj from component j. Please provide a value
Kj such that the events Ȳj < Lj/Kj, Lj/Kj < Ȳj < Lj, Lj < Ȳj < KjLj and
KjLj < Ȳj are all equally likely.”

Then, our prior median and lower and upper quartiles for µj are logLj , logLj − logKj

and logLj + logKj , respectively. Our prior mean for µj is therefore logLj and our prior
standard deviation for µj is logKj/0.6745.

Suppose that we judge that our prior quartiles for Cj are QC1j , QC2j and QC3j . We
can obtain these point values from the expert by adapting Questions Q4, Q5, and Q6
in Section 3.5.2.1.1. Then our prior quartiles for αj are Q−2

C3j , Q
−2
C2j and Q−2

C1j . Then,
αj has a gamma Ga (gαj , hαj) distribution where gαj is chosen by iteratively solving
(QC3j/QC1j)2 = R3 (gαj) /R1 (gαj), where Rq(a) is quartile q for a Ga(a, 1) distribution,
and hαj = R2 (gαj)Q2

C2j . Using this method we have reasonable values for illustration as
follows:

L1 = 0.06 K1 = 1.5

L2 = 0.135 K2 = 1.05

QC11 = 0.6 QC21 = 0.7 QC31 = 0.8

QC12 = 0.013 QC22 = 0.015 QC32 = 0.018

and hence
µ01 = −2.81 v01 = 0.36

µ02 = −2 v02 = 0.005

gα1 = 5.77 hα1 = 2.67

gα2 = 4.57 hα2 = 0.001

The prior specification for the probability of component 1 is still the same as in the
lognormal mixture model.
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3.5.2.2.2 Posterior distribution The form of the joint posterior distribution was
given in Section 3.5.2.2. We used a similar approach as for the lognormal mixture model
by using an MCMC scheme to draw posterior samples for the unknown parameters. Here,
the MCMC chain is run for 5000 iterations as burn-in and then a further 10000 iterations
were obtained as the posterior samples. Similar to the lognormal mixture model, the
computing time that was used to obtain 10000 posterior draws is around 1.3 minutes
using the same software and machine. Based on the trace plots in Figure 3.6, the chain
converges very well and the mixing appears to be very satisfactory for all parameters. The
prior and posterior densities of the unknown parameters are shown in Figure 3.7. The
full summary of the posterior distributions for the unknown parameters is given in Table
3.2. In addition, Figure 3.8 shows the comparison of posterior density of the mean,

Parameter Prior mean Prior SD Posterior mean Posterior SD
α1 2.16 0.9 2.4490 0.2951
α2 4570 2137.76 5099.9498 302.7
µ1 -2.81 0.6 -2.5733 0.0638
µ2 -2 0.07 -1.9882 0.0005
π 0.17 0.05 0.1102 0.0105

Table 3.2: The prior and posterior means with standard deviations (SD) of the unknown parameters
for the gamma mixture model

λj for component 1 and 2 for both models. From this figure, there are some differences
between the lognormal and gamma mixture models for component 1 but there are no large
differences for component 2. These differences might be attributed to the different shape
of the distributions. In component 2, where α2 is large, there is little difference in shape.
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Figure 3.6: The trace plots for the first 1000 iterations of α1, α2, µ1, µ2 and p for the gamma
mixture model
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Figure 3.7: The prior (red dashed) and posterior (black solid) densities of α1, α2, µ1, µ2 and p for
the gamma mixture model
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Figure 3.8: The posterior density of λj for component 1 and component 2 with lognormal (red)
and gamma (blue) models

3.6 Summary

We have described simple mixture models in this chapter with a focus on finite mixture
models. This model is usually used when the data are assumed to have two or more sub-
populations, or we want to give greater flexibility in the sampling model and the shape of
the distribution. We showed how data augmentation can be used to simplify the likelihood
and computations. We also introduced the MCMC scheme for the finite mixture models
with further discussion on the label switching problem.

In most cases, the data are either discrete or continuous. However, there is a special
case in mixture models where the data contain both discrete and continuous components
and these data hence follow a mixed distribution. An important special case is when
the discrete component of the mixed distribution represents the zero values whereas the
continuous component corresponds to the positive values of observations. An example of
this case is daily rainfall amounts which we will further expound in the next chapter. Next,
we applied two different mixture models to ultrasound data: the lognormal mixture and the
gamma mixture. The detailed parameterisation of the models and prior specification for
each parameter were discussed in this application. The RJAGS package (Plummer, 2012)
was used to run the MCMC scheme and generate posterior samples for the parameters.
The posterior summaries for the parameters were then provided.
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Modelling Univariate Daily
Rainfall Data

4.1 Introduction

The literature of time series modelling is immense and involves many approaches and
parameterisations. In some circumstances, the time series data consist of positive and zero
values. This type of data is quite challenging since it requires models for both discrete and
continuous components. A distribution of this type is known as a mixed distribution. This
frequently materializes in many application areas such as meteorology, ecology, economics
and environmental sciences. A well-known example is the daily rainfall whose values are
either positive if rain occurs or zero if rain is absent.

This chapter introduces the idea of modelling daily rainfall data within the Bayesian
framework. In this chapter, we only fit the daily rainfall data for one site with two
different applications before extending it to multiple locations in the next chapter. Section
4.2 outlines the basic model for modelling mixed distributions. In this section, we will
give detailed descriptions on how to model the amount and occurrence processes. This
method will be subsequently applied to daily rainfall data in Italy in Section 4.3. The
prior beliefs will be incorporated with the likelihood of the data to obtain the posterior
distribution using MCMC. In addition, we also endeavour to determine and propose the
best probability density function (pdf) to represent the amount process. To accomplish
this, three pdfs will be considered to fit the daily rainfall data.

Next, in Section 4.4, we will extend the rainfall model developed in Section 4.3 by in-
corporating the atmospheric circulation pattern, which is also known as the Lamb weather
type (LWT), into the British daily rainfall model. The LWT is included in the model by
allowing the rainfall occurrence probabilities and the mean of the amount distribution to
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be dependent upon the LWT. This will result in a more complex and challenging model
construction. Relating the occurrence probabilities and the amounts directly to the LWT
is in contrast to the approach of Germain (2010) and Heaps et al. (2015) who introduced
a latent “weather state” between the LWT and the observed rainfall. In addition Ger-
main (2010) and Heaps et al. (2015) considered only winter rainfall and did not include
seasonal effects in the model. Seasonal effects will be introduced in Section 4.2.4. MCMC
techniques will be used to evaluate the posterior distribution for each model parameter.
This will be discussed in detail in each section.

4.2 Modelling Daily Rainfall : The Basic Model

4.2.1 General structure

In this section, we shall describe the construction of a general daily rainfall model for a
single site. This work aims to provide the methodology required for modelling daily rainfall
within the Bayesian framework before this can be extended to multiple sites. Modelling
daily rainfall data is a complex process since the distribution is a mixture of discrete and
continuous components. Daily rainfall models commonly distinguish between the discrete
component which represents rainfall occurrence and the continuous counterpart which
corresponds to the rainfall amount when rain occurs. Hence, the daily rainfall can be
modelled separately in two parts: the occurrence process and the amount process. The
occurrence process is a process that models the probability of rainfall occurrences which
means that the data has a zero value when rain is absent and a positive value when rain
occurs. On the other hand, the amount process is a process that models the amount of
rainfall which occurs during a rainy day. It is hence important to represent the rainfall
amount with an appropriate distribution that only allows non-negative values.

Over the past few decades, most research using mixed distributions has advocated the
use of a two-stage approach. Stern & Coe (1984) demonstrated that the utilisation of
a two-stage approach in a daily rainfall model is relatively straightforward for hydrology
applications. Tooze et al. (2002) also employed the same approach for the analysis of
medical expenditure in the United States. Both examples have demonstrated that the
two-stage approach is an appropriate way to model mixed distributions.

Generalized Linear Models (GLMs) have also been employed to model a daily rainfall.
The GLMs are an effective class of probability models which can accommodate various
types of data such as climatological and meteorological data. The response variable for the
GLM approach generally does not necessarily need to be Gaussian, as long as it comes from
one of the members of the exponential family. Therefore, GLMs can handle non-normal
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responses using well defined characteristics for modelling the continuous and strictly pos-
itive amount process and the discrete component of occurrence process. Basically, the
response variable is linked to the linear predictor through a specific link function. The
early works by Coe & Stern (1982) and Stern & Coe (1984) have shown that it is quite
straightforward to model daily rainfall using GLMs in a hydrology context. They used a
simple linear regression with a Fourier series function as the covariate for both amount
and occurrence processes. Grunwald & Jones (2000) utilised a similar approach to this in
an Australian daily rainfall model by incorporating more complex covariates in the GLM
model. Moreover, recent literature in rainfall modelling indicates that the covariates in the
GLM may also include sophisticated weather variables such as temperature, wind speed,
and atmospheric circulation pattern (Chandler & Wheater, 2002; Furrer & Katz, 2007).
The GLM approach can also be extended to include spatio-temporal models. Chandler
& Wheater (2002), Yang et al. (2005) and Fernandes et al. (2009) successfully proposed
a GLM-based framework for spatiotemporal structure in daily rainfall models, an idea
which we will use in the next chapter. However, the majority of this literature in rainfall
modelling does not use the Bayesian approach. Therefore, we want to contribute to this
small literature and utilise the ideas from Coe & Stern (1982), Stern & Coe (1984) and
Grunwald & Jones (2000) by using a Fourier series function as a covariate for both the
amount and occurrence processes within the Bayesian framework. Particular attention is
also given to the relationship between these two processes. For the case of British daily
rainfall, we will extend the model by incorporating Lamb weather types (LWTs) directly
to the amount and occurrence processes.

Let Wt ∈ R+ be a random variable for the daily rainfall amount with an observed
value, wt at a single site at time t (measured in days), where t = 1, . . . , T . Suppose that
each observation in the daily rainfall data is generated from a random process where the
distribution of Wt, given quantities pt and µt (where 0 ≤ pt ≤ 1), can be defined as follows:

Fw(wt|pt, µt) = Pr (Wt ≤ wt|pt, µt) =


0, (wt < 0)

1− pt, (wt = 0)

ptFA(wt|µt), (wt > 0)

where FA(wt|µt) is the distribution function of the amount distribution. Hence Pr(Wt =
0) = 1 − pt. Given that Wt > 0, the conditional pdf of Wt is f(wt|µt). Let Rt represent
the rainfall occurrence and serve as an indicator function for Wt. Then we have:

Rt =
{ 0, Wt = 0

1, Wt > 0. (4.1)
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Thus, the random variable Wt can be re-expressed as:

Wt = I(Wt > 0)Yt
= RtYt (4.2)

where Yt = g(Zt) is a continuous random variable and g(.) is some monotonic function
defining a suitable transformation (e.g. exponential) together with the transformed value,
Zt. Here Wt is the actual rainfall amount whose value could be zero but it is always
observed. According to Stern & Coe (1984) and Grunwald & Jones (2000), Yt can be
regarded as the intensity process which can also be viewed as the potential rainfall amount.
The value of Yt is always positive but not always observed.

In order to describe the serial structure of the daily rainfall, it is necessary to consider
a model that can accommodate the relationship between the amount and occurrence pro-
cesses. Stern & Coe (1984) does not explicitly take into account any relationship between
the probability of rainfall and the rainfall amount. It is hence one of our primary objectives
to relate these two processes in our modelling strategies so that no important information
about the rainfall amount and occurrence is lost. Our goal is further emphasized by Tooze
et al. (2002) who stressed that it is critical to elucidate the relationship between the prob-
ability and the level of nonzero observation so that the accuracy and adequacy of analysis
might be improved. There are several approaches that we can employ to expound the
relationship between the rainfall amount and occurrence. In the first approach, we can fit
the occurrence process and then use that information to analyse the amount process as
follows:

Pr(Rt = 1) = pt and f(wt|Rt = 1) (4.3)

where f(wt|Rt = 1) is the conditional pdf for the rainfall amount when rt = 1. Alterna-
tively, we can evaluate the model for the potential rainfall amount first, and then, compute
the rainfall probability as:

f(yt) and Pr(Rt = 1|Yt = yt) = ĥ(yt) (4.4)

where ĥ(y) is some function for the rainfall probability which incorporates the information
contained in the amount process. A third possibility is that we can use a property of the
distribution, such as the mean, µ, as a covariate of the rainfall probability to link between
the amount and occurrence processes.

Heaps et al. (2015) demonstrated the first approach by introducing two normal vari-
ables, {Z0, Z1} where

Wt = I(Z0,t > 0) exp(Z1,t) = Rt exp(Z1,t)
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with Z0,t as the occurrence function and Z1,t as the amount function. In this case,
f(wt|Rt = 1) is a lognormal density and the authors included the Z0,t as the covari-
ate of Z1,t for the log-rainfall amount. On the other hand, Sofia (2007) utilised the third
approach by conditioning the occurrence process on the mean of the log potential rainfall
amount, ϑt using logistic regression for monthly rainfall data. Thus, the probability of
rainfall is given by

Pr(Wt > 0|ϑt) = pt = exp(ζ0 + ζ1ϑt)
1 + exp(ζ0 + ζ1ϑt)

.

In this case, Rt and Yt are conditionally independent given ϑt so f(wt|Rt = 1, ϑt) =
f(yt|ϑt). For example, we can have Zt = log(Yt) and, given ϑt, Zt has a normal distribution
with mean ϑt and Yt has a lognormal distribution.

While Germain (2010) and Heaps et al. (2015) used the first approach, in this the-
sis we propose to investigate the other two approaches as alternative models for daily
rainfall, within the Bayesian framework. In particular, we will use the third approach,
which was used by Sofia (2007), for the Italian daily rainfall and the second approach for
the British daily rainfall. We will also investigate the daily rainfall data over the whole
year in our model instead of just focusing on the daily rainfall data in the winter as in
the case of Germain (2010) and Heaps et al. (2015), or monthly data, as in the case of
Sofia (2007). Figure 4.1 illustrates the example of a directed acyclic graph (DAG) for the
general structure of the univariate daily rainfall model. This model is the first proposal
that we will use for the univariate daily rainfall in the context of the Italian data. In this
model, · · · , Yt−1, Yt, Yt+1, · · · are assumed to be independent and only depend on µt which
changes over time. It means that Yt variables are independent given the model parameters
and not just conditionally independent given Rt. The detail of this model will be discussed
in Section 4.3.2 and we will also examine the assumption of conditional independence in
the amount process, through analysis of residuals in Section 4.3.3.5. There are other possi-
bilities which we might consider, such as direct dependence between · · · , Yt−1, Yt, Yt+1, · · ·
as well as · · · , Rt−1, Rt, Rt+1, · · · but with a different context of rainfall data.

RtRt−1 Rt+1

µtµt−1 µt+1WtWt−1 Wt+1

YtYt−1 Yt+1

Figure 4.1: A DAG showing the temporal dependence structure of the Italian daily rainfall model
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4.2.2 Amount Process

The ideal distribution for the amount process has been a topic of interest in the past
few decades, especially in modelling daily rainfall. It is thus vital to choose the right
distribution to model the rainfall amount. Several studies have been conducted to identify
the best distribution for daily rainfall. However, there is no general consensus on which
probability density function is the best to represent rainfall amount (Wilks, 1990, Kedem et
al 1990, Cho et al 2004). The most commonly utilised distributions for the amount process
are gamma (Katz, 1977; Stern & Coe, 1984; Grunwald & Jones, 2000), lognormal (Tooze
et al., 2002; Heaps et al., 2015) and power transformed truncated normal distributions
(Sanso & Guenni, 1999). Other distributions that have been employed for the modelling
of daily rainfall data are Weibull (Tooze et al., 2002), exponential (Fernandes et al., 2009),
and mixed exponential distributions (Wilks, 1999).

For the amount process, f(yt|µt, θ) is the pdf for the potential rainfall amount with
a range between 0 and ∞. If Yt and Rt are conditionally independent given µt then
f(wt|Rt = 1, µt) is equivalent to f(yt|µt, θ) except for dry days, where Wt = 0. The
distribution for Yt still remains identical whether the day is wet or dry. However, Yt is
not observed if Wt = 0. For example, Yt could have a lognormal distribution and then,
if Yt = exp(Zt), Zt has a normal distribution. We can then propose to utilise the GLM
approach for fitting the mean of the amount distribution as:

ĝ(µt) = η̂t (4.5)

η̂t = x′tη

where ĝ(.) is the link function, η̂t is the linear predictor, η is a vector of coefficients and xt
is the covariate vector for observation t that may consist of temporal covariates, seasonal
and trend components, and weather variables (e.g. the Lamb weather type). For this
process, Yt and Ys where s 6= t could be conditionally independent given µt, µs and the
shape of the distribution could also change when one of the parameters varies over time t.
For this reason, it is useful to illustrate and monitor these changes using zero-continuous
plots (as in Figure 3.2) as the shape could shift from time to time. This will be explained
in more detail using the Italian daily rainfall example.

4.2.3 Occurrence Process

The proportion of wet and dry days can be described by modelling the occurrence pro-
cess. Let R = {R1, R2, · · · , Rt} denote the sequence of daily rainfall occurrence with
t = 1, 2, · · · , T . The conditional distribution of the occurrence process given pt is a
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Bernoulli distribution:
Rt ∼ Bern(pt).

In the literature on rainfall models, the vast majority of studies have utilised the first-order
Markov chain to model the occurrence probability and this was performed by assuming
that the conditional probability of rain occurrence on a specific day only depends on the
occurrence of rainfall on the previous day (Gabriel & Neumann, 1962; Coe & Stern, 1982;
Stern & Coe, 1984; Suhaila et al., 2011; Grunwald & Jones, 2000). For instance, Gabriel &
Neumann (1962) successfully demonstrated that the sequence of daily rainfall occurrence
in Tel Aviv, Israel could be modelled by using the first-order Markov chain. The Markov
chain can also be extended to higher-order models. However, Jimoh & Webster (1996)
found that a first-order Markov chain model is sufficient to predict the daily rainfall
occurrence. In our case, it is thus reasonable to use the first-order Markov chain for the
occurrence process.

Similar to the amount process, we may also use a GLM approach, considering that the
Bernoulli distribution is a part of the exponential family. Following the GLM framework,
the probability of rainfall occurrence is governed by the link function. Practically, let

ĥ(pt) = ζ̂t (4.6)

ζ̂t = x′tζ

where ĥ(.) is the link function, ζ̂t is the linear predictor, ζ is a vector of coefficients and
xt is the covariate vector. Without loss of generality, this is the same covariate vector as
for the amount process. There are several link functions that can be used to relate the
observed variable to the linear predictor. Most research has emphasized the use of the
logit link function to transform pt from a (0, 1) scale to a (−∞,+∞) scale (Stern & Coe,
1984; Grunwald & Jones, 2000; Lima & Lall, 2009). By using a logistic transformation,
the relationship between the linear predictor, ζ̂t, and transition probabilities of rainfall
occurrence, pt, can be expressed as

ζ̂t = log
(

pt
1− pt

)
= logit {pt} (4.7)

with an inverse transformation of

pt = exp(ζ̂t)
1 + exp

(
ζ̂t
) . (4.8)

From this relationship, the value of ζ̂t → ∞ if pt → 1 and if pt → 0 then ζ̂t → −∞.
Alternatively, we can employ other link functions such as the probit link function which
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is denoted by:
ζ̂t = Φ−1 {pt} ,

where Φ−1 is the inverse of the standard normal distribution function, or the complemen-
tary log-log link:

ζ̂t = log [− log {1− pt}] .

Since Heaps et al. (2015) used the first approach for linking the occurence and amount
processes and used a lognormal amount distribution, in effect they used a probit link.
Other authors in the rainfall modelling literature, such as Gabriel & Neumann (1962),
Coe & Stern (1982), Stern & Coe (1984), Grunwald & Jones (2000), Sofia (2007) and
Fernandes et al. (2009), have used a logit link. We have chosen to use a logit link in
common with these authors and to provide a contrast to Heaps et al. (2015). Although
the shapes of the two link functions are quite similar, the use of the logit link may provide
an advantage in terms of computational speed since we do not have to evaluate a normal
cumulative distribution function or its inverse.

4.2.4 Seasonal Effect

One of the novelties that are proposed in this study is dealing with seasonal effects, es-
pecially when the rainfall data is expected to have a cyclical pattern. In temperate and
subpolar regions such as the European countries, daily rainfall occurrence may be affected
by seasonal changes where the mean rainfall amount and the frequency of occurrence might
be different, for example, during the winter and the summer periods. The changes of the
annual rainfall cycle are important in agricultural planning especially for determining the
optimal time for planting crops and for estimating the crop yields. Hence, it is reasonable
to incorporate seasonal effect to evaluate the nature of rainfall variability for countries in
the temperate region. In the Heaps et al. (2015) model, only winter rainfall data were
used and the model did not incorporate seasonal effects.

The most popular method that is extensively used in meteorological studies for mod-
elling periodic time series is a truncated Fourier series. The earlier work by Jones &
Brelsford (1967) and West & Harrison (1997) have highlighted that the periodic structure
in time series can be modelled by sinusoidal representations. Furthermore, Stern & Coe
(1984) have adopted the Fourier series to evaluate daily rainfall occurrence and amount for
agriculture planning. Grunwald & Jones (2000) used the same approach to describe the
seasonal pattern of the occurrence and amount processes for the Australian daily rainfall
data.

The Fourier series consists of sine and cosine terms of harmonic frequencies with a
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period ω and this can be represented as:

F̂ (t) =
F∑
f=1

[afcos (ωf t) + bf sin (ωf t)] (4.9)

where F denotes the number of sinusoids and af and bf represent the Fourier coefficients
with ωf = 2πf/L, the angular frequency where L is the period. For daily data that exhibit
an annual cyclic pattern, L = 365.25. This Fourier series representation can be further
modified by performing further substitutions for af and bf . Let ϕf be a phase of the
Fourier function, then af and bf are given by:

af = Afcos(ϕf )

bf = −Af sin(ϕf ).

Then, we can define the amplitude, A and the phase, ϕf as

Af =
√
a2
f + b2f

and

ϕf = −arctan (bf/af ) .

Using this information, we can reparameterise the Fourier function in equation (4.9) in
the following form:

F̂ (t) =
∑F
f=1Afcos (ωf t+ ϕf ) . (4.10)

Now, this alternative Fourier series representation is easier for interpretation than the
original Fourier series form.

To fit a Fourier function in the model, we need to determine the optimal number
of harmonics to be used for this purpose. We can opt for any reasonable number of
Fourier harmonics, up to a maximum of 182. However, previous studies have advocated
that the first three harmonics are generally adequate to model seasonal effects on rainfall
(Liu et al., 2011; Roldán & Woolhiser, 1982; Richardson, 1981). We will therefore use
this recommendation when incorporating the seasonal effects into our models. We may
employ both Fourier series forms to model the amount and occurrence processes for the
daily rainfall model that will also allow for seasonal variability.
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4.2.5 Prior and Posterior Distributions

To complete the model, we need to specify the prior distribution for the parameters.
Let θ be the unknown parameter vector. If we assume prior independence between the
parameters for the amount and occurrence processes, the joint prior distribution is hence
given by:

π(θ) = π(θamt)× π(θocc)

where π(θamt) and π(θocc) are the prior distributions for the amount and occurrence pro-
cesses. Practically, prior selections for the unknown parameters should be based on our
prior beliefs, the information gained from the expert or from the previous studies. For
instance, normal prior distributions are often assigned to the regression coefficients η and
ζ since η and ζ can take any value within the range of −∞ to ∞. Apart from the re-
quirement that prior specifications should reflect reasonable prior beliefs, inappropriate or
careless specifications might also adversely affect, for example, the convergence of MCMC
algorithms.

Based on Bayes theorem, the posterior distribution of θ is proportional to likelihood
× prior. Thus, the posterior distribution of θ can be written as:

π(θ|w, r) ∝ f(w|θ)× f(r|w,θ)× π(θ). (4.11)

To obtain samples from π(θ|w, r), we can use an MCMC scheme. The full conditional
distribution (FCD) for each unknown parameter can be easily derived from Equation
(4.11). If the FCD is in a standard form, we can draw samples directly from it. If it does
not correspond to any standard density form, we need to use the Metropolis-Hastings
(MH) algorithm to obtain samples. Thus, we use a Metropolis-within-Gibbs algorithm.

4.2.5.1 Priors in truncated Fourier representation of seasonality

In this section, we will describe prior distributions for Fourier series coefficients. The
prior distribution for Fourier parameters in Equation (4.9) is difficult to interpret. How-
ever, we can think more directly about the prior distribution in terms of the phase and
amplitude as in Equation (4.10). Suppose that we have (af , bf )′ ∼ N2(mf , Vf ) where
mf = (mf,a,mf,b)

′ and

Vf =
(

v2
f,a ρfvf,avf,b

ρfvf,avf,a v2
f,b

)
.
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We can derive the prior distribution for Af and ϕf using the fact that Af =
√
a2
f + b2f

and ϕf = − arctan (bf/af ) ∈ [−π, π). The Jacobian of the transformation is given by

(
∂(af , bf )
∂(Af , ϕf )

)
=


∂af
∂Af

∂bf
∂Af

∂af
∂ϕf

∂bf
∂ϕf

 =

 cos(ϕf ) − sin(ϕf )

−Af sin(ϕf ) −Af cos(ϕf )


and hence ∣∣∣∣∣det

(
∂(af , bf )
∂(Af , ϕf )

)∣∣∣∣∣ =
∣∣∣−Af cos2(ϕf )−Af sin2(ϕf )

∣∣∣ = |−Af | = Af .

The density for (Af , ϕf )′ is therefore

f(Af , ϕf ) =f(af , bf )
∣∣∣∣∣det

(
∂(af , bf )
∂(Af , ϕf )

)∣∣∣∣∣
Af

2πvf,avf,a
√

1− ρ2
f

exp
{
−Q(Af , ϕf )

2(1− ρ2
f )

}

where

Q(Af , ϕf ) =(Af sin(ϕf )−mf,a)2

v2
f,a

− 2ρf (Af sin(ϕf )−mf,a) (Af cos(ϕf )−mf,b)
vf,avf,b

+ (Af cos(ϕf )−mf,b)2

v2
f,b

for Af ≥ 0 and ϕ ∈ [−π, π). Assuming mf,a = mf,b = 0 and vf,a = vf,b = ṽf , the density
simplifies to

f(Af , ϕf ) = Af

2πṽ2
f

√
1− ρ2

f

exp
{
−

A2
f

2ṽ2
f (1− ρ2

f )
{1− ρf sin(2ϕf )} .

}
(4.12)

This density can be further simplified by assuming ρf = 0 which gives

f(Af , ϕf ) = Af
ṽ2
f

exp
{
−
A2
f

2ṽ2
f

.

}
× 1

2π .

