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ABSTRACT 

Background:  
 

Gastro-oesophageal reflux and aspiration may be associated with airway disease. Bile acid 

aspiration has been shown to be prevalent among patients with advanced airway disease, 

which raises the concern that recurrent microaspiration of bile acids may cause airway 

epithelial injury which may lead to inflammatory airway disease. 

Objectives: 

To investigate the possible links between bile acids and lung injury which may cause pro-

inflammatory cytokine release using  BEAS- 2B, NCI-H292, 16HBE14o- and Calu-3 cell 

lines. Moreover, this study aimed at exploring whether primary bronchial epithelial cell 

cultures taken from lung transplant patients (PHBECs), tracheal epithelial cells (upper airway 

cells) from the subglottic area cells, BEAS-2B and 16HBE14o- cell lines undergo EMT like 

processes after stimulation with primary and secondary bile acid. Finally, the role of duodeno-

gastro-oesophageal refluxate in mucus production from NCI-H292 and Calu-3 cell lines was 

investigated.  

Methods:  

BEAS-2, 16HBE14o-, NCI-H292 and Calu-3 cell lines were cultured and stimulated with Bile 

acid (BAs). Pro-inflammatory markers including IL-8, IL-6 and GMCSF were measured. 

Primary bronchial epithelial cell cultures taken from lung transplant patients and tracheal 

epithelial cells from the subglottic area cells were cultured. The effect of individual primary 

and secondary bile acids were evaluated by 48 hour challenge. Post-challenge TGFβ1, MMP9 

and pro-collagen concentrations were measured using commercial ELISAs. RNA was isolated 

to determine the changes in expression of an epithelial marker E-cadherin and the 

mesenchymal marker fibronectin at a molecular level using a quantitative real-time PCR. The 

NCI-H292 and Calu-3 cell lines were also used as an in vitro model system to study MUC 

gene regulation. Cells were stimulated with bile acids and mucin content of the culture 

medium measured using an indirect ELISA and quantitative real-time PCR was used to 

evaluate MUC5AC and MUC5B expression in NCI-H292 and Calu-3 cell lines. 
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Results:  

The cells used in this study elevated levels of IL-8, IL-6 and GMCSF released after treatment 

by primary and secondary bile acids. IL-8, IL-6 and GM-CSF are common finding in airways 

and lung disease where reflux and aspiration have been implicated as a possible injury. 

Significantly greater concentration of TGFβ1, MMP9 and pro-collagen were measured in 

cultures of PHBEs, tracheal epithelial cells, BEAS-2B and 16HBE14o- cell lines treated with 

BAs. E-cadherin expression significantly decreased while fibronectin was significantly 

increased. MUC5AC and MUC5B levels were induced in response to stimulation of Calu-3 

and NCI H292 cells with BAs. 

Conclusion: 

The NCI-H292, Calu-3, BEAS-2B and 16HBE14-o cell lines are sensitive and useful models 

to study human respiratory processes and diseases related to BAs aspiration-induced lung 

injury. Aspiration of bile acids may cause cell injury, inflammation and cell death relevant to 

the pathophysiology of chronic airways disease. Furthermore, Bile acids stimulated EMT 

related processed in PHBEC, tracheal epithelial cells, BEAS-2B and 16HBE14O-cell lines. 

The Calu-3 and NCI H292 cells can be used as an in vitro model system to study MUC5AC 

and MUC5B gene regulation.  
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CHAPTER 1:  GENERAL INTRODUCTION 

1.1 The respiratory system and airway epithelium 

The human respiratory tract Figure 1-1 (Tu et al., 2013) comprises the upper airways, which 

include the nose, sinuses, mouth and throat; and the lower airways: the trachea, bronchi and 

lungs. Within the lungs, the bronchi divide into increasingly smaller tubes called bronchioles 

and ultimately into alveoli, which are the air sacs where gas exchange occurs. This study will 

focus on the epithelial cells – of which there are various types – which line the system. 

 

Figure 1-1: The anatomy of the respiratory tract (Tu et al., 2013). 

1.2 Anatomy of the airway epithelium 

The airway epithelium includes a range of specialised cell types, each with a specific function 

that contributes to lung homeostasis. At least eight different types of epithelial cell are found 

in the system and, according to their location these fall into one of three categories: basal, 

ciliated columnar and non-ciliated secretory columnar cells (Knight and Holgate, 2003). 

Epithelial function is also assisted by immune and inflammatory cells, which migrate to the 

airway epithelium via the basement membrane. An example of these different cell types is 

seen in Figure 1-2 below, which shows a cross-section through the airway wall including the 

underlying mesenchyme. 
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Figure 1-2: Schematic cross-section of the airway wall. The airway is lined with an epithelium, anchored 

together with several different junctions. The underlying mesenchyme is also shown consisting of 

myofibroblasts, smooth muscle cell bundles, blood vessels, and afferent nerve endings positioned deep into the 

airway. Drawing is not to scale (West, 2012). 

The airway epithelium is particularly susceptible to damage by external factors, such as 

chemical toxins and other pollutants, bacteria, viruses, dust and smoke particles. However, the 

cells in this layer are arranged in an adhesive mechanism to ensure three dimensional 

structure and normal function is maintained. Hemidesmosomes are extra-cellular matrix 

(ECM) junctions, which connect basal cells to the basement membrane, conferring the tissue 

with increased mechanical integrity (Green and Jones, 1996). Interactions between basal and 

columnar cells are assisted by desmosomes, which are intercellular adhesion molecules of the 

cadherin family. These also function to create trans-cellular networks within the tissue, further 

increasing its mechanical integrity (Green and Jones, 1996). Interactions between columnar 

cells are aided by belt-like tight junctions (zona occludens), which regulate cellular transport. 

E-cadherin adherens junctions also help maintain cell adherence (Roche et al., 1993). It is 

thought that the airway epithelium is pseudostratified in large airways, becoming columnar 

and cuboidal as it progresses through the airways to the lower airways (Crystal et al., 2008).   
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1.2.1 Basal cells 

Despite relative abundance, the density of basal cells varies according to the other cell types 

in different regions of the airway (Wang et al., 1992). Basal cells are pyramidal in shape, with 

a large nucleus (Evans et al., 2001) and use hemidesmosomes to attach other epithelial cells to 

the basement membrane. It is believed that epithelial stem cells originate from the basal cells, 

before differentiating into ciliated and secretory columnar cells in the upper part of the tract 

(Boers et al., 1998). Basal cells have been discovered to secrete various active molecules 

including cytokines, chemokines, and growth factors. 

1.2.2 Columnar secretory cells 

Found within the epithelial layer’s apical surface, the predominant secretory cells in the upper 

airways are mucus-secreting goblet cells, which are the system’s primary mucus source. The 

primary role of mucus is to protect the airway epithelium by trapping toxins or small particles. 

Moreover, mucus stops airway epithelium drying out. These cells are characterized by 

membrane-bound electron-lucent acidic mucin granules (Jeffery and Li, 1997) and are 

involved in mucociliary clearance. Diseases such as asthma and COPD cause the number of 

these cells to increase, resulting in the characteristic productive cough (Lumsden et al., 1984). 

In smaller airways (terminal bronchioles), Clara cells are predominant and also contain 

electron dense granules (Jeffery and Li, 1997). Xenobiotic compounds are metabolised via 

p450 monooxygenases in Clara cells, which also produce bronchiolar surfactant (Knight and 

Holgate, 2003) and can absorb and secrete ions (Van Scott et al., 1987). Stem cells for the 

lower airway epithelium are found in areas of high Clara cell population and low mucous and 

basal cell population (Hong et al., 2001). The serous cell is a different type of secretory cell 

similar to the mucus cell, but with a more electron dense granule content. Normally only 

found in rodent airways, these rare cells have occasionally been observed in the smaller 

airways of the human lung (Rogers et al., 1993). 

1.2.3 Columnar ciliated cells 

More than half of all airway epithelial cells are ciliated (Knight and Holgate, 2003). These 

cells are involved in the transport of mucus and foreign objects in a directional capacity from 

the lower to the higher airway. Until recently, it was believed that these cells could not 

differentiate any further and were derived from secretory or basal cells. However, studies into 

the effects of naphthalene injury on mouse epithelia showed that these cells can trans-
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differentiate, signalling a potential role in epithelial repair (Lawson et al., 2002; Park et al., 

2006). 

1.2.4 Alveolar type I cells 

Of the two types of epithelial cells found in the alveoli, type I cells are squamous thin cells, 

covering 90-95% of the alveolar surface (Crapo et al., 1982). They are particularly vulnerable 

to injury and do not divide. They are vital in maintaining alveolar cellular composition and 

the thin blood-gas barrier they form is vital to gas exchange (Williams, 2003). They also play 

an important role in alveolar epithelial homeostasis (Berthiaume et al., 2006). Type I cells do 

not exhibit specific molecular markers and are difficult to isolate in vitro. Consequently, type 

II cells have received more scientific attention. 

1.2.5 Alveolar type II cells 

The remaining 5% of the alveolar epithelium is made up of the cuboidal type II cells. These 

are progenitors for type I cells, which cannot reproduce on their own. Type II cells are 

therefore vital in maintaining alveolar health following injury (Sugahara et al., 2006).  

1.2.6 Other cell types surrounding the airway epithelium 

There are a range of other cell types and tissues proximal to the airway epithelium. These 

include: fibroblasts, blood vessels, smooth muscle, afferent nerve ending and immune cells. 

The latter include mast cells, lymphocytes, dendritic cells, and macrophages. When an 

external threat is present, these immune cells migrate to the epithelium to play a defensive 

role (Rennard et al., 1994). Intra-epithelial nerves are populous in the bronchial epithelium. 

They have been found to penetrate the basement membrane to form a network between the 

epithelial cells and the basal lamina, as revealed by immunoreactivity for the pan-neuronal 

marker protein gene product (PGP) 9.5 (Adriaensen and Scheuermann, 1993). Below the 

basement membrane, fibroblasts secrete growth and attachment factors, which are involved in 

tissue repair and airway remodelling (Pollak and Lefebvre, 1992). They also stimulate 

bronchial epithelial cell migration via the production of chemotactic cytokines, which further 

contributes to the airway repair (Shoji et al., 1989). Airway Smooth Muscle Cells (ASMCs), 

present between the trachea and the alveoli, control airway wall contraction and relaxation. 

These are governed by intracellular signalling (Hall, 2000), through which phospholipase C, 

adenylyl cyclase, and ion channel pathways control a series of homeostatic mechanisms. 

ASMCs play a critical role in asthma pathology, which involves increased bronchial SMC 
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mass and airway inflammation. It is therefore suggested that the airway hyper-responsiveness 

exhibited by asthma patients may be caused by ASMC abnormality (Borger et al., 2006). 

ASMC responses are affected by cytokines in both directions (constrictor or relaxant) and 

therefore demonstrate a degree of immune function (Hakonarson et al., 2001). 

1.2.7 Basement membrane 

The basement membrane is structurally composed of the extracellular matrix (ECM) proteins, 

anchoring filaments of laminin 5, collagen IV, and proteoglycans, and is found under the 

airway epithelium. In healthy bronchi, this layer is about 10nm (Jones, 2012). Further down 

(away from the epithelial cells), the composition is mainly made up of collagen III. 

1.3 Functions of the airway epithelium 

1.3.1 Epithelial barrier function and adhesion mechanisms 

As was described in the previous section, the airway epithelium serves primarily to protect the 

airways from external threats, including toxic gases, pathogens, viruses, bacteria and 

allergens, including pollen and dust mite antigens (Knight and Holgate, 2003). 

1.3.2 Mucociliary clearance and protective factors secretions 

Further to the airway epithelium’s protective role, secretory epithelial cells produce mucus, 

which traps foreign objects. Coordinated cilial beating then assists in transporting these out of 

the tract (Bals et al., 2004). Anti-oxidants and anti-bacterial agents, such as lactoferrin, 

lysozyme, and opsonins as well as anti-proteases and α1-Anti-trypsin such as tissue inhibitors 

of metalloproteinases are produced by epithelial cells (Velden and Versnel, 1998). 

1.3.3 Epithelial inflammatory potential 

Injury to the airway epithelium triggers a pro-inflammatory response. This causes the 

production of such mediators as TGF-β, cytokines, arachidonic acid products and including 

IL-8 and IL-6. 
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1.4 Gastro-oesophageal reflux 

1.4.1 Definition 

Gastro-oesophageal reflux (GOR) is, most of the time, a normal response caused when the 

lower oesophageal sphincter becomes relaxed and gastric contents travel up into the 

oesophagus. Generally, this is harmless and there are no symptoms (Herbella and Patti, 2010). 

Under a specific set of conditions however, GOR may become pathological, leading to gastro-

oesophageal reflux disease (GORD) (Morehead, 2009; Herbella and Patti, 2010). Vakil et al. 

define GORD as “a condition which develops when the reflux of gastric contents causes 

troublesome symptoms and/or complications” (Vakil et al., 2006). However, it is discussed 

that this definition does not have any quantitative that  can be used to measure the incidence 

and prevalence of the GORD (McCarthy, 2013). Heartburn and regurgitation are the primary 

symptoms of GORD, although since these are also associated with over eating and 

indigestion, this makes distinguishing chronic GORD more difficult. The following definition 

has therefore been proposed: “GORD is the incidence of heartburn or regurgitation once or 

more daily” (McCarthy, 2013). Classifications of GORD exist which are tighter still, 

including: heartburn or regurgitation without erosions on endoscopic examination (Non-

erosive Reflux Disease, NERD), or with erosions present (Erosive Reflux Disease, ERD). A 

range of risk factors have been identified in the development of GORD, including alcohol, 

tobacco, obesity, diabetes asthma, hiatus hernia, old age and pregnancy. Furthermore, even in 

non-obese patients, obstructive sleep apnoea is also identified as a risk factor (Morehead, 

2009).  

1.4.2 Diagnosis of GOR 

1.4.2.1 Endoscopy 

In addition to mucosal biopsies, visual investigation can indicate the severity of GORD 

(McCarthy, 2013). This method is also important in ongoing assessment of the disease, 

including checking for oesophagitis (by tracking morphologic changes in the squamous 

epithelium) and columnar lined oesophagus (CLO), caused by columnar metaplasia. CLO in 

particular can indicate the onset of oesophageal adenocarcinoma (aka Barrett’s Carcinoma). 

Endoscopy is therefore a vital investigative tool in identifying potential GORD-related 

oncologic complications (Lenglinger et al., 2006). 
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1.4.2.2 Ambulatory pH testing 

Ambulatory pH testing is an established standard method for monitoring GORD (Hirano, 

2006). This involves placing a probe 5cm above the lower oesophageal sphincter and 

measuring the length of time the pH is less than 4 (Lenglinger et al., 2006). For accuracy, 

some monitors use two probes, one proximal and one distal. Of course, non-acidic reflux is 

not detected using this method (Hirano, 2006). 

1.4.2.3 Impedance-pH monitoring  

When the reflux is non-acidic (or of low acidity), more sensitive methods are used. A 

technique involving combined multichannel intraluminal impedance and pH monitoring is 

able to measure all types of reflux as well as bolus transport (Figure 1-3) (Hong and Vaezi, 

2009). This is considered more accurate than the previously dominant method of 24h pH 

monitoring. 
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Figure 1-3: Impedance-pH catheter. The pH electrode is located 5 cm above the lower oesophageal sphincter 

(LES) and the distal electrode in the stomach, allowing impedance measurements at 3, 5, 7, 9, 15 and 17 cm 

overhead the LES (Tutuian and Castell, 2006). 

Ambulatory impendence monitoring has been in use since 1991 and is agreed as a reliable 

method for measuring GOR. An impendence probe is used, with electrode rings placed at 

various intervals to measure the refluxate electrical conductivity. This data, in addition to pH 

data yields information on exposure of the oesophagus to gastroduodenal contents and its 

acidity levels (Hong and Vaezi, 2009).  

Patients who presented with symptoms of reflux (heartburn and regurgitation), but for whom 

endoscopy revealed nothing, previously underwent oesophageal pH testing. However, since 

proton pump inhibitors became the dominant empirical method in diagnostic testing, more 

objective methods are now used for patients who are unresponsive to acid suppressants, prior 

to considering fundoplication (Hirano and Richter, 2007; Kahrilas et al., 2008). 

Where oesophagitis is observed visually, ambulatory 24-hour pH monitoring is considered 

acceptably sensitive (77%-100%) and specific (85%-100%). In cases where GORD cannot be 

verified by endoscope, the results are less easy to interpret (0-71% sensitive and 85-100% 

specific) (Kahrilas and Quigley, 1996). Impedance monitoring is more than 90% sensitive and 

specific, compared to both manometry and pH monitoring. This has led to consensus that 
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impedance monitoring is the best available method for testing the implications of reflux 

symptoms. Ambulatory pH testing may be considered an accurate test of oesophageal reflux, 

but is far less sensitive in cases of endoscopy negative GORD, which may indicate an acid-

sensitive oesophagus. Both devices are considered far less efficacious in patients who do not 

respond to proton pump inhibitor therapy (Sifrim et al., 2004). 

1.4.2.4 Bilitec monitoring 

When pH levels seem normal, Bilitec monitoring can be used in place of ambulatory pH 

testing (Lenglinger et al., 2006), to identify bile refluxate in the oesophagus and measure its 

concentration. This method is not without its disadvantages; refluxate can become trapped in 

the sensor and a special diet is required. Biomarkers in bronchioalveolar lavage fluid may be 

used to get around these factors (Hirano, 2006), but the method is generally unpopular among 

patients and is rarely taken up.  

1.4.2.5 Bravo capsule 

A more tolerable option is the Bravo Capsule (Medtronic, MN, USA) (Hirano, 2006). The 

capsule is applied to the lower oesophageal mucosa via either a catheter or endoscope and 

measures pH levels over about 24h, transmitting data to a wireless receiver. 

1.4.3 Composition of gastric juice 

Gastric juice is secreted by cells which have a structural arrangement referred to as ‘gastric 

pits’. These comprise several gastric glands and can be found all along the gastric mucosa. 

The juice itself is usually transparent and is made up of a mixture of: hydrochloric acid (HCl), 

mucin, lipase, pepsin, intrinsic factor, peptides, nucleic acids and electrolytes. Parietal cells 

secrete HCl, which maintains gastric conditions at between pH2-3. This is necessary for 

pepsin activation, which plays a defensive role against pathogens in the stomach and intestine. 

Gastric pH (hypochlorhydria) can be elevated by disease, bile reflux, or pharmaceuticals, 

which may causes bacterial overgrowth in the stomach. These bacteria can produce nitrite and 

nitroso-compounds, one of the causes in the atrophy-metaplasia-dysplasia carcinoma pathway 

(Lu et al., 2010). 
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1.4.4 Treatment 

Treatment options are intended to: provide symptom relief, oesophageal healing, prevent and 

manage other complications associated with GORD, and maintain oesophageal and mucosal 

remission (Fock and Poh, 2010) 

1.4.4.1 Lifestyle modifications 

All medications have side effects to a varying degree. Less severe cases of GORD can and 

should therefore be managed through lifestyle changes, including diet and weight-loss 

measures, bed-head elevation, smoking cessation and avoiding postprandial recumbency for 

at least 3h. It has been suggested, however, that in spite of the fact that smoking, citric acid, or 

fatty foods can raise oesophageal pH, GORD outcomes show no significant improvement 

when these factors are removed (Fock and Poh, 2010).  

1.4.4.2 Antacids 

Instantaneous, albeit temporary relief can be provided by antacids, which are widely 

accessible, but require frequent ingestion. However, they only treat the discomfort and not the 

causes of GORD (Herbella and Patti, 2010). Furthermore, some antacids, such as 

metoclopramide, can cause side effects, such as depression, drowsiness and involuntary 

spasms (Ganzini et al., 1993), as well as diarrhoea, constipation and interference with the 

absorption of other drugs (McCarthy, 2013).  

1.4.4.3 Acid suppression therapy 

Histamine-2 receptor antagonists (H2RAs) and proton pump inhibitors are two classes of 

medications which can result in acid suppression. 

1.4.4.3.1 Histamine-2 receptor antagonists 

H2RAs (e.g. cimetidine, ranitidine, famotidine and nizatidine) can heal mucosal damage and 

relieve symptoms, and so have significantly improved the control of GORD-related 

symptoms. Furthermore, the same efficacy as antacid treatment can be achieved with only a 

twice-daily treatment. However, they are less suitable for long-term treatments, due to the 

potential for tolerance (Hatlebakk and Berstad, 1996) and are also less effective in controlling 

acid secretion than PPIs (Katz and Tutuian, 2001). 
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1.4.4.3.2  Proton pump inhibitors (PPIs) 

PPIs have become established as the dominant therapy for gastric acid-related diseases 

(McCarthy, 2013). Patients who were on proton pump inhibitor (PPI) therapy had 

significantly reduced oesophageal acid exposure and a reduced number of reflux events; and, 

as antisecretory compounds, are more effective – and last longer - than Histamine-2 receptor 

antagonists (H2RAs) (Fock and Poh, 2010). Five PPIs are currently on the market: 

omeprazole, lansoprazole, rebeprazole, pantoprazole and esomeprazole. The risks associated 

with PPI are very low. However, levels of pepsin and bile were comparable in both patients 

who were on PPls and those that were not. This suggests that while PPI treatment can reduce 

gastric acid secretion, it cannot prevent gastric aspiration (Blondeau et al., 2008b) so, acid 

suppression alone may not be totally effective (Patel and Hurst, 2013). Acid suppression also 

has side effects, including: increased potential for: fractures; risk of infection; greater 

susceptibility to atrophic gastritis; hypomagnesaemia; Clostridium difficile-associated 

diarrhoea; as well as vitamin B12 and iron deficiencies (Bredenoord et al., 2013). 

1.4.4.4 Anti-reflux surgery 

Some GORD patients are appropriate candidates for anti-reflux surgery. This has been shown 

by longitudinal studies to enable better symptom control than medical therapeutic 

interventions (Fock and Poh, 2010). The Nissen fundoplication procedure is commonly 

performed on children with GOR (Georgeson, 2009), in which a 1.5-2cm fundus is wrapped 

around the oesophagus, using a bougie to control the tightness of the wrap. As a result, 

pressure at the lower oesophagus is increased, limiting the change of reflux occurring 

(Dallemagne et al., 1991). Patients may experience complications after surgery, such as 

dysphagia, post-vagotomy symptoms and gas-bloat syndrome. The Society of American 

Gastro-Enterological Surgeons (SAGES) has recommended, based on the high reoccurrence 

of GORD symptoms, that surgery should only be performed as a last resort; after other 

medical management options have been exhausted, in complicated circumstances (e.g. 

Barrett’s Syndrome), with atypical symptoms (e.g. asthma), or when age or medication 

expenses make management difficult (Dumonceau et al., 2013). 
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1.4.5  Extra-oesophageal reflux disease 

At a conference in 2006, the Montreal Consensus Group distinguished two types of GORD 

syndrome: oesophageal and extra-oesophageal. The latter is subdivided into either 

‘established’ or ‘proposed’ (Figure 1-4) (Vakil et al., 2006). When describing GOR that has 

breached the upper sphincter of the oesophagus to interfere with the laryngeal or pharyngeal 

mucosa (Figure 1-5), ENT specialists use the terms: extra-oesophageal reflux disease (EORD) 

or laryngopharyngeal reflux (LPR). LPR can result in a wide range of symptoms, which may 

cause concomitant symptoms to be overlooked (e.g. heartburn), which increases the 

complexity of diagnosis. In cases such as this, 24h pH monitoring and laryngoscopy are 

usually used (Kavitt and Vaezi, 2013). 

 

Figure 1-4: Classifications of extra-oesophageal syndromes linked to GORD in agreement with Montreal 

Consensus Conference (Vakil et al., 2006). 

  



13 

 

 

Figure 1-5: Extra-oesophageal pass from stomach to oesophageal. Laryngopharyngeal reflux results when 

refluxate reaches the vulnerable mucosa of the pharynx, larynx, oral cavity and nasal cavity (Patel and Hurst, 

2013). 

1.4.6 Aspiration 

When material, such as food, liquids, particles, blood, secretions of bacteria enter the airways, 

this is called aspiration (Raghavendran et al., 2011). Sometimes, small volumes of refluxate 

are inhaled into the lungs (microaspiration), which can lead to pulmonary parenchymal 

lesions. These cases are rarely associated with the more traditional respiratory symptoms and 

so are harder to diagnose. Consequently, microaspiration has been deemed a ‘silent’ 

phenomenon (Lee et al., 2010). 
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1.4.7  Duodenogastro-oesophageal reflux (DGOR) 

Refluxate may contain bile salts, pancreatic enzymes, stomach enzymes and duodenal 

contents, as well as HCl. The severity of oesophageal mucosal damage is heavily affected by 

these compounds, which are regurgitated through the pylorus into the stomach, then refluxed 

into the oesophagus. Bile acids have toxic effects on the colonic mucosa (Turjman and Nair, 

1981; Owen et al., 1984), hepatocytes (SchÖLmerich et al., 1984) and gastric mucosa 

(Gadacz and Zuidema, 1978; Gillen et al., 1988). However, their toxicity to the oesophageal 

mucosa is less well-researched (Nasr et al., 2013). A strong evidence base exists linking 

oesophageal acid exposure (OAE) to both mucosal damage and Barrett’s oesophagus and its 

associated complications (Legrand et al., 1990; Iftikhar et al., 1993; Takahashi et al., 2011). 

However, It has been suggested that excessive DGOR may also have a damaging effect on the 

gastric mucosa (Stern et al., 1984). Indeed, patients with a range of airway diseases were 

found to have increased bile acid concentrations in their BAL fluid. In comparison to 

aspiration of gastric contents, aspiration of bile acid may lead to non-cardiac pulmonary 

oedema, derived from the increased severity of pneumonitis. These findings are critical to the 

understanding of GORD, as they challenge the established idea that oesophagitis and other 

GORD symptoms were caused only by reflux of HCl. As a result of this misconception, the 

majority of therapies were aimed at gastric parietal cells, which produce gastric acid. A study 

of acid reflux (via pH monitoring) and reflux of duodenal juice (via bilirubin monitoring) 

among 53 GORD patients, found that two-thirds of the patients had a mixture of both types of 

reflux (Kauer et al., 1995). Furthermore, higher bilirubin levels were found in patients with 

Barrett’s metaplasia. These results provide a potential explanation for why PPI therapy is only 

partially successful in symptom control in some patients and why, despite PPI therapy, some 

patients have increased risk of developing Barrett’s oesophagus. 
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1.4.8 Relationship between lung disease and GOR 

Patients with advanced stages of lung diseases often exhibit GOR, suggesting that recurrent 

microaspiration – and consequently further lung injury may be partially caused by reflux 

(Allaix et al., 2013). No reliable diagnostic tool has yet been identified to measure the impact 

of aspiration on clinical outcomes (Meyer and Ganesh Raghu, 2013). Lung diseases can be 

caused by GOR either by a) neural reflex mechanism, in which reflux is limited to the lower 

oesophagus, or b) proximal GOR, in which refluxate breaches the upper sphincter of the 

oesophagus, causing injury to the upper airway. Furthermore, if aspiration occurs, this 

increases the risk of lung disease (Morehead, 2009). 

GOR has been implicated in the lung damage in Idiopathic Pulmonary Fibrosis (IPF) in 

patients with GOR and also hiatus hernia. GOR has also been implicated in a range of other 

chronic lung diseases included COPD, CF and asthma.  In these cases, aspiration may be a 

contributing  factor, rather than viral or autoimmune causes, as initially believed (Mays et al., 

1976). 

A number of key factors of GORD-related complications beyond the oesophagus have been 

suggested: In a study of 100 pathological reflux patients, a correlation was established 

between weak oesophageal peristalsis and slow clearance of the oesophagus, and symptoms in 

the respiratory system following reflux. The study concluded that inadequate oesophageal 

motility may indicate increased respiratory symptoms following reflux events. pH testing also 

indicates a sequential link between reflux and cough. Where the cough preceded a reflux 

event, this is assumed to cause an increase in abdominal pressures. When reflux precedes a 

cough, it is believed that this causes the cough. Reflux symptoms including heartburn, 

regurgitation and dysphagia have limited correlation with reflux measured via pH (Pellegrini 

et al., 1979). 

Decreased oesophageal motility was found in 16 out of 24 systemic sclerosis patients (67%) 

and this was associated with impaired lung compliance (Denis et al., 1981). Another study of 

patients with systemic sclerosis found that 13 were affected by reflux, which was implicated 

in their associated pulmonary problems. Patients underwent endoscopy, mucosal biopsies at 

both ends of the oesophagus, pulmonary function tests, oesophageal manometry and pH 

monitoring probes. Peristalsis was not detected in 77% of patients. Of these, some patients 

exhibited the presence of acid in their upper oesophagus. Based on these findings, it was 

suggested that the pulmonary complications associated with systemic sclerosis may be due to 
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chronic aspiration of gastric juices. However, it is worth acknowledging that many of these 

patients exhibit end-stage oesophageal disease symptoms with zero peristalsis – so this study 

does not necessarily apply to the average GORD patient (Johnson et al., 1989). 

A study of 70 GORD patients aimed to find a correlation between coughing and oesophageal 

reflux, using a dual-sensor pH probe. The study’s hypothesis proposed that when cough and 

distal reflux were concomitant, then a vagal reflux arc due to oesophageal irritation was 

responsible for the accompanying symptoms. However, when reflux went further, reaching 

the upper oesophagus, then the cough was more likely to be caused by microaspiration, and 

this was more prevalent in patients with low oesophageal motility (Patti et al., 1993). 

Previously, this data had been limited to individual case studies. However, the association 

between respiratory complications and reflux in population settings was confirmed by El-

Serag and Sonnenberg. Using a case control study of 200,000 US veterans, it was found that 

where erosive oesophagitis was present, indicating severe GORD, there was a 1.36 odds ratio 

(OR) of pulmonary fibrosis, a 1.28 OR of chronic bronchitis and a 1.22 OR of chronic 

obstructive pulmonary disease (COPD). This data, despite not proving a certain causal effect, 

nevertheless makes a connection between GORD and advanced lung disease (ALD) (el-Serag 

and Sonnenberg, 1997; Sweet et al., 2009). Another study on the association between reflux 

and O2 desaturation used pulse oximetry monitoring and a 24h pH impedance. The study 

found a positive correlation between reflux episodes at both ends of the oesophagus and with 

O2 desaturation. These findings could enable more accurate ways to predict reflux episodes. 

These events were found to decrease following anti-reflux surgery (Wilshire et al., 2013). 
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1.5  Bile Acids 

Hepatocytes in the liver synthesise bile acids, which serve digestive and secretory functions, 

are water-soluble and aid lipid absorption in the small intestine. Using cholesterol as a starting 

point, a number of pathways are responsible for the production of bile acids (Monte et al., 

2009). Primary bile acids are first synthesised by the catabolism of cholesterol into cholic acid 

(CA) and chenodeoxycholic acid (CDCA). Bacterial enzyme action in the colon aids primary 

BA deconjugation into free bile acids and further enzymatic action converts CA into 

deoxycholic acid (DCA) and CDCA into lithocholic acid (LCA). More specifically, the 

hydroxyl (OH) group is detached from the 7th carbon atom by the enzyme 7 alpha-

dehydroxylase. DCA and LCA are moved to the canaliculi of the liver through the portal vein 

to join the new primary BAs and re-conjugate with glycine or taurine. This is a closed-system 

recycling process, involving the bile flow from the liver, via the biliary tract to the intestine 

then back to the liver. This process of ‘enterohepatic circulation’ enables recycled bile to be 

stored in the gall bladder for release after meals. This usually happens in two bursts, resulting 

in up to eight bursts per day (Jenkins and Hardie, 2008). 

 

Figure 1-6: The classical pathway for bile acid (BA) formation. In human hepatocytes, the two primary BAs, 

cholic acid (CA) and chenodeoxycholic acid (CDCA), are synthesised as a result of cholesterol metabolism. CA 

and CDCA differ in their hydroxylation at C-12~. These primary BAs are usually conjugated to glycine or 

taurine before they enter biliary flow. Once they reach the digestive tract, microbes in the gut can remove the 

conjugated glycine or taurine, transforming primary BAs into secondary BAs via dehydroxylation at C-7. CA is 

transformed into deoxycholic acid (DCA) and CDCA is transformed into lithocholic acid (LCA). Most BAs then 

re-enter enterohepatic circulation returning to the liver where they are re-conjugated to taurine or glycine. Image 

from: [https://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Bile_acid_differentiation.svg/ 655px-

Bile_acid_differentiation.svg.png [accessed on 11 September, 2016]. 
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Most circulating bile acid is conjugated to glycine or taurine. Unconjugated BAs tend to 

remain in the colon, where the glycine or taurine subunits are removed via microbial 

modification (Monte et al., 2009). Gastro-oesophageal reflux disease (GORD) patients 

undergoing therapy which targets acid suppression can exhibit overgrowth of bacteria in the 

intestine. In turn, this causes BAs to deconjugate, resulting in a greater number of 

unconjugated BAs in circulation (Figure 1-6) (Solaas et al., 2000).  

1.5.1 Evidence for the presence of Bile Acid in the airway  

Reports of BA presence within the airway have increased over the last decade and this has 

similarly been associated with lung function decline. BAs may reach the lung in one of two 

ways; they may be aspirated during reflux episodes, or via increased circulatory BAs in blood. 

In a porcine lung model, BA aspiration caused severe chemical pneumonitis, and rabbit 

models, injected BAs caused pulmonary damage (Kaneko et al., 1990; Porembka et al., 1993; 

Perez and Briz, 2009).  

Gastroesophageal reflux (GOR) and subsequent BA aspiration causes lung injury in adults. In 

transplant patients, immunosuppressive drugs and iatrogenic vagal nerve injury may induce 

GOR, or it may already be present prior to lung transplant (D’Ovidio and Keshavjee, 2006). 

Following lung transplantation, BA aspiration may be increased and has been implicated in 

the onset of bronchiolitis obliterans syndrome (BOS). BOS, defined by a loss of lung function 

can be associated with inflammatory cells in and around the airway and also fibrosis 

(D’Ovidio et al., 2005). BOS patients who have also received a lung transplant have been 

reported to exhibit greatly increased BA levels in BAL fluid, up to 32 µmol/L compared to 

normal level which is from 0 to 16 µmol/L (D’Ovidio et al., 2005).  

BA aspiration is injurious to the pulmonary system (el-Serag and Sonnenberg, 1997; Wilshire 

et al., 2013). Cell membranes are particularly susceptible to bile. In vitro studies on Type II 

pneumocytes have demonstrated this (D’Ovidio et al., 2005; D'Ovidio and Keshavjee, 2006). 

BAs also have a detergent effect. In the lungs however, damage to the mucus barrier may 

result in disruption to the lipids in the surfactant. Consequently, the type II pneumocytes, 

whose primary role is the production of surfactant protein and phospholipids are particularly 

prone to damage. 
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A groundswell of research is emerging which implicates the role of BA reflux in Barrett’s 

oesophagus and cancer (Attwood et al., 1992; Stamp, 2002). Increased bile exposure was 

found in Barrett’s metaplasia patients, as well as heightened levels of secondary BAs within 

their refluxate (Nehra et al., 1998). By comparison, Barrett’s patients with more advanced 

conditions, such as early adenocarcinoma exhibited increased BA exposure (Stein et al., 

1999). 

Studies of rabbits have shown that macrophage function can be inhibited by bile acids which 

affect lipopolysaccharide (LPS) mediated cytokine production and phagocytosis. Bile acids 

may also cause down-regulation of Interferons (IFNs)-mediated signal transducers. By 

implication, it has been inferred that innate immunity receptors on both monocytes and 

macrophages may be generally down-regulated (D’Ovidio and Keshavjee, 2006). If this is the 

case, then the risk of local infection may be increased, triggering an up-regulation of a more 

aggressive adaptive immune response (D’Ovidio and Keshavjee, 2006). This may be further 

exacerbated by damage to the surface epithelial cells (D’Ovidio et al., 2005). Bile acids have 

also been associated with elevated neutrophils, IL-8, bacterial and fungal presence, decreased 

pulmonary surfactant and higher inflammatory scores on transbronchial biopsy (D’Ovidio and 

Keshavjee, 2006; Blondeau et al., 2008b). 

Studies into the pathogenesis of cholestatic liver injury in rats, hamsters and rabbits have 

identified the monohydroxy- bile acid, LCA, as hepatotoxic (Palmer and Ruban, 1966; Miyai 

et al., 1977; Hofmann, 1999b). The research into LCA-induced cholestasis has yielded 

important understandings of: bile canalicular membrane biochemistry (Kakis and Yousef, 

1978); low solubility of LCA causing crystalline plug formation (Miyai et al., 1977); and 

greater knowledge around the transport of canalicular export pumps to and from the 

canalicular membrane (Kubitz et al., 2004). 

Cystic Fibrosis (CF) causes acid GOR in both children and adults, which can damage and 

compromise  pulmonary functioning (Robinson and DiMango, 2014). Studies of CF patients 

have detected bile acids in the lower airway via tandem mass spectrometry. Their presence 

poses a threat of injury even after lung transplantation (Brodlie et al., 2015). In chronic 

bronchitis, airway wall destruction and the build-up of intraluminal secretions also lead to 

reduced lung function in CF patients (Rowe and Clancy, 2006). As a consequence, the need 

for antibiotics and bronchodilators increases and this may further affect the gastric and 

duodenal flora and may impair lower oesophageal sphincter (LES) function, leading to the 
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worsening of GOR (Blondeau et al., 2010). Bile acids have been found in the saliva of a third 

of child CF patients (Blondeau et al., 2010), indicating a potentially heightened aspiration 

risk. Studies have never clarified whether GOR is a primary phenomenon of CF, or secondary 

to cough or physiotherapy. The link between this and GOR, aspiration and CF-related 

respiratory systems is still under debate (Vic et al., 1995; Blondeau et al., 2010).  

Reflux-related aspiration has also been diagnosed through analysis of sputum BAs (Perng et 

al., 2007). GOR patients were made to produce sputum, which was then analysed to compare 

the concentrations of BA and TGF-beta 1 levels. It was found that GOR patients had higher 

bile acid concentrations in comparison to controls (p<0.005), which also correlated to TGF-

beta 1. TGF-beta 1 can play a role in fibroblast proliferation. It has been found recently that 

over half of CF patients have BAs in their sputum (Pauwels et al., 2012). 

GOR in children has been linked with wheezing and chronic coughing (Bauman et al., 1996). 

Neuro-disabled children often exhibit high incidences of GOR and are often admitted to 

hospital due to recurrent respiratory problems (Trinick et al., 2012). In these cases, aspiration 

may occur either directly, or result from reflux. Nevertheless, there remains some uncertainty 

around the relationship between GOR, aspiration, and respiratory symptoms.  Increased BA 

levels have been found in ventilator-assisted pneumonia (VAP) patients, indicating that 

neutrophilic inflammation in patient airways may be caused by CDCA-induced IL-8 

production via the activation of mitogen-activated protein (MAP) kinases (Wu et al., 2009). 

Recently, a study conducted by McDonnell assessed the inflammatory and cytotoxic effects of 

chenodeoxycholic, cholic, deoxycholic and lithocholic acids at concentrations 0, 12.5, 25, 50 

and 100 µmol/L showing they present a challenge to human bronchial epithelial cells (HBEs).  

