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Abstract

The principal concern of this document is to develop and expose methodology

for enumerating idempotents in certain semigroups of diagrams in the sense

of [76]. These semigroups are known to be significant in the representation

theory of associated algebras. In particular these algebras are shown in many

cases to be semisimple, giving certain idempotents (and in particular those of

the monoids of concern) a prominent role in understanding certain features of

the representation theory in this situation.

The results developed here are mostly theoretical in nature. We propose two

viewpoints leading to some combinatorial understanding of the idempotents in

the Motzkin (respectively Jones and partial Jones) monoid. In the first instance,

we construct a cell complex, whose connected components partition the set of

all idempotents into small, manageable chunks that can be analysed uniformly

starting from those of particularly low rank. The structure of this complex cap-

tures some intricate combinatorics in the semigroup in a fairly simple, uniform

way, and reduces our problem to finding and characterising idempotents of

particularly low rank.

The latter viewpoint takes us closer to pure combinatorics; a family of pa-

rameters attached to the elements of the monoids in question. These are ex-

amined in the context of ordinary generating functions, counting the elements

with various parameter profiles. In particular, important algebraic features of

Motzkin pictures, such as degree, rank, idempotency, and membership in the

Jones and partial Jones monoids, can be tested against parameter profiles, re-

ducing the problem of understanding all three to that of a parametric under-
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standing of only the Motzkin monoid.

We can then amalgamate these families of techniques into the development

of fast linear-space algorithms for counting elements of various parameter pro-

files by examining certain “convex” elements. In particular, the general problem

of enumeration by parameter profile is reduced greatly to enumerating convex

elements by parameter profile.

As a corollary to this study of convexity, we observe that the sequence of

numbers of idempotents (in each semigroup) of some fixed rank-deficiency δ =

(n − r) is equal (apart from the first couple of values) to some polynomial of

degree δ; for particularly low rank-deficiency, we calculate these polynomials.

Finally, we can show that the problem of understanding these idempotents

in this way reduces to the classical open problem in combinatorics of counting

meanders, witnessing the fact that significant progress on the former problem

would necessitate some development of a better understanding of the latter.
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Using This Document

This document is organised into five parts; there’s this preamble section, three

parts in the main body of the thesis, and then a set of appendices.

The preamble contains an abstract, the table of contents, lists of figures, ta-

bles and notations. It also contains a statement of good academic conduct, a

little welcome blurb, and this guide, which may be of less use to the average

reader.

The first part comprises two chapters and broadly aims to “set the scene”.

The introduction chapter motivates the research undertaken, and explains in

very broad terms what sort of results the reader can expect in the sequel. The

second chapter lays some foundations and establishes some linguistic and no-

tational conventions of a foundational nature.

The second and third parts respectively develop the theory and its appli-

cation to developing fast algorithms for counting idempotents and computing

various statistics.

Part II comprises two chapters. In Chapter 4 we characterise idempotents in

terms of statistics attached to related objects built from graphs, and organise

the idempotents into a cell complex whose structure is intimately related to

some combinatorics in the semigroup. In the latter, Appendix A, we develop an

approach to indexing the H -classes in these semigroups by words from certain

context-free languages. This is of only peripheral interest to theorists, but builds

a foundation for the design of algorithms with a tiny memory overhead, and
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provides a compact computational representation for elements from which it’s

easy to calculate various statistics about elements, and perform multiplications.

Part III comprises two more chapters. In Chapter 5 we assemble a toolbox

of combinatorial techniques that allow us to view the idempotents in the three

monoids of concern in a uniform manner, as well as developing a formalism

that allows us to extract more data from the cell complex we built earlier. We

also expose some surprising polynomial bounds for the numbers of idempo-

tents of extreme rank. Chapter 6, closing the main body of work, discusses the

development in GAP of tools for quickly computing these statistics.

The appendices assemble “apocryphal” materials which are not suitably-

formatted for inclusion in the main text. This includes tables of results stratified

by various parameters (notably rank) and examinations of contributions of vari-

ous parts of the monoids to the whole. There is also a dictionary of small-degree

convex idempotents, from which we calculated the low-order approximation to

the universal generating function listed in Chapter 5, a listing of code used to

generate and verify results, and a readout of the generating function for the

Motzkin idempotents in small degree.

Now that we’ve got the layout of the document down, I’ll say a few words

about the choices I’ve made in laying things out the way that I have.

Any notation that is not completely standard to my knowledge is listed in

the preamble with an explanation and a page number of the first usage and/or

definition in the text. These are listed in alphabetical order how they first appear

in the main text.

This document is littered with pictures. Some of them are in captioned fig-

ures, and those are listed in the list of figures in the preamble alongside the page

on which they appear, some are displayed between paragraphs and numbered,

and some are unnumbered. The huge number of graphics required for good ex-

position here means I’ve made no attempt to compile a list (or even a count) of

all graphics here; only those which are featured in a captioned figure are listed.

I’ve taken pains to make the text flow smoothly, although there are areas

where many results are developed in a short space of time, and in these situa-
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tions I’ve opted for a definition-example-result layout in these situations, with

small observations or intuitions for objects or results interspersed throughout.

Notational Conventions

I never use any bracketings apart from parentheses to group objects under an

algebraic operation. So, all square-bracketings will be either closed intervals or

integer ranges ([[n]] = {1, 2, . . . , n}), and all bracings {. . .}will be sets.

Throughout, calligraphic letters will always be monoids: M5,PBrn, . . .; the

Greek lowercase α and β, and occasionally γ and η, will be elements of one

of these monoids (usuallyMn). By contrast, p and q and variations will often

denote partitioned binary relations. Boldface lower-case Latin letters will be

tuples or sequences: a = a0, a1, . . .. Script-uppercase letters such as will be cell

complexes (E ,. . . ) or Green’s relations on a semigroup (H , L , R, D , J ).

Because J and J look similar, and because D and J coincide for finite

semigroups (Lemma 1.2.24), we’ll talk about D rather than J , even though

conceptually we’ll often talk about the D-classes in terms of two-sided ideals.

Upper-case Latin-alphabet letters in italic may mean one of several things: S

and T may be sets or nonspecific semigroups; L will often be a language and C

a prefix code; U is a generating function. Upper-case typewriter bold letters (S,

T) are nonterminals letters in a grammar; S is always the start symbol.

Likewise, lower-case Latin-alphabet letters may mean several things. Up-

right sans-serif letters are statistical data: p(α). Italic serif letters are often num-

bers (n,r,k,. . . ), but may be words (u,v,w), or elements of a set or semigroup
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Upper-case Greek may be alphabets, and Γ is usually an interface graph.
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Chapter 1

Preliminaries

1.1 Sets, Combinatorial Structures

1.1.1 Sets and Number Systems

The symbol “∶=” will be taken as assignment, so that s ∶= 2 will mean “let s be

2.”

We will make frequent references to the standard numeral systems in this

thesis. Note that 0 ∉ N and N0 ∶= N ∪ {0}. Numbers henceforth will almost

always be positive integers, occasionally zero, seldom negative and never non-

integer unless specified. For instance k ≤ n will usually mean k is a positive

integer between 1 and n, inclusive.

We’ll write

[[n]] ∶= {1, 2, . . . , n}.

For x ∈ R, we write ⌊x⌋ for the floor of x, which is the greatest integer not ex-

ceeding x. For a set X ⊆ R, we write inf X (resp. sup X) for the largest (smallest)

number not exceeding (less than) any member of X, if it exists.

We conventionally write

f ∶ A→B ∶ a ↦ ba

to say that f is a function from A to B, mapping a to ba. We use the term domain

for the set A, codomain for the set B, range for the subset of B of values attained

3



by the function, and (in the case where f is partially-defined) the preimage for

the set of values in A on which f is defined.

Definition 1.1.1. A function f ∶ X→Y is injective if f (x) = f (y) implies x = y for

all x, y ∈ X; f is surjective if for all z ∈ Y there is x ∈ X with f (x) = z. A bijec-

tive function is one which is injective and surjective. We may use the respective

terms injection (also embedding, particularly when the map preserves additional

structure), surjection (also quotient in the presence of additional preserved struc-

ture) or bijection (also isomorphism in the presence of additional structure).

In other words, injective maps separate elements and surjective maps fill

their codomains.

Definition 1.1.2. An endofunction of X is a function f ∶ X→X. If an endofunction

is bijective, we use the term permutation.

Given X ⊆ A, Y ⊆ B, we write

f (X) ∶= {b ∈ B ∶ f (x) = b for some x ∈ X},

f −1(Y) ∶= {a ∈ A ∶ f (a) is defined},

for the image and preimage.

Overwhelmingly, we’ll write only the correspondence between the sets in

this notation, suppressing the specification of how elements map, but occasion-

ally will only specify how elements map. We also will use the notation a ↦ ba

to describe mappings anonymously, where the domain is clear.

If f ∶ X→X and U ⊆ X, we say that f fixes U if f (u) ∈ U for any u ∈ U, that

x ∈ X is a fixed point of f if f (x) = x, and that U is fixed pointwise by f if every

u ∈ U is a fixed point.

Given a set I , and a set Ai for each i ∈ I , we talk about the family (Ai)i∈I of sets

(indexed by the indexing set I); we use the notation (Ai)i where I is understood,

in addition suppressing the index i where convenient. The intersection and
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union of a family of sets is defined:

⋃
i∈I

Ai ∶= {a ∶ a ∈ Ai for some i ∈ I}

⋂
i∈I

Ai ∶= {a ∶ a ∈ Ai for each i ∈ I}.

For convenience, we’ll usually work with I = N0 or subsets thereof; we don’t

need larger indexing sets.

Definition 1.1.3. A family (Ai)i of sets is pairwise disjoint is i ≠ j implies Ai ∩

Aj = ∅. A partition of X is a family of sets whose union is X and which are

pairwise disjoint. The quotient of X by a partition is simply the set of sets {Ai}

in the partition; we conventionally identify the set Ai with some element as

convenient. These sets are referred to as equivalence classes.

Definition 1.1.4. The Cartesian product ∏i∈I Ai of an I-indexed family (Ai) of

sets is the set of maps f from I into the union ⋃i Ai such that each f (i) ∈ Ai.

Where I = N0 or I = [[n]], we’ll write mappings as sequences (a1, a2, . . .) or

tuples (a1, . . . , an) where in each case ai ∶= f (i). Where I = [[n]] is finite, we’ll

often write

∏
i∈I

Ai = A1 × A2 ×⋯× An.

Indeed, if A ∶= A1 = A2 = ⋯An, then its convenient to write An.

1.1.2 Graphs

Definition 1.1.5 (Graph). A graph is a set Γ = (V, E)with two kinds of elements:

• vertices in V, which could be anything at all, but will often correspond to

some labelling or enumeration;

• edges in E, which are ordered pairs of elements.

In an undirected graph, we disregard order on the edges; in a directed graph we

care about order. The significance of this will become apparent later.
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In practice, we may label edges by symbols or ordered pairs rather than

unordered pairs. We will often say that the graph Γ is on V or similar. We also

notationally conflate the graph Γ with the union where convenient, writing e ∈ Γ

for instance.

Definition 1.1.6. A(n undirected) path on a graph Γ = (V, E) from u to v is a

sequence of vertices of the form

u = v0, v1, v2, . . . , vl−1, vl = v,

such that for each i, (vi−1, vi) is an edge or the reverse of an edge.

A path is directed if every edge appears in the correct orientation. The num-

ber l is the length of the path. A path of either type is called a cycle if it starts

and ends at the same vertex, that is u = v; we often say the path is a cycle at u.

Definition 1.1.7. Two vertices in an undirected graph are connected if there is a

path from one to the other, and adjacent if connected by an edge.

In the directed setting, one has two symmetric notions of connectedness and

one asymmetric notion. Two elements are weakly connected if there is an undi-

rected path between. Two vertices are strongly connected if there is a cycle at one

passing through the other. There is an asymmetric form of connectedness; we’ll

say that u is upstream of v (and v is downstream of u) if there is a directed path

from u to v.

Definition 1.1.8. The valency of a vertex in a graph is the number of edges it

meets. The in-valency (respectively out-valency) of a vertex v is the number of

edges ending at (respectively starting at) v.

Definition 1.1.9 (Partition). Let X be a set. A partition of the set X is a decom-

position

X = P1 ⊔ P2 ⊔⋯⊔ Pk

where the Pi are disjoint. The size of P is k, and the parts or classes of P are the

sets Pi.

If the parts don’t exceed two in size, we call P a partial matching. If the parts

are all size two, we use the term (perfect) matching.
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Let’s assume X is ordered. We say that a partition is noncrossing if, whenever

i < j < k < l with i and k in the same class, j and l are in different classes unless

the four elements share a class.

Partitions may be depicted as graphs, by drawing the vertex sets as points

and adding edges to make the parts and connected components agree. If X =

[[n]] and we write the numbers 1, . . . , n around a circle in order, drawing edges

through the interior between elements in the same part, then the graph can be

drawn without edges crossing precisely if the partition is noncrossing, hence

the terminology.

1.1.3 Relations

Any subset $ ⊆ X ×X is called a (binary) relation on X. We will often write x$y as

a convenient shorthand for (x, y) ∈ $. We often suppress the adjective “binary,”

as all relations henceforth will be binary.

We say that a relation $ preserves some property P if x having P implies y

does also for every x $ y. Dually, $ reflects property P if the above holds for

every y satisfying y$x.

Given two relations $, ς ⊆ X ×X, we can write x $ y ς z as a shorthand for

(x, y) ∈ $ and (y, z) ∈ ς. An inductive form

x0 $1 x1 $2 x2 $3 ⋯ $n−1 xn−1 $n xn, (1.1)

meaning xi−1$ixi simultaneously for i ∈ [[n]] will be useful. We can form the

composition

ς ○ $ = $ς = {(x, z) ∈ X ×X ∶ there is y ∈ X with x $ y ς z}. (1.2)

Again, this composition can be extended to arbitrary lengths. The set of (x0, xn)

for which a sequence of the form given in (1.1) exists is the composition of

$n, . . . , $1.

For example, the relationship “less than” can be composed with itself. The

comparison 1 < 2 < 3 < 4 is perfectly valid; and we might say that “1 < ○ < ○ < 4”.
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Where convenient, we will omit reference to an understood context. For

example, where the set X is known in (1.2), we may write instead

$ς = {(x, z) ∶ there is y with x$yςz}.

A relation $ ⊆ X ×X is:

• reflexive if it contains the diagonal ∆X = {(x, x) ∶ x ∈ X};

• irreflexive or strict if it does not intersect the diagonal;

• (a)symmetric if it contains (respectively, does not intersect) its reverse $rev =

{(y, x) ∶ x$y} (outside the diagonal);

• transitive if it contains its compositional square $ ○ $;

• total if any two elements can be compared: at least one of x$y and y$x

holds;

• a preorder* if reflexive and transitive

• a partial order (total order) if a (total) antisymmetric preorder;

• an equivalence relation is a symmetric preorder;

• a functional † if x$z and y$z implies x = y;

• the (co)restriction of ς to Y ⊆ X if for every pair y, z ∈ X, we have y $ z

precisely if y ς z and y (respectively z) is in Y);

• the birestriction of ς to Y if the corestriction and restriction;

• the reverse of ς if x $ y whenever y ς x.

Note that many functions of interest will not map from a set to itself. While this

is not important in practice, the graphs of such functions are not relations of the

*Some others prefer the term quasi-order, with or without hyphenation.
†Functional relations are graphs of partial functions; total functional relations are functions.
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restricted type discussed above; differing notation and treatment prevent this

from becoming an issue.

The support of a relation $ ⊆ X ×X is the set

supp($) = {x ∈ X ∶ x $ y for some y ∈ X}.

Clearly $ is total if supp($) = X.

Proposition 1.1.10. Given an equivalence relation, one can consider the subsets of X

of elements which are related to one another. These are the equivalence classes.

A set P with respectively a preorder, partial order, or total order is said to

be preordered, partially ordered or (totally) ordered by the relation. We refer to pre-

ordered sets, partially ordered sets (posets) and ordered sets (chains). In each

case, we use the relation ≤ and its usual variations to describe the order, its

reverse, its strict (irreflexive) counterpart unless stated otherwise.

Definition 1.1.11. Given a poset P, we say that a function cl ∶ P→P is a closure

operator on P if

x ≤ cl(y)⇔ cl(x) ≤ cl(y)

The identity map on a poset is always a closure operator, but some posets

admit no other nontrivial examples; any antichain has no nontrivial closure op-

erators for example. For a slightly more instructive example, consider the set

{1, 2, 3} ordered by division. If cl(1) = 3 then we have 2, 3 ≤ cl(2) in this order,

which is impossible.

Proposition 1.1.12. Closure operators are idempotent (cl(cl(p)) = cl(p)), nondecreas-

ing and extensive x ≤ cl(x). Any such function acting on P is a closure operator.

Given a set S ⊆ P, the downset ↓ S is the set of elements below some s ∈ S.

The set T ⊆ P is a downset if T =↓ S for some S (T will suffice). A map is

nondecreasing* if the preimage of a downset is a downset.

*The terms monotone and order-preserving are used unambiguously in the literature. The

term increasing also features, but this for us means injective and nondecreasing.
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A downset is principal if it equals ↓ {s} for some s; we write ↓ b. A map

from a poset P to Q is called residuated if preimages of principal downsets are

principal downsets themselves.

Proposition 1.1.13. An endofunction of a poset P is a closure operator precisely if it is

residuated.

Definition 1.1.14. Given a set Q ⊆ P of elements, an element p ∈ P is called an

upper bound for Q (written p ≥ S) if for all q ∈ Q, q ≤ p. An element is called a

least upper bound if no lower elements provide an upper bound for S. We call a

least upper bound p the join of S (written p = ∨S) if every upper bound u for S.

A poset is called a (complete) join-semilattice is every pair (resp. every sub-

set) has a join. (Greatest) lower bounds are defined dually, and we refer to meets

as dual to joins. A lattice is simultaneously a meet- and join-semilattice, and is

complete if complete both as a meet- and join-semilattice.

Semilattices and lattices are useful, as comparison can be characterised by

algebraic operations, something that is not the case in general posets.

The set 2X of subsets of X is a lattice under intersection and union.

Definition 1.1.15. A closure system in a lattice 2X of subsets is a subfamily which

contains X as a member and contains arbitrary intersections of members.

Proposition 1.1.16. To each closure system C ⊆ 2X, there is an associated closure

operator.

In fact, all closure operators arise this way; the family

Cl = {cl(()Y) ∶ Y ⊆ X}

is a closure system. We call this operator C-generation and can recover the oper-

ator as demonstrated below.

Proof. Let C ⊆ 2X be a closure system. Fix Y ⊆ X and denote by CY the family

of closed subsets containing Y. The intersection Ȳ = ⋂CY is in C, and contains

Y; indeed every C ∈ CY contains Ȳ also. Fixing Y ⊆ Z ⊆ X, note that CZ ⊆ CY so

Ȳ ⊆ Z̄.

Therefore the map Y ↦ Ȳ is idempotent, nondecreasing and extensive.
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Corollary 1.1.17. A closure system C ⊆ 2X naturally forms a complete lattice under

set-theoretic intersection and taking closure of unions.

Many substructural features we’ll encounter naturally in what follows will

arise as closure systems, and the above results allow us to treat them uniformly,

results looking essentially as follows.

Proposition 1.1.18. The set E ⊆ X ×X of equivalence relations on X forms a closure

system.

1.1.4 Enumerative Combinatorics

Definition 1.1.19. A sequence in X is a function a ∶ N→X, usually written

(an)n = (a1, a2, a3, . . .)

= a1, a2, a3, . . .

as a tuple of images in order, often with brackets suppressed.

Occasionally, we use sequences indexed from zero rather than one.

Definition 1.1.20. Given a numerical sequence, that is a sequence of numbers,

we can form its ordinary (or power series) generating function (OGF) as follows:

f (z) ∶=
∞

∑
n=0
= a0 + a1z + a2z2 +⋯+ anzn +⋯.

Note that other kinds of generating functions exist, but we don’t make any

use of them in the sequel. Note also that a “generating function” may not be a

function at all, and for this reason some authors prefer the term generating series,

either to refer to OGFs or to the aforementioned. The series ∑∞n=0(n! ⋅ xn) is the

generating function of the factorial sequence given by

0! = 1, n! = n ⋅ (n − 1)!

for integers n ≥ 1. Standard techniques learned in an undergraduate course

in mathematical analysis will show that this is undefined for any nonzero real

number, and this is left to the reader as an exercise.
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A sequence may be mutliply-indexed, in which case we write (an1,n2,...,nr) or

similar. We may instead equivalently of sequences indexed by tuples; if n =

(n1, n2, . . . , nr) then an ∶= an1,n2,...,nr and the sequence (an) ∶= (an1,n2,...,nr).

For example, the doubly-indexed sequence

bn,k = (
n
k
)

of binomial coefficients. The sequence may only be defined for certain values;

it’s fruitful to regard the binomial coefficients as being defined for all positive n

and k, but for the purposes of drawing Pascal’s triangle, or perhaps for estab-

lishing a general recurrence relation, one may require that 0 ≤ k ≤ n.

Similarly, generating functions for multiply-indexed sequences can be used.

We write

f (z1, z2,⋯, zr) = ∑
n=(n1,⋯,nr)

anzn1
1 zn2

2 ⋯znr
r

= a0,0,...,0 + a1,0,0,...,0z1 + a0,1,0,...,0z2 +⋯+ a0,...,0,1zr

+ a2,0,...,0z2
1 + a1,1,0,...,0z1z2 +⋯+ a0,...,0,1,1zr−1zr + a0,...,0,2z2

r

⋯+ an,0,...,0zn
1 + an−1,1,0,...,0zn−1

1 z2 +⋯

where the sum runs over permissible tuples of values.

Definition 1.1.21. A multiset S indexed by I with elements in X is an equiva-

lence class of tuples or sequences indexed by I , where the equivalence classes

comprise all those sequences (ai)i so that (ai) and (bi) are in the same equiv-

alence class (are equivalent), written (ai) ∼ (bi), whenever bi = a f (i) for some

permitation of I and for all i.

This technical definition obfuscates a simple concept. Namely, a multiset is

a set with elements possibly appearing multiple times, and that cannot distin-

guish order or elements, much as a set cannot.

For example, the following object is a multiset:

{1, 1, 2, 2, 2, 2, 3, 5, 6, 9, 9} = {1, 2, 3, 5, 6, 9, 1, 2, 6, 2, 2}

The first representation emphasises order, and is the notation we will tend to

favour. The second emphasises multiplicity.
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Definition 1.1.22. The multiplicity mx(S) in a (finite) multiset S of elements from

X, of x is the number of elements of S equal to x.

A set is therefore a multiset whose elements all have multiplicity one.

Definition 1.1.23. A sequence of multiplicities (for the multiset S with elements in

X) is a sequence of numbers (mxi(S))i where (xi) is some way of ordering X.

We conventionally choose X as the set of elements that appear, and choose

as the indexing set [[n]] where n is the sum of the multiplicities, also known as

the cardinality.

Definition 1.1.24. The multinomial coefficient is the number

(
n

m1, m2, . . . , mk
) ∶=

n!
m1! ⋅m2!⋯mk!

⋅
1

(n −∑i mi)!

where 0! = 1 and n! = n ⋅ (n − 1)! for each positive integer n ∈ N.

When the sequence of denominators is one number we use the term binomial.

Proposition 1.1.25. If S is a multiset of cardinality n with m1, m2, . . . , mk a sequence

of multiplicities then the number of tuples representing S is the multinomial coefficient

( n
m1,...,mk

).

1.1.5 Asymptotics of sequences

Definition 1.1.26. We say that a(n)≪ f (n) if there is a constant M > 0 and some

x0 > 0 such that

a(x) ≤ M ⋅ f (x) for all x ≥ x0.

Say that a(n) ≫ f (n) if f (n) ≪ a(n), and that a(n) ≍ f (n) if a(n) ≪ f (n) and

a(n)≫ f (n).

Definition 1.1.27. Denote by O( f ) = O( f (n)) the set of all a whereby a(n) ≪

a(n).
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Rather than writing a ∈ O( f ) it’s conventional to write a = O( f ), as in there

is a representative of O( f ) equal to a. This notation cleanly extends to function

multiplication and composition, for example we take a = f ⋅O(g) to mean a =

f ⋅ h for some h≪ g.

1.1.6 Planar Combinatorics

Definition 1.1.28. The closed upper (respectively lower) half-plane is the set R×R≥0
of points in the plane R2 with nonnegative (resp. nonpositive) y-cooridinate. An

upper (lower) arch configutarion on the pairs (a1, b1), (a2, b2), . . . , (an, bn) (ai and bi

pairwise distinct) is the family of semicircles in the upper (lower) half-plane

bounded respectively by the pairs of points (ai, 0) and (bi, 0). We say that such

a family is noncrossing if we write

mi ∶=min(ai, bi), Mi ∶=max(ai, bi),

we do not have mi < mj < Mi < Mj for i ≠ j.

We ordinarily refer to arch configurations without reference to the upper or

lower half-plane.

Proposition 1.1.29. The noncrossing condition is equivalent to the semicircles being

pairwise disjoint.

Definition 1.1.30. A meander sequence of order n is a sequence µ1, µ2, . . . , µ2n con-

taining each element of [[2n]] exactly once, and such that the respective upper

and lower arch configurations

{(µ1, µ2), (µ3, µ4), . . . , (µ2n−1, µ2n)}, {(µ2, µ3), (µ4, µ5), . . . , (µ2n−2, µ2n−1), (µ2n, µ1)}

are noncrossing. The meander determined by this sequence is simply the union

of the above upper and lower arch configutarions.

There are several ways to permute this sequence while preserving the me-

ander defined; clearly reflecting by swapping each µi with µ2n+1−i preserve all

the pairs above, reversing the ordering in each case. We could also cyclically
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Figure 1.1: The meander of order 4 given by 1, 6, 7, 8, 5, 2, 3, 4 with basepoint and orien-

tation shown.

shift by two, which entails replacing µ2n−1 and µ2n with µ1 and µ2, and µi with

µi+2 for i < 2n − 1. In fact this is essentially all one can do to the sequence while

preserving the meander.

Proposition 1.1.31. If µ1, µ2, . . . , µ2n and ν1, ν2, . . . , ν2n are two sequences represent-

ing the same meander then there is a sequence of length k ≥ 0

($0,1, $0,1, . . . , $0,2n), ($1,1, $1,1, . . . , $1,2n) . . . , ($k,1, $k,1, . . . , $k,2n)

where $0,i = µi and $k,i = νi where the sequences ($r,i)i and ($r+1,i)i differ either by a

reflection or a cyclic shift by two.

The nth meandric number mn is the number of distinct meanders of order n.

Calculating these numbers is the meander problem [1], a difficult classical prob-

lem in combinatorics with roots in studies of Poincaré [64] in analytic and dif-

ferential geometry. Different notions, mostly more-or-less equivalent, appear in

these articles. Lacroix [11] dicusses several variations; we shall not.

Definition 1.1.32. A circular matching of order n is a partial matching whose n

distinct labeller vertices lie on a circle, and whose edges are not loops and can be

drawn as straght lines between the vertices they connect without any crossing.

A circular matching is in standard form if the circle is the unit circle, the labels

of the vertices are the numbers 1 to n, with n place at (1, 0) and the rest of the

vertices spaced evenly with labels increasing anticlockwise except between n

and 1.

Conventionally, we draw these using curves or circular arcs as in Figure 1.2.

The number of distinct standard form matchings is the Motzkin number Mn,
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Figure 1.2: A circular matching of order 9. This is not a perfect matching nor a subgraph

of any other circular matching.

which can be calculated recursively as

M0 = M1 = 1, Mn = Mn−1 +
n−2
∑
i=0

Mi Mn−2−i.

To see this, note that one can decompose a circular matching of order n in two

ways. Either the point n is isolated, or n connects to i + 1 ∈ [[n − 1]]. In the

former case, one may remove it obtaining a matching of order one less. In the

latter, the points between 1 and i don’t connect to those from i + 2 to n− 1 by the

noncrossing property. Therefore, we may regard these as two separate circular

matchings, or order i and n − 2− i.

The first few entries of this sequence are

1, 1, 2, 4, 9, 21, 51, 127, 323, . . .

Definition 1.1.33. A circular matching of order 2n is completable if it is a sub-

graph of some perfect circular matching. A completable matching is contiguous

if there exist a sequence

0 = u0 < u1 < ⋯ < ul−1 < ul = 2n

with each ui even, and so that each ui and ui−1 + 1 are incident on a common

edge. The number l is the length of the contiguous matching, and (ui) its defining

sequence.
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A circular matching is completable in other words if one can draw in edges

until no vertex is isolated, without needing to draw any edges crossing inside

the circle. It’s fairly clear that this is a hereditary property, and one which is

invariant under adding a constant to the indices.

We define the partial Catalan numbers Pn as the number of nonisomorphic

completable graphs of order 2n. The contiguous partial Catalan numbers Qn and

Rnl are the number of nonisomorphic contiguous matchings there are of order

2n, and respectively of length l.

Proposition 1.1.34. The sequences Pn Qn and Rnl satisfy

P0 = Q0 = Q1 = Rnn = 1, Rn+1,0 = 0, Rn+1,1 = Pn,

Rn+1,l =
n
∑
i=0

Pn−i ⋅ R2i,l−1, Qn+1 =
n+1
∑
l=1

Rn+1,l,

Pn+1 =
n+1
∑
i=0

Pi ⋅ Pn−i−1.

In the proof that follows, all matchings are compatible circular matchings.

Proof. The only circular matching of order 0 is empty, and is perfect and hence

conriguous, so P0 = Q0 = R0,0 = 1 as needed. The only contiguous matching

of order 2 is the prefect matching, hence Q1 = 1. There are no empty contigu-

ous matchings of nonzero order and zero length, so Rn+1,0 = 0, and the only

contiguous matching of length n and order 2n is the perfect matching

1 ∼ 2, 3 ∼ 4, . . . , 2n − 1 ∼ 2n,

where a ∼ b denotes adjacency along an edge, giving the final boundary value

Rn,n = 1.

Now let us consider a contiguous matching of length 1. Then u0 = 0 and

u1 = 2n, meaning that 1 ∼ 2n. The remaining vertices 2 to 2n − 1 may be rela-

belled in order from 1 to 2n − 2. Every completable matching on the remaining

vertices gives rise to a different contiguous matching of length 1, so Rn,1 = Pn−1.

Relabelling is a fundamental technique; for some interval [i, j] of integers, we
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will refer simply to a matching on [i, j] rather than considering these “up to

relabelling in order.”

Fix a contiguous matching Γ of length l and order 2n + 2. Then there is a

contiguous matching of length l − 1 on the elements 1 to il−1. Indeed, fixing il−1,

there are Rn−il−1,1 ⋅ Ril−1,l−1 = Pn−il−1−1 ⋅ Ril−1,l−1 of these. Summing over possibly

il−1 = 2i, we get

Rn+1,l =
n
∑
i=0

Pn−i ⋅ R2i,l−1.

Now let us consider a completable matching Γ of order 2n + 2. Our analysis

splits into four mutually exclusive cases.

In the first case, neither 2n+2 nor 2n+1 is incident on an edge, in which case

the points 1, . . . , 2n may form any of the Pn circular partitions.

In the second case, let’s assume that 2n is incident on an edge with 2i + 1

for some 0 ≤ i ≤ n. Then there are completable matchings on the points 1 to 2i

and the 2(n − i) points from 2i + 2 to 2n + 1. There are ∑n
i=0 PiPn−i completable

matchings possible in this case.

The third case has 2n+ 1 incident on an edge, but 2n+ 2 isolated. Write 2i for

the even integer edge-adjacent to 2n+1 and 2m+1 the smallest integer (possibly

zero) such that the induced subgraph of Γ on the vertices in [[2m]] is contiguous.

Then the induced subgraph on the 2i − 2m − 2 vertices 2m + 2 to 2i − 1 forms a

completable matching, as does that on those 2n − 2i vertices from 2i + 1 to 2n.

Fixing i and m, we see there are Pn−iPi−m−1Qm of these. Allowing i and m to

vary, we obtain

Pn+1 =
n
∑
i=1

i−1
∑
m=0

Pn−iPi−m−1Qm.

a

Definition 1.1.35. A ballot sequence of length 2n is a sequence (a1⋯a2n) with

each ai = ±1 and each partial sum ∑
j
i=1 ai nonnegative.

Ballot sequences are enumerated (see [72]) by the Catalan numbers Cn.
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1.2 Semigroups

1.2.1 Basic Theory

Definition 1.2.1. A magma is a set S equipped with a multiplication map (s, t) ↦

s ⋅ t associating to each pair of elements of S their product. A magma whose

multiplication obeys the associative law, that is satisfies

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

for every choice of three elements a, b, c ∈ S, is called a semigroup.

A magma is unital if there is an element e ∈ S with e ⋅ s = s ⋅ e = s for every

s ∈ S. The element e is called the identity for S. A unital semigroup is a monoid.

A group is a monoid S in which every element g ∈ S has a (global) inverse

g−1 ∈ S, that is to say an element for whom the products g ⋅ g−1 = g−1 = e equal

the identity.

Given a magma S, it’ll often be convenient to refer to the opposite magma Sop.

Many concepts discussed will arise in dual pairs, one of which can be encoded

with respect to S and the other respecting Sop. We also write S1 ∶= S ∪ {1} for a

semigroup with adjoined element 1 acting as identity.

Definition 1.2.2. A subset T ⊆ S is called a subsemigroup if every pair s, t ∈ T

of elements of T multiplies to an element st ∈ T. This is caled being closed under

multiplication.

In practice we will omit the multiplication symbol, writing st ∶= s ⋅ t for ex-

ample.

We write T ≤ S, and S < T if the containment is proper, that is S ≠ T. If 1 is

the identity of the monoid M then S is a submonoid if 1 ∈ S.

Proposition 1.2.3. Let S be a semigroup. The intersection T = ⋂i∈I Ti of a family of

subsemigroups of S is itself a subsemigroup of S.

In other words, subsemigroups of S form a closure system.
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Proof. If s, t ∈ T then s, t ∈ Ti for some i, so st ∈ Ti and hence st ∈ T.

Corollary 1.2.4. Let S be a semigroup and X ⊆ S a subset, with (Ti)i∈I the family of

subsemigroups satisfying X ⊆ Ti ⊆ S. Then the intersection T is a semigroup containing

X, and furthermore every subsemigroup of S which contains X must also contains T.

This allows us to make the following definition.

Definition 1.2.5. Let X ⊆ S be a subset. Denote by ⟨X⟩ the smallest subsemi-

group of S and containing X. This is the subsemigroup generated by X; we say

that X generates ⟨X⟩.

The above results and definitions can be ported to the domain of submonoids

by assuming in each case that the subsemigroups contain the identity.

Definition 1.2.6. A map f ∶ S→T between semigroups is a homomorphism if it

respects multiplication. That is, f (s) ⋅ f (t) = f (s ⋅ t) for all s, t ∈ T.

For monoids, we will require in addition that f (1) = 1; dropping this re-

quirement we’ll use the term semigroup homomorphism.

Definition 1.2.7. If f ∶ S→T is a bijective homomorphism, then we say f is an

isomorphism, and that the semigroups S and T are isomorphic.

Definition 1.2.8. An action (on the right) of a semigroup S on a set X is a map

φ ∶ X × SÐ→X ∶ (x, s)↦ xm

which is compatible with the semigroup structure, in the sense that x(s⋅t) =

(xs)t =∶ xst, and x1 = x if there is an identity element 1 ∈ S.

The notation is suggestive of the exponentiation of numbers, and the usual

laws of exponentiation are satisfied except that xst is not guaranteed to equal xts

unless we know that s and t commute.

In fact we can lift this defining map φ to a homomorphism

φ̂ ∶ SÐ→XX ∶ s ↦ φs

where XX is the monoid of maps acting on the right of X, and where φm ∶ x ↦ xm.
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Proposition 1.2.9. Every semigroup acts on itself via the right-multiplication mapping

(s, t)↦ st.

Corollary 1.2.10. Let X ⊆ S be a subset of a semigroup. Then S acts on the right ideal

XS by right multiplication.

Corollary 1.2.11. Let T ≤ S be a subsemigroup. Then T acts on S by right multiplica-

tion.

1.2.2 Special Elements

Definition 1.2.12. An element s ∈ S of a semigroup is respectively:

• (an) idempotent if s2 = s;

• a left or right identity if st = t, respectively ts = t, for all t ∈ S;

• a left or right zero* if st = t, respectively ts = s, for all t ∈ S;

• a zero or identity if both left and right zero or identity;

• regular if there is f satisfying e f e = e;

• a (local) inverse for t if sts = s and tst = t;

• a divisor of t ∈ S if t = usv for some u, v ∈ S1;

• a zero divisor if some nonzero u, v ∈ S1 exist such that usv = 0.

We say that two elements s, t ∈ S commute if st = ts.

The term inverse is used in two ways. In the context of a non-group semi-

group, we will always mean local inverses — global inverses are not only rare

in the wider world of semigroups, but don’t exist except at the identity 1 in

most examples we’ll study here. In the context of groups, a local inverse for an

element is the global inverse.

*We’ll refer to one-sided identity and zero to mean right or left identity or zero.
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Proposition 1.2.13. Every regular element has an inverse.

Proof. Let a = axa be regular. Then xax is an inverse for a:

a(xax)a = ax(axa) = axa = a,

(xax)a(xax) = x(axaxa)x = xax.

We will use the characterisation of regularity as meaning “having an in-

verse.”

