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Abstract

It is well known that binary codes with iterative decoders can achieve

near Shannon limit performance on the additive white Gaussian noise

(AWGN) channel, but their performance on more realistic wired or wire-

less channels can become degraded due to the presence of burst errors

or impulsive noise. In such extreme environments, error correction alone

cannot combat the serious effect of the channel and must be combined

with the signal processing techniques such as channel estimation, channel

equalisation and orthogonal frequency division multiplexing (OFDM).

However, even after the received signal has been processed, it can still

contain burst errors, or the noise present in the signal maybe non Gaus-

sian. In these cases, popular binary coding schemes such as Low-Density

Parity-Check (LDPC) or turbo codes may not perform optimally, result-

ing in the degradation of performance. Nevertheless, there is still scope

for the design of new non-binary codes that are more suitable for these

environments, allowing us to achieve further gains in performance. In

this thesis, an investigation into good non-binary trellis error-correcting

codes and advanced noise reduction techniques has been carried out with

the aim of enhancing the performance of wired and wireless communi-

cation networks in different extreme environments. These environments

include, urban, indoor, pedestrian, underwater, and powerline commu-

nication (PLC). This work includes an examination of the performance

of non-binary trellis codes in harsh scenarios such as underwater com-

munications when the noise channel is additive SαS noise. Similar work

was also conducted for single input single output (SISO) power line com-

munication systems for single carrier (SC) and multi carrier (MC) over

realistic multi-path frequency selective channels. A further examina-

tion of multi-input multi-output (MIMO) wired and wireless systems on

Middleton class A noise channel was carried out. The main focus of the



project was non-binary coding schemes as it is well-known that they out-

perform their binary counterparts when the channel is bursty. However,

few studies have investigated non-binary codes for other environments.

The major novelty of this work is the comparison of the performance

of non-binary trellis codes with binary trellis codes in various scenar-

ios, leading to the conclusion that non-binary codes are, in most cases,

superior in performance to binary codes. Furthermore, the theoretical

bounds of SISO and MIMO binary and non-binary convolutional coded

OFDM-PLC systems have been investigated for the first time. In order

to validate our results, the implementation of simulated and theoretical

results have been obtained for different values of noise parameters and

on different PLC channels. The results show a strong agreement between

the simulated and theoretical analysis for all cases.
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Chapter 1

Introduction

1.1 Introduction

Error control coding is essential to achieve reliable digital communication and many

different coding schemes have been proposed over the years: Ring-TCM (trellis

coded modulation), low-density parity-check (LDPC) codes, Turbo codes, Algebraic-

Geometric codes, etc. [1–4]. LDPC and turbo codes are now commonly used in mod-

ern communication systems due to their capacity-approaching performance on the

additive white Gaussian noise (AWGN) channel, but their performance is degraded

when the channel is more severe. When combined with advanced signal process-

ing techniques, LDPC and turbo code performance can be improved, but there can

still be burst errors present or the channel can become non-Gaussian that binary

codes have difficulty correcting. Therefore, there is a case for employing non-binary

codes as a replacement for their binary counterparts. In this thesis the considera-

tion of non-Gaussian channels will be the main focus, to evaluate the efficiency of

non-binary trellis codes in harsh environments.

The design of non-binary error-correcting codes is a niche research area, but

there are several advantages to employing them, such as improved performance, a

larger selection of codes and robustness to burst errors. There is great scope for

producing novel work in this area by also combining non-binary code design with

signal processing techniques used in wireless communications, such as equalization,

OFDM, channel estimation and MIMO. In this project, good non-binary codes will

be designed for harsh environments in combination with these signal processing

techniques to improve performance. At the same time, there will be an inevitable
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1.2 Motivation and Challenges

increase in complexity which will also be addressed in this project.

1.2 Motivation and Challenges

Due to the serious impact caused by impulsive noise on the performance of com-

munication systems, there have been various well known channel models proposed

to model impulsive noise distributions. These models include Middleton class A,

Gaussian-mixture and symmetric alpha stable (SαS) distributions [5–7]. They can

all model noise channels on power line communication (PLC), under water and in-

home telecommunications services. Unlike AWGN which has a closed-form expres-

sion, some of impulsive noise models are not closed form. In this case, evaluating

a tight bound to the bit error rate (BER) performance on these channels is very

challenging. In addition, error correcting codes alone cannot combat the negative

effects of impulsive noise on the performance of any communication systems.

In order to reduce the impact of impulsive noise, we employ signal process-

ing techniques along with non-binary turbo codes, such as; orthogonal frequency-

division multiplexing (OFDM), zero forcing detector (ZF), minimum mean square

error equalizer (MMSE), blanking and clipping. These proposed systems have been

examined on very harsh, impulsive noise environments and for various wired and

wireless telecommunication applications.

1.3 Aims and Objectives

The main objective of this thesis is to design good non-binary error-correcting codes

to reduce the impact of impulsive noise channels on wired and wireless medium.

These non-binary codes plus signal processing techniques have been implemented to

enhance the BER performance of various telecommunication applications. To reach

these targets it is necessary to accomplish other intermediate objectives:

• To conduct a deep review into the state of the art of non-binary coding

schemes.

• To study the different existing decoding algorithms and investigate method-

ologies to make them appropriate for non-Gaussian channels.
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• To investigate non-binary trellis code performance with a Cauchy receiver for

the case of SαS noise channel.

• To introduce a theoretical analysis of the BER performance of non-binary

coded systems on impulsive noise channel.

• To examine non-binary trellis codes for recent applications such as multiple-

input multiple-output (MIMO) on Middleton class A noise and an in-home

PLC services.

1.4 Statement of Originality

The thesis contributions are mainly focused on the BER performance of uncoded

systems and coded systems based on binary or non-binary trellis codes in the pres-

ence of impulsive noise. The novelty of the thesis is illustrates as follows:

• In chapter 3, the error probability of non-binary convolutional codes on the

AWGN channel has been introduced. The BER performance of the (1, 7/5)8

binary and ββ2/1 and β1β/β21 non-binary convolutional codes on SαS chan-

nel are presented for various values of α. Furthermore, non-binary turbo

coded communication systems on SαS channels have been implemented and a

fair comparison with binary turbo coded system on the same environments is

shown. Ultimately, the appropriate modifications to the decoding algorithms

of binary and non-binary trellis codes have been carried out for the Cauchy

receiver.

• In chapter 4, the performance of single carrier (SC) non-binary trellis codes on

Middleton class A noise channel is presented. The BER performance analysis

of binary and non-binary convolutional codes on multi-carrier (MC) communi-

cation system on impulsive noise is then introduced. A performance analysis

of binary and non-binary convolutional codes on realistic PLC multi path

frequency-selective channels with ZF equalizer is derived for the first time.

Again, a modification is made to the conventional decoding algorithm of bi-

nary and non-binary trellis codes to make them tailored to PLC receivers. In

addition, a fair comparison between the performance of binary and non-binary
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trellis coded OFDM-PLC systems has been presented. Finally, noise cancella-

tion or reduction such as blanking and clipping have been utilized with binary

and non-binary turbo coded OFDM-PLC systems.

• In chapter 5, the BER performance analysis of binary and non-binary convo-

lutional coded OFDM-MIMO in the presence of impulsive noise for wireless

applications has been presented. Also, the synthetic statistical MIMO-PLC

channel has been employed for the first time to examine our proposed system

on semi-realistic PLC-MIMO environments. Finally, to reduce the effect of the

multi path frequency selective and impulsive noise channels, we have utilized

signal processing techniques such as OFDM, MMSE, blanking and clipping.

1.5 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 presents the theoretical background and the relevant studies on im-

pulsive noise channels and their applications.

Chapter 3 introduces two classes of non-binary convolutional code and their con-

struction. Also, the flow-graph of ββ2/1 non binary codes is explained in detail. In

addition, the decoding algorithm (BCJR) which has been employed in this chapter

is presented with the appropriate modifications that make it suitable for the Cauchy

receiver. Simulation results of the BER performance of binary and non-binary con-

volutional codes, binary and non binary turbo codes and uncoded systems on SαS

noise channels are presented.

Chapter 4, gives an overview of the Middleton class A noise channel and the

BER performance of SC coded binary and non-binary convolutional systems on

additive Middleton class A noise is presented. Also, realistic multi-path frequency-

selective channels used in power line communication have been explained in detail

and the performance analysis of binary and non-binary convolutional coded OFDM-

PLC systems has been introduced. The encoding and decoding procedures for non-

binary turbo codes on the Middleton class A noise channel have been illustrated.

Furthermore, in this chapter the non-binary turbo coded OFDM-PLC system with

non-linear pre-processing has been investigated. Simulation results of the BER

performance of binary and non-binary turbo coded OFDM-PLC systems for various
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values of Γs and on different realistic PLC channels have been presented.

Chapter 5, presents the implementation of coded and uncoded OFDM-MIMO

systems for wireless applications. In addition, the analysis of uncoded OFDM-

MIMO systems on the Middleton class A noise channel is carried out. Also, the

simulated BER performance of binary and non-binary turbo codes have been in-

vestigated. The performance analysis of wireless OFDM-MIMO on impulsive noise

channels with a comparison to the simulated performance has been introduced in

this chapter. Furthermore, an investigation into wired applications of binary and

non-binary trellis codes on PLC MIMO channels have been carried out. Moreover,

the synthetic MIMO PLC channel has been described in detail and the non-binary

turbo coded MIMO PLC-OFDM transmitter and receiver have been introduced.

Finally, the numerical and simulation results of binary and non-binary trellis coded

OFDM-PLC-MIMO have been presented.

Chapter 6 presents the thesis conclusions and suggestions for future research in

this field.

1.6 Publications Related to the Thesis

1.6.1 Published

1. Abd-Alaziz, Wael, Martin Johnston, and Stephane Le Goff. ”Non-binary

turbo codes on additive impulsive noise channels.” Communication Systems,

Networks and Digital Signal Processing (CSNDSP), 2016 10th International

Symposium on. IEEE, 2016.

2. Abd-Alaziz, Wael, et al. ”Non-binary turbo-coded OFDM-PLC system in the

presence of impulsive noise.” Signal Processing Conference (EUSIPCO), 2017

25th European. IEEE, 2017.

3. Abd-Alaziz, Wael, Martin Johnston, and Stephane Le Goff, ”Non-Binary Trel-

lis Codes on the Synthetic Statistical MIMO Power Line Channel,” in 2018

IEEE International Symposium on power Line Communications and its Ap-

plications (ISPLC), April 2018, pp.1-5.

5



Chapter 2

Theoretical Background and

Literature Survey

2.1 Introduction

In this chapter, the necessary prerequisite information for channel modelling, binary

codes, non-binary fields, PLC and MIMO systems, will be presented. However,

various kinds of noise models will be illustrated as a preface to these. Obviously, not

all communication channels will be covered, but it will include the related additive

noise channels for the proposed communication systems in this thesis. These related

channels are AWGN, alpha stable SαS and Middleton class A. Furthermore, a brief

overview on the structure of the decoder and the encoder of convolutional and turbo

coding schemes on AWGN is included. Finite fields will be explained briefly in

order to understand the construction, encoding and decoding of non-binary codes.

To understand chapter 6, MIMO systems will be explained and various channel

estimation techniques will be presented. This is followed by a review of the available

literature on important and current research in these areas.

2.2 Channel Model

2.2.1 Additive White Gaussian Noise Channel

AWGN is a typical noise model that models the impact of random processes in

nature or by humans [8, 9]. Some causal processes that generate AWGN are: elec-

tromagnetic fields from various sources, the motion of atoms in any conductors, the
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2.2 Channel Model

earth, and any warm objects. AWGN follows a normal distribution (Gaussian) and

it can be defined as:

f(x) =
1

σ
√

2π
e−

(x−µ)2
2σ2 (2.1)

where x is the random variable (symbols), µ is the mean value, and σ is the

standard deviation. Mostly in conventional communication systems the mean of the

AWGN distribution is zero and with variance σ2 and it’s written as N(0, σ2). The

variance σ2 of AWGN in communication systems that is utilizing BPSK modulation,

calculated as

σ2 =
N0

2
(2.2)

where N0 the noise power spectral density.

Figure 2.1 shows the probability density function (PDF) of Gaussian distribution

vs random variables, for different σ values.
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Figure 2.1: PDF of AWGN (0, σ).
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source
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Modulator Channel

Noise
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Figure 2.2: Conventional information systems.

In order to demonstrate AWGN channel on an ordinary communication system,

figure 2.2, illustrates a general block diagram of a typical communication system. A

message source generates a stream of bits and these bits will pass into a modulator.

There are many analogue and digital modulation schemes, but in this thesis, binary

phase shift keying (BPSK) and quadrature phase shift keying (QPSK) are mainly

utilized for our proposed systems [10,11]. Next, the mapped symbols will be trans-

mitted via a communication medium which can be a wired or wireless channel, and

the noise will be added at the receiver.

Generally, the received signal is defined as

y = x+ n (2.3)

where y is the received signal, x is the transmitted and n is the noise. While

in the receiver side, the demodulation technique will be applied first and then the

decision will be made to estimate the transmitted message m̂.

The theoretical symbol-error rate (SER) performance analysis of this typical

system for M-level PAM modulation can be defined as [12]

PM =
2(M − 1)

M
Q

(√
6(log2M)Eb
(M2 − 1)N0

)
(2.4)

where M is the modulation order and can take values 2, 4, 8 ,16, ...etc, and Q can

be evaluated by

Q(x) =
1√
2π

∫ ∞

x

exp−µ
2

2
dµ (2.5)

8



2.2 Channel Model
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Figure 2.3: SER for M-level PAM on AWGN channel.

Figure 2.3 illustrates the SER performance for various modulation orders as a

function of SNR.

2.2.2 Symmetric Alpha-Stable Distributions (SαS)

Symmetric alpha-stable distributions are commonly used to model heavy-tailed dis-

tributions (i.e. the PDF tails are not exponentially bounded) [13]. Their probability

density functions are defined as

fα(x) =
1

2π

∫ ∞

−∞
exp(jδt− γα|t|α)e−itxdt, (2.6)

where α is the characteristic exponent which increases the impulsive behaviour as it

becomes smaller, with a range (0,2]. γ is the dispersion parameter which measures

the spread of the SαS pdf. δ is the mean or the median of an SαS pdf and depends

on the value of α, because the stable distribution has undefined mean for α ≤
1. Figure 2.4 illustrates SαS pdfs for different values of α and shows how the

impulsivity nature of the distribution increases as α decreases. One way to obtain

a reliable receiver for impulsive noise channels is to study the original SαS pdf in
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-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Symmetric α-stable densities, β  = 0, γ  = 1, δ  = 0

α = 0.5
α = 1
α = 1.5
α = 1.8
α = 2

Figure 2.4: Standard SαS distributions( γ = 1, δ = 0 ).

(2.6) for certain values of α. Depending on α there are some special cases of SαS

pdfs that have closed form expressions: These are the Gaussian distribution when

α = 2 and the Cauchy distribution when α = 1. In this thesis the Cauchy receiver

will be implemented for both binary and non-binary turbo codes since this has been

shown to be a good receiver for impulsive noise channels for a range of α values [14].

The pdf of a Cauchy distribution is defined as

f1(x) =
γ

π[γ2 + (x− u)2]
. (2.7)

Where u is the mapping symbols and for BI-AWGN u ∈ {−1,+1}. As we can see

in (2.7) we must know the dispersion parameter γ which is given by

γ =

√√√√ A2

4C
( 2
α
−1)

g (Eb
N0

)
(2.8)

In equation (2.8) Cg ≈ 1.78, which is the exponential of the Euler constant and

A is the peak amplitude of the transmitted signal. Eb
N0

can be defined in terms of
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the geometric SNR and code rate Rc, which for BPSK modulation is [13],

Eb
N0

=
SNRG

2Rc

=
1

4RcCg
(
A

S0

)2, (2.9)

where S0 is the geometric noise power of an SαS distribution given by

S0 =
(Cg)

1/αγ

Cg
. (2.10)

Henc, the difference between the Gaussian noise power N0 and the geometric SαS

noise power S0 is that the non-Gaussian distributions have infinite variance. In other

words, the conventional definition of the SNR based on second order statistics is no

longer applicable.

2.2.2.1 Generation of Alpha Stable SαS Random Variables

The generation of SαS variables is described in [14, 15] and the procedure of this

generation will be explained in this section. Let U be a uniform random variable

in
(−π

2
, π

2

)
, and W is the standard exponential. In order to generate U and W , we

need to introduce two uniformly distributed samples u1 and u2 in (0,1). Then U

and W can be evaluated, respectively, as

U = π(u1 − 0.5) (2.11)

W = ln(u2) (2.12)

Thus, the SαS random variable Z can be generated as:

Z = γ
sin(αU)

(cos(U))
1
α

[
cos[(1− α)U ]

W

] 1−α
α

(2.13)

while, when α=1

Z = γ tan(U) (2.14)

For clarification and comparison purposes, figure 2.5 shows that as α becomes

smaller, the density and the strength of the deviation increase to an extremely

impulsive behaviour. Figure 2.5 displays the behaviour of the noise from Gaussian

when α = 2 and to quite impulsive when α = 0.5.
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Figure 2.5: Simulation of 1000 samples of independent SαS stable noise,( γ = 1).
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2.2.2.2 BER Performance Analysis of Uncoded Systems on SαS Noise

Channel

To illustrate the SαS noise impact on the communication systems which is displayed

in figure 2.2, Z in equations (2.14) and (2.13) will be substituted into equation (2.3)

instead of n, when γ is calculated from equation (2.8). Then a hard decision will be

taken on the demodulated received signal to extract the simulated results.