IL-8 was measured by ELISA within culture supernatants, wherein the viability of the cells 

was analysed using MTT. It was also found that exposure to BA reduced the viability of the 

cells in a concentration-dependent manner. The BA-induced IL-8 release was more significant 

at lower acidic levels up-to the point of full cell deterioration. Given these results, this model 

would suggest that BA cytotoxicity within the pulmonary epithelium are affected by acidity 

as well as being dependent on the concentration level (O'Toole et al., 2015).  

  



21 

 

Song et al (2011) have reported that in human oesophageal epithelial cells conjugated bile 

acid are potent inducers of MUC5AC expression, a mucin that is usually only produced in the 

stomach and tracheobronchial epithelium. They demonstrated that the conjugated bile acid 

glycochenodeoxycholate, taurocholic acid, glycocholic acid and taurodeoxycholic acid, which 

are major components of bile refluxate in the oesophagus, are strong inducers of MUC5AC 

mucin expression in the oesophageal cells. Since MUC5AC is an important mucin in the 

airway, this finding may be relevant for understanding how bile acid could affect mucin 

secretion and mucociliary clearance in the lung (Song et al., 2011).  

There is considerable variability in the levels of detection of bile acids in reflux studies. This 

is not only due to the different methods of detection but variability between individuals and 

the time of day samples were collected. A common assay is the 3α hydroxylase method 

described by Fausa & Skalhegg (Fausa and Skålhegg, 1977). This assay is not affected by pH 

but the presence of food or colourants can interfere with results (Collins et al., 1984). Mass 

spectrometry assays are useful method. However, kits developed to look at pathological levels 

in blood may not be suitable for detection of the lower levels found in aspiration. 

There is considerable variability in the lower limit of detection of mass spectrophotometric 

assays; Collins et al suggested 62.5μmol/L (Collins et al., 1985), Klokkenburg claims 5μmol/l 

(Klokkenburg et al., 2009), Biostat, who produce the commercially available assay claim a 

lower limit of detection 1μmol/L and the Leuven group have claimed an accuracy of 

0.2μmol/L  (Blondeau et al., 2008a). These levels are lower than serum bile acid levels 

(<8μmol/L) (D’Ovidio et al., 2005). One group have found this type of assay to be unreliable 

(Gotley et al., 1990). Certain operations can affect the concentration of intra-gastric bile acid 

concentrations; 90% of the normal population will have intra-gastric bile acids concentrations 

of less than 250μmol/L (Gotthard et al., 1985). Intra-gastric levels up to 34,260μmol/L have 

been reported after the formation of a gastro-jejunostomy (Watt et al., 1984). 

Duodenogastric reflux can occur early in the morning or following a meal (Klokkenburg et 

al., 2009). Oesophageal bile acid levels which are considered normal – even in Barrett’s 

oesophagus – are between 0 and 200μmol/L and very rarely exceed 1000μmol/L. No bile 

acids are detected at all in about 25% of patients with reflux (Gotley et al., 1991). If bile acids 

are detected above stomach level, this indicates duodenogastric reflux, in which both bile and 

gastric reflux are combined, making for a weak-acid refluxate (pH 4-7). 
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Individuals who fast have exhibited serum bile levels of between 1-10µM, although these 

levels are known to spike under certain conditions, such as food ingestion, or intrahepatic 

cholestasis of late pregnancy (ICP). The latter is related to a hormone imbalance, which 

causes BA clearance from serum to be less effective. If ICP is left unchecked, this may cause 

foetal BAs to accumulate, which can be dangerous. In ICP, bile acid concentrations in the 

bloodstream can reach 40-60 µM in the mother and 60-120µM in the new born (Zecca et al., 

2004; Zecca et al., 2008; Keely, 2010). ICP new born exhibiting respiratory distress 

syndrome (RDS) have been found to have BAs in their BAL, which was not found in non-

RDS controls (Zecca et al., 2008). BAs are taken up for circulation, indicated by increased 

serum BA levels, then reach the lung. 

Due to the lack of reliable assay techniques, there is a paucity of in-depth studies on specific 

types and levels of BA in lungs and airways. Indeed, BAL analysis has been the most popular 

form of study so far. This method has inherent problems as it involves perfusion of the 

airways with 100-200 ml of fluid (180ml common), resulting in BAL appearing more dilute 

in terms of BAs. Furthermore, out of the many different conjugations of BA, it is not yet 

known which type is most common in the lungs. Age, diet or medication can also have an 

effect on the type of BA in circulation and can alter taurine-conjugated secondary BA ratios. 

Pathogenic colonisation of the airways may also cause conjugated primary BAs to degrade, 

thereby increasing the levels of unconjugated secondary BAs in the lung. Most research 

therefore has concentrated on the presence in the airways of the major BA forms in 

circulation, which are CA, CDCA or DCA (Perng et al., 2008; Zecca et al., 2008; Aseeri et 

al., 2012).  

1.5.2 Bile Acid receptors (BARs) 

BARs are responsible for regulating the homeostasis of BAs. They are found throughout the 

enterohepatic system and include the G-protein coupled receptor (TGR5) and the Farnesoid X 

receptor (FXR). Macrophages  including liver Kupffer cells and T-lymphocytes also have 

BARs and indeed, FXR is believed to have a counter-regulatory effect on such cells (Renga et 

al., 2009; Vavassori et al., 2009). For example, the presence of FXR on macrophages 

suppresses IL-6 and IL1β production (Vavassori et al., 2009), suggesting a modulatory role 

for BARs in the immune system. If this is the case, then this may have  a bearing on the role 

of inflammation in a number of GOR-related disorders, such as Barrett’s oesophagus or 
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chronic lung allograft rejection, which presents clinically as obstructed lung function or BOS 

(Ward et al., 2005; Hodge et al., 2007). 

1.6 Inflammation  

Following mechanical or chemical trauma, or an infection, inflammation is the body’s 

response and involves a broad range of physiological reactions, such as: enhanced release of a 

range of cytokines which cause the activation and migration of leukocytes, plasma protein 

seepage, proximal vasodilation and distal constriction of blood vessels. The role of 

inflammation is vital to pathogen clearance and wound healing. Visible symptoms include 

swelling and redness, as well as increased body temperature and pain. Monocytes 

(macrophages are monocyte that have entered tissue)  and neutrophils travel towards the 

inflamed tissue (Malmström et al., 2013). 

1.6.1 Cytokines and chemokines  

Structural cells and immunocytes, such as epithelial and endothelial cells, as well as 

fibroblasts, release proinflammatory cytokines and chemokines. These are released in 

response to a range of stimuli, such as damage-associated molecular patterns (DAMPs) and 

pathogen-associated molecular patterns (PAMPs), nitric oxide (NO) and other cytokines. 

Cells communicate on both the paracrine and autocrine levels via cytokines, which include 

peptides, proteins and glycoproteins. These are either pro- or anti-inflammatory, or they may 

also serve a chemotactic or growth function (Borthwick et al., 2013). 

1.6.2 Main cytokines implicated in chronic inflammatory lung diseases 

Many studies have documented that  IL-6, IL-8 and GMCSF play a role  in the regulation of 

airway inflammation and pathophysiology of lung disease  (Ruiz et al., 2002). In vitro studies 

have shown that these pro-inflammatory cytokines inhibit apoptosis of granulocytes (Brach et 

al., 1992; Lee et al., 1993; Leuenroth et al., 1998; Castro-Alcaraz et al., 2002). In addition IL-

8 has been of specific interest in studies investigating the pathogenesis of airway diseases , 

due to its important effects on neutrophil cell biology (Keatings et al., 1996). 
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1.6.2.1 Interleukin-6 (IL-6) 

IL-6 is a 22-27 kDa protein with a variable molecular mass according to its glycosylation state 

and whose cytokine function may be either pro- or anti-inflammatory (Shain et al., 2009). As 

a proinflammatory, IL-6 plays a role in the activation of monocytes, T-cell differentiation and 

B-cell maturation. It also serves as a pyrogen, inducing fever in response to infection. Non-

leucocytes, including fibroblasts, astrocytes, endothelial, epithelial and malignant cells also 

secrete IL-6 (Rincon and Irvin, 2012). As an anti-inflammatory cytokine, IL-6 can upregulate 

the production of interleukin-1 receptor antagonist (IL-1RA) and IL-10, as well as inhibit the 

activity of IL-1 and tumour necrosis factor alpha (TNF-α). Macrophages, fibroblasts, T-cells 

and muscle cells are all able to secrete IL-6 (Hirano, 1998). 

Research into lung diseases is beginning to identify IL-6 as a key player. Previous research 

has focussed on other cytokines such as IL-4, IL-5, IL-13 and IL-17, while IL-6 was 

overlooked, simply being considered a by-product of airway inflammation. Recently however, 

IL-6 has been implicated in the development of both asthma and possibly COPD. It has 

therefore taken centre stage in the research and treatment of these and similar chronic lung 

diseases (Rincon and Irvin, 2012). 

1.6.2.2 Granulocyte-macrophage colony-stimulating factor (GM-CSF)  

GM-CSF is synthesised by fibroblasts, macrophages, endothelial, epithelial and mast cells. It 

is a 14 kDa glycosylated protein which forms homodimers that play a role in the 

transformation of stem cells into granulocytes (such as eosinophils, basophils and 

neutrophils), as well as monocytes. Viral, bacterial, fungal or protozoal infections cause blood 

serum concentrations of GM-CSF to increase. Increased levels have also been observed in 

tumour-bearing animals and also following irradiation of bone marrow. GM-CSF production 

– observed in vitro – is stimulated by IL-1 and TNFα. In bone marrow, GM-CSF is involved 

in haematopoiesis (Lim et al., 2013). 

The granulocyte macrophage colony-stimulating factor receptor, which is also called cluster 

of differentiation 116 (CD116), is used for GM-CSF signalling. CD116 is a dimer produced 

by myeloblasts and neutrophils. It comprises an α chain, specific to CD116, whose role is to 

recognise and bind to ligands, and a β chain, responsible for signal transduction – the β chain 

is also part of the IL-3 and IL-5 receptors. Α chain ligand binding causes the α and β subunits 

to dimerise, as well as phosphorylation of the β chain on tyrosine residues via JAK kinases. 
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An Shc adaptor protein associated with the phosphorylated β subunit, leads to activation of 

other downstream signalling molecules (Broughton et al., 2012).  

As a strong chemoattractant for neutrophils and macrophage activator, GM-CSF plays a key 

role in oxidative metabolism as well as stimulating both phagocytic and microbicidal 

responses, improving the cytotoxicity of macrophages (Sorgi et al., 2012) and neutrophils 

(Katano et al., 2010).  

GM-CSF is also heavily involved in host defence and surfactant homeostasis regulation in the 

lung. Deficiency or signal pathway disruption of GM-CSF in mice potentially leads to 

impaired macrophage capacity, phagocytosis, cell adhesion and pathogen killing, which can 

lead to pulmonary alveolar proteinosis (PAP) (Ohashi et al., 2012). 

1.6.2.3 Interleukin 8 (IL-8) 

IL-8 is produced by mesenchymal, airway and parenchymal cells in the lungs. It stimulates 

angiogenesis, regulates leukocyte trafficking and causes mucin secretion (Strieter, 2002). IL-8 

production indicates the occurrence of damage. BO positive patients were found to have 

increased IL-8 levels, although the stage of BO development was not found to make a 

difference to the IL-8 levels (D'Ovidio et al., 2005). The lowest IL-8 levels in BAL were 

found in control subjects; higher levels were found in stable lung transplant patients; and the 

highest levels were detected in BOS patients (Zheng et al., 2000). IL-8 is produced as a 

damage response by fibroblasts, alveolar macrophages, smooth muscle, epithelial and 

endothelial cells. In this context, IL-8 is a neutrophilic chemoattractant and an angiogenic 

factor.  
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Figure 1-7: The airway epithelium. In response to injury, epithelial cells produce inflammatory chemokines and 

cytokines that recruit and activate immune cells. These cells include: neutrophils, eosinophils, macrophages, T-

lymphocytes and natural killer (NK) cells which are activated to amplify host responses and regulate innate 

immunity ( Adapted from Varielle., 2011 (Vareille et al., 2011) ). 
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1.7 Airway mucus  

Airway mucus forms a physical protective barrier between the epithelial surface and the 

external world. Mucins – either secretory or tethered to a membrane – are glycoproteins 

which form part of the constituents of respiratory mucus, along with lipids, proteins, ions and 

water. Submucosal tracheobronchial glands and epithelial goblet cells secrete these 

components to form mucus. Mucus is a significant part of the innate immune system as well 

as mucociliary defence. It is antibacterial and has a humidifying effect in inhaled air. It also 

physically traps and ejects particles, pathogens and other foreign bodies from the respiratory 

tract (Rose and Voynow, 2006). When inhaled particles or microbes reach the lung they 

become attached to the mucus gel layer and are cleared from the lungs by the action of the 

cilia moving the mucus layer up and out of the lungs (Pearson et al., 2016). When mucus 

production is inhibited or disordered, this is implicated in a number of diseases, including CF, 

COPD and asthma. Overproduction of mucus leads to chronic airflow limitation, neutrophilia 

and suppuration. Lung transplant patients have sometimes exhibited disordered mucus 

homeostasis (Veale et al., 1993), although further research is required into this subject.  

Coughing and ciliary activity are the primary governors of mucus homeostasis, and lungs 

should contain very little or no mucus (Kim, 1997). Various complications may arise from 

hypersecretion, such as obstruction, infection, discomfort and higher mortality rates. Excess 

mucus may also transport foreign particles into the bronchial tree, rather than ejecting them 

from the airway (Kim, 1997). Diseases of the respiratory tract lead to increased mucus 

secretion, which can cause obstruction and in fact, the inflammatory/immune response can 

lead to airway remodelling (including goblet cell hyperplasia) and mucin gene regulation 

(Rose and Voynow, 2006). 

1.7.1  Effect of aspiration 

There is a dearth of research on the effects of aspiration on the mucus layer. Aspirated pepsin 

and bile salts can lead to increased vulnerability of the epithelium by disrupting the mucus 

layer which protects it. One consequence of this is increased mucus production, which may 

lead to airway obstruction. 

Mucus is made up of mucins, which are a family of macromolecules (usually > 2x106 Da), 

high in carbohydrate (50-90%). These complex glycoproteins exhibit heavy glycosylation, of 

which O-glycosylation causes numerous tandem repeats of proline, serine and/or threonine. 

The MUC backbone is made up of between 1.1 and 15 kilobases and can contain up to 11,000 
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amino acids, which make up 10-50% of the weight of the MUC (Rose and Voynow, 2006). At 

least 21 different types of mucin are produced by humans. In human airways, predominant 

mucins include MUC5AC, produced by goblet cells and MUC5B, produced by glandular 

mucosal cells. MUC7 is generated by both mucosal and serosal cells in the salivary glands, 

although saliva itself contains predominantly MUC5. Localised serous cells in the submucosal 

glands produce MUC5 in the larger airways of 15-20% of healthy individuals. As a result, 

mucociliary clearance and coughing are ineffective in terminal and respiratory bronchioles. 

Two layers combine to form the airway mucus barrier: the periciliary layer (PCL) overlies the 

cells and the cilia, and is around 10 μm thick. Sitting on top of this is the mucus gel layer, 

which is around 60μm thick. It was previously believed that the PCL was a low viscosity fluid 

that allowed free movement of the cilia. However, it has been shown by Kesimer et al. 

(Kesimer et al., 2013) and Button et al. (Button et al., 2012) that mucins (MUC5AC and 

MUC5B) from the gel layer do not enter the PCL, although keratan sulphate, a 

glycosaminoglycan associated with membrane-bound mucins, MUCs 1, 4 and 16, is found in 

the PCL. Furthermore, MUCs 4 and 20 were expressed on the cilia, whilst the goblet cell 

surface exhibited MUC16, with MUC1 in the microvilli. The goblet cells appeared to have 

broad pillars of MUC16 extending through the PCL and into the gel layer and because 

MUC16 is co-released with MUC5B, it has been speculated that these pillars may be a 

mechanism for channelling MUC5B into the gel layer.  

1.7.2 Mucus secretion 

Mucus secretion can be caused by cytokine and leukocyte secretion. Mucins are produced 

under a range of circumstances, including stimulation by smoke, bacteria, matrix 

metalloproteinases, lipopolysaccharide, reactive oxygen species, neutrophil elastase, growth 

factors, triphosphates (cell injury markers) and bacterial by-products. These may have a direct 

effect or they may cause leukocyte stimulation (Kim, 1997; Jackson, 2001). 

Lipopolysaccharide has been shown in vitro, to increase MUC5AC, MUC5B and IL-8. These 

findings implicate goblet cells in playing a key role in mucosal immunity (Smirnova et al., 

2003). Disruption of these regulating factors can cause hypersecretion via the secretory 

cascade within minutes. This can be injurious, leaving the lungs vulnerable to damage or 

infection (Rose and Voynow, 2006). 
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1.8 Epithelial to Mesenchymal Transition (EMT  (  

1.8.1 What is Epithelial to Mesenchymal Transition (EMT)?  

EMT allows epithelial cells to acquire a mesenchymal phenotype via multiple biochemical 

changes. This elevates its capacity for migration, resistance to apoptosis, invasiveness and 

boosts extracellular matrix (ECM) component production (Figure 1-8) (Kalluri and Neilson, 

2003). 

 

Figure 1-8: The changes in epithelial cells during EMT. EMT includes a change of a polarized epithelial cell 

into a movable and ECM component secreting mesenchymal cell (Kalluri and Weinberg, 2009). 

The EMT comprises three different subtypes:  

Type 1: Occurring during implantation, embryogenesis and organ development;  

Type 2: Linked with tissue regeneration and organ fibrosis;  

Type 3: Linked with cancer development. 

In summary, type 1 EMT can lead to the generation of secondary epithelial cells by forming 

mesenchymal cells, which may undergo Mesenchymal Epithelial Transition (MET). 

However, there is no link between this and any circulatory proliferation of an invasive 

phenotype. Type 2 EMT however, generates fibroblasts and similar cells related to the post-

inflammatory repair system and tissue reconstruction. It stops when the inflammation is 

subdued. If inflammation continues unabated, then so does the type 2 EMT; fibroblasts 
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continue to be generated and organ fibrosis and destruction may ensue. Type 3 EMT is found 

in cancer cells, enabling them to metastasize and invade (Kalluri and Weinberg, 2009). 

1.8.2 Molecular Markers 

Mesenchymal properties are gained only after the epithelial cell has passed through a number 

of stages. Further to this, markers on the epithelial cell, including E-cadherin and cytokeratins 

are expressed at a lower rate. These play a role in maintaining structural integrity as well as in 

intercellular contact. When adhesion proteins are no longer expressed, cellular organisation 

breaks down, resulting in enhanced fibroblastic protein expression, including fibronectin and 

vimentin (Ward et al., 2005). 

1.8.2.1 E-cadherin  

Of the epithelial cell markers, E-Cadherin is a major structural protein. It plays a significant 

role in intercellular adhesion and in adherens junction maintenance. One of the primary EMT 

events is the inhibition of E-cadherin expression, which is caused by a number of EMT-

inducing transcription factors (Daniele et al., 2016). The adherens junctions define apico-

basal polarity and are located at the basolateral membrane. Homotypic interactions, which are 

calcium-dependent, occur in the extracellular tail of adherens junctions, serving to connect 

adjacent epithelial cells. At the same time, E-cadherin has a cytoplasmic component, which 

mediates mechanical stability through interaction with the actin and microtubule 

cytoskeletons through linked β-, α-, ᵧ- or p120-catenin proteins (Schmalhofer et al., 2009) . 

E-cadherin expression also plays an indirect role in β-catenin or NF-κB transcription (Solanas 

et al., 2008). It has been established that these proteins are involved in EMTs during tumour 

invasion and that E-cadherin prevents these from reaching the nucleus, thereby suppressing 

their transcriptional activation role (Brabletz et al., 2005; Maier et al., 2010). 

Due to its significant role in both cell adhesion and also EMT-related down-regulation, it is 

suggested that loss of E-cadherin may be used as a prognostic marker for the progress of 

cancers (Fendrich et al., 2009; Tryndyak et al., 2010; Hong et al., 2011), although it does not 

necessarily indicate the risk of mortality (Ucvet et al., 2011). 
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1.8.2.2 Cytokeratins  

Epithelial markers, otherwise known as Cytokeratins, are intermediate filaments that are 

predominantly expressed by epithelial cells: within these are a wide array of proteins that vary 

in affinity, isoelectric pH values and molecular weight (Kirfel et al., 2003). The expression of 

cytokeratins varies among different epithelia types in their different developmental stages, 

and may also be used as an adjunctive tool for histological diagnosis and epithelial 

classification (Chu and Weiss, 2002; Azevedo et al., 2008). ΕΜΤ is a process whereby 

epithelial cells acquire a mesenchymal phenotype and lose their epithelial characteristics.  The 

invasive and metastatic potential of these cells is subsequently increased by EMT (Guarino, 

2007). The EMT process is characterised by the upregulation of mesenchymal markers such 

as fibronectin and vimentin, and the downregulation of epithelial markers such as E-cadherin 

and cytokeratin (Kolijn et al., 2015).   

1.8.2.3 α-smooth muscle actin (α-SMA) 

α-SMA   ) Mesenchymal markers(  has been described as a smooth muscle cell differentiation 

marker (Skalli et al., 1989). EMT-related differentiation and myofibroblasts have been linked 

with increased α-SMA expression, allowing for cell population identification and for EMT 

process assessment in fibrosis (Chai et al., 2003; Wu et al., 2007). α-SMA expression 

involves a small GTPase Rho and its effector, Rho kinase, which are also associated with 

fibrosis-associated EMT, particularly in cytoskeleton reorganisation (Masszi et al., 2003). 

This manifests through stress fibre formation, which are contractile and tension exerting actin 

filaments that play a key role in cell motility (Alberts et al., 2002). 

1.8.2.4 Fibronectin 

Fibronectin )Mesenchymal markers( is involved in cell adhesion (Alberts et al., 2002). A 

glycoprotein, it forms part of the extracellular matrix and is recognized by integrins. It is 

protected, in either it’s soluble or fibrillar form, by Fibroblast-Specific Protein 1 (FSP1) 

expressing cells and plays a critical role in cell attachment and migration, metastasis and 

cytoskeletal assembly. EMT-inducing conditions lead to enhanced fibronectin production and 

it can therefore be used as a marker of EMT (Strutz et al., 2002). 
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1.8.3 Transforming Growth Factor-β (TGFβ) induction of EMT 

Within a range of cell types, including epithelial, endothelial and hematopoietic cells, the 

inhibition of cell proliferation can be caused by the multi-functional cytokine, TGF-β. As well 

as these effects, it is also responsible for inducing a variety of extracellular matrix proteins, 

and subsequently the stimulation of tissue fibrosis. 

However, within the pulmonary microenvironment, the chronic overexpression of TGF-β 

often results in fibrosis (Samet, 2000; Willis and Borok, 2007). In areas where a lung tumour 

does become established, this often leads to the dysregulation of the TGF-β signalling 

cascade, such that an increase in the manufacture of TGF-β contributes to potent EMT 

induction, apoptosis resistance and immune evasion (Roberts and Wakefield, 2003; 

Massagué, 2008). TGFβ in EMT in vitro studies have been demonstrated to down-regulate 

epithelial markers, including cytokeratins and E-cadherin. Conversely, the same studies have 

revealed the regulation of mesenchymal markers, such as α-smooth muscle actin, N-cadherin, 

fibronectin and vimentin (Moustakas and Heldin, 2012).  

As TGFβ mediates EMT via the activation of Smad2 and Smad3, this in-turn mediates EMT 

(Piek et al., 1999; Valcourt et al., 2005), and via the Smad pathway, HMGA2 is also 

regulated, which leads to the elicitation of EMT (Thuault et al., 2006) . In turn, as TFs such as 

Snail1 and Twist1 are up-regulated, the working of HMGA2 and Smads together also leads 

EMT to being induced (Thuault et al., 2008; Tan et al., 2012). Suppressing the expression of 

E-cadherin is possible through the interaction of Snail1 and activated Smads (Vincent et al., 

2009). In alveolar epithelial cells (AECs), TGF-b1 has been reported in recent studies to 

induce EMT, as well as differentiating fibroblasts into myofibroblasts and was also 

demonstrated among IPF patients to be up-regulated (Trulock et al., 2005; Willis et al., 2005; 

Câmara and Jarai, 2010).  

Moreover, following chronic exposure to TGF-β1 in vivo and in vitro, alveolar epithelial cells 

have been demonstrated to undergo EMT: this is found to result in a loss of epithelial proteins 

such as E-cadherin and the cytokeratins; and also leads to the acquisition of mesenchymal 

proteins, including collagen type I and fibronectin (Willis and Borok, 2007). A role for 

differentiation and growth factors in the induction of EMT has been indicated by numerous 

previous studies: these include TGFβ, Notch, Wnt, integrins and receptor tyrosine kinases 

(RTK). The cross-communication that exists between these factors enables the remodelling of 

the architecture and function of the cells via protein networks and gene programmes 
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(Moustakas and Heldin, 2007). The activation of effector proteins, including PI3K, MAPK 

and NFκB, Src, Rho GTPases and integrin-linked kinase (ILK), occurs through signalling 

pathways such as inflammation or hypoxia. In turn, this facilitates the regulation of EMT 

(Moustakas and Heldin, 2007). Further, in the progression of cancer and embryogenesis, 

TGFβ significantly induces EMT (Moustakas and Heldin, 2012). The platelet-derived (PGDF) 

growth factor is induced by TGFβ, whose receptors and ligands are also significant in 

inducing EMT, metastasis within the hepatocellular carcinoma and invasion (Fischer et al., 

2007). Furthermore, as the process of EMT begins, the Jagged1, Notch ligand and Hey1 the 

target gene, are induced by TGFβ in a manner that is dependent on Smad3 (Zavadil et al., 

2004). Over the course of the  EMT process, TGFβ also represses the inhibition of the 

differentiation protein (Id3 and Id2) (Thuault et al., 2006). These proteins act as antagonists to 

the proteins of the basic helix-loop-helix (bHLH), which include the EMT-inducing 

transcription factor and Twist1. Further, Id2 and Id3 are also targeted by the BMP7 signalling 

pathway, which may to some extent explain the role BMP7 has in the TGFβ-induced 

inhibition of EMT, in-turn resulting in MET (Kowanetz et al., 2004). 

1.8.4 Matrix metalloproteinase (MMP)-9 and EMT 

The deterioration of various components in extracellular remodelling is caused by an enzyme-

group known as MMPs. These are synthesised and released by neutrophils, airway epithelial 

cells and alveolar macrophages (Kim et al., 2008b). In studying COPD patients, a correlation 

has been identified between the activity of MMP-12 and emphysema levels (Chaudhuri et al., 

2012), and it has also been demonstrated that FEV1 is reduced by polymorphisms in MMP12 

and MMP1 (Tzortzaki et al., 2006). Furthermore, an elevated level of gelatinase B MMP-9 

and neutrophil collagenase MMP-8 has also been identified among COPD patients (4). While 

the former mostly originates from macrophages and neutrophils, these may also be 

manufactured by epithelial cells, mast cells, smooth myocytes and fibroblasts. Due to its 

collagen-lytic and elastolytic activity, extracellular matrix turnover is critically dependent on 

MMP-9. Furthermore, the activity of several biological factors, such as proteinases (e.g., 

MMP-13), cytokines (e.g., IL-1, VEGF) and/or their inhibitors (e.g., a1-antitrypsin) are 

moderated under MMP-9. 
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This is because of its broad substrate specificity that also allows it to cleave extracellular 

matrix components. Further, the BAL fluid of COPD patients has been found to contain 

heightened levels MMP-9, which was found to come from BAL macrophages that express an 

increased level of MMP-9 when compared to control subjects (Barnes and Hansel, 2004).  

A similar case can be observed in the serum of COPD patients, where the inflammatory 

response can be found to involve  MMP-9 , that indicates the COPD stage (Piesiak et al., 

2011). Further, MMP-9 is becoming the target of the ongoing research into COPD therapy 

(Wu et al., 2012). Among certain lung diseases, a neutrophil-predominant response is 

exhibited, in which the MMP-9 produced by the neutrophil is able to obscure epithelial and 

other cell-produced MMP-9; a process that may be instrumental in the pathogenesis of the 

COPD. Levels of MMP-9 are elevated, and are found to be involved in asthma, inflammation, 

IPF and emphysema (Daniele et al., 2016). Moreover, EMT has recently come to appear as a 

set of changes in sequence that may lead to migratory and invasive properties becoming 

expressed by epithelial cells.  

It has been demonstrated in vivo on tumour biopsies and on developmental models, as well as 

in a range of tumoural and non tumoural in vitro systems, that the expression of MMPs (and 

MMP9 in-particular) is most evidently instrumental to processes of EMT. In accordance to 

this, the use of transcription factors (snail, ETS, β-catenin) to regulate MMPs, that are known 

to regulate pathways of EMT, have now been firmly established. As a consequence, MMPs 

are rather considered as target genes of EMT pathways and MMP expression as a late event of 

the EMT. In part, this may be because of direct up-regulation of the gene transcription of 

MMP by the factors driving EMT (Gilles et al., 2005). 

 Nevertheless, changes in EMT have been shown to be initiated by MMP9. Also, the ability to 

cleave E-cadherin  has been demonstrated among certain MMPs, thereby inducing the 

fragility of E-cadherin complex and changes in EMT (Coussens et al., 2002; Overall and 

López-Otín, 2002). As MMP-9 is a Type IV collagenase, it is therefore able to distort 

basement membranes, which has been identified to cause EMT among patients of the lung 

transplant procedure (Ward et al., 2005).  
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1.9 Overall aim 

Gastroesophageal reflux (GOR) and subsequent BA aspiration have been implicated in 

several disorders of airways, including lung transplant rejection, COPD, CF and asthma. 

Taken together, the studies described in (1.5) provide evidence to support the existence of bile 

acid in the airways. Bile acids are present and can sometimes be associated with decreasing 

lung function, no direct correlation has yet emerged to indicate whether bile acids play a 

pathophysiological role in the airways.  

My research focused on the hypothesis that bile acids may induce inflammatory lung disease. 

This thesis brings together a series of experiments to investigate the possible links between 

any primary bile acids (cholic acid and chenodeoxycholic acid) and secondary bile acids 

(lithocholic acid and deoxycholic acid) present in the lung and damage caused to the 

epithelium. 

 There are three overall aims of this study. The first is to investigate the effects of bile acids 

on the expression of inflammatory markers that are important in airway diseases. The second 

is to investigate the link between bile acids that may injure airway epithelial cells and 

epithelial–mesenchymal transition (EMT) that may leading to airway fibrosis. Finally, to 

explore the use of the NCI-H292, Calu-3 cell lines as potential in vitro models to test the 

hypothesis that the presence of bile acids causes mucus hypersecretion.  

The thesis was divided into chapters as follow: 

Chapter one: General introduction  

Chapter two: Material and methods  

 

Chapter three: Establishing an in-vitro model of human bronchial epithelial cell injury using 

cell lines 

- In chapter three, human bronchial epithelial cell lines BEAS-2, 16HBE14o-, NCI-

H292 and Calu-3 cell lines will be cultured to assess the effect of bile acids challenge. 

The effect of cholic acid, chenodeoxycholic acid, deoxycholic acid and lithocholic 

acid will be measured by assessment of inflammatory cytokine production. Markers 

will include IL-8, IL-6 and GMCSF which are important in inflammatory lung 

disease.  

  



36 

 

Chapter four: Bile acid Induced Epithelial to mesenchymal transition (EMT) 

- In chapter four, human bronchial epithelial (PHBE) cells, primary human epithelial 

cells from the subglottis area, BEAS-2B and 14HBE14-O cell lines will be cultured. 

The cells will be stimulated to investigate the role of BAs in instigating EMT by 

evaluate E-cadherin expression (epithelial marker) and fibronectin expression (a 

mesenchymal marker). The effect of primary bile acids (Cholic acid and 

chenodeoxycholic acid) and secondary bile acids, lithocholic acid and deoxycholic 

acid) will be measured by assessment using ELISA of TGFβ1, (TGF-βl is a potent 

EMT inducer), MMP9 and Pro-collagen production (can cause inflammation, 

translocation, further EMT and other damage).  

Chapter five: The role of duodeno-gastro-oesophageal refluxate in mucus production from 

NCI-H292 and Calu-3 cell lines  

- In chapter five the NCI-H292 and Calu-3 cell lines that have been used as an in vitro 

model system were used to study MUC5 gene regulation. Cells were stimulated with 

bile acids and mucin content of the culture medium measured using a periodic acid-

Schiff’s (PAS) assay. To confirm and extend the PAS findings MUC5AC and 

MUC5B will be measured using indirect ELISA. Finally, quantitative real-time PCR 

will be used to evaluate MUC5AC and MUC5B expression in NCI-H292, Calu-3 cell 

lines.   

Chapter six: General discussion and conclusion  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Cell culture 

2.1.1 General practice 

As per the University’s policy on Health and Safety, the work as follows has been performed 

within a biosafety level II laboratory. Further, the form Control of Substances Hazardous to 

Health (COSHH) and the form Biological Control of Substances Hazardous to Health 

(BIOCOSH) were both reviewed before the work was conducted and were signed off by the 

University’s Committee on Biological safety.   

Cell culture procedures were performed in a containment level II microbiological safety 

cabinet. This was routinely cleaned with 70% ethanol prior to use. Additionally, all tissue 

culture equipment was sprayed with 70% ethanol before use. For routine culture, cell lines 

were grown in either 25cm² or 75cm² plastic tissue culture flasks (Corning, UK).  

The cell types were cultured in specific medium according to American Type Culture 

Collection (ATCC) recommendations, which were incubated in a humidified atmosphere of 

5% CO2 at 37°C. Adherent cell lines were placed horizontally in the incubator to allow for 

cell adherence, while suspension cells were grown in flasks.  

2.1.2 Culture medium 

2.1.2.1 RPMI 1640 Medium 

To support the growth of suspension cell lines, RPMI 1640 medium (Sigma, 5886) was used. 

Cells were grown in this medium after the addition of 10% Fetal Calf serum (FCS), 2 mM L-

glutamine, 100U/ml penicillin, 100µg/ml streptomycin (Sigma, UK), and 50μg/ml 

amphotericin B (Lonza, USA).  

2.1.2.2 Eagle's Minimum Essential Medium (EMEM) 

EMEM with Earle’s acid medium was used to support the growth of the cell lines. Complete 

medium was obtained after the addition of 10% FCS, 50μg/ml amphotericin B (Lonza, USA), 

100U/ml penicillin, 2 mM L-glutamine and 100 µg /ml streptomycin (Sigma, UK). 
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2.1.2.3 Bronchial Epithelial Cell Growth Medium (BEGM) 

In order to prepare BEGM complete medium (Lonza) supplements supplied by Lonza were 

added into 500ml BEBM base medium: these were bovine pituitary extract 2ml (final 

concentration 0.004 ml/ml), insulin 0.5 ml (5 μg/ml), hydrocortisone 0.5 ml (0.5 μg/ml), 

retinoic acid 0.5 ml (0.1 ng/ml), transferrin 0.5 ml (10 μg /ml), triiodothyronine 0.5 ml (6.7 

ng/ml), epinephrine 0.5 ml (0.5 μg/ml), Epidermal Growth Factor human recombinant 0.5 ml 

(10 ng/ml), L-glutamine (to 100 U/ml) and penicillin/streptomycin (Final concentration 

100U/mL) (Sigma, UK). 

2.2 Cell lines and Primary cells  

2.2.1 Normal human bronchial epithelial cells 

By using normal human bronchial epithelial (NHBE) cells as to primary cultures, it is 

possible to provide an in vitro representation of the native airway epithelium. Numerous key 

attributes of the normal airway epithelium are exhibited by such (NHBE) cell cultures. 

Furthermore, research into the biology of cells within the airway can be facilitated through the 

use of an expanded pool of in vitro-like epithelial cells (Gray et al., 1996).  

During bronchoscopies, airway brushings were taken from lung transplant patients and these 

bronchial epithelial cells were suspended in RPMI 1640 basal medium. Following 

centrifugation at 1000 rpm, for 5 minutes at room temperature cell pellets were re-suspended 

in 4 ml of complete BEGM (Lanza). Cell suspensions were transferred to a collagen pre-

coated T25cm flask 30 μg/ml PureCol (Advanced BioMatrix, San Diego, CA, USA) and 

incubated in 5% CO2 at 37C°. Growth medium replaced every subsequent 48 hours until 

(PHBECs) reached a confluence of 80-95%. 

2.2.2 BEAS-2B 

Derived from normal human epithelial cells immortalised through the hybridisation of simian 

virus 40 adenovirus 12 (Reddel et al., 1988). BEAS-2B is considered a human bronchial 

epithelial cell line. BEAS-2B cells are maintained as sub-confluent, otherwise they induce 

squamous differentiation and BEAS-2B is available from the ATCC (CRL-9609). 

Furthermore, these are popular for research on the function and structure of airway epithelial 

cells as they were used to maintain the morphology of an epithelial cell in vitro as well as 

release IL-8 and IL-6 in addition to other cytokines (Swanson et al., 2009). Within a 

humidified atmosphere containing 5 % CO2 at a temperature of 37°C, the BEAS-2B cells 
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were grown in 75-cm
2
 flasks in BEGM medium. The cells were passaged every 4-6 days to 

maintain sub-confluent. The cells were cultured and used for experiments at passage 6-23 and 

at density of 1 x 10
5

 cells/cm
2

 on 24 well. 

2.2.3 Calu-3 

Calu-3 (ATCC HTB-55) is a human bronchial epithelial cell line originally sourced from a 

bronchial adenocarcinoma in a 25-year-old Caucasian male (Itani et al., 2007; Zhu et al., 

2010). Calu-3 cells structurally can form organised cell layers with tight junctions. They show 

typical airway epithelial properties, for example, generation of high levels of secretion parts 

that are similar to those of the serous cells of the tracheobronchial organ. Further, the 

expression of mucus genes MUC1 and MUC5AC and the secretion of MUC5/5AC mucins 

and secretory granules are also attributes that these cells feature (Berger et al., 1999). Within 

an EMEM medium containing 2mM L-glutamine, 10% FCS, streptomycin (100 μg/ml) and 

penicillin (100 U/ml); the Calu-3 cells were cultured in a humidified atmosphere containing 

5% CO2 and at a temperature of 37°C.  The cells were cultured and used for experiments at 

passage 2-33 and at density of 1 x 10
5

 cells/cm
2

 on 24 well plates.  

2.2.4 NCI-H292  

NCI-H292 cells (ATCC; CRL-1848), are a bronchial epithelial cell line derived from a 

mucoepidermoid carcinoma. NCI-H292 cells react to an assortment of airway injuries 

including tobacco smoke. This leads to up regulation of different endpoints connected with 

inflammation IL-6 and IL-8, airway remodelling MMP-1, GM-CSF, and mucin 

overproduction MUC5AC (Newland and Richter, 2008). In addition NCI-H292 cells have 

been widely utilized as a lung model for toxicological assessment (Newland et al., 2011). The 

NCIH292 cells were grown in RPMI-1640 medium supplemented with 10% FCS, 2 mM L-

glutamine, penicillin (100U/ml), streptomycin (100 μg/ml) and 50μg/ml amphotericin B in a 

humidified 5% CO2 climate at 37C°. Monolayer cells were routinely subcultured each 3-4 

days. Cells were washed twice with sterile PBS and passaged using a 5 mL 0.05% trypsin: 

0.02% EDTA 1x solution. The cells were cultured and used for experiments at passage 14-52 

and at density of 1 x 10
5
 cells/cm

2
 on 24 well plates. 
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2.2.5 16HBE14o- Cells  

16HBE14o- cells were acquired from Dr. Dieter Gruenert, University of California, San 

Francisco USA. The cell line 16HBE14o- was derived from an infant male heart-lung patient 

(at 1 year of age) by transforming (large T-antigen SV40) cultured bronchial epithelial cells. 