Definition 1.2.14. A semigroup is regular if every element has an inverse, and

inverse if inverses are unique. A semigroup is commutative if every pair of ele-

ments commute; a commutative group is said to be abelian.

Definition 1.2.15. The natural partial order on the idempotents of a semigroup is

the relation given by

e ≤ f ⇐⇒ e f = f e = e.

That this is a partial order is not difficult, see [10], pp.23–24.

Definition 1.2.16. Fix S a semigroup and x ∈ S. If the monogenic semigroup ⟨x⟩

generated by the single element x is finite, then there is n such that xn = x2n.

This is the idempotent power of x, often written xω.

If xω = x ⋅ xω, we say that x is aperiodic, and we say that S is aperiodic if every

element is aperiodic.

1.2.3 Ideals and Green’s Pre-Orders

Given subsets X, Y ⊆ S of a semigroup, write

XY ∶= {xy ∶ x ∈ X, y ∈ Y},

instead writing xY where X = {x}, or Xy if Y = {y}.

Definition 1.2.17. A subset T ⊆ S is respectively a left ideal, (two-sided) ideal if it

satisfies S1T = T, or S1TS1 = T, respectively.
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We usually omit “two-sided,” including it only where necessary to describe

ideals in contrast to, or alongside one-sided counterparts.

A right ideal in S is a left ideal in the dual Sop; an ideal is precisely a left ideal

which is simultaneously a right ideal. The following results concerning left

ideals each have a dual statement in terms of right-ideals, with multiplication

reversed where applicable.

Proposition 1.2.18. The intersection of a family of left ideals is a left ideal.

Corollary 1.2.19. The intersection of a family of ideals is an ideal.

Proof. By duality, Proposition 1.2.18 implies that intersections of right ideals are

right ideals. An intersection of ideals is simultaneously an intersection of left

and right ideals, and is hence a left and right ideal, which is the same as being

and ideal.

Proposition 1.2.20. For s ∈ S and X ⊆ S, we have

1. The set S1X is a left ideal in S;

2. The set S1XS1 is an ideal in S.

These are the left ideal, respectively the ideal, generated by X. When X = {x}

is a singleton, we refer to the principal (left) ideal generated by x.

Proof. Similarly to Proposition 1.2.3, we’ll rely on the observation that family of

(left) ideals containing X has an intersection, itself a (left) ideal. Note that every

left ideal (respectively ideal) containing X contains all x ∈ X and each sx ∈ SX

(alongside each xs ∈ XS and sxt ∈ SXS), so S1X (S1XS1) is contained in the

intersection, and hence equals it.

We can compare elements with reference to the left, right and two-sided

ideals by reference to a family of relations described by Sandy Green [30] in

1951.

Definition 1.2.21. Let S be a semigroup. The Green’s preorders on S are the rela-

tions:
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1. s ≤L t precisely if S1s ⊆ S1t;

2. s ≤R t precisely if sS1 ⊆ tS1;

3. s ≤J t precisely if S1sS1 ⊆ S1tS1.

Then Green’s (equivalence) relations are given by

1. sL t precisely if S1s = S1t;

2. sRt precisely if sS1 = tS1;

3. sJ t precisely if S1sS1 = S1tS1;

4. sH t precisely if sL t and sRt;

5. sD t precisely if there is x ∈ S with sL xRt.

Duality will allow us to interchange L and R in the statement of theorems

where convenient; this will be assumed herein. The following characterisations

are well-known and useful.

Proposition 1.2.22. As relations, we have:

K =≤K ∩ ≥K , D =L ○R =R ○L =L ∨R,

for K =R,L ,J , where the join is in the semilattice of equivalence relations on S.

Theorem 1.2.23. Let H be an H -class in the semigroup S. Then either the set H ⋅H

of products lies entirely outside H or is precisely H. In the latter case, H is a group.

This result is well-known as Green’s Lemma; it was proved in a 1951 paper

of Sandy Green [30], as Theorem 7 and its immediate Corollary. The following

result is Theorem 3 of the same paper.

Lemma 1.2.24. For a finite semigroup, D =J .

The following results give some insight into the structure of Green’s classes

in regular semigroups.
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Proposition 1.2.25. If s ∈ S is regular and sD t then t is regular.

Again Green [30], Theorem 6, observed the above as a corollary to Lemma 6

in [75]. We refer to these as regular D-classes.

Proposition 1.2.26. Every regular s ∈ S is L -related to an idempotent.

Proof. Let s′ be an inverse of s. Then ss′ = (ss′s)s′ = (ss′)2.

Proposition 1.2.27. Let e ∈ E(S) be an idempotent. Then es = s for all s ∈Re.

Proof. If s ∈ Re then by definition s = ea for some s ∈ S1, giving es = e(ea) = ea =

s.

Let S be a semigroup and T a subsemigroup. Writing RT ∶= R ∩ (T × T) for

the restriction of R =RS to T, we have the following result.

Proposition 1.2.28. Let T ≤ S be a subsemigroup with T regular. Then the restrictions

RT,LT,HT of Green’s relations from S to T coincide with Green’s relations on T.

Proof. By duality, a proof for LT gives one for RT. Intersection gives HT, so we

only prove that L restricts faithfully.

Let S be a semigroup and T ⊆ S a regular subsemigroup, sLSt be two ele-

ments in T. Then as = t and bt = s for some a, b ∈ S.

Pick l ∈ S satisfying lLSs, and l′ and s′ respective inverses in T for l and s.

We immediately have l′lLTl and s′sLTs, and therefore l′l′s. Proposition 1.2.27

ensures l′ls′s = l′l and s′sl′l = s′s by duality. This implies, since these elements

are in T, that s′sLTt′t, giving

sLTs′sLTl′lLTl

1.2.4 Regular *-semigroups

Definition 1.2.29. Let S be a semigroup. A semigroup involution a ↦ a∗ on S is a

map satisfying (s∗)∗ = s and (st)∗ = t∗s∗ for every pair of elements s, t ∈ S. The

semigroup S is a semigroup with involution (or *-semigroup) is a semigroup with

a specified involution defined. A *-subsemigroup of such S is a subsemigroup

T ≤ S where t ∈ T implies t∗ ∈ T.
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Some semigroups such as semigroups of size at least three comprising right

zeroes, admit no involutions.

Definition 1.2.30. A regular *-semigroup is a regular semigroup S with a defined

involution s ↦ s∗ in which s = s∗s for every s ∈ S.

Proposition 1.2.31. A *-subsemigroup of a regular *-semigroup is itself a regular *-

semigroup.

Definition 1.2.32. A projection in a regular *-semigroup is an idempotent e which

is a fixed point of the involution: e2 = e = e∗.

Proposition 1.2.33. In a regular *-semigroup S and s, t ∈ S, e ∈ E(S) and p ∈ E(S) is

a projection, the following hold:

1. The elements ss∗ and s∗s are projections;

2. Every projection p ∈ S can be written as p = t1t∗1 = t∗2 t2 for some t1, t2 ∈ S;

3. The element e∗ ∈ E(S) is idempotent; that’s to say that E(S) is closed under

involution;

4. If sL t then s∗Rt∗;

5. For any s ∈ S we have s∗Ds;

6. The idempotent e can be written as a product of two projections from its D-class

in a unique way.

Proof. The first four items are obvious, since, respectively, (ss∗)∗ = ss∗ and ss ∗

s = s ensuring idempotency of ss∗ and s∗s; pp∗ = p = p∗ = p∗p is an idempotent

fixed under the involution if p is a projection; and we have (e∗)2 = (e2)∗ = (e)∗

for any idempotent e. The fourth follows from the fact that there exist a

To prove the later claims, fix e ∈ S. Then we have e = (ee∗)e = e(e∗e), so eL e∗e

and eRee∗. Dually, e∗Re∗e and e∗L ee∗, meaning eDe.

Now assume e ∈ E(S) is idempotent. We can write e = ee∗e = e(e∗)2e =

(ee∗)(e∗e) as a product of two projections, respectively R and L -related to e,
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and dually, respectively L and R-related to e∗. Now assume e = ss∗tt∗ for

some s, t ∈ S so that e∗ = tt∗ss∗. Clearly we have e ≤R ss∗ and e∗ ≤L ss∗, but

since ss∗Dss∗, we have eRss∗L e∗. That means that ss∗H ee∗; Theorem 1.2.23

ensures that since this H -class contains an idempotent, it is a group and hence

contains exactly one, ensuring ss∗ = ee∗. A dual argument quickly establishes

tt∗ = e∗e.

Corollary 1.2.34. If e = pq is an idempotent and p, qDe are projections then p = ee∗

aand t = e∗e.

1.3 Combinatorial Semigroup Theory

Definition 1.3.1. A congruence on a semigroup S is an equivalence relation which

is stable under multiplication. That is, if r, t ∈ S1 and s ∈ [x], the equivalence class

of x ∈ S, we have rst ∈ [rxt].

We call such equivalence classes congruence classes. The mapping from ele-

ment to congruence class is a homomorphism, and each homomorphism arises

in this way. The congruence on the domain semigroup is recovered by observ-

ing that classes are exactly preimages of codomain elements.

Proposition 1.3.2. A congruence is a subsemigroup of S × S.

Corollary 1.3.3. The congruences form a closure system in the lattice of relations on S.

There is therefore a well-defined mapping $ ↦ $♯ associating to each relation

$ ⊆ S × S the smallest congruence containing it. The congruences hence form

a lattice whose meet is the intersection as a binary relation, and whose join is

given by applying a closure operation returning the smallest congruence, when

applied to the set-theoretic union.

Definition 1.3.4. The quotient semigroup S/$ of S by the congruence $ is the set

of equivalence classes with the setwise multiplication induced by that of S.

This is guaranteed to be a well-defined semigroup by the properties charac-

terising congruences, or equivalently, homomorphisms.
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1.3.1 Free Semigroups and Formal Languages

Definition 1.3.5. Let X be a set. A word over X is a finite concatenation of letters

from X. The free semigroup Σ+ generated by Σ is the set

⋃
i>0

Σi = Σ ∪ (Σ ×Σ)∪ (Σ ×Σ ×Σ)∪⋯

of all words from Σ, with multiplication given by concatenation. If we adjoin

an identity (represented by an empty word ε), we obtain the free monoid Σ∗.

Definition 1.3.6. Let w ∈ Σ∗ be a word. The length of w is the number of letters

in w; equivalently the number l where w ∈ Σl. The a-content #a(w), for some

letter a ∈ Σ is the number of occurrences of a in w. A subword of w is some word

t such that w = stu for some s, u ∈ Σ∗. The subword t is a prefix (respectively a

suffix) of w if s (resp. u) can be chosen to be the empty word.

Definition 1.3.7. A relative presentation for a semigroup is a pair P = ⟨S∣R⟩where

S is a semigroup and R ⊆ S × S is a set of relations. The semigroup presented by

P is S/R♯ where R♯ is the congruence generated by the relations in R. The term

presentation is used when S is a free semigroup or monoid; in such a case, we

usually write ⟨A∣R⟩where A is a set (usually in fact, just a list) of generators for

A+ or A∗.

Example 1.3.8. The presentation ⟨a, b ∣ ab = b, a2 = a, ba = a, b2 = b⟩ defines a

2-element semigroup of right zeroes.

We regard a free monoid (semigroup) as a set of words. Throughout, we’ll

denote by Σ an alphabet, which is to say a finite set.

Definition 1.3.9. A (formal) language over Σ is a subset L ⊆ Σ∗. The context CL(v)

of a word v modulo the language L is the (possibly empty) set of pairs (u, w)

such that uvw ∈ L. The syntactic equivalence ∼L of L is given by comparing

contexts; if CL(v) = CL(v′) then v ∼L v′ and otherwise v /∼L v′.

Proposition 1.3.10. For any fixed language L ⊆ Σ∗, this equivalence is a congruence.
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Proof. The relation is clearly an equivalence. To establish stability, fix v ∼L v′

and fix s, t ∈ Σ∗. We need only establish that svt ∼L sv′t. Consider

CL(svt) = {(u, w) ∶ usvtw ∈ L}.

Since v ∼L v′ we have usv′tw ∈ L for each usvtw ∈ L, meaning that CL(svt) =

CL(sv′t) so svt ∼L sv′t. The equivalence is a congruence.

There are many notions of complexity for languages, which in some sense

determine how difficult it is to decide answers to questions such as member-

ship, how many words there are of each length, as well as some sense of how

complicated the semigroup Syn(L) is.

We frequently will rely on regular expression notation, which borrows from

Stephen Kleene’s notation for regular algebras [42].

Definition 1.3.11. Regular expression notation is defined recursively as follows.

• Every word w is a regular expression, and represents the language {w};

• Every finite sum ∑n
i=1 ei of regular expressions ei is a regular expression,

representing the language ⋃n
i=1 Li where ei represents Li;

• Every finite product ∑n
i=1 ei of regular expressions ei is a regular expres-

sion, representing the language

L1 ⋅ L2⋯Lk = {u1⋯u2⋯uk ∶ ui ∈ Li for i = 1, . . . , n},

where each language Li is represented by ei.

As a matter of practical concern, we’ll abuse or extend this notation in some

convenient ways. If Li are languages (rather than expressions) we may write

the product or sum to represent the concatenation or union.

Definition 1.3.12. A grammar G consists of a disjoint pair of finite alphabets N, T

of nonterminals and terminals, a start symbol S ∈N, and a finite set P of production

rules, which are pairs in N× (N∪T)∗, written NÐ→w.
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The language defined by G is the set of terminal words w ∈ T∗ such that

S = u0Ð→u1Ð→⋯Ð→uk = w

is a sequence of applications of production rules.

We use certain conventions to encode grammars in a more obvious form to

work with. Roman letters will be nonteminals while symbols in typewriter

fonts will be terminals. More often than not, we use S for the start symbol, and

write + for conjunction of production rules having the same left-hand side.

Definition 1.3.13. The language L(G) generated by a grammar G comprises all

those words with nonterminal letters, reachable from S by a sequence of re-

placements which consist of productions in G.

In other words, if we have n→ e a production in G, then we write unw ⊢G
uvw. If we have a sequence

u = u0 ⊢G u1 ⊢G ⋯ ⊢G uk = v

of these replacements, then we’ll write u ⊢∗
G

v. We can then see that

L(G) = {w ∈ N ∗ ∶ S ⊢G w}.

Example 1.3.14. The Dyck language D can be generated by a grammar with a

nonterminal alphabet N = {S} consisting of only the start symbol, an alphabet

T = {[,]} of terminals and two production rules:

SÐ→ ε, SÐ→S ⋅[ ⋅S ⋅].

We can write this with a single conjunction SÐ→ ε + S[S] in a natural, obvious

extension of the regular expression notation.

The language D can be characterised as the smallest submonoid of T∗ closed

under the map w ↦ [ ⋅w ⋅].

This choice of grammar has some nice properties as we’ll see in the next

section.
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1.3.2 The DSV Method

Definition 1.3.15. The growth of a language is the sequence γ0, γ1, . . . , γl, . . .

where

γl ∶= #{w ∈ L ∶ ∣w∣ = l}.

The growth series is then the ordinary generating function for the (γi)i:

f (z) =
∞

∑
i=0

γizi.

We can calculate the growth series fairly easily using certain nice grammars.

Example 1.3.16. There is an alternative grammar for the Dyck language, with

productions

SÐ→ ε +TT, TÐ→S +[S].

We can take each nonterminal appearing and substitute for the formal symbol

z, and for each nonterminal, substitute a formal power series, adding across

conjunctions and equating across productions:

S(z) = 1+ T(z)2, T(z) = S(z)+ z ⋅ S(z) ⋅ z.

We make everything commute, giving

T(z) = S(z)+ z2S(z) = (1+ z2)S(z),

so

S(z) = 1+ (1+ z2)2S(z)2

The DSV method, named for Delaun, Schützenberger and Vali.

1.4 Diagrams

1.4.1 Diagrams

Definition 1.4.1. A picture in degree n is a graph whose vertices lie in the set

±[[n]] ∶= [[n]]∪−[[n]] = {±1,±2, . . . ,±n}.
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Two such graphs are equivalent if the connected components coincide. A dia-

gram is an equivalence class of these graphs. The set of equivalence classes is

the partition monoid Pn.

When we draw diagrams, we consider two different representatives to be

equal rather than merely equivalent in some sense, since we are only concerned

with the connected components.

For a diagram δ ∈ Pn, we write a ∼δ b if a, b ∈ ±[[n]] lie in the same connected

component in some representative of δ.

Proposition 1.4.2. The representatives in δ, ordered by inclusion, form a join-semilattice.

Definition 1.4.3. Given two diagrams δ, ν ∈ Pn, we define the (vertical) product

as the diagram δ ⋅ ν characterised by a ∼δ⋅ν b for a, b ∈ ±[[n]] if one of the following

holds:

1. We have a, b > 0 with a ∼δ b;

2. Dually, a, b < 0 with a ∼ν b;

3. We have b < 0 < a and there is a sequence u0, u1, . . . , u2k so that each ui > 0

with a ∼δ −u0, u2n ∼ν b and

u0 ∼ν u1,−u1 ∼δ −u2, u2 ∼ν u3,⋯,−u2n−1 ∼δ −u2n−1, u2n−1 ∼ν u2n.

It’s essentially impossible to draw an equivalence class of pictures, so we

pick a picture and use that to represent the whole class.

Definition 1.4.4. Given δ ∈ Pn and ν ∈ Pm, and representatives Γ ∈ δ and Ξ ∈ ν,

we can form the horizontal (tensor) sum Γ⊗Ξ, which is the picture of degree n+m

with

• a ∈ Γ⊗Ξ for a, b ∈ ±[[n]]with (a, b) ∈ Γ;

• a +m ∈ Γ⊗Ξ for a, b ∈ [[m]]with (a, b) ∈ Ξ;

• −a −m ∈ Γ⊗Ξ for a, b ∈ [[m]]with (−a, b) ∈ Ξ;
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• a +m ∈ Γ⊗Ξ for a, b ∈ [[m]]with (a,−b) ∈ Ξ.

Definition 1.4.5. Let Γ be a picture. There is a picture Γ∗ which we call the

opposite of Γ, given by swapping the signs of vertices in every edge. In other

words, Γ∗ is characterised by (a, b) ∈ Γ precisely whenever (−a,−b) ∈ Γ∗

This map is an involution in the sense of Definition 1.2.29.

Proposition 1.4.6. Involution of pictures induces an involution of diagrams. In other

words, Γ, Ξ ∈ δ where δ ∈ Pn for some n. If Γ∗ ∈ ν, then Ξ∗ ∈ ν.

We write δ∗ for the involution of a diagram.

Proposition 1.4.7. The semigroup Pn is a regular *-semigroup with respect to the in-

duced involution *.

Herein we won’t use the term picture, instead identifying a diagram with a

representative.

Definition 1.4.8. A semigroup of diagrams is a diagram semigroup. A diagram

semigroup is planar if each diagram can be represented by a noncrossing parti-

tion of the ordered set ±[[n]].

1.5 Algebra

Definition 1.5.1. A semiring is a set K endoed with two associative binary op-

erators +, ⋅, the former being commutative, with respective units 0 and 1, which

together satisfy the distributive laws:

a(b + c) = ab + ac, (a + b)c = ac + bc

for all a, b, c ∈ K such that the additive identity 0 is a multiplicative zero. A

semiring is commutative if ⋅ commutes.

A (commutative) ring is a semiring whose addition induces the structure of

a(n abelian) group. An integral domain is a commutative ring if it has no zero

33



divisors except 0. A field is a commutative ring whose nonzero elements form a

group under mutliplication.

A *-ring is a ring whose multiplicative monoid is a *-semigroup whose invo-

lution distributes over addition.

Definition 1.5.2. An ideal I in a ring R is a subset which inherits a subgroup

structure with respect to addition and an ideal structure with respect to multi-

plication, written I ⊴ R. We say that a ≡ b (mod I) if a − b ∈ I. This equivalence

relation is stable with respect to addition and multiplication; so the classes form

a ring with respect to the setwise operations, and we write R/I for the induced

quotient ring.

Given a quotient map, one can detect the factored ideal by checking what

elements map to zero.

Proposition 1.5.3. Subrings and ideals form closure systems in the set of subsets of a

fixed ring R. We can talk about (sub)ring and ideal generation the same way as we do

for semigroups.

Example 1.5.4. The usual number systems provide good prototypical algebraic

structures. The natural numbers N0 provide an example of a commutative

semiring with no zero divisors. Extending to Z gives us an integral domain,

and the rationals Q, reals R and complex numbers C are fields.

Integral domains embed in fields (and are the only rings which do so). The

fraction field is the smallest field in which an integral domain embeds, itself being

embeddable in every such field.

If K is a semiring then we define the sets

K[X] = {k0 + k1X +⋯+ knXn ∣ n ∈ N0, ki ∈ K for each 0 ≤ i ≤ n}

K[[X]] = {
∞

∑
i=0

kiXi = k0 + k1X +⋯+ knXn +⋯ ∣ ki ∈ K for each i ∈ N0}

of respectively polynomials and formal series.

These constructions usually preserve most of the structure. Commutativity

(or lack thereof), possession of a unit, existence of additive inverses and lack of
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zero divisors translate forward in both cases. Checking this is an easy exercise

for the reader.

Definition 1.5.5. For a ring R, a (right) module over R is an abelian group A

(whose operation is written as addition) on which the multiplicative semigroup

R acts compatibly with addition in A and R. In other words, for a, b ∈ A and

r, s ∈ R, we have

(a + b)r = ar + br, a(r + s) = ar + as,

a ⋅ 1R = a, 0A ⋅ r = a ⋅ 0R = 0A

where 0A is the identity in A and 1r and 0R are the identity and zero of R. A

vector space is a module V over a field.

A left module is defined similarly, and an R-bimodule M is simultaneouly a

left and right R-module such that if r, s ∈ R and m ∈ M then (rm)s = r(ms).

We often use the term R-module instead of right module.

Definition 1.5.6. Let A be an R-module. A generating set is a subset B with

BR = {br ∶ b ∈ B, r ∈ R} generates A as a group. A basis of an R-module A is a

generating set whose elements are linearly independent, that is if r1, . . . , rn ∈ R are

distinct with b1, . . . bn ∈ B then the linear combination b1r1 + b2r2 +⋯ + bnrn = 0A

only when every ri is zero. A module is free if it has a basis.

Definition 1.5.7. A submodule is a a subgroup N ≤ A such that for n ∈ N and

r ∈ R, nr ∈ N. As with ideals in rings, we can separate A into classes modulo N

and the quotient inherits a natural R-module structure.

Submodules again form a closure system and we can talk meaningfully

about generation.

Definition 1.5.8. Given a commutative ring R, an algebra over R (alternatively,

R-algebra) is a ring A whose additive group is an R-bimodule such that for a ∈ A

and r ∈ R, ar = ra.

If R is a *-ring with involution written ′, then a *-algebra over R is a *-ring

with an involution * which is an R-algebra such that, for r ∈ R and a ∈ A, we

have (ra)∗ = r′a∗.
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Algebras again comprise a closure system. Ideals being submodules, quo-

tients are characterised by factoring out ideals just like with rings.

Example 1.5.9. Let X = {x1, x2, . . .} be a set of distinct formal letters. Then the

free R-algebra FR(X) is the algebra with a basis comprising words over the letters

whose multiplication is the linear extension of word concatenation. This alge-

bra inherits a natural involution reversing the order of multiplication. Every

algebra is a quotient of the free algebra over its generators.

The polynomial algebra R[x1, x2, . . .] is already known to us, and consists of

polynomials, which are sums of commuting words. The ideal giving rise to the

quotient from the free algebra is generated by the terms xi − xj.

We can write presentations for algebras similarly to semigroups.

Definition 1.5.10. Let x1, x2, . . . be a sequence of formal symbols, and li = ri be a

sequence of equalities between elements of R⟨X1, X2, . . .⟩. Then the algebra pre-

sented by the above data is the quotient of the free algebra by the ideal generated

by the ri − li, written

⟨X1, X2, . . . ∣ l1 = r1, l2 = r2, . . .⟩ ∶=
R⟨X1, X2, . . .⟩

I

where

I = {a1(ri1 − li1)b1 +⋯+ an(rin − lin)bn ∶ ak, bk ∈ R, k ≤ n <∞}

is the ideal generated by the (ri − li)i.

Now let X ⊆ A generate A as an R-algebra, and FX denote the free R-algebra

generated by X, with φ ∶ FX→A the obvious quotient map. Given s, t ∈ FX, say

that the equality s = t holds in A if φ(s) = φ(t).

If Q = {li = ri ∶ li, ri ∈ FX, i ∈ I} is a set of equations that all hold in A, we

say that Q completely characterises A if the set {li − ri ∶ i ∈ I} generates the ideal

defining the quotient.

Definition 1.5.11. Given a semigroup S, and ring R the semigroup ring [of S over

R] is the ring

RS = { f ∶ S→R ∣ f is a map}
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whose elements are maps with only finitely many points mapping to nonzero

elements in R. We add these in the image (( f + g)(s) = f (s)+ g(s) for each s ∈ S)

and multiply by convolution:

( f ∗ g)(s) =∑
x∈S
∑

y∶xy=s
f (x) ⋅ g(y).

When R is a field, we use the term semigroup algebra.

We often write these maps as sums, as follows

f =∑
s∈S

f (s) ⋅ s,

adding using the distributive law. Nothing in particular restricts us to using

rings rather than semirings, but we’ll only use semirings in a couple of specific

circumstances.

Definition 1.5.12. Let S be a semigroup and R a ring. A twisting is a map α ∶

S × S→R satisfying

α(x, y) ⋅ α(xy, z) = α(x, yz) ⋅ α(y, z)

for all x, y, z ∈ S. The twisted semigroup algebra of S over R with respect to α is the

R-algebra Rα[S]with basis S and multiplication defined by

x ⋅ y ∶= α(x, y)(xy)

where (xy) is the product in S, and extended linearly.

1.6 Some Topology

Definition 1.6.1. A topology τ for a set X is a family of open subsets of X closed

under arbitrary unions and finite intersection, and containing both X and the

empty set. A (topological) space (X, τ) is a set equipped with a topology; we take

τ as known and usually refer to X.

A map f ∶ X→Y is continuous if the preimage of each open set is open. A

homeomorphism is a continuous bijection whose inverse is bijective. Two spaces

are homeomorphic if there is a homeomorphism mapping between.
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Homeomorphism reflect the topological notion of “sameness” much as iso-

morphism reflects that notion in algebra. If two spaces X and Y are homeomor-

phic, we write X ≃ Y.

Proposition 1.6.2. The union of a family of open subsets of a topological space X is

open.

Dually, intersections of closed sets are closed, meaning the closed sets form

a closure system. There is then a well-defined maximal open set contained in

some Y ⊆ X and a minimal closed set containing Y. These are respectively the

interior and closure, and the (possibly empty) difference is the boundary, which

will be denoted by ∂Y.

Definition 1.6.3. A space is connected if it is not the union of two disjoint nonempty

open subsets. A connected component is a connected subspace not properly con-

taining any other connected subspace.

Definition 1.6.4. A base B of open sets in a topology τ is a subset such that every

open U ∈ τ is a union of sets in B.

Every topology on a set X can be completely described by a base of open

subsets; we may fruitfully think of these as performing a similar function to

generating sets in algebra.

Example 1.6.5. Let X be a set. The discrete topology is the set 2X of all subsets,

and has a base comprising the singletons {x}. Discrete spaces are not connected

unless ∣X∣ < 2.

Given a family X = (Xi)i∈I of topological spaces, the disjoint union is the set

∐X =∐
i∈I

Xi ∶= {(i, x) ∶ i ∈ I , x ∈ Xi}

with a topology given by the base of open sets {i}×O, where i ∈ I and O ⊆ Xi is

open.

Let X be a topological space with a base B of open sets and let Y ⊆ X be a

subset. The subspace topology on Y has a base BY given by

BY = {B ∩Y ∶ B ∈B}.
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Given a family (Xi) of topological spaces with topologies τi, the box topology on

∏i Ai has a base of open sets consisting of the set

B = {∏
i∈I

Bi ∶ Bi ∈ τi for each i}.

The standard base for the product topology is similar, except that only finitely

many of the Bi in the product may be unequal to Xi. Clearly, for finite products,

these bases, and hence topologies, coincide.

Denoting by Rn the vector space of n-tuples of real numbers under com-

ponentwise addition as usual, the sets In and Sn−1 denote repectively the unit

cube comprising vectors with all components in the unit interval[0, 1], and the

(n − 1)-sphere, comprising vectors whose components sum to 1 when squared.

We have ∂In ≅ Sn−1. Define I0 to be a point.

Proposition 1.6.6. Let A = A1 ⊔ A2 be a disjoint union of two topological spaces and

B be a space. Then

A × B = (A1 × B)⊔ (A2 × B).

The proof is left as an exercise to the reader.

Corollary 1.6.7. Products distribute over disjoint unions.

Definition 1.6.8. An mapping of I (S1) into Rn is called a (closed) curve. If this

mapping is an embedding then the (closed) curve is said to be self-avoiding.

Theorem 1.6.9 (Jordan Curve Theorem). Let c ∶ S1→R2 be a self-avoiding closed

curve. Then the complement R2 ∖ c(S1) of the image has two connected components.

This theorem is folklore in topology, and highly nontrivial to prove. The

reader is directed to [40, 53, 73, 74]

Definition 1.6.10. A neighbourhood of a point x ∈ X in a space is an open set

containing x. Two points x, y are separated by neighbourhoods if there are neigh-

bourhoods Nx, Ny of each which do not intersect. A space is Hausdorff if every

pair of points is separated by neighbourhoods.
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Definition 1.6.11. A space (X, τ) is compact if, given a family C ⊆ τ of open sets

whose union is X, there is a finite subset C′ ⊆ C whose union is X.

Definition 1.6.12. A metric space X is a set with a well-defined notion of distance,

which is to say having a map d ∶ X ×X→R≥0 so that d(x, y) = 0 precisely when

x = y and satisfying the triangle inequality for all x, y, z ∈ X:

d(x, z) ≤ d(x, y)+ d(y, z).

When dealing with several metric spaces, we will often denote by dX the

metric attached to X.

Definition 1.6.13. An isometry is a bijective map f ∶ X→Y between metric spaces

such that

dX(x, x′) = dY( f (x), f (x′)).

We say that two spaces are isometric if there is an isometry between them.

Isometries serve the same function in the theory of metric spaces as homeo-

morphisms do in general topology and isomorphisms in algebra.

Definition 1.6.14. An open ball (around x of radius r) in a metric space is a set

Br(x) = {y ∈ X ∶ d(x, y) < r}.

A closed ball is similar, but we constrain the distance not to exceed r rather.

The open balls in a metric space form a base for its topology.

Definition 1.6.15. A limit of a sequence x1, x2, . . . of points in a metric space X

is a point x such that for each positive real ε > 0 there is a nonnegative integer

N ≥ 0 so that d(xn, x) < ε for each n > N. A sequence of points in the metric

space X is Cauchy if for every positive real ε > 0 there is a nonnegative integer

N ≥ 0 so that d(xn, xn+1) < ε for all n > N.

A metric space is complete if every Cauchy sequence has a limit.

If x is the limit of a sequence (xi)i, we also say that the sequence converges

to x (or that the xi converge to x), written xi →
i→∞

x.
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Example 1.6.16. Any nonempty subset of a metric space is a metric space, whose

metric is simply inherited from the ambient space.

Example 1.6.17. Let (X, d) be a metric space. Then the family C(X) of nonempty

compact subsets inherits a metric, the Haussdorff metric. Writing Yε for the union

of open ε-balls with centres in Y, we have

dH(Y, Z) =max{inf
z∈Z

sup
y∈Y

d(z, y), sup
z∈Z

inf
y∈Y

d(z, y)} = inf{ε > 0 ∶ Y ⊆ Zε and Z ⊆ Yε}.

Example 1.6.18. The real numbers form a metric space where d(x, y) = ∣x − y∣,

and any set-theoretic product Rd of is a metric space with the quadratic-mean

distance

d ((x1, x2, . . . xd), (y1, y2, . . . , yd)) =

¿
Á
ÁÀ

d
∑
i=1
(xi − yi)2.

This is called the Euclidean space En.

Definition 1.6.19. Let (X, d) be a metric space. Then a map f ∶ X→X is called a

contraction mapping on X if there is 0 ≤ k < 1 such that

d( f (x), f (y)) ≤ k ⋅ d(x, y)

for each x, y ∈ X.

Theorem 1.6.20 (Contraction Mapping Theorem). A contraction mapping f ∶ X→X

where X is complete has a unique fixed point x∗. Furthermore, for every x ∈ X, the limit

of the Cauchy sequence x0 = x, xi+1 = f (x) is x∗.

This classical result can be found in any standard text on real analysis, see

[68] Theorem 9.2.3.

Definition 1.6.21 ( [9], p111–2). The faces of I are {0}, {1} and [0, 1] and the faces

of In are products of faces of I.

A cubical complex K is a quotient of a finite disjoint union of unit cubes

X = ∐λ∈Λ Inλ by an equivalence relation ∼. The restrictions pλ ∶ Inλ→K are of

the quotient mapping p ∶ X→K are required to satisfy:
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• for each λ, the map pλ is injective;

• if pλ(Inλ) ∩ pλ′(Inλ′) ≠ ∅ then there is a metric isometry hλ,λ′ from a face

Tλ ⊆ Inλ to a face Tλ′ ⊆ Inλ′ such that pλ(x) = pλ′(x′) precisely when x′ =

hλ,λ′(x).

The dimension of the cube complex is the largest nλ.

Proposition 1.6.22. The product of two cubical complexes is a cubical complex.

By Corollary 1.6.7, it suffices to check that the composition of the quotient

maps in each component satisfies the conditions of Definition 1.6.21. This is a

straightforward exercise for the reader.
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Chapter 2

Introduction

Idempotents are of prominent importance in semigroup theory. They show us

where groups occur inside the structure of semigroups and let us know where

we can find “local” inverses inside the semigroup. The semigroups we’ll study

in this thesis are so-called diagram semigroups, which for our purposes are

concrete combinatorially-defined structured whose elements are partitions of a

certain type. The ones we’re interested in have some convenient extra structure

carried by involutions.

Related semigroup algebras and deformations have been extensively stud-

ied in several contexts. In particular, these are known in certain cases to be [76]

cellular, and hence semisimple, emphasising the importance of understanding

the idempotents in the algebra (and hence, the semigroup) in understanding

certain aspects of the representation theory of the algebras.

There’s also a rich variety theory surrounding many of the monoids of in-

terest. It’s known [3] that the pseudovarieties generated by the Jones monoids

and Brauer monoids respectively comprise all finite aperiodic monoids and all

finite monoids.

The work exposed in this thesis is closely related to that of the arXiv preprint

[13] concerning the structure of idempotents in the planar diagram monoids,

and which follows on from [12] which concerned itself with the non-planar

cases. At this time, the former does not contain the method exposed herein
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for counting idempotents using generating functions, and this thesis is the first

place that the algorithms used to generate the data shown in that paper are

analysed.

There is significant overlap with [13], and as such I’ve elected to opt for

a novel exposure of the material which will hopefully offer a deeper insight

into the theory, and certainly more closely parallel the development of the algo-

rithms which will echo the main results of the paper.

2.1 Diagram algebras and Semigroups

This section is based on the introduction from [12], whose content has been

adapted and included at the suggestion of the external examiner.

There are many compelling reasons to study diagram algebras and semi-

groups. Besides their intrinsic appeal, they appear as key objects in several

diverse areas of mathematics, from statistical mechanics to the representation

theory of algebraic groups, often touching upon major combinatorial themes.

In this introduction we seek to show the value of this study, though we can give

only a superficial impression of all the connections that exist, with a particular

emphasis on the types of problems we investigate, and we make no attempt to

give an exhaustive description of an area that is exquisitely vast.

In 1927, Issai Schur [69] provided a vital link between permutation and ma-

trix representations. This connection, now known as Schur-Weyl duality, shows

that the general linear group GLn(C) (consisting of all invertible n × n matrices

over the complex field C) and the complex group algebra C[Sk] of the symmet-

ric group Sk (consisting of all permutations of a k-element set) have commuting

actions on k-fold tensor space (Cn)⊗k, and that the irreducible components of

these actions are intricately intertwined. In 1937, Richard Brauer [8] showed

that an analogous duality holds between the orthogonal group On(C) ⊆ GLn(C)
and the so-called Brauer algebra Cξ[Brk] ⊇ C[Sk]. At the end of the 20th century,

the partition algebras Cξ[Pk] ⊇ Cξ[Brk]were introduced by Paul Martin [55] in the

context of Potts models in statistical mechanics. Martin later showed [58] that
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the partition algebras are in a kind of Schur-Weyl duality with the symmetric

group Sn ⊆ On(C) (in its disguise as the group of all n×n permutation matrices).

Figure 2.1 shows the relationships between the various algebraic structures; ver-

tical arrows indicate containment of algebras or groups and horizontal arrows

indicate relationships between dual algebras and groups. It should be noted

that there are several other Schur-Weyl dualities; for example, between the par-

tial Brauer algebra Cξ[PBrk] and On(C) [31, 35, 57, 59], and between (the semi-

group algebras of) the symmetric and dual symmetric inverse semigroups [47].

Matrix groups Diagram algebras

General
linear group

Orthogonal
group

Symmetric
group

Symmetric
group algebra

Brauer
algebra

Partition
algebra

Figure 2.1: Schur-Weyl duality between matrix groups and diagram algebras.