The analytic BER performance of BPSK uncoded system was defined in [16] as

Pe = Qα

(√
4RcC

2
α
−1

g
Eb
N0

)
(2.15)

where Rc = 1 for coded systems.

Ultimately, figure 2.6 displays the comparison between the simulated and the-

oretical BER performance of an uncoded communication system on SαA stable

channel for different values of α.
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Figure 2.6: Simulated and theoretical BER performance of uncoded system on SαS
noise channel for various values of α.
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2.2.3 Middleton Class A Distributions

Middleton developed three statistical noise models for non-Gaussian channels. These

models are; class A, which represents narrowband noise, class B, that describes

broadband noise and class C, which is the sum of class A and B models. Since

Middleton class A is well known to mimic the channel behaviour in a power line

environment, it will be the only considered model in this section. Middleton class

A was first introduced in [5, 17].

Middleton class A distributions are commonly used to model the impulsive noise

of power-line channels [5] and their PDF is defined as

p(X) =
∞∑

m=0

e−AAm

m!
.

1√
2πσ2

m

exp

(
−|X|

2

2σ2
m

)
, (2.16)

where the variance σ2
m is given as

σ2
m = σ2

u

( m
A

+ Γ

1 + Γ

)
(2.17)
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Figure 2.7: PDF Middleton class A distribution.
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and

σ2
u = σ2

G + σ2
I , Γ =

σ2
G

σ2
I

. (2.18)

The parameters σ2
G and σ2

I are the variances of Gaussian noise and impulsive noise,

respectively.
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Figure 2.8: Simulation of 1000 samples of independent Middleton class A noise
channel, for various values of Asand Γ.
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Γ is the background to impulsive noise ratio parameter which indicates the

strength of impulsive noise compared to Gaussian noise. A is the impulsive index

which increases the impulsive behavior as it becomes larger that takes values 6 1

and becomes Gaussian when A is small. Figure 2.7 illustrates the Middleton class

A noise PDF vs random variables for various values of A and also the comparison

between the AWGN and the impulsive PDFs.

For a further demonstration of Middleton class A parameters influence on the

noise pattern, figure 2.8 shows Middleton class A random variables vs samples pat-

tern for a few scenarios and for 10000 samples. For more detail about Middleton

class A impulsive noise model, which is extensively studied and employed in the

literature, please refer to chapter 4, chapter 5 and [6,18–22].

2.2.4 Multi-Path Frequency Selective Channels

Figure 2.9 shows uncoded BPSK on a frequency-selective channel with AWGN and

the output y is given by

y = h ∗ x+ n (2.19)

Multipath channel

Mod.

BPSK OFDM
Mod. +

xXk z

n

y
Ch. (h)

Figure 2.9: General diagram of uncoded BPSK modulation in frequency-selective
channel in the presence of AWGN noise channel

where x is [±1] BPSK symbols, h is the frequency-selective channel coefficients

and n is the AWGN samples.

Hence, there are several advantages of utilizing OFDM, mainly to eliminate the

effect of multi-path channels and also it’s suitability for high data rate communica-

tion services. OFDM is implementing by taking discrete Fourier transform (DFT) to

block of K complex baseband symbols, and digital to analog (DA) conversion to the

complex OFDM signals. In addition the cyclic prefix will be added to the OFDM

signals as a guard interval to protect the signals from inter-symbol interference. see

section 4.2.1.2 for more details.
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However, according to [23] in chapter 11 (equation 11.1-10), the BER perfor-

mance of this system can be estimated by

Pe = Q
(√

2γb

)
(2.20)

where γb is the SNR per bit and is evaluated as

γb =
Eb

2σ2
G

N∑

n=1

|H(n)|2 (2.21)

Here N is the number of OFDM sub-carriers and H is the frequency response of

the channel and can be evaluated by

H(n) =
L∑

l=1

h(l)e−2jπ lk
n (2.22)

2.3 Channel Coding

Shannon in 1948 introduced that information could be encoded and decoded reliably

in the presence of noise at any information rate less than the channel capacity [24].

He also described the existence of good codes, but he could not explain how to

construct these codes. However, he opened the door for a large body of research

on designing a good code [25, 26]. In 1950 R. W. Hamming, first presented the

Hamming code from his research ’Error Detecting and Error Correcting Codes’ [27].

The Hamming code is a linear error correcting code, it can detect up to two bits and

correct one bit only. The main focus of the research in the period from early 1950’s

and late 1960’s was developing efficient encoding and decoding approaches [28–37].

For instance, Reed and Muller presented their codes and decoder (Reed and Muller

code) in 1954. Moreover, in 1955, Elias introduced the convolutional code in [28].

While in 1962 Gallager presented the Low-Density Parity-Check (LDPC) for

first time in [35]. Today LDPC codes are iterative codes that can perform within

0.0045 dB away from Shannon limit. This optimum performance is a result of the

sparseness of H (the parity check matrix) which can achieve large dfree and reduce

the complexity of the decoding. Unfortunately, this invention was ignored until 1995

when Mackay rediscovered LDPC codes to create the powerful error-correcting code

we use today [38].

17



2.3 Channel Coding

In the 1970s, the ML and BCJR algorithms were introduced by Viterbi and

Bahl [39] in [40] and respectively. Moreover, in 1981 Goppa introduced algebraic-

geometric codes and after one year, Ungerboeck presented trellis coded modula-

tion [4, 41]. Another iterative code was published under the title of ’Near Shannon

limit error-correcting coding and decoding: Turbo-codes’ in 1993 by C. Berrou [3].

This coding scheme with non-binary GF(q) will be the interest of this thesis. Non-

binary turbo codes are formed from the parallel concatenation of two non-binary

recursive systematic convolutional codes separated by an interleaver. The difference

between non-binary and binary convolutional codes is the coefficients of their gen-

erator polynomials are now defined in a finite field GF(q), where q = 2p and p is

an integer greater than 1. Non-binary convolutional codes can be decoded with a

trellis-based decoder such as Viterbi’s algorithm [42] and the BCJR algorithm [40],

but the complexity is higher compared with binary decoders. However, despite the

increase in complexity the advantages of non-binary turbo codes compared to bi-

nary turbo codes are: better convergence for iterative decoding, larger minimum

Hamming distances, less sensitivity to puncturing patterns and robustness towards

the flaws of the component decoding algorithm, in particular when the Maximum

A Posterior algorithm is simplified to the Max-Log-MAP [43]. However, the lat-

est coding scheme was the Polar code which was proposed by Arikan in 2009 [44].

Arikan describes Polar code as a class of capacity-achieving with a low encoding and

decoding processes [45].

2.3.1 Channel Capacity

Error correcting codes allow errors in the received signal to be detected and/or

corrected by a decoder in the receiver. Hence, in [24] Shannon proved that utilizing

a proper decoding approach can effectively eliminate errors resulting from the noisy

channels, given that the data rate is less that the channel capacity. Thus, the

Shannon capacity limit in terms of the transmission rate Rc, the bit energy Eb and

the noise power N0, can be estimated by

Cmax = log2

(
1 +

RcEb
N0B

)
(2.23)

where B is the bandwidth of the channel in Hz. This is can be approximated to

get the minimum required SNR for reliable communications, and it is known as the
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Shannon bound

Eb
N0

>
2Cmax − 1

RcCmax
(2.24)

For very large values of Cmax or unlimited B i.e., Cmax −→ 0, then the minimum

SNR threshold can be obtained as

Eb
N0

> lim
Cmax−→0

2Cmax − 1

Cmax
= ln(2) = −1.59dB (2.25)

Figure 2.10 shows this limit, and also demonstrates the relation between Shannon

limit with the code rate Rc [26, 41]. In essence, this curve shows the minimum

required SNR to obtain error-free communications with a certain information rate

Rc. For example, to achieve BER performance of 1×10−5 with a rate Rc = 1
2

coded

system on AWGN channel with BPSK modulation, the minimum SNR is 0.188 dB.
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Figure 2.10: Shannon limit as a function of information rate code Rc.
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SNR= Eb/N0(dB)
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Figure 2.11: BER performance of information rate 1
2

(63057, 44735) convolutional
code and (37, 12, 65536) rate 1

2
turbo code with 18 iterations.

Figure 2.11 displays the comparison between the Shannon limit for rate 1
2

coded

systems and a (63057, 44735) convolutional codes with rate 1
2
. It shows that at a

BER of 10−5 the error performance of this code is 1.912 dB away from Shannon

limit. In addition, this figure also shows the comparison between the optimal limit

and the performance of a rate 1
2

turbo code with 18 iterations, and the finding is that

the Eb/N0 required by this code to achieve a BER=10−5 is greater than the Shannon

limit by 0.337 dB only. It can be concluded from this figure that the Shannon limit

can be approached with a perfectly designed code with appropriate code length and

optimal decoding algorithm [46].

However, there are many coding approaches, but the main interest of this thesis

is on convolutional and turbo codes. In the next sections the theoretical background

behind these coding schemes will be described.

2.3.2 Convolutional Codes

The convolutional code was introduced first in 1955 by Elias [28]. A convolutional

encoder is a set of linear time-invariant digital filters, consisting of n 1-bit stor-
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age elements (D-type flip-flops). Figure 2.12 shows a (1, 5/7)8 recursive systematic

convolutional (RSC) code as an example of a convolutional encoder.

+

+

DD
S1

c2k

mk

c1k

S0

Figure 2.12: (1, 5/7)8 Recursive systematic convolutional code encoder diagram.

The encoding process starts when the input stream passes through two filters

producing two output streams. These two streams are mixed together to produce

the coded stream (codewords), [c1
1c

2
1 c

1
2c

2
2 ...c1

kc
2
k]. The corresponding codewords of

this example can be evaluated by

c1
k = mk (2.26)

c2
k = mk ⊕ S0 (2.27)

Thus, for every bit of input, there are two coded output bits, resulting in a rate

Rc = 1
2

code. It is worth mentioning that the constraint length K is an integer that

specifies the memory of the code (number of memory elements plus one) and for our

example K = 3. Thus, codes with bigger K can achieve better performance, but at

the cost of increasing the decoding complexity.

2.3.2.1 Representations of Convolutional Codes

There are many ways to describe convolutional codes, such as state tables, state

diagrams, trellis diagrams and flow-graphs.
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2.3.2.2 State Tables

State tables are an essential way to present convolutional code construction. Also, all

other representation approaches will build on the state tables elements. Basically,

the memory elements can contain 2K possible values, where K is the number of

memory elements. So, for the example in figure 2.12 there are 4 possible values (00,

01, 10, and 11). These values are called states and only certain state transitions are

allowed. For instance, we cannot go from state 00 to state 11 in one step or stay

in state 10. All possible state transitions, along with their corresponding input and

outputs, can be determined from the encoder and are recorded in a state table. The

state table for the non-symmetric convolutional codes is shown in table 2.1.

Table 2.1: (1, 5/7)8 RSC state table.

Input Initial States Next States Output

mk S0 S1 Ŝ0 Ŝ1 c1
k c2

k

0 0 0 0 0 0 0
1 0 0 1 0 1 1
0 0 1 1 0 0 0
1 0 1 0 0 1 1
0 1 0 0 1 0 1
1 1 0 1 1 1 0
0 1 1 1 1 0 1
1 1 1 0 1 1 0

2.3.2.3 State Diagrams

A state diagram is just a compact form of the state table. However, it is much easier

to determine a codeword corresponding to a message using the state diagram.

Starting from state 00, trace the message through the state diagram and record

each output as showing in figure 2.13.

2.3.2.4 Trellis Diagrams

The trellis diagram is made up of nodes connected by edges. Each of the nodes

represents the states in the state diagram. Also, every column of the nodes represents

all the possible states at a certain time. In addition, each node can have two possible

paths (in binary systems and more in non-binary system) to move to the next state.

The figure 2.14 shows the binary trellis diagram of the (1, 5/7)8 RSC. It clearly can
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Figure 2.13: (1, 5/7)8 RSC state diagram.

be noticed that each edge is labelled with an input and its corresponding coded

output.

1/10

01

0

10

11
1/10 1/10 1/10

0/00 0/00 0/00 0/00

0/10 0/100/100/10

0/00

1/11 1/11 1/11 1/11 1/11

1/101/10 1/10
0/00

Figure 2.14: Trellis diagram of (1, 5/7)8 RSC.

2.3.2.5 Transfer Function and Flow-Graph

In order to compute the performance of a convolutional code, it is essential to have

a method that helps to enumerate all paths in the trellis. This method is mainly the

transfer function, which takes into account all paths through the trellis that split
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from the all zero path and then re-merge [46]. The transfer function can express the

Hamming distance of each path diverging from the all-zero state, and it can evaluate

the number of paths which are with a given Hamming distance. Furthermore, it can

tell the length of each path and the number of input bits which are associated with

each path from the all-zero path. In order to derive a transfer function, it is very

convenient first to draw the corresponding flow-graph.

Xd

Xa Xc Xa′D2

D0

D

D
D

D2Xb

D

Figure 2.15: Signal flow-graph diagram of (1, 5/7)88 RSC.

Figure 2.15 displays the signal flow-graph of the (7, 5)8 RSC code. Xa, Xb, Xc

and Xd are representing the states [00, 01, 10, and 11] respectively. While, X ′a is the

duplication of state 00. Also, The power of D is reflecting the Hamming distance

between the output bits corresponding to each state transition and the output 00.

Hence, the transfer function T (D) defined by

T (D) =
Xa′

Xa

(2.28)

and it can be evaluated from the state equation with the help of the flow-graph,

which are

Xb = DXd +DXc

Xc = D2Xa +Xb

Xd = DXd +DXc

Xa′ = D2Xb (2.29)
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After solving this set of equations the transfer function will be

T (D) = D5 + 2D6 + 4D7 + 8D8..... (2.30)

Equation (2.30) explicitly tells that the (1, 5/7)8 RSC code has one path with dis-

tance of five, two paths with distance of six and so on. Clearly, the minimum free dis-

tance dfree for this code is five, therefore, this code can correct up to t =
dfree−1

2
= 2

errors for any input length.

2.3.2.6 Decoding Convolutional Codes

Several algorithms have been developed for decoding convolutional codes. The one

most commonly used is the Viterbi algorithm, which is a maximum likelihood se-

quence estimator [40,42,47]. A variation on the Viterbi algorithm is the soft-output

Viterbi algorithm (SOVA), which provides not only decoded symbols but also an

indication of the reliability of the decoded values [48]. Another algorithm is the max-

imum a posteriori (MAP) decoder which is referred to as the BCJR algorithm that

computes probabilities of decoded bits [40]. The BCJR algorithm is somewhat more

complex than the Viterbi algorithm. However, there are a few approximations to this

approach with less complexity and close performance such as Log-MAP and Max-

Log-MAP algorithms which are ideally suited for decoding turbo codes [43, 46, 49].

Since the Max-Log-MAP is implemented in chapters 3, 4 and 5 and it is just a

modified BCJR algorithm, the BCJR algorithm will be explained in detail.

The BCJR decoding algorithm is suitable for estimating bit and/or state proba-

bilities for a finite-state Markov system. The BCJR algorithm computes the poste-

rior probability of symbols from Markov sources transmitted through discrete mem-

oryless channels. Since the output of a convolutional coder that passes through a

memoryless channel (such as an AWGN channel) forms a Markov source, the BCJR

algorithm can be used for maximum posterior probability decoding of convolutional

codes. Symbol by symbol MAP algorithm is an optimal decoding minimizing sym-

bol error probability. The goal of the decoder is to determine log likelihood ratios

(LLR) for all possible inputs. For a rate Rc = 1
2

RSC code on a BI-AWGN channel,

the LLR can be defined as

LLR(ui|y) = ln
P (ui = +1|y)

P (ui = −1|y)
(2.31)
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where P (ui|y) is a posterior probability (APP) of ui given the received y and ui are

the information bits ∈ {0, 1} that are mapped into {0↔ +1, 1↔ −1}.
In order to get these logarithm likelihood ratios, all symbol posteriori probabili-

ties P (ui = +1|y) must be obtained as,

P (ui = +1|y) =
∑

u+

p(si−1 = s′, si = s, y) (2.32)

where si is the state at time i, u+ is a set of state pairs (s, s′) which state transition

(si−1 = s′) → (si = s) is corresponding to the input (0) or ui = +1. In the same

way the denominator of equation (2.31) can be evaluated, when the state transition

(si−1 = s′)→ (si = s) is corresponding to the input (1) or ui = −1. With the help

of Bayes’ rule, we need only calculate p(s′, s, y) = p(si−1 = s′, si = s, y) [50]. Then

we need to sum all these state transitions in the numerator and denominator. The

pdf p(s′, s, y) = p(si−1 = s′, si = s′, y) is defined as

p(s′, s,y) = αi−1(s′)γi(s
′, s)βi(s) (2.33)

where αi(s) is the forward recursion, βi(s) is the backward recursion and γi(s
′, s) is

the state transitions factor, and these parameters can be evaluated, respectively, by

αi(s) =
∑

s′

γi(s
′, s)αi−1(s′) (2.34)

βi−1(s′) =
∑

s

βi(s)γi(s
′, s) (2.35)

γi(s
′, s) = p(s|s′)p(yi|s′, s)

= p(ui)p(yi|ui) (2.36)

Hence, the initial values for the forward recursion αi(s) is

α0(s) =





1, s = 0,

0, s 6= 0,
(2.37)

and the backward recursion βi(s) is initialized according to

βL(s) =





1, s = 0,

0, s 6= 0,
(2.38)
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where L is the time when the termination bits will be padded at the end of codeword

[51].

