
Probabilistic Bounded Reachability
for Stochastic Hybrid Systems

Fedor Shmarov

School of Computing

University of Newcastle

A thesis submitted for the degree of

Doctor of Philosophy

January 2018

Acknowledgements

I would like to say a massive thank you to my supervisor, Dr. Paolo Zuliani
for the tremendous amount of support and guidance in undertaking this
research, and for playing an active role in my professional development.

Also, I want to thank Dr. Curtis Madsen, Dr. Nicola Paoletti and Dr. Ezio
Bartocci for the very productive collaborations which resulted into several
scientific publications.

Moreover, I wish to express my gratitude to my examiners, Prof. Maciej
Koutny and Prof. Martin Fränzle for their expertise and professional as-
sessment of my work.

Finally, I thank my family and friends for their moral support in my day-
to-day life.

This project has been supported by award N00014-13-1-0090 of the US
Office of Naval Research.

Abstract

Stochastic parametric hybrid systems provide a means of formalising au-
tomata with continuous nonlinear dynamics, discrete interruptions, and
parametric uncertainty (e.g. randomness and/or nondeterminism). They
can be used for modelling a vast class of cyber-physical systems – machines
comprising physical components orchestrated by a digital control (e.g. med-
ical devices, self-driving cars, and aircraft autopilots). Assuring correct and
safe behaviour of such systems is crucial as human lives are often involved.

One of the main problems in system verification is reachability analysis.
It amounts to determining whether the studied model reaches an unsafe
state during its evolution. Introduction of parametric randomness allows
the formulation of a quantitative version of the problem – computing the
probability of reaching the undesired state.

Reachability analysis is a highly challenging problem due to its general un-
decidability for hybrid systems and undecidability of nonlinear arithmetic
(e.g. involving trigonometric functions) over the real numbers. A common
approach in this case is to solve a simpler, yet useful, problem. In partic-
ular, there are techniques for solving reachability rigorously up to a given
numerical precision.

The central problem of this research is probabilistic reachability analysis of
hybrid systems with random and nondeterministic parameters. In this the-
sis I have developed two new distinct techniques: a formal approach, based
on formal reasoning which provides absolute numerical guarantees; and a
statistical one, utilising Monte Carlo sampling that gives statistical guar-
antees. Namely, the former computes an interval which is guaranteed to
contain the exact reachability probability value, while the latter returns an
interval containing the probability value with some statistical confidence.

By providing weaker guarantees, the statistical approach is capable of han-
dling difficult cases more efficiently than the formal one, which in turn, can
be used for parameter set synthesis in the absence of random uncertainty.
The latter is one of the key problems in system modelling: identifying sets
of parameter values for which a given model satisfies the desired behaviour.

I have implemented the described techniques in the publicly available tool
ProbReach, which I have then applied to several realistic case studies such
as the synthesis of safe and robust controllers for artificial pancreas and the
design of UVB treatment for psoriasis.

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Background . 2
1.1.1 Hybrid Systems . 2
1.1.2 Model Checking . 3
1.1.3 Delta-Complete Decision Procedure 5
1.1.4 Related Work . 6
1.1.5 Related Software . 7

1.2 Aim and Objectives . 9
1.3 Thesis Outline and Contributions . 9
1.4 List of Publications . 11

2 Bounded Reachability in Parametric Hybrid Systems 13

2.1 Introduction . 13
2.2 Parametric Hybrid Systems . 14
2.3 Bounded Reachability in PHS . 17

2.3.1 Verifying Bounded Reachability in PHS 19
2.4 Evaluation Procedure Implementation 20

2.4.1 Verifying Universal Bounded Reachability 21
2.4.2 Implementation . 24

vii

2.4.3 PHS with Deterministic Jumps 27
2.4.4 Complexity . 28

2.5 Discussion . 28

3 Bounded Reachability Probability in Stochastic Parametric Hybrid
Systems 31
3.1 Introduction . 31
3.2 Stochastic Parametric Hybrid Systems 31
3.3 Bounded Reachability Probability in SPHS 33

3.3.1 Bounded Reachability Probability Function 34
3.4 Algorithm for Computing Probability Enclosures 37
3.5 Auxiliary Procedures . 44

3.5.1 Partitioning Parameter Boxes 44
3.5.2 Computing Probability Values of Parameter Boxes 45
3.5.3 Verified Integration Procedure 45
3.5.4 Multiple Continuous Random Parameters 46
3.5.5 Unbounded Random Parameters 48

3.6 Algorithm Guarantees . 48
3.6.1 Goal Set Synthesis in PHSs . 49
3.6.2 ε-guarantee . 50

3.7 Discussion . 60
3.7.1 Computational Complexity . 61
3.7.2 Future Work . 61

4 Bounded Reachability Probability via Monte Carlo 63
4.1 Introduction . 63
4.2 Computing Confidence Intervals . 64

4.2.1 Chernoff-Hoeffding Bound Algorithm 65
4.2.2 Bayesian Sequential Estimation 68

4.3 Handling Nondeterminism . 73
4.3.1 Cross-Entropy Algorithm . 73
4.3.2 Normal Distribution for CE . 77
4.3.3 Beta Distribution for CE . 79

viii

4.4 Discussion . 81
4.4.1 Future Work . 82

5 ProbReach: A Software Tool for Computing Bounded Reachability
Probability in SPHS 83
5.1 Introduction . 83
5.2 Input format . 83
5.3 ProbReach Architecture . 85

5.3.1 PDRH Parser . 85
5.3.2 Utility Package . 86
5.3.3 Evaluation Procedure . 86
5.3.4 Algorithms . 87

5.4 Usage . 88
5.5 Discussion . 90

5.5.1 Future Work . 90

6 Case Studies 93
6.1 Introduction . 93
6.2 Exploring ProbReach Settings . 93

6.2.1 Good and Bad . 93
6.2.2 Car Deceleration Scenario . 95
6.2.3 Cars Collision Scenario . 95
6.2.4 Pharmocokinetics Model for Anaesthesia Delivery 97
6.2.5 Applying the Statistical Engine 99

6.3 Artificial Pancreas . 108
6.3.1 Plant Model . 109
6.3.2 Basal Insulin Rate Synthesis . 111
6.3.3 PID Controller Synthesis . 112
6.3.4 Maximum Disturbance Synthesis 115
6.3.5 Performance and Safety Evaluation 116

6.4 UVB Irradiation Therapy for Treating Psoriasis 117
6.4.1 Bounded Reachability Probability 119
6.4.2 Parameter Set Synthesis . 121

ix

6.5 Discussion . 122

7 Conclusions and Future work 125
7.1 Conclusions . 125
7.2 Future Work . 127

A Appendix A 129
A.1 Supporting Claims . 129
A.2 Definitions . 130

References 133

x

List of Figures

1.1 A trajectory of a cannonball. 2

3.1 Graph of the bounded reachability probability function Pr(K). 36
3.2 Probability enclosures returned by Algorithm 3 for the stochastic can-

nonball model (Example 3.1). 43
3.3 Algorithm 3 output for Example 3.6 with ρ = {10−5} and η = 10−3. . . 51
3.4 Algorithm 3 output for Example 3.6 with ρ = {10−5} and η = 10−6. . . 51
3.5 Probability enclosures returned by Algorithm 3 for the SCB model. . . 60

4.1 The explanation of the principles of the Cross-Entropy algorithm. . . . 75

5.1 SCB model encoded in PDRH format. 84
5.2 The ProbReach Architecture. 85

6.1 Probability enclosures with respect to nondeterministic parameter n for
the good and the bad cases of the introductory model. 100

6.2 SPHS modelling car deceleration scenario. 101
6.3 Probability enclosures with respect to nondeterministic parameter ad for

the car deceleration scenario. 101
6.4 SPHS modelling the cars collision scenario. 102
6.5 Probability enclosures with respect to nondeterministic parameter ad2

for the Basic model of the cars collision scenario. 103
6.6 Probability enclosures with respect to nondeterministic parameter tsafe

for the Extended model of the cars collision scenario. 104
6.7 Probability enclosures with respect to nondeterministic parameters tsafe

and treact for the Advanced model of the cars collision scenario. 105

xi

6.8 SPHS modelling anaesthesia delivery. 106
6.9 SPHS modelling the scenario of 3 meals consumed over 24 hours for the

artificial pancreas model. 114
6.10 Simulated blood glucose level and insulin administration. 117
6.11 SPHS modelling the UVB irradiation therapy. 118
6.12 Probability enclosures with respect to the nondeterministic parameter λ

for the UVB irradiation therapy model. 120
6.13 Parameter set synthesis result for the UVB irradiation model. 122

xii

List of Tables

4.1 Application of Algorithm 7 to SCB model. 67
4.2 Application of Algorithm 8 to SCB model. 72
4.3 Results of applying Algorithm 9 in Example 4.3. 78
4.4 Results of applying Algorithm 9 in Example 4.4. 81

6.1 ProbReach settings and computation details for the case studies from
Section 6.2. 94

6.2 Parameter values and distributions for the cars collision model. 96
6.3 Parameter values and initial conditions for the anaesthesia delivery model. 97
6.4 Parameter intervals for sensitivity analysis in the anaesthesia delivery

model. 99
6.5 Results of applying the statistical engine of ProbReach to the case stud-

ies from Section 6.2. 107
6.6 Parameter values for the glucose-insulin regulatory model. 111
6.7 Approximate value of the steady state of the ODE system (6.4). 112
6.8 Results of controller synthesis. 114
6.9 Evaluation of the synthesized PID controllers. 116
6.10 UVB irradiation model parameters and initial conditions. 119
6.11 Results of applying the Cross-Entropy algorithm to the UVB irradiation

therapy model. 121

xiii

Chapter 1

Introduction

Mathematical modelling and model verification have a greatly positive impact on the
system design process. They can be used for rejecting faulty implementations which
would be very costly and time-consuming, or even impossible to investigate experi-
mentally. Also, in silico (computational) analysis can provide further guidance and
predictions for the physical experiments.

Stochastic hybrid systems find application in modelling numerous real world sys-
tems from various domains. For instance, they can model biological systems such as
gene regulatory networks and DNA replication [58], closed-loop (with feedback) sys-
tems such as insulin delivery for patients with type 1 diabetes [44] (also known as
artificial pancreas), and cyber-physical systems such as powertrains [49], wind turbines
[87] and autonomous underwater vehicles [19].

Verification of stochastic hybrid systems allows solving important problems such as
probabilistic reachability and safety analysis [2], devising control and planning strate-
gies [27], and parameter set synthesis [60].

This chapter aims to introduce the relevant background and the related work in
the field of verification of stochastic parametric hybrid systems, i.e., hybrid systems
parametrised by random and nondeterministic initial conditions. Then it states the aim
and the objectives of this work, and declares the contributions of this thesis according
to the identified goals.

1

1.1 Background

1.1.1 Hybrid Systems

Hybrid systems [3] can be seen as a generalisation of finite-state machines depicting the
continuous behaviour. Hybrid systems comprise continuous components - flows behav-
ing according to the laws of physics and generally modelled using nonlinear ordinary
differential equations (ODEs), and discrete control - jumps specifying the discrete state
changes between the flows. The discrete transitions are represented by a set of Boolean
predicates defining when the transition between the continuous flows may take place.
Also, when a discrete transition takes place it typically causes a reset of the initial val-
ues of continuous variables in the successor flow. Besides, hybrid systems can feature
invariants – conditions which should be satisfied for all time points in the flow.

A cannonball presents a simple example of a hybrid system. Consider a ball
launched with some initial speed and some angle to horizon (see Figure 1.1). The
ball’s dynamics evolve continuously while it is in the air (flow), and the discrete state
change occurs when it touches the ground (jump). During the contact with the ground
its speed is reduced (reset).

S
x

0 10 20 30 40 50 60 70 80

S
y

0

5

10

υ0

α

Figure 1.1: A trajectory of a cannonball launched from the point (0,0) with initial
speed υ0 and angle to horizon α.

Systems featuring uncertainties can be modelled by means of stochastic parametric
hybrid systems (SPHS). There are different variants of SPHSs depending on the level
of abstraction, starting from systems with random and nondeterministic parameters

2

[58, 78, 89] to systems with stochastic dynamics (defined by stochastic differential
equations).

1.1.2 Model Checking

Model checking is a set of techniques for the verification of finite state machines [5,
12]. Since its introduction in the 1980’s [14, 67] it has been successfully applied to
the verification of hardware and software systems of various complexity [41]. Model
checking allows reasoning about numerous system properties in a sound and rigorous
manner (unlike the approaches based on testing).

A model checker is an automated tool which takes a model of a system and a
desired property formulated in the defined specification language, and correctly decides
whether the corresponding property holds or not. If the latter is the case, a counter-
example falsifying the property is provided.

Reachability is one the most important properties studied in verification. It asks
whether a specified state (set of states) is reachable. Many system properties (e.g.,
safety, unreachable states) can be expressed in terms of reachability.

One of the fundamental problems in model checking is state space explosion – the
number of states of the model can be incredibly large. Approaches such as symbolic
and bounded model checking allow dealing with this problem rather successfully.

Symbolic Model Checking The main idea behind symbolic model checking is to
represent and treat a finite state system as a Boolean function [4, 16, 62]. This approach
proved to be quite powerful for finite state systems, but extending their application from
finite state machines to hybrid systems introduces some complications. Dealing with
the latter implies that the system’s continuous flows must be taken into account. As
symbolic model checking cannot easily deal with the infinite state space introduced by
the continuous dynamics, its applicability is limited to hybrid systems whose continuous
behaviour can be abstracted to a finite state space (e.g., affine hybrid system [8, 90]).
In this regard, bounded model checking can be applied to a wider range of hybrid
systems while still successfully dealing with the state space explosion problem.

3

Bounded Model Checking The aim of bounded model checking (BMC) [13, 15]
is to create a formula of a finite length l and feed it to a Boolean satisfiability (SAT)
solver. With respect to reachability analysis this means that reachability of the desired
state will be explored for the given depth value l. If for none of the considered paths
the goal state is reachable the bound l can be increased. Otherwise, a witness of width
l is returned.

BMC demonstrated to be more efficient than symbolic model checking for finite
state systems, and it can also be applied to verification of hybrid systems. This requires
introducing the appropriate logic on top of SAT such as nonlinear arithmetic (including
numerical solvers for the nonlinear ODEs, as in general they may not have explicit
solutions [22, 37, 47]). However, the introduction of nonlinear arithmetic adds another
problem to the state space explosion – undecidability.

Undecidability of Reachability Checking reachability in hybrid systems is gener-
ally undecidable (even for linear hybrid systems)[3]. Furthermore, bounded reachability
in hybrid systems featuring nonlinear continuous dynamics is undecidable due to unde-
cidability of nonlinear arithmetic over the reals. Although Tarski has proven that the
first-order logic of real polynomials is decidable [84], the problem becomes undecidable
when trigonometric functions (e.g. sin, cos) are introduced [54, 70, 88]. This proof is
based on the well-known Hilbert’s tenth problem – whether a Diophantine equation
with any number of unknowns and with integral coefficients is solvable in the integers,
and it was proven do be undecidable by Davis, Putnam, Robinson and Matiyasevich
[21, 61]. However, the reachability becomes decidable for robust hybrid systems [28, 35]
(such systems where the reachability property holds under small input perturbations).

There exist decision procedures which can return one sided guaranteed answers.
For example, δ-satisfiability tackles the problem of undecidability over the reals by
introducing a procedure which returns one-sided guaranteed answers: one of the two
answers can be trusted while the other one is subject to some over-approximation
[35, 64]. Such problem, called δ-decision, is decidable – there exists an algorithm which
always terminates correctly returning one of the answers above.

Analogously, in [30] the authors introduce a procedure that integrates interval con-
straint propagation (ICP) and SAT solving techniques to provide one-sided decisions
for Boolean combinations on nonlinear arithmetic constraints.

4

Similarly, in [69] the author introduces a semi-terminating algorithm for safety
verification of nonlinear hybrid systems. This algorithm terminates for robust instances
of the problem (i.e., safety holds comfortably for some positively perturbed version of
the system), and it may run eternally otherwise.

The δ-complete decision procedure is one of the fundamental elements of the novel
theory introduced in this thesis.

1.1.3 Delta-Complete Decision Procedure

Delta-complete decision procedures are defined for bounded LR-sentences, and they cor-
rectly decide whether a given sentence is false or its weaker version, called δ-weakening,
is true.

Definition 1.1. (Bounded LR-formula [35]) A bounded LR-formula is defined as
follows:

t := c | x | f
(
t(x)

)
,

φ := t(x) > 0 | t(x) ≥ 0 | φ ∧ φ | φ ∨ φ | ∃[u,v]x : φ | ∀[u,v]x : φ,
(1.1)

where c is a constant, x is a variable, f is a computable real function, and ∃[u,v]x,∀[u,v]x

are bounded quantifiers – shorthand for ∃x ∈ [u, v] and ∀x ∈ [u, v].

In this thesis, computable real functions are defined in terms of Type 2 computabil-
ity (see Definition A.2 in Appendix A.2). Informally, a real function is computable if its
value can be algorithmically approximated with arbitrary finite precision. An impor-
tant property of computable functions is that they are continuous (while the opposite
is not true) [50].

Definition 1.2. (δ-Weakening [35]) Given an arbitrary δ > 0 and a bounded LR-
sentence

φ := QX1
1 x1, . . . , Q

Xn
n xn :

m∧
i=1

(ki∨
j=1

(
fi,j(x1, . . . , xn) ◦ 0

))
,

where each fi,j is a real computable function, Qi = {∃,∀}, and ◦ ∈ {>,≥}, its δ-
weakening is

φδ := QX1
1 x1, . . . , Q

Xn
n xn :

m∧
i=1

(ki∨
j=1

(
fi,j(x1, . . . , xn) ◦ −δ

))
.

5

Definition 1.3. (δ-complete decision procedure [35]) Given δ > 0, a δ-complete
decision procedure correctly decides whether an arbitrary bounded LR-sentence is false
or its δ-weakening is true, returning unsat and δ-sat respectively. When both cases
overlap, either answer can be returned.

From the above definition it is clear that unsat means that the given LR-sentence
is false. However, δ-sat implies satisfiability of the δ-weakening of the given sentence
while its original version can still be false. This is usually referred to as a false alarm,
i.e., a δ-complete decision procedure returns δ-sat for the unsatisfiable LR-sentence
due to the coarse over-approximation introduced by δ.

There are several SAT ODE solvers such as iSAT-ODE [23], and dReal [36] which
can provide δ-decisions.

1.1.4 Related Work

Introducing random parameters to a hybrid system adds a quantitative measure to
bounded reachability – the reachability probability. Adding nondeterministic param-
eters to the system above introduces a range of reachability probabilities (i.e. the
reachability probability becomes a function of nondeterministic parameters).

Verification of such systems can be done formally – integrating the probability mea-
sure of random parameters over the parameter sets satisfying the bounded reachability
property, or statistically – sampling the parameter space according to the parameters’
distributions and evaluating bounded reachability for each drawn sample. The former
provides stronger (absolute) guarantees but suffers from high computational complex-
ity [91], while the latter grants weaker (statistical) guarantees relaxing the complexity
[92].

Regarding the formal verification approach, in [85] the authors introduce Stochastic
Satisfiability Modulo Theory (SSMT) by extending the classical nonlinear Satisfiability
Modulo Theory with randomised quantifiers. However, this work is limited to finite
domains (only discrete randomness is supported). In [38] the authors address this
problem by extending SSMT to continuous domains (CSSMT) to support continuous
randomness. However, the presented approach does not feature ODEs, and the guar-
antees on the accuracy of the produced results are not discussed. At the same time the
techniques discussed in [38] solve a more general problem than bounded reachability

6

in hybrid systems and can be applied to computing the probability of satisfiability of
an arbitrary bounded CSSMT formula.

In [25] the authors present a technique for computing p-boxes using validated ODE
integration. However, the technique is restricted to ODE systems and finite-support
random parameters. Moreover, it is not clear what guarantees are given for models
containing only continuous and/or discrete random parameters: the size of the com-
puted p-box might be quite large. In contrast, the technique presented in Section 3.6.2
of this thesis computes an arbitrarily small interval containing the exact reachability
probability for systems featuring both continuous (possibly with unbounded support)
and discrete random parameters.

In [1] the authors introduce a technique for computing bounds on reachability prob-
abilities for stochastic parametric hybrid systems, using abstraction by discrete-time
Markov chains. The technique is further extended to full Linear Temporal Logic (LTL)
and nondeterminism [86]. In [68] the authors give model checking algorithms for Prob-
abilistic Computation Tree Logic (PCTL) formulae over continuous-time stochastic
parametric hybrid systems. However, in [1, 68, 86] the continuous state space is han-
dled through finite discretisation, and approximate numerical solutions are provided for
the experiments. The algorithms presented in this thesis instead consider continuous
time and space, and give full mathematical/numeric guarantees.

Regarding the statistical verification approach, in [24] the authors introduce a sta-
tistical model checking technique for verifying hybrid systems with continuous random-
ness and nondeterminism. However, the presented approach combines SMT decision
procedures with the fixed-sample size techniques, i.e., based on Hoeffding’s inequality.
Also stochastic hybrid systems whose dynamics are defined by ODEs are not discussed
in this work. In contrast, the algorithm developed in Section 4.2.2 employs more ef-
ficient sequential Bayesian approach, and it incorporates an SMT-based verification
procedure that can handle Lipschitz-continuous ODEs.

1.1.5 Related Software

dReal Tool Family The tool dReach [51] performs bounded reachability analysis
in hybrid system. Given a model of a hybrid system and a reachability depth value
l it creates a reachability formula of length l which is then verified using dReal –

7

an SMT solver implementing a δ-complete decision procedure with nonlinear ODEs
support. dReach was successfully applied for parameter set identification in biological
systems such as cardiac disorders and hormone therapy for treating prostate cancer [60].
However, it does not support stochastic parametric hybrid systems, and it bases its
verdict on δ-decisions, which implies that the correctness of the sat answer is subject to
over-approximation introduced by δ. The technique developed in Section 2.3.1 attempts
to strengthen the δ-sat verdict, and thus, to provide a more precise answer.

The tool SReach [89] combines δ-complete procedures with statistical estimation
techniques in order to accommodate SPHSs. Namely, it uses Monte Carlo methods
for sampling the domain of random parameters, and each sample is evaluated using
dReach. As a result of the one-sided guarantees provided by dReach, SReach produces
confidence intervals for the over-approximation of the bounded reachability probabil-
ity. In contrast, the algorithms developed in Section 4.2.1 and Section 4.2.2 of this
thesis provide confidence intervals containing the exact probability value by taking
into account the under-approximation of the reachability probability (along with its
over-approximation).

Also, SReach handles nondeterministic parameters at the SMT level (directly in-
side the δ-complete decision procedure) where complexity grows exponentially with the
number of nondeterministic parameters, and it can only estimate the maximum reach-
ability probability. At the same time the technique developed in Section 4.3.1 of this
thesis handles nondeterministic parameters by sampling the parameter search space
randomly, and allows computing both the maximum and the minimum reachability
probabilities.

iSAT Tool Family Analogously to dReach, the tool iSAT3 [74] performs bounded
reachability analysis in hybrid systems. It also supports nonlinear ODEs and allows
checking the δ-sat answer automatically, unlike dReach.

The tool SiSAT [31] solves probabilistic bounded reachability by returning answers
guaranteed to be numerically accurate. However, it does not currently support con-
tinuous random parameters in the formal setting. The tool CSiSAT [39] solves this
problem for continuous random parameters with bounded support. However, it does
not provide ODEs support, which significantly limits the range of supported SPHSs.

8

Other Tools C2E2 [26] is a tool that verifies bounded reachability in nonlinear hybrid
systems through computing and analysing over-approximations of systems dynamics.
This tool, however, does not yet support systems with random parameters. UPPAAL [55]
is an extremely powerful model checker for timed automata, and it has been recently
extended to support (dynamic) networks of stochastic timed automata via UPPAAL SMC
[20]. PRISM [53] is a state-of-the-art model checker for a variety of discrete-state stochas-
tic systems, but with respect to real-time systems it is limited to probabilistic timed
automata. The tool FAUST2 [81] utilises abstraction techniques to verify nondeterminis-
tic continuous-state Markov models, although currently for discrete-time models only.
ProHVer computes an upper bound for the maximal reachability probability [94], and
handles continuous random parameters via discrete over-approximation only [29].

1.2 Aim and Objectives

The aim of this work is to

devise novel techniques for the verification of stochastic parametric hybrid systems in
a numerically rigorous and sound manner.

The following objectives were identified:

• investigate formal techniques for probabilistic reachability analysis and develop
an algorithm for computing bounded reachability probability in SPHSs with ab-
solute numerical guarantees,

• explore statistical methods for improving the performance of the formal approach,
while providing statistically and numerically accurate results (i.e., the precision
for samples evaluation should not affect the correctness of produced result),

• implement attained theoretical findings in a software tool, and apply it to several
complex case studies.

1.3 Thesis Outline and Contributions

This section introduces the outline and discusses the contributions of this thesis with
respect to the declared aim and objectives.

9

• Chapter 2 defines bounded reachability in parametric hybrid systems (PHS)
and introduces the evaluation procedure that is based on a δ-complete decision
procedure, and which can be used for guaranteed reasoning about parameter
subsets of a PHS. Some of the material presented in this chapter was published
in [78].

• Chapter 3 extends the notion of PHS to stochastic parametric hybrid systems
(SPHS) by introducing random parameters, and presents a formal approach for
computing enclosures (sometimes arbitrarily tight) containing the range of the
bounded reachability probability with absolute numerical guarantees. Some of
the material presented in this chapter was published in [79].

• Chapter 4 presents a technique combining Monte Carlo sampling with nu-
merically rigorous evaluation procedure from Chapter 2 for producing confidence
intervals for the bounded reachability probability that are both statistically and
numerically correct. Some of the material presented in this chapter was published
in [78].

• Chapter 5 describes the architecture and implementation details of the devel-
oped tool ProbReach, which incorporates the algorithms introduced in Chapters
2, 3 and 4. Some of the material presented in this chapter was published in
[76, 77].

• Chapter 6 demonstrates application of ProbReach to several case studies, such
as UVB therapy for treating psoriasis and automated synthesis of PID controllers
for an artificial pancreas model. Some of the material presented in this chapter
was published in [75].

• Chapter 7 contains final remarks and several directions for future work.

10

1.4 List of Publications

Portions of the work within this thesis have been documented in the following publi-
cations.

F. Shmarov and P. Zuliani, “ProbReach: Verified Probabilistic Delta-Reachability
for stochastic parametric hybrid systems,” in HSCC. ACM, 2015, pp. 134–139.

F. Shmarov and P. Zuliani, “ProbReach: a Tool for Guaranteed Reachability
Analysis of stochastic parametric hybrid systems,” in Symbolic and Numerical Methods
for Reachability Analysis, 1st International Workshop, SNR 2015, ser. EPiC Series in
Computing, S. Bogomolov and A. Tiwari, Eds., vol. 37, 2015, pp. 40–48.

F. Shmarov and P. Zuliani, “SMT-based Reasoning for Uncertain Hybrid Do-
mains,” in AAAI-16 Workhop on Planning for Hybrid Systems, 30th AAAI Conference
on Artificial Intelligence, 2016, pp. 624–630.

F. Shmarov and P. Zuliani, “Probabilistic Hybrid Systems Verification via SMT
and Monte Carlo Techniques” in HVC. LNCS, vol. 10028, 2016, pp. 152–168.

F. Shmarov, N. Paoletti, E. Bartocci, S. Lin, S. A. Smolka and P. Zuliani, “SMT-
based Synthesis of Safe and Robust PID Controllers for Stochastic Hybrid Systems”,
in HVC. LNCS, vol. 10629, 2017, pp. 131–146.

11

Chapter 2

Bounded Reachability in Parametric
Hybrid Systems

2.1 Introduction

Hybrid systems provide a framework for modelling and verification of systems with
continuous components and digital control. One of the most important properties in
hybrid systems verification is reachability. It aims at deciding whether a hybrid system
reaches some predefined goal state (or set of states).

It was already discussed that reachability is undecidable even for linear hybrid
systems. Moreover, its bounded version (when the number of discrete transitions in
the reachability analysis is finite) is also undecidable.

By applying a δ-complete decision procedure [35] it is possible to decide whether a
bounded reachability question is unsatisfiable – a goal state cannot be reached – or its
relaxed version (characterised by some positive over-approximation) holds. However,
due to the properties of δ-decision procedures, the latter does not imply that the goal
state is reachable. Tools such as dReach [51] and iSAT-ODE [23] can solve bounded
reachability in hybrid systems by incorporating SMT solvers that implement δ-decision
procedures.

In this chapter I study parametric hybrid systems (PHS) – systems with parametrised
continuous and discrete dynamics. The system’s parameters are defined in the initial
state and stay invariant during the system’s evolution. Here I introduce a procedure

13

that attempts to decide whether bounded reachability is true for all parameter values
in a given non-empty subset of the system’s parameter space, or whether it is unsatisfi-
able on this subset. While the latter can be checked using one of the existing tools, the
former is a non-trivial task that cannot be handled directly by existing SMT solvers.
Also note that it is not guaranteed that this procedure always decides given such pa-
rameter subset due to undecidability. This evaluation procedure plays a central role in
probabilistic reachability analysis and parameter set synthesis, which will be discussed
in Chapter 3.

In this chapter I give a formal definition of parametric hybrid systems and formulate
the bounded reachability property in terms of bounded LR-sentences. Then I introduce
a theoretical evaluation procedure utilising δ-complete decision procedures and discuss
several challenges faced during the implementation stage due to the limitations of the
existing SMT solvers. Finally, I provide an over-approximating implementation of the
theoretical evaluation procedure and identify a subclass of PHSs for which “theory”
and “implementation” are equivalent.

2.2 Parametric Hybrid Systems

A parametric hybrid system (PHS) is a hybrid system featuring continuous and dis-
crete parameters [10, 51] whose values are set in the initial state and do not change
during the system’s evolution. The parameters can be defined over intervals (continu-
ous parameters) or over finite sets of constants (discrete parameters). Formally, a PHS
can be defined as the following.

Definition 2.1. (Parametric Hybrid System) A parametric hybrid system (PHS)
is a tuple:

H =< Q,X, P, T, init,param,flow, invt, jump, reset, goal >,

where

• Q := {q0, . . . , qm} – set of the discrete states (modes) of the system,

• X :=×n

i=1
[ui, vi] ⊂ Rn – domain of the continuous state variables,

• P :=×k

i=1
[ai, bi]××k+j

i=k+1
{a(i,1), . . . , a(i,di)} ⊂ Rk+j – parameter space (Cartesian

product of the continuous and the discrete parameter domains),

14

• T > 0 ∈ R – time upper bound,

• param :=
{
p1, . . . , pk+j

}
– list of the system’s parameters,

• init :=
{
initq : P → X, q ∈ Q

}
– set of initial states. Each initq(p) is a

computable function that assigns the value x0 to the continuous dynamics at time
t = 0 in mode q (initial mode),

• flow :=
{
flowq : X ×P × [0, T]→ X, q ∈ Q

}
– set of continuous system dynam-

ics. Each flowq(x0,p, t) defines an initial value problem (IVP) with Lipschitz-
continuous ODEs with initial value x0 at t = 0 in mode q.