The traditional approach to studying the above algebras, collectively re-

ferred to as diagram algebras since they have bases indexed by certain diagrams,

has been via representation theory [34, 36, 56]. But recent investigations [2–5,

16–21, 44–46, 48, 49, 54, 59, 60] have taken a more direct approach, probing the

so-called partition monoids (and other diagram semigroups) with the tools of semi-

group theory, asking and answering the same kinds of questions of partition

monoids as one would of any other kind of interesting semigroup, and thereby

shedding new light on the internal structure of the diagram algebras.

There are two main reasons this approach has been so successful. The first

is that the partition monoids naturally embed many important transformation

semigroups on the same base set; these include the full (but not partial) trans-

formation semigroups and the symmetric and dual symmetric inverse semi-
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groups, allowing knowledge of these semigroups to lead to new information

about the partition monoids. (See also [57] where a larger semigroup is de-

fined that contains all of the above semigroups and more.) The second reason

is that the partition algebras have natural bases consisting of diagrams (see be-

low for the precise definitions), with the product of two basis elements always

being a scalar multiple of another. Using this observation, Wilcox [76] realised

the partition algebras as twisted semigroup algebras of the partition monoids, al-

lowing the cellularity of the algebras to be deduced from structural information

about the associated monoid. Cellular algebras were introduced by Graham

and Lehrer [28] and provide a unified framework for studying several impor-

tant classes of algebras, allowing one to obtain a great deal of information about

the representation theory of the algebra; see [15] for the original study of cellular

semigroup algebras and also [33] for some recent developments.

The elements Cλ
st of the cellular bases of the diagram algebras studied in [76]

are all sums over elements from certain “H -classes” in a corresponding di-

agram semigroup. Of importance to the cellular structure of the algebra is

whether a product Cλ
st ⋅C

λ
uv “moves down” in the algebra, and this is governed

by the location of idempotents within the “D-class” containing the elements in-

volved in the sums defining Cλ
st and Cλ

uv. The twisted semigroup algebra struc-

ture has also been useful in the derivation of presentations by generators and

relations [16,17]. But the benefits of the relationship do not only flow from semi-

group theory to diagram algebras. Indeed, the partition monoids and other

kinds of diagram semigroups have played vital roles in solving outstanding

problems in semigroup theory itself, especially, so far, in the context of pseu-

dovarieties of finite semigroups [2–5] and embeddings in regular ∗-semigroups

[19, 20].

It has long been recognised that the biordered set of idempotents E(S) =

{x ∈ S ∶ x2 = x} of a semigroup S often provides a great deal of useful infor-

mation about the structure of the semigroup itself. In some cases, E(S) is a sub-

semigroup of S (as in inverse semigroups, for example), but this is not generally

the case. However, the subsemigroup generated by the idempotents of a semi-
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group is typically a very interesting object with a rich combinatorial structure.

In many examples of finite semigroups, this subsemigroup coincides with the

singular ideal, the set of non-invertible elements [25, 39, 66]; this is also the case

with the partition and Brauer monoids [17, 20, 54]. Several studies have con-

sidered (minimal idempotent) generating sets of these singular ideals as well as

more general ideals; see [21] and references therein. Another reason idempotent

generated semigroups have received considerable attention in the literature is

that they possess a universal property: every semigroup embeds into an idem-

potent generated semigroup [39] (indeed, in an idempotent generated regular

∗-semigroup [20]). There has also been a recent resurgence of interest in the

so-called free idempotent generated semigroups (see [14,29] and references therein)

although, to the authors’ knowledge, very little is currently known about the

free idempotent generated semigroups arising from of the diagram semigroups

we consider; we hope the current work will help with the pursuit of this knowl-

edge.

Interestingly, although much is known [17, 20, 21, 54] about the semigroups

generated by the idempotents of certain diagram semigroups, the idempotents

themselves have so far evaded classification and enumeration, apart from the

case of the Brauer monoid Brn (see [48], where a different approach to ours leads

to sums over set partitions). This stands in stark contrast to many other natural

families of semigroup; for example, the idempotents of the symmetric inverse

monoid IX are the restrictions of the identity map, while the idempotents of

the full transformation semigroup TX are the transformations that map their

image identically. These descriptions allow for easy enumeration; for example,

∣E(In)∣ = 2n, and ∣E(Tn)∣ = ∑
n
k=1 (

n
k)k

n−k. It is the goal of this thesis to rectify the

situation for several classes of diagram semigroups; specifically, the partition,

Brauer and partial Brauer monoids Pn,Brn,PBrn (though much of what we say

will also apply to various transformation semigroups such as In and Tn).

For each semigroup, we completely describe the idempotents, and we give

several formulae and recursions for the number of idempotents in the semi-

group as well as in various Green’s classes and ideals. We also give formulae
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for the number of idempotent basis elements in the corresponding diagram al-

gebras; these depend on whether the constant that determines the twisting is a

root of unity. Our approach is combinatorial in nature, and our results depend

on certain equivalence relations and graphs associated to a partition.

Because Sloane’s Online Encyclopedia of Integer Sequences (OEIS) [71] is an

important resource in many areas of discrete mathematics, we record the se-

quences that result from our study. We remark that the approach outlined in

Chapter 3 does not work for the so-called Jones monoid Jn ⊆ Brn (also some-

times called the Temperley-Lieb monoid and denoted TLn), which consists of all

planar Brauer diagrams; values of ∣E(Jn)∣ up to n = 19 have been calculated by

James Mitchell, using the Semigroups package in GAP [62], and may be found

in Sequence A225798 on the OEIS [71].
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Part II

Diagram Monoids
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Chapter 3

Diagram Semigroups

The chapter is organised as follows. In Section 3.1, we define the diagram semi-

groups we will be studying, and we state and prove some of the basic prop-

erties we will need. The characterisation of the idempotents is given in Sec-

tion 3.2, with the main result being Theorem 3.2.2. In Section 3.3, we enumerate

the idempotents, first giving general results (Theorems 3.3.2, 3.3.3, 3.3.4) and

then applying these to the partition, Brauer and partial Brauer monoids in Sec-

tions 3.3.1, 3.3.2 and 3.3.3. We describe an alternative approach to the enumera-

tion of the idempotents in the Brauer and partial Brauer monoids in Section 3.4

(see Theorems 3.4.5 and 3.4.7). In Section 3.5, we classify and enumerate the

idempotent basis elements in the partition, Brauer and partial Brauer algebras

(see especially Theorems 3.5.1, 3.5.2, 3.5.3). Finally, in Section 3.6, we give sev-

eral tables of calculated values.

3.1 Preliminaries

Let X be a set, and X′ a disjoint set in one-one correspondence with X via a

mapping X → X′ ∶ x ↦ x′. If A ⊆ X we will write A′ = {a′ ∶ a ∈ A}. A partition on

X is a collection of pairwise disjoint non-empty subsets of X ∪X′ whose union

is X ∪X′; these subsets are called the blocks of the partition. The partition monoid

on X is the set PX of all such partitions, with a natural binary operation defined
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below.

When n ∈ N = {0, 1, 2, . . .} is a natural number and X = [[n]] = {1, . . . , n}, we

will write PX = Pn. Note that P0 = P∅ = {∅} has a single element; namely, the

empty partition, which we denote by ∅.

A partition may be represented as a graph on the vertex set X ∪ X′; edges

are included so that the connected components of the graph correspond to the

blocks of the partition. Of course such a graphical representation is not unique,

but we regard two such graphs as equivalent if they have the same connected

components, and we typically identify a partition with any graph represent-

ing it. We think of the vertices from X (resp. X′) as being the upper vertices

(resp. lower vertices). For example, the partition

α = {{1, 4},{2, 3, 4′, 5′},{5, 6},{1′, 3′, 6′},{2′}} ∈ P6

is represented by the graph α = .

In order to describe the product alluded to above, let α, β ∈ PX. Consider

now a third set X′′, disjoint from both X and X′, and in bijection with X via

x ↦ x′′. Let α∨ be the graph obtained from (a graph representing) α simply by

changing the label of each lower vertex x′ to x′′. Similarly, let β∧ be the graph

obtained from β by changing the label of each upper vertex x to x′′.

Consider now the graph Γ(α, β) on the vertex set X ∪ X′ ∪ X′′ obtained by

joining α∨ and β∧ together so that each lower vertex x′′ of α∨ is identified with

the corresponding upper vertex x′′ of β∧. Note that Γ(α, β), which we call the

product graph of α and β, may contain multiple edges. We define αβ ∈ PX to

be the partition that satisfies the property that x, y ∈ X ∪X′ belong to the same

block of αβ if and only if there is a path from x to y in Γ(α, β). An example

calculation (with X finite) is given in Figure 3.1.

We now define subsets

PBrX = {α ∈ PX ∶ each block of α has size at most 2}

BrX = {α ∈ PX ∶ each block of α has size 2}.

We note that PBrX is a submonoid of PX for any set X, while BrX is a submonoid

if and only if X is finite. For example, taking X = N = {0, 1, 2, 3, . . .}, the parti-
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α =

β =
Ð→ Ð→ = αβ

Figure 3.1: Two partitions α, β ∈ P6 (left), their product αβ ∈ P6 (right), and the product

graph Γ(α, β) (centre).

tions α, β pictured in Figure 3.2 both belong to BrN, while the product αβ (also

pictured in Figure 3.2) does not. We call PBrX the partial Brauer monoid and (in

the case that X is finite) BrX the Brauer monoid on X. Again, if n ∈ N and X = [[n]],

we write PBrn and Brn for PBrX and BrX, noting that Br0 = PBr0 = P0 = {∅}.

α =

β =
Ð→ Ð→ = αβ

Figure 3.2: Two partitions α, β ∈ BrN (left), their product αβ ∉ BrN (right), and the prod-

uct graph Γ(α, β) (centree).

We now introduce some notation and terminology that we will use through-

out our study. Let α ∈ PX. A block A of α is called a transversal block if A ∩X /=

∅ /= A ∩X′, or otherwise an upper (resp. lower) non-transversal block if A ∩X′ = ∅

(resp. A ∩ X = ∅). The rank of α, denoted rank(α), is equal to the number of

transversal blocks of α. For x ∈ X ∪X′, let [x]α denote the block of α containing

x. We define the upper and lower domains of α to be the sets

dom∧(α) = {x ∈ X ∶ [x]α ∩X′ /= ∅} and dom∨(α) = {x ∈ X ∶ [x′]α ∩X /= ∅}.

We also define the upper and lower kernels of α to be the equivalences

ker∧(α) = {(x, y) ∈ X ×X ∶ [x]α = [y]α} and ker∨(α) = {(x, y) ∈ X ×X ∶ [x′]α = [y′]α}.
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(The upper and lower domains and the upper and lower kernels have been

called the domain, codomain, kernel and cokernel (respectively) in other works [16,

17, 20, 21], but there should be no confusion.) To illustrate these definitions,

consider the partition α = from P6. Then rank(α) = 1, dom∧(α) = {2, 3},

dom∨(α) = {4, 5}, and α has upper kernel-classes {1, 4}, {2, 3}, {5, 6}, and lower

kernel-classes {1, 3, 6}, {2}, {4, 5}.

The next result was first proved for finite X in [48,76], and then in full gener-

ality in [22], though the language used in those papers was different from that

used here; see also [59] on finite (partial and full) Brauer monoids.

Theorem 3.1.1 ( [76, Theorem 17]). For each α, β ∈ PX, we have

(i) αRβ if and only if dom∧(α) = dom∧(β) and ker∧(α) = ker∧(β);

(ii) αL β if and only if dom∨(α) = dom∨(β) and ker∨(α) = ker∨(β);

(iii) αDβ if and only if rank(α) = rank(β). ◻

Finally, we define the kernel of α to be the join

ker(α) = ker∧(α)∨ ker∨(α).

(The join ε ∨ η of two equivalence relations ε, η on X is the smallest equivalence

relation containing the union ε ∪ η; that is, ε ∨ η is the transitive closure of ε ∪ η.)

The equivalence classes of X with respect to ker(α) are called the kernel-classes

of α. We call a partition α ∈ PX irreducible if it has only one kernel-class; that is, α

is irreducible if and only if ker(α) = X ×X. Some (but not all) partitions from PX

may be built up from irreducible partitions in a way we make precise below.

The equivalences ker∧(α), ker∨(α), ker(α) may be visualised graphically as

follows. We define a graph Γ∧(α) with vertex set X, and red edges drawn so

that the connected components are precisely the ker∧(α)-classes of X, and we

define Γ∨(α) analogously but with blue edges. (Again, there are several possible

choices for Γ∧(α) and Γ∨(α), but we regard them all as equivalent.) We also

define Γ(α) to be the graph on vertex set X with all the edges from both Γ∧(α)
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and Γ∨(α). Then the connected components of Γ(α) are precisely the kernel-

classes of α.

To illustrate these ideas, consider the partitions α = and β =

from P6. Then Γ(α) = and Γ(β) = . So α is irreducible but β is

not.

It will be convenient to conclude this section with two technical results that

will help simplify subsequent proofs.

Lemma 3.1.2. Let α, β ∈ PX and suppose x, y ∈ X. Then (x, y) ∈ ker∨(α)∨ ker∧(β) if

and only if x′′ and y′′ are joined by a path in the product graph Γ(α, β).

Proof. If (x, y) ∈ ker∨(α)∨ ker∧(β), then there is a sequence x = x0, x1, . . . , xk = y

such that (x0, x1) ∈ ker∨(α), (x1, x2) ∈ ker∧(β), (x2, x3) ∈ ker∨(α), and so on. Such

a sequence gives rise to a path x′′ = x′′0 → x′′1 → ⋯→ x′′k = y′′ in the product graph

Γ(α, β).

Conversely, suppose x′′ and y′′ are joined by a path in the product graph

Γ(α, β). We prove that (x, y) ∈ ker∨(α)∨ ker∧(β) by induction on the length of a

path x′′ = z0 → z1 → ⋯→ zt = y′′ in Γ(α, β). If t = 0, then x = y, and we are done, so

suppose t ≥ 1. If zr = w′′ for some 0 < r < t, then an induction hypothesis applied

to the shorter paths x′′ → ⋯ → w′′ and w′′ → ⋯ → y′′ tells us that (x, w) and

(w, y), and hence also (x, y), belong to ker∨(α) ∨ ker∧(β). If none of z1, . . . , zt−1

belong to X′′, then they either all belong to X or all to X′. In the former case,

it follows that z1, . . . , zt−1, y′ ∈ [x′]α, so that (x, y) ∈ ker∨(α) ⊆ ker∨(α) ∨ ker∧(β).

The other case is similar. ◻

Lemma 3.1.3. Let α, β ∈ PX and suppose A ∪ B′ is a transversal block of αβ. Then

for any a ∈ A and b ∈ B, and any c, d ∈ X with c′ ∈ [a]α, d ∈ [b′]β, we have (c, d) ∈

ker∨(α)∨ ker∧(β).

Proof. Consider a path a = z0 → z1 → ⋯ → zk = b′ in the product graph Γ(α, β).

Let 0 ≤ r ≤ k be the least index for which zr does not belong to X, and let 0 ≤ s ≤ k

be the greatest index for which zs does not belong to X′. Then zr = x′′ and

zs = y′′ for some x, y ∈ X with x′ ∈ [a]α and y ∈ [b′]β. Since there is a path from
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x′′ to y′′ in Γ(α, β), Lemma 3.1.2 tells us that (x, y) ∈ ker∨(α) ∨ ker∧(β). But we

also have (c, x) ∈ ker∨(α) and (y, d) ∈ ker∧(β). Putting this all together gives

(c, d) ∈ ker∨(α)∨ ker∧(β), as required. ◻

3.2 Characterisation of idempotents

We now aim to give a characterisation of the idempotent partitions, and our

first step in this direction is to describe the irreducible idempotents. (Recall that

α ∈ PX is irreducible if ker(α) = X ×X.)

Lemma 3.2.1. Suppose α ∈ PX is irreducible. Then α is an idempotent if and only if

rank(α) ≤ 1.

Proof. It is clear that any partition of rank 0 is idempotent. Next, suppose

rank(α) = 1, and let the unique transversal block of α be A ∪ B′. Every non-

transversal block of α is a block of α2, so it suffices to show that A∪ B′ is a block

of α2. So suppose a ∈ A and b ∈ B. Then there is a path from a to b′ in (a graph

representing) α, so it follows that there is a path from a to b′′ and a path from

a′′ to b′ in the product graph Γ(α, α). Since α is irreducible, ker∨(α) ∨ ker∧(α) =

ker(α) = X × X, so Lemma 3.1.2 says that there is also a path from b′′ to a′′.

Putting these together, we see that there is a path from a to b′. This completes

the proof that α is idempotent.

Now suppose rank(α) ≥ 2 and let A ∪ B′ and C ∪D′ be distinct transversal

blocks of α. Let a, b, c, d be arbitrary elements of A, B, C, D, respectively. Since

α is irreducible, there is a path from b′′ to d′′ in the product graph Γ(α, α). But

since a ∈ A and b ∈ B, there is a path from a to b′′ in Γ(α, α), and similarly there

is a path from d′′ to c. Putting these together, we see that there is a path from

a to c, so that A ∪C is contained in a block of α2. But A and C are contained in

different blocks of α, so it follows that α could not be an idempotent. ◻

We now show how idempotent partitions are built up out of irreducible

ones. Suppose Xi (i ∈ I) is a family of pairwise disjoint sets, and write X =
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⋃i∈I Xi. We define

⊕
i∈I
PXi = {α ∈ PX ∶ each block of α is contained in Xi ∪X′i for some i ∈ I},

which is easily seen to be a submonoid of PX, and isomorphic to the direct prod-

uct ∏i∈I PXi . Suppose α ∈ ⊕i∈I PXi . For each i ∈ I, let αi = {A ∈ α ∶ A ⊆ Xi ∪X′i} ∈

PXi . We call αi the restriction of α to Xi, and we write αi = α∣Xi and α = ⊕i∈I αi.

We are now ready to prove the main result of this section, which gives a charac-

terisation of the idempotent partitions. A precursor also appears in [48, 59] for

finite (partial and full) Brauer monoids.

Theorem 3.2.2. Let α ∈ PX, and suppose the kernel-classes of α are Xi (i ∈ I). Then α

is an idempotent if and only if the following two conditions are satisfied:
(i) α ∈⊕i∈I PXi , and

(ii) the restrictions α∣Xi all have rank at most 1.

Proof. Suppose first that α is an idempotent, but that condition (i) fails. Then

there is a block A∪B′ of α such that A ⊆ Xi and B ⊆ Xj for distinct i, j ∈ I. Let a ∈ A

and b ∈ B. Since α is an idempotent, A∪ B′ is a block of α2, and we also have b′ ∈

[a]α and a ∈ [b′]α. So Lemma 3.1.3 tells us that (a, b) ∈ ker∨(α)∨ker∧(α) = ker(α).

But this contradicts the fact that a ∈ Xi and b ∈ Xj, with Xi and Xj distinct kernel-

classes. Thus, (i) must hold. It follows that α =⊕i∈I αi where αi = α∣Xi for each i.

Then⊕i∈I αi = α = α2 = ⊕i∈I α2
i , so that each αi is an irreducible idempotent, and

(ii) now follows from Lemma 3.2.1.

Conversely, suppose (i) and (ii) both hold, and write α = ⊕i∈I αi where αi ∈

PXi for each i. Since rank(αi) ≤ 1, Lemma 3.2.1 says that each αi is an idempotent.

It follows that α2 =⊕i∈I α2
i =⊕i∈I αi = α. ◻

3.3 Enumeration of idempotents

For a subset Σ of the partition monoid PX, we write E(Σ) = {α ∈ Σ ∶ α2 = α} for

the set of all idempotents from Σ, and we write e(Σ) = ∣E(Σ)∣. In this section, we
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aim to derive formulae for e(KX)where KX is one of PX,BrX,PBrX. The infinite

case is essentially trivial, but we include it for completeness.

Proposition 3.3.1. If X is infinite, then e(BrX) = e(PBrX) = e(PX) = 2∣X∣.

Proof. Since BrX ⊆ PBrX ⊆ PX and ∣PX ∣ = 2∣X∣, it suffices to show that e(BrX) =

2∣X∣. Let A = {A ⊆ X ∶ ∣X ∖ A∣ ≥ ℵ0}, and let A ∈ A . Let βA be any element of

BrX with dom∧(βA) = dom∨(βA) = A and such that {a, a′} is a block of βA for

all a ∈ A. Then βA is clearly an idempotent. The map A → E(BrX) ∶ A ↦ βA is

clearly injective, so the result follows since ∣A ∣ = 2∣X∣. ◻

The rest of the paper concerns the finite case so, unless stated otherwise, X

will denote a finite set from here on.

For a subset Σ of PX, we write C(Σ) for the set of all irreducible idempotents

of Σ. So, by Theorem 3.2.2, C(Σ) consists of all partitions α ∈ Σ such that ker(α) =

X×X and rank(α) ≤ 1. We will also write c(Σ) = ∣C(Σ)∣. Our next goal is to show

that we may deduce the value of e(Kn) from the values of c(Kn)when Kn is one

of Pn,Brn,PBrn.

Recall that an integer partition of n is a k-tuple µ = (m1, . . . , mk) of integers,

for some k, satisfying m1 ≥ ⋯ ≥ mk ≥ 1 and m1 +⋯+mk = n. We write µ ⊢ n to

indicate that µ is an integer partition of n. With µ ⊢ n as above, we will also

write µ = (1µ1 , . . . , nµn) to indicate that, for each i, exactly µi of the mj are equal

to i. By convention, we consider µ = ∅ to be the unique integer partition of 0.

Recall that a set partition of X is a collection X = {Xi ∶ i ∈ I} of pairwise disjoint

non-empty subsets of X whose union is X. We will write X ⊧ X to indicate that

X is a set partition of X. Suppose X = {X1, . . . , Xk} ⊧ [[n]]. For i ∈ [[n]], write µi(X)

for the cardinality of the set {j ∈ k ∶ ∣Xj∣ = i}, and put µ(X) = (1µ1(X), . . . , nµn(X)),

so µ(X) ⊢ n. For µ = (1µ1 , . . . , nµn) ⊢ n, we write π(µ) for the number of set

partitions X ⊧ [[n]] such that µ(X) = µ. It is easily seen (and well-known) that

π(µ) =
n!

∏
n
i=1 µi!(i!)µi

.

If α ∈ Pn has kernel classes X1, . . . , Xk, we write µ(α) = µ(X)where X = {X1, . . . , Xk}.
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Note that if ∣X1∣ ≥ ⋯ ≥ ∣Xk∣, then µ(α) = (∣X1∣, . . . , ∣Xk∣) in the alternative notation

for integer partitions.

Theorem 3.3.2. If Kn is one of Pn,Brn,PBrn, then

e(Kn) = n! ⋅ ∑
µ⊢n

n
∏
i=1

c(Ki)
µi

µi!(i!)µi
.

The numbers e(Kn) satisfy the recurrence:

e(K0) = 1, e(Kn) =
n
∑
m=1
(

n − 1
m − 1

) c(Km) e(Kn−m) for n ≥ 1.

The values of c(Kn) are given in Propositions 3.3.6, 3.3.9 and 3.3.13.

Proof. Fix an integer partition µ = (m1, . . . , mk) = (1µ1 , . . . , nµn) ⊢ n. We count

the number of idempotents α from Kn with µ(α) = µ. We first choose the kernel-

classes X1, . . . , Xk of α, with ∣Xi∣ = mi for each i, which we may do in π(µ)ways.

For each i, the restriction of α to Xi is an irreducible idempotent of KXi , and

there are precisely c(KXi) = c(Kmi) of these. So there are c(Km1)⋯c(Kmk) =

c(K1)
µ1⋯c(Kn)µn idempotents with kernel classes X1, . . . , Xk. Multiplying by

π(µ) and summing over all µ gives the first equality.

For the recurrence, note first that E(K0) = K0 = {∅}, where ∅ denotes the

empty partition. Now suppose n ≥ 1 and let m ∈ [[n]]. We will count the number

of idempotents α from Kn such that the kernel-class A of α containing 1 has size

m. We first choose the remaining m − 1 elements of A, which we may do in

(n−1
m−1) ways. The restriction α∣A is an irreducible idempotent from KA, and may

be chosen in c(KA) = c(Km)ways, while the restriction α∣[[n]]∖A is an idempotent

from K[[n]]∖A, and may be chosen in e(K[[n]]∖A) = e(Kn−m) ways. Summing over

all m ∈ [[n]] gives the recurrence, and completes the proof. ◻

It will also be convenient to record a result concerning the number of idem-

potents of a fixed rank. If Kn is one of Pn,Brn,PBrn and 0 ≤ r ≤ n, we write

Dr(Kn) = {α ∈ Kn ∶ rank(α) = r}.
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So, by Theorem 3.1.1 and the fact that Brn and PBrn are regular subsemigroups

of Pn, the sets Dr(Kn) are precisely the D-classes of Kn. Note that Dr(Brn) is

non-empty if and only if n ≡ r (mod 2), as each non-transversal block of an

element of Brn has size 2. For a subset Σ ⊆ Pn and an integer partition µ ⊢ n, we

write

Eµ(Σ) = {α ∈ E(Σ) ∶ µ(α) = µ} and eµ(Σ) = ∣Eµ(Σ)∣.

For a subset Σ of Pn, and for r ∈ {0, 1}, let

Cr(Σ) = {α ∈ C(Σ) ∶ rank(α) = r} and cr(Σ) = ∣Cr(Σ)∣.

So by Lemma 3.2.1, c(Σ) = c0(Σ)+ c1(Σ).

Theorem 3.3.3. Suppose Kn is one of Pn,Brn,PBrn and 0 ≤ r ≤ n. Then

e(Dr(Kn)) = ∑
µ⊢n

eµ(Dr(Kn)).

If µ = (m1, . . . , mk) = (1µ1 , . . . , nµn) ⊢ n, then

eµ(Dr(Kn)) =
n!

∏
n
i=1 µi!(i!)µi

∑
A⊆k
∣A∣=r

⎛

⎝
∏
i∈A

c1(Kmi) ⋅ ∏
j∈k∖A

c0(Kmj)
⎞

⎠
.

The values of cr(Kn) are given in Propositions 3.3.6, 3.3.9 and 3.3.13.

Proof. Fix µ = (1µ1 , . . . , nµn) = (m1, . . . , mk) ⊢ n, and suppose α ∈ E(Dr(Kn)) is

such that µ(α) = µ. We choose the kernel-classes X1, . . . , Xk (where ∣Xi∣ = mi)

of α in π(µ) ways. Now, α = α1 ⊕⋯ ⊕ αk, with αi ∈ C(KXi) for each i, and

r = rank(α) = rank(α1)+⋯+ rank(αk). So we require precisely r of the αi to have

rank 1. For each subset A ⊆ k with ∣A∣ = r, there are∏i∈A c1(Kmi) ⋅∏j∈k∖A c0(Kmj)

ways to choose the αi so that rank(αi) = 1 if and only if i ∈ A. Summing over all

such A gives the result. ◻

Remark 1. If Kn is one of Pn,Brn,PBrn, then the ideals of Kn are precisely the sets

Ir(Kn) =⋃
s≤r

Ds(Kn).
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(See [21,49].) It follows immediately that the number of idempotents in such an

ideal is given by e(Ir(Kn)) = ∑s≤r e(Ds(Kn)), so these values may be deduced

from the values of e(Ds(Kn)) given above.

We also give a recurrence for the numbers e(Dr(Kn)).

Theorem 3.3.4. The numbers e(Dr(Kn)) satisfy the recurrence

e(Dn(Kn)) = 1 e(D0(Kn)) = ρ(Kn)
2

and

e(Dr(Kn)) =
n
∑
m=1
(

n − 1
m − 1

)(c0(Km)e(Dr(Kn−m))+ c1(Km)e(Dr−1(Kn−m)))

if 1 ≤ r ≤ n − 1, where ρ(Kn) is the number of R-classes in D0(Kn); these values are

given in Lemma 3.3.5. The values of cr(Kn) are given in Propositions 3.3.6, 3.3.9 and

3.3.13.

Proof. Note that Dn(Kn) is the group of units of Kn (which is the symmetric

group Sn), so e(Dn(Kn)) = 1 for all n. Also, since every element of D0(Kn) is

an idempotent, it follows that e(D0(Kn)) = ∣D0(Kn)∣ = ρ(Kn)2. Now consider

an element α ∈ Dr(Kn) where 1 ≤ r ≤ n − 1, and suppose the kernel-class A of α

containing 1 has size m ∈ [[n]]. Then, as in the proof of Theorem 3.3.2, the restric-

tion α∣A belongs to C(KA) and the restriction α∣[[n]]∖A belongs to E(K[[n]]∖A). But,

since rank(α) = r, it follows that either

(i) α∣A ∈ C0(KA) and α∣[[n]]∖A ∈ E(Dr(K[[n]]∖A)), or

(ii) α∣A ∈ C1(KA) and α∣[[n]]∖A ∈ E(Dr−1(K[[n]]∖A)).

The proof concludes in a similar fashion to the proof of Theorem 3.3.2. ◻

As usual, for an odd integer k, we write k!! = k(k − 2)⋯3 ⋅ 1, and we interpret

(−1)!! = 1.
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Lemma 3.3.5. If ρ(Kn) denotes the number of R-classes in D0(Kn) where Kn is one

of Pn,Brn,PBrn, then

ρ(Pn) = B(n),

ρ(PBrn) = an,
ρ(Brn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(n − 1)!! if n is even

0 if n is odd,

where B(n) is the nth Bell number, and an satisfies the recurrence

a0 = a1 = 1, an = an−1 + (n − 1)an−2 for n ≥ 2.

Proof. The results concerning Pn and Brn are well-known; see for example the

proof of [21, Theorems 7.5 and 8.4]. For the PBrn statement, note that, since

dom∧(α) = ∅ for all α ∈ D0(PBrn), Theorem 3.1.1 says that the R- classes of

PBrn are indexed by the equivalence relations ε on [[n]] that satisfy the condition

that each equivalence class has size 1 or 2. Such equivalences are in one-one

correspondence with the involutions (i.e., self-inverse permutations) of [[n]], of

which there are an (see A000085 on the OEIS [71]). ◻

Remark 2. The completely regular elements of a semigroup are those that are H -

related to an idempotent. Because the H -class of any idempotent from a (non-

empty) D-class Dr(Kn) is isomorphic to the symmetric group Sr, it follows that

the number of completely regular elements in Kn is equal to ∑n
r=0 r!e(Dr(Kn)).

3.3.1 The partition monoid

In this section, we obtain formulae for c0(Pn), c1(Pn), c(Pn). Together with The-

orems 3.3.2, 3.3.3 and 3.3.4, this yields formulae and recurrences for e(Pn) and

e(Dr(Pn)). The key step is to enumerate the pairs of equivalence relations on

[[n]] with specified numbers of equivalence classes and whose join is equal to

the universal relation [[n]]× [[n]].

Let E(n) denote the set of all equivalence relations on [[n]]. If ε ∈ E(n), we

denote by [[n]]/ε the quotient of [[n]] by ε, which consists of all ε-classes of [[n]].
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For r, s ∈ [[n]], we define sets

E(n, r) = {ε ∈ E(n) ∶ ∣[[n]]/ε∣ = r},

E(n, r, s) = {(ε, η) ∈ E(n, r)× E(n, s) ∶ ε ∨ η = [[n]]× [[n]]},

and we write e(n, r, s) = ∣E(n, r, s)∣.

Proposition 3.3.6. If n ≥ 1, and i = 0, 1 then

ci(Pn) = ∑
r,s∈[[n]]

(rs)i ⋅ e(n, r, s), c(Pn) = ∑
r,s∈[[n]]

(1+ rs)e(n, r, s).

A recurrence for the numbers e(n, r, s) is given in Proposition 3.3.7.

Proof. Let r, s ∈ [[n]] and consider a pair (ε, η) ∈ E(n, r, s). We count the num-

ber of idempotent partitions α ∈ C(Pn) such that ker∧(α) = ε and ker∨(α) = η.

Clearly there is a unique such α satisfying rank(α) = 0. To specify such an α with

rank(α) = 1, we must also specify one of the ε-classes and one of the η-classes to

form the unique transversal block of α, so there are rs of these. Since there are

e(n, r, s) choices for (ε, η), the statements follow after summing over all r, s. ◻

Remark 3. The numbers c0(Pn) count the number of pairs of equivalences on [[n]]

whose join is [[n]]× [[n]]. These numbers may be found in Sequence A060639 on

the OEIS [71].

For the proof of the following result, we denote by εij ∈ E(n) the equivalence

relation whose only non-trivial equivalence class is {i, j}. On a few occasions in

the proof, we will make use of the (trivial) fact that if ε ∈ E(n, r), then ε ∨ εij has

at least r − 1 equivalence classes. As usual, we write S(n, r) = ∣E(n, r)∣; these are

the (unsigned) Stirling numbers of the second kind.

Proposition 3.3.7. The numbers e(n, r, s) = ∣E(n, r, s)∣ satisfy the recurrence:

e(n, r, 1) = S(n, r)

e(n, 1, s) = S(n, s)

e(n, r, s) = s ⋅ e(n − 1, r − 1, s)+ r ⋅ e(n − 1, r, s − 1)+ rs ⋅ e(n − 1, r, s)

+
n−2
∑
m=1
(

n − 2
m
)

r−1
∑
a=1

s−1
∑
b=1
(a(s − b)+ b(r − a))e(m, a, b)e(n −m − 1, r − a, s − b).
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where r, s ≥ 2.

Proof. The r = 1 and s = 1 cases are clear, so suppose r, s ≥ 2. Consider a pair

(ε, η) ∈ E(n, r, s). We consider several cases. Throughout the proof, we will write

[[n]]♭ = {1, . . . , n − 1}.

Case 1. Suppose first that {n} is an ε-class. Let ε′ = ε ∩ ([[n]]♭ × [[n]]♭) and

η′ = η ∩ ([[n]]♭ × [[n]]♭) denote the induced equivalence relations on [[n]]♭. Then

we clearly have ε′ ∈ E(n−1, r−1). Also, {n} cannot be an η-class, or else then {n}

would be an ε ∨ η-class, contradicting the fact that ε ∨ η = [[n]] × [[n]]. It follows

that η′ ∈ E(n − 1, s).

Next we claim that ε′ ∨ η′ = [[n]]♭ × [[n]]♭. Indeed, suppose to the contrary

that ε′ ∨ η′ has k ≥ 2 equivalence classes. Let η′′ ∈ E(n) be the equivalence on

[[n]] obtained from η′ by declaring {n} to be an η′′-class. Then ε ∨ η′′ has k + 1

equivalence classes. But η = η′′ ∨ εin for some i ∈ [[n]]♭. It follows that ε ∨ η =

(ε∨ η′′)∨ εin has (k+1)−1 = k ≥ 2 equivalence classes, contradicting the fact that

ε ∨ η = [[n]]× [[n]]. So this establishes the claim.

It follows that (ε′, η′) ∈ E(n−1, r−1, s). So there are e(n−1, r−1, s) such pairs.

We then have to choose which block of η′ to put n into when creating η, and this

can be done in s ways. So it follows that there are s ⋅ e(n − 1, r − 1, s) pairs (ε, η)

in Case 1.

Case 2. By symmetry, there are r ⋅ e(n − 1, r, s − 1) pairs (ε, η) in the case that

{n} is an η-class.

Case 3. Now suppose that {n} is neither an ε-class nor an η-class. Again,

let ε′, η′ be the induced equivalences on [[n]]♭. This time, ε′ ∈ E(n − 1, r) and

η′ ∈ E(n − 1, s). We now consider two subcases.

Case 3.1. If ε′ ∨ η′ = [[n]]♭ × [[n]]♭, then (ε′, η′) ∈ E(n− 1, r, s). By similar reason-

ing to that above, there are rs ⋅ e(n − 1, r, s) pairs (ε, η) in this case.

Case 3.2. Finally, suppose ε′ ∨ η′ /= [[n]]♭ × [[n]]♭, and denote by k the number

of ε′ ∨ η′-classes. We claim that k = 2. Indeed, suppose this is not the case. By

assumption, k /= 1, so it follows that k ≥ 3. Let ε′′ and η′′ be the equivalence

relations on [[n]] obtained from ε′ and η′ by declaring {n} to be an ε′′- and η′′-

class. Then ε′′ ∨ η′′ has k + 1 equivalence classes, and ε = ε′′ ∨ εin and η = η′′ ∨ ε jn
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for some i, j ∈ [[n]]♭. So ε ∨ η = (ε′′ ∨ η′′)∨ εin ∨ ε jn has at least (k + 1)− 2 = k − 1 ≥ 2

equivalence classes, a contradiction. So we have proved the claim.

Denote by B1 the ε′ ∨ η′-class of [[n]]♭ containing 1, and let the other ε′ ∨ η′-

class be B2, noting that 1 ≤ ∣B1∣ ≤ n − 2. If ∣B1∣ = m, then there are (n−2
m−1) ways to

choose B1 (and B2 = [[n]]
♭
∖ B1 is then fixed).

For i = 1, 2, let εi = ε ∩ (Bi × Bi) and ηi = η ∩ (Bi × Bi). Note that εi ∨ ηi = Bi × Bi

for each i. Let a = ∣B1/ε1∣ and b = ∣B1/η1∣. So 1 ≤ a ≤ r − 1 and 1 ≤ b ≤ s − 1, and

also ∣B2/ε2∣ = r − a and ∣B2/η2∣ = s − b. So, allowing ourselves to abuse notation

slightly, we have (ε1, η1) ∈ E(m, a, b) and (ε2, η2) ∈ E(n −m − 1, r − a, s − b). So

there are e(m, a, b)e(n −m − 1, r − a, s − b)ways to choose ε1, ε2, η1, η2.