Finally, for more simplification γi(s
′, s) can be rewritten for the AWGN channel

as

γi(s
′, s) =

1

2πN0

exp

[
−||yi − ci||2

N0

]
(2.39)

2.3.3 Non-Binary Codes

2.3.3.1 Non-Binary Fields Construction

Finite fields are very important in many areas, especially for channel coding theory.

For example, binary is the smallest finite field which consists of {0,1} elements.

For general definition, let q be positive prime integer, then the finite field will be

GF(q)={0, 1, ..., q − 1}. These fields must satisfy the following conditions under

the two binary real operations (+), and (.):

1. Associativity.

2. Distributivity.

3. Commutativity under addition.

Table 2.2 showing one of these operations (+) on field of 7 as an example.

Table 2.2: Addition table for GF(7)

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

In addition, we can extend the finite field so that it is represented by a primitive

polynomial which is used to define GF(pq), where p is the primitive element with a

27



2.3 Channel Coding

root of β. This class of finite field is called an extension field and will be considered

in the next chapters. In order to clarify the idea of constructing the extension field

GF(23) will be illustrated in table 2.3 as an example. Hence, the extension field

GF(23) can be generated by using the primitive polynomial f(x) = x3 + x + 1. If

we consider β as the root of f(x) then β3 = β + 1 [52].

Table 2.3: Construction of GF(23).

Element in GF(23)
Element represented as the sum

of lower powers of β

Element represented as 3-tuple

vector over GF(2)

0 0 000

1 1 001

β β 010

β2 β2 100

β3 β + 1 011

β4 β2 + β 110

β5 β3 + β2 = β + 1 + β2 111

β6 β4 + β3 = β2 + β + β + 1 = β2 + 1 101

2.3.3.2 Non-binary Convolutional Codes

In this section, we will shortly, describe the encoding scheme of a non-binary con-

volutional code. R. Baldini, F and P.G. Farrell in 1994 introduced the non-binary

convolutional code. They constructed this code based on a ring of positive integers

modulo-q, and this class of codes is suitable for M-PSK modulation technique [53].

Later on this code has been widely used with PSK modulation for many applica-

tions [54]. Figure 2.16 shows the general diagram of a recursive systematic non-

binary convolutional encoder with code rate R = m
m+1

and a constraint length K

defined as the number of memory elements plus one [1]. The m inputs take non-

binary values in Galois field GF(q) .
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Figure 2.16: General Diagram for Non-Binary Convolutional Codes.

2.4 Turbo Codes

2.4.1 Turbo Encoder

Turbo codes are a class of high-performance FEC codes presented by Berrou, Glavieux

and Thitimajshima in 1993 [55]. Turbo codes are built from a parallel concatenation

of two Recursive Systematic Convolutional (RSC) codes separated by an interleaver,

denoted by Π, as shown in figure 2.17.

RSC
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mk

Q

ck

Figure 2.17: Turbo encoder general diagram.

The length-K message m is encoded directly by the first component encoder,
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which produces the parity bits c2; however, it is interleaved before being encoded by

the second convolutional encoder, which produces the parity bits c3. Turbo codes

are systematic codes; thus the bits c1, c2 and c3 are all transmitted and the turbo

codeword is ck = [c1
1c

2
1c

3
1, c

1
2c

2
2c

3
2, . . . , c

1
kc

2
kc

3
k] [56].

2.4.2 Turbo Decoder

There are various optimal and sub-optimal algorithms used to decode binary turbo

codes on the additive white Gaussian noise (AWGN) channel [43]. In the next

chapters, the Max-Log-MAP algorithm is employed to decode non-binary turbo

codes on impulsive noise channels. Basically, this algorithm finds the maximum

probability input symbol by estimating the probability of each trellis edge that

corresponds to one of the q inputs. The probability of the state transitions from the

state s0 at time t− 1 to state s1 at time t is given as

P (s0, s1,y) = P (s0,y
−
t )P (s1,yt|s0)P (y+

t |s1), (2.40)

where yt, y−t , and y+
t are the received symbols at time (t), the received symbols

before time (t), and the received symbols after time (t), respectively [56]. If we take

the logarithm of equation (2.40), we obtain

information
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Figure 2.18: Turbo decoder general diagram.
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mt(s0, s1) = lnP (s0,y
−
t ) + lnP (s1,yt|s0) + lnP (y+

t |s1)

= αt−1(s0) + γt(s0, s1) + δt(s1) (2.41)

where γt is the probability transition metric between s0 and s1, αt is the forward

recursion, βt is the backward recursion. In the Max-Log-MAP algorithm, αt and βt

can be calculated as

αt(s0) = max
i
{αt−1(si) + γt(si, s0)} , (2.42)

δt(s1) = max
i
{δt+1(si) + γt+1(s1, si)} . (2.43)

The turbo decoder consists of two component decoders in series as shown in

figure 2.18. Each constituent decoder has two inputs:

• Received soft channel values.

• A priori information.

In general, the output from the 1st decoder is used to assist the 2nd one and vice

versa, thus completing a loop. This cycle is known as a decoding iteration. Errors

that were not corrected in one decoding iteration may be decoded in the next it-

eration. Hence, improvements in performance can be achieved with each iteration,

but we find that the improvements become less with each iteration until we reach

an optimal solution [2].

When the performance gains get smaller, that means an optimal solution is

reached. This property is known as convergence.

To further explain the decoding procedure and with the help of the trellis and

the BCJR algorithm for convolutional codes, algorithm 1.1 illustrates the decoding

procedure step by step as can be found in [56].
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Algorithm 2.1 Binary turbo decoding

1: procedure Decoder(trellis encoder1, trellis2, interleaver index
∏

, Number of

iterations(I), Y 1, Y 2, Y 3)

2: E1 = 0

3: for L=1:I do

4: A1=
∏−1(E2)

5: L1 = logBCJR(trellis1, Y 1, Y 2, A1)

6: E1 = L1 −R− A1

7: A2 =
∏

(E1)

8: L2 = logBCJR(trellis2, Y 1, Y 3, A2)

9: E2 = L2 −∏(R)− A2

10: End for

11: LLR =
∏−1(L2)

12: end procedure

2.5 Multi-Input Multi-Output

Employing more than one antenna at the receiver of the communication systems

has the potential of boosting coverage and capacity. Figure 2.19 illustrates a general

block diagram of the communication systems with multiple transmitting antennas

Nt and multiple receiving antennas Nr on slow fading channels. Where η is the

AWGN component, H(Nt × Nr) is the MIMO channel matrix. In this case the

received signal y can be calculated at each rth antenna as

y(i) =
Nt∑

i=0

snh(i, r) + ηr (2.44)

In order to eliminate the effect of the fading MIMO channels there are several

types of channel estimations. In this section, three commonly used channel detectors

are listed bellow [12,23,57–59]
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Figure 2.19: General MIMO system block diagram.

• Maximum Likelihood Detector (MLD)

MLD is the optimum equalizer by minimizing the probability of error and the

output of this detector can be defined as

ŝi =
Nr∑

m=1

∣∣∣∣∣ym −
Nt∑

n=1

hmnsn

∣∣∣∣∣

2

(2.45)

It is very obvious that the complexity of this detector increases exponentially

with MNt , where M is the number of modulation symbols.

• Minimum Mean-Square-Error Detector (MMSE). The MMSE detector weight

matrix W that is selected to minimize the mean error, can be calculated as

W = (HHH + σ2I)hi, (2.46)

where I is the Nt ×Nr identity matrix.
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Figure 2.20: Performance of ZF, MMSE, and MLD with Nr = Nt = 2 MIMO
systems.

• Zero Forcing Detector (ZF)

ZF applies the inverse of the channel frequency response (CRF), and the weight

matrix W of ZF detector can be estimated as

w(k) =
H∗(k)

|H(k)2| (2.47)

Figure 2.20 compares the BER performance of these detectors, and it shows that

the MLD sufficiently achieves a larger gain that the ZF and MMSE.

2.6 Literature Survey of Transmission Methods

over Impulsive Channels

2.6.1 Error Correcting Codes on Non-Gaussian Channels

Turbo codes and LDPC codes are very well known coding schemes that achieve near-

Shannon limit performance on the AWGN channel. However, their performance
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degrades when the channel exhibits fading effects or suffers from impulsive noise.

Impulsive noise or non-Gaussian noise can be generated by natural phenomena or be

man-made. Commonly presented examples of this natural phenomena are underwa-

ter acoustic noise and the lightening in the atmosphere [6,17], while electromagnetic

interference EMI, the background noise on PLC channels and unwanted radiation

from the electrical and electronic devices such as; computers, monitors and printers

are examples of the man-made impulsive noise [60–63]. In addition, telecommunica-

tion equipment such as the antennas and imperfect designed receivers, can be one of

the most damaging sources of impulsive noise. A conventional communication sys-

tem that considers Gaussian noise as a default scenario would be severely degraded

in performance.

In this thesis, we investigate the performance of non-binary turbo codes on addi-

tive alpha stable SαS noise channels. There appears to be no work in the literature

on non-binary coding schemes and their performance on alpha stable SαS noise,

but there is some work in the literature on binary turbo codes and impulsive noise.

In [64], an alternative way to design a receiver was proposed where the conventional

Euclidean distance metric was replaced by p-norm metric to mitigate the impulsive

noise. Binary turbo decoding in a Middleton class A noise environment with a class

A filter was presented in [65] as a power line communication receiver. Burnic et

al. [66] also evaluated the performance of binary turbo codes on Gaussian mixture

distributions noise channels.

However, the main advantage of PLC is in utilizing the established electrical grid

which provides every single property on the planet with electricity. Since the power

networks are not designed for communication services, there are many obstacles to

overcome for reliable communication over the transmission lines. These obstacles

are: attenuation, impulsive noise and multipath frequency selectivity. Communica-

tion over the transmission line is most likely to be exposed and affected by Middle-

ton class A noise model due to the electromagnetic interference [5]. Using coded

PLC system is an efficient way to enhance the bit error rate performance as can be

seen in [65,67,68]. The authors used different coding schemes and compared coded

BER with uncoded BER and showed the significant gain over uncoded PLC sys-

tem. Even though they illustrated a great gain, their systems still lack practicality

by not considering a realistic multipath frequency selective channel. Typical PLC

multipath frequency selective channels specifications are well presented in [69, 70].
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In this thesis to prevent the burst errors due to the impulsive noise, non-binary

turbo code is used and to mitigate the effect of large noise signal values, blanking is

applied [52, 71, 72]. To the best of the authors’ knowledge, non-binary turbo codes

have not been considered on PLC systems.

For low complexity and near optimal performance, a sub-optimal decoding al-

gorithm, Max-Log-Map, is used [43] which is a simplified Maximum A Posteriori

algorithm. Furthermore, orthogonal frequency-division multiplexing is employed to

combat the frequency selectivity. In addition, OFDM is a powerful tool which is

highly resistant to the effect of impulsive noise by spreading the noise signal energy

simultaneously over sub-carriers [73,74].

2.6.2 Coded Wired and Wireless MIMO on Impulsive Noise

Exploiting the already established electrical grid does position PLC favorably, al-

though the unsuitability of power line networks for communication services can

make transmission quite unreliable because of vulnerability to impulsive noise and

the frequency-selective channels. In such extreme environments, error correction

alone cannot combat the serious effect of the channel and must be combined with

signal processing techniques such as channel estimation, channel equalization and

OFDM, as can be seen in [75–77]. These papers show the benefits of using coding

channel on SISO PLC systems.

However, recently, the demand for high data rate communication networks has

been increasing. Even though MIMO systems have been showing a great perfor-

mance in the matter of coverage, reliability and capacity only a few research papers

have deployed coded MIMO with PLC. Since the power line networks are not de-

signed for communication purposes, transferring data over these cables is vulnerable

to impulsive noise due to electromagnetic interference [5]. However, it is well known

that utilizing channel coding would enhance the overall communication bit error

rate performance on such a harsh environment, as we can conclude from the point

to point coded PLC systems in [65,67,68,78]. But in large houses or buildings these

SISO coded systems might lack in coverage and capacity [79].

However, since the 1990s, there are many studies aiming to enhance the com-

munication link reliability and increase the data rate on wireless telecommunication

systems [80, 81]. The first released MIMO standard for power line networks was
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in 2011 by the International Telecommunications Union-Telecommunication Stan-

dardization Sector (ITU-T) in their standard (ITU-T G.hn) and also named by the

Institute of Electrical and Electronics Engineers (IEEE) as IEEE1901 [82,83].

In order to achieve that goal, the need for accurate statistical physical models

to imitate the behaviour of MIMO PLC channels is increasing. Authors in [84–89]

are interested in modeling a MIMO-PLC channel based on mathematical algorithms

and/or by modifying the SISO-PLC channels. In [85] and [87], the authors proposed

a model of MIMO channel that was totally reliant on the multi-path frequency

selective channel model for SISO, which is presented in [69] by M. Zimmermann and

K. Doster. While in [84] and [88], they depend on a mathematical analysis that

represents some physical phenomena in the realistic channel, such as the coupling

effects and the multi-path propagation. Moreover, several models have been designed

based on multi-conductor transmission theory (MTL), which can be achieved by

computing the corresponding parameters mathematically or by measuring them [90–

92].

In this thesis, the synthetic statistical MIMO PLC channel model in [89] has been

used. The rationale behind utilizing this model is the fact that it is grounded in a

pure phenomenological approach and also has the added benefit of being compatible

with the measured channel.

2.7 Summary

In this chapter, the theoretical background of the main concepts that this work

relies on have been presented, such as basic knowledge about non-Gaussian noise

models and their applications. Also, the comparison between uncoded communica-

tion systems on AWGN channels with the uncoded systems on impulsive noise have

been carried out. In addition , an introduction to channel coding and the Shannon

limit have been explained briefly. Since trellis codes are the main interest of this

thesis, the decoding and encoding procedure of trellis codes have been illustrated. A

brief knowledge about non-binary field construction and non-binary convolutional

codes have been presented as well. Furthermore, MIMO communication systems

with most common channel estimators have been illustrated.
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Chapter 3

Non-Binary Trellis Codes on

Additive SαS Noise Channels

3.1 Introduction

Binary codes with iterative decoders are thought to be able to accomplish optimum

levels of performance on conventional communication channels. However, their per-

formance on more practical channels can deteriorate because of the existence of

burst errors or impulsive noise. A better performing coding scheme is the class of

non-binary codes, which are known to be more effective in correcting burst errors,

but interestingly there is very little research reported in the literature investigating

non-binary codes on impulsive noise channels. Therefore, the performance analysis

of non-binary trellis codes on AWGN channels has been introduced in this chapter

with numerical examples. Furthermore, an investigation into the performance of

non-binary convolutional codes and turbo codes defined in a finite field GF(4) on

symmetric alpha-stable impulsive noise channels and compared with binary codes

that achieve similar BER performance on the AWGN channel has been carried out.

A Cauchy receiver is also employed to mitigate the effects of the channel to as-

sist the turbo decoding. The simulation results show that although the non-binary

trellis codes performs similarly to the binary turbo code on the AWGN channel, it

achieves a significant coding gain over the binary trellis code as impulsiveness in-

creases. This chapter is organized as follows: Section 3.2, introduces two classes of

non-binary convolutional codes and their construction. In section 3.3, the decoding

algorithm (BCJR) employed in this chapter is presented with the appropriate mod-
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3.2 Non-Binary Convolutional Codes

ifications that make it suitable for use with the Cauchy receiver. In section 3.4, the

flow-graph of the ββ2/1 non binary convolutional code is explained in detail. Sim-

ulation results of the BER performance of non-binary, binary convolutional codes,

binary, non-binary turbo codes and uncoded systems on SαS noise channels are

presented in section 3.7. Finally, section 3.8 presents our conclusions. This chapter

is based on our published work in [71].