• jump :=
{
jump(q,q′) : X × P × [0, T] → B, q, q′ ∈ Q

}
– set of discrete system

transitions (B is the Boolean set). Each jump(q,q′)(x,p, t) defines a jump from
mode q to q′ which may (but does not have to) occur if x and p satisfy the jump
condition at some time point t ∈ [0, T] in mode q,

• reset :=
{
reset(q,q′) : X × P → X, q, q′ ∈ Q

}
– set of reset functions. Each

reset(q,q′)(x,p) is a computable function that defines the initial value of the con-
tinuous dynamics at time t = 0 in mode q′ after taking the transition from mode
q,

• invt :=
{
invtq : X × P × [0, T] → B, q ∈ Q

}
– set of mode invariants. Each

invtq(x,p, t) defines a condition which should be satisfied by the continuous state
variables x and the parameter vector p for all time points in mode q,

• goal :=
{
goalq : X × P × [0, T] → B, q ∈ Q

}
– set of goal states. Each

goalq(x,p, t) defines the set of continuous goal states in mode q (goal mode),

and

• each jump, invt and goal is represented by a finite Boolean combination of
atomic formulae featuring only computable functions.

Remark 2.1. (Unique Jumps) Definition 2.1 assumes that each jump(q,q′) and
reset(q,q′) define a unique discrete transition between modes q and q′. However, if
it is necessary to introduce multiple jumps between a pair of modes, one can create a
new mode q′′ with the same flow and invt as in q′ and define the desired transition for
q and q′′.

15

The following running example of a simple PHS will be used throughout this thesis
for explaining the main concepts.

Example 2.1. (Cannonball Model (CB)) Consider the following scenario visu-
alised in Figure 1.1. A ball is launched from the point (Sx = 0, Sy = 0) with initial
speed υ0 = 25 and angle to horizon α which can take one of the three possible values:
0.7584, 1.0472 or 0.5236. The horizontal and the vertical distances travelled by the ball
are governed by the differential equations dSx

dt
= υ · cos(α) and dSy

dt
= υ · sin(α) − g · t

(where g = 9.8), respectively. After the ball reaches the ground it bounces, and its
speed is multiplied by the drag coefficient K, that can take any value within the interval
[0.5, 0.9]. The described system consists of a single mode and a single jump. A PHS
formalizing this model can be defined as follows:

• Q :=
{
q0

}
,

• X := [0, 1000]× [0, 100]× [0, 50],

• P := {0.7854, 1.0472, 0.5236} × [0.5, 0.9]× {25},

• T := 10,

• param :=
{
α,K, υ0

}
,

• init :=
{
initq0(α,K, υ0) := {0, 0, υ0}

}
,

• flow :=
{
flowq0(S

init
x , Sinity , υinit, α,K, υ0, t) := {dSx

dt
:= υ · cos(α), dSy

dt
:= υ ·

sin(α)− 9.8 · t, dυ
dt

:= 0, Sx(0) := Sinitx , Sy(0) := Sinity , υ(0) := υinit}
}
,

• invt := ∅,

• jump :=
{
jump(q0,q0)(Sx, Sy, υ, α,K, υ0, t) := (t > 0) ∧ (Sy = 0)

}
,

• reset :=
{
reset(q0,q0)(Sx, Sy, υ, α,K, υ0) := {Sx, 0, K · υ}

}
,

• goal :=
{
goalq0(Sx, Sy, υ, α,K, υ0, t) := (t > 0) ∧ (Sy = 0) ∧ (Sx ≥ 100)

}
.

16

2.3 Bounded Reachability in PHS
I now formally define bounded reachability in PHS. It is easy to check whether the
goal mode is reachable in l steps by finding a path π (see Definition 2.2) such that the
initial element (π[0]) of π belongs to the set of initial modes, the last element (π[l]) of
π is in the set of goal modes, and for each pair of successive modes (π[i], π[i+ 1]) there
exists a discrete transition defined by jump(π[i],π[i+1]) and reset(π[i],π[i+1]).

Definition 2.2. Given a PHS H, a path π of depth l is a finite sequence of modes of
H such that initπ[0] ∈ init, jump(π[i],π[i+1]) ∈ jump for 0 < i < l, and goalπ[l] ∈ goal.
A trajectory defines a continuous evolution of the system along the given path for the
given initial value of the continuous dynamics.

Let Paths(H, l) be the set of all such paths for the given PHSH and the reachability
depth l. It can be obtained using a breadth-first search (BFS) algorithm [80]. The
original algorithm should be modified for this purpose in two ways: a search depth
bound l should be introduced, and the algorithm should not terminate after finding
the first path and exhaustively explore all paths of specified length l.

It is clear that finding such path π is not enough for concluding the reachability
of the goal state as there might not be a trajectory satisfying the corresponding jump
conditions, invariants and goal predicates. This requires checking the values of the
continuous dynamics over P × [0, T]. Thus, bounded reachability can be formulated
as:

Definition 2.3. (Bounded Reachability) The bounded reachability property for a
PHS H, a reachability depth l, and a subset B of the parameter space of H is defined
as the bounded LR-sentence:

Reach(H, l, B) := ∃Bp,∃[0,T]t0,∀[0,t0]t′0, · · · , ∃[0,T]t|π|−1, ∀[0,t|π|−1]t′|π|−1 :∨
π∈Paths(H,l)

[(
x0(t0) := flowπ[0](initπ[0](p),p, t0)

)
∧ invtπ[0]

(
x0(t′0),p, t′0

)
∧

|π|−2∧
i=0

[(
xi+1(ti+1) := flowπ[i+1](reset(π[i],π[i+1])(xi(ti),p),p, ti+1)

)
∧

jump(π[i],π[i+1])(xi(ti),p, ti) ∧ invtπ[i+1]

(
xi+1(t′i+1),p, t′i+1

)]
∧

goalπ[|π|−1]

(
x|π|−1(t|π|−1),p, t|π|−1

)]
.

17

The following proposition is necessary to demonstrate that formula Reach can be
verified using δ-complete decision procedures.

Proposition 2.1. Formula Reach comprises a bounded LR-sentence.

Proof. First of all, functions in init and reset are computable, and the formulae in
jump, invt, goal consist of a finite combination of atomic formulae featuring only com-
putable functions. Moreover, flow features Lipschitz-continuous ODEs whose solutions
are unique [7, Chapter 6, Theorem 1] and computable [50, Theorem 7.2]. Finally, a
path π of length l is a finite Boolean combination of predicates from jump, invt, goal,
and the set of all such paths is finite.

As all variables in Reach are defined over bounded intervals, Reach defines a
bounded LR-sentence.

Example 2.2. (Bounded Reachability for CB) The bounded reachability property
for the cannonball model (Example 2.1) with reachability depth l = 1 on the entire
parameter space (B = P) is satisfiable as the corresponding formula Reach(H, 1, P)

holds.
Reach(H, 1, P) := ∃P{α,K, υ0},∃[0,10]t0,∃[0,10]t1 :

(
dS

(0)
x

dt0
= υ(0) · cos(α)) ∧ (

dS
(0)
y (t0)

dt0
= υ(0)(t0) · sin(α)− 9.8 · t0) ∧ (

dυ(0)

dt0
= 0)∧

(S(0)
x (0) := 0) ∧ (S(0)

y (0) := 0) ∧ (υ(0)(0) = υ0) ∧ (S(0)
y (t0) = 0) ∧ (t0 > 0)∧

(
dS

(1)
x

dt1
= υ(1)(t1) · cos(α)) ∧ (

dS
(1)
y

dt1
= υ(1)(t1) · sin(α)− 9.8 · t1) ∧ (

dυ(1)

dt1
= 0)∧

(S(1)
x (0) := S(0)

x (t0)) ∧ (S(1)
y (0) := 0) ∧ (υ(1)(0) := K · υ(0)(t0))∧

(S(1)
x (t1) ≥ 100) ∧ (S(1)

y (t1) = 0).

For any value of α and K and given bounds T and l the landing distance of the
ball after a single jump can be obtained analytically as Sx =

2υ20 cos(α) sin(α)(K2+1)

9.8
. Thus,

Reach(H, 1, P) is satisfiable by p = {0.7854, 0.8, 25}, t0 = 2υ0 sin(α)
9.8

≈ 3.6077 and
t1 = 2Kυ0 sin(α)

9.8
≈ 2.8862 as the distance S(1)

x (t1) travelled by the ball is approximately
equal to 104.5918.

In order to check reachability for all values in a given parameter subset it is necessary
to introduce a universal quantifier in formula Reach, as shown below.

18

Definition 2.4. (Universal Bounded Reachability) The universal bounded reach-
ability property for a PHS H, a reachability depth l, and a subset B of the param-
eter space of H is defined as the bounded LR-sentence Reach∀(H, l, B) := ∀Bp :

Reach(H, l, {p}).

Example 2.3. (Universal Bounded Reachability for CB) It is easy to see that
the universal reachability property Reach∀(H, 1, P) for the cannonball model (Example
2.1) does not hold, as there are parameter values in P for which the ball fails to reach
the distance S(1)

x = 100. For example, for p = {0.7854, 0.5, 25} the landing distance of
the ball is around 79.7194.

2.3.1 Verifying Bounded Reachability in PHS

Formulae Reach and Reach∀ can be verified by a δ-complete decision procedure as
they are defined by bounded LR-sentences. Given a bounded LR-sentence and a positive
δ, a δ-complete decision procedure correctly decides whether the given sentence is false
(returning unsat) or its relaxed version (δ-weakening) is true (outputting δ-sat). Thus,
unsat is a stronger answer implying unsatisfiability of the given formula, while δ-sat
might in fact be a false alarm due to a coarse over-approximation characterised by δ > 0,
and therefore, does not guarantee satisfiability of the given bounded LR-sentence.

Namely, a δ-complete decision procedure returns unsat for Reach(H, l, B) if for all
parameter values in B ⊆ P the system H does not reach a goal state; and δ-sat if there
exists p ∈ B such that

(
Reach(H, l, B)

)δ (the weakening of Reach(H, l, B)) is true.
Likewise, if the δ-decision procedure returns δ-sat for Reach∀ its satisfiability is not
implied. However, if unsat is returned for ¬Reach∀(H, l, B) (negation of Reach∀), it
means that ¬Reach∀(H, l, B) is false, and thus, Reach∀(H, l, B) is true, which means
that for all parameter values in B a goal state can be reached in l steps.

Algorithm 1 incorporates formulae Reach, Reach∀ and the properties of δ-complete
decision procedures. It defines procedure evaluate which, given a PHS H, a reacha-
bility depth l, a subset B of the system’s parameter space P and a positive δ, returns:

• sat if for all parameter values in B the goal state is reachable in l steps;

• unsat if no values from B satisfy the bounded reachability;

19

• undet if neither of the above can be decided, or a false alarm occurred due to
a large value of δ used by the δ-complete decision procedure (see Example 3.6).
Choosing a smaller δ can sometimes help reducing the number of false alarms.

Algorithm 1: evaluate(H, l, B, δ)
Input : H: PHS,

l ∈ N: reachability depth,
B ⊆ P : subset of the system’s parameter space,
δ > 0: precision.

Output: sat / unsat / undet.
1 if δ-decision

(
Reach(H, l, B)

)
== δ-sat then

2 if δ-decision
(
¬Reach∀(H, l, B)

)
== δ-sat then

3 return undet;

4 return sat;

5 return unsat;

Example 2.4. (Applying Algorithm 1 to CB) Given the cannonball model (see
Example 2.1), with reachability depth l = 1, δ = 10−3 and parameter subsets B1 =

{0.7854} × [0.5, 0.6] × {25}, B2 = {0.7854} × [0.8, 0.9] × {25} and B3 = {0.7854} ×
[0.7, 0.8]× {25}, Algorithm 1 returns unsat, sat and undet, respectively.

2.4 Evaluation Procedure Implementation

The evaluation procedure introduced above can be used for exploring the parameter
space of a PHS. However, to the best of my knowledge, there are no publicly available
SMT solvers that can handle bounded LR-sentences with arbitrary alternation of quan-
tifiers. Namely, solvers such as dReal and iSAT-ODE only allow existentially quantified
bounded formulae with Lipschitz-continuous ODEs and mode invariants. The latter
means that only one free variable per mode can be quantified universally. In other
words, formulae of the type ∃[0,T]t1,∃[0,T]t2,∀[0,T]t3 : φ(t1, t2, t3) (where φ(t1, t2, t3) is
some quantifier-free bounded LR-formula) are supported by the existing solvers im-
plementing δ-decision procedures. However, formulae with two or more universally
quantified free variables (e.g., ∃[0,T]t1,∀[0,T]t2,∀[0,T]t3 : φ(t1, t2, t3)) currently cannot be

20

handled. Thus, Reach can be verified using one of the available SMT solvers, but for-
mula ¬Reach∀ introduces l+1 universally quantified time variables for the reachability
depth l, and therefore, cannot be checked if l > 0. As a result, procedure evaluate

cannot be implemented because formula ¬Reach∀ cannot be verified by the existing
SMT solvers.

This section shows how formula Reach∀ can be approximated by a set of sim-
pler bounded LR-sentences supported by the available implementations of δ-complete
decision procedures.

2.4.1 Verifying Universal Bounded Reachability

As it is necessary to avoid arbitrary alternation of existential and universal quantifiers
in the newly defined formulae, it is assumed that considered PHSs do not feature any
invariants. Also, a corresponding invariant-free formula reach is introduced. It defines
the bounded reachability property for a path π ∈ Paths(H, l) and a parameter value
p ∈ P . It can be seen that ∃Bp :

∨
π∈Paths(H,l)

reach(π,p) ⇔ Reach(H, l, B). Formula

reach will be used for introducing the main methodological concepts.

reach(π,p) := ∃[0,T]t0, · · · ,∃[0,T]t|π|−1 :

(
x0(t0) := flowπ[0](initπ[0](p),p, t0)

)
∧
|π|−2∧
i=0

[
jump(π[i],π[i+1])(xi(ti),p, ti)∧(

xi+1(ti+1) := flowπ[i+1](reset(π[i],π[i+1])(xi(ti),p),p, ti+1)
)]
∧

goalπ[|π|−1]

(
x|π|−1(t|π|−1),p, t|π|−1

)
.

(2.1)

Despite the absence of invariants, they can still be encoded and checked in terms
of non-reachability of their complement in each mode along the considered path. How-
ever, this requires considering up to l additional reachability formulae similar to reach

of length smaller than or equal to l. Thus, for simplicity I consider PHSs without
invariants.

Now I employ the approach described in [78] to define formula failj for every discrete
transition in reach such that: 1) each failj features only one universally quantified time
variable, and thus, can be handled by current SMT solvers; and 2) their conjunction
implies satisfiability of formula reach. Intuitively, each failj describes whether the
j-th jump condition (if j < |π| − 1) or the goal predicate (if j = |π| − 1) is satisfiable

21

for all time points in [0, T].

Given a path π ∈ Paths(H, l) and some parameter value p ∈ P , formula failj is
defined as:

failj(π,p) := ∃[0,T]t0, · · · ,∃[0,T]tj−1,∀[0,T]tj :(
x0(t0) := flowπ[0](initπ[0](p),p, t0)

)
j−1∧
i=0

[
jump(π[i],π[i+1])(xi(ti),p, ti)∧(

xi+1(ti+1) := flowπ[i+1](reset(π[i],π[i+1])(xi(ti),p),p, ti+1)
)]
∧

¬jumpπ[j],π[j+1]

(
xj(tj),p, tj

)
.

(2.2)

if j < |π| − 1, and as

failj(π,p) := ∃[0,T]t0, · · · ,∃[0,T]tj−1,∀[0,T]tj :(
x0(t0) := flowπ[0](initπ[0](p),p, t0)

)
j−1∧
i=0

[
jump(π[i],π[i+1])(xi(ti),p, ti)∧(

xi+1(ti+1) := flowπ[i+1](reset(π[i],π[i+1])(xi(ti),p),p, ti+1)
)]
∧

¬goalπ[j]

(
xj(tj),p, tj

)
.

(2.3)

if j = |π| − 1.

Formula (2.2) states that the system arrives at the j-th mode and fails to satisfy
the j-th jump, while formula (2.3) asserts the same but for the goal predicate at the
j-th mode.

At this point the first condition requiring formulae failj to feature only one uni-
versally quantified variable is met. The following proposition establishes implication
between the conjunction of formulae failj and reach. Note that the opposite implica-
tion (from reach to failj) does not hold in general, as shown in Example 2.5.

Proposition 2.2. With the definitions in (2.1), (2.2) and (2.3) the following holds:
|π|−1∧
j=0

¬failj(π,p) ⇒ reach(π,p).

22

Proof. Let’s introduce the following notations:

Jn−1(t0, . . . , tn−1) :=
(
x0(t0) := flowπ[0](initπ[0](p),p, t0)

)
∧

n−2∧
i=0

(
xi+1(ti+1) := flowπ[i+1](reset(π[i],π[i+1])(xi(ti),p),p, ti+1)

)
∧

jump(π(n−1),π(n))(xπ(n−1)(tn−1),p, tn−1),

Jn(t0, . . . , tn) :=
(
x0(t0) := flowπ[0](initπ[0](p),p, t0)

)
∧

n−1∧
i=0

(
xi+1(ti+1) := flowπ[i+1](reset(π[i],π[i+1])(xi(ti),p),p, ti+1)

)
∧

goalπ(n)(xπ(n)(tn),p, tn).

Note that xi+1(ti+1) := flowπ[i+1]

(
reset(π[i],π[i+1])(xi(ti),p),p, ti+1

)
are assignments.

Hence, the notion of negation does not apply to them. Using the given notation and
assuming n = |π| − 1:

n∧
j=0

¬failj(π,p) ⇔
[
∃[0,T]t0 : J0(t0)

]
∧

n∧
j=1

[
∀[0,T]t0, . . . ,∀[0,T]tj−1,∃[0,T]tj :

(j−1∧
i=0

Ji(t0, . . . , ti)
)
→ Jj(t0, . . . , tj)

]
.

By Lemma A.1 (see Appendix A.1) it is easy to see that[
∃[0,T]t0 : J0(t0)

]
∧
[
∀[0,T]t0,∃[0,T]t1 : J0(t0)→ J1(t0, t1)

]
⇒[

∃[0,T]t0,∃[0,T]t1 : J0(t0) ∧ J1(t0, t1)
]
.

Applying the reasoning above recursively (n times) to
∧n
j=0 ¬failj(π,p) and reverting

23

the notations the following holds:[
∃[0,T]t0 : J0(t0)

]
∧
[
∀[0,T]t0,∃[0,T]t1 : J0(t0)→ J1(t0, t1)

]
∧

n∧
j=2

[
∀[0,T]t0, . . . ,∀[0,T]tj−1, ∃[0,T]tj :

(j−1∧
i=0

Ji(t0, . . . , ti)
)
→ Jj(t0, . . . , tj)

]
⇒[

∃[0,T]t0, ∃[0,T]t1 : J0(t0) ∧ J1(t0, t1)
]
∧

n∧
j=2

[
∀[0,T]t0, . . . ,∀[0,T]tj−1, ∃[0,T]tj :

(j−1∧
i=0

Ji(t0, . . . , ti)
)
→ Jj(t0, . . . , tj)

]
⇒

[
∃[0,T]t0, . . . ,∃[0,T]tj−1,∃[0,T]tj :

(j∧
i=0

Ji(t0, . . . , ti)
)]
⇔ reach(π,p).

Therefore, Proposition 2.2 allows defining a procedure that can be used instead of
Algorithm 1 for verifying bounded reachability in PHSs without invariants, and that
can be implemented using the existing SMT solvers.

2.4.2 Implementation

Let Reach∗ be the bounded LR-sentence defined as the following:

Reach∗(H, l, B) := ∃Bp :
∧

π∈Paths(H,l)

[|π|−1∨
j=0

failj(π,p)
]
.

The following holds by Proposition 2.2:

¬
(
Reach∗(H, l, B)

)
:= ¬

(
∃Bp,

∧
π∈Paths(H,l)

[|π|−1∨
j=0

failj(π,p)
])
⇔

¬
(
∃Bp,∀π ∈ Paths(H, l) :

|π|−1∨
j=0

failj(π,p)
)
⇔

∀Bp,∃π ∈ Paths(H, l) :

|π|−1∧
j=0

¬failj(π,p)⇒

∀Bp,∃π ∈ Paths(H, l) : reach(π,p)⇔ Reach∀(H, l, B).

(2.4)

It can be seen that Reach∗ contains at most one universally quantified variable per
mode, and therefore, both Reach and Reach∗ can be verified using an SMT solver.

24

The modified version of Algorithm 1 is presented in procedure compute (Algorithm
2). Note that Algorithm 2 utilises solver (e.g., dReal, iSAT-ODE) – the implementation
of the theoretical δ-decision procedure used by Algorithm 1.

Algorithm 2: compute(H, l, B, δ)

Input : H: PHS,
l ∈ N: reachability depth,
B ⊆ P : subset of the system’s parameter space,
δ > 0: precision.

Output: sat / unsat / undet.
1 if solver

(
Reach(H, l, B), δ

)
== δ-sat then

2 if solver
(
Reach∗(H, l, B), δ

)
== δ-sat then

3 return undet;

4 return sat;

5 return unsat;

The following proposition establishes connection between the procedures evaluate

and compute.

Proposition 2.3. Given an invariant-free parametric hybrid system H, a reachability
depth l, a subset B of the parameter space of H, a positive δ and procedures evaluate

and compute defined in Algorithm 1 and Algorithm 2 respectively, the following holds:(
compute(H, l, B, δ) == unsat

)
⇔
(
evaluate(H, l, B, δ) == unsat

)
,(

compute(H, l, B, δ) == sat
)
⇒
(
evaluate(H, l, B, δ) == sat

)
.

Proof. The equivalence holds because the unsat outcome of solver(Reach(H, l, B), δ)

is equivalent to ¬Reach(H, l, B) by definition of the SMT solver implementing the
δ-complete decision procedure.

Likewise, as [solver(Reach∗(H, l, B), δ) == unsat] ⇔ ¬
(
Reach∗(H, l, B)

)
⇒

Reach∀(H, l, B) and by (2.4) the implication holds too.

It can be seen that Proposition 2.3 does not establish equivalence between evaluate

and compute (which can be generally done only for l = 0 as it introduces only a single
universally quantified variable to formula Reach∗) due to the implication introduced
by Proposition 2.2 (see also Example 2.5 below).

25

This does not affect the correctness of the answer (in a sense that compute iden-
tifies sat and unsat boxes correctly) but it might affect the accuracy of the result,
i.e., by reducing the number of sat boxes and increasing the size of the undet region
instead.

Example 2.5. (Nondeterministic Cannonball) The cannonball model from Ex-
ample 2.1 is defined as a PHS with a deterministic jump. However, it can be eas-
ily modified to feature a nondeterministic jump by changing the jump condition from
(t > 0) ∧ (Sy = 0) to (Sy = 0). This introduces a second time point t = 0 where the
transition can be enabled. Algorithm 1 returns sat for the deterministic version of the
cannonball model and the parameter box B2 = {0.7854}×[0.8, 0.9]×{25} from Example
2.4. However, compute returns undet for B2 when the jump is nondeterministic.

For the given reachability depth l = 1 there is a single path π = {q0, q0} between the
initial and the goal modes, and formulae fail0 and fail1 are defined as:

fail0(π, α,K, υ0) := ∀[0,10]t0 : (S(0)
x (0) := 0) ∧ (S(0)

y (0) := 0) ∧ (υ(0)(0) = υ0)∧

(
dS

(0)
x

dt0
= υ(0) · cos(α)) ∧ (

dS
(0)
y (t0)

dt0
= υ(0)(t0) · sin(α)− 9.8 · t0) ∧ (

dυ(0)

dt0
= 0)∧

(S(0)
y (t0) 6= 0),

fail1(π, α,K, υ0) := ∃[0,10]t0,∀[0,10]t1 :

(
dS

(0)
x

dt0
= υ(0) · cos(α)) ∧ (

dS
(0)
y (t0)

dt0
= υ(0)(t0) · sin(α)− 9.8 · t0) ∧ (

dυ(0)

dt0
= 0)∧

(S(0)
x (0) := 0) ∧ (S(0)

y (0) := 0) ∧ (υ(0)(0) = υ0) ∧ (S(0)
y (t0) = 0)∧

(
dS

(1)
x

dt1
= υ(1)(t1) · cos(α)) ∧ (

dS
(1)
y

dt1
= υ(1)(t1) · sin(α)− 9.8 · t1) ∧ (

dυ(1)

dt1
= 0)∧

(S(1)
x (0) := S(0)

x (t0)) ∧ (S(1)
y (0) := 0) ∧ (υ(1)(0) := K · υ(0)(t0))∧(

(S(1)
x (t1) < 100) ∨ (S(1)

y (t1) 6= 0)
)
.

Now fail0 is unsatisfiable for any parameter value from B2, but fail1 holds for α =

0.7854, K = 0.8, υ0 = 25 and t0 = 0 and any t1 ∈ [0, 10], as the predicate
(
(S

(1)
x (t1) <

100) ∨ (S
(1)
y (t1) 6= 0)

)
is satisfied for all t1 ∈ [0, 10]. This is because there are only two

time points where S(1)
y (t1) = 0, but the distance travelled by the ball is S(1)

x = 0 or S(1)
x =

2υ20 cos(α) sin(α)K2

9.8
≈ 40.816 (in both cases S(1)

x < 100). Thus, formula Reach∗(H, 1, B2)

is satisfiable and, as a result, compute returns undet for the parameter box B2 which
should be sat (even in the nondeterministic version). At the same time boxes B1 and

26

B3 from Example 2.4 remain unsat and undet, respectively.

2.4.3 PHS with Deterministic Jumps

Despite providing correct sat and unsat answers, procedure compute is not equiva-
lent to the theoretical evaluate. However, for PHSs featuring only deterministic jumps
the implication in Proposition 2.2 can be turned into equivalence. Intuitively, a deter-
ministic jump can be described as a discrete transition that can be enabled only once
(for a single time point of the time domain [0, T]) within the corresponding mode for
any initial value of the continuous flow. Formally, this can be defined as the following.

Definition 2.5. (Deterministic Jump) A jump between modes q and q′ is deter-
ministic iff for any x0 ∈ X and p ∈ P the following holds:

∃[0,T]t : jump(q,q′)(flow(x0,p, t),p, t)→ ∃[0,T]!t : jump(q,q′)(flow(x0,p, t),p, t).

The following proposition can be proven now for the PHSs with deterministic jumps.

Proposition 2.4. With the definitions in (2.1), (2.2) and (2.3), and the assumption
of deterministic jumps (Definition 2.5) the following holds:

|π|−1∧
j=0

¬failj(π,p) ⇔ reach(π,p).

Proof. This proposition can be proven by applying Lemma A.2 (see Appendix A.1)
instead of Lemma A.1 to the proof of Proposition 2.2.

The following proposition establishes equivalence between the procedures evaluate

and compute for PHSs with deterministic jumps.

Proposition 2.5. Given an invariant-free parametric hybrid system H with determin-
istic jumps, a reachability depth l, a subset B of the parameter space of H, a positive
δ and procedures evaluate and compute defined in Algorithm 1 and Algorithm 2
respectively, the following holds:(

compute(H, l, B, δ) == unsat
)
⇔
(
evaluate(H, l, B, δ) == unsat

)
,(

compute(H, l, B, δ) == sat
)
⇔
(
evaluate(H, l, B, δ) == sat

)
.

27

Proof. The first equivalence holds by Proposition 2.3.
Likewise, as [solver(Reach∗(H, l, B), δ) == unsat] ⇔ ¬

(
Reach∗(H, l, B)

)
. The

latter is equivalent to Reach∀(H, l, B) by applying Proposition 2.4 to formula (2.4).

Proposition 2.5 demonstrates that procedure compute can be used equivalently to
evaluate for reasoning about nonempty subsets of the parameter space of a parametric
hybrid system with deterministic jumps.

2.4.4 Complexity

Studying the computational complexity of procedures evaluate and compute is out-
side the scope of this thesis. However, some upper bounds can be deduced from the
complexity of the δ-complete decision problems and SMT-based techniques in general.
The δ-decision problem for a bounded LR-sentence with Lipschitz-continuous ODEs
is PSPACE-complete [35, Corollary 39]. Moreover, the algorithmic complexity of a
δ-complete decision procedure is exponential in the number of the quantified variables
(artefact of SMT solving [6]) and depends on the chosen precision δ (in the worst
case with n variables, an ICP algorithm would need to examine (1

δ
)n = 2n log(1

δ
) boxes

[34]). In case of bounded reachability the quantified variables are introduced by the
system parameters and the time variables. Thus, the computational complexity of
procedure evaluate is exponential as well as it uses a δ-decision procedure at most
twice. Likewise, procedure compute also features exponential complexity as it can
use a δ-decision procedure up to l + 1 times.

2.5 Discussion

In this chapter I presented a technique for bounded reachability analysis of parametric
hybrid systems.

Namely, I utilized δ-complete decision procedures to introduce an algorithm (pro-
cedure evaluate) which, given a parametric hybrid system, a reachability depth, a
subset of the system’s parameter space and some positive δ, correctly decides a weak-
ened bounded reachability property for the given parameter subset. In particular, my
algorithm returns sat if for all parameter values in the given subset the goal state is

28

reachable, unsat if none of the parameter values lead the system to the goal state, or
undet if none of the above can be concluded.

Then it was shown that evaluate cannot be implemented due to the current lim-
itations of existing SMT solvers, which allow only one universally quantified variable
per predicate. Accordingly, I restricted the usage of invariants in the considered PHSs
and modified Algorithm 1. As a result, I developed procedure compute (Algorithm
2) which uses LR-sentences that can be handled by existing implementations of δ-
complete decision procedures. The technique introduced in Algorithm 2 can solve the
same problem as Algorithm 1, but produces an answer of poorer quality: in general,
compute returns more undet verdicts than evaluate.

Finally, I also demonstrated that the theoretical procedure evaluate and its im-
plementation compute are equivalent if the verified PHS features only deterministic
jumps – each jump condition can be satisfied only once within the corresponding mode.

29

Chapter 3

Bounded Reachability Probability in
Stochastic Parametric Hybrid Systems

3.1 Introduction

Hybrid systems with probabilistic behaviour cannot be modelled as PHSs, which feature
only nondeterministic parameters. By introducing random parameters into PHS it is
possible to compute a probability of reaching the goal state in a finite number of steps.
I call such parametric hybrid systems stochastic.

In this chapter I give a formal definition of stochastic parametric hybrid system
(SPHS), introduce the notion of a goal set and define the bounded reachability prob-
ability function. Then I introduce an algorithm for computing the range of the reach-
ability probability function, and demonstrate that it can also be used in the absence
of random parameters. Finally, I present several sub-routines incorporated in the pre-
sented algorithm and discuss its computational complexity.

