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Abstract 

Across the globe, cardiovascular disease (CVD) is the leading cause of cause of death, including in 

China, where mortality from CVD has increased rapidly in the past few decades. There is a growing 

body of epidemiological studies to suggest that diets rich in whole grains are linked to a lower risk of 

CVD and mortality, with similar results found across diverse populations. Quinoa, as an example of a 

pseudo-cereal, is included in the ‘’whole grain’’ class in terms of nutritional value, suggesting that 

quinoa is a possible alternative to common cereals, such as wheat, rice and corn. In this study, a 

total of thirteen commonly used commercial quinoa accessions and nine buckwheat accessions were 

sourced from various regions, including Peru, Ecuador, Bolivia, USA, UK, Netherlands and China. In 

order to select the quinoa accession with ‘optimal’ nutrition for use in the future human 

intervention study, chemical analysis of these thirteen quinoa accessions was conducted including 

phytochemical and dietary fibre content. There was considerable variation in the proximate 

composition but on average the quinoa seed samples had a higher content of protein, fat, fibre, 

phenolics and apparent antioxidant capacity, as well as well-balance amino-acids compared with 

other cereals. For the buckwheat accessions, only phenolic content and antioxidant activity were 

analysed, which also showed a wide range. 

The effects of quinoa on humans has rarely been investigated with just three small interventions 

published, with inconsistent results; moreover, their possible effects on gut microbiota are totally 

unknown. An exploratory study was carried out to compare the effects of a quinoa-enriched bread 

as part of the usual diet with refined wheat bread on CVD risk markers and the gut microbiota. Thirty 

healthy obese men (35-70 years, BMI>25kg/m2) completed a 4-week cross-over intervention, 

separated by a washout period of at least 4 weeks. The intervention diet was 1 quinoa roll/day 

weighing approximately 162 g that included 20g quinoa seed flour and 80 g refined wheat flour 

compared with an equivalent sized 100% refined wheat roll. Fasting blood sample, 24h urine and gut 

microbiota samples were collected at the beginning and end of each intervention period, as well as 

dried blood spots after standard breakfast (100 g quinoa or refined roll with 10 g strawberry jam).   

After 4 weeks of quinoa roll consumption, there was a significant decrease in glucose by 4.5% and 

LDL cholesterol by 5.7% compared with the corresponding baseline, but the changes between the 

two treatments did not reach significance level. Moreover, anthropometric variables, other blood 

variables and plasma antioxidant capacity also did not significantly differ between two treatments. 

Continuous glucose monitoring was applied for 4 days before and after sampling at the end of each 

intervention period. The AUC for glucose over the four days at the end of the quinoa treatment 

period was borderline significantly lower than the following four days when quinoa consumption 
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ceased (p=0.054). As for the postprandial glucose changes, although some important differences in 

glucose responses between quinoa and refined wheat rolls breakfast, such as significantly different 

AUC values over 4 hours, were not observed in capillary blood samples, the glucose response curves 

were relatively similar; there was a more rapid fall approximately after 60 mins after the quinoa roll 

breakfast. Although there were some changes in the relative abundance of gut microbiota within 

treatment like Firmicutes and Bacteroidetes, no significantly differences in diversity measures (alpha 

and beta) and relative abundance of gut microbiota were observed between two treatments. The 

presence of many ‘trend’ results, such as glucose, insulin and LDL cholesterol values, in the present 

study indicates that significant results might have been obtained with prolonged duration, higher 

dose and larger numbers of subjects. In conclusion, a specific quinoa diet improves cardiometabolic 

risk-associated biomarkers and gut microbiota in a healthy cohort, indicating potential value as a 

healthy gluten-free alternative to common cereals. 
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1 Chapter 1 Introduction 

Across the world, cereal-based foods form an integral part of the human diet, with approximately 

30-70% of their daily energy derived from this source (FAO, 2014). The grains comprise the cereal 

grains, such as rice, wheat, corn and rye as well as pseudo-cereals like quinoa, amaranth and 

buckwheat. Whole grains are composed of three component parts, including bran, germ and 

endosperm (Van der Kamp et al., 2014). There is a growing body of epidemiological studies 

supporting an inverse association between whole grain consumption and risk of several chronic 

diseases, including cardiovascular disease (CVD), cancer, type 2 diabetes and obesity, with similar 

results found across diverse populations (He et al., 1995; Chatenoud et al., 1998; Jacobs et al., 1998; 

Liu et al., 1999b; Jacobs et al., 2000; Mellen et al., 2008a; O'Neil et al., 2010; Ye et al., 2012). CVD 

continues to be the leading cause of morbidity and death across the globe and including China, and 

accounts for approximately one third of all deaths around the world (WHO, 2003).  Excess body 

weight, hypertension and dyslipidemia are clinically considered as the most potent established risk 

factors for CVD. In China, recently obvious changes to traditional diets, including a dramatic decrease 

in amounts of whole grains consumed from 104 g/d in 1982 to 24 g/d in 2002 may be responsible for 

the elevated CVD mortality (Ge, 2011).  

Quinoa, which belongs to Polygonaceae family of plant species, is included in ‘’whole grain’’ class 

even though it is not a member of the grass family, in terms of its similar nutrient composition to 

grass seeds (McKeown et al., 2013). In addition to the high content of carbohydrates as an energy 

source, quinoa is a good source of high quality protein, with a well-balanced amino acids profile, 

lipids which are rich in unsaturated fats, dietary fibre, minerals as well as other important 

components such as vitamin C and phenolic compounds, which together promote quinoa to be a 

potential gluten-free alternative to common cereals (Ando et al., 2002; Konishi et al., 2004; Bhargava 

et al., 2006; Alvarez-Jubete et al., 2009; Tang et al., 2015). With respect to the effect on markers of 

CVD risk, quinoa is much less studied either in human or animal studies compared with other whole 

grains like wheat, oat and barley. Moreover, up to date, there is no human intervention study that 

has reported the effects of increased quinoa consumption on the composition and population of the 

gut microbiota. Although there is some evidence that regular consumption of quinoa-based foods 

eaten daily for around one month promotes a significant reduction in the concentrations of 

circulating blood lipids in a few studies, features that may be useful in relation to the dietary 

management of metabolic risk; others report unclear results, which has led to some discussion 

about the acute impact of a quinoa-containing diet (Jenkins et al., 2008; Farinazzi-Machado et al., 

2012; De Carvalho et al., 2014; Zevallos et al., 2014). In addition to inconsistent results from 

intervention studies, knowledge of what mechanisms which lie behind these observed effects also 

https://en.wikipedia.org/wiki/Pseudocereal
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remains weak, but bioactive components present in quinoa such as dietary fibre, protein, 

compounds which exhibit high antioxidant capacity, and other phytochemicals may be the potential 

contributors (Konishi et al., 1999; Takao et al., 2005; Paśko et al., 2010; De Carvalho et al., 2014). 

Therefore, the aim of this thesis is to evaluate the health potential of quinoa in comparison with 

buckwheat in terms of their nutrient composition, in particular their polyphenolic content.  

Buckwheat was chosen as a comparator to quinoa as another gluten-free cereal which has been 

promoted recently as a healthy alternative to wheat in the diet.   

The nutritional qualities of quinoa are further evaluated in a human intervention study to assess the 

impact of regular consumption of quinoa for 4 weeks on plasma biomarkers associated with CVD risk 

including plasma glucose, lipids and markers of systemic inflammation. The effects of quinoa 

consumption on the profile of the gut microbiota was further evaluated as a possible mechanism 

through which quinoa may exert its claimed beneficial effects. 
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2 Chapter 2 Literature Review 

2.1 Whole grain 

Whole grains are defined as intact, cracked, ground or flaked fruit of grains in which all three integral 

parts of the kernel, including bran, germ and endosperm; in contrast to refined grains, which retain 

only the endosperm after the refining process (Van der Kamp et al., 2014) as shown in Figure 2.1. 

 

Figure 2.1. The three main parts of whole grains, the bran, the endosperm and the germ 

(https://wholegrainscouncil.org/). 

Whole grain foods as an important part of the human diet are not a new invention, but instead date 

back to around 10,000 years ago with the advent of agriculture in history (Spiller, 2002). For the last 

3000-4000 years whole grains have played a main role as a staple food in the human diet. It is only 

within the past 100 years, since the industrial revolution and the invention of the roller mill, that 

refined grain products as a strong competitor have largely replaced whole grain products in the 

habitual diets of a majority of the global population. Initially, gristmills, used for grinding grains, did 

not completely separate the bran and germ from the white endosperm to produce a semi-refined 

refined flour (Slavin, 2004). In 1897, the introduction of roller mill made the separation of the bran 

and germ from the endosperm more efficient than before. Since that time broad applications of the 

roller mill have met the rapidly increasing demand for refined grain products from consumers, 

especially in Western industrialised countries, thereby resulting in a dramatic decline in the 

consumption of whole grain products (Spiller, 2002). However, since the 1970s, intake of whole 

grains has increased slightly due to the ‘fibre hypothesis’ promoted by scientists, which proposed 

the potential health benefits of whole foods, including those derived from whole grains, fruits and 

vegetables (Trowell, 1972). Since this time whole grains have gained much more attention, including 

improvements in food possessing technologies, recognition of the nutrient benefits of whole grain 

https://en.wikipedia.org/wiki/Refined_grains
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and human health benefits of whole grain consumption against chronic diseases, and recently with 

their strong recommended as a part of a healthful diet. 

The cereal grains consumed by people are the seeds that come from the Gramineae family of 

grasses (Van der Kamp et al., 2014). The most commonly consumed whole grains in the Western diet 

are wheat, rice and corn, as well as oats, barley, millet and sorghum in some countries. In other 

countries such as China, the most commonly consumed grains are rice, wheat, corn, sorghum, millet 

and buckwheat, with rice constituting around 65% of the total. Pseudocereals as non-grasses, 

including wild rice, buckwheat, amaranth and quinoa are not botanically true grass grains, but are 

also typically classified as whole grains due to their similar nutrient composition. On the other hand 

soya was declined ‘whole grain’ status on the basis that its nutrient profile (with a higher oil and 

protein content) was not similar to other cereals (FDA, 2006). The relative proportions of the three 

naturally-occurring structural parts (bran, germ and endosperm) in grains vary from one species to 

another, but endosperm in all grains accounts for the largest part followed by the bran and the germ 

is the smallest component. For example, corn has a relatively low endosperm content 

(approximately 75-80 g/100g) compared with wheat (83 g/100g) and rye (86 g/100g) (Wei et al., 

2004). It is well known that whole grains are a good source of a wide range of nutrient and 

phytonutrient compounds, which are identified in the three main parts of the grain. 

Bran: the course, multi-layered outer skin of the edible kernel that includes considerable amounts of 

some nutrients, particularly:  

1. Dietary fibre 

2. Protein 

3. Essential fatty acids (omega-3 fatty acids) 

4. B vitamins (thiamine, riboflavin, niacin and folic acid) 

5. Minerals (constitute 50-80% in grains, such as iron, copper, zinc, magnesium, selenium) 

6. ‘Antioxidant’ compounds  

7. Phytochemicals (natural chemical compounds in plants that have potential health benefits) 

Endosperm: the largest portion of kernel (the middle layer) serves as the main energy store for the 

seed, including:  

1. Carbohydrates (account for the largest part of grains) 

2. Protein (found mainly in the intracellular matrix) 

3. Small amounts of B vitamins and minerals 

https://en.wikipedia.org/wiki/Pseudocereal
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Germ: it is the true embryo of the seed that germinates to grow into a plant. As the smallest part of 

the grain, it also contains a rich nutritional profile including:  

1. Protein 

2. Healthy fat  (omega-6 fatty acids) 

3. B vitamins (thiamine and folate) 

4. Minerals (phosphorus, magnesium) 

5. Antioxidants  (e.g. vitamin E and vitamin E precursors) 

6. Phytochemicals (as above, potentially beneficial chemical compounds) 

The bran and germ are removed from the starchy endosperm during the refining process depending 

on the extraction rate. This process reduces the concentration of many of nutrients in refined flours 

compared with wholemeal/whole grain flours because they are concentrated in the bran and germ 

and are ‘lost’ during the refining process, as illustrated in Table 2.1.  A number of studies have 

suggested that some of these nutrients are associated with a lower risk of several chronic diseases 

(Slavin et al., 2001). 

Table 2.1. Nutrients (per 100 g) compared between wholemeal and white flours (Holland et al., 1991) 

 Wholemeal flour White flour Retained % after refining 

Protein (g) 12.7 9.4 74% 

Fat (g) 2.2 1.3 59% 

Carbohydrates (g) 63.9 77.7 122% 

Fibre (g) 8.6 3.6 42% 

Sodium (mg) 3* 3* 100% 

Potassium (mg) 340 150 44% 

Magnesium (mg) 120 20 17% 

Phosphorus (mg) 320 110 34% 

Iron (mg) 3.9 1.5 38% 

Zinc (mg) 2.9 0.6 21% 

Manganese (mg) 3.1 0.6 19% 

Selenium (mg) 53 4 8% 

Thiamin (mg) 0.46 0.10 22% 

Riboflavin (mg) 0.09 0.03 33% 

Niacin (mg) 5.7 1.7 30% 

Vitamin B-6 (mg) 0.50 0.15 30% 

Folate (mg) 57 22 39% 

Vitamin E (mg) 1.4 0.3 21% 

*Before processing 
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2.2 General aspects on quinoa 

Chenopodium quinoa Willd., commonly known as quinoa, is a native grain-like crop grown originally 

in the Andean region of South America including Peru, Bolivia, Ecuador, Colombia and Chile.  Quinoa 

was domesticated some 3,000 to 4,000 years ago for human consumption and for livestock feed 

(Vega-Galvez et al., 2010).  Due to increasing popularity of the grain, it has been introduced in non-

indigenous regions in recent years, such as Europe, North America, Australia, China and Japan. The 

quinoa plant has a broad genetic diversity that allows it to be highly resistant to cold, salt and 

drought conditions with ecotypes growing well at high altitudes and poor soils, but which are 

generally not suitable for the cultivation of common cereals, such as wheat, rice and corn (Zhang et 

al., 2006b; Martínez et al., 2009; Fuentes and Bhargava, 2011; Li and Yuan, 2012). It is also one of 

the few crops that grows on high salinity level soils in Southern Bolivia and Northern Chile (Jacobsen 

et al., 2000). Quinoa is a hardy, drought-tolerant plant with a combined precipitation and irrigation 

requirement of 25-38 cm per year, which was obviously less than water requirements of other 

cereals like wheat and rice (Shrestha et al., 2013). As long as the soil is naturally moist, plants should 

not be irrigated until the seedlings show two or three leaves. On the other hand, over-watering 

quinoa during the seedling stages can cause damping off and severe stunting off and severe 

stunting, and excessive irrigation after quinoa is established usually translates into tall, leggy plants 

with low yield. In the Andean region, quinoa is usually cultivated in rotation with potato or cereals, 

without the use of fertilizer or manures. In other countries, quinoa responds well to Nitrogen 

fertilizer, and yields increase with increasing use of fertilizer but to avoid over-fertilisation (Liu and 

Fan, 2011; Choukr-Allah et al., 2016). When compared with common cereals like wheat and corn, it 

seems that quinoa cultivation probably requires less water, fertilizer and care, but which also largely 

depend on growing conditions (Liu and Fan, 2011; Choukr-Allah et al., 2016). Despite the relatively 

lower quinoa seed yields ranging from 0.23 t/ha in Mauritania to 7.5 t/ha in Lebanon than common 

cereals, including wheat, rice and corn, quinoa production has intensified quickly in recent years due 

to the increasing prices on the international market (Jacobsen, 2011; Dost, 2015). The price of 

quinoa sold by farmers have almost tripled from 2004 to 2012, which is three times the price of 

soybean and five times the price of wheat (Stevens, 2017). The higher economic profits compared 

with common cereals drive the farmers to expand the existing plant scale (Liu and Fan, 2011; 

Choukr-Allah et al., 2016). It has been suggested that high quinoa price will be sustained (including 

China) because the production of quinoa cannot meet the demand in a short-term period from 

increasing number of people who intend to include quinoa in their diets (Li et al., 2016). 

https://en.wikipedia.org/wiki/Andes
https://en.wikipedia.org/wiki/Peru
https://en.wikipedia.org/wiki/Bolivia
https://en.wikipedia.org/wiki/Ecuador
https://en.wikipedia.org/wiki/Colombia
https://en.wikipedia.org/wiki/Chile
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Quinoa is a member of the family Amaranthaceae rather than Gramineae, but it produces seeds that 

can be milled into flour and used as a cereal crop, thus it is referred to as a pseudo-cereal. The edible 

parts of the plant include leaves and seeds, the latter being the principle form for human 

consumption of this species and the form that has been the most economically and scientifically 

explored. Three main storage compartments can be distinguished within the mature quinoa seed 

(from centre to edge): a large central perisperm, a peripheral embryo and a one to two cell layered 

endosperm only in the micropylar region surrounding the hypocotyl-radicle axis of the embryo 

(Prego et al., 1998) (Figure 2.2). In cereals such as wheat, corn and maize, the main starch reserves 

for embryo development are stored in the endosperm tissue, but in quinoa, the living endosperm 

tissue is reduced to one or two layers. Instead, the starch is principally stored in the non-living 

perisperm that occupies around 40% of the volume of quinoa seed, although small amounts also 

exist in embryo, but not endosperm (Prego et al., 1998; Ruales, 1998). However, mineral nutrients, 

lipid and protein reserves are mostly found in the embryo and endosperm. The quinoa seed is 

enveloped in a dry, very thin, two layered pericarp (seed outer coats).  

 

Figure 2.2. Median longitudinal section of quinoa seed (Prego et al., 1998) 

The seeds are round and flattened, about 1.5-4.0 mm in diameter and 0.5 mm in thickness; around 

350 seeds weigh 1 gram, and their color ranges from white to grey and black, potentially having 

tones of yellow, rose, red, purple and violet depending on their phytochemical content. Up to date, 

there are approximately 250 quinoa varieties identified, of which classification is based on the colour 

of the plant and seeds, or on plant morphology (Jancurova et al., 2009; Vega-Galvez et al., 2010). 

Quinoa seeds have been consumed by incorporation into salads or cooked and used in a similar way 

to rice, prepared in soup, puffed to make breakfast cereal, or milled into flour to produce various 

toasted and baked goods as a staple food, such as breads, noodles, cakes, cookies, biscuits, flakes, 

https://en.wikipedia.org/wiki/Amaranthaceae
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pancakes and tortillas (Popenoe et al., 1989; Bhargava et al., 2006). Furthermore, quinoa seeds can 

be fermented to make beer, or a traditional ceremonial alcoholic beverage from South America 

called “chicha” (Healy, 2001; FAO, 2011).  

Recently, quinoa has attracted much attention for its high nutritional profile, being rich in protein, 

lipids, dietary fibre, vitamins, minerals and phenolic compounds, with an extraordinary balance of 

essential amino acids (Ando et al., 2002; Konishi et al., 2004; Bhargava et al., 2006; Alvarez-Jubete et 

al., 2009; Tang et al., 2015). Thus, the Food and Agricultural Organization of the United Nations 

(FAO) had officially announced that the year 2013 was "The International Year of the Quinoa" in 

order to raise the profile of the food and encourage its use. The Table 2.2 describing the nutritional 

composition of quinoa seed was listed below, together with buckwheat and wheat flour as a 

comparison (Wijngaard and Arendt, 2006; Hager et al., 2012; Stikic et al., 2012; Collar and Angioloni, 

2014; Filho et al., 2017). It should be mentioned that composition of essential amino acids in quinoa 

was similar to amino acid requirement pattern recommended by FAO/WHO/UNU (1985), which 

were higher than whole grain and refined wheat. Besides, quinoa also contains a great number of 

minor compounds. Of these, phenolic compounds have attracted much attention due to their 

properties as antioxidant and their antiallergic, antiviral, anti-inflammatory, cardiovascular 

protective, and anticarcinogenic activity (Kehrer and Smith, 1994; Scalbert et al., 2005). 
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Table 2.2. Nutritional composition of quinoa, buckwheat and wheat flours (dry basis) 

Nutrient Quinoa Buckwheat Wholegrain wheat Refined wheat 

Energy (kcal/100g) 385 368 366 361 

Ash (g/100g) 2.43  1.65  1.32  0.92  

Protein (g/100g) 13.48  12.19  11.97  9.89  

Total starch (g/100g) 48.88  61.35  56.84  68.08 

Fat (g/100g) 8.59  4.21  3.63  1.81  

Saturated fatty acids (g/100g) 0.99  0.90  0.69  0.70  

Unsaturated fatty acids (g/100g) 7.34  2.53  2.93  1.09  

Total dietary fibre (g/100g) 14.5  11.94  11.42  2.19  

Soluble dietary fibre (g/100g) 5.37  6.12  1.60  0.91  

Insoluble dietary fibre (g/100g) 

(g/100g) 

9.13  5.81  9.82  1.28  

Polyphenols (mg/100g) 78.24  465.47  82.20  13.04 

Amino acid (g aa/100g protein)     

     Histidine  3.2 2.7 2.3 2.0 

     Iso-Leucine  4.4 3.8 3.7 3.4 

     Leucine  6.6 6.4 6.8 6.5 

     Lysine  6.1 6.1 2.8 2.7 

     Methionine  2.3 2.5 1.4 1.5 

     Phenylalanine  4.7 4.8 4.7 4.1 

     Threonine  3.8 3.9 2.9 2.7 

     Tryptophan  1.1 2.4 1.5 1.2 

     Valine  4.5 5.1 4.5 4.0 

Minerals (mg/kg)     

     Calcium 497.3  148.2  307.7  1797.7  

     Magnesium 2299.0 1736 782.7  244.0  

     Sodium 37.0  10.8 19.9  38.1  

     Potassium 5537.7  4022.7 3997.7  1520.3  

     Iron 53.5 28.5  26.9  13.4  

     Copper 7.71  5.1  4.0  1.51  

     Manganese 13.5  11.8  23.4  8.25  

     Zinc 32.77  18.8  17.5  7.59  

     Chloride 433.8  144.0  998.0  825.6  

     Phosphorus 4415.7 2787.0  2040.7  908.7  

 

Another important family of compounds present in quinoa seeds is the family of saponins. Saponins 

occur constitutively in a large number of plant species, in both wild plants and cultivated crops. 

Steroid saponins are common in plants used as herbs probably due to health-promoting properties, 

while in cultivated crops the triterpenoid saponins are generally predominant (Fenwick et al., 1991). 

Saponins consist of a sugar moiety usually containing glucose, galactose, glucuronic acid, xylose, 

rhamnose or methylpentose, glycosidically linked to a hydrophobic aglycone which may be 

triterpenoid (Figure 2.3. (a)) or steroid (Figure 2.3. (b)) in nature. Steroid saponins have been 

identified in oats, tomato seed, capsicum peppers, aubergine, allium, yam, yucca and ginseng. 

Triterpenoid saponins are found in a great many legumes such as soya beans, beans, peas, and also 
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in tea, alliums, spinach, sugar beet, sunflower, quinoa and ginseng. These compounds are of interest 

because of their physiological functionalities, such as antioxidant, antitumor, cholesterol-lowering 

and antifungal activity (Estrada et al., 1998; Woldemichael and Wink, 2001; Li et al., 2002; Gulcin et 

al., 2006). Triterpenoid saponins are synthesised via the isoprenoid pathway by cyclisation of 2,3-

oxidosqualene to give primarily oleanane (β amyrin) or dammarane triterpenoid skeletons. Despite 

the increasing commercial interest in this group of natural products,the genetic machinery required 

for the elaboration of this family of plant secondary metabolites have largely not characterised due 

partly to complexity molecules and lack of commercial availably pathways.  

 

Figure 2.3. Basic structure of saponins: a triterpenoid (a) and a steroid (b) (Friess et al., 1968) 

These compounds, primarily located in the pericarp layer, give quinoa seeds an unpleasant bitter 

taste, making the removal of saponins via washing or mechanical abrasion before human 

consumption necessary (Johnson and Croissant, 1985; Prego et al., 1998; Vega-Galvez et al., 2010). 

Saponins from quinoa seeds are a complex of triterpene glycosides which differ in aglicon moiety, in 

the saccharide moieties and also in the substitution pattern of sugars of the sapogenins (Mizui et al., 

1988; Ma et al., 1989; Mizui et al., 1990) (Figure 2.4). Up to date, 10 to 16 saponins from quinoa 

seeds have been determined in numbers of studies (Woldemichael and Wink, 2001; Gomez-

Caravaca et al., 2011; Verza et al., 2012; Yao et al., 2014). Four main structures of sapogenins have 

been identified in quinoa: oleanolic acid, hederagenin, phytolaccagenic acid and 30-O-methyl-

espergulagenate. The saponins content in seeds of different genotypes varied from 0.02% to 2.3% 

(dry matter), which are higher than those in oat and soybeans (Mastebroek et al., 2000; Guclu-

Ustundag and Mazza, 2007). Despite health-promoting properties of saponins from other plants, 

evidence of reporting the effects of saponins derived from quinoa seeds are not available to date. As 

the most unique compounds to quinoa relative to any other grains, saponins from quinoa deserve 

more efforts to explore their potential possible beneficial effects.  
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Figure 2.4. The structure of saponins from quinoa seeds (Verza et al., 2012) 

In addition to presenting a high nutritional quality, it is also characterized by being gluten-free, a 

characteristic that enables it to offer a greater variety of more nutritious and suitable food products 

for individuals with celiac disease. Celiac disease is an autoimmune disorder primarily affecting the 

small intestine that occurs in genetically predisposed individuals subsequent to the ingestion of 

gluten–containing grains in the diets, such as wheat, barley, and rye (Catassi and Fasano, 2008). The 

resultant inflammatory response in the intestine results in autoantibody production, villous atrophy 

and systemic effects. Classic symptoms include gastrointestinal problems such as weight loss, 

chronic diarrhoea, abdominal distention, malabsorption, and among children failure to grow 

normally. Coeliac disease was once thought to only happen in childhood, but it is now recognised to 

be a common lifelong disorders affecting approximately 1% of the population worldwide (Green and 

Cellier, 2007). The only treatment to date for celiac disease is the strict lifelong adherence to a 

gluten-free diet (Chand and Mihas, 2006; Rodrigo, 2006; Catassi and Fasano, 2008). Cereals such as 

quinoa and buckwheat have a key role to play in this regard.   
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2.3 Cardiovascular disease  

Cardiovascular disease (CVD) is a class of diseases that affect the heart or blood vessels. It is usually 

associated with a build-up of fatty deposits inside the arteries known as atherosclerosis which are 

associated with an increased risk of blood clots. When fatty materials, such as cholesterol and 

triglycerides form deposits called plaques on and within the walls of blood vessels, this results in a 

narrowing of the artery, limiting the flow of oxygen-rich blood to the heart, brain and other parts of 

body, this is described as atherosclerosis (Figure 2.5).  If the atheromatous plaque ruptures the 

arterial wall, platelets are enrolled to repair the damage, causing a clot to form. Over time, the walls 

of the blood vessels become hard and narrow, thereby losing their elasticity. CVD encompasses a 

variety of pathologies, including disease of the arteries supplying oxygen-rich blood to the heart 

muscle (angina, heart attacks or heart failure), brain (stroke or cerebrovascular disease) and other 

parts of the body, including legs, arms, and pelvis (peripheral artery disease).  

 

Figure 2.5. The formation of atherosclerosis  
(https://www.nhlbi.nih.gov/) 

There are many risk factors for CVD, including smoking, lack of exercise, excessive alcohol intake, 

high blood pressure, high blood cholesterol, obesity, diabetes, poor diet. In spite of revolutionary 

https://en.wikipedia.org/wiki/Heart
https://en.wikipedia.org/wiki/Blood_vessel
http://www.nhs.uk/Conditions/Atherosclerosis/Pages/Introduction.aspx
http://www.nhs.uk/conditions/thrombosis/pages/introduction.aspx
http://www.baidu.com/link?url=vqA8sEj3LZno7Xlzs90Mjevq9qaMsRbIFmmoTm92Y7Tmfux_tiIyJTcNQR2Ffi_dSG3CjECbCtN3cbKoxCKtiuGr4ZfEvVUjPSewRsOCTbW&wd=&eqid=ac74fb6400000d4f00000004598602b9
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advancement in medicine over the past decades, CVD continues to be the leading cause of morbidity 

and mortality globally, together resulting in 17.9 million deaths (32.1%) in 2015 up from 12.3 million 

(25.8%) in 1990. Likewise, deaths and disability arising from CVD are continuing to increase in China 

to date, with approximately 230 million patients suffering from CVD. There are 3 million cases of 

deaths per year associated with CVD, which accounted for nearly 41% of total deaths in China.  It has 

been suggested that CVD events are predicted to rise by 50% from 2010 to 2030 in China based on 

population aging and growth alone. It has been estimated that up to 90% of CVD may be 

preventable which involves improving risk factors with behaviour through: avoidance of smoking, 

increasing exercise, limiting alcohol consumption, losing weight, reduction in blood pressure and 

bloods lipids values and other, with the healthy diets playing a very important role (McGill et al., 

2008; McNeal et al., 2010). 
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2.4 Markers of CVD risk affected by diets and whole grains 

Much research shows that CVD is a life course disease that starts with the evolution of risk markers 

that in turn contribute to the development of subclinical atherosclerosis (Berenson et al., 1998; 

Raitakari et al., 2003). Therefore, A number of risk markers have been developed to predict CVD risk 

including classic hypertension, inflammation and plasma lipoproteins, which are based on confirmed 

clinical outcomes related to biomolecules, its structure and functions (Upadhyay, 2015). People with 

high blood pressure are more likely to develop CVD, because high blood pressure puts added force 

against the artery walls. Over time, this extra pressure can damage the arteries, making them more 

vulnerable to the narrowing and plaque build-up associated with atherosclerosis. If diagnosed with 

hypertension, DASH (Dietary Approaches to Stop Hypertension) diet were recommended to patients, 

including fruits, vegetables, fish, nuts, whole grains, low-fat dairy products and less salt. With 

respect to whole grains, the possible mechanisms underlying the anti-hypertension effect include 

increased insulin sensitivity and improved endothelial function (Fukagawa et al., 1990; Katz et al., 

2001; Steffen et al., 2003). In specific, consumption of wheat and oat may reduce the vascular 

reactivity impairment associated with meals high in fat (Katz et al., 2001).  

Atherosclerosis has now been clinically accepted as an inflammatory process (Libby, 2006; Golia et 

al., 2014). Up to date, numerous markers of inflammation have been widely studied, such as C-

reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-1) and interleukin-6 (IL-6). Based on 

the association between markers and clinical cardiovascular risk, the epidemiological observation 

supports the theory that targeted anti-inflammatory treatment appears to be a promising strategy in 

reducing cardiovascular risk (Golia et al., 2014). Recently, a few studies have reported that 

inflammatory protein concentrations such as CRP, IL-6 could be mediated by intake of whole grains, 

which in turn could beneficially affect CVD, although data on the relationships between intake of 

whole grains and inflammatory protein concentrations are limited and conflicting (Jensen et al., 

2006; Qi et al., 2006; Lutsey et al., 2007; Qi and Hu, 2007; Masters et al., 2010). It has been 

speculated that the protective effect of whole grain consumption on inflammatory protein 

concentrations may be the results of lower postprandial glucose responses, weight maintenance and 

reduced visceral adiposity (Brownlee, 2001; Masters et al., 2010).  

Since cholesterol and triglycerides are insoluble in water and therefore these lipids must be 

transported in association with lipoproteins in the blood stream. Plasma lipoproteins are divided 

into five main groups based on density/size, including chylomicrons (CM), very-low-density 

lipoproteins (VLDL), low-density lipoproteins (LDL), intermediate-density lipoprotein (IDL) and high-

density lipoproteins (HDL). Of these lipoproteins, LDL and HDL are the most commonly used markers 

https://en.wikipedia.org/wiki/Intermediate-density_lipoprotein
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to predict the CVD risk. LDL particles are often referred to as "bad" cholesterol because they take 

cholesterol to the arteries which contribute to the formation of plaque build-up in the arteries, 

known as atherosclerosis. While HDL particles are called "good" cholesterol as they help to remove 

excess cholesterol from the arteries to the liver for disposal, thereby preventing fatty build up and 

formation of plaque in the arteries. Hyperlipidema can often be improved by eating a healthy diet 

high in fruits, vegetables, whole grains, fish and nuts, but low in saturated fat, trans fat and sugar. 

Regarding the whole grains, several possible mechanisms have been proposed to explain the 

cholesterol-lowering activity, but the soluble is the most likely contributor to this property (Glore et 

al., 1994; He et al., 1995; Behall et al., 2004; Takao et al., 2005; Ye et al., 2012; Thies et al., 2014).It 

has been suggested that soluble fibre binds strongly to bile acids in the small intestine and elevates 

faecal bile acids excretion. The loss of bile acids in the stool stimulates the liver to increase 

cholesterol uptake from the circulation to replenish the bile acid supply. It also lowers the availability 

of bile acids for optimal fat digestion and absorption (Gordon et al., 1977; Judd and Truswell, 1981; 

Story, 1985; Shinnick et al., 1990). There is also emerging evidence that soluble fibre and resistant 

starch are additionally fermented by some bacteria in the colon, producing short-chain fatty acids 

(SCFA) perhaps via the inhibition of hepatic cholesterol synthesis in the liver, which helps to lower 

cholesterol concentrations (Slavin et al., 1999; Escudero et al., 2006). In addition, soluble fibre delays 

gastric emptying, slowing access of nutrients to digestive enzymes and to absorptive surfaces of the 

small intestine (Anderson and Siesel, 1990). One other mechanism that contributes to the 

cholesterol-lowering effects may be due to the protein which possess the bile acid binding activity 

(Tomotake et al., 2000; Tomotake et al., 2001; Takao et al., 2005). 
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2.5 Gut Microbiota 

2.5.1 General aspects of gut microbiota 

The intestine is the largest reservoir of human flora, which consists of a complex microbial 

community residing in the gut called the microbiota. Estimates suggest that the intestine harbours at 

least 1014 microbial cells, which is 10 times greater than the total number of human cells in the body; 

thus it is often stated that there are more bacterial cells than human cells in a person’s body.  Most 

of the microbes, typically 1011–1012 microbes/g, can be found in faeces and from the large intestine 

(Finegold et al., 1983; Franks et al., 1998; Harmsen et al., 2002). Bacteria make up most of the 

microbes, and more than 1200 different species altogether reside there, with every individual 

presenting with their own specific composition of species.  It is estimated that on average each 

individual harbours more than 160 species (Rajilic-Stojanovic et al., 2007; Qin et al., 2010). The most 

abundant bacteria are Bacteroides, which account for around 30% of all bacteria in the gut, followed 

by Clostridium, Prevotella, Eubacterium, Ruminococcus, Fusobacterium, Peptococcus and 

Bifidobacterium, but their abundance is highly variable across individuals. Escherichia and 

Lactobacillus are also present, but to a lesser extent.  It is estimated that 99% of the bacteria come 

from about 30 or 40 species (Beaugerie and Petit, 2004). The gut microbiota are significantly 

affected by various factors, such as host genetics, lifestyle, medical interventions and health status, 

with diet being a very important factor (Burokas et al., 2015; Lankelma et al., 2015). Indeed, at least 

50% of the variation of gut microbiota has been associated with dietary changes, and the microbiota 

changes and responds to short-term interventions during adulthood (Zhang et al., 2010; David et al., 

2014). Under normal circumstances, the gut microbiota of an adult individual remains relatively 

stable until late age, when marked changes occur (Claesson et al., 2012). The gut microbiota can be 

categorized as being either beneficial (e.g., Bifidobacterium spp. and Lactobacillus spp.) or harmful 

(e.g., Clostridium spp., Shigella spp., and Veillonella spp.) to host health based on its metabolic 

activities and fermentation end products.  

2.5.2 Linking the gut microbiota to human health 

The gut microbiota, which has attracted much attention, plays an important, but generally less well 

understood, role in health and disease in humans; indeed, it is sometimes referred to our ‘’forgotten 

organ’’ (O'Hara and Shanahan, 2006). It has become increasingly recognised that the gut microbiota 

plays a critical role in human health through a variety of mechanisms, such as nutrient utilization and 

absorption by the host, activation of immune response, vitamin synthesis, inhibition of pathogens 

growth (Saulnier et al., 2009). Indeed, it has been suggested that the gut microbiota is involved in 
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appetite control, energy balance, immune function, allergies, behavioral perturbations, obesity, 

diabetes, CVD and cancers like stomach cancer (Flint, 2012). 

2.5.2.1 Gut microbiota and Clostridium difficile infection (CDI) 
 

In the intestines, when the numbers of healthy bacteria decreased often due to use of antibiotics, 

harmful Clostridium difficile may proliferate, which caused diarrhea and pseudomembraneous colitis 

and is responsible for part of hospital-acquired infections (Song et al., 2013). Limited treatment 

options, increases in failure of conventional treatment and high recurrences following initial cure 

present serious challenges to human health and economic concern. However, these patients may be 

helped by a fecal microbiota transplantation (FMT), also known as stool transplantation, which is a 

procedure in which stool from a healthy donor is placed into another patient’s intestine. FMT is very 

effective therapy for recurrent or refractory DCI, with reported effective rate ranging from 60% to 

90% after a single treatment (Kassam et al., 2013; van Nood et al., 2013; Cammarota et al., 2014; 

Youngster et al., 2014; Kelly et al., 2016). Moreover, FMT has shown therapeutic potential in various 

conditions, including irritable bowel syndrome, inflammatory bowel diseases, autoimmune diseases, 

allergic disorders (Russell and Finlay, 2012; Luckey et al., 2013; Ianiro et al., 2014; Pinn et al., 2014). 

Therefore, FMT has already been recommended as an alternative therapy (Surawicz et al., 2013). 

FMT can be delivered by diverse modalities, including oral capsules and colonoscopy. But it should 

be noted that the side effects of FMT may happen, including abdominal discomfort, cramping, 

bloating, diarrhea or constipation (Lee et al., 2016a). 

2.5.2.2 Gut microbiota and obesity 

The worldwide epidemic of obesity and related metabolic diseases are rapidly spreading and has 

become a serious problem not only for individual health but also for family and society in general 

(Popkin et al., 2006). As diet consumed is responsible for most of incidence of obesity, recent 

increasing efforts have focused on whether the gut microbiota has an important role in the 

development of obesity. For example, Backhed et al. (2007) reported that germ-free mice fed on a 

high-fat, high-sugar ‘Western’ diet were resistant to obesity, indicating that gut microbiota has 

played a central role in the development of obesity in mice. In addition, antibiotics, which can non-

preferentially deplete all intestinal bacteria, suppressed the development of obesity induced by a 

high-fat diet in mice, suggesting that essential role of gut microbiota in this process (Cani et al., 

2008; Vijay-Kumar et al., 2010). Moreover, it has been confirmed in humans that obese subjects who 

received a microbiota from lean donors showed significantly improved insulin sensitivity in the 

serum during a period of 6 weeks (Vrieze et al., 2012). At the phylum level, several studies showed 

that obese mice and obese humans have a significantly higher ratio of the number of Firmicutes to 
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that of Bacteroidetes than their lean counterparts (Ley et al., 2005; Turnbaugh et al., 2006b; Peter et 

al., 2008; Zhang et al., 2009b). Based on these published studies, Zhao (2013) clearly promoted the 

correlation between gut microbiota and obesity to causality in both rodent models and humans in 

the review. Furthermore, numbers of studies have demonstrated that changes in plasma and faecal 

short-chain fatty acid (SCFA) concentrations can be closely linked with overfeeding and obesity, but 

the mechanisms underlying the associations still unclear (Fernandes et al., 2014; Rahat-Rozenbloom 

et al., 2014; Murugesan et al., 2015). To answer this question, Perry et al. (2016) revealed that 

increased production of acetate due to a nutrient-gut microbiota interaction in rodents fed on a 

high-fat diet results in activation of the parasympathetic nervous system, which, in turn, promoted 

elevated glucose-stimulated insulin secretion, elevated ghrelin secretion, hyperphagia, obesity and 

related sequelae.  

2.5.2.3 Gut microbiota and type 2 diabetes 

A human metagenome-wide association study have demonstrated significant correlations of certain 

bacterial genes, specific gut microbes and metabolic pathways in T2D patients (Qin et al., 2012). 

After analysis of stool samples from 344 Chinese subjects, the results showed that a moderate 

dysbiosis was characterized by a reduction in the abundance of butyrate-producing bacteria like 

Roseburia intestinalis. In contrast, another study conducted on postmenopausal female patients 

with normal, impaired or diabetic glucose regulation in Europe showed different outcomes, probably 

owning to different sequencing techniques, ethic and dietetic influences (Karlsson et al., 2013). But, 

the above two studies showed that both Chinese and European diabetics have higher levels of 

Lactobacillus gasseri, Streptococcus mutans and Clostridiales, but lower concentrations of R. 

intestinalis and Faecalibacterium prausnittzii. In addition, compared with non-diabetics, patients 

with T2D have higher levels of Lactobacillus species as reported in a smaller study (Larsen et al., 

2010). 

2.5.2.4 Gut microbiota and CVD  
 

Mounting evidence in animal models and humans have showed that gut microbiota were associated 

with CVD (Koren et al., 2011). A recent paper analysed microbiota from oral, gut and atherosclerosis 

plaque in 15 patients with atherosclerosis, suggesting that gut microbiota may correlate with disease 

markers of atherosclerosis. Furthermore, increased plasma concentration was found to correlate 

with changes in several bacterial taxa from the gut (Koren et al., 2011). Previous studies have shown 

that gut microbiota metabolizes dietary choline, L-carnitine and phosphatidycholine into 

trimethylamine (TMA), which is further oxidised into pro-atherogenic molecule trimethylamine N-

oxide (TMAO) in the liver(Wang et al., 2011; Koeth et al., 2013; Tang et al., 2013). Interestingly, 
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dietary supplementation of choline or TMAO blunted reverse cholesterol transport and enhanced 

the foam cells formation that precede atherosclerosis in mice (Robert et al., 2013). Besides, 

increased plasma TMAO concentrations were attributable to higher risk of major adverse 

cardiovascular events in humans (Tang et al., 2013). Thus, prevention of gut microbiota-dependent 

TMAO seemed to a promising strategy for the treatment of atherosclerosis (Wang et al., 2015).  
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2.6 Quinoa and markers of cardiovascular risk: a systematic literature 

review 

2.6.1 Introduction 

Across the world, cereal-based foods form an integral part of the human diet, currently accounting 

for 30-70 % of their daily dietary energy (FAO, 2014). The grains comprise the seeds of Gramineae 

family of grasses, such as rice, wheat and rye as well as pseudo-cereals like quinoa, amaranth and 

buckwheat. These grains all require processing before consumption which involves various degrees 

of refinement or extraction of bran, germ and endosperm (Van der Kamp et al., 2014). The 

association between increased consumption of whole grains or whole-grain foods in the diet and a 

decreased risk of developing diabetes, CVD, weight gain, obesity and some types of cancer has been 

consistently reported in observational studies (He et al., 1995; Chatenoud et al., 1998; Jacobs et al., 

1998; Liu et al., 1999b; Jacobs et al., 2000; Mellen et al., 2008a; O'Neil et al., 2010; Ye et al., 2012; 

Aune et al., 2016; Chen et al., 2016). CVD is currently a leading cause of death, with an estimated 

one third of all deaths globally linked to CVD (WHO, 2003). Apart from traditional drug 

therapies, food can play an important role in disease prevention and treatments by affordable 

integrative strategies (Bigliardi and Galati, 2013). 

Quinoa is an example of a pseudo-cereal which is included in the ‘’whole grain’’ class in terms of 

nutritional value (McKeown et al., 2013). It is native to Andean region of South America, and was 

domesticated thousands of years ago for human consumption and for livestock feed (Vega-Galvez et 

al., 2010). Over the last 20 years, quinoa has become the subject of worldwide attention with 

respect to its superior nutritional profile and suitability for people suffering from food allergies 

particularly gluten intolerance and/or have desire to eat healthy diets, as well as its great 

adaptability to different growing conditions. In addition to offering the starch content as an 

important energy source, quinoa is rich in good quality protein, with a well-balanced amino acids 

profile, lipids which are rich in unsaturated fats, dietary fibre, minerals as well as other important 

components such as vitamin C and phenolic compounds (Ando et al., 2002; Konishi et al., 2004; 

Bhargava et al., 2006; Alvarez-Jubete et al., 2009; Tang et al., 2015). Thus, the Food and Agricultural 

Organization of the United Nations (FAO) had officially announced that the year 2013 was "The 

International Year of the Quinoa".     

Some studies have begun to concentrate on the relationship between the intake of quinoa and 

markers of cardiovascular disease risk, either in human or animal intervention studies, but the 

number is limited. What is more, results from these studies conducted in free-living individuals are 

https://en.wikipedia.org/wiki/Pseudocereal
https://en.wikipedia.org/wiki/Andes
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conflicting in some cases. Thus, a clear and direct correlation between consumption and health 

benefit of quinoa is difficult to establish. Systematic reviews can provide a wider perspective, but 

also an evaluation of the validity of the methods of the study and results that can point the direction 

for future research. The primary aim of this review is to present a comprehensive review and 

summary of the up-to-date evidence from animal and human intervention studies for exploring the 

benefits of quinoa consumption in reducing CVD risk. 
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2.6.2 Method 

2.6.2.1 Data sources and literature search 

A comprehensive literature search for animal or human studies that had investigated the 

relationship between quinoa consumption and risk of CVD between 1960 and 2016 was conducted. 

Figure. 2.3 shows how relevant articles were selected. PubMed, Ovid, Scopus, Web of Science, 

Compendex, JSTOR, EBSCO, Medline and ProQuest databases were searched using the search terms 

‘quinoa’ AND ‘cardiovascular’ OR ‘cholesterol’ AND ‘animal’ OR ‘human’, and the same terms were 

applied in each database during the search phase. CVD was defined to encompass coronary heart 

disease, stroke, peripheral arterial disease and aortic disease. In addition, the reference lists of 

retrieved articles were searched manually for all additional potentially relevant articles. The search 

was limited to studies on animals and humans and included those that were written in different 

languages such as English and Japanese.  

2.6.2.2 Study selection 

The studies were included in this review satisfied the following criteria: 1) study in animals or 

humans, 2) quinoa-consumption exposure, 3) the outcomes included CVD risk markers, such as 

glucose, insulin, lipid profile. Since cholesterol was the most commonly indicator of CVD response to 

whole-grain foods, cholesterol was used as a primary outcome marker in this review. The eligibility 

criteria were set before the start of the research.  

2.6.2.3 Data extraction and quality assessment 

The following data were extracted from each animal study: lead author, year of publication, animal 

species, animal age at start, sample size, trial length, control diet, experimental diet and outcomes. 

The following data were extracted from each human study: lead author, year of publication, trial 

length, characteristics of subjects, number of subjects, age range, control diet, experimental diet, 

study design and findings. Missing data are reported as ‘‘Not stated’’ if they were not explained in 

the corresponding articles. The sample size reported in this review was the overall total for the 

experiment rather than restricting to either control or intervention diet/s.   

Data were extracted by a single reviewer.  

The included studies were assessed by the 6-item questions of Review Manager Version 5.0 

provided by Cochrane Collaboration (Higgins and Green, 2008). Moreover, the scoring criteria was 

defined by suggestions (yes=1, unclear=0, and no=-1), which would be specified subsequently in the 

http://libproxy.ncl.ac.uk/login?url=http://www.scopus.com/scopus/home.url
http://libproxy.ncl.ac.uk/login?url=http://apps.webofknowledge.com/
http://libproxy.ncl.ac.uk/login?url=http://www.engineeringvillage2.org/
http://libproxy.ncl.ac.uk/login?url=http://www.jstor.org
http://libproxy.ncl.ac.uk/login?url=http://search.ebscohost.com
http://www.ncl.ac.uk/library/nclip/ovid.php
http://libproxy.ncl.ac.uk/login?url=http://search.proquest.com?accountid=12753


35 
 

following Table 2.3. In addition to animal and human data extracted, the quality scores were also 

added.  

Table 2.3. Quality assessment criteria for the included studies in this review 

1 Was the allocation sequence adequately generated? 

2 Was allocation adequately concealed? 

3 Was knowledge of the allocated intervention(s) adequately prevented during the 
study 

4 Were incomplete outcome data adequately addressed? 

5 Are reports of the study free of any suggestion of selective outcome reporting? 

6 Was the study apparently free of other problems that could place it at risk of bias? 
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2.6.3 Results 

2.6.3.1 Characteristics of studies 

The systematic search of the scientific databases resulted in the initial identification of 228 articles 

for further evaluation. After removing duplicate articles (72) and articles that did not meet the 

eligibility criteria (144), a total of 12 articles including 8 animal studies and 4 human studies were 

included in the review. Manual searching of the reference list of the relevant articles yielded 5 

additional articles. After applying the inclusion criteria, two of these articles were considered fit to 

include. Consequently, the combination of electronic and manual reaching resulted in 14 articles 

which are included in this final review (Figure 2.6). Four animal studies were carried out in Japan, 

two in France and one each in France, Poland, Brazil and India. With respect to human studies, two 

were carried out in Brazil and one each in the UK and in Canada.  

As shown in Table 2.4 and 2.5, all studies in the review were prospective studies, with follow-up 

durations ranging from 15 days to 6 weeks in animal studies and from 4 weeks to 6 months in 

human studies. Overall, quinoa consumption in human studies ranged from 19.5 g to 50 g of quinoa 

ingredients (median levels of individual series), with two studies the amounts consumed unstated. 

The methods of these studies were similar, in that a baseline period was normally followed by 

animals or subjects being offered to consume quinoa/quinoa products (e.g. quinoa meal, quinoa bar 

or flakes), or placebo diets. Blood samples were obtained at baseline and after the intervention 

period for comparison of CVD biomarkers. Liver or faeces were only available from animal studies. 
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Figure 2.6.   Flow diagram of article selection 

 

 

 

 

 

Articles identified initially (n=228) 

Duplicate articles (n=72) 

Articles included (n=14) 

Excluded on full text (n=72): 

Not appropriate methods (n=24) 

Not nutritional intervention (n=14) 

No explicit evaluation of quinoa consumption and 

physiological outcomes (n=39) 

 

 

 

 

Additional articles from 

reference lists (n=2) 

Unique articles (n=156) 

Article excluded on the basis of title and abstract (n=72): 

Not whole-grain quinoa (n=24) 

Not animal or human clinical trials (n=17) 

Not included as they were letters, meetings, reviews, 

meta-analysis and poster (n=8) (Note: letters and 

meetings were not sufficiently detailed) 

Not relevant outcomes (n=23) 

 

Potential articles (n=84) 
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Table 2.4.   Summary of all animal studies reviewed 

Reference Animal species 
Animal age 
at start 

Sample 
size 

Trial 
length 

Control diet Experimental diet Outcomes 
Quality 
score 

         Konishi et 
al. 1999 

Male Crj: CD-1 
(ICR) Mice 

7 weeks 23 5 weeks 20% casein, 
1% cholesterol 

2 groups, control 
diet with 1.5 % and 
3% quinoa pericarp 
Fraction (QPF), 
respectively 
 

Food intake significantly higher in 1.5% QPF group, 
reductions seen in serum and liver Total-Chol 
concentrations and liver weight (p<0.05) in both QPF 
group.   
Non-significant change in body weight gain, plasma 
HDL-Chol and plasma TG concentrations (p>0.05). 

3 

Ogawa et 
al. 2001 

Male 
spontaneously 
hypertensive 
rat 

11 weeks 12 6 weeks High lipid 
casein diet 

High lipid casein 
diet that included 
 quinoa (20% quinoa 
powder in diet) 

Body weight, blood pressure and liver weight in 
experimental group lower than control group 
(p<0.05). 
No significant differences observed in serum Total-
Chol, serum TG, serum  phospholipids, liver Total-
Chol and liver TG as well as enzyme activities related 
to cholesterol metabolism. 

3 

Takao et 
al. 2005 

Male ICR mice 7 weeks 18 4 weeks 20 % casein, 
0.5% 
cholesterol 
 

2 groups, control 
diet with casein 
substituted for 2.5%, 
5% quinoa protein 
(QP) fraction, 
respectively 

The QP supplementation significantly prevented the 
rise in the plasma and liver Total-Chol level (p<0.05), 
liver weight significantly lower, and the faecal 
weight and excretion of bile acids increased 
significantly (p<0.05) in 5% QP group.  
Body weight gain, food intake, plasma HDL-Chol, 
plasma HDL/Total-Chol, plasma phospholipids, 
plasma TG, liver TG not significantly affected by both 
treatment (p>0.05). 

5 

Matsuo, 
2005 

Male Wistar-
ST strain rat 

4 weeks 10 17 days Corn starch 
and casein 
meal 

Corn starch and 
casein meal  with 
quinoa (50% quinoa 
in the diet) 

Serum Total-Chol significantly lower and excretion of 
bile acid in faeces significantly higher in quinoa 
group.  
Body weight gain and food intake not significantly 
affected in quinoa group (p>0.05). 

2 
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Paśko  et 
al. 2010 

Male Wistar 
rat 

Not Stated 24 5 weeks 2 groups, corn 
or corn starch 
with 31%  
fructose 

2 groups, corn starch 
was substituted with 
310g/kg of quinoa 
seed with or without 
31% fructose  

Glucose, Total-Chol, LDL-Chol and TG in serum were 
significantly lower (p<0.05, p<0.008, p<0.05 and 
p<0.01, respectively) in quinoa group. Quinoa seeds 
prevented the decrease of HDL-Chol in fructose diet.  
 

4 

Menegue
tti et al. 
2011 

Wistar rat 60 days 64 30 days Rodent chow 
(Nuvilab®) 

(Nuvilab®) with 
hydrolysed quinoa 

Body weight gain, food intake, fat deposition and 
serum TG significantly lower in quinoa group 
(p<0.05).  
Serum glucose, serum Total-Chol level not 
significantly affected by treatment (p>0.05).  
 
 
 
 

4 

Foucault 
et al. 
2012 

Male C57BL/6 
J mice 

6 weeks 48 3 weeks High fat (HF) 
diet  

High fat diet with 
added quinoa extract 
(HFQ) (quinoa 
powder 6mg/day/kg 
body weight) 

Body weight gain, food intake, plasma glucose, 
plasma insulin, plasma Total-Chol, plasma TG and 
liver weight not significantly affected by treatment 
(p>0.05).  

5 

Foucault 
et al. 
2014 

Male C57BL/6 
J mice 

6 weeks 18 3 weeks High fat (HF) 
diet 

High fat diet with 
added quinoa (HFQ) 
diet (quinoa powder 
6mg/day/kg body 
weigth) 

Over a 24 h period, faecal lipid content was higher in 
HFQ group vs control group (p<0.05).  
No significant changes in food intake plasma 
glucose, plasma insulin, plasma TG and faecal weight 
between HFQ group and control (p>0.05). 

3 

Mithila & 
Khanum, 
2015 

Male Wistar 
rat 

Not stated 24 15 days Corn starch 
and 20% 
casein  

Corn starch and 20% 
of quinoa replacing 
casein in the diet 

Food intake, plasma Total-Chol, plasma HDL-Chol 
and plasma LDL-Chol declined in the quinoa group 
compared with control group (p<0.01) 
No significant difference detected in body weight 
gain, blood glucose and plasma TG levels (p>0.05).  