3.2 Non-Binary Convolutional Codes

3.2.1 4-States Non-Binary Convolutional Code

Figure 3.1 shows a rate 1
2

RSC encoder defined in GF(4) = {0, 1, β, β2}, where β

is a primitive element in GF(4). This code consists of one memory element D, two

forward multipliers G=[ β , β2 ], and one feedback multiplier F=[ 1 ]. The outputs

of this code c1 and c2 can be described by:

c1(i) = m(i), (3.1)

where m is the input symbols.

c2(i) = (G(2)×m(i))⊕ S0, (3.2)

where S0 is current state.

S′
0

D

c1

c2

1

β2 β

mk

S0

Figure 3.1: β β2/1 Non-binary convolutional encoder.
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Hence, the next state S ′0 can be calculated by:

S ′0 = G(1)×m(i)⊕ (F × (G(2)⊕m(i)))⊕ S0 (3.3)

This code is known to have the maximal free distance, dfree = 10, for a non-

binary RSC code in GF(4) and constraint length K = 2.

Table 3.1 shows all possible inputs and states transitions S → S ′ and the corre-

sponding coded symbols.

Table 3.1: State Table of β β2/1 non-binary convolutional code

Input
Initial

State S

Next

State S ′

Output

c1c2

Input
Initial

State S

Next

State S ′

Output

c1c2

0 0 0 00 0 β β 0 β

1 0 1 1 β 1 β β2 10

β 0 β β 0 β β 0 β β

β2 0 β2 β2 β β2 β 1 β2 0

0 1 1 01 0 β2 β2 0 β2

1 1 β 1 β2 1 β2 0 11

β 1 β2 β 1 β β2 1 β β2

β2 1 0 β2 β2 β2 β2 β β2 1

In addition, the trellis diagram is shown in Figure 3.2. Comparing to the binary

trellis, we can clearly see that although the number of states for the field of GF(4)

non-binary convolutional code is the same as the (7, 5)8 binary convolutional code

(see Figure 2.14), the number of branches in the trellis are doubled since there are

four branches entering and leaving each node. Furthermore, from the state table, we

can draw the signal-flow graph as shown in Figure 3.5, which is more complicated as

compared to the signal flow graph of a 4-state binary convolutional code in Figure

2.15.

However, as shown in Figure 3.2, one of the shortest path is state0 −→ stateβ2−→
state0 in terms of squared euclidean distance, which can be calculated as:

d2
free = d2

(0−β2) + d2
(β2−0) = 10
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1

0

β2/β2β
1/1β

β/β0

β/β0

1/1β

0/01

1/1β2

β/β1

β/ββ

0/0β

1/10

β/ββ2

0/0β2

0/00 0/00

β2

β2/β2β2

β2/β20

1/11

β2/β2β

β2/β21

β

Figure 3.2: The trellis diagram of the β β2/1 convolutional code.

Then the asymptotic coding gain over uncoded BPSK is calculated as

ξ = 10 log10

(
d2
free/coded

d2
free/uncoded

)
= 10 log10

(
10

4

)
= 3.98dB. (3.4)

To implement this code in Matlab, it is worth mentioning that normally we add

an extra symbol to the end of the message to make sure the codeword is terminated.

In this way, we can always trace back path state0 during the decoding procedure.

3.2.2 16-States Non-Binary Convolutional Code

Fig 3.3 illustrates the β1β/β21 RSC non-binary convolutional encoder with rate

1
2
. As we can see, this code consists of; two memory elements D, three forward

multipliers G=[ β , 1, β ], and two feedback multipliers F=[ β2 , 1]. Its state table is

given in Table 3.2 and the corresponding codeword (c1c2) and the states transitions

can be obtained by:

c1(i) = m(i), (3.5)
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S1

mk

c2

c1

1β β

β2

D D

1

S0S′
0 S′

1

Figure 3.3: β1β/β21 Non-binary convolutional encoder.

c2(i) = S1 ⊕ (G(1)×m(i)), (3.6)

S ′0 = (m(i)×G(3))⊕ (c2(i)× F (2)) (3.7)

S ′1 = S0 ⊕ (((m(i)×G(2))⊕ (c2(i)× F (1))) (3.8)

where S0, S1 , S ′0, S ′1 is current state1, current state2, next state1 and next

state2, respectively.

Furthermore, the corresponding state table which shows all the input and output

of the 16-state β1β/β21 non-binary convolutional code is presented in table 3.2.

From the state table, we can easily draw the trellis diagram as shown in Figure 3.4.

According to the state table and the trellis diagram, one of the shortest path is

state00 −→ state0β−→ stateβ0−→ state00. The free distance is given as:

d2
free = d2

(00−0β) + d2
(0β−β0) + d2

(β0−00) = 16

then the asymptotic coding gain over uncoded BPSK is calculated as

ξ = 10 log10

(
16

4

)
= 6.02dB.
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3.2 Non-Binary Convolutional Codes

Table 3.2: State table of β1β/β21 non-binary convolutional code.

m S0 S1 S ′0 S ′1 c1 c2 m S0 S1 S ′0 S ′1 c1 c2

0 0 0 0 0 0 0 0 β 0 0 β 0 0

1 0 0 β2 β2 1 β 1 β 0 β2 1 1 β

β 0 0 1 1 β β2 β β 0 1 β2 β β2

β2 0 0 β β β2 1 β2 β 0 β 0 β2 1

0 0 1 1 β2 0 1 0 β 1 1 1 0 1

1 0 1 β 0 1 β2 1 β 1 β β 1 β2

β 0 1 0 β β β β β 1 0 0 β β

β2 0 1 β2 1 β2 0 β2 β 1 β2 β2 β2 0

0 0 β β 1 0 β 0 β β β β2 0 β

1 0 β 1 β 1 0 1 β β 1 0 1 0

β 0 β β2 0 β 1 β β β β2 β β 1

β2 0 β 0 β2 β2 β2 β2 β β 0 1 β2 β2

0 0 β2 β2 β 0 β2 0 β β2 β2 0 0 β2

1 0 β2 0 1 1 1 1 β β2 0 β2 1 1

β 0 β2 β β2 β 0 β β β2 β 1 β 0

β2 0 β2 1 0 β2 β β2 β β2 1 β β2 β

0 1 0 0 1 0 0 0 β2 0 0 β2 0 0

1 1 0 β2 β 1 β 1 β2 0 β2 0 1 β

β 1 0 1 0 β β2 β β2 0 1 β β β2

β2 1 0 β β2 β2 1 β2 β2 0 β 1 β2 1

0 1 1 1 β 0 1 0 β2 1 1 0 0 1

1 1 1 β 1 1 β2 1 β2 1 β β2 1 β2

β 1 1 0 β2 β β β β2 1 0 1 β β

β2 1 1 β2 0 β2 0 β2 β2 1 β2 β β2 0

0 1 β β 0 0 β 0 β2 β β β 0 β

1 1 β 1 β2 1 0 1 β2 β 1 1 1 0

β 1 β β2 1 β 1 β β2 β β2 β2 β 1

β2 1 β 0 β β2 β2 β2 β2 β 0 0 β2 β2

0 1 β2 β2 β2 0 β2 0 β2 β2 β2 1 0 β2

1 1 β2 0 0 1 1 1 β2 β2 0 β 1 1

β 1 β2 β β β 0 β β2 β2 β 0 β 0

β2 1 β2 1 1 β2 β β2 β2 β2 1 β2 β2 β
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β2β2

00

01

0β

0β2

10

11

1β

1β2

β0

β1

ββ

ββ2

β20

β21

β2β

β2β2

00

01

0β

0β2

10

11

1β

1β2

β0

β1

ββ

ββ2

β20

β21

β2β

Figure 3.4: The trellis diagram of the β1β/β21 convolutional code.

3.3 Decoding Algorithm of Non-Binary Convolu-

tional Codes on SαS Noise Channels

In this thesis, the modified Max-Log-MAP decoding algorithm will be considered

for decoding both non-binary convolutional codes and act as component decoders

for the non-binary turbo decoder, since it has lower complexity with only minimal

degradation in performance compared to the MAP algorithm. Furthermore, the

main modified equations of the MAP algorithm will be presented in this section. This

method depends on finding the maximum probability input symbol by estimating

the probability of each trellis edge which corresponds to one of the inputs. There

is a relation between states transitions (S,S ′) and their corresponding input(k) as
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Noise Channels

illustrated in table 3.1 and if we can estimate any two of them, we can find the third

one. In other words, by calculating the probability of the state transition at time t,

we can estimate the received symbol at time t+ 1, Y 1
t [56].

P (S, S ′,Y ) = P (S, Y 0
t )P (S ′, Yt|S)P (Y 1

t |S ′), (3.9)

where, Yt, Y
0
t , and Y 1

t are the received symbols at time (t), the received symbols

before time (t), and the received symbols after time (t), respectively. These three

terms in equation (3.9) are commonly written as:

Γt(S, S
′) = P (S ′,Yt|S) (3.10)

At(S
′) = P (S ′,Y 0

t ) (3.11)

Bt+1(S) = P (Y 1
t |S) (3.12)

First, the probability (Γt) of a transition from S and S ′ is calculated. Since we

are working on both Gaussian and SαS noise distributions, Γ for both channels

must be determined as shown below:

Γt(S, S
′))AWGN(MaxLog) = − 1

2σ2
||Y1 −X1||2 −

1

2σ2
||Y2 −X2||2 (3.13)

Γt(S, S
′))AWGN(Map) = exp

(
((Y1 −X1)2 + (Y2 −X2))2

2σ2

)
(3.14)

Γt(S, S
′))Cauchy(MaxLog) = log

(
γ

π[γ2 + ||Y1 −X1||2]

)

+ log

(
γ

π[γ2 + ||Y2 −X2||2]

)
, (3.15)

Γt(S, S
′))Cauchy(Map) =

γ

π[γ2 + ||Y1 −X1||2]

× γ

π[γ2 + ||Y2 −X2||2]
, (3.16)
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3.4 Performance Estimates for Non-Binary Convolutional Codes

where X1 and X2 are the M − PSK symbols of the message and parity check

symbols respectively. Y1 and Y2 are the received message and parity check symbols

respectively, σ2 is the variance of the additive white Gaussian noise and γ is the

dispersion of the SαS distribution. The remaining parameters (A and Bt+1) depend

only on Γt and can be calculated by:

At(S
′) = max{

2v−1∑

i=0

At(Si) + Γt(S
′
i, S)} (3.17)

Bt+1(S) = max{
2v−1∑

i=0

Bt+1(Si) + Γt+1(S ′, Si)} (3.18)

where v is the number of memories of the encoder, and 2v − 1 is the number of all

possible states. Finally, the log-likelihood ratios of the decoded message symbols X̂t

are defined as

L(X̂t = x|Yt) = max
m=x
{A+B + Γ} −max

m=0
{A+B + Γ}, (3.19)

where x ∈ GF (4).

3.4 Performance Estimates for Non-Binary Con-

volutional Codes

It is well known that the free distance of a binary and non-binary convolutional code

give an approximated first order of the error performance. The following equation

is an upper bound on the error performance of a non-binary convolutional codes:

Pb .
∞∑

w=dfree

cwPw, (3.20)

where cw is the number of codewords of weight w, and Pw is the pairwise error

probability given by:

Pw = Q

(
dE
2σ

)
, (3.21)

where, dE is the Euclidean distance between the transmitted all zero codeword

m(0) and the received codewords c(m̂). For the BI-AWGN channel, let m(0) =
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[(+
√
Es,+

√
Es)], m(1) = [(−√Es,+

√
Es)], m(β) = [(+

√
Es,−

√
Es)] and m(β2) =

[(−√Es,−
√
Es)], where Es is the average code-bit energy and it is related to the

code rate Rc and the average data-bit energy Eb by Es = RcEb.

However, the Euclidean distance in this case is calculated as:

dE =

√
(2
√
wEs)2 + (2

√
wEs)2 + (4

√
wEs)2 =

√
24wEs (3.22)

Pw is the probability of the noise at the decoder output and it is true only

if the received signal have been effected by a noise magnitude greater than dE/q

=
√

24wEs
4

=
√

3wEs
2

.

Now, the pairwise error probability can be evaluated by:

Pw(binary) = Q

(√
2wEs
N0

)
= Q

(√
2wRcEb
N0

)
. (3.23)

Pw(non− binary) =
2k−1

2k − 1
Q

(√
3wEs
N0

)
=

2k−1

2k − 1
Q

(√
3wRcEb
N0

)
. (3.24)

where k = log2(q) and the term on the left converts the symbol errors to bit

errors.

Thus, the probability of a codeword error Pcw and the bit error probability Pe

can be obtained from Eq. (3.50) as (see [93] Eq. 4.46 and Eq. 4.47):

Pcw =
1

n

∞∑

w=dfree

TwPw (3.25)

Pe =
1

n

∞∑

w=dfree

T ′wPw (3.26)

where T ′w is the number of non-zero bits identical to all the codewords with a weight

of w which is estimated from the transfer function as explained in section 3.4.1.

3.4.1 Transfer Function and Weight Enumerators for Non-

Binary Convolutional Codes

In this section, the procedure to enumerate the code weight will be explained with

the help of an example. Figure 3.5 presents the signal flow graph of the β β2/1 non-

binary code. Hence, the power of D is the Hamming distance between the output
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3.4 Performance Estimates for Non-Binary Convolutional Codes

bits corresponding to each state transition and the output (00). With help from

the signal flow graph, the transfer function can be evaluated. The figure below is

obtained from the trellis diagram and shows paths diverging and re-merging to the

all-zero state. Xa represents state 0, Xb stands for state 1, Xc is state β and Xd is

state β2.

IW 2

Xd

Xc

IW IW 2

IW 2

IW 2IW 2

IW 2

IW 2

W

IW

Xb
W

Xa

W

Xa

IW
IW 2

IW 2

Figure 3.5: The signal flow-graph of the β β2/1 non-binary convolutional code.

Xb = IW 2Xa + IWXb +WXc + IW 2Xd (3.27)

Xc = IWXa + IW 2Xb +WXc + IW 2Xd (3.28)

Xd = IW 2Xa + IW 2Xb + IWXc +W 2Xd (3.29)

X ′a = IW 2Xb + IW 2Xc + IW 2Xd (3.30)

By subtracting 3.27 from 3.49, it is easy to find that Xb = Xd, then the transfer

function is

Xb −Xd = (W − IW 2)Xb + (IW 2 −W )Xd

(1−W + IW 2)Xb = (1−W + IW 2)Xd

∴ Xb = Xd.
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The transfer function T (I,W ) of the signal-flow-graph in figure 3.5 is:

T (I,W ) =
X ′a
Xa

=
2W 2Xb +WXc

Xa

(3.31)

T (I,W ) =
2IW 2Xb + I2W 3Xa + I2W 4Xb + IW 3Xc + I2W 3Xb

Xa

=
Xb

Xa

(2IW 2 + I2W 4 + I2W 3) + I2 +W 3 +
Xc

Xb

(IW 3) (3.32)

We can show that:

Xb =
IW 2Xa + IWXc

1−W − IW 2
(3.33)

and:

Xc =
IWXa + 2IW 2Xb

1−W (3.34)

Substituting Xc into Xb gives:

Xb =
IW 2Xa

1−W − IW 2
+
IW (IWXa + 2IW 2Xb)

(1−W − IW 2)(1−W )

∴
Xb

Xa

=
IW 2 − IW 3 + I2W 2

1− 2W − IW 2 +W 2 + IW 3 − 2I2W 3
(3.35)

Likewise:

Xc

Xa

=
IW − IW 2 − I2W 3 + 2I2W 4

1− 2W − IW 2 +W 2 + IW 3 − 2I2W 3
(3.36)

By submitting (3.35) and (3.36) into (3.32), the transfer function can be written

as:

T (I,W ) =
I2W 3 + 2I2W 4 + 2I3W 4 − 2I2W 5 − I3W5 + 2I3W 6

1− 2W − IW 2 +W 2 + IW 3 − 2IW 3
(3.37)

Evaluating (3.37) gives:

T (I,W ) = I2W 3 + 4I2W 4 + 7I2W 5 + ... (3.38)
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Formula (3.38) indicates that there is one path of Hamming distance 3 symbols,

four paths of distance 4 symbols and seven paths of distance 5 symbols etc.

In order to demonstrate the accuracy of equations 3.25 and 3.26 for both binary

(1, 7/5)8 and non-binary (β β2/1 and β1β/β21) codes, T ′w for non-binary codes can

be calculated as:

T ′w =

[
d

dI
T ′(I,W )

]

I=1

(3.39)

T ′w = 2W 3 + 8W 4 + 14W 5..... (3.40)

also the T (I,W ) and T ′w of the β1β/β21 code are evaluated manually from the trellis

respectively as:

T (I,W ) = (I2 + I3)W 4 + 0W 5 + (7I3 + 4I4)W 6..... (3.41)

T ′w = 5W 4 + 0W 5 + 33W 6..... (3.42)

While T ′w for the binary code can be found in [94]:

T ′w = W 5 + 4W 6 + 12W 7..... (3.43)

Obviously the binary code has larger free distance as can be concluded from 3.40

and 3.43. This binary code has one path of Hamming distance 5 bits, four paths

of distance 6 bits and twelve paths of distance 7 bits etc. Even though, the binary

code has a large minimum free distance of 5 bits, the non-binary can actually correct

more bit errors with a free distance of 3 symbols (i.e. 6 bits) on AWGN channels at

higher SNRs.