3.2 Stochastic Parametric Hybrid Systems

Stochastic parametric hybrid systems (SPHS) are a generalization of parametric hy-
brid systems featuring continuous and/or discrete random parameters whose probabil-
ity measure is defined by a set of probability density functions and probability mass
functions, respectively.

31

Definition 3.1. (Stochastic Parametric Hybrid System) A stochastic parametric
hybrid system is a pair (H,P), where H is a parametric hybrid system (as per Definition
2.1) and P is a probability measure over a subset of the parameters of H which will be
denoted as random.

Example 3.1. (Stochastic Cannonball (SCB)) A stochastic version of the can-
nonball model from Example 2.1 can defined as an SPHS (H,P) with

H =< Q,X, P, T, init,param,flow, invt, jump, reset, goal >,

where

• Q :=
{
q0

}
,

• P :=
{
{0.7854, 1.0472, 0.5236}, [0.5, 0.9], (−∞,∞)

}
,

• T := 10,

• init :=
{
initq0(α,K, υ0) := {α, 0, υ0, 0}

}
,

• param :=
{
α,K, υ0

}
,

• flow :=
{
flowq0(Sx, Sy, υ, t) := {dSx

dt
= υ·cos(α), dSy

dt
= υ·sin(α)−9.8·t, dυ

dt
= 0}

}
,

• invt := ∅,

• jump :=
{
jump(q0,q0)(Sx, Sy, υ, t) := (t > 0) ∧ (Sy = 0)

}
,

• reset :=
{
reset(q0,q0)(Sx, Sy, υ, t) = {Sx, 0, K · υ, 0}

}
,

• goal :=
{
goalq0(Sx, Sy, υ, t) := (Sy = 0) ∧ (Sx ≥ 100)

}
,

and P := {fυ0 , fα}, where

• fυ0(x) := 1
σ
√

2π
e−(x−µ)2/2σ2

- probability density function of a normal distribution
with µ = 25 and σ = 3,

• fα(x) :=

0.9, if x = 0.7854,

0.09, if x = 1.0472,

0.01, if x = 0.5236,

0, if x /∈ {0.7854, 1.0472, 0.5236}.

32

The defined SPHS features a continuous nondeterministic parameter K, a contin-
uous random parameter υ0 and a discrete random parameter α.

3.3 Bounded Reachability Probability in SPHS

The extension of a PHS with random parameters allows computing the probability
of reaching the goal state in a finite number of steps. This entails integrating the
probability measure of the random parameters over the set of the random parameter
values satisfying the bounded reachability property. The set of parameter (both random
and nondeterministic) values satisfying the bounded reachability property comprise
the goal set of the system. In this work I assume that all random parameters are
independent.

Definition 3.2. (Goal Set) The goal set G ⊆ P of a parametric hybrid system H for
the reachability depth l is a subset of the parameter space of H such that:

G =
{
p ∈ P : Reach(H, l, {p})

}
.

GC is the complement of G in P (i.e. GC = P \G).

Example 3.2. (Goal Set for CB) Consider the cannonball model from Example 2.1.
It features two parameters: discrete parameter α and continuous parameter K. The
goal set for this model with reachability depth value l = 1 can be obtained analytically
as:

G =
3⋃
i=1

{αi} ×

([√
9.8 · Sgoalx

2 · υ2
0 cos(αi) sin(αi)

− 1,∞

)
∩ [0.5, 0.9]

)
× {υ0}.

As α ∈ {0.7854, 1.0472, 0.5236}, K ∈ [0.5, 0.9], υ0 ∈ {25} and the goal distance Sgoalx ≥
100,

G = {0.7854} ×

([√
980

1250 · cos(0.7854) sin(0.7854)
− 1,∞

)
∩ [0.5, 0.9]

)
× {25}∪

{1.0472} ×

([√
980

1250 · cos(1.0472) sin(1.0472)
− 1,∞

)
∩ [0.5, 0.9]

)
× {25}∪

{0.5236} ×

([√
980

1250 · cos(0.5236) sin(0.5236)
− 1,∞

)
∩ [0.5, 0.9]

)
× {25} ≈

{0.7854} × [0.7537, 0.9]× {25} ∪ {1.0472} × ∅ × {25} ∪ {0.5236} × ∅ × {25}.

33

Thus, the goal set is approximately equal to G = {0.7854} × [0.7537, 0.9]× {25}.

3.3.1 Bounded Reachability Probability Function

In this section I formally define the notion of reachability probability for SPHS. Borel
measurability is a technical condition for well-definedness of probabilities.

Lemma 3.1. (Borel Measurability) Finite LR-formulae define Borel sets.

Proof. It is necessary to show that the set of points satisfying a (finite) LR-formula is
Borel. Any LR-formula is a composition of terms, using computable functions, by com-
parisons, disjunctions, conjunctions, and quantifications. Computable real functions
are continuous, hence, Borel measurable, and therefore, by definition of measurable
function (see Definition A.4 in Appendix A.2), comparisons define Borel sets. Disjunc-
tion and conjunction correspond to set union and intersection, respectively, so result
in Borel sets.

For existential quantification the proof proceeds as follows: let ϕ(x, y) be a LR-
formula and suppose the set Φ = {x, y : ϕ(x, y)} is Borel. Without loss of generality,
it needs to be shown that Y = {y : ∃x ϕ(x, y)} is Borel. It is easy to see that
Y = {y : ∃x(x, y) ∈ Φ}, i.e., it is the image of Φ under a continuous function (the
projection), and thus, Y is analytic (see Definition A.5 in Appendix A.2). An analytic
set is Borel if and only if its complement is analytic (see Corollary 8.3.3 [17]), so it is
necessary to show that Y c = {y : ∀x ¬ϕ(x, y)} is analytic. (Negation of LR-formulae
is easily obtained by inverting comparisons and set complementation.) Note that the
set {y : ∃x ¬ϕ(x, y)} is analytic (because it can be written as {y : ∃x (x, y) 6∈ Φ}). For
n ∈ N+ we define the sets

Bn =
m⋃
i=1

Bn
i ,

where each Bn
i is defined as

Bn
i = {y : ∃x ∈ Ini ¬ϕ(x, y)},

and the sets Ini ’s form a disjoint finite covering of the compact domain X of variables
x, y (we assume the same domain for simplicity), i.e., ∪mi=1I

n
i = X, ∀i 6= j Ini ∩ Inj = ∅,

and each Ini has Lebesgue measure bounded above by 1
n
. Now, each Bn is analytic,

34

since it is a finite union of analytic sets. Finally, it is easy to see that

Y c = {y : ∀x ¬ϕ(x, y)} =
∞⋂
n=1

m⋃
i=1

Bn
i =

∞⋂
n=1

Bn,

which is again analytic, since it is a countable intersection of analytic sets. So both Y
and Y c are analytic hence Borel, and this concludes the proof.

The parameter space P of an SPHS can be divided into two compartments: the
domain of random parameters PR (those for which there is an associated probability
measure in P), and the domain of nondeterministic parameters PN (those without
probability measure). Hence, P = PR × PN , and a vector p ∈ P can be written as
p = {pR,pN}, where pR ∈ PR and pN ∈ PN . It is always assumed that PR is bounded
(PN is bounded by definition of PHS), and later it will be shown how to choose the
bounds for PR if the system features continuous random parameters with unbounded
support (e.g., normal or exponential).

As the system’s parameters may also be nondeterministic, it follows that in general
the bounded reachability probability is a function of the nondeterministic parameters.

Definition 3.3. (Bounded Reachability Probability Function) Given a stochas-
tic parametric hybrid system {H,P} and a reachability depth l, the bounded reachability
probability is the function Pr : PN → [0, 1] such that for each pN ∈ PN :

Pr(pN) =

∫
G(pN)

dP,

where G(pN) is the projection of the goal set G (see Definition 3.2) onto the random
parameter space PR for the given pN .

Proposition 3.1. (Well-definedness of Probability Function) Function Pr :

PN → [0, 1] defines a probability.

Proof. It is sufficient to show that G(pN) is Borel for any pN ∈ PN . Note that
G(pN) =

{
pR ∈ PR : ∃y = pN : Reach

(
H, l, {pR, y}

)}
. Thus, by Proposition

3.1, G(pN) is Borel.

Example 3.3. (Bounded Reachability Probability Function for SCB) The
bounded reachability probability function Pr for the SCB from Example 3.1 and reach-

35

ability depth l = 1 can be obtained analytically as:

Pr(K) =
3∑
i=1

[
fα(αi) ·

∞∫
√

980
sin(2αi)(K

2+1)

fυ0(x)dx

]
,

The plot of the function Pr(K) generated in MATLAB is shown in Figure 3.1.

K
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

P
r(
K
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.1: Graph of the bounded reachability probability function Pr(K) obtained
analytically for the SCB (Example 3.1) with the reachability depth value l = 1.

Note that, if Pr does not depend on pN , then it is constant. Also, Pr needs not
to be a continuous function like in Example 3.3. In fact, Pr can have discontinuities
(i.e., points for which the right and left limits differ) because of hybrid dynamics and
discrete randomness as shown in the example below.

Example 3.4. (Discontinuous Probability Function) Consider a version of SCB
model with υ0 = 25. The goal set G = {0.7854} × [

√
980

1250·cos(0.7854) sin(0.7854)
− 1, 0.9] ×

{25} for the reachability depth l = 1 was obtained in Example 3.2. As the goal state
is only reachable for α1 = 0.7854 and fα(0.7854) = 0.9, the reachability probability
function can be found as:

Pr(K) =

0.9, if K ∈ [
√

980
1250·cos(0.7854) sin(0.7854)

− 1, 0.9],

0, otherwise.

36

Thus, the obtained probability function is discontinuous at

K =

√
980

1250 · cos(0.7854) sin(0.7854)
− 1 ≈ 0.7537.

This chapter presents an algorithm for computing enclosures for the range of func-
tion Pr.

Definition 3.4. (Probability Enclosure) Given a subset of the nondeterministic
parameter space B ⊆ PN , a probability enclosure for the range of function Pr on B is
an interval [a, b] such that ∀pN ∈ B : Pr(pN) ∈ [a, b].

Note that the enclosures depend on the given nondeterministic parameter set, and
it is easy to build examples for which probability enclosures are necessarily the full
[0, 1] interval, and Pr takes any value in [0, 1]. Also, it is fair to say that [0, 1] is a valid
probability enclosure for any B ⊆ PN . However, by reducing the nondeterministic
parameter set it is sometimes possible to reduce the size of the enclosure, and in some
cases (e.g., if Pr is continuous) the enclosure can be made arbitrarily tight. In other
words, it is possible to obtain such B ⊆ PN for which the size of the interval [a, b] is
not greater that some given ε > 0.

The rest of the chapter works with parameter subsets represented by boxes (hyper-
boxes), which can be defined as the following.

Definition 3.5. (Parameter Box) A parameter box (hyper-box) is a subset of the
parameter space represented by the Cartesian product of closed intervals (possibly of
length 0) from the domains of the corresponding parameters. The parameter boxes
from PR and PN are called random and nondeterministic parameter boxes, respectively.

3.4 Algorithm for Computing Probability Enclosures

The technique presented in Algorithm 3 computes probability enclosures for the range
of the bounded reachability probability function Pr. The algorithm takes

• an SPHS (H,P),

• a reachability depth l ∈ N,

37

• a precision ε > 0 for the size of probability enclosures,

• a constant κ ∈ (0, ε) for bounding the domain of continuous random parameters
with the unbounded support,

• a precision vector ρ for nondeterministic parameter boxes, and

• a parameter η controlling the precision of procedure evaluate

as input and returns a list of probability enclosures as per Definition 3.4. Such list
is indexed by a finite set of disjoint nondeterministic parameter boxes that will cover
PN (i.e., to each nondeterministic parameter box there will be associated a probability
enclosure). The main idea behind the algorithm is first partitioning the domain of
nondeterministic parameters with boxes and then obtaining a probability enclosure for
each such box. The latter is computed by refining the under-approximation and the
over-approximation of the definite integral over the random parameter space for the
corresponding nondeterministic box. The proof of correctness of Algorithm 3 is given
in Proposition 3.2.

If an SPHS does not feature nondeterministic parameters, only one enclosure is re-
turned, and its size is bounded above by the ε input if the given system generates robust
bounded LR-sentences (see Theorem 3.1). In general, if nondeterministic parameters
are present, the size of the enclosure(s) cannot be controlled by ε. This is because the
reachability probability function Pr might be discontinuous (see Example 3.4) meaning
that the enclosure’s size cannot be reduced by refining the nondeterministic parame-
ters box. Thus, the precision vector ρ limits the size of the smallest nondeterministic
parameter box that will be analysed, allowing termination of the algorithm in the most
general case.

Remark 3.1. (Algorithm Notations) The following operators are applied to lists
(queues) and parameter boxes in Algorithm 3:

• Q→ B - assigns to B the value of the element at the front of the queue Q, and
removes that element from Q.

• Q← B - pushes the value of B at the back of the queue Q. If B is a list of boxes,
then the elements of B are appended at the back of Q one by one.

38

• Q.clear() - removes all elements from the list Q.

• |Q| - returns the number of elements in the queue Q. When applied to a hyper-
box, the result of operation is a vector where each element is the width of the
corresponding edge.

It is also assumed that relation p1 ◦ p2 (where p1 and p2 are real-valued vectors and
◦ ∈ {≥, >,=, <,≤}) evaluates to true when ◦ holds for every pair of corresponding
elements of the given vectors.

Algorithm 3 starts by initialising the queue Q (lines 1-5) consisting of triplets
(BN , [a, b],ΠR) where BN is a nondeterministic parameter box, [a, b] is a probability
enclosure and ΠR is a list of random parameter boxes.

It is assumed that all types of parameters (random and nondeterministic) are
present in the system (line 2). However, the algorithm can still be applied to sys-
tems lacking any of the parameter types by introducing “dummy” parameters (lines 3,
4 and 5). These parameters do not affect the system’s dynamics, and they are only
used for the correct initialisation of the queue Q.

In the outer loop (line 6) the algorithm iterates trough a finite set of triplets
(BN , [a, b],ΠR) of the queue Q (line 7) and computes the probability enclosures in
the inner loop (line 8). Here the algorithm goes through all random parameter boxes
BR from ΠR (line 9) and calculates the probability value associated with each BR using
procedure measure (line 10) defined in Algorithm 5 in Section 3.5.2. The measure

procedure computes the probability values for continuous and discrete random param-
eter boxes, and it returns 1 in case no probability measure is defined, i.e., P = ∅.
Note that function µ+(BR) returns the product of the lengths of all positively-sized
edges of box BR. It is also assumed that if BR is a singleton (this happens when the
system features only discrete random parameters), then µ+(BR) = 1. Each pair of
boxes (BN , BR) is evaluated using procedure evaluate (line 12). The precision value
δ passed to the decision procedure is calculated as a product of the user-defined pa-
rameter η and the width of the shortest positively-sized edge of BR (line 11). It can
be seen that δ always decreases with the size of the analysed random parameter box
BR. (Note that η = δ for SPHS with only discrete random parameters). This is crucial
as it allows applying Lemma 3.3 where a special case (when the probability enclosures
can be reduced to an arbitrary ε > 0) is discussed.

39

Algorithm 3: Algorithm for Computing Probability Enclosures
Input : (H,P): stochastic parametric hybrid system,

l ∈ N: reachability depth,
ε ∈ Q+: enclosure precision,
κ ∈ (0, ε): constant for distributions with unbounded support,
ρ ∈ Q+: precision for nondeterministic parameter box,
η ∈ Q+: multiplier for controlling precision of δ-decision
procedure.

Output: L: list of pairs (nondet. parameter box, probability enclosure).
1 switch (PN , PR) do
2 case

(
(PN 6= ∅) ∧ (PR 6= ∅)

)
: do Q← (PN , [0, 1], {PR});

3 case
(
(PN = ∅) ∧ (PR 6= ∅)

)
: do Q← ({0}, [0, 1], {PR});

4 case
(
(PN 6= ∅) ∧ (PR = ∅)

)
: do Q← (PN , [0, 1],

{
{0}
}

);
5 case

(
(PN = ∅) ∧ (PR = ∅)

)
: do Q← ({0}, [0, 1],

{
{0}
}

);

6 repeat
7 Q→ (BN , [a, b],ΠR);
8 repeat
9 ΠR → BR;

10 [c, d] := measure(BR,P, (ε− κ)µ
+(BR)
µ+(PR)

);
11 δ := η ·min

(
|BR|+

)
;

12 switch (evaluate(H, l, BR ×BN , δ)) do
13 case unsat: do b := b− c;
14 case sat: do a := a+ c;
15 case undet: do
16 if (PR 6= ∅) then QR ← bisect(BR) else QR ← {BR};

17 until (|ΠR| = 0)
18 if (|[a, b]| ≤ ε) ∨ (|BN | ≤ ρ) then
19 L← (BN , [a, b]);
20 else
21 if (PN 6= ∅) then QN ← bisect(BN) else QN ← {BN};
22 for (B ∈ QN) do Q← (B, [a, b], QR);
23 QN .clear(); QR.clear();
24 until (|Q| = 0)
25 return L;

Now, if evaluate returns unsat then there is no value in BN × BR for which the
goal state is reachable, and the upper bound of the probability enclosure [a, b] can

40

be reduced (line 13). If evaluate returns sat then for every value in BN × BR it is
possible to reach the goal and the lower bound of the probability enclosure [a, b] can
be increased (line 14). Note that the answers returned by the evaluate procedure are
formally correct because they rely on the unsat answer from the δ-complete decision
procedure, which can be trusted to be actually correct. Also, note that only the lower
bound of the probability interval [c, d] is used for modifying the probability enclosure
because it is guaranteed that the true probability value for the given BR is greater or
equal to c.

If evaluate returns undet it means that BN ×BR is a mixed box (i.e., it contains
some parameter values for which bounded reachability is true, and values for which
it is false), or the value of δ is too large. If a “dummy” random parameter was not
introduced, BR is partitioned (line 16) using procedure bisect, and each obtained
sub-box is pushed to the queue QR to be analysed in the next iteration of the outer
loop.

Upon exiting the inner loop, the algorithm checks whether the size of the enclosure
[a, b] is smaller or equal to ε, or each edge of BN is smaller or equal to the corresponding
element of precision vector ρ (line 18). If the condition above is satisfied, then the
resulting probability list L is appended with a pair (BN , [a, b]) (line 19). Otherwise, if
a dummy nondeterministic parameter was not introduced, box BN is partitioned (line
21), and for each obtained sub-box B a triplet containing B, probability enclosure [a, b]

and a list of partitioned undetermined boxes QR is pushed to the back of the queue Q
(line 22).

The algorithm exits the outer loop and terminates when the queue Q is empty. As
it was discussed above, this happens if each triplet satisfies the condition in line 18.
The proposition below formally proves correctness of Algorithm 3 when both types of
parameters (random and nondeterministic) are present.

Proposition 3.2. Given a stochastic parametric hybrid system (H,P) featuring ran-
dom and nondeterministic parameters, a reachability depth l ∈ N, a probability enclo-
sure precision ε ∈ (0, 1), a constant κ ∈ (0, ε) for bounding the domain of continuous
random parameters with unbounded support, a precision for nondeterministic parameter
boxes represented by a vector ρ with positive elements and a parameter η > 0 controlling
the precision of procedure evaluate, Algorithm 3 returns a list of probability enclosures

41

as per Definition 3.4.

Proof. It is obvious that for any non-empty subset of the domain of nondeterministic
parameters PN the interval [0, 1] is a valid probability enclosure.

A probability enclosure is only modified if the procedure evaluate returns unsat or
sat (lines 13 and 14 respectively) for the given nondeterministic and random parameter
boxes. Thus, every probability enclosure [a, b] in the intermediate queue Q or in the
resulting list L complies with Definition 3.4.

The condition in line 18 is always satisfied as the nondeterministic parameter boxes
are always (remember, no dummy nondeterministic parameters are present here) par-
titioned (line 21) every time the algorithm completes the inner loop (line 8) which
iterates over a finite set of boxes. This is sufficient to show that Algorithm 3 always
exits the outer loop (line 6) and, thus, terminates.

Thus, for each computed probability enclosure it is guaranteed that either its size is
smaller than or equal to ε, or the size of the corresponding nondeterministic parameter
box is smaller than or equal to ρ.

Example 3.5. (Probability Enclosures for SCB) In this example Algorithm 3
was applied to the stochastic cannonball model from Example 3.1 with l = 1, ε = 10−3,
κ = 10−4 and η = 10−3. The algorithm was executed twice with different values of ρ
({5 · 10−2} and {10−2}, respectively), and it produced 14 probability enclosures in the
first case and 64 in the second one. (The algorithm produced 14 enclosures instead of
8 in the first execution due to the floating-point numbers representation). Both outputs
were visualised in Figure 3.2.

Every rectangle in Figure 3.2 is formed by a nondeterministic parameter box (hor-
izontal edge) and a corresponding probability enclosure (vertical edge). It can be seen
that the graph of reachability probability function Pr(K) from Example 3.3 is fully
contained inside the computed probability enclosures, thus, certifying correctness of the
result. Also, reducing the value of precision vector ρ from {5 · 10−2} to {10−2} resulted
into obtaining tighter probability enclosures.

In the example above the size of each enclosure is greater than ε = 10−3 implying
that Algorithm 3 terminated because every nondeterministic parameter box reached

42

K
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

P
r(
K
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.2: Probability enclosures returned by Algorithm 3 for the stochastic can-
nonball model (Example 3.1), where red boxes – probability enclosures computed for
ρ = 5 ·10−2, blue boxes – probability enclosures computed for ρ = 10−2 and black line
– graph of the reachability probability function obtained analytically (Example 3.3).

the terminal size ρ. Section 3.6.2 features an example where the sizes of the probability
enclosures can be reduced to the given ε.

The quality of the output of Algorithm 3 depends on three input arguments: prob-
ability enclosure precision ε, precision value ρ for nondeterministic parameter boxes
and η – argument for controlling precision of the procedure evaluate. The first one
defines the main objective – decreasing the sizes of probability enclosures to the ar-
bitrarily small value. Taking into account that this cannot be done in general (due
to possible discontinuities in function Pr), reducing the values of the second and the
third arguments can sometimes (but not always) improve the quality of the output
(i.e., reducing the enclosures size). In Chapter 6, Algorithm 3 is applied to several
case studies where it is shown how changing ε, ρ and η affects the results.

43

3.5 Auxiliary Procedures

This section introduces the auxiliary procedures utilized by Algorithm 3 for computing
the probability values of the parameter boxes and partitioning the parameter space.

3.5.1 Partitioning Parameter Boxes

Algorithm 4 defines procedure bisect for partitioning parameter boxes. It is applied
in line 16 of Algorithm 3 when a random parameter box is deemed undetermined
(procedure evaluate returned undet) and in line 21 of Algorithm 3 when the size of
a nondeterministic parameter box is greater than the specified ρ.

Algorithm 4: bisect(B)
Input : B := [p1, q1]× · · · × [pn, qn]: parameter box.
Output: QB: list of parameter boxes.

1 for (1 ≤ i ≤ n) do
2 if (pi 6= qi) then
3 Qi ← [pi, pi + qi−pi

2
];

4 Qi ← [pi + qi−pi
2
, qi];

5 else
6 Qi ← [pi, qi];

7 QB := Q1 × · · · ×Qn;
8 return QB;

Algorithm 4 takes a parameter box B with n edges as input and returns a list
QB containing at most 2n equally-sized (in terms of the length of the corresponding
edges) boxes comprising B. The algorithm iterates through the edges of box B (line
1) and bisects them (splits in halves) if their sizes are greater than zero (lines 3 and
4) and ignores them otherwise (line 6). All newly obtained intervals are pushed to the
corresponding lists Qi. Thus, after exiting the loop each such list will contain one or
two intervals.

The final step (line 7) of the algorithm is computing the resulting list QB containing
all possible unique combinations of n intervals from the lists Qi. Each such combination
is a parameter box obtained as the Cartesian product of n intervals, where only one
interval at a time is picked from the corresponding Qi.

44

3.5.2 Computing Probability Values of Parameter Boxes

Algorithm 5 introduces procedure measure for computing the probability value for a
given random parameter box with the specified precision. Given a random parameter
box BR with k continuous and j discrete random parameters, a probability measure of
random parameters P and a precision value ζ > 0, the algorithm returns an interval
[c, d] of size smaller than or equal to ζ containing the value of the integral

∫
BR
dP.

Algorithm 5: measure(BR,P,ζ)
Input : BR := [p1, q1]× · · · × [pk, qk]× {pk+1} × · · · {pk+j}: parameter box,

P := {f1, . . . , fk+j}: probability measure,
ζ > 0: precision.

Output: [c, d]: probability value interval.
1 [c, d] := [1, 1];
2 if (P 6= ∅) then
3 ξ := such_that

(
((1 + ξ)k − 1) ≤ ζ

)
;

4 for (1 ≤ i ≤ k) do [a, b] := integral(fi, [pi, qi], ξ); [c, d] := [c · a, d · b];
5 for (1 ≤ i ≤ j) do [c, d] := [fk+i(pk+i) · c, fk+i(pk+i) · d];

6 return [c, d];

Algorithm 5 returns interval [1, 1] if there is no probability measure associated
with the given box (line 2). This happens when the given SPHS does not feature
any random parameters and, as a result, Algorithm 3 introduces a dummy random
parameter box. The probability value for the continuous parameters is obtained as a
product (as all system’s parameters are independent) of the integrals (line 4) of their
probability density functions over the corresponding intervals. The value of each such
integral is calculated using a verified integration procedure introduced in Algorithm
6 (see Section 3.5.3). The precision value ξ (line 3) for computing one dimensional
integrals (line 4) is chosen in such a way that ((1 + ξ)k − 1) ≤ ζ (see Section 3.5.4 for
explanation). Finally, the resulting interval is multiplied by the value of the probability
mass function (line 5) for each discrete parameter value in BR.

3.5.3 Verified Integration Procedure

The main aim of the verified integration procedure integral is computing an interval
(or enclosure) which size is not larger than some precision ξ > 0 and that contains

45

the value of the definite integral F ([c, d]) =
∫ d
c
f(x)dx of some function f(x) over an

interval [c, d] where f is integrable. The integrands used in Algorithm 3 are probability
density functions, which are integrable. The verified integration procedure is a standard
adaptive quadrature procedure employing the (1/3) Simpson rule [52]:∫ d

c

f(x) dx =
|d− c|

6
(f(c) + 4f(

c+ d

2
) + f(d))− |d− c|

5

2880
f (4)(γ) (3.1)

where γ ∈ [c, d] and f (4) is the fourth derivative of f . Note the equality sign in (3.1),
i.e., the Simpson rule gives a precise way to compute F ([c, d]), assuming knowledge of
γ ∈ [c, d].

An interval extension of function f : X → Y is an operator [f] such that for any
interval [c, d] ⊂ X:

∀x ∈ [c, d] : f(x) ∈ [f]([c, d]) ⊆ Y

An interval version of Simpson’s rule can be obtained simply by replacing in (3.1) the
occurrences of f and f (4) with their interval extension [f], and by replacing γ with the
entire interval [c, d]:

[F]([c, d]) =
|d− c|

6
([f](c) + 4[f](

c+ d

2
) + [f](d))− |d− c|

5

2880
[f](4)([c, d])

and thus F ([c, d]) ∈ [F]([c, d]). Furthermore, by the definition of integral:

F ([c, d]) ∈ Σn
i=1[F](Πi) (3.2)

where the collection of Πi’s is a partition of [c, d]. (The intersections of the intervals in
partition Πi may have (Lebesgue) measure 0, since these have no effect on integration.)
In order to guarantee integration with precision ξ it is sufficient to divide [c, d] into
n intervals Πi such that for each Πi we have |[F](Πi)| < ξ |Πi|

d−c . Then, the exact value
of the integral will belong to an interval (3.2) of width smaller than ξ. Algorithm 6
features the pseudo-code for a standard adaptive quadrature procedure that computes
integral (3.1) up to an arbitrary ξ > 0 [40].

3.5.4 Multiple Continuous Random Parameters

Assuming that the system’s parameter are independent, the verified integration pro-
cedure from Algorithm 6 can be used for calculating

∫
BR

dP with arbitrary positive
precision (where BR ⊆ PR is a multidimensional parameter box). The proposition
below states that the precision ξ for integrating each parameter must be stricter than

46

Algorithm 6: integral(f, [c, d], ξ)

Input : f ∈ C5[c, d]: integrand function,
[c, d]: integration domain,
ξ ∈ Q+: precision.

Output: interval I.

1 I = [0, 0]; Π = ∅;
2 Q← [c, d];
3 while |Q| > 0 do
4 Q→ [x, y];
5 if |[F](x)| ≥ ξ · y−x

d−c then
6 Q← [x, x+y

2
]; Q← [x+y

2
, y];

7 else
8 I = I + [F]([x, y]); // add partial sum to the integral value
9 Π← [x, y];

10 return I;

the given ζ for calculating the multidimensional integral value.

Proposition 3.3. To compute with precision ζ > 0 the value of the integral
∫
BR

dP,
where BR = [c1, d1] × . . . × [cn, dn] it is sufficient to apply Algorithm 6 to each [ci, di]

with a precision ξ such that ζ ≥ (1 + ξ)n − 1.

Proof. As all the parameters are independent then
∫
BR

dP =
∫
BR

∏n
i=1 fi(x) dx (where

fi is the probability function of the i-th continuous random parameter in BR), which
by Fubini’s theorem can be calculated as

∏n
i=1

∫ di
ci
fi(x) dx.

Now, using Algorithm 6 it is possible to compute an interval of length ξi containing
the exact value of each integral

∫ di
ci
fi(x) dx, and let [ei, ei + ξi] denote such interval. It

is thus sufficient to demonstrate how the values ξi’s should be chosen in order for the
integral to be contained in an interval of length ζ.

According to the rules of interval arithmetics, the product of the intervals is con-
tained in the interval:

[e1, e1 + ξ1] · [e2, e2 + ξ2] · . . . · [en, en + ξn] ⊆ [
n∏
i=1

ei,

n∏
i=1

(ei + ξi)] (3.3)

Therefore, the ξi’s should be chosen such that the interval at the RHS of inclusion

47

(3.3) has length smaller than ζ, i.e., the following should hold:
n∏
i=1

(ei + ξi)−
n∏
i=1

ei ≤ ζ (3.4)

Choosing ξi in such a way that (3.4) holds will guarantee that the exact value of
the product of n integrals is contained in an interval of size ζ. Requiring all the ξi’s
to be equal to the same value ξ, formula (3.4) can be satisfied by assuming the worst
case ei = 1 for all i, which gives: ζ ≥

∏n
i=1(1 + ξ)− 1 = (1 + ξ)n − 1.

