
INVESTIGATION INTO
ENERGY-EFFICIENT AND APPROXIMATE

MULTIPLIER DESIGN

Issa Hani Qiqieh

A Thesis Submitted for the Degree of

Doctor of Philosophy at Newcastle University

School of Engineering

September 2018

Issa Hani Qiqieh: Investigation into Energy-Efficient and Approxi-

mate Multiplier Design ©2018

D E C L A R AT I O N

I hereby declare that this thesis is my own work and effort and

that it has not been submitted anywhere for any award. Where

other sources of information have been used, they have been ac-

knowledged.

Newcastle upon Tyne, September 2018

Issa Hani Qiqieh

C E R T I F I CAT E O F A P P R OVA L

We confirm that, to the best of our knowledge, this thesis is from the

student’s own work and effort, and all other sources of information

used have been acknowledged. This thesis has been submitted

with my approval.

Prof. Alex Yakovlev

Dr. Rishad Shafik

Dr. Danil Sokolov

To the soul of my father who had given me dreams to look forward to

To my wonderful mother

To my lovely Yara, Hani, Morad and Bassel

— Issa

A C K N O W L E D G E M E N T S

I would like to express my deep gratitude to my supervisors Prof.

Alex Yakovlev, Dr. Rishad Shafik and Dr. Danil Sokolov for their

wisdom and guidance through my PhD journey. They have always

been a source of motivation and my inspirational model as a

researcher.

I am grateful to the Ministry of Higher Education and Scientific

Research in Jordan and Al-Balqa’ Applied University for funding

my PhD study and for their support.

I would like also to express my gratefulness and appreciation to

my colleagues and friends in the School of Engineering, especially

those in MicroSystems Research Group. We have worked together

and discussed many topics over the years, and from them all, I

have learned many things. I hope they continue to be successful

with their research and future careers. Also, I would like to offer

my special regards to all the staff of the School of Engineering at

Newcastle University.

Thank you, my mother, my mother-in-law and my sisters, with-

out your unconditional support, this thesis never would have come

to be. Finally, and most importantly, I am thankful to my lovely

family, Yara my wonderful wife and my lovely sons Hani, Morad

and Bassel for all of their love, support, motivation and patience

throughout my PhD. They were there to help me at difficult times,

and to share in good times. Their encouragement has helped me

with the research and the writing of this thesis, and I am very

grateful.

vi

A B S T R A C T

There is a persistent demand for higher computational perfor-

mance at low energy cost for emerging compute-intensive applica-

tions. Multipliers constitute a major component of these applica-

tions with complex logic design and a large gate count compared

to other arithmetic units. As such, there is significant interest in

designing new approaches to low-complexity multipliers. Approx-

imate multiplier is a promising paradigm, which is particularly

suitable for inherently imprecision-tolerant applications, such as

image processing, pattern recognition and machine learning. The

basic premise is to relax the precision requirements in favour

of lower complexity, thereby achieving reduced circuit delay and

energy consumption.

This thesis presents an investigation into novel approximate

multiplier design and implementation approaches. In the first

approach, a multiplier design using significance-driven logic com-

pression (SDLC) is proposed. Fundamental to this approach is a

configurable lossy compression of the partial product rows. The

compression is carried out by progressively replacing the exclusive-

OR logic gates by low-complexity OR gates based on their bit sig-

nificance. The compression is followed by commutative remapping

of the resulting product terms to reduce the number of product

rows. This accounts for substantially reduced number of logic cell

counts and lengths of critical paths at the cost of errors in lower

significant bits.

In the second approach, a novel multiplier design is presented by

combining a Wallace-tree accumulation method together with the

SDLC. The logic compression performed by SDLC approach works

for reducing the number of product rows using progressive bit sig-

nificance, thereby decreasing the number of reduction stages and

logic counts in accumulation. The errors introduced by lossy logic

compression are minimised through a novel error compensation

method (ECM). The core of this method is a parallel error detec-

vii

tion logic used to generate error compensation bit-matrix. This

matrix is then compressed using OR gates to generate an error

compensation vector. To mitigate the impact of error, this vector is

either considered as an additional row in the accumulation tree or

used to modify an existing row.

To validate the effectiveness of these approaches, a number of

multipliers with different compression levels are designed and

synthesized showing substantial savings in energy consumption,

and reductions in critical delay and silicon area, compared to an

accurate equivalent and other existing approaches. These gains

are achieved at the cost of errors introduced in the circuit, which

are extensively analysed.

The configurable multiplier designs in the first and second ap-

proaches exhibit energy/quality trade-offs at different degrees of

compression. These trade-offs can be effectively used to implement

multipliers in applications, where energy can be opportunistically

minimised within the envelope of quality requirements. As such,

in the third study, two implementation methods are demonstrated.

In the first method, a Gaussian blur filter was designed, demon-

strating energy reduction with a minor loss in image quality. In

the second method, the energy/quality trade-offs are leveraged in

a perceptron-based machine learning application, showing energy

reduction for different SDLC configurations.

The proposed logic compression approach and its prototype im-

plementations in various configurations can be suitably used for

energy-efficient multiplier designs, where quality requirements

can be relaxed.

viii

P U B L I CAT I O N S A N D C O N T R I B U T I O N S

The publications that were produced as a part of research reported

in this thesis are listed as follows:

Journal publications:

• Issa Qiqieh; Rishad Shafik; Ghaith Tarawneh; Danil Sokolov;

Shidhartha Das; Alex Yakovlev, Significance-Driven Logic Com-

pression for Energy-Efficient Multiplier Design, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems (JET-

CAS), September 2018, vol. 8, no. 3, pp. 417-430.

Conference publications:

• Issa Qiqieh; Rishad Shafik; Danil Sokolov; Alex Yakovlev,

Energy-Efficient Approximate Multiplier Design using Bit

Significance-Driven Logic Compression, Design, Automation

Test in Europe Conference Exhibition (DATE), March 2017, pp

7-12.

• Issa Qiqieh; Rishad Shafik; Ghaith Tarawneh; Danil Sokolov;

Shidhartha Das; Alex Yakovlev, Energy-Efficient Approximate

Wallace-Tree Multiplier using Significance-Driven Logic Com-

pression, IEEE International Workshop on Signal Processing

Systems (SiPS), October 2017, pp 1-6.

• Dave Burke; Dainius Jenkus; Issa Qiqieh; Rishad Shafik; Shid-

hartha Das; Alex Yakovlev, Special Session Paper: Significance-

Driven Adaptive Approximate Computing for Energy-Efficient

Image Processing Applications, CODES+ISSS, October 2017, pp

1-2.

ix

C O N T E N T S

I Thesis Chapters 1

1 I N T R O D U C T I O N 2

1.1 Motivation . 2

1.1.1 Energy-Efficient Computing 3

1.1.2 Approximate Multiplier Design 4

1.2 Thesis Scope and Contributions 6

1.3 Thesis Overview . 8

2 BA C K G R O U N D A N D L I T E R AT U R E S U R V E Y 11

2.1 Introduction . 11

2.2 Approximate Circuit Design 12

2.2.1 Imprecise Hardware Design 12

2.2.2 Taxonomy of Approximate Circuits 20

2.3 Approximate Multiplier Design 23

2.3.1 Taxonomy and Survey 24

2.3.2 Error Evaluation and Challenges 33

2.4 Concluding Remarks and Discussions 37

3 L O G I C C O M P R E S S I O N I N M U LT I P L I E R D E S I G N 39

3.1 Introduction . 39

3.2 Significance-Driven Logic Compression Approach . 40

3.2.1 Logic Clustering 41

3.2.2 Logic Compression 43

3.2.3 Progressive Cluster Sizing 44

3.2.4 Commutative Remapping 45

x

C O N T E N T S xi

3.2.5 Example of Utilizing 2-bit SDLC 45

3.3 Variable Logic Cluster and Scalability 47

3.3.1 General Space of d-bit Logic Cluster 48

3.3.2 d-bit Logic Cluster: Compression Algorithm 50

3.3.3 Scalability for (N×N) SDLC Multiplier Design 53

3.3.4 Examples of Utilizing d-bit SDLC 55

3.4 Error Analysis . 58

3.5 Design Trade-offs . 67

3.6 Comparative Analysis 73

3.7 Signed Multiplication using SDLC 76

3.8 Concluding Remarks 80

4 E R R O R M I T I G AT I O N I N L O G I C C O M P R E S S I O N 81

4.1 Introduction . 81

4.2 Proposed Approximate Wallace Multiplier 82

4.2.1 Logic Compression using SDLC 82

4.2.2 Accumulation with Wallace Method 83

4.2.3 Wallace with Variable Logic Compression . 84

4.3 Error Compensation Method (ECM) 91

4.3.1 Parallel Error Detection Logic 92

4.3.2 Error Compensation Vector 94

4.4 Error Analysis . 96

4.5 Experimental Results and Design Trade-offs 99

4.6 Concluding Remarks 104

5 I M P L E M E N TAT I O N A N D VA L I D AT I O N S 105

5.1 Introduction . 105

5.2 Case Study 1: Gaussian Blur Filter 106

5.3 Case Study 2: Perceptron Classifier 111

5.4 Concluding Remarks 115

6 C O N C L U S I O N S A N D F U T U R E W O R K 117

C O N T E N T S xii

6.1 Summary and Conclusions 117

6.2 Critical Review and Future Work 120

II Thesis Bibliography 123

B I B L I O G R A P H Y 124

L I S T O F F I G U R E S

Figure 2.1 Taxonomy of imprecise computation in hard-

ware. 13

Figure 2.2 Example of a small quantum circuit 3qubitc-

not: (a) fault-free circuit, and (b) faulty cir-

cuit by eliminating a single H gate [6]. . . . 14

Figure 2.3 Stochastic encoding: (a) a stochastic bit

stream; (b) a stochastic wire bundle. For each

bit in the bit stream or a bundle, the proba-

bility that it is 1 is P(X = 1) = x. 15

Figure 2.4 Stochastic multiplication using an AND gate. 15

Figure 2.5 Example of a (2×2) multiplier: (a) approx-

imate, and (b) accurate, with the critical

paths highlighted [65]. 17

Figure 2.6 Taxonomy of approximate circuits. 20

Figure 2.7 Multi-dimensional taxonomy of approximate

multiplier designs. 24

Figure 2.8 An example of (2×2) multiplier: (a) operating

within safe voltage range; (b) lowering the

supply voltage below its nominal value. . . 25

Figure 2.9 Increasing the level of truncation from; (a)

3; (b) 4; (c) 5; and (d) 6 columns, translates

into additional reductions in area and power;

however, error is maximized and this method

is not effective to reduce the critical column

of the accumulation tree (highlighted in dot-

ted rectangles). 26

xiii

List of Figures xiv

Figure 2.10 Using (2×2) approximate multiplier blocks

to build larger energy-efficient multipliers [65]. 27

Figure 2.11 Different sizes of approximate and accu-

rate multipliers are used to build large re-

cursive multiplier for pipelined architec-

ture [8]; the carry-in logic is used for the ap-

proximate partial product computation only

(AHBL, ALBH , ALBL) and not for the accu-

rate AHBH . 28

Figure 2.12 The partial product accumulation tree: (a) of

an accurate (8×8) multiplier; (b) design pa-

rameters are set using multiple EDA tools,

and (c) the reduced partial product matrix af-

ter applying the partial product perforation

with j =2 and k = 3 [134]. 29

Figure 2.13 The quality constraint circuit proposed by

SALSA [125] (Q is a single Boolean value). . 31

Figure 3.1 Process chart showing the difference be-

tween the major stages in: (a) conventional

multiplication, and (b) the proposed ap-

proach to multiplication. 41

Figure 3.2 Stylized demonstration of SDLC approach

[93]: four different sizes of logic clusters used

to compress partial products based on their

progressive bit-significance in (8×8) parallel

multiplier architecture. 42

Figure 3.3 Eight different sizes of 2-bit logic clusters

used to compress partial products based on

their progressive bit-significance in (16×16)

parallel multiplier architecture. 46

List of Figures xv

Figure 3.4 Dot diagram showing the impact of increas-

ing the depth of the logic clusters in the case

of (8×8) multiplier: (a) clustering a group of

bits within 2 successive rows in the partial

product bit-matrix after bitwise multiplica-

tion; (b) generating a reduced set of prod-

uct terms after targeting the depth of 2-row

logic compression; (c) ordered matrix after

applying commutative remapping of the bit

sequence resulting from the SDLC approach;

(d), (e) and (f) the same process when apply-

ing 3-bit logic compression; (g), (h) and (i) the

same process when applying 4-bit logic com-

pression. The dotted rectangles at the right

indicate the heights of the critical columns

which are further reduced compared to the

accurate accumulation tree. 48

Figure 3.5 Dot diagram showing the general space of

targeted partial product terms compressed

by a (d×L) logic cluster to produce array of L

bits in rth row of the reduced partial product

matrix for (N × N) multiplier using SDLC

approach with d-bit logic compression. . . . 49

Figure 3.6 Five different sizes of 3-bit logic clusters used

to compress partial products based on their

progressive bit-significance in (16×16) par-

allel multiplier architecture. 55

List of Figures xvi

Figure 3.7 Four different sizes of 4-bit logic clusters

used to compress partial products based on

their progressive bit-significance in (16×16)

parallel multiplier architecture. 56

Figure 3.8 Three different sizes of 5-bit logic clusters

used to compress partial products based on

their progressive bit-significance in (16×16)

parallel multiplier architecture. 57

Figure 3.9 Two different sizes of 6-bit combined with

4-bit logic clusters used to compress par-

tial products based on their progressive bit-

significance in (16×16) parallel multiplier

architecture. 57

Figure 3.10 Two different sizes of 7-bit combined with

2-bit logic clusters used to compress par-

tial products based on their progressive bit-

significance in (16×16) parallel multiplier

architecture. 58

Figure 3.11 Two different sizes of 8-bit logic clusters used

to compress partial products based on their

progressive bit-significance in (16×16) par-

allel multiplier architecture. 58

Figure 3.12 Error percentage distribution for 8-, 12- and

16-bit proposed multiplier after applying 2-

bit depth compression. 62

Figure 3.13 Cumulative probability distribution for the

error induced by different logic compression

levels of the proposed SDLC approach in the

case of (16×16) multiplier. 66

List of Figures xvii

Figure 3.14 Dynamic/leakage power, area, delay and

power-delay-product (PDP) trade-offs for dif-

ferent bit-widths of the (2-bit SDLC) pro-

posed multiplier. 68

Figure 3.15 Dot diagram highlights the impact of in-

creasing depth of logic clusters on the critical

path of (8× 8) multiplier: (a) partial prod-

uct bit-matrix of the conventional multiplier;

(b) after 2-bit SDLC; (c) 3-bit SDLC; and (d)

4-bit SDLC. The dotted polygons indicate

the maximum propagation path for summing

up the accumulation tree. Higher degrees of

compression minimize the propagation de-

lay associated with accumulation tree (such

as (b) and (c)), while a further reduction in

(d), since a carry propagation adder is just

needed to generate the product (no extra

delay required for accumulation tree). The

curved lines identify the critical paths for

each multiplier (from A1 to P14). 71

Figure 3.16 Dynamic power, leakage power, delay, area

and energy trade-offs for different degrees of

logic compression of (8×8) multiplier. 72

Figure 3.17 The mean relative error distance (MRED) and

PDP trade-offs for different degrees of logic

compression of (8×8) and (16×16) multipliers. 73

Figure 3.18 Area and power trade-offs for various scal-

able approximate multipliers. 74

List of Figures xviii

Figure 3.19 Comparative errors in terms of MRED,

normalized mean error distance (NMED) and

also ER for various scalable (8×8) approxi-

mate multipliers. 76

Figure 3.20 Block diagram for one of the options of

hardware implementation required to im-

plement the proposed signed multiplier (in-

spired from [132]). 77

Figure 3.21 Partial product matrix of (8×8) signed mul-

tiplier. Complemented partial products are

highlighted in blue. 78

Figure 4.1 Reduction stages and logic cell counts for

(16×16) accurate Wallace. 84

Figure 4.2 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating 2-bit significance-driven logic com-

pression (SDLC) with Wallace-tree accumula-

tion (2-bit SDLC Wallace). 85

Figure 4.3 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating 3-bit SDLC with Wallace-tree accumu-

lation (3-bit SDLC Wallace). 86

Figure 4.4 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating 4-bit SDLC with Wallace-tree accumu-

lation (4-bit SDLC Wallace). 86

Figure 4.5 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating 5-bit SDLC with Wallace-tree accumu-

lation (5-bit SDLC Wallace). 87

List of Figures xix

Figure 4.6 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating 6-bit SDLC with Wallace-tree accumu-

lation (6-bit SDLC Wallace). 87

Figure 4.7 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating 7-bit SDLC with Wallace-tree accumu-

lation (7-bit SDLC Wallace). 87

Figure 4.8 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating 8-bit SDLC with Wallace-tree accumu-

lation (8-bit SDLC Wallace). 87

Figure 4.9 Wallace reduction stages of an (8×8) multi-

plier: (a) accurate Wallace tree; then Wallace

method coupled with (b) 2-bit SDLC; (c) 3-bit

SDLC and (d) 4-bit SDLC. 90

Figure 4.10 2-bit OR gate is sufficient to find the sum of

two bits. 92

Figure 4.11 A parallel error-detection logic to generate

the error compensation bit-matrix in the case

of 2-bit SDLC, and then, array of OR gates to

form the error-compensation vector. 93

Figure 4.12 The error-detection logic circuit parallel with

the logic clusters required by error compen-

sation method (ECM) in: (a) 2-bit; (b) 3-bit;

(c) 4-bit logic clusters. 94

Figure 4.13 Improving accuracy by allowing error-

compensation vector to modify an existing

row in Wallace accumulation tree. 95

Figure 4.14 Improving accuracy by including error-

compensation vector as an additional row

in Wallace accumulation tree. 96

Figure 4.15 Cumulative probability distribution for the

error induced by different logic compression

levels coupled with the proposed ECM in the

case of (8×8) proposed multiplier. 98

Figure 4.16 The impact of the proposed ECM on the (8×8)

approximate Wallace multiplier with: (a) 2-

bit, (b) 3-bit and (c) 4-bit logic compression

levels. 100

Figure 4.17 The impact of the proposed ECM on the (16×
16) approximate Wallace multiplier with: (a)

2-bit, (b) 3-bit and (c) 4-bit logic compression

levels. 102

Figure 5.1 Flowchart diagram showing the main steps

for evaluating the impact of the proposed

multiplier on the final quality of image pro-

cessed by Gaussian blur filter. 107

Figure 5.2 Output quality after applying Gaussian blur

filtering for different degrees of logic com-

pression of the proposed (8×8) multiplier. . 109

Figure 5.3 Output quality after applying Gaussian blur

filtering for different degrees of logic com-

pression of of the proposed (16×16) multiplier.110

Figure 5.4 Signal-flow graph of the perceptron. 111

Figure 5.5 Flowchart diagram demonstrating the main

steps for evaluating the impact of the pro-

posed multiplier on a perceptron-based Clas-

sifier. 112

xx

List of Tables xxi

Figure 5.6 The test set perceptron classification using;

(a) accurate multiplier; (b) 2-bit SDLC pro-

posed multiplier, where the axises show the

random inputs between 0 to 65535. (blue and

red points represent two classes -1 and +1,

black dots for mismatch classification points.)114

L I S T O F TA B L E S

Table 2.1 Truth table for the accurate and approxi-

mate (2×2) multipliers, used to obtain com-

parative error analysis in Fig. 2.5, with

changed entry highlighted. 18

Table 2.2 Summary of approximate multiplier design

approaches. 32

Table 3.1 Error metrics for varying sizes of proposed

multiplier using 2-bit logic cluster. 62

Table 3.2 Error metrics for different depths of logic

compression in the proposed (8×8) multiplier. 64

Table 3.3 Error metrics for different depths of logic

compression in the proposed (16×16) multi-

plier. 65

Table 3.4 Design trade-offs for different bit-widths of

the accurate multiplier used to obtain com-

parative analysis in Fig. 3.14. 69

Table 3.5 Design trade-offs for different bit-widths of

the proposed multiplier used to obtain com-

parative analysis in Fig. 3.14. 70

Table 3.6 Number of library cells instantiated to form

different bit-widths of the (2-bit SDLC) pro-

posed multiplier. 70

Table 4.1 Reduction stages and logic cell counts for

(16×16) proposed multiplier when incorpo-

rating different levels of logic compression

with Wallace-tree accumulation. 88

Table 4.2 Reduction stages and logic cell counts for

(8×8) proposed multiplier when incorporat-

ing different levels of logic compression with

Wallace-tree accumulation. 90

Table 4.3 ECM drastically reduces the errors across all

metrics. 97

Table 4.4 Design trade-offs for different compression

levels of the proposed multiplier used to ob-

tain comparative analysis in Fig. 4.16. . . . 101

Table 4.5 Design trade-offs for different compression

levels of the proposed multiplier used to ob-

tain comparative analysis in Fig. 4.17. . . . 103

Table 5.1 Error rate results and energy savings for

perceptron classifier 115

L I S T O F A L G O R I T H M S

3.1 Generating the output bits of the logic cluster of the

rth row for the proposed (N × N) multiplier using

d-bit logic clusters. 51

xxii

3.2 Generating a reduced partial product matrix M for

(N ×N) multiplier using SDLC approach with d-bit

logic clusters,∀{d ∈ {2,3, ..., N}. 54

4.1 (N×N) Wallace-tree multiplier using SDLC approach

with d-bit logic clusters. 91

A C R O N Y M S

CMOS complementary metal-oxide-semiconductor

CPA carry propagating adder

DSP digital signal processing

ECM error compensation method

ED error distance

EDA electronic design automation

EP error probability

ER error rate

ETM error-tolerant multiplier

MBE modified Booth-encoding

MED mean error distance

MRED mean relative error distance

MSE mean squared error

xxiii

A C R O N Y M S xxiv

NMED normalized mean error distance

NMRED normalized mean relative error distance

NMSE normalized mean squared error

PDP power-delay-product

PEQ performance-energy-quality

PPM partial product matrix

PSNR peak signal-to-noise ratio

QoR quality of result

RED relative error distance

RTL register-transfer level

SDLC significance-driven logic compression

SoC system-on-chip

VOS voltage over-scaling

Part I

Thesis Chapters

1

1

I N T R O D U C T I O N

A promising design paradigm—approximate computing—has re-

cently emerged to harness imprecision resilience, in a broad spec-

trum of computing applications, to achieve additional optimiza-

tions. This chapter presents the motivation and defines the key

concepts and terms in context of the research reported in this

thesis. It highlights the necessity of approximate computing as a

way for improving energy and performance efficiency in the field

of arithmetic multiplier design. Then, the main contributions of

this research together with thesis organisation are discussed.

1.1 M O T I VAT I O N

Over the past decades, the continuing advances in technology

scaling have shown an increasingly difficult design challenge to

deliver high performance without dramatically increasing energy

consumption [53, 26, 14, 7, 129]. Therefore, developing new solu-

tions to tackle this challenge is considered as an imperative need

for a number of reasons, such as improving hardware functionality

for battery-powered computing devices, or increasing processing

capabilities for those devices where energy is harvested from envi-

ronmental sources. The motivation of this work is introduced as

follows.

2

1.1 M O T I VAT I O N 3

1.1.1 Energy-Efficient Computing

The computational performance demands driven by a massive vol-

ume of global data and a vast number of connected users, have

exceeded the current processing capacity of the ever-evolving digi-

tal world [41]. It is expected that emerging applications will create

163 zettabytes of data by 2025 (ten times as much as was made

in 2017) [98]. Furthermore, the global internet users have now

passed the 4 billion mark (as of January, 2018) [61]. The vast ma-

jority of them were accessing their chosen platforms via mobile

devices [61]. Moreover, the evolution of worldwide electricity de-

mand of data centres [4] is related to the exponential growth in

global digital-data creation [98]. This opens the way for finding al-

ternative computing systems that use relatively less energy, while

providing the processing performance they need.

For the last three decades, the need for higher computational

performance has been supported by the exponential scaling of

integrated circuits and many-core system-on-chip (SoC) technolo-

gies [24]. However, the rapid growth in these technologies is

synchronized with the decline of Moore’s law [81]. This means

that, as the downscaling of the complementary metal-oxide-

semiconductor (CMOS) is completely stretched to limits, technology

scaling will less likely be a driver for computing in the near fu-

ture [110, 105, 103, 62]. Moreover, the per-transistor performance

power efficiency is not keeping pace with known power-reduction

techniques at various abstraction levels [88, 34, 31]. This eventu-

ally results in the so-called Dark Silicon era [108], which means

it may only be possible to power-on a fraction of on-chip comput-

ing resources in order to stay within the power density and safe

thermal limits.

1.1 M O T I VAT I O N 4

Indeed, there is a genuine need to explore new computing

paradigms to deliver more energy efficiency and also, to squeeze

more functionality out of computing platforms across the spectrum,

from mobile and deeply-embedded devices to servers and data cen-

tres. Approximate computing paradigm is a promising approach

to this end [33, 48, 78, 109, 107]. In the following sub section we

introduce approximate computing and multiplier design in details.

1.1.2 Approximate Multiplier Design

Approximate computing is an emerging design paradigm that

leverages the presence of inherent-resilience in a broad spectrum

of hardware and software implementations by relaxing the need

for completely precise or totally deterministic operations. It can

offer substantial reductions in circuit complexity, delay and energy

consumption by relaxing accuracy requirements [78]. Approximate

computing has the potential to benefit a wide range of modern

applications, such as media processing (image, audio, and video),

digital signal processing (DSP), machine learning (recognition and

data mining), wireless communication, web search, and data an-

alytics [109]. It exploits the inherent-resilience code regions in

such applications and also perceptual limitations of users to intel-

ligently trade off outcomes accuracy for performance and energy

gains [107].

The basic premise of approximate computing, in the hardware

domain, is to build hardware blocks whose implementation does

not exactly match the specification, either due to the impact of func-

tional approximation (e.g., implement a slightly different Boolean

function that has a faster or more power-efficient implementa-

tion), or due to timing approximations (e.g., voltage over-scaling

1.1 M O T I VAT I O N 5

(VOS) and over-clocking). Therefore, approximate computing trades

off output quality for achieving much lower power consumption,

shorter run times, and often smaller silicon area at the cost of

imprecision introduced to the processed data [17].

Over the years, a number of approximate computing approaches

have been proposed (see Chapter 2). These approaches aim to

reduce the complexity of the circuits and systems in terms of their

computation latency and energy consumption [49]. Approximations

can be introduced at all design levels, starting from the circuit [46]

via the logic [92] and the architecture [2, 37] to programming

language [101] and algorithms [57, 32].

Approximate arithmetic, such as approximate adders and

multipliers, has gained significant interest in various group of

imprecision-resilient applications [59, 49, 29, 120]. Approximate

arithmetic is based on replacing traditional complex and energy-

wasteful data processing blocks by low-complexity ones with re-

duced logic counts, and therefore, improving the computational

performance and energy efficiency of the computing systems.

Multipliers are crucial arithmetic units in modern applications,

for two major factors. Firstly, they are characterized by complex

logic design, being one of the most energy-demanding data process-

ing units in modern microprocessors. Secondly, compute-intensive

applications typically exercise a large number of multiplication

operations to compute outcomes. Thus, any improvement made in

the power/speed of a multiplier is expected to substantially impact

on overall system power/performance trade-offs [75, 58].

A typical (N × N) accurate multiplier generates N2 product

terms, which are then accumulated as a final product of size 2N.

The accuracy of this product depends largely on the significance

of bits. Hence, preserving higher-significance bits is likely to gen-

1.2 T H E S I S S C O P E A N D C O N T R I B U T I O N S 6

erate an outcome close to the exact product than that of lower-

significance bits. This can be exploited to progressively compress

higher order combinatorial terms systematically and to achieve

substantial energy savings at low loss of accuracy.

Existing multiplier design approaches consist of redesign ef-

forts (such as reducing the circuit complexity (i.e., critical path))

and parametric variations (such as supply voltage/frequency

over-scaling). The basic principle in these designs is to improve

energy/performance-efficiency at cost of functional or timing-

induced errors. While these design approaches have made piece-

meal advances in different directions, they leave rooms for further

improvements (see Chapter 2). For example, how can multiplier

critical path be progressively reduced using different levels of ap-

proximations.

1.2 T H E S I S S C O P E A N D C O N T R I B U T I O N S

This thesis attempts to address the above fundamental question

by exploring promising research directions in the development

of energy-efficient multiplier design. It presents novel design

approaches for improving energy and performance efficiency of

approximate multiplier with variable-accuracy implementations.

From the perspective of levels of abstraction, the research work in

this thesis focuses on modifying the behavioural description of the

multiplier design from gate level and register-transfer level (RTL).

The proposed designs targets parallel multiplication, particularly

for integer input operands. The aim is to develop design-time

configurable prototypes to trade off output accuracy for various

performance and energy gains. We apply the design approach of

approximate multiplier to standard scheme of multiplication (e.g.