Figures 3.7 and 3.6 illustrating the frame or codeword error rate Pcw (FER) and

Pe (BER) of the (1, 7/5)8 binary code and the β β2/1 non-binary respectively.

The results show that there is a close agreement between the bounds and the

simulation results for both binary and non-binary codes. The BER curves acquired

by using equation (3.26) and the FER curves obtained by using equation (3.25)

when K =100 , 1000, 5000 and 6000.
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SNR=Eb/N0 (dB)
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Figure 3.6: Theoretical BER and FER bounds of β β2/1 Non-Binary convolutional
code on AWGN channels.
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Figure 3.7: Theoretical BER and FER bounds of (1, 7/5)8 binary and β1β/β21
non-binary convolutional codes on AWGN channels.
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3.5 ββ2/1 Non-Binary Turbo Encoder

3.5 ββ2/1 Non-Binary Turbo Encoder

A non-binary turbo encoder is the parallel concatenation of two non-binary RSC

codes separated by an interleaver, denoted by Π, as shown in figure 3.8.

c1

D

1

D

1

mk

β2

∏

β2

β

β

c3

c2

Figure 3.8: β β2/1 Non-binary turbo encoder.

The length k input message m is encoded directly by the first component en-

coder, which produces the parity symbols c2. At the same time, m is interleaved

before being encoded by the second convolutional encoder, which produces the par-

ity symbols c3. The codeword is mapped to an M -PSK constellation X and then

transmitted. At the receiver side the received signal Y is denoted by

Y = X + n, (3.44)

where n is a sequence of SαS noise samples.
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3.6 Error Floor Bound for Non-Binary Turbo Codes

3.5.1 Non-Binary Turbo Decoder on Additive SαS Noise

Channels

The turbo decoder consists of two Max-Log-Map component decoders in series. To

incorporate the a priori LLR values, (3.13) and (3.48) are rewritten for both the

Gaussian receiver and Cauchy receiver respectively.

Γt(S, S
′))AWGN = La(x)− 1

2σ2
||Y1 −X1||2 −

1

2σ2
||Y2 −X2||2 (3.45)

Γt(S, S
′))AWGN(Map) = La(x)− exp

(
((Y1 −X1)2 + (Y2 −X2))2

2σ2

)
(3.46)

Γt(S, S
′))Cauchy(MaxLog) = La(x) +

(
log

γ

π[γ2 + ||Y1 −X1||2]

+ log
γ

π[γ2 + ||Y2 −X2||2]

)
, (3.47)

Γt(S, S
′))Cauchy(Map) = La(x)−

(
γ

π[γ2 + ||Y1 −X1||2]

× γ

π[γ2 + ||Y2 −X2||2]

)
, (3.48)

The extrinsic LLR values, Le, passed on from one decoder to the other are

obtained by subtracting the original LLR values of the message symbols and the a

priori LLR values from the decoder LLR values L(X̂t|Yt).

Le(Xt) = L(X̂t|Yt)− La(Xt)− LY , (3.49)

where LY is the LLR of the received message. Improvements in performance can be

achieved with each iteration, but the improvements become less with each iteration

until the decoder converges to an optimal performance.

3.6 Error Floor Bound for Non-Binary Turbo Codes

It is well known that the turbo code performance levels off rapidly at high SNRs.

In addition, utilizing of the interleaver would make the Maximum Likelihood ML
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3.6 Error Floor Bound for Non-Binary Turbo Codes

decoding process very complex for turbo codes.

Since turbo codes are a set of two or more convolutional codes, the free distance

of convolutional codes can help to bound the error floor of turbo codes. In this thesis

we consider turbo codes with two parallel concatenated convolutional components

encoders only.

To bound the slop of this drop off at high SNRs the following equation has been

used by [95]:

Pb(binary) ≤
N∑

w=1

(Nw )∑

v=1

w

N
Q

(√
2dwvEb
N0

)
(3.50)

By using the same methodology for deriving equation (3.26), ultimately, the above

equation can be modified to bound the error floor of non-binary turbo codes as:

Pb(nonbinary) ≤ 2k−1

2k − 1

N∑

w=1

(Nw )∑

v=1

w

N
Q

(√
3dwvEb
N0

)
(3.51)

Where, dwv is the minimum weight of a sequence that is produced by different

weight (w) input, the first summation is over w and the second summation is over

the N
w different weight input. It is obvious that w = 1 results in large values for dwv

and very low bit error probability, so that w = 1 will be neglected. Furthermore,

When w = 2 the terms in 3.51 will generate a minimum weight due to the the

interleaver, and the minimum dwv can be bounded as:

d2v(turbo) ≥ min(2d2v(conv.)−Æ) (3.52)

where Æ is the weight of the padding sequence to terminate the first encoder and

return to state (00). In this case, when w = 2 is the dominated value, equation

(3.51) can be approximated to:

Pb ' 2k−1

2k − 1

2n2

N
Q

(√
3d2vEb
N0

)
(3.53)

where, n2 is the number of weight-2 codewords that generate the minimum weight

d2v. Hence, a similar argument can be applied to different weights of information

sequences.

Figure 3.9 demonstrates the error floor bounds for binary and non binary turbo

codes for different codes where the length (N) of the interleaver is 1500 symbols (for
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Figure 3.9: Error floor bound for β β2/1, β1β/β21 non-binary turbo codes and
(1, 7/5)8 binary turbo codes.

non-binary) and 3000 bits (for binary code), using a pseudo-random interleaver, 5

iterations and code rate Rc = 1
3

for all codes. There is a good agreement between

the simulation results with the theoretical error floor bounds result as we can see

in figure 3.9. It is clear that the BER drops rapidly to 10−5 in the region between

0-1.5 dB which known as a turbo cliff as mentioned before. After that sharp drop

the performance curves start flattening and this region is known as a free distance

asymptote or error floor region.

3.7 Simulation Results

3.7.1 Non-Binary and binary Convolutional Codes Simula-

tion Results

We now compare the BER performance of a 4-state non-binary convolutional code

defined in GF(4) and a 4-state binary convolutional code on impulsive noise channels,

for various values of characteristic exponent (α). Simulation results of a rate R = 1
2
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3.7 Simulation Results

binary convolutional with (1, 7/5)8 RSC component encoders and message length

m=2048 bits are compared with a rateR = 1
2

non-binary turbo code with ββ2/1 RSC

component encoders and message length of 1024 symbols (2048 bits). In addition,

uncoded BER performance on impulsive noise, and a 16-states β1β/β21 non-binary

convolutional code BER performance simulation is implemented.

Since we are working on SαS impulsive noise channels, a Cauchy receiver is used.

Figure 3.10 illustrates how this receiver closely matches the optimal LLR (i.e. when

LLR 6= 0), and also shows that the Cauchy is a good receiver for different values of

α.

Y
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Gaussian receiver
Optimal receiver
Cauchy receiver α=1
Cauchy receiver α=1.5
Cauchy receiver α=1.8
Cauchy receiver α=2

Figure 3.10: LLR demappers for the optimal and sub-optimal receivers (α=1, 1.5,
1.8 and 2 Eb/N0=2 dB).

Figure 3.11 shows the bit error rate (BER) of all decoders when the channels

are very impulsive (α=1). It can be clearly seen that the non-binary code achieves

a great coding gain of 4 dB over the binary at low SNRs and 2 dB at high SNRs at

the BER of 10−5. In addition, both codes gained more than 40 dB over the uncoded

system. This figure also shows that the performance of the 16-state β1β/β21 non-

binary convolutional code achieved a gain of 2.5 dB over the ββ2/1 non-binary

convolutional code.
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3.7 Simulation Results

Again, the BER for all coded and uncoded systems on impulsive noise channel

are presented in Figure 3.12, when α=1.5. It is clear that the performance of the

non-binary code exceeds the performance of the binary code by at least 4 dB at

low SNRs region and 1.5 dB at high SNRs region at a BER of 10−5. Meanwhile,

both codes (non-binary and binary) have achieved 38.6 dB and 37.1 dB over the

uncoded systems respectively. However, the 16-states non-binary code is achieving

a significant gain of 2.4 dB, 4 dB, and 41 dB over the 4-stats non-binary, binary and

uncoded system at a BER of 10−5 respectively.
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Figure 3.11: BER performance VS SNR for (1, 7/5)8 binary convolutional code,
ββ2/1, β1β/β21 non-binary codes, and uncoded system, when the characteristic
exponent α=1.

In Figure 3.13, we also compare the performance of binary and non-binary con-

volutional codes when the channel is slightly impulsive (α=1.8). As before, the

non-binary codes achieved a gain over the binary codes of 3 to 1.1 dB from low to

high SNRs regions with a BER of 10−5. Likewise, the 4-state and 16-state non-

binary convolutional codes have about 29.75 dB and 32 dB gain over the uncoded

system, respectively at BER of 10−5.
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Figure 3.12: BER performance VS SNR for (1, 7/5)8 binary convolutional code,
ββ2/1, β1β/β21 non-binary codes, and uncoded system, when the characteristic
exponent α=1.5.
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Figure 3.13: BER performance VS SNR for (1, 7/5)8 binary convolutional code,
ββ2/1, β1β/β21 non-binary codes, and uncoded system, when the characteristic
exponent α=1.8.
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Figure 3.14: BER performance VS SNR for (1, 7/5)8 binary convolutional code,
ββ2/1, β1β/β21 non-binary codes, and uncoded system, when the characteristic
exponent α=2.

Finally, when the channel is Gaussian,(i.e. α = 2), as shown in figure 3.14 the

performance for both decoders match. Again both systems are showing significant

coding gains over the uncoded system by 3.6 dB at BER of 10−5. In addition,

the 16-state non-binary convolutional code performs slightly better than the 4-state

non binary code by 0.6 dB and by 4.1 dB over the uncoded system with a BER of

1× 10−5.

3.7.2 Non-Binary and Binary Turbo Codes Simulation Re-

sults

In this section, the comparison of the BER performance of a non-binary turbo code

defined in GF(4) and a binary turbo on SαS noise channels, for various values of

the characteristic exponent (α) is carried out. Simulation results of a rate R = 1
3

binary turbo code with (1, 7/5)8 RSC component encoders and message length of

m=2048 bits are compared with a rate R = 1
3

non-binary turbo code with ββ2/1

RSC component encoders and message length of 1024 symbols (2048 bits). The
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3.7 Simulation Results

maximum iterations for both decoders is set to five.

Additionally, the Cauchy receiver is employed for all systems, as explained in

the previous section 3.7.1 and Figure 3.10.

Figure 3.15 shows the bit error rate of the 1st and 5th iterations for both decoders

when the channels are very impulsive (α=1). It can be clearly seen that the non-

binary turbo code achieves a greater coding gain of 1.8 dB over the binary turbo

code at low SNRs and 1.1 dB at high SNRs.

The BERs for both decoders are presented in figure 3.16 when α=1.5. It is clear

that the performance of the non-binary code exceeds the performance of the binary

code by 2 dB at low SNRs region and 1.7 dB at high SNRs region with a BER of

10−5. In figure 3.17, we also compare the performance of binary and non-binary

turbo codes when the channel is slightly impulsive (α=1.8). As before, the non-

binary codes achieves a gain over the binary codes of 2 to 0.8 dB from low to high

SNRs regions with a BER of 6.6× 10−5.
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Figure 3.15: BER performance VS SNR for (1, 7/5)8 binary turbo code and ββ2/1
non-binary turbo codes, when the characteristic exponent α=1.
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Figure 3.16: BER performance VS SNR for (1, 7/5)8 binary turbo code and ββ2/1
non-binary turbo codes, when the characteristic exponent α=1.5.

0 1 2 3 4 5 6

SNR= Eb/N0(dB)

10-4

10-3

10-2

10-1

100

B
E

R

Binary Iteration=1 α=1.8
NonBinary Iteration=1 α=1.8
Binary Iteration=5 α=1.8
NonBinary Iteration=5 α=1.8

Figure 3.17: BER performance VS SNR for (1, 7/5)8 binary turbo code and ββ2/1
non-binary turbo codes, when the characteristic exponent α=1.8.
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Figure 3.18: BER performance VS SNR for (1, 7/5)8 binary turbo code and ββ2/1
non-binary turbo codes, when the characteristic exponent α=2.

Moreover, when the channel is a Gaussian channel as shown in figure 3.18 the

performance for both decoders are close, but the non-binary turbo code performs

slightly better by 0.5-0.1 dB for different SNRs with a BER of 10−5. Finally, figures

3.15,3.16 and 3.17 show that the non-binary codes need less iterations to converge

to the optimal performance than binary codes on both Gaussian and non-Gaussian

channels.

3.8 Summary

In this chapter, the construction of convolutional non-binary codes has been ex-

plained in detail and the main differences with binary convolutional codes have

been highlighted. Also, the representation of non-binary convolutional codes (ββ2/1

and β1β/β21) such as the state tables, trellis diagrams and the signal flow-graph is

presented in sections [3.2-3.4].

It is very important to mention that the difference in the construction and the

representation between the binary and non-binary convolutional codes means the
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3.8 Summary

original Max-Log MAP decoding algorithm is not valid in the case of decoding non-

binary codes. However, sections 3.3 and 3.5.1 show the modified decoding equations

and these changes had been justified and proved as can be seen in the performance

analysis figures 3.6 and 3.7. On the other hand, the analysis of non-binary codes on

GF (4) has been investigated and the required equations have been derived.

Even though the interleaver contributes a significant complexity to the ML de-

coding algorithm, the bit error rate curves on AWGN channels have been bounded

successfully as section 3.6 illustrates. The proposed performance analysis of non-

binary trellis codes have been examined for two different numerical examples and the

results show a good agreement between the theoretical analysis and the simulation

results.

Additionally, in this chapter, the performance of non-binary trellis codes on addi-

tive impulsive noise channels has been investigated. The turbo encoder and decoder

structures have been introduced and the max log-MAP algorithm for non-binary

codes employed as the component non-binary decoders has been explained. Our

simulation results show that the proposed non-binary trellis code achieves notable

coding gains compared to binary trellis codes when the channel is impulsive. Fur-

thermore, it can be observed that the non-binary turbo decoder converges to the

optimal performance in less iterations than the binary turbo decoder. This initial

investigation has shown that there is much promise for non-binary trellis codes on

impulsive noise channels and there is great scope for further research in this area.
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Chapter 4

Non-Binary Trellis-Coded

OFDM-PLC System in the

Presence of Middleton Class A

Impulsive Noise

4.1 Introduction

Power-line communication utilizes the established electrical grid, but since power

networks are not designed for communication services, there are many factors that

make reliable communication over transmission lines challenging. These include:

attenuation, impulsive noise and multipath frequency selectivity. Communication

over the transmission line is most likely to suffer from impulsive noise due to elec-

tromagnetic interference and this is commonly modelled by the Middleton Class A

probability density function [5].

The power-line communication channel causes information-bearing signals to

be affected by impulsive noise and the effects of the multipath fading. To help

mitigate these effects, we propose the employment of non-binary trellis codes, since

non-binary error-correcting codes generally promise an enhanced performance in

such harsh environments. The negative effect of impulsive noise is illustrated in

this chapter and the BER performance of single carrier and multi-carrier uncoded,

binary and non-binary convolutional codes on impulsive noise channels over realistic

PLC multi-path frequency selective channels will be presented.
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4.2 Channel Model

Furthermore, we investigate the performance of non-binary turbo codes on PLC

channels that exhibit frequency selectivity with additive Middleton Class A noise and

compare with a comparable binary turbo coded PLC system. In order to reduce the

effect of multipath and impulsive noise, orthogonal frequency-division multiplexing

with non-linear receivers (blanking and clipping) has been employed. The system is

examined on extremely impulsive channels where the value of the the noise ratio Γ

is 0.01 (i.e σi
σg

= 100), see section 2.2.3 for more details.

Finally, this chapter is organized as follows: Section 4.2.1, gives brief knowledge

on Middleton class A noise channels and the BER performance of single carrier (SC)

coded binary and non-binary convolutional systems on additive Middleton class A

noise is presented. In section 4.2.2, the multi-path frequency-selective realistic chan-

nels that is used in power line communication is explained in detail and the per-

formance analysis binary and non-binary convolutional coded OFDM-PLC systems

are introduced. In sections 4.3.1 and 4.3.2, the encoding and decoding procedure for

non-binary turbo codes on Middleton class A noise channels is illustrated. While,

in section 4.4 the non-binary turbo coded OFDM-PLC system with Non-linear pre-

processing is investigated. Simulation results of the BER performance of non-binary

and binary turbo coded OFDM-PLC systems for various values of Γ and on differ-

ent realistic PLC channels are presented in section 4.5. Finally, section 4.6 presents

the chapter conclusions. The contribution of this chapter is published in the 25th

European signal processing conference [78].