3.5.5 Unbounded Random Parameters

A random parameter with unbounded domain (e.g., Gaussian) cannot be directly used,
since it would define an unbounded LR-formula. Also, Algorithm 6 can be applied only
to bounded continuous random parameters. However, for any κ such that 0 < κ < 1

it is possible to find a bounded region of every random parameter domain over which
the integral with respect to the probability measure is larger than 1 − κ. Parameter
κ characterizes the error due to bounding the domain of random parameters. Starting
with some initial c and d one can apply Algorithm 6 to obtain the value of the integral∫ d
c
fi(x) dx by enlarging the bounds (decreasing c and increasing d) until the lower

bound of integral
∫ d
c
fi(x) dx computed by procedure integral is greater or equal to

1 − κ (i.e.,
∫ d
c
fi(x) dx ≥ 1 − κ). This can always be done as probability density

functions are always positive.
It easy to see that if the system features n independent continuous random param-

eters and it is required to bound the parameter space in such a way that
∫
PR

dP ≥
1−κ, each parameter with unbounded support should be bounded by [ci, di] such that∫ di
ci
fi(x) dx ≥ (1− κ)

1
n .

3.6 Algorithm Guarantees

It was proven in Proposition 3.2 that Algorithm 3 always terminates returning a list of
valid probability enclosures, which are guaranteed to contain the range of the reacha-
bility probability function. Depending on the absence or presence of certain parameter
types in the considered SPHS and assumptions about the reachability probability func-
tion, Algorithm 3 can also provide guarantees on the size of the computed probability

48

enclosures. In particular, with the ε-guarantee all computed enclosures are tighter than
some user defined ε > 0.

3.6.1 Goal Set Synthesis in PHSs

Algorithm 3 can be applied to parametric hybrid systems i.e., with no random param-
eters. In this case it does not return probability enclosures, but a list of intervals from
the set {[0, 0], [1, 1], [0, 1]}. The proposition below defines the meaning of the computed
intervals.

Proposition 3.4. Given a parametric hybrid system H, a reachability depth l ∈ N,
a probability enclosure precision ε ∈ (0, 1), a precision for nondeterministic parameter
boxes represented by a vector ρ with positive elements and a parameter η > 0 controlling
the precision of the decision procedure evaluate, Algorithm 3 returns a list of intervals
L such that for each nondeterministic parameter box BN indexing L:(

L[BN] = [1, 1]
)
⇔
(
evaluate(H, l, BN , η) = sat

)
,(

L[BN] = [0, 0]
)
⇔
(
evaluate(H, l, BN , η) = unsat

)
,(

L[BN] = [0, 1]
)
⇔
(
evaluate(H, l, BN , η) = undet

)
.

Proof. In the inner loop (line 8) the algorithm iterates through a list containing random
parameter boxes (line 9). Such list always contains a single box, as a dummy random
parameter is introduced (line 4), and it is never partitioned (line 16). Thus, every line
of the inner loop is executed only once.

The procedure measure returns the interval [c, d] = [1, 1] for BR, as P = ∅ (line
10). The precision value δ for the procedure evaluate is equal to η as BR is a sin-
gleton for which min

(
µ+(BR)

)
= 1 (line 11). As the parameter box BR is dummy,

evaluate(H, l, BR × BN , η) (line 12) is equivalent to evaluate(H, l, BN , η). Now, if
evaluate(H, l, BN , η) = unsat then the upper bound of the interval [a, b] (which is
initially equal to [0, 1]) is reduced by c = 1 (line 13) resulting into [a, b] = [0, 0]. If
evaluate(H, l, BN , η) = sat then the lower bound of [a, b] is increased by c = 1 pro-
ducing [a, b] = [1, 1]. When evaluate(H, l, BN , η) = undet the enclosure [a, b] is not
refined, and thus, [a, b] = [0, 1]. Also, the condition in line 18 of Algorithm 3 guarantees
that the size of each such box (for which interval [0, 1] is returned) is smaller than or
equal to ρ.

49

Remark 3.2. The returned intervals [0, 0] and [1, 1] in Proposition 3.4 are not meant
to be probability enclosures [0, 0] and [1, 1], since this proposition applies to PHS. Also,
for an event to have zero probability does not necessarily mean that such event cannot
absolutely occur. This is because (Lebesgue) integration cannot “see” sets with count-
able numbers of points — they all integrate to zero. That is, if a system reaches the
goal state for no value of the random parameters but one, then it cannot be said that the
system is absolutely safe. On the other hand, when no continuous random parameters
are present, the returned enclosures imply that a given event never ([0, 0]) or always
([1, 1]) happens.

From Proposition 3.4 it is clear that for each interval in L the following holds: if
L[BN] = [1, 1] then BN ⊆ G, if L[BN] = [0, 0] then BN ⊆ GC and L[BN] = [0, 1]

implies that BN contains values from both sets (G and its complement GC) or it is due
to a false alarm (see Example 3.6). Thus, Algorithm 3 can be applied to parameter
set synthesis: finding a subset of the system’s parameter space for which the system
reaches the goal state. In this setting Algorithm 3 will partition the parameter space
of the system and obtain under-approximations for sets G and GC .

Example 3.6. (Goal Set Synthesis for CB) The goal of this experiment is to
perform goal set synthesis for the cannonball model from Example 2.1 with α = 0.7854.
Algorithm 3 was applied to the described model with ρ = {10−5} and different values of
η (10−3 and 10−6, respectively). The obtained results are presented in Figures 3.3 and
3.4.

It can be seen that the computed under-approximations of the goal set G = [Kborder, 0.9]

(where Kborder ≈ 0.753657747263689) and its complement GC = [0.5, Kborder) are cor-
rect.

Also, in the first case (ρ = 10−3) Algorithm 3 returned two undetermined boxes, and
in the second case (ρ = 10−6) their number reduced to one. This is a false alarm: the
parameter box BN = [0.753649902, 0.753656006] should be in fact unsatisfiable (L[BN]

must be [0, 0]).

3.6.2 ε-guarantee

The size of the returned probability enclosures can be reduced to an arbitrarily small
positive ε for SPHS with at least one continuous random parameter and without non-

50

BN L[BN]

[0.500000000, 0.700000000] [0, 0]

[0.700000000, 0.750000000] [0, 0]

[0.750000000, 0.753125000] [0, 0]

[0.753125000, 0.753515625] [0, 0]

[0.753515625, 0.753613281] [0, 0]

[0.753613281, 0.753637695] [0, 0]

[0.753637695, 0.753649902] [0, 0]

[0.753649902,0.753656006] [0,1]

[0.753656006,0.753662109] [0,1]

[0.753662109, 0.753710938] [1, 1]

[0.753710938, 0.753906250] [1, 1]

[0.753906250, 0.754687500] [1, 1]

[0.754687500, 0.756250000] [1, 1]

[0.756250000, 0.762500000] [1, 1]

[0.762500000, 0.775000000] [1, 1]

[0.775000000, 0.800000000] [1, 1]

[0.800000000, 0.900000000] [1, 1]

Figure 3.3: Algorithm 3 output for Ex-
ample 3.6 with ρ = {10−5} and η =
10−3.

BN L[BN]

[0.500000000, 0.700000000] [0, 0]

[0.700000000, 0.750000000] [0, 0]

[0.750000000, 0.753125000] [0, 0]

[0.753125000, 0.753515625] [0, 0]

[0.753515625, 0.753613281] [0, 0]

[0.753613281, 0.753637695] [0, 0]

[0.753637695, 0.753649902] [0, 0]

[0.753649902, 0.753656006] [0, 0]

[0.753656006,0.753662109] [0,1]

[0.753662109, 0.753710938] [1, 1]

[0.753710938, 0.753906250] [1, 1]

[0.753906250, 0.754687500] [1, 1]

[0.754687500, 0.756250000] [1, 1]

[0.756250000, 0.762500000] [1, 1]

[0.762500000, 0.775000000] [1, 1]

[0.775000000, 0.800000000] [1, 1]

[0.800000000, 0.900000000] [1, 1]

Figure 3.4: Algorithm 3 output for Ex-
ample 3.6 with ρ = {10−5} and η =
10−6.

deterministic parameters, and in which the formulae verified in procedure evaluate

are robust. It is required demonstrating the following: the goal set and its complement
can be approximated arbitrarily well by parameter boxes; all such boxes can be cor-
rectly detected by procedure evaluate, and the corresponding definite integrals can be
computed with the adequate precision.

The following proposition proves a supporting claim that projection of a closed set
from a product space onto one of its components is also closed in it.

Proposition 3.5. (Corollary to the Tube Lemma) Let Y be compact and πX :

X × Y → X be the projection of X × Y on X. Then for any closed F ⊂ X × Y the
set πX(F) is closed in X.

Proof. Let x 6∈ πX(F) (note that in case πX(F) = X, πX(F) it is closed in X, and
thus, the proposition holds). This implies that {x}×Y is contained in the open subset

51

(X ×Y) \F (open in X ×Y). Then by the Tube Lemma [63, Lemma 26.8] there exists
an open subset Vx ⊂ X such that x ∈ Vx and Vx × Y ⊂ (X × Y) \ F . The latter
means that the open set Vx ⊂ X lies in the complement of πX(F). As the choice of x
was arbitrary then the complement of πX(F) can be obtained as a union of such open
sets Vx, which is open (this is because the union of an arbitrary number of open sets
is open). Thus, πX(F) is closed in X (as its complement is open in X).

The following lemma states that in a PHS featuring only continuous parameters
any parameter box B ⊆ P with positively-sized edges is either fully inside the goal
set G or contains a smaller box B′ ⊆ B with positively-sized edges from the goal set
complement GC .

Lemma 3.2. (Goal Set Shape) Given an invariant-free PHS H featuring only con-
tinuous parameters and a reachability depth l ∈ N the following holds:

∀B ⊆ P : (B ⊆ G)⊕ (∃B′ ⊆ B : B′ ⊆ GC),

where both B and B′ are parameter boxes with positively sized edges, and G is the goal
set for depth l.

Proof. In order to prove this lemma it is necessary to show that for any hyper-box
B = [p1, q1] × · · · × [pn, qn] ⊆ P (where ∀i ∈ {1, . . . , n} : |qi − pi| > 0) only one the
following outcomes is possible:

1) B ⊆ G,

2) ∃B′ ⊆ B : B′ ⊆ GC ,

where B′ = [c′1, d
′
1]× · · · × [c′n, d

′
n] such that ∀i ∈ {1, . . . , n} : |d′i − c′i| > 0.

Clearly, given an arbitrary box B ⊆ P with positively-sized edges one of the fol-
lowing is true:

a) B ⊆ G,

b) B ⊆ GC ,

c) (B ∩G 6= ∅) ∧ (B ∩GC 6= ∅).

52

Obviously, a) is equivalent to 1), and b) implies 2) for any B′ ⊆ B. Consider now
case c). Let ĜC = B∩GC 6= ∅ and Ĝ = B∩G 6= ∅. We want to show that ĜC contains
an open ball Ball(p, r) of radius r > 0 centred at some point p ∈ ĜC . Suppose that it
is not true. Then,

∀p ∈ ĜC ,∀r > 0 : Ball(p, r) 6⊆ ĜC . (3.5)

This implies that the interior of ĜC is empty, making ĜC a boundary set, which must
be closed in B.

Note that Reach is a bounded LR-formula which can be presented in the following
form by [34, Lemma 2.1]:

Reach(H, l, B) = ∃Bp,∃[0,T]n·mti,j :
m∨
i=0

(ki∧
j=0

[
fi,j(p, ti,j) = 0

])
, (3.6)

where each fi,j : PR × [0, T]n·m → R is a computable (hence continuous) function.
Therefore, set Ĝ can be written in the form:

Ĝ =

{
p ∈ B | ∃[0,T]n·mti,j :

m∨
i=0

(ki∧
j=0

[
fi,j(p, ti,j) = 0

])}
. (3.7)

Let Di,j = {p ∈ B, ti,j ∈ [0, T]n·m | fi,j(p, ti,j) = 0}. As {0} is closed in the range of
continuous function fi,j then by [73, Corollary to Theorem 4.8] f−1

i,j (0) = Di,j is closed
in B × [0, T]n·m. As each Di,j is closed in B × [0, T]n·m then by [73, Theorem 2.24] the
sets

⋂ki
j=0Di,j and D =

⋃m
i=0

(⋂ki
j=0Di,j

)
are closed in B × [0, T]n·m.

Set Ĝ can be obtained as a projection of set D onto B. Let πB : B× [0, T]n·m → B

be the projection function. Thus, Ĝ = πB(D), and as D is closed in B × [0, T]n·m,
[0, T]n·m is compact then by Proposition 3.5, πB(D) is closed in B. Hence, ĜC cannot
be closed in B as a complement of a closed set Ĝ in B. This contradicts the conclusion
made above about ĜC being closed. Therefore, (3.5) is not true, which means that ĜC

must contain an open ball Ball(p, r) of some positive radius r.
Now it is possible to derive a hypercube B′ = [p1 − r√

n
, p1 + r√

n
] × · · · × [pn −

r√
n
, pn + r√

n
] ⊂ Ball(p, r). Thus, there exists a box B′ ⊂ GC (as ĜC ⊆ GC) with

positively-sized edges. Therefore, c) implies 2).

Remark 3.3. Lemma 3.2 describes the shape of the goal set and its complement, and
allows obtaining their under-approximation with an arbitrary positive precision. It
entails that neither the goal set (nor its complement) can be dense in the parameter

53

space.

However, it is not guaranteed that given a box from the system’s goal set or its
complement there exists a positive δ > 0 for which procedure evaluate returns sat
or unsat, respectively. In other words, a false alarm may occur for the given box
regardless of how small the value of δ is (evaluate returns undet). However, if the
formulae used in procedure evaluate are robust for some positive δ, then it is possible
to decide whether the given box belongs to the goal set or its complement.

Definition 3.6. (δ-Robustness [35]) A bounded LR-sentence φ is called δ-robust if
φδ ⇒ φ for a given δ > 0. Also, φ is called robust if it is δ-robust for some δ > 0.

In other words, if a bounded LR-sentence is robust then it is true or comfortably
false. Corollary 24 from [35] states that robustness implies decidability, in the sense
that a δ-decision procedure can correctly decide whether a robust bounded LR-sentence
is true or false for some δ > 0.

The following lemma establishes the connection between sets G and GC , and proce-
dure evaluate with the robustness assumption about formulae Reach and ¬Reach∀.

Lemma 3.3. (Adaptive δ) Given a PHS H, a reachability depth l, a nonempty
subset B of the parameter space of H, and assuming that sentences Reach(H, l, B)

and ¬Reach∀(H, l, B) are robust, the following hold:

1. B ⊆ G⇔ ∃δ > 0 : evaluate(H, l, B, δ) = sat,

2. B ⊆ GC ⇔ ∃δ > 0 : evaluate(H, l, B, δ) = unsat,

where G is the goal set for depth l.

Proof. Consider 1). If B ⊆ G then by Definition 3.2 formula Reach∀(H, l, B) is true,
and equivalently, ¬Reach∀(H, l, B) is false. As ¬Reach∀(H, l, B) is robust for some
δ > 0 then by [35, Corollary 24] a δ-complete decision procedure with precision δ will
return unsat for ¬Reach∀(H, l, B). The latter is equivalent to the sat outcome of
procedure evaluate. The implication B ⊆ G⇐ ∃δ : evaluate(H, l, B, δ) = sat holds
by the definition of evaluate procedure.

Similarly, consider 2). If B ⊆ GC then by Definition 3.2 formula Reach(H, l, B) is
false. Again, as Reach(H, l, B) is robust for some δ > 0 then by [35, Corollary 24] a

54

δ-complete decision procedure returns unsat for Reach(H, l, B), which is equivalent to
unsat returned by evaluate. The implication B ⊆ GC ⇐ ∃δ : evaluate(H, l, B, δ) =

unsat holds by the definition of the evaluate procedure.

Lemma 3.3 states that a nonempty parameter box B belongs to the goal set G or its
complement GC if and only if there exists a positive δ for which evaluate with robust
sentences Reach and ¬Reach∀ returns sat or unsat respectively. At the same time
if B intersects the border of the goal set G then evaluate returns undet for all δ > 0

even if both Reach and ¬Reach∀ are robust for all parameter values in B. Note that
Lemma 3.3 also holds for PHSs with invariants.

The following theorem proves that Algorithm 3 provides ε-guarantee for SPHSs
featuring only continuous random parameters.

Theorem 3.1. (Continuous Random Parameters) Given an invariant-free stochas-
tic parametric hybrid system (H,P) featuring only continuous random parameters, a
reachability depth l ∈ N, a probability enclosure precision ε ∈ (0, 1), a constant κ ∈
(0, ε) for bounding the domain of continuous random parameters with unbounded sup-
port, and η > 0 controlling precision of procedure evaluate with sentences Reach(H, l, {p})
and ¬Reach∀(H, l, {p}) robust for all p ∈ P , Algorithm 3 returns a probability enclo-
sure of size smaller than ε.

Proof. According to Definition 3.3, calculating the bounded reachability probability
amounts to calculating the integral

∫
G
dP, where G ⊆ PR (remember no nondetermin-

istic parameters are featured in this case) is the goal set as per Definition 3.2 and P
is the probability measure of the random parameters. The termination of the algo-
rithm (with the returned probability enclosure satisfying Definition 3.3) was proven in
Proposition 3.2.

As no nondeterministic parameters are present, the bounded reachability proba-
bility function is constant. Also, Algorithm 3 introduces a dummy nondeterministic
parameter box which is never bisected, and therefore, condition |BN | ≤ ρ in line 18 is
never satisfied. Thus, it is necessary to show that the size of the computed probability
enclosure can be reduced up to the given ε in order to prove termination of Algorithm
3.

Let Π0 be the partition of PR containing only one parameter box comprising the
entire random parameter space PR. Now, for any i ∈ N+ let Πi be the partition

55

obtained by bisecting every hyper-box in Πi−1. Thus, Πi consists of 2n·i boxes (where
n is the number of random continuous parameters), and each box in Πi has volume
µ+(PR)

2n·i
(where µ+(PR) is the volume of the hyper-box PR computed as the product of

the lengths of its edges).
Let PR be bounded in such a way that

∫
PR

dP ≥ 1 − κ as shown in Section 3.5.5,
and let Πi = {ΠG

i ,Π
GC

i ,ΠX
i } be a partition of PR such that ∀B ∈ ΠG

i : B ⊆ G,
∀B ∈ ΠGC

i : B ⊆ GC and ∀B ∈ ΠX
i : (B ∩ G 6= ∅) ∧ (B ∩ GC 6= ∅). For a given i ∈ N

the probability enclosure for the reachability probability is computed as

[a, b] =
[∑
B∈ΠGi

∫
B

dP, 1−
∑

B∈ΠG
C

i

∫
B

dP
]
.

Now, in order to provide ε-guarantee it is necessary to find a partition Πi such that:∑
B∈(ΠGi ∪ΠG

C
i)

∫
B

dP ≥ 1− ε (3.8)

(this way it can be guaranteed that |[a, b]| ≤ ε).
Lemma 3.2 defines the shape of the goal set and its complement, and it suggests

that G and GC can be under-approximated by boxes from ΠG
i and ΠGC

i arbitrarily well.
Thus, there exists a finite partition such that (3.8) holds by Remark 3.3. However, in
order to show that [a, b] can be computed by Algorithm 3 it is necessary to show that

1. boxes from ΠG
i and ΠGC

i can always be correctly identified, and

2. the values of the corresponding integrals are computed with sufficient precision
(as choosing a very coarse precision can lead to “discarding too much information”
from the interval returned by procedure measure).

Point 1) is addressed by Lemma 3.3 which requires both sentences Reach and
¬Reach∀ to be robust on all boxes in ΠG

i and ΠGC

i . In other words, given a box B
from the goal set or its complement the following must be true:

∃δ > 0 :
(
Reachδ(H, l, B)→ Reach(H, l, B)

)
∧(

(¬Reach∀)δ(H, l, B)→ ¬Reach∀(H, l, B)
)

Suppose that the above does not hold. Hence,

∀δ > 0 :
(
Reachδ(H, l, B) ∧ ¬Reach(H, l, B)

)
∨(

(¬Reach∀)δ(H, l, B) ∧Reach∀(H, l, B)
) (3.9)

56

Let B ∈ ΠG
i , which means that Reach(H, l, B) is true. Hence, the left-hand side of

the disjunction above evaluates to false, and (3.9) becomes equivalent to ∀δ > 0 :(
(¬Reach∀)δ(H, l, B) ∧Reach∀(H, l, B)

)
, which can be rewritten as ∀δ > 0,∀p ∈ B :(

(¬Reach∀)δ(H, l, {p})∧Reach∀(H, l, {p})
)
, or ∀p ∈ B, ∀δ > 0 :

(
(¬Reach∀)δ(H, l, {p})∧

Reach∀(H, l, {p})
)
. The latter states that sentence ¬Reach∀ is not robust for all pa-

rameter values in B. However, this contradicts the assumption of the theorem that
both sentences must be robust for all parameter values. Therefore, both Reach and
¬Reach∀ are robust on B, and consequently, on every box in ΠG

i . The proof for the
boxes from ΠGC

i follows the same steps.
Since the precision value δ = η µ

+(PR)
2n·i

is always positive and decreases as i increases
(line 11 in Algorithm 3), then Algorithm 3 can always find such δ for which Reach

and ¬Reach∀ are robust on all boxes of partition Πi satisfying
∣∣[a, b]∣∣ ≤ ε.

Finally, 2) is guaranteed by the precision value passed to procedure measure for
computing the value of integrals in line 10 of Algorithm 3. From the way the bounds
for PR are chosen it follows that the value of the sum in (3.8) is always bounded
by 1 − κ. Therefore, the error of computing the sum of integrals cannot be greater
than ε − κ. Computing each integral with precision (ε − κ) µ+(B)

µ+(PR)
guarantees that

the total error when computing the sum of integrals over partition Πi is equal to∑
B∈(ΠGi ∪ΠG

C
i)

(ε− κ) µ+(B)
µ+(PR)

which is smaller than or equal to ε− κ.

Remark 3.4. The robustness assumption must be analogously applied to the formu-
lae in procedure compute in order to provide ε-guarantee in the implementation of
Algorithm 3.

Example 3.7. (Robustness is Important) This example shows that if Reach and
¬Reach∀ are not robust for some parameter values then the size of the probability
enclosure cannot be refined to an arbitrarily small ε > 0.

Suppose that Reach(H, 0, B) := ∃Bp, ∃[0,1]t : −pt > 0, ¬Reach∀(H, 0, B) :=

∃Bp,∀[0,1]t : pt ≥ 0, and p ∼ U(−1, 1) is a uniform random parameter. It is easy to
see that δ-weakenings of the sentences above (∃Bp,∃[0,1]t : −pt > −δ and ∃Bp,∀[0,1]t :

pt ≥ −δ, respectively) are always satisfiable for any δ > 0 if p ≥ 0. (In other words,
Reach and ¬Reach∀ are not robust for p ∈ [0, 1].) That means that evaluate returns
undet for any parameter box in [0, 1] and any δ > 0. At the same time it is possible
to find δ > 0 for which evaluate returns sat for any box in [−1, 0). This implies that

57

Algorithm 3 will always return a probability enclosure [c, 1] (where c < 0.5) for any
given ε > 0. Therefore, the size of the computed probability enclosure will never be
smaller than 0.5, although all remaining requirements of Theorem 3.1 are met.

So far it has been proven that Algorithm 3 provides ε-guarantee for SPHSs featuring
only continuous random parameters. The proposition below demonstrates that intro-
ducing discrete random parameters does not affect the size of the computed probability
enclosures.

Proposition 3.6. (Introducing Discrete Random Parameters) With the same
assumptions of Theorem 3.1 and given an SPHS (H,P) with both continuous and dis-
crete random parameters, Algorithm 3 returns a probability enclosure of size smaller
than ε.

Proof. Let D be the domain of the discrete random parameters, their probability mea-
sure PD = {f1, . . . , fn} be the product of their probability mass functions, and C –
the domain of continuous random parameters and PC their probability measure. Thus,
PR = D × C and P = {PD,PC}.

For every p ∈ D a stochastic parametric hybrid system (Hp,PC) can be defined
by substituting all discrete random parameters in H with p. Now, each (Hp,PC) is
featuring only continuous random parameters.

As all random parameters are independent, the bounded reachability probability for
(H,P) can be obtained as Pr =

∑
p∈D(

∏n
i=1 fi(pi) ·Prp) where Prp is the probability

of reaching the goal state by (Hp,PC).
The probability enclosure [a, b] for (H,P) (such that Pr ∈ [a, b]) can be computed

as [a, b] =
∑

p∈D(
∏n

i=1 fi(pi) · [a, b]p) where each [a, b]p is a probability enclosure for
(Hp,PC).

By Theorem 3.1, the size of each such [a, b]p can be reduced to some arbitrarily
small ε > 0. Thus, the size of [a, b] can be obtained as:

|[a, b]| =
∑
p∈D

(
n∏
i=1

fi(pi) · |[a, b]p|) ≤
∑
p∈D

(
n∏
i=1

fi(pi) · ε) ≤ ε ·
∑
p∈D

n∏
i=1

fi(pi) ≤ ε.

(as each fi is a probability mass function, then
∑

p∈D
∏n

i=1 fi(pi) = 1).

In Theorem 3.1 and Proposition 3.6 it was proven that the bounded reachability
probability function for SPHSs featuring at least one continuous random parameter

58

and procedure evaluate with robust formulae is computable. In other words, there is
a procedure (Algorithm 3) which given a nondeterministic parameter value and some
positive ε, computes a value which is at most ε-far from the exact value of the bounded
reachability probability (as any value from the interval returned by Algorithm 3 satisfies
this property).

Example 3.8. (ε-guarantee for Constant Reachability Probability) In this ex-
ample Algorithm 3 was applied to the SCB with K = 0.7 and reachability depth l = 1

for computing probability enclosure of the desired length ε. The algorithm returns en-
closures [0.392681179, 0.393270279] for ε = 10−3 and [0.392956194, 0.392963577] for

ε = 10−5, which both contain the reachability probability value Pr(0.7) =
∑3

i=1

[
fα(αi) ·

∫∞√
980

1.49·sin(2αi)
fυ0(x)dx

]
≈ 0.392964374383292 obtained analytically in Example 3.3.

Remark 3.5. Using the reasoning from the proofs of Theorem 3.1 and Proposition 3.6
it is possible to show that Algorithm 3 can compute probability enclosures of size ε for
a given nondeterministic parameter box BN if the range of Pr on BN is smaller than
ε and given that evaluate features robust formulae.

The above suggests that condition |BN | ≤ ρ in line 18 of Algorithm 3 can be ignored
if Pr is continuous on PN . In this case the algorithm will continue partitioning the
nondeterministic parameter space and refining the probability enclosures until the size
of each enclosure is smaller than or equal to ε.

Example 3.9. (ε-guarantee for Continuous Reachability Probability) In Ex-
ample 3.5 it was concluded that in both cases Algorithm 3 terminated upon reaching the
condition |BN | ≤ ρ on each nondeterministic parameter box. However, from Example
3.3 it can be seen that the reachability probability function is continuous. Thus, the
condition |BN | ≤ ρ can be ignored. Algorithm 3 was applied with ε = 10−2, and the
computed probability enclosures are visualised in Figure 3.5. It can be seen that the
probability function obtained analytically is fully contained inside the computed prob-
ability enclosures (thus, the result is correct), and the size of each such enclosure is
smaller than ε (thus, ε-guarantee is provided).

59

K
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

P
r(
K
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.5: Probability enclosures returned by Algorithm 3 for the SCB model, where
blue boxes – probability enclosures computed for ε = 10−2 and black line – graph of
the reachability probability function obtained analytically (Example 3.3).

3.7 Discussion

In this Chapter I presented an SMT-based technique (Algorithm 3) for computing
bounded reachability probability in stochastic parametric hybrid systems. The intro-
duced algorithm computes probability enclosures for the range of the bounded reach-
ability probability function.

In some cases such enclosures can be arbitrarily tight. In particular, for systems
featuring at least one continuous random parameter and no nondeterministic param-
eters (see Proposition 3.6) or when the reachability probability function is continuous
and under the assumption that the formulae in procedure evaluate are robust.

I also demonstrated that the presented technique can be applied to systems with-
out random parameters. In this case Algorithm 3 performs goal set synthesis (see
Proposition 3.4).

All of the above was formally proven and demonstrated on a running example of
the stochastic cannonball featuring random (initial speed and angle to the horizon)
and nondeterministic (drag coefficient) parameters.

60

3.7.1 Computational Complexity

It is clear that the search space (the number of evaluated parameter boxes) of Algorithm
3 grows exponentially with the number of system parameters. This is due to the fact
that the partitioning procedure bisect produces 2n boxes for each parameter box with
n positive edges if the required precision ε is not reached. Now each such box is
checked by procedure evaluate, whose worst case complexity depends exponentially
on the number of quantified variables - positively sized edges of the verified box and
l time variables. Thus, the overall computational complexity of Algorithm 3 grows
exponentially with the number of system parameters and the reachability depth.

Chapter 4 presents an approach for computing bounded reachability probability us-
ing statistical model checking techniques. The approach is based on random sampling,
which is not negatively influenced by the number of system parameters. Moreover, it
takes advantage of the fact that evaluate depends only on the reachability depth l

as the evaluated parameter boxes are singletons. Unfortunately, the guarantees pro-
vided by this approach are statistical, while Algorithm 3 provides absolute numerical
guarantees.

3.7.2 Future Work

Algorithm 3 and all auxiliary routines it incorporates could be improved. Firstly, when
a parameter box does not fully lie in the goal set or its complement, it is bisected – each
positively sized edge of a parameter box is split in halves (Algorithm 4). Thus, deriving
an optimal partitioning technique based on the system’s behaviour can significantly
speed up convergence of the size of probability enclosures to the desired one. Namely,
Algorithm 4 can benefit from sensitivity analysis – finding how much each parameter
contributes to changes in the system’s dynamics.

Also, alterations between partitioning the continuous random and continuous non-
deterministic parameter boxes are important, as unnecessary partitioning affects the
performance of Algorithm 3. This happens when a nondeterministic parameter box is
bisected but the probability enclosure is not improved. For example, some unneces-
sary partitioning can be found in Example 3.9, where the nondeterministic precision
is ignored (see Figure 3.5). At the same time the algorithm can suffer from insuffi-
cient partitioning of the domain of random parameters which can result in returning

61

excessively large probability enclosures. Both problems can be partially tackled by
pre-partitioning the parameter space prior to the algorithm execution. In other words,
Algorithm 4 can be recursively applied to the parameters space until the size of every
box in the obtained partition is smaller than or equal to ρ (in case of nondeterminis-
tic parameter boxes) or until the corresponding probability value (in case of random
parameter boxes) is smaller than or equal to some fraction of ε.

Furthermore, the performance of the solver implementing procedure evaluate of-
ten depends on the size of the evaluated box. Thus, decreasing the size of the boxes
can potentially speed up Algorithm 3 (this is another advantage of statistical model
checking which operates on singletons) but this will increase the number of parameter
boxes. Thus, finding a compromise between the number of parameter boxes and their
size is crucial. A further improvement could be an introduction of an adaptive pro-
cedure that would not partition a nondeterministic box until no considerable progress
can be made on the probability enclosure.

Finally, analysing the system’s dynamics and choosing an appropriate precision δ
as a result, can be useful for avoiding false alarms.

62

Chapter 4

Bounded Reachability Probability via
Monte Carlo

4.1 Introduction

This chapter presents techniques combining statistical (Monte Carlo) methods and nu-
merically sound procedures to estimate the bounded reachability probability in SPHSs
[78].