While this cell line is neither licenced nor commercially available, epithelial polarised cell 

mono layers are formed and epithelial morphology is maintained. This includes tight junction 

formation and high trans-epithelial resistance (Cozens et al., 1994). Further, other 

differentiated features that characterise the native epithelium are also found to be expressed 

(Gruenert et al., 1995). Moreover, over the course of many passages, high viability is also 

demonstrated. What is controversial however is their ability to secrete mucus and form cilia 

(Ehrhardt et al., 2008; Pohl et al., 2009). Within an EMEM medium containing 2mM L-

glutamine, 10% FCS, streptomycin (100 μg/ml) and penicillin (100 U/ml); the 16HBE14o- 

cells were cultured in a humidified atmosphere containing 5% CO2 and at a temperature of 

37°C.  Furthermore, a fibronectin coating solution was used to pre-coat the T75 flasks. At a 

confluency of 80-90%, the cells were passaged by first washing with Hepes buffered saline 

(HBS), following by allowing the cells to detach using 5 mL 0.05% trypsin: 0.02% EDTA 

solution. The cells were cultured and used for experiments at passage 62-108 and at density of 

1 x 10
5
   cells/cm

2 
on 24 well plates. 

2.3 Cell count 

Cells were counted using an improved Neubauer chamber haemocytometer (Figure 2-1). Ten 

microlitres of cells suspended in medium were placed onto the chamber secured with a glass 

cover slip. The number of cells at each corner was counted, as well as the middle square in the 

centre. The average was taken and multiplied by 5 to include all 25 squares and multiplied 

104 to obtain the number of cells per ml.  
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Figure 2-1: Illustration of a hemocytometer slide. After placing the coverslip on the slide, a cell suspension is 

loaded and cells are counted in each square. Cells touching the middle line on the top and left are included in the 

counting (green) while those touching right and bottom are excluded from the count (red) (Martin, 1994). 
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2.4 Cell cryopreservation 

 Keeping in mind the end goal to maintain a supply of the cell lines and to hold cells from an 

early passage, cryopreserved cells were frozen in liquid nitrogen. Cells in their log 

development stage (70-80% confluent in flask) were re-suspended in freezing medium, which 

comprises of 10% dimethylsulphoxide (DMSO-Sigma) in complete medium or FCS. Cells 

were frozen in batches of 5-10 million cells for each cryovial (Corning, UK). The vials were 

set in a Nalgene cell freezing container filled with isopropyl alcohol which provides a 

progressive reduction in temperature of 1 degree Celsius per minute when stored at - 80°C 

overnight. On the second day, the cells were moved into a liquid nitrogen tank for long term 

tissue banking. For cell recovery, cells were defrosted by quick warming in a 37°C water 

bath. Once defrosted, the cells were moved promptly into 10-15 ml of fresh pre-warmed 

medium and incubated at 37°C. 

2.5 Epithelial Cell passage 

When the cells in the culture flask approached 75-80% confluence, they were passaged, 

permitting further propagation. Five ml of 0.05% trypsin; 0.02% EDTA was added to the 

flask, then incubated at 37ºC for 2-5 minutes until cells detached . Five ml of complete 

medium that contain FCS was then added to inhibit the trypsin and to help re-suspend the 

cells. Thereafter, in order to pellet the cells, the solution was centrifuged at 1100rpm for 7 

minutes and at a temperature of 10ºC; before seeding into 6 and 24 well plate, these were 

mixed carefully with 12ml of complete epithelial medium. 

2.6 Primary bronchial epithelial Cell (PHBECs), tracheal epithelial cells and cell lines 

stimulation 

At about 85-90% confluence, plates containing primary cells or cell lines were rested for 24 

hours in serum free medium. Bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid 

and lithocholic acid) were dissolved in methanol to prepare stock solution that was (100 

mmol/L) in this experiment. To achieve the experimental concentration different 

concentrations were prepared by diluting stock solution in resting medium. These dilutions 

were at least 1000 fold leaving vanishingly small amounts of methanol. After this process, 

they were added to PHBECs, tracheal epithelial cells and cells lines to achieve stimulation. A 

total of three repeated cultures and four repeated wells of PHBECs, tracheal epithelial cells 

and cell lines (n= 12) was carried out. The following bile acid concentrations were used: 1, 2, 

5, 10, 15, 16, 17, 18, 20, 30, 50, 75, and 100μmol/L at incubation times of 24 and 48h. After 
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these times, samples of the cell culture supernatants, as well as control samples, were 

collected to measure cytokine concentrations using ELISA assays (R&D Systems). The 

control samples consisted of cells incubated with resting medium. The data presented in the 

thesis are all 48 hour results because stimulation for 24 hours did not produce any changes in 

the cell viability compared to control suggesting damage was time dependent. Moreover, in 

developing an ELISA, secretion was measured in cell supernatants that were treated for 24 hr 

with bile acids, but this did not significantly induce secretion of pro-inflammatory mediators 

suggesting damage and bile acid stimulation was time dependent. This fits in with other 

studies by our group. In these studies the effect of individual primary and secondary bile acids 

were evaluated on PBECs after stimulation for 24 and 48 hours. Cell death, Interleukin 8 (IL-

8) and Interleukin 6 (IL-6) production were measured by ELISA. They found that 48 hours 

treatment was more effective compared to 24 hour (Aseeri, 2012). A time course for mRNA 

studies was not performed. It might be predicted that peak mRNA effects would occur before 

the 48 hour time point and further studies could evaluate this. 

2.7 Cell viability assay 

2.7.1 CellTiter-Blue™ Assay 

2.7.1.1 Assay principle 

The CellTiter-Blue™ Assay (Promega, USA) is based on cellular reduction of resazurin to the 

absorption product resorufin. It is based on the principal that viable cells are able to 

metabolize and reduce the dye; whereas the capacity to reduce the dye of dead cells rapidly 

diminishes once their membranes are compromised (Rich Moravec and Riss, 2003). 

2.7.1.2 Titre-blue Assay 

Cells were incubated, under experimental conditions, for 48h, before being assessed using the 

Titre-blue Assay (Promega, USA).The medium in the 48 well plate was discarded and cells in 

4 wells were killed using 200µl ice-cold methanol for 5 minutes. 100µl of CellTiter-Blue was 

added to each well followed by 500µl of resting medium (serum- free medium).  The plate 

was incubated for 2-4 hours, after which the 24 well plate was plated out in the 96-well 

microtiter plate. The ratio of live to dead cells was used to generate a standard curve (Figure 

2-2), divided into five regions: 100% live cells (resting medium); 25:75% dead: live cells; 

50:50%; 75:25% dead: live cells; and 100% dead cells (positive control). Absorbance 

measurements were used to monitor results. As the absorption maximum is 600nm for 
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resazurin and 573 nm for resorufin according to the manufacturer’s data, absorbance was 

measured at 560nm and 600nm was used as the reference wavelength. 
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Figure 2-2: Standard curve of methanol killed cells measured via cell viability assay (Promega USA) (mean ± 

SD; n=6). 

2.7.2 MTT assay   

2.7.2.1 Assay principle 

Behind the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay is 

the principle that mitochondrial activity is steady for the majority of viable cells and that a 

reduction or increase in the viable cell count can therefore be correlated linearly to the 

mitochondrial activity. When formazan crystals are reduced from the tetrazolium salt MTT, 

this is seen to reflect the level of mitochondrial activity within the cells that can be solubilised 

for homogenous measurement. As a result, measuring the formazan concentration reflected in 

optical density (OD) using a plate reader at 570 and 690 nm can be used to identify the 

decrease or increase in the number of viable cells (van Meerloo et al., 2011). 

2.7.2.2 Assay procedure  

The MTT assay was used for several experiments. This is mainly used to assess cell viability 

in the presence of a drug or toxin. MTT (TOXI Sigma, St. Louis, USA) was dissolved at 

5mg/mL in Hank’s salt solution and filtered to avoid MTT aggregates. The solution was 

added to each well in an amount equal to 10% of the culture medium volume and the plate 

was incubated for a further 2-4 hours. Formazan crystals developed which were dissolved in 

MTT Solubilisation Solution equal to the original culture medium volume. A gyratory shaker 
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was then employed to accelerate dissolution. Spectrophotometric measured absorbance of 570 

and background at 690nm was used to measure well absorbance. It is noted, that although this 

procedure was employed, these metabolic assays do not distinguish between cytotoxic and 

cytostatic drugs or compounds, therefore the accuracy surrounding low cell numbers is 

questionable. The standard curve was made up of: 100% live cells (resting medium); 25:75%; 

50:50%; 75:25% dead: live cells; and 100% dead cells. This was used to determine the 

percentages of viable cells.  

2.8 Secretion analysis 

2.8.1 Enzyme-Linked Immunosorbent Assay (ELISA)  

To measure levels of cytokine and chemokines DuoSet ELISA kits were purchased from 

R&D systems. ELISA kits provide a sandwich ELISA. The assay was carried out as detailed 

in the kit protocol and is described below. 

- Coating with capture antibody 

A 96-well microplate was prepared with a 1/100 solution of capture antibody (100µl, R&D 

Systems, USA) and reagent buffer (0.1% BSA, 0.05% Tween 20 in Tris-buffered saline 

(20mM Trizma base, 150mM NaCl), pH 7.2-7.4) at 100µl per well. The plate was incubated 

overnight at room temperature. 

- Wash step 

The contents of the plate were discarded and wells were then emptied and washed three times 

using 300µl wash buffer per well (0.05% Tween 20 in phosphate buffer solution, pH 7.2-7.4). 

The plate was dried by inversion and by patting the plate with force on paper towels. 

- Blocking step 

The plate blocked with 1% bovine serum albumin solution in phosphate buffer (PBS) (300µl). 

The plate was incubated at room temperature for 1 hour.  

- Standards and samples 

After the plate was aspirated and blotted dry as in wash step, 100µl of standards diluted in 

100µl of PBS or 100µl of cell culture supernatant samples were added in duplicate. An 

adhesive plate sealer was applied to the plate, which was then incubated at room temperature 

for a further two hours and the washing stage was repeated. 



46 

 

- Detection antibody 

  100µl of detection antibody was added to each well, a new adhesive strip applied, and the     

plate was incubated for two hours at room temperature. 

- Development 

Following a further wash step, 100μl of streptavidin horseradish peroxidase (HRP) diluted in 

reagent diluent was added to each well and incubated for 20 minutes out of direct light at 

room temperature. A substrate solution (1:1 mixture of colour reagent A (H202) and colour 

reagent B (tetramethylbenzidine)) was added to each well (100µl) and the plate was incubated 

away from direct light for a further 20 minutes at room temperature. The addition of 50µl stop 

solution (2N H2 SO4) was required for each well and the plate was placed on the plate shaker 

for 1 minute at 100rpm.  

- Analysis 

The optical density (OD) of the contents of each well was immediately determined using a 

microplate reader set at 450nm and corrected at 570nm to correct for optical imperfections. 

- Determination of cytokine and chemokines in sample from standard 

The average OD value was derived for the standard and sample wells, the blank cytokine and 

chemokines standard OD value was subtracted from each mean value. GraphPad (version 6) 

was used to create a standard curve with a 4 parameter logistic curve fit. The sample values 

were interpolated from the standard curve.  
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Table 2-1: Composition and concentrations of reagents and antibodies used in ELISA. TMB- 3,3’,5,5’-

Tetramethylbenzidine. 

 

  

Protein 

name  

Capture 

antibody 

origin and 

concentration  

Detection 

antibody 

origin and 

concentration  

Reagent 

diluent  

Substrate  Detection 

range  

Supplier  

& 

catalogue 

number 

IL-8  Mouse anti-

human IL-8 

4μg/ml  

Biotinylated 

goat anti-

human IL-8 

20ng/ml  

0.1% BSA in 

PBS (0.05% 

Tween20 in 

TBS), pH 

7.2-7.4  

TMB  31.3-2000 

pg/ml  

R&D 

Systems  

& 

DY208 

IL-6  Mouse anti-

human IL-6  

2μg/ml  

Biotinylated 

goat anti-

human IL-6 

50ng/ml  

1% BSA in 

PBS (0.05% 

Tween20 in 

TBS), pH 

7.2-7.4 

TMB  9.38-600 

pg/ml  

R&D 

Systems  

& 

DY206 

GM-CSF  Mouse anti-

human GM-

CSF 2μg/ml  

Biotinylated 

mouse anti-

human IL-8 

0.5μg/ml  

1% BSA in 

PBS (0.05% 

Tween20 in 

TBS), pH 

7.2-7.4 

TMB  15,62-

1000 

pg/ml  

R&D System  

& 

DY215 

MMP9  Mouse anti-

human MMP9 

1μg/ml  

Biotinylated 

goat anti-

human MMP9 

12.5ng/ml  

1% BSA in 

PBS (0.05% 

Tween20 in 

TBS), pH 

7.2-7.4 

TMB  31.3-2000 

pg/ml 

R&D 

Systems  

& 

DY911 

Pro-

collagen  

Mouse anti-

human Pro- 

Collagen 

4μg/ml  

Biotinylated 

goat anti-

human Pro- 

Collagen 

100ng/ml  

1% BSA in 

PBS (0.05% 

Tween20 in 

TBS), pH 

7.2-7.4 

TMB  31.3-2000 

pg/ml 

R&D 

Systems  

& 

DY6220-05 

TGFβ1  Mouse anti- 

TGFβ1 

antibody 

2μg/ml  

Biotinylated 

chicken anti-

human TGFβ1 

antibody 

100ng/ml 

1% BSA in 

PBS (0.05% 

Tween20 in 

TBS), pH 

7.2-7.4 

TMB  31.3-2000 

pg/ml  

R&D 

Systems  

& 

DY240 
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2.8.2 Determination of MUC5B mucin concentration by indirect ELISA 

The concentration of MUC5B mucin within the medium that was collected from stimulated 

Calu-3 and NCI-H292 cells was measured in duplicate:  

 Sample and Standard coating 

100μl of the sample was coated onto a 96 well plate (Maxisorp, NUNC). At the same time, 

the standard of purified human saliva MUC5B mucin was diluted in PBS ranging from 0 - 

8µg/ml, was coated onto the well by 100μl. Further, the plate was incubated at room 

temperature and covered overnight. 

 The washing stage 

On the following day, the plate was washed three times (0.05% Tween 20 in PBS), and was 

then blotted dry by using paper towels. 

 The blocking stage 

After incubating the plate overnight, the plate was carefully dried and the residue was 

discarded. Accompanying this, 300µl of 1% casein in PBS was added to block unoccupied 

binding sites. The plate was then incubated at room temperature for 2 hours.  

 Primary antibody  

100µl of the primary monoclonal antibody for MUC5B (EPR6920 raised in rabbit (Abcam); 

(1:200 dilution in 05% Tween20 in PBS and 0.1% casein) was added to each well. The plate 

was then incubated at room temperature for 2 hours.  

 Secondary antibody 

The washing stage was repeated, and then 100 µl of the secondary antibody was added to 

each well and incubated for 2 hours at room temperature (horseradish peroxidase-conjugated 

goat anti-rabbit (Dako); in this stage, 1 in 5000, diluted using an antibody diluent (0.1% 

casein and 0.05% Tween20 in PBS). 
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 The development stage 

The solution was discarded following incubation and the washing stage was repeated to dry. 

Additionally, this stage saw the inclusion of 100µl of peroxidase substrate ABTS (2, 2’-azino-

bis (3-ethylbenzthiazoline-6-sulphonic acid) was added and left to develop at room 

temperature for 20 minutes. As a final step, at 20 minutes the reaction was stopped with 1% 

SDS and a plate reader was used to measure an absorbance at 405 nm (Tecan M200). 

2.8.3 The quantification of MUC5AC mucin concentration through indirect ELISA 

MUC5AC mucin in cell culture supernatant collected from stimulated Calu-3 and NCI-H292 

cells was detected using indirect ELISA.  

 Standard and sample coating 

The standard of purified pig gastric mucin was diluted in PBS ranging from 0 - 8µg/ml, 100μl 

was coated onto 96 well plate in duplicate (Maxisorp, NUNC). Similarly 100μl of each 

sample was coated onto the plate. The plate was covered and incubated overnight at room 

temperature. 

 The washing stage 

The following day the plate was emptied and washed three times with the wash buffer (0.05% 

Tween 20 in PBS) and blotted dry on clean paper towels.  

 The blocking stage 

Following its incubation overnight, the residue was discarded from the plate followed by a 

thorough dry. 300µl of 1% casein in PBS was added to block unoccupied binding sites. The 

plate was then incubated at room temperature for 2 hours.  

 Primary antibody 

100µl of the primary mouse monoclonal antibody for MUC5AC (45M1 epitope Life 

Technologies); diluted 1 in 100 in antibody diluent (0.1% casein and 0.05% Tween20 in 

PBS)) which was added. The plate was then left to incubate at room temperature for 2 hours. 
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 Secondary antibody 

The washing stage was repeated, and then 100 µl of the secondary antibody (horseradish 

peroxidase-conjugated goat anti-mouse (Dako); (1:5000 dilution in 05% Tween20 in PBS and 

0.1% casein) was added for a total of 2 hours.  

 The development stage 

After washing as previously described, 100µl of peroxidase substrate ABTS (2, 2’-azino-bis 

(3-ethylbenzthiazoline-6-sulphonic acid) was added and incubated at room temperature for 20 

minutes. The reaction was stopped after 20 minutes, with 1% SDS and a plate reader was used 

to measure absorbance at 405 nm (Tecan M200). 

2.8.4 Periodic Acid Schiff (PAS) assay 

2.8.4.1 Principle of PAS Staining 

PAS is a staining method used to detect glycoproteins, such as mucins, through the 

oxidisation of glucose or sugar with adjacent –OH groups by periodic acid. Periodic acid 

oxidises compounds having free hydroxyl group (-OH group), resulting in aldehydes, which 

react with the Schiff reagent to form a purple or red stain that can be detected by 

spectrophotometry. The glycoprotein content of the apical fluid was measured using a 

periodic acid-Schiff’s (PAS) assay (Mantle and Allen, 1978).  

2.8.4.2 Assay procedure 

Aliquots of cell culture supernatant were thoroughly mixed diluted 1:10 in deionised water 

and 200µl sample in duplicate was located into 96 well plate for each PAS analysis. For the 

standard curve, purified papain digested porcine mucin was used (1mg/ml in deionised water; 

mucin obtained from Professor Jeff Pearson, Newcastle University) and diluted into 200, 100, 

80, 60, 40, 20 and 0 µg/ml samples. The cell supernatant sample and mucin standard curve 

were combined with 20µl of periodic acid mixture (made from 2.5 ml of 7% acetic acid plus 5 

µl of 50% periodic acid). The plate was incubated at 37°C for 45 min. Schiff’s solution was 

made by combining 6 ml of Schiff’s reagent with 0.1g sodium metabisulfite, which was also 

incubated in the 37°C water bath for 45min. 20µl of Schiff’s solution was then added to each 

sample (including mucin standard curve and negative control samples) and left to develop for 

30 minutes at room temperature. The absorbance in each sample was read using a Tecan plate 

reader at a wavelength of 555 nm.    
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2.9 Molecular biology techniques 

2.9.1 RNA biology 

Based on the function, RNA can be divided into three main types. Firstly, (i) Messenger RNA 

(mRNA) is transcribed from DNA by RNA polymerase and serves as a template for the 

synthesis of proteins. Second, (ii) Ribosomal RNA (rRNA) is one of 2 main components of 

ribosomes; the other is proteins (ribosomes = rRNA + proteins). These ribosomes become 

associated with mRNA in the cytoplasm. Lastly, (iii) Transfer RNA (tRNA) contains a 

specific amino acid at one end and anticodon region which can recognise and bind mRNA. 

The tRNA binds to the mRNA codon and transfers amino acids to the ribosomes, in order to 

synthesise protein. For this particular study, the focus was mRNA, since it represents potential 

gene expression in physiological and pathological conditions. Therefore, it allows 

measurement of changes in gene expression after the treatment of cells with a variety of 

cytokines.  

2.9.2 Molecular biology  

A level of precaution is required, specifically when RNA isolation and amplification is 

performed. All reagents used for this procedure and other molecular biology use, should have 

a high degree of purity. These reagents are also RNase free which provides protection during 

the RNA isolation process. All reagents used for RNA isolation in this project were available 

commercially and at a molecular biology grade. All areas used for RNA isolation were 

decontaminated by using RNase removal spray (Sigma). Pipettes were cleaned with 70% 

ethanol. Filter sterile tips and autoclaved sterile Eppendorfs were used throughout. 
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2.9.3 RNA extraction 

Gene expression modulation, which may be caused by a particular stimulus or disease, can be 

analysed by isolating RNA. This study used the RNEasy Mini-kit (Qiagen) to extract RNA 

longer than 200 nucleotides from cultured cells. This kit takes advantage of the selective 

binding properties of a silica-gel membrane. Cells were pelleted and homogenised in 350μl 

Buffer RLT. To this, 350μl of 70% ethanol was added via pipette. The lysate was then added 

to an RNEasy mini-column and centrifuged for 15 seconds at 10,000rpm (MIKRO 200, 

Hettick Zentritugen, DJB Labcare Ltd, Bucks, UK). A proportion of the mixture flowed 

through, and was discarded. To the remaining mixture, 350μl of RW1 buffer (Qiagen) was 

added and the column was centrifuged for 15 seconds at 1000 rpm. The Flow-through was 

again discarded and DNase digestion was carried out on the column. The wash buffer, 

centrifugation and flow-through discard process were repeated and 500μl RPE elution buffer 

(Qiagen) was then added. The centrifuge and flow-through discard process were repeated 

once again and another 500μl RPE elution buffer added. This time, the column was 

centrifuged for two minutes at 10,000rpm. Flow-through was once again discarded and the 

mixture was transferred to a fresh tube, which was centrifuged at 13,000rpm to dry. The 

mixture was transferred once again and 50μl RNase-free water was added by pipette to the 

membrane. This was centrifuged once more for one minute at 10,000rpm. The eluate was 

removed from the tube and passed through the column once more as described to obtain a 

higher RNA concentration. RNA was stored at -80°C. 
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2.9.4 Analysis of RNA concentration and purity  

The RNA sample should be free from contaminating substances, including proteins, DNA, 

phenol, ethanol and salts. It is known that any contamination can decrease the efficiency of 

reverse transcription, leading to reduced amplification. A Nanodrop spectrophotometer (No- 

1000 NanoDrop®) was used for determination of RNA concentration and purity. The 

machine measures the absorbance at 230, 260 and 280 nm and uses these values as a guide to 

nucleic acid purity and concentration. One microliter of extracted RNA was applied to the 

Nanodrop after blanking with 1 μl of RNase-free water. The concentration was obtained in 

ng/μl. The purity of isolated RNA sample was evaluated by examining 260/280 and 260/230 

ratios. The reading around 2 for both of the ratios is considered as a pure sample free from 

protein and phenol contamination and suitable for cDNA synthesis. Figure 2-3 shows an 

example of RNA concentration measurement and purity using the Nanodrop. 

 

Figure 2-3: Examination of RNA purity and concentration using a Nanodrop instrument. 
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2.9.5 Reverse-Transcriptase PCR (cDNA) 

A Tetro cDNA synthesis kit (Bioline) was used in accordance with the manufacturer’s 

guidelines to reverse transcribe the RNA isolated in the above process to obtain 

complementary DNA (cDNA) within a 20μl reaction mixture. The reaction mixture was made 

up of 4μl 5X RT buffer, 1μl (0.5 μg/μL) oligo-dT Random Primer, 1μl (200 U/µL) Tetro 

reverse transcriptase enzyme, 1μl (10U/µL) RNase Inhibitors, 1μl (10 mM) dNTP mix, 200ng 

RNA sample and the rest RNase-free H2O (see table 2-2). These mixtures were vortexed, 

then centrifuged briefly to collect the contents at the bottom of the tube. A thermal cycler (G-

Storm, Surrey, UK) was used to incubate the samples at 25°C for 10 min. These were then 

transcribed in the same device at 42°C for 15 minutes followed by heating at 95°C for 5 

minutes. This produced cDNA, which was then stored at -20°C and used as a q-PCR template. 

 
 

 

 

 

 

 

Table 2-2: Contents of first strand Tetro cDNA synthesis reaction.  

components Tetro cDNA synthesis 

RNA 2μl equivalent 

5X RT buffer 4μl 

10 mM dNTP mix 1μl 
Oligo (dT) 18 Primer Mix (0.5 μg/μL) 1μl 

RNase Inhibitor (10 U/µL) 1μl 

Tetro reverse Transcriptase (200 U/µL) 1μl 

RNase free water Variable  

 20 µl total volume 
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2.9.6 Real time-polymerase chain reaction 

2.9.6.1 General principle 

Quantitative polymerase chain reaction (q-PCR) is a precise technique for the measurement of 

changes in gene expression. This procedure requires a specific sequence of DNA to be 

amplified in a geometric way, producing many copies of the original sequence. The amplified 

product can be measured either at the end point of the reaction in "traditional" PCR or during 

the amplification process in the real-time PCR method. Q-PCR has many advantages in 

comparison to the traditional in the context of the processing time and accuracy. Traditional 

PCR is regarded as a qualitative method in determining the presence or absence of a particular 

gene of interest at the end point of the reaction, q-PCR is able to detect small differences in 

the level of the expression between examined samples. In contrast to traditional PCR, in q-

PCR the amplification and quantification occur simultaneously. An ideal amplification plot 

has an exponential, linear and plateau phases, in which the amplicon is quantified as the 

amplification is in progress and reaches plateau when the reaction components are depleted. 

The PCR product is determined in the exponential phase and crosses the threshold level in a 

cycle known as the threshold cycle. The detection process in this method requires the 

presence of fluorescent reagents that detect the amount of the amplified product. These 

reagents are either sequence specific or non-sequence specific. An example of sequence 

specific reagent is the 5' nuclease probe such as the Taqman assay.  

2.9.6.2 TaqMan assay 

Modulation in gene expression was determined using TaqMan® Gene Expression Assays, 

primer-probes (or 5' nuclease assay). This assay, in the presence of exonuclease activity of 

TaqMan DNA polymerase, uses two primers and a probe. This probe is a non-extendable 

DNA sequence, modified to include a quencher at the 3' end and a fluorescence reporter at the 

5' end. It is capable of binding in either an exon boundary spanning or non-exon spanning 

manner to the desired gene’s complementary sequence. The proximity of the reporter 

(fluorescence emitting) to the quencher (fluorescence absorbing) prevents excess light from 

escaping. 
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2.9.6.3 PCR efficiency  

PCR efficiency is defined as the rate at which a PCR product is generated, it is represented as 

a percentage value with a maximum PCR amplification efficiency of almost 100%. If the PCR 

amplicon is doubled during each cycle, it is seen to reflect 100% efficiency. This value is 

estimated from a standard curve specific for each reaction, prepared by serial dilutions of 

cDNA sample. In this curve, a log of input nucleic acids on X-axis is plotted against CT 

values on the y-axis. The gradient of the semi-log regression is determined to evaluate the 

amplification efficiency by this equation: efficiency = 10^ (-1/gradient)-1. The gradient value 

equal to -3.32 represents 100% amplification efficiency. A value that is more negative than 

this reflects an amplification process less than 100%, while more positive value reflects 

sample quality or pipetting problems. In this project five human primer/probe combinations 

were used; E-Cadherin (Hs01023894-m1-CDH1), fibronectin (Hs00365052m-1FN1), 

MUC5AC (Hs00873651_mH), MUC5B (Hs00861595_m1) and HPRT1 (Hs02800695-m1) 

(Life Technologies). The expression of each test gene was normalised against expression of 

the housekeeping gene, HPRT1. Figure 2-4 shows the efficiency curves for these 

primer/probe combinations performed using 10 times serial dilution from cDNA sample. 
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Figure 2-4: The standard curve for tenfold dilution series of cDNA for E-Cadherin, fibronectin, MUC5AC, 

MUC5B and HPRT transcripts.  The reactions were run on an Applied Biosystems instrument (StepOnePlus) for 

40 cycles. For gradient and efficiency values, the data were analysed by linear regression converting x values to 

a log scale. 

2.9.6.4 Real-time PCR detection  

To determine the change in expression of a particular gene at a molecular level a quantitative 

PCR reaction was performed. This was done by using a cDNA template transcribed from the 

isolated RNA. PCR reaction was prepared in 20 μl total volume by mixing 10 μl of 2X master 

mix (SensiFAST™ Probe Hi-ROX Kit (Bioline)), containing TaqMan DNA polymerase 

enzyme and buffers essential for its activity, 7 μl distilled water molecular grade, 2 μl of 

cDNA and 1 μl of desired primer mix (purchased from Life Technologies, ready to use). The 
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mixture was amplified using an Applied Biosystems StepOnePlus. The amplification process 

was carried out for 40 cycles, in the following sequential steps: 95°C for 5 minutes followed 

by 40 cycles of 95°C for 10 seconds followed by 20 seconds 60°C. Each PCR run contains a 

target gene in parallel with a housekeeping gene. In addition, each run had negative control 

wells where the RNA sample and master mix mixture were checked separately for any 

contamination. 

2.9.6.5 Data analysis-comparative ΔΔCT value 

The comparative or relative method of quantification requires the CT (Cycle threshold) value 

and arithmetic or application formulas in order for a result to be achieved. The CT is defined 

as the number of cycles that are needed for the background level to be exceeded by the 

fluorescence signal. Calculating the target gene’s level of expression is made by comparing 

the CT values of both control and activated cells. The CT values of both the samples of 

interest and the control are first normalised to the reference gene or endogenous housekeeping 

gene. In order for a valid result to be obtained, the efficiency or amplifying both the reference 

and the target used in the experiment must be greater than 90% and approximately or close to 

equal. Here are the below steps in order to calculate the comparative CT (ΔΔCT): 

Step 1: To calculate the standard deviation and mean values of the replicate samples. 

The mean standard deviations and CT values are calculated by using Microsoft® Excel 

software. 

Step 2: In order to calculate the ΔCT value. 

The ΔCT is calculated as the following: 

ΔCT = CT (target) - CT (reference) 

Step 3: To calculate the ΔCT value’s standard deviation. 

The standard deviation (SD) of the ΔCT value is calculated from the standard deviations of 

the reference and the target values with the formula below: 

SD = (SD target 2 + SD reference 2)1/2 

Step 4: Calculating the ΔΔCT values. 

The ΔΔCT value is calculated as: 

ΔΔCT = ΔCT (treated sample) - ΔCT (non-treated sample) 
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Step 5: Calculating the standard deviation of ΔΔCT values. 

The calculation of ΔΔCT requires the subtraction of the ΔCT calibrator (un-treated) sample. 

This is a subtraction of an arbitrary constant; thus, the SD of the ΔΔCT value is comparable to 

the SD of the ΔCT value. 

2.10 Statistical analysis  

All data are represented as mean ± Standard Error of the Mean (S.E.M), and in this study, n = 

the number of repeat experiments. GraphPad Prism v6 (Windows) was used for statistical 

analysis, with comparison between two groups using unpaired Student's t-test. Experiments 

comparing three or more matched groups used a repeated one-way analysis of variance 

(ANOVA), next a Bonferroni post-hoc test, comparing all pairs. As is standard, P values of ≤ 

0.05 were considered significant. In this study, * refers to p<0.05, ** refers to P<0.01 and *** 

p<0.001.  
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CHAPTER 3:  ESTABLISHING AN IN-VITRO MODEL OF 

HUMAN BRONCHIAL EPITHELIAL CELL INJURY USING 

CELL LINES 

3.1 Introduction 

The airway epithelium plays a critical role in healthy as well as diseased lungs, primarily by 

providing a physical barrier to foreign particles, such as particulates and smoke, in addition to 

viruses and bacteria. Moreover, it enables a range of pro-inflammatory, anti-microbial and 

regulatory functions, and has the capacity to regenerate. Studies of the airway epithelium have 

been carried out since the late 1970s (Mathias et al., 1996). It has long been known that 

bronchial secretions are also involved in the initiation and augmentation of pulmonary host 

defence mechanisms. The latter involves generating and disseminating a range of mediators 

for various responses, including chemotaxis, inflammatory cell differentiation and activation 

in both diseased and non-diseased conditions (Brown et al., 2008). 

Many chronic degenerative diseases, such as lung allograft rejection, are characterised by 

epithelial damage related to pro-inflammatory cytokines. Symptoms include bronchial cell 

injury and necrosis, alongside leukocyte, neutrophil and macrophage infiltration, followed by 

accelerated inflammatory lung disease (Todd and Palmer, 2011). 

IL-8 is a neutrophilic chemoattractant and an angiogenic factor. Immunostaining has been 

used to identify IL-8 localisation in peribronchial lesions (Zheng et al., 2000). IL-6 plays a 

role in the activation of monocytes, T-cell differentiation and B-cell maturation. It also serves 

as a pyrogenic factor, inducing fever in response to infection (Rincon and Irvin, 2012). GM-

CSF is involved in macrophage activation and is a strong chemoattractant for neutrophils. It 

stimulates microbicidal and phagocytic activity, oxidative metabolism and improves 

cytotoxicity of both macrophages (Sorgi et al., 2012) and neutrophils (Katano et al., 2010). 

Evaluation of a broad array of epithelial cell lines has found that those mimicking adult 

human airway epithelial behaviours can be used to expand knowledge of the airway 

epithelium. 

This study investigated four such cell lines to compare inflammatory mediator expression, 

both basal and inducible. The most physiologically relevant cell type to evaluate airways 

damage was arguably primary human bronchial epithelial cells (PHBECs). However, these 
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are costly and not easy to culture (Stewart et al., 2012). Consequently, cell lines were 

investigated in terms of their ability to provide a useful model to complement the use of 

PHBECs. It was found that BEAS-2B cells were able to secrete IL-6, IL-8 and other 

cytokines while maintaining epithelial cell morphology in-vitro. These qualities make BEAS-

2B a popular cell line for airway epithelial structure and functional studies (Swanson et al., 

2009). 

The mucoepidermoid carcinoma-derived NCI-H292 cell line responds to cigarette smoke in 

the same way as PHBECs and provides a useful model for mucus production studies (Binker 

et al., 2009). The virally transformed bronchial epithelial line, 16HBE14o-, is used frequently 

in studies of ion transportation and barrier function (Gruenert et al., 1988; Cozens et al., 

1994). Finally, the human bronchial submucosal gland-derived Calu-3 cell line provides a 

model for the study of airway surface liquid, mucins and similar immunologically active 

substances (Shen et al., 1994), alongside pro-inflammatory cytokines involved in airway 

inflammation and epithelial damage (Hamid et al., 1999). 

Asthma and (COPD) are common, chronic airway pathophysiologies that include airflow 

obstruction. This airflow obstruction is associated with endothelin(s) production, peptides that 

cause significant vaso and broncho-constriction (Ucvet et al., 2011). Furthermore, the 

metabolism of arachidonic acid generates certain mediators, including cysteinyl leukotrienes, 

which cause smooth muscle contraction, which consequently changes cell chemo-attraction 

and vascular permeability, thereby resulting in excess mucus production. 

Therefore, the findings described in this chapter aim to establish a model for airway epithelial 

cell injury that is relevant to chronic degenerative diseases. Primary and secondary bile acids 

(BAs) were introduced to the cell lines described above to shed light on this. Pro-

inflammatory cytokine levels (IL-8, IL-6 and GM-SCF) were measured by Enzyme-Linked 

Immuno-Sorbent Assay (ELISA) with the aim of establishing a connection between BAs and 

epithelial damage. These candidate marker cytokines were chosen on the basis of prior studies 

which had found these factors to be released by damaged cells, and that showed they are 

upregulated during infection. For patients with inflammatory lung diseases, these are some of 

the primary exacerbating factors (damage and infection).  
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3.2 Aims of the study 

On the basis of the evidence for the role of epithelial-derived cytokines and other mediators in 

the evolution of airway inflammation, this study aims to: 

- Determine the sensitivity of BEAS-2B, Calu-3, 16HBE14-O  and NCI-H292 human 

airway epithelial cell lines to primary and secondary BAs 

- From this, to determine the optimum BAs concentration profile that may injure cells 

or stimulate them to an inflammatory phenotype 

- To therefore investigate the effects of primary and secondary BAs on the basal 

expression of inflammatory mediators in the human airway epithelial cells, using the 

data established by preliminary experimentation in the cell lines to make the best use 

of the limited primary cells. 
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3.3 Methods 

3.3.1 Cell line stimulation 

After reaching 80-95% confluence in 24-well plates, cell lines were rested for 24 hours as 

described in chapter 2, section 2.2. They were then exposed to individual primary and 

secondary BAs, at the concentrations reported in section (see chapter 2, section 2.6). 

3.3.2 Cell viability assay 

The Titer-Blue Assay and MTT assays were used. A standard curve was produced using 

known ratios of live to dead cells, and cells were killed using a five-minute exposure to ice-

cold methanol. The standard curve was used to determine the percentages of viable cells and 

comprised: 100% live cells (resting medium); 25:75% dead:live cells; 50:50%; 75:25% 

dead:live cells; and 100% dead cells (see chapter 2, sections 2.7.1 and 2.7.2). 

3.3.3 ELISA 

A commercially available ELISA method based on antibody pairs was used to determine 

human IL-8, IL-6 and GM-CSF concentrations in cell culture supernatants from differentiated 

cell lines (see chapter 2, section 2.8.1). This assay uses an analyte-specific monoclonal 

antibody pre-coated onto a microplate. After adding the sample, the relevant protein binds to 

the antibody. Following the addition of an enzyme-linked analyte-specific detection antibody, 

the substrate solution develops colour (via enzyme digestion) in proportion to the protein 

concentration in the sample. The signal intensity was then measured. 
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3.4 Results and discussion 

3.4.1 Morphology of cell lines used in this study 

One of the aims of this project was to culture and process bronchi-derived 16HBE14o-, 

BEAS-2B (virally transformed for immortality), Calu-3 and NCI-H292 (cancerous) human 

cell lines. These lines all have different transformation properties. Different conditions were 

used for different cell lines; their morphology are illustrated Figure 3-1. The ‘cobblestone’ 

morphology indicates healthy cells in submerged culture. The cells are clearly adherent with 

very few floating or fibroblast-like cells; nevertheless, they have a tendency to clump and 

expand towards other colonies, rather than migrating. Furthermore, I was able to re-establish 

these cells in culture, even after cryopreservation. 
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Figure 3-1: Morphology of cell lines used in the study. 10x magnification of (A) NCI-H292, (B) BEAS-2B, (C) 

Calu-3 and (D) 16HBE14o- cell lines cultured in complete medium in 24 or 6-well cell cultures at 37°C with 5% 

CO2 for 24 hours. These cells have the typical appearance of healthy cell lines in submerged culture. 
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3.4.2 Influence of individual bile acid on 16HBE14o- cell viability and inflammatory 

cytokine (IL-8, IL-6 and GM-CSF) release 

16HBE14o- cell monolayers at about 80-90% confluence were cultured in resting medium 

with 15-100 μmol/L cholic acid (CA), deoxycholic acid (DCA) and chenodeoxycholic acid 

(CDCA) for 48 hours. Lithocholic acid (LCA) was used in concentrations of 1 to 20 μmol/L, 

also for 48 hours. 