4.2 Channel Model

4.2.1 Middleton Class A Distributions

The probability of an error for Middleton Class A noise when employing M -ary

phase-shift keying (MPSK) is given in [6] as

Pe = (1− A)
M − 1

M
Q

(√
Eb
σ2
G

)

+A
M − 1

M
Q

(√
Eb

σ2
G(1 + 1

AΓ
)

)
, (4.1)
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4.2 Channel Model

where M is the order of the PSK modulation, and Eb is the bit energy.

4.2.1.1 Performance of SC Binary and Non-Binary Convolutional Codes

on Middleton Class A Noise Channels

In order to understand the impulsive behavior of Middleton class A channels, the

BER of single carrier BPSK uncoded systems on impulsive noise channel is imple-

mented in figure 4.1. This figure demonstrates equation (4.1) and shows the effect

of different values of A and Γ on the system performance. It is very clear that the

performance degrades as the value of Γ decreases and the SNR needs to be about

50 dB to reach a BER of 10−5 when Γ = 0.001, while the SNR needs to be 45 dB

to achieve the same BER when Γ = 0.01 .
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Figure 4.1: Theoretical and simulation BER Performance of single carrier uncoded
BPSK system on additive Middleton class A noise channel for various values of A
and Γ vs. SNR in dB.

It is worth mentioning that the value of A effects the performance negatively as

it becomes larger as we can see in the curve when A = 0.1 and the BER almost

matches the Gaussian BER when A = 0.001 and Γ = 1, see figure 2.8.

However, for single carrier convolutional coded systems, some modifications need

to be made to the conventional Max-Log algorithm since the channel PDF is now
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4.2 Channel Model

Middleton class A. The modified LLR for a BPSK binary convolutional system is

estimated as

LLR(c = 1|y) = ln
P (c = 1|y)

P (c = 0|y)

= ln

∑∞
m=0

e−AAm
m!

. 1√
2πσ2

m

exp
(
− |y−1|2

2σ2
m

)

∑∞
m=0

e−AAm
m!

. 1√
2πσ2

m

exp
(
− |y+1|2

2σ2
m

) (4.2)

and for BPSK Non-binary convolutional system as

LLRz(c = z|y) = ln
P z(c = z|y)

P z(c = 0|y)

= ln

∑∞
m=0

e−AAm
m!

. 1√
2πσ2

m

exp
(
− |y−z|2

2σ2
m

)

∑∞
m=0

e−AAm
m!

. 1√
2πσ2

m

exp
(
− |y+1|2

2σ2
m

) (4.3)

The state transitions parameter Γ is calculated for binary convolutional by

Γ(S, S ′)Binary = ln
∞∑

m=0

e−AAm

m!
.

1√
2πσ2

m

exp

(
−|y − c|2

2σ2
m

)

+ ln
∞∑

m=0

e−AAm

m!
.

1√
2πσ2

m

exp

(
−|y1 − c1|2

2σ2
m

)
(4.4)

where c is the modulated binary input and it takes values (1,-1), and c1 are the

modulated binary parity check bits. While for non-binary convolutional system Γ

will be evaluated by

Γ(S, S ′)Non−binary = ln
∞∑

m=0

e−AAm

m!
.

1√
2πσ2

m

exp

(
−|y − z|2

2σ2
m

)

+ ln
∞∑

m=0

e−AAm

m!
.

1√
2πσ2

m

exp

(
−|y1 − z1|2

2σ2
m

)
(4.5)
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Figure 4.2: Simulation BER Performance of single carrier binary and non-binary
BPSK systems on additive Middleton class A noise channel for different values of A
and Γ vs. SNR in dB.

where z and z1 are the mapped input non-binary symbol and the parity check

symbol respectively and take values of [(1, 1), (−1, 1), (1,−1), (−1,−1)].

The simulation results of implementing the modified Max-Log map are displayed

in figure 4.2.

The figure above shows that the performance of the non-binary convolutional

code is better than the binary code in all cases. In addition, the gain of the non-

binary code over the binary code is increasing as the channel become more impulsive.

For instance, when the channel is not very impulsive (i.e when A = 0.01 and Γ = 0.1)

the non-binary code has only about 1 dB gain at BER=10−5, while it is about 2.5

dB when the channel is very impulsive (i.e A = 0.1 and 0.01) at the same BER.

4.2.1.2 Performance of MC Binary and Non-binary Convolutional Codes

on Middleton Class A Noise Channels

OFDM is an effective technique that is used to reduce the impact of multi-path

channels which will be explained in the next section. The usage of OFDM is to

mitigate the effect of strong impulsive noise by spreading the noise energy equally
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4.2 Channel Model

over all symbols. The OFDM modulator applies an inverse fast Fourier transform

(IFFT) to generate a complex baseband OFDM signal as

x(t) =
1√
N

N−1∑

k=0

Xke
j2πkt
Ts , 0 < t < Ts, (4.6)

where Xk is the data after the mapping process, N is the number of sub-carriers,

which is equal to the number of the transmitted signals and Ts is the active symbol

interval.
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Figure 4.3: Theoretical and simulated BER Performance of multi-carrier uncoded
BPSK system on additive Middleton class A noise channel for variant values of A
and Γ vs. SNR in dB.

Figure 4.1 and figure 4.3 show the idea of spreading the noise energy equally on

every symbol and the BER curves look like AWGN performance curves, but with

different variance depending on the values of A and Γ [75].

In other words, the variance σ2 of Middleton Class A noise in the frequency

domain (after OFDM) can be approximated as a Gaussian distribution N(0, σZ) by:

σ2
Z =

1

N

N−1∑

n=0

σ2
z = σ2

G

(
1 +

1

Γ

)
. (4.7)

Recalling equation (1.1) and substituting σ2
Z as the noise variance, the theoretical
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analysis of OFDM Middleton class A noise is calculated as

Pe = Q

(√
2Eb
N0

)
= Q

(√
Eb
σ2
Z

)
(4.8)

Equation (4.8) is used to show an exact BER performance bound for different values

of impulsive parameters in figure 4.3. As we can see in this figure, the value A does

not affect the performance of PLC systems that utilize OFDM.
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Figure 4.4: Theoretical and simulation BER Performance of multi-carrier (1, 7/5)8

binary and β1β/β21 non-binary convolutional codes on additive Middleton class A
noise channel for different values of A and Γ vs. SNR in dB.

In the same way, the performance analysis of coded OFDM binary and non-

binary convolutional codes can be estimated by substituting the new variance σ2
Z

into equations (3.22) and (3.23) as

Pw(binary) = Q

(√
wRcEb
σ2
Z

)
. (4.9)

Pw(non− binary) =
2k−1

2k − 1
Q

(√
3wRcEb

2σ2
Z

)
. (4.10)
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Figure 4.5: Theoretical and simulation BER Performance of multi-carrier ββ2/1
non-binary code on additive Middleton class A noise channel for different values Γ
vs. SNR in dB.

In order to validate this assumption and to examine the accuracy of these equa-

tions in the matter of coded systems, binary and non-binary convlutional coded

OFDM on impulsive noise have been implemented in figures 4.4 and 4.5. The mes-

sage length is k = 2048 bits in the binary case and k = 1024 symbols for the

non-binary codes, with a rate of Rc = 1
2

and the cyclic prefix length is CP = 256.

Figure 4.4 illustrates the simulation and theoretical BER of the (1, 7/5)8 binary and

β1β/β21 non-binary convolutional codes, while figure 4.5 shows the performance

analysis of ββ2/1 non-binary convolutional code. Both figures show a good agree-

ment between the simulation and the theoretical results for different values of A and

Γ.

4.2.2 The Multipath Model for the Power-Line Channel

The behavior of a PLC multipath channel can be described by its frequency response

as
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H(f) =
L−1∑

i=0

gle
−(a0+a1fk)die

2πf
di
vp , (4.11)

where L is the number of paths, gi is the weighting factor, a0 and a1 are attenua-

tion parameters, di is the path length in meters (m), k ∈ [0.5,1] is the respective

attenuation of an echo and vp is the phase velocity. This is calculated as

vp =
c0√
εrµr

, (4.12)

where c0 is the speed of light, εr is the dielectric constant and µr is the permeability

of the metal.

Table 4.1: 4 multi-path channel parameters

Path Parameters

i di/m gi

1 200 0.64

2 222.4 0.38

3 244.8 -0.15

4 267.5 -0.05

In this chapter, we use realistic 4 and 15 path channels from [70] and the paths

parameters for both channels are shown in table 4.1 and 4.2. In addition the atten-

uation parameters a0 and a1 for both channels when k = 1 are 0 and 7.8×10−10s/m

respectively. Furthermore, figures 4.6 and 4.7 illustrate the magnitude of the transfer

function and the frequency response for both channels when the bandwidth ranges

between 5KHz - 20MHz. By considering all these data the values of the multi-path

taps of the multi-path channels are [27, 29, 32, 35] and [12, 14, 15, 19, 20, 27, 35,

43, 55, 65, 76, 99, 128, 151, 167] respectively. Obviously, the attenuation caused by

the 15 paths channel is greater than the attenuation caused by the 4 paths channel,

by a value of 30dB at 20MHz.
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Figure 4.6: Frequency and phase response of the realistic PLC multipath channels.
a) Frequency response for 4 path PLC channel. b) Phase response for 4 path PLC
channel.
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Table 4.2: 15 multi-path channel parameters

Path Parameters

i di/m gi

1 90 0.029

2 102 0.043

3 113 0.103

4 143 -0.058

5 148 -0.045

6 200 -0.040

7 260 0.038

8 322 -0.038

9 411 0.071

10 490 -0.035

11 567 0.065

12 740 -0.055

13 960 0.042

14 1130 -0.059

15 1250 0.049

4.2.2.1 Performance Analysis of Coded Binary and Non-Binary Convo-

lutional OFDM-PLC Systems

In order to illustrate the accuracy of the proposed methodology of implementing the

BER bounds, first we will introduce the performance analysis of uncoded OFDM-

PLC system that is showing in figure 2.9.

Basically, equation (2.20) can be considered for Middleton class A noise channel

on frequency selective Rayleigh fading channel by substituting σZ in equation (4.7)

into 2.22.

Figure 4.8 displays a perfect match between the simulation results and the the-

oretical for both channels and for all different values of A and Γ. Furthermore, the

impact of different PLC channels can be observed clearly and the degradation in

the BER performance caused by the 15 multi-path frequency selective channels is

significant compared to the effect of the 4 multi-path channel by at least 10 dB for

all scenarios.
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Figure 4.9: Convolutional coded OFDM-PLC system diagram.

Figure 4.9 illustrates the block-diagram of a general convolutional coded OFDM-

PLC system with ZF equalizer. Basically, a k length data will pass through a rate

half convolutional encoder and then the output message and parity bits or symbols

will be mixed into one stream of data. This stream will be mapped by a BPSK
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4.2 Channel Model

mapper and IFFT will be applied to the mapper output and the resulting signal x

will be transmitted via PLC channels.

At the receiver side, a FFT will be applied to the received signal y and then a

ZF equalizer will be used to eliminate the multi-path frequency selective impact.

Ultimately, the equalizer output will pass through a Max-Log MAP convolutional

decoder to obtain x̂.

Again, by using the same procedure of the uncoded OFDM-PLC systems, the

performance analysis of coded binary and non-binary convolutional OFDM-PLC

systems can be accomplished. In another word, the pairwise error probability Pw

of binary and non-binary convolutional codes in equations 4.9 and 4.10 are written

respectively as

Pw(binary) =
1

K

K∑

n=1

Q

(√
wRcEb
σ2

)
. (4.13)

Pw(non− binary) =
2k−1

2k − 1

1

K

K∑

n=1

Q

(√
3wRcEb

2σ2

)
. (4.14)

By submitting the new Pw for both codes into equation (3.26), the probability

of error Pe can be estimated as shown in the figures 4.10, 4.11 and 4.12.

Figure 4.10 compares the analytical results with the simulated results of coded

(1, 7/5)8 binary code and β1β/β21 non-binary code for several values of Γ over 4

multi-path frequency selective channel. This figure shows an excellent agreement

between the analytical and the simulated results. While, figure 4.11 illustrates the

performance of coded (1, 7/5)8 binary and β1β/β21 non-binary code for various

values of Γ over 15-tap multi-path channel. Clearly, this figure shows the accu-

racy of the performance analysis of coded OFDM-PLC system when the channel is

extremely impulsive and the number of paths is 15.

Figure 4.12 demonstrates the BER performance analysis of the coded ββ2/1

non-binary convolutional OFDM-PLC system on different realistic PLC channels.

This figure shows a very tight performance bound for all cases and this reflects the

precision of the above equations.
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Figure 4.10: BER performance analysis of coded (1, 7/5)8 binary and β1β/β21 non-
binary convolutional OFDM-PLC systems for 4 path channels vs. SNR in dB
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Figure 4.11: BER performance analysis of coded (1, 7/5)8 binary and β1β/β21 non-
binary convolutional OFDM-PLC systems for 15 path channels vs. SNR in dB
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It can be noticed that the all coded OFDM-PLC systems achieve a large gain

over uncoded OFDM-PLC system. Furthermore, since the channels after employing

OFDM are no longer behaving as an impulsive channel, the performance of the

coded ββ2/1 non-binary convolutional system is slightly better than the (1, 7/5)8

binary, especially when the channel has many taps.
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Figure 4.12: BER performance analysis of coded ββ2/1 non-binary convolutional
OFDM-PLC systems for 4 and 15 path channels vs. SNR in dB

4.3 Non-Binary Turbo Code

4.3.1 Non-Binary Turbo Encoder

As been mentioned in chapter 3, the non-binary turbo code is a set of parallel

concatenated non-binary convolutional encoders separated by a pseudo-random in-

terleaver Π. A non-binary convolutional encoder comprises a set of memory elements

and multipliers defined in a finite field GF (q) with q elements {0, 1, β, β2, ..., βq−2},
where β is a primitive element. Figure 3.1 shows the β2β/1 non-binary convolutional

encoder defined in GF(4) with code rate R = 1
2

[52] and figure 3.6 illustrates the

β2β/1 non-binary turbo encoder with rate Rc = 1
3
.

78



4.3 Non-Binary Turbo Code

4.3.2 Non-Binary Turbo Decoding over Impulsive Noise

The PLC channel has a severe impulsive nature, but OFDM can spread the noise over

all sub-carriers during the FFT process. Hence the noise after OFDM demodulation

can be regarded as Gaussian but with a different variance and the channel log-

likelihood ratio (LLR) can be calculated as

Lz(c = z|y) = ln
P z(c = z|y)

P z(c = 0|y)

= ln
P z(y|c = z)

P z(y|c = 0)
+ ln

P z(c = z)

P z(c = 0)

= Lz(y|c = z) + Lz(c) (4.15)

where Lz(c) is the a priori LLR and y is the received sequence. For z ∈ GF (2p),

each element z contains p bits and y also consists of p bits. Lz(y|c = z) is calculated

as

Lz(y|c = z) = ln
P z(y1, ..., yp|c = z)

P z(y1, ..., yp|c = 0)
=
∑

l:cl=1

2yl
σ2
Z

,

In this case, σ2
Z is the variance of the Middleton Class A noise in the frequency

domain and calculated from equation (4.7)

Hence, γt can be calculated as

γt(s0, s1) = Lz(c) + lnP z(y|x), (4.16)

where x is the vector of modulated symbols. Finally, the output LLR of the decoded

message symbols are given as

Lz(c = z|y) = max
si−sj∈sz

{αt−1(s0) + γt(s0, s1) + δt(s1)}

− max
si−sj∈s0

{αt−1(s0) + γt(s0, s1) + δt(s1)}, (4.17)

where sz represents the set of all state transitions corresponding to c 6= 0 and s0 is

the set of all state transitions corresponding to c = 0. This output LLR will be used

as the extrinsic information for the other component decoder.

79



4.4 Non-Binary Turbo Coded OFDM-PLC System with Non-Linear
Processing

4.4 Non-Binary Turbo Coded OFDM-PLC Sys-

tem with Non-Linear Processing

Fig 5.8 shows the system model that is used in this section. The input is a set of

non-binary symbols k, where k ∈ GF(4). First, k message symbols are encoded by

a non-binary turbo encoder and then modulated using binary phase shift keying

modulation. This is then passed to the orthogonal frequency division multiplexing

block. The OFDM modulator applies an inverse fast Fourier transform to generate

a complex baseband OFDM signal as equation (4.6).