A statistical approach to probabilistic reachability is important because it trades
correctness guarantees with efficiency, and so can scale much better with system size
than other approaches. For example, statistical model checking [92] can be faster than
probabilistic model checking, which is based on exhaustive state space search [91].

The algorithms presented in this chapter compute statistically guaranteed proba-
bility enclosures, while Algorithm 3 (Chapter 3) provides absolute numerical guaran-
tees. However, the number of samples evaluated by the statistical methods does not
grow with the number of system parameters, unlike Algorithm 3 featuring exponential
growth of the search space.

Monte Carlo techniques for probability estimation assume that one can sample the
random variable representing the true system behaviour. However, this is impossible
since bounded reachability is undecidable. A novel aspect of the techniques presented
in this chapter is that they explicitly take into account undecidability and numerical
precision by employing procedure evaluate (see Chapter 2) that allows bounding the

63

value of the desired random variable.

In this chapter I define the bounded reachability probability in terms of Bernoulli
random variables and introduce two algorithms for computing confidence intervals
for the bounded reachability probability in SPHSs featuring only random parame-
ters. Then I present an algorithm for computing an approximation of the maxi-
mum/minimum bounded reachability probability in systems featuring all types of pa-
rameters.

4.2 Computing Confidence Intervals

Bounded reachability in SPHS (H,P) can be defined as a Bernoulli random variable

X(pN ,pR) =

1 if system H reaches the goal in l steps for pN ∈ PN ,pR ∈ PR,

0 otherwise.

(4.1)

Thus, the bounded reachability probability is equal to the expected value of X, i.e.,
Pr(pN) = E[X(pN)]. However, samples of variable X cannot be directly evaluated due
to the undecidability of bounded reachability in hybrid systems.

The solution proposed in this section introduces two Bernoulli random variables
Xsat and Xusat that can be used for bounding the range of X, and whose values can
be computed. For any given δ > 0, pN ∈ PN and pR ∈ PR, Xsat and Xusat are defined
as the following:

Xsat(pN ,pR, δ) =

1 if evaluate(H, l, {pN ,pR}, δ) = sat,

0 otherwise,

Xusat(pN ,pR, δ) =

0 if evaluate(H, l, {pN ,pR}, δ) = unsat,

1 otherwise.

Therefore, Xsat(pN ,pR, δ) is 1 if it is possible to conclude that H reaches the goal
state for the given pN and pR, while Xusat(pN ,pR, δ) is 0 if it can be decided that
H does not reach the goal state for these pN and pR. If no decision can be made
(because of the precision δ being used or of the nature of the reachability question),
Xsat(pN ,pR, δ) and Xusat(pN ,pR, δ) take 0 and 1, respectively. Thus, by definition of

64

procedure evaluate the following holds for any δ > 0:

Xsat(pN ,pR, δ) ≤ X(pN ,pR) ≤ Xusat(pN ,pR, δ) . (4.2)

For n random variables iid (independent and identically distributed) as Xsat and
Xusat, the following two random variables are defined:

Ŝn =
Σn
i=1Xsat(pN ,pi, δ)

n
, Ûn =

Σn
i=1Xusat(pN ,pi, δ)

n
, (4.3)

where pi ∈ PR is the i-th random sample.
The estimates (4.3) can be used for producing confidence intervals for the bounded

reachability probability. The remainder of this section proposes two such techniques:
the Chernoff-Hoeffding bound algorithm and the Bayesian estimation algorithm. Also,
in this section it is assumed that considered SPHSs feature only random parameters,
i.e., random variable X is a function of the random parameters only.

4.2.1 Chernoff-Hoeffding Bound Algorithm

The Chernoff-Hoeffding bound algorithm (see Algorithm 7) produces an interval that
contains the probability Pr with a desired confidence (coverage probability). Given
a stochastic parametric hybrid system (H,P), a reachability depth l, a positive δ, an
accuracy value ξ > 0 and a confidence c ∈ (0, 1), the algorithm utilises the Chernoff-
Hoeffding inequality [43] to compute an interval of length not smaller than 2ξ contain-
ing the value of the reachability probability Pr with confidence c. An upper bound
on the interval length cannot be achieved in general, as for example, the formulae in
evaluate might not be robust for the given δ.

The following proposition can be used for obtaining the sample size guaranteeing
the confidence c for the returned interval. It also shows that the sample size grows
quadratically as the the value of ξ decreases, and logarithmically with respect to the
increasing confidence value c.

Proposition 4.1. Let Pr = E[X], where X is defined by (4.1). For ξ > 0 and n

samples of Xsat and Xusat, the following holds:

P (Pr ∈ [Ŝn − ξ, Ûn + ξ]) ≥ 1− 2e−2nξ2 ,

where Ŝn and Ûn are defined by (4.3).

Proof. Applying the Chernoff-Hoeffding inequality to the Xsat and Xusat samples and

65

denoting Prl = E[Xsat] and Pru = E[Xusat]:

P (Prl − Ŝn ≥ ξ) = P (Prl ≤ Ŝn − ξ) ≤ e−2nξ2 ,

P (Pru − Ûn ≥ ξ) = P (Pru ≥ Ûn + ξ) ≤ e−2nξ2 .

By (4.2) it can be concluded that Prl ≤ Pr ≤ Pru, and therefore,

P (Pr ≤ Ŝn − ξ) ≤ P (Prl ≤ Ŝn − ξ) ≤ e−2nξ2 ,

P (Pr ≥ Ûn + ξ) ≤ P (Pru ≥ Ûn + ξ) ≤ e−2nξ2 .

Finally,

P (Pr 6∈ [Ŝn − ξ, Ûn + ξ]) = P (Pr ≤ Ŝn − ξ) + P (Pr ≥ Ûn + ξ) ≤ 2e−2nξ2 ,

and therefore,

P (Pr ∈ [Ŝn − ξ, Ûn + ξ]) = 1− P (Pr 6∈ [Ŝn − ξ, Ûn + ξ]) ≥ 1− 2e−2nξ2 .

The Chernoff-Hoeffding bound algorithm starts by calculating the sample size (Al-
gorithm 7, line 1) guaranteeing the confidence c by inverting the inequality of Proposi-
tion 4.1, and initialising the values of the counters s and u (line 2). Then the algorithm
enters the loop (line 3) where it draws random samples according to the parameter dis-
tributions P (line 4). Note that differently from [42], it is impossible to sample X, and
hence, Xsat and Xusat are sampled via δ-complete simulation instead. The drawn sam-
ple is evaluated using the procedure evaluate (line 5), and the counter s is incremented
if evaluate returns sat (line 6) or the counter u is decremented if unsat is returned
(line 7). Algorithm 7 returns an interval with the left bound obtained as s

n
− ξ if it

is positive and 0 otherwise, and the right bound calculated as the minimum between
u
n

+ ξ and 1 (line 8). Note that it can happen that the length of the returned interval
is greater than 2ξ. This means that for some samples the reachability question could
not be correctly decided, because of non-robustness issues or insufficient precision.

Example 4.1. (Chernoff-Hoeffding Bound for SCB) Consider Example 3.8 from
the previous chapter, where the presented stochastic parametric hybrid system does not
feature nondeterministic parameters (as K = 0.7). In this experiment Algorithm 7 was
applied with different settings, and the obtained results are presented in Table 4.1.

It can be seen that the returned confidence intervals are correct as they contain the
exact probability value Pr(0.7) ≈ 0.392964374383292 (see Example 3.3). The size of

66

Algorithm 7: chernoff(H, l, δ, ξ, c)

Input : (H,P): SPHS,
l ∈ N: reachability depth,
δ > 0: solver precision,
c ∈ (0, 1): confidence (coverage probability),
ξ ∈ (0, 1): accuracy.

Output: confidence interval with coverage not smaller than c
1 n := d 1

2ξ2
log(2

1−c)e;
2 s := 0; u := n;
3 for i = 1 : n do
4 p := sample(PR,P);
5 switch

(
evaluate(H, l, {p}, δ)

)
do

6 case sat do s := s+ 1 ;
7 case unsat do u := u− 1 ;

8 return [max(0, s
n
− ξ),min(1, u

n
+ ξ)];

δ 2ξ c CI |CI| n

10−3 10−2 0.99 [0.389241, 0.399306] 1.0065× 10−2 119,780
10−6 10−2 0.99 [0.387235, 0.397235] 10−2 119,780
10−6 5× 10−3 0.99 [0.389857, 0.394857] 5× 10−3 479,117
10−6 5× 10−3 0.999 [0.390762, 0.395762] 5× 10−3 663,504

Table 4.1: Application of Algorithm 7 to SCB model with reachability depth l = 1,
where δ - precision for the δ-complete decision procedure, 2ξ - desired size of the
confidence interval, c - confidence value, CI - confidence interval, |CI| - size of the
obtained confidence interval, n - number of verified samples.

the confidence interval for δ = 10−3 is greater then the desired 2ξ. This suggests that
formulae Reach and ¬Reach∀ in the procedure evaluate were not robust for several
samples with the given δ. Reducing the value of δ to 10−6 solves this problem. This,
however, does not mean that Reach and ¬Reach∀ are robust for all parameter values
in the system’s parameter space with this δ.

The presented results also demonstrate quadratic growth of the sample size with
respect to the decreasing accuracy: halving the value of ξ results into a four-fold increase
of the number of drawn samples. Increasing the target confidence value c also increases
the sample size.

67

The technique presented in Algorithm 7 allows bounding the sample size to guar-
antee the desired confidence. However, there are methods requiring fewer samples, in
general, to provide results with similar accuracy and confidence. One such approach
based on Bayesian estimation is discussed in the following section.

4.2.2 Bayesian Sequential Estimation

The Bayesian approach assumes that the (unknown) reachability probability Pr is itself
a random quantity [95]. Bayes’ theorem enables computing the posterior distribution
of the unknown quantity given its prior distribution and the likelihood of the data (i.e.,
samples of X). The posterior distribution of Pr can be directly used to build Bayesian
confidence (credibility) intervals. As the random variableX cannot be sampled directly,
the technique presented below bounds the posterior of Pr by the posteriors built from
Xsat and Xusat.

The introduced approach uses Beta distribution priors since they are conjugate to
the Bernoulli likelihood; the cumulative distribution function (CDF) of a Beta with pa-
rameters α, β > 0 is denoted F(α,β)(·). The following lemma establishes some technical
properties of the Beta CDF.

Lemma 4.1. For any n > 0, s ≤ x ≤ u ≤ n, α, β > 0 (n, s, x, u ∈ N), t ∈ [0, 1] the
following holds:

F(u+α,n−u+β)(t) ≤ F(x+α,n−x+β)(t) ≤ F(s+α,n−s+β)(t). (4.4)

Proof. Consider the LHS inequality of (4.4). When s = x the inequality holds trivially.
Consider the case s < x. By definition of the Beta distribution function:

F(s+α,n−s+β)(t) =

∫ t

0

vs+α−1(1− v)n−s+β−1

B(s+ α, n− s+ β)
dv. (4.5)

The following are the formulae 8.17.1, 8.17.2 and 8.17.18 from [65], respectively:

By(a, b) =

∫ y

0

ta−1(1− t)b−1 dt, (4.6)

Iy(a, b) =
By(a, b)

B(a, b)
, (4.7)

Iy(a+ 1, b− 1) = Iy(a, b)−
ya(1− y)b−1

aB(a, b)
. (4.8)

68

By (4.6) and (4.7) the Beta distribution function (4.5) can be presented as an
incomplete Beta function It(s + α, n − s + β) (the Beta distribution functions for the
variables x and u can be written in the same form). Now it will be shown by induction
that the following holds:

It(s+ α, n− s+ β) ≥ It(x+ α, n− x+ β). (4.9)

As s < x, s, x ∈ N and s, x > 0 the base case is s = 0 and x = 1. Thus, it should be
proven that It(α, n+ β) ≥ It(α + 1, (n+ β)− 1). By (4.8):

It((α) + 1, (n+ β)− 1) = It(α, n+ β)− tα(1− t)n+β−1

αB(α, n+ β)
.

It is easy to see that tα(1−t)n+β−1

αB(α,n+β)
≥ 0, and therefore, the base case holds.

Suppose now that x = s+ 1. By the same formula (4.8):

It((s+ α) + 1, (n− s+ β)− 1) = It(s+ α, n− s+ β)−
ts+α(1− t)n−s+β−1

(s+ α)B(s+ α, n− s+ β)
.

As ts+α(1−t)n−s+β−1

(s+α)B(s+α,n−s+β)
≥ 0 the induction step holds as well. Hence, for any s ≤ x and

s, x > 0 the LHS inequality of (4.4) holds, and the proof is complete. The proof of the
RHS follows similar steps.

Proposition 4.2 below states how to bound the posterior distribution of the unknown
probability Pr, by using the posteriors built from Xsat and Xusat. Given n samples of
Xsat, Xusat and a Beta prior with parameters α, β > 0 it is easy to show [71] that the
posterior means are:

psat =
s+ α

n+ α + β
, pusat =

u+ α

n+ α + β
, (4.10)

where s =
∑n

i=1Xsat(pi, δ) and u =
∑n

i=1 Xusat(pi, δ), pi ∈ PR is the i-th random
sample and δ > 0 is the precision of the evaluate procedure. Note that this sec-
tion considers SPHSs without nondeterministic parameters, and thus, variables Xsat

and Xusat depend only on the random parameters and precision δ. For clarity the
dependence on δ is omitted.

Proposition 4.2. Given ξ > 0, the posterior probability with respect to n samples of

69

X of the interval [psat − ξ, pusat + ξ] is bounded below as follows

P (Pr ∈ [psat − ξ, pusat + ξ]|X1, . . . , Xn) ≥

F(u+α,n−u+β)(pusat + ξ)− F(s+α,n−s+β)(psat − ξ),

where X1, . . . , Xn are iid as X, and psat and pusat are the posterior means (4.10).

Proof. By definition of posterior CDF and Lemma 4.1:

P (Pr ≤ psat − ξ|X1, . . . , Xn) ≤ F(s+α,n−s+β)(psat − ξ),

P (Pr ≥ pusat + ξ|X1, . . . , Xn) ≤ 1− F(u+α,n−u+β)(pusat + ξ),

and therefore,

P (Pr ∈ [psat − ξ, pusat + ξ]|X1, . . . , Xn) =

1− P (Pr ≤ psat − ξ|X1, . . . , Xn)− P (Pr ≥ pusat + ξ|X1, . . . , Xn) ≥

1− F(s+α,n−s+β)(psat − ξ)− 1 + F(u+α,n−u+β)(pusat + ξ) =

F(u+α,n−u+β)(pusat + ξ)− F(s+α,n−s+β)(psat − ξ).

The described technique is shown in Algorithm 8. It solves the same problem as
Algorithm 7 but the sample size is not known in advance. Another feature of this
algorithm is that it utilises different number of samples depending on the (unknown)
probability value Pr. Namely, it requires significantly fewer samples for computing
confidence intervals in cases when the probability value is close to 0 or 1. Thus, the
difference between the algorithms is particularly vivid in estimating rare event or large
probabilities.

Along with the same input parameters as Algorithm 7, Algorithm 8 also requires
parameters for the Beta distribution α and β. The algorithm starts by initializing the
counters s, u and v and the sample size n (line 1). The counter v is introduced because
the sample size n changes dynamically (line 4).

The samples are drawn inside the loop (line 3) and evaluated using the procedure
evaluate (line 5). Counters s and v are incremented when sat (line 6) and unsat
(line 7) are returned, respectively, and the undet samples are ignored. The values of
s and newly calculated u (line 8) are utilised for updating the posterior means (line
9), and current confidence value ĉ (line 11) is obtained using the adjusted values of
the posterior means (line 10). Algorithm 8 exits the loop and returns the computed

70

confidence interval when the confidence value ĉ reaches (or exceeds) the desired value c
(line 12). The following proposition demonstrates the probabilistic termination of the
presented algorithm.

Proposition 4.3. Algorithm 8 terminates almost surely.

Proof. Recall that Algorithm 8 generates two sequences of random variables {Xsat,n}n∈N
and {Xusat,n}n∈N. From [95, Theorem 1] it follows that Xsat,n (Xusat,n) converges a.s.,
for n → ∞, to the constant random variable E[Xsat] (E[Xusat]). In particular, the
posterior probability of any open interval containing the posterior mean (4.10) must
converge to 1. Therefore, the posterior probability of any interval not including the
posterior mean must converge to 0.

Now, the interval (0, pusat + ξ) contains the posterior mean pusat of Xusat,n and
therefore the posterior probability F(u+α,n−u+β)(pusat + ξ) converges to 1. Also, the
interval (0, psat− ξ) does not contain the mean (psat) of Xsat,n, so F(s+α,n−s+β)(psat− ξ)
tends to 0, and this concludes the proof.

Example 4.2. (Bayesian Estimation for SCB) In this example Algorithm 8 was
applied to SCB model from Example 3.8. The obtained results with the different input
settings and the values of K are featured in Table 4.2.

It can be seen that the computed confidence intervals are correct as they contain the
corresponding probability values Pr(0.7) ≈ 0.3929643743, Pr(0.5) ≈ 0.14728404068

and Pr(0.9) ≈ 0.6961960101 (these three values were obtained with MATLAB using
the bounded reachability probability function from Example 3.3).

Similarly to Example 4.1, the precision δ = 10−3 was not enough for obtaining the
confidence intervals of the desired length. Differently from Algorithm 7, Algorithm 8
requires almost half as many samples for computing confidence intervals of the same
length and with the same confidence.

The solver precision δ had to be reduced from 10−6 to 10−12 for K = 0.5 in order
to obtain the confidence interval of the desired length 2ξ. It also can be seen that
the sample size varies depending on the reachability probability value. Namely, the
probability values closer to 0.5 required more samples than the ones closer to 0 or 1
(412,977 vs. 215,742 and 366,947, respectively).

Finally, the presented results demonstrate a similar sample size growth with respect
to the given accuracy and confidence values as Algorithm 7.

71

Algorithm 8: bayes(H, l, δ, ξ, c, α, β)

Input : (H,P): SPHS,
l ∈ N: reachability depth,
δ > 0: solver precision,
c ∈ (0, 1): confidence (coverage probability),
ξ ∈ (0, 1): accuracy,
α, β: Beta distribution parameters.

Output: confidence interval with posterior probability not smaller than c.
1 n = 0; s = 0; u = 0; v = 0;
2 repeat
3 p = sample(PR,P);
4 n = n+ 1;
5 switch evaluate(H, l, {p}, δ) do
6 case sat do s = s+ 1 ;
7 case unsat do v = v + 1 ;

8 u = n− v;
9 psat = s+α

n+α+β
; pusat = u+α

n+α+β
;

10 psat = max(ξ, psat); pusat = min(1− ξ, pusat);
11 ĉ = F(u+α,n−u+β)(pusat + ξ)− F(s+α,n−s+β)(psat − ξ);
12 until ĉ ≥ c;
13 return [psat − ξ, pusat + ξ];

K δ 2ξ c CI |CI| n

0.7 10−3 10−2 0.99 [0.384350, 0.394413] 1.0063× 10−2 63,098
0.7 10−6 10−2 0.99 [0.388787, 0.398787] 10−2 63,352
0.7 10−6 5× 10−3 0.99 [0.391046, 0.396046] 5× 10−3 253,363
0.7 10−6 5× 10−3 0.999 [0.389728, 0.394728] 5× 10−3 412,977
0.9 10−6 5× 10−3 0.999 [0.692939, 0.697939] 5× 10−3 366,947
0.5 10−6 5× 10−3 0.999 [0.145017, 0.150021] 5.004× 10−3 217,898
0.5 10−12 5× 10−3 0.999 [0.143237, 0.148237] 5× 10−3 215,742

Table 4.2: Application of Algorithm 8 to SCB model with reachability depth l =
1, where K - drag coefficient value in SCB model, δ - precision for the δ-complete
decision procedure, 2ξ - desired size of the confidence interval, c - confidence value,
CI - confidence interval, |CI| - size of the obtained confidence interval, n - number of
verified samples.

72

Remark 4.1. Note that if procedure evaluate features formulae which are robust for
the given δ and all parameter values, the size of the confidence interval returned by Al-
gorithms 7 and 8 can be guaranteed to be of size not larger than 2ξ. This is because both
algorithms use procedure evaluate to verify the singletons drawn from the parameter
space. Each such singleton belongs either to the goal set or its complement. There-
fore, if both formulae in procedure evaluate are robust for the given δ, then evaluate

returns either sat or unsat.

4.3 Handling Nondeterminism

The introduction of nondeterministic parameters defines a bounded reachability func-
tion (see Chapter 3). Analogously to Algorithm 3, the nondeterministic parameter
space can be partitioned into boxes, and for each such box a confidence interval con-
taining the entire range of the bounded reachability probability function on the cor-
responding parameter box can be computed using one the algorithms from Section
4.2. However, this does not solve the problem of exponential complexity growth as the
nondeterministic parameter boxes will introduce quantified variables into the formulae
in procedure evaluate. In order to tackle this issue there are methods for solving op-
timization problem (that is finding the minimum/maximum reachability probability)
based on sampling such as Monte Carlo and Quasi-Monte Carlo techniques [11, 56].

This chapter presents an adaptation of the Cross-Entropy (CE) algorithm [72] – a
Monte Carlo approach for handling SPHSs featuring nondeterministic parameters, and
Quasi-Monte Carlo methods will be considered for future work.

The CE is a powerful stochastic technique that solves approximately the problem
of finding a value p∗ ∈ PN for the nondeterministic parameters that minimises (max-
imises) the reachability probability function Pr on PN . In other words, it returns an
estimate p̂ for p∗ and a confidence interval [a, b] containing Pr(p̂) with specified con-
fidence c ∈ (0, 1). However, it cannot be guaranteed that p̂ is a global optimum (i.e.,
p̂ 6= p∗ in general).

4.3.1 Cross-Entropy Algorithm

The probabilistic reachability analysis for SPHS featuring both random and nondeter-
ministic parameters is performed by solving an optimisation problem aimed at finding

73

the nondeterministic parameter values for which the system achieves the maximum
(minimum) bounded reachability probability. Algorithm 9 presents a technique based
on the Cross-Entropy method.

The main idea behind the CE method is obtaining the optimal parameter distri-
bution by minimizing the distance between two probability density functions. The
cross-entropy (or Kullback-Leibler divergence) between two probability density func-
tions g and f is equal to:

Θ(g, f) =

∫
g(p) ln

g(p)

f(p)
dp .

The CE is non-negative and Θ(g, f) = 0 iff g = f , but it is not symmetric (i.e., Θ(g, f) 6=
Θ(f, g)), so it is not a distance in the formal sense.

The optimisation problem solved by the CE method can be formulated as the
following: given a family of densities {f(·; v)}v∈V find the value v ∈ V that minimizes
Θ(g∗, f(·; v)) (where g∗ is the optimal density). Essentially, the CE method performs
a randomised search in the nondeterministic parameter space PN , “guided” by the
Kullback-Leibler divergence. The CE comprises two general steps:

1. generating random samples from some initial distribution and computing the
confidence intervals for each sample using one of the algorithms from Section 4.2,

2. updating the distribution based on a portion of the best samples (also called
elite) in order to draw better samples in the next iteration.

Figure 4.1 provides visual aid for explaining the intuition behind the algorithm. It can
be seen that the distribution’s mean (µ1, µ2, µ3) is moving towards the optimal value
µ∗ while the distribution’s variance is decreasing.

Note that for solving optimisation problems it is necessary that the family {f(·; v)}v∈V
contains distributions that can approximate arbitrarily well single-point distributions.
Also, the formulae for updating the distribution parameters v based on the elite sam-
ples must satisfy the following stochastic program:

1

k

k∑
i=1

P (pi)
d

dv
ln f(pi; v) = 0, (4.11)

where k is the number of elite samples, pi is the i-th elite sample drawn from PN ,
P (pi) is the sample performance which is equal to 1 if pi is elite, v is the parameter of

74

μ μ μ μ
1 2 3

*

Figure 4.1: Explanation of the principles of the Cross-Entropy algorithm using an
example of a family of normal distributions, where µ1, µ2 and µ3 – the means of the
PDFs f(·; v) used for at the first, the second and the third iterations of the algorithm
and µ∗ – the mean of the optimal density g∗.

the distribution for the next iteration of the algorithm, and f is the probability density
function of the chosen distribution.

The described technique is presented in Algorithm 9. The algorithm starts by
initializing the distribution parameter v (line 1) with the user-defined value v0 and
calculating the elite sample size k = dλse (line 2), where s > 0 is the chosen sample
size and λ ∈ (0, 1) is the fraction of the sample size defining the number of elite samples.

In the outer loop (line 4) the current distribution variance is computed, and the
main queue is initialised (line 5). Then in the inner loop (line 6) it draws s random
samples from the distribution f(·; v) (line 7) and evaluates performance of each sam-
ple pi using Algorithm 8 (line 10), where H(pi) is a SPHS obtained by substituting
all nondeterministic parameters in the given system H with the drawn value pi. The
Chernoff-Hoeffding bound algorithm (Algorithm 7) can also be used for the same pur-
pose. However, as it was discussed in the previous section, it requires more samples
for estimating the bounded reachability probability with the same precision.

The evaluated samples and the corresponding confidence intervals are pushed to the
main queue (line 11). Note that the distribution f(·,v) can have unbounded support.
Therefore, it is necessary to check whether the drawn samples are inside the domain
of nondeterministic parameters PN (line 8) as the system might not be well-defined

75

Algorithm 9: CE(H, l, δ, c, ξ, α, β, s, λ, σ̂2,v0, f(·; ·))
Input : (H,P): SPHS,

l ∈ N: reachability depth,
δ > 0: solver precision,
c ∈ (0, 1): confidence (coverage probability),
ξ ∈ (0, 1): accuracy,
α, β: Beta distribution parameters,
s: sample size,
λ: elite samples ratio,
σ̂2: maximum variance,
v0: initial parameters of the distribution,
f(·; ·): parametric distribution family,
N : maximum number of iterations.

Output: parameter value, maximum probability
1 v = v0;
2 k = dλse;
3 counter := 0;
4 repeat
5 σ2 = V ar(f(·; v)); Q = ∅;
6 for i = 1 : s do
7 pi = sample(f(·; v));
8 if pi 6∈ PN then [a, b] = [−∞,−∞]; ;
9 else

10 [a, b] = bayes(H(pi), l, δ, c, ξ, α, β));

11 Q← {pi,mid([a, b])};
12 sort(Q);
13 E = {Q[1], · · · , Q[k]};
14 res = E[1];
15 v = update(E);
16 counter := counter + 1;

17 until
(

(max1≤j≤n σ
2
j) ≤ σ̂2

)
∨
(
counter > N

)
;

18 return res;

outside PN . Also, when solving a probability minimization problem the value assigned
to [a, b] in line 8 should be changed to [∞,∞].

After all samples are evaluated they are sorted (line 12) by the midpoint of their
confidence intervals in descending order (ascending in the case of probability minimiza-

76

tion), and first k of them are identified as elite (line 13). The set of elite samples E is
then used for updating the distribution parameters v (line 15).

The formulae for updating the distribution parameters (i.e., procedure update)
depend on the type of the distribution. The following sections discuss the application of
normal and Beta distributions to update in Algorithm 9. If the termination condition
(line 17) is not met then the algorithm repeats the previous step with the updated
distribution parameters.

The algorithm terminates when the largest element of variance vector σ2 reaches
a user-defined precision σ̂2, or when the maximum number of iterations is reached,
and it outputs the estimated maximum (minimum) confidence interval [a, b] for the
bounded reachability probability and the (nondeterministic) parameter value pi for
which Pr(pi) ∈ [a, b].

There are several factors affecting the quality of Algorithm 9. First of all, using
more samples per iteration and choosing appropriate initial parameters of the utilised
distribution increases the coverage of the nondeterministic parameter space and pre-
vents from falling into local extrema. An example of potential converging to a local
maximum can be found in Section 6.2.5. Secondly, reducing the terminal variance can
provide better “fine-tuning” – obtaining a more accurate estimate. Finally, the accu-
racy of evaluating the sample performance and the solver precision used for computing
confidence intervals for the drawn nondeterministic samples is an equally important
factor.

4.3.2 Normal Distribution for CE

This section considers a parametrized family of normal distributions f(·; v) with v =

{µ, σ}, where the first element of v is the mean and the second element is the standard
deviation. Note that initially the standard deviation should be relatively large in order
to cover a larger space on the first iteration of the algorithm. Thus, µ0 is chosen to be
in the centre of PN , and each element of σ0 is a half-size of the corresponding parameter
domain:

µ0 = {c1 + d1

2
, · · · , cn + dn

2
}, σ0 = {d1 − c1

2
, · · · , dn − cn

2
},

where [ci, di] is the domain of the i-th nondeterministic system parameter.

77

The distribution parameters µi and σi on the i-th iteration of the outer loop of
Algorithm 9 are updated using the formulae from [72, Chapter 8.7]:

µi =

k∑
j=1

E[j]

k
, σi =

√√√√√ k∑
j=1

(E[j]− µi)2

k
,

where E is a set of elite samples.
Also, as the normal distribution has unbounded support then, given the desired

number of nondeterministic samples s∗, it is easy to see that as the number of nonde-
terministic parameters increases, the more difficult it becomes to draw samples lying
inside of PN . In fact, given n nondeterministic parameters the probability that a sample
pi belongs to PN is equal to:

P (pi ∈ PN) =
n∏
j=1

∫ dj

cj

f(xj|µj, σj) dxj (4.12)

Hence, in order to increase the likelihood that s∗ samples lie in PN it is sufficient
to generate s = d s∗

η
e samples, where η = P (pi ∈ PN) is obtained using (4.12). Using

distributions with bounded support (e.g. Beta distribution) allows avoiding this issue.

Example 4.3. (Maximum Reachability Probability in SCB)
Algorithm 9 was applied to computing the maximum reachability probability for SCB

model using a parametrised family of normal distributions with reachability depth l = 1,
precision δ = 10−12, accuracy 2ξ = 10−2, confidence c = 0.99, and terminal variance
σ̂2 = 10−2.

λ s K∗ CI Pr(K∗) sN i sout

10−1 10 0.89301 [0.68238, 0.69238] 0.68677 26 2 4
10−1 20 0.88407 [0.67208, 0.68208] 0.6745 51 2 10

5× 10−1 10 0.8819 [0.66715, 0.67715] 0.67148 26 2 5

Table 4.3: Results of applying Algorithm 9 in Example 4.3, where λ - elite ratio, s
- number of nondeterministic samples per iteration of Algorithm 9, K∗ - nondeter-
ministic parameter estimate resulting into the maximum probability reachability, CI
- corresponding confidence interval, Pr(K∗) - approximate value of the probability
function obtained analytically for the given K∗, sN - total number of nondeterministic
samples, i - number of iterations of Algorithm 9, sout - number of nondeterministic
samples drawn from outside PN .

78

The computed confidence intervals (see Table 4.3) contain the reachability probability
values calculated analytically (see Example 3.3) for the corresponding nondeterministic
estimates, and the point of maximum is at Kmax = 0.9, where Pr(Kmax) ≈ 0.69617.