We must also choose which blocks of ε′ and η′ to add n to, when creating ε, η

from ε′, η′. But, in order to ensure that ε ∨ η = [[n]] × [[n]], if we add n to one of

the ε′-classes in B1, we must add n to one of the η′-classes in B2, and vice versa.

So there are a(s − b)+ b(r − a) choices for the blocks to add n to.

Multiplying the quantities obtained in the previous three paragraphs, and

summing over the appropriate values of m, a, b, we get a total of

n−2
∑
m=1
(

n − 2
m
)

r−1
∑
a=1

s−1
∑
b=1
(a(s − b)+ b(r − a))e(m, a, b)e(n −m − 1, r − a, s − b)

pairs (ε, η) in Case 3.2.

Adding the values from all the above cases gives the desired result. ◻

3.3.2 The Brauer monoid

We now apply the general results above to derive a formula for e(Brn). As in the

previous section, the key step is to obtain formulae for c0(Brn), c1(Brn), c(Brn),

but the simple form of these values (see Proposition 3.3.9) allows us to obtain

neat expressions for e(Brn) and e(Dr(Brn)) (see Theorem 3.3.10). But first it will

be convenient to prove a result concerning the graphs Γ(α), where α belongs to

the larger partial Brauer monoid PBrn, as it will be useful on several occasions

(these graphs were defined after Theorem 3.1.1).
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Lemma 3.3.8. Let α ∈ C(PBrX) where X is finite. Then Γ(α) is either a cycle or a path.

Proof. The result is trivial if ∣X∣ = 1, so suppose ∣X∣ ≥ 2. In the graph Γ(α), no

vertex can have two red or two blue edges coming out of it, so it follows that

the degree of each vertex is at most 2. It follows that Γ(α) is a union of paths

and cycles. Since Γ(α) is connected, we are done. ◻

Proposition 3.3.9. If n ≥ 1, then

c0(Brn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if n is odd

(n − 1)! if n is even,

c1(Brn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n! if n is odd

0 if n is even,

c(Brn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n! if n is odd

(n − 1)! if n is even.

Proof. Let α be an irreducible idempotent from Brn. By Lemma 3.2.1, and the

fact that rank(β) ∈ {n, n − 2, n − 4, . . .} for all β ∈ Brn, we see that rank(α) = 0 if

n is even, while rank(α) = 1 if n is odd. If n is even, then by Lemma 3.3.8 and

the fact that Γ(α) has the same number of red and blue edges, Γ(α) is a cycle

1−i2−i3−⋯−in−1, where {i2, . . . , in} = {2, . . . , n}, and there are precisely (n − 1)!

such cycles. Similarly, if n is odd, then Γ(α) is a path i1−i2−i3−⋯−in, where

{i1, . . . , in} = [[n]], and there are n! such paths. ◻

Theorem 3.3.10. Let n ∈ N and put k = ⌊n
2 ⌋. Then

e(Brn) = ∑
µ⊢n

n!

∏
n
i=1 µi! ⋅∏

k
j=1(2j)µ2j

.

If 0 ≤ r ≤ n, then

e(Dr(Brn)) = ∑
µ⊢n

µ1+µ3+⋯=r

n!

∏
n
i=1 µi! ⋅∏

k
j=1(2j)µ2j

.
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Proof. By Theorem 3.3.2 and Proposition 3.3.9,

e(Brn) = n! ⋅ ∑
µ⊢n

(1!)µ1(1!)µ2(3!)µ3(3!)µ4⋯

µ1!⋯µn! ⋅ (1!)µ1(2!)µ2(3!)µ3(4!)µ4⋯
= n! ⋅ ∑

µ⊢n

1
µ1!⋯µn! ⋅ 2µ2 ⋅ 4µ4⋯

,

establishing the first statement. For the second, suppose µ = (m1, . . . , mk) =

(1µ1 , . . . , nµn) ⊢ n. Theorem 3.3.3 gives

eµ(Dr(Brn)) =
n!

∏
n
i=1 µi!(i!)µi

∑
A⊆k
∣A∣=r

⎛

⎝
∏
i∈A

c1(Brmi) ⋅ ∏
j∈k∖A

c0(Brmj)
⎞

⎠
.

By Proposition 3.3.9, we see that for A ⊆ k with ∣A∣ = r,

∏
i∈A

c1(Brmi) ⋅ ∏
j∈k∖A

c0(Brmj) /= 0 ⇐⇒ mi is odd for all i ∈ A and mj is even for all j ∈ k ∖ A

⇐⇒ A = {i ∈ k ∶ mi is odd}.

So

eµ(Dr(Brn)) /= 0 ⇐⇒ {i ∈ k ∶ mi is odd} has size r

⇐⇒ µ1 + µ3 +⋯ = r,

in which case,

eµ(Dr(Brn)) = n! ⋅
(1!)µ1(1!)µ2(3!)µ3(3!)µ4⋯

µ1!⋯µn! ⋅ (1!)µ1(2!)µ2(3!)µ3(4!)µ4⋯
= n! ⋅

1
µ1!⋯µn! ⋅ 2µ2 ⋅ 4µ4⋯

.

Summing over all µ ⊢ n with µ1 + µ3 +⋯ = r gives the desired expression for

e(Dr(Brn)). ◻

Remark 4. The formula for e(Brn) may be deduced from [48, Proposition 4.10].

Note that e(Dr(Brn)) /= 0 if and only if n ≡ r (mod 2).

Proposition 3.3.9 also leads to a simple form of the recurrences from Theo-

rems 3.3.2 and 3.3.4 for the numbers e(Brn) and e(Dr(Brn)).
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Theorem 3.3.11. The numbers e(Brn) satisfy the recurrence:

e(Br0) = 1, e(Brn) =
⌊ n

2 ⌋

∑
i=1
(

n − 1
2i − 1

)(2i − 1)! e(Brn−2i)

+
⌊ n−1

2 ⌋

∑
i=0
(

n − 1
2i
)(2i + 1)! e(Brn−2i−1) for n ≥ 1.

◻

Theorem 3.3.12. The numbers e(Dr(Brn)) satisfy the following recurrence for n ≥ 1:

e(Dn(Brn)) = 1

e(D0(Brn)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(n − 1)!!2 if n is even

0 if n is odd

e(Dr(Brn)) =
⌊ n

2 ⌋

∑
i=1
(

n − 1
2i − 1

)(2i − 1)! e(Dr(Brn−2i))

+
⌊ n−1

2 ⌋

∑
i=0
(

n − 1
2i
)(2i + 1)! e(Dr−1(Brn−2i−1)). ◻

3.3.3 The partial Brauer monoid

As usual, the key step in calculating e(PBrn) is to obtain formulae for c(PBrn).

Proposition 3.3.13. If n ≥ 1, then

c0(PBrn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n! if n is odd

(n + 1) ⋅ (n − 1)! if n is even,

c1(PBrn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n! if n is odd

0 if n is even,

c(PBrn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 ⋅ n! if n is odd

(n + 1) ⋅ (n − 1)! if n is even.
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Proof. Let α be an irreducible idempotent from PBrn. Suppose first that n is odd.

By Lemma 3.3.8, whether rank(α) is equal to 0 or 1, Γ(α) is a path i1−i2−i3−⋯−in,

and there are n! such paths. Now suppose n is even. Then Γ(α) is either a

cycle 1−i2−i3−⋯−in−1, of which there are (n− 1)!, or else a path i1−i2−i3−⋯−in or

i1−i2−i3−⋯−in, of which there are n!/2 of both kinds. All of these have rank(α) =

0, and adding them gives n! + (n − 1)! = (n + 1) ⋅ (n − 1)!. ◻

Theorem 3.3.14. Let n ∈ N and put k = ⌊n
2 ⌋. Then

e(PBrn) = n! ⋅ ∑
µ⊢n

∏
k
j=1(1+

1
2j)

µ2j

∏
n
i=1 µi!

2µ1+µ3+⋯.

If 0 ≤ r ≤ n, then

e(Dr(PBrn)) = n! ⋅ ∑
µ⊢n

µ1+µ3+⋯≥r

∏
k
j=1(1+

1
2j)

µ2j

∏
n
i=1 µi!

(
µ1 + µ3 +⋯

r
).

Proof. By Theorem 3.3.2 and Proposition 3.3.13,

e(PBrn) = n! ⋅ ∑
µ⊢n

(2 ⋅ 1!)µ1(2 ⋅ 3!)µ3⋯(3 ⋅ 1!)µ2(5 ⋅ 3!)µ4⋯

µ1!⋯µn! ⋅ (1!)µ1(3!)µ3⋯(2!)µ2(4!)µ4⋯

= n! ⋅ ∑
µ⊢n

2µ1+µ3+⋯

µ1!⋯µn!
(

3
2
)

µ2

(
5
4
)

µ4

⋯,

giving the first statement. For the second, suppose µ = (m1, . . . , mk) = (1µ1 , . . . , nµn) ⊢

n. Theorem 3.3.3 gives

eµ(Dr(PBrn)) =
n!

∏
n
i=1 µi!(i!)µi

∑
A⊆k
∣A∣=r

⎛

⎝
∏
i∈A

c1(PBrmi) ⋅ ∏
j∈k∖A

c0(PBrmj)
⎞

⎠
.

Let Bµ = {i ∈ k ∶ mi is odd}. By Proposition 3.3.13, we see that for A ⊆ k with

∣A∣ = r,

∏
i∈A

c1(PBrmi) ⋅ ∏
j∈k∖A

c0(PBrmj) /= 0 ⇐⇒ mi is odd for all i ∈ A ⇐⇒ A ⊆ Bµ.
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In particular, eµ(Dr(PBrn)) /= 0 if and only if µ1 + µ3 +⋯ = ∣Bµ∣ ≥ r. For such a

µ ⊢ n and for A ⊆ Bµ with ∣A∣ = r,

∏
i∈A

c1(PBrmi) ⋅ ∏
j∈k∖A

c0(PBrmj) =∏
i∈A

c1(PBrmi) ⋅ ∏
i∈Bµ∖A

c0(PBrmi) ⋅ ∏
j∈k∖Bµ

c0(PBrmj)

= ∏
i∈Bµ

mi! ⋅ ∏
j∈k∖Bµ

(mj + 1) ⋅ (mj − 1)!

= (1!)µ1(3!)µ3⋯(3 ⋅ 1!)µ2(5 ⋅ 3!)µ4⋯.

Since there are (µ1+µ3+⋯
r ) subsets A ⊆ Bµ with ∣A∣ = r, it follows that

eµ(Dr(PBrn)) = (
µ1 + µ3 +⋯

r
) ⋅ n! ⋅

(1!)µ1(3!)µ3⋯(3 ⋅ 1!)µ2(5 ⋅ 3!)µ4⋯

µ1!⋯µn! ⋅ (1!)µ1(3!)µ3⋯(2!)µ2(4!)µ4⋯

= (
µ1 + µ3 +⋯

r
)

n!
µ1!⋯µn!

(
3
2
)

µ2

(
5
4
)

µ4

⋯.

Summing over all µ ⊢ n with µ1 + µ3 +⋯ ≥ r gives the required expression for

e(Dr(PBrn)). ◻

Again, the recurrences for the numbers e(PBrn) and e(Dr(PBrn)) given by

Theorems 3.3.2 and 3.3.4 take on a neat form.

Theorem 3.3.15. The numbers e(PBrn) satisfy the recurrence:

e(PBr0) = 1, e(PBrn) =
⌊ n

2 ⌋

∑
i=1
(

n − 1
2i − 1

)(2i + 1) ⋅ (2i − 1)! e(PBrn−2i)

+ 2 ⋅
⌊ n−1

2 ⌋

∑
i=0
(

n − 1
2i
)(2i + 1)! e(PBrn−2i−1) ◻

for n ≥ 1.
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Theorem 3.3.16. The numbers e(Dr(PBrn)) satisfy the recurrence:

e(Dn(PBrn)) = 1

e(D0(PBrn)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a2
n if n is even

0 if n is odd

e(Dr(PBrn)) =
⌊ n

2 ⌋

∑
i=1
(

n − 1
2i − 1

)(2i + 1) ⋅ (2i − 1)! e(Dr(PBrn−2i))

+
⌊ n−1

2 ⌋

∑
i=0
(

n − 1
2i
)(2i + 1)!(e(Dr(PBrn−2i−1))+ e(Dr−1(PBrn−2i−1)))

for n ≥ 1, where the numbers an are defined in Lemma 3.3.5. ◻

3.3.4 Other subsemigroups

We conclude this section with the observation that the general results above

(Theorems 3.3.2, 3.3.3, 3.3.4) apply to many other subsemigroups of Pn (though

the initial conditions need to be slightly modified in Theorem 3.3.4). As ob-

served in [16, 17, 20], the full transformation semigroup and the symmetric and

dual symmetric inverse semigroups Tn,In,I∗n are all (isomorphic to) subsemi-

groups of Pn:
• Tn ≅ {α ∈ Pn ∶ dom∧(α) = [[n]] and ker∨(α) = ∆},

• In ≅ {α ∈ Pn ∶ ker∧(α) = ker∨(α) = ∆},

• I∗n ≅ {α ∈ Pn ∶ dom∧(α) = dom∨(α) = [[n]]},
where ∆ = {(i, i) ∶ i ∈ [[n]]} denotes the trivial equivalence (that is, the equality

relation), and the above mentioned theorems apply to these subsemigroups.

For example, one may easily check that c(Tn) = c1(Tn) = n, so that Theorem 3.3.2

gives rise to the formula

e(Tn) = n! ⋅ ∑
µ⊢n

n
∏
i=1

1
µi!((i − 1)!)µi

,

and the recurrence

e(T0) = 1, e(Tn) =
n
∑
m=1
(

n − 1
m − 1

) ⋅m ⋅ e(Tn−m) for n ≥ 1.
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As noted in the Introduction, the usual formula is e(Tn) = ∑
n
k=1 (

n
k)k

n−k. The

recurrence for e(I∗n), combined with the fact that e(I∗n) = B(n) is the nth Bell

number [23], leads to

B(n + 1) =
n
∑
k=0
(

n
k
)B(k),

a well-known identity. We leave it to the reader to explore further if they wish.

3.4 A different approach for Brn and PBrn

We now outline an alternative method for determining e(Brn) and e(PBrn). This

approach will also allow us to determine the number of idempotents in an arbi-

trary R-, L - and D-class of Brn and PBrn. One advantage of this method is that

we do not need to take sums over integer partitions; rather, everything depends

on sequences defined by some fairly simple recurrence relations (see Theorems

3.4.5 and 3.4.7). The key idea is to define a variant of the graph Γ(α) in the case

of α ∈ PBrn.

Let α ∈ PBrX. We define Λ∧(α) (resp. Λ∨(α)) to be the graph obtained from

Γ∧(α) (resp. Γ∨(α)) by adding a red (resp. blue) loop at each vertex i ∈ X if {i}

(resp. {i′}) is a block of α. And we define Λ(α) to be the graph with vertex set

X and all the edges from both Λ∧(α) and Λ∨(α). Some examples are given in

Figure 3.3 with X finite. Note that Λ(α) = Γ(α) if and only if α ∈ BrX.

Since the graph Λ∧(α) (resp. Λ∨(α)) determines (and is determined by) dom∧(α)

and ker∧(α) (resp. dom∨(α) and ker∨(α)), we immediately obtain the following

from Theorem 3.1.1.

Corollary 3.4.1. Let X be any set (finite or infinite). For each α, β ∈ PBrX, we have

(i) αRβ if and only if Λ∧(α) = Λ∧(β),

(ii) αL β if and only if Λ∨(α) = Λ∨(β),

(iii) αH β if and only if Λ(α) = Λ(β). ◻
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Figure 3.3: Elements α, β, γ (left to right) of the partial Brauer monoid PBr6 and their

graphs Λ(α), Λ(β), Λ(γ) (below).

We now aim to classify the graphs on vertex set X that are of the form Λ(α)

for some α ∈ PBrX, and we will begin with the irreducible idempotents.

Lemma 3.4.2. Let α ∈ C(PBrX) where X is finite. Then Λ(α) is of one of the following

four forms:

(1) : an alternating-colour path of even length,

(2) : an alternating-colour circuit of even length,

(3) : an alternating-colour path of even length with loops,

(4) or : an alternating-colour path of

odd length with loops.

If α ∈ C(BrX), then Λ(α) is of the form (1) or (2).

Proof. By Lemma 3.3.8, we know that Γ(α) is either a cycle or a path. If Γ(α) is

a cycle, then Λ(α) = Γ(α) is of type (2). Next suppose Γ(α) is a path, and write

n = ∣X∣. We consider the case in which n is odd (so the path is of even length).

Re-labelling the elements of X if necessary, we may assume that Γ(α) is the path

1−2−3−⋯−n. Since Γ(α) completely determines ker∧(α) and ker∨(α), it follows
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that α must be one of or , in which case Λ(α) is of type (1) or

(3), respectively. (Note that the preceeding discussion include the case n = 1,

where we have Γ(α) = , so the two possibilities for Λ(α) are or , which

are of type (1) and (3), respectively.) The case in which n is even is similar, and

leads to Λ(α) being of type (4). The statement concerning BrX is clear, seeing as

elements of BrX have no singleton blocks. ◻

Now consider a graph Λ with edges coloured red or blue. We say that Λ is

balanced if it is a disjoint union of finitely many subgraphs of types (1–4) from

Lemma 3.4.2. We call a balanced graph Λ reduced if it is a disjoint union of

finitely many subgraphs of types (1–2) from Lemma 3.4.2. If X is a finite set, we

write Bal(X) (resp. Red(X)) for the set of all balanced (resp. reduced balanced)

graphs with vertex set X.

Proposition 3.4.3. If X is a finite set, then the maps

Φ ∶ E(PBrX)→ Bal(X) ∶ α ↦ Λ(α)

Ψ = Φ∣E(BrX)
∶ E(BrX)→ Red(X) ∶ α ↦ Λ(α) = Γ(α)

are bijections. If α ∈ E(PBrX), then rank(α) is equal to the number of connected

components of Λ(α) of type (1) as listed in Lemma 3.4.2.

Proof. Let α ∈ E(PBrX), and write α = α1 ⊕⋯⊕ αk where α1, . . . , αk are the ir-

reducible components of α. Then Λ(α) is the disjoint union of the subgraphs

Λ(α1), . . . , Λ(αk), and is therefore reduced, by Lemma 3.4.2. If, in fact, α ∈

E(BrX), then each of Λ(α1), . . . , Λ(αk) must be of the form (1) or (2), since α

has no blocks of size 1. This shows that Φ and Ψ do indeed map E(PBrX) and

E(BrX) to Bal(X) and Red(X), respectively. Note also that rank(α) = rank(α1)+

⋯+ rank(αk) is equal to the number of rank 1 partitions among α1, . . . , αk, and

that the rank of some β ∈ C(PBrY) is equal to 1 if and only if Λ(β) is of type (1).

Let Λ ∈ Bal(X), and suppose Λ1, . . . , Λk are the connected components of Λ,

with vertex sets X1, . . . , Xk, respectively. Then there exist irreducible idempo-

tents αi ∈ C(PXi) with Λ(αi) = Λi for each i, and it follows that Λ = Λ(α1 ⊕⋯⊕
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αk), showing that Φ is surjective. If Λ ∈ Red(X), then α1 ⊕⋯⊕ αk ∈ BrX. Finally,

if α, β ∈ E(PBrX) are such that Λ(α) = Λ(β), then αH β by Corollary 3.4.1, so

that α = β (as H is idempotent-separating), whence Φ (and hence also Ψ) is

injective. ◻

3.4.1 The Brauer monoid

For α ∈ Brn, we write

Rα(Brn) = {β ∈ Brn ∶ Λ∧(β) = Λ∧(α)} and Lα(Brn) = {β ∈ Brn ∶ Λ∨(β) = Λ∨(α)}.

By Corollary 3.4.1, these are precisely the R- and L -classes of α in Brn. At this

point, it will be convenient to introduce an indexing set. Put [[n]]0 = [[n]] ∪ {0},

and let I(n) = {r ∈ [[n]]0 ∶ n − r ∈ 2Z}. For r ∈ I(n), let

Dr(Brn) = {α ∈ Brn ∶ rank(α) = r}.

By Theorem 3.1.1, we see that these are precisely the D-classes of Brn. We will

need to know the number of R-classes (which is equal to the number of L -

classes) in a given D-class of Brn.

Lemma 3.4.4 (See the proof of [21, Theorem 8.4]). For n ∈ N and r = n − 2k ∈ I(n),

the number of R-classes (and L -classes) in the D-class Dr(Brn) is equal to

ρnr = (
n
r
)(2k − 1)!! =

n!
2kk!r!

. ◻

Theorem 3.4.5. Define a sequence anr, for n ∈ N and r ∈ I(n), by

ann = 1 for all n

an0 = (n − 1)!! if n is even

anr = an−1,r−1 + (n − r)an−2,r if 1 ≤ r ≤ n − 2.

Then for any n ∈ N and r ∈ I(n), and with ρnr as in Lemma 3.4.4:

(i) e(Rα(Brn)) = e(Lα(Brn)) = anr for any α ∈ Dr(Brn),
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(ii) e(Dr(Brn)) = ρnranr,

(iii) e(Brn) = ∑r∈I(n) ρnranr.

Proof. Note that (iii) follows from (ii), which follows from (i) and Lemma 3.4.4,

so it suffices to prove (i). Let α ∈ Dr(Brn). Re-labelling the points from [[n]], if

necessary, we may assume that

Γ∧(α) = Λ∧(α) =
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

.

Let Anr be the set of reduced balanced graphs on vertex set [[n]] with the same

red edges as Γ∧(α). By Corollary 3.4.1 and Proposition 3.4.3, ∣Anr∣ = e(Rα(Brn)).

Put anr = ∣Anr∣. We show that anr satisfies the stated recurrence. By symmetry,

e(Lα(Brn)) = anr.

Clearly ann = 1 for all n. If n is even, then an0 is the number of ways to match

the vertices from [[n]] with n/2 non-intersecting (blue) arcs, which is equal to

(n − 1)!!. Suppose now that 1 ≤ r ≤ n − 2. Elements of Anr come in two kinds:
1. those for which 1 is a connected component of its own, and

2. those for which 1 is an endpoint of an even length alternating path.
There are clearly an−1,r−1 elements of Anr of type 1. Suppose now that Γ ∈ Anr

is a graph of type 2. There are n − r possible vertices for vertex 1 to be joined

to by a blue edge. Suppose the vertex adjacent to 1 is x. Removing these two

vertices, as well as the blue edge 1−x and the red edge adjacent to x (and rela-

belling the remaining vertices), yields an element of An−2,r. Since this process is

reversible, there are (n − r)an−2,r elements of Anr of type 2. Adding these gives

anr = an−1,r−1 + (n − r)an−2,r. ◻

3.4.2 The partial Brauer monoid

For α ∈ PBrn, we write

Rα(PBrn) = {β ∈ PBrn ∶ Λ∧(β) = Λ∧(α)}

Lα(PBrn) = {β ∈ PBrn ∶ Λ∨(β) = Λ∨(α)}.
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By Corollary 3.4.1, these are precisely the R- and L -classes of α in PBrn. For

r ∈ [[n]]0, let

Dr(PBrn) = {α ∈ PBrn ∶ rank(α) = r}.

Again, these are precisely the D-classes of PBrn. But unlike the case of Brn, it

is not true that any two D-related elements of PBrn are R-related to the same

number of idempotents. So we will obtain a formula for e(Rα(PBrn)) that will

depend on the paramaters r, t, where r = rank(α) and t is the number of single-

ton non-transversal upper-kernel classes. Note that n, r, t are constrained by the

requirement that n − r − t is even. With this in mind, we define an indexing set

J(n) = {(r, t) ∈ [[n]]0 × [[n]]0 ∶ t ∈ I(n − r)} = {(r, t) ∈ [[n]]0 × [[n]]0 ∶ n − r − t ∈ 2Z}.

There is a dual statement of the following lemma, but we will not state it.

Lemma 3.4.6. For n ∈ N and (r, t) ∈ J(n), with n− r − t = 2k, the number of R-classes

in Dr(PBrn) in which each element has t singleton non-transversal upper-kernel classes

is equal to

ρnrt = (
n
r
)(

n − r
t
)(2k − 1)!!

=
n!

2kk!r!t!
.

Proof. By Corollary 3.4.1, the number of such R-classes is equal to the number

of graphs on vertex set [[n]] with r vertices of degree 0, t vertices with a single

loop, and the remaining n − r − t vertices of degree 1. To specify such a graph,

we first choose the vertices of degree 0 in (nr)ways. We then choose the vertices

with loops in (n−r
t )ways. And finally, we choose the remaining edges in (n− r −

t − 1)!! = (2k − 1)!! ways. ◻

Theorem 3.4.7. Define a sequence anrt, for n ∈ N and (r, t) ∈ J(n), by

ann0 = 1 for all n

an0t = an if n − t is even

anrt = an−1,r−1,t + (n − r − t)an−2,r,t if n ≥ 2 and 1 ≤ r ≤ n − 1,
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where the sequence an is defined in Lemma 3.3.5. Then for any n ∈ N and (r, t) ∈ J(n),

and with ρnrt as in Lemma 3.4.6:

(i) e(Rα(PBrn)) = anrt for any α ∈ Dr(PBrn) with t singleton non-transversal

upper-kernel classes,

(ii) e(Dr(PBrn)) = ∑t∈I(n−r) ρnrtanrt,

(iii) e(PBrn) = ∑(r,t)∈J(n) ρnrtanrt.

Proof. Again, it suffices to prove (i). Let α ∈ Dr(PBrn). Re-labelling the points

from [[n]], if necessary, we may assume that

Λ∧(α) =
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t

.

Let Anrt be the set of all balanced graphs on vertex set [[n]] with the same red

edges as Λ∧(α). Again, by Corollary 3.4.1 and Proposition 3.4.3, it suffices to

show that the numbers anrt = ∣Anrt∣ satisfy the stated recurrence.

It is clear that ann0 = 1 for all n. If r = 0 (and n − t is even), then we may

complete Λ∧(α) to a graph from An0t by adding as many (non-adjacent) blue

edges as we like, and adding blue loops to the remaining vertices. Again, such

assignments of blue edges are in one-one correspondence with the involutions

of [[n]], of which there are an. Now suppose n ≥ 2 and 1 ≤ r ≤ n−1. By inspection

of (1–4) in Lemma 3.4.2, we see that elements of Anrt come in two kinds:

1. those for which 1 is a connected component of its own, and

2. those for which 1 is an endpoint of an even length alternating path (with

no loops).

The proof concludes in similar fashion to that of Theorem 3.4.5. ◻

3.5 Idempotents in diagram algebras

Let α, β ∈ Pn. Recall that the product αβ ∈ Pn is defined in terms of the product

graph Γ(α, β). Specifically, A is a block of αβ if and only if A = B∩ ([[n]]∪ [[n]]′) /=
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∅ for some connected component B of Γ(α, β). In general, however, the graph

Γ(α, β)may contain some connected components strictly contained in the mid-

dle row [[n]]′′, and the partition algebra Pξ
n is designed to take these components

into account. We write m(α, β) for the number of connected components of the

product graph Γ(α, β) that are entirely contained in the middle row. It is impor-

tant to note (and trivially true) that m(α, β) ≤ n for all α, β ∈ Pn. Now let F be a

field and fix some ξ ∈ F.

We denote by Pξ
n the F-algebra with basis Pn and product ○ defined on basis

elements α, β ∈ Pn (and then extended linearly) by

α ○ β = ξm(α,β)(αβ).

If α, β, γ ∈ Pn, then m(α, β)+m(αβ, γ) = m(α, βγ)+m(β, γ), and it follows that Pξ
n

is an associative algebra. We may also speak of the subalgebras of Pξ
n spanned

by Brn and PBrn; these are the Brauer and partial Brauer algebras Brξ
n and PBrξ

n,

respectively. See [36] for a survey-style treatment of the partition algebras.

In this section, we determine the number of partitions α ∈ Pn such that α is

an idempotent basis element of Pξ
n; that is, α ○ α = α. These numbers depend on

whether ξ is a root of unity. As such, we define

M =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

m if ξ is an mth root of unity where m ≤ n

0 otherwise.

If Kn is one of Pn,Brn,PBrn, we will write

Eξ(Kn) = {α ∈ Kn ∶ α = α ○ α in Kξ
n} and eξ(Kn) = ∣Eξ(Kn)∣.

Theorem 3.5.1. Let α ∈ Pn, and suppose the kernel-classes of α are X1, . . . , Xk.

Then the following are equivalent:

(1) α ∈ Eξ(Pn),

(2) α ∈ E(Pn) and rank(α) ≡ k (mod M),

(3) the following three conditions are satisfied:
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(i) α ∈ PX1 ⊕⋯⊕PXk ,

(ii) the restrictions α∣Xi all have rank at most 1,

(iii) the number of restrictions α∣Xi of rank 0 is a multiple of M.

Proof. First, note that if α ∈ E(Pn), then Theorem 3.2.2 gives α = α1 ⊕⋯⊕ αk

where αi = α∣Xi ∈ C(PXi) for each i, and r = rank(α) = rank(α1) +⋯ + rank(αk)

with rank(αi) ∈ {0, 1} for each i. Re-labelling the Xi if necessary, we may sup-

pose that rank(α1) = ⋯ = rank(αr) = 1. Then the connected components con-

tained entirely in X′′ in the product graph Γ(α, α) are precisely the sets X′′r+1, . . . , X′′k .

So m(α, α) = k − r.

Now suppose (1) holds. Then α = α ○ α = ξm(α,α)(α2), so α = α2 and m(α, α) ∈

MZ. Since α ∈ E(Pn), it follows from the first paragraph that k − r = m(α, α) ∈

MZ, and so (2) holds.

Next, suppose (2) holds. Since α ∈ E(Pn), Theorem 3.2.2 tells us that (i) and

(ii) hold. Write α = α1 ⊕⋯⊕ αk where αi = α∣Xi ∈ C(PXi) for each i. The set

{i ∈ k ∶ rank(αi) = 0} has cardinality m(α, α), which is equal to k− rank(α) by the

first paragraph. By assumption, k − rank(α) ∈ MZ, so (iii) holds.

Finally, suppose (3) holds and write αi = α∣Xi for each i. Since rank(αi) ≤ 1

and Xi is a kernel-class of α, it follows that αi ∈ PXi is irreducible and so αi ∈

C(PXi) by Lemma 3.2.1. For each i ∈ k, let

li =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if rank(αi) = 1

1 if rank(αi) = 0.

Then l1 +⋯+ lk is a multiple of M by assumption, and αi ○ αi = ξ li(α2
i ) = ξ li αi in

P
ξ
Xi

for each i. But then α ○ α = ξ l1+⋯+lk α = α so that (1) holds. ◻

Remark 5. If M = 0, then part (2) of the previous theorem says that rank(α) =

k. Also, conditions (ii) and (iii) in part (3) may be replaced with the simpler

statement that the restrictions α∣Xi all have rank 1. If M = 1, then ξ = 1 so Pξ
n

is the (non-twisted) semigroup algebra of Pn and Eξ(Pn) = E(Pn); in this case,

Theorem 3.5.1 reduces to Theorem 3.2.2.
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We are now ready to give formulae for eξ(Kn)whereKn is one ofPn,Brn,PBrn.

It will be convenient to give separate statements depending on whether M =

0 or M > 0. The next result is proved in an almost identical fashion to Theorem

3.3.2, relying on Theorem 3.5.1 rather than Theorem 3.2.2.

Theorem 3.5.2. If M = 0 and Kn is one of Pn,Brn,PBrn, then

eξ(Kn) = n! ⋅ ∑
µ⊢n

n
∏
i=1

c1(Ki)
µi

µi!(i!)µi
.

The numbers eξ(Kn) satisfy the recurrence:

eξ(K0) = 1, eξ(Kn) =
n
∑
m=1
(

n − 1
m − 1

)c1(Km)eξ(Kn−m) for n ≥ 1.

The values of c1(Kn) are given in Propositions 3.3.6, 3.3.9 and 3.3.13. ◻

Recall that if α ∈ Pn has kernel-classes X1, . . . , Xk with ∣X1∣ ≥ ⋯ ≥ ∣Xk∣, then the

integer partition µ(α) is defined to be (∣X1∣, . . . , ∣Xk∣). For a subset Σ ⊆ Pn and an

integer partition µ ⊢ n, we write

Eξ
µ(Σ) = {α ∈ Eξ(Σ) ∶ µ(α) = µ} and eξ

µ(Σ) = ∣E
ξ
µ(α)∣.

If µ = (m1, . . . , mk) ⊢ n, we call k the height of µ, and we write k = h(µ). The next

result follows quickly from Theorem 3.5.1.

Theorem 3.5.3. Suppose M > 0, and let Kn be one of Pn,Brn,PBrn. Then

eξ(Kn) = ∑
µ⊢n

eξ
µ(Kn).

If µ ⊢ n and k = h(µ), then

eξ
µ(Kn) = ∑

0≤r≤n
r≡k (mod M)

eµ(Dr(Kn)).

The values of eµ(Dr(Kn)) are given in Theorem 3.3.3. ◻
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We may also derive recurrences for the values of eξ(Dr(Kn)) in the case M =

0. Things get more complicated when M > 0 since the question of whether or

not an element of E(Kn) belongs additionally to Eξ(Kn) depends not just on its

rank but also on the number of kernel classes. We will omit the M > 0 case.

Theorem 3.5.4. If M = 0 andKn is one ofPn,Brn,PBrn, then the numbers eξ(Dr(Kn))

satisfy the recurrence:

eξ(Dn(Kn)) = 1

eξ(D0(Kn)) = 0

eξ(Dr(Kn)) =
n
∑
m=1
(

n − 1
m − 1

)c1(Km)eξ(Dr−1(Kn−m))

for n ≥ 1 and 1 ≤ r ≤ n − 1. The values of c1(Kn) are given in Propositions 3.3.6, 3.3.9

and 3.3.13. ◻

We now use Theorems 3.5.2 and 3.5.3 to derive explicit values for eξ(Brn) and

eξ(PBrn) in the case M = 0. In fact, since c1(Brn) = c1(PBrn) by Propositions 3.3.9

and 3.3.13, it follows that eξ(Brn) = eξ(PBrn) in this case. These numbers seem

to be Sequence A088009 on the OEIS [71], although it is difficult to understand

why.

Theorem 3.5.5. If n ∈ N and M = 0, then

eξ(Brn) = eξ(PBrn) =∑
µ

n!
µ1!µ3!⋯µ2k+1!

,

where k = ⌊n−1
2 ⌋, and the sum is over all integer partitions µ = (1µ1 , . . . , nµn) ⊢ n with

µ2i = 0 for i = 0, 1, . . . , ⌊n
2 ⌋.

The numbers eξ(Brn) = eξ(PBrn) satisfy the recurrence:

eξ(Br0) = 1, eξ(Brn) =
⌊ n−1

2 ⌋

∑
i=0
(

n − 1
2i
)(2i + 1)! eξ(Brn−2i−1) for n ≥ 1. ◻

Theorem 3.5.4 yields a neat recurrence for the numbers eξ(Dr(Brn)) = eξ(Dr(PBrn))

in the case M = 0.
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Theorem 3.5.6. If M = 0, then the numbers eξ(Dr(Brn)) = eξ(Dr(PBrn)) satisfy the

recurrence:

eξ(Dn(Brn)) = 1

eξ(D0(Brn)) = 0 if n ≥ 1

eξ(Dr(Brn)) =
⌊ n−1

2 ⌋

∑
i=0
(

n − 1
2i
)(2i + 1)! eξ(Dr−1(Brn−2i−1)) if 1 ≤ r ≤ n − 1. ◻

We may also use the methods of Section 3.4 to derive recurrences for the

number of elements from an R-, L - or D-class of Brn or PBrn that satisfy α =

α ○ α in Pξ
n with M = 0. Recall that I(n) = {r ∈ [[n]]0 ∶ n − r ∈ 2Z}.

Theorem 3.5.7. Define a sequence bnr, for n ∈ N and r ∈ I(n), by

bnn = 1 for all n

bn0 = 0 if n ≥ 2 is even

bnr = bn−1,r−1 + (n − r)bn−2,r if 1 ≤ r ≤ n − 2.

Then for any n ∈ N and r ∈ I(n), and with M = 0 and ρnr as in Lemma 3.4.4:
(i) eξ(Rα(Brn)) = eξ(Lα(Brn)) = bnr for any α ∈ Dr(Brn),

(ii) eξ(Dr(Brn)) = ρnrbnr,

(iii) eξ(Brn) = ∑r∈I(n) ρnrbnr.