At the receiver, after adding the Middleton Class A noise, the received signal will

be processed by the blanking or clipping operation to reduce the effect of impulsive

noise. Blanking is a non-linear process that is used to reduce the impulsive noise

effect on the received signal y and this block is also shown in figure 4.13. After

blanking, the received signal is given as

ri =





yi, |yi| < TB

, 0 ≤ i 6 K − 1,

0, Otherwise

(4.18)

where TB is the blanking threshold and yi is the received signal, given by yi =

xi+ni and ni is the Middleton Class A noise. Clipping is another non-linear process

which limits the received signal and the output is given as:

ri =





yi, |yi| < TC

, 0 ≤ i 6 K − 1

TCe
jarg(yi), Otherwise

, (4.19)

where TC is the clipping threshold value. These non-linear operations are applied

before the OFDM demodulator on the receiver side. Then the OFDM demodulator

is performed by a fast Fourier transform. After OFDM demodulation the signal will

pass through a zero forcing (ZF) detector to compensate for the channel distortion,

defined by [23]

w(k) =
H∗(k)

|H(k)2| , (4.20)

where H(k) is the channel frequency response. Finally, a Max-Log-Map non-binary
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Figure 4.13: Non-binary turbo coded OFDM-PLC system.
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turbo decoder.

4.5 BER Simulation Results of Non-Binary Turbo

Coded OFDM-PLC systems

In this section we present simulation results for a non-binary turbo (NBT) coded

PLC-OFDM system, binary turbo (BT) coded PLC-OFDM system and uncoded

PLC-OFDM system. BPSK modulation has been used for all simulated and theo-

retical implementations. The system is examined on very impulsive channels, where

the impulsive index A=0.01 and the impulsiveness is greater than the Gaussian noise

by 100 times (i.e. Γ=0.01). The 4 and 15 paths PLC channels are used to model the

realistic measurement given in [69]. To make a fair comparison, simulation results

for a comparable BT code comprising (1, 7/5)8 recursive systematic convolutional

codes and message length k = 2048 bits are compared with the (β2β/1) NBT code

and message length of 1024 symbols. Both codes have a code rate of 1
3

and can be

realized by a 4-state trellis diagram. The maximum iterations for both decoders is

set to 5. A channel bandwidth 5KHz - 20MHz is considered.
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Figure 4.14: BER performance of uncoded AWGN, Middleton Class A, and uncoded
OFDM-PLC on different realistic PLC channels, versus SNR (dB).
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Fig. 4.14 shows theoretical and simulated BER vs. SNR(dB) for the AWGN

channel, the Middleton class A channel with and without OFDM and BER for

uncoded PLC system over 4 and 15 multipath frequency selective channels. We can

observe the hurdles that degrade the performance of the communications over PLC

when compared with the conventional AWGN channel. It also illustrates the benefits

of using OFDM on impulsive channel since the BER performance is enhanced by 15

dB at the low BER region. In addition, Fig. 4.14 displays the impact of different

multipath models of PLC channels on the system performance.

Fig. 4.15 compares the BERs for NBT coded, BT coded and uncoded PLC-

OFDM system on the 4-path frequency selective channel with and without the

blanking and clipping techniques. Although the performance of BT PLC-OFDM

system with blanking has already shown a 25 dB gain over the uncoded system, the

NBT coded PLC-OFDM system offers a 30dB and 5 dB further gain, over uncoded

and coded BT PLC-OFDM system respectively. We also notice that the blanking

is a more effective process to eliminate the effect of impulsive noise compared with

the clipping operation.

Fig. 4.16 demonstrates the BERs of NBT and BT codes, similar to previous

case but with a 15-path channel model. It is shown that the NBT code again

shows a superior performance compared with the BT system with a 6dB gain for

all situations at a BER of 10−4. It should be noticed that the blanking and clipping

techniques are still showing further improvement to the BER performance for both

NBT and BT OFDM-PLC systems. Finally, employing NBT codes on PLC systems

can achieve significant coding gain over using uncoded PLC systems, by 24dB.

4.6 Summary

Coded power line communication (PLC) promises significant enhancement to the

overall system performance over uncoded PLC systems. Yet, there is limited con-

tribution on the matter of employing coding schemes on PLC systems and its corre-

sponding theoretical analysis. In this chapter, the ββ2/1 and β1β/β21 non-binary

convolutional codes have been examined in an extreme PLC environment and an in-

vestigation of the BER performance analysis of coded OFDM-PLC systems has been

carried out. This analysis is accomplished by considering realistic PLC frequency-

selective multi-path channels and for various values of the background to impulsive
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noise ratio Γ.

Furthermore, the theoretical bounds of binary and non-binary convolutional

coded OFDM-PLC systems have been investigated for the first time. In order to

validate our results, the implementation of simulated and theoretical results have

been obtained for different values of noise parameters and on different PLC chan-

nels. Our results showed a good agreement between the simulated and theoretical

analysis for all cases.

However, it is worth mentioning that the advantage of utilizing OFDM in such

a harsh medium is that it is a very robust technique to dispose of the impact of the

multi-path frequency-selective channel, and it significantly lessens the impulsive-

ness of the Middleton class A noise channel by spreading the noise energy equally

over each received symbols and converts the PDF approximately into AWGN with

different variant.

Also in this chapter, an investigation into the performance of non-binary turbo

codes on power-line channels, in term of BER, has been presented. A non-Binary

turbo-coded OFDM-PLC system employing two non-linear receivers, blanking and

clipping, has been proposed. The system has been examined on realistic multipath

frequency selective PLC channels with extremely impulsive Middleton class A noise,

with different values of A and Γ. Finally, a fair comparison with a binary turbo-

coded PLC system in the same environment has been evaluated and simulation

results have shown that the non-binary turbo code offers a superior performance on

power-line channels.
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Chapter 5

Non-Binary Trellis Coded MIMO

for Wireless and Wired

Applications on Middleton Class A

Noise Channel

5.1 Introduction

MIMO systems have shown great performance in terms of coverage, reliability and

capacity, but only a few studies have focused on coded MIMO on impulsive noise

channels. Since the communication channels not always follow a Gaussian distribu-

tion, the consideration of a non-Gaussian noise channels can be essential to examine

the reliability of the existing communication systems in extreme environments. In

this chapter various binary and non-binary coding schemes have been utilized on

wireless OFDM-MIMO systems when the channel is impulsive. Furthermore, the

performance analysis of binary and non-binary convolutional coded OFDM-MIMO

systems on AWGN and Middleton class A noise channel has been investigated.

Moreover, in this chapter the implementation of OFDM-MIMO systems on PLC

channels will be carried out. However, since power line networks were not origi-

nally designed for communication purposes, transferring data over these cables is

vulnerable to impulsive noise due to electromagnetic interference [5].

Issues of reliability, speed and large data transfer have become very challenging

in PLC due to the negative impact of the electrical cables, which are not designed
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for communication services. In order to enhance PLC BER performance, non-binary

and binary iterative codes have been employed with MIMO in this chapter.

Although, non-binary codes are more robust to impulses caused by non-Gaussian

noise, OFDM with non-linear preprocessing techniques (blanking, and clipping) have

been utilized to eliminate the impulsive noise effects. In addition, we compare

the proposed non-binary trellis codes with comparable binary codes trellis codes.

Finally, the system is examined for various values of the impulsive index (A) and

noise ratio (Γ) over the synthetic statistical MIMO PLC channel and a SISO scheme.

The chapter is organized as follows: Section 5.2 presents the implementation

of coded and uncoded OFDM-MIMO systems for wireless applications. In section

5.2.1 the analysis of uncoded OFDM-MIMO systems on Middleton class A noise

channel is carried out. While in section 5.2.2, the simulated BER performance of

coded binary and non-binary turbo codes have been investigated. The performance

analysis of wireless OFDM-MIMO on an impulsive noise channel is derived and

compared to simulation results in section 5.2.3. Section 5.3 introduces the wired

application of binary and non-binary trellis codes on PLC MIMO channels. The

synthetic MIMO PLC channel is described in detail in 5.3.3. In section 5.3.2.1 and

5.3.2.2 the non-binary turbo coded MIMO PLC-OFDM transmitter and receiver are

introduced, respectively. In section 5.3.3, numerical and simulation results of binary

and non-binary trellis coded OFDM-PLC-MIMO are presented. Finally, section 5.4

presents the conclusions.

5.2 Non-Binary Trellis Coded OFDM-MIMO for

Wireless Applications on Additive Impulsive

Noise

5.2.1 Uncoded OFDM-MIMO for Wireless Applications on

Additive Impulsive Noise

This section considers uncoded OFDM-MIMO systems on impulsive noise channels

with a MMSE equalizer on an ideal fast fading channel. However, due to the cen-

tral limit theorem, the SER analysis will be obtained exactly the same as [96], by

considering the total impulsive noise variance of equation (2.40).
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The PDF of the SINR at the output of the detector on the AWGN channel of

Nt ×Nr is calculated as

SNt×Nr(γ) =

∫ ∞

0

· · ·
∫ ∞

0

fNt×Nr(γ|λ1, · · · , λNr−1)× f(λ1, · · · , λNr−1)dλ1 · · · dλNr−1

(5.1)

where, λi is an eigenvalue of HHH , and γ is the SINR. Since equation (5.1)

is very complicated for a high number of antennas, the following three PDFs will

be considered for the upcoming analysis to validate the simulated SER and BER

systems.

0 2 4 6 8 10 12 14 16 18 20

SINR (dB)

0

0.05

0.1

0.15

0.2

0.25

0.3

PD
F 

V
al

ue

Γ=0.1 S
2x2

Γ=0.1 S
2x3

Γ=0.1 S
2x4

AWGN S
2x2

AWGN S
2x3

AWGN S
2x4

Figure 5.1: The SINR PDF of Nt×Nr for AWGN and Middleton Class A Channels.

S2×2(γ) = s exp−sγ
[
1 + s− 1

(γ + 1)2
− s

γ + 1

]
(5.2)

S2×3(γ) = s2γ exp−sγ
[
1 +

s

2
− 1

2(γ + 1)2
− s+ 1

2(γ + 1)

]
(5.3)
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S2×4(γ) = s3γ2 exp−sγ
[

1

2
+
s

6
− 1

6(γ + 1)2
− s+ 2

6(γ + 1)

]
(5.4)

where, s is calculated by

s =
NtN0

Es
(5.5)

However, in order to evaluate the SINR PDF of MIMO-OFDM PLC systems,

N0 in equation (5.5) can be calculated by using equation (4.7).

Figure 5.1 illustrates the SINR PDF for AWGN and Middleton class A noise

channels when the SNR is set to 10 dB.

In [97], the error probability of MQAM with a MMSE equalizer is defined as

P√M = 2

(
1− 1√

M

)
Q

(√
3EsΛ2

(M − 1)Ntσ2
G

)
(5.6)

where Λ is the interference plus noise coefficient and is estimated as

Λ = WH
i hi (5.7)

where Wi is the ith column of the MMSE detector filter vector and hi is the ith

column of H.

In order to estimate the performance of MMSE detection with a Nt×Nr MIMO

system, the approximation of the Q(.) function by applying numerical simulation

will be [96]

Q(x) =
1

12
e−

x2

2 +
1

6
e−

2x2

3 (5.8)

By using equation (5.6), the conditional probability of the SER given SINR is

defined as [97]

Pe(Nt×Nr)(e|γ) = 2P√M − P 2√
M

= 4

(
1− 1√

M

)[
1

12
exp

(
− 3γ

2(M − 1)

)

+
1

6
exp

(
− 2γ

M − 1

)]
(5.9)

By employing equations 5.4 and 5.9 the SER can be obtained as
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P(Nt×Nr) '
(

1− 1√
M

)[
1

3
GNt×Nr

(
3

2(M − 1)

)
+

2

3
GNt×Nr

(
2

M − 1

)]
(5.10)

where GNt×Nr is the moment generation function (MGF) of γ, and it has been

presented in [96] for low Nt ×Nr. In this chapter, three examples will be imple-

mented to validate the simulated coded and uncoded results and these MGFs are
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Figure 5.2: BER performance analysis for uncoded MIMO on AWGN channel and
for uncoded ODFM-MIMO on impulsive noise channel.

G2×2(m) = s

[
1−m
s+m

+m exps+mEi(s+m)

]
(5.11)

G2×3(m) =
s2

2

[
2−m

(s+m)2
+

m

s+m
−m exps+mEi(s+m)

]
(5.12)

G2×4(m) =
s3

6

[
6− 2m

(s+m)3
+

m

(s+m)2
− m

s+m
+m exps+mEi(s+m)

]
(5.13)
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where Ei(.) is the exponential integral function defined as

Ei(x) =

∫ ∞

x

exp−t
t

dt for x > 0 (5.14)

Figure 5.2 shows the theoretical analysis in equation (5.10) for various MIMO

scenarios on AWGN and impulsive noise channels. The simulated and theoretical

BER are obtained for QAM modulation and for messages of length 2000 bits. It is

important to mention that the OFDM is utilized in the impulsive noise scenario and

in the case of AWGN the results are obtained for single carrier only.

Furthermore, the BER curves obtained by multiplying the SER with ( 2k−1

2k−1
) factor

as been mentioned in chapter 3. In addition, the analysis of OFDM-MIMO on the

Middleton Class A Noise Channel has been examined for different values of Γ (i.e.

Γ=0.1, and 0.01) and for three MIMO systems scenarios (i.e. Nt×Nr = 2×2, 2×3,

and 2 × 4). It can be seen that there is a good agreement between the simulated

and analysis BER performance curves for all cases.

5.2.2 Trellis Coded OFDM-MIMO forWireless Applications

on Additive Impulsive Noise

In this chapter, various codes will be considered to enhance the overall MIMO system

performance. These codes are the (1, 7/5)8 binary convolutional and turbo codes,

and the ββ2/1 non-binary convolutional and turbo codes.

The block diagram 5.3 shows the general structure of the trellis coded OFDM-

MIMO systems. In the transmitter, a stream of k bits or symbols will pass through

one of the above listed encoders. The output codewords from these encoders will

be interleaved randomly and then will pass to the QAM modulator. In order to

mitigate the effects of the impulsive noise, OFDM modulation will be utilized after

the QAM modulation process. Then, the output of the OFDM will be divided into

Nt vectors to transmitted via a fast fading MIMO channel that has dimensions of

Nt ×Nr and is defined as

H =




h1,1 h1,2 · · · h1,Nr

h2,1 h2,2 · · · h2,Nr

...
...

. . .
...

hNt,1 hNt,2 · · · hNt,Nr




(5.15)
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Figure 5.3: General diagram of trellis coded OFDM-MIMO system.

where hi,j are the Rayleigh fading coefficients, and i, j are the number of received

and transmitted antennas, respectively.
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Figure 5.4: Simulation BER performance of the (1, 7/5)8 binary and ββ2/1 non-
binary turbo coded OFDM-MIMO on impulsive noise channels.

At the receiver side, Nr vectors of symbols will be received and the first operation
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will be to reform these vectors into one stream of symbols. Removing the cyclic

prefix and taking the FFT of the S/P block output will be the second process. After

that, the output will pass through the deinterleaver before it passes to the decoder.

Finally, the Max-Log-MAP algorithm will be applied for all trellis codes that been

used in this chapter.

In this section, the above procedure has been considered for a rate 1
3

binary and

non-binary turbo codes and figure 5.4 shows the simulated BER performance vs.

SNR.

The results have been obtained for a binary code with message length of 2000

bits and a 1000-symbol message length for the non-binary turbo code system. In

addition, the CP length was 256 and the impulsive noise parameters are A = 0.1

and Γ = 0.1, and 0.01. It can be noticed from figures 5.2 and 5.4 that the coded

BER performance exceeds the performance of the uncoded systems by 15 dB for

the non-binary and about 13 dB for the binary codes, at a BER of 10−5. It is also

clear that the non-binary coded OFDM-MIMO performance achieves a gain over

the binary of at least 2dB for all MIMO scenarios.

In the next section, the simulated and theoretical analysis of binary and non-

binary convolutional coded OFDM-MIMO on impulsive noise channels will be in-

vestigated.

5.2.3 BER Analysis of Convolutional CodedWireless OFDM-

MIMO Additive Impulsive Noise

Recalling equation (3.26), the pairwise error probability Pw must be calculated when

considering MIMO channels and the interference. In other words, the LLR should

be calculated for non-Binary convolutional codes with a MMSE detector, which is

represented as

LLRi = ln

∑
x̃∈Slz

Pr(yi|x̃, βi, ni)∑
x̃∈Sl0

Pr(yi|x̃, βi, ni)
(5.16)

Since the all zero codeword is a valid codeword, the following inequality will be

valid as well

Pw(d) = Pr




df∑

i=1

LLRi > 0


 (5.17)
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Finding a closed form for this probability is very difficult, therefore it can be

approximated by evaluating the MGF for the LLR in 5.17, and the result will be as

presented in [98]

P (w) =
1

v

v/2∑

k=1

[∑

i

pM,iMNt×Nr

(
(1 + t2k)Nt

4Es
εM,i

)]d
(5.18)

where v is the number of nodes that is sufficient for relevant accuracy which is

used for the Gauss-Chebyshev quadrature role (23) [99–101]. In addition, PM,i and

εM,i are the frequency of occurrence of each distance and the squared Euclidean

distance, respectively defined in Table 1 in [101]. While tk is given by

tk = tan

(
π(2k − 1)

2v

)
. (5.19)

With regard to examining the accuracy of the above equations, equation (5.18)

will be substituted into equation (3.26). Figure 5.5 illustrates the comparison be-

tween the simulated and theoretical BER performance of binary convolutional coded

OFDM-MIMO on AWGN and also on Middleton class A noise channels.
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Figure 5.5: Simulated and theoretical BER performance of binary convolutional
coded OFDM-MIMO on AWGN and impulsive noise channels.
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Figure 5.6: Simulated and theoretical BER performance of non-binary convolutional
coded OFDM-MIMO on AWGN and impulsive noise channels.