1.2 T H E S I S S C O P E A N D C O N T R I B U T I O N S 7

Wallace-tree). Additionally, we demonstrate a methodology to mit-

igate the impact of errors at various approximation levels, and

study their impact on different imprecision-resilient applications.

The main contributions of this thesis are listed as follows:

• a novel energy-efficient approach is proposed for approximate

multiplier design using significance-driven logic compression

(SDLC). The basic principle of the proposed approach is to cut

the carry chain needed by accumulation tree, in a way that the

significant bits of the product are slightly affected. To achieve

this goal, the number of product terms is reduced by using low-

complexity logic gates (i.e., using OR gates to sum up these

terms instead of expensive XOR gates) —we denote this method

as logic compression. The reduced number of product terms is

then followed by remapping, based on their commutative prop-

erties, to reduce the resulting number of rows in the partial

product matrix (PPM). At the core of SDLC approach is a design-

time configurable logic compression of product terms aims at

achieving different performance-energy-quality (PEQ) trade-offs.

Several multiplier prototypes (extending from 4-bit to 128-bit)

are synthesized using electronic design automation (EDA) tools,

showing up to an order of magnitude energy savings with vari-

ous reductions in critical path delay and silicon area. Further-

more, extensive error analysis and comparison are placed to

evaluate the efficiency of the proposed multiplier with respect

to state-of-the-art multiplier designs [93, 94, 92].

• a novel energy-efficient approximate multiplier design by incor-

porating SDLC approach together with already existing column-

compression methods, such as Wallace and Dadda-tree, to

shorten the number of reduction stages. As such, the hardware

complexity of the multiplier implementation is drastically re-

1.3 T H E S I S OV E R V I E W 8

duced. Moreover, to minimize the impact of error associated

with lossy compression, an error detection technique using par-

allel logic array along with error compensation method (ECM) is

added at low overhead cost. The aim is to generate error com-

pensation vector to either combine it as additional row in the

accumulation tree or to replace one of the existing rows. A robust

error analysis is included to evaluate the effectiveness of ECM.

The post-synthesis experiments shows substantial saving in all

design trade-offs, when comparing to accurate equivalent [92],

• the PEQ trade-offs achieved by the proposed multiplier designs

are extensively investigated into two real-application case stud-

ies demonstrating comparative advantages of SDLC approach.

First, a Gaussian blur filter with a meagre loss of image quality.

Second, machine learning application using perceptron classi-

fier with negligible error rate. For both case studies, substantial

energy reductions are achieved and analysed [93, 94, 92].

1.3 T H E S I S OV E R V I E W

This thesis is organized into six chapters. The major contributions

of this thesis are summarized as follows:

Chapter 2 provides a coherent overview of extensively adopted

and recently reported approaches for energy-efficient imprecise

hardware. It defines the objectives of approximate computing, and

also discusses the design approaches for approximate circuits. This

is followed by a survey of approximate multiplier design to date.

Various design techniques are discussed and classified based on

multi-dimensional taxonomy to emphasize their similarities and

differences. This chapter can inspire more efforts to address the

1.3 T H E S I S OV E R V I E W 9

challenges facing quantifying errors derived from approximate

arithmetic circuits, in particular, multipliers.

Chapter 3 proposes the SDLC approach for energy-efficient ap-

proximate multiplier design. It demonstrates how logic compres-

sion and commutative remapping are used to reduce the number of

product rows. Error analysis and post-synthesis experiments are

discussed, showing the PEQ trade-offs for different input bit-widths

and compression levels. This chapter presents an algorithmic and

design-time configurable lossy compression of the partial product

rows. Additionally, it studies a group of related subjects covering

the scalability of the SDLC approach and the feasibility of SDLC in

signed multiplication. Comparative results against other existing

approaches are also presented.

Chapter 4 studies the multiplier design by combining a Wallace-

tree accumulation method together with the SDLC approach. A

parallel error-detection logic and also error-compensation method

(ECM) are presented, showing different ways to reduce the impact

of error associated with SDLC. This chapter provides evaluation of

the impact of ECM on variable logic compression, with extensive er-

ror analysis supported by a number of post-synthesis experiments.

Chapter 5 demonstrates the effectiveness of the PEQ trade-offs

achieved by the proposed multiplier designs in applications. This

chapter exhibits two case studies; image processing application

using Gaussian blur filter and machine learning application us-

ing perceptron classifier. It also discusses the energy savings and

quality loss arising from the implementations.

Chapter 6 summarizes the contributions and key highlights of

this thesis, showing critical review of this research together with

the potential future directions.

1.3 T H E S I S OV E R V I E W 10

Overall, this thesis shows promising design and implementation

approaches for approximate multiplier design, with different con-

figuration. It can inspire designers to take advantage of the PEQ

trade-offs, achieved by the SDLC approach, to achieve more energy

and performance efficiency for ubiquitous computing systems.

2

BA C K G R O U N D A N D L I T E R AT U R E S U R V E Y

2.1 I N T R O D U C T I O N

In last decade, there has been an increasing interest in approxi-

mate computing as one of the most promising energy-efficient com-

puting paradigms. Approximate computing exploits the flexibility

provided by inherent application resilience in hardware or software

implementations for more performance and energy gains [100]. Ap-

proximate computing research combines insights from hardware

engineering, architecture, system design, programming languages,

and even application domains like image processing [17] and ma-

chine learning [84]. However, approximate computing based on

software techniques has been deemed out of scope for this thesis.

This chapter highlights the basic concepts behind approximate

circuits to understand the motivation and the choices made in

the context of this work. First, we introduce and discuss several

related imprecise computing in hardware to let the reader dis-

tinguish the efforts in approximate circuits from other related

imprecise designs in the area. Then, a brief review is proposed

for the recent developments in approximate circuits, showing the

major approaches for exploiting the imprecision-resilience of vari-

ous applications. Since the approximate multiplier design is the

primary theme of this thesis, the second part of this chapter is

made to emphasize the research efforts in the field of approxi-

mate multiplier design found so far with taxonomy provided. In

11

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 12

order to identify a trade-off between approximation and reliability,

the existing error metrics are defined and classified to help the

reader to specify right metric for a given approximate multiplier.

Finally, a discussion is placed for the challenges of quantifying the

imprecision in the multiplier design.

2.2 A P P R O X I M AT E C I R C U I T D E S I G N

In the literature, there are various research efforts devoted to ad-

dressing different designs of imprecise computing in hardware. In

this section, we denote the hardware that does not produce the ex-

act output at all times by imprecise hardware. The reason for this

concept is to make it include a variety of existing designs that can

lead to error in the output, such as in approximate, probabilistic

and non-Boolean circuits. The next subsection is to let the reader

understand the scope of approximate circuit design by distinguish-

ing the work on it from related but conceptually distinct efforts in

probabilistic and non-Boolean circuits.

2.2.1 Imprecise Hardware Design

In this section, imprecise hardware, including probabilistic, non-

Boolean and approximate designs, is introduced to understand

the scope of the approximate circuits from other related efforts

in the literature. Fig. 2.1 presents a taxonomy of related terms

in this area. Hence, these terms are briefly discussed with some

illustrative examples —as follows:

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 13

Approximate

Imprecise Computation in Hardware

Probabilistic Non-Boolean

Figure 2.1: Taxonomy of imprecise computation in hardware.

2.2.1.1 Probabilistic circuits

Three computing technologies are used by the circuit whose be-

haviour is inherently probabilistic: probabilistic CMOS (PCMOS),

quantum and stochastic circuits. PCMOS and quantum circuits

and signals are inherently probabilistic, while stochastic circuits

utilize deterministic means for representing and processing prob-

abilistic data [89, 77]. These computing technologies are briefly

discussed as follows.

• Probabilistic CMOS is a particular form of CMOS called PC-

MOS, which is invented with a hope to compete against current

energy-efficient CMOS technology. It is motivated by inherent

“erroneous” behaviour in hardware as we move to smaller tech-

nology nodes. This is due to process variations and noise sus-

ceptibility [63, 83, 112]. Considering that CMOS devices have

an exponential relationship between the probability of exactness

(P) and the switching energy (E). To this end, PCMOS devices

can harness the noise as a resource to achieve low-power and

high-performance computation [16, 56]. However, the computing

platforms based on PCMOS devices can compute efficiently at

the cost of introducing error with a probability (1−P) [16].

• Quantum circuits show another type of inherently probabilis-

tic computations that perform efficient algorithms for some

intractable problems in classical computer science [67, 87], such

as fast number factorization [114]. Following the laws of quan-

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 14

tum physics, quantum circuits offers enormous processing power

through the ability to be in multiple states, and to perform tasks

using all possible permutations simultaneously. Quantum com-

puting processes data in the form of qubits (quantum bits). A

qubit Ψ has two parts α and β indicating its “zeroness” and “one-

ness” probabilities, respectively. It can be introduced in several

standard forms [87]:

|Ψ〉 =α | 0〉+β | 1〉 =

α
β

 , (2.1)

here α and β are complex numbers called probabilistic ampli-

tudes. When measuring the qubit’s valueΨ, quantum mechanics

requires that the output be 0 or 1 with specific probabilities, im-

plying that |α |2+|β |2 = 1. Generally, the inherent imprecision

behaviour in quantum circuits comes from two reasons. First,

the probabilistic results, i.e., a quantum circuit generates dif-

ferent output values when run more than once with the same

inputs. Second, when quantum circuit is implemented by a re-

duced number of quantum gates, i.e., one or more quantum gates

is missing, an example is demonstrated in Fig. 2.2.

H

H
Ry

Rz

H

Ry

Rz

(a) (b)

Figure 2.2: Example of a small quantum circuit 3qubitcnot: (a) fault-
free circuit, and (b) faulty circuit by eliminating a single H
gate [6].

• Stochastic circuits is a class of computing circuits in which a

number is represented by randomized values in serial “streams”

or on parallel “bundles” of wires [91]. In the case of serially

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 15

streaming, the signals are probabilistic in time whereas, in

parallel, they are probabilistic in space, as demonstrated in

Fig. 2.3. Consider an n-bit stream X containing j “ones” and

n− j “zeros”. The ratio j/n can be seen as the probability x of a

randomly-observed bit in X being “one”.

0

1

0

0

0

1

X0, 1, 0, 0, 0, 1

X x= 2/6

(a) (b)

x= 2/6

Figure 2.3: Stochastic encoding: (a) a stochastic bit stream; (b) a stochas-
tic wire bundle. For each bit in the bit stream or a bundle,
the probability that it is 1 is P(X = 1) = x.

The main attraction of stochastic hardware is its ability to carry

out complex operations with simple circuits. For example, serial

multiplication can be implemented by a two-input AND gate,

see Fig. 2.4. Stochastic computing consists of operations on the

xi ’s associated with a set of X i ’s of fixed or variable length n. In

Fig. 2.4, the inputs denoted x1 = 9/12= 0.75 and x2 = 6/12= 0.5;

the output signal probability is 4/12 = 0.333, which roughly

approximates the product by using the input signal probabilities

to x1 × x2 = 0.75×0.5= 0.375.

Small errors like a 0 replacing a 1 due to a lost 1-pulse, have

little effect on bit-stream signal probabilities, hence stochas-

AND

1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1

1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0

1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0x2 = 6/12

x2 = 4/12

x1 = 9/12

Figure 2.4: Stochastic multiplication using an AND gate.

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 16

tic computing is inherently tolerant of bit-flip errors. However,

such computing has some drawbacks. For instance, meeting

higher precision requirement leads to exponential increase in

the computing times of the stochastic circuits, especially when

not ensuring sufficiently low correlation among the circuit’s

signals [3]. To explain, the stochastic multiplier in Fig. 2.4 re-

quires input signals that are pseudo-random and uncorrelated.

Meaning that, if the input bit-streams are both identical in bit-

for-bit representation X of x = 0.5 , i.e., maximally correlated,

the output will be the same as X with 0.5 instead of the expected

product of x1 × x2 = 0.52 = 0.25 —which is a huge error.

2.2.1.2 Non-Boolean circuits

Non-Boolean computing refers to the class of computing where

analog devices are used to store/process data. For example, a sin-

gle storage bit can correspond to more than 2 values at any instant

of time as opposed to combinational logic where a bit can only

correspond to truth-values (0 or 1) [111, 68, 22]. Non-Boolean cir-

cuits can go beyond these definitions. It has proven to be much

more efficient at various computational task, such as simulating

biological systems using analog transistors [50], than digital com-

puting. However, since analog computing uses continuous values,

processes cannot be reliably repeated with exact equivalence [19].

Moreover, existing analog computers have to be programmed man-

ually, i.e., a complex process that would be very time consuming

for large-scale and application-specific simulations [51]. However,

the potential for these technologies to perform useful non-Boolean

computations remains an opportunity to be explored.

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 17

2.2.1.3 Approximate Circuits

Approximate circuits refer to a class of computing where deter-

ministic designs are used to produce outputs with some tolera-

ble level of missing accuracy in favour of improving performance

and energy-efficiency. Approximate computing does not involve as-

sumptions on the probabilistic nature when implementing circuits.

However, it often utilizes statistical properties to trade quality for

energy/power reduction [48]. For example, Fig. 2.5 illustrates the

accurate and approximate circuits for (2×2) multiplier suggested

in [65]. The error statistics of the approximate circuit are shown

in Table 2.1. The main objective is to introduce error into the mul-

tiplier by manipulating its logic function. It can be observed that

it is possible to represent the output of (2×2) multiplication using

just three bits instead of four. As a result, the approximate circuit

has an incorrect output out of the sixteen possible inputs (with

a magnitude of 9−7 = 2 and a probability of 1/16 (assuming a

uniform input distribution). However, the approximate multiplier

in Fig. 2.5-(a) has nearly half the area of the accurate one, with

shorter critical path and less interconnect. Thus, the approximate

version offers the potential for significant dynamic power reduction

B0

A0

B1

A0

B0

A1

B1

A1

‘0’ Out3

Out2

Out1

Out0

B1

A0

B0

A1

B1

A1

Out3

Out2

Out1

Out0

.
.

B0

A0

.
.

(a) (b)

Figure 2.5: Example of a (2×2) multiplier: (a) approximate, and (b) accu-
rate, with the critical paths highlighted [65].

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 18

Table 2.1: Truth table for the accurate and approximate (2×2) multipliers,
used to obtain comparative error analysis in Fig. 2.5, with
changed entry highlighted.

Inputs Outputs Error

B1 B0 A1 A0 Accurate Approximate Free Distance

0 0 0 0 0000 0000
p

0

0 0 0 1 0000 0000
p

0

0 0 1 0 0000 0000
p

0

0 0 1 1 0000 0000
p

0

0 1 0 0 0000 0000
p

0

0 1 0 1 0100 0100
p

0

0 1 1 0 0010 0010
p

0

0 1 1 1 0011 0011
p

0

1 0 0 0 0000 0000
p

0

1 0 0 1 0010 0010
p

0

1 0 1 0 0100 0100
p

0

1 0 1 1 0110 0110
p

0

1 1 0 0 0000 0000
p

0

1 1 0 1 0011 0011
p

0

1 1 1 0 0110 0110
p

0

1 1 1 1 1001 0111 × 2

for the same frequency of operation —due to smaller switching

capacitance.

The key principle of the above imprecise hardware designs (i.e.,

probabilistic, non-Boolean and approximate) is to trade little ac-

curacy loss in the output for improving performance and energy

efficiency in emerging computing systems. However, a taxonomy of

approximate circuits is further discussed in the following sections,

showing their potential to benefit many emerging applications us-

ing different design approaches. In the next subsection, we define

the intrinsic attribute of imprecision-resilience in a wide range of

applications.

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 19

2.2.1.4 Explioting Imprecision-Resilience

Approximate computing exploits the inherent resilience in a broad

spectrum of hardware implementations by relaxing the need for

completely precise or totally deterministic operations. Recently,

however, ideas have emerged how to make errors help reduce run-

time of operations and power consumption. Errors are becoming

an intentional feature in the hardware design because of tangible

trade-offs and application-based error-resilience. Error-resilience

can be defined as the characteristic of a system to produce ac-

ceptable results regardless of task computations being achieved

imprecisely.

Approximate computing design requires a deeper knowledge of

inherent resilience applications [48]. It can improve the perfor-

mance and energy efficiency by exploiting perceptual limitation

(i.e., errors are not recognizable because human perception capa-

bilities, e.g., in multimedia applications). Such applications can ad-

equately operate without the need of functional equivalence of the

specification and implementation. These applications are common

in the hardware circuits mobile, embedded, and server systems

and can be broadly classified into four categories [127, 35, 48]:

• applications with analog inputs that operate on noisy real-world

data, such as image processing, sensor data processing, voice

recognition,

• applications with analog output prepared for human perception,

such as multimedia, image rendering, sound synthesis,

• applications with no golden answer, such as web search and

machine learning, and

• iterative and convergent applications that iteratively process

large amounts of redundant data and the quality of result (QoR)

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 20

depends on the number of iterations. This redundancy often

means that an algorithm can be lossy and still be sufficient.

Approximate circuits harness imprecision-resilience in the above

applications and thereby offer substantial reduction in delay and

energy consumption. This can be done by different explicit design

approaches, which are discussed as follows.

2.2.2 Taxonomy of Approximate Circuits

Applying the concept of approximate computing in hardware con-

sists of two basic design approaches [107, 109, 78]:

• Timing-induced approximation (voltage over-scaling (VOS)

and over-clocking), and

• Functional approximation.

Fig. 2.6 shows a taxonomy of design approaches in approximate

circuits. The voltage over-scaling [96, 76] and over-clocking [27, 28]

approaches use ordinary circuits that work perfectly fine under

usual circumstances. The first design approach can reduce power

consumption by scaling the supply voltage below nominal value,

which can cause the occurrence of occasional violations. Generally,

in CMOS technology, the power consumption associated with task

Approximate Circuits

Timing-inducedFunctional

Over-ClockingVoltage Over-Scaling

Figure 2.6: Taxonomy of approximate circuits.

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 21

is dominated by dynamic power dissipation Pd ynamic, which is

given by [95]:

Pd ynamic = Ce f f ·V 2
dd · f , (2.2)

where Vdd is the supply voltage, Ce f f is the effective switched

capacitance, and f is the clock frequency. Therefore, scaling down

the supply voltage leads to an overall quadratic reduction in the

energy to complete a task. However, while maintaining a fixed

performance, aggressive scaling of supply voltage leads to timing

errors. The literature have shown different ways to reduce the

impact of such induced errors in the systems, such as adding

error detection and correction circuits, which often operate within

normal supply voltage [86].

Over-clocking can achieve more performance by improving

circuit’s working frequency over the maximum frequency. This

leads to the occurrence of timing errors, but better overall per-

formance [27, 28]. Generally, for any given voltage, the circuit

will have a maximum “stable" speed where they still operate cor-

rectly. However, while operating on constant voltage, a designer

may trade the manufacturer’s safety margin by setting the de-

vice to run in the higher end of the margin. For example, a work

towards “overclocking friendly”, in online arithmetic implemen-

tations, shows that exercising over-clocking technique for serial

operations can gain large performance benefits with a graceful

degradation of timing violations [113].

Unlike voltage/frequency over-scaling, functional approximation

does not use the original circuit but a specially designed one in-

stead. This circuit is redesigned without fully Boolean logic imple-

mentation described in the specification. For instance, a common

method for implementing functional approximation is to omit the

2.2 A P P R O X I M AT E C I R C U I T D E S I G N 22

less significant bits of the result by removing related logic. This is

expected to reduce the circuit complexity (i.e., critical path), and

therefore, achieving more performance/energy efficiency than the

accurate version, with some amount of error in the less significant

bits of output. However, the above-mentioned approaches used by

approximate circuits are further discussed from the perspective of

multiplier design, since it is the main theme of this thesis. The next

subsection introduces a brief overview for applying the concept of

approximate computing in arithmetic circuits.

2.2.2.1 Approximate Arithmetic

Approximate arithmetic, such as approximate adders and multipli-

ers, can be exploited as means of reducing energy requirements,

increasing speed, minimizing cost and improving reliability in var-

ious computing systems [59]. They have been largely present in

computing systems using fixed-point [42] and floating point oper-

ations [120]. The main goal has been to obtain exact or close to

exact outputs by using error mitigation techniques ranging from

increasingly sophisticated rounding to interval arithmetic [29].

Literature has presented different techniques for approximate

arithmetic [59], particulary for adders and multipliers. Comparing

to multipliers, approximate adders have been attracting most at-

tention [48]. The main design approaches for approximate adders

are surveyed into [59, 29, 48]. The next section discusses the re-

lated work in the domain approximate multipliers found up to

date.

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 23

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N

A multiplier design has a significant impact on the performance

and power dissipation of modern applications [58, 29], such as

digital signal processing, multi-media, computer vision, robotics,

machine learning, pattern recognition and data analytics. This is

due to two main reasons:

• Multiplier is one of the most energy-demanding data processing

units in arithmetic processors. Compared to other units, such as

adders, multipliers have complex logic design in terms of logic

cell counts and length of critical path.

• Most of the algorithms exercised by compute-intensive applica-

tions use a large number of multiplication operations to compute

results.

Thus, as a crucial arithmetic unit, any improvement made in

the power/speed of a multiplier are expected to largely impact on

the overall system performance/energy trade-offs. In the literature,

many approaches have been used to generate various approximate

multiplier designs. Not all of these approaches are entirely fall

under the concept of approximate computing. For instance, mul-

tipliers have been redesigned based on PCMOS technology [43],

quantum theory [18] and stochastic concept [115]. Another design

approaches target the multiplier for FPGA-based hardware accel-

erators [123, 122]. However, the next part presents a taxonomy of

approximate multiplier designs that is then used to survey and

classify the state-of-the-art research in this area.

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 24

2.3.1 Taxonomy and Survey

In this section, we present a taxonomy of six different directions

to classify the related research efforts of approximate multiplier

design (see Fig. 2.7). From the perspective of approximate circuit

approaches, these efforts can be largely categorized as modifica-

tions of either timing or functional behaviours.

Firstly, the timing behaviour of multiplier design can be al-

tered using aggressive supply voltage scaling or over-clocking tech-

niques [79, 73, 113]. Operating below nominal voltage allows for re-

ductions in energy consumption at the cost of time-induced errors.

The bounds of these errors can be predicted, and so extra error-

Functional

Timing
Generation of Partial Products

Accumulation Tree

Carry Propagation Adder

Transistor
Manual

Automatic Gate

RTL

Architecture

Floating-point

Fixed-point

ASIC-Based

FPGA-Based

General Purpose

A
rc

h
it
e

c
tu

ra
l

C
h

o
ic

e

L
e

v
e

l o
f

A
b

s
tra

c
tio

n

Figure 2.7: Multi-dimensional taxonomy of approximate multiplier de-
signs.

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 25

compensation circuits need to be incorporated [30, 44]. Fig. 2.8

demonstrates an example of subjecting VOS to sequential 2-bit

multiplier circuit. After scaling the supply voltage below the nomi-

nal value, a number of paths fails to meet the delay constraints.

However, the timing failures are typically caused by long carry

chains, i.e., impact the more significant bits of the final product

(seeFig. 2.8-b). It is therefore necessary to quantify the impact of

timing violation by modifying the conventional multiplier to allow

for graceful degradation [113]. Subjecting VOS or over-clocking

to arithmetic circuits without losing the accuracy of the output is

still an open challenge (This challenge will be discussed further in

Section 2.3.2).

Vmin

Vmax

No errors

2x2 MULA0

A1

B0

B1

P0

P1

P2

P3

(a)

Vmin

Vmax

Time-induced errors

2x2 MULA0

A1

B0

B1

P0

P1

P2

P3

(b)

Figure 2.8: An example of (2×2) multiplier: (a) operating within safe volt-
age range; (b) lowering the supply voltage below its nominal
value.

Secondly, functional modifications deal with logic reduction tech-

niques and can be performed by relaxing the need for accurate

Boolean equivalence of the specification and implementation. This

is leveraged to achieve more energy-efficiency and to accelerate

computations.

A common example of functional modifications of approximate

multipliers is truncation of the least significant columns, such

as when performing fixed-point [25] (i.e., two n-bit input multi-

plicands producing an n-bit output) and floating-piont multipli-

cation [131]. Truncating multiplier product terms allows for the

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 26

elimination of some of the least significant columns in the partial

product matrix (PPM). Fig. 2.9 shows different degrees of truncation

in the case of (8×8) approximate multiplier. Truncated multiplica-

tion provides an efficient method for reducing the power dissipa-

tion and silicon area [25, 90, 118, 119, 60]. As more columns are

eliminated, further energy reduction is achieved; however, errors

increase very rapidly. Additionally, as the operand size increases,

the relative reduction in energy and cell count also increase [104].

Note that, critical path will not be remarkably shortened unless

the columns truncated exceed the critical column–which leads to

a huge error (see Fig. 2.9). Therefore, there is an essential need

to verifying the truncated multipliers and quantifying associated

8-bit
8-bitX X

34

XX

5 6

(b) (a)

(d)(c)

Figure 2.9: Increasing the level of truncation from; (a) 3; (b) 4; (c) 5; and
(d) 6 columns, translates into additional reductions in area
and power; however, error is maximized and this method is
not effective to reduce the critical column of the accumulation
tree (highlighted in dotted rectangles).

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 27

errors. A number of heuristically inspired schemes exist in the

literature and attempt to minimise the impact of error, such as

average absolute error or mean square error. Another attempts to

create faithfully rounded multipliers based on truncation [64] and

analytic error bounds [25].

Modular re-design with low-complexity combinational logic is

another effective technique [65, 71]. This allows for building larger

energy-efficient multipliers using small approximate ones; how-

ever, the hierarchical organization of small approximate blocks will

eventually propagate errors, which increase with the multiplier

size. Fig. 2.10 describes the process of designing larger multipliers

when using (2×2) approximate multiplier as a building blocks. The

increased input bit-width of the multiplier translates into higher

size of accumulation tree leading to increased height of critical

column. However, scalability is not simple and this method may

not significantly reduce the critical path, also the hierarchical or-

ganization of small approximate blocks will eventually propagate

errors which increase with the multiplier size (see Fig. 2.10).

2x2

2x2 2x2 2x2

2x2 2x2

2x2

2x2 2x2

2x2 2x2 2x2

2x2 2x2

2x2

2x2

Small

under-designed

multiplier

2x2

2x2

2x2

2x2

2x2

2x2 2x2

2x2

2x2

2x2 2x2

2x2

2x2

2x2

Critical

Column

(b) (a)

(d)(c)

Figure 2.10: Using (2×2) approximate multiplier blocks to build larger
energy-efficient multipliers [65].

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 28

Fig. 2.11 describes another attempt to design large efficient

multiplier, constructed by small approximate and accurate ones,

using recursive multiplication scheme [8]. The idea is to use the

approximate multiplier blocks to produce the less significant bits

of the product while the more significant bits are generated using

accurate blocks. To reduce the latency of the accurate multiplier

two ways have been applied; (i) applying the recursive scheme

once more using smaller multiplier blocks, and (ii) adding carry-in

prediction logic to reduce the carry chain through addition stage

(see Fig. 2.11).

AL

A

Bx

AH BL

ALAL

AL AL BH

AL BLAH BH

AL

AL BLBH

ALAH

Final Product

AL AH BL

AL

AL AL BH

AL BL

Large Extent
Accurate to Inaccurate

Part

AHL BHLAHH BHH

AHL BHH

AHH BHL

2n bits

4n bits

2n bits
n bits

Accurate (n-bit) Multiplier: Reducing

the Critical Path of First Stage of

Pipelined Recursive Multiplier.

n bitsn bits

n

2
bits

2n bits

A
d
d

itio
n

 S
ta

g
e

Figure 2.11: Different sizes of approximate and accurate multipliers are
used to build large recursive multiplier for pipelined archi-
tecture [8]; the carry-in logic is used for the approximate
partial product computation only (AHBL, ALBH , ALBL) and
not for the accurate AHBH .

A software-based perforation technique has been proposed [134]

by obtaining the optimized set of partial product terms based on

power-area-accuracy trade-offs. The partial product perforation

technique omits the generation of k successive partial products

starting from the jth one. Fig. 2.12 depicts an example of applying

the partial product perforation method on an 8-bit multiplier with

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 29

X X

(a) (c)

Critical

Column Critical

Column

X

(b)

0

2

6
5

7

= jk = 3
4

1

3

Figure 2.12: The partial product accumulation tree: (a) of an accurate (8×
8) multiplier; (b) design parameters are set using multiple
EDA tools, and (c) the reduced partial product matrix after
applying the partial product perforation with j =2 and k =
3 [134].

j=2 and k=3 configuration values. These parameters are controlled

by various EDA tools at design-time for optimal approximate

multiplier configurations and error constraints. The literature

shows a number of power- and area-efficient multiplier redesign

approaches, that have been proposed by changing the functional

behavior. These changes extend from the architecture [133, 52] to

transistor-level [47].