Both CellTiter-Blue (repeated culture n=3 with repeated wells n=12; overall n=12) and MTT 

(repeated culture n= 3 with repeated wells n=12; overall n=12) were used to assess cell 

viability. Both the CellTiter-Blue and MTT assays were used to calculate viability for two 

plates. The results revealed no significant difference between the two assessment methods. 

The cell viability was found to be affected depending on the BAs concentration. There was an 

inverse relationship between BAs concentration and measured cell viability, with increasing 

concentration and decreasing cell viability in a dose-dependent manner. 

The results revealed that cell viability reduced significantly in response to exposure to 10 

μmol/L of LCA to 73±3% of control and then decreased with 15 µmol/L LCA to 50±3% of 

control. This decreased further to the lowest cell viability level at 20 µmol/L LCA with 

28±3% viable cells (Figure 3-2A). 

The cell viability was reduced significantly by DCA at 50 µmol/l (73±3%) and the cell 

viability then decreased with 75 µmol/L DA to 41±3%. This decreased further to the lowest 

cell viability level at 100 µmol/L DA with 26±2% viable cells (Figure 3-2B). 

Furthermore, cell viability decreased significantly in response to exposure to 75 μmol/L of 

CA with 85±3%. This decreased further to the lowest cell viability level at 100 µmol/L CA 

(73±3%). CA did not affect cell viability at concentrations 15, 30 and 50 µmol/L (Figure 

3-3A). 

Furthermore, cell viability decreased significantly by CDCA at 50 µmol/L with 82±2%. The 

cell viability than reduced with 100 µmol/L CDCA to 50±3%. No difference was found in the 

cell viability at lowest CDCA concentrations, 15 and 30 µmol/L, compared with the control 

(Figure 3-3 B). 
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Figure 3-2: Effects of BAs on 16HBE14o- cell proliferation. 16HBE14o- cell viability following stimulation 

with secondary Bas, (A) Lithocholic and (B) Deoxycholic acids at varying concentrations. Viability is measured 

as a percentage of the control after 48h. Bars represent mean ± S.E.M. Statistical analysis was performed to test 

the effect of BAs compared with control. P values of 0.05 or less were regarded as significant. Negative controls 

were measured by fixing the cells in methanol before adding the CellTiter-Blue or MTT reagent. The data are 

representative of three independent experiments (n=12). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001 indicate levels of significant change in viability comparing cells after the treatment compared to control, 

ANOVA).  
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Figure 3-3: Effects of BAs on 16HBE14o- cell proliferation. 16HBE14o- cell viability following stimulation 

with primary BAs (A) Cholic (B) Chenodeoxycholic acids at varying concentrations. Viability is measured as a 

percentage of the control after 48h. Bars represent mean ± S.E.M. Statistical analysis was performed to test the 

effect of BAs compared with control. P values of 0.05 or less were regarded as significant. Negative controls 

were measured by fixing the cells in methanol before adding the CellTiter-Blue or MTT reagent. The data are 

representative of three independent experiments (n=12). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001 indicate levels of significant change in viability comparing cells after the treatment compared to control, 

ANOVA. 

 

  

 

 



69 

 

IL-8, IL-6 and GM-CSF production by the 16HBE14o- cell line was analysed following 

stimulation by BAs. The 16HBE14o- cells were cultured and stimulated with primary BAs 

(CA and CDCA) and the secondary BA (LCA and DCA). 

IL-8 levels increased by a significant amount when stimulated with 10 and 15 μmol/L LCA 

but not at 1, 5 and 20 μmol/L. IL-8 levels increased significantly at 10 µmol/L LCA to 

136±24 pg/mL compared to the control, 41±12 pg/mL, and increased to the maximum level at 

15 µmol/L LCA of 340± 3 pg/mL  

IL-6 levels also significantly increased following stimulation by 1 μmol/L or above of LCA. 

The result revealed that the highest level of IL-6 production was at 10µmol/L LCA with 

294±30 pg/mL compared with the control (33±3 pg/mL), and then declined as concentration 

of LCA increased to 20 µmol/L. 

GM-CSF levels increased significantly at 5 µmol/L LCA with 284±15 pg/mL and increased 

further to the maximum level at 10 µmol/L LCA with 707±35 pg/mL. The level of GM-CSF 

production than fell off at 15 µmol/L LCA with 258±37 pg/mL but remained significantly 

higher than the control, 14±3 pg/mL. LCA at concentration 20 µmol/L did not cause a 

significant increase in GM-CSF level (Figure 3-4 and Table 3-1). 
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Figure 3-4: Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with LCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA. The data are representative of three independent experiments (n=6) (see table 3-1). 

Bars represent mean ± S.E.M values of each group. 

 

  Lithocholic acid  

Concentration 

μmol/L 

1 5 10 15 20 

IL-8 (pg/ml) _______ _______ ↑**   ↑*** _______ 

IL-6 (pg/ml)   ↑** ↑**   ↑***   ↑*** ↑* 

GM-CSF (pg/ml)   ↑**   ↑***     ↑****   ↑*** _______ 
 

Table 3-1: The effect of different levels of Lithocholic acid on the 16HBE14o- cell line following stimulation 

for 48 hours, ↑ Increase demonstrated * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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IL-8, IL-6 and GM-CSF production by the 16HBE14o- cell line was analysed following 

stimulation with DCA. The IL-8 levels at 30, 50 and 75 μmol/L DCA increased significantly, 

but 15 and 100 μmol/L DCA displayed no increase. The highest level of IL-8 release occurred 

with 75 µmol/L DCA to 864±32 pg/mL, compared with the control (41± 8 pg/mL). 

IL-6 levels were elevated significantly by 30, 50, 75 and 100 μmol/L DCA concentrations. 

The highest level of IL-6 production was at 50 µmol/L DCA to 330±3 pg/mL compared with 

the control 36± 2 pg/mL and then declines as the concentration of DCA increases up to 100 

µmol/L. DCA at concentration 15 µmol/L did not cause a significant increase in IL-6 levels. 

16HBE14o- cells also produce GM-CSF. These cells were exposed to DCA for 48 hours at 

concentrations ranging from 15 to 100μmol/L. The GM-CSF levels increased significantly at 

30 µmol/L DCA with 153±5 pg/mL and increased further to the maximum level at 50 µmol/L 

DCA with 318±15 pg/mL. The level of GM-CSF production than fell off at 100 µmol/L DCA 

with 47±2 pg/mL but was still significantly higher than the control at 12±2 pg/mL. DCA at 

concentration 15 µmol/L did not cause a significant increase in GM-CSF levels (Figure 3-5 

and Table 3-2). 
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Figure 3-5: Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with DCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA. The data are representative of three independent experiments (n=6) (see table 3-2). 

Bars represent mean ± S.E.M values of each group. 

 

   Deoxycholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) _______ ↑** ↑***        ↑**** _______ 

IL-6 (pg/ml) _______ ↑** ↑***  ↑*   ↑* 

GM-CSF (pg/ml) _______ ↑** ↑***  ↑*   ↑* 

Table 3-2: The effect of different levels of Deoxycholic acid on the 16HBE14o- cell line following stimulation 

for 48 hours, ↑ Increase demonstrated. * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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IL-8, IL-6 and GM-CSF production by 16HBE14o- cells increased at 48 hours after 

stimulation with CA concentrations ranging from 15 to 100 µmol/l. IL-8 levels at 15, 30, 50, 

75 and 100μmol/L CA were significantly increased. The highest level of IL-8 release 

occurred with 100 µmol/L CA to 825±32 pg/mL compared with the control (50±9 pg/mL). 

The IL-6 levels increased significantly at 15 µmol/L CA with 103±5 pg/mL and increased 

further to the maximum level at 75 µmol/L CA with 413±16 pg/mL. The level of IL-6 

production then fell off at 100 µmol/L CA with 322±22 pg/mL but remained significantly 

higher than the control at 32±3 pg/mL. 

The GM-CSF levels also significantly increased following stimulation by 30 μmol/L or above 

of CA. The result revealed that the highest level of GM-CSF production was at 100µmol/L 

CA with 330±20 pg/mL compared with control at 31±5 pg/mL. CA at concentration 15 

µmol/L did not cause a significant increase in GM-CSF levels (Figure 3-6 and Table 3-3). 
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Figure 3-6: Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with CA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-3). Bars 

represent mean ± S.E.M values of each group. 

 

 Cholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) ↑**   ↑**   ↑***   ↑*** ↑*** 

IL-6 (pg/ml) ↑**   ↑***   ↑***   ↑**** ↑**** 

GM-CSF (pg/ml) _______   ↑**   ↑***   ↑**** ↑**** 

Table 3-3: The effect of different levels of cholic on the 16HBE14o- cell line following stimulation for 48 hours, 

↑ Increase demonstrated * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, *** = p < 

0.001, **** = p < 0.0001 compared with control, ANOVA).  
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CDCA stimulation of cultured 16HBE14o- at concentrations from 15 to 100μmol/L for 48 

hours was compared with controls without CDCA. The IL-8 levels increased significantly at 

15 µmol/L CDCA to 577±22 pg/mL and rose further to the highest level at 75 µmol/L CDCA 

to 1075±32 pg/mL compared to the control (41±12 pg/mL). The level of IL-8 production then 

decreased at 100 µmol/L CDCA but remained significantly higher than the control. 

Moreover, the findings showed a significant increase in IL-6 at 15, 30, 50, 75 and 100 μmol/L 

of CDCA. The highest level of IL-6 production was at 50 µmol/L CDCA with 423±20 pg/mL 

compared with control (29±3 pg/mL) and then declined as the concentration of CDCA 

increased up to 100 µmol/L. 

ELISA detected the GM-CSF following CDCA stimulation of 16HBE14o- cells. The CDCA 

significantly upregulates GM-CSF production at 30, 50, 75 and 100 μmol/L, but not at 15 

μmol/L. GM-CSF production increased significantly at 30 µmol/L CDCA TO 65±9 pg/mL 

and rose further to a maximum level at 100 µmol/L CDCA to 640±20 pg/mL compared with 

the control at 14±3 pg/mL (Figure 3-7 and Table 3-4). 

  



76 

 

C 1
5

3
0

5
0

7
5

1
0
0

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

C h e n o d e o x y c h o lic  a c id  ( m o l/L )

(p
g

/m
L

)

IL -8

IL -6

G M -C S F

1 6 H B E 1 4 o -  c e lls

 

Figure 3-7: Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with CDCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-4). Bars 

represent mean ± S.E.M values of each group. 

 

 Chenodeoxycholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) ↑***     ↑*** ↑***   ↑*** ↑** 

IL-6 (pg/ml) ↑***     ↑***   ↑****   ↑***   ↑*** 

GM-CSF (pg/ml) _______ ↑* ↑***   ↑***     ↑**** 

Table 3-4: The effect of different levels of Chenodeoxycholic acid on the 16HBE14o- cell line following 

stimulation for 48 hours, ↑ Increase demonstrated * Significant stimulation of cytokines release. (* = p<0.05, ** 

= p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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3.4.3 Influence of individual BAs on BEAS-2B cell viability and inflammatory (IL-8, 

IL-6 and GM-CSF) release 

Both the CellTiter-Blue and MTT assays were used to calculate viability. The results revealed 

no significant difference between the two methods of assessment. BEAS-2B cells were 

exposed to CA, DCA and CDCA in concentrations from 15 to 100 µmol/L for 48 hrs, and 

LCA concentrations from 1 to 20μmol/L. 

The cell viability was found to be affected, depending on the BAs concentration. There was 

an inverse relationship between BAs concentration and measured cell viability, with 

increasing concentration and decreasing cell viability in a dose-dependent manner. 

The results showed that cell viability reduced significantly in response to exposure to 5 

μmol/L LCA to 78±3% of control and then decreased further with 10 µmol/L LCA to 46±3%. 

This decreased further to the lowest cell viability level at 20 µmol/L LCA with 7± 3% (Figure 

3-8 A). 

Cell viability was reduced significantly by DCA at a concentration of 50 µmol/l (94±3%). 

However, 15 and 30 µmol/l DCA did not affect cell viability (Figure 3-8 B). 

Cell viability reduced significantly in response to exposure to 50 μmol/L CA to 88±3% of 

control. This decreased further to the lowest cell viability level at 100 µmol/L CA (53±3%). 

The lowest concentrations (15 and 30 µmol/L) of CA did not affect cell viability (Figure 3-9 

A). 

Cell viability was reduced significantly by CDCA at concentration 50 µmol/l to 88±2% of 

control. The cell viability was greatly reduced by 100 µmol/L of CDCA to 53±3% of control. 

No difference was found in the cell viability at 15 and 30 µmol/L CDCA compared with the 

control (Figure 3-9 B). 
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Figure 3-8: Effects of BAs on BEAS-2B cell proliferation. BEAS-2B cell viability following stimulation with 

secondary BAs (A) Lithocholic (B) Deoxycholic acid, at varying concentrations. Viability is measured as a 

percentage of the control after 48h. Bars represent mean ±S.E.M. Statistical analysis was performed to test the 

effect of BAs compared with control. P values of 0.05 or less were regarded as significant. Negative controls 

were measured by fixing the cells in methanol before adding the CellTiter-Blue or MTT reagent. The data are 

representative of three independent experiments (n=6). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001 indicate levels of significant change in viability comparing cells after the treatment compared to control, 

ANOVA. 

 

 

. 
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Figure 3-9: Effects of BAs on BEAS-2B cell proliferation. BEAS-2B cell viability following stimulation with 

primary BAs (A) Cholic (B) Chenodeoxycholic acids at varying concentrations. Viability is measured as a 

percentage of the control after 48h. Bars represent mean ±S.E.M. Statistical analysis was performed to test the 

effect of BAs compared with control. P values of 0.05 or less were regarded as significant. Negative controls 

were measured by fixing the cells in methanol before adding the CellTiter-Blue or MTT reagent. The data are 

representative of three independent experiments (n=6). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001 indicate levels of significant change in viability comparing cells after the treatment compared to control, 

ANOVA. 

 

 

. 
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BAs affect IL-8, IL-6 and GM-CSF secretion by BEAS-2B cells, which was investigated by 

treating cells with LCA in concentrations from 1 to 20 µmol/l. The experiment showed a 

significant increase in IL-8, IL-6 and GM-CSF released by bile acid challenged BEAS-2B 

cells compared to untreated controls. LCA caused IL-8 levels to increase significantly, but 

this was not observed at a concentration of 1 µmol/L. 

IL-8 levels increased significantly at 5 µmol/L LCA to 608±3 pg/mL and increased further to 

the maximum level at 10 µmol/L LCA (905±12 pg/mL). The level of IL-8 production 

subsequently fell off at 20 µmol/L LCA, but was still significantly higher than the control. 

There was a significant increase in IL-6 levels with LCA at concentrations of 10, 15 and 20 

μmol/L, but not at 1 and 5 µmol/L. The result revealed that the highest level of IL-6 

production was at 10µmol/L LCA to 206±2 pg/mL compared with the control at 15±2 pg/mL 

and then declines as the concentration of LCA rose to 20 µmol/L. 

The GM-CSF levels increased significantly at 5 µmol/L LCA to 208±4 pg/mL and rose 

further to the maximum level at 10 µmol/L LCA to 332±11 pg/mL compared with the control 

23±3 pg/mL. The level of GM-CSF production then fell off at 20 µmol/L LCA, but was still 

significantly higher than the control. LCA did not cause GM-CSF levels to increase (Figure 

3-10 and Table 3-5). 
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Figure 3-10: Measurement of IL-8. IL-6 and GM-CSF production from BEAS-2B cells treated with LCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-5). Bars 

represent mean ± S.E.M values of each group. 

 

 Lithocholic acid 

Concentration 

μmol/L 

1 5 10 15 20 

IL-8 (pg/ml) _______ ↑**** ↑****   ↑**** ↑*** 

IL-6 (pg/ml) _______ _______ ↑****   ↑**** ↑** 

GM-CSF (pg/ml) _______ ↑**** ↑****   ↑*** _______ 

Table 3-5: The effect of different levels of Lithocholic acid on the BEAS-2B cell line following stimulation for 

48 hours, ↑ Increase demonstrated * Significant stimulation of cytokines release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Cells were treated with DCA in concentrations ranging from 15 to 100 µmol/l. IL-8, IL-6 and 

GM-CSF release from BEAS-2B cells also increased significantly. It can be observed that IL-

8 levels increased significantly at 30 µmol/L DCA to 243±16 pg/mL and increased further to 

the maximum level at 75 µmol/L DCA of 955±15 pg/mL compared with the control: 56±6 

pg/mL. The level of IL-8 production than fell off at 100µmol/L DCA but were still 

significantly higher than the control. However, no significant increase was seen using a 

concentration of 15 µmol/L DCA. 

There was a significant increase in IL-6 levels with DCA at concentrations of 50, 75 and 100 

μmol/L, but not at 15 and 10µmol/L. The highest level of IL-6 secretion was with 100µmol/L 

DCA, 218±8 pg/Ml, compared with the control 17±5 pg/mL. 

Furthermore, the GM-CSF levels increased significantly at 30 µmol/L DCA to 175±3 pg/mL 

and increased further to the maximum level at 75 µmol/L DCA, 343±2 pg/Ml, compared with 

the control, 31±3 pg/mL. The level of GM-CSF production than decreased at 100µmol/L 

DCA but remained significantly higher than the control. However, no significant increase was 

observed using a concentration of 15 µmol/L DCA (Figure 3-11 and Table 3-6). 
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Figure 3-11: Measurement of IL-8, IL-6 and GM-CSF production from BEAS-2B cells treated with DCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-6). Bars 

represent mean ± S.E.M values of each group. 

 

 Deoxycholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) _______  ↑*** ↑**** ↑****   ↑**** 

IL-6 (pg/ml) _______ _______ ↑** ↑****   ↑**** 

GM-CSF (pg/ml) _______  ↑* ↑** ↑***   ↑*** 

Table 3-6: The effect of different levels of Deoxycholic acid on the BEAS-2B cell line following stimulation for 

48 hours, ↑ Increase demonstrated. * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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ELISA analysis detected IL-8, IL-6 and GM-CSF in conditioned medium following CA 

stimulation of BEAS-2B. IL-8 levels increased significantly with CA at concentrations of 50, 

75 and 100 μmol/L, but not at 15 and 30 µmol/L. The highest level of IL-8 secretion was with 

100 µmol/L CA, 243±6 pg/Ml, compared with the control, 51±3 pg/mL. 

IL-6 levels were significantly elevated by all CA concentrations except 15 μmol/L. The 

highest level of IL-6 secretion was with 100µmol/L CA, 277±3 pg/Ml, compared with the 

control, 18±2 pg/mL. 

Furthermore, the GM-CSF levels increased significantly at 30 µmol/L CA and increased 

further to the maximum level at 75 µmol/L CA of 326±2 pg/mL compared to the control 29±3 

pg/mL. The level of GM-CSF production than decreased at 100µmol/L CA while remaining 

significantly higher than the control. However, no significant increase was observed using a 

concentration of 15 µmol/L CA (Figure 3-12 and Table 3-7). 
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Figure 3-12: Measurement of IL-8, IL-6 and GM-CSF production from BEAS-2B cells treated with CA. ELISA 

was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-

way ANOVA the data are representative of three independent experiments (n=6) (see table 3-7). Bars represent 

mean ± S.E.M values of each group. 

 

 Cholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) _______ _______  ↑** ↑** ↑** 

IL-6 (pg/ml) _______ ↑**   ↑***     ↑****     ↑**** 

GM-CSF (pg/ml) _______   ↑***     ↑****     ↑****     ↑**** 

Table 3-7: The effect of different levels of Cholic acid on the BEAS-2B cell line following stimulation for 48 

hours, ↑ Increase demonstrated. * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, *** = 

p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Concentrations from 15 to 100 µmol/l CDCA were tested. IL-8 levels increased significantly, 

but this was not observed at concentration of 15 µmol/L CDCA. IL-8 levels increased 

significantly at 30 µmol/L CDCA to 373±6 pg/mL and increased to the maximum level at 50 

µmol/L CDCA of 759±12 pg/mL compared to the control, 56±9 pg/mL. The level of IL-8 

production than fell off at 100 µmol/L CDCA but was still significantly higher than the 

control. 

IL-6 levels were increased with CDCA at concentrations of 30, 50, 75 and 100 μmol/L, but 

not at 15 µmol/L. However, the maximum output of IL-6 occurred at 100µmol/L CDCA to 

272± 3 pg/mL compared with the control 27±3 pg/mL. 

The GM-CSF was detected by ELISA following CDCA stimulation of BEAS-2B cells. The 

CDCA significantly upregulates GM-CSF production at 30, 50, 75 and 100 μmol/L. GM-CSF 

production increased significantly at 30 µmol/L CDCA to 50±4 pg/mL and increased further 

to the maximum level at 50 µmol/L CDCA of 234±7 pg/mL compared to the control, 27±3 

pg/mL. The level of GM-CSF production then decreased at 100µmol/L CDCA but was still 

significantly higher than the control (Figure 3-13 and Table 3-8). 
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Figure 3-13: Measurement of IL-8, IL-6 and GM-CSF production from BEAS-2B cells treated with CDCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-8). Bars 

represent mean ± S.E.M values of each group. 

 

 Chenodeoxycholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) _______     ↑***     ↑****     ↑****     ↑*** 

IL-6 (pg/ml) _______   ↑**   ↑***   ↑***     ↑*** 

GM-CSF (pg/ml) _______ ↑*   ↑*** ↑** ↑* 

Table 3-8: The effect of different levels of Chenodeoxycholic acid on the BEAS-2B cell line following 

stimulation for 48 hours, ↑ Increase demonstrated. * Significant stimulation of cytokines release. (* = p<0.05, 

** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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3.4.4 Influence of individual BAs on NCI-H292 cell viability and inflammatory (IL-8, 

IL-6 and GM-CSF) release 

Cultured NCL-H292 in complete medium (RPMI) in 24-well cell plates, were stimulated with 

both primary and secondary BAs at a range of concentrations. After 48h, cell viability was 

calculated by counting, using the CellTiter-Blue Cell Viability and MTT Assays. 

The results revealed that cell viability reduced significantly in response to exposure to 10 

μmol/L LCA with 93±43% viability and the cell viability then decreased at 15 µmol/L LCA 

with 85±4%. This decreased further to the lowest cell viability level at 20 µmol/L LCA with 

14±6%. LCA at 1 to 5 µmol/L did not cause any cell death (Figure 3-14A). 

Furthermore, cell viability reduced significantly in response to exposure to 30μmol/L DCA 

with 90±3% and the cell viability then decreased with 75 µmol/L DCA to 50±5%. This 

decreased further to the lowest cell viability level at 100 µmol/L DCA (13±3 %) (Figure 

3-14B). 

CA and CDCA at 15 to 100 µmol/L did not cause any cell death, which suggests that 

secondary BAs have greater cytotoxicity than primary BAs. Both the CellTiter-Blue and MTT 

assays were used to calculate viability for two plates. The results analysis found no significant 

difference between the two assessment methods (Figure 3-15 A & B). 



89 

 

 

Figure 3-14: Effects of BAs on NCI-H292 cell proliferation. NCI-H292 cell viability following stimulation with 

secondary BAs (A) Lithocholic and (B) Deoxycholic acids, at varying concentrations. Viability is measured as a 

percentage of the control after 48h. Bars represent mean ±S.E.M. Statistical analysis was performed to test the 

effect of BAs compared with control. P values of 0.05 or less were regarded as significant. Negative controls 

were measured by fixing the cells in methanol prior to adding the CellTiter-Blue and MTT reagent. The data are 

representative of three independent experiments (n=6). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001 indicate levels of significant change in viability comparing cells after the treatment compared to control, 

ANOVA. 
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Figure 3-15: Effects of BAs on NCI-H292 cell proliferation. NCI-H292 cell viability following stimulation with 

primary BAs (A) Cholic and (B) Chenodeoxycholic acids at varying concentrations. Viability is measured as a 

percentage of the control after 48h. Bars represent mean ±S.E.M. Statistical analysis was performed to test the 

effect of BAs compared with control. P values of 0.05 or less were regarded as significant. Negative controls 

were measured by fixing the cells in methanol before adding the CellTiter-Blue and MTT reagent. The data are 

representative of three independent experiments (n=6). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001 indicate levels of significant change in viability comparing cells after the treatment compared to control, 

ANOVA. 
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IL-8, IL-6 and GM-CSF production by the NCL-H292 cell line lung carcinoma was also 

analysed following stimulation by BAs. NCI-H292 cells were cultured and stimulated with 

primary BAs (CA and CDCA) and the secondary BAs (DCA) at a range of concentrations 

from 15 to 100μmol/L for 48 hours. LCA at 1 to 20μmol/L was also used and the results 

compared with the control. 

At concentrations of 1, 5, 10, 15 and 20μmol/L LCA significantly increased IL-8 levels. 

However, the highest level was 690±24 pg/mL with 1 µmol/L LCA compared with the 

control, 61±4 pg/mL. The level subsequently fell to 107±3 pg/mL with 20 µmol/L LCA. 

A significant increase was observed in IL-6 levels with LCA at concentrations of 5, 10 and 15 

μmol/L, 20 µmol/L LCA did not significantly increase IL-6 output due to cell death. The 

result revealed that the highest level of IL-6 production was at 15µmol/L LCA to 304±2 

pg/mL compared with the control, 17±2 pg/mL. 

GM-CSF production by NCL-H292 cells increased significantly following stimulation with 

LCA at 1, 5, 10 and 15 μmol/L, but this was not observed at 20μmol/L LCA due to cell death. 

The highest level of GM-CSF secretion was at 5 µmol/L LCA with 327±2 pg/mL compared 

with the control, 18±2 pg/mL (Figure 3-16 and Table 3-9). 
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Figure 3-16: Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with LCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-9). Bars 

represent mean ± S.E.M values of each group. 

 

 Lithocholic acid 

Concentration 

μmol/L 

1 5 10 15 20 

IL-8 (pg/ml)        ↑****       ↑****   ↑****        ↑**** ↑** 

IL-6 (pg/ml) _______   ↑** ↑***      ↑*** _______ 

GM-CSF (pg/ml) ↑*       ↑****   ↑****  ↑* _______ 

Table 3-9: The effect of different levels of Lithocholic acid on the NCL-H292 cell line following stimulation for 

48 hours, ↑ Increase demonstrated.  * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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IL-8, IL-6 and GM-CSF production by the NCL-H292 cell line lung carcinoma was also 

analysed following stimulation by DCA. 

DCA at concentrations of 15, 30, 50, and 75μmol/L significantly increased IL-8 levels. The 

highest level of IL-8 secretion was at 1 µmol/L DCA with 670±23% compared with the 

control, 32±4%. The IL-8 levels than decreased to a level not significantly different from 

control at 100 µmol DCA. 

The IL-6 levels at 30, 50 and 75 μmol/L DCA increased significantly, but 15 and 100 μmol/L 

DCA did not. The highest level of IL-6 production was at 218±3 pg/mL with 75 µmol/L DCA 

compared with the control (19±2 pg/mL). 

GM-CSF levels increased significantly at 30 µmol/L DCA with 251±3 pg/mL and increased 

to the maximum level at 50 µmol/L DCA with 439±8 pg/mL. The level of GM-CSF 

production then fell off at 75 µmol/L DCA with 132±2 pg/mL but remained significantly 

higher than the control 24±3 pg/mL. DCA at concentration 15 and 100 µmol/L did not cause a 

significant increase in GM-CSF levels (Figure 3-17 and Table 3-10). 
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Figure 3-17: Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with DCA. 

ELISA was use to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-10). 

Bars represent mean ± S.E.M values of each group. 

 

 Deoxycholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) ↑****   ↑**** b↑**** ↑*** _______ 

IL-6 (pg/ml) _______ ↑*** ↑***   ↑**** _______ 

GM-CSF (pg/ml) _______ ↑***   ↑****   ↑**** _______ 

Table 3-10: The effect of different levels of Deoxycholic acid on the NCL-H292 cell line following stimulation 

for 48 hours, ↑ Increase demonstrated * Significant stimulation of cytokines release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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IL-8, IL-6 and GM-CSF production by the NCL-H292 cell line lung carcinoma was also 

analysed following stimulation by CA. 

CA at concentrations of 15, 30 and 50 μmol/L significantly increased IL-8 levels. The highest 

level of IL-8 secretion was at 15 µmol/L CA at with 516±2pg/mL compared to the control, 

37±3pg/mL. 

IL-6 levels at 50, 75 and 100 μmol/L CA increased significantly, but 15 and 30 μmol/L CA 

did not increase it. The highest level of IL-6 release occurred with 100µmol/L CA, to 124±2 

pg/mL compared with the control (21±2 pg/mL). 

All CA concentrations significantly elevated GM-CSF levels except 15 μmol/L. The highest 

level of GM-CSF secretion was with 100µmol/L CA to 429±3 pg/mL compared with the 

control, 21±2 pg/mL (Figure 3-18 and Table 3-11). 
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Figure 3-18: Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with CA. ELISA 

was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-

way ANOVA the data are representative of three independent experiments (n=6) (see table 3-11). Bars represent 

mean ± S.E.M values of each group. 

 

 Cholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) ↑***  ↑***  ↑** _______ _______ 

IL-6 (pg/ml) _______ _______  ↑***   ↑*** ↑**** 

GM-CSF (pg/ml) _______  ↑***  ↑***   ↑**** ↑**** 

Table 3-11: The effect of different levels of Cholic acid on the NCL-H292 cell line following stimulation for 48 

hours, ↑ Increase demonstrated. * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, *** = 

p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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IL-8, IL-6 and GM-CSF production by the NCI-H292 cell line was analysed following 

stimulation by CDCA. NCI-H292 cells were cultured and stimulated with CDCA. 

IL-8 levels increased by a significant amount when stimulated with 15, 30, 50, 75 and 100 

μmol/L CDCA. IL-8 levels increased significantly at 15 µmol/L CDCA to 433±21 pg/mL 

compared with the control, 41±5 pg/mL and increased to the maximum level at 30 µmol/L 

CDCA to 508±17pg/mL. 

Moreover, IL-6 levels significantly increased following stimulation by 30 μmol/L or above of 

CDCA. The result revealed that the highest level of IL-6 production was at 100µmol/L CDCA 

with 265±3 pg/mL compared with the control (33±3 pg/mL). 

The GM-CSF levels increased significantly with CDCA at concentrations of 50, 75 and 100 

μmol/L, but not at 15 and 30µmol/L. However, the highest level of GM-CSF secretion with 

100µmol/L CDCA to 319± 9  pg/mL compared with the control 13±2 pg/mL (Figure 3-19 and 

Table 3-12). 
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Figure 3-19: Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with CDCA. 

ELISA was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-

paired-one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-12). 

Bars represent mean ± S.E.M values of each group. 

 

 Chenodeoxycholic acid 

Concentration  

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) ↑****     ↑****   ↑*** ↑** ↑** 

IL-6 (pg/ml) _______ ↑** ↑**     ↑****     ↑**** 

GM-CSF (pg/ml) _______ _______   ↑***     ↑****     ↑**** 

Table 3-12: The effect of different levels of Chenodeoxycholic acid on the NCL-H292 cell line following 

stimulation for 48 hours, ↑ Increase demonstrated. * Significant stimulation of cytokine release. (* = p<0.05, ** 

= p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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3.4.5 Influence of individual bile acids on Calu-3 cell viability and inflammatory (IL-8, 

IL-6 and GM-CSF) release 

Caul-3 cells were exposed to LCA, DCA, CA and CDCA in concentrations ranging from 15 

to 100mol/l for 48 hrs. Their viability was then assessed using CellTiter-Blue and MTT 

assays. The results revealed no significant difference between the two methods of assessment. 

The cell viability was found to be affected depending on the BAs concentration. There was an 

inverse relationship between BAs concentration and measured cell viability, with increasing 

concentration and decreasing cell viability in a dose-dependent manner. 

The results revealed a significant reduction in cell viability in response to 30μmol/L of LCA 

with 81± 3%. Subsequently, the cell viability decreased with 75 µmol/L LCA to 23±3%. This 

fell further to the lowest cell viability level at 100 µmol/L LCA with 2±2% (Figure 3-20A). 

Cell viability was reduced significantly by DCA at concentration 50 µmol/l (84±2%). 

However, cell viability was not affected by 15 and 30 µmol/l DCA (Figure 3-20 B). 

Furthermore, cell viability reduced significantly in response to exposure to 50μmol/L CA with 

93±3%. This decreased further to the lowest cell viability level at 100 µmol/L CA (73±3%). 

The lowest concentration (15 and 30 µmol/L) of CA did not affect cell viability (Figure 

3-21A). 

Cell viability was also decreased significantly by CDCA at concentration 50 µmol/l with 

87±3%. The cell viability then reduced by 100µmol/L CDCA with 65±6%. No difference was 

found in the cell viability at lowest CDCA concentrations, 15 and 30 µmol/L, compared with 

the control (Figure 3-21 B). 
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Figure 3-20: Effects of BAs on Calu-3 cell proliferation. Calu-3 cell viability following stimulation with secondary 

BAs (A) Lithocholic (B) Deoxycholic acids, at varying concentrations. Viability is measured as a percentage of the 

control after 48h. Bars represent mean ±S.E.M.. Statistical analysis was performed to test the effect of BAs 

compared with control. P values of 0.05 or less were regarded as significant. Negative controls were measured 

by fixing the cells in methanol before adding the Titer-Blue or MTT reagent. The data are representative of three 

independent experiments (n=6). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 indicate levels of 

significant change in viability comparing cells after the treatment compared to control, ANOVA. 
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Figure 3-21: Effects of BAs on Calu-3 cell proliferation. Calu-3 cell viability following stimulation with primary 

BAs (A) Cholic (B) Chenodeoxycholic acids, at varying concentrations. Viability is measured as a percentage of 

the control after 48h. Bars represent mean ±S.E.M.. Statistical analysis was performed to test the effect of BAs 

compared with control. P values of 0.05 or less were regarded as significant. Negative controls were measured 

by fixing the cells in methanol before adding the Titer-Blue or MTT reagent.  The data are representative of three 

independent experiments (n=6). *= p < 0.05,** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 indicate levels of 

significant change in viability comparing cells after the treatment compared to control, ANOVA. 
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Calu-3 cells produced significantly higher levels of IL-8 following LCA stimulation at 

concentrations of 15, 30, 50 and 75 μmol. The IL-8 levels increased significantly at 15 

µmol/L LCA with 571±13 pg/mL and increased further to the maximum level at 50 µmol/L 

LCA with 1289±2 pg/mL. The level of IL-8 production than fell off at 75 µmol/L LCA with 

318±9 pg/mL but remained significantly higher than the control 41±5 pg/mL. LCA at 

concentration 100 µmol/L did not cause a significant increase in GM-CSF levels. 

There was significant increase in IL-6 levels with LCA at concentrations of 50, 75 and 100 

μmol/L, but not at 15 and 30 µmol/L. The result revealed that the highest level of IL-6 

production was at 50 µmol/L LCA to 206±2 pg/mL compared with control 12±2 pg/mL. 

GM-CSF production by Calu-3 cells increased significantly after stimulation with LCA at 15, 

30, 50 and 75 μmol/L, but this was not observed at 100 μmol/L LCA due to cell death. The 

highest level of GM-CSF secretion was at 50 µmol/L LCA with 632±12 pg/mL compared 

with the control 14±3 pg/mL (Figure 3-22 and Table 3-13). 
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Figure 3-22: Measurement of IL-8. IL-6 and GM-CSF production from Calu-3 cells treated with LCA. ELISA 

was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-

way ANOVA the data are representative of three independent experiments (n=6) (see table 3-13). Bars represent 

mean ± S.E.M values of each group. 

 

 Lithocholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) ↑*** ↑*** ↑****    ↑** _______ 

IL-6 (pg/ml) _______ _______ ↑****    ↑**** ↑*** 

GM-CSF (pg/ml) ↑*** ↑*** ↑****    ↑** _______ 

Table 3-13: The effect of different levels of Lithocholic acid on the Calu-3 cell line following stimulation for 48 

hours, ↑ Increase demonstrated. * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, *** = p 

< 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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DCA stimulation of cultured Calu-3 at concentrations from 15 to 100μmol/L for 48 hours was 

compared with controls without DCA. The IL-8 levels increased significantly at 15 µmol/L to 

388±24 pg/mL and rose further to the highest level of 75 µmol/L to 1199±22 pg/mL 

compared to the control (41±12 pg/m-L). The level of IL-8 production then decreased to 100 

µmol/L but remained significantly higher than the control. 

IL-6 levels significantly increased following stimulation by 30 μmol/L or above of DCA. The 

result revealed that the highest level of IL-6 production was at 100 µmol/L with 218±8 pg/mL 

compared with control 6±2 pg/mL.  DCA at concentration 15 µmol/L did not cause a 

significant increase in GM-CSF levels. 

Furthermore, the GM-CSF levels increased significantly at 30 µmol/L of DCA and increased 

further to the maximum level at 75 µmol/L of 680±22 pg/mL compared with the control 

12±2pg/mL. The level of GM-CSF production then decreased at 100µmol/L DCA but 

remained significantly higher than the control. However, no significant increase was observed 

using concentrations of 15 µmol/L DCA (Figure 3-23 and Table 3-14). 
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Figure 3-23: Measurement of IL-8. IL-6 and GM-CSF production from Calu-3 cells treated with DCA. ELISA 

was used to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-

one-way ANOVA the data are representative of three independent experiments (n=6) (see table 3-14). Bars 

represent mean ± S.E.M values of each group. 

 

 Deoxycholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml) ↑***   ↑***   ↑*** ↑****   ↑**** 

IL-6 (pg/ml) _______ ↑**   ↑*** ↑****   ↑**** 

GM-CSF (pg/ml) _______   ↑***   ↑*** ↑**** ↑*** 

Table 3-14: The effect of different levels of Deoxycholic acid on the Calu-3 cell line following stimulation for 

48 hours, ↑ Increase demonstrated * Significant stimulation of cytokine release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Stimulation of Calu-3 cells with CA at concentrations of 15, 30, 50, 75, and 100 μmol/L for 

48 hours caused a significant increase in IL-8. The IL-8 levels increased significantly at 15 

µmol/L to 380±21 pg/mL and increased further to the highest level of 75 µmol/L to 1146±11 

pg/mL compared with the control (41±12 pg/mL). The level of IL-8 production then 

decreased to 100 µmol/L but remained significantly higher than the control. 

The IL-6 levels increased significantly at 15 µmol/L CA with 275±4 pg/mL and increased 

further to the maximum level at 30 µmol/L CA with 422±11 pg/mL. The level of IL-6 

production subsequently decreased at 75 µmol/L CA with 91±2 pg/mL but remained 

significantly higher than the control 17±3 pg/mL. CA at concentration 100 µmol/L did not 

cause a significant increase in IL-6 levels. 

GM-CSF levels increased significantly with CA at concentrations of 50, 75 and 100 μmol/L, 

but not at 15 and 30 µmol/. The highest level of GM-CSF secretion with 100 µmol/L CA to 

165±9 pg/mL compared with the control, 31±2 pg/mL (Figure 3-24 and Table 3-15).    
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Figure 3-24: Measurement of IL-8. IL-6 and GM-CSF production from Calu-3 cells treated with CA. ELISA 

was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-

way ANOVA the data are representative of three independent experiments (n=6) (see table 3-15). Bars represent 

mean ± S.E.M values of each group. 