5 

Maha, 
2016 

Male Wistar 
albino rat 

Not stated 30 4 weeks Fat and basal 
diet 

Fat and basal diet 
substituted with 
quinoa mill (30, 40, 
50 and 60% in the 
diet) 

Body weight gain, food intake, Total-chol, LDL-Chol, 
HDL-Chol, TG and total lipids in serum reduced in the 
fat and basal diet with 60% quinoa group, and 
Aspartate transaminase (AST) and alanine 
transaminase (ALT) also reduced (p<0.05).  

4 

https://en.wikipedia.org/wiki/Alanine_transaminase
https://en.wikipedia.org/wiki/Alanine_transaminase
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Table 2.5.   Summary of all human studies reviewed 
 

Reference Length 
Characteristics 
of subjects 

N of 
Subjects 

Age 
Control  
diet 

Experimental diet Study design Findings 
Quality 
score 

          Farinazzi-
Machado et 
al. (2012) 
 

30 days Healthy student 
(9M and 13F) 

22 18-45 No control diet Two quinoa bars 
(9.75g 
quinoa/bar). 

Risk factors related 
to CVD measured 
before and after the 
treatment.  

Total-chol, LDL-chol, TG and hepatic 
enzyme AST reduced when subjects 
were following the quinoa bar 
(p<0.05). 
Body weight, glycemic index, blood 
glucose, blood pressure, HDL-Chol 
and hepatic enzyme ALT not 
significantly affected by treatment 
(p>0.05). 

1 

De Carvalho 
et al. (2014) 

4 weeks Postmenopausal 
women with 
weight excess 

35 Not 
stated 

25 g, corn flakes 
(CF) 

25 g, quinoa 
flakes (QF) 
 

A prospective and 
double-blind study, 
CVD risk factors 
measured at the 
beginning and end of 
the experiment  

Significant reduction in Total-chol, 
LDL-chol and TG detected in QF 
groups.  
Body weight, BMI, waist 
circumstance, glucose, HDL-Chol 
unaffected by treatment (p>0.05). 

3 

Zevallos et 
al. 2013 

6 weeks Celiac patients 
(2M and 17F) 

19 Media
n 19 

No control diet 50 g quinoa as 
part of their 
gluten-free diet 

Detailed histological 
assessment carried 
out before and after 
eating quinoa. 

Reduction seen in Total-chol and TG, 
but only HDL-cholesterol level 
decreased significantly (p<0.05).  

1 

Jenkins  et al. 
2008 

6 months Patients with type 
2 diabetes 

210 Not 
stated 

Two slices of  
Whole wheat 
bread included 
in the high-
cereal fibre diet 

Two slices of 
quinoa bread 
included in the 
low–glycemic 
index diet 

A randomized and 
parallel study design, 
glycemic control and 
cardiovascular risk 
factor in patients 
were measured.   

HDL-chol increased by 1.7mg/dL 
significantly (p<0.05), fasting glucose 
and HbA1c decreased significantly 
(p=0.02 and p<0.001, respectively) 
compared with the control. 
Body weight, blood pressure, Total-
Chol, LDL-Chol, Total/ HDL-Chol, TG 
and C-creative protein not 
significantly affected by treatment 
(p>0.05). 
 

2 
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2.6.3.2 Animal Studies 

2.6.3.2.1 Effects on Weight Gain and Food Intake 

Table 2.6 shows the number of articles with significant increase, no significant effect and significant 

reduction in CVD risk markers in the 10 animal studies and 4 human studies, respectively. A 

significant decrease in body weight gain compared with control was detected in three out of eight 

animal studies. Food intake decreased significantly in one of eight studies, whereas the level 

increased in three studies (p< 0.05), the rest observed no changes with quinoa treatment.  

Table 2.6. The number of animal and human intervention studies showing significant increase, 
no effect and significant reduction on markers of CVD risk 

  Number of Studies 

  Significantly higher 

in quinoa 

treatment 

The effect was not 

significant 

Significantly lower 

in quinoa 

treatment      Animal Studies    

 Body weight gain — 5 3 

 Food intake 1 4 3 

 Blood glucose — 3 1 

 Blood insulin  — 2 — 

 Total-Chol — 3 6 

 LDL-Chol — — 3 

 HDL-Chol 2 2 1 

 Triglycerides — 6 3 

 Liver weight — 1 3 

 Liver Total-Chol 2 1 — 

 Liver triglycerides — 2 — 

 Faecal weight 1 1 — 

 Faecal bile acid 2 — — 

 Faecal lipids 1 — — 

     
Human Studies    

 Body weight gain — 3 — 

 Total-Chol — 2 2 

 LDL-Chol — 2 2 

 HDL-Chol 1 — 1 

 Triglycerides — 2 2 
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2.6.3.2.2 Effects on Glucose and Insulin 

Four animal studies found that consumption of quinoa-based foods decreased the blood glucose 

concentrations by 3.4-25.2%, while a significant reduction was only observed in the study conducted 

by Paśko et al. (2010). Insulin concentration in plasma in two studies was higher (5.3% and 18.4%) 

than in the control group but no significant increase was observed.  

2.6.3.2.3 Effects on Lipid Profile 

As can be seen in Table 2.6, nine and three animal studies investigated the impact of quinoa 

consumption on total cholesterol and LDL-cholesterol, and six (66%) and three (100%) of these 

observed a significant reduction, respectively; the rest of the studies identified no significant 

response. The largest decreases total cholesterol and LDL-cholesterol were 56.0% and 81.0% in rats 

fed diets with 60% milled quinoa, respectively (Maha, 2016). HDL-cholesterol concentrations 

changed significantly in response to quinoa consumption in two out of five animal studies (Table 

2.6). The changes in HDL-cholesterol concentrations reported was wide, ranging from an increase of 

55.8% relative to the comparison group in one study to a decrease of approximately 31% in another 

study (Mithila and Khanum, 2015; Maha, 2016). The significant reduction in HDL concentrations 

induced by fructose was effectively prevented by the addition of quinoa seeds into the diets (Paśko 

et al., 2010). The other studies found no significant effect on HDL-cholesterol concentration.  Three 

of the nine animal studies identified that quinoa intake significantly reduced plasma triglycerides 

concentrations by 11.0-54.3% although the majority of the animal studies observed no significant 

effect of quinoa consumption on triglycerides concentrations.  

2.6.3.2.4 Other Outcomes 

The liver weight of mice or rats fed with quinoa food decreased significantly by between 8 and 

43.3% relative to the comparison group in three out of four studies where these data were reported.  

Two of the three studies which reported liver cholesterol content showed a significant (P<0.05) 

reduction in this measure, but no significant changes in liver triglycerides were detected.  There 

were significant increases in faecal bile acids by 61.0% and 62.7% in two studies performed by Takao 

et al. (2005) and Matsuo, (2005), respectively, and an increase in faecal lipids in the study of 

Foucault et al. (2014).  (p<0.05). 

2.6.3.3 Human studies  

2.6.3.3.1 Effects on Weight Gain 

For the human studies, there were no significant changes in body weight response to intake of 

quinoa-based foods reported. 
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2.6.3.3.2 Effects on Glucose, Hemoglobin A1c and Insulin 

One relatively large study with one hundred and twenty one participants found that consumption of 

2 slices of quinoa bread per day significantly decreased fasting blood glucose and haemoglobin A1c 

(HbA1c) concentrations by 8.0% and 7.0%, respectively, compared with the control group, while 

another study reported a small reduction in response to quinoa flakes although this was not 

statistically significant (Jenkins et al., 2008; De Carvalho et al., 2014). 

2.6.3.3.3 Effects on inflammatory marker 

It has been suggested that inflammation is an important contributor to the development of 

atherosclerosis. As a frequently used markers of inflammation, fasting plasma C-creative protein 

failed to show any response to the consumption of 2 slices of quinoa bread (Jenkins et al., 2008).  

2.6.3.3.4 Effects on Lipid Profile 

All of the four human studies reported that regular consumption of quinoa reduced plasma 

concentrations of total cholesterol and LDL-cholesterol, although this was only significant in two of 

the studies.  In both of these studies total cholesterol concentrations were within the normal range 

for healthy subjects before quinoa consumption.  This significant reduction ranged from 5.1% to 

9.9% for total cholesterol and from 5.9% to 20.5% for LDL-cholesterol. Of the two human studies 

reporting effects of quinoa intake on HDL-cholesterol, one reported a significant increase of 4.1% 

(Jenkins et al., 2008), and the other reported a significant decrease of 7.7% (Zevallos et al., 2014). 

None of the studies reported here reported any significant effect of quinoa consumption on the ratio 

of HDL-cholesterol: total cholesterol. Two human studies of four found a statically significant 

reduction in triglycerides concentrations (12.3% and 3.9%) following quinoa-based intervention, with 

the other two human studies showing no significant effect of quinoa consumption on triglycerides 

concentrations.
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2.6.4 Discussion 

2.6.4.1 Effects on body weight gain 

A number of animal feeding experiments about mainly focusing on the impact of quinoa 

consumption on weight gain have not been included in this review due to the inclusion criteria, since 

these studies did not target on blood lipids which are clinically regarded as key indicators of CVD risk. 

Weight gain is linked to an elevated risk of high blood pressure and hyperlipidaemia (Thies et al., 

2014).  In order to evaluate the impact of quinoa intake on body weight, the energy and 

macronutrient content of diets offered should be considered along with the amount of food fed, 

which is beyond the scope of this review. However, on the basis of the published literature, it 

seemed overall that there is some evidence of a beneficial inverse association between quinoa 

consumption and weight gain, for studies in mice, rats and chickens with a range of dietary levels of 

quinoa (Konishi et al., 1999; Improta and Kellems, 2001; Ogawa et al., 2001; Meneguetti et al., 2011).  

The presence of saponins in quinoa seeds might be the cause of weight loss, but the effect was not 

seen in piglets probably due to the low dose in the test diets (Carlson et al., 2012; Foucault et al., 

2014). One study conducted by Carlson et al. (2012) using the Ussing chamber technique 

demonstrated that saponins derived from quinoa increased the conductance of pig jejunum. This 

finding is in line with previous studies suggesting that there was an increased mucosal permeability 

in the intestine, which is believed to inhibit the absorption of other nutrients in the gut for animal 

growth (Gee et al., 1993; Önning et al., 1996). A further explanation may be due to the bitter taste of 

saponins present in the quinoa seed coats, which adversely affects the palatability of food products 

containing the seed, leading to decreased food intake (Johnson and Croissant, 1985). A reduction in 

weight gain was not detected in human intervention studies listed in the Table 2.5, perhaps because 

the saponins are normally removed before human consumption, either by abrasive dehulling or 

vigorous washing in water (Jacobsen et al., 1997).  

20-Hydroxyecdysone (20E) is a naturally occurring ecdysteroid hormone which controls moulting 

and production of arthropods. Thus, it is one of the most common moulting hormones in insects and 

crabs. Although 20E is not a mammalian hormone, but it may also display some pharmacological 

effects on mammals. Interestingly, quinoa is one of the rare food plants that contains 20E (plant 

steroid), which play a role in the control of glucose homeostasis and also in the prevention of diet-

induced obesity in mice (Chen et al., 2006; Kizelsztein et al., 2009; Foucault et al., 2012; Foucault et 

al., 2014). For example, the effects of either quinoa or an equivalent dose of 20E were investigated 

in mice to prevent the early onset of diet-induced obesity (Foucault et al., 2012). Even though the 

decrease in weight gain was not found in mice when exposed to a high- fat diet with added quinoa 

https://en.wikipedia.org/wiki/Ecdysteroid
https://en.wikipedia.org/wiki/Hormone
https://en.wikipedia.org/wiki/Arthropods
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or 20E, there was a slight reduction in adipose tissue mass and the expression of lipid storage genes. 

The authors suggested that the decrease was probably due to the presence of 20E, which possesses 

a similar structure to Vitamin D influencing lipid accumulation in adipose tissue. It was suggested 

that Vitamin D receptors have suitable binding sites for 20E, which enabled it to affect the 

expression of genes related to lipid storage. Further studies are necessary to explore this proposed 

mechanism. 

2.6.4.2 Effects on glucose and insulin 

Hyperglycemia and insulin resistance are associated with risk of developing CVD (Coutinho et al., 

1999b; Uwaifo and Ratner, 2003). There is considerable evidence showing that whole grain intake is 

associated with lower glucose concentrations and is inversely associated with insulin resistance 

(Hallfrisch and Behall, 2000; Liese et al., 2003; Steffen et al., 2003). In accordance with this, one 

study using male Wistar rats by Paśko et al. (2010) demonstrated that quinoa seed effectively 

brought down the glucose concentration by 10% (p<0.01) compared with the control group, and a 

similar response was detected in obese mice fed with an extract from quinoa seeds (Graf et al., 

2014). Moreover, a relatively large human study demonstrated a reduction in fasting glucose after 

consuming two slices of quinoa bread per day (Jenkins et al., 2008). The beneficial impacts of whole 

grain intake on glucose and insulin homeostasis are likely attributable to the presence of fibre, 

resistance starch and oligosaccharides in the whole grain (Bjorck et al., 1994; McIntyre et al., 1997; 

Hallfrisch and Behall, 2000; Ylönen et al., 2003; Seal, 2006). By contrast, neither glucose nor insulin 

concentrations were affected by quinoa supplementation in two studies conducted by the same 

group (Foucault et al., 2012; Foucault et al., 2014). The majority of the studies from both animals 

and humans listed earlier, however, reported no significant impact of quinoa on markers of glucose 

homeostasis, suggesting that the effects of quinoa are inconclusive and require further investigation.  

Postprandial glucose and insulin responses were measured after intake of quinoa bread with and 

without gluten, gluten-free pasta and traditional bread, and the results showed that no 

improvement in insulin responses to all products tested.  However, the glycemic index (GI) for 

quinoa bread was lower than that of gluten-free pasta and traditional bread (Berti et al., 2004). 

2.6.4.3 Effects on Lipid Profile and bile acid excretion 

Cholesterol, produced in the liver and absorbed though the diet, is essential for all animal life in 

normal metabolic process. However, high concentrations of total and LDL cholesterol are associated 

with an elevated risk of CVD (Nishikura et al., 2014). The present systematic review, which included 

both animal and humans supports the outcomes of intervention studies indicating that inclusion of 
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quinoa in the diet has a beneficial effect on plasma cholesterol concentration (Mithila and Khanum, 

2015).  

As previously suggested, quinoa is a good source of soluble fibre, which helps to lower total and LDL 

cholesterol concentrations (Glore et al., 1994; Truswell, 1995; Repo-Carasco-Valencia and Serna, 

2011). It has been suggested that some soluble fibres can inhibit the absorption of dietary 

cholesterol and bind cholesterol or bile acids during the intraluminal formation of micelles. The 

resulting decrease in cholesterol concentration of liver cells results in an up-regulation of LDL 

cholesterol receptors, thereby increasing clearance of LDL cholesterol (Anderson and Tietyen-Clark, 

1986). There is also emerging evidence that resistant starch and soluble fibre are additionally 

fermented by some bacteria in the colon, producing the short-chain fatty acid propionate which may 

have a direct effect on the enzyme HGM-CoA-reductase inhibiting hepatic cholesterol synthesis 

lowering cholesterol concentrations (Slavin et al., 1999; Escudero et al., 2006). Other proposed 

mechanisms include enhanced satiety, resulting in decreased overall energy intake (Blundell and 

Burley, 1987); and slowing absorption of macronutrients due to the high viscosity of soluble fibre in 

the gut, resulting in increased insulin sensitivity (Schneeman, 1987) and accelerated excretion of bile 

acids by soluble dietary fibre (Gee et al., 1993). 

The high content of protein in quinoa seeds may also confer potential lipid lowering properties. 

Takao et al. (2005) reported that protein isolated from quinoa seeds significantly prevented the 

increase plasma and liver cholesterol concentrations in mice when exposed to fat enriched diets.  

This is consistent with previous studies showing that some protein from pseudocereals (quinoa, 

amaranth and buckwheat) can affect serum cholesterol concentration (Berger et al., 2003; 

Tomotake et al., 2007; Wang et al., 2009a). Furthermore, protein isolates extracted from quinoa 

seeds showed bile acids binding activity in vitro and regulated the expression of 3-hydroxy-3-methyl-

glutaryl-coenzyme A (HMG-CoA) reductase in the liver. 

It has also been suggested that quinoa pericarp interacts with cholesterol in the intestinal tract, 

leading to inhibition of cholesterol absorption thereby decreasing serum and liver cholesterol level 

in mice (Konishi et al., 1999). Saponins present in quinoa may also decrease intestinal absorption of 

cholesterol (Takao et al., 2005). Squalene has also been shown to inhibit HMG-CoA reductase (Takao 

et al., 2005; Paśko et al., 2010). However, the mechanism through which component or the 

combination of these in quinoa seeds exerts hypocholesterolemic impact still remains unclear. 

There is insufficient evidence to suggest that quinoa intake has an impact on triglycerides 

concentration from animal studies, since the benefits were only observed in one third of the studies 

included in this review. Interestingly, intake of quinoa (19.5 and 25 g) had clear effects on 
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triglycerides concentrations in two human studies, although one study of nineteen treated celiac 

patients appeared not to benefit from the consumption of 50 g of quinoa every day for 6 weeks. This 

may be because the celiac patients had much lower baseline triglycerides concentrations (66.7mg/dL) 

compared with the other studies (101.8 and 112.3 mg/dL) so the effect was much smaller (Jenkins et 

al., 2008; Farinazzi-Machado et al., 2012; De Carvalho et al., 2014). Despite the negative outcomes 

shown in animal studies, quinoa supplementation has the potential to reduce triglycerides 

concentrations in humans, although more studies are warranted to confirm the benefits. 

Increased HDL-cholesterol and favourable changes in the ratio of HDL: total cholesterol are desirable 

since these are linked to lower CVD risk (COMA, 1994). The impact of quinoa intake on changes in 

HDL-cholesterol concentration was quite conflicting, since both significant increases and reductions 

were observed in animal and human studies. This may be because animals or subjects were offered 

a low fat, high carbohydrate diets with the addition of daily quinoa consumption. High carbohydrate 

diets have been previously associated with reduction in HDL-cholesterol concentration (Willett, 

2006). Overall, this review does not support the theory that intake of quinoa increases HDL-

cholesterol concentration and produces a more favourable lipoprotein ratio. 

The examination of cardiovascular benefits associated with quinoa seeds should embrace an 

attempt to define optimal amounts for human consumption. Intake of quinoa foods in successful 

human intervention studies, which significantly decreased the levels of total cholesterol, LDL-

cholesterol and triglycerides, were 19.5 g quinoa in the form of bars and 25 g quinoa in the form of 

flakes; both for around one month. Therefore, the amount required to achieve an effect appears to 

be 20g or more per day for at least 4 weeks, but more well designed dose-response trials are needed 

to demonstrate a minimum amount and duration of exposure. 

2.6.4.4 Other outcomes  

Other markers that have been associated with an increased CVD risk included blood pressure, AST 

and ALT. However, the studies that investigated the impact of increased quinoa intake on these 

markers are scarce. Several studies using quinoa flour or protein hydrolysate have demonstrated 

that the bioactive properties of quinoa lead to a decrease in blood pressure (Ogawa et al., 2001; 

Aluko and Monu, 2003). The serum level of the enzymes AST and ALT are commonly measured 

clinically as biomarkers for liver health. In the study conducted by Maha, (2016) inclusion of quinoa 

in the diet of obese rats resulted in a significant reduction in serum AST and ALT, which the authors 

suggest may be due to the presence of polyphenols with antioxidant property.  Farinazzi-Machado et 

al. (2012) found reductions in AST in men and women but no differences in ALT concentration. 

https://en.wikipedia.org/wiki/Biomarker
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2.6.4.5 Consideration of animal studies translation 
 

Animal models have historically contributed much to our understanding of mechanisms of disease, 

but whether the effectiveness of clinical treatment strategies can translate to humans has remained 

controversial, since animal models do not certainly predict what will happen in humans (Hackam and 

Redelmeier, 2006; Hackam, 2007; Perel et al., 2007). In a review of animal studies published in seven 

journals with high impact factor, around one-third of the studies translated in humans, but only one-

tenth of these studies were subsequently approved for application in patients, not to mention less 

frequently cited animal studies (Hackam and Redelmeier, 2006). For example, the way that rodents 

handle fat differs from humans, thus making the extrapolation to humans questionable (McGonigle 

and Ruggeri, 2014). Besides, a high fat or cholesterol (%) included in the diets consequently resulted 

in a question of how applicable it is to a ‘normal’ diet consumed by humans; the foods might be just 

fed as a flour and not cooked in the diet, digestion and absorption of which was hugely different 

from cooked foods; the doses consumed by animals were unable to give any instructions for the 

amounts that can induce any significantly beneficial effects on humans (Konishi et al., 1999; Takao et 

al., 2005; Alves et al., 2008). Additionally, whether humans consuming quinoa foods during the same 

period as animals can lead to any significantly beneficial impacts were also needed to confirm (Paśko 

et al., 2010; Mithila and Khanum, 2015). 

2.6.4.6 Reasons for the absence of meta-analysis  

A total of four human intervention studies were included in this review, but two of which did not 

give standard deviation (SD) of variables, including glucose and lipids (No reply after asking authors 

for SD). In this case, on one hand, it seemed that it was not worth doing a meta-analysis with only 

two papers; on another hand, the rest two papers still remained to be described in other ways, 

which would probably add more confusion to the readers.  

2.6.4.7 Limitations 

Several limitations of this review should be noted. First, the number of human intervention studies 

which investigated the impact of quinoa consumption on CVD risk markers was limited, leading to 

only 4 articles being included in this review. In order to support the any theory of health benefits of 

quinoa consumption adequately, more studies would be required to assess the interventions effects. 

Secondly, the majority of human studies included in this review were of short duration with small 

sample sizes and may not have had sufficient power to support the effect.  Thus large-scale human 

intervention studies of longer duration are required. Thirdly, animals in some studies were treated 

with isolated fractions from quinoa, such as the protein extracts in the study conducted by Takao et 

al. (2005), rather than whole quinoa flours. However, the human studies were based on 
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consumption of entire quinoa seeds instead of food extracts, making direct comparison of the 

effects difficult. Finally, the bioactive compounds responsible for quinoa’s cardiovascular health still 

remain uncertain, and the mechanisms underlying the effects were not fully elucidated. 
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2.6.5 Conclusion  

In general, a few studies included in this systematic review (10 animal and 4 human intervention 

studies) suggest that quinoa consumption have some beneficial effects on cardiovascular health in 

humans, but overall results still remain highly inconsistent and also supporting evidence, especially 

from human studies, is still very limited. There is increasing evidence that several decreased risk 

markers associated with CVD could be due to soluble fibre, protein, pericarp, saponins and other 

components in the quinoa seeds, but it has not been fully elucidated which bioactive compounds are 

responsible for underlying effects. Up to date, it seems that providing the people suffering from 

celiac disease with this nutritionally excellent gluten-free alternative is the only certain benefit, since 

no negative effects have been reported in previous studies. Further research, especially large-scale 

human intervention studies, are required to further understand and promote the role that quinoa 

seeds can play in cardiovascular health. 
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2.7 Buckwheat and CVD risk markers a systematic review and meta-analysis 

2.7.1 Introduction 

Across the globe, cardiovascular disease (CVD) is the leading cause of morbidity and death, including 

in China, where mortality from CVD has increased rapidly in the past few decades (Critchley et al., 

2004). Elevated blood pressure, total cholesterol, low density lipoprotein cholesterol (LDL-

cholesterol) and high density lipoprotein cholesterol (HDL-cholesterol) are clinically considered as 

major CVD risk factors. There are increasing epidemiological studies suggesting that diets rich in 

whole grains are linked to a lower risk of CVD and mortality (He et al., 1995; Liu et al., 1999a; Jacobs 

et al., 2000; Mellen et al., 2008b; Aune et al., 2016; Chen et al., 2016). In China, recently changes to 

traditional diets, encompassing a dramatic decrease in the amount of whole grains consumption 

from 104 g/d to 24 g/d may be a contributory factor for the elevated CVD mortality (Ge, 2011). The 

pseudo-cereal buckwheat, which belongs to Polygonaceae family, is included in the ‘’whole grain’’ 

category in the terms of nutritional value (Van der Kamp et al., 2014). Buckwheat has been 

cultivated as a traditional food in China since 1000BC and is found almost everywhere globally, but 

mainly in the northern hemisphere, such as in Russia and China (Li and Zhang, 2001). Buckwheat 

grows faster than many of other crops, but require less water and less nutrition from soil (Li and 

Zhang, 2001). 

In recent years, there has been increasing interest in the use of buckwheat as a raw food material 

owing to the ‘’re-discovered’’ nutritional value and health benefits (Li and Zhang, 2001; Wu et al., 

2016). Among the main nine species with agricultural significance, common buckwheat and Tartary 

buckwheat (also known as bitter buckwheat) are the most widely grown species, where common 

buckwheat is widely grown in Asia, Europe and America, but Tartary buckwheat is most grown in 

Asia, including China, India, Nepal (Bonafaccia et al., 2003). Compared with common buckwheat, 

Tartary buckwheat tends to contain higher concentrations of certain bioactive phytochemical like 

flavonoids, which give Tartary buckwheat a much bitter taste (Fabjan et al., 2003). For example, the 

concentration of rutin, a unique flavonoid in buckwheat compared with other common plant foods, 

is approximately 30-150 times greater in Tartary buckwheat than that of common buckwheat 

(Kitabayashi H, 1995; Wieslander and Norback, 2001). The yield (t/ha) of common and Tartary 

buckwheat were similar, which also largely depend on variety, environment, management and 

others, and the price of common buckwheat was much lower than that of Tartary buckwheat, but 

prices of both which were higher than that of wheat and rice (Kalinova and Vrchotova, 2011; Xiang 

et al., 2016). Buckwheat seeds are the principle form for human consumption of this species, and 

they are mainly consumed as in the form of bakery products (bread, noodles, snacks and cookies) 

https://en.wikipedia.org/wiki/Pseudocereal
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enriched with buckwheat flour at levels ranging from  0.3-60%, and non-bakery buckwheat products 

(honey, tea, sprouted grains and tathana) (Gimenez-Bastida et al., 2015a). In addition to a high 

starch content as an energy source, buckwheat is rich in nutritionally valuable protein with a well-

balanced amino acid profile, dietary fibre, lipids and minerals, along with other health-promoting 

components such as phenolic compounds and sterols, which has attracted growing attention as a 

potential functional food (Krkošková and Mrázová, 2005). Buckwheat, as a traditional Chinese 

foodstuff, is well known to contain high concentrations of rutin compared with other common plant 

foods. In addition, the absence of gluten, makes buckwheat-containing products potential 

alternatives for patients suffering from celiac disease (Saturni et al., 2010). It has been demonstrated 

that intake of buckwheat or buckwheat enriched products is associated with a wide range of health 

benefits, including anticancer, anti-inflammatory, hypoglycaemic and hypocholesterolaemia effects, 

although the specific bioactive components responsible for buckwheat’s beneficial effects remain 

uncertain (Gimenez-Bastida and Zielinski, 2015b). 

To date, relatively few studies have been carried out to investigate the impact of buckwheat intake 

on human health. Moreover, to the author’s knowledge, there has not been any quantitative study 

to systematically review and summarize the effects of buckwheat consumption on CVD risk markers. 

With accumulating evidence, the object of this work was to comprehensively review the recent 

literature and carry out a meta-analysis evaluating the changes in blood glucose and lipid 

concentrations induced by buckwheat intake.  A secondary objective was to explore possible 

mechanisms underlying any beneficial effects observed.  
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2.7.2 Methods 

2.7.2.1 Data sources and literature search 

A comprehensive literature search for animal or human studies that had evaluated the correlation 

between buckwheat intake and CVD risk between 1960 and 2016 was undertaken. Figure 2.7 shows 

how relevant papers were chosen. PubMed, Scopus, Ovid, EBSCO, Web of Science, JSTOR, Medline 

and China National Knowledge Infrastructure were searched using the search terms ‘buckwheat’ 

AND ‘cardiovascular disease’ OR ‘cholesterol’ AND ‘human’ OR ‘animal’, and the same terms were 

applied in each database during the search phase. CVD was defined to include stroke, aortic disease, 

peripheral arterial disease and coronary heart disease.  In addition the reference lists of retrieved 

papers were searched manually for all additional potentially relevant papers. The search was 

restricted to studies on humans and animals and included those that were written in different 

languages including English or Chinese.  Data were extracted by a single reviewer. 

2.7.2.2 Study selection 

The studies were included in this review satisfied the following criteria: 1) study in animals or 

humans, 2) buckwheat-consumption exposure, 3) the outcomes included CVD risk markers, such as 

glucose, insulin, lipid profile. Since cholesterol was the most commonly indicator of CVD response to 

whole-grain foods, cholesterol was used as a primary outcome marker in this review. The eligibility 

criteria were set before the start of the research.  

2.7.2.3 Data extraction and quality assessment 

The following data were extracted from each human study: lead author, year of publication, 

characteristics of subjects, number of subjects, control diet, experimental diet, trial length and 

findings. The sample size reported in Table 2.7 was the overall total for the experiment rather than 

restricting to either control or intervention diet/s. The following data were extracted from each 

animal study: lead author, year of publication, animal species, control diet, experimental diet, trial 

length and outcomes. Extracted data from the human and animal studies are shown as the column 

headings of Tables 2.7 and 2.8 respectively. Missing data are reported as ‘‘Not stated’’ if they were 

not explained in the corresponding articles. The methods of quality assessment for studies included 

in this review were as described in Section 2.5, and the quality scores of the studies included in this 

review were also listed in Tables 2.7 and 2.8. 

2.7.2.4 Statistical analysis 

All statistical analyses were performed with STATA 12.0 (Stata Corp); P<0.05 was considered 

significant. Heterogeneity across studies was quantified by using the I2   statistic to consider each 

http://libproxy.ncl.ac.uk/login?url=http://www.scopus.com/scopus/home.url
http://libproxy.ncl.ac.uk/login?url=http://search.ebscohost.com
http://libproxy.ncl.ac.uk/login?url=http://apps.webofknowledge.com/
http://libproxy.ncl.ac.uk/login?url=http://www.jstor.org
http://www.ncl.ac.uk/library/nclip/ovid.php
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study design, as a quantitative evaluation of inconsistency among studies (Higgins et al., 2003). To 

pool the results of studies of the acute impacts on blood glucose, lipid profiles, a fixed effects models 

was used when heterogeneity was absent or low (I2 < 20%); when heterogeneity was greater, a 

random effects model was used. In this review, weighted mean differences (WMD) between 

treatment (buckwheat diet) and control groups (normal or refined diet) or before and after 

treatment were combined via a random effects model to evaluate the size of treatment impacts on 

CVD risk markers, including blood concentrations of glucose, total, HDL and LDL cholesterol and 

triglycerides. To examine whether a single study exerted undue impact on the overall results, 

sensitivity analyses were performed in which each individual study was excluded from the meta-

analysis and the effect size recalculated with the remaining studies. For all outcomes, a priori 

subgroup analyses were planned to be conducted with meta-regression models, if there were ≥ 10 

studies. Results of the studies reported in mg/dL were converted to mmol/L using standard 

conversion factors, with 1 mg/dL = 0.02586mmol/L for cholesterol, 1 mg/dL = 0.01129 mmol/L for 

triglycerides. These values were obtained as mean± SD. For continuous results, summary estimates 

of WMD with 95% CI were assessed for net changes between each treatment and control groups.  

Furthermore, potential publication bias of the studies were also evaluated by visual inspection of 

Funnel plots and quantitatively assessed using Begg’s and Egger’s tests, where P < 0.05 was deemed 

statistically significant (Egger et al., 1997).  
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2.7.3 Results 

2.7.3.1 Characteristics of studies 

The systematic search of the scientific databases led to the initial identification of 674 articles for 

further evaluation. After removing duplicate articles (239) and articles that did not meet the 

eligibility criteria (408), a total of 27 articles including 11 human studies and 16 animal studies were 

included in the review. It was noteworthy that five trials performed by Zhang et al. (2001), Lu et al. 

(2002), Tong et al. (2002), Zhang et al. (2003) and Zhang et al. (2007) were reported in the same 

population; thus, this current review combined the informative data and retained only the latest 

paper to avoid information duplication. Manual searching of the reference list of the relevant 

articles yielded 18 additional articles. After applying the inclusion criteria, 8 of these articles were 

considered fit to include. Consequently, the combination of electronic and manual reaching resulted 

in 35 articles which are included in this final review (Figure 2.7). To be specific, this review pooled 

the results of 15 human studies, consisting of 13 short-term randomized, controlled trials (RCT) and 

2 cross-sectional studies, which had the assessed lipid-lowering effects of buckwheat in free-living 

subjects, and 20 animal studies. Nine human studies were conducted in China, two in India and one 

each in Sweden, Canada, Italy and Serbia. Nine animal studies were carried out in Japan, seven in 

China and one each in Spain, Poland, Egypt and South Korea.  
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Figure 2.7.   Flow diagram of article selection 
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Unique articles (n=435) 

Duplicate articles (n=239) 

Potential articles (n=172) 

Article excluded on the basis of title and abstract (n=263): 

Not whole-grain buckwheat (n=87) 

Not human or animal clinical trials (n=90) 

Not included as they were reviews, meta-analysis, 

meetings, poster and meetings letters (n=33) (Note: 

letters and meetings were not sufficiently detailed) 

Not relevant outcomes (n=53) 

 

13 RCT studies, 2 cross-sectional 

studies and 21 animal studies included 

Excluded on full text (n=145): 

Not appropriate methods (n=51) 

Not nutritional intervention (n=34) 

No explicit evaluation of quinoa consumption and 

physiological outcomes (n=60) 
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Table 2.7. Summary of all human studies reviewed 

Human studies 

Reference Population of study Control diet Experimental diet Duration Outcomes 95% CI Quality 

score Significant  Insignificant 

         Bijlani et al. 

(1985) 
healthy (n = 8♂) No control diet A preparation made from 

100 g whole buckwheat 

(BW) flour 

 

12 weeks serum: VLDL                                         ↓ body weight 1 

                           serum: TC  

      serum: LDL  

      serum: HDL  

       serum: HDL/TC  

       serum: LDLTG  

       serum: VLDLTG  

       serum: HDLTG  

       serum: TG  

         

 healthy (n = 9♂) No control diet A preparation made from 

100 g whole BW flour 

4 weeks serum: HDL/TC ↑ body weight 1 

    serum: LDLTG ↑ fasting blood glucose  

    serum: VLDLTG ↑ serum: TC  

     serum: HDLTG ↓ serum: LDL  

       serum: VLDL  

       serum: HDL  

       serum: TG  

         

Bijlani et al. 

(1984) 
healthy (n = 12♂) No control diet A preparation made from 

100 g sieved BW flour 

4 weeks serum: HDL ↑ fasting blood glucose 0 

   serum: HDL/TC ↑ serum: TC  

     serum: LDL  

      serum: VLDL  

         

Lu et al. 

(1990) 

patients with 

diabetes and 

hyperlipidemia 

(n=23,13 and 18) 

No control diet BW flour 1 month fasting blood sugar ↓  -1 

 BW flour 1 month serum: TC ↓   

  BW flour 1 month serum: TG ↓   

        

         

Zheng et al. 

(1991) 
NIDDM patients 

(n=10♂, 9♀) 
) 

No control diet Tartary BW flour; 50g 3 months serum: TG ↓ fasting blood glucose -1 

     insulin  

       serum: TC  

         

Liu and Fu, 

(1996) 

patients (n=60) No control diet Tartary BW flour; 40g/day 4 weeks body weight ↓  1 

    systolic BP ↓   

     diastolic BP ↓   

     serum: TC ↓   

     serum: LDL ↓   

     serum: HDL ↑   

     serum: TG ↓   

         

Lin et al. 

(1998) 

Type 2 diabetes 

(T2DM)  (n=32) 

Habitual diet 100g of Tartary BW flour 5 weeks fasting blood 

glucose 
↓ serum: TC 1 

   serum: TG ↓   

        

Zhao and 

Guan, 

(2003) 

T2DM (n=30♂, 30

♀) 
diabtes 

No control diet BW flour (amounts not 

stated) 

8 weeks fasting blood 

glucose 
↓ body weight  

  systolic BP ↓ diastolic BP  

    serum: TC ↓ serum: LDL  

    serum: HDL ↓ serum: TG  

         

Huang et 

al. (2009) 

patients with 

diabetes (n=18♂, 

17♀) 

No control diet Tartary BW mixture 

(amounts not stated) 

2 months fasting blood 

glucose 
↓  1 

  HbA1 c/% ↓   

    serum: TC ↓   

    serum: LDL ↓   

     serum: HDL ↓   

     serum: TG ↓   
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Wieslander 

et al. 

(2011) 

healthy (n = 62♀) No control diet group 1: four common BW 

cookies (daily). 

group 2:  four Tartary BW 

cookies (daily) 

(cross-over study) 

100 g of sieved BW 

preparation 

6 weeks serum: TC ↓ sPLA2 0 

   serum: HDL ↓   

       

        

        

        

        

        

        

Stringer  et 

al. (2013) 

healthy ( n=23) Rice cracker; 66 

g 

BW cracker; 76 g 7 days   plasma glucose 3 

    plasma: TC  

     plasma: LDL  

       plasma: HDL  

       plasma: TG  

       liver enzyme: AST  

       liver enzyme: ALT  

         

 T2DM ( n=24) Rice cracker; 66 

g 

BW cracker; 76 g 7 days   plasma glucose 3 

      plasma: TC  

      plasma: LDL  

       plasma: HDL  

       plasma: TG  

       liver enzyme: AST  

       liver enzyme: ALT  

         

Stokić et al. 

(2015) 

Patients  (n=7♂, 13

♀) 

No control diet BW-enriched wheat bread; 

300g /day 

1 month 

 

 

serum: TC ↓ BMI 1 

  serum: LDL ↓ systolic BP  

    liver enzyme AST  diastolic BP  

     liver enzyme ALT  serum: HDL  

       serum: TG  

         

Yu, (2015) patients with 

hyperlipidemia          

( n=36♂, 24♀) 

Water Tartary BW tea, 15g 60 days serum: TC ↓ systolic BP 3 

   serum: LDL ↓ diastolic BP  

    serum: TG ↓ blood glucose  

      serum: HDL  

         

Qiu et al. 

(2016) 

165 patients with 

T2D( n=67♂, 98♀) 

Refined grans 

and white 

wheat flour; 

150g 

Tartary buckwheat foods; 

150g 
4 weeks plasma: Ln insulin ↓ body weight  5 

 plasma: TC ↓ BMI  

 plasma: LDL ↓ plasma glucose  

     plasma: HbA1c (%)  

       plasma: Ln HOMA-IR  

       plasma: TG  

       plasma: HDL  

         

Dinu et al. 

(2017)  

participants with 

high CVD risk (n=10

♂, 11♀) 

 

Wheat products 

daily (amounts 

not stated) 

 

BW products daily 

(amounts not stated) 

(cross-over study) 

 
 

 

24 weeks 

 

 

fasting blood 

glucose 
↓ body weight 5 

 serum: TC ↓ insulin  

  serum: LDL ↓ serum: HDL  

  serum: TG ↓   

        

He et al. 

(1995) 

healthy ( n=857♂)  BW; group 1 (n=319), 0 

g/day; group 2 (n=207), 

<40 g/day; group 3 

(n=161), 40-200 g/day; 

group 4 (n=163), >200 

g/day 

cross-

sectional 
study 

systolic BP ↓ BMI  

  diastolic BP ↓ serum: HDL  

   serum: TC ↑ serum: TG  

    serum: LDL ↓   

    serum: HDL/TC ↓   

        

        

Zhang et al. 

(2007) 

healthy ( n=491♂, 

470♀) 

 BW (amounts not stated) cross-

sectional 
study 

BMI ↑ systolic BP  

  fasting blood 

glucose 
↓ diastolic BP  

           serum: TC ↓ serum: TG  
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     serum: LDL ↓   

              serum: HDL ↑   

BW, buckwheat; VLDL, very low-density lipoprotein; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, 

triglycerides; BP, blood pressure; HbA1 c, glycated hemoglobin A1c; sPLA2, secretory phospholipase A2; AST, aspartate transaminase; ALT, 

alanine transaminase.  

Table 2.8. Summary of all animal studies reviewed 

Animal studies 

Reference Model Control diet Experimental diet Duration 
Outcomes 95% CI Quality 

score Significant               Insignificant 

        

Son et al. 

(2008) 

♂Sprague-

Dawley rats 

other cereals powder; 

50% in the diets (diet 

with 1% cholesterol) 

BW powder; 50% in the 

diets (diet with 1% 

cholesterol) 

4 weeks plasma: TC                                 ↓ food intake 4 

 plasma: LDL ↓ body weight gain  

  plasma: HDL ↑ food efficiency ratio  

   plasma: TG ↓ transit time  

     area of lumen ↑ wall thickness  

         

Yang et al. 

(2014) 

♂Syrian Golden 

hamster 

casein and corn starch 

included in diet (fed 

cholesterol diet) 

Tartary BW flour; 24% in 

diet (fed cholesterol 

diet) 

6 weeks serum: TC ↓ food intake 5 

 serum: non-HDL ↓ body weight gain  

  liver cholesterol ↓ serum: HDL  

     faeces: neutral sterols ↑ serum: TG  

       faeces: acidic sterols  

         

Prestamo 

et al. 

(2003) 

♀Wistar 

Hannover rats 

conventional food cooked BW 30 days body weight ↓ blood glucose 3 

   serum: TC ↓ serum: LDL  

   serum: HDL ↓ serum: TG  

    HDL phospholipids ↓ liver weight  

       uric acids  

         

Orzel et al. 

(2015)  

♂Wistar rats wheat starch included 

in the diet 

buckwheat flour ,meal 

and bran; 200g/kg 

(normal diet) 

4 weeks body weight gain ↑ food intake 3 

  serum : LDL ↓ glucose  

    serum : TG  ↓ serum: TC  

      ↓ serum: HDL  

         

Tomotake 

et al. 

(2006) 

♂Sprague-

Dawley rats and 

♂ ddY mice 

casein in the diet;  

(rats fed a normal or 

high-cholesterol diet) 

30.7% of BWP extract in 

the diet (rats fed a 

normal or high-

cholesterol diet); 54.8% 

of PBF (mice fed a high-

cholesterol diet) 

10 or 27 

days 

serum: TC ↓ food intake 4 

serum : TG ↓ body weight gain  

 serum: phospholipids ↓   

  liver weight ↓   

  liver cholesterol (PBF) ↓   

  faeces: dry weight (PBF) ↑   

    faeces:  neutral steroids ↑   

     faeces: bile acids (PBF) ↑   

         

Magdy et 

al. (2014) 

♂albino rats hypercholesterolemia 

-induced diet 

BW hull extracts; 1000 

mg/kg b. wt/day in diet 

(hypercholesterolemia 

-induced diet) 

8 weeks blood glucose ↓ plasma: HDL 4 

  plasma: TC ↓   

   plasma: LDL ↓   

    plasma: TG ↓   

     plasma: AST  ↓   

     plasma: ALT ↓   

         

Wang et al. 

(2009b) 

♂pathogen-free 

Wistar rat 

high-fat diet Tartary BW bran extract;  

0.2−1 g /kg body weight 

(high-fat diet) 

6 weeks serum: TC ↓ body weight gain 5 

  serum: HDL (medium dose)      ↓   serum: LDL   

↑ 

 

    serum: TG ↓   

    hepatic: TC ↓   

     hepatic: TG ↓   

https://en.wikipedia.org/wiki/Aspartate_transaminase
https://en.wikipedia.org/wiki/Alanine_transaminase
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Hosaka et 

al. (2014) 

KK-Ay mice normal chow diet common BW bran 

powder; 0.05 mg /g 

body weight 

6 weeks body weight gain ↓ food intake 2 

   serum: TG ↓ fasting blood glucose 

   liver weight ↓ insulin resistance  

       serum: TC  

Yao et al. 

(2008) 

♂C57BL/6 

control mice and 

diabetic KK-Ay 

mice 
 

redistilled water D-Chiro-Inositol (DCI) 

enriched Tartary BW 

bran extract (TBBE); 45-

182 mg of TBBE/kg in 

diet 

5 weeks fasting blood glucose level ↓ body weight gain 2 

  plasma: TG ( high dose) ↓ plasma: TC  

   insulin immunoreactivity ↑   

        

        

         

Hu et al. 

(2015a) 

♂Kunming mice high-fructose water D-Chiro-Inositol (DCI) 

enriched Tartary BW 

extract (DTBE); 40, 80 

and 160 mg per kg body 

weight/day (high-

fructose water) 

8 weeks body weight gain ↓ all parameters in the 

group of 40 mg per 

kg body weight/day 

showed on 

significant effect 

except serum AST 

activity 

5 

   serum: glucose ↓  

    serum: insulin level ↓  

    serum: TC ↓  

    serum: LDL ↓  

    serum: HDL ↑  

     serum: TG ↓  

     liver weight ↓  

     serum AST and  ALT 
activity 

↓   

        

         

Tomotake 

et al. 

(2000) 

♂ Golden Syrian 

hamster 

casein; 230g /kg  

(high-cholesterol diet) 

BWP extract; 381g /kg  

(high-cholesterol diet) 

2 weeks food intake ↑ body weight gain 5 

 plasma: TC ↓ hepatic TG  

  plasma: HDL ↓ hepatic 

phospholipids 

 

     plasma: HDL/TC ↑  

     plasma: TG ↓   

     plasma: phospholipids ↓   

     liver weight ↑   

     hepatic cholesterol ↓   

     faecal dry weight ↑   

     faeces: neutral steroids ↑   

     faeces: acidic steroids ↑   

         

Tomotake 

et al. 

(2007) 

♂

Sprague−Dawley 

rats  
 

23.0% casein in the 

diet (high-cholesterol 

diet) 

Tartary BW flour protein 

and common BWP 

extract; 30.7% of 

common BWP and 

43.7% of Tartary BWP in 

the diet (high-

cholesterol diet) 
 

27 days serum: TC  ↓ body weight gain 3 

 liver weight  ↓ food intake  

 hepatic cholesterol ↓   

 faecal dry weight ↑   

   faecal excretion: nitrogen ↑   

   faeces: neutral steroids ↑   

   faeces: bile acids ↑   

    apparent protein 
digestibility 

↓   

        

         

Tomotake 

et al. 

(2001) 

♂

Sprague−Dawley 

rats 

casein; 230 g/kg 

(normal diet) 

BWP extract; 307 g/kg 

(normal diet) 

8 weeks plasma: TC ↓ body weight gain 3 

 plasma: HDL ↓ food intake  

 faeces: neutral steroids ↑ plasma: HDL/TC  

    faeces: acidic steroids  ↑ plasma: TG  

      plasma: phospholipids  

phospholipids  phospholipids        fecal dry weight 

         

Kayashita 

et al. 

(1997) 

♂

Sprague−Dawley 

rats 

230 g/kg casein in the 

diet (high cholesterol 

diet) 

BWP extract; 381 g/kg 

(high-Cholesterol diet) 

3 weeks plasma: TC ↓ body weight gain 4 

plasma: HDL/TC ↑ food intake  

   plasma: TG ↓ plasma: HDL  
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    plasma: phospholipids ↑ hepatic: TG  

     plasma: bile acids ↓ faeces: acidic 

steroids 

 

     liver weight ↓  

     hepatic cholesterol ↓   

     hepatic: phospholipids ↓   

     faecal dry weight ↑   

     faeces: neutral steroids   ↑   

     apparent protein 

digestibility 
↓   

        

         

Kayashita 

et al. 

(1995a) 

♂

Sprague−Dawley   

rats 

casein; 23.0%  BWP extract; 38.1% 3 weeks plasma: TC ↓ body weight gain 4 

  plasma: HDL/TC ↑ food intake  

    plasma: TG ↓ plasma: HDL  

    plasma: free fatty acid ↓ hepatic cholesterol  

    plasma: phospholipids ↓ hepatic TG  

     liver weight ↓ hepatic: 

phospholipids 

 

     fat pad weights ↓   

         

Kayashita 

et al. 

(1996) 

♂

Sprague−Dawley   

rats 

casein; 230 g/kg BWP extract; 381 g/kg 3 weeks plasma: TC ↓ body weight gain 4 

   hepatic TG ↓ food intake  

    faecal dry weight ↑ insulin  

    fat pad weights ↓ plasma: TG  

      plasma: free fatty acid 

       plasma: phospholipids 

       liver weight  

       hepatic TC  

       hepatic: phospholipids 

         

Kayashita 

et al. 

(1995b) 

♂

Sprague−Dawley 

rats 

casein; 240.1 g/kg 

(high-Cholesterol diet) 

BWP extract;  323.1 g/kg 

(high-Cholesterol diet) 

3 weeks plasma: TC ↓ body weight gain 2 

 hepatic: weight ↓ food intake  

   hepatic TC ↓ serum: TG  

    hepatic TG ↑ serum: free fatty acids 

       serum: glucose 

         

Zhang et al. 

(2017) 
♂ Golden Syrian 

Hypercholesterole

mia hamster 

corn starch and casein 

in diet 

Tartary BWP extract; 

353 g/kg in diet 

6 weeks plasma: TC ↓ body weight 6 

 plasma: non-HDL ↓ fatty streak (%)  

  plasma: HDL ↓   

   plasma: TG ↓   

    liver cholesterol ↓   

     total neutral sterols ↑   

     acidic sterols ↑   

         

Hu et al. 

(2015b) 

♂Kunming mice high trimethylamine-

N-oxide diet (TMAO) 

diet 

Tartary buckwheat 

flavonoid fraction; 200, 

400 and 800 mg per kg 

bw in diet (TMAO diet) 

8 weeks body weight gain ↓ food intake 3 

  serum: TC ↓ water intake  

   serum: LDL ↓   

   serum: HDL ↑   

   serum: TG ↓   

    liver weight ↓   

    hepatosomatic index ↓   

        

Han et al. 

(2001) 

Wister mice high-fat diet total flavones of 

buckwheat seeds; 

2g/kg/day (high-fat diet) 
 

10 days serum: TC ↓ fasting blood glucose     1 

   serum: TG ↓   
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Qu et al. 

(2013) 

♂

Sprague−Dawley 

rats 

high-fat, high-sucrose 

diet 

high rutin in BW 

noodles; 980mg/kg in 

diet (high-fat, high-

sucrose diet) 

4 weeks serum: TC ↓ body weight gain 3 

 liver lipid ↑ feed efficiency  

      serum: HDL  

      serum: TG  

       serum: free fatty 

acids 

 

       liver TC  

       dry weight of feces  

       fecal total lipid  

BW, buckwheat; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglycerides; BWP, buckwheat 

protein; PBF, protein buckwheat flour; AST, aspartate transaminase; ALT, alanine transaminase.        

All except two human cross-sectional studies in the review were RCT studies, with follow-up 

durations ranging from 7 days to 24 weeks in human studies and 10 days to 8 weeks in animal 

studies. Overall, buckwheat intake in RCT human studies ranged from 40 g to 300 g of buckwheat 

ingredients (median levels of individual series), with four studies the amounts consumed unstated. 

Participants were either healthy or had one or more CVD risk markers, including overweight, 

hypertension, hyperglycaemia and hyperlipidemia. The methods of the included studies were 

similar, with a baseline period which was followed by subjects or animals being offered buckwheat 

or buckwheat-based products (e.g. buckwheat bread, buckwheat flour) for consumption, or placebo 

diets. Blood samples were obtained at baseline and after the intervention period for comparison of 

CVD biomarkers. Liver or faeces were only available from animal studies.  With respect to the two 

human cross-sectional studies, since the populations started to consume fairly high amounts of 

buckwheat seeds as a staple food from an early age, the outcomes obtained were adjudged as 

representing the long-term impact of buckwheat grain on CVD risk markers. 

2.7.3.2 Human Studies 

2.7.3.2.1 Effects on Body Weight and BMI 

Body weight or BMI changed significantly in response to buckwheat consumption in two out of eight 

human studies (Table 2.9) but in contrasting ways. Body weight decreased by 3.44 kg among 44 

overweight participants in one of the studies by Liu et al. (1996), while the BMI level was higher 

(estimated 3%) in consumers of buckwheat than in non-consumers of buckwheat  in the study of 

Zhang et al. (2007).  The other studies observed no significant impact of buckwheat consumption on 

body weight or BMI.   

 

 

 

 

https://en.wikipedia.org/wiki/Aspartate_transaminase
https://en.wikipedia.org/wiki/Alanine_transaminase
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Table 2.9. The number of animal and human intervention studies showing significant increase, no 
effect and significant reduction on markers of CVD risk 

  Number of Studies 

  Significantly higher in 

buckwheat treatment 

The effect is not 

significant 

Significantly lower in 

buckwheat treatment 

     Human Studies    

 Body weight gain or BMI 1 6 1 

 Blood pressure — 3 3 

 Blood glucose  — 6 6 

 Blood insulin — 2 1 

 Total-Cholesterol — 5 11 

 LDL-Cholesterol — 4 8 

 HDL-Cholesterol 3 7 3 

 Triglycerides — 7 7 

Animal Studies    

 Body weight gain 1 14 4 

 Food intake 1 12 — 

 Blood glucose — 4 3 

 Blood insulin  1 2 1 

 Total-Cholesterol — 2 19 

 LDL-Cholesterol — 2 5 

 HDL-Cholesterol 4 6 4 

 Triglycerides — 6 14 

 Liver weight 1 2 8 

 Liver Total-Cholesterol — 3 8 

 Faecal weight 5 2 — 

 Faecal  neutral steroids  7 — — 

2.7.3.2.2 Effects on Blood Pressure 

Of six human studies which evaluated blood pressure, the association between buckwheat intake 

and blood pressure yielded inconsistent results. Data on blood pressure was reported in 4 

randomised, controlled trials representing 183 participants based on the results of the meta-

analysis. Figure 2.8 shows the pooled results from the random-effects model combing the weighted 

mean difference (WMD) for the impact of buckwheat intake on blood pressure in the total study 

population. There were no significant effects on systolic blood pressure (WMD, -6.172 mmHg; 95% 
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CI: -14.079, 1.736; I2=79.1%, P= 0.126) after buckwheat intake, nor on diastolic blood pressure 

(WMD, -2.703 mmHg; 95% CI: -6.703, 1.297; I2=62.7%, P= 0.185). This finding in the present review is 

consistent with the result of Zhang et al. (2007), who showed that blood pressure of people in a 

buckwheat-eating region of Mongolia did not differ from that of people in a non-buckwheat-eating 

region of the country. In contrary, He et al. (1995) found that in those who consumed ≥ 40 g 

buckwheat/day blood pressure was lower compared with those who consumed none or < 40 g/day.   

NOTE: Weights are from random effects analysis

Overall  (I-squared = 79.1%, p = 0.002)

Study

Zhao and Guan (2003)

Yu (2015)

Stokic (2015)

Liu and Fu (1996)

ID

-6.17 (-14.08, 1.74)

-6.00 (-15.01, 3.01)

1.46 (-6.50, 9.42)

-2.00 (-5.58, 1.58)

-21.00 (-30.95, -11.05)

WMD (95% CI)

100.00

%

23.02

24.63

30.76

21.60

Weight

Systolic blood pressure

  

0-31 0 31
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NOTE: Weights are from random effects analysis

Overall  (I-squared = 62.7%, p = 0.045)

ID

Stokic (2015)

Yu (2015)

Study

Liu and Fu (1996)

Zhao and Guan (2003)

-2.70 (-6.70, 1.30)

WMD (95% CI)

-1.25 (-4.39, 1.89)

0.82 (-4.03, 5.67)

-10.00 (-16.13, -3.87)

-2.00 (-8.09, 4.09)

100.00

Weight

32.65

25.53

%

20.85

20.98

Diastolic blood pressure

  

0-16.1 0 16.1

 

Figure 2.8. Meta-analysis of the effects of buckwheat products intake on systolic and diastolic blood pressure 

compared with baseline or control groups. Sizes of data markers indicate the weight of each study in the 

analysis. WMD, weighted mean difference (the results were gained from a random-effects model). 