Generally, the structure of a parallel multiplier consists of three

main components: the partial product generator, partial product

accumulation-tree, and final adder. Thus, the efforts in the domain

of the approximate multiplier design can be classified based on the

approximation in these components. For example, trucation and

software-based perforation [134] are common methods for applying

approximation through partial product formation. Such methods

jointly consider the deletion, reduction, truncation, and round-

ing of partial product bits to minimize the hardware complexity

associated with the partial product reduction-tree [64].

However, some design techniques begin to generate all product

terms, as the accurate multiplier, and then involve approxima-

tion to speed up the process of partial product reduction in the

accumulation-tree. To achieve this goal, one of the common de-

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 30

sign technique is to use approximate compressors [45, 12], such as

(4:2) compressors to decrease the number of the reduction stages

of a Wallace-tree [70] and Dadda-tree multipliers [80]. Another

design technique is to omit some cells of CSA in array multiplier

design, leading to a smaller and faster multipliers while introduc-

ing approximate results [74], or by reducing the logic counts in

a speculative carry-save reduction tree using (k:2) counters with

k > 3 [21]. Recently, algorithmic method for allocating high-order

approximate compressors, obtained in a systematic way, aims at

improving energy efficiency with minimizing the error probability

and the average error [38].

Lastly, the final adder can be approximated by means of cutting

the carry-chain required for summing product terms. Thereby, this

way is expected to improve the performance efficiency, particularly

with column-compression multiplier designs, such as Wallace- and

Dadda-tree methods. This is because final adder is considered as

dominant component of the multiplier delay. A recent work in [36]

presents a realistic MAC architecture in which accurate generation

and Wallace compression for the partial-products are followed by a

final (approximated) carry propagating adder.

Automated design approaches [125, 127, 85, 126, 97] present

design flows for synthesizing approximate circuits using circuit

activity profiles and quality bounds. For example, the systematic

methodology for automatic logic synthesis of approximate circuits

(SALSA) [125] begins with an RT-level description of the accu-

rate circuit and an error constraint. The approach introduces Q-

function, which determines whether the quality constraints are

satisfied, when comparing both approximate and original outputs.

Fig. 2.13 describes the use of Q-function to formulate the problem

of approximate synthesis. The idea is to iteratively modify the

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 31

Inputs

Outputsapprox

Accurate

Circuit

Approximate

Circuit

Outputsaccur

Quality

Function

Q

Figure 2.13: The quality constraint circuit proposed by SALSA [125] (Q
is a single Boolean value).

behavioural description of approximate circuit with the aim of

reducing the complexity of approximate circuit, with keeping the

output of the Q-function unchanged.

Recently, evolutionary circuit design shows some evolved im-

plementations of target circuits that can be considered as inno-

vative [124]. However, the evolutionary design approach fails in

producing useful implementations for approximate complex cir-

cuits, such as 32-bit or 64-bit approximate multiplier. A promising

evolutionary design process has been implemented within the ABC

tool and extensively evaluated on functional approximation of dif-

ferent sizes of multipliers up to 32-bit [15]. Table 2.2 summarizes

the key features and limitations of research efforts to date in the

domain of approximate multipliers.

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 32

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
ap

pr
ox

im
at

e
m

ul
ti

pl
ie

r
de

si
gn

ap
pr

oa
ch

es
.

A
pp

ro
ac

h
M

et
ho

do
lo

gy
Fe

at
ur

es
an

d
L

im
it

at
io

ns

[7
9]

[7
3]

A
gg

re
ss

iv
e

vo
lt

ag
e

sc
al

in
g:

lo
w

er
in

g
th

e
su

pp
ly

vo
lt

ag
e

be
lo

w
it

s
no

m
in

al
va

lu
e.

U
ne

xp
ec

te
d

ti
m

e-
in

du
ce

d
er

ro
rs

,w
hi

ch
no

rm
al

ly
im

pa
ct

th
e

m
os

t
si

gn
ifi

ca
nt

bi
ts

.

[9
0]

[1
18

]
T

ru
nc

at
io

n:
el

im
in

at
in

g
pa

rt
ia

lp
ro

du
ct

s
fr

om
th

e
le

as
t

si
gn

ifi
ca

nt
co

lu
m

ns
.

A
s

m
or

e
co

lu
m

ns
ar

e
el

im
in

at
ed

,t
he

re
su

lt
in

g
er

ro
rs

ar
e

m
ax

im
is

ed
.

[6
5]

[7
1]

M
od

ul
ar

re
-d

es
ig

n:
la

rg
e

ef
fic

ie
nt

m
ul

ti
pl

ie
rs

us
in

g
in

ac
-

cu
ra

te
sm

al
lm

ul
ti

pl
ie

r
bl

oc
ks

.
Sc

al
ab

ili
ty

is
no

t
si

m
pl

e
an

d
th

is
m

et
ho

d
m

ay
no

t
si

gn
if-

ic
an

tl
y

re
du

ce
th

e
cr

it
ic

al
pa

th
.

[1
34

]
S/

W
-b

as
ed

pe
rf

or
at

io
n:

ap
pr

ox
im

at
io

n
of

th
e

ge
ne

ra
ti

on
of

th
e

pa
rt

ia
lp

ro
du

ct
s.

D
ec

re
as

in
g

th
e

de
pt

h
of

th
e

ac
cu

m
ul

at
io

n
tr

ee
by

ut
ili

z-
in

g
a

to
ol

,a
nd

al
so

re
al

-t
im

e
ne

ed
s.

[1
25

][
12

7]
A

ut
om

at
ed

an
d

ev
ol

ut
io

na
ry

re
-d

es
ig

n:
sy

st
em

at
ic

al
ly

re
du

ci
ng

th
e

co
m

pl
ex

it
y

of
ci

rc
ui

ts
.

G
re

ed
y

ap
pr

oa
ch

de
pe

nd
in

g
on

ci
rc

ui
t

ac
ti

vi
ty

pr
ofi

le
an

d
ou

tp
ut

si
gn

ifi
ca

nc
e.

[9
][

47
]

M
an

ua
lr

e-
de

si
gn

:m
an

ua
la

lt
er

at
io

n
of

th
e

fu
nc

ti
on

al
be

ha
vi

ou
rs

of
th

e
st

ru
ct

ur
e.

D
iff

er
en

ti
de

as
of

re
de

si
gn

in
g

th
e

m
ul

ti
pl

ie
r

ex
te

nd
fr

om
ar

ch
it

ec
tu

re
to

tr
an

si
st

or
le

ve
l.

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 33

Conflicting performance-energy-accuracy tradeoffs of the above

design techniques make it difficult to select the most suitable ap-

proximate multiplier for a specific application. Recently, many

comparative evaluations of the existing approximate multipliers

can be found in the literature [75, 12, 58, 82]. However, while the

benefits of approximate multiplier design (i.e., reductions in power,

delay and often area) are unquestionable it is necessary to care-

fully evaluate the impact of errors committed by different design

techniques for approximate multiplier design. Hence, the following

part discusses the evaluation of the imprecision associated with

different approximations of multiplier design.

2.3.2 Error Evaluation and Challenges

Various approximate multipliers aim at achieving energy/de-

lay/area reduction at the cost of a certain amount of imprecision

introduced to the output. Many emerging applications are inher-

ently able to tolerate the presence of a certain amount of such

imprecision for many reasons, such as intrinsically embed redun-

dancy and perceptual limitations (see Section 2.2.1.4). Thus, for

safety-critical applications, it is very important to identify a trade

off between approximation introduced by multiplication and re-

liability. Generally, the imprecision of approximate multipliers

is quantified as an error with respect to the accurate result and

measured using a wide variety of error metrics.

2.3.2.1 Error Metrics

Different error metrics have been developed for the purpose of

examining the impact of imprecision introduced by approximate

arithmetic circuits [69, 13, 72, 106]. In this thesis, the error metrics

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 34

in the domain of approximate multiplier can be classified into four

groups as follows:

• error distance (ED): a group of error metrics describes the mag-

nitude of deviation of an approximate product from the corre-

sponding accurate one. The worst-case error is defined as the

maximum absolute ED can be obtained for the all possible in-

puts. Sometimes, a condition of ED ≥ τ is followed to consider

the set of inputs that makes the approximate output differs

from the accurate one by a threshold τ. Another metrics can

be derived from ED, such as the average error magnitude (i.e.,

the average of all EDs), which is expressed as the ratio of all

absolute EDs over the number of input operands,

• error probability (EP): which measures the rate of occurrence

of imprecise outputs in the approximate multiplier. A careful

estimation of EP is beneficial when sequential multipliers de-

cide to spend more clock cycles for error corrections [69, 8]. EP

can also be deemed as one of design characteristics, in which a

predefined threshold of EP should not be exceeded,

• error significance (ES): a group of error metrics quantifies the

error severity of the output of the approximate multiplier. ES

can thus determine if a approximate multiplier generates a

small or a huge error. Many error metrics have been derived

from the general definition of the error significance such as

relative error distance (RED) which defined as the ratio of

ED over the accurate output. Another related metric is the

mean relative error distance (MRED) (i.e., the average of all

REDs obtained from all possible input combinations), that can

be considered as an effective indicator for testing the quality

degradation [13], and

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 35

• normalized error distance (NED): a group of nearly invariant

metrics, which is almost independent of the size of an approxi-

mate multiplier implementation. Thus, NED is an important

metrics for characterizing the reliability of multiple-bit approxi-

mate designs [69].

Since approximate multipliers are often used for achieving pow-

er/delay/area gains, different error metrics can be connected with

these gains to derive reliable metrics. For example, the product

of power and NED is further utilized for assessing the trade-offs

between power consumption and precision. Although the above

metrics have been addressed for multipliers, these metrics are

potentially useful in evaluating the different types of approxima-

tions in the arithmetic circuit designs. Note that, there is a group

of quality metrics used to evaluate the final outcome in various

applications, such as peak signal-to-noise ratio (PSNR) [55] for

measuring the quality of the image after processing with approxi-

mate circuits. However, for this thesis, the error metrics used to

evaluate the impact of different approximation is further discussed

in Section 3.4.

2.3.2.2 Error Evaluation Challenges

The basic premise of the above-mentioned metrics is to evaluate

the approximation introduced in multiplier design with respect to

the accurate outputs. However, in order to provide a more compre-

hensive picture of the error evaluation, this thesis briefly discusses

some challenges facing the process of quantifying imprecision of

approximate multiplier design:

• quantifying time-induce errors introduced by over-scaling and

over clocking. One of the suggested methods for this challenge

2.3 A P P R O X I M AT E M U LT I P L I E R D E S I G N 36

is to convert timing-induced approximations into the functional

domain. An example introduced in [127], requires generation

of an equivalent ”untimed circuit", which represents the func-

tional behaviour of the over-scaled or over-clocked circuit. Thus,

constructing the ”untimed circuit" means that the error analysis

can be quantifiable by comparing its outputs with the accurate

circuit,

• large bit-width multiplier poses another challenge when the er-

ror analysis requires to go through all input combinations, such

as finding exact worst-case error. One of the suggested methods

for this challenge is to create analytical model [25]; however,

this not straightforward, since it generally depends on the way

that multiplier is approximated. Another available solution is

statistical analysis using Monte-Carlo simulation to obtain error

distribution for a selected ranges of the input operands. Simi-

lar challenge takes place when checking errors for approximate

multiplier using systematic and evolutionary approaches. For ex-

ample, checking of a predefined worst-case error for larger sizes

of multipliers needs relaxed equivalence checking [15], which

can be performed based on satisfiability (SAT) solving [127] and

based on binary decision diagrams (BDDs) [116]. However, the

research area of relaxed equivalence checking is rather unex-

plored as all existing formal approaches have been developed

for accurate equivalence checking [54],

• specifying a suitable error metric is highly application depen-

dent [107]. Meaning that, there is a need for a deeper under-

standing of inherent application resilience across a wide range

of applications [17]. Moreover, relying on a single or a group of

error metrics (such as error probability and average of errors), is

2.4 C O N C L U D I N G R E M A R K S A N D D I S C U S S I O N S 37

often not effective for perfectly quality evaluation of final output

of a certain application, and

• error accumulation is another challenge for those applications

which iteratively exercise an approximate multiplier as a basic

unit. For instance, for a given application, feedback circuits

move back the product to the input side of sequential multiplier

design. Therefore, the quality of final output can be affected and

still continue operating in faulty states for many clock cycles.

Thus, it is important to build a robust error analysis in which a

designer can investigate any likely issue of error accumulation.

2.4 C O N C L U D I N G R E M A R K S A N D D I S C U S S I O N S

This chapter provides background and literature survey of approx-

imate circuits, with focusing in multiplier design. We distinguish

the efforts in approximate circuits from other energy-efficient cir-

cuits, such as probabilistic (e.g., PCMOS, quantum and stochas-

tic) and non-Boolean. Approximate circuits consists of functional

and voltage/frequency over-scaling approaches. These design ap-

proaches leverage the intrinsic imprecision-resilience in a wide

spectrum of emerging applications to improve the efficiency of

computing systems. As the approximate multiplier design is the

primary theme of this thesis, a multi-dimensional taxonomy and

comprehensive survey of the efforts in the domain of approximate

multiplier design, are summarized to date. The key principle of

these efforts is to achieve reduced logic complexity for improv-

ing energy efficiency at minimal precision loss. Nevertheless, the

existing techniques for approximate multiplier face different chal-

lenges (see Table 2.2). For instance, truncated multiplier offers

significant improvements in area and power; however, while more

2.4 C O N C L U D I N G R E M A R K S A N D D I S C U S S I O N S 38

columns are eliminated, as means of reducing the hardware com-

plexity of accumulation tree, the resulting errors are maximised.

Also, additional overhead cost may be incurred by implementing

required error-compensation circuits. Another example when utiliz-

ing under-designed multipliers to build large but energy-efficient

ones, scalability is not simple and this method is not efficient to

reduce the length of critical column of accumulation tree. To this

end, in the following chapter, we will show an effective logic design

approach that use significance-driven logic compression (SDLC) to

mitigate the above challenges.

3

L O G I C C O M P R E S S I O N I N M U LT I P L I E R D E S I G N

3.1 I N T R O D U C T I O N

The previous chapter surveys methods for improving energy effi-

ciency within the domain of approximate circuit design. It provides

a taxonomy of various techniques for approximate computing to

make it easier to understand the merits of these techniques and

also to discuss expected cost of tackling approximate computing

across all design levels.

This chapter identifies the main core research contribution of

this thesis. It presents a novel approach for approximate multiplier

design using significance-driven logic compression (SDLC). Funda-

mental to this approach is an algorithmic and configurable lossy

compression of the partial product rows based on their progressive

bit significance. This is followed by the commutative remapping

of the resulting product terms to reduce the number of product

rows. As such, the complexity of the multiplier in terms of logic

cell counts and lengths of critical paths is drastically reduced. A

number of multipliers with different bit-widths (4-bit to 128-bit)

are designed in SystemVerilog and synthesized using Synopsys

Design Compiler. Post-synthesis experiments showed a substan-

tial decrease in run-time, power consumption and even in sili-

con area, compared to an accurate equivalent. These gains are

achieved with low accuracy losses estimated using different er-

ror metrics. Additionally, the performance-energy-quality (PEQ)

39

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P P R O A C H 40

trade-offs are demonstrated for different degrees of compression,

achieved through configurable logic clustering. A comparative anal-

ysis is included to evaluate the efficiency of the proposed multiplier

against other recent approximate multiplier designs in the litera-

ture. Also, the scalability of SDLC approach and the feasibility of

performing signed multiplication are discussed.

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P -

P R O A C H

Without loss of generality, let us consider two N-bit binary inputs

for an (N×N) multiplier, the multiplicand (A = aN−12N−1+·· ·+a0)

and the multiplier (B = bN−12N−1+·· ·+b0). The product P can be

expressed as:

P = A ·B = p2N−122N−1 +·· ·+ p0 =
N−1∑
i=0

N−1∑
j=0

aib j2i+ j (3.1)

In parallel multiplication design, computation of P is generally

divided into three consecutive stages: i) partial product formation,

ii) partial product accumulation, and iii) carry propagation adder.

Fig. 3.1 shows the difference between the design stages in accurate

and the proposed multiplication. First, N2 AND gates are utilized

in parallel to generate N2 product terms of partial product matrix

(PPM). This matrix is then column-wise summed up by using differ-

ent accumulation methods, such as carry-save array, Wallace [128]

and Dadda-tree [23], followed by carry propagating adder (CPA) to

generate the final 2N-bit product. The performance, hardware com-

plexity and power consumption associated with multiplier design

depend largely on the maximum height of the accumulation tree.

The proposed approach decreased the number of vertical product

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P P R O A C H 41

(a) (b)

Partial Product Formation (N2 terms).

Accumulation of PPM.

N-bit Multiplier N-bit Multiplicand

2N-bit Accurate Product

Producing the final product using

a Carry Propagation Adder.

Systematic logic compression of

product terms for reducing the

number of rows in PPM.

N-bit Multiplier N-bit Multiplicand

2N-bit Approximate Product

Partial Product Formation (N2 terms).

Accumulation of PPM.

Producing the final product using

a Carry Propagation Adder.

Figure 3.1: Process chart showing the difference between the major
stages in: (a) conventional multiplication, and (b) the pro-
posed approach to multiplication.

terms in the PPM with the aim of reducing the height of the critical

column in the accumulation tree. This can be achieved by following

two major steps demonstrated in Fig. 3.2. First, lossy compres-

sion is carried out through logic clustering. Second, the resulting

compressed terms are then remapped using their commutative

properties. As can be seen in Fig. 3.2, all partial products are gen-

erated using N2 AND gates, similar to conventional multiplication.

Before proceeding to the accumulation stage, the number of bits

in the partial product matrix is reduced by performing lossy logic

compression. The aim is to minimize the number of rows in the

PPM, thereby achieving low-complexity hardware before proceed-

ing to accumulation. To achieve lossy compression, we follow three

key principles as follows.

3.2.1 Logic Clustering

The proposed multiplier organizes the partial product terms using

different sizes of significant-driven logic clusters. Each logic cluster

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P P R O A C H 42

A0B0

A7B1

A7B2 A0B2

A7B3 A6B3

A7B4 A6B4 A0B4

A7B5 A6B5 A5B5

A7B6 A6B6 A5B6 A0B6

A7B7 A6B7 A5B7 A4B7

O7,0 O6,0 O5,0 O4,0 O3,0 O2,0 O1,0

A6 A7

B1 B0

A5 A6
B1 B0

A4 A5
B1 B0

A3 A4
B1 B0

A2 A3
B1 B0

A1 A2
B1 B0

A0 A1

B1 B0

O6,2 O5,2 O4,2 O3,2 O2,2 O1,2

O5,4 O4,4 O3,4 O2,4 O1,4

O4,6 O3,6 O2,6 O1,6

O7,0 O6,0 O5,0 O4,0 O3,0 O2,0 O1,0

Logic Cluster 1
2X7

Logic Cluster 4
2X4

Logic Cluster 3
2X5

Logic Cluster 2
2X6

Logic clusters compress

a group of partial

product terms within two

successive rows based

on their progressive bit-

significance.

Commutative

remapping allows

halving the

critical column of

the PPM.

Step1:

Step2:

r = 1

r = 2

r = 3

r = 4

X A7 A6 A5 A4 A3 A2 A1 A0

B7 B6 B5 B4 B3 B2 B1 B0

A7B0 A6B0 A5B0 A4B0 A3B0 A2B0 A1B0 A0B0

A7B1 A6B1 A5B1 A4B1 A3B1 A2B1 A1B1 A0B1

A7B2 A6B2 A5B2 A4B2 A3B2 A2B2 A1B2 A0B2

A7B3 A6B3 A5B3 A4B3 A3B3 A2B3 A1B3 A0B3

A7B4 A6B4 A5B4 A4B4 A3B4 A2B4 A1B4 A0B4

A7B5 A6B5 A5B5 A4B5 A3B5 A2B5 A1B5 A0B5

A7B6 A6B6 A5B6 A4B6 A3B6 A2B6 A1B6 A0B6

A7B7 A6B7 A5B7 A4B7 A3B7 A2B7 A1B7 A0B7

A7B7 A7B6 A7B5 A7B4 A7B3 A7B2 A7B1 O7,0 O6,0 O5,0 O4,0 O3,0 O2,0 O1,0
A0B0

A6B7 A6B6 A6B5 A6B4 A6B3 O6,2 O5,2 O4,2 O3,2 O2,2 O1,2
A0B2

A5B7 A5B6 A5B5 O5,4 O4,4 O3,4 O2,4 O1,4
A0B4

A4B7 O4,6 O3,6 O2,6 O1,6
A0B6

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Logic Cluster 1
(2X7)

Figure 3.2: Stylized demonstration of SDLC approach [93]: four differ-
ent sizes of logic clusters used to compress partial products
based on their progressive bit-significance in (8×8) parallel
multiplier architecture.

targets a group of columns containing two bits starting from the

least significant bits in successive partial products.

Two adjacent partial product terms belonging to the same col-

umn can be compressed in a single term by using 2-input OR gate

(see Fig. 3.2). Let us consider two of vertically aligned bits within

two successive partial products aib j and ai−1b j+1 of the (i+ j)th

column in the PPM. O2−bit
i+ j is an output of a logic cluster, expressed

as:

O2−bit
i+ j = aib j ∨ai−1b j+1 . (3.2)

For purposes of illustration, the logic cluster of size (2×L) targets a

group of consecutive partial product terms of a length of L columns

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P P R O A C H 43

within 2 rows. Each (2×L) logic cluster is responsible for two oper-

ations: i) generating 2L partial product bits within two contiguous

rows, i.e., L pairs of vertically aligned bits, by utilizing 2L AND

gates. Then, ii) minimizing these 2L bits by half using L OR gates.

Fig. 3.2 illustrates the utilization of four sizes of logic clusters in

(8×8) parallel multiplier. The first (2×7) logic cluster forms 14

partial products by utilizing 14 AND logic gates and extracts 7-bit

value by using an array of 7 OR logic gates. The second (2×6) logic

cluster minimizes 12 partial products into 6 bits. In a similar way

the third and fourth logic clusters use (2×5) and (2×4) to minimize

10 and 8 partial products into 5 and 4 bits, respectively. By doing

so, each logic cluster compresses a group of vertically aligned bits

within two successive partial products based on their progressive

bit significance.

3.2.2 Logic Compression

Using an array of OR gates in each logic cluster compresses the

partial product terms by half (see Fig. 3.2). A reduced set of

pre-processed partial product matrix is thus ready to be accu-

mulated by applying any convenient scheme of multiplication. In

theory, a two-input OR gate is sufficient to sum up two bits, i.e.,

‘0’+‘1’ = ‘1’+‘0’ = ‘0’∨‘1’ = ‘1’∨‘0’ = ‘1’ and also ‘0’+‘0’ = ‘0’∨‘0’ = ‘0’.

However, the OR gate fails to give an accurate sum if the two

inputs are “ones", i.e., ‘1’+‘1’ 6= ‘1’∨‘1’, the difference value is ‘1’ as

the adder returns ‘10’ and OR outputs ‘1’. So, the arithmetic sum

of two successive partial products belonging to the (i+ j)th column,

can be approximated as:

aib j +ai−1b j+1 'O2−bit
i+ j . (3.3)

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P P R O A C H 44

By utilizing a parallel OR compressions through logic clusters,

the number of product terms inside the PPM will decreased at the

price of an error when the couple of partial product terms aib j

and ai−1b j+1 are both high, i.e., the error will be when aib j +
ai−1b j+1 6= O2−bit

i+ j . Under assumption that the input bits ai and

b j are uniformly and independently distributed, the probability

of having this error is given by: 1/16 (i.e., when all ai, b j, ai−1,

b j+1 equal to ’1’). However, the OR compression will not affect the

more significant bits of the final product as demonstrated below,

moreover error analysis is discussed in Section 3.4.

3.2.3 Progressive Cluster Sizing

Since the main goal is to design a power-efficient multiplier with

negligible loss of accuracy, the length of the logic clusters L is

decreased when going down in the PPM. The more significant bits

are treated with progressively higher precision, while bits with

lower significance are compressed using the SDLC approach. This

permits the most significant product terms to be accumulated on

a carry-propagation basis as in the conventional multiplier. Thus,

the accuracy of the significant bits of the final product is less

affected. In general, the length of logic cluster in 2-bit compression

used to produce L-bit array in the rth row of the compressed PPM,

is given by:

L2−bit(r)= N − r . (3.4)

Despite using the same number of AND gates as the accurate

multiplier, this approach will deterministically reduce the hard-

ware complexity of partial product accumulation, i.e. the count of

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P P R O A C H 45

the compressor cells needed in column compression multiplication

for Wallace and Dadda cases, and also the number of half and full

adders in the carry-save array will be decreased since the number

of bits in the accumulation tree is minimized.

3.2.4 Commutative Remapping

In the logic compression step (Section 3.2), the number of partial

product terms is reduced. This can be leveraged to minimize num-

ber of rows in the PPM prior to the accumulation stage. For this

purpose, the partial product terms resulted from the logic compres-

sion are remapped based on the commutative property of the bits,

i.e., bits with the same weight are gathered in the same column.

For example, in the case of (2×L) logic cluster, the height of

the critical column is reduced by half compared to the accurate

accumulation tree. The compressed and remapped bit-matrix after

applying commutative remapping of the bit sequence, is shown

at the bottom of Fig. 3.2. Due to the reduced number of rows, the

critical path delay is drastically shortened (see Section 3.5). The

height of the critical columns are further reduced with increased

logic compression depth as seen below.

3.2.5 Example of Utilizing 2-bit SDLC

To illustrate the multiplication process using 2-bit SDLC, an ar-

bitrary example of (42,617×38,587) is executed using (16×16)

propose multiplier is as shown in Fig 3.3.

Eight logic clusters of 2-bit depth are used to minimize the num-

ber of product terms in the PPM. The length of the logic clusters is

decreased from 15 bits for the first one to 8 bits for the eighth. The

3.2 S I G N I FI CA N C E -D R I V E N L O G I C C O M P R E S S I O N A P P R O A C H 46

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0

1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0

1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 0 1 1 1 1 0 0 1

0 0 1 1 1 1 0 0 1 0

0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Multiplicand

Multiplier

42,617

38,587
x

1,644,462,179

1,644,442,867

RED= 1.2 x 10-5

x

Accurate

Proposed

x

R
e
d

u
c
e

d
 B

it-M
a

trix

8
 R

o
w

s

A
c
c
u

ra
te

 P
a

rtia
l P

ro
d

u
c
t B

it-M
a

trix

1
6

 R
o
w

s

Figure 3.3: Eight different sizes of 2-bit logic clusters used to compress
partial products based on their progressive bit-significance
in (16×16) parallel multiplier architecture.

reduction in the size of the logic clusters allows more significant

product terms to be accumulated in carry-propagation basis like

accurate multiplier (see Section 3.2.3). The logic compression exer-

cised by the OR-gate arrays reduces the number of product terms

of the PPM. This is leveraged to minimize the number of the rows

in the accumulation tree by applying the commutative remapping

discussed (see Section 3.2.4). Thus, 8 rows are resulted after ap-

plying the proposed SDLC approach instead of 16 rows in the case

(16×16) accurate multiplier. From multiplier’s design perspective,

decreasing the number of rows in the accumulation tree can reduce

the hardware complexity and also the critical delay (see Section

3.5). The error distance (ED) between the accurate and the pro-

posed multiplier is (1,644,462,179−1,644,442,867= 19,312). The

relative error distance (RED) is the ratio of the error difference over

the accurate value (RED = 19,312 / 1,644,462,179 = 1.2× 10−5).

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 47

The above values of ED and RED are expected to increase with

other binary numbers (e.g., string of 1’s on both multiplicands).

This is due to the increased likelihood of having two vertically

aligned 1’s within two successive rows —logic cluster will give

error (see Section 3.2.2). For further error analysis, Section 3.4

investigates the impact of error derived from the proposed mul-

tiplier, using different error metrics (such as worst-case ED and

error probability). Additionally, next chapter introduces an error-

compensation circuit to mitigate the impact of error derived from

SDLC (see Section 4.3).

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y

The proposed approach is capable of achieving higher degrees of

compression by increasing logic cluster depth. Comparing to the

work in [93], the space of the product terms compressed by logic

cluster has been modified, when the depth of logic compression

spans over three or more rows in the PPM. This will provide scal-

ability and improve the quality of the proposed SDLC approach.

In this work, the level of logic compression obtained from (d×L)

logic cluster is denoted by d-bit logic compression, where d and L

indicate the depth and the length of product terms targeted by a

logic cluster, respectively.

Fig. 3.4 demonstrates the impact of increasing depth from 2- to

3- and 4-bit logic cluster in the case of (8×8), showing the key

steps in logic compression and commutative remapping. As can

be seen, with increased depth we can achieve further reduction in

the partial product terms, leading to fewer rows for final accumu-

lation and therefore more reductions in the hardware complexity

and energy consumption of the multiplier design (see Section 3.5).