 

 Cholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml)  ↑**    ↑***  ↑***   ↑****  ↑*** 

IL-6 (pg/ml)  ↑***    ↑****  ↑****   ↑** _______ 

GM-CSF (pg/ml) _______ _______  ↑***   ↑****  ↑**** 

Table 3-15: The effect of different levels of Cholic acid on the Calu-3 cell line following stimulation for 48 

hours, ↑ Increase demonstrated * Significant stimulation of cytokines release. (* = p<0.05, ** = p < 0.01, *** = 

p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Stimulation of Calu-3 cells with CDCA at concentrations of 15, 30, 50, 75 and 100 mol/l 

caused a significant increase in IL-8. The IL-8 levels increased significantly at 15 µmol/L 

CDCA with 544±7 pg/mL and increased to the maximum level at 75 µmol/L CDCA with 

1363±20 pg/mL. The level of IL-8 production subsequently decreased at 100 µmol/L CDCA 

with 852±23 pg/mL but remained significantly higher than the control at 39±5 pg/mL. 

Figure 25 illustrates the levels of IL-6 released from Calu-3 cells after stimulation by CDCA 

for 48 hours. The findings showed a significant increase in IL-6 at 15, 30, 50, 75 and 100 

μmol/L CDCA. The highest level of IL-6 production was at 50µmol/L CDCA with 508±7 

pg/mL compared with control (5±2 pg/mL) and then declined as the concentration of CDCA 

increased up to 100 µmol/L. 

The GM-CSF production by Calu-3 cells increased significantly following stimulation with 

CDCA at 15, 30, 50, 75 and 100 μmol/L. The highest level of GM-CSF secretion was at 75 

µmol/L CDCA with 750±3 pg/mL compared with the control, 13±3 pg/mL (Figure 3-25 and 

Table 3-16). 
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Figure 3-25: Measurement of IL-8. IL-6 and GM-CSF production from Calu-3 cells treated with CDCA. ELISA 

was used to measure cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-

way ANOVA the data are representative of three independent experiments (n=6) (see table 3-16). Bars represent 

mean ± S.E.M values of each group. 

 

 Chenodeoxycholic acid 

Concentration 

μmol/L 

15 30 50 75 100 

IL-8 (pg/ml)    ↑***   ↑*** ↑****     ↑****     ↑*** 

IL-6 (pg/ml)  ↑** ↑** ↑****   ↑***   ↑** 

GM-CSF (pg/ml)   ↑***   ↑*** ↑****     ↑****     ↑*** 

Table 3-16: The effect of different levels of Chenodeoxycholic acid on the Calu-3 cell line following stimulation 

for 48 hours, ↑ Increase demonstrated * Significant stimulation of cytokines release. (* = p<0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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3.5 Discussion 

In this present age, lung disease is still a major cause of the world’s mortality and morbidity, 

and it is on the rise. For example, COPD is the fifth largest cause of death worldwide, while 

interstitial lung disease (ILD) and cystic fibrosis (CF) are common and lead to significant 

consequences for the individuals who have them: this leads to a low quality of life and even 

death. All the above mentioned diseases are contributed by either chronic or acute 

inflammation, which results in using anti-inflammatory medication, such as steroids (Rincon 

and Irvin, 2012). 

The association between lung disease and GORD has been suspected for a long time (Pearson 

and Wilson, 1971), and it is known that high incidences of GORD impact those suffering 

from asthma, idiopathic pulmonary fibrosis, COPD and CF (Feigelson et al., 1987; Tobin et 

al., 1998). Moreover, reflux is commonly discovered among recipients of a lung transplant, 

and the pathogenesis of bronchiolitis obliterans syndrome (BOS) (Stovold et al., 2007) has 

also been associated to  microaspiration of refluxate. 

Furthermore, it has been identified that refluxate from GORD patients contains levels of BA 

at a millimolar level (Lefebvre et al., 2009). Moreover, BAs may be contained in duodeno-

gastro-oesophageal refluxate, which has a wide range of biological consequences (Lefebvre et 

al., 2009). 

Of the bronchoalveolar lavage (BAL) samples from individuals with CF who had undergone 

the lung transplantation procedure, 60% were found by Blondeau et al. to contain bile acids. 

Moreover, a series of other studies from the Leuven group points towards a potential role for 

the aspiration of BAs in the pathophysiology of BOS (Blondeau et al., 2008a). 

In advanced CF lung disease, Brodlie et al. demonstrated recently that BAs measured using 

tandem mass spectrometry can be traced in the lower airway. Moreover, following successful 

lung transplantation (Brodlie et al., 2015), this potential source of injury continues. 

In respiratory infection and inflammation, the role of BAs is undergoing a broader 

investigation, although researchers still poorly understand the underlying mechanisms. Within 

the body, the majority of BAs exist in their conjugated forms (Hofmann, 1999b). 
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A study was conducted by McDonnell et al that assessed the inflammatory and cytotoxic 

effects of primary (chenodeoxycholic and cholic) as well as secondary (deoxycholic and 

lithocholic) BAs at 0, 12.5, 25, 50 and 100 µmol/L on human bronchial epithelial cells 

(HBEs), in addition to and independent of the injury induced by gastric acid, within an 

experimental model of duodeno-gastro-oesophageal aspiration. Furthermore, IL-8 was 

measured by ELISA in culture supernatants, wherein the viability of the cells was analysed 

using an MTT assay. It was also found that the exposure to BA reduced the viability of the 

cells in a concentration-dependent manner. BA-prompted IL-8 release was greater with higher 

combined concentrations and at lower acidic levels up to the point of cell death. Given these 

results, this model suggests that the BA cytotoxicity and inflammation within the pulmonary 

epithelium are both affected by acidity, in addition to being dependent on the concentration 

level (O'Toole et al., 2015). 

The purpose of this chapter was to establish how the presence of BAs impacted the production 

of pro-inflammatory cytokines by airway epithelial cells. This was achieved by analysing the 

changes in the levels of IL-8, IL-6 and GM-CSF produced by epithelial cells. 

Four cell lines were selected in the present study as lung tissue models: BEAS-2B, Calu-3, 

NCI-H292 and 16HBE14o- cells. In this case, the main finding was that cells confronted with 

the presence of BAs at 1, 5.10, 15, 20,30,50,75 and 100 lmol/L released IL-8, IL-6 and GM-

CSF throughout a 48-hour period, but at varying levels. 

It has been reported that BAs lose their toxicity as a result of conjugation (Debruyne et al., 

2002; Blau et al., 2007), although most of the BAs in humans already exist in their conjugated 

form (Hofmann, 1999b). Proton pump inhibitors and acid suppression therapies, used in the 

treatment of GORD, can cause these conjugated BAs to deconjugate (Theisen et al., 2000), 

resulting in higher levels of deconjugated BAs in GORD patients undergoing such 

interventions (Theisen et al., 2000). It has been suggested that therapies which suppress 

stomach acids result in increased bacterial growth in the stomach, causing BAs to deconjugate 

(Dettmar et al., 2011). 

Furthermore, BAs such as DCA, CDCA and LCA detected in airway secretions have all been 

found to be unconjugated (Wu et al., 2009), which is significant to GORD patients. This 

study, therefore, sought to investigate the effects of gastric refluxate on the airway by using 

BA concentrations similar to the physiological bile acid content found in the gastric refluxate 

that reaches the patient’s airway (BA concentrations ranging from 1 µmol/l to 100 µmol/l). 
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Existing knowledge around the effects of BAs on airways is limited. Up to now, research has 

tended to focus on BAL studies, with less attention being given to investigating and 

quantifying specific BA concentrations in the lungs. This may be partly to do with the low 

reliability of acid assays and also difficulties associated with sampling procedures.  

Previously, the highest concentration of BA reported in BAL was 240μmol/L (D’Ovidio et 

al., 2005). BAL samples are diluted by 100-200-fold, meaning that the BA levels detected are 

significantly less than those found in patients’ airways. In this study a range of between 1 - 

100 μmol/L for each individual bile acid was used, so are well within the physiological range 

expected in gastric refluxate. 

According to the results: in NCI-H292, both LCA and DCA have an impact on cell viability. 

It was found that a 50 μmol/L concentration of DCA acid caused cell death of 23±4%, and 

that 100μmol/L results in cell death of 88±4%. Further, it was also found that LCA at ≥ 

5μmol/L presents an impact on cell viability. Conversely, CDCA and CA at 15 to 100 

µmol/ml were not sufficient for cell death to occur; this would indicate that primary BAs have 

lower cytotoxicity than secondary BAs. 

On the other hand, the observed difference in the effect of LCA between other cells and Calu-

3 cells was made clear by this study. In BEAS-2B, NCI-H, and 16HBE14o- cells ,the viability 

of the cells saw a reduction when exposed to concentrations from 5 to 20 μmol/L, as 

lithocholate is normally a minor part of bile acid circulation (Wu et al., 2012). Calu-3 cells 

were only impacted by LCA when the concentration was raised to 30 μmol/L or higher. 

It was further demonstrated by this study the NCI-H292 production of IL-8, GM-CSF and IL-

6 became significantly affected when provoked by BAs. When confronted with BAs, 

significant levels of all three cytokines were released by the Calu-3 cells. Both Calu-3 and 

NCI-H292 cells derive from the lung tissue of humans and were initially considered as a 

useful model for inflammation within the airway. Carcinoma cells express an intercellular 

adhesion molecule-1 (Carney et al., 1985), and secrete IL-8 and IL-6; the manufacture of 

these substances can be increasd by TNF-α and IL-13 within the NCI-H292 cells (Bloemen et 

al., 1993). As this is a tumour cell line, however, this study has acknowledged that certain 

attributes will differ from those found in the normal bronchial epithelium. 

The resulting impacts of both secondary and primary BAs on the viability of BEAS-2B were 

studied. The viability of the cells was to some extent affected by all the bile acids that were 
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used. Most interesting was the finding that the impact of LCA could be observed at 5-10 

times lower concentration than with other bile acids.  

In addition to potentially impacting upon the viability of cells, my data demonstrates that the 

stimulation of BEAS-2B cells by BAs is associated with the release of GM-CSF, IL-6, and 

IL-8. BEAS-2B cells retain the morphology of an epithelial cell in-vitro (Reddel et al., 1988) 

and release IL-8 and IL-6 in addition to other cytokines (Ke et al., 1988). Under submerged 

conditions, BEAS-2B cells are commonly used as an in-vitro model of human airways 

epithelium; especially within studies on inhalation toxicity. BEAS-2B expressed both the 

differentiated epithelial cell marker cytokeratin 8 and the basal epithelial cell marker 

cytokeratin 5 when placed under submerged conditions. Further, the expression of cytokeratin 

8 in BEAS-2B cells when placed under these submerged conditions indicates that, between 

the cells, there does exist some differentiation (Cha et al., 2007; Veranth et al., 2007; 

Petecchia et al., 2009).  

In conjunction with tumour necrosis factor alpha (TNF-α), the impact of IL-17 on the 

expression and manufacture of IL-8, and GM-CSF in BEAS-2B cells has been a focus of 

recent studies. Through these studies, it was revealed that IL-17A and TNF-α demonstrated 

the potential to induce the manufacture of IL-8 and GM-CSF synergistically, possibly via the 

MAPK pathways in human bronchial epithelial cells (Honda et al., 2016). Within the paper 

by Mullol et al, the impact of endothelins (ETs) on the secretion of IL-8, IL-6 and GM-CSF in 

a bronchial epithelial cell line (BEAS-2B) was investigated. The resulting data from this 

paper confirmed that IL-6, IL-8 and GM-CSF (Mullol et al., 1996) are indeed generated by 

BEAS-2B cells. 

Within my study, derived from bronchial surface epithelial cells (Cozens et al., 1994), the 

immortalised cell line 16HBE14o- was introduced to the presence of BAs to assess the extent 

to which the cells would retain viability. One finding was that DCA and LCA (secondary bile 

acids) were much more cytotoxic when compared to CDCA and CA (primary bile acids). 

In fact, Wu et al. echoes these same results, where the human epithelial cells in their study 

were exposed to DCA and LCA, and found that those cells had detached and were floating to 

the surface. At concentrations ≥ 1μmol/L on 16HBE14o-, the impact of LCA on the viability 

of the cells did vary. One example of this variability was where a different curve is observed 

with LCA, whereby 10μmol/L caused a cell death of 26±3%, and 20μmol/L led to a cell death 

of 70±3%. Furthermore, the study on secondary and primary BAs by Wu et al., revealed 
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levels of these BAs that were similar to or greater than those observed in ventilator-associated 

aspiration pneumonia (Wu et al., 2009). 

In addition to potentially impacting upon the viability of the cells, my data demonstrated that 

when 16HBE14o- cells came into contact with BAs, this led to release of IL-6, IL-8 and GM-

CSF; confirming that cytokines are released by 16HBE14o- cells. 

The findings also corroborate the results from other studies, For example, according to a study 

conducted by Chow et et al.,the 16HBE14o- cells and human bronchial epithelial cells 

became ‘‘chemically injured’’ as a result of being exposed to poly-L-arginine as a surrogate 

of the eosinophil cationic protein. Moreover, measured by a real-time PCR, the expression 

levels of IL-8 and IL-6 mRNA were increased. Furthermore, cell culture medium gathered 

from basolateral and apical compartments, and ELISA was used to quantify the levels of IL-8 

and IL-6. Subsequently, this study demonstrated clearly the bronchial epithelia produces a 

polarised secretion of IL-8 and IL-6 when damaged by poly-L-arginine. The orchestration of 

how epithelial cells respond to inflammation may, therefore, be significantly impacted by this 

apically directed secretion of cytokines (Chow et al., 2010). 

Bathoorn et al. examined in a recent study the impact of pepsin in inducing cytotoxicity and 

inflammation to cells within the patient’s airways. To examine this impact, 16HBE14o- cells 

were introduced to pepsin. This study hypothesised that when at a lower pH, concentration of 

pepsin (0.125 mg/mL) would induce a release of pro-inflammatory cytokines and increase 

overall cytotoxicity. This in-vitro model showed that epithelial injury and the release of 

inflammatory mediators, involving IL- 6 and IL-8 can be caused by pepsin (Bathoorn et al., 

2011).  

In my study, one further goal was to compare MTT and CTM assay results for cells that came 

into contact with BAs in similar conditions. However, for all cell lines following exposure to 

BAs, similarities in the viability data from both assays were found. Given the identical 

conditions of the controlled experiment, similar results were expected as mitochondrial 

enzymes reduce the reagents from both MTT and CTB. 

Although the precise mechanisms for this are yet to be established, my study did find that the 

exposure to BAs does have an effect on the BEAS-2B, NCI-H292, 16HBE14o- and Calu-3 

cells. However, what we do know is that BAs do distrupt cationic permeability and cell 
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membranes, as demonstrated in type II pneumocytes in-vitro (D'Ovidio et al., 2005; D'Ovidio 

and Keshavjee, 2006), which could explain the findings of this study to some extent. 

Necrosis and apoptosis are the two broad mechanisms that cause cell death in acute lung  

injury, which is itself a complex pathophysiological process (Jernigan et al., 2004). Necrosis, 

which is rarer in lungs than elsewhere in the body due to the dual pulmonary blood flow and 

ventilation in the alveoli, is thought to be caused by an abrupt decrease in oxygen tension 

leading to ischemia (Walmrath et al., 1994; Sato et al., 2003). Apoptosis, which is a process 

of programmed cell death, can occur in the epithelium in response to environmental toxins, 

allergens, viral infection or drugs (White, 2011). Lung injury can induce apoptosis in 

neutrophils, macrophages and alveolar cells (Jernigan et al., 2004). Bile acids are known to 

induce apoptosis (Lapre et al., 1992), which in turn leads to compensatory cell proliferation, 

thereby implicating bile acids in the initiation and promotion of cancers.  Studies of apoptosis 

and necrosis were beyond the scope of my thesis. This would be a very interesting area to 

look into.  

In future work apoptosis could be identified with Annexin V staining. Annexin V has a high 

affinity for the phosphatidylserine that becomes exposed on the outside of the plasma 

membrane of apoptotic cells.  If the Annexin V is labelled with green fluorescent fluorescein 

(FITC) apoptotic cells are stained brightly green. These can be differentiated from necrotic 

cells which stain positively with a nuclear probe. For example Propidium Iodide or Ethidium 

homodimer III (EtD-III) are nucleic acid stains which are not permeant to live or apoptotic 

cells but which stain necrotic cells leading to red fluorescence. Apoptotic and necrotic cells 

can therefore be counted by counting green and red cells (Van Engeland et al., 1998). In 

further work it would be seem very reasonable to speculate that a shorter time course of BA 

stimulation might lead to apoptosis and that prolonged treatment might cause necrosis; this 

would be a good thing to investigate in further studies.  

BAs, in their non-ionised, lipophilic form, are able to traverse the cell membrane at pH levels 

between 3 and 6. Intracellular pH levels are much higher, ionising the BAs and thereby 

trapping them within the cell. BA levels within the cell can reach up to eight times that of 

luminal levels, causing damage to both cells and their tight junctions (Gotley et al., 1991), 

potentially leading to other injuries (Jenkins and Hardie, 2008; Klokkenburg et al., 2009). 

Further to this, BAs can introduce pores or act as mobile carriers in membranes, modify their 

cation permeability and lead to cytotoxicity through excessive influx or release of cations 
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such as Ca
++

. This may result in irreversible damage to the cellular metabolic processes 

(Morgan et al., 1986). Elevated Ca
++ 

has been observed to cause a number of different 

outcomes, including activation of Ca
++

-dependent proteases (Shields et al., 1987), ATP 

depletion, complement attack on the membrane becoming activated (Morgan et al., 1986), 

cytoplasmic or membrane-associated protein cross-linking, and triggering of increased 

phospholipase activity (Tyler et al., 1978). The build-up of intracellular Ca
++

 is widely 

recognised as an early event in certain types of cell injury, although whether this is true for all 

cells remains unanswered (Lauterburg, 1987). 

Ca
2+

signals can be studied in a range of contexts through the use of Ca
2+

 sensitive fluorescent 

dyes. Such indicators are non-invasive and provide a useful way of measuring acute changes 

in Ca
2+

 concentrations. A wide variety of indicators are available, with different spectral 

characteristics, brightness levels, affinities and targeting properties for different cellular 

domains. Such variation enables the exploration of both temporally and specially diverse Ca
2+

 

signals. Furthermore, Ca
2+

 readouts can be multiplexed with other cellular functions 

(Bootman et al., 2013). 

Within this study, the concentrations of LCA covered the range 0 – 20 µmol/L and therefore 

included the concentration of 2.8±0.6μmol/L identified in CF lung disease; the viability of 

PHBECs  (Brodlie et al., 2015) was affected by low, 5μmol/L, concentrations . Additionally, 

when compared to other bile acids, the effect of LCA occurred at a 5-10 times lower 

concentration. Our understanding of LCA-induced cholestasis as a hepatotoxic factor in liver 

injury (Palmer and Ruban, 1966; Hofmann, 1999a) has been enhanced by studies conducted 

on mammals, such as hamsters, rats and rabbits. This could open up future research on factors 

such as: the variation in retrieval or transfer of canalicular export pumps to and from the 

canalicular membrane (Kubitz et al., 2004); the biochemical changes that occur with the bile 

canalicular membrane (Kakis and Yousef, 1978); and also the formation of crystalline plugin 

bile canaliculi due to the poor solubility of LCA (Miyai et al., 1977). Alongside other studies, 

this may contribute to an integrated ‘aerodigestive paradigm’ about reflux-related chronic 

lung diseases. 

In terms of where aspiration and reflux are implicated in lung disease, all cases appear to be 

linked to the presence of either an acute or chronic inflammation, which has led frequently to 

the use of steroids as a form of anti-inflammatory medication (Morehead, 2009). Overall, the 

data gathered from my study supports the hypothesis that a cell’s exposure to BAs can 
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substantially alter the production of the cytokines known to contribute to airway injury. Upon 

reflection, this explains why chronic inflammation and a decrease in lung function are 

associated with aspiration by respiratory disease patients, and may also be a call for new 

approaches to patient therapy. 

Overall, the data presented in this chapter has succeeded in demonstrating that levels of IL-6, 

IL-8 and GM-CSF that are commonly discovered in airways and in cases of lung disease 

where aspiration and reflux have been shown to be a possible cause of injury. Arguably, the 

most physiologically relevant cell type to assess the extent of the damage within the airways 

was the primary human bronchial epithelial cells (PHBECs). Although expensive and 

challenging to culture (Stewart et al., 2012). Therefore four related cell lines were used to 

compare inflammatory mediator expression, both basal and inducible. Following assessment, 

the results confirm that BEAS-2B, NCI-H292, 16HBE14o- and Calu-3-cell lines constitute 

models that are both sensitive and effective for studying the human respiratory process, in 

addition to the diseases associated with lung injury induced by aspiring BAs. 

 

 

 

 

  



118 

 

CHAPTER 4:  EFFECT OF BILE ACIDS ON EPITHELIAL TO 

MESENCHYMAL TRANSITION (EMT) IN RESPIRATORY 

DISEASES 

4.1 Introduction 

Fibrotic responses can be stimulated by damage to an injured airway epithelium (Adamson et 

al., 1988; Dai et al., 1998). A growing number of experimental lung fibrosis studies have 

shown that cytokines and fibroblast promoting growth factors (which are also involved in 

migration, proliferation, and myofibroblast differentiation) are involved in the process of  

epithelial-mesenchymal transition (EMT), of airway epithelial cells (Kim et al., 2006; Kim et 

al., 2009). 

EMT refers to a phenomenon in which epithelial cells have a plastic quality, which enables 

them to take on mesenchymal form and function. This is critical to embryonic development 

and also in recovery from acute injury in adults (Walser et al., 2015). EMT can become 

pathogenic or unregulated in cases of chronic injury or inflammation and in epithelial derived 

cancers, referred to as Types I, II, or III EMT(Tian et al., 2015).This may lead to pulmonary 

fibrosis, a chronic lung disease which involves extracellular matrix (ECM) accumulation, lung 

architecture remodelling and an increased risk of cancer (Todd et al., 2012). Moreover, ECM 

is involved in the early dissemination of tumour cells through weakening cell-cell contacts, 

increasing migratory tendencies and increasing anoikis resistance. 

The airway epithelial sheet is formed through cell adhesion mechanisms, out of a tightly 

connected mesh of polygonal epithelial cells (Sohal et al., 2014). An initial change when 

epithelial cells transform is the inhibition of E-cadherin synthesis, a transmembrane 

glycoprotein found mainly in adherens junctions (Yang and Liu, 2001). Various studies have 

implicated E-cadherin as a marker of differentiated epithelial phenotype (Arias, 2001; 

Zeisberg et al., 2003). It is also critical in epithelial polarity maintenance and therefore the 

development of tight junctions (Tunggal et al., 2005). EMT consists of a number of steps, of 

which E-cadherin downregulation is the first, in both cancerous and non-cancerous cells. 

Acquisition of the mesenchymal phenotype is characterised by an increase in mesenchymal 

markers, including fibronectin, which plays a role in tissue repair, cell migration and 

adhesion, and a number of other processes (Miettinen et al., 1994). EMT and epithelial 

damage are also characterised by the matrix metalloproteinase (MMP) 9 production from 
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epithelial cells. MMP-9 is a type IV collagenase. Collagen type IV, forms the reticular 

basement membrane, upon which epithelial cells lie. By disrupting the airway epithelium’s 

basement membrane, MMPs can cause inflammation, translocation, further EMT and other 

damage (Kalluri and Neilson, 2003). 

Within the tumour microenvironment, in vivo, various growth factors and cytokines can 

induce EMT. The transforming Growth Factor (TGF)-β1 family of growth factors , which 

consists of  over 30 different types, all with significant biological roles , is a particularly 

effective and well-known EMT inducer in either normal or pathological conditions. TGF- β1 

regulates both cell plasticity and cell proliferation pleiotropically, inhibiting normal epithelial 

cell proliferation on one hand (thereby opposing cancer promotion), but stimulating fibroblast 

proliferation on the other. It also interacts with immune system elements, promotes 

angiogenesis and induces EMT, all of which impact negatively on patients with a fibrotic 

disease and/or with cancer. 

Patients with a range of airway diseases are prone to gastroesophageal reflux (GOR) and 

extra-oesophageal reflux disease (EORD). Given that airway epithelial cells can generate 

fibroblast-promoting growth factors, and that exposure to bile acids (BAs) is known to cause 

a fibrotic response, the hypothesised, causative link between respiratory disorders and GOR is 

biologically plausible. Asthma sufferers are prone to GOR (Hsu et al., 2005), which is 

especially common in severe cases (Leggett et al., 2005). Severe COPD cases have exhibited 

pathologic reflux (Casanova et al., 2004) and a positive correlation is found between GOR 

symptoms and COPD exacerbation (Rascon-Aguilar et al., 2006). Patients with idiopathic 

pulmonary fibrosis are also particularly vulnerable to GOR (Tobin et al., 1998; Raghu et al., 

2006). Even after lung transplantation, aspiration of duodenogastroesophageal refluxate is 

prevalent. This is correlated with bronchiolitis obliterans, which has a fibrotic 

pathophysiology (D’Ovidio et al., 2005). 

It has been suggested that EORD is involved in the pathophysiology of a range of 

otolaryngology illnesses, including laryngitis, cough, hoarseness, postnasal drip disease, 

sinusitis, otitis media, dysphagia, laryngeal cancer and idiopathic subglottic stenosis (ISS) 

(Toohill and Jindal, 1997).  Laryngeal cancer and idiopathic subglottic stenosis (ISS) is 

usually confined to the first two tracheal rings and the subglottic region. This rare, non-

specific inflammatory process, which mainly affects women aged between 30 and 50, is 
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slowly progressive and has no known cause. It is identified in the upper trachea/lower larynx 

by a short segment of stenosis (Grillo et al., 1993; Benjamin et al., 1997). 

Lung injury and airway fibrosis are associated with bile acid (BA) aspiration (19-23). A 

correlation has been found between BA concentration in bronchoalveolar lavage fluid (BALF) 

and the degree of lung fibrosis in Idiopathic Pulmonary Fibrosis (IPF) patients. It is therefore 

suspected that microaspiration of BAs may play a key role in IPF development and/or 

progression (Savarino et al., 2013).  

It is hypothesised in this chapter that injured airway epithelial cells may undergo EMT, a 

process that may be the mechanism leading to various respiratory diseases, including chronic 

obstructive pulmonary fibrosis (COPD), pulmonary fibrosis (PF), asthma and lung rejection. 

The second hypothesis is that BA aspiration may be a potential link to subglottic airway 

inflammation and ISS, with the potential that this important pathology is reflux-mediated. The 

studies which investigated these hypotheses involved challenge experiments in the epithelial 

cell lines BEAS-2B and 16HBE14o-. These studies were complimented by experiments with 

primary human epithelial cells including human bronchial epithelial cells from lung transplant 

recipients. The experiments involved stimulating the cells with BAs to establish if they 

underwent EMT. 
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4.2 Aims 

The primary experimental aims, described in this chapter are as follows: 

- Investigate the role of BAs in instigating EMT, using primary human bronchial 

epithelial cell cultures (PHBECs) from lung allografts, tracheal epithelial cells (upper 

airway cells) from the subglottic area and immortalized cell lines (BEAS-2B and 

16HBE14o- ) 

- Evaluate E-cadherin expression in primary cells (primary bronchial human epithelial 

cell cultures from lung allografts (PHBECs), Tracheal epithelial cells (upper airway 

cells) from the subglottic area cells and cell lines (BEAS-2B and 16HBE14o-) 

stimulated with BAs, via quantitative real-time PCR.  

- Examine the expression profile of fibronectin (a mesenchymal marker protein) in 

primary cells (primary bronchial human epithelial cell cultures from lung allografts 

(PHBECs), Tracheal epithelial cells (upper airway cells) from the subglottic area cells 

and cell lines (BEAS-2B and 16HBE14o-) stimulated with BAs, via quantitative real-

time PCR. 

- Assess TGF-β1, MMP9 and pro-collagen production from challenged epithelial cells 

using an enzyme-linked immunosorbent assay (ELISA). 
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4.3 Materials and methods 

4.3.1 Cell Culture  

PHBECs were isolated (described in chapter 2, section 2.2) from stable lung transplant 

recipients. The BEAS-2B and 16HBE14o- cell lines were cultured in six-well plates. Dr Jason 

Powell (Newcastle University) supplied Tracheal epithelial cells (upper airway cells) from the 

subglottic area. Bronchial epithelial cell growth medium (BEGM) (see chapter 2, section 

2.1.2.3) was used for PHBECs, tracheal epithelial cells culture and BEAS-2B cells. EMEM 

(see chapter 2, section 2.2.1.2) was used for 16HBE14o- cells culture.  

4.3.2 Stimulation of PHBECs, Tracheal epithelial cells (upper airway cells), BEAS-2B 

and 16HBE14o- cells with bile acids  

The cells were exposed to the following BAs: LCA, DCA, CA and CDCA. A range of BA 

concentrations (1, 5, 10, 15, 20, 30, 50, 75 and 100 μmol/L) were used to stimulate EMT in 

BEAS-2B and 16HBE14o- cell cultures (see chapter 2, section 2.6). The challenge was 

carried out for 48 hours, following which, the cells underwent the MTT and Titre-blue Assays 

to determine cell viability (described in chapter 2, sections 2.7.1 and 2.7.2) 

4.3.3 ELISA  

ELISA was used to determine the presence of TGFβ1, MMP-9 and Pro-collagen peptides 

before and after BS stimulation of the cells (See chapter 2, section 2.8.1). 

4.3.4 Molecular biology 

RNA was extracted using the RNEasy Mini-kit (Qiagen). Isolated RNA was reversibly 

transcribed using a Tetro cDNA synthesis kit (Bioline), and a quantitative PCR reaction was 

performed in order to determine specific gene expression changes at a molecular level (see 

chapter 2, section 2.9).  
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4.4 Results   

4.4.1 Expression of EMT markers and epithelial activation in airway epithelium 

4.4.1.1 Effect of BAs on the regulation of an epithelial marker E-cadherin and a 

Mesenchymal marker fibronectin in primary human bronchial epithelial cell 

cultures from lung allografts (PHBEC) 

EMT can be identified by gene expression changes, notably by a decrease in E-cadherin (an 

epithelial marker) and an increase in Fibronectin (a mesenchymal marker). PHBECs were 

exposed for 48 hours to LCA, DCA, CA and CDCA at 1 and 10 μmol/L, using TGFβ1 at 

5ng/ml as a positive control. These concentrations of the bile acids were the highest 

concentration that did not cause high cell death based on cell viability. Cell viability was 

confirmed at >90% (Figure 4-1) RT-PCR analysis of E-cadherin expression revealed a 

significant (P < 0.001) decrease with CA and CDCA. CA at concentration 10 µmol/L induced 

three-fold decreases and 1 µmol/L induced two-fold decreases, showing a negative 

concentration dependency effect. CDCA at 1 and 10 μmol/L caused a three-fold decrease in 

E-cadherin mRNA, showing no concentration dependency effect. PHBECs treated with LCA 

and DCA at 1and 10μmol/L do not decrease E-cadherin expression (Figure 4-2).  

Because E-cadherin mRNA is downregulated by BA treatment, I also used RT-PCR to 

analyse treated PHBECs for fibronectin expression (a mesenchymal protein). RT-PCR 

analysis of Fibronectin expression revealed that CA at 1 and 10 μmol/L caused a six-fold 

increase in fibronectin mRNA, showing no concentration dependency. CDCA at 10 μmol/L 

caused seven-fold increase in fibronectin mRNA and 1 μmol/L caused five-fold increase in 

fibronectin mRNA, showing a positive concentration dependency effect. PHBECs treated 

with LCA and DCA at 1and 10μmol/L showed no significant increase in Fibronectin 

expression (Figure 4-3). 

In general, looking at Figure 4-2 and Figure 4-3 it can be observed that primary BAs affected 

E-cadherin and fibronectin expression more than secondary BAs. Moreover, this was not 

concentration dependent.  
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Figure 4-1: Effects of BAs on PBEHC cell proliferation. PBEHC cell viability following stimulation with BAs 

Lithocholic, Deoxycholic, Chenodexycholic and Cholic acids, at varying concentrations. Viability is measured 

as a percentage of the control after 48h.  Bars represent mean ±S.E.M. Statistical analysis was performed to test 

effect of BAs compare with control. Negative controls were measured by fixing the cells in methanol before 

adding the Titre-Blue reagent. The data are representative of three independent experiments (n=6). 
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Figure 4-2: E-cadherin mRNA expression following BA and TGF-β1 treatment. Confluent PHBECs were 

cultured for 48 hours under various conditions as follows: medium containing 5ng/ml of TGF-β1 or 1 and 

10μmol/L of LCA, DCA, CA or CDCA. HPRT1 mRNA was used to normalize E-cadherin RNA levels, which 

were presented as mean ±SEM (n=3). The E-cadherin mRNA was significantly downregulated in TGF-β1, CA 

and CDCA treatment groups, whereas E-cadherin gene expression levels were similar to the control in the LCA 

and DCA treatment groups. The data are representative of three independent experiments (each experiment n=6 

wells). (** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared to control, ANOVA). For pairwise analysis 

Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 

  



126 

 

c
o

n
tr

o
l

T
G

F


1
(5

 n
g

/m
l)

L
C

A
 (

1
0

 
m

o
l/

l)

L
C

A
 (

1
 

m
o

l/
l)

D
C

A
 (

1
0

 
m

o
l/

l)

D
C

A
 (

1
 

m
o

l/
l)

C
A

 (
1

0
 

m
o

l/
l)

C
A

 (
1

 
m

o
l/

l)

C
D

C
A

  
(1

0
 

m
o

l/
l)

C
D

C
A

 (
1


m
o

l/
l)

0

2

4

6

8

1 0

F ib r o n e c t in  e x p r e s s io n  in  P H B E C s

F
o

ld
 c

h
a

n
g

e
 n

o
r

m
a

li
se

d
 t

o
 H

P
R

T
1

* *

* *

* * * *

* *

#

N S

N S #  #

 

Figure 4-3: Fibronectin mRNA expression following BA and TGF-β1 treatment. Confluent PHBECs were 

cultured for 48 hours under various conditions as follows: medium containing 5ng/ml of TGF-β1 or 1 and 

10μmol/L of LCA, DCA, CA or CDCA. HPRT1 mRNA was used to normalize Fibronectin RNA levels, which 

were presented as mean ±SEM (n=3). The Fibronectin mRNA was significantly upregulated in TGF-β1, CA and 

CDCA treatment groups, whereas Fibronectin gene expression levels were similar to the control in the LCA and 

DCA treatment groups. The data are representative of three independent experiments (each experiment n=6 

wells). (** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared to control, ANOVA). For pairwise analysis 

Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.1.2 Effect of BAs on epithelial marker E-cadherin and mesenchymal marker 

fibronectin regulation in tracheal epithelial cells (upper airway cells) from the 

subglottic area 

EMT can be identified by gene expression changes, notably by a decrease in E-cadherin (an 

epithelial marker) and an increase in Fibronectin (a mesenchymal marker).  

Epithelial cells were exposed for 48 hours to LCA, DCA, CA and CDCA at concentrations of 

1 and10μmol/L, using TGFβ1 at 5 ng/ml as a positive control. These concentrations of the 

bile acids were the highest concentration that did not cause high cell death based on cell 

viability. Cell viability was confirmed at >90% (Figure 4-4). RT-PCR analysis of E-cadherin 

expression revealed a significant (P < 0.001) decrease at both concentrations of CA and 

CDCA and 10µmol/L of LCA. CA at concentration 1 and 10 µmol/L induced three-fold 

decreases, showing no concentration dependency effect. CDCA at 1and10 μmol/L caused 

two-fold decreases, showing no concentration dependency effect. LCA at 10 μmol/L caused a 

two-fold decrease in E-cadherin mRNA. No significant decrease was observed in cells 

stimulated with 1μmol/L LCA (Figure 4-5).  

Because E-cadherin mRNA is downregulated by BA treatment, I also used RT-PCR to 

analyse treated primary human subglottic cells for fibronectin expression (a mesenchymal 

protein). It was found that CA at 1 and 10 μmol/L caused a three-fold increase and 10 μmol/L 

LCA caused a three-fold increase in fibronectin, showing no concentration dependency effect. 

CDCA at 1 μmol/L caused a three-fold increase and CDCA at 10 μmol/L caused a four-fold 

increase in fibronectin mRNA, showing no concentration dependency effect. No significant 

decrease was observed in cells stimulated with DCA at 10μmol/L and LCA at 1μmol/L 

(Figure 4-6).  
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Figure 4-4: Effects of BAs on tracheal epithelial cell proliferation. Tracheal epithelial cell viability following 

stimulation with Lithocholic, Deoxycholic, Chenodexycholic and Cholic acids at varying concentrations. 

Viability is measured as a percentage of the control after 48h.  Bars represent mean ±S.E.M. Statistical analysis 

was performed to test effect of BAs compare with control. Negative controls were measured by fixing the cells 

in methanol before adding the CellTiter-Blue reagent. The data are representative of three independent 

experiments (each experiment n=6 wells).  
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Figure 4-5: E-Cadherin mRNA expression following BA and TGF-β1 treatment. Confluent tracheal epithelial 

cells from the subglottic area were cultured for 48 hours under various conditions as follows: medium 

(unstimulated control), medium containing 5ng/ml of TGF-β1 or 1and10μmol/L of LCA, DCA, CA and CDCA. 

HPRT1 mRNA was used to normalize E-cadherin mRNA levels, which were presented as mean ±SEM (n=3). 

The E-cadherin mRNA was significantly downregulated in TGF-β1, 10μmol/L LCA, 1and10μmol/L CA and 

CDCA treatment groups, whereas E-cadherin gene expression levels were similar to the control in 1μmol/L LCA 

and DCA treatment groups. The data are representative of three independent experiments (each experiment n=6 

wells). (** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared to control, ANOVA). For pairwise analysis 

Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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Figure 4-6: Fibronectin mRNA expression following BA and TGF-β1 treatment. Confluent tracheal epithelial 

cells from the subglottic area were cultured for 48 hours under various conditions as follows: medium 

(unstimulated control), medium containing 5ng/ml of TGF-β1 or 1and10μmol/L of LCA, DCA, CA and CDCA. 

HPRT1 mRNA was used to normalize Fibronectin mRNA levels, which were presented as mean ±SEM (n=3). 

The Fibronectin mRNA was significantly upregulated in TGF-β1, 10μmol/L LCA, 1μmol/L DCA, 1 

and10μmol/L CA and CDCA treatment groups, whereas Fibronectin gene expression levels were similar to the 

control in 1μmol/L LCA and 10μmol/L DCA treatment groups. The data are representative of three independent 

experiments (each experiment n=6 wells). (** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared to 

control, ANOVA). For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: 

p<0.0001. (NS- not significant). 
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4.4.1.3 Effect of BAs on regulation of epithelial marker E-cadherin and Mesenchymal 

marker fibronectin in the human bronchial epithelial cell line (BEAS-2B) cells 

EMT can be identified by gene expression changes, notably by a decrease in E-cadherin (an 

epithelial marker) and an increase in fibronectin (a mesenchymal marker). In chapter three, I 

demonstrated that the optimum BAs concentration profile that may injure BEAS-2B cells by 

using CellTiter-Blue to assess cell viability. In this chapter I evaluate E-cadherin and 

fibronectin expression in BEAS-2B cells after stimulated with BAs at concentration which did 

not have significant effect on the cell viability. Cell viability was confirmed at >90%. (Figure 

3-8 and Figure 3-9). BEAS-2B cells were exposed for 48 hours to the following BA 

concentrations: LCA at 1 and 5 μmol/L; DCA at 15 and 30 μmol/L; CA at 30 and 50 μmol/L; 

and CDCA at 30 and 50 μmol/L. The positive control was TGFβ1 at a concentration of 5 

ng/ml.  