In this case, it is clear that Af and ϕf are independent and

Af ∼ Ray(ṽf ) and ϕ ∼ U(−π, π)

where Ray(ṽf ) denotes the Rayleigh distribution with scale parameter, ṽf .
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Provided that we wish to give the phase a uniform prior, this provides a convenient
way to convert a prior for the amplitude into a bivariate normal prior for the Fourier
coefficients. This may be appropriate for the higher frequencies. In the case of the funda-
mental frequency, with period one year, and perhaps the second frequency, we may well
have prior information about the annual pattern of rainfall which we can use. In this case
we can give the phase a more informative prior, for example a von Mises distribution. In
this case the distribution of the Fourier coefficients will not be bivariate normal. The von
Mises distribution is not a standard distribution in JAGS. While, of course, we need not
use JAGS and could use a specially-written sampler, in principle we can also overcome the
difficulty by using, for example, the “ones trick” (Lunn et al., 2012, Chapter 9) in JAGS.

However a more direct approach is as follows. Suppose that we wish to use F harmon-
ics. We can choose 2F time-points during the year and elicit beliefs about the value of
the seasonal term at these times. The times might include, for example the times which
are expected to give the maximum and minimum of the seasonal effect. Let the times be
t1, . . . , t2F . Then, using elicitation questions in which other model quantities are fixed as
appropriate, we can first elicit marginal means and variances for F̂1, . . . , F̂2F where F̂j is
the value of the seasonal effect at time tj . So

F̂j =
F∑
f=1

[af cos(ωf tj) + bf sin(ωf tj)].

We choose a multivariate normal prior distribution for F̂ = (F̂1, . . . , F̂2F )′ and assume
that this will adequately represent prior beliefs. It remains to specify covariances between
the elements of F̂. In the style of Farrow (2003) we write

F̂j − E(F̂j) = kj{U0 + U1 cos(ωtj) + U2 sin(ωtj) + Ej}

where ω = 2π/365.25, U0, U1, U2 and E1, . . . , E2F are all independent, zero-mean random
variables and Var(U0) = V0, Var(U1) = Var(U1) = V1 and Var(Ej) = VE . We constrain
V0 +V1 +VE = 1. Hence the marginal variance is Var(F̂j) = k2

j . The covariances are given
by

Covar(F̂j , F̂h) = V0 + V1(cosωtj cosωth + sinωtj sinωth) = V0 + V1 cos(ω[tj − th]).

By choosing values for V0, V1 and VE , we determine a covariance matrix VF for F̂.

Now we can write
F̂ = Tc

where c = (a1, . . . , aF , b1, . . . , bF )′ and T is a 2F×2F matrix where column f is (cosωf t1, . . . , cosωf tF )′
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and column f + F is (sinωf t1, . . . , sinωf tF )′. Then c = T−1F̂ and the covariance matrix
of c is T−1VF (T−1)′. Thus we obtain a multivariate normal prior distribution for the set
of Fourier coefficients.

4.2.6 Diagnostic checking for mixed-distribution time series

One class of diagnostic checks for the non-standard time series models has been proposed
by Smith (1985) to assess whether the fitted model is well calibrated. The author intro-
duced two types of residuals for the diagnostic checking which are the “forecast distribution
transformed residuals” (FDTR) and the normal-transformed version called “normal fore-
cast transformed residuals” (NFTR). An important feature of the FDTR is that, when
the distribution of the observations is continuous and if the observations are drawn from
the forecast distribution, the FDTR are distributed uniformly U(0, 1). If the observations
were generated according to our model and we knew the true values of the parameters and
used these values to calculate the forecast distribution, the FDTR would then be indepen-
dent. Since we do not know the values of the parameters and our forecast distribution is
a posterior predictive distribution, the FDTR will only be approximately independent.

In the case of rainfall, the distribution of the observations is not continuous since it is a
mixture of zeros (discrete) and positive values (continuous). Therefore, some modifications
are required to make the Smith (1985) method work. Smith (1985) already discusses in
great detail how to deal with the case where the observation distribution is discrete. In
our case, we need to do something similar and we therefore choose that, instead of working
in terms of the observations on the random variable W , which has a mixed distribution,
we define another random variable U , which has a continuous distribution, and work in
terms of this. Of course U and W are closely related and, in fact, given the value of U ,
we can find the value of W . Thus, we propose to define U as follows:

• If W > 0 then U = W .

• If W = 0 then U is drawn from a uniform U(−1, 0) distribution. In fact, we could use
any continuous distribution on (−∞, 0] for this purpose but this uniform distribution
is sufficiently convenient.

Hence, we simulate the values of U for the days with zero rainfall and use these as data. We
then use the forecast distributions of U , rather than W , and compare the observed values
of U with these distributions. The FDTR should then have a uniform U(0, 1) distribution
as required. NFTR can be obtained by using

VU = Φ−1(U)
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where Φ is the standard normal distribution function. If the fitted model is “good”, then
the residuals U and VU should be approximately independent and follow the uniform
U(0, 1) or standard normal, N(0, 1) distributions. If the residuals are unsatisfactory, then
we need to revise our model to improve the forecasting system by using the deviations in
{U} and {V } from their expected forms (Smith, 1985).

4.3 Daily Rainfall Model for Urbino, Italy

4.3.1 Data

Figure 4.2: Location of daily rainfall in the city of Urbino, Italy

To apply the developed model, we utilized daily rainfall data from the Urbino rain
gauge station in Italy. Figure 4.2 shows the location of Urbino which is in the region of
Marche, the central area of Italy. We used daily rainfall data recorded from 1981 until
2007 (27 years), a total of 9861 observations. These data have more zeros than positive
values as indicated in Figure 4.3.

From Figure 4.3, we can see that the occurrence of rainfall is quite low, with incon-
sistent rainfall patterns for each year. On average, the wettest days are usually between
around November and January, whilst the driest days took place in July and August. The
highest recorded rainfall amount was on the 24th of November 1991 with a precipitation of
113.8 mm. Fitting this type of rainfall data is considered very challenging since we have
more zeros than positive values. Hence, this warrants a more flexible modelling approach.
This will be discussed in more detail in the next section.
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4.3.2 The Model

4.3.2.1 Amount Process

In order to model the amount process, we utilised the ideas from Fernandes et al. (2009)
and Suhaila et al. (2011) by which we chose several distributions so that we can assess
and determine the best distribution for the amount process. To accomplish this, we will
compare the lognormal and gamma distributions since both distributions have 0 to ∞
support, a desirable property for modelling the amount process. Cho et al. (2004) had
previously compared the lognormal and gamma distributions for rainfall data and they
established that the lognormal distribution is more appropriate for dry regions, whilst a wet
region is better modelled using a gamma distribution. However, we will use two different
parameterisations for the gamma distribution. For the first parameterisation, we shall use
a gamma distribution with fixed shape parameter (α) and variable scale parameter, (β),
denoted as “G1” distribution, and in the second parameterisation, a gamma distribution
with a variable shape parameter (α) and fixed scale parameter, (β), denoted as “G2”
distribution, will be used. The full details of these distributions are given below:

• Lognormal distribution:
The observed rainfall amount can be defined as

Wt = RtYt

where Yt is assumed to follow a lognormal distribution. If Zt = log(Yt), then Zt

follows a normal distribution with the probability density function given by:

f(zt|ϑt, τ) =
√
τ

2π exp
{
−τ2 (zt − ϑt)2

}
(4.13)

where E(Zt) = ϑt and Var(Zt) = 1/τ . The mean and variance of Yt are given as
µt = eϑt+1/2τ and Vyy = e2ϑt+1/τ (e1/τ − 1).

If Zt and Zs, s 6= t, are conditionally independent given ϑt, ϑs and τ , the likelihood
function for ϑt and τ is represented by:

L(ϑt, τ |zt) =
T∏
t=1

√
τ

2π exp
{
−τ2 [zt − ϑt]2

}
. (4.14)

This transformation allows us to evaluate the parameter in a much simpler and
straightforward way since a Gaussian distribution can be used. Sofia (2007) employed
the lognormal distribution to evaluate the monthly rainfall in the Mediterranean re-
gion. Heaps et al. (2015) also used the lognormal distribution in non-homogeneous
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hidden Markov models (NHMMs) for describing the rainfall amount during winter.
Figure 4.4 shows different plots of probability density functions for the lognormal
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Figure 4.4: The forms of probability density function for lognormal distribution with different ϑ

distribution, each having different mean, ϑ and constant precision, τ , for the loga-
rithm of rainfall amount. As we can clearly observe, the shape of the distribution
is skewed to the right and its mode decreases as ϑ decreases. The density is always
zero at y = 0.

• Gamma distribution:
Another distribution that is widely used for rainfall amount representation is the
gamma distribution. The gamma distribution is a popular choice for rainfall data
because it produces a good fit and its shape is approximately identical to the his-
togram of rainfall data (Ben-Gai et al., 1998). The observed rainfall is hence given
by:

Wt = RtYt

where Yt follows a gamma distribution. The G1 distribution parameterisation is
represented by:

f(yt|α, βt) = βαt y
α−1
t e−βtyt

Γ (α) (4.15)

with constant shape parameter, α > 0 and variable scale parameter, βt = α/µt. The
mean of this distribution is E(Yt) = µt and the variance is Var(Yt) = µ2

t /α. If the
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observations are conditionally independent over time, the likelihood function based
on the G1 distribution for α and µt is given by:

L(α, µt|yt) =
T∏
t=1

(α/µt)α yα−1
t e−(α/µt)yt

Γ (α) . (4.16)

In Figure 4.5, the probability density function plots for gamma distributions with
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Figure 4.5: The forms of probability density function for gamma distribution with different β

variable β and constant α = 2 are shown.

For the G2 distribution, the probability density function is specified as

f(yt|β, αt) = βαtyαt−1
t e−βyt

Γ (αt)
(4.17)

where αt = µtβ represents the variable shape parameter and β > 0 is the fixed
scale parameter. The mean for this distribution is analogous to the mean of the G1
distribution but the variance is dissimilar. Since we have fixed β, the variance for this
distribution is Var(Yt) = µt/β. If the observations are assumed to be conditionally
independent with time, then the likelihood function for β and µt is:

L(β, µt|yt) =
T∏
t=1

βµtβyµtβ−1
t e−βyt

Γ (µtβ) . (4.18)
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Figure 4.6 demonstrates the different probability density function plots when α is
allowed to vary and β is fixed at 1. For α > 1, f(0) = 0. If α = 1 then f(0) =
β = 1/µ. If α < 1 then f(y) → ∞ as y → 0. In the case of α = 1, it is identical
to the exponential distribution. In general, the shape of the gamma distribution
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Figure 4.6: The forms of probability density function for gamma distribution with different α

is similar to the lognormal distribution’s shape except when α ≤ 1. An important
consideration when choosing between a gamma and lognormal distribution is the
behaviour of the density when y is close to zero, in particular whether the density
should go to zero. We also need to consider whether and, if so, how the shape of the
distribution should change if the mean changes. In particular this is the difference
between the G1 and G2 models.

For the rainfall amount, we assume that the mean of the distribution varies over time.
To fit the mean, we used the idea from Stern & Coe (1984) and this involves utilising the
truncated Fourier series for modelling the variation of daily rainfall over the year. In the
case of the lognormal distribution, the mean of the log amount Zt is given by

ϑt = η̂t,

while, for G1 and G2 distributions, the mean is:

µt = eη̂t
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where

η̂t = η0 +
F∑
f=1

[
afcos

( 2πft
365.25

)
+ bf sin

( 2πft
365.25

)]
. (4.19)

The parameter η0 is the common level for the amount of rainfall. We will use three
harmonics of the Fourier series as indicated in Section 4.2.4 to represent the seasonal
effect of the rainfall amount over the year.

4.3.2.2 Occurrence Process

In the Italian daily rainfall application, we use a first-order Markov chain to model the
probability of rainfall. The transition probabilities of the first-order Markov chain model
are given by:

pij(t) = Pr{rt = j|rt−1 = i}; i, j ∈ {0, 1},

with the transition matrix:

Pt =
( rt = 0 rt = 1

rt−1 = 0 p00(t) p01(t)
rt−1 = 1 p10(t) p11(t)

)
.

To represent the rainfall probability, we use a logistic link function to connect the predic-
tors with the rainfall probability pi1(t):

logit [pi1(t)] = ζ̂i,t; i = 0, 1.

If the distribution of Yt is a lognormal distribution, then the parameterisation for ζ̂i,t is
given by

ζ̂i,t = ζ0 +
F∑
f=1

[
cfcos

( 2πf
365.25

)
+ df sin

( 2πf
365.25

)]
+ ζ1ϑt + ζ2

(
i− 1

2

)
. (4.20)

If Yt follows a gamma distribution, then we have

ζ̂i,t = ζ0 +
F∑
f=1

[
cfcos

( 2πf
365.25

)
+ df sin

( 2πf
365.25

)]
+ ζ1 log(µt) + ζ2

(
i− 1

2

)
. (4.21)

The parameter ζ0 is a common intercept for logit [pi1(t)] and the term i is an indicator
function with a value of i = 1 if rain occurs on the previous day and i = 0 otherwise. We
also included ϑt and log(µt) in Equations (4.20) and (4.21) to create a link between the
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amount and occurrence processes so that the accuracy of the rainfall probability can be
improved. For instance, the rainfall probability increases if µt increases. We also employed
a Fourier series with three harmonics for rainfall occurrence to allow for the seasonal effect
over the year.

The conditional probabilities can be summarised as follows:

p11(t) =
exp

(
ζ̂1,t
)

1 + exp
(
ζ̂1,t
) ; p10(t) = 1− p11(t),

p01(t) =
exp

(
ζ̂0,t
)

1 + exp
(
ζ̂0,t
) ; p00(t) = 1− p01(t).

The unconditional probability can be represented by:

p̂t =p11(t)p̂t−1 + p01(t) (1− p̂t−1)

=p01(t) + [p11(t)− p01(t)] p̂t−1

p̂t + [p01(t)− p11(t)] p̂t−1 =p01(t).

We can write this as
ÄP̂ = p

and hence
P̂ = Ä−1p (4.22)

with P̂ = (p̂1, · · · , p̂365)′, p = (p01(1), · · · , p01(365))′ and

Ä =



1 0 0 · · · 0 ä1

ä2 1 0 · · · 0 0
0 ä3 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0
0 0 0 · · · ä365 1


where ät = p01(t)− p11(t).

However, the parameterisation in Equations (4.20) and (4.21) may lead to poor mixing
when we run the MCMC algorithm. To overcome this problem, we centered the predictor
variables as follows:
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• lognormal distribution

ζ̂i,t = ζ0 +
F∑
f=1

[
cfcos

( 2πf
365.25

)
+ df sin

( 2πf
365.25

)]
+ ζ1 (ϑt − ζ0) + ζ2

(
i− 1

2

)
.

(4.23)

• gamma distribution

ζ̂i,t = ζ0 +
F∑
f=1

[
cfcos

( 2πf
365.25

)
+ df sin

( 2πf
365.25

)]
+ ζ1 (log(µt)− ζ0) + ζ2

(
i− 1

2

)
.

(4.24)

4.3.2.3 Prior specifications

This section provides the detailed descriptions on the construction of the prior distributions
for the unknown parameters in our model. The prior density of the unknown parameters
is represented by π(θ). Priors will be constructed based on the information acquired from
previous studies and personal beliefs.

Suppose that the precision parameter, τ , in the lognormal distribution follows a gamma
distribution:

τ ∼ Ga(gτ , hτ )

for fixed hyperparameters gτ and hτ since the values are strictly positive on the real line.
This is a sensible choice because the gamma distribution is semi-conjugate to the likelihood
function of the lognormal form. For parameters α in the G1 distribution and β in the
G2 distribution, we also assign gamma priors since their values are stricly positive. The
priors are therefore:

α ∼ Ga(gα, hα); β ∼ Ga(gβ, hβ)

with fixed hyperparameters gα, hα, gβ and hβ.

In our model, we use a GLM approach to relate the linear predictor to the response
variable using a link function for both the amount and occurrence processes. The set of
linear coefficients for the amount process is represented by η = (η0, a1, a2, a3, b1, b2, b3) and
ζ = (ζ0, ζ1, ζ2, c1, c2, c3, d1, d2, d3) is the parameter vector for the occurrence process. Since
the linear predictor can take any values from −∞ to ∞, a normal prior for each unknown
parameter in the linear predictors is appropriate. If we assume prior independence between
the parameters, then the priors for all parameters are given below:
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• Amount process

η0 ∼ N(mA0, vA0) a1 ∼ N(ma1 , va1)

a2 ∼ N(ma2 , va2) a3 ∼ N(ma3 , va3)

b1 ∼ N(mb1 , vb1) bf ∼ N(mb2 , vb2)

b3 ∼ N(mb3 , vb3)

• Occurrence process

ζ0 ∼ N(mC0, vC0) ζ1 ∼ N(mC1, vC1)

ζ2 ∼ N(mC2, vC2) c1 ∼ N(mc1 , vc1)

c2 ∼ N(mc2 , vc2) c3 ∼ N(mc3 , vc3)

d1 ∼ N(md1 , vd1) d2 ∼ N(md2 , vd2)

d3 ∼ N(md3 , vd3).

We can relax the prior independence assumption by assigning a multivariate normal prior
for η and ζ :

η ∼ N7(η̄, P−1
η )

ζ ∼ N9(ζ̄, P−1
ζ )

where η̄ and ζ̄ represent the mean vectors with precisions Pη and Pζ .

4.3.2.4 Posterior distributions

The joint density of (θ,y, r) is given by:

π(θ,y, r) = π(θ)× f(y|θ)× f(r|θ)

= π(θamt)× π(θocc)×
T∏
t=1

f(yt|θamt)× f(r1 | θocc,θamt)
T∏
t=2

f(rt | rt−1,θocc,θamt).

Note that yt is only observed when rt = 1. To obtain the posterior distribution, we need
to work out the FCD for each unknown parameter from this joint density. The FCDs in
this section are provided only as general information and for future work. The full details
of the joint posterior and the FCDs for the amount process for these three distributions
are given as follows:
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1. Lognormal distribution

The FCD for τ is given as follows:

π(τ |z,θamt) ∝
T∏
t=1

f(zt|ϑt)× π(τ)

∝
T∏
t=1

√
τ

2π exp
{
−τ2 (zt − ϑt)2

}
× hτ

gτ τ gτ−1e−hτ τ

Γ (gτ )

∝ τT/2+gτ−1 exp
{
−τ

[
1
2

T∑
t=1

(zt − ϑt)2 + hτ

]}
.

This form corresponds to a gamma density

τ ∼ Ga(Gτ , Hτ )

where

Gτ = T/2 + gτ

Hτ = 1
2

T∑
t=1

(yt − ϑt)2 + hτ .

Let ϑ = {ϑ1, · · · , ϑT }
′
represent the mean vector, hence

∑(
zt − ϑt)2) is (z − ϑ)′ (z − ϑ).

Then,
f(z|θamt) ∝ exp

{
−τ2 (z − ϑ)′ (z − ϑ)

}
.

Although the Markov chain is non-homogeneous, the transition probabilities change
slowly and a reasonable approximation to the marginal probabilities for r1 is

f(r1|θocc,θamt) =
[ 1− p01(1)
p01(1) + p10(1)

]r1 [ p01(1)
p01(1) + p10(1)

]1−r1

=[p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1) ,

and hence,

f(r|θocc,θamt) = [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt .
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Therefore, the FCD for η is given by:

π(η|z, r) ∝f(z|θamt)× f(r|θocc,θamt)× π(η)

∝ exp
{
−τ2 (z − ϑ)′ (z − ϑ)

}

× [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt

× |Pη|
1/2

(2π)2F/2 exp
{
− 1

2(η − η0)′Pη(η − η0)
}

∝ [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt

exp
{
−1

2
[
τ (z − ϑ)′ (z − ϑ) + (η − η0)′Pη(η − η0)

]}
where i = rt−1 ∈ {0, 1}. This distribution does not belong to any standard form.

2. G1 distribution

The FCD of the shape parameter, α for the G1 distribution is given by:

π(α|y) ∝
T∏
t=1

f(yt|θamt)× π(α)

∝
∏T
t=1(α/µt)αyα−1

t e−(α/µt)yt

Γ (α) × hgαα α
gα−1e−hαα

Γ (gα)

∝
ααT+gα−1∏T

t=1E
α
t exp

{
−α

[∑T
t=1Et + hα

]}
[Γ (α)]T

where Et = yt/µt. This is again not in a standard form.
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For the scale parameter, η, the FCD is derived as follows:

π(η|y, r) ∝
T∏
t=1

f(yt|θamt)×
T∏
t=1

f(rt|θocc,θamt)× π(η)

∝
∏T
t=1(α/µt)αyα−1

t e−(α/µt)yt

Γ (α)

× [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt

× |Pη|
1/2

(2π)2F/2 exp
{
− 1

2(η − η0)′Pη(η − η0)
}

∝ [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt

T∏
t=1

Eαt exp
{
−
[
α

T∑
t=1

Et + 1
2(η − η0)′Pη(η − η0)

]}
.

This FCD for η again does not correspond to any standard density form.

3. G2 distribution

The FCD of β can be derived as follows:

π(β|y) ∝
T∏
t=1

f(yt|θamt)× π(β)

∝
T∏
t=1

ββµtyβµt−1
t e−βyt

Γ (βµt)
×
h
gβ
β β

gβ−1e−hββ

Γ (gβ)

∝ ββ
∑T

t=1 µt+gβ−1∏T
t=1 y

βµt−1
t

Γ (βµt)
exp

[
−β

(
T∑
t=1

yt + hβ

)]
.

This is not the density of a standard distribution.
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For η, the FCD is obtained as follows:

π(η|y, β) ∝
T∏
t=1

f(yt|θamt)×
T∏
t=1

f(rt|θocc,θamt)× π(η)

∝
T∏
t=1

ββµtyβµt−1
t e−βyt

Γ (βµt)

× [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt

× |Pη|
1/2

(2π)2F/2 exp
{
− 1

2(η − η0)′Pη(η − η0)
}

∝ [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt

ββ
∑T

t=1 µt+gβ−1∏T
t=1 y

βµt−1
t

Γ (βµt)
exp

{
−
[
β

T∑
t=1

yt + 1
2(η − η0)′Pη(η − η0)

]}
.

This density also does not correspond to any standard-form density.

The latent values, yt and zt are not observed when it is a dry day (Wt = 0). It is not
strictly necessary to sample the missing potential rainfall values in the Italian model.
However it simplifies the computations if we do. Let ydry and zdry be the values that are
not observed and thus we can treat them as auxiliary data within the data augmentation
framework (Tanner & Wong, 1987). When rt = 0, it is necessary to sample the posterior
value of ydry and zdry by considering the FCD as follows:

1. Lognormal distribution

π(zdry|r = 0, ϑt, τ) ∝f(zdry|ϑt, τ)

∝
√
τ

2π exp
{
−τ2 (zdry − ϑt)2

}
.

2. G1 distribution

π(ydry|r = 0, α, µt) ∝f(ydry|α, µt)

∝
(α/µt)αyα−1

dry e
−(α/µt)ydry

Γ (α) .
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3. G2 distribution

π(ydry|r = 0, β, µt) ∝π(ydry|β, µt)

∝
ββµtyβµt−1

dry e−βydry

Γ (βµt)
.

For the occurrence process, the FCD for ζ can be written as

π(ζ|r) ∝
T∏
t=1

f(rt|θocc,θamt)× π(ζ)

∝ [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt × |Pζ |1/2

(2π)2F/2

exp
{
− 1

2(ζ − ζ0)′Pζ(ζ − ζ0)
}

∝ [p01(1)]r1 [p10(1)]1−r1

p10(1) + p01(1)

T∏
t=2

[pi1(t)]rt [1− pi1(t)]1−rt exp
{
− 1

2(ζ − ζ0)′Pζ(ζ − ζ0)
}

where i = rt−1 ∈ {0, 1}. Again, the FCD does not conform to any density of a standard
form.

As we can see, the FCDs of the majority of parameters for the amount and occurrence
processes are not of any standard form. Therefore, the implementation of a Metropolis-
within-Gibbs scheme is required to generate the posterior samples for each parameter. For
example, the detailed steps of the MCMC scheme when we use the lognormal distribution
are given as follows:

1. Initialise the iteration counter to j = 1 and set the initial state of the chain to
θ(0) =

(
τ (0),η(0), ζ(0), z

(0)
dry

)
.

2. Obtain a new value θ(j) from θ(j−1) by successive generation of values for the fol-
lowing quantities

• τ (j) ∼ π
(
τ |η(j−1), z

)
using a Gibbs sampler step where

τ (j) ∼ Ga (Gτ , Hτ ) .

• η(j) ∼ π
(
η|α(j), z

)
using a Metropolis-Hastings step with proposal distribu-

tion:
η∗ ∼ N7

(
η(j−1), Ση∗

)
.
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• ζ(j) ∼ π (ζ|r) using a Metropolis-Hastings step with proposal distribution:

ζ∗ ∼ N9
(
ζ(j−1), Σζ∗

)
.

• z(j)
dry ∼ π

(
zdry|τ (j),η(j), z

)
.

3. Change the iteration counter from j to j + 1 and return to step 2.

4.3.3 Application

4.3.3.1 Prior distributions for the amount process

For the Italian daily rainfall application, the prior specification was constructed using suit-
able distributions based on the information acquired from previous studies and personal
beliefs. The form of the prior here is a recommendation but the choice of hyperparameters
is an illustrative example only. However, it is recommended that, in practical applications,
prior information should be obtained from experts on rainfall since they are the ones who
have a great deal of knowledge about rainfall. While it was not possible, within the
scope of this project, to conduct experiments to test elicitation methods, we provide here
elicitation questions about observable quantities which could help the experts to specify
judgements for prior distributions. By providing these questions we show that it is possible
to construct an elicitation scheme based on judgements about observable quantities. We
adopt a similar approach with the other examples later in this thesis.

We begin by considering the prior distribution for the parameters of the amount dis-
tribution at a particular time of year. We will consider the seasonal effect later, in Section
4.3.3.3.

• Lognormal distribution

Suppose that we imagine a large number of wet days, Y1, · · · , YTw for a certain time,
for example, in March. Let Zj = log Yj and we have Tw which is large enough so
that the sample mean Z̄ = 1

Tw

∑Tw
j=1 Zj is approximately ϑt and the sample variance

S2
z = 1

Tw−1
∑Tw
t=1

(
Zt − Z̄

)2
is approximately σ2 = 1/τ . To assess the uncertainty

for Z̄, we can ask the expert as follows:

Q11 “Please give a value such that you think that it is equally likely that Z̄ is less
than or greater than the value.” Let the given value be Qz,2.

Q12 “Suppose you were told that Z̄ is less than Qz,2. Please give a new value such
that you think that it is equally likely that Z̄ is less than or greater than this
value.” Let the given value be Qz,1.
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Q13 “Suppose you were told that Z̄ is greater Qz,2. Please give a new value such
that you think that it is equally likely that Z̄ is less than or greater than this
value.” Let the given value be Qz,3.

ThenQz,1 andQz,3 are our lower and upper quartiles for Z̄. Hence, the prior mean for
η̂t is mA0 = 1

2(Qz,1+Qz,3) and the prior variance for η̂t is vA0 = [(Qz,3−Qz,1)/1.349]2.