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 48

(a) (b) (c)

2
X

4

2
X

5

2
X

6

2
X

7

3
X

8

3
X

7

2
X

5

4
X

9

4
x
8

Partial Product Bit Ai Bi . Compressed Bit Resulted from Logic Clusters.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1

2

3

4

1

2

1

2

3

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Dot diagram showing the impact of increasing the depth of
the logic clusters in the case of (8×8) multiplier: (a) clustering
a group of bits within 2 successive rows in the partial product
bit-matrix after bitwise multiplication; (b) generating a re-
duced set of product terms after targeting the depth of 2-row
logic compression; (c) ordered matrix after applying commuta-
tive remapping of the bit sequence resulting from the SDLC
approach; (d), (e) and (f) the same process when applying
3-bit logic compression; (g), (h) and (i) the same process when
applying 4-bit logic compression. The dotted rectangles at the
right indicate the heights of the critical columns which are
further reduced compared to the accurate accumulation tree.

However, this is achieved at the cost of increased error. The impact

of increasing the depth of logic clusters is demonstrated in the next

section.

3.3.1 General Space of d-bit Logic Cluster

Fig. 3.5 presents a general d-bit logic cluster. In general, (d×L)

logic cluster targets a group of consecutive partial product terms

of a length of L columns within d rows in PPM. A (d ×L) logic

cluster is used to compress the product terms into a row of L

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 49

d-2d-2 N – d + 2 – r
L = N + d – 2 – r

d123

Figure 3.5: Dot diagram showing the general space of targeted partial
product terms compressed by a (d×L) logic cluster to produce
array of L bits in rth row of the reduced partial product matrix
for (N ×N) multiplier using SDLC approach with d-bit logic
compression.

terms using an array of d-input OR gates. By following the same

concept in (3.2), let us consider a depth of d successive product

terms belonging to the (i+ j)th column in the PPM aib j, ai−1b j+1,

ai−2b j+2, · · · , ai−(d−1)b j+(d−1). Thus, Od−bit
i+ j is an output term of

logic cluster returned from logic compression in (i+ j)th column

and can be expressed as:

Od−bit
i+ j =

d−1∨
k=0

ai−kb j+k . (3.5)

The arithmetic sum of d successive partial products belonging to

the (i+ j)th column, can be approximated as:

d−1∑
k=0

ai−kb j+k 'Od−bit
i+ j . (3.6)

In general, an N-row PPM resulted from exact (N×N) multiplier

can be compressed to dN
d e rows, when utilizing SDLC approach

with d-bit logic cluster. Let us consider r as the row index of the

compressed and remapped partial product bit-matrix, in which r

is ranging from 1 (the first row in the top), to dN
d e (the last row at

the bottom). The length of logic cluster L represents the number

of columns targeted by logic compression, and equals to the length

of bit array added into rth row. L can be expressed by:

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 50

Ld−bit(r)=

(N +d−2)− r, 1≤ r < dN

d e

(2N −3)− (d+1)(r−1), r = dN
d e

(3.7)

The length of last row is separated in the second line of (3.7) to

involve the length of the last logic cluster in case of N mod d 6= 0,

where the depth of the last cluster equals N mod d. For instance,

applying SDLC approach to (8×8) multiplier with 3-bit compression

requires d8
3e = 3 logic clusters, the first two logic clusters compress

group of product terms within 6 rows, i.e., 3 rows each, leaving only

two rows for the last logic cluster spans over 5 columns, see Fig. 3.4

(d). Note that, the most significant part of PPM, where the height of

the PPM is already lower or equal to d 8
d e, logic compression is not

required. In general, if i is the column index in the compressed and

remapped PPM, (noting that i=1 indicates to the least significant

column), the last column that can have an OR compression can be

obtained as:

i last = 2N −dN
d
e−1 . (3.8)

The last column affected by OR approximation in the case of

(8×8) multiplier is highlighted by dashed-line box in the Fig. 3.4

(c), (f) and (i)).

3.3.2 d-bit Logic Cluster: Compression Algorithm

Algorithm 3.1 explains the process of forming L-bit array resulted

from (d ×L) logic cluster for any N-bit multiplier. According to

(3.7), the length of the logic cluster depends on the row index

of the compressed and remapped PPM. For all r, except the last

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 51

Algorithm 3.1 Generating the output bits of the logic cluster of
the rth row for the proposed (N ×N) multiplier using d-bit logic
clusters.

1: procedure LOGICCLUSTER(A,B, r)
2: Output:C[c1, c2, · · · , cL] //Output bits from logic cluster
3: Inputs: A[a1,a2, · · · ,aN] //Multiplicand bits
4: B[b1,b2, · · · ,bN] //Multiplier bits
5: r //Row index of the compressed and remapped PPM

6: if N
d = d N

d e or r 6= d N
d e then

//Forming (N+d-r-2)-bit output if (N mod d = 0)
7: ω ← 1 //initialize column

index
8: length = N +d−2− r
9: for x ← 1 to d-2 do

10: C[ω]← (A[x+1]∧B[d(r−1)+1])∨ (A[x]∧B[d(r−1)+2])
11: for y← 1 to x−1 do
12: C[ω]← C[ω]∨ (A[x− y]∧B[d(r−1)+2+ y])
13: end for
14: ω←ω+1
15: end for
16: for x ← 1 to N −d+2− r do
17: C[ω]← (A[x-d+1]∧B[d(r−1)+1])∨ (A[x+d-2]∧B[d(r-1)+2])
18: for y← 1 to d−2 do
19: C[ω]← C[ω]∨ (A[x+d−2− y]∧B[d(r−1)+2+ y])
20: end for
21: ω←ω+1
22: end for
23: for x ← 1 to d-2 do
24: C[ω]← (A[N − r−1]∧B[d(r-1)+1+x])∨ (A[N-r]∧B[d(r-1)+2+x])
25: for y← 1 to d−2− x do
26: C[ω]← C[ω]∨ (A[N − r− y]∧B[d(r−1)+2+ x+ y])
27: end for
28: ω←ω+1
29: end for

30: else if N mod d = 1 then
//Forming (2N-(d+1)(r-1)-3)-bit output if (N mod d = 1) in last row

31: length = 2N − (d+1)(r−1)−3
32: for x ← 1 to length do
33: C[x]← (A[x+1]∧B[N])
34: end for

35: else
//Forming (2N-(d+1)(r-1)-3)-bit output if (N mod d 6= 1 6= 0) in last row

36: ω← 1
37: length = 2N − (d+1)(r−1)−3
38: d́ = N mod d
39: for x ← 1 to d́−2 do
40: C[ω]← (A[x+1]∧B[d(r−1)+1])∨ (A[x]∧B[d(r−1)+2])
41: for y← 1 to x−1 do
42: C[ω]← C[ω]∨ (A[x− y]∧B[d(r−1)+2+ y])
43: end for
44: ω←ω+1
45: end for
46: for x ← 1 to length−2(d́−2) do
47: C[ω]← (A[x+ d́−1]∧B[d(r−1)+1])∨ (A[x+d́-2]∧B[d(r-1)+2])
48: for y← 1 to d́−2 do
49: C[ω]← C[ω]∨ (A[x+ d́−2− y]∧B[d(r−1)+2+ y])
50: end for
51: ω←ω+1
52: end for
53: for x ← 1 to d́−2 do
54: C[ω]← (A[N − r+1]∧B[d(r-1)+1+x])∨ (A[N-r]∧B[d(r-1)+2+x])
55: for y← 1 to d́−2− x do
56: C[ω]← C[ω]∨ (A[N − r− y]∧B[d(r−1)+2+ x+ y])
57: end for
58: ω←ω+1
59: end for
60: end if
61: return C
62: end procedure

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 52

one, the algorithm begins to generate (N +d−2− r) bits to each

row. To explain, the first (d−2) less significant bits as indicated

in Line 9 to 15 and highlighted in area 1 (see Fig. 3.5). In this

area, the logic cluster compresses two partial product terms in the

least significant column and increases the level of compression to

(d −1) partial products in the (d −2)th column. This is followed

by forming (N − d +2− r) bits of area 2 in Fig. 3.5, as referred

in the Lines 16 to 22. Lastly, Lines 23 to 29 indicate generation

of the more significant (d −2) bits of area 3. However, when (N

mod d) 6= 0, the logic cluster returns (2N −3)− (d +1)(r−1) bits

at the last row. In such a case, if the value of (N mod d)= 1, i.e.,

logic compression in the last row is not required, the product terms

generated by bitwise ANDing as the exact PPM, see Lines 32 to 34,

otherwise, when (N mod d) = d́, where d́ 6= 1 and d́ 6= 0 (see line

38), the logic compression is required by using d ′-bit logic cluster

using the same steps, see Lines 36 to 62.

However, for purposes of illustration, each row in the compressed

and remapped partial product bit-matrix can be subdivided into

four parts (for instance, each row illustrated in the Fig. 3.4 (c), (f)

and (i))

(i) the less-significant zero bits that represent the number of

consecutive shifts at the beginning of each row, given by:

lzeros(r)= d(r−1) . (3.9)

Then,

(ii) the first product term which is unaffected by the logic com-

pression which can be formed as:

A(1)∧B(d(r−1)+1) , (3.10)

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 53

followed by,

(iii) the array of L bits returned from logic cluster given by (3.7)

and demonstrated in Algorithm 3.1. Lastly,

(iv) the most significant part of the rth, which is unaffected by

the logic compression, the length of bits that compose the

unaffected most significant part in the rth is obtained as:

lMSB(r)=

N −dr+1, 1≤ r < dN

d e.

1, r = dN
d e.

(3.11)

3.3.3 Scalability for (N ×N) SDLC Multiplier Design

The proposed SDLC approach using d-bit compression is scalable for

any (N ×N) multiplier, as shown in Algorithm 3.2. This algorithm

generates a compressed and remapped partial product bit-matrix

M Line 21, which can then be treated as an accumulation tree

by any scheme of multiplication, such as carry-save, Wallace and

Dadda accumulation methods. The main loop Lines 5 to 20 is

responsible for forming and remapping product terms in dN
d e-row

approximated matrix, as demonstrated in Fig. 3.4. Lines 7 to 10

indicate forming of the less-significant zero bits that represent the

number of consecutive shifts at the beginning of row r, managed

by (3.9). The first product term unaffected by the logic compression

is formed in Line 11. This followed by generating L bits from the

logic cluster using (3.7), this is shown in Line 13 by retrieving

Algorithm 3.1. Lines 15 to 20 refer to forming the most significant

part of r, which is unaffected by the logic compression, described

by (3.11).

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 54

Algorithm 3.2 Generating a reduced partial product matrix
M for (N × N) multiplier using SDLC approach with d-bit logic
clusters,∀{d ∈ {2,3, ..., N}.

procedure RPPM(M, A,B)

Output:M =

m1,1 · · · m1,2N

...
...

...

m⌈
N
d

⌉
,1

· · · m⌈
N
d

⌉
,2N

 //Compressed Matrix

Inputs: A[a1,a2, · · · ,aN] //Multiplicand bits
B[b1,b2, · · · ,bN] //Multiplier bits

//Forming rows of M
for r ← 1 to d N

d e do
ρ← 1 //initialize column index

//Shifting by zeros at the beginning of row r
for z ← 1 to d(r−1) do

M[r][ρ]← "0"
ρ← ρ+1

end for

//Forming unaffected first bit in row r
M[r][ρ]← A[1]∧B[d(r−1)+1]
ρ← ρ+1

//Forming outputs of logic cluster r
M[r][ρ:ρ+length]←LOGICCLUSTER(A,B, r) //length is defined using (3.7)
ρ← ρ+ length+1

//Forming unaffected MSBs in row r
for k ← 1 to N-dr do

M[r][ρ]← A[N-r+1]∧B[rd+k-1]
ρ← ρ+1

end for
M[r][ρ]← A[N-r+1]∧B[N]

end for

return M //M is then treated as a reduced accumulation tree
end procedure

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 55

3.3.4 Examples of Utilizing d-bit SDLC

In Section 3.2.5, we illustrate an example of the multiplication

process using 2-bit SDLC. In this section, the same example of

(42,713×37,548) is executed using (16×16) propose multiplier

using 3-, 4-, 5-, 6-, 7- and 8-bit depth of logic clusters, as shown in

Fig 3.6 to Fig 3.11.

In the case of 3-bit SDLC, five logic clusters are used to minimize

the number of product terms in the partial product bit-matrix. The

length of the logic clusters are decreased from 16 bits for the first

one to 12 bits for the fifth (as described by (3.7)). Compared to 2-bit

SDLC, both length and the depth of the logic clusters are increased

for all compression levels (from 3- to 8-bit SDLC). This can explain

the increasing trend in the error difference from 610032 (RED =

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0

0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1

0 0 0 0 1 1 0 0 1 1 1 1 0 0 1

1 1 0 0 1 1 1 1 0 0 1

0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Multiplicand

Multiplier

42,617

38,587
x x

Accurate

Proposed

x

1,644,462,179

1,643,852,147

RED= 3.7 x 10-4

R
e
d

u
c
e

d

B
it-M

a
trix

6
 R

o
w

s
A

c
c
u

ra
te

 P
a

rtia
l P

ro
d

u
c
t B

it-M
a

trix

1
6

 R
o
w

s

Figure 3.6: Five different sizes of 3-bit logic clusters used to compress
partial products based on their progressive bit-significance
in (16×16) parallel multiplier architecture.

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 56

3.7×10−4) in the case of 3-bit SDLC to 44337768 (RED = 0.02315)

in 8-bit SDLC.

In the examples shown in Fig 3.6 to Fig 3.11, the logic com-

pression exercised by the OR-gate arrays reduces the number of

product terms of the partial product bit-matrix. Thus, instead of

having 16-row accumulation tree for (16×16) accurate multiplier,

applying commutative remapping produces only 6, 4, 4, 3, 3 and 2

rows for 3- to 8-bit SDLC, respectively.

Depending on the concept in (3.5), increased depth of logic cluster

can achieve further reduction in the number of product terms,

leading to a fewer rows in the accumulation tree. However, the

probability of having error from OR compression will increase as

will be discussed next.

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0

0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1

0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Multiplicand

Multiplier

42,617

38,587
x x

Accurate

Proposed

x

R
e
d

u
c
e

d

B
it-M

a
trix

4
 R

o
w

s

1,644,462,179

1,641,252,267

RED= 0.00195 A
c
c
u

ra
te

 P
a

rtia
l P

ro
d

u
c
t B

it-M
a

trix

1
6

 R
o
w

s

Figure 3.7: Four different sizes of 4-bit logic clusters used to compress
partial products based on their progressive bit-significance
in (16×16) parallel multiplier architecture.

3.3 VA R I A B L E L O G I C C L U S T E R A N D S CA L A B I L I T Y 57

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1

0 0 1 1 0 0 1 1 1 1 0 0 1

0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Multiplicand

Multiplier

42,617

38,587
x x

Accurate

Proposed

x

R
e

d
u

c
e

d

B
it-M

a
trix

4
 R

o
w

s

1,644,462,179

1,643,934,619

RED= 3.2 x 10-4 A
c
c
u

ra
te

 P
a

rtia
l P

ro
d

u
c
t B

it-M
a

trix

1
6

 R
o

w
s

Figure 3.8: Three different sizes of 5-bit logic clusters used to compress
partial products based on their progressive bit-significance
in (16×16) parallel multiplier architecture.

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1

0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Multiplicand

Multiplier

42,617

38,587
x x

Accurate

Proposed

x

R
e
d
u
c
e
d

B
it-M

a
trix

3
 R

o
w

s

1,644,462,179

1,606,389,371

RED= 0.02315 A
c
c
u
ra

te
 P

a
rtia

l P
ro

d
u
c
t B

it-M
a
trix

1
6
 R

o
w

s

Figure 3.9: Two different sizes of 6-bit combined with 4-bit logic clusters
used to compress partial products based on their progressive
bit-significance in (16×16) parallel multiplier architecture.

3.4 E R R O R A N A LY S I S 58

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 0 0 1 1 0 0 1 1 1 1 0 0 1 0

0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Multiplicand

Multiplier

42,617

38,587
x x

Accurate

Proposed

x

1,644,462,179

1,637,645,947

RED= 0.004145 A
c
c
u

ra
te

 P
a

rtia
l P

ro
d

u
c
t B

it-M
a

trix

1
6

 R
o

w
s

R
e
d
u
c
e
d

B
it-M

a
trix

3
 R

o
w

s

Figure 3.10: Two different sizes of 7-bit combined with 2-bit logic clusters
used to compress partial products based on their progressive
bit-significance in (16×16) parallel multiplier architecture.

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1

1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Multiplicand

Multiplier

42,617

38,587
x x

Accurate

Proposed

x

1,644,462,179

1,600,124,411

RED= 0.02696 A
c
c
u

ra
te

 P
a

rtia
l P

ro
d

u
c
t B

it-M
a

trix

1
6

 R
o
w

s

R
e
d

u
c
e

d

B
it-M

a
trix

2
 R

o
w

s

Figure 3.11: Two different sizes of 8-bit logic clusters used to compress
partial products based on their progressive bit-significance
in (16×16) parallel multiplier architecture.

3.4 E R R O R A N A LY S I S

In the the previous sections, for (N×N) multiplier, generating com-

pressed and remapped PPM using (d×L) logic clusters has been

3.4 E R R O R A N A LY S I S 59

discussed. In this section, the impact of the error derived from the

proposed SDLC approach, for different sizes of multipliers, is exam-

ined. Several error metrics have been discussed in [69] and [72] for

evaluating the effectiveness and quantifying errors of approximate

adders and multipliers. For any (N ×N) approximate multiplier,

the ED is defined as the arithmetic difference between the accurate

product (P) and erroneous product (P ′), i.e., ED = ∣∣P −P ′∣∣. Since

the output of the SDLC approach is under-approximated, i.e., the

final product derived from the proposed approach is always lower

than or equal to the product produced by exact multiplier, ED can

be expressed as, P −P ′. The mean error distance (MED) is defined

as the average of the ED values and obtained as:

MED =
∑22N−1

i=0 ED i

22N . (3.12)

Also, the mean squared error (MSE) is defined as the average of

the squared ED values, which given by:

MSE =
∑22N−1

i=0 ED2
i

22N . (3.13)

The relative RED is another useful error metric defined as the

ratio of ED over the accurate output, i.e., RED= ED
P = P−P ′

P . The

error probability (EP) is defined as the ratio of incorrect outputs

with respect to the total number of outputs. For any (N ×N) ap-

proximate multiplier, the mean relative error distance (MRED), i.e.,

mean RED, is defined as [69]:

MRED =
∑22N−1

i=0 RED i

22N . (3.14)

3.4 E R R O R A N A LY S I S 60

For comparing multipliers of different sizes, normalized mean

relative error distance (NMRED), i.e., normalized MRED, is included

in the error analysis of this thesis, and given, using (3.14), by:

NMRED = MRED
Pmax

, (3.15)

where Pmax is the maximum product that can be obtained from an

(N ×N) accurate multiplier, i.e., Pmax = (2N −1)2. The normalized

mean error distance (NMED), i.e., normalized MED, is another met-

ric used to evaluate the impact of errors for different sizes of

approximate multipliers, expressed, using (3.12), as [69]:

NMED = MED
Pmax

, (3.16)

In this work, we include normalized mean squared error (NMSE),

i.e., normalized MSE, defined, using (3.13), as:

NMSE = MSE
(Pmax)(P ′

max)
' MSE

P2
max

, (3.17)

where P ′
max is the maximum product that can be obtained from

a proposed (N × N) approximate multiplier. Using NMSE metric

for analysing error derived from approximate multipliers has the

following advantages: i) avoids bias towards different approximate

multipliers that under-approximate and over-approximate, and ii)

helps to explain the impact of using approximate multipliers for a

set of applications, when the user-experience metrics depends on

MSE, such as the peak signal-to-noise ratio (PSNR) (see Section 5.2).

The simulations are performed in Matlab by implementing a

functional model of the SDLC approach. The response of all approxi-

mate multipliers is evaluated considering all possible combinations

of operands if N < 16. Monte Carlo approach is used to simulate

the functional model of the proposed SDLC if the size of operands

3.4 E R R O R A N A LY S I S 61

are 16-bit or more, since the simulations run very slow. Using

Monte Carlo approach provides different distribution functions to

represent all input variables, i.e., multiplicand and multiplier com-

binations involved in the simulations. For simplicity, the inputs for

the multiplier discussed in Algorithm 3.2 are obtained as follows.

First, the size of the multiplier N and the depth of logic cluster d

are selected, then both operands of multiplicand and multiplier

are both assumed to be a random variables with uniform distri-

butions for the all values between 0 and 2N −1. The simulations

are repeated for 220 input vectors in the case of N ≥ 16. Note that,

the equations (3.12) to (3.14) are applicable when evaluating the

proposed SDLC approach for all possible combinations of operands.

However, for Monte Carlo simulation, the term 22N in the denomi-

nator is replaced by the number of multiplication times performed

by each simulation, which is equivalent to 220 in this work.

Table 3.1 shows four error metrics using varying sizes of the

proposed multiplier in the case of 2-bit logic compression. It can

be seen that MRED and NMED fall drastically as the size of the

multiplier is increased from 4 to 16-bit. The increasing trend in the

error probability (EP) is expected due to the increased bit-width

of the multiplier. This is because the error occurrence increases

as well due to the growing likelihood of finding a pair of verti-

cally aligned “ones" through two successive rows. In such cases,

the corresponding OR gate will return an error, as detailed in

Section 3.2.2.

The error probabilities in Table 3.1 can be misleading, as the

eventual impact of error is reflected in error distance metrics, such

as MRED and NMED [20, 17]. Also, the readings of MAX(RED) would

not denote severe degradation of the final output because the oc-

currence of these errors is rare. This can be seen in Fig. 3.12, which

3.4 E R R O R A N A LY S I S 62

Table 3.1: Error metrics for varying sizes of proposed multiplier using
2-bit logic cluster.

Multiplier Bit-Width (2-bit SDLC)Error
Metrics 4×4 6×6 8×8 12×12 16×16

EP(%) 19.53 34.96 49.11 70.68 83.86*

Max_ED 38 406 3670 255318 16356728*

Max_ED

Case
15×15 63×63 255×255 4095×4095 65535×65535

Max_RED 0.3111 0.328 0.332 0.3332 0.3333*

Max_RED

Case
15×3 63×3 255×3 4095×3 65535×3

MRED 0.0277 0.0266 0.0199 0.0082 0.0029*

NMRED 1.2E-4 6.7E-6 3.1E-7 4.9E-10 6.7E-13*

MED 2.375 25.375 229.375 15957.375 1041749.375

NMED 0.0106 0.0064 0.0035 0.001 0.0002*

MSE 42.25 3543.75 2.5E+5 1.1E+9 4.6E+12*

NMSE 8.3E-4 2.2E-4 6E-5 3.9E-6 2.5E-7*

SUM
_EDs

608 103936 1.5E+7 2.7E+11 1.1E+12*

SUM
_REDs

710.02 10890.6 1.3E+5 1.4E+7 3026.8*

SUM
_MSEs

10816 1.5E+7 1.6E+10 1.8E+16 4.8E+18*

* For 220 input vectors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
-1

1
-2

2
-3

3
-4

4
-5

5
-6

6
-7

7
-8

8
-9

9
-1

0

1
0

-1
1

1
1

-1
2

1
2

-1
3

1
3

-1
4

1
4

-1
5

1
5

-1
6

1
6

-1
7

1
7

-1
8

1
8

-1
9

1
9

-2
0

2
0

-2
1

2
1

-2
2

2
2

-2
3

2
3

-2
4

2
4

-2
5

2
5

-2
6

2
6

-2
7

2
7

-2
8

2
8

-2
9

2
9

-3
0

3
0

-3
1

3
1

-3
2

3
2

-3
3

3
3

-3
4

P
ro

b
a

b
ili

ty

RED (%)

8 X 8

12 X 12

16 X 16

The Majority of outputs are either

exact or close to exact outputs.

The probability of errors

is drastically decreased.

Rare occurrence for higher errors and the mass

of the distribution is gradually concentrated to

the leftmost in higher bit-widths.

Figure 3.12: Error percentage distribution for 8-, 12- and 16-bit proposed
multiplier after applying 2-bit depth compression.

3.4 E R R O R A N A LY S I S 63

demonstrates the probability distribution for all relative errors

resulting from three different sizes of multipliers using the SDLC

approach. The probability distribution shows that the proposed

approach tends to produce exact or close to exact results. This is

seen in the sharp decline of the probability of errors with higher

REDs, e.g., the MAX(RED) listed in Table 3.1. Furthermore, as the

bit-width of the multiplier is increased, the mass of the distribution

is gradually concentrated at a lower error distance. This is because

the proposed approach does not sacrifice the precision of the more

significant bits when using significance-driven logic compression.

Tables 3.2 and 3.3 depicts the error trade-off with increased

degree of compression achieved through higher depths of logic

clusters in (8×8) and (16×16) multipliers, respectively. As expected,

increased depth of logic compression leads to higher error rates.

The error readings of the MRED metric are only marginally higher

when increased the depth of logic compression (such as with 8-bit

SDLC in (16×16) multiplier, and (from 4- to 8-bit) SDLC in (8×8)

multiplier). This is because the errors associated with reduced

number of rows are increased (e.g., the number of rows for 8-bit

SDLC in (16×16) multiplier is just 2 compared to 16 rows in the

accurate PPM). Similar observations can be made in the case of the

NMED metric.

For the worst case errors (such as, Max_RED), these errors would

not lead to severe degradation in the multiplier output because of

their rare occurrence, especially with lower depths of logic com-

pression. Fig. 3.13 shows the cumulative probability distribution

for all possible relative errors resulting from (16×16) multiplier for

different sizes of logic clusters. The proposed multiplier does not

sacrifice the precision of the more significant bits. This is observed

in the sharp rise of cumulative probability of errors towards 1,

3.4 E R R O R A N A LY S I S 64

Ta
bl

e
3.

2:
E

rr
or

m
et

ri
cs

fo
r

di
ff

er
en

t
de

pt
hs

of
lo

gi
c

co
m

pr
es

si
on

in
th

e
pr

op
os

ed
(8

×8
)m

ul
ti

pl
ie

r.

E
rr

or
M

et
ri

cs

SDLC Depth

E
P

(%
)

M
ax

_

E
D

M
ax

_

E
D

C
as

e

M
ax

_

R
E

D

M
ax

_

R
E

D

C
as

e

M
R

E
D

N
M

R
E

D
M

E
D

N
M

E
D

M
SE

N
M

SE
SU

M
_

E
D

s

SU
M

_

R
E

D
s

SU
M

_

M
SE

s

2-
bi

t
49

.1
1

36
70

25
5×

25
5

0.
33

20
25

5×
3

0.
01

99
3.

1E
-7

22
9.

37
5

0.
00

35
3

2.
5E

+5
6.

0E
-5

1.
5E

+7
1.

3E
+3

1.
6E

+1
0

3-
bi

t
64

.6
5

77
54

25
5×

25
5

0.
42

69
25

5×
7

0.
04

10
6.

3E
-7

54
2.

94
0.

00
83

5
1.

2E
+6

2.
9E

-4
3.

6E
+7

2.
7E

+3
8.

1E
+1

0

4-
bi

t
76

.2
8

15
89

0
25

5×
25

5
0.

46
48

25
5×

15
0.

08
19

1.
3E

-6
13

83
.7

8
0.

02
12

8
7.

2E
+6

1.
7E

-3
9.

1E
+7

5.
4E

+3
4.

7E
+1

1

5-
bi

t
77

.7
7

15
90

6
25

5×
25

5
0.

48
20

25
5×

31
0.

07
81

1.
2E

-6
12

95
.3

0.
01

99
2

6.
5E

+6
1.

5E
-3

8.
5E

+7
5.

1E
+3

4.
2E

+1
1

6-
bi

t
80

.4
7

15
93

8
25

5×
25

5
0.

49
01

25
5×

63
0.

08
04

1.
2E

-6
12

57
.7

6
0.

01
93

4
5.

7E
+6

1.
4E

-3
8.

2E
+7

5.
3E

+3
3.

7E
+1

1

7-
bi

t
83

.6
7

16
00

2
25

5×
25

5
0.

49
41

25
5×

12
7

0.
09

94
1.

5E
-6

15
57

.5
3

0.
02

39
5

8.
3E

+6
2.

0E
-3

1.
0E

+8
6.

5E
+3

5.
4E

+1
1

8-
bi

t
87

.5
7

32
25

8
25

5×
25

5
0.

49
61

25
5×

25
5

0.
15

37
2.

4E
-6

31
66

.4
9

0.
04

87
0

3.
4E

+7
7.

9E
-3

2.
1E

+8
1.

0E
+4

2.
2E

+1
2

3.4 E R R O R A N A LY S I S 65

Ta
bl

e
3.

3:
E

rr
or

m
et

ri
cs

fo
r

di
ff

er
en

t
de

pt
hs

of
lo

gi
c

co
m

pr
es

si
on

in
th

e
pr

op
os

ed
(1

6
×1

6)
m

ul
ti

pl
ie

r.