A real-time (RT) PCR was used to quantify E-cadherin expression, which significantly (P < 

0.001) decreased in response 5 µmol/L LCA with two-fold decrease. DCA at concentration 30 

μmol/L caused a three-fold decrease in E-cadherin mRNA and 15 μmol/L caused five-fold 

decrease in E-cadherin mRNA, showing a positive concentration dependency effect. CA at 

concentration 50 µmol/L induced a two-fold decrease. CDCA at 50 μmol/L caused a two-fold 

decrease and 30 μmol/L caused a three-fold decrease in E-cadherin mRNA, showing no 

concentration dependency effect. However, 1 μmol/L LCA and 30 μmol/L CA had no 

significant effect (Figure 4-7).  

Having established that exposure to BAs causes a downregulation of E-cadherin mRNA, I 

then used RT-PCR to test for fibronectin expression. Treatment with 5 μmol/L LCA caused a 

three-fold increase and 1 μmol/L LCA caused a two-fold increase in fibronectin mRNA, 

showing a positive concentration dependency effect. DCA at 15 μmol/L caused a three-fold 

increase and CA at 50 μmol/L caused a two-fold increase in fibronectin mRNA. CDCA at 30 

μmol/L caused a three-fold increase in fibronectin mRNA. However, 30 μmol/L DCA, 30 

μmol/L CA and 50 μmol/L CDCA had no significant effect (Figure 4-8).   
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Figure 4-7: E-Cadherin mRNA expression following BA and TGF-β1 treatment. Confluent BEAS-2BS cells 

were cultured for 48 hours under various conditions as follows: medium (unstimulated control), medium 

containing 5ng/ml of TGF-β1 (positive control) or 1 and 5 μmol/L of LCA, 15 and 30 μmol/L of DCA, 30 and 

50 μmol/L of CA and CDCA. HPRT1 mRNA was used to normalize E-cadherin RNA levels, which were 

presented as mean ±SEM (n=3). The E-cadherin mRNA was significantly downregulated in TGF-β1, DCA 

,CDCA, 5 μmol/L  LCA and  50 μmol/L CA  treatment groups, whereas E-cadherin gene expression levels were 

similar to the control in 1 μmol/L  LCA and   30 μmol/L  CA treatment groups. The data are representative of 

three independent experiments (each experiment n=6 wells). (** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 

compared to control, ANOVA). For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and 

####: p<0.0001. (NS- not significant). 
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Figure 4-8: Fibronectin mRNA expression following BA and TGF-β1 treatment. Confluent BEAS-2BS cells 

were cultured for 48 hours under various conditions as follows: medium (unstimulated control), medium 

containing 5 ng/ml of TGF-β1 or 1 and 5μmol/L of LCA, 15 and 30 μmol/L of DCA, 30 and 50 μmol/L of CA 

and CDCA. HPRT1 mRNA was used to normalize Fibronectin mRNA levels, which were presented as mean 

±SEM (n=3). The Fibronectin mRNA was significantly unregulated in TGF-β1, LCA, 15 μmol/L DCA,50 

μmol/L CA and 30μmol/l CDCA treatment groups, whereas Fibronectin gene expression levels were similar to 

the control in 30 μmol/L  DCA ,30 μmol/L CA and 50 μmol/L CDCA treatment groups. The data are 

representative of three independent experiments (each experiment n=6 wells). (** = p < 0.01, *** = p < 0.001, 

**** = p < 0.0001 compared to control, ANOVA). For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, 

###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.1.4 Effect of BAs on epithelial marker E-cadherin and mesenchymal marker 

fibronectin regulation in 16HBE14o- cells 

EMT can be identified by gene expression changes, notably by a decrease in E-cadherin (an 

epithelial marker) and an increase in Fibronectin (a mesenchymal marker). In chapter three, I 

demonstrated that the optimum BAs concentration profile that may injure 16HBE14o- cells 

by using CellTiter-Blue to assess cell viability. In this chapter I evaluate E-cadherin and 

fibronectin expression in 16HBE14o- cells after stimulating with BAs at concentrations which 

did not have significant effect on the cell viability. Cell viability was confirmed at >90% 

(Figure 3-2 and Figure 3-3). 

16HBE14o- cells were exposed for 48 hours to LCA at concentrations of 1 and 10μmol/L, 

DCA at 15 and 30 μmol/L, CA at 50 and 75 μmol/L and CDCA at 30 and 50 μmol/L, using 

TGFβ1 at 5 ng/ml as a positive control. RT-PCR analysis of E-cadherin expression revealed a 

significant (P < 0.001) decrease at all concentrations. LCA at concentration 10 μmol/L caused 

five-fold decreases and at 1 µmol/L caused a three-fold decreases in E-cadherin mRNA, 

showing no concentration dependency effect. DCA at concentration 30 μmol/L caused a five -

fold decrease and 15 μmol/L caused two-fold decreases in E-cadherin, showing no 

concentration dependency effect. CA at concentration 75 μmol/L caused a five-fold decrease 

and 50 μmol/L caused four-fold decrease in E-cadherin mRNA. CDCA at 50 μmol/L caused a 

five-fold decrease and 30 μmol/L caused a two-fold decrease in E-cadherin mRNA, showing 

no concentration dependency effect (Figure 4-9).  

Because E-cadherin is downregulated by BA treatment, I also used RT-PCR to analyse treated 

16HBE14o- cells for fibronectin expression. It was found that fibronectin expression 

increased at all concentrations of LCA, DCA, CA and CDCA. Treatment with 10 μmol/L 

LCA caused a two-fold increase and 1 μmol/L LCA caused a three-fold increase in 

fibronectin mRNA, showing a negative concentration dependency effect. DCA at 30 μmol/L 

caused a four-fold increase and 15 μmol/L caused a three-fold increase in fibronectin mRNA, 

showing a positive concentration dependency effect. CA at concentration 75 μmol/L caused a 

four-fold increases and 50 μmol/L caused three- fold increases in fibronectin mRNA, showing 

a positive concentration dependency effect. CDCA at 50 μmol/L caused a five-fold increase 

and 30 μmol/L caused a four-fold increase in fibronectin mRNA, showing a positive 

concentration dependency effect (Figure 4-10).   
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Figure 4-9: E-cadherin mRNA expression following BA and TGF-β1 treatment. Confluent 16HBE14o- cells 

were cultured for 48 hours under various conditions as follows: medium (unstimulated control), medium 

containing 5ng/ml of TGF-β1 or 1-10 μmol/L LCA, 15-30 μmol/L DCA, 50-75μmol/L CA and 30-50 μmol/L 

CDCA. HPRT1 mRNA was used to normalize E-cadherin mRNA levels, which were presented as mean ±SEM 

(n=3). The E-cadherin mRNA was significantly downregulated in TGF-β1, LCA, DCA, CA and CDCA 

treatment groups. The data are representative of three independent experiments (each experiment n=6 wells). (** 

= p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared to control, ANOVA). For pairwise analysis Student's 

t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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Figure 4-10: Fibronectin mRNA expression following BA and TGF-β1 treatment. Confluent 16HBE14o- cells 

were cultured for 48 hours under various conditions as follows: medium (unstimulated control), medium 

containing 5ng/ml of TGF-β1 or 1-10 μmol/L LCA, 15-30μmol/L  DCA, 50-75 μmol/L CA and 30-50 μmol/L 

CDCA. HPRT1 mRNA was used to normalize Fibronectin mRNA levels, which were presented as mean ±SEM 

(n=3). The Fibronectin mRNA was significantly upregulated in TGF-β1, LCA, DCA, CA and CDCA treatment 

groups. The data are representative of three independent experiments (each experiment n=6 wells). (** = p < 

0.01, *** = p < 0.001, **** = p < 0.0001 compared to control, ANOVA). For pairwise analysis Student's t-test 

#: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.2 Measurement of TGFβ1 expression 

4.4.2.1 Measurement of TGFβ1 protein expression in primary human bronchial 

epithelial cell cultures from lung allografts (PHBEC) 

TGF-β1 is accepted as a master switch driver of EMT (Sime and O'Reilly, 2001; Borthwick et 

al., 2012). TGF-β1 production by PHBECs was assessed using ELISA after BA exposure at 

concentrations of 1 and 10μmol/L (Figure 4-11). These concentrations of the bile acids were 

the maximal concentration that did not cause high cell death based on cell viability. Cell 

viability was confirmed at >90% (Figure 4-1). Little or no TGF-β1 was produced by control 

cells, whereas exposure to LCA, DCA, CA and CDCA (at 1 and 10 μmol/L for 48h) resulted 

in a significant increase in TGF-β1 secretion compared to control as follows: LCA at 1 

μmol/L caused 1106±107 pg/ml TGF-β1 to be produced (p < 0.001) and LCA at 10 μmol/L 

generated 639±77 pg/ml TGF-β1 (p < 0.001), showing a negative concentration dependency 

effect. DCA at 1 μmol/L caused 269±34 pg/ml TGF-β1 to be produced (p < 0.001) and DCA 

at 10μmol/L generated 527±54 pg/ml TGF-β1 (p < 0.01), showing a positive concentration 

dependency effect. CA at 1 μmol/L caused 773±51 pg/ml TGF-β1 to be produced and CA at 

10 μmol/L generated 856±62 pg/ml TGF-β1 (p < 0.001), showing no concentration 

dependency effect. CDCA at 1μmol/l caused 797±53 pg/ml TGF-β1 to be produced and 

CDCA at 10 μmol/L generated 585±44 pg/ml TGF-β1 (p < 0.001, showing a negative 

concentration dependency effect. The mean level of TGF-β1 production in control cells was 

90±18 pg/ml. 
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Figure 4-11: ELISA of TGFβ1 levels in culture medium produced by primary human bronchial epithelial cell 

cultures from lung allografts (PBEC) treated with LCA, DCA, CA and CDCA. Statistical analysis was 

conducted by repeated-measures-paired-one-way ANOVA to compare to control. The data are representative of 

three independent experiments (each experiment n=6 wells). Bars represent mean ± S.E.M values of each group, 

*: p<0.05, **: p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: 

p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.2.2 Measurement of TGFβ1 protein expression in tracheal epithelial cells (upper 

airway cells) from the subglottic area 

In order to ascertain if damaged tracheal epithelial cells released TGF-β1, I carried out an 

experiment in which primary human epithelial cells from human subglottic cells were 

exposed to 1 and 10 μmol/L concentrations of LCA, DCA, CA and CDCA for 48 hours. 

Maximal non-lethal conditions for bile acid stimulation were determined via cell viability 

assay. Cell viability was confirmed at >90% (Figure 4-4). TGF-β1 levels were measured 

using ELISA. TGF-β1 production by tracheal epithelial cells after BA exposure is shown in 

Figure 4-12. BA exposure was shown to significantly increase TGF-β1 levels in comparison 

to the control. LCA at 1 μmol/L caused 243±25 pg/ml TGF-β1 to be produced and LCA at 10 

μmol/L generated 344±31 pg/ml TGF-β1, showing a positive concentration dependency 

effect. DCA at 1 μmol/L caused 187±25 pg/ml TGF-β1 to be produced and DCA at 10 

μmol/L generated 190±25 pg/ml TGF-β1, showing no concentration dependency effect. CA at 

1 μmol/L caused 159±13 pg/ml TGF-β1 to be produced and CA at 10μmol/L generated 

177±33 pg/ml TGF-β1, showing no concentration dependency effect. CDCA at 1 μmol/L 

caused 218 ±22 pg/ml TGF-β1 to be produced and CDCA at 10 μmol/L generated 280±31 

pg/ml TGF-β1, showing a positive concentration dependency effect.  The mean level of TGF-

β1 production in control cells was 23±8 pg/ml (Figure 4-12). 
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Figure 4-12: ELISA of TGFβ1 levels in culture medium produced by tracheal epithelial cells from the 

subglottic area, cells treated with LCA, DCA, CA and CDCA. Statistical analysis was conducted by repeated-

measures-paired-one-way ANOVA to compare to control.  The data are representative of three independent 

experiments (each experiment n=6 wells). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: 

p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: 

p<0.0001. (NS- not significant). 
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4.4.2.3 Measurement of TGFβ1 protein expression in BEAS-2B epithelial cell lines 

TGF-β1 production by BEAS-2B cells after BA exposure is shown in Figure 4-13. By using 

Cell CellTiter-Blue to assess cell viability, chapter three illustrated the concentration of BAs 

concentration which did not have significant effect on the cell viability. Cell viability was 

confirmed at >90% (Figure 3-8 Figure 3-9) for this reason, cells were exposed for 48 hours to 

the following concentrations: LCA (1 and 5 μmol/L), DCA (15 and 30 μmol/L), CA and 

CDCA (30 and 50 μmol/L). TGF-β1 was measured using ELISA and analysis showed that 

TGF-β1 significantly increases following BAs stimulation as follows: LCA at 5 μmol/L 

caused 1844±40 pg/ml TGF-β1 to be produced and LCA at 1μmol/L generated 370±13pg/ml 

TGF-β1, showing a positive concentration dependency effect. DCA at 30μmol/L caused 

1546±49 pg/ml TGF-β1 to be produced and DCA at 15μmol/L generated 969±5 pg/ml TGF-

β1, showing a positive concentration dependency effect. CA at 50 μmol/L caused 1825±32 

pg/ml TGF-β1 to be produced and CA at 30 μmol/L generated 738±17pg/ml TGF-β1, 

showing a positive concentration dependency effect.  CDCA at 50 μmol/L caused 980±17 

pg/ml TGF-β1 to be produced and CDCA at 30 μmol/L generated 1393±44 pg/ml TGF-β1, 

showing a negative concentration dependency effect. The mean level of TGF-β1 production 

in control cells was 84± 9 pg/ml (Figure 4-13). 
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Figure 4-13: ELISA of TGFβ1 levels in culture medium produced by BEAS-2B treated with LCA, DCA, CA 

and CDCA. Statistical analysis was conducted by repeated-measures-paired-one-way ANOVA to compare to 

control.  The data are representative of three independent experiments (each experiment n=6 wells). Bars 

represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: p<0.001. For pairwise analysis 

Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.2.4 Measurement of TGFβ1 protein expression in 16HBE14o- epithelial cell lines 

TGF-β1 production by 16HBE14o- cells after BA exposure is shown in Figure 4-14. By using 

Cell Titer-Blue to assess cell viability, chapter three illustrated the concentration of BAs 

concentration which did not have significant effects on the cell viability. Cell viability was 

confirmed at >90% (Figure 3-2 and Figure 3-3) for this reason, cells were exposed for 48 

hours to the following concentrations: LCA (1 and 10 μmol/L), DCA (15 and 30 μmol/L), CA 

(30 and 75 μmol/L) and CDCA (30 and 50 μmol/L). TGF-β1 was measured using ELISA and 

analysis showed that TGF-β1 significantly increases following BA stimulation as follows: 

LCA at 10 μmol/L caused 340±25 pg/ml TGF-β1 to be produced and LCA at 1 μmol/L 

generated 1460±36 pg/ml TGF-β1, showing a negative concentration dependency effect. 

DCA at 30 μmol/L caused 353±16 pg/ml TGF-β1 to be produced and DCA at 15 μmol/L 

generated 1083±63 pg/ml TGF-β1, showing a negative concentration dependency effect. CA 

at 75μmol/l caused 325±11 pg/ml TGF-β1 to be produced and CA at 50 μmol/L generated 

281±5pg/ml TGF-β1, showing no concentration dependency effect. CDCA at 50 μmol/L 

caused 1070±18 pg/ml TGF-β1 to be produced and CDCA at 30 μmol/L generated 256±14 

pg/ml TGF-β1, showing a positive concentration dependency effect. The mean level of TGF-

β1 production in control cells was 131±7 pg/ml (Figure 4-14). 
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Figure 4-14: ELISA of TGFβ1 levels in culture medium produced by 16HBE14o- treated with LCA, DCA, CA 

and CDCA. Statistical analysis was conducted by repeated-measures-paired-one-way ANOVA to compare to 

control.  The data are representative of three independent experiments (each experiment n=6 wells). Bars 

represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: p<0.001. For pairwise analysis 

Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.3 Measurement of MMP9 expression 

4.4.3.1 Measurement of MMP-9 protein expression in primary human bronchial 

epithelial cell cultures from lung allografts (PHBEC) 

MMP9 production by PHBECs following exposure to BAs at concentrations of 1 and 10 

μmol/L was measured using ELISA. This concentrations of the bile acids were the maximal 

concentration that did not cause high cell death based on cell viability. Cell viability was 

confirmed at >90% (Figure 4-1).  Control cells produced little or no MMP9, but exposure to 

5ng/ml TGF-β1 caused a significant increase in MMP9 production. Exposure to BAs caused 

significant increases and these results are shown in Figure 4-15.  48h exposure of PHBECs to 

LCA, DCA, CA and CDCA at 1 and 10 μmol/L have been shown to cause a significant 

increase in MMP9 production. MMP9 production was shown to increase as follows: TGFβ1 

at 5ng/ml caused 1360±56 pg/ml MMP-9 to be produced. LCA at 10μmol/L caused 

1068±32pg/ml MMP-9 to be produced and LCA at 1 μmol/L generated 480±17 pg/ml MMP-

9, showing a positive concentration dependency effect. DCA at 10μmol/L caused 298±17 

pg/ml MMP-9 to be produced and DCA at 1μmol/l generated 451±11 pg/ml MMP-9, showing 

a negative concentration dependency effect. CA at 10μmol/L caused 538±15 pg/ml MMP-9 to 

be produced and CA at 1μmol/L generated 444±25 pg/ml MMP-9, showing no concentration 

dependency effect. CDCA at 10μmol/l caused 660±22 pg/ml MMP-9 to be produced and 

CDCA at 1μmol/L generated 390±19 pg/ml MMP-9, showing a positive concentration 

dependency effect. The mean level of MMP-9 production in control cells was 81±7 pg/ml.  
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Figure 4-15: ELISA of MMP-9 production from primary human bronchial epithelial cell cultures from lung 

allografts (PHBEC) treated with LCA, DCA, CA and CDCA. Statistical analysis was conducted by repeated-

measures-paired-one-way ANOVA to compare to control.  The data are representative of three independent 

experiments (each experiment n=6 wells). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: 

p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: 

p<0.0001. (NS- not significant). 
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4.4.3.2 Measurement of MMP-9 protein expression in in tracheal epithelial cells (upper 

airway cells) from the subglottic area 

MMP9 production by tracheal epithelial cells following 48h exposure to BAs at 

concentrations of 1 and 10 μmol/L was measured using ELISA. Maximal non-lethal 

conditions for bile acid stimulation were determined via cell viability assay. Cell viability was 

confirmed at >90% (Figure 4-4). Figure 4-16 shows that this treatment caused MMP9 levels 

to significantly increase as follows: TGFβ1 at 5 ng/ml caused 1800±19 pg/ml MMP-9 to be 

produced. LCA at 10μmol/L caused 518±9 pg/ml MMP-9 to be produced and LCA at 

1μmol/L generated 1744±67 pg/ml MMP-9, showing a negative concentration dependency 

effect. DCA at 10μmol/L caused 850± 32pg/ml MMP-9 to be produced and DCA at 1μmol/L 

generated 613±27 pg/ml MMP-9, showing a positive concentration dependency effect. CA at 

10μmol/L caused 261±9 pg/ml MMP-9 to be produced and CA at 1μmol/L generated 121±4 

pg/ml MMP-9 which did not increase significantly competed to control, showing a negative 

concentration dependency effect. CDCA at 10μmol/L caused 236±18 pg/ml MMP-9 to be 

produced and CDCA at 1μmol/L generated 298±18 pg/ml MMP-9, showing no concentration 

dependency effect. The mean level of MMP-9 production in control cells was 65±4 pg/ml.  
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Figure 4-16: ELISA of MMP-9 production from tracheal epithelial cells from the subglottic area cell line 

treated with LCA, DCA, CA and CDCA. Statistical analysis was conducted by repeated-measures-paired-one-

way ANOVA to compare to control.  The data are representative of three independent experiments (each 

experiment n=6 wells). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: 

p<0.001. For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- 

not significant). 
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4.4.3.3 Measurement of MMP-9 protein expression in   BEAS-2B epithelial cell lines 

MMP9 production by BEAS-2B cells following 48h exposure to BAs at the following 

concentrations: LCA (1and 5μmol/L), DCA (15 and 30 μmol/L), CA (30 and 50μmol/L) and 

CDCA (30 and 50 μmol/L), was measured using ELISA. These concentrations of the bile 

acids were the maximal concentration that did not cause high cell death based on cell viability 

(Figure 3-8 Figure 3-9). Cell viability was confirmed at >90%. Figure 4-17 shows that this 

treatment caused MMP9 levels to significantly increase as follows: TGFβ1 at 5 ng/ml caused 

925±19 pg/ml MMP-9 to be produced. LCA at 5μmol/L caused 770±27 pg/ml MMP-9 to be 

produced and LCA at 1μmol/L generated 367±22 pg/ml MMP-9, showing a positive 

concentration dependency effect. DCA at 30μmol/L caused 431 ± 43 pg/ml MMP-9 to be 

produced and DCA at 15μmol/L generated 246±8 pg/ml MMP-9, showing a positive 

concentration dependency effect. CA at 50μmol/L caused 558±12 pg/ml MMP-9 to be 

produced and CA at 30μmol/L generated 415±6 pg/ml MMP-9, showing a positive 

concentration dependency effect. CDCA at 50μmol/L caused 414±7 pg/ml MMP-9 to be 

produced and CDCA at 30μmol/L generated 384±11 pg/ml MMP-9, showing no 

concentration dependency effect. The mean level of MMP-9 production in control cells was 

109±8pg/ml. 
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Figure 4-17: ELISA of MMP-9 production from BEAS-2B cell line treated with LCA, DCA, CA and CDCA. 

Statistical analysis was conducted by repeated-measures-paired-one-way ANOVA to compare to control.  The 

data are representative of three independent experiments (each experiment n=6 wells). Bars represent mean ± 

S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: 

p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.3.4 Measurement of MMP-9 protein expression in 16HBE14o- epithelial cell lines 

MMP9 production by 16HBE14o- cells following 48h exposure to BAs at the following 

concentrations: LCA (1 and 10 μmol/L), DCA (15 and 30μmol/L), CA (50 and 75μmol/l) and 

CDCA (30 and 50μmol/L), was measured using ELISA. This concentrations of the bile acids 

were the maximal concentration that did not cause high cell death based on cell viability 

(Figure 3-2 Figure 3-3). Cell viability was confirmed at >90%. Figure 4-18 shows that this 

treatment caused MMP9 levels to significantly increase as follows: TGFβ1 at 5 ng/ml caused 

1356±11pg/ml MMP-9 to be produced. LCA at 10μmol/L caused 155±7pg/ml MMP-9 to be 

produced and LCA at 1 μmol/L generated 265±8pg/ml MMP-9, showing a negative 

concentration dependency effect. DCA at 30μmol/L caused 402±7pg/ml MMP-9 to be 

produced and DCA at 15 μmol/L generated 269±4 pg/ml MMP-9, showing a positive 

concentration dependency effect. CA at 75μmol/L caused 307±7pg/ml MMP-9 to be 

produced and CA at 50 μmol/L generated 254±12 pg/ml MMP-9, showing no concentration 

dependency effect. CDCA at 50 μmol/L caused 475±7pg/ml MMP-9 to be produced and 

CDCA at 30 μmol/L generated 577±10 pg/ml MMP-9, showing a negative concentration 

dependency effect. The mean level of MMP-9 production in control cells was 101±4pg/ml.   
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Figure 4-18: ELISA of MMP-9 production from 16HBE14o- cell line treated with LCA, DCA, CA and 

CDCA. Statistical analysis was conducted by repeated-measures-paired-one-way ANOVA to compare to control.  

The data are representative of three independent experiments (each experiment n=6 wells). Bars represent mean 

± S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: 

p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant).  
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4.4.4 Measurement of pro-collagen expression 

4.4.4.1 Measurement of pro-collagen protein expression in primary human bronchial 

epithelial cell cultures from lung allografts (PHBEC) 

Pro-collagen protein production by PHBECs following exposure to BAs at concentrations of 

1 and 10 μmol/L was measured using ELISA. Maximal non-lethal conditions for bile acid 

stimulation were determined via cell viability assay. Cell viability was confirmed at >90% 

(Figure 4-1). Control cells produced little or no pro-collagen, but exposure to 5ng/ml TGF-β1 

caused a significant increase in pro-collagen production. Exposure to BAs caused a significant 

increase and these results are shown in Figure 4-19. 48h exposure of PHBECs to LCA, DCA, 

CA and CDCA at 1 and 10 μmol/L have been shown to cause a significant increase in pro-

collagen production as follows: TGFβ1 at 5 ng/ml caused 1326±66 pg/ml pro-collagen protein 

to be produced. LCA at 10μmol/L caused 389±32 pg/ml of pro-collagen protein to be 

produced and LCA at 1μmol/L generated 203±28 pg/ml of pro-collagen protein, showing a 

positive concentration dependency effect. DCA at 10μmol/L caused 214±11 pg/ml of pro-

collagen protein to be produced and DCA at 1μmol/L generated 171±19 pg/ml of pro-

collagen protein, showing no concentration dependency effect. CA at 10μmol/L caused 

220±13 pg/ml of pro-collagen protein to be produced and CA at 1μmol/L generated 218±12 

pg/ml of pro-collagen protein, showing no concentration dependency effect. CDCA at 

10μmol/L caused 274±18 pg/ml of pro-collagen protein to be produced and CDCA at 

1μmol/L generated 147±12 pg/ml of pro-collagen protein, showing a positive concentration 

dependency effect. The mean level of pro-collagen protein production in control cells was 

41±12 pg/ml. 
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Figure 4-19: ELISA of Pro-collagen production from primary human bronchial epithelial cell cultures from 

lung allografts (PHBEC) treated with LCA, DCA, CA and CDCA. Statistical analysis was conducted by 

repeated-measures-paired-one-way to compare to control.  The data are representative of three independent 

experiments (each experiment n=6 wells). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: 

p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: 

p<0.0001. (NS- not significant). 
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4.4.4.2 Measurement of pro-collagen protein expression in tracheal epithelial cells 

(upper airway cells) from the subglottic area  

Pro-collagen protein production by tracheal epithelial cells following exposure to BAs at 

concentrations of 1 and 10 μmol/L was measured using ELISA. These concentrations of the 

bile acids were the maximal concentration that did not cause high cell death based on cell 

viability. Cell viability was confirmed at >90% (Figure 4-4). Control cells produced little or 

no pro-collagen, but exposure to BAs caused a significant increase and these results are 

shown in Figure 4-20 48h exposure of damaged tracheal epithelial cells from the subglottic 

area to LCA at concentration 1 and 10µmol/L and 10 µmol/l DCA have been shown to cause 

a significant increase in pro-collagen production as follows: TGFβ1 at 5 ng/ml caused 927±26 

pg/ml pro-collagen protein to be produced. LCA at 10μmol/L caused 120 ±5 pg/ml of pro-

collagen protein to be produced and LCA at 1μmol/L generated 116±12 pg/ml of pro-collagen 

protein, showing no concentration dependency effect. DCA at 10μmol/L caused 93±18 pg/ml 

of pro-collagen protein to be produced. Production of pro-collagen protein after stimulation 

with DCA at 1μmol/L, CA at 1 and 10 µmol/L and CDCA 1 and 10 µmol/L did not increased 

pro-collagen protein significantly. DCA at 1μmol/L generated 74±6pg/ml of pro-collagen 

protein.CA at 10μmol/L caused 55±7 pg/ml of pro-collagen protein to be produced and CA at 

1 μmol/L generated 67±3 pg/ml of pro-collagen protein. CDCA at 1μmol/L caused 40±5 

pg/ml of pro-collagen protein to be produced and CDCA at 10 μmol/L generated 42 ±6 pg/ml 

of pro-collagen protein. The mean level of pro-collagen protein production in control cells 

was 28±26 pg/ml. 
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 Figure 4-20: ELISA of Pro-collagen production from tracheal epithelial cells from the subglottic area treated 

with LCA, DCA, CA and CDCA. Statistical analysis was conducted by repeated-measures-paired-one-way 

ANOVA to compare to control.  The data are representative of three independent experiments (each experiment 

n=6 wells). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: p<0.001. For 

pairwise analysis Student's t-test #: p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.4.3 Measurement of pro-collagen protein expression in BEAS-2B epithelial cell lines 

Pro-collagen protein production by BEAS-2B cells following exposure to BAs at the 

following concentrations: LCA (5 and1μmol/L), DCA (30 and 15μmol/L), CA (50 and 

30μmol/L) and CDCA (50 and 30μmol/L), which did not have significant effect on the cell 

viability (Figure 3-8 Figure 3-9), was measured using ELISA. Exposure to BAs caused a 

significant increase in pro-collagen protein production as shown in Figure 4-21. TGFβ1 at 5 

ng/ml caused 520±6 pg/ml pro-collagen protein to be produced. LCA at 5μmol/L caused 344 

±18 pg/ml of pro-collagen protein to be produced and LCA at 1μmol/L generated 296±8 

pg/ml of pro-collagen protein, showing a positive concentration dependency effect. DCA at 

30μmol/L caused 294±8 pg/ml of pro-collagen protein to be produced DCA at 15μmol/L 

generated 312±6 pg/ml of pro-collagen protein, showing no concentration dependency effect. 

CA at 50 μmol/L caused 205±11 pg/ml of pro-collagen protein to be produced CA at 30 

μmol/L generated 218 ±6 pg/ml of pro-collagen protein, showing no concentration 

dependency effect. CDCA at 50μmol/L caused 208±8 pg/ml of pro-collagen protein to be 

produced CDCA at 30μmol/L generated 185±8 pg/ml of pro-collagen protein, showing a 

positive concentration dependency effect. The mean level of pro-collagen protein production 

in control cells was 47±2 pg/ml. 
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Figure 4-21: ELISA of Pro-collagen production from BEAS-2B cell line treated with LCA, DCA, CA and 

CDCA. Statistical analysis was conducted by repeated-measures-paired-one-way ANOVA to compare to control.  

The data are representative of three independent experiments (each experiment n=6 wells). Bars represent mean 

± S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: 

p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.4.4.4 Measurement of pro-collagen protein expression 16HBE14o- epithelial cell lines 

Pro-collagen protein production by 16HBE14o- cells following exposure to BAs at the 

following concentrations: LCA (1 and 10 μmol/L), DCA (15 and 30 μmol/L), CA (50 and 75 

μmol/L) and CDCA (30 and 50 μmol/L), which did not have significant effect on the cell 

viability (Figure 3-2 and Figure 3-3), was measured using ELISA. Exposure to BAs caused a 

significant increase in pro-collagen protein production as shown in Figure 4-22. TGFβ1 at 5 

ng/ml caused 130±19 pg/ml pro-collagen protein to be produced. LCA at 10 μmol/L caused 

152±2 pg/ml of pro-collagen protein to be produced and LCA at 1 μmol/L generated 9±4 

pg/ml of pro-collagen protein, showing a positive concentration dependency effect. DCA at 

30 μmol/L caused 128±4 pg/ml of pro-collagen protein to be produced and DCA at 15 μmol/L 

generated 100±2 pg/ml of pro-collagen protein, showing a positive concentration dependency 

effect. CA at 75 μmol/L caused 79±6 pg/ml of pro-collagen protein to be produced and CA at 

50 μmol/L generated 85±5 pg/ml of pro-collagen protein, showing no concentration 

dependency effect. CDCA at 50 μmol/L caused 128±2 pg/ml of pro-collagen protein to be 

produced and CDCA at 30 μmol/L generated 77±6 pg/ml of pro-collagen protein, showing a 

positive concentration dependency effect. The mean level of pro-collagen protein production 

in control cells was 40±6 pg/ml. 
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Figure 4-22:  ELISA of Pro-collagen production from 16HBE14o- cell line treated with LCA, DCA, CA and 

CDCA. Statistical analysis was conducted by repeated-measures-paired-one-way ANOVA to compare to control.  

The data are representative of three independent experiments (each experiment n=6 wells). Bars represent mean 

± S.E.M values of each group, *: p<0.05, **: p<0.01 and, ***: p<0.001. For pairwise analysis Student's t-test #: 

p<0.05, ##: p<0.01, ###: p<0.001 and ####: p<0.0001. (NS- not significant). 
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4.5 Discussion 

The results in this chapter provide evidence for active epithelial-mesenchymal transition 

(EMT) in primary epithelial cell cultures from lung allograft, tracheal epithelial cells (upper 

airway cells) from the subglottic area, BEAS-2B cell lines and 16HBE14o- cell lines after 

stimulation with both primary and secondary BAs at varying concentrations.   

Gastroesophageal reflux disease (GORD) and extraoesophageal reflux disease (EORD) can 

affect patients with a wide variety of airway diseases. A causative link has been hypothesised 

between respiratory disorders and GORD/EORD. This is based on the facts that airway 

epithelial cells produce fibroblast-promoting growth factors and that bile acid (BA) exposure 

leads to a fibrotic response. GOR symptoms and the pathologic reflux caused by COPD 

exacerbation (Casanova et al., 2004), are strongly correlated (Rascon-Aguilar et al., 2006), 

and GORD is also common among asthma sufferers (Hsu et al., 2005), especially in severe 

cases (Leggett et al., 2005). Idiopathic pulmonary fibrosis patients are especially prone to 

GORD (Tobin et al., 1998; Raghu et al., 2006) and may still aspirate 

duodenogastroesophageal refluxate even after undergoing a lung transplant. In this case, there 

is a correlation with bronchiolitis obliterans, which also is a fibrotic airway disorder 

(D’Ovidio et al., 2005).  

This data supports the hypothesis that human airway epithelial cells exposed to BAs may 

undergo EMT, causing the formation of fibroblasts. To the best of my knowledge, this is the 

first time data of this type has been presented. 

During embryo development, EMT is involved in organogenesis. It also plays a vital role in 

wound healing (Hay, 2005). When EMT becomes dysregulated however, it contributes to 

cancer progression and metastasis, and to the development of chronic degenerative fibrotic 

disorders in the lung as well as several other organs (Thiery, 2002; Wilson and Wynn, 2009). 

This can have several consequences, including COPD, pulmonary fibrosis and lung allografts 

rejection. Therefore, EMT is implicated in the pathogenesis of these conditions (Kalluri and 

Neilson, 2003; Lee et al., 2009). In spite of an increasing evidence base that suggests a 

connection between EMT and fibrotic remodelling in the lungs and other organs, it has not 

been shown to play a role in the airway remodelling and fibrosis and there is little evidence 

that bronchial epithelial cells are affected (Doerner and Zuraw, 2009). 
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Patients with a range of airway diseases often exhibit gastroesophageal reflux (GORD). 

Cytokines and growth factors involved in fibroblast migration, proliferation, and 

myofibroblast differentiation in the lungs are stimulated by BAs, which can be aspirated 

during GORD and therefore GORD may play a prominent role in lung injury and airway 

fibrosis (Zhang et al., 2001; Perng et al., 2003). Airway fluids may contain a number of BAs 

including the unconjugated BAs used in this study (Legendre et al., 2014). BALF has been 

shown to contain BAs at concentrations up to 240 μmol/L (D’Ovidio et al., 2005; Parikh et 

al., 2013). The BAs used in this study therefore have profibrotic effects that are 

pathophysiologically relevant (Chen et al., 2016). 

The results of this study indicate that primary human bronchial epithelial cell cultures from 

lung allografts (PHBEC), when exposed to CA and CDCA at 1 and 10 µmol/L significantly 

reduce E-cadherin expression. On the other hand E-cadherin gene expression levels did not 

decrease after stimulation with LCA and DCA. Moreover, fibronectin expression was 

significantly upregulated by CA and CDCA at 1 and 10 µmol/L, whereas fibronectin 

expression did not increase significantly with 1 and 10 µmol/ LCA and DCA. These findings 

may indicate that CDCA and CA (primary bile acids) were more effective when compared to 

DCA and LCA (secondary bile acids). 

Furthermore, in this study, tracheal epithelial cells (upper airway cells) from the subglottic 

area, which was derived from the subglottic airway and provide a physiological model of the 

upper airway in vitro (Powell J, 2015) was stimulated with BAs to assess E-cadherin and 

fibronectin expression. The most interesting finding was that the E-cadherin expression was 

significantly downregulated in 10 μmol/L LCA, 1 and 10 μmol/L CA and CDCA, whereas E-

cadherin gene expression levels were similar to the control in 1 μmol/L LCA and DCA 

treatment groups. Consequently, it would appear that upper airway cells are affected by BAs, 

which induce EMT. 

These findings show that the upper airway cells and lower airway cells are affected by 

primary bile acids. On the other hand only LCA at 10 µmol/mL caused downregulation in E-

cadherin and increased fibronectin expression in upper airway cells but not lower airway 

cells.  The secondary BAs may be more harmful and the concentration of LCA may be higher 

than other BAs in upper airway. LCA was identified in trachea at concentration of 2.8±0.6 

μmol/L in patients with ventilator associated pneumonia (Wu et al., 2009). 
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Polygonal epithelial cells adhere to form a tight mesh, creating the airway epithelial sheet 

(Sohal et al., 2014). E-cadherin, a synthesis transmembrane glycoprotein found primarily in 

the adherens junctions between epithelial cells, has been implicated as a marker of 

differentiated epithelial phenotype (Arias, 2001; Zeisberg et al., 2003). It is downregulated 

when epithelial cells transform (Yang and Liu, 2001), but plays a key role in maintaining 

epithelial polarity and consequently in tight junction development (Tunggal et al., 2005). 

Epithelial-Mesenchymal Transition (EMT) in both cancerous and non-cancerous cells 

involves several steps, beginning with E-cadherin inhibition. Once the mesenchymal 

phenotype is fully realised, mesenchymal markers, such as fibronectin, proliferate. 

Fibronectin is involved in a range of processes, including cell adhesion and migration, and 

tissue repair (Miettinen et al., 1994). 

EMT like activity was induced in BEAS-2B and 16HBE14o- cells through BA exposure, 

indicating that the effect is not limited to primary cells, but that human bronchial epithelial 

cell lines (in vitro) are also vulnerable. I observed that the 16HBE14o- cells were more 

sensitive to BAs treatment and EMT induction than the BEAS-2B cells.  For example in this 

study, immortalized cell line 16HBE14o-, which was derived from bronchial surface 

epithelial cells (Cozens et al., 1994), were exposed to BAs at different concentration to assess 

E-cadherin and fibronectin expression. The results revealed a significant decrease in E-

cadherin expression at all concentrations, also it was found that fibronectin expression 

increased at all concentrations of BAs. 

On the other hand the E-cadherin expression in BEAS-2B, which significantly decreased in 

response to (15 and 30 μmol/l) DCA, (30 and 50 μmol/l) CDCA, (5 µmol/l) LCA and (50 

µmol/l) CA, but there was no significant effect from 1 µmol LCA and 30 µmol CA exposure. 

Fibronectin expression, was significantly increased with (1 and 5 μmol/l) LCA, (15 μmol/l) 

DCA, (50 μmol/L) CA and (30 μmol/l) CDCA. However, (30 μmol/L CA) and (50 μmol/l) 

CDCA had no significant effect. 