Proof. The proof is virtually identical to the proof of Theorem 3.4.5, except we

require bn0 = 0 if n ≥ 2 is even since reduced balanced graphs with n vertices

and n/2 red (and blue) edges correspond to elements of D0(Brn), and these do

not belong to Eξ(Brn) by Theorem 3.5.1. ◻

Remark 6. If α ∈ PBrn, then E(Rα(PBrn)) is non-empty if and only if Rα(PBrn)

has non-trivial intersection with Brn, in which case e(Rα(PBrn)) = bnr where

r = rank(α). (This is because β ∈ Eξ(Rα(PBrn)) if and only if the connected com-

ponents of Λ(β) are all of type (1) as stated in Lemma 3.4.2, in which case

β ∈ Eξ(Brn).) A dual statement can be made concerning L -classes. It fol-

lows that eξ(Dr(PBrn)) = eξ(Dr(Brn)) = ρnrbnr for all r ∈ I(n), and eξ(PBrn) =

eξ(Brn) = ∑r∈I(n) ρnrbnr.
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3.6 Calculated values

In this section, we list calculated values of c0(Kn), c1(Kn), c(Kn), e(Kn), eξ(Kn)

where Kn is one of Pn,Brn,PBrn and where M = 0. We also give values of

e(Dr(Kn)) and eξ(Dr(Kn)) where M = 0, and e(Rα(Brn)) and eξ(Rα(Brn)) for

α ∈ Dr(Brn).

n 0 1 2 3 4 5 6 7 8 9 10

c0(Brn) 0 1 0 6 0 120 0 5040 0 362880

c1(Brn) 1 0 6 0 120 0 5040 0 362880 0

c(Brn) 1 1 6 6 120 120 5040 5040 362880 362880

e(Brn) 1 1 2 10 40 296 1936 17872 164480 1820800 21442816

eξ(Brn) 1 1 1 7 25 181 1201 10291 97777 1013545 12202561

Table 3.1: Calculated values of c0(Brn), c1(Brn), c(Brn), e(Brn), eξ
(Brn)with M = 0.

n 0 1 2 3 4 5 6 7 8 9 10

c0(PBrn) 1 3 6 30 120 840 5040 45360 362880 3991680

c1(PBrn) 1 0 6 0 120 0 5040 0 362880 0

c(PBrn) 2 3 12 30 240 840 10080 45360 725760 3991680

e(PBrn) 1 2 7 38 241 1922 17359 180854 2092801 26851202 376371799

eξ
(PBrn) 1 1 1 7 25 181 1201 10291 97777 1013545 12202561

Table 3.2: Calculated values of c0(PBrn), c1(PBrn), c(PBrn), e(PBrn), eξ
(PBrn)with M =

0.
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n 0 1 2 3 4 5 6 7 8 9 10

c0(Pn) 1 3 15 119 1343 19905 369113 8285261 219627683 6746244739

c1(Pn) 1 5 43 529 8451 167397 3984807 111319257 3583777723 131082199809

c(Pn) 2 8 58 648 9794 187302 4353920 119604518 3803405406 137828444548

e(Pn) 1 2 12 114 1512 25826 541254 13479500 389855014 12870896154 478623817564

eξ
(Pn) 1 1 6 59 807 14102 301039 7618613 223586932 7482796089 281882090283

Table 3.3: Calculated values of c0(Pn), c1(Pn), c(Pn), e(Pn), eξ
(Pn)with M = 0.

n ∖ r 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1

2 1 1

3 9 1

4 9 30 1

5 225 70 1

6 225 1575 135 1

7 11025 6615 231 1

8 11025 132300 20790 364 1

9 893025 873180 54054 540 1

10 893025 16372125 4054050 122850 765 1

Table 3.4: Calculated values of e(Dr(Brn)).
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n ∖ r 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1

2 1 1

3 3 1

4 3 5 1

5 15 7 1

6 15 35 9 1

7 105 63 11 1

8 105 315 99 13 1

9 945 693 143 15 1

10 945 3465 1287 195 17 1

Table 3.5: Calculated values of e(Rα(Brn)) = e(Lα(Brn))where α ∈ Dr(Brn).

n ∖ r 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1

2 0 1

3 2 1

4 0 4 1

5 8 6 1

6 0 24 8 1

7 48 48 10 1

8 0 192 80 12 1

9 384 480 120 14 1

10 0 1920 168 195 16 1

Table 3.6: Calculated values of eξ
(Rα(Brn)) = eξ

(Lα(Brn)) = eξ
(Rα(PBrn)) =

eξ
(Lα(PBrn))where α ∈ Dr(Brn) and M = 0.
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n ∖ r 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 4 2 1

3 16 18 3 1

4 100 88 48 4 1

5 676 860 280 100 5 1

6 5776 6696 4020 680 180 6 1

7 53824 76552 35196 13580 1400 294 7 1

8 583696 805568 531328 131936 37240 2576 448 8 1

9 6864400 10765008 6159168 2571744 397656 88200 4368 648 9 1

10 90174016 141145120 101644560 32404800 9780960 1027152 187320 6960 900 10 1

Table 3.7: Calculated values of e(Dr(PBrn)).

n ∖ r 0 1 2 3 4 5 6 7 8 9 10

0 1
1 1 1
2 4 7 1
3 25 70 18 1
4 225 921 331 34 1
5 2704 15191 6880 995 55 1
6 41209 304442 163336 29840 2345 81 1
7 769129 7240353 4411190 958216 95760 4739 112 1
8 17139600 200542851 134522725 33395418 3992891 252770 8610 148 1
9 447195609 6372361738 4595689200 1267427533 174351471 13274751 581196 14466 189 1

10 13450200625 229454931097 174564980701 52345187560 8059989925 709765413 37533657 1205460 2289 235 1

Table 3.8: Calculated values of e(Dr(Pn)).
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n ∖ r 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1

2 0 1

3 6 1

4 0 24 1

5 120 60 1

6 0 1080 120 1

7 5040 5040 210 1

8 0 80640 16800 336 1

9 362880 604800 45360 504 1

10 0 9072000 3024000 105840 720 1

Table 3.9: Calculated values of eξ
(Dr(Brn)) = eξ

(Dr(PBrn))with M = 0.

n ∖ r 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 0 5 1
3 0 43 15 1
4 0 529 247 30 1
5 0 8451 4795 805 50 1
6 0 167397 108871 22710 1985 75 1
7 0 3984807 2855279 697501 76790 4130 105 1
8 0 111319257 85458479 23520966 3070501 209930 7658 140 1
9 0 3583777723 2887069491 871103269 129732498 10604811 495054 13062 180 1

10 0 131082199809 109041191431 35334384870 5843089225 549314745 30842427 1046640 20910 225 1

Table 3.10: Calculated values of eξ
(Dr(Pn))with M = 0.
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Chapter 4

Planar Diagram Semigroups and

Their Idempotents

Write cn for the chain n′ < (n − 1)′ < ⋯1′ < 1 < 2⋯n. The planar part πS of a

diagram semigroup S ≤ Pn is the set of diagrams in S which may be represented

by a noncrossing partition P in the sense that is a < b < c < d are in cn, then

if a and c are in the same component of P then either b and d are in different

components, or all four lie in the same component. A planar diagram semigroup

is one which is equal to its planar part.

We define the monoids πPn, Mn and Jn as respectively the planar parts of

Pn, PBrn and Brn. These are respectively the planar partition monoid, the Motzkin

monoid and Jones monoid. The set of all noncrossing partitions of degree n is πPn,

so if S ⊆ Pn then πS = S∩πPn. The following result was brought to my attention

by James East, and establishes the importance of the Jones monoid in the study

of planar diagram semigroups.

Proposition 4.0.1. The semigroups Jn and πP2n are isomorphic.

This result is explored in the algebra setting in [43]. The following picture is
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suggestive of how the bijection is constructed in terms of the pictures.

To understand how to interpret this picture, observe that the lines connecting

the smaller dots are in fact the edges of an element of J2n. The grey areas

bounded within these lines connect the larger dots together, the groupings ob-

served giving rise to a noncrossing partition in πPn.

In this chapter, we define a structure on the idempotents of Kn = Mn,Jn

which simultaneously refines the natural order, and partitions them into easy-

to-count sets. This structure is one of a cubical set, and our ability to decompose

it into very simple consitituent parts will later provide leverage to design a fast

algorithm for iterating through, or enumerating, the idempotents in the semi-

groups of interest here.

The process of iterating in this way naturally splits naturally into three parts:

1. Define a function −̂ ∶ E(Kn)→D mapping idempotents into some subset

D ⊆ E(Kn)which fixes D pointwise;

2. Find a way to quickly iterate over D computationally;

3. Find a way to quickly iterate over the preimage of some δ ∈ D.

This chapter concerns itself primarily with providing a decomposition of E =

E(Kn) that will be useful to solve the first and third tasks. The second is solved

in the Appendix A, using results from [63].

This chapter loosely follows Section 3 of [13], albeit in more detail.

4.1 Idempotents inMn

Recall that an element e of a semigroup is idempotent if e2 = e. It’s conventional

to denote the set of idempotents in the semigroup S by E(S), or E if S is under-

stood. In the case of semigroups, this set has a well-known ordered structure;
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the following, classical definition from the theory of semigroups will suffice for

our purposes.

Recall that e ≤ f in the natural order on idempotents if e ≤ f ⇐⇒ e =

e f = f e.

For an element of the Motzkin monoidMn, there is a simple test for idem-

potency which can be executed quickly — in O(n)-time. We first need to define

some terminology.

The rank* of α ∈ Pn is simply the number of transverse edges in a diagram,

which are those meeting points on both the top and bottom of the picture. In

the case of Motzkin elements this is the number of edges from the top to the

bottom of the diagram. Elements of rank which is below 2 will be important in

our study here.

4.1.1 The Interface Graph of a Motzkin Element

Recall that given α ∈ PBrn, there is an associated graph Λ(α), edges coloured

and possibly with mutliple appearing. We define a modification here, to be

more consistent with the notation of the latter paper.

Given an element α ∈Mn, the interface graph Γ(α) is obtained by taking Λ(α),

removing the loops and marking certain vertices with up- or down-facing half-

edges, which we’ll refer to as stubs. We add an upward-facing stub if the vertex

is incident in Λ(α) on no blue edge, and a downward-facing stub if the vertex

is incident on no red edges.

There are two reasons for this slight change in notation. First, logistically,

the chapter on the Brauer monoids was added after the rest of the thesis was

completed at the suggestion of the external examiner, and has been adapted

from the source material in [12].

The second reason is that, when performing calculations with diagrams, one

draws them one below the other to denote multiplication. There is a certain

generic neighbourhood of the line of interface between these diagrams, which is

*Certain authors [37] prefer the term propagating number.
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any open neighbourhood in the bounding rectangle of the concatenated dia-

grams which contains all non-transversal edges meeting the interface line be-

tween the diagrams.

Any such neighbourhood, and specifically the edges contained in it, will

contain enough information to reconstruct an element α from the multiplica-

tion diagram Γ(α, α) = Γ(α). Below we can see the correspondence between an

element α and the interface graph Γ(α)

↔
(4.1)

The upward and downward edges are coloured blue and red as before, but now

the upper and lower stubs are emphasised in green.

Formally, this object consists of a pair of graphs. The upper edges lie in Γ∨α
of non-loops and S∨α if they are loops, so that the resulting graph is a partial

matching, possibly with some loops on unmatched vertices. The lower edges

are similar, with Γ∧α consisting of non-loops and S∧α comprising loops. Such a

graph only represents some α ∈Mn precisely if there are equally many upper

and lower loops (the number of these is the rank), so we assume this hereafter

without further comment.

We conventionally write the elements of S∨ and S∧ in order:

S∨α = {s∨α;1 < s∨α;2 < ⋯ < s∨α;k},

where k = ∣S∨α ∣. A handy mnemonic is that in the ∨ version of graphs, the edges

point down and in ∧ they point upwards. Where α is understood, we write Γ,

Γ∨, S∨ and so on for brevity.

Proposition 4.1.1. Let n > 0 be a positive integer. A graph of the above form is an

interface graph of an element ofMn precisely if the following hold:

1. the reflexive closure of the adjacency relation in Γ∨ defines a noncrossing parti-

tion;

2. for any 0 < i < s < j ≤ n, we have (i, j) ∉ Γ∨ or s ∉ S∨;
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3. likewise for Γ∧ and S∧.

Akin to Lemma 3.4.2, we have four kinds of connected components. We’ll

recycle the notation C(KX) to refer to a connected component in a diagram in

Kn where X ⊆ [[n]]. We can now recast our prior result as follows.

Lemma 4.1.2. Let α ∈ C(MX) where X ⊆ [[n]] is finite. Then Γ(α) is of one of the

following four forms:
(1) : an alternating-colour path of even length bounded by two

stubs,

(2) : an alternating-colour circuit of even length,

(3) : an alternating-colour path of even length,

(4) or : an alternating-colour path of odd

length.
If α ∈ C(JX), then Λ(α) is of the form (1) or (2).

Note that non-irreducible components may also have one of two other pos-

sible forms, namely an alternating-colour path of arbitrary length, ending on

one stub:
, ,

, or
(4.2)

There are also paths of odd length bounded by two stubs:

or (4.3)

Definition 4.1.3. The components defined in Lemma 4.1.2 we refer to respec-

tively as trans-active paths, cycles, and the latter two types we refer to as inert

paths. The components described in (4.2) we refer to as half-rays and those in

(4.3) are referred to as cis-active paths.

The prefixes cis- and trans- come from Latin “this side of” and “across,on

the far side;” their application in this context is from Des FitzGerald.
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Observation 4.1.4. The elements ofMn are (up to homeomorphism) planar graphs. If

one were to delete the transverse edges and specify which upper and lower vertices were

incident on such edges one would only have one way (up to homeomorphism) of adding

transverse edges to the graph in the correct places without any crossing. In other words,

the interface graph Γ(α) determines α.

Proposition 4.1.5. An element α ∈Mn is idempotent precisely if its interface graph

contains no cis-active paths and no half-rays.

Such features will be referred to as obstacles (to idempotency).

Proof. Let α ∈Mn for n ≥ 0. We note firstly that the interface graph Γ ∶= Γα is a

certain generic neighbourhood of the interface between the two copies of α in

the multiplication diagram for α2.

Now let’s assume to derive a contradiction that Γ possessed a cis-active path.

By *-regularity, we may assume this is bounded by s∧i and s∧j in S∧α . Let us now

denote by a prime anything in the bottom half of the multiplication diagram;

there is a path

s∨i Ð→α s∧i = a′Ð→
α′

b′Ð→
α
⋯Ð→

α′
r = s∧j Ð→α s∨j ,

giving us an edge (s∨i , s∨j ) in α2 but not α, a clear contradiction.

Now, let’s assume that none of these obstacles occur, i.e. that Γ has no con-

nected components that are either half-rays or cis-active paths. Cycles and inert

paths can’t obstruct idempotency, so we need only consider the active paths to

prove idempotency.

At this point, planarity allows us to number the paths in the order they ap-

pear left-to-right; the stubs at either end of a trans-active path therefore must

agree on index. Pick such a path. Since the stubs at the boundary of the path

agree on index, the interface propagates this path through the multiplication

diagram as required.

Corollary 4.1.6. Any element of rank zero inMn is idempotent.

Cis-active paths and half-rays contain transversal edges, the number of which

is the rank.
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4.2 A Reduction Process on Idempotents

In this section, we will develop a rewriting process on the elements of the

Motzkin monoid of degree n. This will turn out to be rank-reducing, have

unique irreducible elements (i.e. be a complete rewriting system), and idempo-

tency, rank-parity and membership in the Jones monoid Jn will all three be left

invariant under such a process of rewriting. The irreducible elements in com-

ponents containing an idempotent will turn out to be precisely the idempotents

whose ranks are 0 or 1.

The structure underlying such a process is a directed graph ∆. The main

tools are classical from the perspective of rewriting theory.

Definition 4.2.1. A rewriting system on a set X is a graph Γ whose vertex set is X

and whose reductions consist of directed edges.

We concern ourselves with some properties of the directed paths in the graph,

of which there may be infinitely many; all paths in this chapter will be assumed

directed without further comment.

Are there arbitrarily long finite paths? Are there infinite sequences of reduc-

tions x0→ x1→⋯→ xn→⋯? If two paths start at u, does there exist paths to v

from their endpoints?

We refer to a familiar terminology where convenient, so if x→ y, then y is

the child of x and x is the parent. Similarly if x = a0→ a1→⋯→ an = y then x and

y are respectively an ancestor and descendant of one another, in which case we

write x ∗→ y. An element x in a rewriting system is reducible it has a child and

irreducible otherwise.

Definition 4.2.2. A rewriting system is

• terminating if there are no infinite sequences of reductions;

• locally confluent if any two children of any element have a common descen-

dent;

• semi-confluent if any child and descendent of any element have a common

descendent;
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• confluent if any two descendents of any node have a common descendent;

• Church-Rosser if any two weakly-connected nodes share a common de-

scendent.

a a a

b c

d
∗ ∗

b c

d
∗ ∗

b c

d
∗ ∗

b c

d
∗ ∗

∗ ∗ ∗
∗

Figure 4.1: Diagrams describing the notions of local and semi-confluence, confluence

and the Church-Rosser property for rewriting systems. The solidly-drawn lines are

assumptions, and if a, b and c satisfy these assumptions then in each case, there exists a

common descendent d.

It’s fairly clear that

Church-Rosser Ô⇒ confluent Ô⇒ semi-confluent Ô⇒ locally confluent

The following classical theorem, due to Newman, gives a partial converse.

Lemma 4.2.3 (Diamond Lemma). A terminating rewriting system is locally-confluent

precisely if it is Church-Rosser.

Proposition 4.2.4. Let X = (X,→) be a rewriting system with x ∈ X. If X is

terminating then there is an irreducible y with x ∗→ y. If X is Church-Rosser and y, y′

are irreducibles with x ∗→ y and x ∗→ y then y = y′.

Proof. Assume that X is terminating. Then there are no directed ends, so any

sequence of edges with neighbouring edges adjacent on a vertex is finite, and

hence a path. Pick a path from x which is maximal in the sense that no edge

exists from the endpoint. This must exist, otherwise every such path could be

extended to a directed end. The endpoint is an irreducible.

The other claim is immediate as the paths from x to y and y′ together com-

prise an undirected path from y to y′, and the Church-Rosser property guaran-

tees these have a common descendant. As the two are assumed irreducible in

the statement of the proposition, they must be equal.
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We call a rewriting system complete if terminating and Church-Rosser. These

are precisely the rewriting systems under which rewrites are guaranteed to fin-

ish with unique irreducibles; those are elements which do not rewrite further,

and they are unique in the sense that, given an irreducible, one may not rewrite

any ancestor to a different irreducible.

One may associate to a complete rewriting system X = (X,→) a map x ↦ x̂

which associates to each x ∈ X the unique irreducible x̂ satisfying x ∗↔ x̂.

4.2.1 A Complete Rewriting System

We can define a rewriting system on the elements ofMn as follows:

1. Let α be an element ofMn and Γ ∶= Γ(α) its interface graph.

2. Pick some odd i < ∣S∨∣.

3. Remove the i-th and (i + 1)-th entries from S∨, adding the edge (s∨i , s∨i+1)

to Γ∨.

4. Do the same to S∧ and Γ∧.

Pictorally, this amounts to drawing an edge from an odd-indexed stub to the

next [even-indexed] stub on the interface graph, and doing this above and be-

low the interface line. If α′ can be obtained from α by such an above operation

write α ↝ α′.

This process has some interesting features.

Proposition 4.2.5. Let α ↝ α′. Then:

1. The rank of α′ is two less than that of α;

2. We have α ∈ Jn precisely if α′ ∈ Jn.

Proof. The first implication needs no proof; this follows straight from the defi-

nition.

For the second, observe there are n edges in total on a diagram in Jn, as it

may be represented by a perfect matching on 2n points. These pairings (i, j) are
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either realisable as edges belonging to Γ∨ or to Γ∧ in the interface graph, or as

a pairing of a vertex i ∈ [[n]] with one from j′ ∈ [[n]]′ a part in S∨ and S∧. The

stubs in the S index the transverse edges, matching with a partner across the

diagram; we have

∣Γ∨α ∣+ ∣Γ
∧
α ∣+ ∣S∨α ∣ = n

precisely if α ∈ Jn.

Rewriting does not affect the above parameter; we decrease ∣S∨α ∣ by two

when we exchange two pairs of stubs representing a pair of transverse edges,

for two non-transverse edges, in turn increasing ∣Γ∨α ∣ and ∣Γ∧α ∣ each by one.

Corollary 4.2.6. If D denotes those elements of rank at most one, then every δ ∈ D is

irreducible.

Example 4.2.7. The following example shows a rewrite α ↝ α′.

 

We have

S∨α = {3, 4}, S∧α = {1, 2}, S∨α′ = S∧α′ = ∅,

Γ∨α = {(1, 2)}, Γ∧α = {(3, 4)}, Γ∨α′ = Γ∧α′ = {(1, 2), (3, 4)}.

The only odd i < ∣S∨α ∣ to pick was 1; we were bound to rewrite replacing the only

two transverse edges.

The rank-reducing nature implies that, as a rewriting system, this is cycle-

free. In particular, by the finiteness ofMn, this is a terminating system.

Proposition 4.2.8. The rewriting system onMn given by ↝ is complete.

Proof. Termination is automatic, since rewriting reduces rank, which starts non-

negative and finite. By the Diamond Lemma (Lemma 4.2.3), it hence suffices to

prove local confluence. Let α↝ β and α↝γ. Then we seek to prove that there is

η such that β
∗
↝ η

∗
↝γ.
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If γ = β then η = β suffices, so assume without loss of generality that γ ≠ β.

Write Γ∨ξ and S∨ξ , for example, for the relevant features of the interface graph of

ξ.

By definition, if α→ ξ there is odd iξ such that

S∨α = S∨ξ ∪ {s
∨
α;iξ

, s∨α;iξ+1} and Γ∨ξ = Γ∨α ∪ {(s∨α;iξ
, s∨α;iξ+1)}. (4.4)

In particular, this is true for both ξ = β, γ. Note that ∣iβ − iγ∣ ≥ 2 since β ≠ γ, and

also S∨β ∪ S∨γ = S∨α .

The above observations all hold for the other side of the interface line (i.e.

the ∧-counterparts of each of the above) because of the involution *.

In particular, if we define η by its interface graph, writing

S∨η ∶= S∨β ∩ S∨γ and Γ∨η ∶= Γ∨β ∪ Γ∨γ,

then we see that β↝ η ↝γ as required.

Corollary 4.2.9. There is a mapping α ↦ α̂ associated with the rewrite system (Mn,↝)

asssociating to each α ∈Mn the unique irreducible in its weakly connected component.

We will call this mapping the hat map.

Corollary 4.2.10. The fibres of this map are exactly the weakly connected components

of the rewriting system (Mn,↝).

Corollary 4.2.11. If α ∈Mn, then α = α̂ precisely if the rank of α is at most one.

This rests on the fact that the rank is the number r = ∣S∨∣ = ∣S∧∣. If there are at

least two edges, then one can rewrite.

Corollary 4.2.12. Let r, r̂ denote the ranks of α, α̂ ∈ Mn. Then r − r̂ = 2k for some

nonnegative integer k.

Here k is the number of rewrites, as each reduces rank by two.

Corollary 4.2.13. The map associated to the complete rewriting system (Mn,↝ )maps

onto the set D comprising all elements of rank at most 1, fixing D pointwise and pre-

serving the parity of the rank under mapping.
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The study of the fibers of this map, were we able to calculate detailed statis-

tics for them, would reduce the study of the entire set of elements (respectively

idempotents) to those of rank at most 1. This somewhat-fuzzy heuristic will

turn out to be of importance later on; we will make it precise via construction of

a combinatorial cell complex whose 0-cells are precisely the idempotents, whose

1-cells are rewrites α↝α′, and whose connected components are precisely these

fibres.

Proposition 4.2.14. Let α↝ β, with α ∈ E(Mn) an idempotent. Then β is idempotent.

Proof. Given that α is idempotent, there are no obstacles to idempotency in Γα.

We need only check that there are no obstacles to idempotency then in Γβ, by

4.1.5.

The interface diagram of α therefore contains only active trans-paths, cycles

and inert paths. Since we remove two transversal edges from the diagram and

replace them with two nontransversal edges, we are replacing a pair of active

trans paths

u1

v1

u2

v2

u3

v3

uk−1

vl−1

uk

vl

with the cycle

u1

v1

u2

v2

u3

v3

uk−1

vl−1

uk

vl .

No new obstacles are introduced, and β is idempotent.

Corollary 4.2.15. For any idempotent α ∈Mn, α̂ is idempotent.

4.2.2 Reversing Rewriting

We have seen that rewriting with the ↝-relation preserves idempotency, but

does it reflect idempotency? That is, is it the case that if α→ β with β idempotent,
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is it guaranteed that α is idempotent? Unfortunately, the answer is no; Exam-

ple 4.2.7 shows us that a non-idempotent α of rank 2 rewrites to an element α̂ of

rank zero, which must be idempotent by Corollary 4.1.6.

The aim of this subsection is to reverse the process of rewriting in such a way

as to preserve idempotency. To do this, we define another rewriting system,

which coincides on E(Mn) with the reverse of that induced by the ↝ relation.

We do this using the combinatorics of the interface diagram.

Definition 4.2.16. Let α, β ∈Mn with α↝ β. Say hat α rewrites up to β (written

β ↞ α) if there is a cycle in the interface graph of α and two connected edges,

(i, j) in Γ∨α and (k, l) in Γ∧α , so that

Γ∨β = Γ∨α ∖ {(i, j)}, Γ∧β = Γ∧α ∖ {(k, l)},

S∨α = S∨β ∖ {i, j}, S∧β = S∧α ∖ {k, l}.

Write ∗
↞ for the transitive closure of ↞, so that α

∗
↞ β precisely if there is a

sequence α = s0, s1, . . . , sk = β where si−1↞ si for each i ∈ [[k]].

Proposition 4.2.17. Let α, β ∈Mn satisfy α↞ β. Then α̂ = β̂.

This is a direct consequence of (Mn,↝) being complete.

Proposition 4.2.18. Let α ∈ E(Mn) be an idempotent and β ∈ Mn satisfy α ↞ β.

Then β ∈ E(Mn) is also an idempotent and α̂ = β̂.

Proof. First observe that the interface graph of β coincides with α except in the

one connected component in that of α that is replaced with two in that of β. It’s

clear that, since this component in Γ(α)

By Proposition 4.1.5, an element is idempotent precisely if its interface graph

lacks cis-active paths and half-rays.

We observe that Γα has no such obstacles, and we need only establish that

rewriting up produces none. Writing ∧ for an upward edge and ∨ for a lower

edge, the interface graph of α contains a cycle

u0 u1 u2 ui ui+1 uj uj+1 u2k−1
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of length 2k, such that

S∨β = S∨α ⊔ {vi, vi+1}, S∧β = S∧α ⊔ {vj, vj+1},

Γ∨α = Γ∨β ⊔ {(vi, vi+1)}, Γ∧α = Γ∧β ⊔ {(vj, vj+1)},

Hence we produce two trans-active paths

vj+1 vj+1 v2k−1 v0 v1 vi

vj vj−2 vi+2 vi+1

where vi and vi+1 have downward stubs, and vj and vj+1 have upward stubs.

Hence, β has no newly-introduced obstacles to idempotency not present in α,

and therfore none. It is hence idempotent by Proposition 4.1.5.

Theorem 4.2.19. Let α
∗
↞ β inMn. Then α is idempotent precisely if β is idempotent.

By Proposition 4.2.18, if α ∈ E then β ∈ E, and by Proposition 4.2.14, the

reverse holds.

4.3 A CW-Complex Structure on the set of Motzkin

monoid idempotents E(Mn)

We’ve already seen that for α ∈ E(Mn), there is a corresponding idempotent α̂

of low rank which can be obtained from it by some sequence of ↝-rewrites.

Assume we have α↝ β. Since S∨α and company impose very strict constraints

on what S∨β are, we’ll drop the αs in the subscript as follows. We write

S∨α = {s∨1(α) < s∨2(α) < ⋯ < s∨r (α)}

where r is the rank of α, and similar for S∧α and the s∧i (α), omitting α where

convenient. Whenever we have

S∧α = S∧β ∪ {s
∧
i , s∧i+1}, Γ∧β = Γ∧α ∪ {(s∧i , s∧i+1)},

S∨α = S∨β ∪ {s
∨
i , s∨i+1} and Γ∨β = Γ∨α ∪ {(s∨i , s∨i+1)},
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then we write α↝i β.

Let α ∈ Mn be fixed herein and r be its rank. The following observations

follow directly from the definition.

Proposition 4.3.1. If β↞ α then there is i < r whereby α↝
i

β.

Proposition 4.3.2. Let i < r. There is at most one β such that α↝si β.

Proposition 4.3.3. There is at most one α such that α↝si β.

Proposition 4.3.4. If α, β and γ satisfy α↝
si

β and α↝
sj

β as in (4.5), then there is a

(unique) η which satisfies either β↝
si

η or γ↝
si

η. In this case, the relations are satisfied

simultaneously.
α

β γ

η

si sj

sj si

(4.5)

This follows immediately from the definition. We can induct upon these

observations to great effect; if s = (s1, . . . , sn) is a sequence of numbers such that

α = ζ0↝s1 ζ1↝s2 ⋯ ↝s(n−1) ζ(n−1)↝sn ζn = β.

then we can extend the notation↝ notation to write α↝s β in such a case. Defin-

ing the content

∐ s = {s1, s2, . . . , sn}

of s as the set of entries, the following follows from an iterative application of

Proposition 4.3.2.

Corollary 4.3.5. Given s, the relation↝s is an injective partial function. That is, given

α (respectively β) there is at most one β (resp. α) such that α↝s β.

In fact, by inducting on Proposition 4.3.4 we can attain the following
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Corollary 4.3.6. If α, β and γ satisfy the solidly-drawn relationship in (4.6), and s and

t have disjoint contents, then there is a (unique) η which satisfies either relation drawn

in dots. In this case, the relations are satisfied simultaneously.

α

β γ

η

s t

t s

(4.6)

We then have the following by induction on the above.

Corollary 4.3.7. If S =∐ s =∐ t, then we have α↝s β precisely if α↝t β.

In this case, we can write α↝S β. Aided by these observations, we’ll induc-

tively build a complex whose cells are cubes which are in some sense “indexed”

by sets of these relationships fixed at basepoints.

Definition 4.3.8. The mutation complex E (Mn) is a cubical complex defined as

follows:

• The vertices (0-cubes) are the idempotents in E(Mn);

• The k-cubes (1 ≤ k ≤ n
2 ) are indexed by the triples (α, S, β) where α↝S β

such that ∣S∣ = k;

• The boundary of an k-cube (α, S, β) is the union of all the (k − 1)-cubes

(γ, T, η)where T ⊂ S and either α = γ or β = η.

The purpose of the rest of this section is the proof of the following.

Theorem 4.3.9. Each connected component in E (Mn) is a product of rooted trees of

height at most 1, as pointed CW-complexes.

The above result has some profound implications for understanding the set

of idempotents inMn and any submonoids whose membership is preserved by

the hat map, such as the Jones monoid. We’ve taken pains by this point to lay

the ground so that the result now follows quickly from previous observations.
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Proof. We fix α ∈ E(Mn) of rank at most one, to be the basepoint of this com-

plex. The only connected components in α are trans-active paths (at most one

by assumption), cycles or inert paths. The inert paths aren’t the possible result

or rewriting, nor is the (potentially nonexitent) trans-active path, so we need

only study the cycles.

We seek to build a coherent “coordinate structure” on the connected compo-

nent [α] whose entries take values in the rooted trees of height 1 discussed in

the statement of the theorem. To do this, we need to examine the reverse of the

↝ relation.

The relation ↝ produces a cycle connected component left of the rightmost

transversal (if present) in the interface graph where previously there were two

trans-active paths, and does so by mutating the transverse edges to two non-

transverse return edges on the same four points:

↦ (4.7)

In general we use this term to mean any such action on four points in a diagram

where two edges are swapped for two other edges. Since the purpose of our

study is semigroups of planar diagrams, we’ll require in addition that the new

edges do not cross.

The reverse relation therefore consists of all rewrites of pairs of return edges

in the same connected component. Fix a connected component θ of α, and de-

note by R∨(θ) the set of upper return-edges in θ and R∧(θ). Let Tθ denote the

set

Tθ ∶= {∗}∪ (R∨(θ)× R∧(θ)).

Identify each element t of Tθ − {∗} with the element of [θ] that has that pair of

return edges opened to a transversal. Then we have t↝ θ, and αt↝α, where αt

is α with θ replaced by t, giving us the edges we desire.

This process can be carries out independently across the connected compo-

nents left of the rightmost tansversal, giving rise to the desired product struc-
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ture. The basepoint is, as expected, the element α, which appears with all its

connected components mutated.

The attention paid to the rightmost transversal is to prevent double-counting.

We only mutate on odd indexed stubs for the same reason; we could have some-

thing like the following situation in which one element rewrites to separate ir-

reducible elements.

(4.8)

Observation 4.3.10. Fix α ∈ E(Mn) an idempotent of rank at most 1, and θ a con-

nected component. The size of Tθ is 1+ tθ ⋅ bθ where t and b are respectively the numbers

of top and bottom return edges.

Corollary 4.3.11. The number of idempotents in [α] is

∣[α]∣ =∏
θ

(1+ bθ ⋅ tθ),

with the product over cycles left of the rightmost transversal.
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Part III

Enumeration: Theory and

Implementation
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Chapter 5

Convexity and Enumerating

Idempotents in Planar Diagram

Semigroups

This chapter builds a theoretical framework for extending the results from the

last several sections into a family of methods for counting families of elements

by parameters other than degree, such as by rank or number of blocks providing

an obstacle to idempotency, for example.

The framework in question provides a partial answer to the question of what

sorts of information can be gleaned from detailed study of the cube complex

E (Mn) defined in Chapter 4.

We also detail some results concerning elements of particularly high rank,

and provide a set of polynomial bounds for the sequence en,n−d of numbers

idempotents of degree n for each fixed d. Formulae for the sequences are calcu-

lated in some small examples, but as with many enumeration problems in these

monoids, it doesn’t seem an easy task to find a general formula.
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5.1 Convexity and Enumeration by Parameter Pro-

file

Looking at Table E.1 and Table E.3 in the appendices, a few patterns become

apparent.

The numbers en,n of idempotents of rank n are equal to 1 for each n ∈ N0.

This is very easy to see, since the only element with n transversal blocks inMn

or Jn is the identity, which is always idempotent.

The numbers en,n−1 forMn seem to satisfy en,n−1 = n for the values of n we

can see there. This is as one might expect, as there are n partial identities with

n − 1 transversal blocks, one for each pair i, i′ that aren’t connected.

Definition 5.1.1. The sequence of differences ∆(ai) of a sequence (ai)i is the se-

quence (ai+1 − ai)i with the same index. The sequence of nth differences ∆n(ai) of

(ai)i is the sequence of differences of the sequence ∆n−1(ai), where ∆0(ai) = ai

More examination suggests that after a small number of terms, the terms

en,n−d seem to settle into a pattern where the sequence of dth differences forMn

is constant. In order for this to be the case, the sequence must be equal to some

degree-d polynomial, after the behaviour stabilises. Examination of the table for

Jn suggests this is also the case there, but the polynomial is degree d for terms

of the form en,n−2d.

It is not immediately obvious why this may be the case. We explore this

phenomenon using a tame generalisation of integer partitions.

5.1.1 Ordered Partitions and Words

Recall a composition of n is a sequence of positive integers whose sum is n. The

following observation is classical enumerative combinatorics, see [52].

Observation 5.1.2. There are 2n−1 such sequences. To see this, consider n dots drawn

on a piece of paper in a row. There are n − 1 gaps between, and hence 2n−1 ways to add

vertical lines to the interior of the sequence so that no two are adjacent. The (necessarily
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positive) numbers of dots appearing consecutively gives rise to a composition, as seen

below:

( ●●●● ∣ ●●●●● ∣ ●● ∣ ●● )←→ 4+ 5+ 3+ 2+ 2.

Indeed, given a composition of n, it’s easy to see how to insert lines to ensure the dots

will be grouped into sets of the correct size. This correspondence is a bijection.

A tangentially-related set of problems to counting compositions is that of

counting words. If I have an alphabet {a1, . . . an} of letters, and I give each a

respective weight of ri, one might ask how many ways there are to make words

whose letters’ weights sum to r. This generalises length, which may be inter-

preted as a weight given by an alphabet of unit-weight letters, and depends on

the (multi)set of weights rather than the letters themselves, as we can see by

permuting the alphabet.

The following example is an instructive, if brief, departure in this direction.

Example 5.1.3 (A Change Counting Problem [65]). Since decimalisation in the

UK, there are coins of value (in pence) 1, 2, 5, 10, 20, 50, 100, and 200 in recent

years. Some coins circulated recently (those denominations up to a £1) may

have part of the shield of the UK on (and may also not). We’ll assume that

all two pound coins are indistinguishable to make the combinatorics more in-

teresting, and perhaps because the author does not know better at the time of

writing.

We may assign to each distinguishable coin a letter whose weight is its value

in pence. For our purposes, the actual letters don’t matter, so we will instead

define just a multiset of weights as follows:

S = {1, 1, 2, 2, 5, 5, 10, 10, 20, 20, 50, 50, 100, 100, 200}.

This multiset will be encoded with the generating function

s(z) = 2(z + z2 + z5 + z10 + z20 + z50 + z100)+ z200 = ∑
n∈S

zn

where the coefficient of zi is the multiplicity in S of the weight i. Note that,

formally, we have

(1− z)(1+ z + z2 + z3 +⋯) = 1,
1

1− z
= 1+ z + z2 + z3 +⋯
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Two piles of coins differ if the sequence of coins appearing from top to bottom is

not the same. The number of ways of making a pile worth k pence with exactly

n coins is given by the coefficient of zk in (s(z))n, and the total number of ways

of giving change is given by the coefficient of zk in the series

s∗(z) =
∞

∑
n=0
(s(z))

n
=

1
1− s(z)

.

For our purposes, an approximate answer may suffice. To enumerate ways of

making 10 pence, it suffices to consider only piles of size up to 10, since the

smallest weight is 1. So we need only consider the coefficient of z10 in s(z)10.

In general, for fixed k, the polynomial s(z)k will suffice to exactly enumerate

sequences needing at most k weights summed from S.