E
rr

or
M

et
ri

cs

SDLC Depth

E
P

(%
)

M
ax

_

E
D

M
ax

_

E
D

C
as

e

M
ax

_

R
E

D

M
ax

_

R
E

D

C
as

e

M
R

E
D

N
M

R
E

D
M

E
D

N
M

E
D

M
SE

N
M

SE
SU

M
_

E
D

s

SU
M

_

R
E

D
s

SU
M

_

M
SE

s

2-
bi

t
83

.8
6

1.
6E

+7
49

14
8×

65
52

3
0.

33
26

16
36

6×
60

0.
00

29
6.

7E
-1

3
1.

0E
+6

0.
00

02
4

4.
6E

+1
2

2.
5E

-0
7

1.
1E

+1
2

3.
0E

+0
3

4.
8E

+1
8

3-
bi

t
94

.3
9

6.
6E

+7
65

53
3×

32
74

4
0.

42
83

40
95

×3
23

09
0.

01
21

2.
8E

-1
2

5.
2E

+6
0.

00
12

2
1.

1E
+1

4
5.

8E
-0

6
5.

5E
+1

2
1.

3E
+0

4
1.

1E
+2

0

4-
bi

t
97

.8
3

2.
7E

+8
65

51
2×

65
49

4
0.

46
63

81
90

×6
54

88
0.

03
47

8.
1E

-1
2

2.
4E

+7
0.

00
54

8
2.

0E
+1

5
1.

1E
-0

4
2.

5E
+1

3
3.

6E
+0

4
2.

1E
+2

1

5-
bi

t
98

.5
7

2.
7E

+8
65

52
0×

32
76

5
0.

48
38

65
53

3×
31

0.
04

12
9.

6E
-1

2
2.

5E
+7

0.
00

58
2

2.
2E

+1
5

1.
2E

-0
4

2.
6E

+1
3

4.
3E

+0
4

2.
3E

+2
1

6-
bi

t
99

.0
8

5.
3E

+8
32

74
0×

65
49

9
0.

49
02

40
91

×4
08

5
0.

05
83

1.
4E

-1
1

4.
8E

+7
0.

01
10

8
8.

1E
+1

5
4.

4E
-0

4
5.

0E
+1

3
6.

1E
+0

4
8.

5E
+2

1

7-
bi

t
99

.3
1

5.
3E

+8
32

75
8×

65
41

5
0.

49
55

16
38

1×
16

30
4

0.
05

79
1.

3E
-1

1
4.

3E
+7

0.
01

6.
4E

+1
5

3.
4E

-0
4

4.
5E

+1
3

6.
1E

+0
4

6.
7E

+2
1

8-
bi

t
99

.6
2

1.
1E

+9
65

46
2×

65
50

3
0.

49
67

81
71

×6
53

41
0.

10
79

2.
5E

-1
1

1.
1E

+8
0.

02
47

3.
7E

+1
6

2.
0E

-0
3

1.
1E

+1
4

1.
1E

+0
5

3.
9E

+2
2

3.4 E R R O R A N A LY S I S 66

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
-1

2
-3

4
-5

6
-7

8
-9

1
0
-1

1

1
2
-1

3

1
4
-1

5

1
6
-1

7

1
8
-1

9

2
0
-2

1

2
2
-2

3

2
4
-2

5

2
6
-2

7

2
8
-2

9

3
0
-3

1

3
2
-3

3

3
4
-3

5

3
6
-3

7

3
8
-3

9

4
0
-4

1

4
2
-4

3

4
4
-4

5

4
6
-4

7

4
8
-4

9

C
o

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

RED (%)

2-bit SDLC

3-bit SDLC

4-bit SDLC

5-bit SDLC

6-bit SDLC

7-bit SDLC

8-bit SDLC

The SDLC approach

lowers the probability of

occurrence of higher RED.

Logic clusters with lower

depths leads to higher

probability of trivial RED.

Figure 3.13: Cumulative probability distribution for the error induced
by different logic compression levels of the proposed SDLC
approach in the case of (16×16) multiplier.

especially for lower depth of logic compression, such as 2-, 3- or

4-bit SDLC. The SDLC approach tends to produce results that are

closer to the exact outputs when using lower depth of logic clusters.

This is because the error occurrence increases as well due to the

growing of likelihood of errors returned by higher depth logic clus-

ter. According to (3.6), the probability of having inequality between

the output of logic cluster and the accurate arithmetic addition is

increased with higher depth logic clusters. This can be observed

when the cumulative probability distributions reach to 1 faster

than SDLC approach with higher depth of logic clusters, such as

6- to 8-bit SDLC. For example, in the cases of 2-, 3- and 4-bit SDLC,

the probability of having errors with less than 1% RED, i.e., RED of

0%-1%, is 0.95, 0.76 to 0.49, respectively. The cumulative probabil-

ity exceeds 0.9 when the RED is lower than 16% for all logic cluster

depths, except the case of 8-bit SDLC, where the likelihood of same

RED range is just 75%. Furthermore, the cumulative probability in

the cases of 6- and 7-bit logic clusters are almost identical. This

can be explained using (3.8), as the number of the last column that

can have an OR compression is the same in both cases, leading

3.5 D E S I G N T R A D E -O FF S 67

to have the same number of more significant bits unaffected by

logic compression. The impact of increased degree of compression

in the SDLC approach is further investigated in the application

case-study in Chapter 5.

3.5 D E S I G N T R A D E -O FF S

To demonstrate the proposed approach, we applied it on eight

different sizes of widely known multipliers ranging from 4-bit to

128-bit. Accurate ripple adders were used in both accurate and

approximate multipliers to accumulate the partial product rows

within the accumulation stage (see Fig. 3.2). We used the first

ripple adder to add the first two rows of the PPM, after that the

resulted sum is added with the third row using the second ripple

adder. By doing so, rows in accumulation tree are sequentially

summed up to generate the final product.

A generic SystemVerilog code was used to generate synthesizable

modules for all accurate and approximate versions. These modules

have been parametrized and configured differently at design time

according to the bit-width of multiplier. Run-time reconfigurability

of logic cluster using cost vs. degree of approximation (i.e. logic

compression depth) trade-off is being considered for future work

(see Section 6.2). The generated codes were implemented and syn-

thesized using two different off-the-shelf tools: Mentor Graphics

Questa Sim was used to compile the SystemVerilog codes and

run the associated test benches; and Synopsys Design Compiler

was utilized for synthesizing all sizes of accurate and proposed

multipliers when mapping the circuits to the Faraday’s 90nm tech-

nology library [1] and evaluating for power, area, delay and energy

in terms of power-delay-product (PDP). For the synthesis process,

3.5 D E S I G N T R A D E -O FF S 68

1V was set as nominal supply voltage for the given technology

library. All designs are synthesized as combinational logic blocks

with no clock constraints. This is done to allow the synthesis tool

to optimize power and area freely in favour of delay. Note that

introducing clock constraints can skew the synthesis tools’ opti-

mization algorithm (e.g. produce more delay savings at the cost of

power/area optimization). However, this does not introduce over-

all changes between the proposed approximate multipliers and

baseline designs.

Fig. 3.14 depicts a comparison of dynamic/leakage power, area,

delay and energy trade-offs for all eight sizes of 2-bit SDLC multi-

pliers, when compared with conventional accurate multiplier. As

seen, there are significant improvements in all design trade-offs.

This is basically because SDLC approach reduces the complexity of

multiplier implementation by minimizing the number of rows in

the accumulation tree (see Section 3.2.4). This reduction in hard-

ware complexity leads to low switching capacitance and leakage

readings, as well as shortened critical paths.

The experiments show reductions in terms of power consump-

tion, run-time and also silicon area used. For dynamic and leakage

0

10

20

30

40

50

60

70

80

90

4-bit 6-bit 8-bit 12-bit 16-bit 32-bit 64-bit 128-bit

R
e

d
u

c
ti
o

n
s
 (

%
)

Multiplier Bit-Width

Dynamic Leakage Area Delay PDP

Figure 3.14: Dynamic/leakage power, area, delay and PDP trade-offs for
different bit-widths of the (2-bit SDLC) proposed multiplier.

3.5 D E S I G N T R A D E -O FF S 69

power, the reductions obtained from applying the SDLC approach

range from 37.5%-67.4% and 34%-72.1%, respectively, for multi-

plier bit-widths from 4-bit to 128-bit. The savings in the latency for

the same sizes of the proposed multiplier is from 38.5%-65.6%. The

reduction in complexity also leads to silicon area to be minimized

to 33.4%-62.9%, and energy consumed is substantially reduced in

terms of PDP by 65.5%-88.7%. For all bit-widths of the proposed

multiplier, the absolute readings of the synthesized designs can

be obtained by combining the reduction percentages in Fig. 3.14

with the absolute readings of the accurate multiplier in Table 3.4

and 3.5. For instance, in the case of 32-bit proposed multiplier,

the PDP readings of 5.9 pJ is derived using (dynamic, leakage)

power consumptions of (1093.2 uW, 38.3 uW), respectively and

propagation delay of 5.19 ns, while the silicon area is 16949.3 um2.

The non-linear trend of the bars in some cases is attributed to the

inconsistency of the ratio of the array of additions in the accumu-

lation tree between the approximate and the accurate multiplier.

Table 3.4: Design trade-offs for different bit-widths of the accurate multi-
plier used to obtain comparative analysis in Fig. 3.14.

Power
Bit-

Width
Dynamic

(uW)

Leakage

(uW)

Area

(um2)

Delay

(ns)

PDP

(pJ)

4×4 6.36 0.65 292.43 0.96 0.007

6×6 21.06 1.67 740.10 1.57 0.036

8×8 46.97 3.16 1388.46 2.18 0.109

12×12 140.73 7.53 3287.31 3.4 0.504

16×16 299.97 13.77 5988.98 4.63 1.453

32×32 1843.00 57.97 25856.32 9.9 18.820

64×64 17563.60 566.91 194194.45 18.6 337.228

128×128 146159.00 2684.90 832734.22 62.35 9280.417

3.5 D E S I G N T R A D E -O FF S 70

Table 3.5: Design trade-offs for different bit-widths of the proposed mul-
tiplier used to obtain comparative analysis in Fig. 3.14.

Power
Bit-

Width
Dynamic

(uW)

Leakage

(uW)

Area

(um2)

Delay

(ns)

PDP

(pJ)

4×4 3.27 0.33 156.02 0.59 0.002

6×6 11.87 0.97 441.39 0.89 0.011

8×8 27.46 1.91 864.75 1.23 0.036

12×12 86.49 4.79 2147.38 1.87 0.171

16×16 187.61 8.95 3991.34 2.51 0.493

32×32 1093.20 38.27 16949.30 5.19 5.872

64×64 5968.90 158.11 71985.31 9.9 60.657

128×128 47587.80 1214.50 465525.09 21.42 1045.345

Table 3.6 lists the number of the logic cells utilized to build all sizes

of the conventional and proposed multiplier designs. As expected,

the SDLC approach can be employed to minimize number of cells

required to implement all sizes of the proposed multiplier.

Table 3.6: Number of library cells instantiated to form different bit-
widths of the (2-bit SDLC) proposed multiplier.

Multiplier Bit-Width

Number

of

Cells

4

×
4

6

×
6

8

×
8

12

×
12

16

×
16

32

×
32

64

×
64

128

×
128

Accurate 56 132 240 552 992 4258 27261 102205

Proposed

(2-bit

SDLC)

30 76 142 342 626 2605 10704 76884

Reduction

(%)
46.4 42.4 40.8 38.0 36.9 38.8 60.7 24.8

3.5 D E S I G N T R A D E -O FF S 71

The proposed multiplier utilizes different sizes of logic clusters.

Each logic cluster contains an array of OR gates used to compress

a set of product terms. The logic clusters have no carry propaga-

tion and can also work in parallel. Hence, the delay required to

generate the compressed partial product matrix is: 2-input AND

gate delay (for parallel forming N2 product terms) + d-input OR

gate delay (for parallel logic compression). Then, the compressed

partial product matrix is ready to be accumulated by applying

any convenient scheme of multiplication, as shown in Fig. 3.15.

Generally, the critical delay of the proposed approach depends on:

(i) the size of multiplier (i.e. higher bit-widths increase the number

of product terms and therefore the propagation delay associated

with accumulation tree is also increased), and (ii) the level of logic

A1B0

P14

A1 B1A2 B0

A1B2A3B0 A2B1 A2B2A3B1
A4B0 A1B3

P14

P14P14

(a) (b)

(c) (d)

Figure 3.15: Dot diagram highlights the impact of increasing depth of
logic clusters on the critical path of (8×8) multiplier: (a)
partial product bit-matrix of the conventional multiplier;
(b) after 2-bit SDLC; (c) 3-bit SDLC; and (d) 4-bit SDLC.
The dotted polygons indicate the maximum propagation
path for summing up the accumulation tree. Higher degrees
of compression minimize the propagation delay associated
with accumulation tree (such as (b) and (c)), while a further
reduction in (d), since a carry propagation adder is just
needed to generate the product (no extra delay required for
accumulation tree). The curved lines identify the critical
paths for each multiplier (from A1 to P14).

3.5 D E S I G N T R A D E -O FF S 72

compression (i.e. increased depth of the logic clusters leads to lower

number of rows in accumulation tree and also lower height of the

critical column). Note that, the critical path of the entire design

depends also on the method of summing up the accumulation tree

returned from the SDLC approach, such as carry-save array or Wal-

lace method [92]. According to the experimental work described at

the beginning of this section, the critical delay of (N ×N) proposed

multiplier is identified when any change in the input A(1) resulting

in a change in the output of P(2N −2) of the final product. See

Fig. 3.15 as an example illustration of critical path in the case of

(8×8) multiplier.

Fig. 3.16 illustrates the dynamic/leakage power, delay, area

and energy trade-offs with increased degree of logic compression.

Higher depth of clustering achieves considerable savings in all

design trade-offs since by increasing the depth of logic clusters, the

hardware complexity associated with lower numbers of product

rows is also decreased (see Section 3.3).

0

10

20

30

40

50

60

70

80

90

Dynamic Leakage Area Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

BW

2-bit SDLC 3-bit SDLC 4-bit SDLC

Figure 3.16: Dynamic power, leakage power, delay, area and energy trade-
offs for different degrees of logic compression of (8×8) mul-
tiplier.

To demonstrate the energy-quality trade-offs for different sizes

of proposed multiplier, Fig. 3.17 shows the relation between the

MRED and PDP for different levels of logic compression in the case

3.6 C O M PA R AT I V E A N A LY S I S 73

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60 70 80 90 100

M
R

E
D

Reduction in Energy Consumption (%)

(16 X 16) 2-bit SDLC

(16 X 16) 3-bit SDLC

(16 X 16)

4-bit SDLC

(8 X 8) 2-bit SDLC

(8 X 8) 3-bit SDLC

(8 X 8) 4-bit SDLC

Figure 3.17: The MRED and PDP trade-offs for different degrees of logic
compression of (8×8) and (16×16) multipliers.

of (8×8) and (16×16) multipliers. Additional reduction in energy

consumption can be achieved with increased level of logic com-

pression, which is done at the cost of growing errors measured by

MRED metric. For instance, the reduction in energy consumption

increases from 65%, 85% up to 90%, with increased logic cluster

depth of (16×16) multiplier from 2-, 3- to 4-bit, respectively. The

absolute MRED readings can be obtained from Tables 3.2 and 3.3.

The increased bit-width of proposed multiplier can mitigate the

impact of the lossy compression done by logic clusters. For exam-

ple, applying 4-bit logic cluster can translate into a substantial

reduction in PDP readings (about 90% for both (8×8) and (16×16)

multipliers), while the MRED is reduced to the half in the case of

(16×16) multiplier.

3.6 C O M PA R AT I V E A N A LY S I S

Fig. 3.18 shows comparative area, power, delay and energy advan-

tages of our approach (with 2-bit SDLC) for different bit-widths.

The comparisons are carried out with the following two existing

approaches: Kulkarni [65] and error-tolerant multiplier (ETM) [66],

3.6 C O M PA R AT I V E A N A LY S I S 74

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

4
-b

it
8

-b
it

1
6

-b
it

3
2

-b
it

4
-b

it
8

-b
it

1
6

-b
it

3
2

-b
it

4
-b

it
8

-b
it

1
6

-b
it

3
2

-b
it

4
-b

it
8

-b
it

1
6

-b
it

3
2

-b
it

A
re

a
P

o
w

e
r

D
e

la
y

P
D

P

Reduction (%)

E
T

M
 [

4
4

]
K

u
lk

a
rn

i
[2

4
]

P
ro

p
o

s
e

d
[6

5
]

[6
6
]

F
ig

ur
e

3.
18

:A
re

a
an

d
po

w
er

tr
ad

e-
of

fs
fo

r
va

ri
ou

s
sc

al
ab

le
ap

pr
ox

im
at

e
m

ul
ti

pl
ie

rs
.

3.6 C O M PA R AT I V E A N A LY S I S 75

chosen for their direct relevance to our work. In the Kulkarni [65]

approach, a large multiplier is produced using small (2×2) approx-

imate units as building blocks. The design approach of (N × N)

ETM [66] follows truncation principles by dividing the multiplier

into accurate and approximate parts. Similar to N-bit fixed-width

multiplier, only the most significant N bits of the final product are

generated using accurate multiplications, whereas in the approxi-

mate part, a probabilistic bit manipulation is used to generate the

least significant N bits of the product terms.

The proposed approach produces better results as the bit-width

of the multiplier is increased. This is seen with the 16- and 32-bit

multiplier. For example, in the case of 32-bit approximate multi-

plier, the (area and power) savings obtained from both ETM [66]

and Kulkarni [65] are (27.2% and 30.1%) and (17.1% and 25.2%),

respectively, the area and power trade-offs of the proposed mul-

tiplier is (34.5% and 40.5%), while the (delay and PDP) savings

are (41.6% and 59.2%), (21.2% and 41.1%) and (47.6% and 68.8%)

for ETM, Kulkarni and proposed, respectively. In such a case, the

proposed approach outperforms both approaches in terms of power,

area, delay and PDP savings. This is expected as the number of

product rows is halved (with 2-bit clustering) and commutative

remapping is used to reduce the parallel accumulation complexity.

Noting that, applying higher depths of logic cluster will further

increase the design gains of the propose multiplier, thereby making

the proposed multiplier outperform even for lower bit-widths, such

as (8×8) multiplier (see Fig. 3.16).

The corresponding error comparisons of these approaches are

shown Fig. 3.19, demonstrating comparative errors (in terms of

MRED, NMED and also ER) using the proposed (8×8) multiplier

(with 2-bit SDLC). As expected, our approach outperforms both

3.7 S I G N E D M U LT I P L I CAT I O N U S I N G S D L C 76

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

ETM [44] Kulkarni [24] Proposed

E
ro

rr
 R

a
te

 (
%

)

N
M

E
D

 (
%

),
 M

R
E

D
 (

%
)

NMED (%) MRED (%) ER (%)

[66] [65]

Figure 3.19: Comparative errors in terms of MRED, NMED and also ER
for various scalable (8×8) approximate multipliers.

approaches in terms of MRED, NMED due to its bit significance-

driven logic compression. For example, the MRED equals 0.252 and

0.139 for the cases of the (8×8) multiplier proposed by ETM [66]

and Kulkarni [65], respectively, whereas, the MRED of the proposed

multiplier is just 0.0199. As the proposed approach progressively

preserves the high-order bits, it is expected to exhibit significantly

lower errors for multipliers with higher bit-widths.

3.7 S I G N E D M U LT I P L I CAT I O N U S I N G S D L C

The SDLC approach minimizes the product terms in favour of

reducing the number of rows in partial product matrix. Different

degrees of logic compression have been exploited to provide

comparative design advantages at low loss of accuracy. In this

section, we discuss the design and implementation requirements

of the proposed approach when performing signed multiplication.

The proposed approach is feasible for the case of signed operands;

however, some modifications are needed. These modifications can

be described in the following two ways:

3.7 S I G N E D M U LT I P L I CAT I O N U S I N G S D L C 77

(i) To exploit the proposed approach for signed multipliers,

extra interface circuitry is required to support sign-magnitude

complement representation. In this context, only absolute values

of the input operands can be considered in the multiplication.

The magnitude of the final product will then be computed using

(N-1)×(N-1) proposed multiplier to generate (2N-2)-bit result.

This result is considered as the absolute value of the final product,

while the sign of the final product will be generated using single

2-input XOR gate. However, finding the exact absolute value of the

input operands may degrade the speed of calculation; hence, we

can produce it in an efficient way similar to the method proposed

in [132]. Fig. 3.20 illustrates the hardware implementation related

to proposed signed multiplier. The sign of the input operands are

determined first. Thus, for each operand with negative value, the

absolute value is produced. Then, the proposed SDLC approach

can be performed to multiply the unsigned operands as discussed

in Sections 3.3 and 3.2. Noting that, in the case of using N ×N

proposed multiplier, the most significant bit of the absolute value

of an N-bit number is 0. Also, the (2N −1)th and (2N −2)th bits of

the 2N-bit final product are affected by the signal generated from

the sign detector.

(ii) In the case of 2’s complement multiplication, alterations to

the proposed design should be considered to support sign exten-

|A|

Sign
Detector

|B| SDLC
Approach

A B

Sign Set A X B

Figure 3.20: Block diagram for one of the options of hardware implemen-
tation required to implement the proposed signed multiplier
(inspired from [132]).

3.7 S I G N E D M U LT I P L I CAT I O N U S I N G S D L C 78

sion, such as conventional 2’s complement array multiplication,

in which a circuit unit should be added to ensure correct sign of

the final product. An alternative approach is to create reorganized

partial-product array, such as in Baugh-Wooley multiplication [5].

Fig. 3.21 shows the partial product matrix in the case of (8×8)

signed multiplier. Some of the product terms indicated as qi, j (high-

lighted in blue), are obtained as the NAND of the operands bits A i

and B j. Assuming that the input operands of the multiplier are

uniformly and independently distributed, the probability that a

complemented partial product is high is given by:

P
(
qi, j

)= P
(
A i ↑ B j

)= 3
4

>> P
(
A i ∧B j

)= 1
4

(3.18)

Equation (3.18) shows that using NAND instead of AND gate to

generate complemented partial products increases the probability

of having 1’s in the partial product matrix. Therefore, the error

probability associated with logic cluster having a complemented

product terms, can also increase as described in (3.3). In such case,

the likelihood of having two 1s or more at the inputs of the OR

gate will lead to an error, i.e., when the output of OR gate is not

equal the arithmetic sum of the input bits. However, the increase

in the error probability will result in slight degradation in the

error magnitude (e.g., in terms of the mean error). To explain, the

X A7 A6 A5 A4 A3 A2 A1 A0

B7 B6 B5 B4 B3 B2 B1 B0

1 A7B0 A6B0 A5B0 A4B0 A3B0 A2B0 A1B0 A0B0

A7B1 A6B1 A5B1 A4B1 A3B1 A2B1 A1B1 A0B1

A7B2 A6B2 A5B2 A4B2 A3B2 A2B2 A1B2 A0B2

A7B3 A6B3 A5B3 A4B3 A3B3 A2B3 A1B3 A0B3

A7B4 A6B4 A5B4 A4B4 A3B4 A2B4 A1B4 A0B4

A7B5 A6B5 A5B5 A4B5 A3B5 A2B5 A1B5 A0B5

A7B6 A6B6 A5B6 A4B6 A3B6 A2B6 A1B6 A0B6

1 A7B7 A6B7 A5B7 A4B7 A3B7 A2B7 A1B7 A0B7

Figure 3.21: Partial product matrix of (8×8) signed multiplier. Comple-
mented partial products are highlighted in blue.

3.7 S I G N E D M U LT I P L I CAT I O N U S I N G S D L C 79

complemented bits are concentrated at the most significant part of

the partial product terms. As such, the proposed SDLC approach

progressively preserves the high-order bits of the partial products.

This allows for the complemented bits to be accumulated on a

carry-propagation basis as in accurate multiplier.

For the above-mentioned ways, the use of the signed multipli-

cation does not reveal any significant degradation of the results

obtained in the previous sections. Note that, exploiting Booth’s

algorithm [11] may also improve the performance by generating

lower number of partial products using parallel Booth encoders.

Generally, utilizing conventional Booth’s encoding in parallel mul-

tiplier implementations can skip addition and perform just shift,

when the partial product of ’0’ occurs. When combining Booth

with proposed multiplier design, one may execute the Booth en-

coders in parallel prior to applying the logic compression. However,

conventional Booth-encoding is inconvenient when designing a par-

allel multiplier, such as the proposed design, for two reasons [10];

the first is due to variable number of add/subtract operations

and the second is because of long delays with isolated 1’s, e.g.

bits 001010101(0) recoded as 011111111, requiring 8 instead of 4

partial products. To address this limitation and also to improve

the performance, modified Booth-encoding (MBE) scheme, such as

Radix-4 [130], can be used to generate a fixed and reduced number

of partial products using shifting and complement operations.

Note that, the advantage of implementing higher radix Booth en-

coders to generate a reduced number of partial products comes

at the expense of increased hardware complexity [10]. However,

the proposed multiplier can do the same task (i.e. reducing the

number of partial products at low loss of accuracy) without us-

ing Booth schemes. Moreover, the double compression caused by

3.8 C O N C L U D I N G R E M A R K S 80

combining higher radix Booth encoders with existing logic cluster

can lead to a major impact on the accuracy. Thus, compared to the

above-mentioned ways, exploiting Booth-encoding along with the

proposed SDLC approach may not be as feasible.

3.8 C O N C L U D I N G R E M A R K S

In this chapter, a novel approximate multiplier design approach is

proposed using significance-driven logic compression (SDLC). This

design approach utilizes an algorithmic and configurable lossy

compression based on bit significance to form a reduced set of

partial product terms. This is then reorganized and accumulated

using various schemes of parallel multiplication. On a statistical

basis, the results of such as, NMED and MRED metrics show how

the impact of error is mitigated when the size of the multiplier

is increased. Additionally, the mass of the error distributions are

gradually concentrated at a lower error distance, indicating that

the proposed multiplier gives close to exact products for most

inputs with positive bias. The results obtained after synthesis have

shown a substantial decrease in run-time, power consumption and

even in silicon area. Also, the possibility to perform SDLC approach

in signed multiplication is addressed. Performance-energy-quality

trade-offs are demonstrated for different levels of approximations

achieved through configurable logic clustering.

4

E R R O R M I T I G AT I O N I N L O G I C C O M P R E S S I O N

4.1 I N T R O D U C T I O N

Chapter 3 showed a novel SDLC approach for approximate mul-

tiplier design. The SDLC approach can offer various degrees of

freedom to increase performance and efficiency. This is done by

generating different sizes of reduced accumulation tree depending

on the depth of logic clusters and bit significance. The hardware

complexity of standard multiplier schemes is dominated by the

number of product terms in accumulation tree. Thus, the proposed

SDLC approach has the potential to benefit various schemes of

multiplier designs, such as carry-save array, Wallace [128] and

Dadda-tree [23], when relaxing the accuracy requirements.

In this chapter, we introduce a novel multiplier design of combin-

ing a Wallace-tree accumulation method together with the SDLC

approach. The lossy logic compression performed by SDLC approach

works for reducing the number of product rows using progressive

bit significance, and thereby decreasing the number of reduction

stages in Wallace-tree accumulation. This accounts for substan-

tially lower number of logic counts and lengths of the critical paths

at the cost of errors in lower significant bits. These errors are min-

imised through a parallel error detection logic and compensation

vector. To evaluate the effectiveness of our approach, multiple 8-

and 16-bit multipliers are designed and synthesized using Syn-

81

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 82

opses Design Compiler with different logic compression levels. Also,

extensive error analysis is provided.

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R

In this section, we introduce an approximate multiplier design by

incorporating a Wallace-tree accumulation with hardware-based

logic compression techniques. The proposed approach consists of

two major steps. First, systematic lossy compression is carried

out using SDLC approach to generate a reduced number of partial

product rows (discussed in Chapter 3). Second, Wallace method

is applied to reduce the number of these rows to the height of

two to be then combined using a carry propagating adder. These

steps together with different logic compression levels, are described

below.

4.2.1 Logic Compression using SDLC

The proposed SDLC approach generates all partial products in an

(N ×N) multiplier using N2 AND gates, similar to accurate multi-

plier. Then various sizes of logic clusters are utilized to compress a

group of vertically-aligned bits within a group of successive partial

products based on their progressive bit significance. This results

in a reduced number of product terms in the partial product bit-

matrix (see Section 3.3). After that a commutative remapping

technique is used to reduce the number of rows in the bit-matrix

(see Section 3.2.4). This can be leveraged to decrease the number

of reduction stages in the Wallace accumulation tree.

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 83

4.2.2 Accumulation with Wallace Method

One of the well-known fast multipliers is the column compression

multiplier presented by Wallace [128]. This multiplier consists of

three consecutive phases: partial product formation, accumulation,

and CPA. In general, (N ×N) traditional Wallace multiplier begins

to group N rows together in sets of three rows each. Any additional

rows that are not a member of a group of three are transferred

to the next level without modification. Within each group of three

rows, (3, 2) counters (full adders) are applied to the columns con-

taining three bits and (2, 2) counters (half adders) are applied to

the columns containing two bits. Columns containing only a single

bit are transferred to the next level unchanged. By doing so, the

partial product bit-matrix is then column-wise accumulated to a

height of two. These two rows are combined in the last phase using

a CPA.