BEAS-2B cells retain the morphology of an epithelial cell in vitro (Reddel et al., 1988) and 

release IL-8 and IL-6 in addition to other cytokines. Under submerged conditions, BEAS-2B 

cells are commonly used as in the in vitro model of human airways epithelium- especially 

within studies on inhalation toxicity (Cha et al., 2007; Petecchia et al., 2009).  

Furthermore, Cells were also stimulated with 5ng/ml TGF‐β1 as a positive control. An 

optimum concentration of TGF‐β1 (5 ng/ml) was used to stimulate primary cells and cell 
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lines. It was assumed that the same concentration was optimum to induce stress in cells as 

well. Published studies suggest that 5ng/ml of TGF‐ β1 induces morphological changes in this 

immortalised cell lines (Doerner and Zuraw, 2009; Câmara and Jarai, 2010; Liu et al., 2013).  

An additional analysis was performed to detect TGFβ1, MMP9 and Pro-collagen secreted by 

primary bronchial human epithelial cell cultures from lung allografts (PHBECs), tracheal 

epithelial cells (upper airway cells) from the subglottic area and cell lines (BEAS-2B and 

16HBE14o-) by using an ELISA. In this experiment, BAs stimulation of cells were associated 

with the release of TGFβ1, MMP9 , but the most interesting finding was the production of 

pro-collagen protein after stimulation of  human subglottic cells with DCA at 1μmol/L, CA at 

1 and 10µ μmol /L and CDCA 1 and 10µ mol/L did not increased significantly. A recent 

study suggested a significantly higher number of reflux events detected in laryngopharyngeal 

reflux (LPR) patients than patients with GERD (Hom and Vaezi, 2013). Moreover, patients 

with LPR may have a high concentration of bile acids and the concentration of BAs that reach 

the lower airway may be diluted (Sifrim, 2015). As a result the upper airway cells may 

become resistant. Furthermore, the secondary BAs can be more cytotoxic than primary BAs to 

upper airway cells.    

Epithelial cells also generate matrix metalloproteinase 9 (MMP-9), a type IV collagenase, the 

presence of which can indicate EMT and epithelial damage. Col4 is the primary structural 

component of the true reticular basement membrane, which epithelial cells sit upon. When 

MMPs disrupt the airway epithelium, various forms of damage can occur, including 

translocation, inflammation and further EMT (Kalluri and Neilson, 2003).  

A recent study has also shown that lung fibroblasts and alveolar epithelial cells (AECs) can be 

activated by BAs through both FXR-dependent and independent pathways. These findings 

have enabled a new perspective on the role of BA microaspiration on IPF development (Chen 

et al., 2016). Mesenchymal trans-differentiation of AECs in pulmonary fibrosis is controlled 

by a number of key mechanisms. TGFβ1 exposure can induce EMT in both rat and human 

AECs in culture (Yao et al., 2004; Willis et al., 2005). Most of the EMT research in 

pulmonary fibrosis has focused on AECs.  

The transcription factor, Farnesoid X receptor (FXR), contains both a DNA binding domain 

and a ligand binding domain, the latter of which is sensitive to BAs (Abu-Hayyeh et al., 

2013), and provides a mechanism for BAs to regulate their own synthesis and metabolism. It 

is interesting to note that apart from a role in BA homeostasis there is widespread expression 
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of FXR in tissues in humans and this includes expression in the airway and lung (Bishop-

Bailey et al., 2004) As a result, the lung’s inflammatory response and its repair processes 

repair are critically dependent on the role of FXR (Zhang et al., 2012). 

There is evidence to suggest that FXR has a novel function in the regulation of hepatic 

inflammation and that its ligands might potentially serve a role in inflammatory liver disease 

treatment as well as the prevention of hepatocarcinogenesis. FXR is a known antagonist in the 

NF-κB1 pathway, whose role in both the inflammatory response and in the mediation of 

tumor promotion therefore implicates FXR as playing a critical role in the inflammatory 

response (Greten et al., 2004; Pikarsky et al., 2004). The NF-κB1 pathway is suppressed by 

FXR – irrespective of the presence of its exogenous ligand – in HepG2 cells at the gene 

transcription level. GW4064, an FXR agonist, inhibits the binding activity between NF-κB1 

and the DNA sequence, resulting in suppressed NF-κB1 regulated gene expression in both 

HepG2 and mouse primary hepatocytes (Wang et al., 2008).  

Hepatocyte BA levels are decreased through the following mechanism: DNA binds with 

activated FXR to form a complex with the retinoid x receptor. In turn, this stimulates the 

transcription of various genes, which code for transporters (e.g. ABC transporters) that 

facilitate BA transfer from hepatocytes to the bile (Holt et al., 2003). It was confirmed 

recently that the expression of CFTR, a member of the ABC transporter family, in epithelial 

cells might be regulated by activated FXR, thereby modulating chronic secretion (Mroz et al., 

2014). FXR has also been implicated in CLˉ secretion downregulation in the colonic 

epithelium and that Na⁺/ K⁺ ATPase inhibition appears to regulate this process (Keating and 

Keely, 2009). 

A study by Lafyatis and Farina explores the involvement of gut microbiota in toll-like 

receptor (TLR – primarily TLR2 and TLR4) signalling, which aggravates metabolic 

inflammation. TLRs play a significant role in the recognition of pathogen-associated 

molecular patterns, which are found on bacterial cell walls. For example, TLR4 is a ligand of 

lipopolysaccharide (LPS) (Lafyatis and Farina, 2012). Vavassori et al. found that an anti-

inflammatory effect can be achieved by activation of FXR-modulated TLR4 (Vavassori et al., 

2009). 

Bogdasarian and Olson first noted the association with reflux subglottic stenosis in 1980 

(Bogdasarian and Olson, 1980) in their article on posterior glottis stenosis, which noted that 

gastric reflux should be added to the list of factors which cause posterior subglottic stenosis. 
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Other studies since then have also confirmed the relationship between acquired subglottic 

stenosis (ISS) and GORD (Little et al., 1984). Koufman has conducted the largest study to 

date, using 197 patients with presumed GERD and a range of associated symptoms including 

laryngitis 48 patients, tracheal and subglottic stenosis 32 patients, tracheal and subglottic 

stenosis 32 patients, carcinoma of the larynx 31 patients, cough 25 patients, globus 

pharyngeus 24 patients, dysphagia 22 patients and miscellaneous 15 patients (Koufman, 

1991).  

Cells under submerged conditions have also been studied. Xie et al.  investigated epithelial 

cells from asthmatic and non-asthmatic donors in two conditions: submerged and air-liquid 

interface conditions. It was found that EMT was induced by TGF-β1 in both conditions (Xie 

et al., 2004). These findings are supported by similar studies, which have found EMT-related 

changes in the polarized layer forming 16HBE-14o- cell line (Zhang et al., 2009). 

These findings have been supported by other studies, which have demonstrated that airway 

epithelial cells undergo EMT in vitro and that epithelial cells from obliterative bronchiolitis 

patients express mesenchymal cell markers, detected by immunohistochemistry (Borthwick et 

al., 2009). Increased mesenchymal marker S100A4 expression in airway epithelial cells from 

lung transplant patients suggests that airway epithelial cells can differentiate into 

mesenchymal cells (Ward et al., 2005). 

Work for this thesis has shown that BA stimulation of airway epithelial cells causes TGF-

β1production to increase. It has been suggested that in many tissues, including the lungs, 

TGF-β1 plays the role of a ‘master switch’ in triggering fibrosis (Sime and O'Reilly, 2001; 

Borthwick et al., 2012). IPF patients are found to exhibit upregulated TGF-β1 levels in their 

lungs. Furthermore, active TGF-β1 expression has been found to cause a ‘dramatic fibrosis 

response’ in rats’ lungs. In addition, the inability to respond to TGF-β1 affords protection 

from bleomycin induced fibrosis (Zhao et al., 2002). In the development, carcinogenesis and 

fibrosis of various isoforms, TGF-β1 is a significant inducer of EMT (Nawshad et al., 2005). 

Given the significant spike in TGF-β1 production in bronchial epithelial cells found by this 

study, it is suggested that these cells could become migratory during fibrosis development. A 

recent study using airway epithelial cells from asthmatics found these cells to be particularly 

sensitized to TGF-β1 induced EMT (Hackett et al., 2009). This, along with my study, builds 

to case for EMT being triggered in the epithelium as well as within the alveoli. Kuroishi 
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report has also shown that mouse tracheal epithelial cells in vitro can also exhibit TGF-β1-

induced EMT (Kuroishi et al., 2009). 

A549 alveolar epithelial cells exhibit an EMT-like process in response to TGF-β1, which is 

thought to be due to initiation of the Smad2 signalling pathway. This further supports the 

hypothesis of EMT occurring in human lung epithelial cells, although further research is 

needed, especially in relation to the expression profile for EMT-induced alveolar cells. This 

research could reveal a deeper understanding of the role of EMT in pulmonary fibrogenesis. 

The use of cultured cells in these EMT studies generates discussion around authenticity (true 

EMT), or if these experiments are simply causing a ‘stress response’ in cells. In light of the 

evidence to date, I believe that ‘true’ transition from epithelial to mesenchymal phenotypes 

can be better demonstrated through studying the functional properties of cells, not just their 

protein expression. Mesenchymal cells can be functionally characterised by their expression 

of MMP9 (Borthwick et al., 2009) and my study found that epithelial cells treated with BAs 

are able to release this enzyme, as well as pro-collagen. These findings provide further 

evidence for the case that EMT may occur in airway cells, which could infiltrate the basement 

membrane and migrate into the subepithelial layer. From this point, cells would be in a 

position to generate disproportionate amounts of connective tissue. 

A range of chronic airway disorders are associated with GORD symptoms. This study has 

shown that airway fibrosis development could be associated with the presence of BAs, which 

trigger excessive cytokine and growth factor production. Experiments in lung fibrosis have 

shown that these substances cause myofibroblasts as well as fibroblast migration and 

proliferation via EMT (Kim et al., 2006; Kim et al., 2009).  

These findings may have translational significance in airways disease and suggest new 

therapeutic possibilities where modifying GORD may have positive effects on airway and 

lung disease. In summary, this study provides evidence of EMT markers in primary epithelial 

cell cultures from lung allograft, tracheal epithelial cells (upper airway cells) from the 

subglottic area, BEAS-2B cell lines and 16HBE14o- cell lines. The EMT procedure may 

instigate a pathway following injury in common diseases characterised by airway remodelling 

and fibrosis. These results confirm that EMT like changes were induced in BEAS-2B and 

16HBE14o- cells through BAs exposure, indicating that the effect is not limited to primary 

human bronchial epithelial cells  and BEAS-2B and 16HBE14O-cell lines are a sensitive and 
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useful model to study human respiratory processes and diseases related to BAs aspiration- 

instigating EMT. 
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CHAPTER 5: THE ROLE OF DUODENO-GASTRO-

OESOPHAGEAL REFLUXATE IN MUCUS PRODUCTION 

FROM NCI-H292 AND CALU-3 CELL LINES 

5.1 Introduction 

A glycoprotein-rich mucus layer lines the luminal epithelial surfaces of the respiratory tract, 

providing barrier protection from noxious and pathogenic agents. It is also involved in 

reactions to inflammation and infection, which result in upregulation mucus production. 

Between the trachea and the bronchioles, in healthy lungs, this mucus comprises secretions 

from both glandular and epithelial cells (mucus/goblet cells) (Sigurdsson et al., 2013). 

Chronic inflammatory airway diseases, such as Cystic Fibrosis (CF), Chronic Obstructive 

Pulmonary Disease (COPD), bronchiectasis and* severe asthma, are characterised by the 

hypersecretion of mucus (Fahy, 2002; Kim et al., 2008a); thereby leading to airway 

narrowing and impaired lung function (Aikawa et al., 1992). 

 Mucin – part of a family of large (several thousand kilodaltons) glycoproteins – is a primary 

component of secreted mucus. These glycoproteins play a fundamental role in determining 

mucus viscoelasticity (Corfield, 2015). The principal glycoproteins in airway mucus 

secretions are expressed by the MUC5AC and MUC5B genes (Thornton et al., 1997; 

Voynow, 2002). MUC5AC is secreted primarily by goblet cells in the surface airway 

epithelium (Suzaki et al., 2016) and MUC5B mainly by mucus and serous cells in the 

submucosal glands (Zanin et al., 2016). 

It has been possible to maintain primary epithelial cells for 2-3 passages on a plastic surface, 

but the populations are heterogeneous, and the mucin expressing phenotype has not been 

observed. Furthermore, it is expensive to maintain rigorous culture conditions. Nevertheless, 

it has been possible to grow, maintain and passage carcinoma cell lines from epithelial 

samples and these have been used as investigative models for diseases including CF, COPD, 

asthma and inflammatory processes (Berger et al., 1999). 

Epithelial carcinoma cell lines have included Calu-3 and NCI H292 cells, which have 

provided useful models for in vitro study of gene regulation. Moreover, these cells carry the 

significant benefit of allowing both MUC5 mRNA and MUC5 glycoprotein regulation to be 

studied within the same model (Berger et al., 1999; Rose et al., 2000). 
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Bile acid (BA) is found commonly in the airways and bronchoalveolar lavage fluid of patients 

with chronic airway diseases, in addition to in murine models. Therefore, it is thought that 

BAs have some involvement in airway disease development (Cohen-Cymberknoh et al., 

2013). BAs may also cause airway obstruction by increasing mucus production (D’Ovidio 

and Keshavjee, 2006). However, further research is required on the role of BAs in the airway 

and their involvement with mucosal membranes. 

Here, I hypothesise that due to the connection between mucus hypersecretion and 

gastroesophageal reflux in diseases such as CF, COPD and asthma, the presence of BAs in the 

lung could be a primary cause of this increased mucin secretion via epithelial cell stimulation. 

Consequently, several cell lines originating from respiratory tract epithelial tissue were 

studied to identify those that expressed MUC genes similar to those displayed in upper and 

lower respiratory tract tissues (Berger, Voynow et al. 1999). In particular, the investigation 

aimed to determine whether MUC5 RNA expressing cell lines also secreted MUC5 mucins. 

These cell lines could then be used to determine the effect of BAs on mucin expression and 

mucus cell differentiation; hence, their role in airway diseases. Mucin gene expression was 

surveyed in two respiratory tract carcinoma cell lines: Calu-3 and NCI-H292. 
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5.2 Aims of the study 

This chapter will explore the potential for using NCI-H292 and Calu-3 cell lines in vitro as 

models for investigating the hypothesis, which states that BAs in the lung could stimulate 

lung epithelial cells to synthesise or secrete mucin. Primary experimental aims are as follows: 

- To measure the mucin content of the culture medium using a periodic acid-Schiffs 

(PAS) assay. 

- To measure MUC5AC and MUC5B using indirect ELISA and to determine the 

concentration of BAs that caused maximum MUC5AC and MUC5B mucin 

production. 

- To evaluate MUC5AC expression in NCI-H292 cells and Calu-3 cells stimulated with 

BAs, by quantitative real-time PCR. 

- To examine the expression profile of MUC5B in NCI-H292 and Calu-3 cells 

stimulated with BAs via quantitative real-time PCR. 
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5.3 Methods 

5.3.1 Cell line culture 

NCI-H292 and Calu-3 were cultured in six-well plates as described in chapter 2, sections 

2.2.3 and 2.2.4. At about 80-90% confluence, these were rested for 24 hours, then exposed to 

primary and secondary BAs at a range of concentrations  

5.3.2 Stimulation of NCI-H292 and Calu-3 cells with BAs 

NCI-H292 and Calu-3 cell cultures were exposed to LCA, DCA, CA and CDCA for 48 hours 

at concentrations of 1, 5, 10, 15, 20, 30, 50, 75 and 100 μmol/L as described in chapter 2, 

section 2.6.  

5.3.3 Detection of MUC5AC and MUC5B mucins 

5.3.3.1 Determination of mucin production by Periodic Acid-Schiff (PAS) assay 

Mucin production by NCI-H292 and Calu-3 cells was examined and measured using a PAS 

assay described in chapter 2, sections 2.8.4.  

5.3.3.2 Quantification of MUC5AC and MUC5B mucin concentration by indirect 

ELISA 

NCI-H292 and Calu-3 cells were cultured and stimulated (described above see chapter 2, 

sections 2.2.3 and 2.2.4). MUC5AC and MUC5B mucins were analysed using indirect ELISA 

as described in chapter 2, sections 2.8.2 and 2.8.3.  

5.3.4 Molecular biology 

RNA was isolated using the RNEasy Mini-kit (Qiagen) and reverse transcribed using a Tetro 

cDNA synthesis kit (Bioline). A quantitative PCR reaction was used to determine specific 

gene expression changes at a molecular level (see chapter 2, section 2.9). 

In studying BAs effect on MUC5B and MUC5AC gene regulation, the cells were stimulated 

with BA concentrations that cause the highest levels of MUC5AC and MUC5B mucin 

production was measured by ELISA. 
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5.4 Results 

5.4.1 Effect of BAs on mucin production in NCI-H292 cells, quantified using the PAS 

method 

NCI-H292 is a mucous producing cell strain (Newland and Richter, 2008). Following 48-hour 

BA exposure, mucin production by NCI-H292 was examined using the PAS assay. 

Figure 5-1 illutrates that high mucin levels were produced significantly by cells stimulated 

with LCA at 1, 5, 10, 15 and 20 µmol/L concentrations. However, no difference was found 

between the five levels of LCA. 
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Figure 5-1: Mucin released by NCI-H292 cells following 48h LCA stimulation. PAS was used to measure 

mucin in cell supernatants, and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 

were regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (*** = p < 0.001 

compared with control, ANOVA). 
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Figure 5-2 shows a significant increase in mucin production by NCI-H292 cells challenged 

with 15, 30, 50 and 75 µmol/L DCA in comparison with unchallenged cells. The highest level 

of mucin production was at concentration 15 µmol/l of DCA. Moreover, there was an inverse 

dose response to DCA and 100 µmol/l DCA did not induce mucin production. 
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Figure 5-2: Mucin released by NCI-H292 cells following 48h DCA stimulation. PAS was used to measure 

mucin in cell supernatants, and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 

were regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (*** = p < 0.001 

compared with control, ANOVA). 
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Figure 5-3 presents a significant increase in mucin production by NCI-H292 cells challenged 

with 15, 30, 50, 75 and 100 µmol/L CA in comparison with unchallenged cells. There was no 

difference in the level of mucin production by the NCI-H292 between any of the CA 

concentrations. 
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Figure 5-3: Mucin released by NCI-H292 cells following 48h CA stimulation. PAS was used to measure mucin 

in cell supernatants and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 were 

regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (** = p < 0.01, *** = p 

< 0.001 compared with control, ANOVA). 
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Figure 5-4 demonstrates a significant increase in mucin production by NCI-H292 cells 

challenged with 30, 50, 75 and 100 µmol/L CDCA in comparison with unchallenged cells. 

The highest output of mucin was with 50 µmol/L. However, there was no significant increase 

at 15 µmol/L CDCA. 
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Figure 5-4: Mucin released by NCI-H292 cells following 48h CDCA stimulation. PAS was used to measure 

mucin in cell supernatants and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 

were regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (* = p<0.05, ** = 

p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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In general, looking at mucin production by NCI-H292 cells measured by PAS assay, it can be 

seen that 15 and 30 µmol/L of DCA had the highest level of mucin released. The second 

highest level of mucin production occurred with 15 µmol/L of CA, 50 µmol/L of CDCA also 

produced a similar level of mucin. Conversely, LCA caused the lowest level of mucin 

secretion due possibly to cell death (see Figure 3-14A), although mucin production by LCA 

remained significantly higher than the control (Figure 5-1 to Figure 5-4). The explanations for 

this fact are unclear yet but some possible explanations exist. Bile acids accumulate in cells 

and may  inhibit intracellular function which does not kill the cell but reduces the rate of all 

cellular processes such as protein synthesis  (Tabas, 2002). Moreover, extracellular matrix 

(ECM) may play a role in downregulation of mucin production. ECM component, type-IV 

collagen, inhibits MUC5AC production via integrin-signalling pathways,(Integrins are 

heterodimers composed of α2- and β-subunit and are the main receptors involved in cell–cell 

and cell–ECM adhesion) (Iwashita et al., 2010). 
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5.4.2 Measurement of MUC5AC and MUC5B mucin in NCI-H292 cells 

MUC5AC and MUC5B secretion by NCI-H292 cells is also affected by BA exposure. Levels 

of MUC5AC and MUC5B secreted by cells into the culture medium were measured using 

indirect ELISA  

Figure 5-5 and Table 5-1 show that NCI-H292 exposure to LCA at concentrations of 1, 5 and 

10 µmol/L caused MUC5AC levels to increase significantly. There was an inverse dose-

response to LCA. However, no significant increase was seen using concentrations of 15 and 

20 µmol/L LCA due to the cell death (see Figure 3-14A). 

NCL-H292 cell line lung carcinoma cells also produce MUC5B. These cells were exposed to 

primary (CA and CDCA) and secondary (LCA and DCA) BAs. Figure 5-5 and Table 5-1 

illustrate that exposure of NCI-H292 cells to LCA at concentrations of 1, 5, 10 and 15 µmol/L 

caused MUC5B mucin levels to increase significantly. The highest response was at 1 µmol/L, 

but at 20 µmol/L LCA there was no increase in MUC5B mucin due to cell viability, which is 

significantly decreased by LCA at 20μmol/L with 93±3% cell death (see Figure 3-14A). 
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Figure 5-5: MUC5AC and MUC5B mucin release by NCI-H292 cells following exposure to LCA for 48 hours. 

Indirect ELISA was used to measure MUC5AC and MUC5B levels in the supernatant. Statistical analysis was 

conducted using a one-way ANOVA test. The data are representative of three independent experiments (n=6) 

(see table 5-1). Bars represent mean ± S.E.M values of each group.   

 

 

  Lithocholic acid  

Concentration 

μmol/L 

1 5 10 15 20 

MUC5AC ↑*** ↑*** ↑* _______ _______ 

MUC5B   ↑**** ↑*** ↑** ↑** _______ 

Table 5-1: The effect of different levels of Lithocholic acid on the NCL-H292 cell line following stimulation for 

48 hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release. (* = p<0.05, ** 

= p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Figure 5-6 and Table 5-2 illustrate that exposure of NCI-H292 cells to DCA at concentrations 

of 15, 30, 50, 75 and 100 µmol/L caused MUC5AC mucin levels to increase significantly. 

From the table, it is clear that MUC5AC mucin levels increased significantly at all 

concentrations. The highest level of MUC5AC mucin production was with 15 µmol/L DCA 

and the level of MUC5AC mucin production then fell off due to cell death (see Figure 3-14B) 

but remained significantly higher than the control. 

Furthermore, Figure 5-6 and Table 5-2  reveal that exposure of NCI-H292 cells to DCA at 

concentrations of 15 and 30 µmol/L caused MUC5B mucin levels to increase significantly. 

The highest level of MUC5B mucin release occurred with 15 µmol/L DCA. The MUC5B 

mucin levels reduced at 30µmol/L DCA but remained significantly above the control. There 

was no increase in MUC5B mucin due to cell viability being significantly affected by DCA at 

50, 75 and 100 μmol/L (see Figure 3-14B) . 
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Figure 5-6: MUC5AC and MUC5B mucin release by NCI-H292 cells following exposure to DCA for 48 hours. 

Indirect ELISA was used to measure MUC5AC and MUC5B levels in the supernatant. Statistical analysis was 

conducted using a one-way ANOVA test. The data are representative of three independent experiments (n=6) 

(see table 5-2). Bars represent mean ± S.E.M values of each group. 
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  Deoxycholic acid  

Concentration 

μmol/L 

15 30 50 75 100 

MUC5AC ↑*** ↑*** ↑* ↑* ↑* 

MUC5B ↑*** ↑** _______ _______ _______ 

Table 5-2: The effect of different levels of Deoxycholic acid on the NCL-H292 cell line following stimulation 

for 48 hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release. (* = p<0.05, 

** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Figure 5-7 and Table 5-3 reveal a significant increase in MUC5AC mucin levels with CA at 

concentrations of 15, 30 and 50 μmol/L. The highest level of MUC5AC mucin secretion was 

obtained with 15µmol/L of CA. The MUC5AC mucin levels reduced at 50 µmol/L CA but 

remained significantly above the control. The highest concentrations of CA (75 and 100 

µmol/L) did not increase MUC5AC production significantly. 

Figure 5-7 and Table 5-3 illustrates that exposure of NCI-H292 cells to CA at concentrations 

of 15, 30, 50, 75 and100 µmol/L caused MUC5B mucin levels to increase significantly. The 

highest level of MUC5B mucin production was with 15 µmol/L CA and there was an inverse 

dose-response to CA. 
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Figure 5-7: MUC5AC and MUC5B mucin release by NCI-H292 cells following exposure to CA for 48 hours. 

Indirect ELISA was used to measure MUC5AC and MUC5B levels in the supernatant. Statistical analysis was 

conducted using a one-way ANOVA test.  The data are representative of three independent experiments (n=6) 

(see table 5-3). Bars represent mean ± S.E.M values of each group. 
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  Cholic acid  

Concentration 

μmol/L 

15 30 50 75 100 

MUC5AC ↑*** ↑*** ↑** _______ _______ 

MUC5B ↑*** ↑*** ↑*** ↑** ↑* 

Table 5-3: The effect of different levels of Cholic acid on the NCL-H292 cell line following stimulation for 48 

hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release. (* = p<0.05, ** = p 

< 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Figure 5-8 and Table 5-4 demonstrate a significant increase in MUC5AC mucin levels, with 

CDCA at concentrations of 50, 75 and 100 μmol/L, but not at 15 and 30 µmol/L. The highest 

level of MUC5AC mucin production was at 50 µmol/L CDCA then declines as the 

concentration of CDCA increases up to 100 µmol/L.  

Moreover, Figure 5-8 and Table 5-4 show that exposure of NCI-H292 cells to CDCA at 

concentrations of 30, 50, 75 and 100 µmol/L caused MUC5B mucin levels to increase 

significantly, but this was not observed at concentrations of 15 µmol/L CDCA. MUC5B 

mucin levels increased significantly at 30 µmol/L CDCA and increased further to the 

maximum level of 75 µmol/L CDCA. The level of MUC5B mucin production then fell off at 

100 µmol/L CDCA but remained significantly higher than the control. 
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Figure 5-8: MUC5AC and MUC5B mucin release by NCI-H292 cells following exposure to CDCA for 48 

hours. Indirect ELISA was used to measure MUC5AC and MUC5B levels in the supernatant. Statistical analysis 

was conducted using a one-way ANOVA test. The data are representative of three independent experiments 

(n=6) (see table 5-4). Bars represent mean ± S.E.M values of each group. 
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  Chenodeoxycholic acid  

Concentration 

μmol/L 

15 30 50 75 100 

MUC5AC _______ _______ ↑*** ↑** ↑* 

MUC5B _______ ↑** ↑***   ↑***   ↑** 

Table 5-4: The effect of different levels of Chenodeoxycholic acid on the NCL-H292 cell line following 

stimulation for 48 hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release.  

(* = p<0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA).  
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Levels of MUC5AC secreted by NCI-H292 cells into the culture medium were measured 

using indirect ELISA. It is obvious from the results presented in Figure 5-5 to Figure 5-8 that 

there was an inverse dose-response to LCA, DCA and CA, but not with CDCA. Low 

concentrations of LCA, DCA and CA give the highest response. By contrast, the MUC5AC 

levels significantly increased following stimulation by 50 μmol/L or above of CDCA. The 

CDCA showed no effect on cell viability, however it is possible that the assay was saturated 

and the signal out of the range of the absorbance measurement obscuring a change in cell 

number and that cell death accounted for the reduced MUC5AC levels, further experiments 

are necessary to clarify if this is the case Figure 3-15 A).   

Looking at MUC5B mucin production by NCI-H292 cells that were measured by indirect 

ELISA, it can be observed that primary BA (CA and CDCA) with 15 µmol/L of CA and 75 

µmol/L of CDCA caused the highest level of MUC5B mucin released. The second highest 

level of MUC5B mucin production occurred with 15 µmol/L of DCA; moreover, there was an 

inverse dose-response to DCA. Conversely, the LCA caused the lowest level of MUC5B 

mucin secretion due to cell death (see Figure 3-14A). Nevertheless, mucin production by LCA 

remains significantly higher than the control. 
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5.4.3 Effect of BA stimulation on the regulation of MUC5B and MUC5AC genes in 

NCI-H292 cells 

NCI-H292 cells were exposed to BAs for 48 hours to determine the effect on MUC5AC and 

MUC5B gene expression. Based on the ELISA results, BA concentrations that caused the 

highest levels of mucin were as follows: 1 and 5 µmol/L LCA; 15 and 30 µmol/L DCA; 15 

and 30 µmol/L CA; and 50 and 75 µmol/L CDCA. 

Figure 5-9  illustrates the MUC5AC mRNA levels determined using RT-PCR. All BA 

concentrations yielded increased MUC5AC expression. CA at 30µmol/L and 15 µmol/L of 

DCA caused the highest level of upregulation with six-fold increase, and the lowest level of 

upregulation was with 75 µmol/L CDCA, a five-fold increase. 

 

c
o

n
tr

o
l

L
C

A
 (

5
 

m
o

l/
l)

L
C

A
(1

m
o

l/
l)

D
C

A
(3

0
 

m
o

l/
l)

D
C

A
(1

5
 

m
o

l/
l)

C
A

(3
0
 

m
o

l/
l)

C
A

(1
5
 

m
o

l/
l)

C
D

C
A

(7
5
 

m
o

l/
l)

C
D

C
A

 (
5
0
 

m
o

l/
l)

0

2

4

6

8

1 0

F
o

ld
 c

h
a

n
g

e
 n

o
r

m
a

li
s

e
d

 t
o

 H
P

R
T

1

***

M U C 5 A C  e x p r e s s io n

* * *

***

***

* * *

* * ****

***

 

Figure 5-9: MUC5AC mRNA expression following BA exposure. Confluent NCI-H292 cells were cultured for 

48 hours under the following conditions: no BA; 1 and 5 µmol/L LCA; 15 and 30 µmol/L DCA; 15 and 30 

µmol/L CA and 50 and 75 µmol/L CDCA. MUC5AC mRNA levels were normalised using HPRT1 mRNA and 

are presented as mean ±SEM (n=3). All treatment groups exhibited significant upregulation of MUC5AC 

mRNA. (*** = p < 0.001 compared with control, ANOVA). 
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Figure 5-10 illustrates MUC5B mRNA levels determined using RT-PCR. All BA 

concentrations yielded increased MUC5B expression. The lowest level of upregulation was 

with DCA, 30 µmol/L a three-fold increase and the highest was with CA, 30 µmol/L, a seven-

fold increase over control. 
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Figure 5-10: MUC5B mRNA expression following BA exposure. Confluent NCI-H292 cells were cultured for 

48 hours under the following conditions: no BA; 1 and 5 µmol/L l LCA; 15 and 30 µmol/L DCA; 15 and 30 

µmol/L CA and 50 and 75 µmol/L CDCA. MUC5B mRNA levels were normalised using HPRT1 mRNA and 

are presented as mean ±SEM (n=3). All treatment groups exhibited significant upregulation of MUC5B mRNA. 

(** = p < 0.01, *** = p < 0.001 compared with control, ANOVA). 
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5.4.4 Effect of BA stimulation on mucin production in Calu-3 cells, quantified using 

the PAS method 

Mucin secretion by Calu-3 cells was evaluated using the PAS assay, which enables a simple, 

direct assay in supernatants. Calu-3 cells were stimulated for 48 hours with BAs at 

concentrations between 15 and 100µmol/L.  

Figure 5-11 illustrates a significant increase in mucin production by Calu-3 cells challenged 

with 15 and 30 µmol/L LCA in comparison with unchallenged cells. However, 50, 75 and 100 

µmol/L LCA did not significantly induce mucin production. 
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Figure 5-11: Mucin released by Calu-3 cells following 48h LCA stimulation. PAS was used to measure mucin 

in cell supernatants, and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 were 

regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (*** = p < 0.001 

compared with control, ANOVA). 
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Figure 5-12 highlights a significant increase in mucin production by Calu-3 cells challenged 

with 15, 30, 50, 75 and 100 µmol/L DCA in comparison with unchallenged cells. Mucin 

production increased from 15 to 30µmol/L with the largest output produced by 30 µmol/L. 

There was a slow decline for 30 to 100 µmol/L DCA. 
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Figure 5-12: Mucin released by Calu-3 cells following 48h DCA stimulation. PAS was used to measure mucin 

in cell supernatants and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 were 

regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (* = p<0.05, ** = p < 

0.01, *** = p < 0.001 compared with control, ANOVA). 
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Figure 5-13 illustrates a significant increase in mucin production by Calu-3 cells challenged 

with 15, 30, 50, 75 and 100 µmol/L CA in comparison with unchallenged cells. The levels of 

mucin production were the same for all concentrations of CA. 
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Figure 5-13: Mucin released by Calu-3 cells following 48h CA stimulation. PAS was used to measure mucin in 

cell supernatants, and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 were 

regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (** = p < 0.01 compared 

with control, ANOVA). 
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Figure 5-14 reveals a significant increase in mucin production by Calu-3 cells challenged with 

15, 30, 50, 75 and 100 µmol/L CDCA in comparison with unchallenged cells. The highest 

effect occured at 15 µmol/L CDCA. The mucin level was then reduced at 50 and 75 µmol/L 

CDCA, with 100 µmol/L CDCA giving a similar response to 50 µmol/L CDCA. 
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Figure 5-14: Mucin released by Calu-3 cells following 48h CDCA stimulation. PAS was used to measure mucin 

in cell supernatants, and this was statistically analysed using a one-way ANOVA test. P values of ≤ 0.05 were 

regarded as significant. These results are mean ± S.E.M values from (n=6) experiments. (* = p<0.05 and *** = p 

< 0.001 compared with control, ANOVA). 
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In general, looking at mucin production by Calu-3 cells measured by PAS assay, it can be 

observed that 15 and 30 µmol/L of LCA had the highest level of mucin released; however, the 

higher concentrations did not cause mucin secretion due to cell death (see Figure 3-20A) . The 

second highest level of mucin production occurred with 15 µmol/L of CDCA. Moreover, it is 

clear there was an inverse dose-response to CDCA. In contrast, CA caused the lowest level of 

mucin secretion with no difference in the level of mucin production by the Calu-3 cells 

between any of the CA concentrations (Figure 5-11 to Figure 5-14). 
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5.4.5 Measurement of MUC5AC and MUC5B mucin in Calu-3 cells 

MUC5AC and MUC5B secretion by Calu-3 cells is also affected by BA exposure. Levels of 

MUC5AC secreted by cells into the culture medium were measured using indirect ELISA. 

Figure 5-15 and Table 5-5 illustrate that Calu-3 cell exposure to LCA at concentrations of 15, 

30 and 50 µmol/L caused MUC5AC levels to increase significantly compared with the 

control. MUC5AC mucin levels increased significantly at 15 µmol/L LCA and rose further to 

the maximum level at 30 µmol/L. The level of MUC5AC mucin production then fell off at 50 

µmol/L due to cell death with 51±3% but remained significantly higher than the control. 

However, there was no increase in MUC5AC mucin due to cell viability being greatly 

affected by LCA at 75μmol/L with 78±3% cell death and 100μmol/L with 98±3% cell death 

(see Figure 3-20A) 

Calu-3 cells also produce MUC5B mucin. These cells were exposed to BAs for 48 hours at 

concentrations ranging from 15 to 100μmol/L, revealing that exposure of Calu-3 cells to LCA 

at concentrations of 15, 30, 50 and 75 µmol/L caused MUC5B mucin levels to increase 

significantly (Figure 5-15 and Table 5-5). The highest level of MUC5B mucin release 

occurred with 15 µmol/L LCA. The levels reduced at 75µmol/L LCA but remained 

significantly above the control. There was no increase in MUC5B mucin due to cell viability 

being greatly affected by LCA at 100 μmol/L with 95±3% cell death (see Figure 3-20A)  

  



195 

 

C 1
5

3
0

5
0

7
5

1
0
0

0

3

6

9

1 2

1 5

1 8

2 1

2 4

2 7

3 0

L ith o c h o lic  a c id  ( m o l/L )

(
g

/L
) M U C 5 A C

M U C 5 B

C a lu 3  c e lls

 

Figure 5-15: MUC5AC and MUC5B mucin release by Calu 3 cells following exposure to LCA for 48 hours. 

Indirect ELISA was used to measure MUC5AC and MUC5B levels in the supernatant. Statistical analysis was 

conducted using a one-way ANOVA test.  The data are representative of three independent experiments (n=6) 

(see table 5-5). Bars represent mean ± S.E.M values of each group. 

 

  Lithocholic acid  

Concentration 

μmol/L 

15 30 50 75 100 

MUC5AC ↑*** ↑***   ↑*** _______ _______ 

MUC5B ↑*** ↑*** ↑** ↑* _______ 

Table 5-5: The effect of different levels of Lithocholic acid on the Calu 3 cells line following stimulation for 48 

hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release. (* = p<0.05, ** = p 

< 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Figure 5-16 and Table 5-6 reveal that Calu-3 cell exposure to DCA at concentrations of 15, 

30, 50, 75 and 100 µmol/L caused MUC5AC mucin levels to increase significantly compared 

with the control. The MUC5AC mucin levels increased significantly at 15 µmol/L DCA and 

rose further to the highest level at 50 µmol/L DCA. The level of MUC5AC mucin production 

then decreased at 75 and 100 µmol/L DCA due to cell death  (see Figure 3-21 B) while 

remaining significantly higher than the control.  

Moreover, Figure 5-16 and Table 5-6 illustrate that exposure of Calu-3 cells to DCA at 

concentrations of 15, 30, 50, 75 and 100 µmol/L caused MUC5B mucin levels to increase 

significantly though to a lesser extent than MUC5AC.  MUC5B mucin levels increased 

significantly at 15 µmol/L DCA and rose further to the maximum level at 50 µmol/L DCA. 

The level of MUC5B mucin production then fell off at 75 and 100 µmol/L DCA due to cell 

death  (see Figure 3-21 B) while remaining significantly higher than the control. 
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Figure 5-16: MUC5AC and MUC5B mucin release by Calu 3 cells following exposure to DCA for 48 hours. 

Indirect ELISA was used to measure MUC5AC and MUC5B and MUC5B levels in the supernatant. Statistical 

analysis was conducted using a one-way ANOVA test. The data are representative of three independent 

experiments (n=6) (see table 5-6). Bars represent mean ± S.E.M values of each group. 
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  Deoxycholic  acid  

Concentration 

μmol/L 

15 30 50 75 100 

MUC5AC   ↑*** ↑***  ↑****     ↑***     ↑*** 

MUC5B ↑** ↑*** ↑*** ↑* ↑* 

Table 5-6: The effect of different levels of Deoxycholic acid on the Calu-3 cells line following stimulation for 

48 hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release. (* = p<0.05, ** 

= p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Figure 5-17 and Table 5-7 highlight that Calu-3 cell exposure to CA at concentrations of 15, 

30, 50, 75 and 100 µmol/L caused MUC5AC mucin levels to increase significantly compared 

with the control. The highest level of MUC5AC mucin secretion was with 15 µmol/L of CA 

and the mucin level then reduced to 50 µmol/L CA. This decreased further to the lowest level 

at 75, 100 µmol/L CA but no difference was found in the level of mucin production between 

75 and 100 µmol/L CA. 