At the same time, the obtained results are rather counter-intuitive as increasing the
nondeterministic sample size (s) and the elite samples ratio (λ) did not result into
better maximum reachability probability estimates.

The sample size correction prevented Algorithm 9 from under-sampling the nonde-
terministic parameter space, as inequality s ≤ sN−sout

i
holds for all three cases. In other

words, Algorithm 9 drew more nondeterministic samples per iteration than the desired
value s.

4.3.3 Beta Distribution for CE

This section presents a parametrized family of Beta distributions f(·; v) with v =

{α, β}, where α ≥ 1 and β ≥ 1 are the parameters of a Beta distribution. As there are
no analytic formulas for updating α and β in the literature, I have directly derived the
updating formulae through solving the following stochastic program (4.11).

1

k

k∑
i=1

P (pi)
d

dv
ln f(pi; v) = 0.

The probability density function of Beta distribution is a function:

f(x, α, β) =
xα−1(1− x)β−1

B(α, β)
,

where B(α, β) – Beta function.

The derivative of the logarithm of f with respect to α and β are:
d

dα
ln f(pi, α, β) = ln pi −

d

dα
B(α, β)

1

B(α, β)
= ln(pi)− ψ(α) + ψ(α + β),

d

dβ
ln f(pi, α, β) = ln(1− pi)−

d

dβ
B(α, β)

1

B(α, β)
= ln(1− pi)− ψ(β) + ψ(α + β),

where ψ(α) = Γ′(α)
Γ(α)

– digamma function, and Γ(α) =
∫∞

0
zα−1e−zdz – gamma function.

Hence, the values α and β satisfying the stochastic program (4.11) are the solution

79

for the system of equations:

1

k

k∑
i=1

P (pi)(ln(pi)− ψ(α) + ψ(α + β)) = 0,

1

k

k∑
i=1

P (pi)(ln(1− pi)− ψ(β) + ψ(α + β)) = 0.

Let now E be a set of elite samples. Thus, for each pi its performance P (pi) = 1

(by definition of the elite samples and the sample performance). Hence,
k∑
i=1

(ln(E[i])− ψ(α) + ψ(α + β)) = 0,

k∑
i=1

(ln(1− E[i])− ψ(β) + ψ(α + β)) = 0,

or equivalently,

ψ(α)− ψ(α + β)− c1(E) = 0,

ψ(β)− ψ(α + β)− c2(E) = 0,

where c1(E) =
∑k
i=1 ln(E[i])

|E| and c2(E) =
∑k
i=1 ln(1−E[i])

|E| .
Function ψ can be approximated as ψ = ψ∗+O(1

α16) [48], where ψ∗ = ln(α)− 1
2α
−

1
12α2 + 1

120α4 − 1
252α6 + 1

240α8 − 5
660α10 + 691

32760α12 − 1
12α14 . Therefore, the values of α and β

for the next iteration of the Cross-Entropy algorithm can be obtained as the solution
of the system below.

ψ∗(α)− ψ∗(α + β)− c1(E) = 0, ψ∗(β)− ψ∗(α + β)− c2(E) = 0.

Example 4.4. (Minimum Reachability Probability in SCB)
Algorithm 9 was applied to computing the minimum reachability probability for SCB

model using normal and Beta distributions with reachability depth l = 1, precision
δ = 10−12, accuracy 2ξ = 10−2, confidence c = 0.99, elite sample ratio λ = 10−1, and
nondeterministic sample size s = 10.

The computed confidence intervals (see Table 4.4) contain the reachability probability
values calculated analytically (see Example 3.3) for the corresponding nondeterministic
estimates, and the point of minimum is at Kmin = 0.5, where Pr(Kmin) ≈ 0.147284.

It can also be seen that the Cross-Entropy algorithm with normal distribution drew
more samples from the domain of nondeterministic parameters than with Beta distribu-
tion (25 against 20 samples) for the same terminal variance value σ̂2 = 10−2. However,

80

σ̂2 K∗ CI Pr(K∗) sN i sout f(·; ·)
10−2 0.52182 [0.16223, 0.17223] 0.1668 20 2 0 B

10−2 0.50425 [0.14464, 0.15464] 0.15093 26 2 1 N

10−6 0.52766 [0.17117, 0.18117] 0.17235 40 4 0 B

Table 4.4: Results of applying Algorithm 9 in Example 4.4, where σ̂2 - terminal vari-
ance, K∗ - nondeterministic parameter estimate resulting into the minimum probabil-
ity reachability, CI - corresponding confidence interval, Pr(K∗) - approximate value
of the probability function obtained analytically for the given K∗, sN - total number of
nondeterministic samples, i - number of iterations of Algorithm 9, sout - number of non-
deterministic samples drawn from outside PN , f(·; ·) - distribution used by Algorithm
9, N - normal distribution, B - Beta distribution.

the former variation of Algorithm 9 produced a better estimate of the minimum reach-
ability probability.

Also decreasing terminal variance from 10−2 to 10−6 increased the number of itera-
tions of Algorithm 9 from 2 to 4, but it did not result into producing better probability
estimates.

Example 4.4 demonstrates that using distributions with bounded support can im-
prove performance of Algorithm 9, as there is no oversampling that can happen due
to the sample size correction. At the same time, the normal distribution provided a
better probability estimate than the Beta distribution. A possible explanation to this
phenomenon could be that distributions with bounded support perform worse when
the minimum/maximum reachability probability resides at the border of the nondeter-
ministic parameter space. This way the probability of drawing a sample closer to the
border is smaller than for distributions with unbounded support.

4.4 Discussion

In this chapter I introduced novel statistical techniques for computing the bounded
reachability probability in SPHSs. The presented algorithms provide numerically and
statistically rigorous confidence intervals by combining the numerically guaranteed pro-
cedure evaluate and Monte Carlo techniques such as the Chernoff-Hoeffding bound,
Bayesian estimation, and the Cross-Entropy algorithm. The presented algorithms help

81

reducing the computational cost with respect to the number of system parameters in
comparison to Algorithm 3. Now the number of evaluated parameter boxes remains
constant with respect to the number of random parameters. However, the CE algorithm
(Algorithm 9) might still require more samples when the number of nondeterministic
parameters increases.

The Chernoff-Hoeffding bound and the Bayesian estimation algorithm are used for
computing confidence intervals containing the bounded reachability probability value
for the systems featuring only random parameters. The latter was demonstrated to be
more efficient than the former for obtaining results with similar accuracy and confidence
values.

The Cross-Entropy algorithm can handle SPHSs with all types of parameters. It
navigates through the nondeterministic parameter space for obtaining an estimate for
the minimum (maximum) probability value. Such estimate is not guaranteed to be
the value where the exact minimum (maximum) probability resides. However, the
confidence interval obtained for this value is statistically and numerically guaranteed.

Algorithm 9 can incorporate different distributions from the exponential family
(e.g. normal and Beta distributions). Distributions with unbounded support require
increasing the number of samples in order to guarantee sufficient coverage of the non-
deterministic domain, which, however, can result in oversampling. Nevertheless, they
provide better sampling around the borders of the nondeterministic parameter space
than distributions with bounded support.

4.4.1 Future Work

The future direction of this work is studying statistical methods with better conver-
gence rate (e.g., randomised Quasi-Monte Carlo techniques) for computing confidence
intervals, analysing the system’s dynamics for obtaining the optimal precision for the
δ-complete decision procedure, and incorporating different distributions for every iter-
ation of the Cross-Entropy algorithm depending on the current probability estimate.

82

Chapter 5

ProbReach: A Software Tool for
Computing Bounded Reachability
Probability in SPHS

5.1 Introduction

In this chapter I present ProbReach, a tool that I developed for computing bounded
reachability probability in stochastic parametric hybrid systems [77]. It provides a
C++ implementation (about 10,000 lines of code) of the algorithms introduced in
the previous chapters. ProbReach uses publicly available libraries, and it is distributed
under the GNU General Public License1 (GPL). This chapter discusses the architecture
of ProbReach, its implementation details, and presents several usage scenarios.

5.2 Input format

ProbReach uses the Probabilistic Delta-ReacHability (PDRH) format for PHSs and
SPHSs encoding. PDRH extendsDelta-ReacHability (DRH) format utilised by dReach
[51] with random parameters. Figure 5.1 shows the PDRH encoding of SCB model from
Example 3.1. The full description of the PDRH format can be found in the ProbReach

1http://www.gnu.org/licenses/gpl.html

83

http://www.gnu.org/licenses/gpl.html

documentation1.

#define g 9.8
[0, 10000] Sx; // horizontal distance (m)
[0, 1000] Sy; // vertical distance (m)
[0, 10] tau; // local time
[0, 10] time; // local time (required)
[0, 500] v; // speed of the ball (m/s)
[0.5, 0.9] K; // drag coefficient
dist_normal(25,3) v0; // initial speed of the ball (m)
dist_discrete(0.7854:0.9,

1.0472:0.09,
0.5236:0.01) alpha; // angle to horizon (rad)

{
mode 1;
flow:

d/dt[Sx] = v * cos(alpha);
d/dt[Sy] = v * sin(alpha) - g * tau;
d/dt[tau] = 1.0;
d/dt[v] = 0.0;

jump:
(and (tau > 1e-3) (Sy <= 0) (Sy >= 0)) ==> @1(and (Sx’ = Sx)

(Sy’ = 0)
(tau’ = 0)
(v’ = K * v)
(v0’ = v0)
(alpha’ = alpha)
(K’ = K));

}
init:
@1(and (Sx = 0) (Sy = 0) (tau = 0) (v = v0));
goal:
@1(and (tau = 0) (Sx >= 100));

Figure 5.1: SCB model encoded in PDRH format.

1https://github.com/dreal/probreach/blob/master/doc/usage.md

84

https://github.com/dreal/probreach/blob/master/doc/usage.md

5.3 ProbReach Architecture

ProbReach consists of several components (Figure 5.2): PDRH Parser, Evaluation
Procedure, Utility Package and Algorithms.

Figure 5.2: The ProbReach Architecture.

5.3.1 PDRH Parser

PDRH Parser incorporates two components: a C preprocessor and a PDRH model
parser implemented using Flex and Bison [57]. The former is used for resolving con-
stants and functions defined with C #define macro and removing comments. Note
that the C preprocessor is not a required component as comments are not necessary

85

for the correct model specification, and constants can be defined by a means of PDRH
syntax. The PDRH model parser translates the input model specified in PDRH format
into its program representation.

5.3.2 Utility Package

This package implements the algorithms from Section 3.5, the methods for sampling the
system’s parameter space used in Algorithms 7, 8 and 9, and some auxiliary methods
for parameter boxes.

• Box Factory implements the procedure bisect (Algorithm 4) for partitioning
parameter boxes, the methods for computing their volumes, sorting and check-
ing their intersection. All calculations are performed using the interval library
CAPD1. Box Factory also uses native C++11 methods for sorting the lists of
boxes.

• Measure. Firstly, it implements the procedure measure (Algorithm 5) which
is used by Formal Engine for computing the probability values for the random
parameter boxes. CAPD is utilised here for computing the fourth derivative of the
integrands in Algorithm 6. Secondly, it implements the procedure for bounding
the support of continuous random parameters with unbounded support, and it
uses the IBEX library2 for computing the probability precision value ε for multiple
continuous random parameters. Finally, it implements the methods used by the
Cross-Entropy Algorithm for sorting the parameter boxes by the mid-value of the
corresponding probability enclosures.

• Random Boxes Generator generates random samples from all supported distri-
butions using the GNU Scientific Library (GSL) [32]. It is used by the Statistical
Engine for drawing random samples.

5.3.3 Evaluation Procedure

Evaluation Procedure implements the procedure compute (Algorithm 2). It is used
by both engines of the Algorithms package for evaluating the parameter boxes, and it

1http://capd.ii.uj.edu.pl/
2http://www.ibex-lib.org/

86

http://capd.ii.uj.edu.pl/
http://www.ibex-lib.org/

incorporates: Formula Generator, which produces the formulae in the format required
by the solver and Solver Wrapper, implementing the methods for executing the utilised
SMT solver and parsing the solver output. Currently, ProbReach supports two solvers:
dReal [36] and iSAT-ODE [22].

• Formula Generator. dReal uses and extended version of the SMT2 format for
specifying the input files. The extension is made to support ODEs. Formula
Generator produces up to l+1 formulae for the given reachability depth l (formula
reach and l formulae failj). The formulae are not generated in advance. They
are created as they are evaluated by dReal. Also, it does not generate a formula
if the set Paths is empty.

iSAT-ODE is a standalone tool for verification of hybrid systems and it accepts
models specified in its own HYS format. This language allows defining a PHS
without random parameters which can be further evaluated by iSAT-ODE. The
reachability depth can be passed as a command line argument to the solver. Thus,
the task of unrolling the reachability formula is delegated entirely to iSAT-ODE.

• Solver Wrapper. ProbReach treats solvers as standalone applications. The solver
execution is performed via a system call. During the system call the standard
output is redirected to a file which is then parsed upon the solver’s termination.
As multiple solvers are supported by ProbReach, Solver Wrapper also detects the
solver type automatically.

Evaluation Procedure is the most computationally consuming component of the tool,
as it solves a PSPACE-complete problem. The reason for employing multiple solvers is
that they perform differently depending on the evaluated formula. In particular, it was
observed that sometimes iSAT-ODE takes less time for verifying satisfiable formulae,
while dReal is faster for unsatisfiable formulae.

5.3.4 Algorithms

The Algorithms package combines Formal Engine and Statistical Engine implementing
the algorithms for computing the bounded reachability probability. Also, all imple-
mented algorithms are parallelised using OpenMP [66].

87

• Formal Engine implements Algorithm 3. It uses Evaluation Procedure for evalu-
ating the parameter boxes, Box Factory for the parameter space partitioning, and
Measure for calculating the probability values for the random parameter boxes.

• Statistical Engine implements Algorithms 7, 8 and 9. It uses Random Boxes Gen-
erator for sampling the parameter boxes (both random and nondeterministic),
and Evaluation Procedure for evaluating the obtained samples. Cross-Entropy
Algorithm also uses Box Factory to determine whether the generated sample be-
longs to the nondeterministic parameter space of the system.

5.4 Usage

ProbReach can be executed by running the following command:

ProbReach <options> <file.pdrh/file.drh> <solver-options>

The examples below demonstrate application of both verification approaches to
SCB model. The full list of command line arguments available in ProbReach can be
found in the tool documentation1.

Example 5.1. (Applying Formal Engine to SCB)

ProbReach -k 2 --solver dReal -e 1e-3 --partition-prob

--precision-nondet K 5e-2 cannon-ball-nondet.pdrh

where

-k 2 - specifies the reachability depth l = 2.

–-solver dReal - specifies the full path to the solver executable. In this example
it is assumed that the directory containing dReal is added to the path or defined
as a symbolic link.

-e 1e-3 - specifies the desired probability enclosure length ε = 10−3.

–-partition-prob - instructs ProbReach to partition the domain of continuous
random parameters before executing Algorithm 3.

1https://github.com/dreal/probreach/blob/master/doc/usage.md

88

https://github.com/dreal/probreach/blob/master/doc/usage.md

–-precision-nondet K 5e-2 - defines the precision vector for nondeterministic
parameters ρ = {5 · 10−2}.

cannon-ball-nondet.pdrh - specifies the full path to the file containing the
PDRH model from Figure 5.1. In this case it is assumed that the model file
and the ProbReach executable are located in the same directory.

ProbReach produces the following output:

K:[5.00000000e-01,5.25000000e-01]; | [1.43947855e-01,1.71953293e-01]

K:[5.25000000e-01,5.50000000e-01]; | [1.64279428e-01,1.99103247e-01]

K:[5.50000000e-01,5.75000000e-01]; | [1.91010615e-01,2.28559788e-01]

K:[5.75000000e-01,6.00000000e-01]; | [2.18445265e-01,2.60084294e-01]

K:[6.00000000e-01,6.25000000e-01]; | [2.49595461e-01,2.87977794e-01]

K:[6.25000000e-01,6.50000000e-01]; | [2.71572265e-01,3.30073351e-01]

K:[6.50000000e-01,7.00000000e-01]; | [3.11115758e-01,4.26417024e-01]

K:[7.00000000e-01,7.25000000e-01]; | [3.91849026e-01,4.39309007e-01]

K:[7.25000000e-01,7.50000000e-01]; | [4.17414938e-01,4.78222884e-01]

K:[7.50000000e-01,7.75000000e-01]; | [4.56227071e-01,5.39012345e-01]

K:[7.75000000e-01,8.00000000e-01]; | [5.04066525e-01,5.77470467e-01]

K:[8.00000000e-01,8.25000000e-01]; | [5.42726540e-01,6.02637703e-01]

K:[8.25000000e-01,8.50000000e-01]; | [5.68108950e-01,6.39373616e-01]

K:[8.50000000e-01,9.00000000e-01]; | [6.05280209e-01,6.96983937e-01]

These probability enclosures were visualised in Figure 3.2 (the red boxes).

Example 5.2. (Applying Statistical Engine to SCB)

./ProbReach -k 2 --solver isat-ode --bayesian-acc 5e-3

--bayesian-conf 0.99 --cross-entropy

--cross-entropy-term-arg 1e-2 cannon-ball-nondet.pdrh

where

–-bayesian-acc 5e-3 - specifies the half-size of the confidence interval to be
computed by Algorithm 8.

–-bayesian-conf 0.99 - specifies the confidence value for Algorithm 8.

89

–-cross-entropy - instructs ProbReach to use Algorithm 9.

–-cross-entropy-term-arg 1e-2 - specifies the terminal variance value for Al-
gorithm 9.

ProbReach produces the following output:

K:[8.87191917e-01,8.87191917e-01]; | [6.72533921e-01,6.82551161e-01]

All results for the running example in this thesis were obtained using ProbReach.

5.5 Discussion

In this chapter I presented ProbReach, a tool that I developed for computing bounded
reachability probability in SPHSs. ProbReach provides C++ implementation of the
algorithms from Chapters 2, 3 and 4, and it does not require any proprietary soft-
ware. Also, ProbReach supports multiple SMT solvers (i.e., iSAT-ODE and dReal),
and can utilise any SMT solver supporting nonlinear ODEs and providing δ-decisions
once the corresponding Formula Generator and Solver Wrapper are implemented. The
implemented algorithms were parallelised using OpenMP for increasing the tool per-
formance.

5.5.1 Future Work

There are several directions for future work. First of all, a more efficient parallelisation
strategy should be implemented. This will require developing a sophisticated paral-
lelisation manager monitoring the CPUs availability and dynamically distributing the
load equally between the threads, in order to reduce CPU idle. This improvement can
significantly increase the ProbReach performance.

Secondly, although formal model checking is a crucial problem, model simulation
is also very important for the design process. Generally, simulation requires fewer
computational resources than verification, and it can provide visual aid for better un-
derstanding the model’s behaviour and potentially reduce the search space for the
verification tools. Thus, another improvement could be an implementation of a trans-
lator from ProbReach input format into Stateflow/Simulink [18] – a state-of-art tool
for model specification and simulation.

90

Moreover, investigating and benchmarking available SMT solvers and their further
incorporation within ProbReach could also be beneficial.

Finally, improvement of sorting techniques, the procedure for verified integral com-
putation, and general code enhancement can greatly contribute to increasing the per-
formance of ProbReach.

91

Chapter 6

Case Studies

6.1 Introduction

This chapter demonstrates the application of ProbReach to several case studies. Section
6.2 features simple models, while Sections 6.3 and 6.4 present more complex case studies
such as the automated synthesis of safe and robust PID controllers for the artificial
pancreas, and UVB irradiation therapy for treating psoriasis.

All experiments were conducted on a 32-core (2.9 GHz) Ubuntu 16.04 machine.

6.2 Exploring ProbReach Settings

This section features several relatively simple nonlinear hybrid (and non-hybrid) mod-
els. The ProbReach settings and computation details are presented in Table 6.1. The
main aim of the experiments conducted in this section is to study how different tool
settings and model complexity (i.e., the number of system’s parameters) affect the
computation result, and the ProbReach performance.

6.2.1 Good and Bad

This section presents a simple introductory example considering a single mode non-
hybrid system with constant flow dynamics (dx

dt
= 0). The initial state of the system is

defined by the predicate (x(0) = r)∧ (n ∈ [0, 1]), where r is uniformly distributed over
[0,1], and n is a continuous nondeterministic parameter on [0, 1]. ProbReach was used

93

Model ε ρ η |L| Time

Good 10−3 {10−2} 10−3 128 9.0
Bad 10−3 {10−2} 10−3 128 9.4
Deceleration 10−3 {10−1} 10−3 32 30,018
Collision (Basic) 10−3 {10−1} 10−1 7 240
Collision (Basic) 10−3 {10−2} 10−1 64 1,080
Collision (Basic) 10−2 {−} 10−1 1,349 21,420
Collision (Extended) 10−3 {5 · 10−2} 103 32 1,080
Collision (Extended) 10−3 {10−2} 103 128 3,420
Collision (Extended) 10−3 {5 · 10−2} 102 32 128,220
Collision (Advanced) 10−3 {10−1, 10−1} 103 256 119,074
Collision (Advanced) 10−4 {10−1, 10−1} 103 256 225,863
Anaesthesia 5× 10−2 N/A 10−3 1 80,823

Table 6.1: ProbReach settings and computation details for the case studies from Section
6.2, where Model - name of the model, ε - precision on the size of the probability
enclosures, ρ - nondeterministic parameters precision vector, η - multiplier setting the
precision for the solver, |L| - number of computed probability enclosures, Time - CPU
time in seconds, {−} denotes that the precision on the nondeterministic parameters is
ignored, and ProbReach terminates when all probability enclosures are of size smaller
than or equal to ε, and N/A indicates that the model does not feature nondeterministic
parameters.

for computing 0-step bounded reachability probability for two different goals: a good
goal defined by the predicate (x ≤ 0.9n+ 0.1)∧ (x ≥ 0.9n), and a bad one represented
by (x ≤ 2(n− 0.5)2 + 0.5) ∧ (x ≥ −2(n− 0.5)2 + 0.5).

The projections of the goal set G on the domain of continuous random parameters
PR = [0, 1] for each n are the intervals [0.9n, 0.9n+ 0.1] and [−2(n− 0.5)2 + 0.5, 2(n−
0.5)2 + 0.5] for the good and the bad cases, respectively. As the random parameter r
is distributed uniformly and x is a constant, the probability of reaching the goal can
be obtained as the difference of the right-hand side and the left-hand side of these
intervals. Thus, in the good case the probability function is constant Pr(n) = 0.1, and
in the bad case it is equal to Pr(n) = 4n2−4n+ 1, which reaches its minimum value of
0 at n = 0.5 and the maximum value of 1 at n = 0 and n = 1. Figure 6.1 demonstrates
that the graphs of the reachability probability functions obtained analytically are fully

94

contained within the computed probability enclosures.

6.2.2 Car Deceleration Scenario

This case study considers a car deceleration scenario represented by a 2-step bounded
reachability problem in a three-mode SPHS (Figure 6.2).

In the initial mode the car accelerates from 0 to 27.78 m/s (0 to 100 km/h). During
this stage its velocity changes as dυ(t)

dt
= α exp (−αt+ β)− cdv2(t), where α = 0.05776

and β ∼ N(4, 0.1) are coefficients modelling the acceleration properties of the car, and
cd = 3.028 · 10−4 m−1 is the drag coefficient. When the target velocity 27.78 m/s is
reached, the driver takes treact = 1.2 seconds to react and to start decelerating. In
the “reaction” mode the car is not accelerating, and its velocity is governed by the
equation dυ(t)

dt
= −cdv2(t). In the final (braking) mode the car is decelerating according

to the equation dυ(t)
dt

= µad − cdv2(t) where ad ∈ [4.0, 6.0] is the car’s deceleration (a
nondeterministic parameter), and µ = 1 is the coefficient modelling the road properties
(e.g., slope, friction). Throughout the modes the distance s(t) travelled by the car is
governed by ds(t)

dt
= υ(t). ProbReach was applied to the described model for computing

the probability of stopping within 400 metres. The obtained probability enclosures are
shown in Figure 6.3, and the ProbReach settings are given in Table 6.1.

6.2.3 Cars Collision Scenario

This case study considers a cars collision scenario represented by a 2-step bounded
reachability problem in a three mode SPHS (Figure 6.4).

Two cars (Car1 and Car2) are moving on the same lane, starting at s1(0) = 0 and
s2(0) = υ1 · tsafe respectively (where tsafe is a time interval for maintaining a safe dis-
tance between the cars). The initial speed of both cars is 11.12 m/sec. In the initial
mode Car1 changes lanes and starts accelerating at aa1 = 3 m/sec2, while Car2 is mov-
ing with the constant speed υ2. Car1 keeps speeding up until it gets ahead of Car1 by
the distance υ2 · tsafe. Then the system switches to the next mode where Car1 returns
to the initial lane and starts decelerating at ad1. The driver of Car2 takes treact seconds
to react before braking. Then the system switches to the final mode where Car2 decel-
erates as well with acceleration ad2 until it stops. ProbReach was used for computing
a set of enclosures for the probability of the cars colliding for three different versions

95

of this model: Basic - featuring one random and one nondeterministic parameter,
Extended - with two random and one nondeterministic parameter, and Advanced -
containing two random and two nondeterministic parameters. The parameter values
and distributions used in these models are given in Table 6.2. This case study also
shows how the parameters ε, ρ and η affect the quality of the returned answer and the
performance of Algorithm 3. The ProbReach settings are presented in Table 6.1.

Model ad1 ad2 tsafe treact

Basic N(−2.0, 0.2) [-0.7, -0.3] 1.0 1.5
Extended N(−2.0, 0.2) N(−0.5, 0.1) [1.0, 2.0] 1.5
Advanced N(−2.0, 0.2) N(−0.5, 0.1) [1.0, 2.0] [0.5, 1.5]

Table 6.2: Parameter values and distributions for the cars collision model, where
Model - name of the model, ad1 - deceleration of Car1, ad2 - deceleration of Car2,
tsafe - time for maintaining safe distance, treact - reaction time of the driver in Car2,
N(µ, σ) - represents the normal distribution with mean µ and standard deviation σ.

Basic Model Figure 6.5 demonstrates that ρ can greatly affect the size of the re-
sulting probability enclosures. As a result of changing ρ from {10−1} to {10−2}, the
number of probability enclosures and the computation time increased (see Table 6.1)
but the returned probability enclosures decreased in size.

Finally, when ρ was ignored, ProbReach produced 1,349 probability enclosures,
and the size of each of them was smaller or equal to ε. This demonstrates that if the
probability function is continuous, then Algorithm 3 can provide ε-guarantees. This,
of course, cannot be guaranteed in general, due to the use of compute instead of
evaluate.

Extended Model The results obtained for theExtendedmodel (Figure 6.6) demon-
strate that ρ is not the only factor affecting the quality of the results. It can be seen
that reducing ρ from {5 · 10−2} to {10−2} and using the same η did not result into
tighter probability enclosures and required more computation time (1,080 and 3,420
seconds, respectively).

At the same time changing η from 103 to 102 decreased the size of each probability
enclosure almost thrice at a cost of an increase in computation time by a factor of 120

96

(see Table 6.1).

Advanced Model Figure 6.7 demonstrates the results obtained for the Advanced
model where the surfaces on the left-hand side represent the lower bounds of the prob-
ability enclosures returned by ProbReach, and the ones on the right-hand side are
the upper bounds on the probability enclosures. Therefore, the bounded reachabil-
ity probability function lies between the two surfaces. Reducing ε from 10−3 to 10−4

resulted into obtaining tighter probability enclosures. This happened due to a finer
pre-partitioning of the domain of continuous random parameters (i.e., the random
parameter space was partitioned according to the specified ε prior to the algorithm
execution).

6.2.4 Pharmocokinetics Model for Anaesthesia Delivery

The aim of this experiment is to apply the formal engine of ProbReach to a model
featuring more than two continuous random parameters. This case study considers a
pharmacokinetics model for anaesthesia delivery which tracks how the drug concen-
tration changes as it is being metabolised by the body [33]. The model features three
species: cp - concentration of the drug in the plasma, c1 - concentration of the drug in
the fast peripheral compartment, and c2 - concentration of the drug in the slow periph-
eral compartment. The dynamics of the system are governed by a set of differential
equations (6.1), and the parameter values are given in Table 6.3.

dcp(t)

dt
= −(k10 + k12 + k13)cp(t) + k12c1(t) + k13c2(t) +

u(t)

V1

,

dc1(t)

dt
= k21cp(t)− k21c1(t),

dc2(t)

dt
= k31cp(t)− k31c2(t),

du(t)

dt
= p cos(

2tπ

Tj
).

(6.1)

Param. Value Param. Value Param. Value Param. Value

k10 0.1527 ·M−0.3 k12 0.114 k13 0.0419 k21 0.055
k31 0.0033 V1 458.4 ·M M 35 p 100
cp(0) 3.0 c1(0) 3.0 c2(0) 3.0 u(0) 7000
∆ui N(0, 210)

Table 6.3: Parameter values and initial conditions for the anaesthesia delivery model.

97

The scenario investigated here assumes that every 15 minutes, starting at time 0,
the drug infusion rate u(t) can change by ∆u ∼ N(0, 210) (see Figure 6.8). ProbReach
computes the probability of reaching the unsafe state (cp(t) ≥ 6)∨(cp(t) ≤ 1)∨(c1(t) ≥
10) ∨ (c1(t) ≤ 0) ∨ (c2(t) ≥ 10) ∨ (c2(t) ≤ 0) in 3 jumps within 60 minutes. Hence, the
model features 4 continuous random parameters ∆ui (one in the initial state and one
per each jump). As there are no nondeterministic parameters, ProbReach returns only
one probability enclosure of the required length ε.

Initially, the experiment was conducted with ε = 10−2. However, ProbReach did not
reach the required precision with 360 hours requiring almost 10 Gigabytes of RAM for
storing the parameter boxes partitioning the parameter space. This demonstrates that
the computation time grows dramatically with the number of parameters. Increasing
the value of ε to 5×10−2 resulted in obtaining probability enclosure [0.009769, 0.042274]

of length 0.032505 within 80,823 seconds.

The statistical method of ProbReach was also used for sensitivity analysis of the
parameters from Table 6.3. The aim of this experiment is to conclude how small
changes in the parameter values affect the reachability probability. This was done
by introducing intervals around the parameter values, thus, making the corresponding
parameters nondeterministic (see Table 6.4). Now, obtaining confidence intervals for
the minimum and the maximum reachability probabilities allows assessing how much
the changes in the parameter values affect the value of the reachability probability.
ProbReach computed confidence intervals [0, 0.00568004] and [0.207575, 0.217575] for
the minimum and the maximum reachability probabilities, respectively. Therefore, the
range of the reachability probability function on the considered parameter domain is
guaranteed to be at least [0, 0.217575] with confidence c ≥ 0.99. This, however, does
not guarantee that the range of the reachability probability function cannot be greater
than the obtained interval, as the Cross-Entropy algorithm used by the statistical
engine provides only an approximate value of the maximum/minimum. In order to
provide stronger guarantees the formal method should be used, but its application is
limited due to its inefficiency for problems with large number of parameters.