Figure 4.1 shows these phases in the case of an accurate (16×16)

Wallace multiplier. As can be seen, the multiplier begins generating

256 product terms organized in 16-row Wallace-tree. Six reduction

stages are required to compress these rows to the height of 2 rows.

In stage 1, the number of rows in the accumulation tree reduces

from form 16 rows to 11 rows, then stage 2 from 11 rows to 8 rows

and after that from 8 to 6 and from 6 to 4 rows in stages 3 and 4

and finally, from 4 to 3 and from 3 to 2 rows in stages 5 and 6. This

can be achieved by using total of 200 (3, 2) counters and 52 (2, 2)

counters. Then, the resulting 2 rows can be summed up using a

24-bit CPA.

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 84

Stage 1:

FAs=70 HAs=10

Stage 2:

FAs=43 HAs= 7

Stage 3:

FAs=27 HAs=10

Stage 4:

FAs=30 HAs=6

Stage 5:

FAs=15 HAs=9

Stage 6:

FAs=15 HAs=10

CPA

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

: FAs

: HAs

Figure 4.1: Reduction stages and logic cell counts for (16×16) accurate
Wallace.

4.2.3 Wallace with Variable Logic Compression

Since the hardware complexity of Wallace multiplier depends on

the number of partial product rows in accumulation tree [121],

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 85

SDLC approach can be utilized to reduce the height of the rows in

partial product matrix. As such, the number of the reduction stages

in Wallace accumulation method is deterministically reduced. Fig-

ures 4.2 to 4.8 illustrate the impact of using different degrees of

logic compression on the number of reduction stages required by

Wallace accumulation method. The number of reduction stages

is reduced with increased level of logic compression. Thus, the

hardware complexity in terms of (3, 2) and (2, 2) counters is sub-

stantially decreased. For instance, instead of six reduction stages

in the case of accurate (16×16) multiplier, the reduced number of

rows associated with 2-bit SDLC needs just four reduction stages.

Figure 4.2 shows the matrix heights of 8, 6, 4, 3 rows, this requires

total number of 107 (3, 2) counters and 28 (2, 2) counters. These

numbers are further decreased to only 69 (3, 2) counters and 23 (2,

2) counters for 3-bit logic clusters with only three reduction stages

Stage 1:
FAs=37 HAs=6

Stage 2:
FAs=35 HAs=6

Stage 3:
FAs=18 HAs=7

Stage 4:
FAs=17 HAs=9

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

CPA

: FAs

: HAs

Figure 4.2: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating 2-bit SDLC with Wallace-tree
accumulation (2-bit SDLC Wallace).

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 86

(see Figure 4.3). The height of Wallace tree is minimized from 4

to 3 and from 3 to 2 within two reduction stages when utilizing

4- and 5-bit SDLC (as shown in Figures 4.4 and 4.5). It is only

one reduction stage when it comes to accumulate the 3-row par-

tial product matrix resulted from 6- and 7-bit SDLC approach(see

Figures 4.6 and 4.7). No reduction stages are needed in the case

of 8-bit SDLC, since the height of the accumulation tree is just

2 and the final product is ready to be computed using CPA (see

Figure 4.8).

Stage 1:

FAs=34 HAs=8

Stage 2:

FAs=19 HAs=5

Stage 3:

FAs=16 HAs=10

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

CPA

: FAs

: HAs

Figure 4.3: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating 3-bit SDLC with Wallace-tree
accumulation (3-bit SDLC Wallace).

Stage 1:

FAs=20 HAs=5

Stage 2:

FAs=18 HAs=7

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

CPA

Figure 4.4: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating 4-bit SDLC with Wallace-tree
accumulation (4-bit SDLC Wallace).

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 87

Stage 1:

FAs=18 HAs=6

Stage 2:

FAs=15 HAs=9

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

CPA

Figure 4.5: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating 5-bit SDLC with Wallace-tree
accumulation (5-bit SDLC Wallace).

Stage 1:

FAs=17 HAs=7

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

CPA

Figure 4.6: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating 6-bit SDLC with Wallace-tree
accumulation (6-bit SDLC Wallace).

Stage 1:

FAs=14 HAs=9

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

CPA

Figure 4.7: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating 7-bit SDLC with Wallace-tree
accumulation (7-bit SDLC Wallace).

P

31

P

30

P

29

P

28

P

27

P

26

P

25

P

24

P

23

P

22

P

21

P

20

P

19

P

18

P

17

P

16

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

CPA

Figure 4.8: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating 8-bit SDLC with Wallace-tree
accumulation (8-bit SDLC Wallace).

For an (N ×N) Wallace-tree multiplier, the height of the matrix

in the kth reduction stage, αk is given by the following recursive

equations:

α0 =

N, for traditional Wallace-tree multiplier⌈ N

d
⌉

, for SDLC with d-bit compression level

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 88

αk+1 = 2 ·
⌊αk

3

⌋
+αk mod 3 . (4.1)

The reduction in hardware complexity achieved by SDLC leads

to low switching capacitance and leakage reading as well as short-

ened critical paths (see Section 4.5). Furthermore, different depths

of logic compression can support the Wallace-tree multiplier with

different energy-accuracy trade-offs (see Section 4.4).

Table 4.1 summarizes the impact of combining the SDLC ap-

proach with Wallace method for different degrees of logic com-

pression in the case of (16×16) multiplier. The number of reduc-

tion stages and also compressor units count are decreased with

Table 4.1: Reduction stages and logic cell counts for (16×16) proposed
multiplier when incorporating different levels of logic compres-
sion with Wallace-tree accumulation.

16×16

Wallace

Multiplier

Phase 1:

Partial

Product

Formation

Phase 2:

Partial

Product

Accumulation

Phase 3:

Carry

Propagation

Adder

No. of

Product

Terms

No.

of

Rows

No. of

Reduction

Stages

No. of

Counters
Length

of Carry

Chain
(3, 2) (2, 2)

Accurate 256 16 6 200 52 24-bit

2-bit SDLC 164 8 4 107 28 25-bit

3-bit SDLC 126 6 3 69 23 25-bit

4-bit SDLC 94 4 2 38 12 25-bit

5-bit SDLC 88 4 2 33 15 24-bit

6-bit SDLC 72 3 1 17 7 24-bit

7-bit SDLC 68 3 1 14 9 23-bit

8-bit SDLC 53 2 – – – 23-bit

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 89

higher depth of logic cluster. This is because the proposed SDLC

approach reduces the number of product terms in the partial prod-

uct bit-matrix. For instance, 2-bit SDLC is capable of minimising

the number of product term to 164 compared to 256 in the case of

accurate multiplier (about 36% reduction in the number of prod-

uct terms). The commutative remapping approach of the reduced

number of product terms translates into lower number rows in

the Wallace accumulation-tree (e.g., only quarter number of rows

in the case of 4- and 5-bit SDLC). This accounts for substantially

lower number of logic cell counts needed by Wallace accumulation

(e.g., only 107 (3, 2) counters and 28 (2, 2) counters are required to

accumulate the resulting product terms in the case of 2-bit SDLC).

The number of these counters is further reduced with increased

the level of logic compression and therefore leads to shortened

critical path of the multiplier design at the cost of error. Similarly,

Figure 4.9 and Table 4.2 illustrate the impact of increased level

of logic compression using SDLC approach coupled with Wallace

method in the case of (8×8) multiplier. As seen, a steady length

of carry chain in the CPA phase required for the approximate and

accurate designs, where as a lower number of (3, 2) and (2, 2)

counters with increased the depth of logic cluster. It is therefore

expected to have a considerable savings in all design trade-offs as

discussed in Section 4.5. Compared to (8×8) multiplier, (16×16)

multiplier can provide the multiplier design with wider group

of approximate versions. This can allow different applications to

benefit from performance-energy-quality (PEQ) trade-offs of SDLC

approach. The impact of increased degree of compression is further

investigated in implementation case studies in Chapter 5.

4.2 P R O P O S E D A P P R O X I M AT E WA L L A C E M U LT I P L I E R 90

(a)

(b)

(c)

(d)

Stage 4

Stage 2

Stage 1

Stage 1

Stage 2

Stage 1

Stage 3

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

P

15

P

14

P

13

P

12

P

11

P

10

P

9

P

8

P

7

P

6

P

5

P

4

P

3

P

2

P

1

P

0

Figure 4.9: Wallace reduction stages of an (8×8) multiplier: (a) accurate
Wallace tree; then Wallace method coupled with (b) 2-bit
SDLC; (c) 3-bit SDLC and (d) 4-bit SDLC.

Table 4.2: Reduction stages and logic cell counts for (8×8) proposed mul-
tiplier when incorporating different levels of logic compression
with Wallace-tree accumulation.

8×8

Wallace

Multiplier

Phase 1:

Partial

Product

Formation

Phase 2:

Partial

Product

Accumulation

Phase 3:

Carry

Propagation

Adder

No. of

Product

Terms

No.

of

Rows

No. of

Reduction

Stages

No. of

Counters
Length

of Carry

Chain
(3, 2) (2, 2)

Accurate 64 8 4 38 15 11-bit

2-bit SDLC 42 4 2 16 6 11-bit

3-bit SDLC 33 3 1 7 4 11-bit

4-bit SDLC 25 2 – – – 11-bit

b. Scalability of the proposed Wallace multiplier design

The proposed approach is scalable for any (N ×N) multiplier, as

shown in Algorithm 4.1. This algorithm forms all partial product

4.3 E R R O R C O M P E N S AT I O N M E T H O D (E C M) 91

terms and apply SDLC approach to generate reduced and ordered

partial product bit-matrix M as indicated in Line 7, which can

then be treated as an accumulation tree using Wallace method as

indicated in Line 8. The two rows resulting from Wallace reduc-

tion stages are combined using carry propagating adder Line 9.

The algorithm associated with the SDLC approach for any (N ×N)

multiplier is detailed in Section 3.3.

Algorithm 4.1 (N × N) Wallace-tree multiplier using SDLC ap-
proach with d-bit logic clusters.

1: procedure APPROXIMATE-WALLACE(P, A,B)
2: Output: P[1,2, ...,2N] . Final Product bits
3: Inputs: A[1,2, ..., N] . Multiplicand bits
4: B[1,2, ..., N] . Multiplier bits
5: Initialize:M[1,2, ...,

⌈
N
2

⌉
][1,2, ...,2N −1] . Reduced Matrix by SDLC

6: R[1,2][1,2, ...,2N −1] . Two rows combined by CPA

7: M ← SDLC(A,B,d) . SDLC with d-bit logic compression (Algorithm 3.2)
8: R ←WallaceReduction(M) . Reducing M to a height of two
9: P ← CarryPropagatingAdder(R) . Final product is generated

10: end procedure

4.3 E R R O R C O M P E N S AT I O N M E T H O D (E C M)

The lossy compressions exercised by the logic clusters introduce

error in the final product. This error is originated from utilizing

OR logic gate instead of expensive XOR gate as in accurate adders

(discussed in Section 3.2.2). The OR gate fails to give an accurate

sum if the two inputs are “ones", i.e., ‘1’+‘1’ 6= ‘1’∨‘1’, in such case,

the error value is ‘1’ as the adder returns ‘10’ and OR outputs ‘1’.

This section proposes a systematic error compensation method

(ECM) to reduce the impact of the error associated with the SDLC

approach. This method consists of two main steps: (i) a parallel er-

ror detection logic used to generate error-compensation bit-matrix,

and then, this matrix is compressed using OR gates to generate

an error compensation vector; (ii) this vector is then combined as

4.3 E R R O R C O M P E N S AT I O N M E T H O D (E C M) 92

an additional row in the accumulation tree or used to modify an

existing row. These steps together with the variable logic clusters,

are described below.

4.3.1 Parallel Error Detection Logic

The error associated with OR compression can be detected using

AND logic gate. For instance, 2-input AND gate is capable to detect

the error when OR gate fails to find the sum of two inputs. This is

shown in Figure 4.10. The output of 2-input AND gate is only set

to one when both of its inputs are ones. Therefore, the output of

the AND gate can be used as error signal when an error occurs.

A

B

SumOR
A

BA B

0 0
0 1
1 0
1 1

Carry

0 0
0 1
0 1
1 0

0
1
1
1

Error Signal

0
0
0
1

SumXOR

SumXOR SumOR

A AND B

Figure 4.10: 2-bit OR gate is sufficient to find the sum of two bits.

Figure 4.11 depicts the first step in the proposed error-

compensation method. This method utilizes array of AND gates to

generate error signals. Each error signal indicates an error com-

mitted by the corresponding OR gate, in such case, the AND gate

returns “one". The error signals are used for forming the error-

compensation matrix. This matrix is generated along with the

logic-OR compression in logic clusters. Thus, no overhead costs are

required due to the delay of generating both of the reduced partial

product and error-compensation matrices (see Figure 4.11). Then,

4.3 E R R O R C O M P E N S AT I O N M E T H O D (E C M) 93

Error-Compensation Vector

Error Signal

Sum bit .
.

Error Compensation Bit Resulted from Error-Detection Logic.

Partial Product Bit Ai Bi . Compressed Bit Resulted from Logic Clusters.

123456790 81

2
X

4

2
X

5

2
X

6

2
X

7

Formation of

Error-Compensation Matrix

Parallel with

Reduced Partial Product Matrix

E
rro

r-C
o
m

p
e

n
s
a

tio
n

M
a

trix

R
e

d
u

c
e

d
 P

a
rtia

l

P
ro

d
u

c
t M

a
trix

Figure 4.11: A parallel error-detection logic to generate the error compen-
sation bit-matrix in the case of 2-bit SDLC, and then, array
of OR gates to form the error-compensation vector.

the error-compensation matrix is minimized to one row, i.e., error-

compensation vector. This can be achieved by compressing the bits

with same weights together using multiple-input OR gates. Fig-

ure 4.11 shows the process of forming 10-bit error-compensation

vector in the case of (8×8) proposed multiplier with 2-bit logic

clusters. The idea is to collect the scattered “ones" in the error-

compensation bit-matrix (i.e., the cases that lead to error) in a

single row using low-complexity OR gates. The error-compensation

vector is generated based on their bit significance to be then used

for improving the accuracy of the final product.

Figure 4.12 illustrates various logic structures used to detect

such errors for 2-, 3- and 4-bit depths of logic compression. These

logic structures have been designed to run along with the logic

clusters to generate the error signals. The error detection logic are

designed in a way that the propagation delay for generating error

signals does not exceed the delay required by logic compression.

4.3 E R R O R C O M P E N S AT I O N M E T H O D (E C M) 94

Error

Signal

Sum

bit
.

.
.
.

.
(a) (b) (c)

Error

Signal

Sum

bit

Error

Signal

Sum

bit

Figure 4.12: The error-detection logic circuit parallel with the logic clus-
ters required by ECM in: (a) 2-bit; (b) 3-bit; (c) 4-bit logic
clusters.

For this reason, the error detection circuit of particularly 3- and 4-

bit logic clusters, is not designed to detect all possible errors, since

the main aim is to improve the accuracy with minimum decreases

in the performance gains. As shown in Figure 4.12, in the cases of

3- and 4-bit logic clusters, a structure of 2-input OR gate followed

by a pair of 2-input AND gates is sufficient to detect most of the

cases that lead to error, without causing any additional cost of

delay.

4.3.2 Error Compensation Vector

The second step in the proposed error-compensation method is

shown in Figure 4.13. In theory, each reduction stage in Wallace

method is responsible for accumulate a group of product terms

within three consecutive rows. The time delay taken by a reduction

stage is equivalent to a (3, 2) counter delay, i.e., a full-adder delay.

For illustration purposes, the reduced partial product matrix is

defined as an input requirement for Wallace accumulation, and

the error compensation matrix is defined as an input requirement

to generate the error compensation vector. Both of these input

matrices are produced together just after one logic-gate delay

4.3 E R R O R C O M P E N S AT I O N M E T H O D (E C M) 95

Error Compensation Bit Resulted from Error-Detection Logic.

Compressed Bit Resulted from 2-bit Logic Clusters.

123456790 81

R
e
d

u
c
tio

n

S
ta

g
e

 1

45680 71

Error-Compensation Vector

Parallel with Reduction Stage 1

Generation of

R
e
d

u
c
tio

n

S
ta

g
e

 29

Replacing the Fourth Row

by

Error-Compensation Vector

1)

2)

1

2

3

4

Figure 4.13: Improving accuracy by allowing error-compensation vector
to modify an existing row in Wallace accumulation tree.

(assuming that OR and AND gate requires the same propagation

delay, as illustrated in Figure 4.11). By allowing for maximum

parallelization, the error compensation vector can be generated

during the time period of the first reduction stage (see Figure 4.13).

As such, the the critical delay of multiplier design less affected by

the proposed ECM.

Improving accuracy of the final product depends on the way of

utilizing the error compensation vector. The idea is to permit the

error compensation vector to be accumulated on a carry-basis in

Wallace tree. In this study, two ways are suggested. The first is to

replace an existing row in Wallace-tree by the error compensation

vector. In the example of 2-bit SDLC shown in Figure 4.13, after

completion of the first reduction stage, the forth row of the Wallace

tree is transferred to the second stage without modification. Then,

this row is replaced by the error compensation vector. The second

way is to consider error compensation vector as an additional row

in the Wallace tree. Figure 4.14 exhibits an example of including

4.4 E R R O R A N A LY S I S 96

Error Compensation Bit Resulted from Error-Detection Logic.

Compressed Bit Resulted from 3-bit Logic Clusters.

123456790 81

R
e
d

u
c
tio

n

S
ta

g
e

 1

Error-Compensation Vector

Parallel with Reduction Stage 1

Generation of

A
d

d
itio

n
a

l

R
e
d

u
c
tio

n

S
ta

g
e

Including Error-

Compensation Vector as

Additional Row

1)

2)

1

2

3

11

456790 8111

Figure 4.14: Improving accuracy by including error-compensation vector
as an additional row in Wallace accumulation tree.

such a vector in the accumulation tree as an additional row in

the case of 3-bit SDLC. Note that, for both ways of the error com-

pensation, only a part of successive significant bits in the error

compensation vector is included. This is because, the aim is not

to increase the carry chain of the CPA phase. Thereby, the over-

head costs associated with the proposed ECM is at a minimum.

Compared to replacement of existing row in accumulation tree,

including the error compensation vector as additional row leads to

increase the hardware complexity and also the critical path delay

(see Section 4.5). However, the effectiveness of the proposed ECM

is examined and analysed in the next section.

4.4 E R R O R A N A LY S I S

A number of simulations are carried out to examine the impact of

proposed ECM on for different degrees of logic compression. Several

4.4 E R R O R A N A LY S I S 97

error metrics have been discussed in Section 3.4 for evaluating the

effectiveness and quantifying errors of proposed SDLC approach.

Further simulations are performed in Matlab by incorporating

a functional model of the SDLC approach with (8×8) Wallace-tree

accumulation. The response of approximate multipliers are eval-

uated for all possible combinations of operands. Table 4.3 shows

five error metrics using different depths of logic compression with

(8×8) Wallace accumulation. It can be seen that the proposed ECM

improves the accuracy for all depths of logic compression. The

MRED is improved more than 45% for 2-and 4-bit logic clusters and

(up to 75%) for 3-bit logic clusters. Similar observation for NMED

improvements (up to 76%) for 3-bit logic clusters. The increasing

trend in the error rate is expected due to the increased bit-depth

of logic cluster of the multiplier. This is because the growing like-

lihood of finding a pair of vertically aligned “ones" through two

successive rows. In such cases, the corresponding OR gate will

return an error (as detailed in Section 4.3). However, such proba-

Table 4.3: ECM drastically reduces the errors across all metrics.

(8x8) Wallace

Multiplier

EP

(%)
MED MSE

MRED

(%)

NMED

(%)

2-bit SDLC 49.11 229.38 251733.8 1.9883 0.3527

2-bit SDLC_

Modified_ECM
36.75 167.18 204883.93 1.0762 0.2571

Improvements(%) 25.17 27.12 18.61 45.87 27.11

3-bit SDLC 65.73 654.94 1590278.5 4.6847 1.0072

3-bit SDLC_ECM 43.19 162.52 187754.3 1.1725 0.2499

Improvements(%) 34.29 75.19 88.19 74.97 75.19

4-bit SDLC 77.57 2127.78 15309286 10.5835 3.2723

4-bit SDLC_ECM 69.45 1111.45 4743255 5.5382 1.7093

Improvements(%) 10.47 47.76 69.02 47.67 47.76

4.4 E R R O R A N A LY S I S 98

bility of error can be misleading, as the eventual impact of error is

reflected in error distance metrics, i.e., MRED and NMED [20].

The majority of these errors would not denote severe degrada-

tion of the final output because the occurrence of the higher errors

is regarded as very rare. This can be seen in Figure 4.15 which

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33

C
u

m
u

la
ti
v
e

 P
ro

b
a
b

ili
ty

RED (%)

2-bit_SDLC

2-bit_SDLC_ECM

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33

C
u

m
u

la
ti
v
e
 P

ro
b

a
b

ili
ty

RED (%)

3-bit_SDLC

3-bit_SDLC_ECM

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

RED (%)

4-bit_SDLC

4-bit_SDLC_ECM

(a)

(b)

(c)

Figure 4.15: Cumulative probability distribution for the error induced by
different logic compression levels coupled with the proposed
ECM in the case of (8×8) proposed multiplier.

4.5 E X P E R I M E N TA L R E S U LT S A N D D E S I G N T R A D E -O FF S 99

demonstrates the cumulative probability distribution for the rela-

tive errors resulting from Wallace-tree multiplier for different sizes

of logic clusters coupled with ECM. The proposed multiplier does

not sacrifice the precision of the more significant bits when using

SDLC approach. This can be observed in the sharp rise of the cumu-

lative probability of errors towards 1, especially for lower depth of

logic compression, such as 2- or 3-bit SDLC. Furthermore, incorpo-

rating ECM together with SDLC approach tends to produce results

that are closer to the accurate outputs. This is seen when the

cumulative probability distributions reach to 1 faster than SDLC

approach without ECM. The proposed ECM increases the probability

of trivial errors; however, it lowers the probability of occurrence of

higher RED. For example, in the case of 2-bit SDLC, the probability

of having errors with less than 1% RED, i.e., RED of 0%-1%, is in-

creased from 0.68 to 0.81 when applying ECM, while the likelihood

of RED of the range 9%-10% is decreased form 0.02 to 0.002 for

the same case. Similar observations can be made in the case of 3

and 4-bit logic clusters. The impact of increased degree of compres-

sion coupled with ECM is further investigated in the application

case-study in Section 4.5.

4.5 E X P E R I M E N TA L R E S U LT S A N D D E S I G N T R A D E -O FF S

To demonstrate the proposed approach, we applied it on different

(8×8) parallel multiplier designs. A SystemVerilog code was used

to generate synthesizable modules for Wallace-tree accumulation

structure coupled with 2-bit, 3-bit and 4-bit logic clusters. Accurate

ripple adders were used in the last phase for adding the resulting

two rows after Wallace accumulation phase. The generated codes

were implemented and synthesised using two different off-the-

4.5 E X P E R I M E N TA L R E S U LT S A N D D E S I G N T R A D E -O FF S 100

shelf tools: Mentor Graphics Questa Sim was used to compile the

SystemVerilog codes and run the associated test benches; and

Synopsys Design Compiler was utilized for synthesising all sizes

of accurate and proposed multipliers when mapping the circuits to

the Faraday’s 90nm technology library and evaluating for power,

delay and area.

Figure 4.16 illustrates the impact of proposed ECM in terms of dy-

namic/leakage power, delay, area and PDP savings with increased

degree of logic compression. The related absolute readings of the

proposed multipliers are listed in Table 4.4. As seen, there are

significant improvements in all design trade-offs. This is basically

0

10

20

30

40

50

60

70

80

Area Dynamic Power Leakage Power Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

3-bit SDLC_Wallace 3-bit SDLC_Wallace_ECM

0

10

20

30

40

50

60

70

80

Area Dynamic Power Leakage Power Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

4-bit SDLC_Wallace 4-bit SDLC_Wallace_ECM

(a)

(b)

(c)

0

10

20

30

40

50

60

70

80

Area Dynamic Power Leakage Power Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

2-bit SDLC_Wallace 2-bit SDLC_Wallace_ECM

Figure 4.16: The impact of the proposed ECM on the (8×8) approximate
Wallace multiplier with: (a) 2-bit, (b) 3-bit and (c) 4-bit logic
compression levels.

4.5 E X P E R I M E N TA L R E S U LT S A N D D E S I G N T R A D E -O FF S 101

Table 4.4: Design trade-offs for different compression levels of the pro-
posed multiplier used to obtain comparative analysis in
Fig. 4.16.

(8×8) Wallace-tree Multiplier

Accurate
2-bit

SDLC

2-bit

SDLC

_ECM

3-bit

SDLC

3-bit

SDLC

_ECM

4-bit

SDLC

4-bit

SDLC

_ECM

Area

(um2)
1726.4 1133.7 1214.4 873.4 1175.2 661.7 988.6

Dynamic

(uW)
68.46 50.09 51.14 39.88 50.56 29.42 40.51

Leakage

(uW)
3.83 2.39 2.51 1.73 2.38 1.18 1.86

Delay

(ns)
1.58 1.39 1.44 1.27 1.39 1.09 1.31

PDP

(pJ)
114.2 72.94 77.26 52.84 73.59 33.35 55.51

because SDLC approach decreases the number of reduction stages

in Wallace accumulation phase (see Section 4.2.3). Furthermore,

this reduction in hardware complexity leads to low switching ca-

pacitance and leakage reading as well as shortened critical paths.

In the case of 2-bit logic clusters, slight decreasing of critical delay

and power consumption comparing to 3-bit and 4-bit logic compres-

sions. This is because the error compensation vector is utilized by

replacing the fourth existing row without increasing the number

of reduction stages (see Section 4.3).

Combining ECM method with the SDLC translates into additional

cost of area, delay and power. For example, while the area was

divided by 2 with the 3-bit SDLC compared to the traditional Wal-

lace multiplier, it is only reduced by 30% with the 3-bit SDLC-ECM

(first item of Figure 4.16-b). This is due to increasing the number

of reduction stages when including the error compensation vector

4.5 E X P E R I M E N TA L R E S U LT S A N D D E S I G N T R A D E -O FF S 102

to the accumulation tree as additional row for the cases 3- and

4-bit SDLC approach (see Section 4.3). For dynamic and leakage

power, the reductions obtained from applying error compensation

method range from 25.3%-40.8% and 34.5%-51.5% respectively.

Furthermore, the range of savings in the operating delay for the

proposed multiplier is from 8.9%-17.1%. The reduction in hardware

complexity also leads to silicon area to be reduced by 29.7%-42.7%,

and energy is reduced as a PDP by 32.4%-51.4%. Figure 4.17 shows

the impact of proposed ECM in terms of power, delay, area and

PDP savings with increased degree of logic compression (2- to 4-bit

SDLC) for (16×16) Wallace multiplier. The related absolute read-

0

10

20

30

40

50

60

70

80

Area Dynamic Leakage Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

2-bit SDLC_Wallace 2-bit SDLC_Wallace_ECM

0

10

20

30

40

50

60

70

80

Area Dynamic Leakage Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

4-bit SDLC_Wallace 4-bit SDLC_Wallace_ECM

0

10

20

30

40

50

60

70

80

Area Dynamic Leakage Delay PDP

R
e

d
u

c
ti
o

n
 (

%
)

3-bit SDLC_Wallace 3-bit SDLC_Wallace_ECM

(a)

(b)

(c)

Figure 4.17: The impact of the proposed ECM on the (16×16) approximate
Wallace multiplier with: (a) 2-bit, (b) 3-bit and (c) 4-bit logic
compression levels.

4.5 E X P E R I M E N TA L R E S U LT S A N D D E S I G N T R A D E -O FF S 103

ings of the proposed multipliers are listed in Table 4.5. Similar to

proposed (8×8) multiplier, there are significant improvements in

all design trade-offs. As can be observed, the overhead cost asso-

ciated with replacing existing row in PPM by error-compensation

vector (Figure 4.17-a), is less than the case when combining this

vector as additional row (Figure 4.17-b and -c). For example, in

Figure 4.17-a, the area, (dynamic/leakage) power, delay and PDP

savings are slightly decreased by 4.7%, (1.5% 3.1%), 3.2% and

3.8%, respectively, compared to approximate Wallace multiplier

without applying ECM approach. While in Figure 4.17-b, the over-

head cost with ECM are increased by 17.5%, (15.6% 17%), 7.6%

and 18.2% for the same order. This is because the proposed ECM

offers different techniques to compensate the error introduced by

SDLC, with variable overhead costs. Therefore, the SDLC approach

with its potential to provide different levels of logic compression

Table 4.5: Design trade-offs for different compression levels of the pro-
posed multiplier used to obtain comparative analysis in
Fig. 4.17.