2.7.3.2.3 Effects on Blood Glucose and Insulin  

Data on fasting blood glucose concentrations was reported in 9 randomised, controlled trials 

representing 548 participants based on the results of the meta-analysis (Figure 2.9). The results 

show that the fasting blood glucose concentration was significantly decreased with buckwheat 

treatment in comparison with baseline or control group (WMD, -0.85 mmol/L; 95% CI: -1.31, -0.39; 

P<0.001), with significant heterogeneity in the data (I2= 94.2%).  This finding in the present review is 

consistent with the result of Zhang et al. (2007), who showed that fasting blood glucose 

concentration of people in a buckwheat-eating region of Mongolia was significantly lower (16.92%) 

than that of people in a non-buckwheat-eating region of the country. There was no consistent effect 

of buckwheat on insulin concentrations reported, with a small non-significant reduction and a small 

non-significant increase in insulin concentrations reported in the studies of Zheng et al. (1991) and 

Dinu et al. (2017), respectively. 
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NOTE: Weights are from random effects analysis

Overall  ( I-squared = 94.2%, p = 0.000)

Huang (2009)

D inu (2017)

Lu (1990)

Stringer (2013) (T2DM)

Yu (2015)

Study

Zheng (1991)

ID

Zhao (2003)

Bijlani (1985) (4 weeks)

Stringer (2013) (Healthy )

-0.85 (-1.31, -0.39)

-4.60 (-5.41, -3.79)

-0.27 (-0.55, 0.01)

-2.52 (-3.90, -1.14)

0.09 (-0.12, 0.30)

-0.10 (-0.82, 0.62)

-0.24 (-0.71, 0.23)

WMD (95% CI)

-1.20 (-2.13, -0.27)

-0.46 (-0.91, -0.01)

-0.17 (-0.25, -0.09)

100.00

9.73

13.20

6.16

13.50

10.35

%

12.11

Weight

8.87

12.24

13.84

Glucose

  

0-5.41 0 5.41

 

Figure 2.9. Meta-analysis of the effects of buckwheat products intake on blood glucose concentration 

compared with baseline or control groups. Sizes of data markers indicate the weight of each study in the 

analysis. WMD, weighted mean difference (the results were gained from a random-effects model). 

2.7.3.2.4 Effects on Lipid Profile 

Results from the random-effects meta-analysis of the association between buckwheat intake and 

lipid parameters were shown in Figures 2.10, 2.11, 2.12 and 2.13. Compared with baseline or control 

arms, buckwheat consumption was associated with statistically significantly lower concentrations of 

total cholesterol (WMD,-0.50 mmol/L; 95% CI: -0.80, -0.20; 12 trials, 708 participates, I2=89.5%, P= 

0.001) and triglycerides (WMD, -0.25 mmol/L; 95% CI: -0.49, -0.02; 11 trials, 592 participates, 

I2=92.5%, P= 0.034). However, there were no significant effects on LDL-cholesterol (WMD, -

0.33mmol/L; 95% CI: -0.66, -0.02; 9 trials, 520 participates, I2=95.3%, P= 0.061) after buckwheat 

intake, nor on HDL-cholesterol (WMD, -0.09mmol/L; 95% CI: -0.25, -0.07; 10 trials, 642 participates, 

I2=94.4%, P= 0.282).  
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NOTE: Weights are from random effects analysis

Overall  (I-squared = 89.5%, p = 0.000)

Stok ic  (2015)

Lu (1990)

Dinu (2017)

Zhao (2003)

Stringer (2013) (T2DM)

Yu (2015)

Huang (2009)

Wies lander (2011)

Bijlani (1985) (4 weeks)

Bijlani (1985) (12 weeks)

Zheng (1991)

Stringer (2013) (Healthy)

ID

Study

-0.50 (-0.80, -0.20)

-0.29 (-0.76, 0.18)

-1.29 (-2.29, -0.29)

-0.24 (-0.92, 0.44)

-0.30 (-0.71, 0.11)

0.12 (-0.01, 0.25)

-0.71 (-1.02, -0.40)

-1.86 (-2.38, -1.34)

-0.72 (-1.12, -0.32)

-0.21 (-0.88, 0.46)

-0.14 (-0.71, 0.43)

-0.66 (-0.85, -0.47)

-0.11 (-0.36, 0.14)

WMD (95% CI)

100.00

8.41

4.87

6.87

8.79

10.31

9.45

7.99

8.89

6.89

7.65

10.10

9.80

Weight

%A.TC

  

0-2.38 0 2.38

 

Figure 2.10. Meta-analysis of the effects of buckwheat products intake on blood total cholesterol 

concentration compared with baseline or control groups. Sizes of data markers indicate the weight of each 

study in the analysis. WMD, weighted mean difference (the results were gained from a random-effects model). 
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NOTE: Weights are from random effects analysis

Overall  ( I-s quared = 95.3%, p = 0.000)

Bijlani (1985) (4 weeks )

Yu (2015)

Str inger (2013) (Healthy )

Study

Zhao (2003)

Stok ic  (2015)

Str inger (2013) (T2D M)

Huang (2009)

ID

Bijlani (1985) (12 weeks )

D inu (2017)

-0.32 (-0.66, 0.02)

-0.62 (-1.23, -0.01)

-0.70 (-0.90, -0.50)

-0.07 (-0.27, 0.13)

-0.10 (-0.50, 0.30)

-0.59 (-0.96, -0.22)

0.10 (-0.01, 0.21)

-0.83 (-0.94, -0.72)

WMD (95% CI)

0.21 (-0.33, 0.75)

-0.27 (-0.86, 0.32)

100.00

9.09

12.28

12.28

%

10.92

11.14

12.65

12.65

Weight

9.72

9.27

B.LDL

  

0-1.23 0 1.23

 

Figure 2.11. Meta-analysis of the effects of buckwheat products intake on blood LDL cholesterol concentration 

compared with baseline or control groups. Sizes of data markers indicate the weight of each study in the 

analysis. WMD, weighted mean difference (the results were gained from a random-effects model). 
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NOTE: Weights are from random effects analysis

Overall  (I-squared = 94.4%, p = 0.000)

Study

Zhao (2003)

Stok ic  (2015)

Str inger (2013) (Healthy )

Huang (2009)

Wies lander (2011)

Str inger (2013) T2DM

ID

Bijiani (1985) (12 weeks)

Dinu (2017)

Yu (2015)

Bijiani (1985) (4 weeks)

-0.09 (-0.25, 0.07)

0.10 (-0.06, 0.26)

0.03 (-0.18, 0.24)

0.02 (-0.06, 0.10)

-0.84 (-0.97, -0.71)

-0.21 (-0.33, -0.09)

-0.01 (-0.07, 0.05)

WMD (95% CI)

0.03 (-0.13, 0.19)

-0.08 (-0.44, 0.28)

-0.03 (-0.12, 0.06)

0.14 (-0.09, 0.37)

100.00

%

10.09

9.52

10.96

10.48

10.52

11.04

Weight

10.13

7.28

10.82

9.17

C.HDL

  

0-.969 0 .969

 

Figure 2.12. Meta-analysis of the effects of buckwheat products intake on blood HDL cholesterol concentration 

compared with baseline or control groups. Sizes of data markers indicate the weight of each study in the 

analysis. WMD, weighted mean difference (the results were gained from a random-effects model). 
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NOTE: Weights are from random effects analysis

Overall  (I-squared = 92.5%, p = 0.000)

Yu (2015)

Dinu (2017)

Bijlani (1985) (12 weeks)

Zhao (2003)

Lu (1990)

Zheng (1991)

Stokic (2015)

Stringer (2013) (Healthy)

Huang (2009)

Stringer (2013) (T2DM)

ID

Bijlani (1985) (4 weeks)

Study

-0.25 (-0.49, -0.02)

-0.49 (-0.63, -0.35)

-0.19 (-0.53, 0.15)

-0.11 (-0.29, 0.07)

-0.20 (-0.62, 0.22)

-0.65 (-0.89, -0.41)

-0.87 (-2.42, 0.68)

0.04 (-0.21, 0.29)

-0.01 (-0.17, 0.15)

-1.62 (-2.15, -1.09)

0.18 (0.10, 0.26)

WMD (95% CI)

0.21 (-0.04, 0.46)

100.00

10.84

9.10

10.62

8.34

10.11

1.91

9.99

10.72

7.19

11.15

Weight

10.03

%
D.TG

  

0-2.42 0 2.42

 

Figure 2.13. Meta-analysis of the effects of buckwheat products intake on blood triglycerides concentration 

compared with baseline or control groups. Sizes of data markers indicate the weight of each study in the 

analysis. WMD, weighted mean difference (the results were gained from a random-effects model). 

In the cross-sectional study of 857 Yi men conducted by He et al. (1995), after multiple-regression 

analysis, buckwheat intake (100g/day) was associated with significantly lower concentrations of 

serum total cholesterol (-0.07mmol/L, P <0.01), LDL-cholesterol (-0.06mmol/L, P <0.05) and a higher 

ratio of HDL to total cholesterol (0.01, P <0.05), with no significant effect on HDL-cholesterol and 

triglycerides. These findings were in general accordance with the results from the trial by Zhang et 

al. (2007) with 961 participants, which also identified a significant decrease in HDL-cholesterol by 

0.10mmol/L (P <0.01).  

2.7.3.2.5 Sensitivity analyses and subgroups analyses 

In sensitivity analyses, after systematically removing individual studies the beneficial pooled effects 

of buckwheat consumption on total cholesterol concentration were retained.  However, the effect 

on triglycerides was no longer significant after removal of the study that had the largest effect on 

the overall result (Huang et al., 2009). In contrast, the effect on LDL-cholesterol became statistical 

significant after the study that had the largest negative effects on overall result was excluded (Bijlani 

et al., 1985) (12 weeks). No effects on glucose and HDL-cholesterol were observed when individual 

studies were removed (data not shown).  Subgroup analyses were planned a priori to investigate 
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whether study duration, buckwheat dose, types of buckwheat and study design altered the effects of 

buckwheat on glucose and lipid profiles, but the ability to do this was effectively hindered by the 

small numbers of studies for each trial, and meta-regression requires ≥ 10 studies per factor 

examined (Higgins and Green, 2009).  

2.7.3.2.6 Publication bias 

Funnel plot of the meta-analysis of the effect of buckwheat intake on glucose and lipid 

concentration were shown in Figure 2.14. Begg’s test and Egger’s test were not significant (P > 0.05), 

indicating that there was no evidence of publication bias.  

   A. Glucose   Begg’s test P = 0.058, Egger’s test P = 0.130        

Begg's funnel plot with pseudo 95% confidence limits

 
W

M
D

s.e. of: WMD
0 .2 .4 .6 .8

-6

-4

-2

0

2

 

                            

 

 

 

 

 

 

 

 



72 
 

                              B. TC      Begg’s test P = 1.000, Egger’s test P = 0.089        

Begg's funnel plot with pseudo 95% confidence limits
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                             C. LDL     Begg’s test P = 1.000, Egger’s test P = 0.891        

Begg's funnel plot with pseudo 95% confidence limits
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                             D. HDL       Begg’s test P = 0.474, Egger’s test P = 0.720        

Begg's funnel plot with pseudo 95% confidence limits
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                               E. TG      Begg’s test P = 0.350, Egger’s test P = 0.0.080        

Begg's funnel plot with pseudo 95% confidence limits
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Figure 2.14. Publication bias funnel plots. Tests for publication bias of effects of buckwheat intake on 

(A) glucose and lipid profile (B, TC; C, LDL; D, HDL; E, TG). The dash lines represent pseudo-95% Cis. 

P-values are derived from quantitative assessment of publication bias by Begg’s test and Egger’s test. 
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2.7.3.3 Animal Studies 

2.7.3.3.1 Effects on Weight Gain and Food Intake 

This review contains 19 animal studies which reported the impact of buckwheat intake on body 

weight of which only four reported a significant decrease following buckwheat consumption, 

whereas one found a significant increase in body weight by 21.66% compared with the control (Orzel 

et al., 2015). With respect to the amounts of food consumed by the animals, food intake did not 

change significantly compared with that of the control group in 12 out of 13 studies, while a marked 

increase in food intake was observed in the study by Tomotake et al. (2000). 

2.7.3.3.2 Effects on Blood Glucose and Insulin 

For the studies reported here, three out of seven studies showed a significant reduction in glucose 

concentration by between 15.20% and 18.44%, with the remaining studies showing that glucose 

concentration was not affected significantly by buckwheat treatment. With respect to blood insulin, 

insulin immunoreactivity was enhanced in one study, while a significant reduction in insulin 

concentration was observed in another study, and the two remaining studies found no significant 

changes.  

2.7.3.3.3 Effects on lipid Profile 

Of the twenty-one animal studies reported here, all investigated the impact of buckwheat intake on 

total cholesterol and seven reported results for LDL-cholesterol. Nineteen (90.5%) of the studies 

observed a significant reduction in total cholesterol and five (71.4%) of the studies observed a 

significant reduction in LDL cholesterol; the remainder identified no significant response. The 

significant decrease ranged from 11.71% to 54.05% for total cholesterol and from 16.20% to 57.75% 

for LDL-cholesterol. HDL cholesterol level increased from 19.61% to 54.55 in four out of fourteen 

studies that reported this biomarker, while the level decreased (by between 11.52% and 28.37%) in 

another four studies. Of twenty animal studies analysing the effect on triglycerides, all studies 

reported that intake of buckwheat consumption resulted in a fall in the serum concentration of 

triglycerides, which fell significantly (p<0.05) from 2.27% to 73.85% in fourteen of the twenty 

studies. 

2.7.3.3.4 Other Outcomes 

The liver weight of animals in this review fed buckwheat food decreased significantly from 8.49 % to 

19.15% relative to the comparison group in eight out of eleven studies, while only one showed a 

significant increase by 5.42%.  Eight of eleven studies found a reduction in liver total cholesterol 

content (p<0.05), but no significant changes were detected in the other three studies. There were 
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significant increase in faecal weight and faecal neutral steroids by 57.58-170.97% and by 68.75-

142.37% in five out of seven studies and all seven studies, respectively.  

2.7.4 Discussion  

2.7.4.1 Effects on Body Weight 

Being overweight brings about an elevated risk of health problems such as insulin resistance, type 2 

diabetes mellitus, hypertension, hyperlipidemia and cardiovascular disease (Hill and Peters, 1998; 

Williams, 1999; Goldberg et al., 2000; Kahn and Flier, 2000). In order to evaluate the impact of 

buckwheat intake on body weight, the overall energy and macronutrient content in diets 

offered/consumed should be considered, but this was beyond the scope of this study. However, as 

mentioned above, there were few human and animal studies showing a significant reduction in body 

weight gain compared with baseline or control in response to consuming buckwheat-based food(s); 

restricted energy intake or intention to lose weight was not an intention of the studies reported.  

Even though a significant reduction was observed in the study of Liu et al. (1996), it must be noted 

that the participants involved in the study were overweight, and so body weight loss would not have 

been unexpected in an intervention study simply by engaging in a dietary intervention study. Thus, 

on the basis of the published literature, it seems that the beneficial effects of buckwheat intake 

were not associated with weight loss, and this lack of association was consistent in both humans and 

animals with a variety of dietary levels of buckwheat or various forms of buckwheat products 

provided.  

In this review, meta-analysis for body weight or BMI were not conducted, because five out of seven 

human intervention studies used ‘body weight’ (no numerical values and/or figures in two studies), 

but the rest two studies for ‘BMI’, which were not consistent to do a meta-analysis. Even if some 

missing information was obtained from authors after contacting them, the overall data still 

remained to be incomplete.  

2.7.4.2 Effects on Blood Pressure 

It is well known that hypertension is considered to be an important CVD risk factor, since half of 

ischemic heart disease and 60% of strokes cases are attributable to increased blood pressure 

(Lewington et al., 2002; Banach and Aronow, 2012). In a previous study, Tighe et al. (2010) revealed 

that 12 weeks intervention with whole grain (oats or oats plus with wheat) significantly lowered 

systolic blood pressure compared with a refined cereals group.  The effects of whole grain cereals on 

blood pressure, however, are inconsistent in comparison with observational data as reported by Seal 

and Brownlee (2015) and the paper from Tighe et al. (2010) is the only one to report a reduced 
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blood pressure in a whole grain intervention that was not based on weight loss.  A significant 

reduction in blood pressure was only observed in one of the human studies reported here 

conducted by He et al. (1995); these authors pointed out that water-soluble fibre, but not total 

dietary fibre, was independently associated with blood pressure and so an effect of buckwheat 

which has higher levels of soluble fibre than insoluble fibre is a possibility. However, given the small 

number of studies carried out to date, this review is not adequately powered to conclude whether or 

not there are beneficial effects of buckwheat intake on blood pressure.  

2.7.4.3 Effects on Blood Glucose and Insulin  

Hyperglycaemia and insulin resistance are closely correlated to risk of developing CVD (Coutinho et 

al., 1999a; Uwaifo and Ratner, 2003). There is considerable evidence showing that whole grain 

intake is associated with decreased glucose concentrations and is inversely associated with insulin 

resistance suggesting that it is possible to regulate glucose and insulin homeostasis by cereal foods 

and their constituents (Hallfrisch and Behall, 2000; Liese et al., 2003; Steffen et al., 2003). Buckwheat 

is regarded as a low glycaemic index (GI) food, and it has been demonstrated that low-GI diets 

significantly improved lipid profiles in medium and long-term treatments, particularly with respect to 

decreasing both total and LDL cholesterol concentrations (Sloth et al., 2004; De Rougemont et al., 

2007; Tovar et al., 2014). The results of animal studies with regard to the impact of buckwheat 

intake on glucose concentration, however, are conflicting, suggesting that results from animal 

studies do not strongly support the beneficial effects. In contrast, the meta-analysis of 9 clinical trials 

indicated that diets supplemented with buckwheat were associated with a significant 0.85mmol/L 

decrease in blood glucose concentration (p<0.001). Of the many possible mechanisms in modulating 

blood glucose concentrations, buckwheat is well known for containing various bioactive 

phytochemicals (such as various polyphenols and d-chiro-inositol), which have been shown to 

positively affect either glucose or insulin metabolism in animal models (Fonteles et al., 2000; 

Johnston et al., 2005; Kwon et al., 2007; Zhang et al., 2012). In addition, Skrabanja et al. (2001) 

showed that the presence of resistant starch in buckwheat and buckwheat products contributed to 

its low glycaemic index.  As for blood insulin, both human and animal studies yielded inconsistent 

results for the association between buckwheat intake and fasting blood insulin concentrations, 

indicating that there is no support for a beneficial effect of buckwheat on blood insulin or insulin-

mediated glucose responses. 

2.7.4.4 Effects on lipid Profile 

Cholesterol, produced in the liver and absorbed though the diet, is essential for all animal life in 

normal metabolic process. However, observational epidemiologic studies reports that risk of heart 
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attack in subjects with hyperlipidemia is 3 times higher than those in general population with normal 

lipid status, while a 1% reduction in serum total cholesterol is strongly correlated with a 3% decrease 

in CVD risk (Yusuf et al., 2004; Lloyd-Jones et al., 2010). Thus, treatments which are aimed at 

reducing cholesterol concentrations are effective in decreasing death risk from stroke and coronary 

heart disease. Consistent with two cross-sectional studies, this meta-analysis of the RCT studies 

indicated that increased intake of buckwheat-based products from 7 days to 27 weeks significantly 

improved an individual’s lipid profile, on average, decreasing total cholesterol by 0.50 moms/L and 

triglycerides by 0.25 mmol/L. Moreover, the beneficial effects seen in human studies were also 

supported by strong evidence from animal studies. Even though the change in LDL-cholesterol 

concentration was not statistically different (p=0.061), the data approached statistical significance, 

and the mean reduction was 0.33 mmol/L, and significant decreases were also observed in two 

cross-sectional studies. It has been well known that a 1 mmol/L reduction of LDL-cholesterol lowers 

the morbidity and mortality of CVD patients by 22% (Cholesterol Treatment Trialists Collaboration, 

2010), so a reduction of this magnitude could have significant clinical effects.  No effects of HDL-

cholesterol were detected in the meta-analysis of RCT studies for buckwheat intake, in combination 

with inconsistent results from animal studies.  The results of the meta-analysis were seen in both 

healthy and ‘‘at risk’’ subjects, but it is not possible within this review to examine differences in 

response between healthy and ‘‘at risk’’ subjects because of lack of power and the limited number 

of studies available.  Nevertheless, it should be noted that the meta-analysis of Ripsin et al. (1992) 

which investigated the effect of oats and oat-based products on lipid biomarkers, demonstrated that 

greater reductions were observed in studies where subjects initially had higher total cholesterol 

concentrations (>5.9 mmol/L). Thus, there was an indication that observed effects were generally 

more marked in subjects with higher CVD risk. 

It should be noted that both LDL and HDL cholesterol concentrations were significantly decreased 

after intake of Tartary buckwheat mixture for 2 months in the study reported by Huang et al. (2009). 

However, the clinical importance of cholesterol reduction can also be seen in the ratio of LDL and 

HDL cholesterol concentrations, which did not significantly change during the treatment period. HDL 

cholesterol concentrations, known as ‘good cholesterol’, are a strong, independent inverse predictor 

of CVD (Sharrett et al., 2001; Curb et al., 2004). Surprisingly, this relationship was also detected 

among patients even if whose LDL cholesterol concentrations were substantially decreased below 

1.81 mmol/L, indicating that HDL cholesterol still play a protective role against CVD despite the low 

LDL cholesterol concentration (Barter et al., 2007). In other words, HDL cholesterol concentrations 

below normal range is not a good sign in people with the LDL cholesterol at low levels.  
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2.7.4.5 Buckwheat Intake levels 

Any evaluation of health benefits associating with food products should include an attempt to define 

optimal amounts for human consumption.  The study of Liu et al. (1996), described in Table 2.7, 

showed that 40 g/day Tartary buckwheat flour for 4 weeks significantly lowered total cholesterol, 

LDL cholesterol and triglycerides concentrations compared with baseline. The dose needed to reach 

a significant effect was similar to that of large population-based study by He et al. (1995), who found 

that buckwheat intake (≥ 40 g/day) was inversely related to markedly lower lipid profiles in 

comparison with those who consumed less than 40 g buckwheat/day.  Stringer et al. (2013) found 

that a higher amount of buckwheat cracker (containing buckwheat 76g/day) for a shorter time 

period (7 days) did not significantly affect lipid profiles when compared with  baseline, and similar 

results were also observed in studies with longer intervention periods (4 and 12 weeks) by Bijlani et 

al. (1984) and Bijlani et al. (1985). Studies showing specific amount of buckwheat used are scarce, 

and more well designed dose-response studies are required to confirm the minimum amounts of 

buckwheat needed to have a beneficial effect.  

2.7.4.6 Bioactive compounds responsible for lipid-lowering activity 

The lipid-lowering activity of buckwheat has been ascribed to its nutritional composition including 

soluble fibre, protein, rutin and quercetin. However, due to complexity of this composition, it is 

difficult to explore potential mechanisms underlying the beneficial effect of buckwheat on CVD risk. 

Some have been proposed but not fully explained, and it is possible that a combination of these 

components have contributed to the effects, instead of a single factor. As remarked previously, 

buckwheat is a good source of dietary fibre (5-11%), particularly the soluble fraction, which may help 

lower total cholesterol concentrations in the body (Bonafaccia et al., 2003; Christa and Soral-

Smietana, 2008; Dziedzic et al., 2010). The cross-sectional study by He et al. (1995) demonstrated 

that both total dietary and water-soluble fibre from buckwheat were significantly and independently 

correlated with lower serum total cholesterol concentrations, even though the average cholesterol 

concentration was low in the study population. This result was in agreement with that of Son et al. 

(2008) showing a similar correlation between water-soluble fibre and serum total cholesterol. The 

cholesterol-lowering effects of soluble fibre may be accounted for several mechanisms. It has been 

proposed that soluble fibre binds strongly to bile acids in the small intestine and elevates faecal bile 

acids excretion. The loss of bile acids in the stool stimulates the liver to increase cholesterol uptake 

from the circulation to replenish the bile acid supply. It also lowers the availability of bile acids for 

optimal fat digestion and absorption (Gordon et al., 1977; Judd and Truswell, 1981; Story, 1985; 

Shinnick et al., 1990). In addition, soluble fibre delays gastric emptying, slowing access of nutrients 

to digestive enzymes and to absorptive surfaces of the small intestine (Anderson and Siesel, 1990). 
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In addition, There is also emerging evidence that soluble fibre and resistant starch are additionally 

fermented by some bacteria in the colon, producing short-chain fatty acids (SCFA) perhaps via the 

inhibition of hepatic cholesterol synthesis in the liver, which helps to lower cholesterol 

concentrations (Slavin et al., 1999; Escudero et al., 2006). One other mechanism that contributes to 

the cholesterol-lowering effects may be due to the low glycaemic index of buckwheat in humans 

with the presence of resistance starch in the cereal (Liu et al., 2001; Skrabanja et al., 2001). 

However, the hypocholesterolaemic effect of buckwheat starch, which was extracted from 

buckwheat flour, was not detected in rats when compared with corn starch (Tomotake et al., 2000).  

It has been generally recognised that plant proteins may reduce plasma cholesterol concentrations, 

and the underling mechanisms of the cholesterol-lowering properties of plant proteins have been 

extensively analysed (Carroll and Hamilton, 1975; Carroll, 1982; Terpstra et al., 1983). However, in 

most studies the effect of plant dietary proteins has focused on soybean protein, leading to limited 

information on the influence of other plant proteins and buckwheat proteins specifically on 

cholesterol metabolism. Despite having a relatively low digestibility, buckwheat protein, which 

accounts for 10% to 12.5% of flour weight, is an excellent supplement to other common grains, as it 

contains a good balance of amino acids with high nutritional value (Pomeranz and Robbins, 1972; 

Pomeranz, 1983; Ikeda and Kishida, 1993; Li and Zhang, 2001). Previous studies have demonstrated 

a potent hypocholesterolaemic activity of isolated buckwheat protein products prepared from 

buckwheat flour in rats or hamsters fed cholesterol-enriched or cholesterol free diets, which 

appeared to be stronger than that of soy protein isolate (Kayashita et al., 1995a; Kayashita et al., 

1995b; Kayashita et al., 1996; Kayashita et al., 1997; Tomotake et al., 2000; Tomotake et al., 2001; 

Tomotake et al., 2007). In one study by Kayashita et al. (1997) further suggested that suppressive 

effects on cholesterol were mediated by enhanced excretion of faecal neutral sterols and that lower 

digestibility of buckwheat protein products is at least in part responsible for the effect. The lower 

digestibility may result in lower gastrointestinal transit time, which in turn leads to a higher stool 

weight and greater faecal excretion of neutral sterols. It has been observed that faecal excretion of 

neutral sterols was inversely correlated with serum cholesterol (r=-0.83, P<0.01) (Tomotake et al., 

2007). Taken together, these impacts on rats appear to be similar to the properties of dietary fibre in 

humans (Kritchevsky, 1988; Eastwood, 1992). To demonstrate this, Kayashita et al. (1997) also 

performed another experiment showing that plasma cholesterol in rats fed intact buckwheat protein 

products for two weeks was significantly lower than that in rats fed trypsin-digested protein. 

Moreover, this hypothesis has been confirmed in human body that the digestibility of buckwheat 

seed proteins was relatively low, owing possibly to the existence of phytic acid, tannins and protease 

inhibitors (Yiming et al., 2015). However, this seemed to contrast with the results reported by 
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Tomotake et al. (2007) that Tartary buckwheat had a reduced cholesterol-lowering impact on rats 

compared with common buckwheat, even though digestibility of Tartary buckwheat was lower than 

that of common buckwheat. It is noteworthy that humans digestion is hugely different from that of 

rodents, such as rat and hamster, indicating that these results are needed to explain with caution 

and more studies are required to answer this question (Kararli, 1995). In addition, the strong 

suppression of cholesterol by buckwheat protein products could be ascribed to its effect on higher 

bile acid synthesis, and also a greater excretion of faecal bile acids observed in rats, with the 

possibility that buckwheat protein products could possess some bile acid-binding proteins 

(Tomotake et al., 2000; Tomotake et al., 2001). It has been further demonstrated in vitro that 

digestion-resistant peptides were largely responsible for bile acid binding activity of buckwheat 

protein digests and bile acid elimination (Ma and Xiong, 2009; Zhou et al., 2013). In consistent with 

this, Zhang et al. (2017) very recently further suggested that Tartary buckwheat protein was one of 

the active ingredients to decrease plasma total cholesterol concentration, mainly regulated by 

improving the excretion of bile acids by its effects on gene expression of hepatic CYP7A1 in a 

uptrend, but also preventing absorption of dietary cholesterol by its effects on gene expression of 

intestinal Niemann-Pick C1-like protein 1 (NPC1L1), acyl CoA:cholesterol acyltransferase 2 (ACAT2), 

and ATP binding cassette transporters 5 and 8 (ABCG5/8) in a downtrend. Moreover, the 

composition of amino acids in dietary proteins might be another important factor influencing blood 

cholesterol concentration, especially the ratio of lysine to arginine, which is even lower in buckwheat 

protein than that of soy protein (Kayashita et al., 1995a). Thus, it has been speculated that 

cholesterol-lowering effect of buckwheat protein products observed may be ascribed to lower 

lysine: arginine ratio (Kayashita et al., 1995a). However, this hypothesis did not support the results 

from Kayashita et al. (1997) that plasma cholesterol was unaffected with the addition of arginine in 

the diets.  

It is well known that Tartary buckwheat seeds are a major source of rutin and quercetin (Holasova et 

al., 2002). Minor amounts of quercetin identified in Tartary buckwheat seeds are the results of rutin 

degradation (Fabjan et al., 2003; Vogrincic et al., 2010). The possibility of buckwheat rutin being one 

of the active components responsible for suppressive effect on cholesterol concentrations cannot be 

eliminated. Rutin has been shown to prevent the increase of plasma total cholesterol and non-HDL 

cholesterol in rats or mice fed with a high cholesterol or high fat diet (Park et al., 2002; Choi et al., 

2006; Kuwabara, 2007; Panchal et al., 2011; Qu et al., 2013). However, in contrast to the results with 

rats and mice, serum total cholesterol concentrations in day-care staff were found to be lower in 

response to consuming cookies prepared from common or Tartary buckwheat, but no significant 

differences were detected between two buckwheat groups, even though the rutin content in Tartary 
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buckwheat seed was much higher than that in common buckwheat (Kitabayashi H, 1995; Wieslander 

et al., 2011). It has also been suggested that quercetin may be a contributor to the cholesterol-

lowering effects seen in animal models. In animal models (rat, rabbit, and mice) fed a high-

cholesterol or high-fat diet, diets with addition of pure quercetin compounds has been shown to 

lower serum total cholesterol concentration (Igarashi and Ohmuma, 1995; Juzwiak et al., 2005; 

Odbayar et al., 2006). However, the results regarding the effects of quercetin on cholesterol 

concentrations are controversial; several studies have reported that quercetin intake had no 

significant beneficial effects on total, LDL or HDL cholesterol and triglycerides (Yugarani et al., 1992; 

Hayek et al., 1997; Lauridsen and Mortensen, 1999; Enkhmaa, 2005). The underling mechanisms of 

the quercetin on lipid metabolisms may be accounted for the inhibition of cholesterol synthesis in 

hepatocytes and also the enzyme myeloperoxidase which was shown to oxidize lipoproteins 

(Pincemail et al., 1988; Glasser et al., 2002; Nicholls and Hazen, 2009). 

2.7.4.7 Sensitivity analysis 

In the sensitivity analyzes, removing individual studies systematically retained the statistical 

significance of the effects of buckwheat on total cholesterol, supporting the stability of the observed 

effects, but the effect on triglycerides was no longer significant possibly due to reduced statistical 

power. This finding was relatively not stable to sensitivity analyze in which individuals studies were 

removed, thus, such analyses should be interpreted with more caution.  

2.7.4.8 Limitations 

Several limitations of this review should be noted. Firstly, relatively few long-term randomized and 

well-controlled human studies have directly investigated the effects of buckwheat intervention on 

risk markers for CVD, including weight gain, blood pressure, fasting blood glucose, insulin and lipids, 

and studies up to date have been of short duration with small sample sizes. In order to support the 

effects, further more large-scale human intervention studies for long-term are required. Secondly, 

most animal studies performed to date, have analyzed the effect of individual molecular 

components or various buckwheat extracts on cell lines and animal models. However, human beings 

consume entire buckwheat seeds (as flour in products) instead of individual extracts, producing the 

uncertainty whether the efficacy can be extrapolated to human health without further evaluation. 

Finally, the bioactive compounds responsible for buckwheat’s cardiovascular health still remain 

uncertain, and the mechanisms underlying the effects were not fully elucidated.  
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2.7.5 Conclusion  

In conclusion, even though the literature to date is limited and often inconsistent in study results, 

this review suggests that increased intake of buckwheat may lower CVD risk markers, including 

glucose, total cholesterol and triglycerides. Therefore, buckwheat, being a gluten-free alternative to 

some common whole grains or refined grains, such as wheat, barley and rye, deserves to be a part of 

our daily diet. However, it still remains unclear whether increased intake of buckwheat has 

significant impacts on some CVD risk markers like body weight and LDL cholesterol. There is 

increasing evidence that several lower risk markers associated with CVD could be due to polyphenol, 

soluble fibre, protein, rutin, quercetin and other components in the buckwheat, but is has not been 

fully elucidated which bioactive compounds are responsible for the underlying effects. Further 

research, especially large, well-powered, long-term human intervention studies, are required to 

further understand and promote the role that buckwheat seeds can play in cardiovascular health. 
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2.8 Impact of whole grains on the gut microbiota: a systematic literature 

review 

2.8.1 Introduction 

Whole grain intake is associated with beneficial health effects and epidemiological studies have 

consistently shown that diets rich in whole grain foods reduce the risk of many lifestyle-related 

diseases that plague modern society, such as cardiovascular diseases, diabetes, obesity, the 

metabolic syndrome and some cancers (He et al., 1995; Chatenoud et al., 1998; Jacobs et al., 1998; 

Liu et al., 1999b; Jacobs et al., 2000; Mellen et al., 2008a; O'Neil et al., 2010; Ye et al., 2012; Aune et 

al., 2016; Chen et al., 2016). The observed associations with reduced disease risk have been 

hypothesized to be due to the modulation of gut microbiota which have co-evolved with the human 

colon. Whole grains are good source of dietary fibres and other bioactive compounds that may 

modulate the gut microbiota, thereby conferring benefits to the host’ health (Slavin, 2003; Costabile 

et al., 2008; Carvalho-Wells et al., 2010; Fardet, 2010).  

The gut microbiota, which has attracted much attention, plays an important, but generally less well 

understood, role in health and disease in humans; indeed, it is sometimes referred to our ‘’forgotten 

organ’’ (O'Hara and Shanahan, 2006). A major function of the gut microbiota is to digest food 

compounds that are not degraded by human gastrointestinal enzymes. In this manner, compounds 

like complex polysaccharides and some starches selectively stimulate the growth and/or activity of 

specific groups of naturally colonizing bacteria, including species now generally seen as beneficial for 

human health like bifidobacteria and lactobacilli, which in turn provide degradation products for 

subsequent absorption. Results of a former study in mice indicate that in this way changes in 

microbiota composition contribute to a higher energy yield, weight gain, and possibly obesity 

(Turnbaugh et al., 2006a). For example, short-chain fatty acids (SCFA) are derived from the 

fermentation of fibre, enterodiol and enterolactone from lignans, all of which have been associated 

with anti-inflammatory, anticancer and other protective effects (Beards et al., 2010; Oozeer et al., 

2010). 

Currently, some human intervention studies have begun to concentrate on the relationship between 

whole grains intake and gut microbial species composition and relative abundance, but the number 

is limited. What is more, results from these studies conducted in humans are conflicting in some 

cases. Thus, a clear and direct correlation between consumption of whole grain and health benefit 

cannot be established. Systematic reviews can give us a wider perspective, but also an evaluation of 

the validity of the methods of the study and the results that can point the direction for future 
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research. This review aims to present a comprehensive review and summary of the up-to-date 

evidence from the recent human intervention studies for exploring the effect of whole grains, either 

as a single cereal grain or as mixed whole grains, on gut microbiota composition and populations, 

and the mechanisms behind the beneficial effects.  
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2.8.2 Methods of study search and selection 

2.8.2.1 Data sources and literature search 

A comprehensive literature search for human studies that had investigated the relationship between 

whole grain consumption and human gut microbiota between 1960 and 2017 was conducted. Fig. 11 

shows how relevant articles were selected. PubMed, Ovid, Scopus, Web of Science, Compendex, 

JSTOR, EBSCO, Medline and ProQuest databases were searched using the search terms ‘whole 

grains’ and ‘gut microbiota’ OR ‘intestinal flora’ AND ‘human’, and the same terms were applied in 

each database during the search phase. Whole grains were defined to encompass wheat, corn, rice, 

maize, oat, barley, sorghum and other cereals, as well as pseudo-cereals. In addition, the reference 

lists of retrieved articles were searched manually for all additional potentially relevant articles. The 

search was limited to studies on humans and included those that were written in different languages 

such as English and Chinese.  

2.8.2.2 Study selection 

The studies were included in this review satisfied the following criteria: 1) study in humans, 2) whole 

grain-consumption exposure, 3) the outcomes included any changes in intestinal bacterial diversity, 

relative abundance or population, such as bifidobacteria and lactobacilli. The eligibility criteria were 

set before the start of the research.  

2.8.2.3 Data extraction and quality assessment 

The following data were extracted from each human study: lead author, year of publication, number 

of subjects, age range, BMI range, study design, methods (technique used) and outcomes. Extracted 

human data are shown as the column headings of Tables 2.10. Missing data are reported as ‘‘Not 

stated’’ if they were not explained in the corresponding articles. The sample size reported in Tables 

2.10 was the overall total for the experiment rather than restricting to either control or intervention 

diet/s. The methods of quality assessment for studies included in this review were as described in 

Section 2.5, and the quality scores of the studies included in this review were also listed in Tables 

2.10. 

Data were extracted by a single reviewer. 

 

http://libproxy.ncl.ac.uk/login?url=http://www.scopus.com/scopus/home.url
http://libproxy.ncl.ac.uk/login?url=http://apps.webofknowledge.com/
http://libproxy.ncl.ac.uk/login?url=http://www.engineeringvillage2.org/
http://libproxy.ncl.ac.uk/login?url=http://www.jstor.org
http://libproxy.ncl.ac.uk/login?url=http://search.ebscohost.com
http://www.ncl.ac.uk/library/nclip/ovid.php
http://libproxy.ncl.ac.uk/login?url=http://search.proquest.com?accountid=12753
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2.8.3 Whole grain consumption and changes in gut microbiota 

The systematic search of the scientific databases resulted in the initial identification of 139 articles 

for further evaluation. After removing duplicate articles (34) and articles that did not meet the 

eligibility criteria (104), a total of 11 articles were included in the review. Manual searching of the 

reference list of the relevant articles yielded 36 additional articles. After applying the inclusion 

criteria, four of these articles were considered fit to include. Consequently, the combination of 

electronic and manual reaching resulted in 15 articles which are included in this final review (Figure 

2.15). Four studies were carried out in UK, three in USA and Italy, two in Switzerland and one each in 

Denmark, Finland and Germany.  

All studies in the review were randomized controlled human intervention studies, with follow-up 

durations ranging from 2 to 12 weeks.  Overall, a single grain or mixed whole grains consumption 

ranged from 45 g to 207 g of whole grain ingredients (median levels of individual series), with one 

and two studies the type of whole grains and the amounts consumed unstated, respectively 

(Foerster et al., 2014; Cooper et al., 2017). Participants recruited in these studies were all healthy, 

except for the overweight or obese subjects in one study by Christensen et al. (2013) and subjects 

with metabolic syndrome in two studies by Lappi et al. (2013) and Connolly et al. (2016). Of the 15 

studies, 7 were randomized, controlled crossover studies and 7 were parallel studies; one study did 

not have a control group (De Angelis et al., 2015).   
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Figure 2.15.   Flow diagram of article selection 
 

 

 

 

 

 

 

 

 

 

 

 

 

Articles identified initially (n=139) 

Duplicate articles (n=34) 

Articles included (n=15) 

Excluded on full text (n=28): 

Not appropriate methods (n=15) 

Not clear outcomes (n=9) 

 Not use whole grains (n=4) 

 

 

 

 

Additional articles from 

reference lists (n=4) 

Unique articles (n=105) 

Article excluded on the basis of title and abstract (n=76): 

Not human clinical trials (n=41) 

Not whole-grain (n=12) 

Not included as they were reviews and meetings (n=5) 

Not relevant outcomes (n=18) 

 

Potential articles (n=39) 
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Table 2.10.   Summary of whole grain interventions assessing gut microbiota 

Reference Grain Subjects  Study design Methods (Technique used) Outcomes 
Quality 
score 

       
Ross et al. 
(2011) 

Mixed whole 
grains 

6 males and 11 
females 
Age (years) 20-50 
BMI (kg/m2) 19-28  

Randomized crossover study 
2 arms:  
● Whole grains diet 150 g/d dry weight 
(64% whole grain wheat, 14% barley and 
rye, 13% WG oats and 9% brown rice)  
● Refined grain diet (66% refined wheat, 
27% white rice, 8% refined maize) 
2 weeks per arm 
 

Quantitative PCR targeting:  
total bacteria, Bacteroides, 
Bifidobacterium, Clostridium 
coccoides, Clostridium leptum, 
Enterobacteria, Enterococcus 
and Lactobacillus groups 

- No overall change in the faecal microbiota 
population was observed, except for 
Clostridium leptum group, which was slightly 
higher after the whole grain diet (p=0.02), 
along with a tendency towards an increase in 
Enterococcus spp. (p=0.06) compared with the 
refined grain diet.  

4 

Langkamp-
Henken et al. 
(2012)  

Mixed whole 
grains  

48 males and 35 
females  
Age (years) 11-15 
(Mean: 12.7 ± 0.1) 
BMI: not stated 

Randomized, controlled, parallel-arm 
study 
2 groups 
● Whole grain foods (wheat-based foods, 
also included with oats, rice and corn) 
● Refined grain foods (wheat-based foods 
also included with oats, rice and corn) 
80 g for 6 weeks per group 
 

qPCR and Pyrosequencing (only 

bifidobacteria and lactic acid 
bacteria) 

- There were no significant differences in 
community diversity measured by Shannon-
Weiner and Simpson diversity indices. 
- Both faecal bifidobacteria and lactic acid 
bacteria did not significantly differ between 
groups. 
- Faecal bifidobacteria increased significantly 
with both groups, but lactic acid bacteria 
increased significantly only in the whole grain 
group compared to baseline. 

4 

Ampatzoglou 
et al. (2015) 

Mixed whole 
grains 

12 males and 21 
females,  
Age (years) 40-65 
(Mean: 48.8 ± 1.1) 
BMI (kg/m2) 20-35 

(Mean: 27.9 ± 0.7) 

 

 

Randomised, crossover study 
2 arms:  
● Diet high in whole grains mainly wheat, 
also included oats, rice, rye, corn and 
barley (>80 g/d) 
● Diet low in whole grains (<16 g/d) 
6 weeks per arm 
 
 
 

FISH targeting:  
Clostridium coccoides 
/Eubacterium rectale group, 
Bifidobacterium genus, 
Lactobacillus-Enterococcus 
group,  Bacteroides-Prevotella 
group, Clostridium histolyticum 
group and Escherichia coli 

- There were no effects of whole grain 
consumption on the composition of gut 
microbiota.  
 

3 
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Copper et al. 
(2017) 

Mixed whole 
grains 

21 males and 25 
females 
Age (years) 19-46 
(Mean: 25.5 ± 0.9) 
BMI (kg/m2) 20-28 
(Mean: 23.4 ± 0.6) 

Randomised, parallel-group study 
2 groups  
● Whole grain wheat (75%), corn (15%) 
and rice (10%) 
● Refined grain wheat (75%), corn (15%) 
and rice (10%) 
Amounts not stated, 6 weeks per group 
 

Miseq sequencing (Illumina) - No significant difference in the relative 
abundance of any particular taxa was 
observed between and within two groups, 
although, abundance of order 
Erysipelotrichales was increased after intake 
of refined grains (p=0.023).  

4 

Vanegas et al. 
(2017)  

Mixed whole 
grains 

49 males and 32 
females 
Age (years) 40-65 
BMI (kg/m2) 20-34 

Randomized, controlled, parallel study 
2 groups 
● Whole grain group (207 ± 39 g whole 
grains mainly wheat and 40 ± 5 g fibre) 
● Refined grain group (0 g whole grain 
and 21 ± 3 g fibre) 
6 weeks per group 

Miseq sequencing (Illumina) - The bacterial α and β diversity were not 
significantly different between groups. 
- There were no differences between and 
within groups when the relative abundance at 
the phyla and genera levels were compared, 
with the exception of a significant increase in 
abundance of Lachnospira in the whole grain 
group than in the refined grain group.  

4 

Costabile et 
al. (2008) 

Wheat  15 males and 16 
females 
Age (years) 20-42 
(Mean 25) 
BMI (kg/m2) 20-30 

Double-blind, randomised, crossover 
study. 
2 arms:  
● Whole wheat breakfast cereal 
● Wheat bran breakfast cereal 
48 g/d for 3 weeks per arm 
 

FISH targeting:  
Atopobium group, 
Bacteroides spp., 
Bifidobacterium spp., 
Eubacterium rectale group, 
Clostridium histolyticum group 
and Lactobacillus/Enterococcus 

- Population of faecal Bifidobacterium spp., 
and lactobacilli/enterococci were significantly 
increased upon whole grain. 
 
 

5 

Christensen 
et al. (2013) 

Wheat  72 post-menopausal 
females 
Age (years) 45-70 
BMI (kg/m2) 27-37 

Open label parallel study 
2 groups:  
● Energy-redistricted diet with whole 
wheat bread, pasta and biscuits 
● Energy-redistricted refined diet with 
refined wheat bread, pasta and biscuits                 
105 g/d for 12 weeks each group 
 

 

 

Quantitative PCR targeting: 
Bacteroidetes, Firmicutes, 
Bacteroides spp., Prevotella 
spp., Lactobacillus spp., 
Enterobacteriaceae, 
Bifidobacterium spp. 
B. bifidum 
B. adolescentis 
B. catenulatum group 
B. longum 

- No significant differences in microbiota 
composition were detected between two 
dietary groups. 
- The whole wheat intervention increased the 
relative abundance of Bifidobacterium 
(p=0.04), and a decrease in abundance of 
Bacteroides was found in refined wheat group 
compared with baseline (p=0.04). 

3 
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Saa et al. 
(2014) 

Kamut® 

Khorasan and 
whole durum 
wheat 

4 males and 26 
females 
Age (years) 25-53 
(Mean: 37 ± 7.3) 
BMI: not stated 

Randomised, placebo-controlled, parallel-
group study 
Two groups:  
● Whole Kamut® Khorasan cereal-based 
foods 
● Whole durum wheat cereal-based foods  
118 g pasta and 88 g baked goods for 3 
months per group 

The ligase detection reaction– 
universal array (LDR–UA) 
platform High Taxonomic 
Fingerprint (HTF)-Microbi.Array 

- There was no significant difference in the 
microbiota composition between and within 
dietary groups over time 
- A trend for a reduction in 
Bacteroides/Prevotella and an increase in 
members of Clostridium cluster XIVa  
was observed after intake of whole Kamut® 
Khorasan with respect to whole durum wheat 
cereals 

2 

Vitaglione et 
al. (2015) 

Wheat 23 males and 45 
females, 
Age (years) 19-67 
(Mean: 38.6) 
BMI (kg/m2) 25-34.9  
(Mean:29.8) 

Placebo-controlled, randomised, parallel-
group study 
2 groups:  
● Whole grain wheat biscuits (70 g/d) 
● Refined wheat crackers (33 g/d) and 

toasted bread (27 g/d)                                    

8 weeks for per group                   

 

 

Miseq sequencing (Illumina) - Microbial community structure of subjects 
consuming whole grain and control foods did 
not significantly differ, as shown by weighted 
and unweighted UniFrac phylogenetic metrics. 
- No significant variation in relative abundance 
of faecal microbiota was found in relation to 
treatments. 
- There was no significant change in whole 
grain group, excepting individual bacterial 
taxa, such as Prevotella, Bifidobacterium, 
Dialister.  
 

5 

Lappi et al. 
(2013) 

Rye 25 males and 26 
females,  
Age (years) 40-65 
(Mean: 60 ± 6) 
BMI(kg/m2): 26-39 
(Mean: 31 ± 4) 

 

Randomized, controlled, parallel study  
Two groups:  
● Whole grain rye bread (92 g, a high-
fibre content 7-15%), endosperm rye 
bread (60 g) and whole mean pasta (12 g) 
● Refined wheat bread (188 g, a low fibre 
content 4%) 
12 weeks per group 

 

 

 

 

Quantitative qPCR targeting: 
1033 distinct phylotypes based 
on the V1 and V6 hypervariable 
regions of the 16S rRNA 

- The intestinal microbiota composition did 
not significantly differ between the groups 
after the intervention.  
- Within groups, the whole grain group did not 
change relative abundance of any bacterial 
taxa. However, a significant decrease of 
Bacteroidetes, including Bacteroides vulgatus, 
B.plebeius, and Prevotella tannerae was 
observed in the group consuming refined 
wheat bread, while that of bacteria related to 
Collinsella and members of the Clostridium 
clusters IV and XI slightly increased. 
 

4 
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De Angelis et 
al. (2015) 

Barley 11 males and 15 
females 
Age (years) 28-57 
(Mean: 39 ± 9) 
BMI (kg/m2) 22.6 ± 3 

Pre-post study 
One group:  
● Pasta, a mixture of 75% durum wheat 
flour and 25% whole grain barley flour 
(minimum recommended daily intake of 
3g barley β-glucans) 
100 g/d for two months 
 

Pyrosequencing of 16S rRNA 
gene 

- The bacterial diversity measured by Chao 1 
and Shannon index were not significantly 
different before and after 2 months of diet 
intervention. Also, in weighted and 
unweighted UniFrac distance principle 
coordinate plots, the three phylogeny-based 
β-diversity did not show a clear separation 
between the microbiota compositions of 
before and after samples 
- No significant differences in the relative 
abundance of the phyla were found in the 
faecal samples when subject were following 
the pasta, excepting the phylum Fusobacteria, 
which was significantly decreased after 
intervention.  
 
 
 
 

1 

Martínez et 
al. (2013a) 

Barley and 
brown rice 

11 males and 17 
females 
Age (years) 25.9 ± 5.5 
BMI (kg/m2) 25.1 ± 4.5 

 

Randomised, crossover study 
3 arms:  
● Whole grain barley flakes (18.7 g total 
dietary fibre) 
● Whole grain brown rice flakes (4.4 g 
total dietary fibre) 
● Equal mixture of the two whole grain 
barley and brown rice flakes (11.5 g total 
dietary fibre) 
60 g/d for 4 weeks per arm 
 

Pyrosequencing of amplicons by 
PCR targeting the V1–V3 region 
of the 16 S rRNA 

 - All three groups significantly increased the 
bacterial diversity measured by Shannon’s and 
Simpson’s indices (community evenness) but 
not by Chao1 (total species richness).  
- All three groups significantly increased and 
decreased the abundance of Firmicutes and 
Bacteroidetes compared with baseline, 
respectively.  
 

1 

Carvalho-
Wells et al. 
(2010) 

Maize 11 males and 21 
females 
Age (years) 20-51 
(Mean: 31.6 ± 8) 
BMI (kg/m2) 20-30 

(Mean: 23.3±0.58) 

 

Double-blind, randomised, placebo-
controlled, crossover study. 
2 arms:  
● Whole grain maize breakfast cereal 
(29.6% whole grain) 
● Non-whole grain breakfast cereal 
48g/d for 3 weeks per arm 

 

FISH targeting:  
Bacteroides spp., 
Bifidobacterium spp., 
Clostridium 
histolyticum/perfringens 
subgroup, 
Lactobacillus-Enterococcus 
subgroup and total bacteria. 

- A significant increase in faecal bifidobacteria 
was observed in whole grain maize group 
compared with control group.  
- With respect to baseline, increases in faecal 
bifidobacteria and Atopobium levels were 
observed in both groups, but only 
bifidobacteria in control group did not reach 
significance level.  
 

5 
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Connolly et 
al. (2016) 

Oat 11 males and 19 
females 
Age (years) 19-60 
(Mean: 42)  
BMI (kg/m2) 18-30 
(Mean: 26.4 ± 5.7) 

Double-blind, randomised, controlled, 
crossover study. 
2 arms:  
● Whole grain oat Granola breakfast 
cereal 
● Non-whole grain breakfast cereal 
45 g/d for 6 weeks per arm 
 

FISH targeting:  
Bifidobacterium spp., 
Bacteroides/Prevotella spp., 
Lactobacillus/Enterococcus spp., 
Clostridium coccoides- 
Eubacterium rectale group, 
Clostridium histolyticum group, 
and Atopobium cluster including 
most Coriobacteriaceae species 

- Significant differences in bifidobacteria and 
total population at week 6 were observed 
between groups. 
- The numbers of faecal bifidobacteria, 
lactobacilli and total bacteria count 
significantly elevated compared with the 
respective baseline. Also, a significant 
decrease in bifidobacteria and total bacteria 
population in non-whole grain group were 
detected after the 6-week feeding time.  
 

4 

Foerster et al. 
(2014) 

Not stated 10 males and 10 
females  
Age (years) 20-60 
(Mean: 40.1 ± 11.6) 
BMI (kg/m2) 24.4 ± 2.9 

Randomised, crossover study 
2 arms:  
● Whole grain products with low intake of 
red meat (amounts not stated, but offer 
approximately 40 g/d dietary fibre) 
● Portions of red meat  200 g/d (fresh 
weight) with minimal amounts of dietary 
fibre 
3 weeks per arm 
 

PCR-DGGE - The diet rich in whole grain products 
increased microbial diversity.  
- Compared with baseline, 8 bands changed in 
at least 4 subjects after intake of whole grain 
diet.  

-1 
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Despite the substantial differences in some certain bacteria within groups, the relative abundance or 

numbers of faecal microbiota and bacterial diversity did not significantly differ between groups in 

the seven intervention studies that used wheat as the main source of whole grains or used wheat as 

the only whole grains, with the exception of individual bacterial taxa (Ross et al., 2011; Langkamp-

Henken et al., 2012; Christensen et al., 2013; Ampatzoglou et al., 2015; Vitaglione et al., 2015; 

Cooper et al., 2017; Vanegas et al., 2017). In agreement with this, inclusion of 152 g whole grain 

breads and fibre-rich rye bread in their diets for 12 weeks did not significantly change the microbiota 

composition with respect to refined white breads (Lappi et al., 2013). Noteworthy, the preliminary 

data demonstrate that the microbiota composition of individuals with metabolic syndrome differed 

from that of healthy individuals (Munukka et al., 2012). However, in two studies, significantly 

increased populations of bifidobacteria and lactobacilli in stool samples associated with intake of 

whole grain oat breakfast cereals (45 g/d) for 6 weeks, as well as total bacterial population relative 

to non-whole grain group have been reported, and also a bifidogenic effect of whole grain maize 

breakfast cereal (48 g/d) over 3 weeks has been reported (p=0.001) (Carvalho-Wells et al., 2010; 

Connolly et al., 2016). Interestingly, it has been reported that bifidobacteria levels and the number 

of bacterial groups returned to near baseline after 3 and 4 weeks, respectively (Carvalho-Wells et al., 

2010; Connolly et al., 2016). It is noteworthy that the above mentioned studies all used refined 

grains as a control to see the effect of intake of various whole grains on human gut microbiota.  