Suppose that our three quartiles for S2
Z are QS,1, QS,2 and QS,3 where we can obtain

these values by asking the expert as follows:

Q14 “Please now consider the sample variance, S2
Z . Can you give a value QS,2 such

that S2
Z is equally likely to be less than or greater than QS,2.”

Q15 “Suppose you were told that S2
Z will be less than QS,2. Please give a value QS,1

such that it is equally that S2
Z is less than or greater than QS,1.”

Q16 “Suppose you were told that S2
Z will be greater than QS,2. Please give a value

QS,3 such that it is equally that S2
Z is less than or greater than QS,3.”

Then our three quartiles for τ are Q−1
S,3, Q−1

S,2 and Q−1
S,1. Let τ follow a Ga(gτ , hτ )

distribution. Then we solve Q−1
S,1/Q

−1
S,3 = Ã3(gτ )/Ã1(gτ ) interatively to find the

hyperparameter gτ , where Ãq(a) is quartile q for a Ga(a, 1) distribution and hτ =
Ã2(gτ )/Q−1

S,2. Using this method, we have chosen suitable numbers for illustration
as follows:

Qz,1 = 0.5, Qz,3 = 1.5,

QS,1 = 1.25, QS,2 = 2, QS,3 = 2.5,

and hence
mA0 = 1, vA0 = 0.55,

gτ = 4.08, hτ = 7.51.

• G1 and G2 distributions

Suppose that we imagine a large number of wet days, Y1, · · · , YTw in, for exam-
ple, March where Tw is large enough so that the sample mean Ȳ = 1

Tw

∑Tw
j=1 Yj is

approximately µ = α/β and the sample variance S2
Y = 1

Tw−1
∑Tw
j=1

(
Yj − Ȳ

)2
is ap-

proximately Var(Yt|α, β) = α/β2. The sample coefficient of variation CY = SY /Ȳ

is then approximately α−1/2. Furthermore, the sample mean divided by the sample
variance, DY = Ȳ /S2

Y , is approximately β. In the case of the G1 distribution, we
need to assess prior beliefs about the mean η̂t and the shape parameter α. In the case
of the G2 distribution, we need prior beliefs for the mean η̂t and the scale parameter
β.
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To assess the values of the parameters of the prior distribution for the mean rainfall
amount, we can ask a sequence of questions to the expert as follows:

Q17 “Please think about the sample mean Ȳ . Please give a value such that Ȳ is
equally likely to be less than or greater than this value.” Let the given value be
L.

Q18 “Please provide a value K such that the events Ȳ < L/K, L/K < Ȳ < L,
L < Ȳ < KL and KL < Ȳ are all equally likely.”

Then L is our median for Ȳ and the lower and upper quartiles for Ȳ are respectively
L/K and KL. Hence, our prior median and lower and upper quartiles for η̂t are
logL, logL− logK and logL+ logK, respectively. Therefore, the prior mean for η̂t
is mA0 = logL and the prior variance for η̂t is vA0 = (logK/0.6745)2.

For the G1 distribution, we need to assess beliefs about CY . We can use a direct
approach to ask the expert as follows:

Q19 “Please give a value QC,2 such that CY is equally likely to be less than or greater
than QC,2.” The given value, QC,2 is the median for CY .

Q20 “Suppose you were told that CY will be less than QC,2. Please give a number
QC,1 such that it is equally that CY is less than or greater than QC,1.” The given
value, QC,1 is the lower quartile for CY .

Q21 “Suppose you were told that CY is greater QC,2. Please give a number QC,3
such that it is equally that CY is less than or greater than QC,3.” The given
value, QC,3 is the upper quartile for CY .

Then our prior quartiles for α are Q−2
C,3, Q−2

C,2 and Q−2
C,1. We suppose that α fol-

lows a gamma Ga(gα, hα) distribution and then gα is chosen iteratively solving
(QC,3/QC,1)2 = Ã3(gα)/Ã1(gα) where Ãq(a) is quartile q for a Ga(a, 1) distribu-
tions, and hα = Ã2(gα)Q2

C,2.

For the G2 distribution, we need to assess beliefs about DY . We can use a direct
approach to ask the expert as follows:

Q20 “Please give a value QD,2 such that DY is equally likely to be less than or
greater than QD,2.” The given value, QD,2 is the median for DY .

Q21 “Suppose you were told that DY will be less than QD,2. Please give a number
QD,1 such that it is equally that DY is less than or greater than QD,1.” The
given value, QD,1 is the lower quartile for DY .

Q19 “Suppose you were told that DY is greater QD,2. Please give a number QD,3
such that it is equally that DY is less than or greater than QD,3.” The given
value, QD,3 is the upper quartile for DY .
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Then our prior quartiles for β are QD,1, QD,2 and QD,3. We suppose that β follows a
gammaGa(gβ, hβ) distribution and then gβ is chosen iteratively solvingQD,3/QD,1 =
Ã3(gβ)/Ã1(gβ) where Ãq(a) is quartile q for a Ga(a, 1) distributions, and hβ =
Ã2(gβ)QD,2.

Suppose that we choose a day of the year when we believe that the seasonal effects
in (4.19) will cancel out. That is, it is a time of the year when mean rainfall amounts
will be expected to be close to the annual average. Then our distribution for η̂t on
this day is, in effect, our distribution for η0. Using the elicitation procedure above
we obtain, for illustration, η0 ∼ N(1.95, 1.06). That is mA0 = 1.95 and vA0 = 1.06.
We will return to the question of beliefs about the seasonal effects, and therefore the
Fourier coefficients in (4.19) in Section 4.3.3.3.

For the G1 distribution, we obtain α ∼ Ga(4.31, 6.75). That is gα = 4.31 and
hα = 6.75.

For the G2 distribution, we obtain β ∼ Ga(3.87, 44.33). That is gβ = 3.87 and
hβ = 44.33.

4.3.3.2 Prior distributions for the occurrence process

The prior specification of the unknown parameters for the occurrence process is more
arduous. However, we can start by considering rainfall occurence on a day of the year
when we believe that the seasonal effects in (4.23) and (4.24) will cancel out. That is,
it is a time of year when rainfall occurence probabilities will be expected to be close to
the annual average. (An alternative would be to consider a randomly chosen day of the
year). In this case the Fourier series terms in (4.23) and (4.24) can be disregarded (at least
approximately) . We can then have a simple regression model for the occurrence process
as

logit(p) = log
(

p

1− p

)
= ζ0 + ζ1ψ1 + ζ2ψ2

where ψ1 = η̂t − η0 and ψ2 = rt−1 − 0.5.

To determine the prior distribution for unknown parameters, ζ0, ζ1 and ζ2, we need to
consult the expert to elicit beliefs about rainfall probabilities in three situations in order
to obtain three simultaneous equations. We can specify rt−1 = 1, that is it rained on the
preceding day, or rt−1 = 0, that it it was dry on the preceding day. We can also specify
different values for ψ1. Given a specified value for rt−1 and ψ1, we can use questions
similar to Q7 and Q8 in Section 3.5.2.1.1. For example:

Q22 “Please give your assessment of the probability p1 that it will rain on the selected
day, given that it rained on the preceding day and that ψ1 = Aψ.” Let the given

78



Chapter 4. Modelling Univariate Daily Rainfall Data

value be m1 which is the prior mean for p1.

Q23 “Suppose that you were given a random sample of nf observations from similar days
and that on xf of these it rained. With these additional data, what would now be
your assessment of p1?” Let the given value be mf . Note that actual numerical
values are given for nf and xf . These are chosen in the light of the value given for
m0, so that xf/nf is sufficiently different from m0 and an initial judgement about
the expert’s certainty about p. Larger values of nf are required if the expert has
greater prior precision.

As in 3.5.2.1.1, the answers can be used to choose a distribution for p1. Ideally we
would use a logit-normal distribution but, for elicitation purposes, it is reasonable to use
a beta distribution as an approximation. The quartiles of this distribution can then be
transformed to quartiles of logit(p1). We give logit(p1) a normal distribution with mean
given by the average of the first and third quartiles and standard deviation given by the
difference between the third and first quartiles divided by 1.349.

Using Question Q22, we have chosen three different (Aψ, rt−1) pairs, (2, 0), (0.1, 1)
and (−1, 1), for illustration. This leads to the following three equations.

Kp1 = logit(p1) = ζ0 + 2ζ1 − 0.5ζ2

Kp2 = logit(p2) = ζ0 + 0.1ζ1 + 0.5ζ2

Kp3 = logit(p3) = ζ0 − ζ1 + 0.5ζ2

where

Pr(p1 < 0.407) = Pr(p1 > 0.489) = 0.25

Pr(p2 < 0.459) = Pr(p2 > 0.541) = 0.25

Pr(p3 < 0.249) = Pr(p3 > 0.332) = 0.25.

Suppose that Kp1 ∼ N(mKp1 , σ
2
Kp1

). Then from the specification for p1 we have

Pr(Kp1 < logit 0.407 = −0.375) = 0.25

Pr(Kp1 > logit 0.489 = −0.045) = 0.25

and so, from the properties of the normal distribution, we have that

mKp1 − 0.674σKp1 = −0.375, mKp1 + 0.674σKp1 = 0.045.

This leads to mKp1 = (−0.375− 0.045)/2 = −0.210 and σ2
Kp1

= [(0.375− 0.045)/1.35]2 =
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0.060. Similar calculations are given to Kp2 and Kp3 where we have

Kp1 ∼ N(−0.21, 0.06)

Kp2 ∼ N(0, 0.06)

Kp3 ∼ N(−0.9, 0.09).

This gives marginal means and variances for Kp1,Kp2 and Kp3. We might wish to
assess nonzero covariances between them. This can be done by asking questions about
the effect of a hypothetical future sample in one scenario on beliefs in the other scenarios.
For illustration here, however, we treat Kp1,Kp2 and Kp2 as mutually independent.

Let ζ = (ζ0, ζ1, ζ2)′ and Kp = (Kp1,Kp2,Kp2)′. Hence Kp = MKζζ where

MKζ =


1 2 −0.5
1 0.1 0.5
1 −1 0.5

 .
By solving the linear equations, we obtain

E(ζ0)
E(ζ1)
E(ζ2)

 = M−1
K,ζE(Kp) =


−0.96
0.82
1.76


and 

Var(ζ0) Cov(ζ0, ζ1) Cov(ζ0, ζ2)
Cov(ζ0, ζ1) Var(ζ1) Cov(ζ1, ζ2)
Cov(ζ0, ζ2) Cov(ζ2, ζ2) Var(ζ2)

 = M−1
K,ζVar(Kp)(M−1

K,ζ)
′

=


0.11 −0.10 −0.25
−0.10 0.12 0.29
−0.25 0.29 0.77

 .

4.3.3.3 Prior distributions for the Fourier series coefficients

Provided that we are willing, at each frequency f , to give the amplitude Af and phase
ϕf independent prior distributions with the distribution of Af being Rayleigh and the
distribution of ϕf being uniform, then we can construct the prior distributions for the
Fourier coefficients based on the discussion in Section 4.2.5.1. At each frequency, this only
requires elicitation of the parameter, ṽf , of the Rayleigh distribution. This can be done
by eliciting the mean of the amplitude, that is the mean of the difference between the
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maximum and minimum in the annual cycle. Then

ṽf =
√

2
π

E(Af).

Following Section 4.2.5.1, we then see that the Fourier coefficients, af and bf (or cf and
df ), have independent and identical normal distributions with

af ∼ N(0, ṽ2
f ).

The amplitude would typically be expected to become smaller as the frequency in-
creases. Therefore, for example, we can then set

ṽ2
f = 2

πf

for f = 1, 2, 3. The prior elicitations for cf and df are performed similarly as for af and
bf . The full prior specifications of the Fourier coefficients for the amount and occurrence
processes are then given as follows:

af ∼ N
(

0, 2
πf

)
, bf ∼ N

(
0, 2
πf

)
,

cf ∼ N
(

0, 2
πf

)
, df ∼ N

(
0, 2
πf

)
,

for f = 1, 2, 3.

4.3.3.4 Fitting the model

To generate the posterior sample, the RJAGS package (Plummer, 2012) was used and
this was implemented in R software (R Development Core Team, 2008). We will use the
data augmentation technique as elaborated in Section 2.3.5 to simplify the calculation
where the potential rainfall amount is entered as “NA” for any day when rain was absent.
The MCMC algorithm was run for 1000 iterations and these were discarded as a burn-
in. Then, the subsequent 20000 iterations were preserved as the posterior samples. The
computing time that was required to obtain 20000 posterior samples was around 5 to 6
hours for all models by using R software on a 3.40GHz Ergo Desktop AS4 All-in-One
with Intel Core i7-3770 processor and 8 Gbytes of random-access memory. Based on our
analysis, 20000 iterations are deemed sufficient to obtain realisations from the posterior
distribution since the chain has sufficiently converged after the initial burn-in period.
Convergence was assessed by the visual inspection of trace plots which indicates that the
chain has converged very well, and that there is good mixing for all parameters in both
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processes. The trace and density plots for some parameters of the lognormal, G1 and
G2 distributions are shown in Figure 4.7. By combining the prior beliefs and the data,
the uncertainty associated with the unknown parameters has been reduced. For example,
there is a reduction in the variability of parameter τ when comparison is made between the
prior and posterior distributions. The full summaries of the posterior means and standard
deviations of the unknown parameters for both processes are presented in Tables 4.1 and
4.2.
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Figure 4.7: The trace (for the first 1000 iterations) and density plots for parameters τ , α and β

The posterior mean for the mean of the potential rainfall amounts µt is shown in
Figure 4.8 for the three different amount distributions. Obvious differences can be seen
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Lognormal distribution (LN)
Parameter Prior mean Prior SD Posterior mean Posterior SD
τ 0.54 0.27 0.45 0.01
η0 1 0.74 1.04 0.03
a1 0 0.80 -0.21 0.04
a2 0 0.56 -0.07 0.04
a3 0 0.46 0.05 0.04
b1 0 0.80 -0.13 0.04
b2 0 0.56 0.13 0.04
b3 0 0.46 -0.08 0.04

Gamma 1 distribution (G1)
Parameter Prior mean Prior SD Posterior mean Posterior SD
α 0.64 0.31 0.66 0.01
η0 1.95 1.03 1.94 0.02
a1 0 0.80 -0.12 0.03
a2 0 0.56 -0.03 0.03
a3 0 0.46 0.01 0.03
b1 0 0.80 -0.16 0.03
b2 0 0.56 0.05 0.03
b3 0 0.46 -0.09 0.03

Gamma 1 distribution (G2)
Parameter Prior mean Prior SD Posterior mean Posterior SD
β 0.09 0.04 0.10 0.003
η0 1.95 1.03 1.94 0.02
a1 0 0.80 -0.10 0.02
a2 0 0.56 -0.04 0.02
a3 0 0.46 0.03 0.02
b1 0 0.80 -0.06 0.02
b2 0 0.56 0.07 0.02
b3 0 0.46 -0.04 0.02

Table 4.1: The prior and posterior means with standard deviations (SD) of the unknown parameters
for three different amount distributions

between the gamma and lognormal distributions. The fitted values for the G1 and G2
distributions indicate that they are close to each other. In contrast, the fitted values for
the lognormal distribution are consistently above those of the G1 and G2 distributions. We
observe that the fitted values produce smooth plots which indicate the seasonal variabilities
over the year. One may note, for example, that the maximum level of potential rainfall
amounts for all three different distributions is between July and October, while the lowest
level is roughly between November and February for the lognormal and G2 distributions.
However, for the G1 distribution, the lowest level of potential rainfall amounts is possibly
between January and March. Figure 4.9 illustrates the posterior mean of the medians
potential rainfall amount from three different distributions. Once again, we can see obvious
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Occurrence process

Parameter Prior mean Prior SD Posterior mean Posterior SD
LN G1 G2 LN G1 G2

ζ0 -0.96 0.33 -0.57 -0.57 -0.57 0.02 0.02 0.02
ζ1 0.82 0.35 0.52 0.55 0.54 0.30 0.30 0.30
ζ2 1.76 0.88 1.45 1.45 1.45 0.05 0.04 0.05
c1 0 0.80 0.39 0.35 0.34 0.07 0.05 0.05
c2 0 0.56 -0.11 -0.13 -0.13 0.05 0.04 0.04
c3 0 0.46 0.01 0.03 0.02 0.04 0.04 0.04
d1 0 0.80 0.06 0.09 0.04 0.05 0.06 0.04
d2 0 0.56 -0.31 -0.27 -0.28 0.06 0.04 0.04
d3 0 0.46 0.06 0.06 0.04 0.05 0.05 0.04

Table 4.2: The prior and posterior means with standard deviations (SD) of the unknown parameters
for occurrence process
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Figure 4.8: The posterior mean of the mean potential rainfall amount from three different distri-
butions

differences between the gamma and lognormal distributions where the medians of the G1
and G2 distributions are now higher than the lognormal distribution. Hence, we can
conclude that the reason why the results for the lognormal distribution are different is
because of the difference in the shape of the distribution.

The posterior means for the transition probabilities p01 and p11 of the occurrence
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Figure 4.9: The posterior mean of the median potential rainfall amount from three different dis-
tributions

process are distinctly different (Figure 4.10) and these are similar for all three distributions
of the amount process. We notice that if rain was absent on the previous day, the rainfall
probability for the present day is only between 0.2 and 0.3. In contrast, typically the
rainfall probability will be more than 0.5 if rain occurred on the previous day. Both plots
are strongly indicative of the relative dependence of the rainfall probability on the previous
day’s rainfall occurrence. The fitted values also produce smooth plots for both conditional
probabilities over the year where the minimum rainfall probability is between June and
September. Surprisingly, this is in contradiction to the results obtained for the amount
process since the rainfall amounts in this period are higher than in the other period.
This can be explained by the fact that when rain occurs, the duration and intensity of
rain (heavy rain) are higher than for precipitation in the other periods. In addition, the
unconditional rainfall probabilities can also be calculated using Equation (4.22). Figure
4.11 shows the unconditional rainfall probabilities over the year where these probabilities
are mostly below 0.5. This indicates that the rain was absent on most days at the Urbino
rain gauge station and this explains why our data have many zeros.

We also generated the posterior values for the predictive distribution of Y over the
year for the three different amount distributions. We can use these predictive values
to compute the posterior predictive means for the monthly average amount of rainfall
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Figure 4.10: The posterior mean of conditional probabilities, p01 and p11
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Figure 4.11: The posterior mean of unconditional probabilities
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as depicted in Figure 4.12. The monthly average amount is obtained by computing the
average of posterior predictive means for every month. Then, we may use this quantity
to compare the posterior predictive mean with the observed data. We may conclude
that both the posterior predictive mean and the observed data have similar patterns
over the year especially for the G1 and G2 distributions which very closely resemble the
observed data. However, the predictive means of the monthly rainfall amounts when the
lognormal distribution is used seem always greater than those obtained by the G1 and
G2 distributions. A possible explanation is that the shape parameter for the gamma
distribution is less than 1 so the density does not go to zero as the rainfall amount goes to
zero but, in the case of the lognormal distribution, the density always goes to zero as the
amount goes to zero. The shape of the implied gamma distribution is therefore different
from any shape which can be achieved with a lognormal distribution, especially close to the
origin. So it is harder for the lognormal distribution to provide a good fit to that part of
the distribution and this will affect the posterior distribution of the parameter values. On
average, the lowest level of monthly rainfall amounts is in July where the highest is around
November for the G1 and G2 distributions and in April for the lognormal distribution.
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Figure 4.12: Posterior mean for predictive distribution of monthly potential rainfall amounts
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4.3.3.5 Residuals

In this section, we will re-examine the assumption we have made in this model where Yt
variables are independent given model parameters. To re-examine this assumption, we
need to do some transformation for yt. Let ut = Gt(yt) where Gt(.) is the cumulative
distribution function (cdf) of Yt. Then we transform ut to a normally distributed d̂t =
Φ−1(ut) where Φ(.) is the standard normal cdf and Φ−1(.) is its inverse. Then we can
plot the autocorrelation function (ACF) and partial autocorrelation function (PACF) for
these residuals. Based on Figure 4.13, the ACF and PACF plots show some evidence of
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Figure 4.13: The ACF and PACF plots for residuals

autocorrelation. Hence, the assumption of conditional independence between Yt and Ys

where s 6= t, given µt, µs, for this model is not valid. Therefore, we will describe a new
model which allows for temporal correlation in the amount process in Section 4.4.

4.3.3.6 Zero/positive distribution

Another goal of this study is to investigate the changes in the shape and scale of the
probability density function for the mixed distribution. As discussed in Chapter 3, Sec-
tion 3.4, it is difficult to construct a graph for the mixed distribution which contains both
positive and zero components. Nonetheless, we can visualise the mixed distribution by
representing the pdf for the non-zero rainfall amounts with a density curve and the “lol-
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lipop” component at zero for the zero-rainfall probability as shown in Figure 3.2. These
two components are then linked together and the area of the ellipse is equal to the proba-
bility of zero rainfall. For illustrative purposes, we will plot the graphs on a monthly basis
to monitor the changes in the rainfall pattern.

Figures 4.14 until 4.17 represent the changes in the zero-positive plots from January
until December for two different amount distributions. It is evident from the zero-positive
plots that the G1 and G2 distributions are very similar to each other. Hence, we will
portray them as a single gamma distribution and this will be compared with the lognormal
distribution. With respect to the gamma distribution, the distribution become more “L”
shaped when the shape parameter is less than 1 as fy(y) approaches∞. In contrast, fy(y)
approaches 0 when y = 0 for the lognormal distribution. Overall, there are no significant
changes in the shape of the distributions for the amount process from month to month. The
only significant change is in the scale parameter, where a relatively decreasing magnitude
of the rainfall amount was detected in August and September. We also observed that the
sizes of the ellipses are bigger in July and September due to the lack of rainfall occurrence.

It is also important to note that the “lollipop” plots are based on the ellipse for Pr(Rt =
0) and the curve for Pr(Rt = 1)f(Yt|Rt = 1) = Pr(Rt = 1)f(Wt|Rt = 1). In this
model, Rt and Yt are conditionally independent given µt and this means that, given µt,
f(Yt|µt, Rt = 1) is the specified gamma pdf. However, this would not work if we allow
Pr(Rt = 1) to be dependent on Yt rather than on µt. In this case, f(Yt|Rt = 1) and
f(Wt|Rt = 1) would still be equal but they would not be the specified gamma distribution.
In fact, they would not be a gamma distribution at all.

4.3.4 Conclusion

From these results, we can conclude that the gamma distribution is a better choice for
the modelling of the amount process in the Italian rainfall data as shown in Figure 4.12.
Our findings are corroborated by several results from previous studies which verify that
the gamma distribution fits the data slightly better than other distributions. According
to Fernandes et al. (2009), they discovered that the gamma distribution is a preferable
alternative in terms of its predictive properties to either the exponential or lognormal
distributions. Bruno et al. (2014) also established that the gamma distribution is superior
to the log-normal distribution in terms of modelling spatiotemporal rainfall data at San
Pietro Capofiume, Brazil. There is also evidence from our study that the shape parameter
does not noticeably change over the year. In contrast, the scale parameter shows con-
spicuous shifts when comparisons were made from month to month. This might suggest
that the parameterisation used in the G1 distribution is more appropriate to represent the
Italian daily rainfall than that in G2 distribution.
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Figure 4.14: Zero-positive plots for gamma (green) and lognormal (red) distributions from January
until March
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Figure 4.15: Zero-positive plots for gamma (green) and lognormal (red) distributions from April
until June
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Figure 4.16: Zero-positive plots for gamma (green) and lognormal (red) distributions from July
until September
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Figure 4.17: Zero-positive plots for gamma (green) and lognormal (red) distributions from October
until December
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To find an appropriate model for the occurrence and amount processes in daily rainfall
data is the primary objective of this study. For the amount process, we have investigated
and compared three different distributions to identify which distribution has the best fit
to our data. Our findings show that the G1 and G2 distributions fitted the data slightly
better than the lognormal distribution, as evident from the more accurate posterior mean
daily rainfall and posterior predictive values. The reasons for these findings have already
been discussed in Section 4.3.3.4.

Our next objective is to extend our model by incorporating the atmospheric circulation
patterns known as the Lamb weather types (LWTs). The LWTs will be incorporated
into the models for both the amount and occurrence processes via the mean of amount
distribution and rainfall probabilities.
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4.4 Application to daily rainfall in Britain

In the previous section, we successfully demonstrated the application of our approach to
Italian daily rainfall by making the occurrence process dependent on the information from
the amount process. For the British daily rainfall application, we will extend the previous
model by incorporating the atmospheric circulation patterns. There is a common prob-
lem, especially in the hydrology and agriculture fields, which concerns how to downscale
synoptic atmospheric variables to the small-scale daily precipitation patterns. One of the
solutions that we can use to handle this problem is by using statistical downscaling. Sta-
tistical downscaling provides a solution by using a weather state model where each day is
assigned to one of a small number of weather states based on the atmospheric circulation
patterns and typically these weather states are observable. Precipitation is then modelled
within each weather state which is generally assumed to evolve according to some tempo-
ral process. The weather state model is a part of the statistical downscaling model which
was introduced by Hay et al. (1991).

The classification of atmospheric circulation patterns can be represented by weather
types (WTs) (Yarnal, 1993; Barry & Chorley, 2003; Jones et al., 2013). Notable examples
of WTs include the Grosswetterlagen types for Central Europe (Hess & Brezowsky, 1969)
and the Lamb weather types (LWTs) for the British Isles (Lamb, 1972). In this application,
the LWTs will be incorporated into the British daily rainfall model. Heaps et al. (2015) and
Germain (2010) used the objective LWT scheme for characterising atmospheric circulation
patterns by combining them with the weather state process using non-homogeneous hidden
Markov models (NHMMs) for UK winter rainfall. We propose to build an alternative
model to Heaps et al. (2015) and Germain (2010) that allows the rainfall amounts and
occurrences to be conditional upon the values of some synoptic atmospheric variables.
However, instead of using weather state models, we will apply LWTs directly to our model
because we believe that LWTs have a critical role in determining rainfall amounts and
occurrences over the British Isles. In addition, we are also interested to investigate the
relationship between the LWTs and local daily rainfall. For the first phase, we will only
focus on a single site before extending the model to multiple sites around the United
Kingdom in Chapter 5.

4.4.1 Data

For this application, we choose daily rainfall data from Darlington South Park weather
station located at Darlington in County Durham, North East England. The exact location
of this station is at 54◦30′54.0′′N latitude and 1◦33′29.4′′W longitude as depicted in Figure
4.18. The location is close to the River Tees that represents the natural boundary between
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Durham and Yorkshire. The data cover the period from January 1966 to December 1985
with a total of 7305 observations, which include five leap years. The datasets were obtained
from the United Kingdom (UK) Meteorological Office integrated data archive system
(MIDAS)(Met Office, 2017).