98

Param. Interval Param. Interval Param. Interval Param. Interval

k31 [0.003, 0.004] k12 [0.1, 0.2] k13 [0.04, 0.05] k21 [0.05, 0.06]
M [30, 40] p [90, 110] cp(0) [2.9, 3.1] c1(0) [2.9, 3.1]
c2(0) [2.9, 3.1] u(0) [6900, 7100]

Table 6.4: Parameter intervals for sensitivity analysis in the anaesthesia delivery model.

6.2.5 Applying the Statistical Engine

The statistical engine of ProbReach was applied to computing the minimum and the
maximum reachability probabilities in the case studies presented above. All exper-
iments were conducted using the Cross-Entropy algorithm (Algorithm 9) with the
default values: sample size s = 10, terminal variance σ̂2 = 10−2 and elite samples
ratio λ = 10−1, and initial parameter of Beta distribution α = β = 1 for the Bayesian
estimations algorithm (Algorithm 8). The obtained results are shown in Table 6.5.

99

n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r(
n
)

0

0.05

0.1

0.15

a) Good case.

n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r(
n
)

0

0.2

0.4

0.6

0.8

1

b) Bad case.

Figure 6.1: Probability enclosures with respect to nondeterministic parameter n for
the good and the bad cases of the introductory model, where black boxes - probability
enclosures computed by ProbReach and red line - graph of the reachability probability
function Pr obtained analytically.

100

Acceleration Reaction Braking
t′ := 0;

υ = 27.78

t′ := 0;

t = treact

t′ := 0;

Figure 6.2: SPHS modelling car deceleration scenario.

a
d

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

P
r(
a d
)

0

0.02

0.04

0.06

0.08

0.1

Figure 6.3: Probability enclosures with respect to nondeterministic parameter ad for
the car deceleration scenario.

101

Car1 accelerates
Car2 moves

Car1 brakes
Car2 reacts

Car1 brakes
Car2 brakes

t′ := 0;

s2 − s1 = υ2 · tsafe
t′ := 0;

t =
t re
ac
t

t
′ :=

0;

Figure 6.4: SPHS modelling the cars collision scenario.

102

ad2
-0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3

P
r(
a
d
2
)

0

0.2

0.4

0.6

0.8

1

ad2
-0.6 -0.595 -0.59 -0.585 -0.58 -0.575 -0.57 -0.565 -0.56 -0.555 -0.55

P
r(
a
d
2
)

0

0.02

0.04

0.06

0.08

0.1

Figure 6.5: Probability enclosures with respect to nondeterministic parameter ad2 for
the Basic model of the cars collision scenario (Section 6.2.3) with η = 10−1 and
different values of ρ and ε, where the black boxes are obtained with ρ = {10−1} and
ε = 10−3, the blue boxes – with ρ = {10−2} and ε = 10−3, and the red boxes represent
the setting where ε = 10−2 and ρ is ignored and ProbReach terminates when the size
of each probability enclosure reaches ε. The bottom of the figure features a magnified
image of the region where ad2 ∈ [−0.6,−0.55].

103

t
safe

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P
r(
t sa

fe
)

0

0.1

0.2

0.3

0.4

0.5

0.6

t
safe

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

P
r(
t sa

fe
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.6: Probability enclosures with respect to nondeterministic parameter tsafe for
the Extended model of the cars collision scenario (Section 6.2.3) with ε = 10−3 and
different values of ρ and η, where the black boxes are obtained with ρ = {5 ·10−2} and
η = 103, the blue boxes - with ρ = {10−2} and η = 103, and the red boxes represent
the setting where ρ = {5 · 10−2} and η = 102. The bottom of the figure features a
magnified image of the region where tsafe ∈ [1, 1.2].

104

a) Results obtained with ε = 10−3, ρ = {10−1, 10−1} and η = 103 and visualised from
two different angles.

b) Results obtained with ε = 10−4, ρ = {10−1, 10−1} and η = 103 and visualised from
two different angles.

Figure 6.7: Probability enclosures with respect to nondeterministic parameters tsafe
and treact for the Advanced model of the cars collision scenario (Section 6.2.3), where
the red surface - lower bound of the probability enclosures and the blue surface -
upper bound of the probability enclosures.

105

Anaesthesia
delivery

t′ := 0; i′ := 0;
u′ := u+ ∆ui;

t = 15

t′ := 0; i′ := i+ 1;
u′ := u+ ∆ui;

Figure 6.8: SPHS modelling anaesthesia delivery.

106

Model Type l ξ c δ pN CI Time

Good max 0 5× 10−3 0.99 10−3 {0.48306} [0.09031, 0.10031] 711
min 0 5× 10−3 0.99 10−3 {0.09141} [0.09180, 0.10180] 1,354

Bad
max 0 5× 10−3 0.99 10−3 {0.98737} [0.94413, 0.95413] 15,432
max 0 5× 10−3 0.99 10−3 {0.02897} [0.88408, 0.89408] 10,295
min 0 5× 10−3 0.99 10−3 {0.50032} [0, 0.00535] 1,968

Deceleration max 2 5× 10−3 0.99 10−3 {4.11713} [0.08411, 0.09411] 2,369
min 2 5× 10−3 0.99 10−3 {5.69707} [0.03544, 0.04544] 2,237

Collision max 2 5× 10−3 0.99 10−3 {−0.39351} [0.96413, 0.97413] 37,968
(Basic) min 2 5× 10−3 0.99 10−3 {−0.67266} [0, 0.00534] 15,444
Collision max 2 5× 10−3 0.99 10−3 {1.00841} [0.42465, 0.43479] 77,828

(Extended) min 2 5× 10−3 0.99 10−3 {1.81601} [0.04523, 0.05523] 15,729
Collision max 2 5× 10−3 0.99 10−3 {1.10781, 1.22802} [0.20794, 0.21796] 27,094

(Advanced) min 2 5× 10−3 0.99 10−3 {1.08776, 1.92578} [0.02739, 0.03739] 10,315
Anaesthesia N/A 3 5× 10−3 0.99 10−3 N/A [0.01378, 0.02378] 407

Table 6.5: Results of applying the statistical engine of ProbReach to the case studies from Section 6.2, where Model
- name of the model, Type - type of the extremum (minimum or maximum), l - reachability depth, ξ - half size
of the confidence interval, c - desired confidence, δ - solver precision, pN - nondeterministic parameter vector for
which the minimum/maximum probability is obtained, CI - confidence interval containing the minimum/maximum
probability with the confidence c, Time - CPU time in seconds, and N/A indicates that the corresponding option
is not applicable.

107

The obtained results are consistent with those computed by the formal engine, as
all the confidence intervals intersect with the corresponding probability enclosures.

It can be seen that ProbReach obtained two different estimates for the maximum
probability in the bad model. This suggests that the Cross-Entropy algorithm can fall
into local extrema if the input parameters (e.g., the number of samples per iteration,
the terminal variance, the elite sample ratio) are not chosen carefully.

The minimum probability estimate for the car deceleration scenario is not very
accurate (ad = 5.69707 is quite far from the point of minimum at ad = 6) due to the
chosen accuracy value being to large for the small minimum probability value.

As for the cars collision case study, in the Advanced version of the model tsafe
influences the probability value more than treact. Therefore, the estimate for the former
is worse than the latter in both the minimum and the maximum reachability probability
estimates. Also, Table 6.5 indicates that introducing more parameters to the system did
not change the computation time significantly (the model with more parameters took
the least time), while the time taken by the formal engine was increasing dramatically
with every added parameter.

Finally, the formal approach can take less computation time than the statistical
one for a small number of parameters (one or two). However, the anaesthesia delivery
model demonstrated that the statistical technique completely outperforms the formal
one when the number of parameters grows.

6.3 Artificial Pancreas

This case study presents an approach for the automated synthesis of safe and robust
PID controllers for the closed-loop control of insulin treatment for Type 1 diabetes
(T1D), also known as the artificial pancreas (AP) [44].

The main requirement for the AP is to keep the blood glucose (BG) level within the
healthy range, typically between 70-180 mg/dL, in order to avoid hyperglycemia (BG
above the healthy range) and hypoglycemia (BG below the healthy range). While some
temporary hyperglycemia is allowed, hypoglycemia leads to severe health consequences,
and thus, it should be avoided.

The AP consists of a continuous glucose monitor that provides measurements to a
control algorithm running inside an insulin pump injecting insulin into the body. The

108

pump administers both basal insulin, a low and continuous dose that covers insulin
needs outside the meals, and bolus insulin, a single, high dose for covering the meals.

Currently, state-of-art commercial systems can only regulate basal insulin and still
require manual computation of bolus insulin. The latter is dealt with by applying PID
control (one of the main control techniques for the AP [46, 82, 83]) whose purpose is
minimising the difference between the measured system output and the desired value
(set-point) in the presence of external disturbances. A PID controller is a sum of three
components: proportional, integral and derivative, and its output is represented by:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
, (6.2)

where e(t) = sp − y(t) is the difference between the set-point sp and the measured
system’s output y(t).

The goal of this experiment is finding the values of constants Kp, Ki and Kd (gains)
for which the corresponding PID controller satisfy safety and robustness criteria. Safety
means that some unsafe state – blood glucose level outside 70-180 mg/dL bounds –
should never be reached or reached with a small probability, while robustness requires
the measured system output to be close to the desired set-point, and convergence to
a steady state. The robustness criteria are captured by performance indices [59] such
as the fundamental index (FI) and the weighted fundamental index (FIw) defined in
(6.3).

FI(t) =

∫ t

0

(e(τ))2 dτ, FIw(t) =

∫ t

0

τ 2 · (e(τ))2 dτ. (6.3)

FI defines the total accumulated error, and thus, indicates how far the system output
is from the set-point, while FIw prioritises the error towards the end of the continuous
flow, and therefore, demonstrates how well the system converges to its steady state.

6.3.1 Plant Model

The continuous system dynamics (e.g., glucose and insulin concentrations) are defined
by the well-established nonlinear ODE model (6.4) of Hovorka et al. [45]. The model

109

parameters are given in Table 6.6.

dQ1(t)

dt
= −F01 − x1Q1 + k12Q2 − FR + EGP0(1− x3) + 0.18UG,

dQ2(t)

dt
= x1Q1 − (k12 + x2)Q2, UG(t) =

DGAG
0.18t2maxG

te
−t

tmaxG ,

G(t) =
Q1(t)

VG
,
dS1(t)

dt
= u(t) + ub −

S1

tmaxI
,
dS2(t)

dt
=
S1 − S2

tmaxI
,

dI(t)

dt
=

S2

tmaxIVI
− keI,

dxi(t)

dt
= −kaixi + kbiI, (i = 1, 2, 3).

(6.4)

The model consists of three subsystems:

• Glucose Subsystem: it tracks the mass of glucose (in mmol) in the accessible
(Q1(t)) and non-accessible (Q2(t)) compartments, G(t) (mmol/L) represents the
glucose concentration in plasma, EGP0 (mmol/min) is the endogenous glucose
production rate and UG(t) (mmol/min) defines the glucose absorption rate af-
ter consuming DG grams of carbohydrates. DG represents the main external
disturbance of the system.

• Insulin Subsystem: it represents absorption of subcutaneously administered in-
sulin. It is defined by a two-compartment chain, S1(t) and S2(t) measured in U
(units of insulin), where u(t) (U/min) is the administration of insulin computed
by the PID controller, ub (U/min) is the basal insulin infusion rate and I(t) (U/L)
indicates the insulin concentration in plasma.

• Insulin Action Subsystem: it models the action of insulin on glucose distribu-
tion/transport, x1(t), glucose disposal, x2(t), and endogenous glucose production,
x3(t) (unitless).

The error function is defined as e(t) = sp − Q1(t) with the constant set-point
sp = 110VG

18
, which corresponds to the plasma glucose concentration of G(t) = 110

mg/dL.
The format of the model specification in ProbReach does not allow defining integrals

explicitly. Thus, the integrals in (6.2) and (6.3) are encoded by introducing three ODEs
(6.5) whose solutions are the corresponding integrals:

deint(t)

dt
= sp−Q1(t),

dFI(t)

dt
= e2(t),

dFIw(t)

dt
= t2e2(t), (6.5)

110

Param. Value Param. Value Param. Value
w 100 ke 0.138 k12 0.066
ka1 0.006 ka2 0.06 ka3 0.03
kb1 0.0034 kb2 0.056 kb3 0.024
tmaxI 55 VI 0.12 · w VG 0.16 · w
F01 0.0097 · w tmaxG 40 FR 0
EGP0 0.0161 · w AG 0.8

Table 6.6: Parameter values for the glucose-insulin regulatory model (w (kg) is the
body weight).

and the PID control (6.2) can now be encoded as

u(t) = Kpe(t) +Kieint(t) +Kd
de(t)

dt
.

In this case study the formal and the statistical methods of ProbReach were applied
to synthesize the basal insulin infusion rate ub, the controller parameters Kp, Kd and
Ki and the maximum disturbance DG.

6.3.2 Basal Insulin Rate Synthesis

The basal insulin rate ub is a constant rate at which insulin is administered in the
absence of external disturbances, and for which the system (6.4) reaches the steady
state determined by the equation Q1(t) = sp.

The aim of this experiment is two-fold: 1) synthesis of the basal rate value ub for
which the system of ODEs (6.4) reaches the approximate steady state and 2) computing
the steady state.

Starting with Q1(0) = sp and 0 for the remaining differential equations, the formal
approach of ProbReach is applied to synthesize a value for ub such that the output
glucose Q1 reaches the interval [sp− 0.5, sp+ 0.5] in 2,000 minutes and remains there
for the following 1,000 minutes. Since any reasonable basal rate cannot exceed 1 unit
of insulin per minute, the parameter set synthesis is performed on the interval [0, 1].
As a result, ProbReach returned the interval [0.0553359375, 0.055640625]. Due to the
absolute guarantees provided by Algorithm 3 for the synthesised parameter sets, the
property above is satisfied for any value in the obtained interval, and ub = 0.0555 is
used for all further experiments.

111

Given the basal infusion rate ub = 0.0555, the system’s approximate steady state
was obtained as the value of the system dynamics at t = 3, 000 minutes (see Table 6.7).
The system steady state is used as the initial state in all further experiments.

Var. Value Var. Value Var. Value
Q1 sp Q2 19.08024 S1 3.0525
S2 3.0525 I 0.03351 x1 0.01899
x2 0.03128 x3 0.02681

Table 6.7: Approximate value of the steady state of the ODE system (6.4) for the given
set-point sp.

6.3.3 PID Controller Synthesis

Typical healthy glucose levels vary between 4 and 10 mmol/L. Since avoiding hypo-
glycemia (G(t) < 4 mmol/L) is the main safety requirement of the artificial pancreas,
while temporary hyperglycemia is allowed and it is inevitable after meals, the interval
[4, 16] is considered safe. In this way, protection against both hypoglycemia and very
severe levels of hyperglycemia is ensured.

Although insulin infusion at the basal rate ub = 0.0555 helps preventing hypo-
glycemia (G(t) < 4 mmol/L), the patient is likely to experience a severe hyperglycemia
(G(t) > 16 mmol/L) when a large meal is consumed (DG > 80) or when the glucose
level is not sufficiently low before the following meal is consumed (see controller C0 in
Figure 6.10 of Section 6.3.5).

The aim of this experiment is to synthesize PID controllers considering a one-day
scenario consisting of three meals (breakfast, lunch and dinner) occurring at random
times and with random sizes. This scenario can be expressed in terms of probabilistic
bounded reachability in the SPHS defined in Figure 6.9.

The model features five random, normally-distributed parameters: the amount of
carbohydrates of each meal, DG1 , DG2 and DG3 , and the waiting times between meals,
T1 and T2, where T1 ∼ N(300, 10) and T2 ∼ N(300, 10), and the distributions for DG1 ,
DG2 and DG3 differ depending of the experiment (see Table 6.8).

The initial state of the continuous dynamics in mode Meal 1 is the system steady
state from Table 6.7. A meal containing DG1 grams of carbohydrates is consumed

112

at time 0. When the time in the first mode reaches T1 minutes the system makes
a transition to the next mode Meal 2 where the value of the variable DG is set to
DG2 and the time is reset to 0. Analogously, the system makes a transition between
modes Meal 2 and Meal 3, resetting variables DG and t to DG3 and 0, respectively.
It is assumed that all remaining variables do not reset their values when a discrete
transition takes place.

The statistical engine of ProbReach was applied to synthesise safe controllers C1, C2

by obtaining the values for Kp, Ki and Kd minimising the probability of reaching the
goal state G(t) 6∈ [4, 16] at some time point within [0, T1], [0, T2] and [0, 1440−T1−T2]

in mode Meal 1, Meal 2 and Meal 3, respectively (reachability depth l = 0, 1 or 2).
The obtained results are presented in Table 6.8. Controller C1 was obtained when

the sizes of all three meals were assumed to be distributed normally with N(60, 20),
while C2 was obtained considering a more realistic daily meal profile with meal sizes
being distributed as N(40, 10), N(90, 10) and N(60, 10), respectively. Controller C3 was
synthesized using the same realistic daily meal profile and a modified goal predicate
that takes into account the performance criteria through the fundamental indices FI
and FIw, (FI > 3.5) ∨ (FIw > 70) ∨ (G(t) 6∈ [4, 16]). Controller C0 represents the
case when Kp, Ki and Kd are equal to zero, meaning that insulin is administered at a
constant basal rate ub.

113

Meal 1 Meal 2 Meal 3

D′G := DG1 ;
t′ := 0;

t = T1

D′G := DG2 ;
t′ := 0;

t = T2

D′G := DG3 ;
t′ := 0;

Figure 6.9: SPHS modelling the scenario of 3 meals consumed over 24 hours for the artificial pancreas model.

DG1 DG2 DG3 Kd × 10−2 Ki × 10−7 Kp × 10−4 CI CPUs CPUCI ∆DG1

C0 N(60, 20) N(60, 20) N(60, 20) 0 0 0 [0.86956, 0.88956] - 1,700 [0, 75]
C0 N(40, 10) N(90, 10) N(60, 10) 0 0 0 [0.98861, 1] - 449 [0, 75]
C1 N(60, 20) N(60, 20) N(60, 20) -6.06855 -5.61901 -5.979 [0.09946, 0.10946] 124,351 90,931 [0, 88.1]
C2 N(40, 10) N(90, 10) N(60, 10) -6.02376 -3.53308 -6.166 [0.20711, 0.21711] 92,999 180,484 [0, 88.07]
C3 N(40, 10) N(90, 10) N(60, 10) -5.7284 -3.00283 -6.39023 [0.3324, 0.3524] 152,135 200,094 [0, 87.68]

Table 6.8: Results of controller synthesis where: # – name of the synthesized controller, DGi – meal size distributions,
Kd, Ki andKp – synthesized values of the gain constants characterizing the corresponding controller, CI – confidence
interval containing the probability of reaching the unsafe state with the confidence 0.99, CPUs – time in seconds
spent on finding the parameter values with the accuracy 2ξ = 10−1, CPUCI – time in seconds spent on finding the
confidence intervals with higher accuracy (2× 10−2 and 10−2) for the obtained parameter values, and ∆DG1 – range
of meal sizes for which the system never reaches the unsafe state.

114

The controller synthesis was performed applying the statistical engine of ProbReach,
with the following domains for the controller parameters: Kd ∈ [−10−1, 0], Ki ∈
[−10−5, 0] and Kp ∈ [−10−3, 0]. The controller parameters were found using the accu-
racy value 10−1, and then the tighter confidence intervals were computed with higher
accuracy (2×10−2 and 10−2) for the obtained controllers. Note that performing the pa-
rameter search with higher precision is more beneficial as it may result into obtaining a
better nondeterministic estimate. However, this will significantly increase computation
time.

The results in Table 6.8 suggest that introducing PID controllers C1 and C2 sig-
nificantly decreases the risk of reaching the unsafe state from [0.86956, 0.88956] and
[0.98861, 1] for the basal controller C0, to [0.09946, 0.10946] and [0.20711, 0.21711] for C1

and C2, respectively. Inspecting the confidence intervals returned for C1,C2 and C3 indi-
cates that it is slightly easier to find a controller satisfying only the safety property than
both the safety and the robustness criteria ([0.09946, 0.10946] and [0.20711, 0.21711],
as opposed to [0.3324, 0.3524]).

Note that controllers C1, C2 and C3 can fail to maintain the safe state with the
corresponding probability defined by the confidence intervals CI. Thus, the synthesized
controllers can be sometimes unsafe as it will be show in Section 6.3.5.

6.3.4 Maximum Disturbance Synthesis

The aim of this experiment is to calculate the maximum initial disturbance for which
the obtained controllers do not violate the safety requirements within 12 hours. This
was done by performing the parameter set synthesis on the interval [0, 120] with pre-
cision ρ = {10−3}.

The obtained results (Table 6.8) indicate that applying a PID controller increases
the size of the allowed meal from 75 for the basal controller C0 to about 88 grams, and
at the same time, the difference between C1, C2 and C3 is negligibly small.

Although introducing a controller does not increase the maximum disturbance dra-
matically in comparison to the basal case, a PID control decreases the glucose level
sufficiently enough so that a subsequent meal of similar size can be consumed with-
out the risk of experiencing severe hyperglycemia. In contrast, C0 does not bring the
glucose level low enough before the following meal.

115

Also, note that the maximum meal size was computed based on the fact that
the meal is consumed when the system (6.4) is in its steady state. Thus, the same
controllers are capable of covering larger “second” meals, as will be shown next.

6.3.5 Performance and Safety Evaluation

The aim of this experiment is to verify safety and compute value of FI and FIw for each
of the synthesised controllers using a deterministic version of the SPHS from Figure
6.9, with DG1 = 50, DG2 = 100, DG3 = 70, T1 = 300 and T2 = 300. The evaluation
results are presented in Table 6.9, and the graphs of the glucose level and the insulin
infusion rate (ub + u(t)) are shown in Figure 6.10.

It can be seen that all three synthesised controllers perform dramatically better
than C0. The absence of a PID controller causes a long-term severe hyperglycemia, as
shown in Figure 6.10. Also, the values of FI and FIw for C0 are significantly larger
than those for the synthesised controllers C1, C2 and C3.

Table 6.9 indicates that C2 fails the safety requirement for the given meal profile
and reaches a short-term severe hyperglycemia (see Figure 6.10), while the remaining
two controllers keep the glucose level within the safe range.

Despite featuring similar values of FI, meaning that all three controller maintain
the glucose level equally far from the set-point on average, the values of the weighted
fundamental index (FIw) vary. For example, controller C1 is worse than C2 at keeping
the glucose level close to the set-point towards the end of the considered time interval.
Controller C3 demonstrates the best performance in this aspect, implying that it has
the best steady-state accuracy (thanks to the constraints on FIw in the corresponding
synthesis property). This is also confirmed by the plot in Figure 6.10.

Safety FI × 10−6 FIw × 10−9

C0 Unsafe 26.2335 847.5063
C1 Safe 3.89437 114.49821
C2 Unsafe 3.95773 81.61823
C3 Safe 3.96117 74.90655

Table 6.9: Evaluation of the synthesized PID controllers on three meals of 50, 100 and
70 grams consumed in 300-minute intervals over 24 hours.

116

Time (min)
0 200 400 600 800 1000 1200 1400

G
lu

c
o
s
e
 L

e
v
e
l
(m

m
o
l/

L
)

5

10

15

20

25 C
0

C
1

C
2

C
3

sp

a) Blood glucose level (G(t)).

Time (min)
0 200 400 600 800 1000 1200 1400

In
s
u

li
n

 A
d

m
in

is
tr

a
ti

o
n

 (
U

)

0

0.05

0.1

0.15

0.2

0.25

0.3
C
0

C
1

C
2

C
3

b) Insulin administration (bolus insulin u(t) + basal rate ub).

Figure 6.10: Simulated blood glucose level (a) and insulin administration (b) computed
by the synthesized controllers for three meals of 50, 100 and 70 grams consumed in
300-minute intervals over 24 hours.

6.4 UVB Irradiation Therapy for Treating Psoriasis

This case study considers a simplified version of a UVB irradiation therapy model [93]
used for treating psoriasis, an immune system-mediated chronic skin condition which

117

is characterised by overproduction of keratinocytes.
The model comprises of three (six in the original model) categories of normal and

three (five in the original model) categories of psoriatic keratinocytes whose dynamics
are presented by nonlinear ODEs (6.6). The parameter values and the initial conditions
used in this model are given in Table 6.10.

The therapy consists of several episodes of UVB irradiation, which is simulated in
the model by increasing the apoptosis rate constants (β1 and β2) for stem cells (SC)
and transit amplifying (TA) cells by InA times. Every such episode lasts for 48 hours
and is followed by 8 hours of rest (InA = 1) before starting the next irradiation. The
SPHS modelling the described therapy is given in Figure 6.11.

dSC

dt
= γ1

ω(1− SC+λSCd

SCmax
)SC

1 + (ω − 1)(TA+TAd

Pta,h
)n
− β1InASC −

k1sω

1 + (ω − 1)(TA+TAd

Pta,h
)nSC + k1TA

,

dTA

dt
=

k1a,sωSC

1 + (ω − 1)(TA+TAd

Pta,h
)n

+
2k1sω

1 + (ω − 1)(TA+TAd

Pta,h
)n + γ2GA− β2InATA− k2sTA− k1TA

,

dGA

dt
= (k2a,s + 2k2s)TA− k2GA− k3GA− β3GA

SCd
dt

= γ1d(1−
SC + SCd
SCmax,t

SCd − β1dInASCd − k1sdSCd −
kpSC

2
d

k2a + SC2
d

+ k1dTAd),

dTAd
dt

= k1a,sdSCd + 2k1sdSCd + γ2dTAd + k2dGAd − β2dInATAd − k2sdTAd − k1dTAd,

dGAd
dt

= (k2a,sd + 2k2sd)TAd − k2dGAd − k3dGAd − β3dGAd.

(6.6)

ON
Therapy

OFF
Therapy

t′ := 0;

t = 48

t′ := 0; β′1 := β1
InA

; β′2 := β2
InA

;

t = 8

t′ := 0; β′1 := InAβ1; β′2 := InAβ2;

Figure 6.11: SPHS modelling the UVB irradiation therapy.

The efficiency of the therapy depends on the number of alternations between the
irradiation and rest stages. An insufficient number of treatment episodes can result

118

Param. Value Param. Value Param. Value

SC(0) 25.5285 TA(0) 6.1505 GA(0) 4.9181
SCd(0) 313.934 TAd(0) 1559.979 GAd(0) 998.035
γ1 0.0033 ω 100 β3d 0.0003785

SCmax 225 Pta,h 560.931 n 3
β1 1.97× 10−6 k3d 1.0805 k1s 0.00164
k1 10−6 k1a,s 0.0131 γ2 0.014
β2 2.08× 10−5 k2s 0.01729 k2a,s 0.1383
k2 10−6 k3 0.2161 β3 0.00026
γ1d 0.0132 SCmax,t 787.5 β1d 2.296× 10−6

k1sd 0.00656 kp 0.3 ka 19
k1d 10−6 k1a,sd 0.0524 γ2d 0.056
k2d 10−6 β2d 2.42× 10−5 k2sd 0.06916
k2a,sd 0.5532

Table 6.10: UVB irradiation model parameters and initial conditions.

into early psoriasis relapse: the deterministic version of this model predicts psoriasis
relapse for the number of therapy episodes less than seven [93].

ProbReach was applied to different configurations of the described model depending
on the values of parameters InA and λ. Namely, the following two sections feature the
computation of bounded reachability probability (using both formal and statistical
approaches) and parameter set synthesis.

6.4.1 Bounded Reachability Probability

For this experiment the parameter characterising the strength of UVB irradiation
InA ∼ N(6×104, 104) is set to be random, and λ ∈ [0.2, 0.5] characterising the strength
of psoriatic stem cells is considered nondeterministic. ProbReach was used for comput-
ing the probability of psoriasis relapse within 2,000 days after the last therapy episode
for nine alternations (l = 9) between the ON and OFF therapy modes (five therapy
cycles) with respect to the nondeterministic parameter λ.

The formal engine of ProbReach was applied with ε = 10−3, ρ = {10−2} and η = 1,
and it computed 32 probability enclosures (Figure 6.12) in 251,380 seconds. It can

119

be seen that the range of reachability probability values spans over the interval [0, 1],
starting with the value close to 0 for λ = 0.2 and finishing with the value close to 1 for
λ > 0.45.

The statistical engine of ProbReach was applied with accuracy ξ = 5× 10−2, con-
fidence c = 0.99 and solver precision δ = 1. The computation results (see Table 6.11)
demonstrate that the obtained estimates for the minimum and the maximum reach-
ability probabilities are quite accurate (λ = 0.21586 and λ = 0.42272 respectively)
despite the large accuracy value ξ = 5× 10−2.

Regarding the computation times, the statistical engine required less time (about
four times less) for computing both probability estimates than the formal engine. How-
ever, the formal method obtained the maximum and the minimum probabilities with
better precision than the statistical approach. Providing a result with the same accu-
racy using the statistical approach would take considerably more time.

λ
0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
r(
λ
)

0

0.2

0.4

0.6

0.8

1

Figure 6.12: Probability enclosures with respect to the nondeterministic parameter λ
for the UVB irradiation therapy model.

120

Type λ CI Time

max {0.42272} [0.94628, 1] 19,356
min {0.21586} [0, 0.05371] 41,835

Table 6.11: Results of applying the Cross-Entropy algorithm to the UVB irradiation
therapy model, where Type - type of the extremum (minimum or maximum), λ -
nondeterministic parameter value for which the minimum/maximum probability is ob-
tained, CI - corresponding confidence interval, Time - CPU time in seconds.

6.4.2 Parameter Set Synthesis

Parameter set synthesis was performed for the nondeterministic parameters InA and
λ over the intervals [55000, 65000] and [0.2, 0.4], respectively, with nondeterministic
precision ρ = {1000, 0.1} using synthetic data containing 65 time points. These were
obtained by simulating the model in MATLAB with InA = 6 × 104 and λ = 0.28571.
Each i-th time point is, thus, defined by a vector

{ti, SCi, TAi, GAi, SCd,i, TAd,i, GAd,i},

where ti is the time value, and the rest of the vector are the measured values of the
corresponding system variables.

The main aim of parameter set synthesis is finding parameter subsets for which the
system dynamics satisfy the time series data. In other words, for each parameter value
in the obtained subsets the value of the system dynamics must be equal to the given
data values at the corresponding time points. However, this problem might not be
feasible in general due to the strictness of the formulated requirements. Therefore, this
experiment features a relaxed version of parameter set synthesis, where it is sufficient
for the value of a system variable to be in a small interval around the measured value
at the given time point. As a result, for each i-th time point the goal state is defined
as (6.7).

goali(SC, TA,GA, SCd, TAd, GAd, t) :=
(

(t = ti)∧

(SC ∈ [SCi − 10, SCi + 10]) ∧ (TA ∈ [TAi − 10, TAi + 10])∧

(GA ∈ [GAi − 10, GAi + 10]) ∧ (SCd ∈ [SCd,i − 102, SCd,i + 102])∧

(TAd ∈ [TAd,i − 102, TAd,i + 102]) ∧ (GAd ∈ [GAd,i − 102, GAd,i + 102])
)
.