Due to the inappropriate (not refined grains) or lack of control in the rest 5 studies, only the changes 

in gut microbiota before and after the intake of whole grains were shown in this review, which 

consequently reduced the support of any beneficial effects of whole grain on the gut microbiota. In 

the two studies reported by Saa et al. (2014) and De Angelis et al. (2015), the microbiota 

composition or microbial diversity did not significantly differ within dietary groups following a 

dietary intervention with whole grain wheat or barley. However, in response to whole grains 

treatment, microbiota composition or microbial diversity showed a significant change compared 

with baseline in the faecal samples (Costabile et al., 2008; Martínez et al., 2013a; Foerster et al., 

2014). Due to the lack of comparison with refined grain counterparts, relatively limited information 

can be inferred from these studies to compare whole grains against refined grains to explore if there 

are differential effects of these whole grain varieties on the faecal microbiota. 

There are several reasons for the absence of meta-analysis of gut microbiota: 1) a total of fifteen 

randomized, controlled studies were included in this review, but eight of them only showed figures 

without any numerical values, and also most of these figures were not measurable; 2) the rest 

studies did not describe common intestinal bacteria. For example, some papers focused on phylum 

level, but others focused on genus level; 3) among these seven studies, five papers used ‘population 
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or number of bacteria cells’, but the rest two studies used ‘relative abundance of gut microbiota’, 

which two units were not changeable to demonstrated the bacterial changes. 
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2.8.4 Food constituents that affect gut microbiota  

2.8.4.1 Dietary fiber 

The definition of dietary fibre is still being discussed, but according to the CODEX Alimentarius 

Commission 2009, dietary fibre is defined as carbohydrate polymers with ten or more monomeric 

units, which are not hydrolyzed by the endogenous enzymes in the human small intestine. The 

definition includes non-starch polysaccharides (NSP) like arabinoxylans, cellulose, and many other 

components such as resistant starch, oligosaccharides, beta-glucans, insulin and lignin (Jones, 2014). 

The definition also allows for the inclusion of smaller oligosaccharides which are also not digested by 

human digestive enzymes.  Dietary fibre intake is thought to have a major impact on the 

compositional diversity and relative abundance of the gut microbiota in humans, although effects 

cannot be generalized as they vary depending on the type of fibre.  

2.8.4.1.1 Effects of fibre derived from whole grains on gut microbiota 

In one strictly controlled intervention study, Langkamp-Henken et al. (2012) suggested that small 

differences in total dietary fibre intake between the two groups was probably responsible for the 

lack of significant differences in overall microbiota diversity. However, one study compared the 

effects on the human gut microbiota of 100% whole grain wheat breakfast cereals with a wheat bran 

breakfast cereal over 3 weeks, and found that the numbers of bifidobacteria and lactobacilli in faecal 

samples were significantly higher compared with wheat bran treatment, indicating that whole grains 

are more bifidogenic than wheat bran alone. This study is of particular interest, as it suggested that 

the different impacts on the gut microbiota between the two intervention groups may be due to 

other components like fermentable carbohydrates rather than dietary fibre (Costabile et al., 2008). 

To analyze the effects of fibre from whole grains on human gut microbiota, a few human 

intervention studies have been conducted up to date. In a randomized crossover study, the effect on 

the gut microbiota composition of increasing whole grain intake from 28 g/d to 168 g/d (p<0.001) for 

6 weeks, accompanied by an increase in total fibre intake (p<0.001) compared with a refined grain 

diet, was recently reported by Ampatzoglou et al. (2015).  Surprisingly, despite the large difference 

in whole grain and fibre intake, the gut microbiota composition did not differ in the whole grain 

intervention group. This may have been caused by the reduced content of indigestible, fermentable 

carbohydrates because of the processing of the foods provided or the use of the Fluorescence in Situ 

Hybridization (FISH) probes that were not sensitive enough to detect small changes in microbiota 

composition. Consistent with this, a higher whole grain consumption (207 ± 39 g whole grains 

containing 40 ± 5 g fibre) over the same time period failed to induce any changes in bacterial 

composition and diversity, with the exception of a higher abundance of Lachnospira in the whole 

https://en.wikipedia.org/wiki/Arabinoxylan
https://en.wikipedia.org/wiki/Cellulose
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grain group compared with the refined grain group (Vanegas et al., 2017). Moreover, a randomized 

parallel study conducted in Finnish individuals with metabolic syndrome and examined whether 

intake of whole grain and fibre-rich rye breads influenced the intestinal microbiota composition 

compared with refined wheat breads (Lappi et al., 2013). However, there was no overall change in 

the microbiota composition between the groups either at the baseline or after the intervention, with 

the exception of the phylotype Bryantella formatexigens in the refined wheat group.  

2.8.4.1.2 Observational Studies   

The role of dietary fibre in affecting the gut microbiota is well exemplified by comparing the gut 

microbiota of individuals from different geographical regions that consume rural diets (Africa and 

South America) which are naturally high in dietary fibre with the gut microbiota of individuals 

consuming Western diets (Europe and North America) high in animal protein and fat, but low in fibre 

(De Filippo et al., 2010; Yatsunenko et al., 2012). Rural African children following a fibre-rich diet 

revealed a significant depletion in Firmicutes and an enrichment in Bacteroidetes, with a unique 

abundance of bacteria from the Prevotella and Xylanibacter genera, known to possess bacterial 

genes for the hydrolysis of cellulose and xylan, which were completely lacking in European children. 

Additionally, the rural African children had about a 3-fold increase in the level of short-chain fatty 

acids in stool samples compared with European counterparts. In contract, Enterobacteriaceae 

species, such as Shigella and Escherichia, were significantly lower in African than in European 

children (De Filippo et al., 2010). Another large study involving healthy children and adults also 

showed pronounced differences in functional gene repertoires and bacterial communities between 

US subjects from countries with a rural lifestyle (Amazon of Amazonas of Venezuela and Malawi) and 

those from metropolitan areas.  In particular, the genus Prevotella was more abundant in humans 

with a diet rich in corn and cassava and in US children not following a full western diet (Yatsunenko 

et al., 2012). A recent study including healthy African Americans and rural South Africans, found that 

the microbial composition was basically different, with a predominance of Bacteroides species in 

most Americans and Prevotella in most Africans. Total bacteria, SCFAs and major butyrate-producing 

groups were markedly more abundant in faecal samples from native Africans, but there were lower 

levels of faecal secondary bile acids when compared with African Americans. These differences could 

be explained by the dietary habits in which carbohydrates and fibre (mainly resistant starch) intakes 

were higher in Africans while animal protein and fat was 2-3 times higher in Americans (Ou et al., 

2013). One very recent Dutch population-based study including 1135 subjects from The Netherlands 

has correlated higher diversity, functional microbiome richness and abundance of Bacteroidetes 

with higher fruits and vegetables consumption (source of dietary fibre). The total amount of 

carbohydrate intake in the diet was negatively correlated with Lactobacillus, Streptococcus, 
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Roseburia species and microbiome diversity, but positively correlated with bifidobacteria 

(Zhernakova et al., 2016).  

In summary, these observational studies show that long-term intake of fibre-rich diets in their lives 

boosts the dominance of fibre-degraders of the phyla Bacteroidetes and Actinobacteria 

(Bifidobacterium spp.) and decreases the abundance of Proteobacteria. Notwithstanding these 

observations, it seems that Bacteroides spp. Are adapted to both diets high in animal protein and fat 

and fibre-rich diets, probably because of their versatile metabolic capabilities. However, it is 

important to note that these observational data only show associations but not casual relationships 

between specific dietary intake and composition and number of specific bacterial taxa, which clearly 

limit their value. Moreover, other relevant environmental factors such as ethnicity, geography, 

climate and food varieties that may also play a potential role in the gut microbiota profile were not 

well examined in these above studies.  

2.8.4.1.3 Types of dietary fiber 

2.8.4.1.3.1 Non-starch polysaccharides 

Non-starch polysaccharides (NSPs), the key components of the cell walls of various grains, which 

together form a major part of the total dietary fibre of grains. The insoluble NSPs in grains have long 

been known for their faecal bulking properties and decrease in gastrointestinal transit time 

(Grabitske and Slavin, 2008). These impacts may be especially critical for older adults, who typically 

include less dietary fibre in their diets and have decreased gastric motility (Bhutto and Morley, 2008). 

As for the soluble NSPs, it has been suggested that they might interact with gut microbiota in a 

different way, through a contra-biotic impact, preventing potentially harmfully interaction between 

the gut epithelium and bacteria that occur upon dysbiosis. For example, giving individuals diets high 

in NSPs led to significant shifts in the populations of bacteria in the large bowel of humans (Abell et 

al., 2008). The knowledge about effects of various sources of NSPs on the gut microbiota 

composition and number is still scarce. Nevertheless, the effect of NSPs on the gut microbiota is 

often overestimated due to their poor utilisation by colonic bacteria. The poorly fermentable dietary 

fibres in whole grains led to lower distal colonic pH and increased faecal butyrate concentrations 

(McIntosh et al., 2003; Bird et al., 2004). It is likely that, because of poor fermentation in the upper 

large intestine, the NSPs pass into the distal colon and then offer some carbohydrate substrate for 

gut bacterial metabolism in this region, which is irrelevant to most soluble and highly fermentable 

dietary fibres which are rapidly fermented in the upper large intestine. 
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2.8.4.1.3.2 Resistant starch  

Resistant starch (RS), naturally occurring in foods,  is considered a dietary fibre and as such, is 

defined physiologically as any starch or starch degradation product that escapes from digestion in 

the small intestine of healthy individuals and persists into the large intestine for fermentation (Asp 

and Björck, 1992). According to the physical or chemical reasons to be indigestible, resistant starch 

has been categorized into 4 types: physically inaccessible starch (RS1), native granules (RS2), 

retrograded starch (RS3), or chemically modified starch (RS4). In recent years, resistant starch has 

gained much attraction due to its effect on gut microbiota and subsequent impacts on the host 

(Martinez et al., 2010). Some types of resistant starch including RS1, RS2 and RS3 are fermented by 

the large intestinal microbiota, resulting in the production of SCFAs, promotion of butyrate-

producing bacteria and increased bacterial cell mass, thereby exerting benefits to human health 

(Brouns et al., 2002). An early study about effect of resistant starch on the composition of the faecal 

microbial community indicated that bacterial profiles showed changes especially a significant 

increase in the abundance of the Ruminococcus bromii group in response to a diet containing 22 

g/day resistant starch when compared with baseline, and also higher levels of total SCFA pools (Abell 

et al., 2008). The abundance of Ruminococcus bromii increased significantly in most volunteers on a 

RS3 diet over 10 weeks relative to the control group, as well as levels of uncultured Oscillibacter and 

Eubacterium rectale (Walker et al., 2011). Similar results were observed in another study on 

resistant starch when subjects were offered RS2, RS4, or native starch as crackers for 3 weeks. RS4 

led to changes in phylum-level, significantly decreasing numbers of Firmicutes while increasing 

Actinobacteria and Bacteroidetes.  At the species level, RS4 raised the proportions of 

Bifidobacterium adolescentis and Parabacteroides distasonis, while the proportions of Ruminococcus 

bromii and Eubacterium rectale increased with RS2 as compared with RS4 (Martinez et al., 2010). 

Taken together, the results of these three studies revealed that resistant starch might have a 

growth-promoting effect on Ruminococcus bromii, but mainly depending on the types of resistant 

starch used.  

2.8.4.1.3.3 Beta-glucan  

Cereal grains, especially oat and barley, possess a unique NSP in the form of mixed linked beta-(1→4) 

and (1→3) glucan, also simply known as beta-glucan or β-glucan. In whole grain products, β-glucan is 

present in both soluble and insoluble forms, the content of which varies depending on the types of 

grains. Although the dietary fibres are not digested and absorbed in the small intestine, the soluble 

nature of β-glucan is thought to increase the viscosity of the food bolus, resulting in a slower gastric 

emptying, improved gut fill and slower nutrients absorption. All these factors mentioned above help 

https://en.wikipedia.org/wiki/Large_intestine
https://en.wikipedia.org/wiki/Short-chain_fatty_acid
https://en.wikipedia.org/wiki/Butyrate
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0ahUKEwiy-8LyquLRAhUMM8AKHbw8CxMQFggtMAM&url=http%3A%2F%2Fwww.pathway27.eu%2Ftopstory%2Fbeta-glucan%2F&usg=AFQjCNEHNd3mGVrynm0pETTncfBNTxSecQ&bvm=bv.145063293,bs.1,d.d24


99 
 

to promote the growth of human microflora. Mixed-linkage β-glucan as a fermentable dietary fibre 

can selectively contribute to the proliferation of beneficial intestinal microorganisms such as 

bifidobacteria and lactobacilli as shown in vitro studies (Jaskari et al., 1998; Kontula et al., 1998) and 

animal experiments (Dongowski et al., 2002; Drzikova et al., 2005; Snart et al., 2006). Even though 

human data from clinical trial regarding the prebiotic impact of β-glucan are rather limited, β-glucan 

has been shown to actively affect the microbiota according to a few human intervention studies 

(Mitsou et al., 2010; Chiraphon et al., 2015; De Angelis et al., 2015; Wang et al., 2016). In a study 

involving 26 healthy subjects, administration of durum wheat and whole grain barley pasta 

containing a minimum 3 g/day of β-glucan increased the number of Clostridiaceae (Clostridium 

orbiscindens, Clostridium sp.), Roseburia hominis and Ruminococcus while decreased other 

Firmicutes and Fusobacteria in faecal samples after two months of diet intervention with respect to 

baseline (De Angelis et al., 2015). However, one study by Turunen et al. (2011) found that the same 

amount of β-glucan intake did not induce any significant differences in faecal bacterial viable counts 

for a longer 3 months compared with the placebo group; also, similar results were detected in 

healthy subject consuming daily a cake with 0.75 g of barley β-glucan (Mitsou et al., 2010). Taken 

together, these results suggested that the potential prebiotic effect of β-glucan intake on gut 

microbiota was still conclusive in humans.  

It is important not to forget that physiochemical properties of β-glucan, such as molecular weight 

and solubility, are thought to be important factors in its physiological properties (Wood, 2004; 

Wolever et al., 2010). The extent of β-glucan fermentation and type of bacteria in the distal 

gastrointestinal tract may also depend on its physiochemical structure (Hughes et al., 2008). It has 

been verified from the study conducted by Wang et al. (2016) that high molecular weight barley β-

glucan contributed to the variation of gut microbiota composition and number.  

2.8.4.2 Fat  

Fats are composed of fatty acids which are divided into saturated fatty acids and unsaturated fatty 

acids. Whole grains are relatively low in fat compared with other food sources like meat, milk and 

cheese, and fat that they do possess is mostly unsaturated. The impact of fat on the gut microbiota 

may be partly modulated by indirect mechanisms, since the most of dietary fat is digested and 

absorbed in the small intestine and does not serve as an energy source for the gut microbiota. It has 

been suggested that high fat intake may increase the quantities of fat and bile acids that reach the 

colon, with higher concentrations of secondary bile acids in stool samples (Rafter et al., 1987). 

Because of their selective antimicrobial activity, bile acids, such as deoxycholic acid, could regulate 

fat-induced intestinal microbiota changes, as recently shown in rats (Islam et al., 2011). Another 



100 
 

study in mice has indicated that diets high in fat over 4 weeks (predominantly TAG) have a 

detrimental impact on the gut microbiota and host metabolic parameters (Cani et al., 2007). Also, 

low/moderate-fat intake was shown to increase the abundance of Bacteroides spp. and/or 

Bifidobacterium spp., compared with high-fat consumption in human intervention trials (Brinkworth 

et al., 2009; Fava et al., 2013). In particular, diets high in saturated fat appear to induce a reduction 

in the relative abundance of beneficial bacteria and reduce microbial diversity (de Wit et al., 2012; 

Liu et al., 2012). de Wit et al. (2012) revealed that saturated fats were especially harmful to the 

intestinal microbiota if they passed to the distal small intestine conferring an antimicrobial impact, 

which consequently resulted in reduced diversity. In contrast, no effect on the gut microbiota in the 

terms of total bacterial counts was reported when subjects were fed high-fat and moderate-fat diets 

ad libitum (66 % energy vs. 35 % energy) for 4 weeks (Duncan et al., 2007). Furthermore, the 

abundance of Roseburia spp. and Bilophila wadsworthia was increased after 12 and 16 weeks 

consumption of high-fat diets, respectively (Schneeberger et al., 2015). 

To date, there are only a few in vivo studies where the impact of a diet high in in fat derived from 

whole grains on intestinal microbiota has been examined, especially those involving human subjects. 

For instance, rats fed high-fat diets supplemented with whole grain barley showed significantly 

decreased populations of total bacteria and Lactobacillus, but increased Akkermansia in comparison 

with low-fat diets. Interestingly, whole grain barley increased the abundance of Bifidobacterium only 

when dietary fat was consumed at a low level, and supplementing high-fat or low-fat diets with 

whole grain barley increased the total concentration of SCFA in the caecum (Zhong et al., 2015). In a 

study of Martínez et al. (2009), a whole grain sorghum lipid extract incorporated into the diets of 

hamsters significantly increased the abundance of bifidobacteria and decreased the proportion of 

members of the Coriobacteriaceae family in the faeces. Furthermore, bifidobacteria concentrations 

showed a strong association with plasma HDL-cholesterol concentration, whereas Coriobacteriaceae 

were positively associated with non-HDL-cholesterol concentration. It has been suggested that this 

may be due to sterol esters which formed an estimated 10% of the total lipids (Martínez et al., 

2013b). Cholesterol absorption decreased in hamsters with supplementation of purified steryl esters, 

resulting in a decrease in Coriobacteriaceae and Erysipelotrichaceae and an increase in the 

cholesterol pool in the gut. These two bacterial families have been positively correlated with 

deleterious host lipid parameters (Martinez et al., 2009; Spencer et al., 2011). Whole grains are rich 

in plant sterol esters compared with other foods (Piironen et al., 2000). In another study, the 

concentrations of faecal bile acids were significantly greater in mice fed rice bran oil with an 

accompanying positive association with levels of the family Lactobacillales (Tamura et al., 2012). 

These studies confirm a link between dietary fat, sources of whole grains, bile acids metabolism and 
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alternations in gut microbiota. Clearly, more knowledge from controlled human intervention studies 

are needed to better understand the effects of fat derived from whole grain or the interaction 

between fat and whole grain on gut microbiota composition, populations and functionality.  

2.8.4.3 Protein  

The effect of dietary protein on the composition of the human intestinal microbiota has only been 

investigated to a minor extent. In mice fed a high-protein/low-carbohydrate diet for 2 weeks there 

was a reduction in the diversity and a change in the microbiota composition relative to a normal diet, 

which included increases in the relative abundance of the genus Bacteroides and Parabacteroides, 

and a decrease in the relative abundance of the family Lachnospiraceae and Ruminococcaceae (Kim 

et al., 2016). An intervention diet with a high protein and low carbohydrates content was shown to 

influence the SCFA profiles in faecal samples and gut microbiota in obese men. After a 4 week period, 

the high-protein diet decreased the Roseburia/Eubacterium numbers and butyrate, but increased 

proportions of branched-chain SCFA, concentrations of N-nitroso compounds and phenylacetic acid 

(Russell et al., 2011). The study of Faith et al. (2011), reported that feeding mice with increasing 

proportions of casein protein changed microbial profiles. Moreover, An et al.(2014) investigated the 

impacts of casein, soy protein and fish protein diets on the gut microbiota in rats after 16 days 

feeding, finding that microbial diversity in the cecum was markedly higher in rats fed with soy 

protein than casein. This results were in part consistent with Butteiger et al. (2016) who showed that 

hamsters in an all soy-fed group contained a more diverse gut microbiota than those fed a milk 

protein isolate diet, with 4 microbial families present at significantly higher abundance in the faecal 

samples, namely S24–7, Bifidobacteriaceae, Clostridiales spp., and Deferribacteraceae. Associations 

between the gut microbial profiles with serum lipid concentrations and hepatic gene expression 

were established, suggesting that some of the lipid-lowering properties of soy protein may attribute 

to alternation in gut microbial profiles.  

2.8.4.4 Polyphenols  

Dietary polyphenols are natural compounds widely occurring in plants, including foods such as whole 

grains, fruits, vegetables, coffee, tea and wine, and therefore are an important part of the human 

diet. Due to the low absorption in the small intestine, as much as 90% of the dietary polyphenols 

persist intact into the colon (Tuohy et al., 2012). There, they are break down into smaller 

metabolites via microbial activity, such as simple short-chain fatty acids, phenolic acids and phenols, 

some of which can be absorbed across the intestinal mucosa (Selma et al., 2009). Microbial 

metabolites of plant polyphenols may influence biomarkers of disease risk associated with metabolic 
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syndrome, which may be attributed to the more potent antioxidant and/or anti-inflammatory 

activities of polyphenol metabolites. A human intervention study conducted with daily consumption 

of red wine polyphenols for 4 weeks demonstrated a significant increase in populations of 

Enterococcus, Prevotella, Bacteroides, Bifidobacterium, Bacteroides uniformis, Eggerthella lenta and 

Blautia coccoides–Eubacterium rectale groups (P < 0.05) compared with the baseline. This shift was 

proposed to be partly responsible for the reductions observed in blood pressure, triglycerides, HDL 

cholesterol, total cholesterol and C-reactive protein concentrations (Queipo-Ortuno et al., 2012). 

Dietary polyphenols and their metabolites can also influence the intestinal ecology by mediating 

microbiota (Selma et al., 2009). In this respect, several phenolic compounds have been considered 

as potential antibacterial agents with bactericidal or bacteriostatic properties. It has been shown in 

several in vitro studies that phenolic compounds could selectively suppress the growth of different 

bacterial species inducing alternations in microbiota composition and populations (Lee et al., 2006; 

Alakomi et al., 2007; Parkar et al., 2008; Romier et al., 2009; Cueva et al., 2010). For example, Lee et 

al. (2006) reported that when bacteria were cultured with phenolic components and metabolites of 

tea extract, growth of certain pathogenic bacteria such as Bacteroides spp. Clostridium difficile and 

Clostridium perfringens was significantly habited, whereas commensal anaerobes including 

Bifidobacterium and Lactobacillus and non-pathogenic Clostridium spp. were less influenced. In 

addition, Bacteroides, Lactobacillus and Bifidobacterium spp. were predominantly identified in rats 

administrated with red wine polyphenols for 16 weeks, while Bacteroides, Clostridium and 

Propionibacterium spp. appeared to be present in higher concentrations in the faeces of control-fed 

rats (Dolara et al., 2005). Similarly, administration of resveratrol commonly identified in grape juice 

significantly increased Bifidobacterium spp. and Lactobacillus in a rat model after 20 days (Larrosa et 

al., 2009). In a human study by Tzounis et al. (2011), when subjects were provided with a high-cocoa 

flavanol drink daily for 4 weeks, they had significantly lower bifidobacteria and lactobacilli numbers, 

and significantly lower Clostridia populations with respect to the control group, accompanied by 

significant decreases in plasma triacylglycerol and C-reactive protein (CRP) concentrations. Moreover, 

changes in CRP were associated with alternations in lactobacilli numbers (P<0.05, R2 = -0.33 for the 

model). The effect of polyphenols on bacterial growth and metabolism are largely dependent on 

polyphenol structure, the dosage used and the microorganism strain (Hervert-Hernandez and Goni, 

2011). However, it should be noted that excessive amounts of polyphenols in the diets may also 

suppress the growth and/or activity of beneficial gut microbiota, which is responsible for the bio-

conversion of polyphenols, thus exerting harmful effects on human health. Some recent findings 

have proposed a range of potential mechanisms of activity of polyphenols on bacterial cells. For 

instance, polyphenols can bind to membranes of bacterial cells in a dose-dependent manner, which 
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consequently disturbs membrane function, thereby repressing cell growth (Kemperman et al., 2010). 

In addition, Vitaglione et al. (2008) suggested that the phenolic compounds bound in the dietary 

fibre complex may also change the intestinal environment which may involve in the gut microbiota 

population. 

2.8.5 Limitations 

Although the studies included in this review show that whole grains intake can modulate the gut 

microbiota, there are serval limitations common to the majority of studies. First, the limited number 

of studies conducted to date, combined with small sample sizes and short intervention periods, were 

insufficiently powered to support the effect, thus, limiting the generalizability of shifts in microbiota 

to larger populations with whole grain consumption. Second, the background diets of many studies 

included in this review have not been adequately assessed, which may have potentially confounded 

the influences of whole grains. Third, in many of the presented studies, the gut microbiota 

characterisation only focus on several targeted bacteria, which suggests that the shifts or changes in 

non-targeted bacteria may have been missed. Forth, the gut microbiota were characterized at the 

level of phyla and family, making it too broad to relate specific claims to functionality. Finally, the 

bioactive compounds responsible for whole grains’ modulation in gut microbiota still remain 

uncertain, and the mechanisms underlying the effects were also not fully elucidated.  

2.8.6 Conclusion 

To our knowledge, this is the first systematic review to comprehensively assess the overall effects of 

whole grain foods intake, including wheat, maize, oat, barley and rye, on the human gut microbiota. 

Noteworthy, numbers of faecal bifidobacteria and lactobacilli were significantly increased upon 

whole grain ingestion in a few studies; however, human intervention studies have not always found 

clear results from feeding whole grains on the gut microbiota, which has resulted in some discussion 

about the acute effect of a whole grain diet. The reasons for the inconsistent results in these human 

intervention studies is not completely understood, however, several factors such as differences in 

subject characteristics, the cereal grains used, processing conditions, not having completely 

controlled for other components of the diets may have been responsible for the divergent results. 

Most importantly, based on 15 human intervention studies listed above, it seemed that this 

systematic review cannot strongly support the hypothesis that intake of whole grains could 

positively modulate the gut microbiota in humans and thereby exerting impacts on human health, 

since no significant changes in gut microbiota between groups were observed in most of the studies 

included in this review. But Copper et al. (2017) pointed out that the lack of response in the faecal 
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microbiota was not necessarily surprising, given that in this human intervention study subjects are 

‘free-living’ and whole grains products only accounted for a minor part of energy intake at the 

average level of consumption. While dietary fibre may in part explain the changes of gut microbiota, 

many epidemiological studies focusing on other types of foods have suggested that other bioactive 

compounds, such as protein, fat and polyphenols may also play a role. Moreover, it has been 

suggested that the effects of foods on the modulation of human gut microbiota are likely to be due 

to the combined results of many components with the grain rather than one specific component, 

like phenolic compounds bound in the dietary fibre complex (Vitaglione et al., 2015). However, these 

positive outcomes cannot generally extrapolate to whole grains based on the lack of response in 

fibre-rich whole grain products in a few studies. To further verify the potential prebiotic effect of 

whole grain products for the modulation of human gut microbiota, as well as the mechanisms 

underlying the beneficial effects, long-term human controlled intervention trials seem warranted.   
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2.9 Hypotheses, aims and objectives 

2.9.1 Hypotheses 

1. Some important nutrients and phytochemicals, such as protein, amino acids, fibre and phenolics, 

in quinoa seeds and phenolic content and antioxidant activity in buckwheat seeds match better to 

human nutritional requirements than common cereals and refined grain cereals, including wheat, 

corn and rice, and also nutrient and phytochemicals in different accessions are different.  

2. Quinoa consumption can improve CVD risk via a human intervention study, such as BMI, body fat 

content, blood pressure, glucose and insulin, inflammatory markers, fasting plasma lipid profile. 

3. Quinoa intake can positively modulate the gut microbiota and gastrointestinal health. 

2.9.2 Aims 

1. To investigate the nutrient composition and then select one accession of quinoa for further 

human intervention study mainly based on fibre content, and also investigate phenolics and 

antioxidant activity of buckwheat. 

2. To investigate the impact of quinoa intake on CVD risk markers, such as BMI, body fat content, 

blood pressure, glucose and insulin, inflammatory markers, fasting plasma lipid profile. 

3. To investigate the impact of quinoa intake on gut microbiota and gastrointestinal health. 

2.9.3 Objectives 

1. To quantity nutrients and phytochemicals (protein, amino acids, fibre, fat, phenolics) in different 

accessions of quinoa sourced from South America, UK, Europe and China, and also quantity 

phenolics and antioxidant activity of buckwheat.  

2. To quantity differences between each accession of quinoa, and choose one quinoa accession for 

further human intervention study mainly based on fibre content.  

3. To conduct a human intervention study to investigate the effects of the quinoa with the highest 

fibre content identified in chemical analysis, on markers of CVD risk and gut microbiota.  

The research project has 3 clear phases in a developing research process. 

(a) Identification a characterization of grain materials. 

(b) Selection of quinoa accession for the sensory testing. 

      (c) Selection of quinoa roll for use in human intervention study. 
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3 Chapter 3 Composition of quinoa and buckwheat 

3.1 Introduction 

Emerging interest exists in the use of alternative grains (pseudocereal, such as quinoa, buckwheat 

and amaranth) for the productions of cereal based foods owing to their high nutritional profile and 

the dietary need for a large population suffering from coeliac disease. In addition to offering the 

starch content as an important energy source, quinoa and buckwheat is rich in good quality protein, 

with a well-balanced amino acids profile, lipids which are rich in unsaturated fats, dietary fibre, as 

well as other important components such as vitamin C and phenolic compounds (Ando et al., 2002; 

Konishi et al., 2004; Krkošková and Mrázová, 2005; Bhargava et al., 2006; Alvarez-Jubete et al., 2009; 

Tang et al., 2015). Quinoa and buckwheat seeds also serve as good source of various essential 

minerals including K, Mg, Fe, Zn, P and S, which are much higher than those of traditional cereals 

(Ikeda et al., 1995; Wang et al., 1995; Konishi et al., 2004).  

Phenolic compounds (also referred to as polyphenols) are bioactive secondary plant metabolites 

that are widely present in commonly consumed foods of plant origin (Bravo, 1998). Although data 

was limited up to date, a few studies have reported that quinoa and buckwheat seeds have higher 

phenolic content and antioxidant activity than common cereals (Inglett et al., 2015; Tang et al., 

2015). These compounds act as powerful antioxidants in food models as well as in vitro LDL 

cholesterol, which might combat oxidative stress in the body by helping to maintain a balance 

between oxidants or free radicals and antioxidants (Adom and Liu, 2002; Madhujith and Shahidi, 

2007; Natella et al., 2007; Brend et al., 2012; de Camargo et al., 2014). The oxidised LDLs, as the 

products of reaction between LDL and free radicals, are more atherogenic than native LDL, thereby 

increasing CVD risk (Chu and Liu, 2005; Maiolino et al., 2013). Therefore, dietary phenolic 

compounds and other antioxidants from fruits, vegetables and whole grains are proposed to reduce 

CVD risk via prevention of LDL oxidation (Miller et al., 1998; Bruckdorfer, 2008; Mangge et al., 2014; 

Siti et al., 2015). In contrary, some studies have pointed that antioxidants did not have significant 

effect on mortality caused by CVD, thus, the property of antioxidants against CVD has been disputed 

(Kris-Etherton et al., 2004; Miller et al., 2005; Bjelakovic et al., 2008). These three methods (FRAP, 

TEAC and DPPH assays) are the most commonly used in the literature, so they would provide the 

most data in this present study in order to compare with other studies.  

Although some effort have already been done on the compositional analysis of these two 

pseudocereals, data is still currently scarce compared with other common cereals, such as wheat, 

corn and rice. In this study, an accession of quinoa and buckwheat seeds were sourced from 
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different regions. The potential possible differences attributable to the genetic backgrounds or 

environmental conditions strongly promoted the need to carry out a compositional analysis 

(Miranda et al., 2012; Miranda et al., 2013).  

The aim was to investigate the nutrient composition and then select one accession of quinoa for 

further human intervention study mainly based on fibre content, and also investigate phenolics and 

antioxidant activity of buckwheat. The objective was to conduct a comprehensive compositional 

analysis of quinoa and buckwheat seeds (only phenolics and antioxidant activity).  
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3.2 Materials and methods 

3.2.1 Materials  

In this study, a total of thirteen commonly used commercial quinoa accessions and nine buckwheat 

accessions were sourced from various regions, including Peru, Ecuador, Bolivia, USA, UK, 

Netherlands and China. Samples were either bought directly from the supplier or through 

commercial retail outlets. All samples were ground to flour (Sieve size, 1 mm) using a laboratory 

cyclone mill twister (Retsch), then packed in grip seal bags and stored in -20°C freezer until use. In 

order to select the quinoa accession with ‘optimal’ nutrition for use in the future human 

intervention study, chemical analysis of these varieties were conducted, such as phenolic content, 

antioxidant activity, dietary fibre, fat, protein and amino acids, with the dietary fibre being the 

determined factor for the selection of quinoa accession for the future human intervention study. For 

the buckwheat varieties, only phenolic content and antioxidant activity were analysed.  

3.2.2 Phenolic content and antioxidant activity of quinoa and buckwheat 
seeds 

3.2.2.1 Phenolic compounds extraction 

The free, conjugated and bound phenolic compounds in quinoa and buckwheat flours were isolated 

according to the method of Li et al. (2008) and Adom and Liu, (2002) with slight modifications (See 

Appendix 1, the flow diagram of phenolic extraction). 

3.2.2.1.1 Free Phenolic compounds  

25 mg of whole grain flours were blended with 1 mL of 80% chilled ethanol for 5 min using a multi-

tube mixer (Stuart SB3), followed by being sonicated for 10 min. The mixtures were then centrifuged 

at 5000 rpm for 15 minutes (Fisher Scientific accuSpinTM3R; centrifuge radius, 8 cm), and the 

supernatant was removed into a new 2 mL Eppendorf tube. The extraction was repeated four times 

under the same conditions. All supernatants were combined, then evaporated to dryness at 45°C 

under nitrogen gas and finally dissolved with deionised water to a volume of 350 µL. After 

centrifugation (13200 g, 5 min), the supernatant was transferred to a clean vial. The extracts were 

stored at −80 °C until future use. 

3.2.2.1.2 Conjugated phenolic compounds 

10 mg of whole grain flours were mixed with 1 mL of 80% chilled ethanol for 5 min using a multi-

tube rotator, followed by being sonicated for 10 min. After centrifugation at 5000 rpm for 15 

minutes, the supernatant was removed into a new 2 mL Eppendorf tube. The extraction was 
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repeated four times under the same conditions. All supernatants were combined, then evaporated 

to dryness at 45 °C. The dried extracts samples were then hydrolysed with 400 μL of 2 M NaOH at 

room temperature for 4 h, then acidified to pH 2 with 12 M HCl (80 µL). The solution was extracted 

four times with ethyl acetate (500 µL). After centrifugation at 13200 rpm for 5 minutes, the upper 

layer was transferred to a clean Eppendorf tube, and combined ethyl acetate extracts were 

evaporated to dryness at 45 °C under nitrogen gas. Phenolic compounds were dissolve in 350 µL of 

water followed by centrifugation (13200 g, 5 min), and the supernatant was transferred to a clean 

vial, then stored at −80 °C until use. 

3.2.2.1.3 Bound phenolic compounds  

The residues from free or conjugated phenolics extraction above were digested with 800 μL of 2 M 

NaOH for 4h before acidification with 12 M HCl (120 µL) to pH 2. The mixture was extracted four 

times with 800 µL ethyl acetate, the ethyl acetate fraction was evaporated to dryness at 45°C under 

Nitrogen gas. Phenolic compounds were reconstituted with deionised water to a final volume of 350 

µL followed by centrifugation (13200 g, 5 min), and the supernatant was transferred to a clean vial, 

then stored at −80 °C until use.  

In this study, extraction of each sample was repeated four times, so each quinoa or buckwheat 

accession has four free phenolic extracts, four conjugated phenolic extracts and four bound phenolic 

extracts.  

3.2.2.2 Folin-Ciocalteu phenolic content (FC assay) 

Total phenolic content of quinoa and buckwheat extracts were determined using the Folin-Ciocalteu 

method as described by Zhang et al. (2006a) with minor modifications. Before the measurement, 

commercial Folin-Ciocalteu phenol reagent was diluted 1:10 (v/v) with deionized water. Gallic acid 

(GA) was adopted as a reference standard against which to assess the total phenolic contents, which 

were then expressed as GA equivalents (GAE) (Maurya and Singh, 2010). Serial dilutions of GA were 

carried out accordingly at 500, 250, 125, 62.5, and 31.25 µg/mL in deionised water producing a 

standard calibration curve. 10 µL of GA standard solutions (0-500 µg/mL) or each extract was added 

into the 96-well microplate, and then 130 µL of the diluted Folin-Ciocalteu phenol reagent added. 

Five minutes later, 100 µL of 7.5% sodium carbonate solution was added, and the resulting solution 

thoroughly mixed. The absorbance values were measured at 765 nm using a spectrophotometer 

after incubation at 40oC for 30 minutes. Final results were given as mg of GAE per gram of dry weight 

(dw).  

Analysis of each extract of free, conjugated or bound phenolics was repeated four times in this 

study.  
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3.2.2.3 Antioxidant assays 

3.2.2.3.1 Ferric reducing ability of plasma (FRAP assay) 

The FRAP assay was performed according to the method of Benzie and Strain (1996). Briefly, 10 mM 

of Fe3+TPTZ solution  was prepared by dissolving 0.0781 g of ferric 2,4,6-Tripyridyl-s-Triazine 

(Fe3+TPTZ) into 40 mM hydrochloric acid. A FRAP working solution was prepared by mixing 50mL of 

300 mM acetate buffer (pH 3.6), 5 ml of 20mM ferric chloride (FeCl3. 6H20) and 5 ml of TPTZ solution. 

Standard solutions of ferrous sulphate were obtained at a range of 200 to 1000 µmol/L in deionised 

water. 10 µL of ferrous sulphate standards or sample extracts were mixed with 300 µL of FRAP 

working reagent in the 96-well microplate and incubate at 37oC for 4 minutes. The absorbance of 

samples was measured at 593 nm after incubation. The final results were expressed as µmol Fe2+ 

Equivalent (E)/g sample dw. 

3.2.2.3.2 Trolox equivalent antioxidant capacity (TEAC) 

A modification of the TEAC assay from Re et al. (1999b) was used. The TEAC stock solution was 

obtained by mixing 7 mM 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) with 2.45 

mM potassium persulfate 9:1 (v/v), then stored in a dark cupboard at room temperature overnight 

prior to use. Before the analysis, the stocking solution was diluted with 5 mM phosphate buffer 

solution (PBS), pH 7.4, until the absorbance of the mixtures-working solution was 0.7 (± 0.02). The 

2.5 mM Trolox standard solution was diluted to the range from 0.1-0.5 mM in ethanol. 10 µL of 

Trolox standard or sample extracts were mixed with 290 µL of TEAC working solution in the 96-well 

microplate. The decrease in absorbance was measured at 734 nm.  The final results were expressed 

as µmol Trolox Equivalents (TE)/g sample dw. 

3.2.2.3.3 2, 2-diphenyl-1-picrylhydrazyl (DPPH•) assay 

A modification of the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) method of Van Hung et al. (2009) was 

applied. Briefly, 10 mg DPPH• powder was dissolved in 100 mL of methanol to the DPPH• stock 

solution which was stored in the fridge overnight. The DPPH• working solution was prepared by 

mixing 30 mL of stock solution and 70 mL of methanol to form the final concentration of 0.076 mM. 

Then 2.5 mM of Trolox standard solution was diluted ranging from 0.25-1.25 mM in methanol. 10 µL 

of standards, blank or samples was pipetted into the 96-well plate and 390 µL of the DPPH working 

solution added and mixed well. The absorbance was measured at 517 nm after incubation at 30oC 

for 30 min. The final results were expressed as µmol Trolox Equivalents (TE)/g sample dw. 

When the antioxidant activity analysed by these three assays, each extract of free, conjugated or 

bound phenolics was repeated four times in this study.  
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3.2.3 Compositional analysis of quinoa seeds  

Thirteen sources of quinoa seeds were estimated for their energy, protein (Dumas method), ash (BS 

4401-1:1998), moisture (BS 4401-3:1997), total sugars (N) (Ion Chromatography), sodium (ISO 

7485:2000), salt (calculated from sodium), insoluble dietary fibre (AOAC 991.43), soluble dietary 

fibre (AOAC 991.43), total dietary fibre (AOAC 991.43), fat (based on BS 4401-4:1970), saturated fat 

(ISO 12966-2:2011), monounsaturated fat (ISO 12966-2:2011) and polyunsaturated fat (ISO 12966-

2:2011). Available carbohydrate contents were calculated by difference from the formula: available 

carbohydrates = 100 − (protein + ash + moisture+ dietary fibre + fat). All of the above analyses were 

carried out to British Standards by an accredited company [Alex Stewart Agriculture Ltd laboratory] 

with the milled quinoa flour offered. Quinoa flours were also sent to ALS Food & Pharmaceutical 

Company for the amino acids analysis (AM/V/206 using HPLC).  

3.2.4 Calculations and statistical analyses 

In this study, extraction of free, conjugated and bound phenolics was repeated four times 

(extraction replication), and measurement of each extract by FC assay or three antioxidant activity 

assays was also repeated four times (analysis replication). After calculating mean value of four 

measurements per extract (outlier was removed and then the calculation of mean value was based 

on other three measurements), each type of phenolics (free, conjugated or bound) can get four 

values (each extract correspond to one value), to express the uncertainty caused by the analysis 

method. Then value of free, conjugated or bound phenolics per accession was calculated as mean of 

average of four extracts (extraction replication). Finally, the results as shown in Section 4.3.1 were 

expressed as means (average of 13 quinoa accession or 9 buckwheat accessions) and standard 

deviations. The data were analysed by using the SPSS 22.0 for Windows statistical program (SPSS, 

Inc., Chicago, IL, USA). Normality of the each type of phenolics from quinoa or buckwheat (13 values 

for quinoa and 9 values for buckwheat, 1 value per accession) was checked with the Shapiro–Wilk 

test and data that were not normally distributed were transformed (using log10 function) prior to 

statistical analyses and then back-transformed for presentation of results. To determine the 

differences between each two types type of phenolics between quinoa and buckwheat (for example 

free phenolics in quinoa vs free phenolics in buckwheat), an two-sample independent t-test was 

used with P values less than 0·05 considered to be significantly different. Also, to determine the 

differences between results in this study, including phenolic content, protein, fiber, fat and values 

and a reference value from another study, a one-sample t-test was used with P values less than 0·05 

considered to be significantly different (for example, 13 quinoa protein values vs 1 reference protein 

value from another previous study).  
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3.3 Results and discussion  

3.3.1 Phenolic content and antioxidant activity  

3.3.1.1 Phenolic content 

3.3.1.1.1 Results-Phenolic content of quinoa and buckwheat 

A wide range of phenolic contents was found in the quinoa and buckwheat samples as presented in 

Figure 3.1, expressed as mg of Gallic acid equivalent per 1 g of grain. The free phenolic content of 

the 13 quinoa samples ranged from 0.89 ± 0.05 mg GAE/g grown in Peru (Peru) to 2.13 ± 0.02 mg 

GAE/g grown in China Shanxi, with an average of 1.44 mg GAE/g.  

 

 

Figure 3.1. Free, conjugated, bound and total phenolic content (mg Gallic acid equivalent/100g) of 80% 

ethanol: water extracts of different varieties and sources of quinoa and buckwheat. Mena ± Standard deviation. 

The quinoa cultivated in China Shanxi exhibited the highest free phenolic content, which was quite 

similar to the USA quinoa (2.12 ± 0.06 mg GAE/g), but higher than all other varieties. Regarding the 
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conjugated phenolic content, the values were lower, and ranged from 0.35 ± 0.03 mg GAE/g to 0.76 ± 

0.06 mg GAE/g without much variations between the varieties. Interestingly, the bound phenolic 

contents in the three red quinoa varieties (0.62, 0.63 0.80 mg GAE/g sample) were several times than 

that of the rest white quinoa varieties, but the values were still much lower than those of 2.97 and 

1.99 mg GAE/g in quinoa seeds demonstrated by Gomez-Caravaca et al. (2014) and Inglett et al. 

(2015), respectively. China Shanxi quinoa exhibited the highest total phenolic contents (3.05 mg 

GAE/g), followed by South America quinoa (2.69 mg GAE/g), while the lowest total phenolic contents 

was found in Peru (Peru) quinoa (1.55 mg GAE/g). 

Common and Tartary buckwheat seeds from several regions showed a wide range of free phenolic 

levels, ranging between 1.36 mg GAE/g in YunNan Tartary buckwheat and 3.03mg GAE/g in YunNan 

Common buckwheat, with an mean value of 2.18 mg GAE/g. Free phenolic contents of YunNan 

Common buckwheat was higher than those of the other varieties. In agreement with the quinoa 

seeds, on average the conjugated phenolic content of the buckwheat varieties was lower than the 

free phenolic content.  The conjugated phenolic content of buckwheat varieties were in the range of 

0.72-1.57 mg GAE/g, with the average values of 1.10 mg GAE/g. However, the bound phenolics 

content was even lower and among all of the buckwheat varieties tested were around 0.10 mg GAE/g 

except for Sichuan Tartary buckwheat (0.64 mg GAE/g). The total phenolic content in the buckwheat 

varieties showed a narrow range from 3.11 to 3.96 mg of GAE/g, with the exception of Yunnan 

Tartary buckwheat (2.22 mg of GAE/g). 

As shown in Figure 3.2, the free, conjugated and total phenolic content of quinoa were significantly 

lower than those of buckwheat, whereas no significant difference in bound phenolic content was 

observed.  

 

Figure 3.2. Comparison of free, conjugated, bound or total phenolic content (mean of all accessions, mg Gallic 

acid equivalent/100g) between quinoa and buckwheat. Mean ± Standard deviation.  
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3.3.1.1.2 Discussion –Phenolic content of quinoa and buckwheat 

To the best of our knowledge, this is the first study to show phenolic content of different quinoa and 

buckwheat accessions sourced from different regions, which can give a comprehensive view to see 

the variations between them, but almost previous studies only focused on one quinoa or buckwheat 

accession. Phenolic compounds are secondary metabolites, which in whole grains may exist in three 

forms: free, soluble conjugate and insoluble bound forms which attached to cell materials (Adom and 

Liu, 2002). However, little information about the conjugated and bound phenolics was known, since 

most of the literature in the last decade is mainly focused on the studies of free forms. In this study, 

free, conjugated, and bound phenolic contents in both the quinoa and buckwheat varieties tested 

were significantly different (p<0.01) from each other, with the ranking order: Free > conjugated > 

bound phenolic compounds. It is clearly shown in Figure 3.1 that the phenolics in quinoa and 

buckwheat were mainly found in the free form, which contributed about 50.0-82.7% and 53.3-78.4% 

of the total phenolic content on a per weight basis across all varieties, respectively.  In this regard the 

results in this study were consistent with those shown by Hung and Morita (2008), but in contrast, 

the phenolic compounds in corn, rice, wheat, oat and ray are primarily present in bound forms linked 

to cell wall materials (Sosulski et al., 1982; Adom and Liu, 2002). Even though phenolic compounds 

are mainly present in free form, this study also indicates that the total phenolic contents of quinoa 

and buckwheat could be underestimated in the previously published studies without including the 

conjugated and bound phenolic compounds. Moreover, some studies showed that the free phenolic 

compounds may be digested in the upper gastrointestinal tract, while the bound fractions could 

survive stomach and intestinal digestion, allowing them to be released in the colon and, therefore, 

potentially play a protective role (Andreasen et al., 2001a; Adom and Liu, 2002). For example, 

Andreasen et al. (2001b) demonstrated that diferulic acids can be released from dietary cereal brans 

by human and rat colonic microflora.  

The free phenolic compound levels in this study were significantly lower those (2.53 mg GAE/g) 

reported by Gomez-Caravaca et al. (2014) and (4.2 mg GAE/g sample) by Tang et al. (2015). The total 

phenolic contents of quinoa were on average 2.18 mg GAE/g, which were also significantly lower 

than those reported by Inglett et al. (2015) (3.84 mg GAE/g) and Gomez-Caravaca et al. (2014) (5.24 

mg GAE/g). The mean concentration of free and total phenolic contents (2.18 and 3.44 mg GAE/g, 

respectively) for  buckwheat in this study  were significantly lower than those reported by Inglett et 

al. (2011), Li et al. (2013) and Guo et al. (2011). The principle of FC assay is based on electron transfer; 

thus, the results calculated by FC assay were basically antioxidant capacity of total phenolics 

expressed as gallic acid equivalent, which cannot reflect the real amounts of total phenolics in quinoa 

and buckwheat. In one study, Lee et al. (2016b) have reported that although the amount of rutin in 
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Tartary buckwheat (10.7 mg/g buckwheat) was 72.8 times greater than that of common buckwheat 

(0.15 mg/g buckwheat), the difference of phenolic content analysed by FC assay between these two 

buckwheat species were not huge (20.9 vs 7.0 mg GAE/g, respectively; 3.0 times), which indicated 

that other minor amounts of phenolics in buckwheat seeds might make a relatively high contribution 

to phenolic content analysed by FC assay. This was partly in consistent with the present study that 

phenolic content analysed by FC assay in two Tartary buckwheat accession were similar to those of 

common buckwheat accessions. The total phenolic content of quinoa was significantly lower than 

buckwheat (p<0.001), but on average, the total phenolic contents in both quinoa and buckwheat 

seeds were significantly higher than those found in common cereals including barley (0.88 mg/g), 

wheat (0.56 mg/g) rye (1.03 mg/g) and millet (1.39 mg/g), suggesting that quinoa and buckwheat 

may serve as an excellent source of phenolic compounds (Ragaee et al., 2006). The wide variations in 

the level of different phenolics forms with significant differences among quinoa and buckwheat 

varieties included in this study might be explained by the difference in the genetic background, 

environmental conditions under which the cereals were grown or location/environment where the 

crops were grown. The difference between the results presented in this study and the literature may 

be due to the different extraction methods, especially the extraction solvent differences. 

3.3.1.2 Antioxidant activity of quinoa and buckwheat seeds 

3.3.1.2.1 Ferric reducing ability of plasma (FRAP) assay 

3.3.1.2.1.1 Results-FRAP antioxidant activity 

By the FRAP method, the free and conjugated values varied over an approximately three-fold range 

from 1.57 to 6.44 µmol Fe2+ E/g dw and 0.97 to 3.51 µmol Fe2+ E/g dw, with an average of 3.49 and 

1.54 µmol Fe2+ E/g dw, respectively (Figure 3.3).  The highest values for both free and conjugated 

flour extracts were found in the Chinese Shanxi quinoa, which were higher than the values for all the 

quinoa other grains.  
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Figure 3.3. Antioxidant activity of free, conjugated, bound and total phenolic fractions (µmol Fe2+ E/g) of 80% 

ethanol: water extracts of quinoa and buckwheat from different varieties and sources measured by the FRAP 

assay. 

 

The highest FRAP antioxidant activities of bound phenolic extracts was observed in the Bolivia (red) 

quinoa at 4.58 µmol Fe2+ E/g dw, followed by UK Biofair (3.74 µmol Fe2+ E/g dw) and Ecuador (red) 

quinoa (3.63 µmol Fe2+ E/g dw), which were higher than the other 10 varieties which ranged from 

0.26-0.94 µmol Fe2+ E/g dw. The FRAP antioxidant activities of free flour extract were significantly 

higher than those of conjugated and bound extracts (p<0.05), but no differences were found 

between conjugated and bound flour extracts (p>0.05). The total FRAP antioxidant activities in the 13 

quinoa flour samples ranged from the lowest value of 2.90 µmol Fe2+ E/g dw in Ecuador white 

quinoa and 10.89 µmol Fe2+ E/g dw in the Chinese Shanxi quinoa, with an average value of 6.27 

µmol Fe2+ E/g dw. 
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The FRAP antioxidant activity of free, conjugated and bound extracts from buckwheat varieties 

ranged from 4.38-10.96 µmol Fe2+ E/g dw, 1.39-5.29 µmol Fe2+ E/g dw and 1.20-3.08 µmol Fe2+ E/g 

dw, with mean values of 8.58, 2.67 and 2.06 µmol Fe2+ E/g dw, respectively. Significant differences 

were detected among values of free, conjugated, and bound flour extracts, with the ranking order: 

Free > conjugated > bound buckwheat flour extracts (p<0.05). The highest FRAP value of the 9 

buckwheat varieties was observed in Sichuan Tartary buckwheat (18.90 µmol Fe2+ E/g dw), which 

was higher than all of the other varieties which ranged from 10.16 to 15.23 µmol Fe2+ E/g dw. 

As shown in Figure 3.4, the antioxidant activity of free, conjugated and total phenolic fractions of 

quinoa were significantly lower than those of buckwheat, whereas no significant difference in 

antioxidant activity of bound phenolic fraction was observed.  

 

Figure 3.4. Comparison of antioxidant activity of free, conjugated, bound or total phenolic fractions (mean of 

all accessions, µmol Fe2+ E/g) between quinoa and buckwheat measured by the FRAP assay. Mean ± Standard 

deviation.  

3.3.1.2.1.2 Discussion-FRAP antioxidant activity 

The FRAP antioxidant activities of free extracts from quinoa was similar to the study reported by 

Nsimba et al. (2008) (p>0.05), but significantly higher than what is reported by Tejeda et al. (2008) 

and Brend et al. (2012). The FRAP antioxidant activity of free extracts from buckwheat was in line 

with the results of 8.59 µmol Fe2+ E/g dw reported by Chlopicka et al. (2012), but significantly lower 

than the 17.42 µmol Fe2+ E/g dw. reported by Alvarez-Jubete et al. (2010) and more than twice the 

value of 3.35 µmol Fe2+ E/g dw determined by Gorinstein et al. (2008) (p<0.001). The different 

extraction methods and extraction solvents between this study and the literature may be the 

primary contributor to the antioxidant activity variations. 
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3.3.1.2.2 The Trolox Equivalent Antioxidant Capacity (TEAC) assay 

3.3.1.2.2.1 Results-TEAC antioxidant activity 

As shown in Figure 3.5, the highest TEAC antioxidant activity of free and conjugated extracts of 

quinoa flours were observed in USA quinoa (12.87 µmol TE/g dw) and Chinese Shanxi quinoa (8.41 

µmol TE/g dw), which were much higher than all other quinoa varieties (6.63 to 10.02, and 3.02 to 

5.64 µmol TE/g dw, respectively). The highest TEAC antioxidant activity of bound extracts of flour 

was found in UK Biofair quinoa at 11.63 µmol TE/g dw, followed by Bolivian red quinoa and 

Ecuadorian red quinoa, with a similar concentration; values of all other grains were below 4 µmol 

TE/g dw.  