Figure 4.18: Location of Darlington South Park weather station

4.4.2 Atmospheric data: Lamb weather types

In UK climatology, the atmospheric circulation patterns are commonly represented by
the objective Lamb Weather Types (LWTs) which are a popular choice to represent the
atmospheric variables. The original objective of LWTs as established by Lamb (1972),
was to characterise weather types using a subjective classification scheme based on daily
synoptic charts and atmospheric flows over the British Isles. Subsequently, Jenkinson &
Collinson (1977) created an objective scheme to identify the daily pattern of atmospheric
circulation in terms of the LWTs using daily grid-point mean sea level pressure data. These
data give enough information to evaluate the dominant direction and speed of the flow
including its vorticity which are usually associated with cyclonic or anticyclonic weather
patterns. By using this information, the direction and synoptic type of the surface flow
over the British Isles can be categorised on any particular day as a specific LWT.
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Using current state-of-the-art technology, Jones et al. (2013) reanalysed the objective
LWT scheme to produce a more consistent weather classification system. This system
is based on the new extended reanalysis (20CR) developed by Compo et al. (2011) and
the National Centers for Environmental Prediction (NCEP) reanalyses by Kalnay et al.
(1996), which have been used to classify the weather types over the British Isles since
1880.

In general, the Jenkinson classification scheme (Jenkinson & Collinson, 1977) has 27
objective LWTs which are composed of eight main directional types: North-East (NE),
East (E), South-East (SE), South (S), South-West (SW), West (W), North-West (NW) and
North (N); three non-directional types: anticyclonic (A), cyclonic (C) and unclassifiable
(U); and 16 hybrid types, which are the combination of the eight directional types with
the anticyclonic and cyclonic non-directional types. The full classification scheme of the
objective LWTs is presented in Table 4.3.

Label Objective LWT Label Objective LWT Label Objective LWT
1 A 27 U 18 C
2 ANE 10 NE 19 CNE
3 AE 11 E 20 CE
4 ASE 12 SE 21 CSE
5 AS 13 S 22 CS
6 ASW 14 SW 23 CSW
7 AW 15 W 24 CW
8 ANW 16 NW 25 CNW
9 AN 17 N 26 CN

Table 4.3: Labelling of the objective Lamb weather types

The LWTs can be labelled according to the direction of air flow and the vorticity.
For example, if the direction of air flow comes from the west and the vorticity is close
to zero, this is categorised as westerly type (W). If the vorticity is strongly positive or
negative, this LWT is classified as either pure cyclonic or anticyclonic, respectively. The
LWTs are classified as hybrid types if the vorticity is moderately positive or negative, in
combination with any direction of air flow. For instance, if the direction of air flow comes
from the west and the vorticity is positive, then it will be classified as cyclonic westerly
(CW) or anticyclonic westerly (AW) LWT. Finally, the LWT is deemed unclassifiable if
the atmospheric circulation pattern is too complicated to be classified as of any other
type. Figure 4.19 shows the frequencies of LWTs occurrence from 1966 until 1985 where
the highest frequency is purely anticyclonic (type 1) followed by purely cyclonic (type 18)
and purely westerly (type 15).

The proportion of wet days and the mean daily rainfall amount on wet days by LWT
for Darlington South Park Station are shown in Figure 4.20. Clear patterns can be seen
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Figure 4.19: Frequencies of Lamb Weather types occurrence from 1966 until 1985

in the proportion of wet days, with lower proportions being associated with anticyclonic
types (1-9) and higher proportions with cyclonic types (18-26). Similarly, based on the
mean daily rainfall amounts on wet days across LWTs, the pattern shows that high (low)
level rainfall amounts are typically associated with cyclonic (anticyclonic) types.

4.4.3 Modelling Lamb weather types

In this section, we propose to build a suitable stochastic model for LWTs. First-order
homogeneous and nonhomogeneous Markov chain will be used to describe the pattern of
LWTs.

4.4.3.1 Homogeneous Markov chain for Lamb weather types

Let X = X1, · · · , XT be the random sequence of LWTs at each time, t for all sites within
the British Isles. By using a homogeneous Markov chain, the conditional probabilities for
LWTs are given as

Pr(Xt = l|Xt−1 = k) = qkl
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Figure 4.20: (a) Mean wet day daily rainfall amounts and (b) proportion of wet days by the Lamb
weather types for Darlington South Park Station
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where state Xt is dependent on Xt−1 and qkl is the transition probability from state k to
state l. Let Q represent the transition matrix for LWTs as:

Q =


q1,1 · · · q1,27

... . . . ...
q27,1 · · · q27,27


where

∑27
l=1 qkl = 1 and 0 ≤ qkl ≤ 1 with the vector qk representing row k of matrix Q.

Then we can obtain a probability vector π = (π1, π2, · · · , π27) satisfying:

πQ = π

which gives the marginal probabilities when the process is stationary. Subject to cer-
tain conditions (see Stewart (2009)), the state probabilities converge to this stationary
distribution as time increases. We can rearrange this equation as:

π(Q− I) = 0 (4.25)

πQ̂ = 0 (4.26)

where I is the identity matrix, 0 is a zero vector and Q̂ = Q−I. By using the information
given by

π1 + π2 + · · ·+ π27 = 1,

we can replace the last column of Q̂ and 0 by 1, so that

Q̃ =


q̃1,1 · · · 1

q̃2,1
. . . 1

...
...

...
q̃27,1 · · · 1


and 0̃ = (0, 0, 0, · · · , 1). Hence,

π = 0̃Q̃−1. (4.27)

Now, let Nkl represent the observed number of transitions from state k to state l:

N =


N11 · · · N1,27

... . . . ...
N27,1 · · · N27,27
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with Nk = (Nk,1, · · · , Nk,27) with n̂k =
∑27
l=1Nkl. Then, Nk follows a multinomial distri-

bution:

Nk ∼M27(n̂k, qk). (4.28)

Let the prior specification for the transition probabilities, qkl, be defined as follows.
Let

qkl = eΥkl∑27
l=1 e

Υkl
.

To avoid a non-identiafiability problem, we set Υkk = 0 for all k = 1, · · · , 27. For Υkl where
k 6= l, we define it as:

Υkl = Υ0l + δkl

where δkl ∼ N(0, υε). To induce general positive correlations between the non-diagonal
transition probabilities and allow borrowing of strength for less-frequent LWTs, we will
use a hierarchical prior as follows:

Υ0l = Υ̂0 + γl

Υ̂0 ∼ N(mΥ̂0
, υΥ̂0

)

γl ∼ N(0, υγ).

Table 4.4 shows an example of posterior means for LWT marginal probabilities using 7305
observations of LWTs from 1966 until 1985. The posterior samples were obtained using an
MCMC algorithm with 2000 burn-in iterations and subsequent 5000 iterations to obtain
the posterior samples. The computing time that was required to obtain 5000 posterior
samples was around 2 minutes by using R software on a 2.00GHz Samsung laptop 300V3A
model with Intel Core i7-2630QM processor and 12 Gbytes of random-access memory.
From the table, we can see clearly that type 1 LWT has the highest probability with
0.211, where type 2 and 3 LWTs have the lowest probabilities which are 0.08. This result
is consistent with the earlier inference in Figure 4.19.

4.4.3.2 Nonhomogeneous Markov chain of Lamb weather types

Initially, the LWTs are assumed to follow a homogeneous Markov chain. However, this
may not be the case since the frequencies of the different LWTs may depend on the time
of the year resulting in varied LWTs probabilities for every time t. Let the transition
probabilities for LWTs be given as follows:

Pr(Xt = l|Xt−1 = k) = qkl(t)
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Parameter Mean Parameter Mean
π1 0.211 π15 0.095
π2 0.008 π16 0.060
π3 0.008 π17 0.033
π4 0.012 π18 0.135
π5 0.016 π19 0.007
π6 0.027 π20 0.007
π7 0.032 π21 0.010
π8 0.022 π22 0.019
π9 0.015 π23 0.025
π10 0.015 π24 0.022
π11 0.014 π25 0.018
π12 0.026 π26 0.015
π13 0.053 π27 0.012
π14 0.079

Table 4.4: Posterior means of the LWTs probabilties

with a transition matrix of:

Q(t) =


q1,1(t) · · · q1,27(t)

... . . . ...
q27,1(t) · · · q27,27(t)


where

∑27
l=1 qkl(t) = 1 and 0 ≤ qkl(t) ≤ 1. Since the transition probabilities depend on

time, the process is called a non-homogeneous Markov chain. Given that Xt−1 = k, the
state Xt follows a categorical distribution:

Xt ∼ Cat(qkl(t))

where the transition probabilities qkl(t) are defined to be:

qkl(t) = eΥkl(t)∑27
l=1 e

Υkl(t)
.

Similar to the previous homogeneous process, zero values are assigned to Υkk(t) for all
k = 1, · · · , 27 so that the non-identifiability problem can be avoided. In general, the Υkl(t)
for k 6= l can be written as

Υkl(t) = Υ0l +
F∑
f=1

[
älfcos

( 2πft
365.25

)
+ b̈lf sin

( 2πft
365.25

)]
+ δkl (4.29)
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where
Υkk(t) = 0

and δkl ∼ N(0, υε). The truncated Fourier series is included in this model to allow for
seasonal variability in the transition probabilities. For the intercept term Υ0l, we will use
a hierarchical prior to allow borrowing of strength for the less frequent LWTs:

Υ0l = Υ̂0 + γl

Υ̂0 ∼ N(mΥ̂0
, υΥ̂0

)

γl ∼ N(0, υγ).

Figures 4.21, 4.22, 4.23 and 4.24 show an example of posterior means for transition
probabilities q1l(t) over the year when Xt = l is conditional on Xt−1 = k = 1 (type 1 LWT)
for l = 1, 2, · · · , 27. The posterior samples were obtained by an MCMC algorithm with
1000 burn-in iterations and subsequent 5000 iterations to acquire the posterior samples.
The computing time that was required to generate 5000 posterior draws was around 38
hours by using R software on a 2.00GHz Samsung laptop 300V3A model with Intel Core
i7-2630QM processor and 12 Gbytes of random-access memory. From our analysis, 5000
iterations are considered sufficient to draw samples from the posterior distribution since
the mixing is good for all parameters. As we can observe from these figures, the transition
probability q11(t) (anticyclonic) is always above 0.45 over the year with the maximum
and minimum probabilities in May and December, respectively . On the other hand, the
transition probabilities q1,l(t) for Xt = l = 2, · · · , 27, are always below 0.1. We can also
observe that there is a different seasonal pattern for every LWT.

4.4.4 The rainfall model

In this section, we will focus on constructing a British daily rainfall model which is different
from the Italian rainfall model in Section 4.3. The main objective here is to provide an
alternative model to that of Heaps et al. (2015) and Germain (2010) by incorporating the
Lamb weather types (LWTs) into the amount and occurrence processes to capture and
explore the essential relationship that exists between the atmospheric circulation pattern
and local daily rainfall. For preliminary investigation, we will focus only on a single site
before we extend it to multiple sites in Chapter 5.

Let f(yt|µt) represent the probability density function for the amount process with
a range of (0,∞) where yt is the potential rainfall amount. This approach was applied
to the Italian rainfall data, and the results indicated that the gamma distribution was
slightly superior to the lognormal distribution with respect to model fit and posterior
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Figure 4.21: The posterior mean of transition probabilities, q11. For details, see Table 4.3.
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Figure 4.22: The posterior mean of transition probabilities, q1l where l = 2, · · · , 9. For details, see
Table 4.3.
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Figure 4.23: The posterior mean of transition probabilities, q1l where l = 10, · · · , 17, 27. For
details, see Table 4.3.
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Figure 4.24: The posterior mean of transition probabilities, q1l where l = 18, · · · , 26. For details,
see Table 4.3.
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predictive performance. From the previous investigation in Section 4.3.3.6, we found that
the shape parameter did not show significant changes from month to month, while the
scale parameter did show some changes over time. Therefore, we propose to use the
G1 distribution to describe the potential rainfall amount for the British daily rainfall as
follows:

Yt|α, µt ∼ Ga
(
α,

α

µt

)
where α is the shape parameter, and µt is the mean of the gamma distribution. For
simplification, we will make the parameter α constant over time. In the case of the
amount process, the LWT will be incorporated through the parameter µt. Specifically, let
the parameter µt be modelled using the log link function:

log(µt|xt = k) = ηk0 +
F∑
f=1

[
akfcos

( 2πft
365.25

)
+ bkf sin

( 2πft
365.25

)]
+ εt (4.30)

where εt is a random effect at time t. The Fourier series is added to the amount process
to capture seasonal variability over the year using three harmonics as indicated in Section
4.2.4. The parameter µt is said to be conditional on the LWT by making the intercept,
ηk0 , and Fourier coefficients dependent on the LWT at time t. By formulating the ηk0 and
Fourier coefficients to vary between the LWT, we gain the facility to model the behaviour of
each LWT. As indicated in Figure 4.20a, we can observe that certain LWTs are associated
with greater amounts of rainfall than others. Moreover, some of the LWTs might be
associated with greater rainfall at some times of year and less at others. Then, the intercept
parameter, ηk0 plays a prominent role in controlling the level of potential rainfall amounts
while Fourier coefficients play a role in accommodating changes in the rainfall amounts
associated with a LWT over the year. In this model, we introduce a random effect in the
linear regression of log(µt) which is assumed to follow a first-order autoregressive model
given by

εt = φεεt−1 + ωε

where ωε ∼ N(0, 1/τ). Specifically, this random effect is assumed to follow a normal
distribution:

εt|εt−1 ∼ N
(
φεεt−1,

1
τ

)
and the distribution of the random effect at time t = 1 is given by

ε1 ∼ N
(

0, 1
τ (1− φ2

ε )

)

with |φε| < 1 to ensure stationarity. Then, the mean of the distribution is said to be
conditionally dependent on the previous random effect, εt−1. Therefore, the distribution
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of µt is a lognormal distribution. Note that the marginal distribution of Yt given other
parameters obtained by integrating out µt from the joint density of Yt and µt is now not
a gamma distribution.

The rainfall occurrence can be modelled using a logit link function and a linear regres-
sion to relate the rainfall probabilities to the potential rainfall amount:

logit (p1(t)|xt = k) = ζk0 +
F∑
f=1

[
ckfcos

( 2πf
365.25

)
+ dkf sin

( 2πf
365.25

)]
+ ζ1 log(yt) (4.31)

where p0(t) = 1 − p1(t) represents the probability of zero rainfall. This parameterisation
is in contrast to the Italian daily rainfall application where we used a nonhomogeneous
first-order Markov chain to generate the probability of rainfall. As in the amount process,
ζk0 is regarded as an intercept parameter for the probability of rainfall with a Fourier
series to allow for seasonal variability where the information of the LWT is incorporated
through these parameters. Three harmonics of the Fourier series will be used to represent
the seasonal effect of the rainfall amount over the year as suggested in Section 4.2.4.

There are various ways we can use to build the relationship between the amount and
occurrence processes. For example, we can use the mean of the amount distribution,
µt, as in Sofia (2007) and the previous Italian model to link between the amount and
occurrence processes. In this model, we use a different approach by incorporating the
potential rainfall amount, yt, into Equation (4.31) to build the relationship between the
amount and occurrence processes. Based on the preliminary analysis, we found that the
parameters in the occurrence process are well identified when we use yt rather than µt.
For instance, Figure 4.25 shows that the posterior density of ζ1 is well identified when
we used yt instead of µt. Hence, we decided to use the potential rainfall amount, yt as a
bridge to link between the amount and occurrence processes. The resulting structure is
shown in the DAG in Figure 4.26. This figure illustrates the detail of temporal dependence
structure for the univariate model in the context of the British data which is different from
the previous univariate model.

The parameterisations used for both the amount and occurrence processes are reason-
able to model British daily rainfall. However, the model contains a very large number of
parameters since we have many parameters for every single LWT. Therefore, we decided to
modify our model to avoid any difficulties caused by this. The model for both the amount
and occurrence process can be simplified by allowing only the intercept parameters ηk0 and
ζk0 to depend on the LWT while the Fourier coefficients are constant over LWT. Thus, the
new models for rainfall amounts and occurrences are given by
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Figure 4.25: The posterior (black) and prior (red) densities plots for ζ1 when linking the occurrence
process through (a) µt and (b) yt.
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Figure 4.26: A DAG showing the temporal dependence structure for a single site in the British
daily rainfall model

• Amount process

log(µt|xt = k) = ηk0 +
F∑
f=1

[
afcos

( 2πft
365.25

)
+ bf sin

( 2πft
365.25

)]
+ εt (4.32)
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• Occurrence process

logit (p1(t)|xt = k) = ζk0 +
F∑
f=1

[
cfcos

( 2πft
365.25

)
+ df sin

( 2πft
365.25

)]
+ ζ1 log(yt).

(4.33)

4.4.4.1 Prior Specifications

This section provides a suggestion for the structure of the prior specifications for the
unknown parameters in our model. Normally, the prior distribution is chosen based on
the information acquired from previous studies or personal beliefs. Illustrative values for
the hyperparameters in the prior specifications are given in Section 4.4.5.1.

The shape parameter, α is given a gamma prior distribution:

α ∼ Ga(gα, hα).

A gamma distribution is a sensible prior choice for α since it has only a positive support.
The prior distribution for the linear parameters is a normal distribution to allow the
parameters to take the values from −∞ to ∞. Then, the prior distribution of the linear
parameters for the amount and occurrence processes can be written as follows:

• Amount process

ηk0 ∼N (mη0 , vη0)

af ∼N (ma,f , va,f )

bf ∼N (mb,f , vb,f )

• Occurrence process

ζk0 ∼N (mζ0 , vζ0)

ζ1 ∼N (mζ1 , vζ1)

cf ∼N (mc,f , vc,f )

df ∼N (md,f , vd,f )

where k ∈ {1, 2, · · · , 27} and f ∈ {1, 2, 3}. The Fourier coefficients can be combined as a
vector for each process as η̈ = (a1, a2, a3, b1, b2, b3)′ and ζ̈ = (c1, c2, c3, d1, d2, d3)′, respec-
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tively. Then, the prior distributions for η̈ and ζ̈ can be multivariate normal distributions:

η̈ ∼ NF

(
η̈0, P

−1
η̈

)
ζ̈ ∼ NF

(
ζ̈0, P

−1
ζ̈

)
where η̈0 and ζ̈0 are the mean vectors with precision matrices Pη̈ and Pζ̈ .

We also need to specify the prior distributions for the random effect parameters φε
and τ . The prior distribution for φε must respect the stationarity condition |φε| < 1. Any
distribution for φε including the prior must have zero probability outside this range. For
example, we can use a uniform prior as follows

φε ∼ U(−1, 1).

Alternatively, we can introduce a new variable, v which follows a beta distribution:

v ∼ Beta(av, bv).

The beta distribution is defined on the support (0, 1), so we can obtain the prior value for
φε by making:

φε = 2v − 1. (4.34)

Therefore, the value for φε can always be in the range (−1, 1). Similar to parameter α, a
suitable prior distribution for τ is a gamma distribution:

τ ∼ Ga(gτ , hτ ),

because a variance or precision can never be negative.

4.4.4.2 Posterior distributions

Let θ represent the collection of unknown parameters. Then, the joint density of (θ,y, r)
can be given as follows:

π(θ,y, r) = π(θamt)× π(θocc)× f(y|θamt)× f(r|y,θocc) (4.35)

where θamt and θocc are the collections of parameters for the amount and occurrence pro-
cesses, repectively. From this joint density, we can work out the FCD for each parameter.
The FCDs in this section are provided as general information and for future work. The
comprehensive description of the FCD for each parameter is given as follows:
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• Parameter α

The FCD for the shape parameter, α is given by:

π(α|ηk0 , η̈, v, τ,y) ∝
T∏
t=1

f(yt|θamt, εt)× π(α)

∝
T∏
t=1

(α/µt)αyα−1
t e−(α/µt)yt

Γ (α) × hgαα α
gα−1e−hαα

Γ (gα)

∝(α)αT+gα−1

[Γ (α)]T
T∏
t=1

Eαt exp
{
−α

(
T∑
t=1

Et + hα

)}

where Et = yt/µt. This form does not correspond to any standard distribution.

• Parameter ηk0

Let ηk∗0 =
(
η1

0, · · · , ηk−1
0 , ηk+1

0 , · · · , ηK0
)
. With this prior, the FCD for ηk0 is

π(ηk0 |ηk∗0 , α, η̈, v, τ,y) ∝
∏
t∈Tk

f(yt|θamt, εt)× π(ηk0 )

∝
∏
t∈Tk

(α/µt)αyα−1
t e−(α/µt)yt

Γ (α) ×
√

1
2πvη0

exp
{
− 1

2vη0
(ηk0 −mη0)2

}

∝
∏
t∈Tk

Eαt exp
{
−
[
α
∑
t∈Tk

Et + 1
2vη0

(
(ηk0 )2 − 2ηk0mη0

) ]}

where Tk = {t : xt = k} is the set of observations for days where the LWT is k.
Notice that this FCD does not depend on ηl0, l 6= k and so π(ηk0 |ηk∗0 , α, η̈, φε, τ,y) =
π(ηk0 |α, η̈, φε, τ,y). The posterior samples can be obtained by taking an independent
realisation from each of π(ηk0 |α, η̈, φε, τ,y), where k = 1, · · · ,K. However, this FCD
does not belong to any standard form.
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• Parameter η̈

The FCD for η̈ is

π(η̈|α, ηk0 , v, τ,y) ∝
T∏
t=1

f(yt|θamt, εt)× π(η̈)

∝
T∏
t=1

(α/µt)αyα−1
t e−(α/µt)yt

Γ (α) × |Pη̈|
1/2

(2π)2F exp
{
− 1

2(η̈ − η̈0)′Pη̈(η̈ − η̈0)
}

∝
T∏
t=1

Eαt exp
{
−
[
α

T∑
t=1

Et + 1
2(η̈ − η̈0)′Pη̈(η̈ − η̈0)

]}
.

This is again not in a standard form of any distribution.

• Parameter v

Now, we need to define the FCD for the parameter v as follows:

π(v|ε, τ) ∝f(ε1|τ, φε)
T∏
t=2

f(εt|εt−1, τ, φε)× π(v)

∝

√
τ
(
1− φ2

ε

)
2π exp

{
−τ

(
1− φ2

ε

)
2 ε21

}
×

T∏
t=2

√
τ

2π exp
{
−τ2 (εt − φεεt−1)2

}

× Γ (av + bv)
Γ (av)Γ (bv)

vav−1(1− v)bv−1

∝vav−1(1− v)bv−1
√

(1− φ2
ε ) exp

{
−τ2

[(
1− φ2

ε

)
ε21 +

T∑
t=2

(εt − φεεt−1)2
]}

which also does not correspond to any standard distribution.

• Parameter τ

The FCD for the parameter τ is given by

π(τ |ε, v) ∝f(ε1|τ, φε)
T∏
t=2

f(εt|εt−1, τ, φε)× π(τ)

∝

√
τ
(
1− φ2

ε

)
2π exp

{
−τ

(
1− φ2

ε

)
2 ε21

}
×

T∏
t=2

√
τ

2π exp
{
−τ2 (εt − φεεt−1)2

}

× hgττ τ
gτ−1e−hτ τ

Γ (gτ )

∝τ gτ+T
2 −1 exp

{
−τ2

[(
1− φ2

ε

)
ε21 +

T∑
t=2

(εt − φεεt−1)2 + 2hτ

]}
.
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This is a gamma distribution Ga(Gτ , Hτ ) with

Gτ = gτ + T

2

and

Hτ = hτ + 1
2

[(
1− φ2

ε

)
ε21 +

T∑
t=2

(εt − φεεt−1)2
]
.

• Random effect εt

To obtain the sampled values for the random effect εt, the FCD for εt is given
by:

π(εt|τ, φε, yt) ∝f(yt|θamt, εt)× π(εt|εt−1)× π(εt+1|εt)

∝(α/µt)αyα−1
t e−(α/µt)yt

Γ (α) ×
√
τ

2π exp
{
−τ2 (εt − φεεt−1)2

}
×
√
τ

2π exp
{
−τ2 (εt+1 − φεεt)2

}
∝Eαt exp

{
−
[
αEt + τ

2
[
(εt − φεεt−1)2 + (εt+1 − φεεt)2

]]}
for 1 < t < T − 1. For t = 1, the FCD is given by:

π(ε1|τ, φε, y1) ∝f(y1|θamt, ε1)× π(ε1)× π(ε2|ε1)

∝(α/µ1)αyα−1
1 e−(α/µ1)y1

Γ (α) ×

√
τ
(
1− φ2

ε

)
2π exp

{
−τ

(
1− φ2

ε

)
2 ε21

}

×
√
τ

2π exp
{
−τ2 (ε2 − φεε1)2

}
∝Eα1 exp

{
−
[
αE1 + τ

2
[(

1− φ2
ε

)
ε21 + (ε2 − φεε1)2

]]}
and the FCD for εT is

π(εT |τ, φε, yT ) ∝f(yT |θamt, εT )× π(εT |εT−1)

(α/µT )αyα−1
T e−(α/µT )yT

Γ (α) ×
√
τ

2π exp
{
−τ2 (εT − φεεT−1)2

}
∝EαT exp

{
−
[
αET + τ

2
[
(εT − φεεT−1)2

]]}
.
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• Parameter ζ0

Let ζk∗0 =
(
ζ1

0 , · · · , ζk−1
0 , ζk+1

0 , · · · , ζK0
)
. Therefore, the FCD for ζk0 is given by

π(ζk0 |ζk∗0 , ζ1, ζ̈, r) ∝
∏
t∈Tk

f(rt|yt,θocc)× π(ζk0 )

∝
∏
t∈Tk

[p1(t)]rt [1− p1(t)](1−rt) ×
√

1
2πvζ0

exp
{
− 1

2vζ0

(ζk0 −mζ0)2
}

∝
∏
t∈Tk

[p1(t)]rt [1− p1(t)](1−rt) exp
{
− 1

2vζ0

(
ζk0

)2
− 2ζk0mζ0

}
.

This distribution is not in a standard form. Notice that this FCD does not depend
on ζ l0, l 6= k and so π(ζk0 |ζk∗0 , ζ1, ζ̈, r) = π(ζk0 |, ζ1, ζ̈, r). We can sample the posterior
value by taking an independent realisation from each of π(ζk0 |, ζ1, ζ̈, r), where k =
1, · · · , 27.

• Parameter ζ1

Next, the FCD for ζ1 is

π(ζ1|ζk0 ζ̈, r) ∝
T∏
t=1

f(rt|yt,θocc)× π(ζ1)

∝
T∏
t=1

[p1(t)]rt [1− p1(t)](1−rt) ×
√

1
2πvζ1

exp
{
− 1

2vζ1

(ζ1 −mζ1)2
}

∝
T∏
t=1

[p1(t)]rt [1− p1(t)](1−rt) exp
{
− 1

2vζ1

(
ζk1

)2
− 2ζk1mζ1

}

where the form indicates that it does not belong to any standard distribution.