(16×16) Wallace-tree Multiplier

Accurate
2-bit

SDLC

2-bit

SDLC

_ECM

3-bit

SDLC

3-bit

SDLC

_ECM

4-bit

SDLC

4-bit

SDLC

_ECM

Area

(um2)
7036.40 4386.49 4715.80 3325.40 4555.37 2462.74 3795.43

Dynamic

(uW)
324.29 226.45 231.44 178.10 228.72 128.55 181.08

Leakage

(uW)
16.16 9.55 10.05 6.75 9.50 4.43 7.30

Delay

(ns)
3.05 2.58 2.68 2.35 2.58 2.00 2.43

PDP

(pJ)
22.45 13.59 14.44 9.64 13.71 5.81 10.16

4.6 C O N C L U D I N G R E M A R K S 104

together with the proposed ECM can allow for more diverse in PEQ

trade-offs.

4.6 C O N C L U D I N G R E M A R K S

This chapter studied two novel design approaches. First is an ap-

proximate multiplier design combines the SDLC approach with

Wallace-tree accumulation method. The reduced number of rows

resulted from configurable lossy compression, led to decreased

number of reduction stages and logic units. The results obtained

after synthesis have shown remarkable decrease in latency, power

consumption and area, compared to accurate Wallace-tree multi-

plier. This is achieved at the cost of introduced error in the less

significant bits of multiplier output.

Second is a systematic ECM approach, which consists of a par-

allel error detection logic used to generate error compensation

bit-matrix. This matrix is then compressed vertically using OR

gates to generate an error compensation vector. In order to miti-

gate the impact of error introduced by SDLC, this vector is either

considered as an additional row or used to modify an existing one.

Multiple 8- and 16-bit multipliers were designed and synthesized

to evaluate the effectiveness of ECM approach. We showed that

the proposed error compensation method effectively reduces the

resulted error from variable sizes of logic clusters at variable over-

head costs. These trade-offs are further substantiated by a case

study of convolution filter used in image processing in next chapter.

5

I M P L E M E N TAT I O N A N D VA L I D AT I O N S

5.1 I N T R O D U C T I O N

Chapter 3 and 4 demonstrated the performance-energy quality

(PEQ) trade-offs for different approximate multiplier configurations.

The SDLC approach is aimed at reducing the number of product

rows using progressive bit significance, and thereby decreasing

the number of reduction stages in Wallace-tree accumulation. This

accounts for substantially lower number of logic counts and lengths

of the critical paths at the cost of errors in lower significant bits.

These errors are minimised through a parallel error detection logic

and compensation vector approach.

This chapter demonstrates the effectiveness of the energy-

quality trade-offs achieved by the proposed approaches. These

trade-offs can be used to implement multipliers in applications. As

such, two case studies are set up. First, image processing appli-

cation where a Gaussian blur filter was designed, which demon-

strated up to 80% energy reduction with a negligible loss of image

quality. Second, we evaluate our approach in machine learning

application using perceptron classifier, showed up to 74% energy

reduction with negligible error rate. Note that, for this chapter, the

investigation into enabling energy-efficiency is done by replacing

the standard existing multiplier units across applications with

proposed approximate multipliers.

105

5.2 CA S E S T U DY 1: G AU S S I A N B L U R FI LT E R 106

5.2 CA S E S T U DY 1: G AU S S I A N B L U R FI LT E R

We evaluate the efficiency of the proposed approach using a Gaus-

sian blur filter application. The application consists of additions

and multiplications using key multipliers as building blocks. Our

analysis considers the Gaussian blur filter [117] since it is widely

used to reduce image noise and detail by acting as a low-pass filter.

This filter involves the convolution through a “kernel”, described by

a Gaussian function, with the pixels of the image. The pixel values

in the input image are multiplied by the corresponding entry of

the kernel (i.e., the pixels that overlap with the a given kernel).

Then, all the obtained multiplications are added and become a new

pixel in the output image.

Fig. 5.1 demonstrates a test platform to examine the effective-

ness of the proposed multipliers on the quality of final output

image processed by Gaussian blur filter. Different versions of 8-bit

and 16-bit multipliers together with the Gaussian blur algorithm

are combined. All modules are implemented in Matlab covering 2-,

3- and 4-bit depth clustering, in the case of (8×8) multiplication,

and from 2- to 8-bit depth clustering for (16×16) multiplication.

The Gaussian kernel is (3×3) with a 1.5 standard deviation value

and it uses 8- and 16-bit fixed point arithmetic. The Gaussian

blur filter is applied to 8-bit and 16-bit gray-scale input images

of size of (500×500) pixels. We approximate Gaussian blur by re-

placing the standard multiplication in the Gaussian filter with the

aforementioned approximate multipliers.

5.2 CA S E S T U DY 1: G AU S S I A N B L U R FI LT E R 107

Start

Initialize Gaussian

Low-Pass Filter

Multiplication

Operator

?

Input Image

1.5 standard deviation

(3X3) Gaussian kernel

(500X500) gray-scale

8- or 16-bit pixel value

Exact Approximate

Each pixel values in the
input image Pi is multiplied
by the corresponding entry

of the kernel Ki using
Matlab functions, such as

MUL_2bit_SDLC(Pi , Ki)

Kernel Convolution

Each pixel value in the
input image are multiplied

by the corresponding
entry of the kernel using
standard multiplication

operator (i.e. Pi *Ki)

Implement Matlab Function to Describe

the Selected Approximate Multiplier

8- or 16-bit

multiplications

Different degrees of

logic compression

Output ImageApprox Output Imageexact

Calculate PSNR

Ref. Image

Kernel Convolution

Figure 5.1: Flowchart diagram showing the main steps for evaluating
the impact of the proposed multiplier on the final quality of
image processed by Gaussian blur filter.

The peak signal-to-noise ratio (PSNR) is a fidelity metric used

to measure the quality of the output images. PSNR is expressed

as [55]:

PSNR = 10 log10

(
2552

MSE

)
, (5.1)

5.2 CA S E S T U DY 1: G AU S S I A N B L U R FI LT E R 108

where MSE is the mean squared-error measured with respect to the

reference pixel. To calculate the consumed energy in the multiplier

unit required to process the input image, we follow this equation:

Energy= Power∗Delay∗N , (5.2)

where Power and Delay are obtained for one multiplier design from

the synthesis tool. N is the number of multiplications necessary to

treat the input image by Gaussian filter. The energy savings are

then calculated compared to the accurate Wallace multiplier.

Fig. 5.2 and Fig. 5.3 demonstrate the impact of different bit-

depth clustering on the image quality after applying the Gaussian

blur filter. The standard multiplier and number of different levels

of approximation for the proposed (8×8) and (16×16) multipliers

are used.

As can be seen, the use of the SDLC approach can yield fruitful

results. The PSNR for the case of 2-, 3- and 4-bit logic clustering

for (8×8) SDLC are 50.2, 39 and 30 dB respectively, whereas the

PSNR values are 70.2, 61.3, 51.4, 42.8, 39.3, 83.2 and 30.2 dB, when

treating the images using 2- to 8-bit logic clustering for (16×16)

SDLC. The values of PSNR are computed compared to the image

resulting after applying Gaussian blur filtering with the case of

accurate multiplication. Thus, the proposed approach can provide

a significant dynamic energy saving up to 80.1% with acceptable

quality of output image, especially when using smaller bit depth

clusters such as 2- and 3-bit for (8×8) SDLC and 2- to 6-bit for

(16× 16) SDLC. As can be observed from Fig. 5.3, the proposed

(16×16) multiplier allows for more levels of energy/quality trade-

offs, comparing to the output quality of (8×8) multiplier in Fig. 5.2.

5.2 CA S E S T U DY 1: G AU S S I A N B L U R FI LT E R 109

2-bit SDLC 3-bit SDLC 4-bit SDLC

34.8 % 50.1% 62.6%

2-bit SDLC ECM 3-bit SDLC ECM 4-bit SDLC ECM

PSNR = 50.2 PSNR = 39 PSNR = 30

PSNR = 56.4 PSNR = 51.5 PSNR = 35.8

29.3 % 31.4% 45.9%

Exact Wallace Multiplier

Reference Image

Energy Saving/Image

Figure 5.2: Output quality after applying Gaussian blur filtering for
different degrees of logic compression of the proposed (8×8)
multiplier.

5.2 CA S E S T U DY 1: G AU S S I A N B L U R FI LT E R 110

2-bit SDLC 3-bit SDLC 4-bit SDLC

34.8 % 50.1% 62.6%

5-bit SDLC 6-bit SDLC 7-bit SDLC

PSNR = 50.2 PSNR = 39 PSNR = 30

PSNR = 56.4 PSNR = 51.5 PSNR = 35.8

29.3 % 31.4% 45.9%

Exact Wallace Multiplier

Reference Image

Energy Saving/Image

8-bit SDLC

PSNR = 30.2

80.1 %

Figure 5.3: Output quality after applying Gaussian blur filtering for
different degrees of logic compression of of the proposed (16×
16) multiplier.

5.3 CA S E S T U DY 2: P E R C E P T R O N C L A S S I FI E R 111

5.3 CA S E S T U DY 2: P E R C E P T R O N C L A S S I FI E R

Neural networks are flexible model functions that are built up from

the single or cascade of several layers, each of which is a collection

of perceptron functions. A perceptron is a binary linear classifier

that divides space into parts using linear functions [39]. We im-

plement the proposed multiplier in a single layer feed-forward

neural perceptron, as shown in Fig. 5.4. We exercise perceptron for

learning a binary classifier, i.e. a function which takes the inputs

x1, x2, ..., xm and produces an output value y. The output y is a

single binary value, expressed as:

y=

+1, w · x+b > 0,

−1, otherwise,

(5.3)

where w is a vector of real-valued weights, which vary over run-

time depending on the number of training input samples and the

training rate, w · x is the dot product, i.e.
∑m

i=1 wi · xi, m is the

number of inputs to the perceptron and b is the bias (0 used in

our example). We used (5.3) to classify patterns that are linearly

separable [40].

Fig. 5.5 shows a test platform to evaluate the effectiveness of

proposed multipliers on perceptron-based machine learning appli-

...
Inputs

Bias b

Output

y

x1

x2

xm

w1

w2

w3

Figure 5.4: Signal-flow graph of the perceptron.

5.3 CA S E S T U DY 2: P E R C E P T R O N C L A S S I FI E R 112

Start

Adjust Weights wi

and Bias b

Input Vectors

Count >1000

?

Random Input

Vectors xi
1300 integer vectors

between (0 to 65535)

300 training set

Multiply each Integer Input

in the Test Set Vectors with

Corresponding Weight

𝒚 = ∑ wi • xi b

Implement Matlab Functions to Describe Different

integer (16X16) Approximate Multipliers

Calculate Error rate

(M /1000)

No

1000 test set

Linearly Separable Sets

Select a Matlab function to

perform approximate

multiplication operator

Fixed-point multiplication is

used to multiply the integer

inputs with fractional weights

Yes

All addition and subtraction

operations are done using

exact computation Count Mismatch

Classification Points M

+

Figure 5.5: Flowchart diagram demonstrating the main steps for evalu-
ating the impact of the proposed multiplier on a perceptron-
based Classifier.

cation. For perceptron learning algorithm, a training set is used

to train the perceptron to classify inputs correctly. This is accom-

plished by adjusting the connecting weights and the bias to prop-

erly handle linearly separable sets. All input sets are randomly gen-

erated and independently distributed to generate integer numbers

between (0 to 65535) to allow for using 16-bit multiplication. Then,

we evaluate the classifier against test set of 1000 two-dimensional

points that belong to two classes [-1,+1], see (5.3). The approxi-

5.3 CA S E S T U DY 2: P E R C E P T R O N C L A S S I FI E R 113

mate multipliers are used to multiply the perceptron inputs by the

weights vectors.

However, for all experiments, fractional numbers are computed

by using fixed-point representation. The idea is to exploit low-cost

integer multipliers to perform multiplication of each integer input

in the test set with the corresponding fractional weight w. To per-

form fixed-point multiplication, the binary point is ignored by scal-

ing up the weights by a constant factor and then, determine the po-

sition of the binary point for the result [84]. For instance, if the wi =
(0001.100110110001)2 = (0001100110110001)2 × (2−12)10 and xi =
(1100100100100101)2, then the wi × xi = (0001100110110001)2 ×
(1100100100100101)2 × (2−12)10. This means that the binary point

is put to the left of the 12th bit of the final product to obtain the

desired multiplication result. The addition and subtraction opera-

tions used to generate the output value y are done by performing

exact computation. This allows only multipliers to impact the qual-

ity of classification done by the perceptron.

The error rate (ER) is the ratio of mismatch between classified

class and the actual output. Fig. 5.6 demonstrates the comparison

of the classification problem with accurate (16× 16) multiplier

and the proposed 2-bit SDLC design. Compared to the accurate

multiplier, the proposed SDLC multiplier classifies six points, from

the 1000 points in the testing set, as class 1 by mistake. Note that,

even the design that uses the accurate multiplier cannot classify

all points correctly (three mismatched points).

5.3 CA S E S T U DY 2: P E R C E P T R O N C L A S S I FI E R 114

(a)

(b)

Figure 5.6: The test set perceptron classification using; (a) accurate mul-
tiplier; (b) 2-bit SDLC proposed multiplier, where the axises
show the random inputs between 0 to 65535. (blue and red
points represent two classes -1 and +1, black dots for mis-
match classification points.)

5.4 C O N C L U D I N G R E M A R K S 115

Table 5.1 shows the comparative error rates and energy advan-

tages of our approach and various (16×16) multipliers. The energy

savings is calculated by (5.2). The proposed approach outperforms

the other designs and can provide energy saving of up to 74.2%

with acceptable error rates, especially when utilizing lower bit

depth clusters such as 2- and 3-bit SDLC. However, for 4-bit SDLC,

the increased ER in Table 5.1, is expected. This is because higher

depth of logic clusters affects the accuracy when multiplying the

inputs with their associated weights. When compared with exist-

ing approaches, such as ETM [66] and Kulkarni et al. [65], the 4-bit

SDLC produces a solution with comparable ER.

Table 5.1: Error rate results and energy savings for perceptron classifier

(16× 16) Multiplier ER (%) Energy savings (%)

Accurate 0.3 –

Proposed (2-bit SDLC) 0.6 40.2

Proposed (3-bit SDLC) 2.2 68.7

Proposed (4-bit SDLC) 12.7 74.2

ETM [66] 12.1 38.2

Kulkarni [65] 6.7 27.4

5.4 C O N C L U D I N G R E M A R K S

This chapter showed an investigation into enabling energy-

efficiency by implementing the SDLC design approaches in

imprecision-resilient applications. This investigation involves a

various group of (8×8) and (16×16) multipliers with different levels

of approximations achieved through configurable logic clustering.

The multiplier designs were implemented in two real-application

case studies demonstrating comparative advantages of the pro-

posed approaches.

5.4 C O N C L U D I N G R E M A R K S 116

The first case study shows energy-quality trade-offs of SDLC

multiplier applied in an image processing application. A Gaus-

sian blur filter was designed to investigate into these trade-offs,

demonstrating up to 80% energy reduction with a minor loss in

image quality. A group of simulations was carried out to examine

the effectiveness of ECM, showing an increase in the image quality

with comparative energy overhead costs.

The second case study evaluates the SDLC approach in machine

learning application. The energy-quality trade-offs are leveraged

in a perceptron-based classification. Using different configurations

of SDLC multiplier led to substantial reductions in the energy

consumed by the perceptron (up to 74%), with negligible error

rate. The literature has not shown many research works to exploit

approximate multiplier design in machine learning applications.

Very recently, a promising efforts for using approximate multiplier

for extracting patterns and detecting trends in neural computing

paradigm can be found [102].

6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 S U M M A R Y A N D C O N C L U S I O N S

Approximate computing has recently gained a lot of traction as

a viable alternative to exact computing in many of imprecision-

resilient applications. It offers various design techniques for build-

ing highly performance- and energy-efficient on-chip systems at

different abstraction levels. As one of the de facto sub-area of ap-

proximate circuits, approximate arithmetic (such as adder and

multiplier) has received more attention in the literature. This the-

sis proposed an investigation into approximate multiplier design

as a promising basis for tackling the performance/energy efficiency

challenges in the electronics and ubiquitous computing industry.

This section summarises the main conclusions drawn from this

thesis.

Multipliers, with complex logic design, have been considered as

a real challenge in modern applications. This is either because they

are the most energy-demanding data processing units or due to

the large number of multiplications required to compute outcomes.

The literature shows different research efforts to use approximate

multiplier to improve the computational and energy efficiency with

various degrees of accuracy loss. The key design principle of these

efforts is either to apply functional (such as reducing logic com-

plexity) or timing (such as VOS and over-clocking) approximations,

at different abstraction levels. However, the state-of-the-art tech-

117

6.1 S U M M A R Y A N D C O N C L U S I O N S 118

niques of approximate multipliers face different challenges, which

are discussed in Chapter 2.

To mitigate the impact of challenges, a novel energy-efficient

approximate multiplier design using significance-driven logic com-

pression (SDLC) approach, have been proposed. The SDLC approach

has the ability to reduce the number of product terms by exer-

cising variable sizes of logic clusters, whose main component is

low-complexity structure of OR logic gates. Then the commuta-

tive remapping method is used to reduce the number of product

rows. As such, the complexity of the multiplier in terms of logic

cell counts and lengths of critical paths is drastically reduced. The

results obtained after synthesis have shown substantial decrease

in run-time, power consumption and even in silicon area. On a

statistical basis, various error metrics, such as NMED and MRED,

show how the impact of error is alleviated when the size of the

multiplier is increased. Additionally, the error distributions show

high right-skewness for error probabilities, indicating that the

proposed multiplier gives close to exact products for most inputs.

This is because the SDLC approach preserves higher-significance

bits of the final product, to a large extent. We demonstrate the

performance-energy-quality (PEQ) trade-offs for variable levels of

approximations achieved through configurable logic clustering,

showing that higher depth of clustering achieves considerable

savings in all design trade-offs. Additionally, we show that the

proposed multiplier is scalable for any (N ×N) size with d-bit com-

pression. Also, a comparative approach is proposed to examine

the SDLC approach against different state-of-the-art approximate

multipliers. We show that the proposed multiplier outperforms

in terms area, power, delay and PDP, especially with higher bit-

widths, such as 16- and 32-bit multipliers. The implementation

6.1 S U M M A R Y A N D C O N C L U S I O N S 119

requirements of proposed approach when performing signed multi-

plication is also described.

The advantages achieved by SDLC approach can be harnessed

to benefit different schemes of standard multiplication. In this

work, we combine the SDLC approach together with a Wallace-tree

accumulation method to shorten the number of reduction stages.

The SDLC approach aims to decrease the number of product rows,

while Wallace method is applied to reduce these rows to the height

of two before the final product is generated by carry propagating

adder (CPA). As such, the hardware complexity of the multiplier

implementation is drastically reduced. The results obtained af-

ter synthesis have revealed remarkable improvements in latency,

area and power consumption. These savings have been achieved

at variable costs of error, depending on the level of approxima-

tion performed by variable depths of logic clusters. To mitigate

the impact of such error, a parallel error-detection-compensation

method (ECM) is proposed using low-complexity logic structure.

This method aims at generating error compensation vector to ei-

ther combine it as additional row in the accumulation tree or to

replace one of the existing rows. We have examined the effective-

ness of the ECM, based on the results after synthesis and the error

analysis. We demonstrate that using SDLC along with standard

schemes of multiplication can extract manifold improvements with

a minimal loss in output quality. Furthermore, we establish that

the skewed error behaviour for different combinatorial pattern of

inputs can be mitigated by using ECM at low overhead cost.

The PEQ trade-offs achieved by the proposed multiplier designs

are investigated into two real-application case studies demonstrat-

ing comparative advantages of SDLC approach. First, Gaussian

blur filter is designed, demonstrating remarkable energy reduction

6.2 C R I T I CA L R E V I E W A N D F U T U R E W O R K 120

with a meagre loss of image quality. Second, perceptron classifier

is used to evaluate our approach in machine learning applica-

tion, showing that the proposed multiplier design can do its job

in classifying inputs with negligible error rate. These case studies

show that exploiting advantages of the proposed design is highly

conducive to significant energy improvements with an almost im-

perceptible loss of application quality.

6.2 C R I T I CA L R E V I E W A N D F U T U R E W O R K

The objectives of this thesis include opening a new research hori-

zons in future approximate multiplier designs. Therefore, many

research directions can be drawn and motivated from this thesis to

achieve more performance and energy efficiency. The limitations

of this work and directions for future research are discussed as

follows:

•Dynamic Reconfigurability: The performance-energy-quality

(PEQ) derived from the SDLC approach depends on the configu-

ration parameters, such as the size of the multiplier and depth

of logic compression (see Section 3.3). The SDLC approach pro-

vides design-time configurable logic clustering of product terms,

which is suitably chosen for a given energy-accuracy trade-off.

However, as the quality requirements of applications may vary

significantly at runtime, accuracy-configurable approximate mul-

tiplier designs are preferable. This can be done by implementing

systematic models that evaluate different depth logic compression

for different application quality constraints. Similarly, the pro-

posed error-detection logic and error-compensation method (ECM)

could configure runtime accuracy by controlling the length/value

of error-compensation vector.

6.2 C R I T I CA L R E V I E W A N D F U T U R E W O R K 121

•Dynamic Voltage Frequency Scaling (DVFS): Due to the reduced

number of rows in the accumulation tree, the critical path delay in

the proposed multiplier is drastically shortened (see Section 3.5).

This can be leveraged to improve energy/performance efficiency

by allowing the voltage/frequency to be set for reduction in en-

ergy consumption or increasing the throughput of multiplication,

without introducing additional timing errors. For instance, for

power-adaptive computing purposes, a design may use various im-

plementations of approximate and exact multipliers to execute the

workload. This can be explioted by slack reclamation approach [99],

which utilizes the available slack time of the tasks executed by

approximate multipliers to deliberately slow down the execution

(e.g. scaling down the operational clock frequency). The aim is to

reduce power/energy, while meeting performance deadlines.

•Systematic Analysis and Verification: In this work we analyse

the impact of the error derived from various levels of approxima-

tions by performing statistical techniques (Monte-Carlo simula-

tions). These techniques are very time consuming (e.g. 32-bit and

64-bit multipliers), and not flexible enough to support the design

of the multiplier where formal error bounds can be given as a part

of the input. Conventional Boolean analysis techniques (i.e., verifi-

cation tools such as Boolean satisfiability (SAT) solvers and Binary

Decision Diagrams (BDDs)) can be used to ensure that the se-

lected approximations satisfy a given quality constraints; however,

these techniques have some limitations, such as for cases where

the BDDs cannot be constructed [127] (e.g., larger bit-width mul-

tipliers), or where time consuming loops are required for fitness

function [15]. As such, the use of the SDLC approach in indus-

trial practice could be limited by the lack of verification. Finding

closed-form expression for faithful logic compression in the SDLC

6.2 C R I T I CA L R E V I E W A N D F U T U R E W O R K 122

approach is very effective choice to this end; however, it requires

good understanding of a range of aspects, such as parametriza-

tion and analytic error bounds, which are both not simple and

highly application dependent. As a consequence, similar to other

existing approximate circuits, the systematic analysis and verifica-

tion of the proposed multiplier is also being considered for future

research.

We believe that the research outcomes generated by this thesis

will be useful for circuit design community, and continue inspire

further research and development in the above-mentioned direc-

tions.

Part II

Thesis Bibliography

123

B I B L I O G R A P H Y

[1] Faraday technology corporation. http://www.

faraday-tech.com. [Online; accessed 19-July-2018].

[2] K. Al-Maaitah, G. Tarawneh, A. Soltan, I. Qiqieh, and

A. Yakovlev. Approximate adder segmentation technique

and significance-driven error correction. In PATMOS, pages

1–6, 2017. doi: 10.1109/PATMOS.2017.8106986.

[3] J. Alspector, J. W. Gannett, S. Haber, M. B. Parker, and

R. Chu. A VLSI-efficient technique for generating multiple

uncorrelated noise sources and its application to stochas-

tic neural networks. IEEE Transactions on Circuits and

Systems, 38(1):109–123, Jan 1991. ISSN 0098-4094.

[4] A. S. G. Andrae and T. Edler. On global electricity usage of

communication technology: Trends to 2030. Challenges, 6(1):

117–157, 2015. ISSN 2078-1547. doi: 10.3390/challe6010117.

URL http://www.mdpi.com/2078-1547/6/1/117. [Online;

accessed 19-July-2018].

[5] C. R. Baugh and B. A. Wooley. A two’s complement paral-

lel array multiplication algorithm. IEEE Transactions on

Computers, C-22(12):1045–1047, 1973. ISSN 0018-9340. doi:

10.1109/T-C.1973.223648.

[6] D. Bera, S. Maitra, S. Roychowdhury, and S. Chakraborty.

Diagnosis of single faults in quantum circuits. arXiv preprint

arXiv:1512.05051, 2015.

124

http://www.faraday-tech.com
http://www.faraday-tech.com
http://www.mdpi.com/2078-1547/6/1/117

B I B L I O G R A P H Y 125

[7] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De

Meer, M. Q. Dang, and K. Pentikousis. Energy-efficient

cloud computing. The computer journal, 53(7):1045–1051,

2010.

[8] K. Bhardwaj and P. S. Mane. ACMA: Accuracy-configurable

multiplier architecture for error-resilient System-on-Chip.

In 2013 8th International Workshop on Reconfigurable and

Communication-Centric Systems-on-Chip (ReCoSoC), pages

1–6, July 2013. doi: 10.1109/ReCoSoC.2013.6581532.

[9] K. Bhardwaj, P. S. Mane, and J. Henkel. Power- and

area-efficient approximate wallace tree multiplier for error-

resilient systems. In ISQED, pages 263–269, 2014. doi:

10.1109/ISQED.2014.6783335.

[10] P. Bonatto and V. G. Oklobdzija. Evaluation of Booth’s al-

gorithm for implementation in parallel multipliers. In Con-

ference Record of The Twenty-Ninth Asilomar Conference on

Signals, Systems and Computers, volume 1, pages 608–610

vol.1, Oct 1995. doi: 10.1109/ACSSC.1995.540620.

[11] A. D. Booth. A signed binary multiplication technique. The

Quarterly Journal of Mechanics and Applied Mathematics,

4(2):236–240, 1951. doi: 10.1093/qjmam/4.2.236.

[12] S. Boroumand, H. P. Afshar, P. Brisk, and S. Mohammadi.

Exploration of approximate multipliers design space using

carry propagation free compressors. In 2018 23rd Asia

and South Pacific Design Automation Conference (ASP-

DAC), pages 611–616, Jan 2018. doi: 10.1109/ASPDAC.2018.

8297390.

B I B L I O G R A P H Y 126

[13] M. A. Breuer. Intelligible test techniques to support error-

tolerance. In 13th Asian Test Symposium, pages 386–393,

Nov 2004. doi: 10.1109/ATS.2004.51.

[14] D. J. Brown and C. Reams. Toward energy-efficient comput-

ing. Communications of the ACM, 53(3):50–58, 2010.

[15] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and

T. Vojnar. Approximating complex arithmetic circuits with

formal error guarantees: 32-bit multipliers accomplished.

In ICCAD, pages 416–423, 2017. doi: 10.1109/ICCAD.2017.

8203807.

[16] L. N. Chakrapani, B. E. Akgul, S. Cheemalavagu, P. Kork-

maz, K. V. Palem, and B. Seshasayee. Ultra-efficient (em-

bedded) SOC architectures based on probabilistic CMOS

(PCMOS) technology. In Design, Automation and Test in

Europe, 2006. DATE’06. Proceedings, volume 1, pages 1–6.

IEEE, 2006.

[17] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.

Analysis and characterization of inherent application re-

silience for approximate computing. In DAC, page 113, 2013.

[18] H. Cho and E. E. J. Swartzlander. Serial parallel multiplier

design in quantum-dot cellular automata. In 18th IEEE

Symposium on Computer Arithmetic (ARITH ’07), pages

7–15, June 2007. doi: 10.1109/ARITH.2007.32.

[19] V. Choi. Systems, devices, and methods for analog processing,

2012. US Patent 8,190,548.

[20] I. Chong, H. Y. Cheong, and A. Ortega. New quality met-

ric for multimedia compression using faulty hardware. In

VPQM for Consumer Electronics, pages 267–272, 2006.

B I B L I O G R A P H Y 127

[21] A. Cilardo, D. De Caro, N. Petra, F. Caserta, N. Maz-

zocca, E. Napoli, and A. G. M. Strollo. High speed spec-

ulative multipliers based on speculative carry-save tree.

IEEE Transactions on Circuits and Systems I: Regular Pa-

pers, 61(12):3426–3435, Dec 2014. ISSN 1549-8328. doi:

10.1109/TCSI.2014.2337231.

[22] G. Csaba and W. Porod. Computational study of spin-torque

oscillator interactions for non-Boolean computing applica-

tions. IEEE Transactions on Magnetics, 49(7):4447–4451,

July 2013. ISSN 0018-9464. doi: 10.1109/TMAG.2013.