(6.7)

121

The computation took 195 minutes of CPU time, and ProbReach returned 276
parameter boxes (see Figure 6.13) satisfying the goal predicate for all 65 time points.
From the obtained result it can be seen that the computed sat boxes contain the
parameter values InA = 6 × 104 and λ = 0.28571 used for generating the time series
data.

Figure 6.13: Parameter set synthesis result for the UVB irradiation model. The pa-
rameter values satisfying the time series data are highlighted with black colour, boxes
for which the synthesis problem was undecidable for the last time point are highlighted
with grey, and the white area represents the parameter values which do not satisfy
the first time point.

6.5 Discussion

This chapter presented several case studies which were evaluated using ProbReach. It
was demonstrated that all three types of precision parameters (i.e., ε, ρ and η) can
greatly affect the size of the computed probability enclosures.

The artificial pancreas and psoriasis treatment case studies suggest ProbReach can
be applied to complex systems featuring nonlinear ODEs and nontrivial control.

122

Also, the implemented approaches (statistical and formal) showed consistent out-
puts. Their comparison confirmed that the statistical method is more efficient when
the number of system parameters is large (e.g., PID controller synthesis). However,
sometimes it can fall into a local extremum. Besides, the formal approach demon-
strated its applicability to parameter set synthesis, which cannot be performed using
the statistical technique.

123

Chapter 7

Conclusions and Future work

7.1 Conclusions

In this thesis I presented my work on verification of stochastic parametric hybrid
systems (SPHS). It contains both theoretical and implementation contributions, and
demonstrates applicability of the devised methods and techniques to real-world case
studies.

Chapter 2 features procedure evaluate for deciding bounded reachability on subsets
of the parameter space of parametric hybrid systems. It is based on a δ-complete
decision procedure and utilises the procedure output which is guaranteed to be correct
(i.e., the unsat answer). Given an arbitrary subset of the system parameter space
evaluate may decide whether bounded reachability holds for all parameter values in
the specified subset, for none of them or for some of them, returning sat, unsat and
undet, respectively. However, while the answers are sound, the evaluate procedure
cannot be complete. This can happen due to the insufficient precision δ or because the
formulae generated by the evaluate procedure are non-robust for any positive δ (and
deciding whether an arbitrary bounded LR-sentence is robust is, of course, undecidable
[28, 35]).

Also, Chapter 2 discusses the issues related to the implementation of δ-decision
procedures. Namely, none of the existing SMT solvers (e.g., dReal, iSAT-ODE) fully
implement a δ-decision procedure, as currently they do not allow arbitrary combina-
tions of existential and universal quantifiers (i.e., only a single innermost universal

125

quantifier is allowed). As a result, I introduced procedure compute that can be im-
plemented using existing solvers, and which sat and unsat answers are correct in the
sense that they are consistent with sat and unsat outcomes of the evaluate procedure.

Finally, Chapter 2 shows that the two procedures are equivalent for PHSs with
deterministic jumps – discrete transitions that can be enabled only once within the
corresponding mode. The computational complexity of the presented algorithms grows
exponentially with the number of quantified variables. Therefore, the main factors
affecting the complexity are the number of system parameters and the reachability
depth.

Chapter 3 presents an algorithm for computing ranges of the bounded reachability
probability function in stochastic parametric hybrid systems (SPHS). Its main ad-
vantage is that it provides absolute numerical guarantees on the obtained results. It
can also be applied to parameter set synthesis in SPHSs without random parameters
(i.e., general PHSs discussed in Chapter 2), which amounts to finding parameter sub-
sets where the system reaches the goal state or a set of goal sets represented by time
series data. Also, the size of the probability enclosures returned by this algorithm can
sometimes be made arbitrarily small in some special cases. Namely, this can be done
when the considered SPHS features at least one continuous random parameter, the
reachability probability function is continuous (or constant), and the formulae gen-
erated by procedure evaluate are robust. The main disadvantage of the presented
technique is that its computational complexity grows exponentially with the number
of system parameters.

Chapter 4 features techniques solving the same problem and reducing the computa-
tional complexity at a cost of providing weaker (i.e., statistical) guarantees. There are
two algorithms (i.e., Chernoff-Hoeffding Bound and Bayesian Estimation) for comput-
ing confidence intervals for the reachability probability function in systems featuring
only random parameters. Systems featuring all types of parameters are handled using
the Cross-Entropy algorithm (CE). It computes an approximation of the maximum
(minimum) of the reachability probability function on the nondeterministic parameter
space. Thus, the nondeterministic parameter value returned by the CE is not guar-
anteed to be the global optimum, however, the confidence interval returned for this
value is guaranteed to contain the corresponding reachability probability value with
the required confidence.

126

Chapter 5 introduces ProbReach, a tool for computing bounded reachability proba-
bility in SPHSs. It provides a C++ implementation for all of the algorithms presented
in this thesis, and some of them (i.e., Algorithms 3, 7, 8 and 9) were parallelised using
OpenMP. Also, ProbReach currently supports two SMT solvers – dReal and iSAT-ODE

– and it can be extended to supporting any SMT solver implementing a δ-complete de-
cision procedure. ProbReach is publicly available and does not require any commercial
software.

Finally, ProbReach was successfully applied to several complex case studies (as
shown in Chapter 6) such as automated synthesis of safe PID controllers and devising
UVB irradiation therapy for treating psoriasis.

7.2 Future Work

Future work can be undertaken in the following directions.

• Determining a more efficient way (perhaps one based on sensitivity analysis) of
partitioning parameter boxes in Algorithm 3 from Chapter 3,

• Employing Quasi Monte Carlo techniques in the statistical algorithms presented
in Chapter 4.

• Providing support for hybrid systems whose dynamics are defined by stochastic
differential equations.

• Developing a more efficient parallelisation technique in order to decrease CPU
idle.

• Providing support for more SMT solvers and performing static analysis of the
input model in order to determine the most suitable solver for the task.

• Implementing a simulation engine in ProbReach for analysing the system’s be-
haviour.

• Undertaking extensive benchmarking of ProbReach and applying it to several
more complex case studies.

127

Appendix A

A.1 Supporting Claims

Lemma A.1. The following implication holds:[
∃x : A(x) ∧ ∀x,∃y : A(x)→ B(x, y)

]
⇒
[
∃x,∃y : A(x) ∧B(x, y)

]
(A.1)

Proof. By the assumption of implication (A.1) there is a point x such that A(x) is true,
and whenever A(x) is true then there exists y such that B(x, y) is also true. Suppose,
∀x, ∀y : ¬A(x) ∨ ¬B(x, y) which means that one of the following holds:

(a) ∀x, ∀y : ¬A(x) ∧ ¬B(x, y),

(b) ∀x, ∀y : ¬A(x) ∧B(x, y),

(c) ∀x, ∀y : A(x) ∧ ¬B(x, y).

It is easy to see that cases (a) and (b) contradict the assumption that ∃x : A(x), and
case (c) contradicts the assumption that ∀x,∃y : A(x) → B(x, y). Therefore, (A.1)
holds.

Lemma A.2. The following equivalence holds:[
∃!x : A(x) ∧ ∀x, ∃y : A(x)→ B(x, y)

]
⇔[(

∃x,∃y : A(x) ∧B(x, y)
)
∧
(
∃x : A(x)→ ∃x!t : A(x)

)]
Proof. The following implication holds by Lemma A.1:[

∃!x : A(x) ∧ ∀x,∃y : A(x)→ B(x, y)
]
⇒[(

∃x,∃y : A(x) ∧B(x, y)
)
∧
(
∃x : A(x)→ ∃!x : A(x)

)]

129

Now suppose that
(
∃x, ∃y : A(x) ∧ B(x, y)

)
∧
(
∃x : A(x) → ∃!x : A(x)

)
(which is

equivalent to ∃x,∃y : A(x)∧B(x, y)∧∃!x : A(x) as ∃x, ∃y : A(x)∧B(x, y) means that
∃x : A(x)) is true but ∃!x : A(x) ∧ ∀x,∃y : A(x) → B(x, y) does not hold. Thus, one
of the three cases below must hold:

(a) ¬
(
∃!x : A(x)

)
∧ ∀x,∃y : A(x)→ B(x, y),

(b) ¬
(
∃!x : A(x)

)
∧ ¬
(
∀x,∃y : A(x)→ B(x, y)

)
,

(c) ∃!x : A(x) ∧ ¬
(
∀x,∃y : A(x)→ B(x, y)

)
.

Cases (a) and (b) contradict the assumption that ∃!x : A(x). Consider case (c) now:

∃!x : A(x) ∧ ¬
(
∀x,∃y : A(x)→ B(x, y)

)
⇔ ∃!x : A(x) ∧

(
∃x,∀y : A(x) ∧ ¬B(x, y)

)
.

Let z be the only value for which A(z) evaluates to true. Then the above formula
can be rewritten as A(z) ∧ ∀y : ¬B(z, y). However, this contradicts the assumption
that ∃x,∃y : A(x) ∧ B(x, y) ∧ ∃!x : A(x) (which is equivalent to A(z) ∧ ∃y : B(z, y)).
Therefore, [

∃x,∃y : A(x) ∧B(x, y) ∧
(
∃x : A(x)→ ∃!x : A(x)

)]
⇒[

∃!x : A(x) ∧ ∀x,∃y : A(x)→ B(x, y)
]

A.2 Definitions

Definition A.1. (Computable Real Number [9, Definition 3.1]) A real number
x is computable if there exists a computable sequence of rational numbers (qn)n∈N that
converges to x (i.e., ∀i : |x− qi| < 2−i).

Definition A.2. (Computable Real Function [9, Definition 4.1]) A function
f : Rn → R is computable if there is an oracle Turing machine M that, given any
precision k ∈ N and input x ∈ dom(f), quires another procedure for an arbitrarily good
rational approximation qi of x satisfying |x− qi| < 2−i, and produces a rational number
M(qi) such that |f(x)−M(qi)| < 2−k.

130

Definition A.3. (σ-algebra [17]) A σ-algebra on some arbitrary set X is a collection
A of subsets of X such that: A contains X, a complement of any set from A belongs

to A, and sets
∞⋃
i=1

Ai and
∞⋂
i=1

Ai (where each Ai ∈ A) are also in A.

Definition A.4. (Measurable Function [17]) Let (X,A) be a measurable space
(i.e., A is a σ-algebra on set X) and A be a subset of X that belongs to A. A function
f : A→ R is measurable (with respect to A) if for any c ∈ R the set {x ∈ A : f(x) ≤ c}
belongs to A.

Definition A.5. (Analytic Set [17]) A set X ⊆ Rn is analytic if there is a set
Y ⊆ Rn and a continuous function f : Y → X such that f(Y) = X.

131

References

[1] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria

Prandini. Approximate model checking of stochastic hybrid systems. European
Journal of Control, 16[6]:624 – 641, 2010. 7

[2] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sas-

try. Probabilistic reachability and safety for controlled discrete time stochastic
hybrid systems. Automatica, 44[11]:2724–2734, November 2008. 1

[3] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-

Hsin Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. In Hybrid Systems, 736 of LNCS, pages 209–229,
1992. 2, 4

[4] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic sym-
bolic verification of embedded systems. IEEE Trans. Software Eng., 22[3]:181–201,
1996. 3

[5] Christel Baier and Joost P. Katoen. Principles of Model Checking. The
MIT Press, 2008. 3

[6] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare

Tinelli. Satisfiability modulo theories. Handbook of satisfiability, 185:825–885,
2009. 28

[7] Garrett Birkhoff and Gian-Carlo Rota. Ordinary Differential Equations,
4th Edition. Wiley, January 1989. 18

133

[8] Sergiy Bogomolov, Daniele Magazzeni, Stefano Minopoli, and Mar-

tin Wehrle. PDDL+ planning with hybrid automata: Foundations of translat-
ing must behavior. In ICAPS, pages 42–46, 2015. 3

[9] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial
on computable analysis. In S. Barry Cooper, Benedikt Löwe, and An-

drea Sorbi, editors, New Computational Paradigms, pages 425–491. Springer
New York, 2008. 130

[10] Daniel Bryce, Sicun Gao, David J. Musliner, and Robert P. Goldman.
SMT-based nonlinear PDDL+ planning. In AAAI, pages 3247–3253, 2015. 14

[11] Russel E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Nu-
merica, 7:1–49, 1998. 73

[12] Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, 1999. 3

[13] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal Methods in System
Design, 19[1]:7–34, 2001. 4

[14] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Dexter Kozen,
editor, Logic of Programs, 131 of LNCS, pages 52–71, 1981. 3

[15] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT Press, 2001. 4

[16] Edmund M. Clarke, Kenneth L. McMillan, Sérgio Vale Aguiar Cam-

pos, and Vassili Hartonas-Garmhausen. Symbolic model checking. In Ra-

jeev Alur and Thomas A. Henzinger, editors, CAV, 1102 of Lecture Notes
in Computer Science, pages 419–427. Springer, 1996. 3

[17] Donald L. Cohn. Measure Theory. Birkhäuser, 1980. 34, 131

[18] Richard Colgren. Basic Matlab, Simulink And Stateflow. AIAA (American
Institute of Aeronautics & Ast, 2006. 90

134

[19] J. Estrela da Silva, Bruno Terra, Ricardo Martins, and João Borges

de Sousa. Modeling and simulation of the lauv autonomous underwater vehicle.
In 13th IEEE IFAC International Conference on Methods and Models in Automa-
tion and Robotics, 2007. 1

[20] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis,

and Danny Bøgsted Poulsen. Uppaal SMC tutorial. International Journal
on Software Tools for Technology Transfer (STTT), 17[4]:397–415, 2015. 9

[21] Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem
for exponential diophantine equations. Annals of Mathematics, 74[3]:pp. 425–436,
1961. 4

[22] Andreas Eggers, Martin Fränzle, and Christian Herde. SAT modulo
ODE: A direct SAT approach to hybrid systems. In ATVA, pages 171–185, 2008.
4, 87

[23] Andreas Eggers, Nacim Ramdani, Nedialko S. Nedialkov, and Mar-

tin Fränzle. Improving the SAT modulo ODE approach to hybrid systems
analysis by combining different enclosure methods. Software & Systems Modeling,
14[1]:121–148, 2015. 6, 13

[24] Christian Ellen, Sebastian Gerwinn, and Martin Fränzle. Statistical
model checking for stochastic hybrid systems involving nondeterminism over con-
tinuous domains. International Journal on Software Tools for Technology Transfer
(STTT), 17[4]:485–504, 2015. 7

[25] Joshua A. Enszer and Mark A. Stadtherr. Verified solution and propa-
gation of uncertainty in physiological models. Reliable Computing, 15:168–178,
2010. 7

[26] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and

Parasara Sridhar Duggirala. Automatic Reachability Analysis for Nonlin-
ear Hybrid Models with C2E2, pages 531–538. Springer International Publishing,
Cham, 2016. 9

135

[27] Maria Fox, Derek Long, and Daniele Magazzeni. Plan-based policies for
efficient multiple battery load management. J. Artif. Intell. Res. (JAIR), 44:335–
382, 2012. 1

[28] Martin Fränzle. Analysis of Hybrid Systems: An Ounce of Realism Can Save
an Infinity of States, pages 126–139. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1999. 4, 125

[29] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás

Wolovick, and Lijun Zhang. Measurability and safety verification for stochas-
tic hybrid systems. In HSCC, pages 43–52, 2011. 9

[30] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and

Tobias Schubert. Efficient solving of large non-linear arithmetic constraint
systems with complex boolean structure. JSAT, 1[3-4]:209–236, 2007. 4

[31] Martin Fränzle, Tino Teige, and Andreas Eggers. Engineering con-
straint solvers for automatic analysis of probabilistic hybrid automata. J. Log.
Algebr. Program., 79[7]:436–466, 2010. 8

[32] Mark Galassi, Jim Davies, James Theiler, Brian Gough, and Gerard

Jungman. GNU Scientific Library - Reference Manual, Third Edition, for GSL
Version 1.12 (3. ed.). Network Theory Ltd, 2009. 86

[33] Victor Gan, Guy Albert Dumont, and Ian M. Mitchell. Benchmark
problem: A pk/pd model and safety constraints for anesthesia delivery. In
ARCH@CPSWeek, 2014. 97

[34] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. Delta-complete
decision procedures for satisfiability over the reals. In IJCAR, pages 286–300,
2012. 28, 53

[35] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. Delta-decidability
over the reals. In LICS, pages 305–314, 2012. 4, 5, 6, 13, 28, 54, 125

[36] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver
for nonlinear theories over the reals. In CADE-24, 7898 of LNCS, pages 208–214,
2013. 6, 87

136

[37] Sicun Gao, Soonho Kong, and Edmund M. Clarke. Satisfiability modulo
ODEs. In FMCAD, pages 105–112, 2013. 4

[38] Yang Gao and Martin Fränzle. A Solving Procedure for Stochastic Sat-
isfiability Modulo Theories with Continuous Domain, pages 295–311. Springer
International Publishing, Cham, 2015. 6

[39] Yang Gao, Martin Fränzle, undefined, undefined, undefined, and

undefined. CSiSAT: A satisfiability solver for SMT formulas with continuous
probability distributions. 00, pages 1–6. IEEE Computer Society, 2016. 8

[40] Pedro Gonnet. A review of error estimation in adaptive quadrature. ACM
Comput. Surv., 44[4]:22:1–22:36, 2012. 46

[41] Orna Grumberg and Helmut Veith, editors. 25 Years of Model Checking -
History, Achievements, Perspectives, 5000 of Lecture Notes in Computer Science.
Springer, 2008. 3

[42] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Syl-

vain Peyronnet. Approximate probabilistic model checking. In VMCAI, 2937
of LNCS, pages 73–84, 2004. 66

[43] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. J. Amer. Statist. Assoc., 58[301]:13–30, 1963. 65

[44] Roman Hovorka. Closed-loop insulin delivery: from bench to clinical practice.
Nature Reviews Endocrinology, 7[7]:385–395, 2011. 1, 108

[45] Roman Hovorka et al. Nonlinear model predictive control of glucose concen-
tration in subjects with type 1 diabetes. Physiological Measurement, 25[4]:905,
2004. 109

[46] Lauren M Huyett, Eyal Dassau, Howard C Zisser, and Francis J

Doyle III. Design and evaluation of a robust pid controller for a fully implantable
artificial pancreas. Industrial & engineering chemistry research, 54[42]:10311–
10321, 2015. 109

137

[47] Daisuke Ishii, Kazunori Ueda, and Hiroshi Hosobe. An interval-based sat
modulo ode solver for model checking nonlinear hybrid systems. STTT, 13[5]:449–
461, 2011. 4

[48] Matthew James. Beal. Variational algorithms for approximate bayesian infer-
ence /. 01 2003. 80

[49] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda,

and Ken Butts. Powertrain control verification benchmark. In Proceedings of
the 17th International Conference on Hybrid Systems: Computation and Control,
HSCC ’14, pages 253–262, 2014. 1

[50] Ker-I. Ko. Complexity Theory of Real Functions. Birkhäuser, 1991. 5, 18

[51] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke. dReach:
Delta-reachability analysis for hybrid systems. In TACAS, 2015. to appear. 7, 13,
14, 83

[52] Guy F. Kuncir. Algorithm 103: Simpson’s rule integrator. Commun. ACM,
5[6]:347–, 1962. 46

[53] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, 6806 of LNCS, pages
585–591, 2011. 9

[54] Miklós Laczkovich. The removal of π from some undecidable problems in-
volving elementary functions. Proceedings of the American Mathematical Society,
131[7]:pp. 2235–2240, 2003. 4

[55] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer (STTT), 1:134–
152, 1997. 9

[56] Pierre L’Ecuyer. Quasi-Monte Carlo methods with applications in finance.
Finance and Stochastics, 13[3]:307–349, 2009. 73

[57] John Levine. Flex & Bison: Text Processing Tools. O’Reilly Media, 2009. 85

138

[58] Xiangfang Li, Oluwaseyi Omotere, Lijun Qian, and Edward R.

Dougherty. Review of stochastic hybrid systems with applications in biolog-
ical systems modeling and analysis. EURASIP Journal on Bioinformatics and
Systems Biology, 2017[1]:8, Jun 2017. 1, 3

[59] Yun Li, Kiam Heong Ang, Gregory CY Chong, Wenyuan Feng,

Kay Chen Tan, and Hiroshi Kashiwagi. Cautocsd–evolutionary search and
optimisation enabled computer automated control system design. International
Journal of Automation and Computing, 1[1]:76–88, 2004. 109

[60] Bing Liu, Soonho Kong, Sicun Gao, and Edmund Clarke. Parameter
identification using delta-decisions for biological hybrid systems. CMU SCS Tech-
nical Report, CMU-CS-13-136, 2014. 1, 8

[61] Yuri V. Matijasevič. Diophantine representation of enumerable predicates.
Mathematics of the USSR-Izvestiya, 5[1]:1, 1971. 4

[62] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1993. 3

[63] James R. Munkres. Topology. Featured Titles for Topology Series. Prentice
Hall, 2000. 52

[64] Erich Novak and Henryk Woźniakowski. Relaxed verification for continu-
ous problems. Journal of Complexity, 8[2]:124 – 152, 1992. 4

[65] Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, and

Charles W. Clark. NIST Handbook of Mathematical Functions. Cambridge
University Press, 1st edition, 2010. 68

[66] OpenMP Architecture Review Board. OpenMP application program in-
terface version 3.0, may 2008. 87

[67] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in cesar. In Proceedings of the 5th Colloquium on International
Symposium on Programming, pages 337–351, London, UK, UK, 1982. Springer-
Verlag. 3

139

[68] Federico Ramponi, Debasish Chatterjee, Sean Summers, and John

Lygeros. On the connections between PCTL and dynamic programming. In
HSCC, pages 253–262. ACM, 2010. 7

[69] Stefan Ratschan. Safety verification of non-linear hybrid systems is quasi-
decidable. Formal Methods in System Design, 44[1]:71–90, 2014. 5

[70] Daniel Richardson. Some undecidable problems involving elementary func-
tions of a real variable. The Journal of Symbolic Logic, 33[4]:pp. 514–520, 1968.
4

[71] Christian P. Robert. The Bayesian Choice: From Decision-Theoretic Foun-
dations to Computational Implementation. Springer Texts in Statistics. Springer,
2001. 69

[72] Reuven Y. Rubinstein and Dirk Kroese. Simulation and the Monte Carlo
Method. Wiley, 2008. 73, 78

[73] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976. 53

[74] Karsten Scheibler, Felix Neubauer, Ahmed Mahdi, Martin Fränzle,

Tino Teige, Tom Bienmüller, Detlef Fehrer, and Bernd Becker. Ac-
curate ICP-based floating-point reasoning. In 2016 Formal Methods in Computer-
Aided Design (FMCAD), pages 177–184, Oct 2016. 8

[75] Fedor Shmarov, Nicola Paoletti, Ezio Bartocci, Shan Lin, Scott A.

Smolka, and Paolo Zuliani. Smt-based synthesis of safe and robust PID
controllers for stochastic hybrid systems. In Hardware and Software: Verification
and Testing - 13th International Haifa Verification Conference, HVC 2017, Haifa,
Israel, November 13-15, 2017, Proceedings, pages 131–146, 2017. 10

[76] Fedor Shmarov and Paolo Zuliani. ProbReach: A tool for guaranteed
reachability analysis of stochastic hybrid systems. In Sergiy Bogomolov and

Ashish Tiwari, editors, Symbolic and Numerical Methods for Reachability Anal-
ysis, 1st International Workshop, SNR 2015, 37 of EPiC Series in Computing,
pages 40–48, 2015. 10

140

[77] Fedor Shmarov and Paolo Zuliani. ProbReach: Verified probabilistic δ-
reachability for stochastic hybrid systems. In HSCC, pages 134–139. ACM, 2015.
10, 83

[78] Fedor Shmarov and Paolo Zuliani. Probabilistic hybrid systems verification
via smt and monte carlo techniques. In Hardware and Software: Verification
and Testing: 12th International Haifa Verification Conference, HVC 2016, Haifa,
Israel, November 14-17, 2016, Proceedings, pages 152–168, Cham, 2016. Springer
International Publishing. 3, 10, 21, 63

[79] Fedor Shmarov and Paolo Zuliani. SMT-based reasoning for uncertain
hybrid domains. In AAAI-16 Workhop on Planning for Hybrid Systems, 30th
AAAI Conference on Artificial Intelligence, pages 624–630, 2016. 10

[80] Steven S. Skiena. Sorting and Searching, pages 103–144. Springer London,
London, 2008. 17

[81] Sadegh Esmaeil Zadeh Soudjani, C. Gevaerts, and Alessandro Abate.
FAUST2: Formal abstractions of uncountable-state stochastic processes. In
TACAS, 9035 of LNCS, pages 272–286, 2015. 9

[82] Garry M Steil, Cesar C Palerm, Natalie Kurtz, Gayane Voskanyan,

Anirban Roy, Sachiko Paz, and Fouad R Kandeel. The effect of insulin
feedback on closed loop glucose control. The Journal of Clinical Endocrinology &
Metabolism, 96[5]:1402–1408, 2011. 109

[83] Garry M. Steil, Antonios E. Panteleon, and Kerstin Rebrin. Closed-
loop insulin delivery – the path to physiological glucose control. Advanced drug
delivery reviews, 56[2]:125–144, 2004. 109

[84] Alfred Tarski. A decision method for elementary algebra and geometry. 1948.
4

[85] Tino Teige and Martin Fränzle. Stochastic Satisfiability Modulo Theories
for Non-linear Arithmetic, pages 248–262. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. 6

141

[86] Ilya Tkachev and Alessandro Abate. Formula-free finite abstractions for
linear temporal verification of stochastic hybrid systems. In HSCC, pages 283–292.
ACM, 2013. 7

[87] P. Wang, D.A. Barajas-Solano, E.M. Constantinescu, S. Abhyankar,

D. Ghosh, B.F. Smith, Z. Huang, and A.M. Tartakovsky. Probabilistic
density function method for stochastic odes of power systems with uncertain power
input. SIAM/ASA Journal on Uncertainty Quantification, 3:24, 2015. 1

[88] Paul S. Wang. The undecidability of the existence of zeros of real elementary
functions. J. ACM, 21[4]:586–589, October 1974. 4

[89] Qinsi Wang, Paolo Zuliani, Soonho Kong, Sicun Gao, and Edmund M.

Clarke. SReach: A bounded model checker for stochastic hybrid systems. In
CMSB, 9308 of LNCS, pages 15–27, 2015. 3, 8

[90] Boyan Yordanov and Calin Belta. Parameter synthesis for piecewise affine
systems from temporal logic specifications. In HSCC 2008, 4981 of LNCS, pages
542–555, 2008. 3

[91] Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and

David Parker. Numerical vs. statistical probabilistic model checking. STTT,
8[3]:216–228, 2006. 6, 63

[92] Håkan L. S. Younes and Reid G. Simmons. Statistical probabilistic model
checking with a focus on time-bounded properties. Inf. Comput., 204[9]:1368–
1409, 2006. 6, 63

[93] Hong Zhang, Wenhong Hou, Laurence Henrot, Sylvianne Schnebert,

Marc Dumas, Catherine Heusèle, and Jin Yang. Modelling epidermis
homoeostasis and psoriasis pathogenesis. Journal of The Royal Society Interface,
12[103], 2015. 117, 119

[94] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and

Ernst Moritz Hahn. Safety verification for probabilistic hybrid systems. In
CAV, 6174 of LNCS, pages 196–211, 2010. 9

142

[95] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian statis-
tical model checking with application to Stateflow/Simulink verification. Formal
Methods in System Design, 43[2]:338–367, 2013. 68, 71

143

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.1.1 Hybrid Systems
	1.1.2 Model Checking
	1.1.3 Delta-Complete Decision Procedure
	1.1.4 Related Work
	1.1.5 Related Software

	1.2 Aim and Objectives
	1.3 Thesis Outline and Contributions
	1.4 List of Publications

	2 Bounded Reachability in Parametric Hybrid Systems
	2.1 Introduction
	2.2 Parametric Hybrid Systems
	2.3 Bounded Reachability in PHS
	2.3.1 Verifying Bounded Reachability in PHS

	2.4 Evaluation Procedure Implementation
	2.4.1 Verifying Universal Bounded Reachability
	2.4.2 Implementation
	2.4.3 PHS with Deterministic Jumps
	2.4.4 Complexity

	2.5 Discussion

	3 Bounded Reachability Probability in Stochastic Parametric Hybrid Systems
	3.1 Introduction
	3.2 Stochastic Parametric Hybrid Systems
	3.3 Bounded Reachability Probability in SPHS
	3.3.1 Bounded Reachability Probability Function

	3.4 Algorithm for Computing Probability Enclosures
	3.5 Auxiliary Procedures
	3.5.1 Partitioning Parameter Boxes
	3.5.2 Computing Probability Values of Parameter Boxes
	3.5.3 Verified Integration Procedure
	3.5.4 Multiple Continuous Random Parameters
	3.5.5 Unbounded Random Parameters

	3.6 Algorithm Guarantees
	3.6.1 Goal Set Synthesis in PHSs
	3.6.2 -guarantee

	3.7 Discussion
	3.7.1 Computational Complexity
	3.7.2 Future Work

	4 Bounded Reachability Probability via Monte Carlo
	4.1 Introduction
	4.2 Computing Confidence Intervals
	4.2.1 Chernoff-Hoeffding Bound Algorithm
	4.2.2 Bayesian Sequential Estimation

	4.3 Handling Nondeterminism
	4.3.1 Cross-Entropy Algorithm
	4.3.2 Normal Distribution for CE
	4.3.3 Beta Distribution for CE

	4.4 Discussion
	4.4.1 Future Work

	5 ProbReach: A Software Tool for Computing Bounded Reachability Probability in SPHS
	5.1 Introduction
	5.2 Input format
	5.3 ProbReach Architecture
	5.3.1 PDRH Parser
	5.3.2 Utility Package
	5.3.3 Evaluation Procedure
	5.3.4 Algorithms

	5.4 Usage
	5.5 Discussion
	5.5.1 Future Work

	6 Case Studies
	6.1 Introduction
	6.2 Exploring ProbReach Settings
	6.2.1 Good and Bad
	6.2.2 Car Deceleration Scenario
	6.2.3 Cars Collision Scenario
	6.2.4 Pharmocokinetics Model for Anaesthesia Delivery
	6.2.5 Applying the Statistical Engine

	6.3 Artificial Pancreas
	6.3.1 Plant Model
	6.3.2 Basal Insulin Rate Synthesis
	6.3.3 PID Controller Synthesis
	6.3.4 Maximum Disturbance Synthesis
	6.3.5 Performance and Safety Evaluation

	6.4 UVB Irradiation Therapy for Treating Psoriasis
	6.4.1 Bounded Reachability Probability
	6.4.2 Parameter Set Synthesis

	6.5 Discussion

	7 Conclusions and Future work
	7.1 Conclusions
	7.2 Future Work

	A Appendix A
	A.1 Supporting Claims
	A.2 Definitions

	References