 

 

Figure 3.5. Antioxidant activity of free, conjugated, bound and total phenolic fractions (µmol TE/g dw) of 80% 

ethanol: water extracts of quinoa and buckwheat from different varieties and sources measured by the TEAC 

assay 
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The TEAC antioxidant activity of free extracts of quinoa flour was significantly higher than that of 

conjugated and bound flour extracts, but there were no significant differences between conjugated 

and bound flour extracts. The TEAC total antioxidant activity in quinoa ranged from 13.72 µmol TE/g 

dw in Bolivian white quinoa to 25.96 µmol TE/g dw in UK Biofair quinoa, with a mean concentration 

of 17.71 µmol TE/g dw. 

The TEAC antioxidant values of free, conjugated and bound flour extracts from buckwheat were in 

the range of 12.02 to 37.73 µmol TE/g dw, 9.26 to 16.95 µmol TE/g dw and 0.86 to 6.854 µmol TE/g 

dw, with an average of 28.48, 11.96 and 2.09 µmol TE/g dw, respectively. There were significant 

differences among these three flour extracts (p<0.001), and TEAC antioxidant activity of free flour 

extracts was a major contributor, accounting for 67% of total antioxidant activity on average. The 

total TEAC antioxidant activity in buckwheat extracts varied from 27.94 µmol TE/g dw in Chinese 

Yunnan Tartary buckwheat to 51.08 µmol TE/g dw in Chines GuiZhou Common buckwheat, with a 

mean concentration of 42.46 µmol TE/g dw. 

As shown in Figure 3.6, the antioxidant activity of free, conjugated and total phenolic fractions of 

quinoa were significantly lower than those of buckwheat, whereas no significant difference in bound 

phenolic fraction was observed.  

 

Figure 3.6. Comparison of antioxidant activity of free, conjugated, bound or total phenolic fractions (mean of 

all accessions, µmol TE/g) between quinoa and buckwheat measured by the TEAC assay. Mean ± Standard 

deviation.  

3.3.1.2.2.2 Discussion-TEAC antioxidant activity 

The TEAC values of free quinoa flour extracts in this study was in accordance with values of 9.40-

14.74 µmol TE/g dw reported by Repo-Carrasco-Valencia and Serna (2011), but markedly 
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significantly higher than levels by Tejeda et al. (2008) and Laus et al. (2012). For buckwheat the 

distribution of apparent TEAC antioxidant content between the different fractions was similar to the 

results of Alvarez-Jubete et al. (2010) and Zielinska et al. (2007) (p>0.05). 

3.3.1.2.3 2, 2-diphenyl-1-picrylhydrazyl (DPPH•) assay 

3.3.1.2.3.1 Results-DPPH antioxidant activity 

The DPPH antioxidant values of free, conjugated and bound extracts of the 13 quinoa varieties 

showed a range of 1.81 to 9.72 µmol TE/g dw, 2.07 to 11.15 µmol TE/g dw and 1.76 to 9.12 µmol 

TE/g dw, with an average of 5.22, 6.77 and 5.05 µmol TE/g dw, respectively (Figure 3.7). The highest 

DPPH antioxidant activity of free extracts was observed in Chinese Shanxi quinoa, which was higher 

than the other quinoa varieties. There were no significant differences (P > 0.05) in the DPPH 

antioxidant activities of free, conjugated and bound extracts in this study between the 13 quinoa 

varieties, although conjugated extracts had markedly higher DPPH antioxidant values compared with 

free and bound extracts. The total DPPH antioxidant activity of the quinoa varieties was in was in the 

range of 8.03 to 27.07 µmol TE/g dw with a mean value of 17.04 µmol TE/g dw.   
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Figure 3.7. Antioxidant activity of free, conjugated, bound and total phenolic fractions (µmol TE/g dw) of 80% 

ethanol: water extracts of quinoa and buckwheat from different varieties and sources measured by the DPPH 

assay. 

The DPPH antioxidant activity of free, conjugated, bound and total extracts of buckwheat varieties 

ranged from 7.64 to 17.84 µmol TE/g dw, 4.40 to 11.79 µmol TE/g dw, 6.76 to 11.41 µmol TE/g dw, 

and 25.19 to 40.54 µmol TE/g dw with the average of 13.89, 7.31, 9.22 and 30.14 µmol TE/g dw, 

respectively. There are significant differences detected among DPPH antioxidant values of free, 

conjugated, and bound flour extracts, with the ranking order: Free> bound > conjugated flour 

extracts (p<0.05). In this study, Chinese Sichuan Tartary buckwheat displayed the greatest values of 

DPPH antioxidant activity of free, bound and total flour extracts, and this accession had the second 

highest level of DPPH antioxidant activity of the conjugated extracts. 

As shown in Figure 3.8, the antioxidant activity of free, bound and total phenolic fractions of quinoa 

were significantly lower than those of buckwheat, whereas no significant difference in conjugated 

phenolic fraction was observed.  
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Figure 3.8. Comparison of antioxidant activity of free, conjugated, bound or total phenolic fractions (mean of 

all accessions, µmol TE/g) between quinoa and buckwheat measured by the DPPH assay. Mean ± Standard 

deviation.  

3.3.1.2.3.2 Discussion-DPPH antioxidant activity 

The result for DPPH antioxidant activity were in agreement with the results of Dini et al. (2010), 

showing that bitter and sweet raw quinoa seeds had values of 6.71 and 2.87 µmol TE/g dw, 

respectively, and were similar to the range of 0.49-5.08 µmol TE/g dw reported by Inglett et al. 

(2015). Regarding the DPPH antioxidant activity of bound extracts, the results in this study were 

significantly lower than values shown by Inglett et al. (2015). The DPPH antioxidant activity of free, 

bound and total buckwheat flour extracts in this study were significantly higher than results reported 

by Inglett et al. (2011) and Inglett et al. (2015), except the values of bound flour extracts in the latter 

study (10.33µmol TE/g dw) 

3.3.1.3 Correlation between phenolic content and antioxidant activity 

3.3.1.3.1 Results-Correlation  

In this study, possible correlations between the total phenolic content (TPC) and antioxidant activity 

of quinoa and buckwheat varieties determined using the three different assays were investigated 

(Table 3.1). The correlation between TPC and antioxidant activity of quinoa measured by FRAP and 

TEAC methods were statistically positive (r>0.5, p<0.05), but not when compared against the DPPH 

method. Additionally, relatively high, and significant positive correlations between FRAP and TEAC 

methods of measuring antioxidant activity of free, conjugated, bound and total extracts in quinoa 

were found (r≥0.679, p<0.05), but not when compared the antioxidant activity of FRAP and DPPH, 

and TEAC and DPPH.  
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Table 3.1. Correlation between total phenolic content (TPC) and antioxidant activity and between different 

measures of antioxidant activity. 

Cereal Species TPC vs FRAP TPC vs TEAC TPC vs DPPH FRAP vs TEAC RAFP vs DPPH TEAC vs DPPH 

       
Quinoa       

 Free     0.848**   0.603* 0.457   0.679* 0.625 0.401 

 Conjugated   0.517*   0.696* -0.453     0.689** -0.170 -0.292 

 Bound     0.979**     0.976** 0.379     0.982** 0.446 0.466 

 Total     0.797**   0.545* 0.110     0.829** 0.466 0.635 

        Buckwheat       

 Free  0.405   0.748* 0.428 0.654 0.932** 0.641 

 Conjugated  -0.010 0.020 -0.441 0.605 0.583 0.538 

 Bound 0.605     0.896** 0.567 0.586 0.297 0.558 

 Total 0.493 0.830 0.494 0.474 0.494 0.594 

P value of linear regression correlation coefficient; *p<0.05, **p<0.01 

 
Regarding the buckwheat measurements, the antioxidant activity determined by the TEAC method 

showed a significantly positive correlations with Free (r=0.748, p<0.05) and bound phenolics 

(r=0.896, p<0.01). However, the remainder of the correlation coefficients between phenolic content 

and antioxidant activity tested by FRAP, TEAC and DPPH methods, and also between antioxidant 

activity tested by FRAP and TEAC, FRAP and DPPH, TEAC and DPPH methods were found to be very 

weak, less than 0.5, indicating poor correlation between these measures, with the exception of 

correlation between FRAP and DPPH methods measuring antioxidant activity of free phenolic 

extracts.  

3.3.1.3.2 Discussion- correlation between TPH and antioxidant activity 

The high antioxidant activity reported for many natural foods including fruits, vegetable and cereal 

products is often attributed to the polyphenolic content of the food. The literature is full of such 

statements. This has then often been translated into supposed associations between ‘antioxidant 

activity’ in a food/diet and ‘antioxidant status’ of an individual consuming that food. It is often 

suggested that an individual’s antioxidant status is, or can be, affected by the amount of high 

antioxidant activity foods consumed. However, this relationship is being questioned, with more 

recent studies suggesting that polyphenolics may have beneficial effects through acting as signalling 

molecules and not as ‘antioxidants’. Recently, growing evidence suggests that dietary-derived 

flavonoids may exert beneficial effects on long-term potentiation (LTP), and consequently memory 

and cognitive performance, via their interactions with signalling pathways, including the 

phosphatidylinositol-3 kinase/protein kinase B/Akt, protein kinase A and protein kinase C (Spencer, 

2008a; Spencer, 2008b).  
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The relationship between TPC and antioxidant activity has been widely determined in various foods 

including fruits and vegetables (Kaur and Kapoor, 2002; Babbar et al., 2011). Previously reported 

studies showed a liner correlation between TPC and antioxidant activity in fruits and vegetables. 

However, this cannot be applied to all stuffs analysed for TPC and antioxidant activity (Quettier-

Deleu et al., 2000; Holasova et al., 2002; Kaur and Kapoor, 2002; Morishita et al., 2007; Babbar et al., 

2011). There are several reasons to explain the ambiguous correlation between TPH and antioxidant 

activity: (1) Phenolic compounds are not only the components responsible for apparent antioxidant 

activity in quinoa and buckwheat; other compounds which would have apparent antioxidant activity 

in the assays used include ascorbic acid, vitamin E, tocopherol and sterols. (2) The antioxidant 

activity of most pure phenolic content or vitamins were lower than those of the fruits extracts on a 

weight basis (Vinson et al., 2001). The antioxidant activity are not only dependent on the level of 

antioxidants, but also synergism, to be specific, the interaction and structures among antioxidants 

(Sun and Ho, 2005). (3) Different methods to determine antioxidant activity with various analytical 

mechanisms may lead to different observations (Kähkönen et al., 2001).  

3.3.1.4 General discussion – antioxidant measures 

In the three antioxidant evaluation systems used FRAP, DPPH and TEAC, antioxidant activities of free, 

conjugated and bound phenolic extracts accounted for less than 40% of total antioxidant activities 

determined by TEAC and DPPH methods, with the exception of free phenolic extracts in quinoa by 

FRAP. The correlations between TPC and antioxidant activity were not always significant. Thus, it is 

difficult and impractical to define which phenolic component plays a dominant role in antioxidant 

activity in quinoa varieties. Regarding buckwheat varieties, antioxidant activities of free phenolic 

extracts were statistically higher than those of conjugated and bound phenolic extracts. Free 

phenolic extracts accounted for 64%, 67% and 46% of total FRAP, TEAC and DPPH· scavenging 

activities in an average among buckwheat varieties, respectively. The results were in accordance 

with studies reported by Huang and Morita (2008) and Guo et al. (2011) that antioxidant compounds 

mainly existed in free forms, which were contrary to the results of Inglett et al. (2011), as well as 

that seen for wheat and corn fractions (Adom and Liu, 2002; Liyana-Pathirana and Shahidi, 2006). 

Among the total antioxidant activities of buckwheat varieties, Chinese Sichuan Tartary buckwheat 

had the highest FRAP and DPPH values, by contrast, the highest TEAC scavenging activity was found 

in Chinese GuiZhou Common buckwheat. The antioxidant activity of buckwheat seed extracts, 

measured by FRAP, TEAC and DPPH assays, was statistically higher than those of quinoa seed 

extracts (p<0.05). In order to comprehensively screen and compare antioxidant activity levels among 

a wide accession of quinoa and buckwheat samples, three methods were applied in this study. 
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Comparison of antioxidant activity of quinoa or buckwheat in these three studies was impractical 

and different, since the different antioxidant activity method has not been standardized. 

Up to date, there are a large numbers of methods and strategies that have been proposed and 

developed to evaluate total antioxidant activity in various samples like foodstuffs and plant tissues 

(Prior and Cao, 1999). Among them, three methods, FRAP, TEAC and DPPH for assessment of 

antioxidant activity are the most commonly used spectrophotometric methods based on reaction 

with electron donating or hydrogen radical (H•) producing antioxidant compounds. In specific, the 

FRAP method is based on the ability of antioxidant to reduce (electron transfer) Fe3+ to Fe2+ ions in 

the presence of TPTZ forming an intense blue Fe2+-TPTZ complex with an absorption maximum at 

593 nm. However, this method has been criticized by Prior and Cao, since not all reductants in 

samples that have the ability to reduce the ferric ion to ferrous ion are necessarily antioxidants. In 

addition, glutathione, as an important antioxidant in vivo, is not included in the analysis. Finally, the 

use of the ferric ion as a final indicator may also cause problems when an analysed antioxidant, such 

as ascorbic acid, not only reduces ferric to ferrous but can also react with the ferric ion to generate 

additional free radicals. The TEAC method is based on the scavenging of the blue-green radical 

cation ABTS•+ converting it into the colourless neutral form through reaction with antioxidants 

including phenolics, thiols and Vitamin C. As for DPPH method, it is based on the ability of 

antioxidant to give hydrogen radical to synthetic long-lived nitrogen radical compounds DPPH• 

having a radical localized on the N-atom. Although the principles of the three analytical methods in 

the this study were different, the comparison between methods is desirable to give a comprehensive 

measure of antioxidant activity of quinoa and buckwheat varieties and also compare with the results 

of other large numbers of studies. For example, the DPPH method gives relatively lower values for 

extracs than TEAC, but both of which were significantly higher than that of FRAP methods. This 

finding was partly consistent with the results of study that analysed grains, as reported by Stratil et 

al. (2007). The differences between DPPH and TEAC may be accounted for the a relatively higher 

stability and lower reactivity of the DPPH radical, which only reacts with more reactive reducing 

substances (phenolics). However, it is not appropriate to directly compare the results of two 

methods for same samples due to differences between compounds measured by different methods. 

For example, the TEAC method can be used to evaluate both lipophilic and hydrophilic antioxidants, 

whereas the FRAP method is not appropriate for the evaluation of lipophilic antioxidants (Re et al., 

1999a; Arnao et al., 2001; Cano et al., 2002).  

The solvent extraction using wide range of polarity of solvents has been the major method used to 

obtain grain extracts rich in antioxidants or isolate cereal antioxidants. Up to date, several methods 

have been suggested: different solvents including water, methanol, ethanol, acetone and chloroform 

https://en.wikipedia.org/wiki/Polyphenol
https://en.wikipedia.org/wiki/Thiols
https://en.wikipedia.org/wiki/Vitamin_C
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have been applied individually or in combination to achieve maximum extraction amounts from 

grains (Duh et al., 1992; Zielinski and Kozlowska, 2000; Bryngelsson et al., 2002; Inglett et al., 2015). 

Unfortunately, since the extraction method has not been standardised so far, thus, comparison 

among independent studies using different extraction procedures or solvents is often problematic. 

Previous studies have showed that the yield of free extracts increased with the increasing polarity of 

the solvent used (Duh et al., 1992; Balłasiriska and Troszyńska, 1998; Przybylski et al., 1998). For 

example, the efficiency of the solvents on extraction decreased in the following order: methanol > 

ethanol > acetone > chloroform > n-hexane, as reported by Duh et al. (1992). When using water as 

an solvent, Inglett et al. (2015) have revealed that amounts of free phenolic contents of ancient 

grains (amaranth, quinoa, buckwheat and teff) increased, but bound phenolic contents experienced 

an opposite trend as the proportion of water in the extraction solvent increased (0, 50 and 100%). 

This was partly agreement with the results obtained in our lab that amounts of phenolic contents of 

quinoa and buckwheat in water extracts determined by FC assay were significantly higher than that 

of methanol and ethanol extracts. The phenolic compounds extracted these three solvents were 

subsequently confirmed by HPLC in the lab (Not published) (see Appendix 6). Besides, regarding 

wheat germ, the higher efficiency of water in extracting phenolic compounds in comparison with 

methanol has already been revealed by Gallardo et al. (2006). The differences mentioned above may 

be attributed to the high content of water-soluble phenolics or antioxidants in grains like oat and 

buckwheat (Watanabe et al., 1997; Watanabe, 1998; Emmons et al., 1999; Bryngelsson et al., 2002). 

However, as compared with the mixture of water and methanol (20:80, v/v) extract, the contents of 

total phenolic compounds of lyophilizates of water extracts obtained from whole grains especially 

oat and buckwheat were substantially lower (Zielinski and Kozlowska, 2000). Likewise, the use of the 

mixture of water and ethanol (50:50, v/v) produced markedly higher antioxidant activity compared 

with those obtained using only methanol (Serpen et al., 2008). According to these two published 

papers, it appeared that replacing the solvent with mixture of water and other solvents like ethanol 

or methanol significantly increased the measured phenolic contents or antioxidant activity of cereal 

samples. The extraction solvent used in this current study was based on the two previously 

published papers of Li et al. (2008) and Adom and Liu, (2002) that they both used the water and 

ethanol (20:80, v/v) as the extraction solvent. In contrast, a mixture of water and other solvents was 

not always associated with higher free or bound antioxidant activity of several grains (Zielinski and 

Kozlowska, 2000; Inglett et al., 2015). Therefore, the antioxidant activity of free or bound extracts 

not only dependent on extraction methods but also grain species, thereby making it difficult to 

define the best extraction solvent of antioxidants from grains. In this study, after the extraction of 

free phenolics, alkaline hydrolysis has been applied to liberate cell wall-bound phenolics from 
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residue, followed by four times ethyl acetate extraction. Although hydrolysis could also be carried 

out under acid or enzymatic conditions, these conditions did not have the ability to classify phenolics 

into free, conjugated and insoluble-bound forms. However, it has also been pointed by Serpen et al. 

(2007) that alkaline hydrolysis fails to liberate all bound antioxidants present; moreover, the 

phenolic compounds could be further oxidised or degraded, thus resulting in loss of antioxidants 

during the hydrolysis treatment. 

To the best of our knowledge, this is the first study to demonstrate the free, conjugated and bound 

phenolic contents in quinoa and buckwheat seeds to date. Since the methods specific to quinoa and 

buckwheat have not been explored and standardised to date, the phenolic extraction methods in 

previous studies as well as the present study were mainly based on wheat and other grains, but 

these methods were not also necessarily suitable for quinoa and buckwheat seeds. What happened 

in the extraction process of wheat and other grains cannot easily extrapolate to quinoa or 

buckwheat due to hugely different phenolic compounds among them. For example, Adom and Liu, 

(2002) have reported that the contribution of bound phenolic to total phenolics was 90, 87, 71 and 

58% in wheat, corn, rice and oat, respectively, which were contrary to quinoa and buckwheat seeds. 

So far, almost all previous authors investigating quinoa and buckwheat phenolic compounds only 

used one extraction method in their studies, and then focused in phenolic content and/ or analysis 

of phenolic compounds by HPLC. It was unlikely to compare and discuss how the different phenolic 

extraction methods can affect subsequent antioxidant activity and phenolic compounds, since 

quinoa seeds from different studies might be hugely different, which would consequently give 

different results. Therefore, this would limit the ability of seeing what have been lost by degradation 

and crystallisation. For the future studies, to ensure that it is feasible to obtain a reasonably accurate 

value, the phenolic extraction method should have been calibrated by using it on a sample with 

known content (pure standard content such as gallic acid, rutin). In specific, after preparation of 

standard solution for analysis, each standard should be divided into two portions, and one portion 

should be evaporated to dryness and then processed to the whole extraction process (such as 

extract, centrifugation and hydrolysis) as the biological samples. The recovery in% can be calculated 

by comparing the values of the processed standard with the unprocessed standard. This is also one 

of limitations of the present study that have not calibrated the phenolic extraction methods before 

this study.  

3.4 Composition analysis of quinoa seeds 

As shown in Table 3.2, there was a variation in the proximate composition between the thirteen 

quinoa seed samples; the amino acid profile of the quinoa varieties is shown in Table 3.3. 
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Proteins are major biological macromolecules that participate in the construction and maintenance 

of tissues, as potential energy source, formation of enzymes, hormones and antibodies, and 

regulation of metabolic processes in the body.  In addition to offering nitrogen, amino acids are a 

good source of sulphur compounds for the body. In the form of lipoprotein, they also play an 

important role in the transport of fat-soluble vitamins, cholesterol, triglycerides and phospholipids 

(Alves et al., 2008). Protein intake and protein quality are therefore very important in determining 

diet quality.  However, many people of the world still fail to include sufficient high quality protein in 

their diets, especially those following vegetarian or vegan diets who can only get them from regular 

grains or legumes, but rarely/never consume animal protein; therefore, insufficient intake of some 

essential amino acids may make the prevalence of protein malnutrition worse (Mujica et al., 2001; 

Alves et al., 2008). 
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Table 3.2. Proximate composition of 13 quinoa varieties (dry basis) 

 Bolivia 
(Red) 

Bolivia 
(White) 

Ecuador 
(White) 

Ecuador 
(Red) 

Peru 
(Online) 

Peru 
(Tesco) 

UK 
(Biofair) 

UK 
(Waitrose) 

USA 
Nether- 

lands 
China 
(Tibet) 

China 
(Shanxi) 

South 
America 

Average ± SD 

Energy (Kcal/100g) 358 357 363 356 352 359 362 362 361 365 370 357 349 359 ± 5 

             (kJ/100g) 1506 1502 1531 1501 1484 1514 1524 1528 1522 1540 1560 1505 1464 1514 ± 25 

Protein (g/100g) 11.80 14.52 14.14 12.61 12.78 13.55 12.72 13.22 13.71 14.21 14.12 14.66 13.58 13.51 ± 0.85 

Ash (g/100g) 2.25 2.44 2.44 2.43 2.32 2.22 2.31 2.05 2.57 2.51 2.01 3.87 2.30 2.44 ± 0.46 

Moisture (g/100g) 10.85 13.38 11.42 10.72 12.15 10.03 9.42 10.19 11.84 10.95 8.94 10.91 10.37 10.86 ± 1.17 

Available Carbohydrate 

(g/100g) 
57.58 53.55 56.77 56.57 55.93 61.11 57.68 61.72 55.98 56.85 60.93 54.61 48.76 57.19 ± 2.63 

Total sugars (g/100g) 3.77 3.09 3.78 3.54 3.19 5.05 4.30 3.67 5.77 4.12 4.97 6.29 4.45 4.31 ± 0.98 

Sodium (g/100g) <0.1 <0.1 0.16 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.14 <0.1 <0.1 <0.1 <0.1 

Salt (g/100g) <0.1 <0.1 0.41 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.36 <0.1 <0.1 0.23 <0.1 

Insoluble dietary fibre 

(g/100g) 
9.71 7.27 7.24 9.40 9.05 6.92 9.95 6.51 7.41 6.79 7.71 8.57 11.02 8.27 ± 1.43 

Soluble dietary fibre 

(g/100g) 
1.37 1.39 0.95 1.53 1.53 1.33 1.56 1.09 1.26 1.52 0.36 0.49 1.57 1.26 ± 0.44 

Total dietary fibre 

(g/100g) 
11.08 8.66 8.19 10.93 10.58 8.25 11.51 7.60 8.67 8.31 8.07 9.06 12.59 9.53 ± 1.65 

Fat (g/100g) 6.44 7.45 7.04 6.34 6.24 4.84 6.36 5.22 7.23 7.17 5.93 6.89 7.03 6.48 ± 0.79 

Saturated fat (g/100g) 0.73 0.84 0.78 0.76 0.71 0.54 0.72 0.58 0.83 0.82 0.63 0.81 0.81 0.74 ± 0.10 

Monounsaturated fat 

(g/100g) 
2.07 1.98 1.94 2.04 1.81 1.24 2.02 1.39 1.99 1.98 1.74 1.58 2.00 1.83 ± 0.27 

Polyunsaturated fat 

(g/100g) 

 

 

3.37 4.31 4.02 3.26 3.46 2.86 3.34 3.04 4.09 4.06 3.31 4.21 3.92 3.63 ± 0.48 

SD, standard deviation 
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Table 3.3. Amino acid composition of 13 quinoa varieties (dry basis) 

  Bolivia 
(Red) 

Bolivia 
(White) 

Ecuador 
(White) 

Ecuador 
(Red) 

Peru 
(Online) 

Peru 
(Tesco) 

UK 
(Biofair) 

UK 
(Waitrose) 

USA 
Nether- 

lands 
China 
(Tibet) 

China 
(Shanxi) 

South 
America 

Average ± SD 

Essential amino acids               

 Histidine (g/100g) 0.33 0.39 0.35 0.34 0.35 0.37 0.35 0.37 0.36 0.35 0.39 0.38 0.35 0.36 ± 0.02 

 Iso-Leucine (g/100g) 0.45 0.5 0.47 0.46 0.48 0.5 0.47 0.49 0.51 0.48 0.54 0.51 0.46 0.49 ± 0.03 

 Leucine (g/100g) 0.73 0.82 0.75 0.75 0.76 0.79 0.75 0.81 0.82 0.77 0.84 0.83 0.78 0.79 ± 0.04 

 Lysine (g/100g) 0.71 0.87 0.76 0.76 0.77 0.78 0.73 0.78 0.8 0.75 0.82 0.83 0.81 0.78 ± 0.04 

 Methionine (g/100g) 0.25 0.27 0.25 0.25 0.26 0.26 0.25 0.25 0.27 0.26 0.28 0.27 0.27 0.26 ± 0.01 

 Phenylalanine (g/100g) 0.44 0.51 0.46 0.46 0.47 0.49 0.46 0.5 0.5 0.48 0.52 0.52 0.48 0.48 ± 0.03 

 Threonine (g/100g) 0.45 0.53 0.46 0.47 0.48 0.48 0.46 0.48 0.52 0.48 0.52 0.52 0.5 0.49 ± 0.03 

 Tryptophan (g/100g) ND* ND ND ND ND ND ND ND ND ND ND ND ND ND 

 Valine (g/100g) 0.56 0.63 0.58 0.59 0.61 0.62 0.58 0.62 0.64 0.6 0.66 0.64 0.59 0.61 ± 0.03 

Non-essential amino acids               

 Alanine (g/100g) 0.5 0.61 0.51 0.54 0.54 0.55 0.52 0.53 0.59 0.54 0.57 0.59 0.58 0.55 ± 0.03 

 Arginine (g/100g) 1.01 1.2 1.06 1.04 1.07 1.2 1.06 1.21 1.16 1.1 1.27 1.17 1.07 1.13 ± 0.08 

 Aspartic Acid (g/100g) 0.99 1.13 1.02 1.03 1.04 1.12 1.03 1.08 1.08 1.04 1.12 1.12 1.07 1.07 ± 0.05 

 Cystine (g/100g) 0.19 0.22 0.19 0.19 0.2 0.2 0.19 0.2 0.2 0.2 0.22 0.23 0.2 0.2 ± 0.01 

 Glutamic Acid (g/100g) 1.62 1.88 1.71 1.65 1.7 1.9 1.67 1.85 1.72 1.71 1.93 1.93 1.7 1.77 ± 0.12 

 Glycine (g/100g) 0.59 0.74 0.65 0.63 0.67 0.68 0.62 0.68 0.7 0.67 0.72 0.76 0.68 0.68 ± 0.05 

 Proline (g/100g) 0.45 0.51 0.48 0.45 0.47 0.49 0.46 0.49 0.51 0.48 0.51 0.53 0.49 0.49 ± 0.03 

 Serine (g/100g) 0.56 0.66 0.58 0.59 0.59 0.63 0.58 0.62 0.62 0.59 0.64 0.66 0.62 0.61 ± 0.03 

 Tyrosine (g/100g) 0.33 0.4 0.38 0.36 0.38 0.4 0.34 0.38 0.4 0.37 0.41 0.4 0.39 0.38 ± 0.03 

                *ND, not determined (Analysis of tryptophan was not in the original list of amino acids offered by the commercial company) 
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To the best of our knowledge, this is the first study to show nutritional composition of different 

quinoa and buckwheat accessions sourced from different regions, which can give a comprehensive 

view to see the variations between them, but almost previous studies only focused on one quinoa or 

buckwheat accession.  

One of the most important properties of quinoa seeds is the quantity and quality of protein they 

contain. China Shanxi quinoa exhibited the highest protein content in the dry matter of 13 quinoa 

seeds (14.66 g/100g), closely followed by Bolivia (White) quinoa (14.52 g/100g), whereas the lowest 

protein content was found in Bolivia (Red) quinoa (11.80 g/100g). The total protein content displayed 

an average of 13.51 g/100g, which is in line with that found for six genotypes of quinoa seeds from 

11.32 to 14.72 g/100g from Peru reported by Repo-Carrasco-Valencia et al. (2010a) and from 11.31 

to 16.18 g/100g from different regions of Chile by Miranda et al. (2012). In comparison with the 

common cereals, these results show that the protein content in quinoa is significantly higher than 

that in rice, corn, sorghum, barley and rye, and is similar to that of wheat (Kozioł, 1992; Comai et al., 

2007; Jancurova et al., 2009; USDA, 2015). 

The nutritional quality of protein in various foods is mainly determined by the composition of 

essential amino acids that cannot be synthesized or created by animals, and hence must be obtained 

from the diet. Moreover, the lack of only one of these amino acids will largely affect the absorption 

and metabolism of the others, resulting in the loss of protein in the diet and poor growth. Nine 

amino acids are strictly essential for humans: histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, threonine, tryptophan and valine (essential for infants and children), which are all 

identified in quinoa seeds except for tryptophan which was ‘lost’ and could not determined in the 

analysis during hydrolysis (Table 3.3), offering a high protein value similar to casein in milk (WHO, 

2007; Vega-Galvez et al., 2010). Therefore, quinoa is one of the only plant foods that offers ‘complete 

protein’. This is a term that describes a source of protein that contains an adequate proportion of all 

nine of the essential amino acids necessary for human life, with an approximate average 

concentration of 5.75 g/100g of 13 quinoa seeds, as shown in Table 3.3 (Stikic et al., 2012). The 

composition of amino acid in quinoa seed is very close to those suggested by FAO/WHO/UNU (1985), 

with a well-balanced amino acids profile, being rich in lysine and sulphur-containing amino acids, and 

it is accepted as a high quality protein, contrary to the protein content of common cereals, such as 

wheat and maize, which are especially deficient in lysine (Mujica et al., 2001; WHO, 2007; Alves et al., 

2008; Oh et al., 2016). Not only the proportions of amino acids, but also processing can affect protein 

quality of quinoa seeds. Protein digestibility or bioavailability of amino acids in quinoa, which is 

superior to that of common cereals, varies according to possessing of quinoa, and it increased 

considerably with cooking (Kozioł, 1992; Ruales and Nair, 1992; Comai et al., 2007; Alves et al., 2008; 

https://en.wikipedia.org/wiki/Essential_amino_acid
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Abugoch James, 2009). Additionally, the protein quality is also partly influenced by antinutritional 

factors, which used to describe the class of compounds present in various plant foods that reduce 

their nutritional value, including their digestibility and absorption, probably resulting in harmful 

impacts if digested in high amounts (Filho et al., 2017). Up to date, a few antinutritional factors, 

including saponins, phytic acid, tannins, nitrates, oxalates and trypsin inhibitors, were identified in 

quinoa seeds. For example, one of undesirable biological effects of tannins was to from complex with 

protein, thus reducing the nutritional value of foods (dos Santos, 2006). 

Carbohydrates are one of the largest groups of organic compounds present in quinoa seeds in 

common with other cereals, providing the main source of physiological energy in the human diet. 

Available carbohydrate levels in the evaluated quinoa seeds showed values ranging between 48.76 

g/100g in South America quinoa and 61.72 g/100g in UK (Waitrose), with an average of 57.19 g/100g, 

which is significantly lower than the value of 65.60 g/100g mentioned by Koziol (1992) and between 

68.84 and 75.82 g/100g reported by Repo-Carrasco-Valencia et al. (2011), but it compares favourably 

with the values of between 56.08 to 62.47 g/100g of Miranda et al. (2013). The quinoa cultivated in 

UK (Waitrose) exhibited the highest available carbohydrate level, which was quite similar to the Peru 

(Tesco) quinoa (61.11 g/100g) and China (Tibet) quinoa (60.93 g/100g), but higher than all other 

varieties. 

Quinoa has been regarded as a potential alternative to oilseed crops because of the quantity and 

quality of its lipid content. Quinoa seeds included in this study had a fat content ranging from 4.84 

g/100g grown in Peru (Tesco) to 7.45 g/100g grown in Bolivia (White), with an average of 6.48 

g/100g, which is in accordance with the value of Filho et al. (2017) showing an oil content of around 

7%. This is between 2 and 3 times significantly higher than in buckwheat (4.21 g/100g) and other 

common cereals, such as wheat (1.81 g/100g) and maize (2.48 g/100g), but much lower than soy 

(18.90 g/100g) (p<0.001) (Hager et al., 2012). From the given data it can be observed that the major 

fatty acids found in the quinoa are desirable unsaturated fats from a nutritional point of view, 

corresponding to approximately 84% of the total fatty acids present, which coincide in the 

proportion of 87.2 to 87.8%) reported by Ando et al. (2002). Over recent years, dietary 

polyunsaturated fatty acids have attracted increasing attention due to human health benefits 

attributed to them, such as beneficial effects on CVD, increased insulin sensitivity, improved immune 

response, metabolism of prostaglandins, and cell membrane function (Ogungbenle, 2003; Repo-

Carrasco et al., 2003; Abugoch James, 2009).  As reported by Filho et al. (2017), high quality fat was 

found in quinoa, being rich in the essential fatty acids linoleic acid and α-linoleic acid.  Quinoa also 

contains considerable levels of antioxidant vitamins, such as α- and γ-tocopherol; however, these 
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analyses were not performed in the current study and so no comparisons are possible from the 

current study.  

Quinoa seeds are also good source of dietary fibre. Values ranged from 7.60 g/100g found in UK 

(Waitrose) quinoa to 12.59 g/100g found in South America quinoa, total dietary fiber (AOAC fiber) 

content for the quinoa varieties analyzed, with an average value of 9.53 g/100g. This value is 

comparable to or lower than those found for red quinoa seeds (8.87 g/100g) grown in Peru reported 

by Repo-Carrasco-Valencia et al. (2010b), between 11.59 to 15.07 g/100g reported by Miranda et al. 

(2013) and 13.56 to 15.99 g/100g reported by Repo-Carrasco-Valencia et al. (2011), with similar 

comparison being found in soluble and insoluble dietary fiber. The level of dietary fiber in quinoa 

seeds was significantly lower than that in barley (15.6%), rye (15.1%) and similar to wheat (10.7%), 

but significantly higher than that of rice (2.8%), corn (7.3%) and sorghum (3.7%) (USDA, 2011).  

3.5 Selection of quinoa accession for the future study  

In this study, the dietary fiber content, especially the soluble fiber content, was one of the 

determining factors for the choice of quinoa seed for bread making and the future human 

intervention, based on previously published studies, which have consistently shown soluble fibre to 

be the most likely contributor to lower total and LDL cholesterol concentrations (Glore et al., 1994; 

Truswell, 1995; O'Neil et al., 2010). The highest level of insoluble, soluble and total dietary fiber 

were all identified in the same quinoa seeds (South America) among these included varieties; 

moreover, the total and insoluble dietary fiber values are much higher than other varieties. Thus, the 

accession of quinoa seed South America was selected for the bread making and future human 

intervention study. 
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4 Chapter 4 Preparation of test bread 

4.1 Introduction 

Breads are basic dietary parts in many countries and are mainly prepared from wheat flour 

containing gluten. It is well known that gluten can cause allergic reactions like celiac disease, but it is 

also responsible for the bread’s texture quality. In specific, bread dough is a viscoelastic system 

where the gluten network gives elasticity to dough, maintains its shape and helps it rise, thereby 

consequently affecting the textural characteristics of final products. As a bread material, quinoa has 

gained in popularity due to its high nutritional value, as well as naturally gluten-free property. 

However, because of the lack of gluten in quinoa, the use of 100% quinoa flour in bread formulation 

cannot result in dough with the same viscoelastic properties that can be achieved by using refined 

wheat flour. Therefore, previous substitution levels of quinoa flour in refined wheat roll formulations 

were 15% in the study of Milovanović et al. (2014), 10% and 20% by Bilgicli and Ibanoglu, (2015) and 

50% by Turkut et al. (2016). 

The planned intervention study was dependent on providing the required dose of quinoa in a form 

which would be palatable and acceptable to (male) participants. After considering various options it 

was decided to base the intervention food on bread. The Artisan Bakery, a Newcastle-based Social 

Enterprise Bakery, was approached to provide expert advice on bread formulation to help with the 

development of a suitable product. The aim was to prepare and evaluate bread recipes to select a 

product for use in the dietary intervention study and to analyse their nutritional profile. The 

objective was to carry out a sensory analysis of breads to inform the selection of the intervention 

bread, as well as the compositional analysis.  

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Viscoelasticity
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4.2 Materials and methods 

4.2.1 Materials 

The South America quinoa accession was selected with the highest fibre content identified in 

composition analysis described in Section 3.5.  

4.2.2 Bread making method 

    The formulations of breads are detailed in Table 4.1. In bread formulation, refined wheat flour was 

supplemented with quinoa flour at 0%, 20% and 30% levels, substituting for the refined white flour 

with the rest of the ingredients remaining exactly the same. Briefly, the ingredients were evenly 

mixed in a mixer (Model 5K5SS, Kitchen Aid, St, Joseph, MI, USA), and then the mixed doughs left in 

lidded containers to prove for 16 hours at room temperature. The resultant doughs were divided 

into pieces of 162 g each, manually rounded, placed on the floured baking tray, and subjected to a 

second proving for 1 h 30 mins at 35 °C. Baking was initiated at 215°C, although the temperature 

was immediately decreased to 195°, and doughs were baked in the oven for 15 mins. After removal 

from the oven, the baked rolls were cooled down to room temperature prior to packing in single-

serving food & freezer bags (ASDA), and storing in a freezer at -20°C until analysis or for use in the 

human intervention study.  

    Table 4.1. Formulations of rolls  

Ingredients Refined wheat roll 20% Quinoa roll 30% Quinoa roll 

Organic refined white flour (g) 100 80 70 

Organic quinoa flour (g) 0 20 30 

Fine sea salt (g) 1.5 1.5 1.5 

Fermipan yeast (g) 0.25 0.25 0.25 

Water at 45°C (g) 60 60 60 

Roll weight prebake (g) 162 162 162 

4.2.3 Bread sensory testing 

For the bread sensory test, 41 participants (25 women and 16 men, aged between 20 and 55) were 

recruited for the test. Before starting the sessions, a written information leaflet for bread 

assessment, including information on the nutritional and health benefits of quinoa were distributed 

to the participants and they were asked to sign a consent form to participate. Three different types 

of bread made with different amounts of quinoa (0%, 20% or 30% of the bread) were involved in this 

test. The sensory testing took place in the NU-Food sensory facility, which contains a well-equipped 

kitchen, and 10-booth sensory booth facility located in the basement of Newcastle University’s 

Agriculture Building. The bread samples considered in the present testing were prepared using the 
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recipe in Table 4.1 but for convenience were baked as loaves and sliced immediately prior to testing 

to ensure the samples were fresh for testing and to reduce the amount of crust to make more 

comparable samples for sensory analysis. 

The bread samples were presented on identical white paper food plates, each coded with a different 

symbol, with sample presentation counterbalanced over the entire test to avoid order effects.  All 

participants were served the 3 different kinds of bread roll in a randomised order; participants were 

asked to rinse their mouth with pure (bottled) water between sample ingestion and to score each 

sample on an anonymous score sheet. The next sample would be presented after the evaluation of 

each sample was finished. Sensory characteristics of the bread products, including colour, aroma, 

softness, moistness, chewiness, flavour and enjoyable flavour, were evaluated using an 10 cm 

unstructured line scale with anchor points ‘none’ on the left side and ‘very much’ on the right side 

(see the file ‘bread questionnaire’ attached in the Appendix 7). The consumer test was carried out 

not only to compare its acceptability in comparison with habitually consumed refined wheat bread, 

but also to choose a preference between 20% and 30% of the quinoa-enriched wheat bread for the 

human intervention study. 

4.2.4 Compositional analysis of bread rolls 

The methods of phenolic and antioxidant content and composition analysis of refined wheat and 

20% quinoa rolls were as described in Section 3.2 and 3.3, respectively.   

4.2.5 Calculations and statistical analyses 

The data from bread sensory testing were analysed by using the SPSS 22.0 for Windows statistical 

program (SPSS, Inc., Chicago, IL, USA), and the results are expressed as means and standard 

deviations. Normality of the variables was checked with the Shapiro–Wilk test and data that were 

not normally distributed were transformed (using log10 function) prior to statistical analyses and 

then back-transformed for presentation of results. To determine the differences in characteristics 

between refined wheat bread, 20% and 30% quinoa breads , a paired t-test was used with P values 

less than 0·05 considered to be significantly different. 
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4.3 Results and Discussion 

4.3.1 Sensory analysis 

Figure 4.1 shows the three bread formulations used in the sensory analysis.  The addition of 20% and 

30% quinoa to the bread formulation resulted in progressively smaller, denser and darker breads 

compared with the control refined wheat bread. 

 

Figure 4.1.  Test breads used in sensory analysis (left to right) Control white refined wheat bread, 20% quinoa bread and 

30% quinoa bread. 
 
Mean scores for bread sensory characteristics derived from all healthy volunteers are presented in 

Figure 4.2. According to the scores obtained from each tested attribute by regular consumers, the 

scores related to the colour and aroma of breads increased significantly (p<0.05) with increasing 

amounts of quinoa (0%, 20% or 30% in the bread). In contrast, the scores for softness showed an 

opposite trend.  Consumer acceptability scores for moistness and chewiness were very similar with 

no significant difference across the three bread types (P>0.05). Comparing the flavour between two 

quinoa breads and the refined wheat bread, it can be seen that breads with 20% and 30% quinoa 

flour resulted in breads with a markedly stronger flavour in comparison with the refined wheat 

bread.  However, from an enjoyable flavour prospective, the refined wheat bread and 20% quinoa 

bread were liked significantly more by the consumers than the 30% quinoa bread which had a 

significantly lower score (p<0.05).  
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Figure 4.2. Results of the consumer test of refined wheat bread, 20% and 30% of quinoa breads evaluated on the 10 cm 
unstructured line scale with anchor points ‘none’ on the left side and ‘very much’ on the right side by all healthy 
volunteers. Mean ± Standard deviation.  

Mean scores for bread sensory characteristics derived from male healthy volunteers are presented 

in Figure 4.3. According to the scores obtained from each tested attribute by regular consumers, 

both quinoa breads (20 and 30%) possessed significantly higher scores related to colour than the 

refined wheat bread. In the case of softness, it can be seen that refined wheat bread and 20% 

quinoa bread were softer than 30% quinoa roll (p<0.05), without significant differences observed 

between refined wheat bread and 20% quinoa bread. However, there were no significant differences 

in the rest of the sensory characteristics including aroma, moistness, chewiness and flavour between 

refined wheat bread, 20 and 30% quinoa bread. From an enjoyable flavour prospective, the scores 

obtained from refined wheat bread and 20% quinoa bread were higher than that 30% quinoa bread, 

but did not reach significance level.  
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Figure 4.3. Results of the consumer test of refined wheat bread, 20% and 30% of quinoa bread evaluated on the 10 cm 
unstructured line scale with anchor points ‘none’ on the left side and ‘very much’ on the right side by male healthy 
volunteers. Mean ± Standard deviation. 

4.3.2 Composition of refined wheat and 20% quinoa rolls 

The phenolic content and antioxidant activity of refined wheat and 20% quinoa rolls are illustrated in 

Table 4.2. In this study, except for the antioxidant activity of bound extracts measured by FRAP and 

DPPH methods which were lower in quinoa rolls, the total flavonoid, phenolic content of the free, 

conjugated, bound and all extracts, as well as antioxidant activity measured by the three antioxidant 

assays were slightly higher in quinoa rolls compared with refined wheat rolls. The results for 

compositional analysis are shown in Table 4.3. Refined wheat and 20% quinoa rolls had 61.3% and 

56.9% dry matter content, respectively, after drying in the oven overnight at 90 °C. With the same 

energy content, the proximate composition of 20% quinoa rolls was slightly higher compared with 

refined wheat roll for ash, moisture, salt, sodium, protein, fat and soluble dietary fibre. The insoluble 

dietary fibre content of the quinoa rolls was more than double that of refined wheat rolls. As a 

result, available carbohydrates and total sugar content were lower in quinoa rolls by 4.41% and 0.89 

%, respectively, as described in Table 4.3. The amino acids composition of quinoa roll were similar to 

those of refined wheat roll, and the concentration of total essential amino acids when added in 20% 

quinoa roll (4.24 g/100g) was slightly higher with respect to the refined wheat roll (3.80 g/100g); 

surprisingly, the concentration of essential amino acid lysine in quinoa roll was 2.5 times greater 

than that of refined wheat roll (Table 4.4).  
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 Table 4.2. Total phenolic content and antioxidant activity of refined wheat and quinoa rolls       

   

  Extracts of refined wheat rolls   Extracts of 20% quinoa rolls 

 Free Conjugated Bound Total  Free Conjugated Bound Total 

Total phenolic content  
(mg GAE/g) 

0.52 ± 0.04 0.08 ± 0.01 0.17 ± 0.01 0.77  0.76 ± 0.06 0.16 ± 0.01 0.19 ± 0.02 1.11 

FRAP value  
(µmol Fe2+ E/g) 

0.66 ± 0.05 0.33 ± 0.09 0.82 ± 0.07 1.81  1.23 ± 0.12 0.51 ± 0.02 0.74 ± 0.02 2.48 

TEAC value  
(µmol Trolox E/g) 

1.53 ± 0.10 0.90 ± 0.08 1.60 ± 0.12 4.03  2.11 ± 0.15 1.20 ± 0.06 2.51 ± 0.09 5.82 

DPPH value 
(µmol Trolox E/g) 

2.72 ± 0.56 3.07 ± 0.41 4.66 ± 0.43 10.45  4.14 ± 0.11 3.66 ± 0.24 4.63 ± 0.03 12.43 

Mean ± standard deviation 

 

                      Table 4.3. Proximate composition of refined wheat and quinoa rolls (dry basis) 

 Refined wheat roll 20% Quinoa roll 

Energy (Kcal/100g) 381 381 

             (kJ/100g) 1615 1612 

Protein (g/100g) 12.63 14.04 

Ash (g/100g) 2.37 2.87 

Moisture (g/100g) 2.69 3.02 

Available Carbohydrate (g/100g) 77.05 72.64 

Total sugars (g/100g) 6.67 5.78 

Sodium (g/100g) 0.51 0.62 

Salt (g/100g) 1.30 1.58 

Insoluble dietary fibre (g/100g) 2.17 4.99 

Soluble dietary fibre (g/100g) 1.43 1.53 

Total dietary fibre (g/100g) 3.60 6.52 

Fat (g/100g) 1.66 2.73 

Saturated fat (g/100g) 0.29 0.37 

Monounsaturated fat (g/100g) 0.24 0.68 

Polyunsaturated fat (g/100g) 1.06 1.56 
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                       Table 4.4. Composition of amino acid of refined wheat and quinoa rolls (dry basis) 
 

  Refined wheat roll Quinoa roll 

Essential amino acids   

 Histidine (g/100g) 0.28 0.35 

 Iso-Leucine (g/100g) 0.49 0.46 

 Leucine (g/100g) 0.90 0.78 

 Lysine (g/100g) 0.32 0.81 

 Methionine (g/100g) 0.18 0.27 

 Phenylalanine (g/100g) 0.66 0.48 

 Threonine (g/100g) 0.38 0.50 

 Tryptophan (g/100g) ND ND 

 Valine (g/100g) 0.59 0.59 

Non-essential amino acids   

 Alanine (g/100g) 0.41 0.58 

 Arginine (g/100g) 0.53 1.07 

 Aspartic Acid (g/100g) 0.56 1.07 

 Cystine (g/100g) 0.29 0.20 

 Glutamic Acid (g/100g) 4.55 1.70 

 Glycine (g/100g) 0.49 0.68 

 Proline (g/100g) 1.56 0.49 

 Serine (g/100g) 0.74 0.62 

 Tyrosine (g/100g) 0.39 0.39 

   

In a separate, informal, palatability study 5 male volunteers were provided with the proposed 20% 

quinoa test rolls which they consumed daily for one week.  All of the participants found that they 

could consume the rolls as part of their normal dietary routine without any reported side effects.  

On the basis of this trial and the sensory analysis described above, the 20% quinoa-enriched wheat 

roll formulation was chosen for the human intervention study, as it provided an acceptable medium 

for delivering the 20g of quinoa required for the intervention in a quantity of bread which could be 

consumed readily by participants. 
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5 Chapter 5 Human intervention study 

5.1 Introduction 

Cardiovascular disease is an important cause of adult disability and death across the world. Among 

treatments for combating these complications, the dietary modulation of CVD have attracted much 

more attention in recent years. Epidemiological studies have pointed to diets rich in whole grains 

decreasing the risk of many diet-related diseases, including CVD, cancer, type 2 diabetes and obesity, 

with similar results found across diverse populations (He et al., 1995; Chatenoud et al., 1998; Jacobs 

et al., 1998; Liu et al., 1999b; Jacobs et al., 2000; Mellen et al., 2008a; O'Neil et al., 2010; Ye et al., 

2012; Aune et al., 2016; Chen et al., 2016). Quinoa, as a pseudocereals, is included in ‘’whole grain’’ 

class in the terms of similar composition (McKeown et al., 2013). Over the years, quinoa has gained 

in popularity due to its high nutritional profile, as well as property of the lack of gluten (Ando et al., 

2002; Konishi et al., 2004; Bhargava et al., 2006; Alvarez-Jubete et al., 2009; Tang et al., 2015). 

However, up to date, few studies have focused on the effect of quinoa intake on CVD risk in vivo. 

Moreover, human and animal intervention studies have not always clear results from feeding 

quinoa-based foods on markers of CVD risk, thereby resulting in some discussion about the impact 

of a quinoa diet. Besides, the mechanisms responsible for how a quinoa diet may benefit human 

health still remains unclear.  

Therefore, the aim of the current study was to evaluate the effect of substituting refined grain foods 

for quinoa rolls on markers of CVD risk, including plasma levels of antioxidant activity, glucose, lipids 

and markers of systemic inflammation, in healthy subjects using a randomised controlled cross-over 

study. The intervention study was thus designed to explore the mechanisms underlying the potential 

beneficial effects.  

 

 

 

 

 

https://en.wikipedia.org/wiki/Pseudocereal
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5.2 Materials and Methods 

5.2.1 Study design 

The study was a randomized, controlled cross-over trial consisting of 2 treatment periods of 4 weeks 

each separated by a washout period of 4 weeks. Subjects were required to attend the NU-Food 

Facility at University of Newcastle throughout both dietary periods, and compliance was ensured by 

the provision of all study foods during the intervention. After the screening, entry into the quinoa 

treatment arm or refined wheat control arm of the trial was by random allocation using stratification 

on the basis of age and BMI to ensure that each arm was balanced.  

During the first 4-wk period, one group (n=15) consumed one quinoa roll daily, and the other group 

(n=15) consumed the equivalent placebo (refined wheat roll) daily. After the 4-wk washout period, 

subjects who consumed the quinoa roll in the first period crossed over to consume refined wheat 

roll in the second period, and vice versa (Figure 5.1).  

Volunteers were provided with a 4-wk supply of frozen quinoa or refined wheat rolls packed in an 

ice bag with ice packs; the study rolls were either collected in person by volunteers or were 

delivered to volunteers in two 2-wk batches. Due to the characteristics of the food products serving 

as control (refined wheat rolls) and test (quinoa rolls) products, it was not possible to blind the 

researchers or the subjects during the study to the treatment group/period. However, samples were 

randomised during analysis and subject codes were not revealed until analysis was complete.  

On the first and last day of each intervention period volunteers came to the NU-Food facility after an 

overnight fast. Fasting body weight was measured in light clothing to the nearest 0.1 kg, as well as 

body fat percentage by bio-electrical impedance (Tanita BC-420MA). Blood pressure measurements 

were conducted on the right upper arm with the volunteer in a sitting position after 5-10 minutes of 

rest with an automatic Intelli Wrap Cuff (HEM-7321-E, M6 Comfort, Omron). A fasting blood sample 

was drawn by venepuncture from the antecubital vein into a vacutainer with EDTA anti-coagulant.  

Blood samples were mixed and immediately chilled then centrifuged at 2,500 rpm at 4°C.  Plasma 

was removed and stored at -80°C until analysis.   

Volunteers completed a full urine collection for the 24 hours leading up to the visit, and collected a 

single spot faecal sample on the morning of the visit using urine sample pots and faecal collection 

tubes provided.  

As changes due to the daily diet may not be evident in fasting blood samples, a postprandial sub-

study was conducted as part of the intervention study design. On visit days, after taking all fasting 
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measurements, a standardized breakfast meal, including 10 g strawberry jam and 100 g quinoa roll 

or refined wheat roll, appropriate to the diet they were currently following (i.e. quinoa roll before 

and after the quinoa intervention, and a wheat roll immediately before and after the wheat 

intervention), was served together with ad libitum pure water. The subjects were asked to finish the 

breakfast meal within 3-5 mins without leaving any rolls or strawberry jam. After the breakfast meal, 

a selected finger was pricked with a lancet to obtain a small quantity of capillary blood for testing. 

Capillary blood samples were transferred to a Whatman 903 protein saver card. The Whatman 903 

protein saver card is one of generic collection cards that meet the requirements for many sampling 

programs. The sample collection area of a card contains five half-inch circles, each of which holds 75-

80 µl of whole blood sample. The saver card wraparound cover has spaces for name and date of 

collection and is imprinted with the universal biohazard symbol in accordance with United States 

Post Office (USPS) regulations. After collection, the back side of the card was inspected, to ensure 

that it was also completely soaked with blood.  The first blood spot sample was taken by the 

researcher in the NU-Food facility, thereafter volunteers collected the blood samples themselves.  

The dried blood spots (DBS) were collected at 0, 60, 120, 180 and 240 min, and the card was then 

packed in a sealable plastic bag containing desiccant.  The cards were delivered or posted by 

subjects for return to the researcher and then immediately stored at -80°C on arrival until analysis.  

The Abbott FreeStyle Libre Flash Glucose Monitoring (FGM) System, including a sensor and reader, is 

designed to be a continuous monitoring system that does not need finger pricks for calibration, and 

measures interstitial fluid glucose concentrations. The sensor was applied on to the back of the 

upper arm of subjects using the applicator by trained staff on D23 or D24 and was worn up until after 

D32. The sensor records glucose concentrations every 15 minutes providing comprehensive data for a 

complete glycaemic profile of the wearer. The sensor stores the recorded data which is downloaded 

to a monitor/reader by the wearer.  To obtain a complete glycaemic picture, the sensor must be 

scanned at least once every eight hours, and the reader can capture data when it is within 1 cm to 4 

cm of the sensor. With every scan the reader also provides a current glucose reading, together with 

(up to) the last 8 hours of glucose data and a trend arrow showing the direction that the blood 

glucose values are heading. Cumulative data for the period the sensor was worn by the volunteer 

was downloaded to a PC in a spreadsheet format for analysis. 