It will also happen that if k′ is close to k in size, that s(z)k
′

will provide a

suitable approximation for s∗(z). For example, if k′ = 9 in the above example,

we only lose the ability to count piles of size 10. We already know there are only

210 = 1024 of these, so this approximation is fairly good. Indeed, the approxima-

tion will be better when k is larger, and in particular when the number of letters

having small weight is small.

Construction of compositions can be seen as a specific instance of this coin

counting-type problem, with respect to the set of weights N of all positive inte-

gers. The generating function of the multiset of positive integers is then

p(z) =
∞

∑
n=1

zn =
z

1− z
= z + z2 + z3 +⋯

Writing p ∶= p(z), we then have

p∗(z) =
∞

∑
n=0

p = 1+ p + p2 + p3 +⋯

=
1

1− p
=

1
1− z

1−z
=

1− z
1− 2z

= 1+
z

1− 2z
.

We see that p∗(z) = 1 + 2z + 4z2 + 8z3 +⋯ is the generating function of the set of

integer partitions, following Observation 5.1.2.
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5.1.2 Filtering Powers of Generating Functions using Modular

Arithmetic

When dealing with the twisted variants of the monoids we’re interested in, it’s

convenient to be able to “ignore” terms in a power series whereby the powers

of certain indeterminates don’t have the right modular arithmetic properties.

For example, if f (z) = ∑n anzn, one may wish to examine the function g(z) =

∑n a5nz5n, omitting terms whose powers don’t divide by 5.

We have the following tool, whose proof will be undertaken in the remain-

der of the subsection.

Theorem 5.1.4 (Root-of-unity filter). Let f (z) = ∑n anzn. Then for any primitive

k-th root of unity ζ we have

aknzkn =
1
k

k−1
∑
i=0

f (ζ i ⋅ z).

The term is due to Q. Yuan [77], who proves it in a somewhat more involved

fashion than we do here.

Proof. Observe that the sum of all k-th roots of unity is zero. We have zk − 1 =

(z + 1) ⋅ (1+ z + z2 +⋯zk−1), and hence

k−1
∑
i=0

zi = 1+ z + z2 +⋯zk−1 =
zk − 1
z + 1

.

Now letting ζ be a k-th root of unity; we immediately infer that

k−1
∑
i=0

ζ i =
ζk − 1
ζ + 1

= 0.

Assume that ζ is a primitive k-th root of unity, and apply this observation to the

formal sums f (zζ i); we obtain

fmod k(z) =
k−1
∑
i=0

f (zζ i) =
k−1
∑
i=0

∞

∑
n=0

anζ inzn =
∞

∑
n=0
(

k−1
∑
i=0

ζ in)anzn. (5.1)

Now, note that if k∣n then each term in the bracketed summation is 1, so this is

k itself.
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Otherwise, let d be the greatest common divisor of k = pd and n = qd. Then

the bracketed sum in (5.1) is equal to

k−1
∑
i=0

ζ in =
k−1
∑
i=0

ζ iqd = d
p−1

∑
i=0

ζ iq = 0

since ζqpd = ζkq = 1. Therefore, writing fmod k(z) = ∑n bnzn, we have bn = 0 where

k ∤ n, and otherwise bn = kan. Therefore we see that

fmod k(z) =
∞

∑
n=0

kaknzkn = k
∞

∑
n=0

aknzkn

as required.

5.1.3 Tensor Product, Convexity and Generating Idempotents

Definition 5.1.5. Let n > 0 and α ∈Mn. Write a ∼α b whenever a ≤ b ≤ c and one

of a and a′ is in the same block as one of c and c′. Now define ∼∗α as the smallest

equivalence relation finer than ∼α.

We say that α is convex if ∼∗α is universal, and call the classes of this relation

the convex components of α.

Example 5.1.6. Both elements of M1 are convex. The non-convex elements of

M2 are the partial identities. The non-projections in J3 are all convex, but the

projections are not, and indeed projections in J2n+1 are always non-convex for

n ≥ 1.

We don’t define this relation or the notion of irreducibility for degree-zero

objects for technical reasons that will soon become apparent.

Recall that for each n, m ≥ 0 there is a horizontal tensor map

⊗ ∶Mn ×Mm→Mn+m.

This is in fact an injective homomorphism, and the image of Jn ×Jm is contained

within Jn+m in each case. We will conventionally refer to the tensor as acting on

the union of theMn, rather than specifying degree.

114



Observation 5.1.7. Every element α in Mn (n > 0) has a decomposition as a tensor

product of some elements of degree at most n. The decomposition is proper if α = α1⊗α2

is non-convex, and may not be unique in this case.

When α is convex, there is no proper decomposition into a tensor of two Motzkin

elements. In general, is a unique decomposition as a tensor product of convex Motzkin

elements each having positive degree.

Observation 5.1.8. The element α′ = (α1, . . . , αk) in∏iMni is idempotent precisely if

the αi are all idempotent, and hence, so is

α = α1 ⊗ α2 ⊗⋯⊗ αk.

The following parameters capture some desirable information about ele-

ments ofMn, many of which reflect some important Boolean/non-parametric

properties in a combinatorial fashion. The properties listed below are all addi-

tive in the tensor, in the sense that if f (α) denotes any of the following, we have

f (α⊗ β) = f (α)+ f (β):

• The degree n of α;

• The block number, singleton block number and convex component number of α;

• The nonidempotency, the number of blocks in α which comprise obstacles

to idempotency;

• The cycle, half-ray and (trans-, cis-) active and inert path numbers in Γα;

• The rank r of α, or the (rank) deficiency n − r;

• The cup and cap numbers ∣Γ∨α ∣ and ∣Γ∧α ∣;

• The crossing number of γ ∈ Pn, that being the smallest number of crossings

in a graph in the usual bounding rectangle whose connected components

are the blocks of γ;

• The discrepancy, or the number of non-singleton blocks in α which are not

a block in any β ∈ Jn.
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Many of these parameters allow us to distinguish interesting subsets ofMn, ei-

ther unilaterally or in concert with others. Most are additive over not only over

the direct sum construction discussed in Section 3.2, and many of the results

that follow could be fruitfully recast in terms of irreducibles rather than convex

elements.

Theorem 5.1.9. Let α ∈Mn. The above tensor-stable parameters encode the following

information:

• The element α ∈ Jn precisely if the block number is n, or the singleton block

number is zero;

• The nonidempotency of α is zero precisely if α2 = α ∈ E(Mn);

• The active path number and rank coincide;

• For γ ∈ PBrn (respectively in Brn), the crossing number is zero precisely if γ ∈

Mn (γ ∈ Jn);

• If α is an idempotent inJn, then the element represented by α in the one-deformation

parameter Temperley-Lieb algebra TLn(δ) is idempotent for all δ precisely if the

cycle number is zero;

• If α is idempotent in Jn, then the element represented in TLn(δ) by α is idempo-

tent if δ is a cth toot of unity, where c is the cycle number;

• The elements of discrepancy zero form a semigroup PJn.

The proof of the first several parts is basic combinatorics. Examination of re-

lationships with one-deformation parameter Temperley-Lieb algebras is a straight-

forward corollary to the results given in the last section of [49].

5.1.4 A Parametric Study of E (Mn)

We will refer to such numbers as tensor-additive parameters, or simply parame-

ters. The main thrust of this section is to develop some sense of when these
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parameters might be useful in the study of Mn, or of interesting subsets and

subsemigroups.

Of primary concern is understanding when parameters interact nicely, or in

interesting ways, with the rewriting systems discussed in Chapter 4. For ex-

ample, the nonidempotency of any idempotent is zero, which is not very inter-

esting when considering mutations, since they preserve the property of being

idempotent, and hence don’t affect idempotency.

We haven’t examined possible ways to generalise our notion of mutation to

one which allows us to produce high-rank non-idempotents from idempotents,

or even from arbitrary low-rank elements. This is certainly possible, perhaps

allowing creating of half-rays by allowing more general forms of mutations on

edges in one or two components, which may not be assumed cycles.

On the other hand, one has rank, which is a prototypical example of a well-

behaved parameter. Proposition 4.2.5 describes how rewriting affects rank, and

we can observe as a corollary that if one mutates on α ∈Mn once, the resulting

α′ has rank exactly two larger.

Example 5.1.10. Let

α =

Then the fibre [α] in E (Mn) is a product of an I-shaped tree (a 2-chain) and a

V-shaped tree, and in particular has six elements.

To each element in this component of the complex, we’ll attach a monomial,

and sum these over the whole fibre. The eventual aim will be to quickly assem-

ble a generating function that encodes a lot of information about the number of

idempotents inMn, and also some more detailed information such as distribu-

tion by rank, cycle number etc.

So, to the degree parameter n, we associate the formal variable z. To rank r

we associate the formal variable y.

The basepoint of the fibre has degree 6 and rank zero, so gets a value of z6.

There are three elements in the product at distance one from the basepoint, and
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two at distance 2, giving a factor of 1 + 3r + 2r2 = (1 + r)(1 + 2r). The terms 1 + r

and 1+ 2r describe the ranks of elements in the trees, where in each case the tree

is regarded as having at each vertex the irreducible summand of some δ ∈ [α]

on which the mutation takes place that contributes to the rank change.

The following definition recalls the direct-sum decomposition from Section 3.2.

Definition 5.1.11. A parameter plays nicely with the decomposition into irre-

ducibles if for α ∈ PX, we have f (α) = ∑i∈I f (αi) where each αi is an irreducible

defined on some subset Xi of X.

We write

α =⊕
i∈I

αi

in such a case.

Proposition 5.1.12. Let f j be a sequence of parameters that play nicely, and zj be a

corresponding sequence of distinct formal variables, both indexed by j ∈ I . Then, for

α ∈ E(Mn) one associates to each irreducible summand α ∈ E(MXi) the monomial

F(αi) =∏
j∈J

z
f j(αi)

j .

Setting F[α] = ∑β∈α F(β), then we have

F[α] =∏
i∈I

F[αi].

This is a familiar sort of utilitarian result from the theory of generating func-

tions, and is a fairly direct consequence of these parameters playing nicely.

A parameter profile is a collection of parameters. Write p(α) = (n, r, p, d, t, c)

for the standard parameter profile where n is the degree of α, r is its rank, p is the

discrepancy, d is deficiency, t is the number of convex components, and c is the

number of connected components in Γα. Then for v ∈ {n}×N5
0, write

Ê(v) ∶= {α ∈Mn ∶ p(α) = v}.
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Now define the convex parameter profile c(α) = (n, r, p, d, c) where the entries are

as above, and let u ∈ {n}×N4
0; write

Ĉ(u) = {α ∈Mn ∶ c(α) = v, v(α) = 1}.

Then we observe the following regarding decompositions of elements ofMn.

Proposition 5.1.13. The set E(Mn) decomposes as a disjoint union

E(Mn) = ∐
v∈{n}×N5

0

Ê(v)

where the union is over all v with first entry n. Furthermore, we have

Ê(v) =
n
⋃
k=1
{

k
⊗
i=1

Ĉ(ui) ∶
k
∑
i=1
(ui) = v,∀iui ∈ N5

0 }.

Define the following statistics

ĉ(u) = #{ α ∈ E(Mn) ∶ α is convex with c(α) = u },

ê(v) = #{ α ∈ E(Mn) ∶ p(α) = v }

Let x = (z, y, x, w, v, u) be a tuple of 6 indeterminates; for v = (n, r, p, d, t, c) as

above, write

xv ∶= zn ⋅ yr ⋅ xp ⋅wd ⋅ vt ⋅ uc.

Then the standard generating function for the planar diagram monoids is

U(x) =
∞

∑
n=0
∑

α∈Mn

xp(α) = ∑
v∈N6

0

ê(v) ⋅ xv

This function contains a lot of the data we are interested in for bot Jn and for

Mn. Recalling Theorem 5.1.9

Of independent interest, idempotents of rank-zero with only one connected

component in the interface graph correspond precisely with meanders. So in

particular, differentiating with respect to u and then sustituting u = y = 0 we

obtain the generating function of the meanders; we cannot then do better than

numerical asymptotic and/or low-degree approximation to this function with-

out finding a solution to that of enumerating meanders.
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Observation 5.1.14. For any element α ∈Mn with p(α) = p, d(α) = d, r(α) = r, we

have

d, p, r, r + d, p + d ≤ n.

Furthermore d = 0 implies p = 0, but we can have d = 1 and p = n − 1 (the largest

possible):

. . . . . .

. . . . . .

(5.2)

5.1.5 Convex Generating Function

Part of the reason we’ve developed this convex machinery in the first place is

to reduce our study from the whole semigroup to the convex elements therein.

Given the fibration techniques developed earlier, these methods will allow us to

reduce our study to simply the convex or irreducible idempotents in the bottom

D-classes; for the sake of simplicity, we opt for the former.

If we can get a hold on some behaviour of the ĉ then we can approximate

U to low degree as follows. Firstly, let q be a parameter profile and z be an

indeterminate of the same size. Then define

Vq(z) =
∞

∑
n=0

∑
α∈Mn

α convex

zq(α) =∑
u

ĉ(u)zu.

If we have some indeterminate z ∉ z, we can build a parameter profile-sensitive

generating function for the non-convex guys. Note that each α = α1 ⊗⋯⊗ ak for

some k and sequence of convex αi. Then we have

Uq(z) =∑
n
∑

α∈Mn

zq(α)

=∑
k
(zk ⋅∑

⊗

zq(α1) ⋅ zq(α2)⋯zq(αk))

=∑
k
(zVq(z)) =

1
1− zF(z)

.

where the inner sum on the second line is being summed over all decomposi-

tions α1 ⊗⋯⊗ αk.
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This approach would work for any parameter profile that one would care to

build.

One can generate huge amounts of data very quickly when one has a handle

on the behaviour of these parameters around the fibres in E .

Given the ease with which nonplanar diagrams were handled in [12], it may

be tempting to conjecture that one could make some progress by starting with

the Brauer monoid and filtering out nonplanarity by substituting zero into the

indeterminate that counts nonplanarity. This approach may well prove fruitful

for a judicious choice of parameter profile, but one needs only consider the fact

that in the planar world, we need only fix two parameters (rank zero and one

connected component) to recover the meander counting problem, whose nature

has eluded much more sophisticated techniques than these.

The convex generating function Up for the standard parameter profile is

printed in the appendices; the terms of degree at most 9 take up almost 3 pages.

To give one an idea of the amount of data that this method generates, the func-

tion Vp would take almost 20 pages, presented the same way. to give one an

idea of the amount of data that this method generates. GAP has some useful

tools for manipulating polynomials, and so it’s possible to build a fairly com-

prehensive picture of the semigroup just by massaging the data through GAP’s

tools.

5.2 Counting Idempotents of High Rank

Our work with convex idempotents yields certain classifications of idempotents

of particularly high rank, and the work with combinatorics on words yields

some low-rank results. This section concerns itself mainly with results of the

following type.

Proposition 5.2.1. The number of idempotents of rank n − 4 in Jn is equal to

1
2
(9(n − 4)2 + 19(n − 4)− 24)

for n > 4, is 4 if n = 4 and 0 otherwise.
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We’ll obtain the following asymptotic result.

Theorem 5.2.2. Let Kn denote one of Jn, PJn andMn; let en;r be the number of idem-

potents of rank r in Kn.

Then for δ ∶= δK some fixed positive integer and p ∶= pK some polynomial of degree

δ, the sequence (en;n−δ)n coincides for n ≥ 3δ with p(n).

This theorem is “effective” in the sense that we know exactly what the poly-

nomial is for rank-deficiency δ up to some coefficients that depend on the choice

of K●, although calculating the polynomial directly is computationally expen-

sive. These coefficients are the numbers of convex idempotents of various ranks

in certain degrees.

5.2.1 Idempotents of High Rank

One may define the rank deficiency δ of an element in Pn as the degree n minus

the rank r. The prototype for the sort of low-rank deficiency result we’re looking

to prove is as follows.

Observation 5.2.3. The number of idempotents in Jn of rank deficiency δ = 2 is

3n − 5

We will, where possible, express these sort of results in terms of the univer-

sal generating function if we have enough information about the D-classes in

question. In this case, all these idempotents are in Jn and hence p = d = 0, so we

can only say the following.

We’ll first note as an observation that there is exactly one idempotent of full

rank inMn, who is also in Jn, for each n ≥ 0. That is, writing Rn,r for the number

of idempotents of degree n and rank r, we have Rn,n = 1.

There are n idempotents of rank-deficiency δ = n − r equal to 1; namely the

partial identities on the subsets of [[n]] which comprise all-but-one point, so

Rn,n−1 = n.

In table 5.1, which stratifies the enumeration of Motzkin idempotents by

rank and degree, we can see certain patterns when reading the columns. The
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two examples above are easy to understand with pure combinatorics, but what

about those of rank deficiency 2?

n/n−r 0 1 2 3 4 5 6 7 8 9 10 11

0 1

1 1 1

2 1 2 4

3 1 3 11 16

4 1 4 19 48 81

5 1 5 28 93 266 441

6 1 6 38 152 549 1 492 2 601

7 1 7 49 226 947 3 211 9 042 16 129

8 1 8 61 316 1 480 5 784 20 004 56 712 104 329

9 1 9 74 423 2 169 9 432 37 048 127 676 369 689 697 225

10 1 10 88 548 3 036 14 402 62 149 241 268 841 945 2 477,806 4 787,344

11 1 11 103 692 4 104 20 968 97 697 413 629 1 612,936 5 682,635 17 026,951 33 616,804

Table 5.1: Numbers of idempotents in the Motzkin monoids listed by degree and rank-

deficiency

After a little thought, one concludes that one is dealing with something that

looks like the identity almost everywhere, with a Jones generator ci, possibly

multiplied with a partial identity, or missing strands eiej. There are n− 1 choices

of ci, and for each we can either rub one of the two edges out or leave both;

there are (n2) =
1
2 n(n − 1)ways to choose a pair eiej from En.

Writing Rn,r for the number of idempotents of degree n and rank r, we have,

for n > 3,

Rn,n−2 = (
n
2
)+ 3n − 3 =

n2

2
+ 2n − 3.

After this, the waters become murky very quickly.

5.2.2 Coins, Partitions and Count-Summing

This subsection loosely follows example 5.1.3.

Recall that an ordered integer partition of n is a tuple v of positive inte-

gers summing to n. There are two notions of size associated with these objects,
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whereas we’ve only taken note of one up to this point. We have the sum σv, and

the order ∣v∣which counts the number of elements.

If we’ll return briefly to change-counting, example 5.1.3, we note that we

may be interested in the number of coins given in the change and not merely the

amount. For instance, few people would be happy to pay for a 50p chocolate

bar with a 5 note and be given the change in pennies.

We recall the multiset of coin values (we could distinguish in example 5.1.3

between the newer coat-of-arms coins and the others) and the generating func-

tion:

S = {1, 1, 2, 2, 5, 5, 10, 10, 20, 20, 50, 50, 100, 100, 200},

s(z) = 2(z + z2 + z5 + z10 + z20 + z50 + z100)+ z200 = ∑
n∈S

zn

We can deform the generating function to one which will track the number of

coins as well as the total value by multiplying by v. Write ŝ(z, v) = v ⋅ s(z). Then

we can use the same method as before to build a generating function to track

the coin-number and value in change given:

ŝ∗(z, v) =
∞

∑
n=0
(ŝ(z))

n
=

1
1− v ⋅ s(z)

.

The coefficient of vkzn here will tell us how many piles of k coins from the set S

can be distinguished from one another, whose value in pence is n. The first few

terms in the power-series expansion, up to v2, are:

z400v2 + 4z300v2 + 4z250v2 + 4z220v2 + 4z210v2 + 4z205v2

+4z202v2 + 4z201v2 + 4z200v2 + 8z150v2 + 8z120v2 + 8z110v2

+8z105v2 + 8z102v2 + 8z101v2 + 4z100v2 + 8z70v2 + 8z60v2

+8z55v2 + 8z52v2 + 8z51v2 + 4z40v2 + 8z30v2 + 8z25v2

+8z22v2 + 8z21v2 + 4z20v2 + 8z15v2 + 8z12v2 + 8z11v2

+4z10v2 + 8z7v2 + 8z6v2 + 4z4v2 + 8z3v2 + 4z2v2

+z200v + 2z100v + 2z50v + 2z20v + 2z10v + 2z5v + 2z2v + 2zv + 1
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Note that no z9v2 term appears, consistent with the fact that no pair of elements

of S sum to 9. The term 4z20v2 accounts for the four ways to make 20p; the

two coins must be worth 10p, and we can independently allow the first and/or

second to be a coat-of-arms coin. Counting in this sense is as easy as coefficient

extraction.

A fairly easy generalised setting for this sort of technique to work is starting

with some set X and some positive-integer-valued weight function

h̄ ∶ XÐ→N≥0

and extending this to the free monoid X∗ by way of

h̄(x1x2⋯xk) =
k
∑
i=1

h̄(xi).

This set-up has a combinatorial significance when the set Xn of elements of a

given weight n is finite for each n. We define the generating function

fX(z) =
∞

∑
n=1

zn ⋅ ∣Xn∣

to count how many elements weigh n, and apply the same transformation as

before. The number of “strings” weighing n in the free monoid X∗ is precisely

[zn](
1

1− fX(z)
). (5.3)

We can count length in this by deforming by a factor of v at the first stage as

before, giving the number of strings of weight n and length l as

[znvl](
1

1− v ⋅ fX(z)
)

in essentially the same way as before.

Before we go any further, we’re interested in certain families (Xn ⊆ PBn)n of

subsets of the monoids PBn. Write

PB∞ ∶=
∞

⋃
n=0
PBn.
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for the set-union of these. Given that the tensor operation is associative and

unital (the unique element of degree zero), we observe that this set inherits a

monoid structure that is compatible in some nice way with the monoid structure

in each degree. Namely that for s, t ∈ PBn and x, y ∈ PBr, we have the following

interchange law

(s ⋅ t)⊗ (x ⋅ y) = (s⊗ x) ⋅ (t⊗ y) ∈ PBn+r.

This monoid is readily verified to be free, and the tensor-irreducible elements of

PBn (those which don’t deompose properly into a tensor of elements of lesser

degree) will be denoted βPBn. Similarly, writing βPB∞ for the union across all

degrees, we see that PB∞ = (βPB∞)∗ with respect to the tensor operation.

Definition 5.2.4. Let the sets Xn ⊆ PBn be a family of subsets of the PBn. This

family is called (tensor)-stable if for each i, j ≥ 0, we have

Xi ⊗Xj ∶= {x⊗ y ∶ x ∈ Xi, y ∈ Xj} ⊆ Xi+j.

We will usually just refer to stable families.

Example 5.2.5. The following sets form stable families:

• The sequences (∅)n of empty sets and full monoids (PBn)n;

• Most of the families of monoids (Mn)n, (Jn)n, (PBrn), (Sn)n, . . . of interest

to us;

• The family of sets of idempotent (regular, invertible, . . . ) elements in any

stable family;

The (partial) annular Jones and Motzkin monoids and the cyclic groups do not

form stable families*; the smallest stable families containing these are respec-

tively the (partial) Brauer monoids and the symmetric or alternating groups

depending on the parity of the degree.

Letting X = (Xn)n denote a stable family, then βX = (βXn)n comprises, in

each degree n, those elements which don’t decompose, for any 0 < r < n, into

tensor products from Xn−r ⊗Xr. Recalling (5.3), we obtain the following.

*These are the only families of monoids featured in figure ?? that do not form stable families.
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Lemma 5.2.6. Let X = (Xn)n be a stable family. Then

Xn =
n
⊔
k=1

βXk ⊗Xn−k = βXn ⊔
n−1
⊔
k=1

Xk ⊗Xn−k.

5.2.3 2-Compositions of (n, r) and Spartans

A (2-)composition* of (the pair) (n, r) of dimension k is a 2× k matrix

S =
⎛

⎝

n1 n2 ⋯ nk

r1 r2 ⋯ rk

⎞

⎠
(5.4)

where the row sums are respectively n and r; write S ⊢ (n, r). We call n the

degree, r the rank and d = n − r its deficiency. These will be used to represent

elements of Mn, so a 2-composition of (n, r) into, say (n1, n2) and (r1, r2) will

correspond to an element of Mn which decomposes into two convex compo-

nents of respective degree n1 and n2, and respective rank r1 and r2.

We say that two compositions are equivalent if they differ by a trailing se-

quence of columns comprising a pair of 1s, written S ≈ T. These equivalence

classes, which we often identify with their representatives of least dimension,

we will call spartans; we call the (optionally) omitted columns of 1s trivial columns.

Note that the columns omitted when representing a Spartan by a 2-composition

will contribute nothing to deficiency, contribute 1 each to rank, degree and di-

mension, so tracking the dimension of a composition allows us to recover it

from its Spartan representative. We will assume, often implicitly throughout,

that all spartans will comprise classes of matrices whose nontrivial columns are

all top-heavy in the sense that ni ≥ 3ri.

We can juxtapose a pair of 2-compositions and get another 2-composition in

an obvious way; given Si ⊢ (ni, ri) (i = 1, 2) as above, we have

S1 ⊗ S2 =
⎛

⎝

n1,1 n1,2 ⋯ n1,k1 n2,1 ⋯ n2,k1

r1,1 r1,2 ⋯ r1,k1 r2,1 ⋯ r2,k2

⎞

⎠
⊢ (n1 + n2, r1 + r2).

*The prefix “2-” will be dropped, and the suffixal descriptions “of (n, r)” and “of dimension

k” are omitted unless necessary.
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Write Kn for any of Mn, PJn and Mn. Label each idempotent in E(Kn) by

the composition of degrees and ranks of its convex components; the resulting

mapping will have as its image all compositions S, as in (5.4), satistfying ni ≥ 3ri

for each ni > 1:

Lemma 5.2.7. Let α ∈Mn be a convex idempotent for some n > 1. Then the rank of α

is at most n
3 .

Proof. Let α ∈Mn be a convex idempotent of rank r.

Every contribution to rank comes from an active or inert path component by

definition. By idempotency, there are only active paths, each of which has odd

length. If some path has length 1 then either n = 1 or α is nonconvex, so for n > 1

all paths have length at least 3 and the rank is at most n
3 as required.

We can recover the original by reordering the columns (there are multino-

mially many ways to do this) and attaching to each column (nr) some element

e ∈ Cn,r among the set of convex idempotents of rank r in Kn. We’ll write cn,r for

the size of this set. Counting all idempotents then is as simple as multiplying

the product of the cni,ri across the columns in S by the multinomial coefficient

counting the number of nonidentical rearrangements of S there are.

In practice, since idempotents of low-deficiency comprise (for all but the

smallest degree) many components of rank 1 and deficiency 1, we may reduce

our study to spartan representatives and count the smaller multinomial prob-

lem of how to arrange the nontrivial columns from the spartan representative

among the remaining array of 1s.

Example 5.2.8. The number of idempotents of deficiency 2 in Jn is given by the

formula 3n−5. One can verify this by checking that for all diagrams, there exists

i such that:

• the cup and cap appear opposite one another, i.e. we have non-transverse

components (i, i + 1) and (i′, (i + 1)′) and every other component is of the

form (j, j′) for some j ≠ i, i + 1;
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• the cup and cap appear offset by +1, i.e. there are nontransverse compo-

nents (i, i + 1) and ((i + 1)′, (i + 2)′) with transverse components (i + 2, i′)

with every other component of the form (j, j′) for some j ≠ i, i + 1, i + 2;

• the cup and cap are offset by -1, i.e. there are nontransverse components

(i, i + 1) and ((i − 1)′, i′) with transverse components (i − 1, (i + 1)′) with

every other component of the form (j, j′) for some j ≠ i − 1, i, i + 1;

• the cup and cap are offset by more than one in either direction, and hence

the element isn’t idempotent.

To see how this works in the algebraic context, note that there are three spartans

of deficiency 2:
3 2 1 1

1 0 0 0
.

The first corresponds to the convex idempotents in rank 1, degree 3. One can

arrange to put one of these in any of the first n − 2 positions, giving (n−2
1 ) = n − 2

choices for its position; there are c3,1 = 2 of these, so this term contributes 2n − 4

to the count.

The second, corresponds to the non-identity element in J2; this may be

placed freely on the first (n−1
1 ) = n − 1 columns, and there is only c2,0 = 1 of

these.

The third corresponds to a pair of partial identities, which don’t exist in the

Jones monoid. Examining like we would for the Motzkin or similar, we note

that we can arrange these two into any of the n positions, giving (n2)ways to do

so, having chosen the particular convex components in order from the c2
1,0-many

ways of doing so, of which there are non in J2.

Adding across the spartans gives us the formula, 3n − 5.

5.2.4 The Polynomial Recurrences

Theorem 5.2.9. Let 0 ≤ r be a nonnegative integer. Then, for n > r the number of

idempotents of degree n and rank n − r is given by a polynomial of degree n − r.
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n−r/n 0 1 2 3 4 5 6 7 8 9

0 1 3 9 44 23 1331 8089 51435 338193

1 1 2 4 3 14 864 5088 32326

2 2 8 76 440

3 2

Table 5.2: Numbers of convex idempotents in the Motzkin monoids listed by degree

and rank-deficiency. Note that the rows and columns have been switched compared to

table 5.1

To prove this, we first observe the following fact.

This bound is attained for degree dividing three by a pair of mutually-involutive

Jones elements that “look like” parallel copies of the convex degree-three rank-

one idempotents:

(5.5)

We’ll now get around to proving the main result of this section.

Theorem 5.2.2. Let Kn denote one of Jn, PJn andMn; let en;r be the number of idem-

potents of rank r in Kn.

Then for δ ∶= δK some fixed positive integer and p ∶= pK some polynomial of degree

δ, the sequence (en;n−δ)n coincides for n ≥ 3δ with p(n).

The proof lies on three observations.

Firstly, we can associate to each α ∈ ∪nE(Mn) a 2-composition whose columns

reflect the degrees and ranks of the tensor-indecomposable factors αi where

α = α1 ⊗ α2 ⊗⋯⊗ αk.

Proposition 5.2.10. Given δ > 0, there are finitely-many spartans representing idem-

potents in ∪nMn of deficiency δ.
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Proof. The deficiency of an idempotent α is an invariant of its representing spar-

tan from the definition; it’s simply the sum of the deficiencies across the convex

components αi. The columns in the 2-composition representing α encode the

contribution of each convex component to the total deficiency.

Given a spartan of degree n and rank r, we can choose some 2-composition

of minimal dimension represented by it, unique up to column-reordering. The

columns in this all contribute positively to the deficiency, and there are only

finitely-many columns (ab) which could appear first since 1 ≤ a ≤ n and 0 ≤ b ≤

min(r, a), certainly no more than n2. Since each column contributes positively

to degree, there are at most n such columns, hence at most n2n 2-compositions

of degree n and rank r, and hence no more than this many spartans.

We can improve upon this bound considerably, but we need only show that

for fixed deficiency, the number of spartans is (eventually) constant with respect

to varying degree.

Proposition 5.2.11. Let ς be a spartan of degree k and dimension l. The number of

idempotents of degree n ≥ k represented by ς is p(n) where p ∶= pς is a polynomial of

degree l depending only on ς.

Proof. Let ς be a spartan of degree k, rank k − δ and dimension l; choose a

minimal-dimension 2-composition ς̂ represented by ς. The number of choices

mς of ς̂ depends only on ς and is bounded above by k!.

Now fix n ≥ k and some l + n − k-dimensional 2-composition ς̃ which com-

prises a 2 × (n − k) matrix of 1s, with the l columns of ς̂ shuffled in, in order.

There are (l+n−k
l )ways to do this, independent of the choice of ς̂.

We write cs,t denote the number of convex idempotents in Ms rank t and

note that c1,1 = 1. Then the number of idempotents represented by

ς̃ =
⎛

⎝

s1 s2 ⋯ sl

t1 t2 ⋯ tl

⎞

⎠

is exactly ∏l
i=1 csi,ti . The number of idempotents represented by ς̂ is mς times
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this number, giving the number of idempotents in degree n represented by ς as

(
l + n − k

l
) ⋅mς ⋅

l
∏
i=1

csi,ti ,

which is a constant (in n) multiple of

(
l + n − k

l
) =

1
l!
(l + n − k)(l − 1+ n − k)⋯(1+ n − k),

itself a degree-l polynomial in n.

To apply this result to counting idempotents of high rank, we need to bound

the dimension of the spartan ς in its deficiency δ.

Proposition 5.2.12. Let 0 ≤ r ≤ n, and write cn,r for the smallest number of convex

components in an idempotent α ∈ E(Mn) of rank-r. Then

1. If n = 1 or r ≤ n
3 , then cn,r = 1;

2. Otherwise cn,r =.

Proof. All elements ofM1 are convex, so to prove the first claim, we need only

establish that, for 2 ≤ n = 3r + p, there exist convex idempotents of rank r in

Mn. Fix n, p and r s; to witness the validity of the claim, note that the following

idempotent of degree n and rank r = r1 + r2 is convex when r is small enough

that r2 can be assumed zero (i.e. when n holds):

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

r p r r

n

Alongside Lemma 5.2.7, this observation says that an idempotent having rank

and degree satisfy n ≥ 3r characterises the existence of convex idempotents. In
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other words, for any 2-composition M with the property that all columns are

either pairs of 1s or have rank $ no larger than a third of the degree ν, there’s an

idempotent represented by it. We need only bound the dimension of this in the

deficiency; cn,r has an obvious interpretation as the smallest possible dimension

of such a 2-composition.

Each column M−,i having degree νi and rank $i contributes at least 2
3 νi. There

is no contribution to deficiency from the columns of 1s; if we write l for the

number of columns which are not of this form (i.e. those which do contribute

deficiency) then the number of these is k − l where k is the dimension of the

2-composition M. If S is the set of indices of nontrivial columns, we have

δ = n − r ≥
2
3

k
∑
i=1

νi =
2
3
∑
s∈S

νs.

In other words, the dimension of the representing spartan is bounded above by
3
2 δ where δ is its deficiency.

This bound is sharp, up to discarding the fractional part, and can be attained

by the parallel copies of the degree-three, rank-one idempotents as in (5.5).

Proof of Theorem 5.2.2. This proof is for Kn = Mn, but straightforward adjust-

ments can be made to the statements and proofs of the above auxiliary results

in order to get the result for other Kn. Indeed, it works for arbitrary stable fam-

ilies inMn.

Firstly, we recall from Proposition 5.2.10 that only finitely-many spartans

represent any given D-class in Mn, and that for fixed δ and sufficiently large

n, the D-classes of rank n − δ elements in Mn and those of n + 1 − δ in Mn+1

coincide.

The set of spartans representing idempotents, in other words, is fixed for

sufficiently large n (when n ≥= 3δ). We the can obtain leverage from Proposition

5.2.11.

The effective nature of the theorem relies on the constructibility of spartans,

and calculating these mutlinomial counts; we do not address these issues here,

rather in the appendix.
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Chapter 6

Algorithm Design

One of the primary aims of this thesis was to describe the algorithm devel-

oped in the joint paper [13]. The results for that paper were tested against

the semigroups package for GAP, which can do everything that we set out

to do in terms of enumeration, but whose methods are much slower, being of

a more general nature. Indeed, if given a finite semigroup in a format that

it understands, and assuming that the elements can reasonably fit in memory,

semigroups can compute the number of idempotents. This may take a huge

amount of time in general, and is not particularly fast for Motzkin, Jones or

partial Jones monoids.

The current “best version” of the code following is due to the external ex-

aminer, James Mitchell, who implemented a very fast multi-thread version of

these algorithms in C [61]. The focus here will be on developing the algo-

rithm and comparing its performance with that of the general methods used

in semigroups.

Some comparisons will be provided later between the implementation from

James Mitchell’s Jones package and semigroupsusing the time utility for unix

and GAP’s own time command.
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6.1 Preliminaries on Computing

6.1.1 The GAP system

GAP is a computational algebra tool, comprising a standalone application and a

suite of packages and libraries extending its functionality. Its original intended

purpose was to provide a piece of software to do group-theoretic computations,

and due to the close connection between many branches of semigroup theory

and group theory, and possibly the proximity to a large cadre of semigroup the-

orists at St Andrews, one of the principal centres for its development, it seems

a natural place for semigroup algorithms to be implemented and run.

There is a high-performance application, hpcGAP, being built by the GAP

group, which implements parallel computing with shared memory on top of

the core GAP functionality. The hpcGAP development branch is not stable, but

the GAP group is working to merge this parallel processing functionality back

into the main branch as of v4.8.

During a short visit to St Andrews, supported by the CoDiMa grant, some

of the algorithms designed here were implemented in hpcGAP, but we realised

at the time that a distributed implementation would serve our needs better;

the code is structured into a massive number of very small tasks which don’t

require feedback from one another and don’t have much data to pass around,

so can be happily executed orthogonally on independent nodes.

This led us to consider Alex Konovalov’s SCSCP protocol (implemented as

the SCSCP package in GAP) to distribute the functionality. We managed to

calculate the size of E(J27) in about 2 days, having almost a month to deal with

J24 sequentially; with James Mitchell’s implementation of the code, runtimes

have reduced significantly.

A particular draw of GAP is the existence of some functionality to deal na-

tively with the sort of objects we’re interested in, some in the core GAP applica-

tion and some provided by the semigroups package. For instance, the Jones

monoid can be called with

JonesMonoid( n );
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with the semigroups package, where n is the degree of the monoid. As of ver-

sion 2.6, semigroups also has commands to construct the Motzkin and partial

Jones monoids in the desired degree.