• Parameter ζ̈

For parameter ζ̈, the FCD can be obtained as follows:

π(ζ̈|ζk0 , ζ1, z) ∝
T∏
t=1

f(rt|yt,θocc)× π(ζ̈)

∝
T∏
t=1

[p1(t)]rt [1− p1(t)](1−rt) ×
|Pζ̈ |1/2

(2π)3 exp
{
− 1

2(ζ̈ − ζ̈0)′Pζ̈(ζ̈ − ζ̈0)
}

∝
T∏
t=1

[p1(t)]rt [1− p1(t)](1−rt) exp
{
− 1

2(ζ̈ − ζ̈0)′Pζ̈(ζ̈ − ζ̈0)
}
.
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Once again, this distribution does not belong to any standard form.

• Latent y-values: ydry

The latent value, yt is not observed when it is a dry day (Wt = 0) which can be
defined as ydry. The values of ydry are treated as auxiliary data in a data augmenta-
tion process (Tanner & Wong, 1987). Then, it is necessary to sample the posterior
value of ydry when rt = 0 by considering the FCD as follows:

π(ydry|rt = 0, α, µt) ∝f(ydry|α, µt)× Pr(rt = 0|ydry)

∝
(α/µt)αyα−1

dry e
−(α/µt)ydry

Γ (α) × p0(t)

where p0(t) = 1 − p1(t) represents the probability of a dry day (rt = 0) which also
depends on ydry.

As we can see, the distributions of most parameters are not in a standard form. Hence,
we need to use a Metropolis-within-Gibbs scheme to generate posterior samples for each
parameter. The detailed steps of the MCMC scheme for drawing posterior samples are
given as follow:

1. Initialise the iteration counter to j=1. Set the initial state of the chain to θ(0) =(
α(0), η

1(0)
0 , · · · , η27(0)

0 , η̈(0), v(0), τ (0), ε
(0)
t , ζ

1(0)
0 , · · · , ζ27(0)

0 , ζ
(0)
1 , ζ̈(0), ydry

)′
.

2. Obtain a new value θ(j) from θ(j−1) by successive generation of values

• α(j) ∼ π
(
α
∣∣∣η1(j−1)

0 , · · · , η27(j−1)
j−1 , η̈(j−1), v(j−1), τ (j−1), ε

(t−1)
t , ζ

1(j−1)
0 , · · · , ζ27(j−1)

0 ,

ζ
(j−1)
1 , ζ̈(j−1),y,x

)
using a Metropolis-Hastings step with proposal distribution:

α∗ ∼ Ga
(
hα∗α

(j−1), hα∗
)
.

• η1(j)
0 ∼ π

(
η1

0

∣∣∣α(j), η
2(j−1)
0 , · · · , η27(j−1)

0 , η̈(j−1), v(j−1), τ (j−1), ε
(t−1)
t , ζ

1(j−1)
0 , · · · ,

ζ
27(j−1)
0 , ζ

(j−1)
1 , ζ̈(j−1),y,x

)
using a Metropolis-Hastings step with proposal dis-

tribution:
η1∗

0 ∼ N
(
η

1(j−1)
0 , Ση∗0

)
with a suitable variance, Ση∗0 .

...
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• η27(j)
0 ∼ π

(
η27

0

∣∣∣α(j), η
1(j)
0 , · · · , η26(j)

0 , η̈(j−1), v(j−1), τ (j−1), ε
(j−1)
t , ζ

1(j−1)
0 , · · · ,

ζ
27(j−1)
0 , ζ

(j−1)
1 , ζ̈(j−1),y,x

)
using a Metropolis-Hastings step with proposal dis-

tribution:
η27∗

0 ∼ N
(
η

27(j−1)
0 , Ση∗0

)
.

• η̈(j) ∼ π
(
η̈
∣∣∣α(j), η

1(j)
0 , · · · , η27(j)

0 , v(j−1), τ (j−1), ε
(j−1)
t , ζ

1(j−1)
0 , · · · , ζ27(j−1)

0 , ζ
(j−1)
1 ,

ζ̈(j−1),y,x
)

using a Metropolis-Hastings step with proposal distribution:

η̈∗ ∼ N6
(
η̈(j−1), Ση̈∗

)
.

• v(j) ∼ π
(
v
∣∣∣α(j), η

1(j)
0 , · · · , η27(j)

0 , η̈(j), τ (j−1), ε
(j−1)
t , ζ

1(j−1)
0 , · · · , ζ27(j−1)

0 , ζ
(j−1)
1 ,

ζ̈(j−1),y,x
)

using a Metropolis-Hastings step with proposal distribution:

v∗ ∼ Beta
(
bv∗v

(j−1), bv∗
(
1− v(j−1)

))
.

• τ (j) ∼ π
(
τ
∣∣∣α(j), η

1(j)
0 , · · · , η27(j)

0 , η̈(j), v(j), ε
(j−1)
t , ζ

1(j−1)
0 , · · · , ζ27(j−1)

0 , ζ
(j−1)
1 ,

ζ̈(j−1),y,x
)

using a Gibbs sampler step where

τ∗ ∼ Ga (Gτ , Hτ ) .

• ε(j)t ∼ π
(
εt
∣∣∣α(j), η

1(j)
0 , · · · , η27(j)

0 , η̈(j), v(j), τ j , ζ
1(j−1)
0 , · · · , ζ27(j−1)

0 , ζ
(j−1)
1 , ζ̈(j−1),y

)
using a Metropolis-Hastings step with proposal distribution:

ε∗t ∼ N
(
ε
(j−1)
t , σ2

ε∗

)
with a suitable variance, σ2

ε∗ . For example σ2
ε∗ = [τ(1− φ2

ε )]−1.

• ζ1(j)
0 ∼ π

(
ζ1

0

∣∣∣α(j), η
1(j)
0 , · · · , η27(j)

0 , η̈(j), v(j), τ (j), ε
(j)
t , ζ

2(j−1)
0 , · · · , ζ27(j−1)

0 , ζ
(j−1)
1 ,

ζ̈(j−1),y,x
)

using a Metropolis-Hastings step with proposal distribution:

ζ1∗
0 ∼ N

(
ζ

1(j−1)
0 , Σζ∗0

)
.

...

• ζ27(j)
0 ∼ π

(
ζ27

0

∣∣∣α(j), η
1(j)
0 , · · · , η27(j)

0 , η̈(j), v(j), τ (j), ε
(j)
t , ζ

1(j)
0 , · · · , ζ26(j)

0 , ζ
(j−1)
1 ,

ζ̈(j−1),y,x
)

using a Metropolis-Hastings step with proposal distribution:
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ζ27∗
0 ∼ N

(
ζ

27(j−1)
0 , Σζ∗0

)
.

• ζ(j)
1 ∼ π

(
ζ1
∣∣∣α(j), η

1(j)
0 , · · · , η27(j)

0 , η̈(j), v(j), τ (j), ε
(j)
t , ζ

1(j)
0 , · · · , ζ27(j)

0 , ζ̈(j−1),y,x
)

using a Metropolis-Hastings step with proposal distribution:

ζ∗1 ∼ N
(
ζ

(j−1)
1 , Σζ∗1

)
.

• ζ̈(j) ∼ π
(
ζ̈
∣∣∣α(j), ζ

1(j)
0 , · · · , ζ27(j)

0 , η̈(j), v(j), τ (j), ε
(j)
t , ζ

1(j)
0 , · · · , ζ27(j)

0 , ζ
(j)
1 ,y,x

)
using a Metropolis-Hastings step with proposal distribution:

ζ̈∗ ∼ N6
(
ζ̈(j−1), Σζ̈∗

)
.

• y(j)
dry ∼ π

(
ydry

∣∣∣α(j), ζ
1(j)
0 , · · · , ζ27(j)

0 , η̈(j), v(j), τ (j), ε
(j)
t , ζ

1(j)
0 , · · · , ζ27(j)

0 , ζ
(j)
1 , ζ̈(j),

y,x
)

3. Change counter j to j + 1, and return to step 2.

4.4.5 Application

4.4.5.1 Prior distribution

The prior specifications for the British daily rainfall model were constructed using suitable
distributions based on the information gained from previous studies and personal beliefs.
The chosen prior structure for this model and the methods of elicitation are intended as
recommendations. The actual choice of hyperparameters here is for illustrative purposes
only.

In the British daily rainfall model we use the G1 distribution for the rainfall amount.
However the situation is more complicated for two reasons. The first is that we do not
observe samples from the distribution of Yt. We only observe samples from the distribution
of Wt. The second is the presence of the random effect εt in (4.32). Pragmatically for
elicitation purposes, we propose to ignore the first problem and elcit beliefs about observed
rainfall amounts and to approximate the distribution of the rainfall amount Yt with a
lognormal distribution. So, approximately, Zt = log Yt has a normal distribution.

Suppose that we write
Zt = η?t + et + εt

where et ∼ N(0, ve), εt ∼ N(0, vε) and vε = [τ(1 − φ2
ε )]−1. Then the expectation of Yt,
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given model parameters and the LWT, is

E(Yt | xt = k, η̂t) = exp{η?t + (ve + vε)/2}.

So we write
log{E(Yt | xt = k, η̂t)} = η̂t = η?t + (ve + vε)/2

where, from (4.32),

η?t = ηk0 +
F∑
f=1

[
af cos

( 2πft
365.25

)
+ bf sin

( 2πft
365.25

)]
.

To find the marginal prior distribution of η?t = E(Zt) we can use the first part of the
method for the lognormal distribution in Section 4.3.3.1, and questions Q11, Q12 and
Q13.

To elicit beliefs about ve, τ and φε, we need to consider rainfall on, at least, three
wet days, t, t − k1 and t − k2, where, for example, k1 = 1 and k2 = 3. Given the model
parameters and LWT, the log rainfall amounts, Zt, Zt−k1 and Zt−k2 on these days have
approximately a multivariate normal distribution. Al-Awadhi & Garthwaite (1998, 2001)
describe a method for eliciting prior distributions for the parameters of multivariate normal
distributions. However, in our case, the multivariate normal distributions has a specific,
time-series, structure which does not correspond well with this method. We propose
instead that the expert is asked to imagine a large number of replications of sequences
of wet days at a similar time of year and under the same atmospheric conditions. The
variance of Zt is ve + vε. The covariance of Zt and Zt−k is φkε vε. The corresponding
correlation is

Corr(Zt,Zt−k) = φk
εvε

ve + vε
.

The expert’s quartiles for the corresponding sample covariances from a large number
of replications can be elicited. Alternatively, the correlation may be expressed in terms
of the reduction in conditional variance of Zt given knowledge of Zt−k. We then give the
parameters distributions as follows:

τ ∼ Ga(gτ , hτ ),

α = [exp(ve)− 1]−1 ∼ Ga(gα, hα), (4.36)

v = (φε + 1)/2 ∼ Beta(av, bv).

The hyperparameters gτ , hτ , gα, hα, av and bv are varied iteratively until the specified quar-
tiles for the variance and covariances are reasonably matched by the implied quartiles
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which are numerically computed. The relationship α = [exp(ve) − 1]−1 in (4.36) arises
from considering the case where εt = 0, in which case

E(Yt | εt = 0) = exp{η?t + ve/2} = α/β and

Var(Yt | εt = 0) = exp{2η?t + ve}(exp{ve} − 1) = α/β2.

For illustration, we have chosen carefully suitable values for the hyperparameters of
the unknown parameters in the amount process using the above methods as follows:

mA0 = 0.69, vA0 = 4.22,

gα = 4.31, hα = 5.78,

gτ = 3.69, hτ = 1.68,

av = 3.7, bv = 1.9.

As in Section 4.3.3.3, we can elicit beliefs about rainfall amounts at several different
times of year in order to develop a prior distribution for the Fourier coefficients. In our
illustration we use the same values as used there.

The prior specification for the unknown parameters of the occurrence process is more
cumbersome. However we can use a method similar to that in Section 4.3.3.2. If we
consider rainfall occurence on a day of the year when we believe that the seasonal effects
in (4.33) will cancel out, we might then represent the occurrence process using a simple
logistic regression:

logit(p) = log
(

p

1− p

)
= ζ0 + ζ1 log(y).

The second term on the right hand side has two effects which are observable, at least
in theory. Firstly it causes a change in the distribution of observed rainfall amounts but
direct prior beliefs about such a subtle change are unlikely to be reliably elicited. Secondly,
because Yt and Yt−1 are autocorrelated, it causes dependence between successive rainfall
occurrences. However this relationship is somewhat complicated.

Our approach is as follows. We substitute log Yt = η?t +et+εt. Then, as a first step, we
consider different values of η?t with et and εt assumed to be zero. We use a similar approach
as in Questions Q22 and Q23 in Section 4.3.3.2 to elicit a prior for unknown parameters
in the occurrence process in this situation. In this case, though, we do not condition on
it having rained on the preceding day. It is then possible to refine the elicitation by using
an iterative numerical procedure considering the effect of the distribution of et and εt. We
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have chosen carefully two different scenarios for illustration as follows:

Kp1 = logit(p1) = ζ0 + log(0.2)ζ1,

Kp2 = logit(p2) = ζ0 + log(0.6)ζ1

where we assess that

Pr(p1 < 0.139) = Pr(p1 > 0.432) = 0.25,

Pr(p2 < 0.335) = Pr(p2 > 0.806) = 0.25.

Suppose that Kp1 ∼ N(mKp1 , σ
2
Kp1

). From the specification for p1 we have

Pr(Kp1 < logit 0.139 = −1.824) = 0.25,

Pr(Kp1 > logit 0.432 = −0.274) = 0.25

and using the properties of the normal distribution, we can get

mKp1 − 0.674σKp1 = −1.824, mKp1 + 0.674σKp1 = −0.274

where mKp1 = (−1.824−0.274)/2 = −1.049 and σ2
Kp1

= [(1.824−0.274)/2×0.674]2 = 1.33.
Similar calculations are given to Kp2 where we have

Kp1 ∼ N(−1.05, 1.33)

Kp2 ∼ N(0.37, 2.44).

Suppose that Kp1 and Kp2 is independent and therefore this can be summarised as follows:

E(ζ0 − 1.6094ζ1) = −1.05

E(ζ0 − 0.5108ζ1) = 0.37

and

Var(ζ0 − 1.6094ζ1) = 1.33

Var(ζ0 − 0.5108ζ1) = 2.44

Cov(ζ0 − 1.6094ζ1, ζ0 − 0.5108ζ1) = 0.
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By solving the linear equations above, we obtain(
E(ζ0)
E(ζ1)

)
=
(

1.03
1.29

)

and (
Var(ζ0) Cov(ζ0, ζ1)

Cov(ζ0, ζ1) Var(ζ1)

)
=
(

5.52 3.82
3.82 3.12

)
.

We can use the method of Section 4.3.3.3 to determine a prior distribution for the
Fourier coefficients.

4.4.5.2 Fitting the model

The Rjags package (Plummer, 2012) is used to compute the posterior samples for this
model. The MCMC algorithm was run for 10000 iterations to allow for burn-in, and an
additional 150000 iterations were obtained as the posterior samples. The computing time
that was used to obtain 150000 posterior draws was around 38 hours by using R software
on a 3.40GHz Ergo Desktop AS4 All-in-One with Intel Core i7-3770 processor and 8 Gbytes
of random-access memory. The trace plots can be used as a visual diagnostic to monitor
the convergence of the sampler. In this model, the trace plots for all parameters were
considered before we make any inferences or conclusions. Figure 4.27 displays the example
of trace plots and posterior density of the parameters for the Anticyclonic type (type 1)
with some other parameters. An issue that has to be considered when using MCMC
methods is that the sample values from the stationary distribution are not independent.
The trace plots in Figure 4.27, for the parameters α and τ indicate that these parameters
have a relatively high autocorrelation, which suggests mixing is slow. The chain moves
more slowly around the distribution, and so more samples are required. Thus, 150000
iterations were considered necessary to draw posterior samples. Poor mixing can affect
posterior summary statistics, and obviously we want the sampled numerical summaries
to be as close to the true posterior values as possible. We can observe that the samples
for the other parameters are not as strongly autocorrelated and the mixing is good in
the same figure. The uncertainty associated with most of the unknown parameters has
been reduced after we combined the prior beliefs with the data. For example, there is a
reduction in the variability of parameter ζ1 when a comparison is made between the prior
and posterior distributions. The posterior mean of parameter ζ1 is shifted to the left of
its prior mean. The full summaries of posterior means and standard deviations of the
unknown parameters for the amount and occurrence processes are given in Table 4.5 and
4.6.
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Figure 4.27: The trace and density plots for parameters α, η1
0 , τ , v, ζ1

0 and ζ1
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Amount process
Parameter Prior mean Prior SD Posterior mean Posterior SD
α 0.75 0.36 0.717 0.056
η1

0 0.69 2.05 -0.411 0.085
η2

0 0.69 2.05 0.776 0.236
η3

0 0.69 2.05 0.125 0.253
η4

0 0.69 2.05 -0.229 0.241
η5

0 0.69 2.05 -0.756 0.226
η6

0 0.69 2.05 -0.735 0.188
η7

0 0.69 2.05 -0.395 0.147
η8

0 0.69 2.05 0.392 0.164
η9

0 0.69 2.05 0.305 0.186
η10

0 0.69 2.05 0.846 0.163
η11

0 0.69 2.05 0.531 0.179
η12

0 0.69 2.05 -0.045 0.159
η13

0 0.69 2.05 -0.452 0.128
η14

0 0.69 2.05 -0.030 0.093
η15

0 0.69 2.05 0.074 0.081
η16

0 0.69 2.05 0.410 0.093
η17

0 0.69 2.05 1.140 0.118
η18

0 0.69 2.05 1.116 0.066
η19

0 0.69 2.05 1.354 0.244
η20

0 0.69 2.05 1.093 0.250
η21

0 0.69 2.05 0.875 0.210
η22

0 0.69 2.05 0.448 0.158
η23

0 0.69 2.05 0.541 0.137
η24

0 0.69 2.05 0.773 0.136
η25

0 0.69 2.05 1.006 0.152
η26

0 0.69 2.05 1.258 0.170
η27

0 0.69 2.05 0.339 0.203
a1 0 0.80 0.033 0.044
a2 0 0.56 0.049 0.042
a3 0 0.46 0.011 0.042
b1 0 0.80 -0.106 0.041
b2 0 0.56 -0.001 0.042
b3 0 0.46 0.011 0.042
τ 2.2 1.14 1.967 0.328
v 0.66 0.18 0.803 0.021

Table 4.5: The prior and posterior means with standard deviations (SD) of the unknown parameters
for the amount process
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Occurrence process
Parameter Prior mean Prior SD Posterior mean Posterior SD
ζ1

0 1.03 2.35 -0.256 0.131
ζ2

0 1.03 2.35 0.414 0.401
ζ3

0 1.03 2.35 0.717 0.410
ζ4

0 1.03 2.35 -0.150 0.359
ζ5

0 1.03 2.35 0.077 0.337
ζ6

0 1.03 2.35 -0.220 0.272
ζ7

0 1.03 2.35 0.181 0.228
ζ8

0 1.03 2.35 0.047 0.253
ζ9

0 1.03 2.35 0.516 0.304
ζ10

0 1.03 2.35 1.423 0.324
ζ11

0 1.03 2.35 1.170 0.314
ζ12

0 1.03 2.35 0.337 0.247
ζ13

0 1.03 2.35 0.157 0.186
ζ14

0 1.03 2.35 0.530 0.151
ζ15

0 1.03 2.35 0.651 0.145
ζ16

0 1.03 2.35 1.029 0.179
ζ17

0 1.03 2.35 1.222 0.239
ζ18

0 1.03 2.35 1.291 0.137
ζ19

0 1.03 2.35 0.659 0.490
ζ20

0 1.03 2.35 1.247 0.521
ζ21

0 1.03 2.35 1.011 0.395
ζ22

0 1.03 2.35 0.938 0.285
ζ23

0 1.03 2.35 1.175 0.262
ζ24

0 1.03 2.35 1.262 0.269
ζ25

0 1.03 2.35 1.378 0.312
ζ26

0 1.03 2.35 1.179 0.358
ζ27

0 1.03 2.35 0.906 0.348
c1 0 0.80 0.369 0.054
c2 0 0.56 -0.034 0.053
c3 0 0.46 0.005 0.053
d1 0 0.80 0.107 0.053
d2 0 0.56 0.104 0.053
d3 0 0.46 -0.037 0.053
ζ1 1.29 1.77 1.060 0.068

Table 4.6: The prior and posterior means with standard deviations (SD) of the unknown parameters
for the occurrence process
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Figure 4.28: The posterior mean with 95% credible intervals for ηk
0 where k ∈ {1, · · · , 27}
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Figure 4.29: The posterior mean with 95% credible intervals for ζk
0 where k ∈ {1, · · · , 27}

125



Chapter 4. Modelling Univariate Daily Rainfall Data

Figure 4.28 shows the posterior mean and 95% credible intervals of the parameter
ηk0 for every type k ∈ {1, · · · , 27}. In this figure, the cyclonic types (18-26) have larger
posterior means of ηk0 with the means being greater than 0.5. This finding is consistent
with the early inference as shown in Figure 4.20a. The LWTs thus play an important role
in influencing the quantity of rainfall. For example, the cyclonic type might produce a
greater rainfall amount than other types over a year. Also, the previous random effect at
time t−1 is also vital in determining the level of the rainfall amount at time t. It is highly
possible that the rainfall amount will increase if the rainfall does occur on the previous
day. Figure 4.29 shows that the posterior mean of ζk0 varies between types k ∈ {1, · · · , 27},
and thus the LWT will determine the rainfall probability at time t. This can be illustrated
by referring to the Figure 4.20b where the cyclonic types are associated with the greatest
levels of rainfall probability which is also consistent with the early inference.
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Figure 4.30: The FDTR and NFTR plots for British daily rainfall

Section 4.2.6 describes the diagnostic checking methods used for the mixed distribution
based on Smith (1985). Therefore, we will use this approach to assess the adequacy of our
model by generating the posterior mean of the FDTR and NFTR from year 1967 until
1968. The graphs of these residuals are shown in Figure 4.30. In these figures, we can
observe that these residuals conform to the respective series of independent uniform and
independent normal observations. We can further examine the model by looking at the
quantile-quantile (QQ), ACF and PACF plots for the NFTR in Figure 4.31. The linearity
of the points in the QQ plot indicates that the NFTR are normally distributed. The ACF
and PACF plots demonstrate that the residuals are not highly correlated. The evidence
from the plots suggests that the model fits the data very well.
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Figure 4.31: QQ, ACF and PACF plots for British daily rainfall

4.4.6 Conclusion

A daily rainfall model was presented in this application by using British daily rainfall. The
objective of this model is to capture the relationship that exists between the atmospheric
circulation pattern (LWTs) and daily rainfall. This model can be considered more com-
plicated compared to the Italian daily rainfall application since it involves more variables
and parameters. Based on the MCMC results, we can consider that the proposed model
fits the data very well. The amount and occurrence processes indicate that they are highly
dependent on the characteristics of the LWT. Thus, the rainfall amounts and probabilities
vary according to the type of the LWT occurring at time t.

In the next chapter, we will describe the extension of the British daily rainfall model to
include spatiotemporal effects based on multiple locations. In the model, inter-site spatial
correlations will be included and this will hence be our main focus. Moreover, we will also
investigate the effects of spatial correlations on the occurrence and amount processes at
different sites.
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4.5 Summary

In this chapter, we have described the construction of a general daily rainfall model for a
single site within the Bayesian framework. Modelling daily rainfall can be quite challenging
since there is a mixture of discrete and continuous components in the data. In the general
model, we have emphasised the relationship between the amount and occurrence processes
using a two-stage approach as shown in Section 4.2. We have also described methods that
we can use to construct a model for the amount and occurrence processes in Sections 4.2.2
and 4.2.3. An important novelty in this study is dealing with seasonal effects as the data
obtained spans the whole year. We have introduced two different types of Fourier series
in Section 4.2.4 to take into account the seasonal variability over a year. Then, we applied
this general model to the Italian and British datasets.

For the Italian daily rainfall application in Section 4.3, we have proposed to use three
different distributions for the amount process: lognormal distribution, G1 distribution and
G2 distribution (for details, see Section 4.3.2.1). From these three distributions, it was
found that both the G1 and G2 distributions fitted the data slightly better compared to a
lognormal distribution based on the posterior mean for the mean of the potential rainfall
amount and posterior predictive values. Since both G1 and G2 distributions are gamma
distributions, we can observe that the gamma distribution is a better choice for the amount
process modelling for the Italian rainfall data. Furthermore, we have discovered that the
shape parameter does not change noticeably over the year while the scale parameter has
clear-cut shifts as comparisons were made from month to month as shown in Section
4.3.3.6. For the occurrence process, we have used a first-order Markov chain to fit the
rainfall occurrence where the rainfall occurrence at current time t is dependent on that of
the previous time t− 1. The detailed parameterisation for the occurrence process can be
found in Section 4.3.2.2.

We have also built a model for the British daily rainfall which is different from the
Italian application by incorporating the atmospheric circulation patterns in the model.
In the British model, we have chosen the LWTs to represent the atmospheric circulation
patterns. The LWT is incorporated into the model through the amount and occurrence
processes. Our aim for this model is to build an alternative model from the previous work
by Heaps et al. (2015) and Germain (2010). These authors used the LWT to characterise
atmospheric circulation patterns by combining it with the weather state process using
a NHMM approach for the UK winter rainfall. This model is entirely different from
our model where we applied the LWT directly to the model instead of using hidden
weather states and a NHMM approach. We believe that the LWT plays a critical role
in determining rainfall amounts and occurrences over the British Isles as we can see in
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Section 4.4.2. Furthermore, we used data from all times of year to generate the British
daily rainfall model where the Fourier series is used to allow for seasonal variability in the
data. To build a model for the amount process, we have used a gamma distribution where
we introduced a random effect at time t which is conditionally dependent on the previous
time t−1. For the occurrence process, we proposed a simple parameterisation to calculate
the probability of rainfall occurrence. As we can see in Section 4.4.4, the parameterisation
for the amount and occurrence processes of the British application is in contrast with
the Italian application. The MCMC results have indicated that the model fits the data
very well as shown in Section 4.4.5.2. It also shows that the level of the potential rainfall
amount and the probability of rainfall occurrence are relatively dependent on the type
of LWT. In the next chapter, we will describe the extension of this British daily rainfall
model with multiple sites.
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Chapter 5

Spatiotemporal Model for Daily
Rainfall Data

5.1 Introduction

Following the introduction of the daily rainfall model in Chapter 4, we will now introduce
a spatiotemporal model which is the extended version of the previous univariate model.
The purpose of this chapter is hence to present an alternative spatiotemporal model to
the previous models developed by Heaps et al. (2015) and Germain (2010) who used non-
homogeneous hidden Markov models to fit a model for the winter daily rainfall data in
the United Kingdom (UK). In their modelling framework, the atmospheric circulation
patterns were linked to the latent weather states to model their influence on the daily
rainfall pattern. Instead of using hidden weather states, we propose a model in which
we can directly link the atmospheric circulation patterns to the rainfall occurrences and
amounts via the conditional model parameters. We also aim to capture the relationship
that exists between the sites and investigate how this relationship can affect the daily
rainfall pattern at neighboring sites.