An outline of the study protocol is shown in Figure 5.1. 
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              Visit 1                                                                                             Visit 2                                 Visit 3                                                                                          Visit 4       

  Refined wheat rolls  Refined wheat rolls 

  D1 – D22 D23 or 24 D25-D28 D29-D32  D1 – D22 D23 or 24 D25-D28 D29-D32 

           

Screening           

  Quinoa rolls  Quinoa rolls 

  D1 – D22 D23 or 24 D25-D28 D29-D32  D1 – D22 D23 or 24 D25-D28 D29-D32 

              0 week                                                                                         4 week                                 8 week                                                                                       12 week 
             Phase 1   Phase 2  

         24h urine                                                                                         24h urine                           24h urine                                                                                   24h urine               
     Stool sample                                                                                      Stool sample                    Stool sample                                                                             Stool sample 
     Fasting blood                                                                                    Fasting blood                    Fasting blood                                                                           Fasting blood 
  
                                                                               Glucose sensor applied                                                                                                               Glucose sensor applied 
 
Figure 5.1. Intervention study design. Randomized controlled crossover study in which subjects received either refined wheat rolls or quinoa rolls for a period of 4 weeks. Anthropometric and 
blood pressure measurements were performed and fasting blood, 24hu urine and stool (fresh and 24 h) samples collected from each volunteer before and after each intervention period as 
indicated.
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5.2.2 Subjects 

Sample size was determined using a Paired t Test approach in Statistical Software Minitab 17, based 

on blood lipid data reported in the two papers describing quinoa interventions by Farinazzi-Machado 

et al. (2012) and De Carvalho et al. (2014) that used a similar quinoa dosage, as well as a recent 

dietary intervention study completed in Newcastle UK. Using levels of significance less than 0.05 and 

80% power, a sample size of between ten and twelve subjects per group was required to observe a 

10% decrease in LDL cholesterol concentration in the intervention group, assuming that no change 

would occur in cholesterol concentration in the control group. Also, in order to quantify changes in 

bacterial numbers and species with this design, even though no data on the effects of quinoa on the 

gut microbiome was available, generally published studies on the effects of diet on the microbiome 

have used less than 20 subjects. To account for dropout, sixteen subjects per group were targeted 

for recruitment. 

A total of thirty-seven healthy and non-smoking male volunteers, aged 36-70 years, were recruited 

for the study in the city of Newcastle upon Tyne between August 2016 and February 2017. The 

inclusion criteria were as follows:  

1) Healthy males >35 years old;  

2) Body mass index >25 kg/m2;  

3) Non-smokers with no known previous history of cardiovascular disease or type 2 diabetes; 

4) Not receiving any current medication. 

Supplement users were included but were asked to stop taking supplements for the duration of the 

study. Individuals were excluded if they reported or were observed to have diabetes or CVD; to have 

smoked in the past; to have an allergy to gluten, grain products or any ingredients used in the 

treatment foods; to have experienced recent weight loss (>10%) or plan to lose weight during the 

study; or to use any medications.  

Volunteers were recruited by advertisements using posters and by sending invitation letters to 

potential volunteers from the NU-Food volunteer database and by circulating a recruitment email in 

local organisations such as Voice North and ‘’ion-volunteer’’. ‘’ion-volunteer’’ is a volunteer 

organisation containing a large number of members who are willing to get involved in research, and 

it was founded by the Institute of Neuroscience, Newcastle University.  
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After an initial telephone or email screening on broad criteria to ascertain gender and approximate 

self-reported BMI, recruitment was completed at a screening visit during which the potential 

volunteers completed an eligibility questionnaire and confirmation of adherence to 

inclusion/exclusion criteria. Height and weight were measured to calculate body mass index (BMI) as 

body weight (kg) / height (m2). Older, overweight males were selected because they have an 

elevated risk of CVD compared with younger, normal weight males, but they remain a relatively 

understudied population.  

Subjects received an honorarium in the form of shopping vouchers for their participation in follow-

up visits.  

Details of study enrolment and completion are presented in Figure 5.2. In this controlled, cross-over 

designed study, only seven of the 37 subjects randomized to treatments did not complete the study 

(3 whilst on the quinoa treatment, 4 whilst on the refined wheat treatment, all during the first 

period of the cross-over study). Reasons for con-completion were difficulty to avoid whole grains 

(n=2), withdrawn by researcher due to poor compliance (n=1), unwillingness to comply with the 

regimen (n=1), lost to follow up (n=1), or reasons not given (n=2). A total of 30 men completed the 

study: 15 per intervention group.  

Recruitment and interventions were conducted at the NU-Food Food and Consumer Research 

Facility at University of Newcastle and the protocol was approved by University of Newcastle Faculty 

of Science, Agriculture and Engineering Research Ethics Committee (reference 16-LI-034) and written 

informed consent was obtained from each subject after oral explanation of the study before 

commencing the study.  Prior to commencement, the study was registered on ClinicalTrials.gov, 

registration number NCT03036618. 
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Figure 5.2. Flow diagram of enrolment, random allocation, withdrawals and follow-up of participants 

through the trial.  

Washout (4 weeks) 

Assessed for eligibility (n=51) 

 

Excluded (n=14) 
• Not meeting inclusion criteria (n=8) 
• Declined to participate (n=2) 
• Busy or schedule conflicts (n=3) 
• Other reasons (n=1) 

Allocated to refined 

wheat rolls group (n=18) 

Allocated to quinoa rolls 
group (n=19) 

Randomised (n=37) 

 

Discontinued the study 
(Difficulty to avoid whole grains or 

lost to follow up or poor 
compliance) (n=4) 

Discontinued the study  
(Unwillingness to comply with 
the regimen or other reasons) 

(n=3) 

Allocated to quinoa rolls 
group (n=15) 

Allocated to refined 
wheat rolls group (n=15) 

Completed (n=15) Completed (n=15) 

Data analysed for anthropometric and blood 

variables, protein saver card, gut microbiota (n=28) 

 (n=28) 

Subjects removed (n=2) 
• Unreported type 1 diabetes (n=1) 
• High fasting glucose level (n=1) 
 

 

Data analysed for Flash Glucose Monitoring system (n=25) 

Subjects removed (n=3) 
• Pain on the back arm (n=1) 
• Incomplete (n=2) 
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5.2.3 Study food 

The refined wheat and quinoa rolls used in this study were manufactured and purchased from one 

bakery (The Artisan Baking Community, Earth Doctors Ltd., Northumberland, UK) as described in 

Chapter 5. Freshly baked rolls were packaged in single-serving food & freezer bags and then 

transferred to a -20°C food storage room before dispensing to volunteers.  

The subjects were asked to keep the rolls in their home freezers and were instructed to take them 

out of the freezer to defrost immediately before consuming. To ensure that the subjects ate the 

correct amounts of test bread, they were advised to consume one roll daily at room temperature, in 

place of other bread products (e.g. pitas, bagels, dinner rolls) or carbohydrate-rich foods (e.g. rice, 

pasta), in their diet. They were advised to eat the rolls with their regular portion of different 

products, such as spreads, cheese, jam and salad.  

During the 13-wk trial, subjects were instructed to avoid consuming any other source of whole grains 

or related products derived from whole grains, such as bran flakes, wholemeal bread and brown rice 

(a list was provided), and they were also asked not to take any supplements during the intervention, 

such as vitamin or mineral supplements. In addition, the participants were asked not to change their 

normal consumption of the following foods that potentially change markers of CVD risk: coffee, tea, 

oily fish and dark chocolate. A list of foods that could be freely consumed was also offered with 

instructions to maintain their normal physical activity, dietary and lifestyle patterns while on the 

study.  

Compliance with the diet was checked by 3-day food records and daily records. Three-day food 

records including two weekdays and one weekend day were kept by the subjects before and at the 

end of each treatment arm. In daily records, the subjects recorded what time each quinoa or refined 

wheat roll was consumed as well as amounts if they did not consume the whole roll in a single meal. 

Additionally, during the intervention periods, the subjects were requested to report if they had 

experienced any possible side effects related to the study rolls, such as flatulence, stomach 

problems, abdominal or bloating pain.  

Finally, a food frequency questionnaire (FFQ), which recorded food intake during the previous 7 days 

only, was undertaken by each subject before and at the end of each intervention period. The FFQ 

also contained questions regarding dietary habits including how much and how often the 

participants consumed vegetables, eggs, milk and meat, etc. 



150 
 

5.2.4 Analytical methods  

5.2.4.1 Plasma and urine  

Blood samples were collected in 2 × 10 ml Na2-EDTA tubes and then centrifuged at 1400 g for 12 

mins at 4°C to separate plasma, which was then aliquoted and stored at -80 °C until analysis.  The 

volume of 24-hour urine collections was recorded, the urine thoroughly mixed and then aliquots 

stored at -80 °C until analysis. 

5.2.4.2 Blood metabolites 

Blood plasma metabolites were analysed using the ABX Pentra 400 (Horiba Medical), using the 

following standard enzymic procedures (reference number, procedure): glucose (A11A01668, 

Peroxidase), total cholesterol (A11A1634, Cholesterol esterase / Cholesterol Oxidase), low-density 

lipoprotein (LDL) cholesterol (A11A01638, Detergent / Cholesterol Oxidase/ Esterase), high-density 

lipoprotein (HDL) cholesterol (A11A01636, Polyanions), Triglycerides (A11A01640, p-Chlorophenol + 

4-aminoantipyrine), Apo A1 (A11A01687, Turbidometric Immunoassay), Apo B (A11A01688, 

Turbidometric Immunoassay), C-reactive protein (CRP) (A11A01611, Latex Turbidometric 

Immunoassay), Aspartate transaminase (AST) (A11A01629, International Federation of Clinical 

Chemistry), Alanine transaminase (ALT) (A11A01627, International Federation of Clinical Chemistry). 

Plasma insulin was determined by enzyme-linked immunosorbent assay (ELISA) using the Invitrogen 

Human Insulin (KAQ 1251) kit. Plasma free fatty acids (NEFAs) were determined by the Acyl-CoA 

synthetase Acyl-CoA oxidase (ACS-ACOD) method using Wako Chemicals GmbH NEFA-HR(2) kit and 

antioxidant activity using the FRAP and TEAC assays as described in Section 3.2.  

5.2.4.3 Dried blood spots  

According to the manufacturer’s instructions, each circle (diameter 13 mm, area 133 mm2) of the 

Whatman 903 protein saver card holds 75-80 µl of whole blood sample. A 3.2 mm disc (diameter 3.2 

mm, area 8.0 mm2) is 6.0% of the 13 mm circle, which translates into 4.25 µL of whole blood. Based 

on the median haematocrit of 45% for the general population, a 3.2 mm disc therefore contains 

approximately 2.34 µL of blood plasma only which is used in viral load determination (Purves et al., 

2004). For analysis, protein saver cards were thawed at room temperature, and one 3.2 mm 

diameter disc equivalent to about 2.34 µL blood plasma was removed in duplicate from the centre of 

each blood spot using a Harris Uni-core puncher (Pat. No. 7093508, General Electric Company) 

(O'Neil, 1999; Stene-Johansen et al., 2016). The disc was eluted for 2 hours in 100 µL trichloroacetic 

acid (5% w/v) in an Eppendorf tube with shaking at 10-minutes intervals. After centrifugation the 
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supernatant was analysed for glucose using the procedure described in Section 5.1.4.2 above 

(Rattenbury et al., 1989; Ward et al., 1996). 

5.2.4.4  Correlation between venous blood glucose, dried blood spot glucose and glucose 

monitor measurement 

At the end of the intervention periods when the volunteers were wearing the FGM monitors after 

taking the fasting blood sample and before starting the test breakfast, the subjects were asked to 

scan the sensor with the reader, and the current glucose values shown on the reader was recorded. 

The blood glucose values derived from the first blood spots (0 min) on the protein saver cards were 

noted for the comparison.  

5.2.5 Calculations and statistical analyses 

The 3-day food records were analysed by Windiets 2015 (Robert Gordon University). The data were 

analysed by using the SPSS 22.0 for Windows statistical program (SPSS, Inc., Chicago, IL, USA), and 

the results are expressed as means and standard deviations. Normality of the variables was checked 

with the Shapiro–Wilk test and data that were not normally distributed were transformed (using 

log10 function) prior to statistical analyses and then back-transformed for presentation of results. To 

determine the differences in the measured variables following intake of the refined wheat and 

quinoa rolls, a paired t-test was used with P values less than 0·05 considered to be significantly 

different. The percentage change was calculated as follows: (value at 4 week – value at 

baseline)/value at baseline × 100.  

Area under the curve (AUC) was determined for blood glucose determined from the FGM by using 

GraphPad Prism (version 7.01; San Diego, CA, USA), and the results are expressed as means and 

standard deviations. Data were analysed for the last 4 days (D25-D28), the following 4 days in the 

washout periods (D29-D32), total 8 days (D25-D32) in the two treatment periods after the sensor had 

been applied, and the time periods 0-240 min after the test breakfast at the end of  each treatment 

period  (for FGM and Protein saver card). The changes within refined wheat or quinoa treatment in 

the AUC for glucose when expressed as a percentage of initial AUC for glucose: changes (%) = [(D29-

D32) - (D25-D28)]/ (D25-D28)*100. In the acute breakfast measurements of postprandial glucose 

concentration, fasting (0 min) glucose concentrations were used as baseline for incremental area 

under the curve (IAUC) calculations. 

 

 



152 
 

5.3 Results 

5.3.1 Dietary intake and compliance 

In this study, nutrient intake did not significantly differ within and between the two treatments, with 

the exception of a significant higher intake of carbohydrates during the refined wheat rolls period. 

According to daily records, compliance was very good (Table 5.1). During the intervention, the 

volunteers reported consuming all the portions of refined wheat and quinoa rolls (1 roll/day) as 

advised during both treatment periods. Despite the absence of detected effects on metabolic 

variables, quinoa rolls were well tolerated by the majority of the subjects, without any apparent side 

effects or complaints. A general positive experience with feelings of well-being was reported after 

the quinoa rolls period.  

Table 5.1. Mean daily intake of nutrients before and at the end of each treatment arm in all subjects 

 Refined wheat rolls (n=28) Quinoa rolls (n=28) 

 Baseline Week 4 Change 
(%)1  Baseline Week 4 Change 

(%)1 
p value for 
changes2 

Energy (KJ) 9505 ± 1320 10065 ± 1275 5.9  9600 ± 1630 9956 ± 1685 3.7 0.733 

Carbohydrates          

    (g/d)              241 ± 50 285 ± 46 18.3*  250 ± 60 270 ± 43.1 8.0 0.623 

    (% of energy) 50.2 ± 6.1 53.1 ± 5.0 5.8  49.5 ± 7.9 52.2 ± 5.5 5.5 0.799 

Protein          

    (g/d)              79.2 ± 16.1 87.5 ± 20.3 10.5  81.5 ± 16.9 90.4 ± 17.4 10.9 0.347 

    (% of energy) 17.0 ± 2.2 15.8 ± 2.4 -7.1  15.7 ± 2.2 16.9 ± 3.5 7.6 0.414 

Fat         

    (g/d)              64.2 ± 13.1 71.0 ± 18.4 10.6  76.5 ± 20.1 72.2 ± 19.8 -5.6 0.424 

    (% of energy) 29.8 ± 5.2 28.5 ± 4.5 -4.4  32.6 ± 5.0 28.9 ± 4.2 -11.3 0.396 

SFA         

    (g/d)              27.5 ± 5.4 29.3 ± 7.9 6.5  32.8 ± 8.9 30.7 ± 9.4 -6.4 0.198 

    (% of energy) 12.8 ± 2.2 12.0 ± 1.9 -6.25  13.9 ± 2.7 12.6 ± 2.2 -9.4 0.465 

MUFA         

    (g/d)              23.4 ± 5.8 25.7 ± 6.6 9.8  27.5 ± 6.8 25.0 ±7.6 -9.1 0.785 

    (% of energy) 10.9 ± 2.0 10.2 ± 1.5 -6.4  11.6 ± 2.1 10.2 ± 1.4 -12.1 0.743 

PUFA         

    (g/d)              9.3 ± 2.5 10.7 ± 2.4 15.1  10.3 ± 2.8 10.3 ± 2.4 0 0.854 

    (% of energy) 4.5 ± 0.8 4.4 ± 1.0 2.2  4.8 ± 0.7 4.3 ± 1.0 -10.4 0.782 

Alcohol          

    (g/d)              5.3 ± 2.3 6.6 ± 4.0 24.5  4.5 ± 1.9 5.2 ± 2.8 15.5 0.587 

    (% of energy) 1.8 ± 0.8 2.2 ± 1.3 22.2  1.5 ± 0.7 1.5 ± 0.9 0 0.154 

Dietary fibre (g/d) 22.1 ± 5.6 20.1 ± 6.4 -9.0  24.7 ± 6.9 22.5 ± 4.8 -8.9 0.687 

Mean values with their standard deviation.  
Mean values were significantly different from baseline (week 0): *P<0.05. 
1Changes (%) = (week 4 - baseline)/baseline *100 
2P for change means the comparison of changes after wheat and quinoa rolls consumption.  
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5.3.2 Markers of CVD risk and blood plasma antioxidant activity 

As indicated in Figure 5.2, 37 subjects were randomized to participate in the intervention study. Of 

these 28 completed the intervention, providing all fasting blood samples, urine and stool samples.  

25 subjects additionally successfully completed the FGM continuous glucose monitoring. 

5.3.2.1  Anthropometric variables  

Anthropometric data for the study participants are shown in Table 5.2. The mean age of participants 

was 51.54 years (range 36 to 70). Average BMI was 27.7 kg/m2 showing that the objective of 

recruiting overweight volunteers had been achieved. Mean body weight, BMI and body fat 

percentage did not change throughout the study period. Systolic (SBP) and diastolic (DBP) blood 

pressure values were mildly elevated (SBP >120 mmHg) but did not change during the intervention 

period with any of the treatments (p>0.05).  

5.3.2.2 Blood variables and antioxidant capacity 

At the end of the intervention, there were no significant effects of quinoa and refined wheat rolls 

consumption on fasting plasma concentrations of insulin, total cholesterol, HDL cholesterol, NEFAs, 

ApoA1, ApoB, AST, ALT and CRP with respect to corresponding baseline measurements. The 

difference in change in each intervention period was also not significant for any of the parameters 

measured. Neither treatment affected the ratios of HDL/Total Cholesterol or ApoB/ApoA1. However, 

after 4 weeks of quinoa roll consumption, there was a significant decrease in glucose by 4.5% and 

LDL cholesterol by 5.7% compared with the corresponding baseline, but the changes between the 

two treatments did not reach significance level. Surprisingly, there was an unexpected increase in 

triglycerides concentration by 14.3% after 4 weeks of consuming the quinoa rolls (p=0.049), with no 

difference after wheat rolls consumption; there was no significant difference in change between the 

two treatments. Plasma antioxidant capacity analysed by both FRAP and TEAC assays was not 

affected by the treatments.  
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Table 5.2. Effect of refined wheat and quinoa rolls on anthropometry, blood pressure, blood parameters and plasma antioxidant capacity measures. 

 Refined wheat rolls (n=28)  Quinoa rolls (n=28)   

 Baseline  Week 4 Change (%)2  P3  Baseline  Week 4 Change (%)2  P3  P for change  

(W vs Q)  Mean  SD  Mean  SD  Mean  SD  Mean  SD  

Age 51.5 10.7  - - -   - -  - - -   - 

Body weight (kg) 85.8 9.5  86.0 9.3 0.2 0.404  85.9 9.6  85.8 9.5 -0.1 0.508  0.279 

BMI (kg/m2) 27.6 2.3  27.7 2.3 0.3 0.379  27.7 2.38  27.6 2.37 -0.4 0.553  0.281 

Body fat percentage (%) 25.4 5.2  25.7 5.0 1.2 0.126  25.4 5.2  25.2 5.0 -0.8 0.253  0.331 

Blood pressure (mmHg)                  

     Systolic 129.5 12.2  130.5 12.2 0.8 0.280  128.8 12.6  128.5 11.0 -0.2 0.869  0.272 

     Diastolic 85.4 10.2  86.4 14.5 1.2 0.550  84.1 9.7  85.8 10.1 2.0 0.200  0.726 

Blood variables                  

Glucose (mmol/L) 5.71 0.56  5.64 0.53 -1.2 0.483  5.84 0.63  5.58 0.68 -4.5 0.009  0.103 

Insulin (pmol/L) 54.86 21.09  58.41 26.67 6.47 0.516  54.07 25.35  61.50 32.32 13.74 0.187  0.278 

Cholesterol (mmol/L)                  

     Total  5.63 1.20  5.50 0.99 -2.3 0.416  5.64 1.04  5.54 0.78 -1.8 0.396  0.769 

     LDL 3.53 0.93  3.36 0.76 -4.8 0.168  3.49 0.84  3.29 0.65 -5.7 0.024  0.439 

     HDL 1.36 0.25  1.38 0.23 2.0 0.470  1.39 0.22  1.39 0.22 0.23 0.939  0.363 

Triglyceride (mmol/L) 1.41 0.59  1.53 0.59 8.92 0.102  1.39 0.52  1.59 0.57 14.34 0.049  0.587 

NEFA (µmmol/L) 398.09 172.23  358.62 135.28 -9.91 0.130  421.99 173.61  353.72 152.60 -16.18 0.086  0.587 

Apo (g/l)                  

     ApoA1 1.38 0.19  1.38 0.18 0.03 0.985  1.41 0.18  1.39 0.16 -1.50 0.318  0.415 

     ApoB 1.16 0.25  1.12 0.20 -3.30 0.247  1.15 0.21  1.12 0.16 -2.05 0.318  0.798 

Ratios                  

     HDL/Total 0.25 0.08  0.26 0.05 7.01 0.565  0.25 0.06  0.26 0.05 3.16 0.755  0.295 

     ApoB/ApoA1 1.25 0.36  1.27 0.27 3.47 0.472  1.26 0.26  1.26 0.26 0.37 0.671  0.203 

CRP (mg/l) 1.69 0.71  2.21 0.69 30.8 0.154  1.72 0.41  1.43 0.28 16.9 0.317  0.197 

AST (U/L) 41.07 17.79  40.21 16.55 -2.09 0.589  47.18 47.35  42.79 27.97 -9.31 0.296  0.526 

ALT (U/L) 34.50 26.80  35.68 26.39 3.42 0.500  60.39 46.78  39.28 38.61 -34.96 0.332  0.277 

Antioxidant capacity                  

FRAP (µmol Fe2+ E/L) 355.63 61.35  344.81 47.38 -6.95 0.238  348.68 45.68  347.21 48.30 -1.47 0.899  0.557 
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TEAC (µmol Trolox  

equivalent/L)            

0.69 0.07 

 

 0.69 0.05 0 0.991  0.70 0.06  0.69 0.07 -0.01 0.387  0.556 

 

 

 

                
1BMI, body mass index; CRP, C-reactive protein; AST, aspartate transaminase; ALT, alanine transaminase.  
Mean values with their standard deviation.  
2Changes (%) = (week 4 - baseline)/baseline *100 
3Mean values were significantly different from baseline (week 0): P<0.05. 
4P for change (W vs Q) means the comparison of changes after wheat and quinoa rolls consumption. 

https://en.wikipedia.org/wiki/Aspartate_transaminase
https://en.wikipedia.org/wiki/Alanine_transaminase
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5.3.3 Flash glucose monitoring 

Of 28 subjects with sensor records, for one subject, the sensor was removed early due to discomfort 

with the sensor, and three subjects had less than 4 days of data because of accidental ‘’falling off’’ or 

poor compliance with transferring data to the reader.  These subjects were subsequently removed 

from analysis, thus, full sensor records on 24 subjects remained for analysis (primary sensor failure of 

14.3%). 

5.3.3.1 Area under curve 

Data for AUC the glucose curve determined by FGM are shown in Figure 5.3. For sensor glucose 

concentrations, although the AUC between subjects consuming refined wheat rolls or quinoa rolls 

(D25-D28) and without rolls (D29-D32) offered did not differ within treatments, there was a trend for an 

increase by 2.0% in the AUC for the first 4 wash-out days after quinoa rolls consumption compared 

with wheat consumption (p=0.054). Moreover, there were significant difference between treatments 

in changes in the AUC for glucose when expressed as a percentage of initial AUC for glucose (refined 

wheat rolls -2.2%, quinoa rolls 2.0%, p=0.001). There was no statistical difference in AUC for glucose 

for the total 8 days between treatments (D25-D32 W vs D25-D32 Q) although it was numerically higher 

in the wheat treatment period.  However, the AUC for glucose during the last 4 days (D25-D28) of the 

quinoa treatment was significantly lower than that for the same period of the refined wheat 

treatment (p=0.039).  

 

 

Figure 5.3. The area under curve of glucose concentration responses to intake of quinoa and refined wheat rolls during the 

8 days (D25- D32). Values are means with their standard deviations represented by horizontal bars (n=24). Rolls means 4-day 

period whilst consuming the rolls at the end of the treatment period (D25-D28); No Rolls means the first 4 days of the 

washout period (D29-D32).  Difference was consider significant if P<0.05 (paired-samples t test). 
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5.3.3.2 Postprandial glucose 

The measurements of postprandial glucose concentrations derived from the FGM System over the 4 

hour postprandial period are presented in Figure 5.4. No effects of the order of quinoa or refined 

wheat rolls consumption were detected in glucose responses. At baseline, the glucose concentration 

was slightly lower in the quinoa treatment than in the wheat treatment but this was not statistically 

significant (p>0.05). After the test meals plasma glucose concentrations increased significantly from 

the baseline concentration for both treatments, and remained above baseline up to 4 h post-meal. 

Following the quinoa roll treatment, the glucose responses at 105, 120 and 135 min were 

significantly lower than those after the control meal (p<0.05, p<0.01 and p<0.05, respectively). The 

IAUC for glucose for the 4 hour glucose responses was, on average, 5.6% (p<0.05) lower after 

consumption of the quinoa rolls compared with the control meal. The glucose response curve 

following the refined wheat meal was at its highest at about 60 min and remained at approximately 

the same concentration up to 120 min.  The peak glucose concentration was also observed at 60min 

after the ingestion of the quinoa meal, but then decreased more rapidly until 120 min and then more 

slowly between 120 and 240 minutes.  The difference in peak glucose response or time to peak 

glucose response on the two meals did not reach statistical significance (p=0.177 and p=0.235, 

respectively) due to highly variability in individual responses. 

 

 

Figure 5.4. Mean concentrations of glucose responses for 240min after intake of quinoa and refined wheat breakfast meals 
after 4 weeks of intervention measured by FGM. Values are means with their standard errors of mean represented by 
vertical bars (n=24). *Mean values were significantly different between meals: *P<0.05, **P<0.01 (paired-samples t test 
with Bonferroni correction). 
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5.3.4 Postprandial glucose response derived from protein saver cards 

The changes in postprandial capillary blood glucose response in dried blood spot samples extracted 

from finger-prick blood sampling on protein saver cards are shown in Figure 5.5. The ingestion order 

of the quinoa rolls breakfast and refined wheat rolls breakfast had no effect on the results.  Values for 

glucose concentration are similar to those seen using the FGM system (Figure 5.4). At baseline (0 

min), there were no significant differences in the concentrations of capillary blood glucose among 

the four test meal occasions. The peak capillary blood glucose concentrations at 60 min after all test 

meals were all significantly elevated compared with the respective baseline concentrations and then 

fell slowly thereafter. There was a suggestion that the glucose concentrations went down more 

quickly following quinoa rolls breakfast at week 4 but differences in capillary blood glucose 

concentrations between the four test meal occasions did not reach significance at any time point 

postprandially over 4 hours.  At 120 min, following quinoa rolls consumption the glucose resulted in a 

significantly lower glucose concentration compared with baseline and the change in glucose 

response observed in the quinoa treatment at 120 min was significantly lower than that for the 

wheat treatment (p=0.03). By 240 min, blood glucose concentrations had not returned to baseline 

levels. In response to the test meal, the total IAUC for capillary blood glucose from baseline to any 

time points did not significantly differ between the four test meal occasions. 

 

 

Figure 5.5. Mean concentrations of capillary blood glucose responses 240min at baseline and after 4 weeks of intervention 
after intake of quinoa and refined wheat breakfast meals. Values are means with their standard errors of mean 
represented by vertical bars (n=28).  
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5.3.5 Relationship between venous blood glucose, dried blood spot glucose and 

glucose monitor measurements 

The mean values of glucose concentrations from fasting venous plasma samples and FGM appeared 

to be quite similar in this study, showing no differences between these two methods (p>0.05). DBS 

glucose concentrations, however, were significantly higher than venous glucose concentrations, with 

an overall mean difference of 0.28mmol/L; DBS glucose concentrations were not significantly differ 

from FGM values, however. The regression analyses of the different glucose analysis methods are 

presented in Figure 5.6. The correlation coefficient between venous and DBS glucose concentration 

values, venous and FGM glucose concentration values, DBS and FGM glucose concentration values 

were all significant (p<0.01), but the regression coefficients were relatively low, less than 0.5 

(R2=0.3973, 0.4409 and 0.2466, respectively).  

Research supports the Bland–Altman plot as an accepted statistical method of data plotting used in 

determining the agreement between two measures (Preiss and Fisher, 2008). As shown in Figure 5.7, 

Bland-Altman plots of differences in the different glucose analysis methods showed good agreement 

between each two methods, with few samples falling outside the 95% limits of agreement (LOA) for 

each comparison. However, it should be noted that the wide range of the 95% limits of agreement 

moderately reduced the clinical reliability, although the bias was small. As expected, Figure 5.7 (a) 

which shows the Bland-Altman plot of the difference between venous blood and DBS glucose 

concentrations for each individual observation, consistently demonstrated higher values for DBS 

than venous glucose concentrations.  
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Figure 5.6. Correlation between (a) venous and DBS glucose values (n=24×4), (b) venous and FGM glucose values (n=24×2), 
(c) DBS and FGM glucose values (n=24×2).  
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Figure 5.7. Bland-Altman plot of glucose concentrations showing relative differences between (a) venous and DBS methods 
(n=24×4), (b) venous and FGM methods (n=24×2), (c) DBS and FGM methods (n=24×2). 
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5.4 Discussion  

5.4.1 CVD risk markers  

Currently, whole grain cereals are generally recognized as an important part of a healthy diet, and at 

least 3 to 5 servings (16 g/serving) daily are specially recommended in the Dietary Guidelines for 

Americans 2015 (insert reference to guidelines here), while at least 6 servings are recommended for 

adults aged from 19 to 50 years in the 2013 Australian Dietary Guidelines (insert reference to 

guidelines here). Epidemiological studies consistently suggest an inverse association between the 

intake of whole grain food and risk of CVD, type 2 diabetes, cancer and obesity (He et al., 1995; 

Chatenoud et al., 1998; Jacobs et al., 1998; Liu et al., 1999b; Jacobs et al., 2000; Mellen et al., 2008a; 

O'Neil et al., 2010; Ye et al., 2012; Aune et al., 2016; Chen et al., 2016). Quinoa, as a whole grain, has 

attracted considerable attention recently, yet apparently little research had been done on its 

beneficial effects against CVD risk. To date only four quinoa intervention studies in human beings 

have been published, but these describe variable results (Jenkins et al., 2008; Farinazzi-Machado et 

al., 2012; De Carvalho et al., 2014; Zevallos et al., 2014) as discussed in Section 2.4. The present 

study assessed changes in CVD risk markers in response to daily intake of quinoa rolls delivering 20 g 

quinoa per day compared with refined wheat rolls over a relatively short period (4 weeks), using a 

random crossover experimental design. However, the present study cannot strongly support the 

hypothesis that quinoa would have beneficial effects on CVD risk markers, specifically fasting LDL 

cholesterol concentrations, as intake of quinoa rolls failed to produce any favourable changes in 

metabolic variables compared with refined wheat rolls. For example, although the reduction in LDL 

cholesterol (-5.7%) in the present study between baseline and after consuming quinoa was 

comparable to the significant reduction (-5.9%) in the study of De Carvalho et al. (2014), the absence 

of differences between treatments in the present study was due to an unexpected cholesterol-

lowering effect after the refined wheat rolls treatment. Consequently, the difference in fasting 

plasma LDL cholesterol concentration was only -0.9% after 4 weeks intake of quinoa rolls compared 

with the control, suggesting a very modest improvement, if any, in the CVD risk profile.  

The lack of improvement in fasting plasma lipids (total, LDL and HDL cholesterol, triglycerides) in the 

present study, is in agreement with the study of Zevallos et al. (2014) which analysed the 

gastrointestinal effects of 50g/d quinoa intake for 6 weeks as part of their usual diets in celiac 

patients, as well as the study by Jenkins et al. (2008) except for significantly increased HDL 

cholesterol. However, this finding appears to contrast with other two studies using similar doses and 

duration by Farinazzi-Machado et al. (2012) and De Carvalho et al. (2014), in which total, LDL 

cholesterol and triglycerides but not HDL cholesterol levels were significantly lowered after 
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approximately 1 month of consuming 19.5 g quinoa bars and 25 g quinoa flakes in healthy students 

and overweight postmenopausal women, respectively. It has been suggested that inflammation is an 

important contributor to the development of atherosclerosis. As a frequently used marker of 

inflammation, fasting plasma CRP failed to show any responses in quinoa rolls consumption in this 

study, which was in accordance with the result of study by Jenkins et al. (2008). The hepatic enzymes 

AST and ALT are both clinically considered to be sensitive indicators of liver damage or injury from 

different types of diseases or conditions, although ALT is more specific and more commonly 

increased than AST for the liver. In the present study, no significant changes in the levels of AST and 

ALT were detected after intake of quinoa rolls, although ALT concentrations were numerically 

decreased, in contrast to the study of Farinazzi-Machado et al. (2012) which reported lower values 

of AST, with ALT unaffected after1 month consumption of quinoa bars.  In an animal study, the mean 

values of serum AST and ALT were significantly reduced in Male Wistar albino rats fed with a high fat 

diet with 60% milled quinoa.  This was attributed to the high levels of quinoa polyphenols, but this 

has not been confirmed in human subjects to date. It is noteworthy that the results from the four 

studies mentioned above should be viewed or explained with caution due to inappropriate (non-

refined grain) or lack of control treatments used in these studies. Difference in subject 

characteristics, study duration, amounts and mode of quinoa foods provided in studies may account 

for these apparently conflicting results. 

Anthropometric and blood variables did not significantly differ between treatments at study entry. 

The lack of changes in anthropometric variables throughout the 8-week study period, including body 

weight, BMI and body fat content, suggests that subjects followed their physical activity and habitual 

diet routines throughout the study potentially minimizing confounding effects. Also, energy intake 

and overall dietary intake was not affected by the intervention. Moreover, the absence of changes in 

body weight or BMI between treatments was in accordance with previous studies investigating 

quinoa interventions, although epidemiological studies have found that intake of whole grain was 

related to lower BMI, and one non-peer reviewed study have shown 0.9-1.4 kg weight loss on a 

whole grain diet in relation to equal servings of refined grain diet over 4-6 weeks (Jacobs et al., 2004; 

Harland and Garton, 2008; Jenkins et al., 2008; McKeown et al., 2009; Farinazzi-Machado et al., 

2012; De Carvalho et al., 2014). The majority of these earlier studies, however, were based on much 

higher intakes of whole grain wheat, rye or oats compared with refined alternatives, and none 

included quinoa. Considering that subjects in this study were all overweight (BMI>25kg/m2), the 

small 0.3 kg reduction in weight would indicate that the dose of quinoa used in the study was too 

small to cause changes in body weight. 
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To date, there have been no apparent indications of an improvement in glucose control after quinoa 

foods consumption, which may be unsurprising since none of the subjects included in the earlier 

studies had impaired glucose tolerance or diabetes. There has been one human intervention study 

which showed a significant reduction in fasting plasma glucose concentration after inclusion of two 

slices of quinoa bread into each individual’s habitual diet for 6 months. However, this study was 

performed in 210 patients with type 2 diabetes (Jenkins et al., 2008), and although quinoa was 

included in the intervention it was only part of a wider dietary change. 

The presence of many ‘trend’ results, such as glucose, insulin and LDL cholesterol values, in the 

present study indicates that significant results might have been obtained with larger numbers of 

subjects. Besides, there were several reasons that might account for the absence of positive 

response. Firstly, the duration of this controlled human intervention study, representative of a very 

short period of dietary alteration in the context of lifelong dietary exposures, may not have been 

sufficiently long to detect favourable effects on markers of CVD risk.  Some studies have found 

significant reductions in both plasma total and LDL-cholesterol after consuming diets enriched with 

whole grain or quinoa foods, including in healthy and normocholesterolaemic individuals at baseline 

with relatively short duration interventions (Behall et al., 2004; Giacco et al., 2010; Maki et al., 2010; 

Farinazzi-Machado et al., 2012; De Carvalho et al., 2014). Secondly, the lack of intervention effects 

may also be a result of lower dose consumed by subjects daily. According to epidemiological studies, 

beneficial health effects of whole grains can be expected at a level of 3 (16g) servings per day 

(Anderson et al., 2000). The daily amounts of quinoa provided during the present study (20g) was in 

the range of usual whole grain intake of about 16-25 g/d, but much lower than minimum 

recommended intake of 48-96 g/d (Cleveland et al., 2000; Maras et al., 2009). In this study, only 

refined wheat and wheat-quinoa rolls were provided for inclusion in the participants’ usual diets. 

Nutritional profile analysis showed that the nutrient contents between these two rolls were similar, 

with the exception of a higher concentration of total dietary fibre in quinoa rolls, as expected 

(Section 4.3). The higher concentration of total dietary fibre in quinoa rolls might contribute to 

relatively higher intake of total dietary fibre higher during quinoa rolls treatment compared with 

refined wheat rolls treatment, according to 3-day food records shown in Table 5.1. However, it 

cannot deny the possibility that refined wheat and quinoa rolls have replaced healthier foods 

containing higher concentration of total dietary fibre, since the intake of total dietary fibre were 

lower by around 2 g/day at week 4 in comparison with the baseline within both two treatments. 

Many epidemiological studies have shown that soluble fibre was the main contributor to the 

cholesterol-lowering property of whole grains intake (Glore et al., 1994; Truswell, 1995; Brown et al., 

1999). However, the higher content of insoluble dietary fibre in quinoa roll is the main cause of the 
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large difference in total dietary fibre between these two rolls. This may in part explain the lack of the 

response in plasma cholesterol in the current study.  Thirdly, it may have been better to focus on an 

‘at risk’ population with higher fasting plasma LDL cholesterol in terms of CVD risk. However, a 

clinically high-risk population was not chosen for the current study, because the results of this study 

was expected to benefit general population as a whole. Instead, the current study targeted 

overweight males (BMI >25 kg/m2) which may be at elevated CVD risk, but are also representative of 

the general population in different countries, where overweight is likely to become normal. Fourthly, 

a mixture of quinoa and other grains as an experimental diet might be not a good option to deliver 

quinoa to humans compared with other forms of pure quinoa foods, such as bars and flakes, which 

were included in the studies observing significantly positive results by Farinazzi-Machado et al. 

(2012) and De Carvalho et al. (2014), respectively. For example, in the present study the unexpected 

reduction in LDL cholesterol concentration in the refined wheat rolls treatment made the 

improvement in consumption of 20 g quinoa flour insignificant. Also, the changes in quinoa 

treatment may be partly attributed to the 80% of refined wheat in quinoa rolls in this study, which 

caused some uncertainties to discuss. But it should be noted that the positive results from the above 

two studies may be caused by change or errors instead of successful research due to lack or 

inappropriate control and other reasons. Thus, taken altogether, it cannot deny the fact that there is 

possibility of no significant effect of quinoa consumption on CVD risk. To ensure that a study can 

clearly show whether an effect exists or not, a different type of study is strongly necessary. For 

example, short duration using much higher doses than what is feasible in a normal diet 

(concentrated foods without non-functional components such as starches ), with a pre-determined 

minimal outcome, if the result is smaller than this, it can be concluded that there is no effect of 

quinoa consumption. However, if protective effects occurs, a concentrated food should be made by 

extracting the specific components such soluble fibre, saponins from quinoa and removing anything 

else for the future in vivo studies in order to explore active component that is responsible for the 

effects.  

5.4.2 Plasma antioxidant activity  

One potential mechanism for the protective properties against CVD provided by wholegrain 

products consumption has been attributed to their antioxidant content, which may help to reduce 

the oxidation of LDL cholesterol, thereby reducing cardiovascular risk. The impact of polyphenols in 

the diet is controversial; for example, it is not clear whether dietary polyphenols can be absorbed 

intact from the diet in sufficient quantity to affect ‘antioxidant status’. It is possible that modified 

polyphenolics may instead act as signalling molecules in the body (Spencer, 2009). The effect of 
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wholegrain products consumption on antioxidant status has been investigated in both animal 

models and human subjects, but the number of studies remains small. For laboratory rats a wild rice 

diet fed for 8 weeks suppressed oxidative stress by enhancing antioxidant activity both in the serum 

and liver, even when fed a diet high in fat and cholesterol, as reported by Zhang et al. (2009a). In 

accordance with this, the antioxidant content of plasma, heart and lungs in rats was improved after 

5 weeks inclusion of amaranth seeds in the diets (Paśko et al., 2011). Additionally, the results of the 

study by Khan et al. (2015) demonstrated that the acute intake of pasta containing 30% red whole-

grain sorghum significantly improved antioxidant status and enhanced markers of oxidative stress in 

healthy subjects compared with baseline (0min).  

In the present study the plasma antioxidant capacity analysed by FRAP and TEAC methods showed 

no significant difference in this study probably due to low intake of wholegrain quinoa or short 

duration, despite the fact that the antioxidant capacity of quinoa rolls was greater in relation to that 

of refined wheat rolls. In addition, the samples used in the analysis were taken after an overnight 

fast, therefore any acute change in plasma antioxidant content following a meal enriched with 

polyphenols may have subsided.  A similar lack of response in plasma antioxidant capacity was seen 

during the whole-grain intervention study of Jones et al. (2004a) and Jones et al. (2004b), in which 

human subjects were provided three 23 g servings of wholegrain food per day for 8 weeks and then 

increased their intake of whole-grain food to six 23 g servings per day for a further 8 weeks.  Thus 

higher doses and longer duration were not effective in changing ‘antioxidant status’. Similar results 

were also observed in the study by Enright & Slavin, (2010), implying that addition of six or eight 

servings of whole-grain food per day may be insufficient to cause a significant increase in plasma 

antioxidant capacity. Recently, according to Price et al. (2012), inclusion of wholegrain wheat 

aleurone-rich food into habitual diets for 4 weeks failed to induce any favourable effects on 

antioxidant status, including superoxide dismutase activity and antioxidant activity measured by the 

FRAP method, although the greater amounts of cereal products consumed by subjects daily provided 

much higher content of total phenolics with stronger antioxidant capacity compared with the refined 

wheat and quinoa rolls in the present study. Together, the lack of response may, at least partly, 

reflect that antioxidants from whole grains were possibly not fully absorbed by the digestive tract, 

subsequently having no effect on the antioxidant status in animals and human subjects. Moreover, it 

has been suggested that the lack of response in plasma antioxidant capacity was possibly a result of 

homeostasis, which describes the maintenance or regulation of stable conditions, or its equilibrium. 

Recently, several studies have reported that plasma antioxidant capacity rapid increased after intake 

of antioxidants-rich foods, but then returned to baseline levels over the following hours (Serafini et 

al., 2005; Harasym and Oledzki, 2014). 
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5.4.3 Postprandial glucose response: both from FGM and DBS  

Postprandial hyperglycaemia has been recognised as a risk factor for CVD, resulting in elevated 

cardiovascular morbidity and mortality in diabetic subjects (Martín-Timón et al., 2014). A number of 

studies have clearly demonstrated that the incidence of serious diabetic complications could be 

decreased by strict glycaemic control via diet and its constituents (Ghannadi et al., 2016). Quinoa is 

characterized by its excellent nutritional properties, which have many potentially biochemical effects 

(Abugoch James, 2009; Paśko et al., 2010). However, research on the hypoglycaemic effects of 

quinoa seeds consumption in vitro, and especially in vivo, still remains scarce.  

In the present study, the effects of a breakfast meal consisting of the test quinoa and wheat rolls on 

glycaemic responses derived from DBS and FGM (representing capillary and interstitial fluid glucose 

concentrations, respectively) was investigated in healthy overweight subjects. Although some 

important differences in glucose responses between quinoa and refined wheat rolls breakfast, such 

as significantly different IAUC values over 4 hours, were not observed in capillary blood samples, the 

glucose response curves were relatively similar; there was a more rapid fall approximately after 60 

mins after the quinoa roll breakfast. These results were in agreement with those of Gabrial et al. 

(2016), showing a similar substantial drop in capillary blood glucose concentrations in healthy 

subjects after intake of breakfast meals delivering 80 g quinoa compared with white wheat bread as 

a reference breakfast meal. In this earlier study, the quinoa meal had significantly lower incremental 

area under curve (IAUC) values for blood glucose in diabetic subjects compared with a white wheat 

bread, while no significant difference was detected in healthy subjects. There were no significant 

differences in the peak rise of blood glucose between the two breakfast meals in both healthy and 

diabetic subjects. In addition, blood glucose concentrations started to decrease gradually for the 

quinoa but not for white wheat bread in both healthy and diabetic subjects and returned to near-

fasting baseline levels by about 210 min. A test meal containing 50 g available carbohydrates as 

quinoa was provided to subjects in the study of Berti et al. (2004).  The results showed that the AUC 

and glycaemic index (GI) for quinoa were slightly lower than those of gluten-free bread and gluten-

free pasta but did not reach significance (p<0.05), and no significant differences in satiety, fullness 

and desire to eat were observed between each treatment. In an animal study, rats fed a diet with 

20% quinoa exhibited lower food intake (p<0.01), whereas there was only 3.4% improvement in 

blood glucose profile in the quinoa group compared with the control group.  

The postprandial glycaemic impact of foods is closely associated with the rate of carbohydrate 

digestion and is reliably characterized by the GI, a model which enables comparison of various 

starch-containing foods (Jenkins et al., 2002). Predicted glycaemic indexes (pGI) can be calculated 
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from the AUC (g RSR/100g Total available Carbohydrates*min) of reducing sugars released (RSR). In 

an in vitro study, where starch digestibility of quinoa bread was analysed using a multi-enzyme 

dialysis system, the AUC and pGI for quinoa were slightly lower than of wheat bread (-5%), but there 

was no significant differences between these two breads (Wolter et al., 2013). The lower pGI of 

quinoa may be explained by a significantly lower carbohydrates content of quinoa bread than that of 

wheat bread. In contrast to this, Berti et al. (2004) reported that the AUC of digested starch for 

quinoa was significantly lower than gluten-free bread and bread-like products, although the AUC of 

digested starch of quinoa and two pasta did not differ significantly. Due to the principle role played 

by the rate of starch digestion, measurement of this in food in vitro has been proposed as a cheaper 

and less time-consuming method to predict in vivo properties. However, it should be noted that 

some metabolic factors that affect glycaemia in vivo, such as glucose absorption, the rate of gastric 

emptying, gut hormone profiles and limited starch accessibility to α-amylase, cannot be completely 

mimicked through in vivo assays (Berti et al., 2004; Fardet et al., 2006). 

This study is the first to show a reduction in glycaemia following regular consumption of quinoa. The 

AUC for glucose over the four days at the end of the quinoa treatment period was borderline 

significantly lower than the following four days when quinoa consumption ceased (p=0.054), and 

also was significantly lower than that of the four days at the end of the wheat treatment period 

(p=0.039) (Figure 5.3). This may have been in part due to the cumulative effect of the reduced 

postprandial glycaemia seen after the breakfast test meal (Figure 5.4 and Figure 5.5). The factors 

responsible for the positive glucose response after intake of quinoa rolls are not evident in this 

study. The differences in the postprandial glucose responses cannot be explained by the time taken 

by the ingestion of the breakfast, since the subjects were encouraged to finish the meals in a very 

short period of 3-5 mins. Several previous in vitro and in vivo studies have shown that polyphenols 

may affect carbohydrate digestion and absorption and thereby postprandial glucose responses 

(Kobayashi et al., 2000; Hanamura et al., 2006; Torronen et al., 2010; Nyambe-Silavwe and 

Williamson, 2016). In human studies, beverages rich in polyphenols have demonstrated favourable 

impacts on postprandial glycaemia.  For example, delayed absorption of glucose after intake of 

coffee and apple juice by humans has been demonstrated (Johnston et al., 2002; Johnston et al., 

2003). As a result, a few studies have investigated the role of polyphenols in modulation of 

postprandial glycaemia, mainly as a component of fruits and vegetables or individual compounds, 

but the studies that focused on the effects of polyphenols within whole grains on postprandial 

glycaemia are very limited to date.  In one human study, the 2-h postprandial concentrations 

following a meal of 30% red whole-grain sorghum pasta of plasma total polyphenols, antioxidant 

capacity and superoxide dismutase activity were significantly higher in healthy subjects compared 
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with baseline (0 min) value (p<0.001). Polyphenols were the major contributor to the increased 

antioxidant capacity, which was also associated with improved antioxidant status and enhanced 

markers of oxidative stress (Khan et al., 2015). The study illustrates that polyphenols may be 

absorbed alongside glucose during the postprandial period.  However, the lack of differences in 

fasting plasma antioxidant activity, suggests that the low dose of quinoa incorporated in the 

breakfast meal may only have negligible effects on the postprandial glycaemia observed. 

In addition to polyphenols, dietary fibre may also have potentially influenced the postprandial 

glucose responses to the quinoa roll breakfast. According to Ulmius et al. (2009), postprandial 

glucose and insulin responses can be affected by fibre-rich meals, depending on the source and dose 

of total and soluble fibre. However, most studies exploring these beneficial effects of fibre have 

focused on mixtures of fibre types or only soluble fibre, but not insoluble fibre (Wilmshurst and 

Crawley, 1980; French and Read, 1994; Vandeven et al., 1994; Tomlin, 1995; Tiwary et al., 1997). The 

relatively similar soluble fibre content of the test rolls shown in Table 4.3, suggests that it is unlikely 

that the soluble fibre could solely account for the differences detected in the glucose responses. 

Instead, the insoluble fibre (1.33 and 2.84 g/100g breakfast refined wheat and quinoa roll, 

respectively) may be the most likely factor contributing to the positive effects due to more than 

double amounts of insoluble fibre in quinoa rolls than in wheat rolls, although the overall 

contribution to the meal, and the whole diet is still relatively small. One previous study have 

demonstrated that the intake of insoluble fibre (31.2 g/d) over 3 days was associated with improved 

whole-body insulin sensitivity and a reduced risk of type 2 diabetes (Weickert et al., 2006). 

Furthermore, a high dose of insoluble fibre (a serving of 33 g) contained in a high-fibre breakfast 

meal supressed appetite, reduced food intake and improved glucose response to a meal after 

consumed 75 min later by healthy men, when compared with low-fibre cereal (1g of insoluble fibre), 

as reported by Samba and Anderson, (2007). Insoluble fibre consumption increases the rate of small 

intestine transit, thus, resulting in reduced starch hydrolysis and absorption (Jenkins et al., 1978; 

Lewis and Heaton, 1997). Weickert et al. (2005) also reported that increased secretion of glucose-

dependent insulintropic polypeptide, an incretin hormone, was detected in healthy women after 

intake of an insoluble fibre, stimulating the postprandial release of insulin. Additionally, insoluble 

fibres like resistant starch are additionally fermented by some bacteria in the colon, producing short-

chain fatty acids, which may enter the circulation and decrease production of hepatic glucose and 

circulating non-esterified fatty acids (NEFA) concentration, thereby increasing glucose storage and 

insulin sensitivity (Brighenti et al., 1995; Ostman et al., 2002). Some studies have reported that 

starch structure of quinoa was different from that of wheat (Filho et al., 2017; Li and Zhu, 2018). 

However, up to date, no studies have showed that different starch structure of quinoa compared 
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with other cereals was one of the causes for reduced postprandial glucose response. Inversely, it has 

been demonstrated that considerable variability exists in the amylose content of quinoa (3-20%), 

which is regarded to be lower than in cereal as wheat (20-30%). Starch with low amylose have higher 

glycemic indexes. Therefore, quinoa structure of quinoa was not included in this study as one of 

reasons contributing to reduced postprandial glucose. However, an important limitation of this 

investigation was that the amounts of available carbohydrate and other macronutrients were not 

equalized between treatments, as well as volume and calories. Consequently, the quinoa roll was 

slightly lower in available carbohydrate in comparison with the wheat roll, and a lower glycemic 

response would perhaps be expected. Next, the “second meal effect”, is an uncertain factor which 

may also have interfered with the postprandial glucose responses, since no standard meal was 

provided to subjects before the 12h fasting period before each visit (Wolever et al., 1988), although 

participants were asked to replicate their evening meal before each visit where possible. 

5.4.4 Correlation between glucose measurements from venous plasma samples, 

and DBS and FGM 

Dried blood spots (DBS) are whole blood obtained from finger-pricks and placed onto filter paper, 

dried and then eluted later for further laboratory analysis. Finger-prick blood has been clinically 

considered as a capillary sample, but actually it is a mixture of arteriolar, capillary and venous blood 

(Merton et al., 2000). In research settings, DBS are now generally considered to be a well- 

established alternative to venepuncture as a method for collecting samples for analysis of 

biomarkers in whole blood. Currently, a GI value for various foods can be measured by both venous 

and finger-prick blood sampling according to guidelines from WHO and FAO (Yang et al., 2012). DBS 

collection is simple, reliable, relatively painless, less expensive, less blood volume needed, and 

samples can be easily transported at ambient temperatures compared with conventional 

venepuncture, and needs minimal storage requirements (such as samples do not need to be 

immediately frozen after collection and can be stored in less space for a long time before analysis).  

DBS samples can be tested for a variety of blood metabolites, including glucose, cholesterol, 

triglycerides and haemoglobin. In the present study, the glucose concentration was slightly and 

significantly lower in venous blood than the results obtained from the DBS. The results in the present 

study are in accordance with those of Mdlalose et al. (2017) showing significantly higher mean 

glucose concentrations in DBS than venous blood observed in fish, but with a high correlation 

between the two methods (R2=0.898). This is most likely attributable to higher concentrations of 

glucose in both arterial and capillary blood than that of venous blood, since glucose absorbed in the 

small intestine sequentially diffuses from arteries into tissue cells through peripheral capillaries and 
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the de-oxygenated blood returns in the venous system (Burtis and Ashwood, 1994; Yang et al., 

2012). However, the results in the current study contrast with the studies of Ward et al. (1996), 

which showed that the two methods did not significantly differ and the two methods were highly 

correlated (R2=0.96). In another study, Lacher et al. (2013) demonstrated that the mean of DBS 

glucose was significantly lower than venous blood glucose concentration with high correlation 

(R2=0.81). One important fact that cannot be ignored is that the method of extraction of DBS 

glucose from protein saver card has not been standardised. In addition, the calculated value for the 

plasma concentration of glucose derived from the whole blood DBS is dependent on the 

assumptions for ‘average’ haematocrit for the population (Purves et al., 2004). 