6.1.2 Parallel computing

A computational model can be thought of an abstract representation (or ap-

proximation) of the machine for which a programmer writes instructions. An

important and growing field in computer science, and one of particular interest

for our purposes, is that of parallel computing. A parallel computational model

must, at least, model execution and data movement; that is to say it must con-

tain information about how code may be executed, and how data may be moved

around between processors and memory devices in the machine (or cluster of

machines) on which code is being run. The increased freedom in terms of what

code may be running, and when, can produce extra engineering concerns for

the programmer. How can she ensure the code executes as intended, at least to

the extent that subroutines of a task run in an order that preserves the integrity

of data throughout task execution? How can she ensure that the computational

resources are being utilised effectively?

For most of the history of computing, much of it has been conducted in

serial, that is to say with tasks being executed by one processor node, never ac-

tively working on more than one instruction at a specific point in time. In par-

ticular, personal computing (computing for the use of the general public) was

broadly single-core only until about a decade ago, although multicore personal

and protable computing is widespread and increasing [27, 41].

Two models have emerged for computing in parallel:

• The shared memory model, where all CPUs have access to a shared cache of

memory;

• The distributed model, where each CPU has its own cache of memory.

This is not an exhaustive description of all possible non-serial computational

models, but the dichotomy provides a useful starting point. In practice, one
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usually works with hybrids of these models, whereby each processor has its

own cache and the whole bank of processors (or pehaps a subset thereof) has

a shared cache. The design of modern computers and contemporary portable

devices tends to follow such a model for their design, with a hierarchy of stor-

age from processor caches through (sometimes) shared caches, RAM and non-

volatile storage such as solid-state drives and hard disk drives, with earlier stor-

age closer being faster and smaller than latter devices.

There are advantages to both systems certainly, and the engineering of hy-

brid systems is often planned so as to take advantage of the strengths of each.

The main strength of the distributed model is that it’s inherently effective in sit-

uations where the cost of passing data between processors can be relatively ex-

pensive compared to processing, particularly in situations where one has access

to many moderately-powerful networked machines but not to a single com-

puter with many processor cores. In particular, it’s very well-suited to deploy-

ment over networked computers; the SCSCP protocol [26], used in GAP, and

the HTCondor framework [50, 51] are built principally to take advantage of the

strengths of this paradigm; they are primarily used for computation conducted

over a network rather than on one powerful machine.

The shared-memory model is intended to take advantage of a low-latency

shared cache of memory. It’s appropriate in situations where data is easy to

pass between nodes. The implementation of a shared-memory system is usu-

ally a hardware concern, rather than one of networking for example. This is be-

cause modern processors are fast enough that circuit distance between devices

can quickly introduce such a penalty to computing that circuit distances are

usually measured in tiny increments — below the micrometer scale. A result

of the shared memory being available is that it’s easy to check task execution

and memory state during computing. This makes ensuring ongoing data con-

sistency less expensive in this model, and makes task scheduling faster, poten-

tially reducing processor idle time and improving performance. The HPCGAP*

*High-Performance Computing GAP, whose functionality is being merged into the core

GAP distribution as of v4.8; see the change summary in [32].

138



system [6] and the Deepchem system for drug discovery [67] are designed to

take advantage of the shared memory model.

The main thrust of parallelisation in this study will be distributed in nature.

Distributed computing excels with tasks that decompose into subtasks that are:

• largely-independent from one another, so that a minimal amount of infor-

mation needs to move around during subtask execution;

• slow to finish running, compared to the time taken to transport the data

required to define a subtask or a batch of subtasks.

As we shall shortly see, the algorithms of interest here satisfy these criteria in a

strong sense.

6.2 Bounds on computing

There are several methods discussed here. They more or less satisfy the follow-

ing specification.

1. Take as input n and construct some computational representation* of Kn =

PJn,Jn,Mn.

2. Define some subset X of Kn and map f ∶ Kn→X in which:

• X is easy to iterate over;

• f (e) is idempotent for any idempotent e;

• it is easy to enumerate the number of idempotents in such an f (e).

3. Sum the counts over X.

Before we discuss exact bounds, first let’s prove some bounds on the num-

bers of elements in special classes of the semigroups of interest.

*The term representation has a specific mathematical meaning. We don’t use it in that sense,

so will conventionally drop the adjective computational.
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First we’ll recall some notation. As usual Kn isMn, PJn or Jn. We denote by

Dr = Dr(Kn) the set of all rank-r elements in Kn, and D = D(Kn) those elements

of rank at most one. Write

Ol
n ∶= {v = (v1, . . . , vl) ∶ 1 ≤ v1 < v2 < ⋯ < vl ≤ n

for the ordered tuples of length l containing only entries from [[n]] and Cn, Mn,

Pn for the Catalan, Motzkin and partial Catalan numbers.

Theorem 6.2.1. With the above notation, we have

∣Mn∣ = M2n, ∣Jn∣ = Cn

∣Dr(Mn)∣ =∑{Mu1−1 ⋅Mv1−1 ⋅ (
n
∏
i=2

Mui−ui−1 Mui−ui−1) ⋅Mn−ul ⋅Mn−vl ∶ u, v ∈ Ol
n}

∣D(Mn)∣ = M2
n +

n
∑

i,j=1
Mi−1Mn−i Mj−1Mn−j,

∣D(Jn)∣ = C⌈ n
2 ⌉

.

This theorem is a knitting together of several results from the Appendix A.

Table 6.1 details approximate runtimes. The O(n) term in each accounts for

the runtime taken to iterate forwards in X, and to count the number of idempo-

tents in the count.

X count Kn Runtime

Jn Cn ⋅O(n)

Kn IsIdempotent PJn ∑
n
i=0 (Cn ⋅ (

2n
i ) ⋅O(n))

Mn M2n ⋅O(n)

D Hatter
Jn C⌈ n

2 ⌉
⋅O(n)

Mn O(n) ⋅ (M2
n +∑

n
i,j=1 Mi−1Mn−i Mj−1Mn−j)

Table 6.1: Comparison of runtimes of unoptimised idempotent enumeration methods

140



6.3 Algorithm design

A first attempt in GAP to enumerate the idempotents in these structures looks

as follows:

List( [ 1 .. 20 ],

n -> NrIdempotents( JonesMonoid( n ) )

);

Whereas GAP is very adept at encoding certain very large structures (indeed,

some infinite), it isn’t possible to handle sets of Idempotents so well in a uni-

form manner. On a moderately-powerful desktop computer, the above code is

guaranteed to execute while an element of Jn will fit in memory. The computa-

tions will become longer than the life of the universe so far long before memory

is an issue, however, due to the exponential growth in size of Jn andMn.

We can start to use the multithread capability available on modern comput-

ers, and indeed on performance machines, by subdividing the problem. Some

potential avenues to do this are as follows:

• Count by D-class. There are n
2 of these in Jn and n + 1 inMn. There are a

Fibonacci number (exponentially-many) in PJn.

• Count by R-class. There are exponentially-many of these in each case.

• Find a many-to-one endofunction f ∶ Kn→Kn which fixes its image, whose

image is easy to iterate over and such that the number of idempotents

mapping to a given element is easy to enumerate.

The last method can be achieved by considering the hat map. We’ve already

proven a battery of results that tell us exactly how to do this step-by-step.

Our approach is exectued as follows:

• Take as input the number n.

• Construct an iterator for the bottom D-class D of Jn;
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• For each element, evaluate the size of the hat map’s fibre rooted at this

point, and add to a counter count;

• After iterating over D, return count.

The iterator in the second step comprises, in our implementation, two iden-

tical iterators over the L -classes (dual to the R-classes), and the elements are

their (nontrivial) intersections. Morally, we’re summing the entries in a sym-

metric n×n matrix whose rows are L -classes and whose columns are R-classes.

So, for a runtime speedup by a factor of almost 2, we can copy the state of the

L -class iterator into the R-class iterator and count all entries above the diago-

nal twice.

These steps straightforwardly generalise to Mn, although we now need to

consider all elements of rank one also, and ignore nonidempotents. In Jn this is

one D-class, whereas inMn it’s two (rank-zero and rank-one) for n > 1. While

every rank 1 element of Jn is idempotent (indeed they form a rectangular band

for n odd), and the rank-zero partitions form a rectangular band, there exist

non-idempotent elements of rank 1 in both PJn (n > 2) andMn (n > 1).

In PJn things are more complicated. There are three separate classes of el-

ements of rank at most 1 for n > 1: the minimal ideal of rank-zero elements,

the rank-one elements with an odd-odd transversal and those with even-even

transversal).

The fourth step leans on the combinatorics of the product decomposition

for the mutation complex that we proved in Section 4.3, specialised to Jn, but

working essentially identically in the case ofMn. This approach cannot work

for PJn, however, as the Motzkin hat map does not preserve membership there,

but we have another rewriting system and hat map which works there.

We’ll call these steps respectively the iter, hatter and wrapper. The above

algorithms can all be specialised to the partial Jones monoid; we’ll discuss this

later.
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6.3.1 Correctness

We’ll restate the above wrapper algorithm as follows to find the size ofMn:

input: n

count = 0

for d in iter do

count += size( hatfibre( d ) )

end do

output: count

where hatfibre is a data structure that contains enough information to enu-

merate the weakly connected component of d in E (Mn) and iter iterates over

the ideal D of elements of rank at most 1.

Theorem 6.3.1. The algorithm above is correct if the following conditions are all met:

1. The hatfibre function works correctly and iter iterates over computational

representations for all elements of D;

2. The hat procedure is a function s ↦ ŝ defined for all idempotents;

3. The image of the hat procedure is the ideal D;

4. Every idempotent e ∈ E is produced by some mutation on ê ∈ D;

5. The inverse hat process only produces idempotents in the fibre of the hat map.

This is fairly clear from brief study of the algorithm.

The first part is computational in nature and clearly depends on the chosen

representation of the elements used in the algorithm, so we’ll leave that open

until we discuss representation.

The second is Corollary 4.2.9 and the third is Corollary 4.2.6 and Corol-

lary 4.2.13. The fourth is Theorem 4.2.19 and fifth follow from Theorem 4.2.19.

The hatter algorithm is implemented essentially as follows, executing on an

idempotent d ∈ D:
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input: d

count = 1

for comp in components(d) do

if comp is active then

continue

else if comp is half-ray then

output 0

end if

count *= 1 + #top_return_edges * #bot_return_edges

end do

output: count

In practice, as we incrementally optimise the algorithm, this algorithm will

be adapted to the new representation — the steps which iterate the components

and enumerate return edges are hence omitted for now. It’s not difficult to see

that it’s correct from Corollary 4.3.11.

We’ll proceed assuming the correctness of the algorithms up to the unstated

subroutines, and devise some results that will potentially allow us to optimise

its progress in the following subsection.

6.3.2 Optimisation

This section contains some optimisations in implementation which reduce run-

times by some small amount, and is of practical, rather than theoretical, interest.

6.3.2.1 Staying left of the leftmost transversal

A connected component θ ⊆ [[n]] of the interface graph of α is left of the leftmost

transversal if there is c ∈ θ such that for any transversal component θ′ and x ∈ θ′,

c < x.

Set cθ the leftmost point in the component. If the leftmost transversal is θ′

(the only one in rank at most 1) then the information about the elements of the

hat map’s fibre is contained left of cθ′ . In particular, if we can quickly access
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cθ′ and cθ for each component, we can reduce runtime by ignoring components

that don’t contribute to the count.

Furthermore, if this is the case, and if in addition the components are or-

dered with φ ≺ θ when cφ < cθ then we can iterate over these quickly.

Considering the map reversing the order of the indices in the interface graph

should convince the reader that this process roughly halves runtime, doing bet-

ter when the transversal component is large. This is representation-dependent,

as access to the cθ is a defining factor in the utility of this approach.

6.3.2.2 Involution

We recall here that all the semigroups of interest herein are regular ∗-semigroups,

meaning in particular that there is an anti-isomorphic involution on the semi-

groups which necessarily maps R-classes to L -classes and vice-versa. This

map specifically maps idempotents to idempotents.

We can effectively iterate over elements (H -classes) H in D0 if we do the

following:

• order, then iterate over the L -classes L in D0;

• for each L, iterate over L -classes L′ dual to those no earlier than L, take

H = L∗ ∩ L′.

If there are k such L -classes, then we have effectively halved (since typically

k ≫ 0) calls to the hatter procedure from k2 in number to only 1
2 k2 + 1

2 k. Note

that in each family of monoids, k is exponential in n. We apply a similar process

to L -classes of rank-1 elements in studyingMn for n ≥ 1.

6.3.2.3 Encoding as Dyck words and pattern-avoiding permutations

Appendix A is devoted largely to developing some combinatorics surrounding

the language of Dyck words, which is shown to index the elements of the Jones

monoids Jn. Another language is described which serves the same role forMn.

Calculating L -, R- and D-classes for a bipartition semigroup* is not entirely

*By a bipartition semigroup, I mean the term as it’s used in the GAP semigroups package.
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trivial, whereas there is a reasonably efficient algorithm for producing the Dyck

words of up to a given length. In practice, we encode as lists of nonnegative

integers formatted in such a way as to aid moving around interface graphs:

Dyck words↔Noncrossing perfect matchings

↔Noncrossing involutions

↔Lists of images.

A slight modification is made for Motzkin words and partial transformations

avoiding certain patterns, which will be clearer presented in context.

Definition 6.3.2. The permutation ς ∶= ςw associated to a Dyck word w = w1w2⋯w2n

(of length 2n) is the fixpoint-free involution of degree 2n given by mapping each

index 1 ≤ k ≤ 2n to the index of the bracket matching wk in w.

The orbits of these involutions satisfy the noncrossing property, stated in the

following.

Proposition 6.3.3. Given a Dyck word w = w1w2⋯w2n and associated permutation

σ = σw, if {wi, wl} and {wj, wk} are orbits with i < j < l then i < k < l.

Definition 6.3.4. Given a Dyck word w = w1w2⋯w2n, a pair wi, wj of letters (i < j)

in w constitutes a matched pair if w = u ⋅wi ⋅ v ⋅wj ⋅ x for some Dyck words u, v

and x.

Example 6.3.5. The following example demonstrates this fairly clearly, writing

w ↦ ςw:

ε ↦ (), [][]↦ (12)(34), [[]]↦ (14)(23),

[][][[]]↦ (12)(34)(58)(67), [[][[][]]]↦ (1, 10)(23)(49)(56)(78).

The image list is then the list

[[n]]ς = [1ς, 2ς, . . . , (2n)ς]

of images, exactly as one would imagine. This is a well-known notation for

permutations often described as one-line notation.
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The Motzkin language M can be identified with noncrossing involutions

whose domain is a subset of the domains of the permutations above. That is,

given α ∈ Mn, the elements of ±[[n]] paired off by this partial involution ι are

exactly the non-singleton blocks in the partition α. We employ a similar one-

line notation for these objects, writing 0 in any entry which is undefined, and

the image otherwise. If the image is defined, we will always have ι(x) = x,

or ι(x) = y and ι(y) = x. This is sufficient to index R-classes of Mn, and is

a convenient representation to move around in the interface graph, since all it

takes is an array lookup.
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Chapter 7

Conclusions, Next Steps

The main result of this thesis is the existence of a refinement of the natural par-

tial order on idempotents for the semigroups Jn andMn. The structure of this

ordering gives rise to a rewriting system with a particularly nice cube complex

structure that allows us to locate all idempotents quickly in terms of those in

the D-classes of elements with rank at most 1.

From there, we can quickly calculate the sizes of connected components in

this cell complex, in O(n) time where n is the degree. Iterating this counting

process over the aforementioned D-classes gives us a fast algorithm for count-

ing idempotents in such semigroups.

From there, these methods can be extended using the theory of stable fami-

lies. This is an untested methodology that shows a lot of promise, both for in-

creasing the amount of information available about the elements of these semi-

groups, but also as something of theoretical interest on its own. Through this

methodology, we’ve managed to reduce part of the coarse problem of enumer-

ating idempotents to that of counting meanders — a hard problem, and perhaps

a sign that not much more progress is likely to be made withut bringing some

new machinery to the task.

Given the deep relationships between the Jn and the one-deformation pa-

rameter algebras TLn(δ), one may be tempted to ask whether semigroup the-

ory could contribute to, or benefit from study of other related structures. To
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my dissatisfaction, I wasn’t aware until fairly recently of most of the research

I’m about to talk about, which is a shame as some of it looks amenable to the

methods dicussed here. I have taken some time to examine the affine or annular

Jones monoid, which is simply the regular Jones monoid, except that has a cyclic

group of units whose order is the degree.

There are several families of semigroups closely related to those, including

the Kauffman monoids discussed in [4], the partial Jones monoids PJn, which

do not appear in the literature, but consist of diagrams which look like elements

of Jn but with some edges missing. The ideal structure is vastly more compli-

cated in both cases — the former has infinitely-long chains of ideals for n > 1

and the ordering on the D-classes of PJn has exponentially-wide anti-chains

corresponding to many incomparable ideals. We have some partial results us-

ing spartans and FitzGerald’s so-called exotic statistics, which are recurrences

involving the numbers γ and ω discussed in [49]

Noncrossing of strands seems to be a critical factor in how easy the semi-

groups in question are to analyse in this way — MotzkinMn and Jones Jn are

much harder to analyse than the partition algebras and the Brauer families, but

the affine case seems for all intents and purposes impenetbrable. Indeed, al-

though we have a method for dealing with partial Jones PJn, for example, it’s

much slower and its irreducible idempotents may be distributed more widely

throughout the semigroup.

It’s tempting to ask, given the fact that these families each contain all the

finite aperiodic semigroups, what sort of implications this work has for finite

apriodic semigroups in general. In particular, do they perhaps possess some of

the structures that we’ve seen here, or are these semigroups just rather special?

Do other families containing all the aperoidic monoids have such a structure

pehaps?
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7.1 Limitations and Possible Improvements

One possible “limitation” of the enriched generating function approach is that

certain parameter profiles force one to do calculations that will reduce (in either

Jn or Mn) to counting meanders. The problem of enumerating meanders is

a classical one that has defied a century’s worth of combinatorial innovations

and greatest minds; it has deep connections to theoretical computer science and

constraint satisfaction problems, to permutation group theory, to representation

theory of groups and algebras, to theoretical physics and many other areas of

combinatorics and algebra.

In other words, an efficient solution to the problem of calculating fine-grained

information forMn would give one an efficient solution to the problem of me-

ander enumeration.

Several ideas of have come together during the write-up phase that haven’t

had the time to coalesce into actual mathematical content. Des FitzGerald has

started looking at that in [13]. A useful example, the cycle number enumeration

discussed above, or the hatter process for PJn, which has not been mentioned.

It would also be nice to have a fuller description of the structure of PJn.

Current methods have all been completely resisted by the annular monoids

PAJ n and AJ n. Their structure does not have enough symmetry to use reg-

ularity to much effect like in the case of Brn and cousins, but appears to have

enough to get in the way of using convexity or generating functions as a useful

toolkit.
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Part IV

Appendices
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Appendix A

Combinatorics on Words and

Indexing Motzkin Elements

The work found in this chapter has largely been subsumed by a better imple-

mentation of the main algorithm by the external examiner. At his suggestion,

this chapter was left in for completeness, but has been moved to the appendices

to reflect its relative lack of importance in the implementation.

We will not prove it here, but the ordering implied for Dyck words in [63] is

identical to the one given here, albeit our previous methods for producing this

ordering or iterating over it were significantly less efficient.

We will develop several indexing processes which make extensive use of

concepts from formal language theory and combinatorics on words. By the end

of this chapter we will be able to iterate over the L -classes (hence R- and H -

classes) in some fixed D-class inMn and Jn.

155



A.1 Dyck Words: Ordering, the Jones monoid and

Grammar

The language D of Dyck words has a number of equivalent formulations, in-

cluding

• The set of balanced bracketings over an alphabet consisting of a matched

pair of open and closed brackets;

• Those words over such an alphabet for which any prefix contains at least

as many opening brackets as closing brackets, and whose suffixes have at

most as many.

• The set of words generated by the following productions

SÐ→ ε +S ⋅S+[S]

with the usual conventions about terminal and nonterminal symbols;

• The smallest submonoid of the monoid {[,]}∗ closed under the mapping

w ↦ [ ⋅w ⋅].

These are well-known to be equivalent, see [24, 38, 70], and we’ll refer to them

interchangeably herein.

It’s well-known [72] that there are Cn-many words of length 2n in D, where

Cn =
1

n + 1
(

2n
n
).

is the n-th Catalan number.

Example A.1.1. The Dyck words of various small lengths are listed and enu-

merated below:

Length Words Number

0 ε. 1

2 []. 1

4 [[]], [][]. 2

6
[[[]]], [[][]], [[]][],

[][[]], [][][].
5
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The first few values for the Catalan numbers (see the online encyclopedia of

integer sequences, A000108 [71]) are 1, 1, 2, 5, 14, 42, . . . ; the first values of this

sequence coincide with those above.

This sequence is important because it enumerates the Jones monoid in sev-

eral ways, and will inspire asymptotic results we’ll derive later. We’ll now con-

struct an explicit bijection between Jn and the Cn-many Dyck words of length

2n of a given size n using the interface graph.

A.1.1 Dyck words and the Jones monoid

Let α ∈ Jn. We define a map Ψα associating to each k ∈ ±[[n]] either [ if k is

connected in α to a larger element, or ] otherwise.

Proposition A.1.2. Let α ∈ Jn. Then the word

wα = Ψα(n′) ⋅Ψα((n − 1)′) ⋯ Ψα(1′) ⋅Ψα(1) ⋅Ψα(2) ⋯ Ψα(n)

is a Dyck word. Furthermore, the map α ↦ wα is a bijection from Jn onto the set of all

Dyck words of length 2n.

Proof. Ballot sequences are enumerated (see [72]) by the Catalan numbers Cn,

so in order to prove the theorem, we need only establish bijections from Jn to

the ballot sequences of length 2n and from there to the Dyck words of length

2n, whose composition is α ↦ wα.

Set cn = {n′ < ⋯ < 2′ < 1′ < 1 < ⋯n} as before, and let i and j be connected in

α. Then set dα(i) = −1 if j < i and 1 otherwise.

This (dα(i))i∈cn is a ballot sequence. To see this, assume otherwise and ob-

serve that each dα(i) is ±1, so by assumption some partial sum ∑
j
i=n′ dα(i) must

be negative. Let j be the first number such that this is true and denote by

j − 1 its predecessor in cn. Then write Dj for the j-th partial sum and note that

Dj−1 = ∑
j−1
i=n′ dα(i) = 0, so Dj = 1. We know that each i < j has Di ≥ 0, so these i are

all paired off up to j−1 therefore j can’t connect to any i < j, a contradiction. The

map α ↦ (dα(i))i is clearly an injection, and since Jn has Cn elements, see [7],

it’s a bijection.
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[

]

[

[

[

]

]

]

[

]

7→ [][[][[]]]

Figure A.1: The cyclic indexing of an element of J5 by a Dyck word.

We can construct a Dyck word u = (ui)i by setting ui = [ if ai = 1 and ui = ]

otherwise. This is clearly a bijection, and it’s clear that the composition is the

desired mapping.

The above indexing is important, because the induced subgraph of α sup-

ported on its vertices of one sign determines L - and R-classes, so those are

indexed by the n-long prefixes of the wα. Recall that Dyck words are charac-

terised by having all prefixes (and suffixes, respectively) containing no more

(resp. less) closed than open brackets in the word.

The condition given by dropping the requirements on suffixes characterises

prefixes of Dyck words, and vice-versa. The map which switches the brackets

over induces a word-reversing automorphism of the Dyck language, so without

any loss of generality we’ll forget about prefixes for now.

Definition A.1.3. A Dyck suffix v is a suffix of a Dyck word w = l ⋅ l. The quasirank

q(r) of a Dyck suffix r is the number of unpaired closing brackets in r.

Writing D⃗ for the set of Dyck suffixes, we have

D⃗ =
∞

∐
r=0
(F ⋅])

r

⋅D

Given ξ ∈ Jn, write rξ for the length-n suffix of the Dyck word wξ .

Proposition A.1.4. Let α, β ∈Mn, we have rα = rβ precisely if αRβ.

We’ll use the rα notation hereafter for this suffix.
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Proof. Let αRβ be elements of Jn. Then α = βs and β = αt for some s, t ∈ Jn. It’s

clear from the definition of multiplication that Γ∨α = Γ∨β since postmuliplication

may only add edges to these sets, implying mutual containment.

Indeed, since α = βs = (αt)s = α(ts), neither t nor s may reduce rank. Post-

multiplication can only affect S∨ by removing elements, which means that S∨α =

S∨β .

Assuming now that S∨ξ = S∨γ and Γ∨ξ = Γ∨γ for some ξ, γ ∈ Jn. Then we have

S∨ξ = S∨ξξ∗ = S∨ξ = S∧ξξ∗ = S∨γγ∗ = S∧γγ∗ ,

Γ∨ξ = Γ∨ξ∗ξ = Γ∧ξ∗ξ = Γ∨γ∗γ = Γ∧γ∗γ.

Since the interface graph determines an element of Jn, we see that ξξ∗ = γγ∗. By

virtue of being closed under the involution on Pn, Jn is a regular *-semigroup,

which means that

ξ = ξξ∗ξ = ξγ∗γ, γ = γγ∗γ = γξ∗ξ,

so ξRγ.

Given that each Dyck word w is equal to wξ for some ξ ∈ Jn, each length-n

suffix must be the suffix of some wξ . Suffixes are determined by the connections

on 1, 2, . . . , n, so are determined by the ∨-part of the interface graph.

Given w ∈ {[,]}∗, we write w−1 for the word obtained from w by reversing

the order of symbols and swapping each [ for a ] and vice-versa. Writing lα for

the n-long prefix of wα, we obtain the following results.

Corollary A.1.5. Let α ∈ Jn. Then lα = r−1
α∗ .

Corollary A.1.6. For α, β ∈ Jn, we have αL β precisely if lα = lβ.

Proposition A.1.7. Let α ∈ Jn. The quasirank q(rα) is the rank of α.

Proof. The unmatched brackets in rα correspond to transverse blocks in α, the

number of which is exactly the rank.

Corollary A.1.8. Let α, β ∈ Jn. Then q(rα) = q(rβ) precisely if αDβ.
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Proof. Fix α, β ∈ Jn of the same rank k. Then lα ⋅ rα and lβ ⋅ rβ are Dyck words

with rβ and rα having quasirank equal to k.

We know that αDβ precisely when there is γ such that αRγL β, and that

γ ↦ lγ and γ ↦ rγ determine the L and R-classes respectively.

So, let w = lβ ⋅ rα. Proposition A.1.2 guarantees that there is γ with w = wγ, so

by Proposition A.1.4 and Corollary A.1.5, αRγL β as was requried.

A.1.2 An ordering on Dyck words

We will now develop a partial order (a well-ordering as it turns out, but we’ll

have to prove this later) on Dyck words that will later generalize in several

directions, and will be used to build fast iterators with low memory overhead

to apply to counting problems in the semigroups.

The Dyck order is constructed iteratively from the following:

(O1) The ordering is length-monotone: if ∣u∣ < ∣v∣ then u < v;

(O2) The first word in D(2n) is ([])n = [][]⋯[];

(O3) The last word in D(2n) is [n]n = [[⋯[]⋯]];

(O4) Let u ∈ D(2l), and v ∈ D(2k), not the last of its length, and put w = [u]v.

Then the successor w′ of w is [u]v′ where v′ is the successor to v;

(O5) For u ∈D(2k), v ∈D(2l) and w = [u]v, with v the last word of its length, the

following hold:

(a) If u is the last word in D(2k) and l > 0 then w’s successor is [u0]v0

where u0 is the first word in D(2k+2) and v0 is the first word in D(2l−2);

(b) If u is not the last of its length then the next word is u′[v0] where u′

is the successor of u, and v0 is the first word in D(2l).

Example A.1.9. We can read off the smallest few words

ε < [] < [][] < [[]] < [][][]
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directly. We can then get

[][][] < [][[]] < [[]][] << [[][]] < [[[]]]

from (respectively) (O4) applied with u = ε and v = [][], then (O5a) with u = ε

and v = [[]], (O5a) again with u = v = [], then (O5b) with u = [][] and v = ε

to get the last word of length 6.

The Dyck order clearly has the property that each word has finitely-many

predecessors by (O1). We still must prove that it’s a total order, which is not

completely obvious.

Observation A.1.10. For given u, the restriction of the above ordering to the set

[u]D(2n) is a total order precisely if the restriction to D(2n) is a total order.

Lemma A.1.11. Let s and t be Dyck words. Then s < t precisely when [s] < [t].

That is to say that conjugation w ↦ [w] by brackets preserves and reflects

the order.

Proof. If ∣s∣ < ∣t∣ both directions are obvious, therefore we let ∣s∣ = ∣t∣.

Let s < t. Clearly, then, s is not the last word of its length. Therefore there is

a chain

s =∶ s0 < s′0 = s1 < s′1 = s2 < ⋯ < sr ∶= t

since s < t. Then, writing ui = si, vi = ε and wi ∶= [ui]vi = [si], we can repeatedly

apply (O5a) to get

[s] = w0 < w′0 = w1 < ⋯wr = [t].

Now, let [s] < [t], we see that such a chain of wi exists precisely when the

chain (si)i exists.

Corollary A.1.12. Let u, s, t ∈D be Dyck words. If s < t then [u]s < [u]t.

The proof follows that of Lemma A.1.11, letting wi = [u]si and repeatedly

comparing using (O4).

Corollary A.1.13. The Dyck order is a well-ordering of D.
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Proposition A.1.14. Let u1, u2, . . . , uk ∈ D be Dyck words. Then the successor to

[u1][u2]⋯[uk] is equal to [u1]w for some w unless k = 2 and u2 = [n]n for some

n.

This follows from the definition.

Corollary A.1.15. The successor to [u1][u2]⋯[uk] is [u1][u2]⋯[uk−2]w for

some w ∈D.

Corollary A.1.16. If ∣u∣ = ∣v∣ with u < v, then [u]w < [v]w.

Proof. Set ∣w∣ = 2l and write U = ([])l and W = [l]l for the first and last words

of the same length. By well-ordering, we can define a finite sequence u = u0 <

u1 < u2 < ⋯ < ur = v of successive terms in the Dyck order.

By repeated application of Corollary and (O5b), we have

[u]w ≤ [u]W ≺ [u1]U ≤ [u1]W ≺ ⋯ ≺ [v]U ≤ [v]w.

Proposition A.1.17. The Dyck order is compatible with concatenation on Dyck words,

in the sense that if u, v, w, x are Dyck words with u ≤ v and w ≤ x, then

uw ≤ vw ≤ vx. (A.1)

Proof. If ∣u∣ < ∣v∣ then the first inequation of (A.1) holds, and if ∣w∣ < ∣x∣ then the

second holds; if the reverse length-inequalities hold then neither of (A.1) never

hold.

We need only prove the assertion in the case that ∣u∣ = ∣v∣ and ∣w∣ = ∣x∣. As-

sume that u ≤ v are in D(2l) and w ≤ x are in D(2k). Then, by well-ordering, we

have sequences u = u0, u1, . . . uk = v and w = w0, w1, . . . wr = x, where in both

cases, each term is followed by its successor in the Dyck order.

Then by Corollary A.1.15, Corollary A.1.2 and Corollary A.1.16, we have the
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sequence

u0w0 < u0w1 < . . . < u0wr ≤ u0W

< u1U ≤ u1w0 < u1w1 < . . . < u1wr ≤ u1W

< ⋯

< ukU ≤ ukw0 < ukw1 < . . . < ukwr.

where U = ([])k is the first word of length ∣w∣ = 2k and W = [k]k is the last.

A.1.3 Prefix Codes and Free Monoids

Definition A.1.18. A prefix code is a language C such that for any two distinct

words in C, neither is a prefix of the other.

Prefix codes turn out to generate submonoids of free monoids which are

themselves free, and whose rank is the size of the code. The Dyck language is

a free submonoid of {[,]}∗ generated by the countable prefix code consisting

of Dyck primes, which are those words of the form [w] with w ∈ D. Clearly, the

Dyck primes are all Dyck words.

We can characterise the language D′ of Dyck primes as the words [u]where

u ∈ D. The prime prefix of a nonempty Dyck word w is therefore the unique

Dyck prime [u] where w = [u]v where u and v are Dyck words.

Proposition A.1.19. The language D⃗ of Dyck suffixes is a free monoid.

Proof. The set of Dyck primes augmented with the word ] comprises a prefix

code. This set is contained in D⃗, and so is any concatenation of its elements. We

need only establish then that each non-Dyck word w ∈ D⃗−D decomposes as

w = w′ ⋅] ⋅ w⃗ (A.2)

for some Dyck word w′ ∈D and Dyck suffix w⃗ ∈ D⃗.

So let w ∈ D⃗ be a Dyck suffix, and assume w ∉ D, and in particular that w is

nonempty.
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Let w̃ be a Dyck prefix such that w̃ ⋅w ∈D is a Dyck word. Then w̃ ⋅w decom-

poses as a concatenation of some l > 0 Dyck primes [u1] ⋅ [u2]⋯[ul], where

each ui is a Dyck word.

Choose r so that [ur] is the first word not completely contained in w̃. Then

the trailing bracket ] is part of the suffix w⃗ and we have

w̃ = [u1][u2]⋯[u′r, w = u′′r ]⋯[ul],

where ur = u′r ⋅ u′′r denotes the decomposition of ur across the factorisation w̃ ⋅w.

If u′′r is in D then we have a decomposition of the sort prescibed by (A.2).

If this is not the case, then u′′r is a Dyck suffix and is shorter than w. In this

situation, we may repeat this process; each time we do the word at the border

is shorter, so the process must terminate after a finite number of steps, giving

a (possibly empty) Dyck word at the last iteration, as required to establish the

result.

Corollary A.1.20. The language of Dyck prefixes is a free monoid.

A.2 Motzkin Words and the Motzkin Monoid

The language M of Motzkin words comprises a somewhat richer language than

that of the Dyck words. It decomposes into a union of languages Mn for

We obtain another hierarchical decomposition of the language as a union of

languages, and the various parts in this decomposition correspond to the D-

classes of the monoidsMn. This extra structure, and the fact that this family of

languages is not so ubiquitous in its appearance throughout combinatorics as

the Dyck language, will require a slightly more comprehensive treatment.

Definition A.2.1. The language M of Motzkin words is that generated by the

context-free grammar with start symbol S, an additional nonterminal T, termi-

nals Σ = {[,],|,O} and productions

SÐ→S ⋅S+T+|; (A.3)

TÐ→T ⋅T+[T]+O+ ε. (A.4)

164



Given a word w ∈M, its rank r(w) is simply the number of instances of the letter

|. Denote by Mk the set of words of rank k.

Observation A.2.2. The language M0 is the same as the language generated from T

using only the productions in (A.4).

Proposition A.2.3. The language M0 is a free submonoid of Σ∗. In fact,

M0 = ([M0]+O)
∗
.

Proof. The set [M0]+O has the prefix property, so it generates a free submonoid

of Σ∗, whose elements are all of rank zero.

We need only observe from the production (A.4) that every word in M0 is

either empty or decomposes into a concatenation of either O or words of the

form [w] where w ∈M0.

Similar examination of (A.3) will confirm the following result.

Corollary A.2.4. The language M ⊆ Σ∗ is a free submonoid, generated by the prefix

code ([M0]+O+|).

Definition A.2.5. The shuffle (product)* u ⊔⊔ v of two words is the set of all pos-

sible alternating concatenations

u0 ⋅ v1 ⋅ u1⋯ uk−1 ⋅ vk ⋅ uk,

where k is allowed to vary between 1 and the shorter of the two lengths, with u =

u0⋯ uk and v = v1⋯ vk varying over all possible decompositions into subwords

with u0 and uk possibly empty and every other vi and ui nonempty.

The shuffle product K ⊔⊔ L of two languages is the language given by

K ⊔⊔ L =⋃{ k ⊔⊔ l ∶ k ∈ K, l ∈ L }.

Proposition A.2.6. The language M0 decomposes as a shuffle D ⊔⊔ O∗.

*The shuffle product means something slightly more general in algebra, applying to formal

sums or polynomials in general. The language-theoretic shuffle is a particular instance in which

the underlying algebra of formal sums takes coefficients in the Boolean semiring.
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We can therefore use the following result to describe M0.

Proposition A.2.7. Let L and K be two languages on disjoint alphabets which have

well-orders that are monotone with respect to length. Then there is a well-order on

L ⊔⊔ K which is monotone respecting length.

The above result is established constructively in a way that is also effective in

the sense that if comparisons in both of L and K are respectively cheap or fast

to compute, then so are those in L ⊔⊔ K. Before attempting the proof, we need

the term scattered subword (of w) which refers to a word whose letters appear in

w in order, but not necessarily successively, as it the case with the more familiar

notion of a (sequential) subword.

Proof. Let L ⊆ Φ∗ and K ⊆ Ξ∗ be languages on disjoint alphabets Φ and Ξ, and

having well-orderings defined. By disjointness, if w ∈ L ⊔⊔ K decomposes into

letters w1⋯wr, then each wi ∈ Φ or wi ∈ Ξ, so we can find two scattered subwords

w ↿Φ∶= wi1wi2⋯wil ∈ L and w ↿Ξ∶= wj1⋯wjl ∈ K containing, between them, every

letter in w.

We call l and k the Φ- and Ξ-length of w, written ∣w∣Φ and ∣w∣Ξ. Write iΦ(w)

for the sequence of indices i1, . . . , il.

Define an order as follows.