Section 5.2 describes the general information about the spatiotemporal model. The
exploration of the daily rainfall dataset and the spatial characteristics of each location will
be subsequently discussed in Section 5.3. Next, we introduce the spatiotemporal model for
UK daily rainfall in Section 5.4. Similar to the univariate model, the Lamb weather types
(LWTs) will be incorporated into the model via the amount and occurrence processes.
This will lead to a more complex model that requires extensive computational time. The
detailed prior and posterior distributions for the model are described in Sections 5.5 and
5.6, respectively.
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5.2 Description of the spatiotemporal model

LetWt = (Wt(1),Wt(2), · · · ,Wt(S))′ be a random vector for the observed rainfall amounts
which occur at time, t (t = 1, · · · , T ) and at sites s = 1, · · · , S. The rainfall amount, Wt(s),
can either be zero (Wt(s) = 0) if no rain was recorded or positive (Wt(s) > 0) if rain was
recorded. The notation for rainfall occurrence is thus given by:

Rt(s) =

1 if it rains, Wt(s) > 0

0 if it does not rain, Wt(s) = 0,

where Rt = (Rt(1), Rt(2), · · · , Rt(S))′ is an indicator vector of rainfall occurrence at time
t for sites s = 1, · · · , S. The observed rainfall at site s on day t can therefore be defined
as:

Wt(s) = Rt(s)Yt(s) (5.1)

where Yt(s) = g (Zt(s)) is a continuous random variable representing the potential rainfall
amount at time t and site s, and g(.) is some monotonic function defining a suitable
transformation (e.g. exponential) together with a transformed value, Zt(s). The value
of Yt(s) is always positive but not always observed. Thus, Wt(s) = Yt(s) if and only if
Wt(s) > 0. Otherwise Yt(s) does not play any role. The probability of rainfall occurrence
is accordingly given by Pr(Wt(s) > 0) = p1(s, t) and as a result, Pr(Wt(s) = 0) = p0(s, t) =
1− p1(s, t). Let the collections of the observed values of Wt, Yt and Rt be w, y and r.

In UK climatology, the LWTs have been used extensively for characterising the at-
mospheric circulation patterns, making them a natural choice of atmospheric variable for
downscaling models. Heaps et al. (2015) suggested using the objective LWTs for UK cli-
matology since they have been used extensively for many years. The sequence of LWTs is
designated by x = (x1, x2, · · · , xt) where xt = k with k ∈ {1, 2, · · · , 27}. In this model, a
categorical covariate will be used to represent LWTs as a weather state. Hence, Xt repre-
sents the weather state on day t and this indicates the rainfall patterns on each day. The
detailed descriptions of LWTs have already been elaborated in Chapter 4, Section 4.4.2.

5.3 Data

In this chapter we will use a dataset to illustrate the methods. The dataset consists of
daily rainfall observations (measured in millimeters) at a network of 5 sites in the UK.
The data are available for 365 days per year and 366 days for each leap year for a whole
period of 20 years (7305 days in total). The five selected sites are Balmoral, Darlington
South Park, Knighton Victoria Road, Ardleigh Hull Farm, and Bastreet. The maximum
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and minimum distances between the sites in this network are 724.8 km and 221.8 km,
respectively. A spatial plot of the network of the measurement sites (i.e. the 5 weather
stations) is given in Figure 5.1.
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Figure 5.1: The locations of the United Kingdom weather stations chosen as the measurement sites
for daily rainfall

As explained in Chapter 4, rainfall data contain zeros and positive values. A dry day
is defined as a day in which the rain does not occur or the rainfall amount is insufficient
to meet the standard operational definition of a positive rainfall. For this purpose, we use
the operational definition adopted by the American Meteorological Society which is that
a recorded rainfall amount of less than 0.01 inches or 0.2 mm within a 24-hour period is
classified as zero rainfall (Glickman, 2000; Germain, 2010). This cut-off will hence be used
to classify a day as either dry or wet as we scrutinise the British rainfall data.

Table 5.1 shows summaries of the altitude, the proportion of wet days, the mean
and maximum daily rainfall amounts for each site. Contingent upon this information, the
highest proportion of wet days were recorded at Bastreet (66.50%) whilst Darlington South
Park had the smallest proportion (49.39%) of wet days. The mean daily rainfall amount
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Site Altitude
(m)

Proportion
wet days

(%)

Mean daily
rainfall
(mm)

Max
rainfall
amount
(mm)

1 Balmoral 276.82 60.82 2.33 74.7
2 Darlington South Park 44.20 49.39 1.84 48.8
3 Knighton Victoria Road 179.58 65.43 2.75 51.8
4 Ardleigh Hull Farm 34.09 49.50 1.57 47.1
5 Bastreet 270.60 66.50 4.65 114.3

Table 5.1: Summary of data from five sites within the UK from 1966 until 1985

ranges from 1.5 mm to 5.0 mm with the highest mean daily rainfall amount recorded at
Bastreet. In addition, the daily rainfall amount may also reach up to nearly 115 mm for a
particular site such as Bastreet which recorded a maximal daily rainfall amount of 114.3
mm over the 20-year observation period.

Figure 5.2 depicts the mean daily rainfall amounts on the wet days and the proportions
of wet days classified according to the LWTs for all sites. We can observe that the high
amounts of daily rainfall in Figure 5.2a are associated with the cyclonic types whereas the
low daily rainfall amounts are related to the anticyclonic types. A similar pattern can also
be evidently seen for the proportions of wet days (Figure 5.2b), where a higher probability
of rain occurrence is associated with the cyclonic types whilst the anticyclonic types are
associated with a lower probability of rainfall occurrence.

We can also investigate the spatial structure of the daily rainfall pattern to evaluate
whether similar rainfall characteristics are observed between sites. For this endeavour,
we take heed of the recommendations made by Germain (2010). Hence, we used the
Spearman’s rank correlation and log odds ratio to assess the spatial autocorrelations in
the rainfall amounts and occurrences. Suppose that we have two sites, i and j, the odds
ratio can then be defined as

n11
n01

/
n10
n00

= n00n11
n01n10

(5.2)

where

• n00= the number of dry days at both sites

• n11= the number of wet days at both sites

• n01= the number of dry days at site i and wet days at site j

• n10= the number of wet days at site i and dry days at site j.
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Figure 5.2: (a) The mean daily rainfall on wet days and (b) the proportion of wet days by the
Lamb weather types for five sites within the UK. See Table 4.3 for details.

By taking logarithm on both sides of the (5.2), the log odds ratio is now expressible as:

log
(
n00n11
n01n10

)
.

The correlations between two sites, presented in Figure 5.3a using the Spearman’s rank
correlation coefficients, show that one of them exceeds 0.6. Figure 5.3b also indicates
a similar pattern for the log odds ratio in which the highest correlations are associated
with the highest log odds ratio. In addition, we can observe that the correlation and
the log odds ratio decrease with distance as shown in Figure 5.4a and 5.4b, respectively.
This relationship may suggest that the rainfall patterns are also governed by the distances
between the sites. Therefore, a pair of sites might have similar rainfall characteristics
if they are in the neighbourhood of each other. Exponential correlation functions, with
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Figure 5.3: (a) Spearman’s rank correlation coefficients between non-zero rainfall amounts and (b)
log odds ratios for rainfall occurrence for all pairs of sites, UK network
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Figure 5.4: (a) Correlations and (b) log odds ratios against distance, UK network
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different values of the decay parameter, are also superimposed on Figure 5.4a. Apart from
one point, the point at the greatest distance, the fit to an exponential function with decay
parameter around 0.002 seems reasonably good. There is no suggestion that the limit of
the correlation as the distance tends to zero is less than 1 so there is no obvious need to
include a “nugget” effect.

5.4 The model

5.4.1 Model structure

When building a spatiotemporal model for rainfall, it is natural to provide a more general
parameterisation for the model before we modify it to simplify the process. In our case,
the daily rainfall patterns assume a mixed distribution. It is therefore crucial to consider
the relationship between the amount and occurrence processes. Following the discussion
in Chapter 4, we opted for the same approach developed by Sofia (2007) whose conceptual
framework relies on making the occurrence process dependent upon the amount process.
Consequently, this method is contrary to the model implemented by Heaps et al. (2015)
and Germain (2010). A similar parameterisation has been applied to a single site in North
East England. In this section, we will introduce and develop a spatiotemporal model
for daily rainfall which is an extension of the previous univariate daily rainfall model in
Chapter 4, Section 4.4.

The resulting model structure is shown in the DAG in Figure 5.5. The structure is
essentially the same as that for the univariate British rainfall model in Section 4.4 except
that now the nodes represent vector variables.

5.4.2 Modelling the rainfall amount

Following the univariate rainfall model elaborated in Chapter 4, Section 4.4, we will de-
velop a spatiotemporal model for daily rainfall using the concept of the potential daily
rainfall amount. Firstly, the potential daily rainfall amount at site s on day t is assumed
to follow a gamma distribution:

Yt(s)|xt = k, α, µt(s) ∼ Ga
(
α,

α

µt(s)

)
(5.3)
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Figure 5.5: A DAG showing the temporal dependence structure of the spatiotemporal model

with a constant shape parameter, α, and variable scale parameter, α/µt(s). We can
subsequently employ the GLM approach to model its mean:

log(µt(s)|xt = k) = ηk0 (s) +
F∑
f=1

[
akf (s) cos

( 2πft
365.25

)
+ bkf (s) sin

( 2πft
365.25

)]
+ εt(s) (5.4)

for k ∈ {1, · · · , 27}. The truncated Fourier series is used in (5.4) to allow for seasonal
variation in the rainfall amount. The key assumption here is that log (µt(s)) depends on
the spatiotemporal random effect, εt(s), which accounts for the correlations between times,
t and sites, s. Thus, the distribution of µt(s) is a log-normal distribution. By obtaining
the joint density density of Yt(s) and µt(s) and subsequently integrating out µt(s), we
shall then recognize that the marginal distribution of Yt(s) given other parameters is not
a gamma distribution.

There are several approaches that can be used to model εt = (εt(1), εt(2), · · · , εt(S))′.
For example, Fernandes et al. (2009) recommended using a zero mean Gaussian process
(GP):

εt ∼ GP (0, 1
τ
ρ (‖si − sj‖;φ)

for i 6= j with a correlation function ρ (.;φ) where ‖.‖ denotes the Eulidean distance. How-
ever, this approach does not take into consideration the dependency between time points.
Velarde et al. (2004) employed conditional autoregressive (CAR) models to represent the
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spatiotemporal effects. This approach, introduced by Besag (1974), has been routinely
used for mapping disease (Waller & Carlin (2010), Reich et al. (2006), and Knorr-Held
& Besag (1998)). In our model, we assume each εt is dependent on the previous value,
εt−1, in a vector autoregression allowing for the temporal dependency. More specifically,
suppose εt follows a multivariate normal distribution:

εt|εt−1 ∼ NS

(
φεεt−1,

1
τ
Σ

)
(5.5)

for t > 1. For t = 1, the random effect is given by:

ε1 ∼ NS

(
0, 1
τ (1− φ2

ε )
Σ

)
. (5.6)

The marginal mean of εt is zero with parameters φε and τ whereΣ is the spatial correlation
matrix. Banerjee et al. (2004) recommended some possible forms for the spatial covariance
function and the most popular choice is the exponential covariance function which is given
by:

Σij = exp(−φ‖si − sj‖) (5.7)

with i 6= j, φ > 0 and ‖si − sj‖ is the distance between site si and sj . If i = j, the distance
is equal to zero. According to Sanso & Guenni (1999), this is the standard correlation
function in hydrological applications which ensures that Σij is always symmetric and
positive definite. Another popular choice for the spatial covariance function is the Matérn
correlation function which was originally introduced by Matérn (1986).

This model also incorporates LWTs, xt, by applying them directly to the parameters of
the linear function as shown in (5.4). This modelling strategy is in contrast to the methods
used by Heaps et al. (2015) and Germain (2010) who introduced the LWTs through the
hidden Markov models. Since many parameters are dependent on the LWTs and site, there
is a strong possibility of poor identification of some parameters. Therefore, we simplify
the parameterisation in (5.4) by allowing only ηk0 (s) to depend on the LWTs while the
Fourier coefficients are constant over LWTs and sites. Thus, the new parameterisation for
log (µt(s)) is :

log(µt(s)|xt = k) = ηk0 (s) +
F∑
f=1

[
af cos

( 2πft
365.25

)
+ bf sin

( 2πft
365.25

)]
+ εt(s).
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5.4.3 Modelling the rainfall occurrence

The rainfall occurrence can only take the values of either 0 or 1, therefore the appropriate
probability mass function (pmf) for the occurrence process is a Bernoulli distribution:

Rt(s)|xt = k, yt(s) ∼ Bern (p1(s, t)) (5.8)

where p1(s, t) is the rainfall probability at site s on day t. There are several approaches
that we can use to model the probability of rainfall which have already been discussed
in Chapter 4, Section 4.2.3. The most common approach is a logit link function. An
alternative approach is a probit link function which has been used by Heaps et al. (2015),
Germain (2010) and Thompson et al. (2007). We then propose to apply a logit link
function in this occurrence process to model the rainfall probability as follows:

logit
(
p1(s, t)|xt = k

)
=ζk0 (s) +

F∑
f=1

[
ckf (s) cos

( 2πft
365.25

)
+ dkf (s) sin

( 2πft
365.25

)]
+ ζk1 (s) log

(
yt(s)

) (5.9)

for k ∈ {1, · · · , 27}. Similar to the amount process, the truncated Fourier series is used to
allow for seasonal variation in the rainfall probability. Note that logit

(
p1(s, t)|xt = k

)
is

conditioned upon log (yt(s)) to create a link between the amount and occurrence processes.
This parameterisation is in contrast to that of Heaps et al. (2015) and Germain (2010)
who used the rainfall occurrence as a covariate to construct a model for the log-rainfall
amounts. We do not include the spatiotemporal effect directly in the occurrence process
since the spatiotemporal effect has already been represented by yt(s).

Similar to the amount process, the original idea is to apply the LWTs directly to all
parameters in the logit function (5.9). However, this may lead to poor identification of
some parameters. Therefore, we simplify the parameterisation by applying the LWTs only
to ζk0 (s) while the Fourier coefficients and ζ1 are constant over LWTs and sites. Thus, the
new parameterisation for the occurrence process is

logit
(
p1(s, t)|xt = k

)
= ζk0 (s) +

F∑
f=1

[
cf cos

( 2πft
365.25

)
+ df sin

( 2πft
365.25

)]
+ ζ1 log

(
yt(s)

)
.
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5.5 Prior distribution

5.5.1 Prior distribution for the amount process

Since the shape parameter, α can only take positive values, it is assigned a gamma distri-
bution:

α ∼ Ga(gα, hα).

For the intercept term, ηk0 (s), we assign a common prior mean, mη̄0, for all s and k. In
order to generate an appropriate prior covariance structure for the collection of intercept
terms, we represent the deviations from the prior mean in terms of a number of zero-mean
random variables, η01(k), η0,2(s) and η0,3(k, s), which are mutually independent, in the
style of Farrow (2003). Thus we write

ηk0 (s) = mη̄0 + η01(k) + η0,2(s) + η0,3(k, s).

In the cases of η01(k) and η0,2(s), we introduce hierarchical structures. By conditioning
η01(k) on η̌01, we have

η01(k) | η̌01 ∼ N(η̌01, vη1)

where
η̌01 ∼ N(0, vη0)

and the variance, covariance and correlation are given by:

Var[η01(k)] = vη0 + vη1 ,

Covar[η01(k), η0,1(k′)] = vη0 ,

Corr[η01(k), η0,1(k′)] = vη0

vη0 + vη1
.

Similarly, for η02(s), we have

η02(s) | η̌02 ∼ N(η̌02, v̈η1)

where
η̌02 ∼ N(0, v̈η0)
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and

Var[η02(s)] = v̈η0 + v̈η1 ,

Covar[η02(s), η0,2(s)] = v̈η0 ,

Corr[η02(s), η0,2(s)] = v̈η0

v̈η0 + v̈η1
.

The terms η0,3(k, s) are mutually independent and

η03(k, s) ∼ N(0, τ−1
η3 ).

In the terminology of Farrow (2003), η01(k) and η02(s) are common uncertainty factors
and the terms η03(k, s) are specific uncertainty factors.

Let η̈ = (a1, a2, b1, b2)′ represent the collection of Fourier coefficients for the amount
process. Then, the prior distribution for η̈ is given by:

η̈ ∼ N4
(
mη̈, P

−1
η̈

)
where mη̈ is the mean vector with precision matrix, Pη̈. For the parameters τ and φ,
gamma distributions are assigned as their priors:

τ ∼ Ga(gτ , hτ )

and
φ ∼ Ga(gφ, hφ).

A gamma distribution is a sensible prior choice for τ and φ since it can only assume positive
values. The prior distribution for φε must adhere to the stationary condition |φε| < 1.
Suppose that a new variable, v, follows a beta distribution:

v ∼ Beta(av, bv).

Since the beta distribution has a range between 0 and 1, we can then fix:

φε = 2v − 1

so that the value for φε is between -1 and 1.
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5.5.2 Prior distribution for the occurrence process

The prior distribution for the parameters in the occurrence process is similar to that for
the amount process. Let the intercept term ζk0 (s) is given by:

ζk0 (s) = mζ̄0 + ζ01(k) + ζ02(s) + ζ03(k, s)

where mζ̄0 is a common prior mean for all s and k. Similar to the amount process, ζ01(k),
ζ02(s) and ζ03(k, s) are given to generate an approriate prior covariance structure for the
collection of intercept terms.

In the case of ζ01(k) and ζ02(s), we introduce hierarchical structures. By conditioning
ζ01(k) upon ζ̌01, the distribution of ζ01(k) is:

ζ01(k)|ζ̌01 ∼ N(ζ̌01, υζ1)

where
ζ̌01 ∼ N(0, υζ0)

and the variance, covariance and correlation are given by:

Var[ζ01(k)] =υζ0 + υζ1

Covar[ζ01(k), ζ01(k′)] =υζ0

Corr[ζ01(k), ζ01(k′)] = υζ0

υζ0 + υζ1

.

Similarly, for ζ02(s), we have:

ζ02(s)|ζ̌02 ∼ N(ζ̌02, ν̈ζ1)

where
ζ̌02 ∼ N(0, ν̈ζ0)

and

Var[ζ02(s)] =ν̈ζ0 + ν̈ζ1

Covar[ζ02(s), ζ02(s′)] =ν̈ζ0

Corr[ζ02(s), ζ02(s′)] = ν̈ζ0

ν̈ζ0 + ν̈ζ1

.

The terms ζ03(k, s) are mutually independent and:

ζ03(k, s) ∼ N
(
0, 1/τ−1

ζ3

)
.
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By following the terminology of Farrow (2003), ζ01(k) and ζ02(s) are common uncertainty
factors and the terms ζ03(k, s) are specific uncertainty factors. A normally-distributed
prior is also assigned for ζ1:

ζ1 ∼ N (mζ1 , 1/τζ1)

since ζ1 can take any values from −∞ to ∞.

Let the set of Fourier coefficients for the occurrence process be represented by ζ̈ =
(c1, c2, d1, d2)′. Then, the prior distribution for the Fourier coefficients is defined in a
similar manner as for the amount process:

ζ̈ ∼ N4
(
mζ̈ , P

−1
ζ̈

)
where mζ̈ and Pζ̈ are the mean vector and the precision matrix, respectively.

5.6 Posterior distribution

Let θ be the collection of unknown parameters. The joint density of (θ,Y ,R) is then
given by:

π(θ,y, r) = π(θamt)× π(θocc)× f(y|θamt)× f(r|y,θocc) (5.10)

where θamt and θocc are the collections of parameters for the amount and occurrence
processes, respectively. To evaluate the posterior distribution, we use a Metropolis-within-
Gibbs algorithm. We use data augmentation and treat the unobserved potential rainfall
amounts Yt(s) and the random effects εt(s) as auxiliary data. We therefore need to find
the full conditional distributions of the model parameters and the auxiliary data.

5.6.1 The full conditional distributions for the amount process

From (5.10), we can work out the full conditional distribution (FCD) for each parameter
in the amount process. The FCDs in this section are provided only as general information
and for future work. Then, the FCD for each parameter are derived as follows:
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• Parameter α

The FCD for the shape parameter, α, is:

π
(
α|ηk0 (s), η̈, v, τ,y

)
∝

T∏
t=1

S∏
s=1

f (yt(s)|θamt, εt(s))× π (α)

∝
T∏
t=1

S∏
s=1

[
α

µt(s)

]α yt(s)α−1

Γ (α) exp
[
−αyt(s)
µt(s)

]
× hgαα α

gα−1e−hαα

Γ (gα)

∝(α)αST+gα−1

[Γ (α)]ST
T∏
t=1

S∏
s=1

[Et(s)]α exp
{
−α

(
T∑
t=1

S∑
s=1

Et(s) + hα

)}
.

where Et(s) = yt(s)/µt(s).

• Parameter ηk0 (s)

We have ηk0 (s) = mη̄0 + η01(k) + η0,2(s) + η0,3(k, s). The FCD of ηk0 (s) is
represented by:

π

(
ηk0 (s)

∣∣∣∣η̈, v, τ,y,η01(k), η02(s), ε
)

∝
∏
t∈Tk

f (yt(s)|θamt, εt(s))× π
(
ηk0 (s)|η01(k), η02(s)

)

∝
∏
t∈Tk

[
α

µt(s)

]α yt(s)α−1

Γ (α) exp
[
−αyt(s)
µt(s)

]

×
√
τη̄0

2π exp
{
−τη̄0

2
(
ηk0 (s)− η01(k)− η02(s)−mη̄0

)2
}

∝
∏
t∈Tk

[Et(s)]α exp
{
−
[
α
∑
t∈Tk

Et(s)

+ τη̄0

2
({

ηk0 (s)
}2
− 2ηk0 (s) {η01(k) + η02(s) +mη̄0}

)]}

where Tk = {t : xt = k} is the set of observations that belongs to type k = 1, · · · , 27.
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The FCD of η01(k) is given by:

π

(
η01(k)

∣∣∣∣ηk0 (1), · · · , ηk0 (S),η02(1), · · · , η02(S), η̌01

)

∝
S∏
s=1

f
(
ηk0 (s)|η01(k), η02(s)

)
× π (η01(k)|η̌01)

∝
S∏
s=1

√
τη̄0

2π exp
{
−τη̄0

2
(
ηk0 (s)− η01(k)− η02(s)−mη̄0

)2
}

×
√

1
2πυη1

exp
{
− 1

2υη1
(η01(k)− η̌01)2

}

∝ exp
{
−Dη01

2 (η01(k)−Bη01)2
}

where
Dη01 = Sτη̄0 + 1

υη1

and

Bη01 = 1
Dη01

{
τη̄0

[
S∑
s=1

ηk0 (s)−
S∑
s=1

η02(s)− Smη̄0

]
+ η̌01
υη1

}
.

This form corresponds to a normal density, N(Bη01 , 1/Dη01).

The FCD of η̌01 is derived as follows:

π

(
η̌01

∣∣∣∣η01(1), · · · , η01(27)
)
∝

27∏
k=1

f (η01(k)|η̌01)× π(η̌01)

∝
27∏
k=1

√
1

2πυη1
exp

{
− 1

2υη1
(η01(k)− η̌01)2

}

×
√

1
2πυη0

exp
{
− 1

2υη0
(η̌01)2

}

∝ exp
{
D̃η̌01

2
(
η̌01 − B̃η̌01

)2
}

where
D̃η̌01 = K

υη1
+ 1
υη0

and
B̃η̌01 =

∑27
k=1 η01(k)
D̃η̌01υη0

.

This form also corresponds to a normal density, N(B̃η̌01 , 1/D̃η̌01).
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The FCD of η02(s) is represented by:

π

(
η02(s)

∣∣∣∣η1
0(s), · · · , η27

0 (s),η01(1), · · · , η01(27), η̌02

)

∝
27∏
k=1

f
(
ηk0 (s)|η01(k), η02(s)

)
× π (η02(s)|η̌02)

∝
27∏
k=1

√
τη̄0

2π exp
{
−τη̄0

2
(
ηk0 (s)− η01(k)− η02(s)−mη̄0

)2
}

×
√

1
2πνη1

exp
{
− 1

2νη1
(η02(s)− η̌02)2

}

∝ exp
{
−Dη02

2 (η02(s)−Bη02)2
}

where
Dη02 = Sτη̄0 + 1

νη1

and

Bη02 = 1
Dη02

{
τη̄0

[ 27∑
k=1

ηk0 (s)−
27∑
k=1

η01(k)−Kmη̄0

]
+ η̌02
νη1

}
.

This is a normal distribution.

For η̌02, the FCD is:

π

(
η̌02

∣∣∣∣η02(1), · · · , η02(S)
)
∝

S∏
s=1

f (η02(s)|η̌02)× π(η̌02)

∝
S∏
s=1

√
1

2πνη1
exp

{
− 1

2νη1
(η02(s)− η̌02)2

}

×
√

1
2πνη0

exp
{
− 1

2νη0
η̌02

}

∝ exp
{
D̃η̌02

2
(
η̌01 − B̃η̌02

)2
}

where
D̃η̌02 = S

νη1
+ 1
νη0

and
B̃η̌02 =

∑S
s=1 η02(s)
D̃η̌νη0

.

Again, this is the density form of a normal distribution.
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• Parameter η̈

The FCD for η̈ is given by:

π
(
η̈|ηk0 (s), v, τ,y

)
∝

T∏
t=1

S∏
s=1

f (yt(s)|θamt, εt(s))× π (η̈)

∝
T∏
t=1

S∏
s=1

[
α

µt(s)

]α yt(s)α−1

Γ (α) exp
[
−αyt(s)
µt(s)

]
× (2π)−2F |Pη̈|1/2 exp

{
−1

2(η̈ −mη̈)TPη̈(η̈ −mη̈)
}

∝
T∏
t=1

S∏
s=1

[Et(s)]α exp
{
−
[
α

T∑
t=1

S∑
s=1

Et(s) + 1
2(η̈ −mη̈)TPη̈(η̈ −mη̈)

]}
.