The implemented results have been obtained for a 2000-bit message length, with

QAM modulation and with a CP of length 256 symbols. Furthermore, the values of

the impulsive to Gaussian ratio Γ are 0.1 and 0.01 and A takes the value of 0.1.

It is very clear that the analysis shows a very close bound to the simulated

results for all cases. Likewise, figure 5.6 demonstrates the analysis of non-binary

convolutional coded OFDM-MIMO on AWGN and on impulsive noise channels.

The results have been achieved by considering the same parameters of figure 5.5,

although the message length is 1000 symbols.

Again the results display a great agreement between the simulated and the the-

oretical in the high SNR region at a BER of 10−5.
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5.3 Non-Binary Trellis Codes on the Synthetic

Statistical MIMO Power Line Channel

5.3.1 A Synthetic Statistical MIMO PLC Channel

The most common impulsive noise distribution that is used to model the power line

channel is Middleton class A noise and its pdf is defined in equation 4.1.
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Figure 5.7: Inductive MIMO PLC couplers.

Generally, the low voltage (LV) in-home electrical networks employ three wires,

two for power supply which are known as Phase and Neutral (P and N), and one

for protection which is labeled Protection Earth (PE). These three wires can be

connected in different styles such as: Delta-style (∆), T-style (T ) and Star-style

(S), as shown in Fig 5.7. These topologies can be used as MIMO transmitters

and/or receivers. For example, we can use P −N and P −E conductors of ∆-Style

as two transmitting ports, and P,N, PE conductors of S-style as three receiving

ports [102] [79].

In this chapter, we employ the synthetic statistical MIMO PLC channel that

was introduced in [89] [103] and its channel matrix is shown in Fig 5.8. Basically,

the authors obtained the MIMO PLC channel parameters based on an absolute

phonological outlook, with the help of the in-home 2x3 MIMO PLC channel data

that is provided by the European Telecommunication Standards Institutes (ETSI)

[102] [104]. This database consists of 353 MIMO channel frequency responses (CFRs)

and 1588 samples in the 1.8-100 MHz frequency band.
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Figure 5.8: 2x3 MIMO Channel Matrix.

5.3.2 System Model

5.3.2.1 Transmitter

The block diagram in Fig 5.9 shows the MIMO OFDM-PLC transmitter. At the be-

ginning, the input symbols pass through a β2β/1 non-binary convolutional encoder

(encoder1) and the output will be c1c2, where c1 is the input symbol and c2 is the

parity check symbol. Simultaneously, the interleaved input passes through another

β2β/1 non-binary convolutional encoder (encoder2) to produce the 2nd party check

symbol c3 [71] [52].
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Figure 5.9: Non-Binary Coded MIMO PLC-OFDM System Transmitter.

The three outputs are mixed together to obtain the codeword as the sequence

c1c2c3. This codeword will be interleaved then mapped into baseband symbols using

quadrature amplitude modulation (QAM). Next, complex baseband symbols will be
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divided into Nt vectors and an IDFT will be applied to each vector as in equation

4.2. Finally, the Nt vectors will be transmitted via PN and/or PE conductors.

5.3.2.2 Receiver

Fig 5.10 illustrates a non-binary turbo coded MIMO PLC receiver in detail. At the

receiver socket, the received signal y is given by:

y = Hx + n (5.20)

where H is the MIMO PLC channel matrix, x are the mapped transmitted sym-

bols and n is the Middleton class A noise. First, the received signal will be processed

by a non-linear pre-processing (Blanking or Clipping) to mitigate the effect of the

impulsive noise by applying equation (4.18) or (4.19). Second, the cyclic prefix CP

will be removed from each received signal and the OFDM demodulator is performed

by a FFT.

In this chapter, a Minimum Mean Square (MMSE) equalizer is used to estimate

the PLC MIMO channel and the output will be given by:

x̂i = WH
i Yi, (5.21)

where W is the MMSE detector filter vector given by [105]:

Wi = (HHH + σ2
zI)hi, (5.22)

Here, hi is the i − th column of H, I is an Nt × Nt identity matrix and σz is

the variance of the Middleton Class A noise, which can be estimated by equation

(4.7) [75]. The received signal, before proceeding to the non-binary turbo decoder,

will be reshaped as a series of symbols and interleaved. Finally, the Max-Log-Map

has been utilized to obtain the transmitted signal as explained in chapter 4, section

4.3.2.
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Figure 5.10: Coded OFDM-PLC system.
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5.3.3 Numerical and Simulation Results

In this section, we present simulation results showing the bit error rate (BER) for;

• Non-binary convolutional (NonB) coded MIMO OFDM-PLC system.

• Binary convolutional coded MIMO OFDM-PLC system.

• Non-binary turbo coded MIMO OFDM-PLC system.

• Binary turbo coded MIMO OFDM-PLC system.

• Uncoded MIMO OFDM-PLC system.

Figs 5.11-5.14 show the performance of the systems above for various values of im-

pulsive index A and background to impulsive noise ratio parameter Γ. In addition,

these figures show the BER for several MIMO PLC patterns. QAM modulation

has been used for all the above systems. For a fair comparison, the (1, 7/5)8 recur-

sive systematic convolutional code with data length of 2048 bits is compared to the

(β2β/1) non-binary convolutional code with 1024 symbols data length. Both convo-

lutional codes have a 1
2

code rate and can be realized by a four-state trellis diagram.

Moreover, both turbo codes have a 1
3

rate code and the maximum iterations used

for both turbo codes is 5. The (standard/mean) MIMO PLC channel matrix had

been extracted from the p-function in [103] with 1000 MIMO realizations and 100

frequency samples in the 1.8-100 MHz band, for all systems.

Fig 5.11 shows the BER performance curves for both binary and non-binary

convolutional codes on the AWGN channel for a point to point communication

scenario. It is clear that the performance of both convolutional codes are very

similar and that is why we chose these two codes to make a fair comparison on a

non-Gaussian channel. Even though, the performance of both convolutional codes

are the same on the AWGN channel, we can see that the non-binary convolutional

code has a better performance for all MIMO-PLC scenarios. For instance, we can

see 1.4 and 2 dB gain for the non-binary code over a binary convolutional code on

2x2 and 2x3 MIMO-PLC, respectively, when A=0.1 and Γ=0.1, at a BER of 10−5.
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Figure 5.11: BER performance of binary and non-binary convolutional coded 2x3
MIMO PLC-OFDM system, with the using of blanking and clipping, uncoded MIMO
PLC-OFDM when Γ= 0.1 and A= 0.1, and SISO binary and non-binary convolu-
tional on AWGN channel versus SNR (dB).

Fig 5.12 compares the BERs for non-binary and binary turbo coded SISO PLC-

OFDM systems with clipping and blanking techniques to reduce the effect of the

impulsive noise when A=0.1 and Γ=0.01. We can conclude from fig 5.12 that the

non-binary turbo BER performance is always better than the performance of the

binary turbo for all SIMO systems (1x2 and 1x3) by at least 2dB at a BER of

10−5. In addition, we notice that the blanking is more effective (non-linear pre-

processing) for eliminating the effect of Middleton class A noise compared with the

clipping operation, which is worse by 1.2dB for all cases of the proposed system.

The BERs for both non-binary and binary turbo coded MIMO OFDM-PLC systems

are presented in Fig 5.13, when A=0.1 and Γ=0.01 (i.e. the impulsiveness is greater

than Gaussian noise by 100 times). However, it is clear that the proposed system is

very robust and achieves a large gain over the binary system.
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Figure 5.12: BER performance of binary and non-binary turbo coded 1x2, and 1x3
SIMO PLC-OFDM system, with the using of blanking and clipping, when Γ= 0.1
and A= 0.1, versus SNR (dB).

Fig 5.13 illustrates that the performance of the non-binary code exceeds the

binary code by at least 2 dB for both clipping and blanking at a BER of 10−5.

Furthermore, Fig 5.13 also shows that blanking is always better than clipping.

Finally, Fig 5.14 shows the comparison between the proposed non-binary 2x3

MIMO PLC-OFDM system with the binary turbo, when the impulsive index A is

taking various values (A=0.01,0.1,0.2 and 0.3), Γ= 0.1 and the blanking technique

is applied.
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It should be noticed that employing non-binary turbo codes on MIMO PLC-

OFDM systems can achieve significant coding gain for all different values of impul-

sive noise over the binary MIMO PLC-OFDM systems, notably by 2dB at a BER

of 10−5.

5.4 Summary

Impulsive noise is most commonly associated with in-home communications. Nor-

mally, impulsive noise has a duration of more than one pulse long and that causes a

burst error, which significantly degrade the overall communication systems perfor-

mance. For that and more, in this chapter the main focus was on implementing a

robust communication system that can combat this harsh environment.

Middleton class A is one of the most impulsive noise types that affect commu-

nication system performance in many applications. That is because this kind of

noise is generated by many natural or man-made phenomena. For instance, elec-

tromagnetic fields surrounding the telecommunication devices, thunderstorms and

atmospheric phenomena.

However, adapting the conventional communication systems to resist the impact

of impulsive noise was the main purpose of this chapter. In order to achieve this

goal, various coded schemes have been examined on a very extreme environments. In

addition, due to the complexity which has been added to the communication systems

by considering these kind of channels, the analysis of only uncoded and binary and

non-binary convolutional coded OFDM-MIMO on additive impulsive noise channels

have been presented. The simulated and theoretical BER performance of wireless

OFDM-MIMO systems has showed a close match in the high SNR region. It is

worth mentioning that by using the same analysis of wireless OFDM-MIMO, the

analysis of OFDM-MIMO on PLC channels can be achieved.

Furthermore, an investigation into non-binary turbo coded MIMO PLC-OFDM

on different channels has been carried out. The transmitter and receiver struc-

tures have been presented and the Max-Log-MAP algorithm for non-binary codes

employed as the component decoders, which were explained in chapter 4. The sim-

ulation results show that the proposed non-binary turbo coded MIMO PLC-OFDM
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system achieves significant coding gains compared to the binary turbo coded system

when the channel is impulsive.

This initial investigation has shown that there is much promise for non-binary

turbo codes on impulsive noise channels and there is great scope for further research

in this area.
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Chapter 6

Thesis Summary and Future Work

6.1 Thesis Summary

Most studies consider conventional communication systems where the noise channel

is AWGN. However, it is not always the case, due to man-made or natural phe-

nomena that add unwanted noise to the transmitted signal. Also, AWGN is not

suitable to model numerous applications, such as communication over power line

transmission cables, underwater communications, and in-home telecommunications.

Basically, non-Gaussian additive noise generate samples with a higher energy

and longer than one pulse duration as compared to AWGN symbols. Moreover, this

type of additive noise gives rise to burst errors that degrade the communication

system performance. In this thesis, two of the commonly used noise distribution to

model the noise channel on PLC, underwater and in-home communications, have

been implemented in various wired and wireless trellis coded and uncoded systems.

The noise distributions that were considered in this thesis were; SαS stable and

Middleton class A. The main contributions offered in this thesis are summarised

below:

• In chapter 3, the BER performance of non-binary convolutional codes on the

AWGN channel has been investigated, along with a comparison of the BER

performance of binary convolutional codes. In order to validate this analysis

approach, the simulated and theoretical BER performance of two non-binary

codes (ββ2/1 and β1β/β21) have been presented. Both codes have a rate of 1
2

and message length 1000 symbols, utilizing BPSK modulation.

In addition, GF(4) has been considered in this chapter and the state tables of
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both codes with an example of the signal-flow-graph for non-binary codes and

a comparison between the performance of binary and non-binary convolutional

codes has been carried out. Also, the transfer function and weight enumerators

of non-binary convolutional codes have been derived. Furthermore, in this

chapter, the theoretical results showed a good agreement with the simulated

results.

Moreover, an investigation of binary and non-binary trellis codes on SαS stable

channel have been carried out. A fair comparison between the (1, 7/5)8 binary

and β β2/1 non-binary convolutional codes on SαS stable noise channel has

been presented. Even though, these codes have a very close BER performance

on AWGN, non-binary convolutional code showed great gain over binary codes

on impulsive noise channels.

Finally, a comparison between rate 1
3

binary and non-binary turbo codes on

SαS stable noise channels has been presented and non-binary codes again

achieved a significant coding gain.

• There are a large number of PLC technologies that are utilized by many ap-

plications. For example, Internet access, which is known as broadband over

power line (BPL) and smart home applications. Thus, chapter 4 focused on

the implementation of different coding schemes on PLC noise channels. Since

the commonly used distribution to model the noise channel on PLC is Mid-

dleton class A, a brief exploration of these channel characteristics have been

presented. The effect of the impulsive noise index A and the noise background

ratio Γ, have been illustrated for single carrier coded and uncoded communi-

cation systems on additive impulsive noise channels.

In addition, an investigation into MC binary and non-binary trellis coded sys-

tems on impulsive noise have been presented and a fair BER performance

comparison between the binary and non-binary systems has been carried out.

In order to validate the simulated results of MC binary and non-binary con-

volutional codes on Middleton class A noise channels, a comparison between

simulated and theoretical results have been introduced in this chapter, and it

showed a good agreement between them.

With regards to examining the proposed systems on a realistic PLC environ-
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ment, two multipath models for the powerline channel have been considered

in the implementation. The simulated BERs of uncoded and coded binary

and non-binary convolutional OFDM-PLC systems on multipath frequency

selective channels have been compared with the analytical bounds for the first

time. With a view to mitigating the impact of the multipath frequency se-

lective channel and impulsive noise effects, OFDM has been utilized at the

transmitter. Additionally, non-linear preprocessing techniques such as clip-

ping and blanking have been implemented to reduce the high energy noise

pulses.

Furthermore, non-binary turbo decoding and encoding on the PLC channel

has been described in detail for SC and MC systems. Finally, the simulated

BER performance of non-binary turbo coded OFDM-PLC systems has been

presented and a comparison with binary coded systems has been carried out.

• Interest in MIMO systems has increased rapidly, therefore binary and non-

binary trellis codes with OFDM-MIMO on impulsive noise for wireless appli-

cations have been implemented in chapter 5. validation of the simulated BER

performance of binary and non-binary convolutional coded OFDM-MIMO on

Middleton class A noise channel has been introduced for various noise param-

eters and for different MIMO scenarios.

Utilizing the existing power line network cables to achieve reliable commu-

nications over these grids is of great interest .In addition, high data rates

with large capacity are always the main target of any communication system.

Therefore, in chapter 5, OFDM-MIMO trellis coded systems have been ap-

plied to electric grid wires to enhance the overall telecommunication system

efficiency. Also, signal processing techniques have been implemented to reduce

the negative effect of impulsive noise MIMO channels. These techniques are

ODFM which is an effective tool to spread the impulsive noise energy equally

over all symbols and reduce the impact of multipath channels, and blanking or

clipping techniques. By the same token, the system model of non-binary turbo

coded OFDM-MIMO-PLC has been explained in detail. An examination of

the proposed system on synthetic MIMO-PLC channels, which is generated

based on data set provided by ETSI, has been presented. This database con-

sists of 353 MIMO CFRs and 1588 samples in the frequency range of 1.8-100
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MHz. Finally, numerical and simulated results of the proposed system have

been illustrated along with a fair comparison between the BER performance

of binary and non-binary codes.

6.2 Future Work

Investigations into the BER performance of non-binary trellis codes on some wired

and wireless applications over extreme environments were the main focus in this

thesis. However, there is still scope to achieve further gains in performance by

employing more recently proposed techniques or ideas that focus on channel estima-

tion, energy and time consumption and noise cancellation. Some of these ideas and

techniques that can be carried out on the future research are listed as follows :

• Employing non-binary coding exposed additional complexity to the decoding

and encoding processes, but it is worth considering higher Galois fields such

as; GF(8), GF(16),..., etc, to investigate their behaviour in impulsive noise

environments. In addition, we could utilize other coding schemes on impulsive

noise channels and making fair comparisons between them to find the robust

codes for such harsh medium. For example, LDPC codes is one of the standard

coding schemes used on PLC and we might employ it with non-binary fields

and derive the corresponding analysis bounds.

• It is well known that the performance of non-binary codes is better than the

binary, but it adds complexity to the communication system as we mentioned

before. Therefore, reducing the complexity of their decoding algorithms would

be one of the main considerations for future study.

• Energy consumption must also be taken into consideration since it is likely

that the wireless network will comprise portable nodes powered by battery. It

is therefore important to minimize the transmission power and the complex-

ity of the encoding and decoding operations while maintaining an acceptable

quality of service. Using optimization tools such as CVX with Matlab or other

programming language, might be a great approach to these goals.
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