• If u is a shorter word than v then u < v;

• If ∣u∣ = ∣v∣ and u ↿Φ< v ↿Φ then u < v;

• If u ↿Φ= v ↿Φ and u ↿Ξ< v ↿Ξ then u < v;

• If u ↿Φ= v ↿Φ and u ↿Ξ= v ↿Ξ and m is the first index where the vectors

iΦ(u) and iΦ(v) have differing entries, say im and i′m, then u < v if im < i′m.

If none of the above are the case then the words are equal.

First we observe that this partial order is monotone respecting the length.

Next, we note that the cases are mutually exclusive, and exhaustive, meaning

that the ordering is total. Finally, we must establish well-ordering, which fol-

lows from the fact this is an ordering on a (subset of a) finitely-generated free

monoid which respects length.
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We recall that Mk denotes the set of Motzkin words of rank k, and observe

that

Mk = (M0 ⋅|)
k ⋅M0.

In particular, we can induce a relative shortlex order on Mk with respect to M0

as follows. If ∣w∣ < ∣w′∣ then we require that w < w′. Otherwise, note that every

w ∈Mk admits a decomposition into

w = u0 ⋅| ⋅ u1 ⋅| ⋅ u2⋯ uk−1 ⋅| ⋅ uk,

where each ui ∈M0. Clearly, then, if w ≠ w′ are in Mk, the respective sequences

(ui)i and (u′i)i of rank-zero subwords from M0 do not agree. If r is the first place

at which they disagree then w < w′ if ur < u′r.

We can then, if required, extend this in a natural way to a well-ordering

on the whole of the language M by imposing length-monotonicity, then rank-

monotonicity for words of equal length, then comparing equally-long words of

equal rank using the ordering on the Mk.

A.3 Noncrossing partitions, Correspondences and Com-

putation

The main purpose of this section is to establish an explicit bijection between the

set of R-classes in Jn and a set of lists of integers. From there, we carefully

extend this correspondence to R-classes in PJn andMn using results from ear-

lier in the chapter. We proceed by introducing intermediary structures, many of

which have known bijections.

A partition P = P1 ⊔⋯ ⊔ Pk of [[n]] is noncrossing if, for a < b < c < d ∈ [[n]],

if a, c ∈ Pi and b, d ∈ Pj implies i = j. This is equivalent to being able to arrange

the points 1 to n around a circle and draw some graph whose connected com-

ponents are exactly the parts Pi, such that the graph is planar, i.e. the edges are

noncrossing.
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The weak orbit relation of a partial function f ∶ X→X is the coarsest equiva-

lence relation on X containing each pair (x, f (x)). A weak orbit of f is a then

class in this relation.

A permutation (respectively, a partial bijection) of [[n]] is then said to be non-

crossing if its weak orbits form a noncrossing partition of [[n]]. A noncrossing

permutation (partial bijection) is visibly noncrossing if for every fixed point b, if

a < b < c ∈ [[n]] then a and c lie in different (weak) orbits. A permutation (re-

spectively, a partial bijection) π is called a (partial) involution if π2(k) = k for all

k ∈ [[n]] (on which π is defined). The one-line notation for a permutation π is

simply the n-tuple

π[[n]] = (π(1), π(2), . . . π(n)).

This notation can be extended to encompass partial bijections by writing πk = 0

for any undefined values.

Proposition A.3.1. The correspondence from partial bijections in degree n to their one-

line notation is an injection, and its image is the set of tuples without repeated nonzero

entries.

Proof. Clearly π ≠ ς precisely if, for some i we have π(i) ≠ ς(i), either in the

sense that preciselye one is defined, or that both are defined but unequal. There-

fore we have π[[n]] ≠ ς[[n]], meaning one-line notation faithfully represents par-

tial bijections.

To see the converse, note that the sets are equinumerous. A partial bijec-

tion from k points in [[n]] is uniquely determined by the sets of points mapped

from and to, and the order of the points in the image, of which there are (nk)
2
k!.

Similarly, an n-tuple with k distinct nonzero entries is uniquely determined by

the locations, values and order of appearance of those entries, giving the same

number of lists.

We call a tuple

v = (v1, v2,⋯, vn) ∈ [[n]]
n
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a Dyck list (of size n) if it is one-line notation for a noncrossing involution of [[n]].

Such a tuple is a Motzkin list if it is one-line notation for a noncrossing partial

involution.

Definition A.3.2. Let S be a regular ∗-semigroup and e ∈ S. Then e is a projection

if e∗ = e.

We first aim to prove the following correspondences:

R-classes in Jn↔Projections

↔Visibly noncrossing involutions of [[n]]

↔Dyck lists of size n

There are similar correspondences between the R-classes in the Motzkin mon-

oidsMn and Motzkin lists of size n, and between the R-classes in partial Jones

monoids PJn and XXX lists of size n.

Proposition A.3.3. Let S be a regular ∗-semigroup and s ∈ S. The elements ss∗ and

s∗s are projections. Furthermore, if e = st is a projection satisfying es = s then e = ss∗.

Proof. The involution on a ∗-semigroup is antihomomorphic, meaning (ab)∗ =

b∗a∗ and (a∗)∗ for all elements a and b. Therefore, write (ss∗)∗ = (s∗)∗ ⋅ s∗ = ss∗;

s∗s follows similarly easily.

Now let es = sts = s.

This gets us from R
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[ ] [ ] [ ] [ ] [ ] [ ] [ [ ] ]

[ ] [ [ [ ] ] ]

[ ] [ [ ] ] [ ]

[ ] [ [ ] [ ] ] [ [ ] ] [ ] [ ]

[ [ ] ] [ [ ] ] [ [ [ ] [ ] ] ] [ [ [ ] [ ] ] ]

[ [ [ [ ] ] ] ] [ [ [ ] ] [ ] ] [ [ ] [ [ ] ] ]

[ [ ] [ ] ] [ ] [ [ ] [ ] [ ] ]

Figure A.2: Explicit correspondence between Dyck words of semi-length n and non-

crossing partitions of [[n]]with noncrossing partitions of [[2n]] shown as intermediary.
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Appendix B

The Ordered Integer Partition

Dictionary

This chapter lists and enumerates the pairs (n, r) of all pairs of ordered integer

partitions which satisfy the following constraints:

n = (n1, . . . , nk) ⊢ n, r = (r1, . . . , rk) ⊢ r,

ri ≤max(
ni
3

, 1), ri = ni Ô⇒ ri > 0

i > j Ô⇒ ni ≤ nj, i < j, ni = nj Ô⇒ ri ≥ rj

The first two define the notation and ensure that they have identical order, while

the fourth is a “properness” condition, ensuring that the order is bounded by

n and that there are not infinitely many possibilities. The third constraint is

necessary for the number cn,r as defined in Section 5.1 to be nonzero. The last

two simply state that we’ve ordered the pairs by degree, highest-to-lowest, and

thereafter by rank lowest-to-highest; for our purposes we only care about num-

ber up to reordering.

For the above, we’ll write

⎧⎪⎪
⎨
⎪⎪⎩

n

r

⎫⎪⎪
⎬
⎪⎪⎭

=

⎧⎪⎪
⎨
⎪⎪⎩

n1 n2 ⋯ nk

r1 r2 ⋯ rk

⎫⎪⎪
⎬
⎪⎪⎭

⊢ (n, r)
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For r = n we have only the following pair of partitions
⎧⎪⎪
⎨
⎪⎪⎩

1 ⋯ 1

1 ⋯ 1

⎫⎪⎪
⎬
⎪⎪⎭

.

In this notation, we’ll list partitions up to column-reordering, with the conven-

tion adopted that there are precisely enough trailing columns (11) to make the

rows add to n and r respectively. We can pick a canonical representative for

some equivalence class up to column-operations by stipulating that the top en-

tries in columns are nonincreasing, and that the bottom are nonincreasing when

the top entries are the same.

This can be achieved independent of n. For r = n − 1:
⎧⎪⎪
⎨
⎪⎪⎩

1 1 ⋯ 1

0 1 ⋯ 1

⎫⎪⎪
⎬
⎪⎪⎭

.

There are (n1) reorderings. For succinctness, we will drop the trailing columns

of {1; 1}:
⎧⎪⎪
⎨
⎪⎪⎩

1 1 ⋯ 1

0 1 ⋯ 1

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

1 ⋯ 1

1 ⋯ 1

⎫⎪⎪
⎬
⎪⎪⎭

.

For r = n − 2:
⎧⎪⎪
⎨
⎪⎪⎩

3

1

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

2

0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

1 1

0 0

⎫⎪⎪
⎬
⎪⎪⎭

.

There are respectively (n−2
1 ), (

n−1
1 ) and (n2) reorderings.

For r = n − 3:
⎧⎪⎪
⎨
⎪⎪⎩

4

1

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

3

0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

3 1

1 0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

2 1

0 0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

1 1 1

0 0 0

⎫⎪⎪
⎬
⎪⎪⎭

.

There are respectively (n−3
1 ), (

n−2
1 ), (

n−3
2 ), (

n−1
2 ) and (n3)ways to place these.

For r = n − 4:
⎧⎪⎪
⎨
⎪⎪⎩

6

2

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

5

1

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

4

0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

4 1

1 0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

3 1

0 0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

3 2

1 0

⎫⎪⎪
⎬
⎪⎪⎭

,

⎧⎪⎪
⎨
⎪⎪⎩

3 1 1

1 0 0

⎫⎪⎪
⎬
⎪⎪⎭

⎧⎪⎪
⎨
⎪⎪⎩

2 2

0 0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

2 1 1

0 0 0

⎫⎪⎪
⎬
⎪⎪⎭

,
⎧⎪⎪
⎨
⎪⎪⎩

1 1 1 1

0 0 0 0

⎫⎪⎪
⎬
⎪⎪⎭

.
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There are respectively (n−5
1 ), (

n−4
1 ), (

n−3
1 ), (

n−3
2 ), (

n−2
2 ), (

n−3
2 ), (

n−2
3 ), (

n−2
2 ), (

n−1
3 )

and (n4)ways to place these.

For greater rank deficiency, the collections and insertion possibilities quickly

become unwieldy. For example the spartan
⎧⎪⎪
⎨
⎪⎪⎩

4 4 3 3 3

1 1 1 1 1

⎫⎪⎪
⎬
⎪⎪⎭

can be inserted (n−9
5 )ways and rearranged ( 5

2,3)ways, where

(
n

r1, r2, . . . , rl
) =

n!
r1! ⋅ r2!⋯rl !

is the multinomial coefficient, with r some partition of n written as a list.

We need some automatic method of generating these. So, define

Spn,r,p,q ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎧⎪⎪
⎨
⎪⎪⎩

n

r

⎫⎪⎪
⎬
⎪⎪⎭

⊢ (n, r)
RRRRRRRRRRRRR

max n ≤ p, max r ≤ q
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Then Spn,r,p,q contains all those Spartans which can be juxtaposed to the right of

⎧⎪⎪
⎨
⎪⎪⎩

p

q

⎫⎪⎪
⎬
⎪⎪⎭

to form other spartans s ⊢ (n + p, r + q) without needing to reorder columns.

Write

n⊗m = (n1, . . . , nr, m1, . . . , mk)

where n = (n1, . . . , nr) and m = (m1, . . . , mk), and
⎧⎪⎪
⎨
⎪⎪⎩

n1

r1

⎫⎪⎪
⎬
⎪⎪⎭

⊗

⎧⎪⎪
⎨
⎪⎪⎩

n2

r2

⎫⎪⎪
⎬
⎪⎪⎭

=

⎧⎪⎪
⎨
⎪⎪⎩

n1 ⊗n2

r1 ⊗ r2

⎫⎪⎪
⎬
⎪⎪⎭

Proposition B.0.1. Let ς be a spartan of weight (n − d, r − d) and length l whose

columns appear with multiplicity m1, m2, . . . mk. Then there are

(
l + d

d, m1, . . . , mk
)

simultaneous partitions of weight (n, r) and length l which have no zero columns and

which are equivalent to ς.
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Note that

(
l + d

d, m1, . . . , mk
) = (

l
m1, . . . , mk

) ⋅ (
l + d

l
).

Write cnr for the number of convex idempotents of degree n and rank r.

Corollary B.0.2. Given ς = (λi,j)i≤l−d;j=1,2 as above, there are

cλ11,λ21cλ12,λ22⋯cλl1,λl2 ⋅ (
l

d, m1, m2, . . . , mk
)

idempotents inMn of rank d whose associated spartan is ς.

This Corollary tells us that to understand idempotents of high rank, we need

only understand:

1. The spartans representing elements of degree n and rank r;

2. The simultaneous partitions representing these elements;

3. The number of convex elements of given rank and degree.

We’ve already determined how to determine how many simultaneous parti-

tions are represented by some given spartan, solving 2 modulo a solution to 1.

To address 3 requires some more work.

First, we state the main result. Let S(nr) be the set of spartans of weight

(n, r). Let ∣ς∣ denote the length of the spartan ς and mi(ς) the multiplicities of

the columns in ordered form.

Theorem B.0.3. The number of idempotents of degree n and rank r is
r
∑
d=0
∑
ς

cλ11,λ12⋯cλ∣ς∣,1λ∣ς∣,2(
l + d

d, m1(ς), . . . , m∣ς∣(ς)
), (B.1)

where the second sum is over ς in S(n−d
r−d).

Fixing δ and letting n with r = n − δ constrained, we have only a finite set of

spartans representing idempotents in Er(Mn) for each n. Indeed, the sequence

of sets S( n
n−δ) of possible spartans stabilises at around n = 3

2 δ, as we’ll see shortly.

The multinomials in the sum in (B.1) are all polynomial in n of degree uniformly

bounded by δ, and hence so is the sum.

Theorem B.0.4. Let δ ≥ 0 be fixed, and n > 3
2 δ. The number of idempotents of degree n

and rank r = n − δ inMn is a polynomial in n of degree at most δ.
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B.0.1 There are Finitely Many Spartans of given Rank-deficiency

Proposition B.0.5. Let α ∈Mn be a convex idempotent with n > 1. Then the rank of α

is at most r ≤ n
3 .

Proof. Let α ∈Mn be a convex idempotent.

Every contribution to rank comes from an active or inert path by definition,

and specifically an active path by idempotency, each of which has odd length

(including a contribution of length one for bounding stubs). If some path has

length 1 then either n = 1 or α is nonconvex, so all paths in α have length at least

3, witnessing the bounds.

Proposition B.0.6. Let ε > 0 and an =
n−r

n for n ∈ N0. Then there is N ∈ N such that

for n > N, an > 1− ε.

Corollary B.0.7. The sequence an eventually exceeds 1
3 forever.
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Appendix C

The Convex Idempotent Dictionary

This section shows all the idempotents of degree n ≤ 5 and rank at most one.

Those in the partial Jones and Jones monoids PJn and Jn are shaded light and

medium pink, convex idempotents are highlighted in a box and non-idempotents

are greyed out. There is a diagonal line drawn across each D-class; in each case

those elements it meets are the projections.

The classes are presented in ascending degree and rank. The D-classes of

low-rank elements in degree 5 are on a separate landscape page, as they are too

wide to display easily in portrait.
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Appendix D

The Convex Generating Function for

Mn is Low Degree

Included below is a printout of a variant of the universal generating function

U(x) described in Chapter 5. We use this as a reference to check some observa-

tions above.

We isolated the contibution from the convex part by evaluating C(x)∣u=0
where

C(x) =
U(x)− 1

u
.

The full generating function U would take some 20 pages to print out in a simi-

lar format, and can be recovered in degree up-to 9 by taking

U(x) =
1

1− uC(x)
.

The Taylor expansion of the right-hand side up to the ninth degree will agree
with U for all terms with the power of z not exceeding 9. The convex part of the
function is given below.

z9x2w7v8u + 2z9xw8v8u + 6z9yx2w6v7u + 9z9x4w5v7u + 36z9x3w6v7u + 54z9x2w7v7u + 20z9yx4w4v6u + 52z9yx3w5v6u

+10z9x6w3v6u + 60z9x5w4v6u + 238z9x4w5v6u + 402z9x3w6v6u + 24z9x2w6v7u + 70z9xw7v7u + 30z9y2x4w3v5u + 6z9yx6w2v5u

+32z9yx5w3v5u + 164z9yx4w4v5u + 106z9yx2w5v6u + 8z9yw6v7u + z9x8wv5u + 8z9x7w2v5u + 76z9x6w3v5u + 398z9x5w4v5u

+980z9x4w5v5u + 64z9x4w4v6u + 486z9x3w5v6u + 1198z9x2w6v6u + 12z9x2w5v7u + 24z9xw6v7u + 14z9w7v7u + 6z9y2x6wv4u

+26z9y2x5w2v4u + 16z9yx6w2v4u + 138z9yx5w3v4u + 84z9yx4w3v5u + 554z9yx3w4v5u + 64z9yx2w4v6u + 64z9yxw5v6u + 8z9x7w2v4u

+140z9x6w3v4u + 12z9x6w2v5u + 772z9x5w4v4u + 226z9x5w3v5u + 1720z9x4w4v5u + 32z9x4w3v6u + 5154z9x3w5v5u + 128z9x3w4v6u

+494z9x2w5v6u + 1022z9xw6v6u + 12z8yx2w5v6u + 6z8x2w6v6u + 2z8w7v7u + 8z9y2x6wv3u + 62z9y2x4w2v4u + 10z9y2x2w3v5u
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+44z9yx6w2v3u + 60z9yx5w2v4u + 698z9yx4w3v4u + 36z9yx4w2v5u + 116z9yx3w3v5u + 808z9yx2w4v5u + 118z9yw5v6u + 12z9x7w2v3u

+4z9x7wv4u + 200z9x6w3v3u + 100z9x6w2v4u + 6z9x6wv5u + 1314z9x5w3v4u + 36z9x5w2v5u + 6696z9x4w4v4u + 462z9x4w3v5u

+2888z9x3w4v5u + 9064z9x2w5v5u + 112z9x2w4v6u + 362z9xw5v6u + 234z9w6v6u + 28z8yx4w3v5u + 76z8yx3w4v5u + 8z8x4w4v5u

+56z8x3w5v5u + 12z8x2w5v6u + 52z8xw6v6u + z8w6v7u + 32z9y2x5wv3u + 32z9y2x4wv4u + 12z9y2x3w2v4u + 250z9yx5w2v3u

+224z9yx4w2v4u + 1726z9yx3w3v4u + 330z9yx2w3v5u + 680z9yxw4v5u + 56z9yw4v6u + 12z9x7w2v2u + 4z9x7wv3u + 164z9x6w2v3u

+20z9x6wv4u + 2570z9x5w3v3u + 290z9x5w2v4u + 3972z9x4w3v4u + 56z9x4w2v5u + 20202z9x3w4v4u + 634z9x3w3v5u + 3254z9x2w4v5u

+28z9x2w3v6u + 6358z9xw5v5u + 56z9xw4v6u + 82z9w5v6u + 4z8y2x4w2v4u + 4z8yx6wv4u + 22z8yx5w2v4u + 140z8yx4w3v4u

+106z8yx2w4v5u + 14z8x5w3v4u + 128z8x4w4v4u + 6z8x4w3v5u + 84z8x3w4v5u + 378z8x2w5v5u + 6z8x2w4v6u + 12z8xw5v6u

+48z8w6v6u + z7x2w5v6u + 2z7xw6v6u + 108z9y2x4wv3u + 30z9y2x2w2v4u + 886z9yx4w2v3u + 338z9yx3w2v4u + 2440z9yx2w3v4u

+84z9yx2w2v5u + 112z9yxw3v5u + 682z9yw4v5u + 4z9x7wv2u + 240z9x6w2v2u + 30z9x6wv3u + 990z9x5w2v3u + 24z9x5wv4u

+12128z9x4w3v3u + 650z9x4w2v4u + 14z9x4wv5u + 6986z9x3w3v4u + 56z9x3w2v5u + 27790z9x2w4v4u + 670z9x2w3v5u + 2296z9xw4v5u

+1444z9w5v5u + 4z8yx6wv3u + 54z8yx5w2v3u + 40z8yx4w2v4u + 416z8yx3w3v4u + 52z8yx2w3v5u + 12z8yxw4v5u + 4z8x6w2v3u

+68z8x5w3v3u + 8z8x5w2v4u + 92z8x4w3v4u + 3z8x4w2v5u + 932z8x3w4v4u + 12z8x3w3v5u + 150z8x2w4v5u + 744z8xw5v5u

+36z8w5v6u + 4z7yx2w4v5u + 4z7x4w3v5u + 16z7x3w4v5u + 28z7x2w5v5u + 12z9y2x3wv3u + 10z9y2x2wv4u + 4z9y2xw2v4u

+12z9yx4wv3u + 1850z9yx3w2v3u + 792z9yx2w2v4u + 2088z9yxw3v4u + 346z9yw3v5u + 4z9x7wvu + 30z9x6wv2u + 1616z9x5w2v2u

+108z9x5wv3u + 3008z9x4w2v3u + 92z9x4wv4u + 28342z9x3w3v3u + 962z9x3w2v4u + 8400z9x2w3v4u + 84z9x2w2v5u + 17476z9xw4v4u

+354z9xw3v5u + 606z9w4v5u + 4z8y2x4wv3u + 8z8y2x2w2v4u + 4z8yx6wv2u + 16z8yx5wv3u + 288z8yx4w2v3u + 20z8yx4wv4u

+68z8yx3w2v4u + 452z8yx2w3v4u + 6z8yw4v5u + 8z8x6w2v2u + 16z8x5w2v3u + 672z8x4w3v3u + 16z8x4w2v4u + 366z8x3w3v4u

+2702z8x2w4v4u + 48z8x2w3v5u + 292z8xw4v5u + 410z8w5v5u + 9z8w4v6u + 4z7yx4w2v4u + 12z7yx3w3v4u + z7x6wv4u

+6z7x5w2v4u + 36z7x4w3v4u + 86z7x3w4v4u + 12z7x2w4v5u + 40z7xw5v5u + 44z9y2x2wv3u + 4z9y2w2v4u + 64z9yx4wv2u

+72z9yx3wv3u + 2676z9yx2w2v3u + 36z9yx2wv4u + 484z9yxw2v4u + 1770z9yw3v4u + 84z9yw2v5u + 30z9x6wvu + 204z9x5wv2u

+5840z9x4w2v2u + 288z9x4wv3u + 5776z9x3w2v3u + 56z9x3wv4u + 34476z9x2w3v3u + 1204z9x2w2v4u + 14z9x2wv5u + 5872z9xw3v4u

+28z9xw2v5u + 3860z9w4v4u + 102z9w3v5u + 44z8yx5wv2u + 92z8yx4wv3u + 648z8yx3w2v3u + 146z8yx2w2v4u + 68z8yxw3v4u

+120z8x5w2v2u + 146z8x4w2v3u + 2640z8x3w3v3u + 64z8x3w2v4u + 768z8x2w3v4u + 12z8x2w2v5u + 3376z8xw4v4u + 24z8xw3v5u

+286z8w4v5u + 6z7y2x4wv3u + 14z7yx4w2v3u + 34z7yx2w3v4u + 6z7yw4v5u + 6z7x5w2v3u + 54z7x4w3v3u + 8z7x4w2v4u

+90z7x3w3v4u + 314z7x2w4v4u + 6z7x2w3v5u + 12z7xw4v5u + 10z7w5v5u + 4z9y2xwv3u + 312z9yx3wv2u + 312z9yx2wv3u

+2388z9yxw2v3u + 912z9yw2v4u + 168z9x5wvu + 558z9x4wv2u + 12408z9x3w2v2u + 444z9x3wv3u + 7272z9x2w2v3u + 140z9x2wv4u

+20896z9xw3v3u + 810z9xw2v4u + 1598z9w3v4u + 4z8y2x2wv3u + 8z8y2w2v4u + 152z8yx4wv2u + 94z8yx3wv3u + 654z8yx2w2v3u

+36z8yx2wv4u + 16z8yxw2v4u + 40z8yw3v4u + 588z8x4w2v2u + 508z8x3w2v3u + 5536z8x2w3v3u + 114z8x2w2v4u + 1264z8xw3v4u

+1464z8w4v4u + 90z8w3v5u + 44z7yx3w2v3u + 16z7yx2w2v4u + 16z7yxw3v4u + 8z7x5w2v2u + 4z7x5wv3u + 68z7x4w2v3u

+4z7x4wv4u + 448z7x3w3v3u + 16z7x3w2v4u + 108z7x2w3v4u + 308z7xw4v4u + 8z6yx2w3v4u + 4z6x2w4v4u + 2z6w5v5u

+2z9y3v3u + 6z9y2wv3u + 700z9yx2wv2u + 260z9yxwv3u + 2206z9yw2v3u + 168z9ywv4u + 496z9x4wvu + 1220z9x3wv2u

+14972z9x2w2v2u + 640z9x2wv3u + 5306z9xw2v3u + 56z9xwv4u + 4598z9w3v3u + 270z9w2v4u + 308z8yx3wv2u + 224z8yx2wv3u

+146z8yxw2v3u + 8z8yw2v4u + 1712z8x3w2v2u + 1084z8x2w2v3u + 5868z8xw3v3u + 168z8xw2v4u + 894z8w3v4u + 15z8w2v5u

+2z7y2x2wv3u + 96z7yx2w2v3u + 42z7yw3v4u + 4z7x5wv2u + 104z7x4w2v2u + 14z7x4wv3u + 154z7x3w2v3u + 998z7x2w3v3u

+20z7x2w2v4u + 86z7xw3v4u + 82z7w4v4u + 4z6yx4wv3u + 14z6yx3w2v3u + 12z6x3w3v3u + 4z6x2w3v4u + 26z6xw4v4u

+z6w4v5u + 776z9yxwv2u + 892z9ywv3u + 28z9yv4u + 1104z9x3wvu + 1510z9x2wv2u + 9656z9xw2v2u + 466z9xwv3u

+1500z9w2v3u + 28z9wv4u + 16z8y2wv3u + 364z8yx2wv2u + 16z8yxwv3u + 76z8yw2v3u + 32z8x3wv2u + 3356z8x2w2v2u

+30z8x2wv3u + 1656z8xw2v3u + 2336z8w3v3u + 252z8w2v4u + 16z7yx3wv2u + 12z7yx2wv3u + 72z7yxw2v3u + 20z7yw2v4u

+4z7x5wvu + 22z7x4wv2u + 484z7x3w2v2u + 16z7x3wv3u + 236z7x2w2v3u + 5z7x2wv4u + 856z7xw3v3u + 10z7xw2v4u

+26z7w3v4u + 4z6yx4wv2u + 24z6yx2w2v3u + 6z6x4w2v2u + 8z6x3w2v3u + 68z6x2w3v3u + 2z6x2w2v4u + 4z6xw3v4u

+24z6w4v4u + z5x2w3v4u + 2z5xw4v4u + 1240z9ywv2u + 186z9yv3u + 1368z9x2wvu + 1296z9xwv2u + 2232z9w2v2u

+186z9wv3u + 8z8y2v3u + 72z8yxwv2u + 16z8ywv3u + 80z8x3wvu + 224z8x2wv2u + 3720z8xw2v2u + 120z8xwv3u

+1118z8w2v3u + 40z8wv4u + 52z7yx2wv2u + 116z7yw2v3u + 22z7x4wvu + 76z7x3wv2u + 912z7x2w2v2u + 36z7x2wv3u
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+210z7xw2v3u + 228z7w3v3u + 20z6yx3wv2u + 12z6yx2wv3u + 4z6yxw2v3u + 40z6x3w2v2u + 16z6x2w2v3u + 156z6xw3v3u

+16z6w3v4u + 2z5yx2w2v3u + z5x4wv3u + 4z5x3w2v3u + 10z5x2w3v3u + 408z9yv2u + 1104z9xwvu + 408z9wv2u

+24z8y2v2u + 48z8ywv2u + 352z8x2wvu + 544z8xwv2u + 1580z8w2v2u + 240z8wv3u + 5z8v4u + 40z7yxwv2u

+40z7ywv3u + 88z7x3wvu + 116z7x2wv2u + 768z7xw2v2u + 20z7xwv3u + 70z7w2v3u + 40z6yx2wv2u + 2z6yw2v3u

+136z6x2w2v2u + 40z6xw2v3u + 96z6w3v3u + 4z6w2v4u + 4z5x3w2v2u + 4z5x2w2v3u + 18z5xw3v3u + 262z9yvu

+262z9wvu + 624z8xwvu + 512z8wv2u + 30z8v3u + 112z7ywv2u + 10z7yv3u + 150z7x2wvu + 116z7xwv2u

+208z7w2v2u + 10z7wv3u + 4z6yxwv2u + 6z6x2wv2u + 228z6xw2v2u + 50z6w2v3u + 4z5yx2wv2u + 4z5yw2v3u

+4z5x3wv2u + 36z5x2w2v2u + 2z5x2wv3u + 4z5xw2v3u + 6z5w3v3u + 336z8wvu + 64z8v2u + 44z7yv2u

+156z7xwvu + 44z7wv2u + 2z6y2v2u + 4z6ywv2u + 24z6x2wvu + 32z6xwv2u + 128z6w2v2u + 12z6wv3u

+4z5x3wvu + 8z5x2wv2u + 48z5xw2v2u + 4z4yx2wv2u + 2z4x2w2v2u + 2z4w3v3u + 42z8vu + 42z7yvu

+42z7wvu + 72z6xwvu + 48z6wv2u + 2z6v3u + 8z5ywv2u + 14z5x2wvu + 8z5xwv2u + 16z5w2v2u

+8z4xw2v2u + z4w2v3u + 48z6wvu + 8z6v2u + 4z5yv2u + 24z5xwvu + 4z5wv2u + 8z4w2v2u

+z3x2wv2u + 2z3xw2v2u + 8z6vu + 8z5yvu + 8z5wvu + 8z4xwvu + 4z4wv2u + 8z4wvu

+z4v2u + 4z3xwvu + 2z4vu + 2z3yvu + 2z3wvu + 2z2wvu + z2vu + zyvu

+zwvu
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Appendix E

Tables of results

Jones Monoid Jn

d/n 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 4 7 10 13 16 19 22 25 28 31

4 4 25 57 98 148 207 275 352 438

6 25 196 522 1 006 1 673 2 550 3 664

8 196 1 764 5 206 10 837 19 261

10 1 764 17 424 55 319

12 17 424

Cn 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012

en 1 1 2 5 12 36 96 300 886 3 000 8 944 31 192 96 138

en/Cn 1 1 1 1 .857 .727 .725 .620 .617 .533 .531 .462 .461

d∗n 1 1 1 4 7 25 57 196 522 1 764 5 206 17 424 55 319

d∗n/en 1 1 .5 .8 .583 .694 .594 .630 .589 .588 .582 .559 .575

Table E.1: Numbers of idempotents in Jn stratified by rank, for degree n < 13; rela-

tive contributions of idempotents in the whole monoid and largest D-class among the

idempotents.
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n 13 14 15 16 17

Cn 742 900 2674 440 35 357 670 129 644 790 477 638 700

en 342 562 1083 028 3923 351 12 656 024 46 455 770

en/Cn .461 .405 .405 .358 358

d∗n 184 041 2044 490 23 639 044

d∗n/en .537 .521 .508

n 18 19 20 21 22

Cn 1767 263 190 1767 263 190 6564 120 420 24 466 267 020 91 482 563 640

en 152 325 850 565 212 506 1878 551 444 7033 866 580 23 645 970 022

en/Cn .319 .320 .286 .287 .258

d∗n 282 105 616 3455 793 796

d∗n/en .499 .491

n 23 24 25 26

Cn 343 059 613 650 1289 904 147 324 4861 946 401 452 18 367 353 072 152

en 89 222 991 344 302 879 546 290 1150 480 017 950

en/Cn .260 .235 .237

d∗n 43 268 992 144 551 900 410 000

d∗n/en .485 .480

Table E.2: Table E.1 for degrees 13–26 with available data shown; no stratification by

rank.
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Motzkin MonoidsMn

r/n 0 1 2 3 4 5 6 7 8 9

0 1 1 4 16 81 441 2601 16 129 104 329 697 225

1 1 2 11 48 266 1492 9 042 56 712 369 689

2 1 3 19 93 549 3 211 20 004 127 676

3 1 4 28 152 947 5 784 37 048

4 1 5 38 226 1480 9 432

5 1 6 49 316 2 169

6 1 7 61 423

7 1 8 74

8 1 9

9 1

m2n 1 2 9 51 323 2 188 15 511 113 634 853 467 6536 329

en 1 2 7 31 153 834 4 839 29 612 188 695 1243 746

en/m2n 1 1 .778 .608 .474 .381 .312 .261 .221 .190

d∗n 1 1 4 16 81 441 2601 16 129 104 329 697 225

en/m2n 1 .5 .571 .516 .529 .529 .538 .545 .552 .561

Table E.3: Table E.1 for Motzkin monoidsMn in degree and rank up to 9.
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[69] I. Schur. Über die rationalen darstellungen der allgemeinen linearen

gruppe (in German). Sitzungsberichte Akad. Berlin, pages 58–75, 1927.

[70] H.-J. Shyr, S. Yu, and G. Thierrin. Monogenic e-closed languages and dipo-

lar words. Discrete Mathematics, 126(1-3):339–348, 1994.

[71] N. Sloan and O. E. I. S. Foundation. Online encyclopedia of integer se-

quences. Available online at http://oeis.org/.

[72] R. P. Stanley. Catalan numbers. Cambridge University Press, 2015.

[73] C. Thomassen. The jordan-schonflies theorem and the classification of sur-

face. The American Mathematical Monthly, 99(2):116–131, 1992.

[74] H. Tverberg. A proof of the jordan curve theorem. Bulletin of the London

Mathematical Society, 12(1):34–38, 1980.

[75] J. Von Neumann. On regular rings. Proceedings of the National Academy of

Sciences, 22(12):707–713, 1936.

[76] S. Wilcox. Cellularity of diagram algebras as twisted semigroup algebras.

Journal of Algebra, 309(1):10–31, 2007. doi:10.1016/j.jalgebra.2006.10.016.

[77] Q. Yuan. Topics in generating functions, 2009. Accessed on 6 December

2015.

197

http://oeis.org/
http://dx.doi.org/10.1016/j.jalgebra.2006.10.016

	Declaration
	Abstract
	List of Figures
	List of Tables
	Salutations and Acknowledgements
	How To Stay Most Happy While Using This Document
	Document Map
	I First Steps
	1 Preliminaries
	1.1 Sets, Combinatorial Structures
	1.1.1 Sets and Number Systems
	1.1.2 Graphs
	1.1.3 Relations
	1.1.4 Enumerative Combinatorics
	1.1.5 Asymptotics of sequences
	1.1.6 Planar Combinatorics

	1.2 Semigroups
	1.2.1 Basic Theory
	1.2.2 Special Elements
	1.2.3 Ideals and Green's Pre-Orders
	1.2.4 Regular *-semigroups

	1.3 Combinatorial Semigroup Theory
	1.3.1 Free Semigroups and Formal Languages
	1.3.2 The DSV Method

	1.4 Diagrams
	1.4.1 Diagrams

	1.5 Algebra
	1.6 Some Topology

	2 Introduction
	2.1 Diagram algebras and Semigroups


	II Diagram Monoids
	3 Diagram Semigroups
	3.1 Preliminaries
	3.2 Characterisation of idempotents
	3.3 Enumeration of idempotents
	3.3.1 The partition monoid
	3.3.2 The Brauer monoid
	3.3.3 The partial Brauer monoid
	3.3.4 Other subsemigroups

	3.4 A different approach for Brn and PBrn
	3.4.1 The Brauer monoid
	3.4.2 The partial Brauer monoid

	3.5 Idempotents in diagram algebras
	3.6 Calculated values

	4 Planar Diagram Semigroups and Their Idempotents
	4.1 Idempotents in Mn
	4.1.1 The Interface Graph of a Motzkin Element

	4.2 A Reduction Process on Idempotents
	4.2.1 A Complete Rewriting System
	4.2.2 Reversing Rewriting

	4.3 A CW-complex structure on E(Mn)


	III Enumeration: Theory and Implementation
	5 Convexity and Enumerating Idempotents in Planar Diagram Semigroups
	5.1 Convexity and Enumeration by Parameter Profile
	5.1.1 Ordered Partitions and Words
	5.1.2 Filtering Powers of Generating Functions using Modular Arithmetic
	5.1.3 Tensor Product, Convexity and Generating Idempotents
	5.1.4 A Parametric Study of E(Mn)
	5.1.5 Convex Generating Function

	5.2 Counting Idempotents of High Rank
	5.2.1 Idempotents of High Rank
	5.2.2 Coins, Partitions and Count-Summing
	5.2.3 2-Compositions of (n,r) and Spartans
	5.2.4 The Polynomial Recurrences


	6 Algorithm Design
	6.1 Preliminaries on Computing
	6.1.1 The GAP system
	6.1.2 Parallel computing

	6.2 Bounds on computing
	6.3 Algorithm design
	6.3.1 Correctness
	6.3.2 Optimisation


	7 Conclusions, Next Steps
	7.1 Limitations and Possible Improvements


	IV Appendices
	A Combinatorics on Words and Indexing Motzkin Elements
	A.1 Dyck Words: Ordering, the Jones monoid and Grammar
	A.1.1 Dyck words and the Jones monoid
	A.1.2 An ordering on Dyck words
	A.1.3 Prefix Codes and Free Monoids

	A.2 Motzkin Words and the Motzkin Monoid
	A.3 Noncrossing partitions, Correspondences and Computation

	B The Ordered Integer Partition Dictionary
	B.0.1 There are Finitely Many Spartans of given Rank-deficiency

	C The Convex Idempotent Dictionary
	D The Convex Generating Function for Mn is Low Degree
	E Tables of results
	List of Notation
	Bibliography