• Parameter v

The FCD for v can be derived as follows:

π (v|ε, φ, τ) ∝f (ε1|v, φ, τ)
T∏
t=2

f (εt|εt−1, v, φ, τ)× π (v)

∝
√
τ (1− φ2

ε )
(2π)S |Σ| exp

{
−τ

(
1− φ2

ε

)
2 (ε1)′Σ−1 (ε1)

}

×
T∏
t=2

√
τ

(2π)S |Σ| exp
{
− τ

2
(
εt − φεεt−1

)′
Σ−1(εt − φεεt−1

)}

× Γ (av + bv)
Γ (av)Γ (bv)

vav−1(1− v)bv−1

∝vav−1(1− v)bv−1
√

(1− φ2
ε ) exp

{
− τ

2

[(
1− φ2

ε

)
(ε1)′Σ−1 (ε1)

+
T∑
t=1

(εt − φεεt−1)′Σ−1(εt − φεεt−1)
]}
.
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• Parameter φ

For φ, the FCD can be expressed using the following:

π (φ|ε, v, τ) ∝f (ε1|v, φ, τ)
T∏
t=2

f (εt|εt−1, v, φ, τ)× π (φ)

∝
√
τ (1− φ2

ε )
(2π)S |Σ| exp

{
−τ

(
1− φ2

ε

)
2 (ε1)′Σ−1 (ε1)

}

×
T∏
t=2

√
τ

(2π)S |Σ| exp
{
− τ

2
(
εt − φεεt−1

)′
Σ−1(εt − φεεt−1

)}

×
h
gφ
φ φ

gφ−1 exp [−hφφ]
Γ (gφ)

∝φgφ−1 exp
{
−
[
τ

2
[(

1− φ2
ε

)
(ε1)′Σ−1 (ε1) +

T∑
t=2

(
εt − φεεt−1

)′
Σ−1(εt − φεεt−1

)]
+ hφφ

]}
.

• Parameter τ

The full conditional distribution for τ is:

π (τ |ε, v, φ) ∝f (ε1|v, φ, τ)
T∏
t=2

f (εt|εt−1, v, φ, τ)× π (τ)

∝
√
τ (1− φ2

ε )
(2π)S |Σ| exp

{
−τ

(
1− φ2

ε

)
2 (ε1)′Σ−1 (ε1)

}

×
T∏
t=2

√
τ

(2π)S |Σ| exp
{
− τ

2
(
εt − φεεt−1

)′
Σ−1(εt − φεεt−1

)}

× hgττ τ
gτ−1 exp [−hττ ]
Γ (gτ )

∝τ gτ+T
2 −1

{
− τ

[1
2
(
1− φ2

ε

)
(ε1)′Σ−1 (ε1)

+ 1
2

T∑
t=1

(εt − φεεt−1)′Σ−1(εt − φεεt−1) + hτ

]}
.

This form corresponds to a gamma density, Ga(Gτ , Hτ ) where

Gτ = gτ + T

2
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and

Hτ =
[1

2
(
1− φ2

ε

)
(ε1)′Σ−1 (ε1) + 1

2

T∑
t=1

(εt − φεεt−1)′Σ−1(εt − φεεt−1) + hτ

]
.

• Random effect εt

To obtain the sampled values for the random effect εt, the FCD for εt is
worked out as follows:

π (εt|φε, φ, τ,yt) ∝
S∏
s=1

f (yt(s)|θamt, εt)× π (εt|εt−1)× π (εt+1|εt)

∝
S∏
s=1

[
α

µt(s)

]α yt(s)α−1

Γ (α) exp
[
−αyt(s)
µt(s)

]

×
√

τ

(2π)S |Σ| exp
{
− τ

2
(
εt − φεεt−1

)′
Σ−1(εt − φεεt−1

)}

×
√

τ

(2π)S |Σ| exp
{
− τ

2
(
εt+1 − φεεt

)′
Σ−1(εt+1 − φεεt

)}

∝
S∏
s=1

[Et(s)]α exp
{
−
[
α

S∑
s=1

Et(s) + τ

2
[
Qt +Qt+1

]]}

where
Qt = (εt − φεεt−1)′Σ−1 (εt − φεεt−1)

for 1 < t < T − 1. For t = 1, the FCD is given by:

π (ε1|φε, φ, τ,y1) ∝
S∏
s=1

f (y1(s)|θamt, ε1)× π (ε1)× π (ε2|ε1)

∝
S∏
s=1

[
α

µ1(s)

]α y1(s)α−1

Γ (α) exp
[
−αy1(s)
µ1(s)

]

×
√
τ (1− φ2

ε )
(2π)S |Σ| exp

{
−τ

(
1− φ2

ε

)
2 (ε1)′Σ−1 (ε1)

}

×
√

τ

(2π)S |Σ| exp
{
− τ

2
(
ε2 − φεε1

)′
Σ−1(ε2 − φεε1

)}

∝
S∏
s=1

[E1(s)]α exp
{
−
[
α

S∑
s=1

E1(s) + τ

2
[ (

1− φ2
ε

)
(ε1)′Σ−1 (ε1)

+ (ε2 − φεε1)′Σ−1 (ε2 − φεε1)
]]}
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and the FCD for εT is

π (εT |φε, φ, τ,yT ) ∝
S∏
s=1

f (yT (s)|θamt, εT )× π (εT |εT−1)

∝
S∏
s=1

[
α

µT (s)

]α yT (s)α−1

Γ (α) exp
[
−αyT (s)
µT (s)

]

×
√

τ

(2π)S |Σ| exp
{
− τ

2
(
εT − φεεT−1

)′
Σ−1(εT − φεεT−1

)}

∝
S∏
s=1

[ET (s)]α exp
{
−
[
α

S∑
s=1

ET (s) + τ

2QT
]}

where
QT = (εT − φεεT−1)′Σ−1 (εT − φεεT−1) .

• Latent y-values: ydry

When Wt(s) = 0, the latent value, yt(s), is not observed and we can hence
regard it as ydry. In this case, the values of ydry are treated as auxiliary data within
the data augmentation framework. Therefore, the FCD for ydry can be written as:

π(ydry|rt(s) = 0, α, µt(s)) ∝f(ydry|α, µt(s))× Pr(Rt(s) = 0|ydry,θocc)

∝
(α/µt(s))αyα−1

dry e
−(α/µt(s))ydry

Γ (α) × p0(s, t)

for every rt(s) = 0 where p0(t, s) = 1− p1(t, s) is the probability of a dry day which
depends on yt(s).

The FCDs of the majority of parameters in the amount process are not in standard forms.
Therefore, we have to utilise a Metropolis-within-Gibbs scheme to obtain the posterior
samples for each parameter.

5.6.2 Full conditional distributions for the occurrence process

Suppose that we want to obtain posterior samples for each parameter in the occurrence
process. Therefore, we need to derive the FCD for each parameter from equation (5.10).
Similar to the amount process, the FCDs are provided as general information and for
future work. The FCD for each parameter is given as follows:
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• Parameter ζk0 (s)

We have ζk0 (s) = mζ̄0 + ζ01(k) + ζ02(s) + ζ03(k, s). The FCD of ζk0 (s) is
represented by:

π

(
ζk0 (s)

∣∣∣∣ζ̈, r, ζ01(k),ζ02(s),y
)

∝
∏
t∈Tk

f (rt(s)|yt(s),θocc)× π
(
ζk0 (s)|ζ01(k), ζ02(s)

)
∝
∏
t∈Tk

[p1(s, t)]rt(s) [1− p1(s, t)]1−rt(s)

×
√
τζ̄0

2π exp
{
−
τζ̄0

2
(
ζk0 (s)− ζ01(k)− ζ02(s)−mζ̄0

)2
}

∝
∏
t∈Tk

[p1(s, t)]rt(s) [1− p1(s, t)]1−rt(s)

exp
{
−
τζ̄0

2
({

ζk0 (s)
}2
− 2ζk0 (s)

{
ζ01(k) + ζ02(s) +mζ̄0

})}
where Tk = {t : xt = k} is the set of observations that belongs to type k = 1, · · · , 27.

The FCD of ζ01(k) is given by:

π

(
ζ01(k)

∣∣∣∣ζk0 (1), · · · , ζk0 (S),ζ02(1), · · · , ζ02(S), ζ̌01

)

∝
S∏
s=1

f
(
ζk0 (s)|ζ01(k), ζ02(s)

)
× π

(
ζ01(k)|ζ̌01

)

∝
S∏
s=1

√
τζ̄0

2π exp
{
−
τζ̄0

2
(
ζk0 (s)− ζ01(k)− ζ02(s)−mζ̄0

)2
}

×
√

1
2πυζ1

exp
{
− 1

2υζ1

(
ζ01(k)− ζ̌01

)2
}

∝ exp
{
−Dζ01

2 (ζ01(k)−Bζ01)2
}

where
Dζ01 = Sτζ̄0

+ 1
υζ1

and

Bζ01 = 1
Dζ01

{
τζ̄0

[
S∑
s=1

ζk0 (s)−
S∑
s=1

ζ02(s)− Smζ̄0

]
+ ζ̌01
υζ1

}
.

This form corresponds to a normal density, N(Bζ01 , 1/Dζ01).

151



Chapter 5. Spatiotemporal Model for Daily Rainfall Data

The FCD of ζ̌01 is derived as follows:

π

(
ζ̌01

∣∣∣∣ζ01(1), · · · , ζ01(27)
)
∝

27∏
k=1

f
(
ζ01(k)|ζ̌01

)
× π(ζ̌01)

∝
27∏
k=1

√
1

2πυζ1

exp
{
− 1

2υζ1

(
ζ01(k)− ζ̌01

)2
}

×
√

1
2πυζ0

exp
{
− 1

2υζ0

ζ̌01

}

∝ exp
{
D̃ζ̌01

2
(
ζ̌01 − B̃ζ̌01

)2
}

where
D̃ζ̌01

= K

υζ1

+ 1
υζ0

and
B̃ζ̌01

=
∑27
k=1 ζ01(k)
D̃ζ̌01

υζ0

.

This form also corresponds to a normal density, N(B̃ζ̌01
, 1/D̃ζ̌01

).

The FCD of ζ02(s) is represented by:

π

(
ζ02(s)

∣∣∣∣ζ1
0 (s), · · · , ζ27

0 (s),ζ01(1), · · · , ζ01(27), ζ̌02

)

∝
27∏
k=1

f
(
ζk0 (s)|ζ01(k), ζ02(s)

)
× π

(
ζ02(s)|ζ̌02

)

∝
27∏
k=1

√
τζ̄0

2π exp
{
−
τζ̄0

2
(
ζk0 (s)− ζ01(k)− ζ02(s)−mζ̄0

)2
}

×
√

1
2πνζ1

exp
{
− 1

2νζ1

(
ζ02(s)− ζ̌02

)2
}

∝ exp
{
−Dζ02

2 (ζ02(s)−Bζ02)2
}

where
Dζ02 = Sτζ̄0

+ 1
νζ1

and

Bζ02 = 1
Dζ02

{
τζ̄0

[ 27∑
k=1

ζk0 (s)−
27∑
k=1

ζ01(k)−Kmζ̄0

]
+ ζ̌02
νζ1

}
.

This is a normal distribution.
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For ζ̌02, the FCD is:

π

(
ζ̌02

∣∣∣∣ζ02(1), · · · , ζ02(S)
)
∝

S∏
s=1

f
(
ζ02(s)|ζ̌02

)
× π(ζ̌02)

∝
S∏
s=1

√
1

2πνζ1

exp
{
− 1

2νζ1

(
ζ02(s)− ζ̌02

)2
}

×
√

1
2πνζ0

exp
{
− 1

2νζ0

(ζ̌02)2
}

∝ exp
{
D̃ζ̌02

2
(
ζ̌01 − B̃ζ̌02

)2
}

where
D̃ζ̌02

= S

νζ1

+ 1
νζ0

and
B̃ζ̌02

=
∑S
s=1 ζ02(s)
D̃ζ̌νζ0

.

Again, this is the density form of a normal distribution.

• Parameter ζ̈

The FCD for ζ̈ can be derived as follows:

π
(
ζ̈|ζk0 (s), ζ1, r,y

)
∝

T∏
t=1

S∏
s=1

f (rt(s)|yt(s),θocc)× π
(
ζ̈
)

∝
T∏
t=1

S∏
s=1

[p1(s, t)]rt(s) [1− p1(s, t)]1−rt(s)

× (2π)−4|Pζ̈ |
1/2 exp

{
−1

2(ζ̈ −mζ̈)
′
Pζ̈(ζ̈ −mζ̈)

}

∝
T∏
t=1

S∏
s=1

[p1(s, t)]rt(s) [1− p1(s, t)]1−rt(s)

exp
{
−1

2(ζ̈ −mζ̈)
′
Pζ̈(ζ̈ −mζ̈)

}
.
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• Parameter ζ1(s)

For ζ1, the FCD is given by:

π
(
ζ1|ζk0 (s), ζ̈, r,y

)
∝

T∏
t=1

S∏
s=1

f (rt(s)|yt(s),θocc)× π (ζ1)

∝
T∏
t=1

S∏
s=1

[p1(s, t)]rt(s) [1− p1(s, t)]1−rt(s)

×
√
τζ1

2π exp
{
−τζ1

2 (ζ1 −mζ1)2
}

∝
T∏
t=1

S∏
s=1

[p1(s, t)]rt(s) [1− p1(s, t)]1−rt(s)

exp
{
−τζ1

2
(
ζ2

1 − 2ζ1mζ1

)}
.

Similar to the amount process, the FCDs of the majority of parameters for the occurrence
process are not of any standard form. Therefore, we require a Metropolis-within-Gibbs
scheme to sample the posterior values for each parameter.

5.7 Application

5.7.1 Prior distributions

Similar to the previous models, the prior distributions for the spatiotemporal model were
elicited using the information gained from previous studies and personal beliefs. The prior
construction for a single site in the UK has already been discussed in Chapter 4, Section
4.4.5.1. Therefore, we will use the same argument for the spatiotemporal model to specify
the priors since the sites are within the same network.

For the additional parameter φ, which governs the spatial correlation, we follow the
idea of Banerjee et al. (2004) by considering the “effective range” D̂ as follows:

e−φD̂ =0.05

so − φD̂ = log(0.05)

so φ =− log(0.05)
D̂

where D̂ is the interlocation distance at which the between-site correlation has fallen to
0.05. We can use a direct approach to elicit prior quartiles for D̂ and then convert these to
prior quartiles for φ. Let our prior quartiles for φ be Qφ,1, Qφ,2 and Qφ,3, respectively. We
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give φ a Ga(gφ, hφ) distribution. Since hφ is a scale parameter, Qφ,3/Qφ,1 depends only on
gφ where gφ can be determined using numerical iteration to solve Qφ,3/Qφ,1 = R3(a)/R1(a)
where Rq(a) is quartile q for a Ga(a, 1) distribution. Once gφ is obtained, then we can find
the value for hφ using R2(gφ)/Qφ,2. Suppose that the prior median for the effective range
is 750 km, then the prior median of φ is Qφ,2 = 0.004. We have also chosen carefully a
suitable value of the lower and upper quartiles for illustration where we have Qφ,1 = 0.001
and Qφ,3 = 0.0045, respectively. Using this method, we have gφ = 1.07 and hφ = 190.59.

In this spatiotemporal model, we employed a Fourier series with just two harmonics
for the amount process. The prior elicitation for the Fourier coefficients is still the same as
in Section 4.3.3.3. The full prior specifications for the unknown parameters of the amount
process can be summarised as follows:

α ∼ Ga(4.31, 5.78); v ∼ Beta(3.7, 1.9);

τ ∼ Ga(3.69, 1.69); φ ∼ N(1.07, 190.59);

and
η̈ ∼ N4

(
η̈0, P

−1
η̈

)
where

η̈0 =


0
0
0
0

 , P−1
η̈ =


2
π 0 0 0
0 1

π 0 0
0 0 2

π 0
0 0 0 1

π


for k ∈ {1, · · · , 27} and s ∈ {1, · · · , 5}.

Based on the previous univariate British model, we have chosen the prior mean of η0

to be 0.69. Then, we will use the same argument to give a value for mη̄0. In the case
of η01(k), η02(s) and η03(k, s), we have chosen a suitable values for the variances of the
uncertainty factors as follows:

η01(k)|η̌01 ∼ N(η̌01, 1); η̌01 ∼ N(0, 1)

η02(s)|η̌02 ∼ N(η̌02, 1); η̌02 ∼ N(0, 1)

η03(k, s) ∼ N(0, 4).

This gives ηk0 (s) a marginal prior variance of 8. Let k′ 6= k and s′ 6= s. The covariance
between ηk0 (s) and ηk

′
0 (s) is 3, giving a correlation 0f 0.375. Similarly the covariance

between ηk0 (s) and ηk0 (s′) is 3, giving a correlation 0f 0.375. The covariance between ηk0 (s)
and ηk

′
0 (s′) is 2, giving a correlation of 0.250. Thus the prior correlations are fairly weak.

For the occurrence process, we also use the same argument as for the British univariate
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model and the amount process to elicit the prior for the unknown parameters. We will
use two harmonics of the Fourier series to represent the seasonal effect of the rainfall
occurrence over the year. Hence, the prior specifications for the unknown parameters for
the occurrence process are given by the following:

ζ1 ∼ N(1.29, 3.12)

and
ζ̈ ∼ N4

(
ζ̈0, P

−1
ζ̈

)
where

ζ̈0 =


0
0
0
0

 , P−1
ζ̈

=


2
π 0 0 0
0 1

π 0 0
0 0 2

π 0
0 0 0 1

π


for k ∈ {1, · · · , 27} and s ∈ {1, · · · , 5}.

The values for mζ̄0 and the variances of ζ01(k), ζ02(s) and ζ03(k, s) are chosen as follows:

ζ01(k)|ζ̌01 ∼ N(ζ̌01, 1); ζ̌01 ∼ N(0, 1)

ζ02(s)|ζ̌02 ∼ N(ζ̌02, 1); ζ̌02 ∼ N(0, 1)

ζ03(k, s) ∼ N(0, 5.52); mζ̄0 = 1.03.

This gives ζk0 (s) a marginal prior variance of 9.52. Let k′ 6= k and s′ 6= s. The
covariance between ζk0 (s) and ζk

′
0 (s) is 3, giving a correlation 0f 0.315. Similarly the

covariance between ζk0 (s) and ζk0 (s′) is 3, giving a correlation 0f 0.315. The covariance
between ζk0 (s) and ζk

′
0 (s′) is 2, giving a correlation of 0.210. Thus the prior correlations

are again fairly weak.

5.7.2 Fitting the model

The Rjags package (Plummer, 2012) is used to compute the posterior samples for this
model. The MCMC algorithm was run for 50000 iterations to allow for burn-in, and an
additional 150000 iterations were drawn as the posterior samples. The computing time
that was required to generate 150000 posterior draws was around 240 hours by using
R software on a 2.00GHz Samsung laptop 300V3A model with Intel Core i7-2630QM
processor and 12 Gbytes of random-access memory. The trace plots can be used as a
visual diagnostic method to monitor the convergence of the sampler. Before we make
any inferences or conclusions, it is essential to look at the trace plots for parameters.
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Figure 5.6 displays the example of trace plots and posterior densities for α, τ and ζ1.
Based on the trace plots, the mixing appears very satisfactory for the majority of the
unknown parameters. However, some of the unknown parameters have a relatively high
autocorrelation, which suggests mixing is a little slower. This can be seen in Figure
5.6 for the parameters α and τ which suggest that the effective sample size (ESS) of the
parameters is likely to be extremely low. The ESS is the number of effectively independent
samples obtained from the posterior distribution. The issue of low posterior sample size
for α and τ happens because both α and τ contribute to the variance of the rainfall
amount and therefore they are, to some extent, confounded. As a result, they are strongly
negatively correlated in the posterior. This might also suggest that a large number of
iterations are required to obtain a good representation of the posterior distribution.

The uncertainty associated with most of the unknown parameters has been reduced
after we combined the prior beliefs with the data. For example, there is a reduction in the
variability of parameter ζ1 when a comparison is made between the prior and posterior
distributions. The posterior mean of parameter ζ1 is shifted to the right of its prior mean.
The full summaries of posterior means and standard deviations of the unknown parameters
for the amount and occurrence processes at Balmoral weather station are given in Tables
5.2 and 5.3 (see Appendices A.1 and A.2 for the other weather stations).

In this spatiotemporal model, it is also important to observe the parameter φ since
it controls the rate of decay of the correlation as the distance between sites increases.
From Table 5.2, we can observe that the posterior value for φ is centred around 0.0012.
This suggests that the correlation falls to 0.5 after about 578 km. This implies high
spatial correlation even at large distances. Figure 5.4 suggests that the correlation does
not decrease quickly with increasing distance. It may also be that the correlation does
not tend to 1 as the distance tends to zero because of a “nugget effect”. For this reason,
it might be better to use a different spatial correlation function. A lot of the correlation
may be explained by the LWT, leaving little for the spatial effect to explain. The LWT
plays an important role in determining the rainfall amount and probability at time t. This
is supported by looking at Figures 5.7 and 5.8. These plots show the posterior means
and 95% credible intervals of the intercepts parameters ηk0 (s) and ζk0 (s) for all weather
stations. It can be seen that the value for the LWT of type 1 (Anticylconic) is quite small
for both processes despite being the most commonly-occurred LWT. The previous random
effect at time t − 1 also plays a crucial role in determining the level of rainfall at time t.
It is therefore highly possible that the rainfall amount will increase if rainfall did occur on
the previous day.

For model checking, we chose two weather stations that have the maximum and min-
imum mean of daily rainfall amounts and these are Bastreet and Ardleigh Hull Farm
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Amount process
Parameter Prior mean Prior SD Posterior mean Posterior SD
α 0.75 0.36 1.153 0.037
η1

0(1) 0.69 2.83 -0.927 0.075
η2

0(1) 0.69 2.83 -0.194 0.267
η3

0(1) 0.69 2.83 -0.389 0.298
η4

0(1) 0.69 2.83 -1.065 0.289
η5

0(1) 0.69 2.83 -1.523 0.239
η6

0(1) 0.69 2.83 -1.256 0.167
η7

0(1) 0.69 2.83 -0.656 0.140
η8

0(1) 0.69 2.83 0.183 0.161
η9

0(1) 0.69 2.83 0.645 0.190
η10

0 (1) 0.69 2.83 0.266 0.190
η11

0 (1) 0.69 2.83 -0.048 0.203
η12

0 (1) 0.69 2.83 -0.647 0.168
η13

0 (1) 0.69 2.83 -1.184 0.122
η14

0 (1) 0.69 2.83 -0.468 0.088
η15

0 (1) 0.69 2.83 0.009 0.082
η16

0 (1) 0.69 2.83 0.407 0.093
η17

0 (1) 0.69 2.83 0.907 0.117
η18

0 (1) 0.69 2.83 0.575 0.065
η19

0 (1) 0.69 2.83 0.131 0.278
η20

0 (1) 0.69 2.83 0.047 0.319
η21

0 (1) 0.69 2.83 0.137 0.233
η22

0 (1) 0.69 2.83 -0.200 0.170
η23

0 (1) 0.69 2.83 0.136 0.144
η24

0 (1) 0.69 2.83 0.547 0.143
η25

0 (1) 0.69 2.83 0.814 0.170
η26

0 (1) 0.69 2.83 1.121 0.180
η27

0 (1) 0.69 2.83 -0.0003 0.241
a1 0 0.8 0.420 0.035
a2 0 0.56 0.055 0.039
b1 0 0.8 -0.095 0.043
b2 0 0.56 0.004 0.031
τ 2.18 1.14 0.479 0.013
v 0.66 0.18 0.750 0.007
φ 0.006 0.005 0.001 4.79E-05

Table 5.2: The prior and posterior means with standard deviations (SDs) of the unknown param-
eters of the amount process for Balmoral weather station
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Occurrence process
Parameter Prior mean Prior sd Posterior mean Posterior sd
ζ1

0 (1) 1.03 3.09 1.422 0.117
ζ2

0 (1) 1.03 3.09 2.707 0.492
ζ3

0 (1) 1.03 3.09 1.835 0.491
ζ4

0 (1) 1.03 3.09 0.584 0.468
ζ5

0 (1) 1.03 3.09 1.601 0.397
ζ6

0 (1) 1.03 3.09 1.940 0.275
ζ7

0 (1) 1.03 3.09 2.160 0.230
ζ8

0 (1) 1.03 3.09 2.224 0.295
ζ9

0 (1) 1.03 3.09 2.707 0.416
ζ10

0 (1) 1.03 3.09 1.821 0.360
ζ11

0 (1) 1.03 3.09 1.847 0.352
ζ12

0 (1) 1.03 3.09 1.414 0.277
ζ13

0 (1) 1.03 3.09 1.346 0.200
ζ14

0 (1) 1.03 3.09 2.116 0.161
ζ15

0 (1) 1.03 3.09 2.609 0.157
ζ16

0 (1) 1.03 3.09 2.830 0.220
ζ17

0 (1) 1.03 3.09 2.929 0.340
ζ18

0 (1) 1.03 3.09 2.259 0.148
ζ19

0 (1) 1.03 3.09 2.072 0.519
ζ20

0 (1) 1.03 3.09 0.708 0.547
ζ21

0 (1) 1.03 3.09 2.002 0.499
ζ22

0 (1) 1.03 3.09 1.866 0.331
ζ23

0 (1) 1.03 3.09 2.546 0.314
ζ24

0 (1) 1.03 3.09 2.783 0.365
ζ25

0 (1) 1.03 3.09 1.951 0.390
ζ26

0 (1) 1.03 3.09 2.901 0.597
ζ27

0 (1) 1.03 3.09 0.612 0.406
c1 0 0.8 0.529 0.031
c2 0 0.56 -0.092 0.031
d1 0 0.8 0.014 0.031
d2 0 0.56 -0.050 0.031
ζ1 1.29 1.77 1.512 0.036

Table 5.3: The prior and posterior means with standard deviations (SDs) of the unknown param-
eters of the occurrence process for Balmoral weather station
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Figure 5.6: The trace and density plots for parameters α, φ and τ

weather stations. We used the same diagnostic checking methods as in Section 4.2.6 to
assess the adequacy of our model. The graphs of these residuals for both sites are shown
in Figure 5.9 and 5.11. The residuals for both sites indicate that they conform to the
respective series of independent uniform and normal distributions. We also assessed the
quantile-quantile (QQ), autocorrelation function (ACF), and partial autocorrelation func-
tion (PACF) plots for the NFTR and these are shown in Figures 5.10 and 5.12. The QQ
plots for both sites indicate that the NFTR are normally distributed. The ACF and PACF
plots also demonstrate that these residuals are independent to one another. From these
plots, we can see that this spatiotemporal model fits the data very well.
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Figure 5.7: The posterior means of ηk
0 (s) with 95% credible intervals for all weather stations where

s ∈ {1, · · · , 5} and k ∈ {1, · · · , 27}. See Table 4.3 for details of LWTs.