2244202.

[23] L. Dadda. Some schemes for parallel multipliers. Alta

frequenza, 34(5):349–356, 1965.

[24] V. De. Energy-efficient computing in nanoscale CMOS. IEEE

Design Test, 33(2):68–75, 2016. ISSN 2168-2356. doi: 10.

1109/MDAT.2015.2513400.

[25] T. Drane, T. Rose, and G. A. Constantinides. On the system-

atic creation of faithfully rounded truncated multipliers and

arrays. IEEE Transactions on Computers, (1):2513–2525,

2013.

[26] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester,

and T. Mudge. Near-threshold computing: Reclaiming

Moore’s law through energy efficient integrated circuits.

Proceedings of the IEEE, 98(2):253–266, Feb 2010. ISSN

0018-9219. doi: 10.1109/JPROC.2009.2034764.

[27] R. P. Duarte and C. S. Bouganis. A unified framework for

over-clocking linear projections on FPGAs under PVT varia-

B I B L I O G R A P H Y 128

tion. In International Symposium on Applied Reconfigurable

Computing, pages 49–60. Springer, 2014.

[28] R. P. Duarte and C. S. Bouganis. Zero-latency datapath er-

ror correction framework for over-clocking DSP applications

on FPGAs. In 2014 International Conference on ReConFig-

urable Computing and FPGAs (ReConFig14), pages 1–7, Dec

2014. doi: 10.1109/ReConFig.2014.7032566.

[29] M. D. Ercegovac. On approximate arithmetic. In Asilomar

Conference on Signals, Systems and Computers, pages 126–

130, 2013. doi: 10.1109/ACSSC.2013.6810243.

[30] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,

Nam Sung Kim, and K. Flautner. Razor: circuit-level correc-

tion of timing errors for low-power operation. IEEE Micro, 24

(6):10–20, 2004. ISSN 0272-1732. doi: 10.1109/MM.2004.85.

[31] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam,

and D. Burger. Dark silicon and the end of multicore scaling.

In 2011 38th Annual International Symposium on Computer

Architecture (ISCA), pages 365–376, June 2011.

[32] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Archi-

tecture support for disciplined approximate programming.

SIGPLAN Not., 47(4):301–312, 2012. ISSN 0362-1340. doi:

10.1145/2248487.2151008.

[33] H. Esmaeilzadeh, A. Sampson, M. Ringenburg, L. Ceze,

D. Grossman, and D. Burger. Addressing dark silicon chal-

lenges with disciplined approximate computing. In Proc.

ISCA, pages 1–4, 2012.

[34] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam,

and D. Burger. Power challenges may end the multicore

B I B L I O G R A P H Y 129

era. Commun. ACM, 56(2):93–102, February 2013. ISSN

0001-0782.

[35] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neu-

ral acceleration for general-purpose approximate programs.

Commun. ACM, 58(1):105–115, 2014. ISSN 0001-0782.

[36] D. Esposito, D. De Caro, E. Napoli, N. Petra, and A. G. M.

Strollo. On the use of approximate adders in carry-save

multiplier-accumulators. In 2017 IEEE International Sym-

posium on Circuits and Systems (ISCAS), pages 1–4, May

2017. doi: 10.1109/ISCAS.2017.8050437.

[37] D. Esposito, A. G. M. Strollo, and M. Alioto. Low-power

approximate MAC unit. In PRIME, pages 81–84, 2017. doi:

10.1109/PRIME.2017.7974112.

[38] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and

N. Petra. Approximate multipliers based on new approxi-

mate compressors. IEEE Transactions on Circuits and Sys-

tems I: Regular Papers, pages 1–14, 2018. ISSN 1549-8328.

doi: 10.1109/TCSI.2018.2839266.

[39] F. Fleuret. Deep learning – linear classifiers, percep-

tron. 2018. URL https://documents.epfl.ch/users/f/

fl/fleuret/www/dlc/dlc-slides-3a-linear.pdf. [On-

line; accessed 19-July-2018].

[40] Y. Freund and R. E. Schapire. Large margin classification

using the perceptron algorithm. Machine learning, 37(3):

277–296, 1999.

[41] J. Gantz and D. Reinsel. Extracting

value from chaos, 2011. URL http://

https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/dlc-slides-3a-linear.pdf
https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/dlc-slides-3a-linear.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf

B I B L I O G R A P H Y 130

www.emc.com/collateral/analyst-reports/

idc-extracting-value-from-chaos-ar.pdf. [Online;

accessed 19-July-2018].

[42] M. Gao, Q. Wang, A. S. K. Nagendra, and G. Qu. A novel

data format for approximate arithmetic computing. In 2017

22nd Asia and South Pacific Design Automation Conference

(ASP-DAC), pages 390–395, Jan 2017. doi: 10.1109/ASPDAC.

2017.7858354.

[43] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Prob-

abilistic arithmetic and energy efficient embedded signal

processing. In Proceedings of the 2006 International Confer-

ence on Compilers, Architecture and Synthesis for Embedded

Systems, CASES ’06, pages 158–168, New York, NY, USA,

2006. ACM. ISBN 1-59593-543-6.

[44] S. Ghosh, S. Bhunia, and K. Roy. CRISTA: A new paradigm

for low-power, variation-tolerant, and adaptive circuit syn-

thesis using critical path isolation. IEEE TCAD/ICAS, 26

(11):1947–1956, 2007. ISSN 0278-0070. doi: 10.1109/TCAD.

2007.896305.

[45] A. Gorantla and D. P. Design of approximate compressors

for multiplication. J. Emerg. Technol. Comput. Syst., 13(3):

44:1–44:17, April 2017. ISSN 1550-4832.

[46] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathanand,

and K. Roy. IMPACT: Imprecise adders for low-power ap-

proximate computing. In ISLPED, pages 409–414, 2011.

ISBN 978-1-61284-660-6.

[47] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-

power digital signal processing using approximate adders.

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf

B I B L I O G R A P H Y 131

IEEE TCAD/ICAS, 32:124–137, 2013. ISSN 0278-0070. doi:

10.1109/TCAD.2012.2217962.

[48] J. Han and M. Orshansky. Approximate computing: An

emerging paradigm for energy-efficient design. In Test Sym-

posium (ETS), 2013 18th IEEE European, pages 1–6. IEEE,

2013.

[49] J. Han and M. Orshansky. Approximate computing: An

emerging paradigm for energy-efficient design. In ETS,

pages 1–6, 2013. doi: 10.1109/ETS.2013.6569370.

[50] L. Hardesty. Mimicking cells with transis-

tors, 2011. URL http://news.mit.edu/2011/

analog-systems-biology-0928. [Online; accessed

19-July-2018].

[51] L. Hardesty. Analog computing returns,

2016. URL http://news.mit.edu/2016/

analog-computing-organs-organisms-0620. [Online;

accessed 19-July-2018].

[52] S. Hashemi, R. I. Bahar, and S. Reda. DRUM: A dynamic

range unbiased multiplier for approximate applications. In

2015 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 418–425, Nov 2015. doi: 10.

1109/ICCAD.2015.7372600.

[53] T. Higgs. Energy efficient computing. In Electronics & the

Environment, Proceedings of the 2007 IEEE International

Symposium on, pages 210–215. IEEE, 2007.

[54] L. Holik, O. Lengal, A. Rogalewicz, L. Sekanina, Z. Vasicek,

and pages=1–6 year=2016 T. Vojnar, booktitle=2nd Work-

shop on Approximate Computing (WAPCO 2016) HiPEAC.

http://news.mit.edu/2011/analog-systems-biology-0928
http://news.mit.edu/2011/analog-systems-biology-0928
http://news.mit.edu/2016/analog-computing-organs-organisms-0620
http://news.mit.edu/2016/analog-computing-organs-organisms-0620

B I B L I O G R A P H Y 132

Towards formal relaxed equivalence checking in approxi-

mate computing methodology.

[55] A. Hore and D. Ziou. Image quality metrics: PSNR vs. SSIM.

In Pattern recognition (ICPR), 2010 20th international con-

ference on, pages 2366–2369. IEEE, 2010.

[56] C. Y. Huang, Z. S. Yu, Y. C. Hu, T. C. Tsou, C. Y. Wang, and

Y. C. Chen. Correctness analysis and power optimization

for probabilistic Boolean circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

34(4):615–628, 2015.

[57] K. Jain and V. V. Vazirani. Approximation algorithms for

metric facility location and k-median problems using the

primal-dual schema and Lagrangian relaxation. JACM, 48

(2):274–296, 2001.

[58] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han.

A comparative evaluation of approximate multipliers. In

International Symposium on NANOARCH, pages 191–196,

2016. doi: 10.1145/2950067.2950068.

[59] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han. A review,

classification, and comparative evaluation of approximate

arithmetic circuits. J. Emerg. Technol. Comput. Syst., 13(4):

60:1–60:34, August 2017. ISSN 1550-4832.

[60] J. M. Jou, S. R. Kuang, and R. D. Chen. Design of low-error

fixed-width multipliers for DSP applications. IEEE TCAS-II:

Analog and Digital Signal Processing, 46(6):836–842, 1999.

ISSN 1057-7130. doi: 10.1109/82.769795.

[61] S. Kemp. 2018 global digital reports, 2018.

URL https://wearesocial.com/blog/2018/01/

https://wearesocial.com/blog/2018/01/global-digital-report-2018
https://wearesocial.com/blog/2018/01/global-digital-report-2018

B I B L I O G R A P H Y 133

global-digital-report-2018. [Online; accessed 19-

July-2018].

[62] L. B. Kish. End of Moore’s law: thermal (noise) death of

integration in micro and nano electronics. Physics Letters A,

305(3-4):144–149, 2002.

[63] L. B. Kish. End of Moore’s law: thermal (noise) death of

integration in micro and nano electronics. Physics Letters A,

305(3-4):144–149, 2002.

[64] H. J. Ko and S. F. Hsiao. Design and application of faithfully

rounded and truncated multipliers with combined deletion,

reduction, truncation, and rounding. IEEE Transactions on

Circuits and Systems II: Express Briefs, 58(5):304–308, May

2011. ISSN 1549-7747. doi: 10.1109/TCSII.2011.2148970.

[65] P. Kulkarni, P. Gupta, and M. D. Ercegovac. Trading accu-

racy for power in a multiplier architecture. volume 7, pages

490–501. American Scientific Publishers, 2011.

[66] K. Y. Kyaw, W. L. Goh, and K. S. Yeo. Low-power high-speed

multiplier for error-tolerant application. In EDSSC, pages

1–4, 2010. doi: 10.1109/EDSSC.2010.5713751.

[67] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Mon-

roe, and J. L. O’Brien. Quantum computers. Nature, 464

(7285):45, 2010.

[68] C. Li, Y. Li, H. Jiang, W. Song, P. Lin, Z. Wang, J. J. Yang,

Q. Xia, M. Hu, E. Montgomery, J. Zhang, N. Davila, C. E.

Graves, Z. Li, J. P. Strachan, R. S. Williams, N. Ge, M. Bar-

nell, and Q. Wu. Large memristor crossbars for analog

computing. In 2018 IEEE International Symposium on

https://wearesocial.com/blog/2018/01/global-digital-report-2018
https://wearesocial.com/blog/2018/01/global-digital-report-2018

B I B L I O G R A P H Y 134

Circuits and Systems (ISCAS), pages 1–4, May 2018. doi:

10.1109/ISCAS.2018.8351877.

[69] J. Liang, J. Han, and F. Lombardi. New metrics for the

reliability of approximate and probabilistic adders. IEEE

Transactions on Computers, 62(9):1760–1771, 2013. ISSN

0018-9340. doi: 10.1109/TC.2012.146.

[70] C. H. Lin and I. C. Lin. High accuracy approximate multi-

plier with error correction. In 2013 IEEE 31st International

Conference on Computer Design (ICCD), pages 33–38, Oct

2013. doi: 10.1109/ICCD.2013.6657022.

[71] C. H. Lin and I. C. Lin. High accuracy approximate multi-

plier with error correction. In ICCD, pages 33–38, 2013. doi:

10.1109/ICCD.2013.6657022.

[72] C. Liu, J. Han, and F. Lombardi. A low-power, high-

performance approximate multiplier with configurable par-

tial error recovery. In DATE, pages 1–4, 2014. doi:

10.7873/DATE.2014.108.

[73] Y. Liu, T. Zhang, and K. K. Parhi. Computation error anal-

ysis in digital signal processing systems with overscaled

supply voltage. IEEE Transactions on VLSI Systems, 18(4):

517–526, 2010. ISSN 1063-8210. doi: 10.1109/TVLSI.2009.

2012863.

[74] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas.

Bio-inspired imprecise computational blocks for efficient

VLSI implementation of soft-computing applications. IEEE

Transactions on Circuits and Systems I: Regular Papers, 57

(4):850–862, April 2010. ISSN 1549-8328. doi: 10.1109/TCSI.

2009.2027626.

B I B L I O G R A P H Y 135

[75] M. Masadeh, O. Hasan, and S. Tahar. Comparative study of

approximate multipliers. In Proceedings of the 2018 on Great

Lakes Symposium on VLSI, pages 415–418. ACM, 2018.

[76] D. May and W. Stechele. Voltage over-scaling in sequential

circuits for approximate computing. In 2016 International

Conference on Design and Technology of Integrated Systems

in Nanoscale Era (DTIS), pages 1–6, April 2016. doi: 10.

1109/DTIS.2016.7483887.

[77] A. K. Mishra, R. Barik, and S. Paul. iACT: A software-

hardware framework for understanding the scope of approx-

imate computing. In Workshop on Approximate Computing

Across the System Stack (WACAS), 2014.

[78] S. Mittal. A survey of techniques for approximate computing.

ACM Comput. Surv., 48(4):1–33, 2016. ISSN 0360-0300. doi:

10.1145/2893356.

[79] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy.

Design of voltage-scalable meta-functions for approximate

computing. In DATE, pages 1–6, 2011. doi: 10.1109/DATE.

2011.5763154.

[80] A. Momeni, J. Han, P. Montuschi, and F. Lombardi. Design

and analysis of approximate compressors for multiplication.

IEEE Transactions on Computers, 64(4):984–994, April 2015.

ISSN 0018-9340. doi: 10.1109/TC.2014.2308214.

[81] G. E. Moore. Cramming more components onto integrated

circuits. Electronics 38 (8): 114–117, 1965.

[82] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina. Evoap-

prox8b: Library of approximate adders and multipliers for

B I B L I O G R A P H Y 136

circuit design and benchmarking of approximation methods.

In Proceedings of the Conference on Design, Automation &

Test in Europe, pages 258–261. European Design and Au-

tomation Association, 2017.

[83] K. Natori and N. Sano. Scaling limit of digital circuits due to

thermal noise. Journal of applied physics, 83(10):5019–5024,

1998.

[84] M. Nazemi and M. Pedram. Deploying customized data rep-

resentation and approximate computing in machine learning

applications. arXiv preprint arXiv:1806.00875, 2018.

[85] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. ABACUS: A

technique for automated behavioral synthesis of approxi-

mate computing circuits. In DATE, pages 361:1–361:6, 2014.

ISBN 978-3-9815370-2-4.

[86] M. Nicolaidis. Double-sampling design paradigm–A com-

pendium of architectures. IEEE Transactions on Device

and Materials Reliability, 15(1):10–23, March 2015. ISSN

1530-4388. doi: 10.1109/TDMR.2014.2388358.

[87] M. A. Nielsen and I. L. Chuang. Quantum computation and

quantum information, 2002.

[88] K. Palem and A. Lingamneni. What to do about the

end of Moore’s law, probably! In DAC Design Automa-

tion Conference 2012, pages 924–929, June 2012. doi:

10.1145/2228360.2228525.

[89] A. Paler, A. Alaghi, I. Polian, and J. P. Hayes. Tomographic

testing and validation of probabilistic circuits. In 2011 Six-

teenth IEEE European Test Symposium, pages 63–68, May

2011. doi: 10.1109/ETS.2011.43.

B I B L I O G R A P H Y 137

[90] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. M.

Strollo. Truncated binary multipliers with variable cor-

rection and minimum mean square error. IEEE TCAS-I:

Regular Papers, 57(6):1312–1325, 2010. ISSN 1549-8328.

doi: 10.1109/TCSI.2009.2033536.

[91] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. An

architecture for fault-tolerant computation with stochastic

logic. IEEE Transactions on Computers, 60(1):93–105, 2011.

[92] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, S. Das, and

A. Yakovlev. Energy-efficient approximate Wallace-tree

multiplier using significance-driven logic compression. In

IEEE International Workshop on Signal Processing Systems

(SiPS), pages 1–6, 2017. doi: 10.1109/SiPS.2017.8109990.

[93] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and

A. Yakovlev. Energy-efficient approximate multiplier design

using bit significance-driven logic compression. In DATE,

pages 7–12, 2017. doi: 10.23919/DATE.2017.7926950.

[94] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, S. Das,

and A. Yakovlev. Significance-driven logic compression for

energy-efficient multiplier design. IEEE Journal on Emerg-

ing and Selected Topics in Circuits and Systems, pages 1–1,

2018. ISSN 2156-3357. doi: 10.1109/JETCAS.2018.2846410.

[95] J. Rabaey. Low power design essentials. Springer Science &

Business Media, 2009.

[96] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys. Pushing

the limits of voltage over-scaling for error-resilient appli-

cations. In Design, Automation Test in Europe Conference

B I B L I O G R A P H Y 138

Exhibition (DATE), 2017, pages 476–481, March 2017. doi:

10.23919/DATE.2017.7927036.

[97] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghu-

nathan. ASLAN: Synthesis of approximate sequential cir-

cuits. In DATE, pages 1–6, 2014. doi: 10.7873/DATE.2014.

377.

[98] D. Reinsel, J. Gantz, and J. Rydning. Data Age 2025: The

Evolution of Data to Life-Critical Don’t Focus on Big Data;

Focus on Data That’s Big. IDC, Seagate, April, 2017. URL

https://www.seagate.com/www-content/our-story/

trends/files/Seagate-WP-DataAge2025-March-2017.

pdf. [Online; accessed 19-July-2018].

[99] N. B. Rizvandi, J. Taheri, and A. y. Zomaya. Some observa-

tions on optimal frequency selection in DVFS-based energy

consumption minimization. Journal of Parallel and Dis-

tributed Computing, 71(8):1154–1164, 2011.

[100] A. Sampson. Hardware and software for approximate

computing. PhD thesis, 2015. URL https://www.cs.

cornell.edu/~asampson/media/dissertation.pdf. [On-

line; accessed 19-July-2018].

[101] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,

L. Ceze, and D. Grossman. EnerJ: Approximate data

types for safe and general low-power computation. In

PLDI, pages 164–174, 2011. ISBN 978-1-4503-0663-8. doi:

10.1145/1993498.1993518.

[102] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan,

and K. Roy. Energy-efficient neural computing with approxi-

https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.cs.cornell.edu/~asampson/media/dissertation.pdf
https://www.cs.cornell.edu/~asampson/media/dissertation.pdf

B I B L I O G R A P H Y 139

mate multipliers. J. Emerg. Technol. Comput. Syst., 14(2):

16:1–16:23, July 2018. ISSN 1550-4832.

[103] R. R. Schaller. Moore’s law: past, present and future. IEEE

spectrum, 34(6):52–59, 1997.

[104] M. J. Schulte, J. E. Stine, and J. G. Jansen. Reduced power

dissipation through truncated multiplication. In Low-Power

Design, 1999. Proceedings. IEEE Alessandro Volta Memorial

Workshop on, pages 61–69. IEEE, 1999.

[105] M. Schulz. The end of the road for silicon? Nature, 399

(6738):729, 1999.

[106] L. Sekanina. Introduction to approximate computing: Em-

bedded tutorial. In DDECS, pages 1–6, 2016. doi: 10.1109/

DDECS.2016.7482460.

[107] L. Sekanina. Introduction to approximate computing: Em-

bedded tutorial. In 2016 IEEE 19th International Sympo-

sium on Design and Diagnostics of Electronic Circuits Sys-

tems (DDECS), pages 1–6, April 2016. doi: 10.1109/DDECS.

2016.7482460.

[108] M. Shafique, S. Garg, J. Henkel, and D. Marculescu. The

EDA challenges in the Dark Silicon era: Temperature, reli-

ability, and variability perspectives. In Proceedings of the

51st Annual Design Automation Conference, DAC ’14, pages

185:1–185:6, New York, NY, USA, 2014. ACM. ISBN 978-1-

4503-2730-5.

[109] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and

J. Henkel. Cross-layer approximate computing: From logic

to architectures. In DAC, pages 1–6, 2016.

B I B L I O G R A P H Y 140

[110] J. M. Shalf and R. Leland. Computing beyond Moore’s law.

Computer, 48(12):14–23, Dec 2015. ISSN 0018-9162. doi:

10.1109/MC.2015.374.

[111] M. Sharad, D. Fan, K. Aitken, and K. Roy. Energy-efficient

non-Boolean computing with spin neurons and resistive

memory. IEEE Transactions on Nanotechnology, 13(1):23–

34, Jan 2014. ISSN 1536-125X. doi: 10.1109/TNANO.2013.

2286424.

[112] K. L. Shepard and V. Narayanan. Conquering noise in deep-

submicron digital ICs. IEEE Design & Test of Computers,

(1):51–62, 1998.

[113] K. Shi, D. Boland, E. Stott, S. Bayliss, and G. A. Constan-

tinides. Datapath synthesis for overclocking: Online arith-

metic for latency-accuracy trade-offs. In DAC, pages 1–6,

2014. doi: 10.1145/2593069.2593118.

[114] P. W. Shor. Polynomial-time algorithms for prime factoriza-

tion and discrete logarithms on a quantum computer. SIAM

review, 41(2):303–332, 1999.

[115] H. Sim and J. Lee. A new stochastic computing multiplier

with application to deep convolutional neural networks. In

2017 54th ACM/EDAC/IEEE Design Automation Confer-

ence (DAC), pages 1–6, June 2017. doi: 10.1145/3061639.

3062290.

[116] M. Soeken, D. Große, A. Chandrasekharan, and R. Drech-

sler. BDD minimization for approximate computing. In

Design Automation Conference (ASP-DAC), 2016 21st Asia

and South Pacific, pages 474–479. IEEE, 2016.

B I B L I O G R A P H Y 141

[117] C. Solomon and T. Breckon. Fundamentals of digital image

processing : a practical approach with examples in Matlab.

chapter 4, pages 95–96. Wiley-Blackwell, 2011. ISBN 978-0-

470-84472-4.

[118] J. E. Stine and O. M. Duverne. Variations on truncated

multiplication. In DSD, pages 112–119, 2003. doi: 10.1109/

DSD.2003.1231908.

[119] E. E. Swartzlander. Truncated multiplication with approx-

imate rounding. In Proc. of 33rd Asilomar Conference on

Signals, Systems, and Computers, volume 2, pages 1480–

1483, 1999. doi: 10.1109/ACSSC.1999.831996.

[120] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini.

A transprecision floating-point platform for ultra-low power

computing. In DATE, pages 1051–1056, 2018. doi: 10.23919/

DATE.2018.8342167.

[121] W. J. Townsend, E.E. Swartzlander, and J. A. Abraham. A

comparison of Dadda and Wallace multiplier delays. In

Advanced signal processing algorithms, architectures, and

implementations XIII, volume 5205, pages 552–561. Inter-

national Society for Optics and Photonics, 2003.

[122] S. Ullah, S. S. Murthy, and A. Kumar. Smapproxlib: library

of fpga-based approximate multipliers. In Proceedings of the

55th Annual Design Automation Conference, page 157. ACM,

2018.

[123] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A.

Hanif, M. Shafique, and A. Kumar. Area-optimized low-

latency approximate multipliers for FPGA-based hardware

B I B L I O G R A P H Y 142

accelerators. In Proceedings of the 55th Annual Design Au-

tomation Conference, DAC ’18, pages 159:1–159:6, New York,

NY, USA, 2018. ACM. ISBN 978-1-4503-5700-5.

[124] Z. Vasicek and L. Sekanina. Evolutionary design of approx-

imate multipliers under different error metrics. In 2014

IEEE 17th International Symposium on Design and Diag-

nostics of Electronic Circuits & Systems (DDECS), pages

135–140. IEEE, 2014.

[125] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and

A. Raghunathan. SALSA: Systematic logic synthesis of

approximate circuits. In DAC, pages 796–801, 2012. doi:

10.1145/2228360.2228504.

[126] S. Venkataramani, K. Roy, and A. Raghunathan. Substitute-

and-simplify: A unified design paradigm for approximate

and quality configurable circuits. In DATE, pages 1367–

1372, 2013. ISBN 978-1-4503-2153-2.

[127] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.

Macaco: Modeling and analysis of circuits for approximate

computing. In ICCAD, pages 667–673, 2011. doi: 10.1109/

ICCAD.2011.6105401.

[128] C. S. Wallace. A suggestion for a fast multiplier. IEEE

Transactions on Electronic Computers, EC-13(1):14–17, 1964.

ISSN 0367-7508. doi: 10.1109/PGEC.1964.263830.

[129] D. H. Woo and H. H. S. Lee. Extending Amdahl’s law for

energy-efficient computing in the many-core era. Computer,

41(12):24–31, Dec 2008. ISSN 0018-9162. doi: 10.1109/MC.

2008.494.

B I B L I O G R A P H Y 143

[130] W. C. Yeh and C. W. Jen. High-speed Booth encoded parallel

multiplier design. IEEE Transactions on Computers, 49(7):

692–701, Jul 2000. ISSN 0018-9340. doi: 10.1109/12.863039.

[131] P. Yin, C. Wang, W. Liu, E. E. Swartzlander, and F. Lombardi.

Designs of approximate floating-point multipliers with vari-

able accuracy for error-tolerant applications. Journal of

Signal Processing Systems, 90(4):641–654, 2018.

[132] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and

M. Pedram. RoBA multiplier: A rounding-based approximate

multiplier for high-speed yet energy-efficient digital signal

processing. IEEE Transactions on VLSI Systems, 25(2):

393–401, 2017. ISSN 1063-8210. doi: 10.1109/TVLSI.2016.

2587696.

[133] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and

M. Pedram. RoBA multiplier: A rounding-based approxi-

mate multiplier for high-speed yet energy-efficient digital

signal processing. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 25(2):393–401, Feb 2017. ISSN

1063-8210. doi: 10.1109/TVLSI.2016.2587696.

[134] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and

K. Pekmestzi. Design-efficient approximate multiplication

circuits through partial product perforation. IEEE Trans-

actions VLSI Systems, 24(10):3105–3117, 2016. ISSN 1063-

8210. doi: 10.1109/TVLSI.2016.2535398.

	Declaration
	Certification
	Dedication
	Acknowledgements
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	I Thesis Chapters
	1 Introduction
	1.1 Motivation
	1.1.1 Energy-Efficient Computing
	1.1.2 Approximate Multiplier Design

	1.2 Thesis Scope and Contributions
	1.3 Thesis Overview

	2 Background and Literature Survey
	2.1 Introduction
	2.2 Approximate Circuit Design
	2.2.1 Imprecise Hardware Design
	2.2.2 Taxonomy of Approximate Circuits

	2.3 Approximate Multiplier Design
	2.3.1 Taxonomy and Survey
	2.3.2 Error Evaluation and Challenges

	2.4 Concluding Remarks and Discussions

	3 Logic Compression in Multiplier Design
	3.1 Introduction
	3.2 Significance-Driven Logic Compression Approach
	3.2.1 Logic Clustering
	3.2.2 Logic Compression
	3.2.3 Progressive Cluster Sizing
	3.2.4 Commutative Remapping
	3.2.5 Example of Utilizing 2-bit SDLC

	3.3 Variable Logic Cluster and Scalability
	3.3.1 General Space of d-bit Logic Cluster
	3.3.2 d-bit Logic Cluster: Compression Algorithm
	3.3.3 Scalability for (NN) SDLC Multiplier Design
	3.3.4 Examples of Utilizing d-bit SDLC

	3.4 Error Analysis
	3.5 Design Trade-offs
	3.6 Comparative Analysis
	3.7 Signed Multiplication using SDLC
	3.8 Concluding Remarks

	4 Error Mitigation in Logic Compression
	4.1 Introduction
	4.2 Proposed Approximate Wallace Multiplier
	4.2.1 Logic Compression using SDLC
	4.2.2 Accumulation with Wallace Method
	4.2.3 Wallace with Variable Logic Compression

	4.3 Error Compensation Method (ECM)
	4.3.1 Parallel Error Detection Logic
	4.3.2 Error Compensation Vector

	4.4 Error Analysis
	4.5 Experimental Results and Design Trade-offs
	4.6 Concluding Remarks

	5 Implementation and Validations
	5.1 Introduction
	5.2 Case Study 1: Gaussian Blur Filter
	5.3 Case Study 2: Perceptron Classifier
	5.4 Concluding Remarks

	6 Conclusions and Future Work
	6.1 Summary and Conclusions
	6.2 Critical Review and Future Work

	II Thesis Bibliography
	Bibliography