In contrast to earlier forms of continuous glucose monitoring systems (CGM), the newest version of 

FGM, does not require finger-prick calibration because the highly improved production technology 

makes a factory calibration possible. Even though there is a physiologic lag of around 5-15 mins 

between glucose concentrations due to diffusion from capillary blood into interstitial fluid, 

depending on the rate of change in circulating glucose concentrations, the FGM system has been 

regarded as a suitable device for glucose control and prevention of hypoglycaemia in patients with 

impaired glucose tolerance. Despite the lack of need for calibration, the accuracy is still of critical 

importance in delivering therapeutic value. The use of venous glucose concentrations as a reference 

method is the key factor and is considered the most suitable when assessing the accuracy of the 

FGM device. In the present study, although the correlation was lower, the mean glucose 

concentration values from venous blood and FGM were not significantly different similar (p>0.05), 

and there was also a good agreement between them. In the few previous studies that have focused 

on this field, the mean absolute relative difference (MARD) is generally used to estimate accuracy of 

the FGM device. The FreeStyle Libre FGM in the studies of Bailey et al. (2015), Bonora et al. (2016), Ji 

et al. (2017) and Aberer et al. (2017) showed a range of MARD from 10.7% to 13.2%, along with low 

or high correlation, when directly compared with reference venous blood glucose outcomes. 

However, the studies mentioned above failed to reveal the higher or lower glucose concentrations 

which the two methods corresponded. 
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5.5 Summary and conclusion 

The results of the dietary intervention study indicate that consumption of 20 g quinoa per day in the 

form of a wheat-quinoa bread roll does not affect markers of CVD risk, although there is a suggestion 

that glycaemia may be improved through a reduction in postprandial glycaemic response. The 

primary outcome of the trial, change in LDL-cholesterol concentration was unaffected by the 

intervention. 

To the best of our knowledge, this is the first study comparing glucose concentrations derived from 

DBS and FGM to date. Although the mean DBS glucose concentration was higher by 0.30 mmol/L in 

comparison with that of FGM, there was no significant difference between them, with a weaker 

correlation. The ease of capillary blood taking suggests that this should be used as the reference, 

instead of venous blood, to calibrate the accuracy of CGM device. The lack of need for calibration in 

FGM device reduces the necessity to further compare these two methods in this study. 

Overall the results suggest some potential benefit of consuming quinoa on glucose response but this 

requires further investigation, possibly with larger doses of quinoa. The mechanisms by why quinoa 

may have this effect remain undetermined. 
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6 Chapter 6 Effect of quinoa consumption on the gut 

microbiome 

6.1 Introduction 

Prebiotics are defined as ‘non-digestible food ingredients that confer benefits upon host well-being 

and health by selectively changing the composition and/or activity of one or a limited number of 

bacterial species already resident in the colon’ (Gibson and Roberfroid, 1995). There is an increasing 

wealth of research to suggest the beneficial health effects of prebiotics on elevated mineral 

absorption, bowel habit and constipation, and recently, in decreasing the risk of some chronic 

diseases, such as CVD and colon cancer (Coudray et al., 1997; Kleessen et al., 1997). For example, it 

was revealed that intake of prebiotics lowered plasma total cholesterol and triglycerides 

concentrations in subjects especially those with hyperlipidmia (Davidson et al., 1998; Causey et al., 

2000). Likewise, epidemiological studies strongly show that whole grain intake is protective against 

several chronic diseases, including CVD, cancer, type 2 diabetes and obesity (He et al., 1995; 

Chatenoud et al., 1998; Jacobs et al., 1998; Liu et al., 1999b; Jacobs et al., 2000; Mellen et al., 2008a; 

O'Neil et al., 2010; Ye et al., 2012; Aune et al., 2016; Chen et al., 2016). Many of these observed 

health benefits offered by whole grains are likely to be the result of modulation of the gut 

microbiota, since whole grains are rich in a variety of indigestible carbohydrates, such as β-glucan, 

arabinoxylan, cellulose and fructan, but most of which are lacking in refined grains owing to the 

removal of the bran layer of grain during refining.  A number of in vitro fermentation and colonic 

studies also showed the prebiotic impacts of whole grain foods (Connolly et al., 2010; Connolly et al., 

2012a; Connolly et al., 2012b; Maccaferri et al., 2012). For example, Connolly et al. (2010; 2012b) 

reported that different whole grains, including oat products, significantly stimulated both 

bifidobacteria and lactobacilli bacteria in vitro, indicating a prebiotic potential of whole grain. 

However, studies to support the hypothesis that intake of whole grain as prebiotics can affect the 

bacterial composition and activities in the gut are still limited; moreover, no information exists on 

the prebiotic potential of whole grain quinoa. To test this hypothesis, this study was conducted to 

investigate the effect of intake of bread rolls enriched with quinoa as a whole grin source on the 

human gut microbiota in healthy subjects compared with refined wheat rolls.  

The aim was to investigate the impact of quinoa consumption on the gut microbiome.  The primary 

objective was to examine the bacterial diversity and relative abundance upon ingestion of quinoa 

rolls compared with refined wheat rolls. A secondary objective was to explore possible correlation 

between gut microbiota and markers of CVD risk, such as body weight, glucose and lipids. 
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6.2 Methods 

6.2.1 Experimental design and stool sample collection 

The design of the dietary intervention is described in detail in Chapter 5 of this Thesis.  Stool samples 

were collected from volunteers at the beginning and end of the treatment periods as described in 

Section 5.2, Methods. 

6.2.2 Bacterial DNA extraction and 16S rRNA bacterial profiling 

Faecal samples were collected and immediately stored at -80 °C until analysis. DNA was extracted 

from approximately 300 mg stool using the FastDNATM Spin Kit for Soil (MP Biomedicals) following 

the manufacturer’s protocol. The extracted DNA was sent to for sequencing. The 16S rDNA V4 region 

was selected for PCR applification since it has been shown to represent the taxonomic profile of 

microbial communities compared with characterisation of the full length 16S gene sequences 

(Caporaso et al., 2012). Sequencing was carried out in the Illumina MiSeq platform by using the 

2x250 bp paired-end protocol yielding pair-end reads that almost completely overlap. The primers 

applied in amplification possessed MiSeq sequencing and single-end barcodes, which allow pooling 

and direct sequencing of PCR products (Caporaso et al., 2012). 

Phylogenetic and alignment-based approaches were incorporated into the 16S rRNA gene pipeline 

data to maximize data resolution. The read pairs were demultiplexed based on the unique molecular 

barcodes, and reads were merged using USEARCH v7.0.1090, allowing zero mismatches and a 

minimum overlap of 50 bases (Edgar, 2010). Merged reads were trimmed at first base with Q5. 

Additionally, a quality filter was used for the resulting merged reads, and reads were discarded if 

containing above 0.05 expected errors. 16S rRNA gene sequences were clustered into Operational 

Taxonomic Units (OTUs), which is a term used to categorize groups of closely related bacteria at a 

97% sequence similarity level by using the UPARSE algorithm (Edgar, 2013). OTUs were mapped to 

an optimized version of the SILVA Database, which only contained the region of 16S V4 to determine 

taxonomies (Quast et al., 2013). Mapping the demultiplexed reads to the UPARSE OTUs resulted in 

recover of abundances. A custom script constructed a rarefied OTU table from the output files 

generated in the previous two steps for downstream analyses of alpha-diversity, beta-diversity, and 

phylogenetic trends (Lozupone and Knight, 2005). 

6.2.3 Calculations and statistical analyses 

The data were analysed by using the SPSS 22.0 for Windows statistical program (SPSS, Inc., Chicago, 

IL, USA), and the results are expressed as means and standard deviations. Differences in relative 
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abundance of taxonomic groups that were summarised at both phylum and genus levels within and 

between groups were analysed with paired t-test. A p-value of less than 0·05 was considered to be 

significantly different. The percentage change was calculated as follows: (value at 4 week - value at 

baseline)/value at baseline × 100. The data of baseline and week 4 from the quinoa treatment and 

refined wheat treatment was combined together (28 × 4 = 112 values) to explore the Spearman’s 

correlation between gut microbiota (bacterial diversity and relative abundance in phylum and genus 

levels) and markers of CVD risk. The statistical package R was applied for the analysis and 

visualization of microbiome communities, and the phyloseq package was used to import data and 

calculate alpha- and beta-diversity metrics (McMurdie and Holmes, 2013; R-Core-Team, 2014). This 

study rarefied each sample to 5,000 reads. Principal coordinate plots employed the Monte Carlo 

permutation test to estimate p-values (Dwass, 1957). All p-values were adjusted for the total 

number of comparisons with the use of a false-discovery (FDR) algorithm (Benjamini and Hochberg, 

1995).  
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6.3 Results  

6.3.1 Observed OTUs  

Following the extraction of DNA from the faecal samples, MiSeq sequencing was used to assess the 

effects of quinoa rolls consumption on the profile of the faecal microbiota. Samples were sequenced 

using Illumina MiSeq sequencing, which is currently the most widely platform for bacterial 16S rRNA 

gene amplicon sequencing. This resulted in a minimum of 3,109 rarefied high-quality reads per 

faecal sample as shown in Figure 6.1.  

 

 

Figure 6.1. Rarefaction curves of the observed OTUs at 97% sequence identity. 

Reads were clustered into operational taxonomical units (OTUs) delineated at 97% sequence identity 

because higher thresholds generated a dramatic increase of OTU numbers, which might represent 

the microdiversity at subspecies level (Caporaso et al., 2010). At a threshold of 97% sequence 

identity, a total of 11,424 OTUs were identified in the current study (median=102 OTUs, ranging 

from 42 to 170 OTUs). The results, along with the calculated microbial community alpha diversity 

indexes, are shown in Table 6.1.  Although the rarefaction curve did not plateau under the current 

sequencing, the number of observed OTUs of all samples had reached stable values at this 

sequencing depth, indicating that most of the microbial diversity had been captured in the data set 

despite the possibility to detect new phylotypes with additional sequencing efforts.  
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6.3.2 Diversity analysis 

To determine if any alternations in the microbial community structure of faecal samples occurred as 

a result of different intervention treatments, overall association tests were performed based on 

alpha and beta diversity analysis. Alpha and beta diversity measures offer a holistic view of 

biodiversity of the gut microbiota, but they focus on different aspects. In this study, alpha diversity 

measures were chosen as following: the observed OTUs number (after rarefaction) as a species 

richness measure, and Shannon index, Simpson’s index, Inverse Simpson index and Fisher's alpha 

parameter as an overall diversity measure including both species richness and evenness. High levels 

of variation were detected between subjects when the richness and diversity measures were 

assessed; however, none of these indices showed significant difference in stool samples within and 

between quinoa and refined wheat rolls treatment (Table 6.1).  

Table 6.1. Estimates of alpha diversity indexes in the stool samples at baseline and week 4 after refined wheat roll or 

quinoa roll consumption. 

 Wheat rolls (n=28)  Quinoa rolls (n=28)   
P for week 4 

(W vs Q)  Baseline Week 4 p-value  Baseline Week 4 p-value  

Richness          

    Observed OTUs 104.29 101.18 0.296  102.96 99.57 0.273  0.559 

Richness and evenness          

    Shannon index 3.30 3.29 0.922  3.35 3.36 0.869  0.381 

    Simpson’s index 0.92 0.93 0.902  0.93 0.94 0.428  0.328 

    InvSimpson index 17.88 17.47 0.787  19.17 18.67 0.736  0.483 

    Fisher's alpha parameter 21.11 20.30 0.260  20.78 19.89 0.250  0.537 

1 Difference between baseline and week 4 tested by paired t-test; mean values were considered significantly 
different if P<0.05.   

In terms of beta diversity, which describes overall microbial community structure, the distance 

metrics explaining similarity between bacterial communities were obtained from the individuals 

using Bray-Curtis similarity and Unifrac analyses (both weighted and unweighted). Unifrac differs 

from Bray-Curtis similarity which only consider the abundance, in that phylogenetic distances 

between observed organisms was included in the computation which incorporate information on 

evolutionary relationships of community members. Both weighted and unweighted Unifrac, as a 

quantitative and qualitative measure, respectively, are commonly applied in microbial ecology, 

where the former focus on inter-individual differences in the relative abundance of observed 

organisms, whereas the latter only reflects inter-individual differences in the presence or absence of 

observed organisms. Overall bacterial diversity, as evaluated by Bray-Curtis similarity and Unifrac 

analyses, was not significantly different within and between quinoa and refined wheat rolls 

treatments. To further examine if samples from the same groups would cluster together, Principal 

Coordinate Analysis (PCoA) plot, which is used to explore and visualize the similarity or dissimilarity 

https://en.wikipedia.org/wiki/Microbial_ecology
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between gut microbial communities of the individuals, were constructed based Unifrac distances 

(Figure 6.2, 6.3, 6.4). Data are shown as a 2-Dimensional plot to demonstrate the relationship, in 

which the different groups of individuals did not form overall visual discrete clustering in the PCoA 

plot across quinoa and refined wheat rolls treatment, indicating the overall microbiota was similar 

for both treatments. 

 

 

Figure 6.2. Principle coordinate analysis (PCoA) plots based on Bray-Curtis similarity. Each sample is depicted 
by a single symbol.  
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Figure 6.3. Principle coordinate analysis (PCoA) plots based on unweighted Unifrac analyses. Each sample is 
depicted by a single symbol.  
 

 

 



180 
 

 
Figure 6.4. Principle coordinate analysis (PCoA) plots based on Weighted Unifrac analyses. Each sample is 
depicted by a single symbol.  

 

6.3.3 Relative abundance of gut microbiota 

Relative abundance of the human gut microbiota and the phylum and genus level was determined in 

faecal samples of twenty-eight healthy volunteers before and after each intervention arm and are 

presented as a percentage (%) of total microbiota. The classification of sequences from the stool 

samples resulted in the identification of eighteen different phyla, with the top eight phyla listed in 

Table 6.2. At the phylum level, no significant differences were observed at baseline between 

treatments, as shown in Figure 6.5. The dominant microbial groups in all samples were the 

Firmicutes (64.14-71.65%) and Bacteroidetes (16.56-25.01%), following by Actinobacteria, 

Tenericutes, Euryarchaeota, Verrucomicrobia, Proteobacteria and Cyanobacteria with much lower 

abundance, all of which together accounted for more than 99% of the total faecal bacteria 

population. Consumption of both quinoa and refined wheat rolls resulted in a significant decrease in 

the relative abundance of Bacteroidetes (p=0.007 for wheat and p=0.031 for quinoa), and 

significantly increased the abundance of Firmicutes (p=0.014 for wheat and p=0.042 for quinoa) in 

stool samples compared with pre-intervention. The fall in abundance of Bacteroidetes and the rise in 

abundance of Firmicutes were both greater after consuming the refined wheat rolls than after the 

quinoa rolls, but there was no significant difference between the treatments (p=0.431). 

Furthermore, the ratios of Firmicutes to Bacteroidetes were higher after either consuming refined 

wheat rolls or quinoa rolls compared with baseline, but they were not significantly different 

(p=0.248 and 0.192, respectively) (Figure 6.6). None of the other phyla showed a significant change 

after intake of either refined wheat or quinoa rolls for 4 weeks. There were no significant differences 

between the two week 4 measurements of any of the phyla, indicating that quinoa had no effect on 

the profile of the microbiome over and above that seen by consuming the refined wheat rolls. 
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At the genus level, consumption of the refined wheat rolls resulted in a significant increase in the 

relative abundance of Fusicatenibacter and Subdoligranulum, but decreased Bacteroides with 

respect to baseline. On the other hand, consumption of quinoa rolls led to a significant increase in 

the relative abundance of both Anaerostipes and Dorea compared with the baseline.  

There were no significant differences between treatment groups comparing the change (∆QR vs 

∆WR) in relative abundance at the phylum or genus level. 
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  Table 6.2. Relative abundance of bacteria phylum and genus in stool samples of participants at baseline and week 4 after refined wheat roll or quinoa roll consumption 

  Wheat rolls (n=28)  Quinoa rolls (n=28)            
   
            P        
 (∆QR vs ∆WR) 
 
∆QR - ∆WR 

  Baseline Week 4 ∆WR P3  Baseline Week 4 ∆QR P ∆QR - ∆WR 

Actinobacteria 4.07 ± 3.57 5.31 ± 4.20 1.24 ± 3.65 0.083  5.07 ± 4.29 5.86 ± 4.83 0.79 ± 4.24 0.330 -0.45 ± 5.41 0.665 

 Bifidobacterium 2.97 ± 2.90 3.96 ± 3.49 0.99 ± 2.76 0.067  3.74 ± 3.63 4.23 ± 3.86 0.49 ± 3.67 0.485 -0.50 ±4.44 0.555 

Bacteroidetes 25.01 ± 13.71 16.56 ± 11.26 -8.45 ± 15.39 0.007  23.35 ± 11.70 17.92 ± 12.22 -5.43 ± 13.65 0.031 3.02 ± 20.00 

± 

0.431 

 Alistipes 3.45 ± 3.35 2.21 ± 2.54 -1.24 ± 3.61  0.081  3.20 ± 3.20 2.23 ± 2.40 -0.96 ± 3.69 0.180 0.28 ± 2.72 0.60 

 Bacteroides 15.46 ± 13.79 8.57 ± 8.58 -6.89 ± 10.76 0.002  12.45 ± 9.29 10.34 ± 10.02 -2.10 ± 8.67 0.210 4.79 ± 13.70 0.075 

Cyanobacteria 0.06 ± 0.15 0.02 ± 0.06 -0.04 ± 0.13 0.112  0.08 ± 0.30 0.09 ± 0.25 0.01 ± 0.39 0.865 0.05 ± 0.41 0.491 

Euryarchaeota 1.67 ± 2.83 1.32 ± 2.19 -0.36 ± 1.71 0.748  1.11 ± 1.94 1.54 ± 2.20 0.44 ± 1.28 0.084 0.79 ± 1.57 0.053 

Firmicutes 64.14 ± 14.51 71.65 ± 14.29 7.51 ± 15.16 0.014  65.55 ± 11.83 69.91 ± 12.33 4.36 ± 10.82 0.042 -3.15 ± 18.43 0.374 

 Anaerostipes 1.96 ± 2.05 2.64 ± 2.25 0.68 ± 1.87 0.065  1.70 ± 1.62 2.36 ± 1.93 0.66 ± 1.53 0.031 -0.02 ± 2.27 0.96 

 Blautia 3.43 ±2.48 4.70 ± 3.57 1.27 ± 3.53 0.067  3.92 ± 4.08 4.44 ± 3.20 0.52± 2.72 0.322 -0.75 ± 5.01 0.433 

 Dorea 1.87 ± 1.61 2.24 ± 1.37 0.38 ± 1.54 0.204  1.90 ± 1.36 2.50 ± 1.79  0.60 ± 1.50 0.044 0.22 ± 2.19 0.602 

 Faecalibacterium 7.57 ± 5.07 7.68 ± 5.72 0.11 ± 5.54 0.919  7.87 ± 5.18 7.56 ± 4.44 -0.31 ± 3.88 0.672 -0.42 ± 5.72 0.7 

 Fusicatenibacter 1.58 ± 1.44 3.01 ± 3.09 1.42 ± 2.76 0.011  2.21 ± 1.57 2.65 ± 2.39 0.45 ± 1.89  0.221 -0.98 ± 3.24 0.122 

 Romboutsia 5.06 ± 8.28 4.82 ± 5.74 -0.24 ± 7.02 0.859  4.41 ± 8.21 3.81 ± 4.00 -0.59 ± 6.45 0.630 -0.36 ± 5.85 0.75 

 Subdoligranulum 4.07 ± 3.01 5.97 ± 4.31 1.89 ± 3.47 0.008  5.25 ± 3.12 5.28 ± 3.87 0.03 ± 4.03 0.967 -1.86 ± 5.32 0.075 

Proteobacteria 1.41 ± 1.20 2.05 ± 3.38 0.65 ± 2.85 0.242  2.50 ± 5.51 2.58 ± 5.53 0.08 ± 3.46 

4646 

0.903 -0.57 ± 4.28 0.491 

Tenericutes 2.04 ± 5.29 1.30 ± 3.16 -0.74 ± 4.71 0.413  1.42 ± 3.68 0.89 ± 1.62 -0.52 ± 3.51 0.435 0.21 ± 6.06 0.853 

Verrucomicrobia 1.51 ± 3.12 1.65 ± 2.81 0.14 ± 2.04 0.725  0.87 ± 1.70 1.18 ± 2.21 0.30 ± 1.25  0.207 0.17 ± 2.38 0.712 

1 WR, wheat rolls; QR, quinoa rolls. Mean values with their standard deviation. 
2 ∆WR or ∆QR = week 4 – baseline 
3 Difference between baseline and week 4 tested by paired t-test; mean values were considered significantly different if P<0.05
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Figure 6.5. Relative abundance of gut microbiota at phylum level at baseline in quinoa and refined wheat 

treatment.  

 

 

Figure 6.6. Changes of relative abundance of Firmicutes and Bacteroidetes at baseline and week 4 in quinoa 

and refined wheat treatment. 

6.3.4 Correlation of gut microbiota and CVD risk markers 

In order to explore the relationship between relative abundance of gut microbiota and markers of 

CVD risk and, Spearman’s correlation test was carried out on the pooled data and the results were 

shown in Table 6.3. Very week or no correlations (Spearman’s ρ between 0.01 and 0.19), week 

correlations (Spearman’s ρ between 0.20 and 0.39) and moderate correlations (Spearman’s ρ 

between 0.40 and 0.59) were detected between gut microbiota and markers of CVD risk. 
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Anthropometric variables such as age and BMI correlated positively and inversely with observed 

OUT as well as α diversity (Shannon, Simpson, InvSimpson index and Fisher's alpha parameter), 

respectively. There were consistent correlations between lipids and microbiota, in particular for 

Anaerostipes and Blautia, which were positively associated with total, LDL and HDL cholesterol 

(0.362, 0.266 and 0.335, 0.251, 0.225 and 0.196, respectively).   
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Table 6.3.  Correlation of markers of CVD risk and observed OUT, bacterial α diversity and the relative abundance of gut microbiota.  

 

Observed 
OTU 

α diversity  Phyla 

 
Shannon Simpson 

InvSimpso
n 

Fisher 
 

Euryarc- 
haeota 

Actinoba
-cteria 

Bacteroi-
detes 

Cyanoba
-cteria 

Firmicut-
es 

Proteob-
acteria 

Teneri-
cutes 

Verruco-
microbia 

Anthropometric variables             

Age  0.464**  0.299**  0.200*  0.200*  0.464**  0.440** -0.099 -0.070  0.181  0.038  0.234*  0.288**  0.177 

Weight -0.167 -0.187* -0.144 -0.144 -0.167 -0.295** -0.239*  0.232* -0.048 -0.042 -0.185 -0.047 -0.146 

BMI -0.250** -0.280** -0.240* -0.240* -0.250** -0.288** -0.209* -0.012 -0.065  0.231* -0.420** -0.064 -0.178 
Body fat 
percentage -0.064 -0.213* -0.227* -0.227* -0.064 -0.124 -0.019 -0.188* -0.010  0.344** -0.297**  0.062 -0.016 

Systolic BP -0.156 -0.129 -0.088 -0.088 -0.156 -0.157  0.101  0.027 -0.077  0.052 -0.218* -0.059 -0.016 

Diastolic BP -0.177 -0.115 -0.061 -0.061 -0.177 -0.142  0.261**  0.010 -0.022  0.018 -0.237* -0.028  0.075 

Blood variables              

Glucose -0.101 -0.002  0.022  0.022 -0.101 -0.226* -0.141  0.183  0.035 -0.037 -0.262** -0.077  0.053 

Insulin  0.355**  0.390**  0.364**  0.364**  0.355**  0.308**  0.013 -0.033  0.191* -0.144  0.249**  0.264**  0.320** 

TC -0.092  0.017  0.051  0.051 -0.092 -0.130 -0.027 -0.036  0.102  0.018  0.002  0.016 -0.086 

LDL -0.050  0.020  0.039  0.039 -0.050 -0.050 -0.101 -0.100  0.100  0.089  0.018  0.038 -0.079 

HDL -0.007  0.064  0.135  0.135 -0.007 -0.127  0.165 -0.018  0.116  0.030 -0.199* -0.085 -0.028 

TG -0.210* -0.192* -0.177 -0.177 -0.210* -0.258**  0.121 -0.036 -0.115  0.100 -0.069 -0.049 -0.153 

NEFAs  0.053  0.056  0.069  0.069  0.053 -0.039  0.156 -0.039 -0.040  0.113  0.035 -0.081 -0.112 

Apo A1 -0.031  0.125  0.203*  0.203* -0.031 -0.183  0.132  0.048  0.139  0.006 -0.100 -0.091  0.000 

Apo B -0.106 -0.010  0.013  0.013 -0.106 -0.109 -0.047 -0.066  0.075  0.070  0.007 -0.024 -0.122 

Ratios              

  HDL TC  0.094  0.037  0.065  0.065  0.094  0.055  0.148  0.046  0.014 -0.005 -0.225* -0.064  0.141 

  ApoB/ApoA1 -0.103 -0.091 -0.121 -0.121 -0.103 -0.015 -0.161 -0.066 -0.015  0.024  0.128  0.022 -0.159 

CRP -0.061 -0.065 -0.038 -0.156 -0.064  0.088 -0.109 -0.088 -0.029  0.035  0.064  0.128  0.052 

AST -.201* -0.090 -0.041 -0.041 -0.201* -0.149  0.236* -0.158  0.035  0.150  0.056 -0.216* -0.216* 

ALT -0.447** -0.343** -0.249** -0.249** -0.447** -0.412**  0.189* -0.179 -0.010  0.386** -0.311** -0.324** -0.271** 
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            Continued 

 Genera 

 
Alistipes Anaerostipes Bacteroides 

Bifidobacte-
rium 

Blautia 
Dorea 

Faecalibact-
erium 

Fusicateni-
bacter 

Rombout-
sia 

Subdoligr-
anulum 

Anthropometric variables          

Age  0.101 -0.008 -0.112 -0.285** -0.056  0.121 -0.119 -0.264**  0.022  0.064 

Weight  0.011  0.090  0.036 -0.191*  0.057 -0.170  0.076 -0.227*  0.206*  0.023 

BMI -0.013 -0.008 -0.086 -0.084  0.042 -0.066  0.136 -0.027  0.170  0.120 
Body fat 
percentage -0.037  0.049 -.210* -0.030 -0.020 -0.093  0.045  0.012 -0.030  0.066 

Systolic BP -0.070  0.068 -0.093  0.127 -0.037  0.036  0.101 -0.038  0.135  0.019 

Diastolic BP -0.052  0.205* -0.051  0.269** 0.077  0.163  0.101  0.113  0.006  0.080 

Blood variables           

Glucose  0.292**  0.146  0.123 -0.179  0.145  0.023  0.234*  0.016  0.099  0.092 

Insulin  0.156  0.033 -0.010 -0.023 -0.038  0.125  0.068 -0.063 -0.036  0.094 

TC  0.053  0.362**  0.066 -0.088 0.251**  0.319**  0.105  0.070 -0.157  0.064 

LDL  0.110  0.266**  0.023 -0.171 0.225*  0.291**  0.088  0.004 -0.101  0.107 

HDL  0.006  0.335** -0.095  0.127 .196*  0.122  0.229*  0.140  0.002 -0.035 

TG -0.256**  0.115 -0.026  0.108 -0.003  0.076 -0.042  0.076 -0.125 -0.076 

NEFAs -0.078 -0.023 -0.007  0.144  0.071  0.007  0.143  0.070 -0.105 -0.003 

Apo A1  0.096  0.431** -0.009  0.071 0.254**  0.228*  0.260**  0.131 -0.056  0.030 

Apo B  0.096  0.304**  0.082 -0.109 0.272**  0.341**  0.058  0.075 -0.151  0.101 

Ratios              

  HDL/TC -0.002 -0.002 -0.160  0.169 -0.080 -0.192*  0.118  0.063  0.163 -0.052 

  ApoB/ApoA1  0.033 -0.026  0.143 -0.178  0.114  0.177 -0.132 -0.013 -0.160  0.031 

CRP  0.027 -0.034  0.096 -0.122  0.086  0.186* -0.075  0.022 -0.003  0.128 

AST -0.128  0.149  0.084  0.280**  0.063  0.091  0.111  0.168 -0.129 -0.077 

ALT -0.136  0.161  0.027  0.221*  0.135  0.122  0.259**  0.256** -0.110 -0.071 

              Significant correlation: *P<0.05; **P<0.01.           
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6.4 Discussion 

To date, this is the first study in which a bread roll enriched with quinoa as a whole grain source has 

examined in vivo the effects on bacterial diversity and composition.  However, the results showed 

that there was no significant difference in the bacterial diversity between treatments.  The lack of 

response was in agreement with other human intervention studies, in which intake of whole grains 

did not significantly alter the values of alpha and/or beta diversity (weighted and unweighted 

Unifrac) compared with refined grains or baseline (Langkamp-Henken et al., 2012; De Angelis et al., 

2015; Vitaglione et al., 2015; Vanegas et al., 2017). In contrast, a randomised, cross-over study 

showed that addition of 60 g/d of whole grain barley or brown rice or an equal mixture of the two to 

the diets for 4 weeks significantly increased the bacterial diversity measured by Shannon’s and 

Simpson’s indices (community evenness), but not by Chao1 (total species richness) (Martínez et al., 

2013a). Similarly, the study of Foerster et al. (2014) also indicated a higher microbial diversity upon 

ingestion of whole grain products that delivered approximately 40 g dietary fibre per day over a 

short period of 3 weeks.  

Despite the substantial differences in some certain bacteria within group mentioned above, the 

relative abundance of gut microbiota did not change significantly between groups, which was in 

accordance with the other intervention studies that used wheat as the main source of whole grains 

(Ross et al., 2011; Langkamp-Henken et al., 2012; Christensen et al., 2013; Saa et al., 2014; 

Ampatzoglou et al., 2015; Cooper et al., 2017). Similar to the comprehensive microbiota analysis of 

this current study, no significant microbiota changes occurred at any phylum levels after intake of 

whole grain, offering fibre content higher than 35g per day, compared with refined grains for 6 

weeks (Vanegas et al., 2017). Additionally, in another 12-wk, randomised intervention study in 

subjects with metabolic syndrome, inclusion of 152 g whole grain breads and fibre-rich rye bread in 

their diets for 12 weeks did not significantly change the microbiota composition with respect to 

refined white breads (Lappi et al., 2013). Noteworthy, the preliminary data demonstrate that the 

microbiota composition of individuals with metabolic syndrome differed from that of healthy 

individuals (Munukka et al., 2012). 

In contrast, Martínez et al. (2013a) showed that all three treatments significantly increased and 

decreased the abundance of Firmicutes and Bacteroidetes, respectively, in healthy Americans. 

Unfortunately, the subjects’ habitual diet was not described in that study. Bifidobacteria and 

lactobacilli, are associated with a healthy intestinal environment, and are often considered to be a 

positive indicator of prebiotic activity. One study that assessed the ability of daily intake of 48 g 

breakfast cereals, either whole grain wheat or wheat bran, to modulate faecal microbiota 
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populations for 3 weeks, found that populations of bifidobacteria and lactobacilli/enterococci were 

significantly higher upon whole grain ingestion compared with wheat bran (Costabile et al., 2008). In 

agreement with this, significantly increased populations of bifidobacteria and lactobacilli in stool 

samples associated with intake of whole grain oat breakfast cereals (45 g/d) for 6 weeks, as well as 

total bacterial population relative to non-whole grain group have been reported, and also a 

bifidogenic effect of whole grain maize breakfast cereal (48 g/d) over 3 weeks has been reported 

(p=0.001) (Carvalho-Wells et al., 2010; Connolly et al., 2016).  

The reasons for the inconsistent results in these human intervention studies is not completely 

understood, however, several factors such as differences in subject characteristics, the cereal grains 

used, processing conditions, not having completely controlled for other components of the diets 

may have been responsible for the divergent results. It is not necessarily surprising, that in the 

present study intake of a relatively small amount of quinoa of 20 g daily there were only modest 

effects on bacterial diversity and composition. It is plausible that low percentage of quinoa flour 

(20%) in quinoa rolls have resulted in only a marginal difference in nutritional composition between 

quinoa and refined wheat rolls and therefore a lack of effect on gut microbiota. For example, despite 

the double amounts of total dietary fibre in quinoa roll, it appeared that the relatively small 

difference between two rolls was insufficient to induce any change in gut microbiota.  

In general, correlations between gut microbiota and markers of CVD risk markers are were weak, 

since the majority of correlation coefficient (ρ) were less than 0.4 in this study. A consistent 

correlation of Actinobacteria to body weight and BMI was observed which is in agreement with the 

study of Turnbaugh et al. (2009) who showed higher numbers of Actinobacteria in obese people.  

6.5 Summary and conclusion 

To the best of our knowledge, this is the first study investigating the effect of quinoa consumption 

on human gut microbiota. The results of the dietary intervention study show that consumption of 20 

g quinoa per day for 4 weeks does not induce any changes in bacterial diversity and the relative 

abundance of gut microbiota between two treatments.  
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7 Chapter 7 General discussion 

This thesis investigated the effect of quinoa consumption on markers of CVD risk and gut microbiota 

by three clear phases including; firstly, in vitro analysis of nutrients and phytochemicals (protein, 

amino acids, fibre, fat, polyphenols) in thirteen different strains of quinoa sourced from UK, Europe, 

South America and China, in order to select one strain of quinoa with the highest fibre content. 

Secondly, a bread sensory testing by feeding refined wheat bread, 20% and 30% quinoa bread to 

volunteers in order to select one product from two quinoa bread for use in the human intervention 

study. Thirdly, using 20% quinoa roll based on the sensory testing, a human intervention study was 

conducted to study the effect of quinoa consumption (delivering quinoa 20 g/day) for 4 weeks on 

markers of CVD risk and gut microbiota by measuring blood and stool samples, as well as 

anthropometric variables.  

Based on the literature, phenolic compounds are secondary metabolites, which in whole grains may 

exist in three forms: free, soluble conjugated and insoluble bound forms which are attached to cell 

materials (Adom and Liu, 2002). In this study, free, conjugated, and bound phenolic contents in both 

the quinoa and buckwheat accessions tested were significantly different (p<0.01) from each other, 

with the ranking order: Free > conjugated > bound phenolic compounds. The total phenolic content 

of buckwheat was significantly higher than quinoa (p<0.001), but on average, the total phenolic 

contents in both quinoa and buckwheat seeds were higher than those found in other common 

cereals including barley, wheat, rye and millet, suggesting that quinoa and buckwheat may serve as 

an excellent source of phenolic compounds (Ragaee et al., 2006). Even though phenolic compounds 

are mainly present in free form, this study also indicates that the total phenolic contents of quinoa 

and buckwheat could be underestimated in the previously published studies which did not include 

the conjugated and bound phenolic compounds in their analysis. In order to comprehensively screen 

and compare antioxidant activity levels among a wide accession of quinoa and buckwheat samples, 

three different assays of antioxidant content, FRAP, TEAC and DPPH were applied in this study. In the 

three antioxidant evaluation systems, antioxidant activities of free, conjugated and bound phenolic 

extracts accounted for less than 40% of total antioxidant activities determined by TEAC and DPPH 

methods, with the exception of free phenolic extracts in quinoa by FRAP. Regarding buckwheat 

accessions, antioxidant activities of free phenolic extracts were statistically higher than those of 

conjugated and bound phenolic extracts. Free phenolic extracts accounted for 64%, 67% and 46% of 

total FRAP, TEAC and DPPH· scavenging activities in an average among buckwheat accessions, 

respectively. The correlations between TPC and antioxidant activity were not always significant. Thus, 

it is difficult and impractical to define which phenolic component plays a dominant role in 
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antioxidant activity in quinoa accessions. Moreover, it is not appropriate to directly compare the 

results of different methods for the same samples due to differences between compounds 

measured by different methods. Unfortunately, since the extraction method has not been 

standardised so far, comparison among independent studies using different extraction procedures 

or solvents is often problematic. Due to the limited time available in this study, composition analysis 

of quinoa seeds were carried out by commercial laboratory and company. The results clearly showed 

that here was great variation in the proximate composition between the thirteen quinoa seed 

samples. In this study, the dietary fiber content, especially the soluble fiber content, was one of the 

determining factors for the choice of quinoa seed for the human intervention carried out in the 

study, based on previously published studies, which have consistently shown soluble fibre to be the 

most likely contributor to lower total and LDL cholesterol concentrations (Glore et al., 1994; Truswell, 

1995). The highest level of insoluble, soluble and total dietary fiber were all identified in the same 

quinoa seeds (from South America) among these included accessions; moreover, the total and 

insoluble dietary fiber values are much higher than other accessions. 

The planned intervention study was dependent on providing the required dose of quinoa in a form 

which would be palatable and acceptable to (male) participants. After considering various options it 

was decided to base the intervention food on bread prepared from the strain of quinoa (South 

America). Based on the papers published previous by Milovanović et al. (2014), Bilgicli and Ibanoglu, 

(2015), by Turkut et al. (2016) and property of ‘gluten-free’, 20% and 30% quinoa bread were as the 

candidates involved in the bread sensory testing. From an enjoyable flavour prospective, which was 

the most important characteristic, the scores of refined wheat bread and 20% quinoa bread derived 

from all healthy volunteers and male volunteers were higher than that 30% quinoa bread, even if the 

scores derived from male volunteers did not reach significance level (p>0.05). Thus, 20% quinoa 

bread was selected for the further human intervention study. With the same energy content, the 

proximate composition of 20% quinoa rolls was slightly higher compared with refined wheat roll for 

ash, moisture, salt, sodium, protein, fat and soluble dietary fibre. The insoluble dietary fibre content 

of the quinoa rolls was more than double that of refined wheat rolls. 

Using a randomized, controlled cross-over design, one human intervention study was conducted 

with 20% quinoa rolls. Unfortunately, anthropometric variables, blood variables and plasma 

antioxidant capacity did not significantly differ between two treatments. However, the presence of 

many ‘trend’ results, such as glucose, insulin and LDL cholesterol values, in the present study 

indicates that significant results might have been obtained with prolonged duration, higher dose and 

larger numbers of subjects. The duration of this controlled human intervention study, representative 

of a very short period of dietary alteration in the context of lifelong dietary exposures, may not have 
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been sufficiently long to detect favourable effects on markers of CVD risk.  The lack of intervention 

effects may also be a result of lower dose consumed by subjects daily. According to epidemiological 

studies, beneficial health effects of whole grains can be expected at a level of 3 (16g) servings per 

day (Anderson et al., 2000), although the type of whole grain consumed is not specified in this 

general recommendation. The daily amounts of quinoa provided during the present study (20g) was 

in the range of usual whole grain intake of about 16-25 g/d, but much lower than minimum 

recommended intake of 48-96 g/d (Cleveland et al., 2000; Maras et al., 2009). In addition, the similar 

soluble fibre content in refined wheat and 20% quinoa rolls may also explain the lack of the response 

in plasma cholesterol in the current study. This study is the first to show a reduction in glycaemia 

following regular consumption of quinoa. The AUC for glucose over the four days at the end of the 

quinoa treatment period was borderline significantly lower than the following four days when 

quinoa consumption ceased (p=0.054), and also was significantly lower than that of the four days at 

the end of the wheat treatment period (p=0.039).  This may have been in part due to the cumulative 

effect of the reduced postprandial glycaemia seen after the breakfast test meal, which were derived 

from both DBS and FGM (representing capillary and interstitial fluid glucose concentrations, 

respectively). Although some important differences in glucose responses between quinoa and 

refined wheat rolls breakfast, such as significantly different IAUC values over 4 hours, were not 

observed in capillary blood samples, the glucose response curves were relatively similar; there was a 

more rapid fall approximately after 60 mins after the quinoa roll breakfast. The mean values of 

glucose concentrations from fasting venous plasma samples and FGM appeared to be quite similar in 

this study (p>0.05), but DBS glucose concentrations were significantly higher than venous glucose 

concentrations. This is most likely attributable to higher concentrations of glucose in both arterial 

and capillary blood than that of venous blood, since glucose absorbed in the small intestine 

sequentially diffuses from arteries into tissue cells through peripheral capillaries and the de-

oxygenated blood returns in the venous system (Burtis and Ashwood, 1994; Yang et al., 2012). The 

correlation coefficient between venous and DBS glucose concentration values, venous and FGM 

glucose concentration values, DBS and FGM glucose concentration values were all significant 

(p<0.01), but the regression coefficients were relatively low, less than 0.5. But the Bland-Altman plots 

of differences in the different glucose analysis methods showed good agreement between each two 

methods, indicating these methods were changeable.  

Through analysing the stool samples obtained from human interventions study, no significantly 

differences in diversity measures (alpha and beta) and relative abundance of gut microbiota were 

observed between two treatments. For example, although intake of both refined wheat and quinoa 

rolls significantly decreased the relative abundance of Bacteroidetes and significantly increased the 



192 
 

abundance of Firmicutes in stool samples compared with pre-intervention, the differences between 

these two treatment did not reach significance level (p=0.431). It is not necessarily surprising, that in 

the present study intake of a relatively small amount of quinoa of 20 g daily there were only modest 

effects on bacterial diversity and composition. It is plausible that low percentage of quinoa flour 

(20%) in quinoa rolls have resulted in only a marginal difference in nutritional composition between 

quinoa and refined wheat rolls and therefore a lack of effect on gut microbiota. For example, despite 

the double amounts of total dietary fibre in quinoa roll, it appeared that the relatively small 

difference between two rolls was insufficient to induce any change in gut microbiota. In general, 

correlations between gut microbiota and markers of CVD risk markers are were weak.  

7.1 Strengths and limitations 

The current study has both strengths and limitations that deserve to be discussed. The strength of 

the current study is that, to the best of our knowledge, this is the first study to demonstrate the free, 

conjugated and bound phenolic contents and also their corresponding antioxidant activity in quinoa 

and buckwheat seeds to date. Also, this is the first study to show nutritional composition of different 

quinoa and buckwheat accessions sourced from different regions, which can give a comprehensive 

view to see the variations between them, but almost previous studies only focused on one quinoa or 

buckwheat accession. Moreover, this is the first quinoa intervention study that examined the effect 

of quinoa consumption on the human gut microbiota. Additionally, strengths of the study include its 

randomised crossover design, and also inclusion of overweight male aged over than 35 at a 

potentially higher risk of CVD. The direct comparison of quinoa-enriched and refined wheat rolls 

adds clarity to the quinoa literature in ascertaining the differences in potential attributed to whole 

grains and refined grains.  Also, the subjects maintained their habitual diet, with only quinoa or 

refined wheat roll offered during each intervention period, and they were not asked to self-select 

the whole grain products which may help to reduce confounding factors and improve compliance. 

Finally, the proximate composition of quinoa and refined wheat roll were analysed allowing this 

study to explore the possible mechanisms underlying beneficial effects.  

As for the limitations, firstly, since no washout period was conducted before the start of the study, 

background diet variability acting as a confounding variable may have affected baseline levels of 

some CVD risk markers, such as glucose, LDL cholesterol and CRP, if subjects had previously included 

whole grain products in their habitual diets. Secondly, the present study may have been 

underpowered to observe a significant effect, because the sample size was determined assuming 

that no change in fasting plasma LDL cholesterol would occur from baseline in the control group. 

Further, the expected magnitude of decreased in LDL cholesterol of 10% between the two 
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intervention groups appears to have been too optimistic. Thirdly, quinoa rolls were consumed for a 

relatively short period of time, it remains unknown whether favourable effects on CVD risk markers 

would obtain with longer treatment or larger dosage.  
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7.2 Recommendations 

1. Extraction of phenolics for individual grain should be explored, such as solvents, time for 

hydrolysis, in order to obtain the most accurate values. 

2. For the human intervention studies, there are some improvements which would be suggested for 

future studies such as 1) have a washout period before the start of study to avoid background diet 

variability confounding the results, 2) try to recruit subjects at a potentially higher risk of CVD to 

show more apparent results, 3) increase the number of subjects and length to help detect small 

changes in markers of CVD risk, especially total and LDL cholesterol, as well as gut microbiota 4) a 

larger amount of quinoa consumption is essential to induce any changes, 5) other forms of pure 

quinoa foods rather than a mixture of quinoa and other grains as an experimental diet, such as bars 

and flakes, are strongly recommended to deliver quinoa to humans, since the changes in quinoa 

treatment may be partly attributed to the 80% of refined wheat in quinoa rolls in this study, which 

caused some uncertainties to discuss, 6) stool samples should be collected 24 hours before stored in 

the freezers. 
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Appendix  
Appendix 1. Extraction of phenolic compounds from 3 different fractions in quinoa or buckwheat seeds 

Repeat + 3 times 

In 2mL Eppendorf  
tube 

In 2mL Eppendorf  
tube 

      4 h hydrolysis 
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25 mg flour 

1 mL of 80% EtOH: water 

Vortex 5mins in a multi-tube mixer 

10mins in sonic bath 

Centrifuge 15mins, 5000 rpm 

Transfer supernatant into a new Eppendorf, 

Evaporate under N2 

Redisolve in 350µL water 

Centrifuge 5mins, 13200 rpm 

Supernatant = water 

10 mg flour 

1 mL of 80% EtOH: water 

Vortex 5mins in a multi-tube mixer 

10mins in sonic bath 

Centrifuge 15mins, 5000 rpm 

Transfer supernatant into a new Eppendorf, 

Evaporate under N2 

400 µL of 2 M NaOH 

Repeat + 3 times 

80 µL of 12 M HCL to pH2 

500 µL of ethyl acetate 

Centrifuge 5mins, 5000 rpm 

 
Transfer supernatant into a new Eppendorf, 

Evaporate under N2 

Redisolve in 350µL water 

 
Centrifuge 5mins, 13200 rpm 

 
Supernatant = water 

 

Vortex 

Vortex 

Vortex 30s 

C. Bound phenolics extraction using the 

residue of conjugated phenolics’ extraction 

Supernatant = water 

 

Centrifuge 5mins, 13200 rpm 

 

Redisolve in 350µL water 

 

Transfer supernatant into a new Eppendorf, 

Evaporate under N2 

Centrifuge 5mins, 5000 rpm 

 

800 µL of ethyl acetate 

120 µL of 12 M HCL to pH2 

Transfer supernatant to a new Eppendorf 

Centrifuge 15mins, 5000 rpm 

800 µL of 2 M NaOH 
Vortex 30s 

Vortex 

Vortex 

The residue from conjugated 

phenolics extraction 
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Appendix 2. Summary of TPH, FRAP, TEAC and DPPH values 

             Table. Summary of TPH, FRAP, TEAC and DPPH values 

                    Phenolic content (mg GAE/g)          FRAP(µmol Fe2+/g dried weight) 

  Free Conjugated Bound    Total Free Conjugated Bound Total 

Quinoa varieties        

Bolivia (Red) 1.32±0.04 0.41±0.01 0.80±0.01 2.54±0.07 2.97±0.12 1.27±0.10 4.58±0.49 8.82±0.71 

Boilvia (White) 1.51±0.02 0.43±0.02 0.09±0.01 2.03±0.05 3.34±0.16 1.49±0.19 0.32±0.06 5.14±0.41 

Ecuador (White) 1.49±0.01 0.56±0.05 0.13±0.02 2.18±0.08 1.57±0.16 1.03±0.10 0.30±0.06 2.90±0.32 

Ecuador (Red) 1.38±0.03 0.40±0.02 0.63±0.02 2.42±0.06 3.92±0.29 1.43±0.02 3.63±0.39 8.97±0.70 

Peru (Peru) 0.89±0.05 0.54±0.01 0.13±0.02 1.55±0.08 1.79±0.14 1.39±0.02 0.46±0.03 3.64±0.20 

Peru (Tesco) 1.09±0.02 0.48±0.02 0.13±0.01 1.70±0.05 1.96±0.09 0.97±0.10 0.37±0.06 3.29±0.25 

UK ( Biofair) 1.06±0.08 0.43±0.02 0.62±0.04 2.12±0.13 3.59±0.22 1.57±0.08 3.74±0.26 8.89±0.57 

UK (Waitrose) 1.06±0.04 0.40±0.03 0.11±0.01 1.57±0.09 1.82±0.05 0.99±0.04 0.42±0.04 3.23±0.13 

USA 2.12±0.06 0.38±0.03 0.06±0.01 2.56±0.11 5.79±0.21 1.75±0.11 0.26±0.07 7.80±0.40 

Netherlands  1.61±0.01 0.35±0.03 0.06±0.01 2.01±0.06 4.27±0.27 1.65±0.21 0.28±0.01 6.20±0.50 

South America 1.61±0.08 0.76±0.06 0.32±0.04 2.69±0.18 4.45±0.25 1.23±0.12 0.66±0.05 6.34±0.42 

China, Tibet 1.50±0.03 0.37±0.05 0.10±0.02 1.97±0.10 3.43±0.28 1.70±0.23 0.30±0.04 5.43±0.55 

China, Shanxi 2.13±0.02 0.67±0.01 0.25±0.04 3.05±0.07 6.44±0.08 3.51±0.17 0.94±0.24 10.89±0.49 

Average 1.44±0.38 0.48±0.12 0.26±0.25 2.18±0.45 3.49±1.52 1.54±0.65 1.25±1.58 6.27±2.62 

         

Buckwheat varieties        

YunNan (T) 1.36±0.01 0.72±0.12 0.14±0.03 2.22±0.16 4.38±0.10 4.00±0.17 3.01±0.07 11.39±0.34 

YunNan (C) 3.03±0.15 0.75±0.09 0.08±0.01 3.87±0.25 7.54±0.04 1.39±0.19 1.83±0.06 10.76±0.28 

SiChuan (T) 2.06±0.08 1.16±0.05 0.64±0.07 3.86±0.21 10.53±1.22 5.29±0.39 3.08±0.13 18.90±1.74 

GuiZhou (C) 2.38±0.03 1.23±0.19 0.08±0.01 3.69±0.23 10.27±0.16 1.94±0.12 2.12±0.10 14.33±0.38 

ZhangJiaKou (C) 2.26±0.03 1.26±0.02 0.10±0.01 3.62±0.07 8.90±0.52 1.45±0.03 2.02±0.10 12.37±0.65 

NeiMengGu (C) 1.99±0.08 1.10±0.02 0.09±0.01 3.18±0.11 9.75±0.22 1.49±0.20 1.84±0.03 13.09±0.45 

FuJian (C) 2.22±0.13 1.12±0.03 0.10±0.01 3.44±0.17 8.31±0.39 3.10±0.20 2.11±0.04 13.52±0.63 

Netherlands (C) 2.01±0.24 1.00±0.03 0.10±0.01 3.11±0.28 6.55±0.24 2.41±0.11 1.20±0.01 10.16±0.36 
USA (C) 2.28±0.06 1.53±0.11 0.14±0.01 3.96±0.17 10.96±0.19 2.97±0.21 1.30±0.01 15.23±0.41 
Average 2.18±0.44 1.10±0.25 0.16±0.18 3.44±0.54 8.58±2.14 2.67±1.32 2.06±0.65 13.30±2.67 
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Continue 

                    TEAC(µmol TE/g dried wieght)      DPPH (µmol TE/g dried wieght) 

  Free Conjugated Bound    Total   Free Conjugated   Bound Total 

Quinoa varieties        

Bolivia (Red) 6.63±0.16 3.02±0.22 11.16±0.48 20.08±0.86 6.70±0.45 7.95±0.74 5.81±0.34 20.45±1.53 

Boilvia (White) 8.33±0.32 4.24±0.05 1.16±0.22 13.72±0.59 5.19±0.23 4.03±0.50 1.83±0.09 11.05±0.82 

Ecuador (White) 7.41±0.24 5.50±0.19 1.15±0.18 14.06±0.61 1.81±0.12 8.11±0.50 6.25±0.67 16.17±1.29 

Ecuador (Red) 8.06±0.56 3.42±0.19 9.85±0.47 21.33±1.21 7.23±0.60 10.73±0.24 9.12±0.53 27.07±1.36 

Peru ( Peru) 6.96±0.09 5.45±0.18 2.01±0.19 14.42±0.46 4.96±0.64 8.29±0.09 1.76±0.11 15.01±0.84 

Peru ( Tesco) 7.61±0.33 5.06±0.38 2.68±0.26 15.34±0.97 2.27±0.35 4.67±0.31 8.40±0.42 15.34±1.08 

UK ( Biofair) 10.02±0.63 4.31±0.21 11.63±0.13 25.96±0.98 6.67±0.18 7.27±0.37 7.62±0.39 21.57±0.94 

UK (Waitrose) 8.70±0.61 5.64±0.15 2.16±0.28 16.50±1.04 2.62±0.30 6.05±0.43 6.82±0.51 15.49±1.24 

USA 12.87±0.15 5.47±0.08 1.34±0.05 19.68±0.28 6.43±0.53 10.77±0.52 4.02±0.20 21.22±1.25 

Netherlands  9.59±0.59 4.97±0.33 1.27±0.08 15.83±1.01 5.40±0.07 11.15±1.10 3.78±0.39 20.33±1.56 

South America 7.54±0.17 4.57±0.32 3.91±0.19 16.02±0.68 3.02±0.15 3.09±0.20 1.92±0.29 8.03±0.64 

China, Tibet 8.33±0.25 5.24±0.24 1.52±0.11 15.09±0.60 5.81±0.26 2.07±0.44 6.37±0.26 14.25±0.96 

China, Shanxi 9.83±0.37 8.41±0.39 3.25±0.27 21.49±1.03 9.72±0.38 3.79±0.38 2.00±0.44 15.50±1.20 

Average 8.61±1.67 5.02±1.30 4.08±3.98 17.71±3.75 5.22±2.28 6.77±3.08 5.05±2.65 17.04±4.99 

Buckwheat varieties         

YunNan (T) 12.02±0.25 11.68±0.30 4.24±0.18 27.94±0.74 7.64±0.70 8.26±0.31 9.29±0.08 25.19±1.09 

YunNan (C) 32.09±1.07 11.74±0.64 1.16±0.30 45.80±2.01 12.72±0.93 4.76±0.14 10.37±1.22 27.86±2.29 

SiChuan (T) 21.51±1.30 16.95±0.10 6.85±0.40 45.31±1.79 17.84±0.12 11.30±1.02 11.41±0.46 40.54±1.60 

GuiZhou (C) 37.73±1.07 12.28±0.25 1.07±0.17 51.08±1.50 17.29±0.20 11.79±0.28 9.75±0.71 38.82±1.20 

ZhangJiaKou (C) 31.36±0.48 11.43±0.29 0.99±0.11 43.78±0.87 14.59±0.46 4.59±0.33 6.76±0.53 25.94±1.31 

NeiMengGu (C) 32.48±1.33 11.99±0.40 0.89±0.08 45.37±1.81 15.28±0.73 4.43±0.25 7.19±0.52 26.90±1.51 

FuJian (C) 32.67±1.62 11.44±0.54 0.86±0.07 44.97±2.23 14.45±0.93 9.23±0.23 9.25±0.78 32.93±1.94 

Netherlands (C) 23.65±0.93 9.26±0.65 1.39±0.09 34.30±1.67 10.56±0.19 7.02±0.26 8.83±0.25 26.41±0.71 
USA (C) 31.72±1.02 10.54±0.17 1.35±0.05 43.62±1.23 14.63±0.51 4.40±0.21 10.10±0.80 29.14±1.53 
Average 28.45±7.91 11.93±2.09 2.09±2.07    42.26±6.97  13.89±3.20 7.31±2.98 9.22±1.48 31.41±5.74 
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Appendix 3. Information sheet of bread sensory testing 

 
 
 
 

Consumer Evaluation of  
Quinoa Bread 

 
 

What is involved? 
 

 Three different types of bread have 
been prepared:  

o Refined wheat bread 
o 20% quinoa bread 
o 30% quinoa bread 

 

 Volunteers will test each bread product 
and compare the flavour/characteristics 
of the 3 different kinds of bread. 