161



Chapter 5. Spatiotemporal Model for Daily Rainfall Data

0
1

2
3

4

Balmoral

LWT

ζ 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0.
0

1.
0

2.
0

3.
0

Darlington South Park

LWT

ζ 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1
2

3
4

5

Knighton Victoria Road

LWT

ζ 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0
1

2
3

4

Ardleigh Hull Farm

LWT

ζ 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1
2

3
4

5

Bastreet

LWT

ζ 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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s ∈ {1, · · · , 5} and k ∈ {1, · · · , 27}. See Table 4.3 for details of LWTs.
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Figure 5.9: The FDTR and NFTR plots for Ardleigh Hull Farm weather station
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Figure 5.10: QQ, ACF and PACF plots for Ardleigh Hull Farm weather station
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Figure 5.11: The FDTR and NFTR plots for Bastreet weather station
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Figure 5.12: QQ, ACF and PACF plots for Bastreet weather station
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5.8 Summary

The spatiotemporal model was presented in this chapter and applied to British daily
rainfall data at multiple sites within the UK network. This model is the extended version
of the univariate model in Chapter 4, Section 4.4 and also an alternative model to the
previous works by Heaps et al. (2015) and Germain (2010). The objective of this model
is to capture the relationship that exists between the sites and how this relationship may
affect the daily rainfall for each site, especially when two sites are close to each other.
In addition, the LWT is directly incorporated into the model through the amount and
occurrence processes since the LWT plays a crucial role in determining rainfall amounts
and occurrence over the UK network.

This model is more challenging to develop than the previous univariate model in Chap-
ter 4, Section 4.4 because it involves many variables and parameters to fit the data. It
also requires intensive computation to obtain the results. Based on the MCMC results in
Section 5.7.2, we can consider that the proposed model fits the data very well. This is
strongly supported by the diagnostic check for the FDTR and NFTR which show that they
are independently distributed and respectively follow uniform and normal distributions.
We also found high spatial correlation between sites, even at large distances in this model.
From our discussion, we may consider using different types of spatial correlation function
to capture the spatial variability between sites. The amount and occurrence processes
indicate that they are still highly dependent on the LWT ocurring at time t.
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Conclusion and Future Work

6.1 Conclusion

This thesis is concerned with the development of Bayesian approaches to the modelling and
analysis of univariate and multivariate time series data, especially when the observational
distribution is a mixture distribution. Particular attention is given to the special case of
a mixture distribution which has a degenerate component at zero and another component
with positive values and this is known as a mixed distribution. The main focus of this
research is to investigate and develop both univariate and multivariate models in the
case of a mixed distribution, focusing on daily rainfall data. Developing and modifying
the work of Heaps et al. (2015) and Germain (2010) on spatiotemporal models for daily
rainfall at multiple sites is also an important feature of this research. Instead of using
hidden weather states, we applied the Lamb weather types (LWTs) directly to the model.
We also used the daily rainfall dataset for the whole year in modelling the daily rainfall
with seasonal effects. This is in contrast with Heaps et al. (2015) and Germain (2010) who
only considered winter rainfall data and excluded the seasonal effects from the model.

In Chapter 2, we presented the general concepts of time series models and Bayesian
inference. We also briefly discussed the application of Bayesian inference in time series
models. In Chapter 3, we introduced the basic ideas of Bayesian inference in mixture
models, focusing on finite mixture models. Then, we presented the MCMC scheme for
finite mixture models with some discussion on the label switching problem. The case of
a mixed distribution was also discussed in this chapter and this was further expounded
in Chapters 4 and 5 using an example of daily rainfall. We also applied two different
mixture models to ultrasound data: a lognormal mixture and gamma mixture to illustrate
the application of Bayesian inference in mixture models. The detailed parameterisation
of the models and prior elicitation for each parameter were discussed in this chapter. We
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ran an MCMC scheme using the RJAGS package to generate posterior samples for the
parameters. The posterior summaries for both models were discussed and in general, the
results indicated that there is no large difference between the models.

In Chapter 4, we presented a model for a univariate time series with a mixed distri-
bution applied to daily rainfall data. Firstly, we introduced the general model for daily
rainfall data in which we divided the model into two distinct processes: the amount and
occurrence processes. The amount process was used to model the amount of daily rainfall,
whilst the occurrence process was used to model the probability of rainfall occurrence.
In the daily rainfall model, we emphasised the relationship between the amount and oc-
currence process so that no important information was lost. An important novelty in
this study is the way we deal with the seasonal effects for the daily rainfall. To achieve
this, we introduced two different types of truncated Fourier series to take into account
the seasonal variability over a year. We also constructed suitable prior distributions for
the Fourier coefficients. The diagnostic checking procedure for the mixed distribution was
also introduced in this chapter to assess the adequacy of the model.

The general model was then applied to Italian and British daily rainfall datasets. For
the Italian daily rainfall application, we considered three different models for the amount
process. We found that the gamma distribution provided a slightly better fit compared to
the lognormal distribution based on the posterior mean of mean potential rainfall amount
and the posterior predictive values. Therefore, we concluded that the gamma distribution
is a better choice for modelling the amount process for the Italian daily rainfall data. We
compared two different ways to model the effect of covariates on the gamma distribution.
The covariate effect was applied to the scale parameter for the G1 model, whilst the effect
was applied to the shape parameter for the G2 model. Analysis of the Italian rainfall data
suggested that the shape parameter tended not to change and those effects were seen in
the scale parameter. We therefore concluded that the G1 model provided a better fit to
the observed behaviour. For the occurrence process, we used a first-order Markov chain
to represent the probability of rainfall occurrence. In this parameterisation, we used the
mean of the amount distribution as a covariate to create a link between the amount and
occurrence processes.

For the British daily rainfall dataset, we developed and modified the previous work by
Heaps et al. (2015) and Germain (2010) by incorporating atmospheric circulation patterns
directly into the model. The atmospheric circulation patterns for the United Kingdom are
represented by the LWTs. Based on the exploratory analysis of the British dataset, we
found a strong relationship between the LWTs and the daily rainfall data where a lower
proportion of wet days was associated with anticyclonic types and a higher proportion
tended to be associated with cyclonic types. A similar relationship was found with the
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mean daily rainfall amounts on wet days, where the high rainfall amounts are associated
with cyclonic types, whilst the low level rainfall amounts are typically associated with
anticyclonic types. We also developed two models for the LWTs using homogeneous and
nonhomogenous first-order Markov chains. After that, we built a univariate model for
British daily rainfall where the LWT is directly incorporated into the model through the
amount and occurrence processes. We also introduced a random effect at each time t which
is conditionally dependent on the previous time t− 1 to allow for temporal variability in
the amount process parameterisation. The potential daily amounts were then fitted using
a gamma distribution. To build the relationship between the amount and occurrence
processes, we used the potential daily amount yt as a covariate in the parameterisation of
the occurrence process. From the MCMC results and diagnostic checking, we found that
the model fitted the data very well. It indicated that the potential rainfall amount and
the probability of rainfall occurrence are strongly associated with the LWTs.

In Chapter 5, we presented a spatiotemporal model for British daily rainfall using
the data from multiple sites within the UK network. This is an extended version of
the previous univariate model discussed in Chapter 4 and also an alternative model to
the model of Heaps et al. (2015) and Germain (2010). We also investigated the spatial
characteristics of the dataset and we found a decreasing dependence between the rainfall
amounts and occurrences as the between-site distance increases. Therefore, it is important
to add the spatial effect into the model to capture spatial variability between sites. The
computation of posterior distributions for the multivariate model is more challenging than
the univariate model since it involves a large number of parameters. It also requires longer
computational time to generate posterior samples for the parameters. The adequacy of
the model was assessed using similar diagnostic checking methods as in Chapter 4. Based
on this assessment, we found that the model provides a good fit to the data. The decay
parameter also suggested that the spatial correlation falls to 0.5 when the distance between
sites is more than 578 km and this indicates high correlations between sites, even for the
sites that are separated by large distances. We also found that the amount and occurrence
processes are highly dependent on the LWT occurring at time t, a similar characteristic
to the British univariate model.

6.2 Review of objectives

The objectives of the research were stated in the beginning of this thesis as follows:

1. To investigate Bayesian time series modelling in mixed or mixture distribution ap-
plications.
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2. To develop novel approaches to modelling dependence, both on covariates and be-
tween realisations, and how this affects both the between-component distribution
(eg the occurence process in the rainfall case) and the conditional within-component
distribution (eg for the amount process in the rainfall case).

3. To investigate the computation of posterior distributions in univariate and multi-
variate models for mixture and mixed distributions.

4. To apply the developed methods to a number of practical problems and assess the
strengths and weaknesses of each approach.

We have fulfilled the first objective in Chapter 3 by presenting Bayesian inference
in mixture models. This chapter provided guidance on the general ideas and concepts
of the analysis of mixture and mixed distributions within the Bayesian framework. For
example, we presented the MCMC scheme for mixture models to sample the posterior
distribution of parameters and auxiliary variables. We also addressed several interesting
ideas and issues that were relevant to mixture models such as the label switching problem.
This investigation helps us to increase our understanding of Bayesian analysis in mixture
models in terms of methodology and applications.

The development of Bayesian approaches to the modelling and analysis of univariate
and multivariate time series data is the central theme of this thesis. Throughout Chapters
4 and 5, we have developed univariate and multivariate models for mixed distribution
using daily rainfall data. This fulfills the second objective of this thesis. In these chapters,
we give particular attention to modelling dependences, both on covariates and between
realisations. For instance, we have shown how the Lamb weather types (LWTs) can be
directly incorporated into the model for the British daily rainfall. We found that the
level of potential rainfall amount and the probability of rainfall occurrence depend on the
LWTs. We also emphasised the relationship between the amount and occurrence processes
for all models by making the occurrence process dependent on the amount process.

For the computation of posterior distributions, we described the general idea in Chapter
3 of an MCMC scheme to sample the posterior distribution of the parameters of mixture
models. Thus, we use a similar technique to compute the posterior distributions for the
univariate and multivariate models for daily rainfall in Chapters 4 and 5. Both univariate
and multivariate models are quite complicated. However, we found that the computation
of posterior distributions for the multivariate model is more challenging since it involves
a large number of parameters which required a high computational cost to fit the model.
This investigation satisfies the third objective.

Finally, the developed models are applied to the datasets in Chapters 3, 4 and 5 and
this accomplishes the fourth objective. We used the ultrasound data in Chapter 3 to
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illustrate the application of mixture models. We also used the Italian and British daily
rainfall data to fit the univariate model in Chapter 4. The British univariate model is
then extended to the multivariate model in Chapter 5 by adding multiple sites within
the United Kingdom network. We have also discussed the strengths and pitfalls of the
approaches in each chapter. For instance, the British daily rainfall model fitted the data
very well but it required a large number of iterations when running the MCMC algorithm
to obtain the posterior samples.

6.3 Future work

There are several possible areas throughout this thesis where we can suggest further work
using similar concepts and methodologies. One of the possible areas is further investigation
of daily rainfall using different datasets from tropical regions such as Malaysia, Indonesia
and Brazil. The tropical regions have a high average precipitation over a year which is
in contrast with the temperate and subpolar regions (e.g. Italy and United Kingdom).
They have also a clear pattern of wet and dry seasons over a year. For instance, in
Malaysia, the wet season usually occurs between November and March and the dry season
always occurs from May to September. The rainfall patterns for the tropical regions are
usually influenced by the El Nino Southern Oscilation (ENSO) which is a different type
of atmospheric circulation pattern. Therefore, we would endeavour to apply and extend
the methodologies in this thesis to daily rainfall data for the tropical regions. This will
improve our understanding of the rainfall impacts on flood and drought occurrences at
some specific locations.

We also recommend incorporating other physical variables such as temperature, hu-
midity and wind speed into our daily rainfall model since there are strong correlations
between precipitation and these variables. Hence, the addition of these physical variables
may improve the predictive accuracy and adequacy of the model. Looking at Figure 5.4a,
there may be some suggestion that the spatial correlation, as the distance becomes greater,
is not tending to zero. Therefore a correlation function where the limit of the correlation
as the distance tends to infinity is greater than zero might be considered. For example,
instead of (5.7) we could have

Σij = α̃+ (1− α̃) exp(−φ||si − sj ||)

with the additional parameter α̃ where 0 ≤ α̃ < 1. We can also use different types
of spatial correlation functions such as the Matérn correlation function to capture the
spatial variability between sites. The Matérn correlation function is a popular correlation
function that is increasingly used in spatial statistical modelling. The Matérn correlation
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function can be defined as follows:

Σij = 1
2ν−1Γ (ν)

(√
νφ‖si − sj‖

)ν
Kν

(
2
√
νφ‖si − sj‖

)
where Kν is a modified Bessel function, ν > 0 and φ are smoothness and scale parameters,
respectively. We can then compare the exponential and Matérn correlation functions in
terms of their suitability for modelling the spatial effect. The computing time for the
spatiotemporal model to obtain posterior samples is quite long. Hence, it is recommended
to do future research on the computational methods to reduce computing time.
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Appendix to Chapter 5

A.1 The full summaries of posterior mean and standard de-
viation of the unknown parameters for the amount pro-
cess

Amount process
Parameter Prior mean Prior SD Posterior mean Posterior SD
η1

0(2) 0.69 2.83 -1.014 0.082
η2

0(2) 0.69 2.83 0.409 0.271
η3

0(2) 0.69 2.83 -0.451 0.275
η4

0(2) 0.69 2.83 -0.849 0.268
η5

0(2) 0.69 2.83 -1.628 0.245
η6

0(2) 0.69 2.83 -1.663 0.203
η7

0(2) 0.69 2.83 -1.102 0.164
η8

0(2) 0.69 2.83 -0.018 0.181
η9

0(2) 0.69 2.83 0.051 0.207
η10

0 (2) 0.69 2.83 0.331 0.192
η11

0 (2) 0.69 2.83 -0.067 0.197
η12

0 (2) 0.69 2.83 -0.997 0.168
η13

0 (2) 0.69 2.83 -1.704 0.124
η14

0 (2) 0.69 2.83 -0.984 0.091
η15

0 (2) 0.69 2.83 -0.688 0.088
η16

0 (2) 0.69 2.83 -0.209 0.102
η17

0 (2) 0.69 2.83 0.617 0.127
η18

0 (2) 0.69 2.83 0.362 0.066
η19

0 (2) 0.69 2.83 0.705 0.278
η20

0 (2) 0.69 2.83 0.354 0.295
η21

0 (2) 0.69 2.83 -0.177 0.241
η22

0 (2) 0.69 2.83 -0.580 0.172
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Amount process
Parameter Prior mean Prior SD Posterior mean Posterior SD
η23

0 (2) 0.69 2.83 -0.443 0.146
η24

0 (2) 0.69 2.83 0.069 0.146
η25

0 (2) 0.69 2.83 0.419 0.169
η26

0 (2) 0.69 2.83 0.534 0.194
η27

0 (2) 0.69 2.83 -0.216 0.228
η1

0(3) 0.69 2.83 -1.403 0.074
η2

0(3) 0.69 2.83 -0.225 0.253
η3

0(3) 0.69 2.83 -0.330 0.274
η4

0(3) 0.69 2.83 -1.632 0.258
η5

0(3) 0.69 2.83 -1.590 0.208
η6

0(3) 0.69 2.83 -1.673 0.152
η7

0(3) 0.69 2.83 -1.144 0.147
η8

0(3) 0.69 2.83 -0.727 0.170
η9

0(3) 0.69 2.83 -0.465 0.199
η10

0 (3) 0.69 2.83 0.793 0.190
η11

0 (3) 0.69 2.83 0.325 0.198
η12

0 (3) 0.69 2.83 -0.379 0.154
η13

0 (3) 0.69 2.83 -1.526 0.105
η14

0 (3) 0.69 2.83 -0.999 0.085
η15

0 (3) 0.69 2.83 -0.550 0.085
η16

0 (3) 0.69 2.83 0.076 0.098
η17

0 (3) 0.69 2.83 0.473 0.125
η18

0 (3) 0.69 2.83 0.958 0.065
η19

0 (3) 0.69 2.83 1.199 0.261
η20

0 (3) 0.69 2.83 0.973 0.289
η21

0 (3) 0.69 2.83 0.400 0.225
η22

0 (3) 0.69 2.83 -0.398 0.163
η23

0 (3) 0.69 2.83 -0.121 0.135
η24

0 (3) 0.69 2.83 0.308 0.145
η25

0 (3) 0.69 2.83 0.560 0.159
η26

0 (3) 0.69 2.83 0.964 0.190
η27

0 (3) 0.69 2.83 -0.061 0.215
η1

0(4) 0.69 2.83 -1.233 0.080
η2

0(4) 0.69 2.83 0.042 0.279
η3

0(4) 0.69 2.83 -0.523 0.300
η4

0(4) 0.69 2.83 -2.183 0.302
η5

0(4) 0.69 2.83 -1.786 0.239
η6

0(4) 0.69 2.83 -1.575 0.185
η7

0(4) 0.69 2.83 -1.350 0.168
η8

0(4) 0.69 2.83 -0.582 0.176
η9

0(4) 0.69 2.83 -0.217 0.205
η10

0 (4) 0.69 2.83 0.639 0.193
η11

0 (4) 0.69 2.83 -0.601 0.225
η12

0 (4) 0.69 2.83 -1.400 0.178
η13

0 (4) 0.69 2.83 -1.877 0.129
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Amount process
Parameter Prior mean Prior SD Posterior mean Posterior SD
η14

0 (4) 0.69 2.83 -1.460 0.098
η15

0 (4) 0.69 2.83 -0.986 0.089
η16

0 (4) 0.69 2.83 -0.311 0.102
η17

0 (4) 0.69 2.83 0.463 0.130
η18

0 (4) 0.69 2.83 0.005 0.069
η19

0 (4) 0.69 2.83 0.629 0.273
η20

0 (4) 0.69 2.83 -0.228 0.309
η21

0 (4) 0.69 2.83 -0.481 0.241
η22

0 (4) 0.69 2.83 -1.144 0.188
η23

0 (4) 0.69 2.83 -1.079 0.150
η24

0 (4) 0.69 2.83 -0.635 0.166
η25

0 (4) 0.69 2.83 -0.203 0.168
η26

0 (4) 0.69 2.83 0.408 0.195
η27

0 (4) 0.69 2.83 -0.906 0.239
η1

0(5) 0.69 2.83 -1.068 0.076
η2

0(5) 0.69 2.83 0.344 0.265
η3

0(5) 0.69 2.83 -0.414 0.291
η4

0(5) 0.69 2.83 -1.307 0.274
η5

0(5) 0.69 2.83 -1.493 0.225
η6

0(5) 0.69 2.83 -0.830 0.155
η7

0(5) 0.69 2.83 -0.635 0.139
η8

0(5) 0.69 2.83 -0.170 0.171
η9

0(5) 0.69 2.83 0.258 0.216
η10

0 (5) 0.69 2.83 0.827 0.191
η11

0 (5) 0.69 2.83 0.680 0.200
η12

0 (5) 0.69 2.83 0.517 0.146
η13

0 (5) 0.69 2.83 -0.621 0.106
η14

0 (5) 0.69 2.83 -0.306 0.088
η15

0 (5) 0.69 2.83 0.113 0.080
η16

0 (5) 0.69 2.83 0.721 0.097
η17

0 (5) 0.69 2.83 1.041 0.128
η18

0 (5) 0.69 2.83 1.620 0.068
η19

0 (5) 0.69 2.83 1.542 0.269
η20

0 (5) 0.69 2.83 1.439 0.293
η21

0 (5) 0.69 2.83 0.938 0.217
η22

0 (5) 0.69 2.83 0.858 0.164
η23

0 (5) 0.69 2.83 0.582 0.140
η24

0 (5) 0.69 2.83 1.130 0.149
η25

0 (5) 0.69 2.83 1.348 0.157
η26

0 (5) 0.69 2.83 1.628 0.188
η27

0 (5) 0.69 2.83 0.045 0.224

Table A.1: The prior and posterior means with standard deviations (SDs) of the unknown param-
eters of the amount process
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A.2 The full summaries of posterior mean and standard de-
viation of unknown parameters for the occurrence pro-
cess

Occurrence process
Parameter Prior mean Prior SD Posterior mean Posterior SD
ζ1

0 (2) 1.03 3.09 0.869 0.123
ζ2

0 (2) 1.03 3.09 0.759 0.476
ζ3

0 (2) 1.03 3.09 1.993 0.503
ζ4

0 (2) 1.03 3.09 0.697 0.436
ζ5

0 (2) 1.03 3.09 1.353 0.394
ζ6

0 (2) 1.03 3.09 1.048 0.307
ζ7

0 (2) 1.03 3.09 1.252 0.261
ζ8

0 (2) 1.03 3.09 0.681 0.288
ζ9

0 (2) 1.03 3.09 1.156 0.361
ζ10

0 (2) 1.03 3.09 2.050 0.363
ζ11

0 (2) 1.03 3.09 1.881 0.363
ζ12

0 (2) 1.03 3.09 1.339 0.283
ζ13

0 (2) 1.03 3.09 1.262 0.203
ζ14

0 (2) 1.03 3.09 1.307 0.155
ζ15

0 (2) 1.03 3.09 1.435 0.146
ζ16

0 (2) 1.03 3.09 1.725 0.178
ζ17

0 (2) 1.03 3.09 1.633 0.255
ζ18

0 (2) 1.03 3.09 1.644 0.135
ζ19

0 (2) 1.03 3.09 1.062 0.587
ζ20

0 (2) 1.03 3.09 1.787 0.615
ζ21

0 (2) 1.03 3.09 1.787 0.456
ζ22

0 (2) 1.03 3.09 1.603 0.327
ζ23

0 (2) 1.03 3.09 1.892 0.294
ζ24

0 (2) 1.03 3.09 1.811 0.299
ζ25

0 (2) 1.03 3.09 1.787 0.342
ζ26

0 (2) 1.03 3.09 1.546 0.403
ζ27

0 (2) 1.03 3.09 1.662 0.404
ζ1

0 (3) 1.03 3.09 2.918 0.140
ζ2

0 (3) 1.03 3.09 4.263 0.540
ζ3

0 (3) 1.03 3.09 1.927 0.527
ζ4

0 (3) 1.03 3.09 2.250 0.443
ζ5

0 (3) 1.03 3.09 3.118 0.365
ζ6

0 (3) 1.03 3.09 3.323 0.274
ζ7

0 (3) 1.03 3.09 2.914 0.251
ζ8

0 (3) 1.03 3.09 2.998 0.300
ζ9

0 (3) 1.03 3.09 2.692 0.377
ζ10

0 (3) 1.03 3.09 3.795 0.447
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Occurrence process
Parameter Prior mean Prior SD Posterior mean Posterior SD
ζ11

0 (3) 1.03 3.09 2.550 0.408
ζ12

0 (3) 1.03 3.09 2.670 0.297
ζ13

0 (3) 1.03 3.09 3.176 0.209
ζ14

0 (3) 1.03 3.09 3.737 0.188
ζ15

0 (3) 1.03 3.09 3.613 0.175
ζ16

0 (3) 1.03 3.09 3.487 0.218
ζ17

0 (3) 1.03 3.09 4.070 0.306
ζ18

0 (3) 1.03 3.09 3.912 0.229
ζ19

0 (3) 1.03 3.09 2.493 0.718
ζ20

0 (3) 1.03 3.09 2.536 0.686
ζ21

0 (3) 1.03 3.09 2.849 0.607
ζ22

0 (3) 1.03 3.09 3.545 0.389
ζ23

0 (3) 1.03 3.09 2.906 0.360
ζ24

0 (3) 1.03 3.09 3.901 0.402
ζ25

0 (3) 1.03 3.09 3.553 0.456
ζ26

0 (3) 1.03 3.09 2.556 0.569
ζ27

0 (3) 1.03 3.09 2.714 0.430
ζ1

0 (4) 1.03 3.09 1.839 0.133
ζ2

0 (4) 1.03 3.09 1.639 0.495
ζ3

0 (4) 1.03 3.09 1.019 0.532
ζ4

0 (4) 1.03 3.09 2.209 0.462
ζ5

0 (4) 1.03 3.09 1.699 0.409
ζ6

0 (4) 1.03 3.09 2.154 0.306
ζ7

0 (4) 1.03 3.09 1.939 0.270
ζ8

0 (4) 1.03 3.09 1.927 0.291
ζ9

0 (4) 1.03 3.09 2.293 0.379
ζ10

0 (4) 1.03 3.09 1.989 0.418
ζ11

0 (4) 1.03 3.09 1.394 0.367
ζ12

0 (4) 1.03 3.09 1.547 0.293
ζ13

0 (4) 1.03 3.09 1.808 0.215
ζ14

0 (4) 1.03 3.09 1.988 0.172
ζ15

0 (4) 1.03 3.09 1.931 0.156
ζ16

0 (4) 1.03 3.09 2.358 0.193
ζ17

0 (4) 1.03 3.09 1.870 0.275
ζ18

0 (4) 1.03 3.09 2.506 0.148
ζ19

0 (4) 1.03 3.09 2.308 0.654
ζ20

0 (4) 1.03 3.09 2.809 0.586
ζ21

0 (4) 1.03 3.09 0.587 0.456
ζ22

0 (4) 1.03 3.09 1.745 0.315
ζ23

0 (4) 1.03 3.09 2.220 0.294
ζ24

0 (4) 1.03 3.09 1.760 0.296
ζ25

0 (4) 1.03 3.09 3.346 0.386
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Occurrence process
Parameter Prior mean Prior SD Posterior mean Posterior SD
ζ26

0 (4) 1.03 3.09 2.040 0.436
ζ27

0 (4) 1.03 3.09 2.382 0.420
ζ1

0 (5) 1.03 3.09 2.216 0.144
ζ2

0 (5) 1.03 3.09 2.457 0.495
ζ3

0 (5) 1.03 3.09 1.534 0.513
ζ4

0 (5) 1.03 3.09 1.975 0.452
ζ5

0 (5) 1.03 3.09 2.496 0.371
ζ6

0 (5) 1.03 3.09 2.893 0.283
ζ7

0 (5) 1.03 3.09 2.969 0.261
ζ8

0 (5) 1.03 3.09 2.543 0.318
ζ9

0 (5) 1.03 3.09 1.462 0.398
ζ10

0 (5) 1.03 3.09 2.859 0.394
ζ11

0 (5) 1.03 3.09 1.976 0.380
ζ12

0 (5) 1.03 3.09 1.454 0.304
ζ13

0 (5) 1.03 3.09 2.369 0.217
ζ14

0 (5) 1.03 3.09 3.069 0.189
ζ15

0 (5) 1.03 3.09 2.871 0.179
ζ16

0 (5) 1.03 3.09 2.602 0.236
ζ17

0 (5) 1.03 3.09 2.947 0.318
ζ18

0 (5) 1.03 3.09 3.503 0.259
ζ19

0 (5) 1.03 3.09 2.449 0.726
ζ20

0 (5) 1.03 3.09 3.162 0.761
ζ21

0 (5) 1.03 3.09 3.311 0.646
ζ22

0 (5) 1.03 3.09 2.486 0.476
ζ23

0 (5) 1.03 3.09 3.411 0.439
ζ24

0 (5) 1.03 3.09 3.609 0.534
ζ25

0 (5) 1.03 3.09 3.187 0.602
ζ26

0 (5) 1.03 3.09 3.440 0.760
ζ27

0 (1) 1.03 3.09 2.113 0.464

Table A.2: The prior and posterior means with standard deviations (SDs) of the unknown param-
eters of the occurrence process
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