 
 
 

Information sheet for volunteers 
 
 

Newcastle University 
NU-Food 

School of Agriculture, Food and Rural 
Development 

Agriculture Building 
Newcastle upon Tyne 

NE1 7RU 
 

Study Contact: NU-Food 
Telephone: 0191 208 3592 
Email: NU.Food@ncl.ac.uk 

You are invited to take part in a research study.  
Before you start, it is important you understand 

what it will involve.  Please take time to read the 
following information carefully.  Please ask if there 
is anything that is not clear or if you would like 
more information. 
 
What is the purpose of this study? 
The aim of this study is to see if there is a 
difference in taste between bread made with 
different amounts of quinoa (0%, 20% or 30% of 
the bread). 
 
More information about the quinoa bread 
Quinoa has been cultivated and consumed by 
humans for thousands of years in the Andean 
region of South America. It has been described as 
‘’golden grain’’ due to its high nutritional value, 
especially the high quality protein, fiber and 
antioxidants. We want to see if bread can be used 
as a way of adding quinoa into our diet so we have 
worked with a baker to make bread with differing 
amounts of quinoa we want to use in a new 
intervention study. 
 
Do I have to take part? 
After reading this information sheet, if you are 
interested in volunteering, you will be asked to 
sign a consent form to show that you agree to take 
part.  You can withdraw from the study at any time 
without giving a reason. If you enjoy eating bread 
and have no known allergies or intolerance to 
bread, then you are an ideal candidate! 
 
What will volunteering involve? 
The taste testing will take place in the NU-Food 
sensory facility, which contains a well-equipped 
kitchen located in the basement of Newcastle 

University’s Agriculture Building. The tasting 
session will take about 5 minutes. You will be 
asked to taste 3 different kinds of bread, sipping 
water between each sample and scoring them on 
an anonymous score sheet. 
 
What are the possible disadvantages of taking 
part? 
There are no known disadvantages.  However, if 
you allergy to gluten or other ingredients in the 
test foods, you will not be allowed to participate. 
The researcher has a Level 2 Food Handler 
certificate and will take great care during bread 
sample preparation.  
 
What are the possible benefits of taking part? 
The study will not provide any benefit to you 
personally in the short term. However, the 
knowledge gained from this study will support the 
future development and production of better 
tasting quinoa bread, so your volunteering is 
greatly appreciated! 
 
What happens if I decide I want to quit during the 
study? 
If you wish to withdraw from the study then please 
inform NU-food staff about it.  You have the right 
to withdraw from the study without providing a 
reason.  If you decide to leave before completing 
the taste testing, then your data will not be used. 
 
What happens if something goes wrong? 
Any complaints you have about this study should 
be made to Professor Chris Seal, Newcastle 
University (chris.seal@ncl.ac.uk or 0191-2087650) 
and will be fully investigated. 

https://en.wikipedia.org/wiki/Andes
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Will my taking part in this study be kept 
confidential? 
Yes. You do not need to give us any contact details 
or other information to keep, in order to take part 
in the study, other than your name. For safety 
reasons, while you are in the building we need to 
have a sheet with your contact details, but this 
sheet will be destroyed as soon as the tasting 
session is completed and you have left the 
building. 
If you agreed to be contacted for further research, 
we will keep the contact details, but any 
information you provided will still be kept strictly 
confidential.  
 
What will happen to the study results? 
The results will be included in a PhD thesis and 
published in a scientific journal.  You will not be 
personally identified in any publications. If you 
wish, we will let you know where you can obtain a 
copy of any published results once it is available, 
and we will be happy to discuss the results with 
you then. 
  
Who is organising the study? 
This study is being organised by Newcastle 
University  
 
Finally, thank you for having taken the time to read 
this information sheet and for your interest in the 
study. 
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Appendix 4. Consent form of bread sensory testing 

 
 
 

 
Consumer Evaluation of Quinoa Bread 

 
 

CONSENT BY VOLUNTEER TO PARTICIPATE IN A FOOD TASTING STUDY 

 

   Study contact: NU-Food phone: 0191-208-3592 e-mail: nu.food@ncl.ac.uk 

 
I, the undersigned, confirm that (please initial each box as appropriate): 
 
 

1. I have read and understood the information about the project, as provided in the 
Information Sheet dated 28/06/16. 
 

 

2. I have been given the opportunity to ask questions about the project and my 
participation. 
 

 

3. I understand that I can stop at any time without having to give any reason and that I 
will not be penalised for stopping. 
 

 

4. I understand that the researcher is a qualified food handler. 
 

5. I do not have any known allergy or intolerance to quinoa, wheat or bread (gluten) 
 

6. The use of the data in research, publications and marketing material has been 
explained to me and I agree that the data can be used in this way.  

7. I understand that the questionnaire is anonymous and cannot be traced back to me. 
  

8. I agree to participate in the project 
 

 
 
 
________________________    ___________________________ _______________________ 
Name of Participant     Signature    Date 
 
 
________________________       ____________________________        _______________________ 
Name of researcher                   Signature    Date  
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For safety reasons, please provide a set of contact details: 
 
The contact details are only required for safety reasons, so we, for example, can ensure you get the 
appropriate help in case of an accident.  
This information will not be linked to your completed questionnaire.  
Your contact details will be destroyed as soon as the test is completed, unless you explicitly allow us 
to keep them for longer, by selecting ‘Yes’ in the option below 
 
 
Name____________________________________________________________________ 

Address___________________________________________________________________ 

_______________________________________________________postcode___________ 

Phone number _____________________________________________________________ 

Email address_____________________________________________________________ 

 
 
 
Would you like us to e-mail you with the results of the trial, once the results are published? 
  
Yes      No 
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Appendix 5. Basin information of volunteers involved in bread sensory testing 

  

 

 

 

Before you start, please complete the following brief questions about you: 

Male             Female             

Age   ≤20            21-35         35-55      ≥56                                                                                                  

Are you a current smoker?                                                         Yes              No                                                                         

Have you smoked in the past?                                                   Yes              No                                                                                 

              If yes, when did you stop smoking?                                              

Do you currently have a cold/feel congested?                          Yes              No                                                                                 

Do you suffer from hay fever?                                                    Yes              No                                                                                 

How often do you eat bread?  (Tick only one)                   

                       Never                                                  

                       Once or twice a week                

 Almost once every day              

                       More than once every day         

 

What type of bread do you eat? (Tick all that apply     

                       None                                          

                       White bread                                

                       Wholemeal bread                         

                       Granary bread                           

                       Rye bread                                  

                       Other speciality bread (e.g. ciabatta, Nan bread)              

Which of the above bread do you eat most?  

 

 

 

 

 

 

 

Number: 
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Appendix 6. Questions for bread sensory testing 

 
 

Sensory testing of bread 

Three bread samples will be presented to you on three separated 

plates, each sample will be presented with its corresponding symbol. 

Please use the scales to assess the appearance and taste of the bread.  

SAMPLE: 

Please mark each horizontal line with your response as shown below: 

1. How would describe the colour of the bread? 

 
Very pale                                                                                           Very dark 

 

2. How would describe the aroma/smell of the flavour of bread? 

 
No smell at all                                                                                 Strong smell   

 

3. How soft does the bread feel? 

 

        Very hard                                                                                Very soft 

 

4. How would describe the moistness of the bread when you eat it? 

 
Very dry                                                                                              Very moist   

 

5. How chewy would you describe the bread? 

 
Difficult to chew                                                                               Easy to chew  
 and swallow    

  

6. How much flavour does the bread have? 

 
No flavour,                                                                                       Strong flavour                                                                                                                                                                                                                                                       

bland                                                                                                     
 

7. How would you describe the flavour of the bread? 

 
Not a good                                                                                           Very good 
flavour at all                                                                                   enjoyable flavour 

 



237 
 

 

Bread Ø 
 

1. How would describe the colour of the bread? 

 
Very pale                                                                                           Very dark 

 

2. How would describe the aroma/smell of the flavour of bread? 

 
No smell at all                                                                                 Strong smell   

 

3. How soft does the bread feel? 

 

        Very hard                                                                                Very soft 

 

4. How would describe the moistness of the bread when you eat it? 

 
Very dry                                                                                              Very moist   

 

5. How chewy would you describe the bread? 

 
Difficult to chew                                                                               Easy to chew  
 and swallow    

  

6. How much flavour does the bread have? 

 
No flavour,                                                                                       Strong flavour                                                                                                                                                                                                                                                       

bland                                                                                                     
 

7. How would you describe the flavour of the bread? 

 
Not a good                                                                                           Very good 
flavour at all                                                                                   enjoyable flavour 

 
                                                                                                        

Please add any other comments you would like to make about two samples of bread:  
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Bread Δ 

 
1. How would describe the colour of the bread? 

 
Very pale                                                                                           Very dark 

 

2. How would describe the aroma/smell of the flavour of bread? 

 
No smell at all                                                                                 Strong smell   

 

3. How soft does the bread feel? 

 

        Very hard                                                                                Very soft 

 

4. How would describe the moistness of the bread when you eat it? 

 
Very dry                                                                                              Very moist   

 

5. How chewy would you describe the bread? 

 
Difficult to chew                                                                               Easy to chew  
 and swallow    

  

6. How much flavour does the bread have? 

 
No flavour,                                                                                       Strong flavour                                                                                                                                                                                                                                                       

bland                                                                                                     
 

7. How would you describe the flavour of the bread? 

 
Not a good                                                                                           Very good 
flavour at all                                                                                   enjoyable flavour 

 
                                                                                                        

Please add any other comments you would like to make about two samples of bread:  
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Bread ¶ 

 
1. How would describe the colour of the bread? 

 
Very pale                                                                                           Very dark 

 

2. How would describe the aroma/smell of the flavour of bread? 

 
No smell at all                                                                                 Strong smell   

 

3. How soft does the bread feel? 

 

        Very hard                                                                                Very soft 

 

4. How would describe the moistness of the bread when you eat it? 

 
Very dry                                                                                              Very moist   

 

5. How chewy would you describe the bread? 

 
Difficult to chew                                                                               Easy to chew  
 and swallow    

  

6. How much flavour does the bread have? 

 
No flavour,                                                                                       Strong flavour                                                                                                                                                                                                                                                       

bland                                                                                                     
 

7. How would you describe the flavour of the bread? 

 
Not a good                                                                                           Very good 
flavour at all                                                                                   enjoyable flavour 

 
                                                                                                        

Please add any other comments you would like to make about two samples of bread:  
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Appendix 7: Poster for recruiting volunteers 
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Appendix 8: Pre-screening questionnaire for human intervention study 

 

 

 

 

                        Pre-Screening Questionnaire 
 

 

 

Please explain more about the study – assure confidentiality of personal information at the 

start of the telephone interview. 
 

Date of birth      --/--/---- 

Male aged 35-70 years? 

(exclude if outside this range) 

YES 
 

 

 

NO 
 

 

Do you smoke? 

(exclude if yes) 

YES 
 

NO 
 

 

Are you allergic to wheat or gluten?  

(exclude if yes) 

 

Do you have any other food allergies or intolerances? 

 

 

YES 
 

 
 

 

NO 
 

 
 

 

If yes, please give details. 

 

………………………………………………………………………………………………………………………………………………. 

 

Do you have any dietary restrictions?  

(such as being on ‘detox’ or other slimming diets, exclude if yes) 

YES 

 

NO 

 

 

Are you currently suffering from any illness  

(prompt volunteers with – heart disease, diabetes, cancer, celiac 

disease, high blood pressure (requiring treatment), anaemia) 

(exclude if any major illness) 

YES 

 
 

 

NO 

 
 

 

 

Do you eat breakfast cereal? 

 

Do you eat bread? 

 

Do you eat wholegrain foods? 

 

Would you be willing to stop eating whole grain foods for 

three months during the study? 

 

YES 
 

 
 

 
 

 
 

 

 

 

 

 

NO 
 

 
 

 
 

 
 

 

 

 

 

 

 

Effect of quinoa consumption on cardiovascular 

disease risk and gastrointestinal health 
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Are you currently taking any prescribed medication?                   

 

If yes give details.  

 

 …………………………………………………………………………………………………… 

 

YES 
 

 

NO 
 

 

Are you currently taking any other medication that can be 

purchased over the counter?  

   

 If yes give details.  

 

 ……………………………………………………………………………………………………               

 

YES 
 

 

NO 
 

 

Are you currently taking any dietary supplements 

(vitamins/minerals etc.)?                   

 

YES 
 

 

NO 
 

 

If taking dietary supplements, would you be prepared to 

stop taking them for 12 weeks during the study period?   

YES 
 

 

NO 
 

 

 

Do you take drugs for recreational use? 

 

YES 
 

NO 
 

 

Do you drink alcohol? 

YES 
 

NO 
 

 

If yes, do you drink more than the recommended 

amount of alcohol per week?  

[prompt – 3-4 units/ day recommended for men and 2-3 

units/day recommended for women. One unit = ½ pint beer or 

1 spirit (25 ml) or 1 small glass of wine]  

 

Exclude if yes 

YES 

 

NO 

 

 
Diet and BMI 

 

Estimate of current weight  

St/lb 

 

kg 

 

Estimate of current height 

Ft/in 

 

m 

 

Estimated BMI: _______ 

 

 

Exclude if estimated BMI < 25 kg/m 2  

 

Have you had a weight change of more than 3 kg (7lbs) in 

the past 2 months? 

 

Are you planning to lose/gain weight in the next 3-4 

months? 

 

If yes, Exclude 

YES 
 

 

 
 

 

NO 
 

 

 
 
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2. Are you a vegetarian/vegan?  

YES 
 

 

NO 
 

 

 

Availability Information 

  

 

Would you have any anticipated difficulties with your availability 

or transport arrangements to attend each of the study visits? 

 

YES 

 
 

 

NO 

 
 

 

 

Are you planning to go away on a holiday in the next 12 weeks? 

 

YES 
 

 

NO 
 

 

Please state dates 

 

…………………………………………………………………………………………. 

 

 

Suitability 

 

  

 

 

 

Suitable? 

 

If yes, book Induction Visit 

 

Date ………………………………….      Time ………………………………………. 

 

 

 

ID code  

 

 

If no, ask volunteers if they wish to take part in any future 

human nutrition studies and have their details retained 

within our confidential database 

 

 

YES 

 
 

 

 

 

 

 

 

 

 

YES 

 
 

 

 

NO 

 
 

 

 

 

 

 

 

 

 

 

NO 

 

 

 

 

I H 
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Participant details 

 

 

Name ………………………………………………………………………………….         M           F  

 

 

Address 

…………………………………………………………………………………………………………………………………… 

 

…..………………………………………………………………………………………………………………………………… 

 

…………………………………………………… Post Code …………………………………………………… 

 

 

E-mail address       …………………….……………………………………… 

 

 

 

Phone Number:  Day………………………….………..     Evening ………………………………..…… 

 

        Mobile…………………………………… 

 

Best time to phone ……………………………………………………………………….. 

 

Preferred Telephone Number (circle) Day/Evening/Mobile 

 

 

 

General Practitioner Name………………………………………………………………… 

 

Of (medical 

practice)…………………………………………………………………….…………………………...………….. 

 

………………………………………………………………………………………………………………………………… 

 

GP telephone number……………………………………………………………… 

 

 

 

Please mention to interested volunteers that they will be sent:  

 

(i)  an official Invitation Letter, to attend the Screening Visit  

(ii)  the Study Information Sheet, containing more information about the study 

 

 

1. File this form in ‘Pending  Induction Visit’ Folder 

  

2. On obtaining consent, file form in individual folder 

 

3. If no consent, shred this form using a shredder 

       

 

 

 

Signature ……………………………………………………………………….…       Date ………………………………. 
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Appendix 9: Information sheet 

Effect of quinoa consumption on       

markers of cardiovascular risk 

and gastrointestinal health 

Information Sheet for Participants 

Chief Investigator: Pro. Chris.Seal 

Coordinator: Liangkui Li 

Newcastle University 

School of Agriculture, Food & Rural 

Development 

Agriculture Building 

Newcastle upon Tyne 

NE1 7RU 

 

For further information please contact: 

Email: l.li11@newcastle.ac.uk or 

NU.Food@newcastle.ac.uk  

Telephone: 07706273008 or 0191 208 3592 

http:www.ncl.ac.uk/hnrc 

You are being invited to take part in a 

research study.  Before you decide it is 

important you understand why the research 

is being done, and what it will involve.  Please 

take time to read the following information 

carefully and discuss it with others if you 

wish.  Please ask us if there is anything that 

is not clear or if you would like more 

information.  Take time to decide whether 

or not you wish to take part.  Thank you for 

reading this.  

What is the purpose of this study? 

Quinoa is possible alternative to wheat, corn 

and rice due to its high nutritional value and 

possible properties against cardiovascular 

diseases and for improving gut health. 

There are some animal studies to suggest 

that some important class of compounds like 

fiber, antioxidants and protein, found 

naturally in quinoa, have the beneficial 

effects against markers of cardiovascular 

diseases.  

      However, the effects of quinoa on 

humans have rarely been investigated. This 

study will investigate the effects of quinoa 

on markers of cardiovascular risk, including 

blood cholesterol and resting blood 

pressure, and on gut health. 

Why have I been chosen? 

We are looking for men who are non-

smokers and over the age of 35 years to 

take part in this study.  We will be 

recruiting 25 volunteers in total from the 

Newcastle Upon Tyne area. 

Do I have to take part? 
It is up to you to decide whether or not to 

take part.  If you do decide to take part you 

will be asked to sign a consent form on your 

‘Screening Visit’; you will be given a copy of 

this to keep.  

What will happen to me if I take part? 

If you decide to take part and you are a 

suitable volunteer for the study, we will ask 

you to sign a full consent form. However, 

you will be free to withdraw from the study 

without giving a reason anytime up to the 

mailto:11@newcastle.ac.uk
mailto:NU.Food@newcastle.ac.uk
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end of your final visit. Shortly after this, all 

data will be fully annonymised, and 

therefore, from this point forward it will 

not be possible to withdraw any data from 

the study. 

What will happen to me if I take part? 

If you decide to take part, we will then ask 

you some questions about your medical 

history to check whether you can 

participate. You will not be included in the 

study if you have any medical conditions or 

if you are taking medications that will 

affect the measurements in the study. If 

you are a suitable volunteer for the study, 

you will be randomly allocated into either a 

quinoa bread or refined wheat bread diet. 

For each of the two diets we will provide 

you bread and ask you to substitute these 

for some of the bread you normally eat in 

your diet every day. For one period the 

bread  will be made with quinoa, in the other 

period the bread will be made only from 

refined wheat. We will ask you to consume 

two and half slices of these breads for 4 

weeks.  Following the first intervention 

phase of the study above, a 4-week ‘wash-

out’ period will then begin (weeks 5-8) 

where you must avoid some foods on a ‘Food 

to Avoid’ list but no other supplementary 

food will be provided. After this ‘washout 

period’, we will ask you to consume either 

quinoa or refined wheat bread for the final 

4 weeks, in a cross-over design. For 

example, if you eat quinoa bread during the 

first intervention phase, after the wash 

period, you will then consume the refined 

wheat bread. We will provide you with the 

study breads regularly (every 2 weeks) and 

will also advise you on the amounts of the 

bread we would like you to eat. 

What else do I have to do? 

If you agree to take part, we will ask you to 

visit the NU Food, Newcastle university, on 

four occasions.  If you are suitable, the 

first visit is to assess your blood pressure 

and a fasted blood sample will be collected 

for cholesterol and glucose analysis, and 

there will be 3 further visits at four-weekly 

intervals during the intervention periods. On 

the evening before each visit, you will need 

to fast from 8 pm; this means that you 

should not eat or drink anything except 

water until you complete your visit the 

following morning. 

At each visit, we will take a blood sample 

(20ml/4 teaspoons of blood) from your arm 

and will also measure your height, weight, 

waist and hip circumference, body fat and 

blood pressure using non-invasive 

procedures and will ask you to complete a 

digestive health questionnaire. We will also 

ask you to collect your urine for 24 hours 

the day before and collect a small sample of 

your stool, and bring them to this visit 

(appropriate containers and full instructions 

on how to do this will be provided). Each 

visit will last approximately 45 minutes.  

You will then be offered a test breakfast of 

one of the test breads. After finishing the 

breakfast, we will ask you to collect 5 finger 

prick blood samples in the following 5 hours 

(1 time per hour). These processes can by 

carried out at NU-Food by staff or if you 
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prefer you can do this at home yourself 

using a ‘home test kit’ we will provde for you 

to use. 

Finally, we will ask you to record what you 

eat for 3 days (2 week days, 1 weekend day) 

in a 3-day food diary during each four-week 

period and complete a food-frequency 

questionnaire (FFQ) on-line during the visit 

to NU-Food.  

 

What will happen to the samples I 

provide? 

Blood and urine samples provided will be 

tested for substances present in quinoa or 

refined wheat foods (e.g. antioxidants or 

their metabolites). lipid profile (e.g. 

cholesterol), glucose and insulin.  The stool 

sample will be analysed for the number and 

type of bacteria present, and for some 

metabolites produced by the bacteria when 

they break down the fibre in the quinoa.  A 

small amount of the blood taken at study 

visits will be stored (for up to 10 years) for 

future tests to confirm results. This may 

include genetic tests on DNA if necessary 

as part of this study. All stored plasma and 

DNA samples will be coded so that no one 

can be identified from these samples.  

What are the possible disadvantages and 

risks of taking part? 

Taking blood samples may cause minor 

discomfort and there is a small chance of 

minor bruising afterwards. If a new 

diagnosis of high blood pressure is made, 

this could affect your future insurance 

status (e.g. for life insurance or private 

medical insurance). 

What are the possible benefits of taking 

part? 

If we discover any abnormalities of 

significance in your lipid profile, blood 

glucose or blood pressure, we will inform you 

and your GP. Although you will derive no 

further individual benefit, the knowledge 

gained from this study will help our 

research into identifying the effects of 

quinoa bread on health.   

What will happen if anything goes wrong? 

Any complaints you have about this study 

should be made to Prof. Chris Seal, 

Newcastle University (chris.seal@ncl.ac.uk 

or 0191-2087650) and will be fully 

investigated. 

Will my taking part in this study be kept 

confidential? 

Any information which is collected about 

you during the course of the research will 

be kept strictly confidential.  Your GP will 

be notified that you are participating in this 

study.  He/ She will be notified if any 

abnormal results of significance to your 

health are found.  

 

What will happen to the study results? 

We will publish the results of the study in a 

scientific journal and on the project 

website.  You will not be personally 

identified in any publications.  We will be 

happy to discuss the overall results with you 

mailto:chris.seal@ncl.ac.uk
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when the study is completed, and will let you 

know where you can obtain a copy of the 

published results if you wish.  

 

Will I be reimbursed for my time? 

Any travel expenses will be paid. In 

recognition of your time commitment, you 

will be paid an honorarium of £120 in the 

form of Eldon Square vouchers at the 

completion of the study.  

 

Contact for further information 

If you would like any further information 

about this study, please do not hesitate to 

contact Liangkui Li or NU-Food  

Telephone: 07706273008 or 0191 208 3592 

Email:l.li11@newcastle.ac.uk 

NU.Food@newcastle.ac.uk 

And finally… 

 

Thank you for having taken the time to read 

this information sheet and for your interest 

in the study

mailto:l.li11@newcastle.ac.uk
mailto:NU.Food@newcastle.ac.uk
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Appendix 10: Volunteer guidance 

                                                                                                                                                                                                Volunteer ID: ………………………… 

                                                                                                                                                      Visit No. ……………………………….. 

Welcome to 
 

 

The ‘Effects of quinoa consumption on 
markers of cardiovascular risk and 

gastrointestinal health’ study 
 

   Thank you for agreeing to take part in this study, conducted by the Human  

  Nutrition Research Centre, Newcastle University.   

  You will find all the information you need for the study inside this information  

  pack. 

Please read the information carefully before you begin. 

    Guidelines: 

 Sample schedule 

 Food and drink 

 Urine collection guidance 

 Stool sample collection guidance 

 Home cholesterol test kit 

 Test food consumption record 

 Reminder of key days  

If there is anything you are not sure about, please don't hesitate to ask. 

We hope you enjoy taking part! 

            Liangkui Li 

          Tel: 07706273008 

          Email: l.li11@newcastle.ac.uk 

mailto:l.li11@newcastle.ac.uk
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Food (Breads)  

Intervention period (weeks 1-4, and weeks 9-12):      

• The test breads will be provided fresh every two weeks during the 

intervention phases.  You will need to freeze the bread when you get 

home and then defrost it as you need it. 

• Consume two and half slices of the test breads (provided by the 

researcher) per day.  You can eat the bread in any way you wish 

(toasted, as a sandwich etc.). 

• Avoid all foods on the 'Foods to Avoid' list (provided in these 

instructions) but otherwise you can eat freely as you normally 

would.  Please try not to change your ‘normal’ diet during the study 

apart from avoiding these foods. 

 

'Wash out' period (week 5-8): 

You will not have to consume any supplementary foods during the 'wash-

out' period and are free to eat as you normally would EXCEPT avoiding those 

foods in the 'Foods to Avoid' list.  

Once the final blood samples are taken and the urine and stool samples 

collected, at the end of the full 12 week period, you may eat freely again. 
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Urine Collection Guidance 

Collect a urine sample every time you visit the toilet from waking 

on the 24 hours before the sample collection day. 

How you collect urine samples at home: 

Collect urine in the plastic jug provided, and then pour all sample 

into the urine container in the 24 hours.  Please bring all urine 

samples that you have collected when you attend the sample 

collection day.  

 

If you are at work or out during the day please remember to take your sample 

collection kit and cool bag with you and transfer them to your fridge when you return 

in the evening.  
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How to collect the stool sample  

Numbers correspond to numbers on the attached pictures below: 

1. Use the complete kit that you received by mail (see kit’s picture below). 
It contains: 

i)  A stool catcher to place over the toilet 

ii) Sticky labels for plastic tube, transparent bag and opaque (silver) bag 

iii) Plastic tube with a spoon attached to the lid 

iv) A small (silver) opaque plastic bag  

v) A small transparent plastic bag 

vi) A large transparent plastic bag 

vii) 1 pair of rubber gloves for stool collection  

 

2. Label the tube (iii), the small transparent plastic bag (iv) and the opaque 
(silver) bag (v) with the labels provided (ii). Alternatively, place your initials the plastic tube prior to stool 

collection.   
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3) If possible try to urinate (pass water) before stool collection as this may affect the sample.  

  THEN PLEASE WASH HANDS YOUR HANDS 

 Read the instructions on the stool catcher. Place the stool catcher on the toilet seat of the toilet, 

ensuring that the position is correct to catch the stool sample. Then follow the instructions on the 

stool catcher.  

 

 

 

THEN PLEASE WASH HANDS YOUR HANDS 

4) After opening your bowels, put on the gloves provided (ensure your hands are dry or these will be 

difficult to put on).  

 

If you are able to do this in clinic, one of the nurses or a member of the research team will collect the 

stool for you once you have finished. If you are at home please continue to the next step.  

  

5) Using the plastic tube with the spoon attached (as seen in the below image), and place stool sample 

into the tube.  

Attempt to fill the tube at least a quarter.  

This will be around 3-4 spoons. 

 

   

Then place the spoon into the tube and secure the lid.  
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After stool collection the remaining stool sample and stool catcher can then be released from the 

toilet (as described in the instructions) and flushed away. The rubber gloves should be placed in your 

bin as normal rubbish.  

6) Place the tube with stool sample into the small transparent plastic bag. Then seal the bag tightly.  

 

7) Place the small transparent bag inside the opaque (silver) bag and seal the silver bag tightly. Then 

place the opaque (silver) bag into the large transparent bag and seal tightly.   

Then do one of the following: 

 If you are attending clinic on that day bring the sample with you.  

 If you collect the sample at home then place the sample in the bags with the ice pack into the cooler 
bag and into your freezer until your next clinic appointment, or a member of the research team will 
collect the sample as soon as possible.  

 

8) Ideally the stool sample should be returned to us as soon as possible (within a few days). Please 

keep the sample frozen in the bags provided.  
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   Blood glucose meter  

1. The trained staff will apply the FreeStyle Libre sensor on to the back 

of your upper arm with a simple, disposable device called an 

applicator. When the sensor is applied, a thin, flexible and sterile 

fiber is inserted just under the skin. It is held in place with a small 

adhesive pad.  

2. Perform a quick, painless 1-second scan of the reader over the 

sensor in order to obtain a glucose reading.  

3. You should wear the sensor 14 days, which will automatically 

measure glucose, day and night. The sensor must be scanned at 

least once every 8 hours. Each scan of the reader over the sensor 

gives a current glucose reading, the last 8-hours of glucose history, 

and a trend arrow showing if glucose is going up, down, or changing 

slowly. 

 

 

       

                  Notes: sensor is water-resistant in up to 1 metre (3 feet) of water for a            

                   maximum of 30 minutes, so you can wash or have a shower freely.           
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               Finger pricks on 903 protein saver card 

                   To use the protein saver card 

 

Wash your hands thoroughly, then prick your finger with the small 

lancet provided. Put a drop of blood within the half-inch circle on the 

903 protein saver card from left to right in the following 5 hours (one 

finger prick per hour). You also should remain that the cover is folded 

over the sample when the blood sample become dry after each finger 

prick. 

 

 

             

 

                                                                              
 

http://www.webmd.com/a-to-z-guides/rm-quiz-blood-basics
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Test Food Consumption Record 

   Instructions 

   Please record:    

• date 

• time 

• whether you consumed the portion 

• if you left any uneaten 

• any another comments 

 

Please do this each time you consume any of the bread provided. If you 

miss a portion, please record this on this recording sheet. 

Date Time Portion 

consumed 

Any left 

overs? 

Other 

comments 

E.g. 

08/05/2016 

8.00am Yes No No 
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Reminder of key dates: 

Study Day 1:  

• Eat as you normally would and during the week leading up to 

your visit record everything you ate on 2 week days and 1 weekend 

day in the 3-day food diary. 

• On the day before coming to the blood collection session 

Date.................... : collect all urine passed and collect a stool sample. 

Eat the standard meal provided no later than 8pm, and drink the water 

provided and remain fasted (no food or drink except water) for at least 

12 hours before test (from……pm).  Fill in the Food Frequency 

Questionnaire (FFQ). 

• Test session- Date.................... : Come to NU Food fasted, bring urine 

and stool samples with you and the completed 3-day food diary and 

FFQ. You will have your blood taken. You will then be given a test 

breakfast of wheat bread, and after the breakfast, you will give 5 finger 

prick blood samples in the following 5 hours (1 time per hour). 

Study Day 2:  

• Eat as you normally would EXCEPT avoiding foods on the Foods to 

Avoid List and eating a portion of the test food.  During the week 

leading up to your visit record everything you ate on 2 week days 

and 1 weekend day in the 3-day food diary. 

• On the day before coming to NU food for the blood collection session, 

in the 4th week, Date....................: collect all urine passed, eat the 

standard meal provided no later than 8pm, and drink the water 

provided and remain fasted (no food or drink except water) for at least 

12 hours before test (from……pm).  Fill in the FFQ. 

• Test session- Date.................... : Come to NU Food fasted, bring urine 

and stool samples with you and the completed 3-day food diary and 

FFQ. You will have your blood taken. You will then be given a test 

breakfast of either wheat or quinoa bread, and after the breakfast, you 

will give 5 finger prick blood samples in the following 5 hours (1 time per 

hour). 
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Study Day 3: 

• Eat as you normally would EXCEPT avoiding foods on the Foods to 

Avoid List.  During the week leading up to your visit record 

everything you ate on 2 week days and 1 weekend day in the 3-day 

food diary. 

• On the day before coming to NU food for the blood collection session, 

in the 8th week, Date.................... : collect all urine passed and collect 

a stool sample, eat the standard meal provided no later than 8pm, and 

drink the water provided and remain fasted (no food or drink except 

water) for at least 12 hours before test (from……pm).  Fill in the FFQ. 

• Test session- Date……………...: Come to NU Food fasted, bring urine 

and stool samples with you. You will have your blood taken. You will 

then be given a test breakfast of wheat bread, and after the breakfast, 

you will give 5 finger prick blood samples in the following 5 hours (1 

time per hour). 

Study Day 4:  

• Eat as you normally would EXCEPT avoiding foods on the Foods to 

Avoid List and eating a portion of the test food.  During the week 

leading up to your visit record everything you ate on 2 week days 

and 1 weekend day in the 3-day food diary. 

• On the day before coming to NU food for the blood collection session, 

in the 12th week, Date.................... : collect all urine passed and collect 

a stool sample, eat the standard meal provided no later than 8pm, and 

drink the water provided and remain fasted (no food or drink except  

     water) for at least 12 hours before test (from……pm). 

• Test session- Date……………...: Come to NU Food fasted, bring urine 

and stool samples with you. You will have your blood taken. You will 

then be given a test breakfast of either wheat or quinoa bread, and after 

the breakfast, you will give 5 finger prick blood samples in the following 

5 hours (1 time per hour). 

            You will receive reminders of these dates as the study progress.  
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Appendix 11: Food frequency questionnaire 

 

+  

  

8  

                                                       

 

Effect of quinoa consumption on 

cardiovascular disease risk and 

gastrointestinal health 

 

Food Frequency Questionnaire 

 

 Please read the instructions on pages 2 and 3 

before completing the questionnaire. 

 All information collected will be kept completely 

confidential.   

 Thank you for taking time to complete this 

questionnaire.   

 

If you have any queries please contact: 

                 Wendy Bal Tel: 0191 208 6619 or 07510567098 

or email ingrained.health@ncl.ac.uk 

Volunteer ID I H    

Visit no  Week commencing (date)  
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How to answer the questions 

 

There are several types of question in this booklet.  Most of 

them can be answered by ticking one box (ONLY) beside each 

food types. 

 
For example: 

 

FOODS & AMOUNTS AVERAGE USE IN THE LAST WEEK 

 

FISH (medium serving) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ per 

day 

Fried fish in batter, as in fish 

and chips 

 

 

 
      

 

Please put ONE tick in the appropriate box () on each line to 

indicate how often, on average, you have eaten each food during 

the past week. 

 Answer every question by putting ONE tick () on 

every line 
 

 Do not leave ANY lines blank. 
 

Another example of questions requiring boxes to be ticked: 

 

Q. Do you usually add salt to food while cooking? 

                                                                       Yes…… 

No…… 

Some of these questions have several boxes and you may be asked to 

tick ONE only.  
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For example:  

What kind of fat did you most often use for frying, roasting, grilling etc? 

                     Select one only                  

Butter…… Olive oil…… 

Lard/dripping…… Walnut Oil…… 

Solid vegetable fat…… Soya Oil…… 

Margarine…… None…… 

Vegetable Oil…… Other…… 

Some of these questions have several boxes and you may be 

asked to tick all the boxes you think apply to you. 

 For example: 

14. What kind of fat did you use for cooking? 

                           Please tick all that apply 

 Butter…… 

Lard/dripping…… 

Solid vegetable fat…… 

Margarine…… 

 Vegetable oil…… 

Olive oil…… 

Walnut Oil…… 

Soya Oil…… 

None……  

         Other…… 

If “other” selected in question 14, please state……………………………………………………… 

 

What do I do if I make a mistake? 

Cross out the incorrect answer, and put a tick where you think the right answer 

should be. We’ll verify your answers at your next appointment visit.  
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If you have any problems filling in this dietary questionnaire, we will discuss them 

at your next visit. If you have any questions do not hesitate to contact Mrs 

Wendy Bal, contact details are provided on the front cover of this questionnaire. 

 

For Questions 1-12, please put ONE tick in the appropriate box () 

on each line to indicate how often, on average, you have eaten each 

food during the past week. Please DO NOT leave any lines blank. 

8.1.1.1.1.1.1.1.1 FOODS & AMOUNTS 
Average Use In LAST WEEK (Tick ONE per line) 

1. MEAT 

(medium serving) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ per 

day 

Beef: e.g. roast, steak, mince, stew, 

casserole, curry, Bolognese 

 

 

 

       

Beefburgers (single burger)  

 

       

Corned beef, Spam, luncheon meats 

(2 slices – a sandwich’s-worth) 

 

 

       

Lamb: e.g. roast, chops, stew, curry   

 

       

Chicken, turkey or other poultry: e.g. 

casserole, sliced, curry  

        

Breaded or fried poultry products: 

e.g. chicken nuggets, deep fried 

chicken pieces (1 breaded chicken 

portion or c.6 nuggets) 

        

Pork: e.g. roast, chops, stew, curry   

 

       

Bacon and ham (2 rashers/slices – a 

sandwich’s-worth) 

        

Sausages (one)         

Savoury pies, e.g. meat pie, pork pie, 

pasties, steak & kidney pie, sausage 

rolls, scotch egg (single pie/savoury) 

        

Game and Wild-fowl: e.g. duck, rabbit, 

grouse  

        

Kidneys or liver; including liver pate, 

liver sausage 

        

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

2. FISH and SEAFOOD None Once 2-4 5-6 Once  2-3 4-5 6+ per 
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(medium serving) a 

week 

per 

week 

per  

week 

a 

day 

per 

day 

per  

day 

day 

White  fish - not coated e.g. cod, 

halibut, haddock, whiting, plaice, sole, 

etc (per portion) 

        

White fish- in batter or crumbs e.g. 

cod, haddock, plaice, etc (per portion) 

        

Oily fish e.g. herring, mackerel, 

salmon- not tinned, trout, kippers etc 

(per portion) 

        

Tinned fish e.g. Sardines, Pichards, 

Tuna, Salmon etc (per can, or portion) 

 

 

       

Prawns, shellfish and other fish 

(within dish or one sandwich’s-worth) 

 

 

       

Fish cakes, Fish fingers (one)         

Fish based dishes e.g. fish pie, fish 

curry, kedgeree 

        

Roe and roe products including 

taramasalata, caviar 

        

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

3. BREAD & SAVOURY 

BISCUITS  

(one slice or biscuit) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ per 

day 

White bread and rolls, white pitta 

bread (per slice/roll) 

        

Scones, teacakes, crumpets, muffins 

or croissants (each) 

        

Brown bread and rolls (per slice/roll)         

Wholemeal pitta bread (each) 

 

        

Wholemeal bread/rolls (per slice/roll) 

 

        

Granary bread (per slice/roll) 

 

        

Rye bread (per slice/roll) 

 

        

Naan bread, chapatti (each) 

 

        

Garlic bread (per serving) 

 

        

Cream crackers, cheese biscuits 

(each) 
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Wholemeal crackers (per cracker) 

 

        

Crispbreads e.g. Ryvita, Ryvita 

currant crunch (one) 

 

 

       

Oatcakes (one)         

Other speciality breads (each) 

(please state and tick for frequency) 

1. 

2. 

        

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

4. CEREALS 

(one bowl) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ per 

day 

Porridge, Readybrek  

 

       

Sugar coated cereals e.g. Sugar 

Puffs, Cocoa Pops, Frosties 

        

Non-sugar coated cereals e.g. 

Cornflakes, Rice Crispies 

        

Muesli  

 

       

Bran containing cereals e.g. All Bran         

Cheerios         

Branflakes         

Weetabix         

Shredded Wheat, Shreddies 

 

        

Wholegrain cereals with fruit e.g. 

Sultana Bran, Fruit n Fibre 

        

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

5. POTATOES, RICE & 

PASTA (medium serving) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ per 

day 

Boiled, mashed, instant or jacket 

potatoes (about 1/3 of a plate)  

        

Chips, potato waffles (side order with 

meal – chip-shop portions count as 2) 
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Roast potatoes (3 – 5 potatoes)  

 

       

Yorkshire pudding, pancakes, dumpling 

(each medium) 

 

 

       

Potato salad (per small tub, c. 2 

tablespoons) 

 

 

       

White rice (1/2 plateful, or in a dish 

e.g. rice salad, risotto etc) 

 

 

       

Brown rice (1/2 plateful, or in a dish 

e.g. rice salad, risotto etc) 

 

 

       

White or green pasta, e.g. spaghetti, 

macaroni, noodles, (1/2 plate) 

 

 

       

Tinned pasta, e.g. spaghetti, ravioli, 

macaroni (1/2 standard tin) 

        

Super noodles, pot noodles, pot 

savouries (per pot) 

        

Wholemeal pasta/spaghetti (1/2 

plate) 

 

 

       

Pasta dishes e.g. Lasagne, moussaka, 

cannelloni (as individual ready-meal) 

        

Pizza (10’’ = 1, 12’’ = 2, 12’’+ = 3-4)  

 

       

Wholegrain dishes not mentioned 

(Please state and tick for frequency) 

1. 

2. 

3. 

        

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

6. (a) DAIRY & EGG 

PRODUCTS 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Single or sour cream (tablespoon)  

 

       

Double or clotted cream (tablespoon)  

 

       

Low fat yoghurt, fromage frais (125g 

carton) 

        

Full fat or Greek yoghurt (125g 

carton) 
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Dairy desserts (125g carton), e.g. 

mousse 

        

Cheese, e.g. Cheddar, Brie, Edam 

(medium serving) 

        

Cottage cheese, low fat soft cheese 

(medium serving) 

        

Eggs as boiled, fried, scrambled, 

omelette etc. (one) 

        

Quiche (medium serving = 1/6 of pie) 

 

        

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

6.(b) DAIRY PRODUCTS & 

FATS used on bread 

(teaspoon/curl) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Butter (e.g. Anchor, Country Life, 

Lurpak, St Helens Farm Goat Butter, 

Yeo Valley, Own Brand Butter) 

 

        

Vegetable oil based spreads (e.g. 

Flora Original, I Can’t Believe It’s Not 

Butter! Original, Pure Soya Dairy 

Free, Pure Sunflower Dairy Free, 

Vitalite, Own Brand Sunflower 

Spread) 

 

        

Olive oil based spreads (e.g. Benecol 

Olive, Bertolli, Pure Olive Dairy Free, 

Own Brand Olive Spread) 

 

        

Margarine (e.g. Stork, Own Brand 

Margarine) 

 

        

Margarine and Butter Blend Spreads 

(e.g. Anchor Spreadable, Benecol 

Buttery, Clover, Country Life 

Spreadable, Flora Buttery, Lactofree 

spreadable, Lurpak Spreadable, 

Utterly Butterly, Yeo Valley 

Spreadable, Own Brand Marge and 

Butter Blend Spread) 

 

        

Reduced/Low Fat Vegetable Oil Based 

Spreads (e.g. Benecol Light, Flora 

Light, I Can’t Believe It’s Not Butter! 

Light, Own Brand Reduced/Low Fat 

Sunflower Spread) 
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Reduced/Low Fat Olive Oil Based 

Spreads (e.g. Betolli Light, Own Brand 

Reduced/ Low fat Olive Oil Based 

Spread) 

 

        

Reduced/Low Fat Margarine 

 

        

Reduced/Low Fat Margarine and 

Butter Blend Spreads (e.g. Anchor 

Lighter Spreadable, Clover Lighter, 

Country Life Lighter, Flora Spread 

Buttery Light, Lurpak Lighter,  Lurpak 

Lighter with Olive Oil, Lurpak 

Lightest, Own Brand Reduced/Low 

Fat Margarine and Butter Blend 

Spreads) 

 

        

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

6.(c) DAIRY PRODUCTS & 

FATS used on vegetables 

(teaspoon/curl) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Butter (e.g. Anchor, Country Life, 

Lurpak, St Helens Farm Goat Butter, 

Yeo Valley, Own Brand Butter) 

 

 

 

       

Vegetable oil based spreads (e.g. 

Flora Original, I Can’t Believe It’s Not 

Butter! Original, Pure Soya Dairy 

Free, Pure Sunflower Dairy Free, 

Vitalite, Own Brand Sunflower 

Spread) 

 

        

Olive oil based spreads (e.g. Benecol 

Olive, Bertolli, Pure Olive Dairy Free, 

Own Brand Olive Spread) 

 

        

Margarine (e.g. Stork, Own Brand 

Margarine) 

 

        

Margarine and Butter Blend Spreads 

(e.g. Anchor Spreadable, Benecol 

Buttery, Clover, Country Life 

Spreadable, Flora Buttery, Lactofree 

spreadable, Lurpak Spreadable, 

Utterly Butterly, Yeo Valley 

Spreadable, Own Brand Marge and 

Butter Blend Spread) 
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Reduced/Low Fat Vegetable Oil Based 

Spreads (e.g. Benecol Light, Flora 

Light, I Can’t Believe It’s Not Butter! 

Light, Own Brand Reduced/Low Fat 

Sunflower Spread) 

 

        

Reduced/Low Fat Olive Oil Based 

Spreads (e.g. Betolli Light, Own Brand 

Reduced/ Low fat Olive Oil Based 

Spread) 

 

        

Reduced/Low Fat Margarine 

 

        

Reduced/Low Fat Margarine and 

Butter Blend Spreads (e.g. Anchor 

Lighter Spreadable, Clover Lighter, 

Country Life Lighter, Flora Spread 

Buttery Light, Lurpak Lighter,  Lurpak 

Lighter with Olive Oil, Lurpak 

Lightest, Own Brand Reduced/Low 

Fat Margarine and Butter Blend 

Spreads) 

 

        

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

7. SWEETS & SNACKS 

(medium serving) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Chocolate coated sweet biscuits, e.g. 

Penguin, kit-kat, chocolate digestive 

(one) 

        

Sweet biscuits, plain, e.g. Nice, ginger 

(one) 

        

Cakes e.g. fruit, sponge, sponge 

pudding (medium slice) 

        

Sweet buns & pastries e.g. doughnuts, 

Danish pastries, cream cakes (each) 

        

Flapjacks (each) 

 

        

Fruit pies, tarts, crumbles (per 

individual pie/medium serving) 

 

        

Milk puddings, e.g. rice, custard, 

trifle (medium serving) 

        

Ice cream, choc ices (one)         

Chocolates,, toffee, sweets and other 

confectionary (medium bar of 
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chocolate, one snack bar, one packet) 

Sugar added to tea, coffee, cereal 

(teaspoon) 

        

Crisps or other packet snacks e.g. 

Wotsits (one packet) 

        

Peanuts (one packet)         

Walnuts (medium serving)         

Other nuts (medium serving)         

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

8. SOUPS, SAUCES AND 

SPREADS  

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Vegetable soups (medium bowl)  

 

       

Meat soups (medium bowl)  

 

       

Sauces, e.g. white sauce, cheese 

sauce, gravy (1/3 of plate or in dish) 

        

Tomato based sauces e.g. pasta 

sauces (1/3 of plate or in dish) 

        

Tomato ketchup, brown sauce (per 

tablespoon) 

        

Relishes e.g. pickles, chutney, mustard 

(per tablespoon) 

        

Marmite, Bovril (per teaspoon/slices 

of bread) 

        

Jam, marmalade, honey, syrup (per 

teaspoon/slices of bread) 

        

Peanut butter (per teaspoon/slices of 

bread) 

        

Chocolate spread, chocolate nut 

spread (per teaspoon/slices of bread) 

        

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

8. SOUPS, SAUCES AND 

SPREADS (continued) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Dips e.g. houmous, cheese and chive 

(per tablespoon/slices of bread) 
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Salad cream, mayonnaise (per 

tablespoon) 

 

        

Other salad dressing (oil, vinegar or 

cheese based per tablespoon) 

 

        

Reduced/ Low fat salad cream, 

mayonnaise (per tablespoon) 

 

        

Reduced/ Low fat other salad 

dressing (oil, vinegar or cheese based 

per tablespoon) 

 

        

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

9. DRINKS None Once 

A 

Week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Tea (cup)  

 

       

Coffee, instant or ground (cup)  

 

       

Coffee whitener, e.g. Coffee-mate 

(teaspoon) 

 

        

Cocoa, hot chocolate (cup)  

 

       

Horlicks, Ovaltine (cup) 

 

 

 

       

Wine (glass)  

 

       

Beer, lager or cider (half pint)  

 

       

Port, sherry, vermouth, liqueurs 

(glass) 

 

 

 

       

Spirits, e.g. gin, brandy, whisky, vodka 

(single) 

 

        

Low calorie or diet fizzy soft drinks 

(glass) 

 

        

Fizzy soft drinks, e.g. Coca cola, 

lemonade (glass) 

 

        

Pure fruit juice (100%) e.g. orange, 

apple juice (glass) 

 

 

 

       

Fruit squash or cordial  (glass) 

 

 

 

       

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

10. FRUIT (1 fruit or 

medium serving) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Apples (each) 
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Pears (each) 

 

        

Oranges (1x), satsumas, mandarins, 

tangerines, clementines (all 2x) 

        

Grapefruit (1/2 a fruit) 

 

        

Bananas (each) 

 

        

Grapes (per small handful) 

 

        

Melon (1 medium slice) 

 

        

Peaches (1x), plums, apricots, 

nectarines (2 – 3x) 

        

Strawberries, raspberries (per small 

handful), kiwi fruit (each) 

 

        

Tinned fruit (1/2 tin) 

 

        

Dried fruit, e.g. raisins, prunes, figs 

(per small handful) 

        

All Other Fruit (medium serving)         

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

11. VEGETABLES Fresh, 

frozen or tinned 

(medium serving) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Carrots (2-3 table spoonfuls) 

 

        

Cooked Spinach (major ingredient in 

dish (e.g. curry) or per 2 – 3 

tablespoonfuls) 

 

 

       

Broccoli (per 4 – 5 florets)  

 

       

Brussels sprouts (2-3 tablespoonfuls)  

 

       

Cabbage (2-3 tablespoonfuls)  

 

       

Peas (2-3 tablespoonfuls)  

 

       

Green beans, broad beans, runner 

beans (2-3 tablespoonfuls) 

        

Marrow, courgettes (major ingredient 

in dish or 2-3 tablespoonfuls) 

 

 

       

Cauliflower (major ingredient in dish 

(e.g. curry) or 2-3 tablespoonfuls) 

 

 

       



275 
 

Parsnips, turnips, Swedes (2-3 

tablespoonfuls) 

 

 

       

 

FOODS & AMOUNTS Average Use In LAST WEEK (Tick ONE per line) 

11. VEGETABLES Fresh, 

frozen or tinned 

(medium serving) 

None Once 

a 

week 

2-4 

per 

week 

5-6 

per  

week 

Once  

a 

day 

2-3 

per 

day 

4-5 

per  

day 

6+ 

per 

day 

Leeks (2-3 tablespoonfuls)  

 

       

Onions (per onion)  

 

       

Garlic (2 cloves)  

 

       

Mushrooms (handful of uncooked 

mushrooms, or 2-3 tablespoonfuls) 

 

 

       

Sweet peppers (per ½ pepper)  

 

       

Beansprouts (major ingredient in dish 

or (2-3 tablespoonfuls) 

 

 

       

Mixed salad leaves, lettuce, rocket 

(side-salad or per 1/3 plate) 

 

 

       

Cucumber (per ¼ cucumber)  

 

       

Mixed vegetables (frozen or tinned) 

(2-3 tablespoonfuls) 

 

 

       

Watercress (per bunch, or as a major 

ingredient in salad) 

 

 

       

Red tomatoes (2 medium tomatoes, ½ 

can of tomatoes) 

 

 

       

Sweetcorn (2-3 tablespoonfuls)  

 

       

Beetroot (1 medium)  

 

       

Radishes (3-4 pieces)  

 

       

Coleslaw (2-3 tablespoonfuls)  

 

       

Avocado (per ½ fruit)  

 

       

Baked Beans (per ½ tin)  

 

       

Dried lentils, beans, peas (2-3 

tablespoonfuls, or major ingredient)  

 

 

       

Tofu, soya meat, TVP, (in dish e.g. 

curry),  Vegeburger (each) 
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Other vegetables (medium serving) 

 

        

Yellow tomatoes (2 medium tomatoes, 

½ can of tomatoes) 

        

       YOUR DIET IN THE LAST WEEK, continued  

12. What type of milk did you most often use? 

           Select one only 

 Full cream…… 

Channel Islands…… 

 Dried milk…… 

Semi-skimmed…… 

Skimmed…… 

 Soya…… 

 Other…… 

None…… 

13. Approximately, how much milk did you drink each day, including 
milk with tea, coffee, cereals etc? 

 

 None............  

 Quarter of a pint (roughly 125mls)............  

 Half a pint (roughly 250mls)............  

 Three quarters of a pint (roughly 375mls)............  

 One pint (roughly 500mls)............  

 More than one pint (more than 500mls)............  

14. What kind of fat did you use for cooking? 
 

                         Please tick all that apply 

 Butter…… 

Lard/dripping…… 

Solid vegetable fat…… 

Margarine…… 
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 Vegetable oil…… 

Olive oil…… 

Walnut Oil…… 

Soya Oil…… 

None……  

Other…… 

If “other” selected in question 14, please state……………………………………………………… 
15. Do you usually add salt to food while cooking? 

                                                                                      

Yes…… 

No…… 

16. Do you usually add salt to any food at the table?  
                                                                                             Yes…… 

No…… 

17. Do you usually eat the fat on cooked meats? 
                                                                                              Yes…… 

No…… 

18. Do you usually eat the skin on cooked meats? 
 

 Yes…… 

No…… 

19.   Do you usually add sugar to drinks i.e. tea/coffee? 
   Yes…… 

No…… 

20. On average, in the past week, how many portions of fruit and 
vegetables did you eat per DAY? 

 
Please 

estimate:….……………………… 
21. On average, in the past week, how many servings of wholegrain 

foods did you eat per DAY? 
       Please 

estimate:…………………..……… 
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 22.     Have you taken any of the following during the past 

week? 

 None Once 

a 

week 

2-4 

per 

week 

5-6 

per 

week 

Once 

a 

day 

2-3 

per 

day 

Vitamins (e.g. multivitamins, vitamin B, 

vitamin C, folic acid) 

      

Minerals (e.g. iron, calcium, zinc, 

magnesium) 

      

Fish oils (e.g. cod liver oil, omega-3)       

Other food supplements (e.g. oil of 

evening primrose, starflower oil, royal 

jelly, ginseng) 

      

 

 Did you use any other food supplements? Please state below: 
 
1 
2 
3 

 

Thank you for taking the time to complete this 
questionnaire!! 
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Appendix 12: Values of phenolic in quinoa and buckwheat extracted by 

water, ethanol and methanol 

 

 

 

 

 

 

 

 

 

 

 

Figure. Total phenolic content (Gallic acid equivalent/100g) of water, ethanol and 

methanol extracts of different varieties and sources of quinoa[A] and buckwheat [B] T, 

Tartary; C, common. 
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Table. Value of phenolics in quinoa and buckwheat  

extracted by water, ethanol and methanol 

 

 

 

 

 

                                              

                          

               Phenolic content (mg GAE/g) 

  Solvent water ethanol methanol 

Quinoa accessions    

Bolivia (Red) 216±3 73±3 36±3 

Boilvia (White) 203±3 46±4 54±3 

Ecuador (White) 229±4 44±3 35±1 

Ecuador (Red) 193±6 78±2 27±2 

Peru ( Peru) 212±3 91±2 57±3 

Peru ( Tesco) 246±5 84±4 55±3 

UK ( Biofair)  206±7 112±6 43±2 

UK ( Brand Waitrose)  239±10 56±4 32±3 

USA 217±7 33±2 76±3 

Netherlands 215±2 51±2 51±3 

China, Tibet 207±4 97±3 31±2 

China, Shanxi 250±6 64±4 41±1 
    
Buckwheat accessions    

YunNan (T)  193±3 281±2 

YunNan (C) 236±16 87±2 156±4 

SiChuan (T) 196±4 181±5 218±8 

GuiZhou (C) 227±8 179±4 192±12 

ZhangJiaKou (C) 238±4 73±2 149±8 

NeiMengGu (C) 222±5 49±1 148±5 

FuJian (C) 212±6 57±1 106±3 

Netherlands (C) 186±1 124±2 120±4 

USA (C) 90±5 50±2 119±10 