Figure 5-17 and Table 5-7 highlight that exposure of Calu-3 cells to CA at concentrations of 

15, 30 and 50 µmol/L caused MUC5B mucin levels to increase significantly, again to a much 

lesser extent than seen with MUC5AC. The highest level of MUC5B mucin release occurred 

with 15 µmol/L CA. The levels reduced to 50µmol/L CA but remained significantly above the 

control. There was no increase in MUC5B mucin due to cell viability being significantly 

affected by CA at 75 and 100 μmol/L (see Figure 3-21A). 
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Figure 5-17:  MUC5AC and MUC5B mucin release by Calu 3 cells following exposure to CA for 48 hours. 

Indirect ELISA was used to measure MUC5AC and MUC5B levels in the supernatant. Statistical analysis was 

conducted using a one-way ANOVA test. The data are representative of three independent experiments (n=6) 

(see table 5-7). Bars represent mean ± S.E.M values of each group. 
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  Cholic acid  

Concentration 

μmol/L 

15 30 50 75 100 

MUC5AC ↑*** ↑***     ↑*** ↑** ↑** 

MUC5B ↑*** ↑*** ↑* _______ _______ 

Table 5-7: The effect of different levels of Cholic acid on the Calu-3 cells line following stimulation for 48 

hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release. (* = p<0.05, ** = p 

< 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Figure 5-18 and Table 5-8 illustrate that Calu-3 cell exposure to CDCA at concentrations of 

15, 30, 50, 75 and 100 µmol/L caused MUC5AC mucin levels to increase significantly 

compared with the control. The highest effect occurred at 15 µmol/L CDCA. The MUC5AC 

mucin level then reduced to 30 µmol/L CDCA, followed by a slow decline for 30 to 100 

µmol/L CDCA. 

Figure 5-18 and Table 5-8 demonstrate that exposure of Calu-3 cells to CDCA at 

concentrations of 15, 30, 50 and 75 µmol/L caused MUC5B mucin levels to increase 

significantly. The highest level of MUC5B mucin release occurred with 15 µmol/L CDCA. 

The levels MUC5B mucin reduced to 75µmol/L CDCA but remained significantly above the 

control. However, no significant increase was observed using concentrations of 100 µmol/L 

CDCA due to cytotoxicity (see Figure 3-21 B). 
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Figure 5-18: MUC5AC and MUC5B mucin release by Calu 3 cells following exposure to CA for 48 hours. 

Indirect ELISA was used to measure MUC5AC and MUC5B levels in the supernatant. Statistical analysis was 

conducted using a one-way ANOVA test. The data are representative of three independent experiments (n=6) 

(see table 5-8). Bars represent mean ± S.E.M values of each group. 

 

 



201 

 

  Chenodeoxycholic acid  

Concentration 

μmol/L 

15 30 50 75 100 

MUC5AC ↑**** ↑*** ↑*** ↑*** ↑*** 

MUC5B ↑* ↑* ↑* ↑* _______ 

Table 5-8: The effect of different levels of Chenodeoxycholic acid on the Calu-3 cells line following stimulation 

for 48 hours, ↑ Increase demonstrated.  * Significant stimulation of MUC5AC and MUC5B release. (* = p<0.05, 

** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 compared with control, ANOVA). 
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Levels of MUC5AC secreted by Calu-3 cells into the culture medium were measured using 

indirect ELISA. It is evident from results outlined in Figure 5-15 to Figure 5-18 that 15 and 

30 µmol/L (low concentration) of LCA, CA and CDCA had the highest level of mucin 

released. Conversely, 50 µmol/L of DCA produced the highest response. 

Looking at MUC5B mucin production by Calu-3 cells measured by indirect ELISA, we can 

observe that it was much lower than MUC5AC. The highest level of MUC5B mucin 

production occurred with 15 µmol/L of LCA with 7 mg/L, while the highest level of 

MUC5AC mucin production at 15 µmol/L of LCA was 25 mg/L. The 50 µmol/L of DCA had 

the highest effect on MUC5B and MUC5AC mucin production between all DCA 

concentrations. Moreover, there was an inverse dose-response to LCA, CA and CDCA. 
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5.4.6 Effect of BAs on regulation of MUC5B and MUC5AC Genes in Calu-3 cells 

Hypersecretion of mucus can also be detected through changes in gene expression, in 

particular, an increased expression of the genes for MUC5AC and MUC5B. Under 

investigation, Calu-3 cells were exposed to BAs for 48 hours to determine the effect on 

MUC5AC and MUC5B gene expression. Based on the previous ELISA results, BA 

concentrations that caused the highest levels of mucin production were used, as follows: 15 

and 30 µmol/L LCA; 30 and 50 µmol/L DCA; 15 and 30 µmol/L CA; and 15 and 30 µmol/L 

CDCA. 

Figure 5-19 illustrates the MUC5AC mRNA levels determined using RT-PCR. All BA 

concentrations yielded increased MUC5AC expression. LCA at concentration 30µmol/L and 

50 µmol/L of DCA caused the highest level of upregulation with eight-fold increase, and the 

lowest level of upregulation was with DCA 30 µmol/L and LCA 15, a six-fold increase. 
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Figure 5-19: MUC5AC RNA expression following BA exposure. Confluent Calu-3 cells were cultured for 48 

hours under the following conditions: no BA; 15 and 30 µmol/L LCA; 30- and 50 µmol/L DCA; 30 and 75 

µmol/L CA and 15 and 30 µmol/L CDCA. MUC5AC mRNA levels were normalised using HPRT1mRNA and 

are presented as mean ±SEM (n=3). All treatment groups exhibited significant upregulation of MUC5AC 

mRNA. (*** = p < 0.001 compared with control, ANOVA). 
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Figure 5-20 reveals the MUC5B mRNA levels determined using RT-PCR. All BA 

concentrations yielded increased MUC5B expression. LCA and DCA at concentration 30 

µmol/L induced nine-fold increases, and the lowest level of upregulation was with DCA 50 

µmol/L, a six-fold increase. 
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Figure 5-20: MUC5B RNA expression following BA exposure. Confluent Calu-3 cells were cultured for 48 

hours under the following conditions: no BA; 15 and 30 µmol/L LCA; 30 and 50 µmol/L DCA; 30 and 75 

µmol/L CA and 15 and 30 µmol/L CDCA. MUC5B mRNA levels were normalised using HPRT1 mRNA and 

are presented as mean ±SEM (n=3). All treatment groups exhibited significant upregulation of MUC5B mRNA. 

(*** = p < 0.001 compared with control, ANOVA). 
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5.5 Discussion 

Mucus is a critical factor in protecting the lungs and the rest of the airway system against 

foreign objects, toxins and pathogenic agents. Mucus hypersecretion is associated with 

various airway disorders, including COPD, CF and asthma (Lange and Vestbo, 2016; 

Theilmann et al., 2016). When gastric contents, including BAs, make their way into the 

airway, the mucosa may incur damage, resulting in symptoms that include overproduction of 

mucous (Fox and Forgacs, 2006). Such pathologies are often caused by aspiration of gastric 

reflux contents (Brownlee et al., 2016). Previous research, for example, has found a positive 

correlation between the presence of pepsin in the airway and mucus production. 

Stovold et al. noted that exposure of goblet cells (cell line HT29-MTX) to pepsin caused 

MUC5AC mucin levels to increase significantly. In this study, HT29-MTX cell lines were 

stimulated with 50 µg/ml pepsin at pH 7.4 and 50 µg/ml pepsin at pH 7.0. The level of 

MUC5AC production was measured by indirect ELISA. This study found that pepsin at pH 

7.0 significantly increased HT29-MTX cell mucin production from a baseline of 18µg/ml to 

26µg/ml at 72h (Stovold et al., 2008). 

The present study seeks to explore the production of MUC5AC mucin and MUC5B mucin in 

NCI-H292 and Calu-3 cells exposed to BAs at a range of concentrations. The toxic effect of 

BAs on the colonic mucosa (Turjman and Nair, 1981; Owen et al., 1984), and gastric mucosa 

(Gadacz and Zuidema, 1978; Gillen et al., 1988) is well researched, but less is known about 

the effect of BAs on oesophageal mucosa (Nasr et al., 2013). This study builds on the strong 

literature base linking oesophageal acid exposure to both mucosal damage and Barrett’s 

oesophagus, with its attendant complications (Legrand et al., 1990; Iftikhar et al., 1993; 

Takahashi et al., 2011). 

It is not yet known exactly how bile acids damage mucosal cells. The most likely mechanisms 

are either a) by detergent action or b) as free acids. BAs are capable of intracellular 

accumulation, causing mitochondrial toxicity and intramucosal damage. The BAs are able to 

breach the mucosal barrier in the stomach. Moreover, their detergent action may be far more 

damaging in the lungs, by disturbing the mucus layer and disrupting the surfactant-based 

lipids (Iftikhar et al., 1993; Jolly et al., 2004). 

BA concentrations greater than 1mmol/l are toxic to oesophageal mucosa in vivo (Gotley et 

al., 1991). Furthermore, the damaging effect of some BAs is significantly increased by the 
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presence of H⁺ ions, which renders them more hydrophobic (Hopwood et al., 1981; Gotley et 

al., 1991; Kauer et al., 1997). Levels of BA hydrophobicity are correlated with, for example, 

oxygen free radical production, which in turn influences their disruptive detergent effect 

(Toohill and Kuhn, 1997). The induction of apoptosis (Iftikhar et al., 1993) the induction of 

mucosal ornithine decarboxylase activity followed by stimulation of proliferation, and 

mitochondrial membrane disruption. Intracellular ionisation may be partially responsible for 

the accumulation of BAs in the oesophageal mucosa, which can reach up to seven times that 

of luminal BA concentrations. It is also thought that intracellular BA accumulation might be 

related to their ability to induce pathophysiological alteration in mucosal permeability and 

disrupt the mucosal barrier to diffusion (Schweitzer et al., 1986; Kauer et al., 1997). 

Due to the lack of reliable assay techniques there is considerable variability in the levels of 

detection of bile acids in healthy people and patients with respiratory disease which makes 

comparisons difficult. Indeed, BAL analysis has been the most popular form of study so far. 

This method has inherent problems, as it involves perfusion of the airways with 100-200 ml 

of fluid (180ml common), resulting in BAL appearing more dilute in terms of BAs (Perng et 

al., 2008; Zecca et al., 2008; Aseeri et al., 2012). BOS patients who have also received a lung 

transplant have been reported to exhibit greatly increased BA levels in BAL fluid, up to 32 

µmol/L compared to normal level which is from 0 to 16 µmol/L (D’Ovidio et al., 2005). 

Oesophageal bile acid levels which are considered normal – even in Barrett’s oesophagus – 

are between 0 and 200μmol/L and very rarely exceed 1000μmol/L. No bile acids are detected 

at all in about 25% of patients with reflux (Gotley et al., 1991). Patients with respiratory 

disease had higher level of bile acids in sputum. For example, the concentration of BAs found 

in sputum of patients with CF was 3.3μmol/l and with chronic cough patients 0.72μmol/l. A 

study of 38 patients was performed and only 16 who had DF508 (Delta-F508) homozygote 

genotype proved to have bile acids in sputum. DF508 (Delta-F508) is a common mutation 

within the gene for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. 

This mutation is the most common cause of cystic fibrosis (CF) (Stanke, Ballmann et al. 

2008). On the other hand, bile acids were found in sputum of 4/10 chronic unexplained cough 

patients. No bile acids were found in healthy controls (Blondeau et al., 2008b). The effect of 

combinations of bile acids on the cell lines used in this study would be something for future 

research to address. Our own research group investigated the effect of combinations of bile 

acids on PBECs. Cells were stimulated with a bile acid mixture. The results showed that there 

was no significant changes in the levels of IL-8, IL-6 and GMCSF from PBECs after 

https://en.wikipedia.org/wiki/Delta_(letter)
https://en.wikipedia.org/wiki/Delta_(letter)
https://en.wikipedia.org/wiki/Mutation
https://en.wikipedia.org/wiki/Gene
https://en.wikipedia.org/wiki/Cystic_fibrosis_transmembrane_conductance_regulator
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Cystic_fibrosis
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stimulation with bile acid mixture (Aseeri, 2012). It is possible that the lack of stimulating 

effect of the mixture is because the conjugated bile acids are having an inhibitory effect 

(Pearson et al., 2011).  

Understanding the mechanisms inherent to chronic airway diseases relies on in vitro models, 

using primary epithelial cells and cell lines (Stewart et al., 2012). Primary cells are frequently 

considered the ‘gold standard’ for such research, but they do carry some disadvantages; for 

example, limited lifespan, variability between donors, passage number and cost. 

Consequently, further experiments using cell lines are required for validation. 

Calu-3 and NCI H292 cells are used commonly in vitro for gene regulation studies. These 

epithelial cell lines are derived from carcinomas and have the significant advantage of 

allowing the study of both MUC5 mRNA and MUC5 glycoprotein in the same model (Berger 

et al., 1999; Rose et al., 2000). 

This study found primarily that stimulation by BAs caused NCI-H292 and Calu-3 cells to 

secrete MUC5AC mucin and MUC5B mucin. It is, to the best of my knowledge, the only 

study that determines the effects of BA exposure on mucin expression and mucus 

overproduction by airway epithelial cells. MUC5B and MUC5AC are predominant in airway 

secretion and were, therefore, chosen as markers for screening. 

Berger et al. identified three carcinoma cell lines of respiratory tract tissue origin. Of these, 

Calu-3 and NCI-H292 both expressed MUC1, MUC4, MUC5AC, and MUC5B genes in 

varying combinations. Currently, it is held that MUC1, MUC4, MUC5AC and MUC5B are 

well expressed in both a healthy respiratory tract and lung cancer tumour tissues. MUC2 is 

less well expressed, suggesting that both normal and tumour respiratory epithelium Calu-3 

and NCI-H292 cell lines present similar mucin gene profiles (Berger et al., 1999). 

In this study, the supernatant was analysed for mucin, using a PAS assay which showed that the 

glycoprotein (mucin) content of NCI-H292 and Calu-3 cells secretions increased significantly. PAS 

assay is used routinely to detect mucin production by cells. The results of this study indicate that LCA, 

DCA, CA and DCA caused a significant increase in mucin production from NCI-H292 cells at all 

concentration, except 100µmol/l of CDCA and 15µmol/l of DCA. Moreover, this experiment 

detected the significant level of mucin after stimulating Calu-3 cells with DCA, CA and 

CDCA at all concentrations. LCA caused a significant increase at concentrations 15 and 30 

µmol/l, but the results did not reveal any increase at concentrations 50, 75 and 100 µmol/l due 

possibly to cell death. 
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 However, this technique was not sensitive enough to identify mucin, so an indirect ELISA 

was therefore used for additional analysis. These findings revealed that NCI-H292 cells 

produced maximal levels of MUC5AC and MUC5B following stimulation with the 

subsequent BA for 48 hours at concentrations: 1 and 5 µmol/L LCA; 15 and 30 µmol/L DCA; 

15 and 30 µmol/L CA; and 50 and 75 µmol/L CDCA. Similarly, Calu-3 cells produced 

maximal levels of MUC5AC and MUC5B following stimulation with the following BA for 

48 hours at concentrations: 15 and 30 µmol/L LCA; 30 and 50 µmol/L DCA; 15 and 30 

µmol/L CA; and 15 and 30 µmol/L CDCA, returning to basal levels. 

The results in this chapter demonstrated that low concentrations of bile acids stimulate 

significant MUC5AC and MUC5B production in NCI-H292 and Calu-3 cells, although higher 

bile acid concentrations yielded no significant increase in production. High concentrations of 

LCA affect cell viability (see Figure 3-14A and Figure 3-20A), and this was associated with 

no increase in MUC5AC and MUC5B mucins (see Figures 5-21 and 5-22). It was found 

however, that CA in high concentrations downregulated production of MUC5AC and 

MUC5B (see Figures 5-23and 5-24), whilst having no effect on cell viability (see Figure 

3-14A and Figure 3-20A). It can be inferred from these findings that the negative correlation 

between BA concentration and mucin production must be caused by factors other than cell 

viability. These factors are as yet unknown, but the following explanations are possible. First, 

downregulation of mucin production may be caused by extracellular matrix (ECM). Iwashita 

et al. (2010) found that type-IV collagen, found in ECM, inhibits MUC5AC production via 

integrin-signalling pathways. Integrins are the primary receptors involved in cell-cell and cell-

ECM adhesion. These heterodimers comprise of α2- and β-subunits, which bind cells to 

collagen, activating integrin signalling pathways, which in turn, can activate multiple types of 

gene expression. The researchers suggest that this process is involved in a previously 

unknown type of MUC5AC regulation involving integrins and ECM components. My study 

found that BA exposure stimulated ECM (Pro-collagen and fibronectin) expression (see 

chapter 4), further confirming the findings by Iwashita et al. (2010).   

Secondly, in vitro studies reveal that MUC5AC and MUC5B expression are stimulated by IL-

8 and IL-6 (Smirnova et al., 2002; Smirnova et al., 2003). On the other hand it has also been 

found that mucin genes and mucin secretion can be downregulated by certain inflammatory 

mediators, including IL-4 and IL-13 (Jayawickreme et al., 1999; Kim et al., 2002a). NHTBE 

cell cultures, when exposed to IL-4 exhibited a reduction in mucin secretion, and MUC5AC 

and MUC5B gene expression (Jayawickreme et al., 1999). Further to this, Kim et al. 
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confirmed the link between inflammatory mediators and mucin production by studying mucin 

gene expression and mucin secretion in human nasal epithelial cells when exposed to IL-13. 

Using an immunoblotting assay, they found that total mucin secretion and MUC5AC gene 

expression substantially decreased after exposure to IL-13 (Kim et al., 2002a). Consequently, 

it could be the case that high enough concentrations of bile acids can lead to an inflammatory 

release involving IL-4 and IL-13, thereby significantly affecting MUC5 regulation. Third, as 

bile acids accumulate they inhibit intracellular function which does not kill the cell but 

reduces the rate of all cellular processes such as protein synthesis (Tabas, 2002).  

In one study, Gosalia et al. demonstrated that mucus was produced by Calu-3 cells. The 

purpose of this study was to identify the regulatory mechanisms that control the expression of 

the genes within the gel-forming mucin gene cluster located at chromosome 11p15.5. In order 

to compare the individual mucin genes within a cell type, absolute quantification was used to 

measure mucin gene expression. Standard curves generated on cloned cDNAs for each gene 

were used to calculate the gene expression for the four gel-forming mucin genes (MUC2, 

MUC6, MUC5B and MUC5AC). In picomolar amounts, absolute expression was calculated 

in LS180 cDNA. It was demonstrated by these results that the lung carcinoma cell lines Calu-

3 and A549 both express MUC5AC mRNA, but that MUC5B mRNA is only expressed by 

A549 cells. Moreover, the significance of the CCCTC-binding factor (CTCF) sites to mucin 

gene expression was also demonstrated by this study when Calu-3 lung carcinoma cells were 

exposed to lipopolysaccharide (LPS). In this experiment, it was found that the LPS up-

regulation of MUC5AC and MUC2, and the repression of MUC5B transcription is 

accompanied by a depletion in the binding of CTCF at specific sites. Further, the treatment 

with LPS significantly reduced the expression of MUC5B, which would suggest a 

coordinated regulatory mechanism for the gene cluster, whereby the up-regulation of one or 

several gel-forming mucins is followed by the down-regulation of others. The mechanism 

whereby the expression of MUC5B is reduced may result in repressive histone modifications 

being established, which is consistent with previous observations on MUC5B regulation 

(Gosalia et al., 2013).  

Both surface epithelial cells and submucosal glands produce MUC5AC (Audie et al., 1993), 

but MUC5B tends only to be detected in submucosal glands (Berger et al., 1999). 

Consequently, it was expected that this study would find higher MUC5B levels in Calu-3 

cells, which are derived from submucosal glands (Kreda et al., 2007), where MUC5B is 

relatively greater than MUC5AC (Grainger et al., 2009).The ELISA assay in this study found 
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that both NCI-H292 and Calu-3 cells expressed MUC5AC and MUC5B. Kreda et al. (2007) 

used gel electrophoresis to quantify MUC5AC and MUC5B levels in Calu-3 cells, finding 

relatively low MUC5B levels in comparison with MUC5AC. The present study’s findings, 

therefore, concur with the literature (Kreda et al., 2007). 

Moreover, the lack of MUC5B induction by agonists of mucin synthesis and secretion 

suggests that its resulting mucin may be constitutively expressed. Ordinarily, basal mucin 

synthesis and secretion levels are maintained by MUC5B levels in airways. However, in cases 

of chronic airway diseases, enlargement of the submucosal glands may cause increased mucin 

secretion due to more cells being involved in MUC5B synthesis. In such situations, there is an 

advantage in having an alternative inducible mucin, MUC5AC, which can respond rapidly to 

irritants. Furthermore, such diseases often cause biochemical changes in airway mucus 

(Davies et al., 1996; Berger et al., 1999). This may be caused in part by differential regulation 

of airway mucins, both inducible and non-inducible. 

In this study, the total mucin was measured using a PAS assay. PAS assay is used routinely to 

detect mucin production by cells. However, this technique was not sensitive enough to 

identify mucin (Mantle and Allen, 1978). The differences between specific ELISA methods 

and the PAS method may be accounted for by the fact that the PAS assay is not solely specific 

to mucin. The PAS assay measures all carbohydrate containing molecules and is interfered 

with by protein and lipid to some extent.   

The most physiologically relevant cell type to evaluate airways damage was arguably primary 

human bronchial epithelial cells (PHBECs). However, these are costly and not easy to culture 

(Stewart et al., 2012). Moreover my results showed that it was possible to maintain primary 

epithelial cells for 2-3 passages on a plastic surface, but the populations are heterogeneous, 

and the mucin expressing phenotype has not been observed.  

Conversely, Berger et al. (1999) have found that carcinoma cell lines can be grown, 

maintained and passaged from epithelial samples. Our understanding of diseases such as 

COPD, CF, asthma and other inflammatory processes have benefited from such investigative 

models. Early models used submerged monolayer cell cultures on a plastic substrate. 

However, Sachs et al. (2003) found that using a defined medium and an air-liquid interface 

(ALI) to culture primary human bronchial epithelial cells (HBECs), enabled a more 

physiological model, thereby driving a differentiated phenotype. Studies using this model 

have observed a pseudostratified polarised phenotype, which incorporates both ciliated and 
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goblet cells, and exhibits high transepithelial electrical resistance (TEER) (Jiang et al., 2001; 

Chan et al., 2010). 

The formation of tight junctions can be measured indirectly via TEER, which can indicate 

epithelial layer disruption (Pedemonte, 1995), although it must be noted that ALI models 

exhibit limited capacity for cell differentiation. Calu-3 cells, for example, are similar to 

primary cells in terms of features (Stewart et al., 2012), but are also able to express apical 

MUC5, although they cannot form cilia (Grainger et al., 2006). 

Several studies have been carried out to investigate MUC gene regulation in NCI-H292 cells 

in vitro. Factors implicated in the upregulation of MUC5AC expression include: Cigarette 

smoke (Baginski et al., 2006), Interleukin-1β (Kim et al., 2002b), IL-4 (Dabbagh et al., 1999) 

and IL-17 (Chen et al., 2003). Borchers et al. (1999) studied the effects of TNF-α on 

MUC5AC and MUC5B steady-state mRNA levels in NCI-H292 cells, finding that TNF-α 

regulates MUC5AC but not MUC5B. They concluded that the pathogenesis of obstructive 

airway disease is caused partly by direct exposure to irritants, as well as inflammatory 

mediators, which increase the synthesis of mucin mRNA in airway epithelial cells (Borchers 

et al., 1999). NCI-H292 cells also produce mucus glycoconjugates. IL-6 expression in NCI-

H292 cells has also been investigated and found to increase mucin gene expression as well as 

mucin production (Louahed et al., 2000). 

Mucin upregulation is believed to be caused by the binding of these factors to specific surface 

cell receptors, such as P2Y2 and toll-like receptors (Voynow et al., 2006). Furthermore, 

mucin gene regulation is influenced by stimulation of the epidermal growth factor receptor 

(Takeyama et al., 1999). Once these receptors are bound (through a variety of stimulants), 

mitogen-activated protein kinase (MAPK) pathways are activated, triggering the activation of 

nuclear factor kappa B (NFKB), a transcription factor that also regulates mucin gene 

expression (Rose and Voynow, 2006). To elucidate the role of MUC5AC as a treatment target 

in bile duct inflammation, recent research has focused on the effect of lipopolysaccharide 

(LPS) stimulation on MUC5AC mRNA and protein expression. They further explored the 

role of p38 MAPK regulating MUC5AC in bile duct inflammation. Their results 

demonstrated that p38 MAPK can affect airway inflammation and gastric epithelial cell 

apoptosis by the influence of LPS induced bile duct inflammation by regulating MUC5AC 

expression (Xiong et al., 2016). 
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In vitro studies reveal that MUC5AC and MUC5B expression are also stimulated by IL-8 (a 

mucin secretagogue), IL-6 and GM-CSF (Smirnova et al., 2002; Smirnova et al., 2003). The 

connection between BAs and mucus secretion is, therefore, further elucidated by findings 

around the effects of BA exposure on IL-8, IL-6 and GM-CSF production, as described in 

chapter three. The epithelium produced IL-8 to combat toxins or pathogens that have made 

their way into the lung. The present study found that BA stimulation significantly increased 

IL-8 production in both NCI-H292 and Calu-3 cell lines. 

Stimulation of PHBECs by BAs was also found to stimulate GM-CSF production. GM-CSF is 

a growth factor involved in the regulation and control of neutrophils. The findings from this 

study (see Chapter 3) showed that aspiration of BAs can lead to neutrophilic inflammation, 

tissue remodelling (Walters et al., 2008) and mucus hypersecretion (Smirnova et al., 2002; 

Smirnova et al., 2003), causing potential lung injury. 

Other cytokines may also influence mucin production and secretion. Chen et al. (2003) 

exposed differentiated human primary tracheobronchial epithelial cells to various cytokines, 

including interleukins-1α&β, 13 and TNF-a, in an air-liquid interface culture. The study found 

that IL-6 and IL-17 stimulation resulted in elevated MUC5AC. Further investigation explored 

IL-17 stimulation of IL-6 production in bronchial epithelial cells, to determine if mucin 

expression might be mediated through an IL-6 paracrine/autocrine loop. MUC5 expression 

mediated by IL-17 was shown to decrease significantly when a neutralising IL-6 antibody was 

introduced (Chen et al., 2003). Airway epithelial cells also produce IL-6, so it is possible that 

BA stimulation of NCI-H292 and Calu-3 cells may, therefore, promote increased mucin 

production via a cytokine induction mechanism, resulting in further obstruction of previously 

injured airways (see Chapter 3). 

BA aspiration can also damage the pulmonary system (el-Serag and Sonnenberg, 1997; 

Wilshire et al., 2013) and cell membranes are especially vulnerable to bile damage, as shown 

by studies on Type II pneumocytes in vitro (D’Ovidio et al., 2005; D'Ovidio and Keshavjee, 

2006). Type II pneumocytes in the lungs are responsible for surfactant protein and 

phospholipid production and are therefore especially vulnerable to lipid disruption as a result 

of mucus barrier damage. 

In conclusion, patients with advanced lung disease, particularly CF (Blondeau et al., 2008a; 

Pauwels et al., 2012),COPD (Rascon-Aguilar et al., 2006), and ventilator-associated 

pneumonia (Wu et al., 2009), often also present with gastroesophageal reflux (GERD) 
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(Legendre et al., 2014). Many of these diseases also display mucin hypersecretion. The 

current study’s findings make a strong contribution to the argument that claims exposure to 

BAs strongly influences mucus production, potentially leading to – or furthering – airway 

injury. The present study focussed on Calu-3 and NCI H292 cells, exposing these to varying 

BA concentrations. The findings established Calu-3 and NCI H292 cells as good models for 

gene regulation studies in vitro. The broader study also found that NCI-H292 and Calu-3 

production of IL-8, IL6 and GM-CSF is heavily influenced by BA stimulation (see Chapter 

3). A potential connection, therefore, exists between increased mucus secretion and IL-8, IL6 

and GM-CSF production. 

 

Figure 5-25: diagram showing proposed influences of BAs in mucus production (Adapted from Varielle., 2011 

(Vareille et al., 2011)) 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSION 

Lung disease is one of the world’s greatest causes of mortality and morbidity, and these cases 

are on the rise. As an example, COPD is the fifth largest cause of death worldwide, while 

interstitial lung disease (ILD) and cystic fibrosis (CF) are also prevalent with negative 

consequences such as a low life-quality and death. All these diseases are to some extent 

influenced by either chronic or acute inflammation, (Rincon and Irvin, 2012). For some 

considerable time, the connection between GOR and lung disease has come under suspicion 

(Pearson and Wilson, 1971; Belsey, 1979; D’Ovidio et al., 2005).  

In patients suffering from lung disease of varying types, the prevalence of GOR has in fact 

been recorded: for example abnormal levels of GOR have been identified in patients with 

idiopathic pulmonary fibrosis, cystic fibrosis (CF) and asthma (Feigelson et al., 1987; Tobin 

et al., 1998; Prather et al., 2014). Additionally, the development of pneumonia and 

bronchiolitis obliterans has also been linked to GOR (Liu et al., 2015). 

For chronic respiratory diseases such as the chronic cough (Sifrim et al., 2005; Houghton et 

al., 2016), cystic fibrosis (Blondeau et al., 2008a; Brodlie et al., 2015), and asthma (Harding, 

2001; Rosztóczy et al., 2008; Houghton et al., 2016), it has been identified by 

pathophysiological studies that gastroesophageal reflux (GOR) could be a common instigator. 

Moreover, an increased GOR following a lung transplantation (LTx) can also lead to 

bronchiolitis obliterans syndrome (BOS) or chronic rejection (Palmer et al., 2000; Young et 

al., 2003; D’Ovidio and Keshavjee, 2006; Blondeau et al., 2008a).  Exposure to gastric 

contents can also damage both nonciliated and ciliated epithelial cells within the airway 

(Wynne et al., 1981; Ohrui et al., 1997; Harding, 2001; Blondeau et al., 2008b).  

Furthermore, gastric contents that are aspirated impair mucociliary transport and facilitate the 

growth of bacteria within the airway tract (Zeiher and Hornick, 1996; D’Ovidio and 

Keshavjee, 2006). It is increasingly accepted that rather than being sterile as once taught that 

even in normal subjects there is a microbiome associated with the human respiratory system. 

Research into respiratory biomes is often concerned with detecting signature indicators of 

Cystic Fibrosis (CF) (Surette, 2014), Chronic Obstructive Pulmonary Disease (COPD) (Han 

et al., 2012) and, more recently, asthma and non-CF bronchiectasis (Boyton et al., 2013; 

Huang and Boushey, 2015). In particular, the pathogen Pseudomonas aeruginosa is being 
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increasingly associated with COPD and is strongly linked with intense airway inflammation 

and worse outcomes for COPD patients (Lin et al., 2007; Murphy et al., 2008).  

Bacterial enzyme action aids primary BA deconjugation into free bile acids. More 

specifically, the hydroxyl (OH) group is detached from the seventh carbon atom by the 

enzyme 7 alpha-dehydroxylase. Gastro-oesophageal reflux disease (GORD) patients 

undergoing therapy which targets acid suppression can exhibit overgrowth of bacteria in the 

intestine. In turn, this causes BAs to deconjugate, resulting in a greater number of 

unconjugated BAs in circulation that are more toxic (Solaas et al., 2000).  

For patients with such respiratory diseases, BA aspiration into the lungs has been found to be 

a significant co-morbidity factor (Aseeri et al., 2012; Reen et al., 2014). For patients with CF, 

there is a correlation between BA aspiration and both reduced biodiversity as well as 

increased levels of dominant Proteobacterial pathogens (Reen et al., 2012; Reen et al., 2014). 

In general, the presence of BAs in the respiratory tract is associated with increased 

inflammation (D’Ovidio et al., 2005).  

Among other findings, our own research group demonstrated that BA concentrations similar 

to those found in the stomach could have a negative impact on P. aeruginosa growth. 

Furthermore, P. aeruginosa behaviour was also altered when exposed to different BAs in 

different concentrations. The study found that P. aeruginosa exposure to BAs resulted in a 

tendency to form a biofilm, and the different BAs at different concentrations affected the type 

of biofilm formed. Moreover, this study confirms the ability of bacteria to survive in the 

stomach, constituting a potential reservoir of viable pathogens relevant to CF disease (Al-

Momani et al., 2016).  

Reen et al. (2016) carried out a systems-based analysis on P. aeruginosa – which is primarily 

associated with morbidity and mortality in CF patients – and other pathogens, to gain an 

understanding of their chronic response and the response of host cells to BA aspiration. An 

integrated approach was taken, drawing on transcriptomics, functional genomics and 

immunochemistry, which found that the bile response in both pathogen and host cells was 

underpinned by a network of genes linked to virulence, adaptive metabolism, and antibiotic 

tolerance. A chronic response could be elicited by individual BAs and chenodeoxycholic acid 

(CDCA) was found to signal across both pathogen and host cell interfaces. Distinct profiles 

were found for BA aspiration and non-aspiration through longitudinal analysis of the 

paediatric CF microbiome. Isolates from these patients underwent phenotypic analysis, which 
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found responses mostly conserved to physiologically relevant BA concentrations, although 

the study did find evidence of phenotypic heterogeneity (Reen et al., 2016). This study 

potentially significantly increases the understanding around the molecular mechanisms by 

which respiratory pathogens are stimulated by BAs to convert from an acute virulent lifestyle 

to a chronic infection phase, in particular P. aeruginosa. Antibiotic challenge has little effect 

on such chronic biofilm infections, which is noteworthy in the context of increased tolerance 

to the polymyxin and macrolide classes of antibiotics observed in the presence of bile. 

My overall hypothesis would be that the presence of BAs in the lungs of patients with 

respiratory disease – usually through aspiration – plays a significant role in the deterioration 

of lung function leading to increased morbidity and that the interaction of BAs with the 

respiratory microbiome could be a significant factor in this. 

A recent study has also shown that aspiration of non-sterile gastric juice may be a source of 

microbiological challenge in patients with CF. Aside from injuring the lung directly, aspirated 

acid also leads to release of the inflammatory cytokine IL-8, as measured in alveolar and 

bronchoalveolar lavage fluid (Zeiher and Hornick, 1996). 

Additionally, unusually high reflux levels are also experienced by children and adults 

suffering from CF (Ledson et al., 1998; Blondeau et al., 2008b; Aseeri et al., 2012; Brodlie et 

al., 2015). Furthermore, there is a growing consensus that non-acidic and clinically hidden, 

aspiration and reflux may be a substantial cause of lung injury (Blondeau et al., 2008b) and 

include a microbiological challenge to the lung (Al-Momani et al., 2016). Because of the 

neutralising effects present in duodenal contents, a duodeno-gastro-oesophageal refluxate has 

a higher tendency to be non-acidic, and also has the potential of containing bile acids which 

have associated biological effects.  Levels of BA up to the millimolar level have been found 

in refluxate obtained from GORD patients (Lefebvre et al., 2009). Moreover, BAs with a 

broad range of biological implications may be present in duodeno-gastro-oesophageal 

refluxate (Lefebvre et al., 2009). Blondeau et al, as well as a range of other studies from the 

Leuven group found that bile acids were identified in 60% of BAL samples from individuals 

with CF who had a lung transplant procedure. This indicates a potential role for the aspiration 

of bile acid in the pathophysiology of BOS (Blondeau et al., 2008a). Moreover, Brodlie et al, 

have recently demonstrated that, when measured by tandem mass spectrometry, bile acids can 

be detected in advanced CF lung disease within the lower airway, and that this possible cause 

of injury persists even after the lung has been transplanted (Brodlie et al., 2015).  
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Though the role BAs play in inflammation and respiratory infection is becoming subject to 

increasing and wider study, the underlying mechanisms of BA mediated injuries relevant to 

lung diseases are still poorly understood. In humans, the majority of BAs exist in their 

conjugated forms (Hofmann, 1999b).  In this project, the first aim was to explore the possible 

association between damage to the epithelium - which may enable inflammatory airway 

disease to develop - and the presence of bile acids in the airway.  I investigated the impact of 

CDCA, CD, LCA and DCA on cell viability and the expression of inflammatory markers (IL-

6, IL-8 and GMC-SF) present in inflammatory lung disease that play a significant role. 

An influx of inflammatory cells into the lung, which is chronic and fails to resolve is a 

primary characteristic of airway disease (Boehler et al. 1998) and chemokines such as (IL- 6) 

interleukin 6, and (IL-8) interleukin 8 and the colony-stimulating factor of granulocyte-

macrophage (GM-CSF) have all been demonstrated as key in inflammatory cell recruitment.  

In addition to being a neutrophilic chemoattractant, IL-8 is also an angiogenic factor. In order 

to identify the localisation of IL-8 within peribronchial lesions, immunostaining has been 

used (Zheng et al., 2000). The functions of IL-6 are to differentiate T-cells, to mature B-cells 

and to activate monocytes. Furthermore, when an infection is present, fever is also induced by 

the  pyrogenic effect (Rincon and Irvin, 2012). On the other hand, the role of GM-CSF is in 

the activation of macrophages and for neutrophils it is both a powerful chemoattractant and 

also increases neutrophil life span. As a result, this stimulates phagocytotic and microbicidal 

activity as well as oxidative metabolism, and also enhances the cytotoxicity of both 

neutrophils (Katano et al., 2010) and macrophages (Sorgi et al., 2012). 

For inflammatory mediator expression to be compared, both inducible and basal, before and 

after bile acid stimulation, four cell types were investigated in this study. The cell type that 

was the most physiologically relevant to assess damage in the airways were arguably primary 

human bronchial epithelial cells (PHBECs). However, these are difficult and expensive to 

culture (Stewart et al., 2012). As a consequence, the ability to provide a useful model to 

complement the use of PHBECs was a prime, important reason for the use of cell lines in my 

work. The human bronchial epithelial cell line, BEAS-2B was identified as able to secrete 

other cytokines in addition to IL-8 and IL-6 while maintaining the morphology of the 

epithelial cell in vitro. Due to these qualities, BEAS-2B is a popular cell line for functional 

studies which rely on the airway epithelial structure (Swanson et al., 2009). The 

mucoepidermoid NCI-H292, derived from the cell line carcinoma, reacts to the presence of 

cigarette smoke in a similar way to  PHBECs  and presents a useful model for studies on the 
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production of mucus (Binker et al., 2009). Furthermore, 16HBE14o-, the virally transformed 

bronchial epithelial line, is used often in research on barrier function and transportation of 

ions (Gruenert et al., 1988; Cozens et al., 1994).  Lastly, the Calu-3 cell line derived from 

human bronchial submucosal glands presents a model for studying liquids on the airway’s 

surface, mucins as well as substances that are similarly immunologically active (Shen et al., 

1994), alongside pro-inflammatory cytokines that are involved in epithelial damage and 

inflammation of the airway tract (Hamid et al., 1999).  

It has been previously reported that the conjugation of BAs results in the loss of their 

damaging effects (Debruyne et al., 2002; Blau et al., 2007). However, it should be mentioned 

that most BAs that reside in humans are found in conjugated forms (Hofmann, 1999b). 

Following treatment using proton pump inhibitors and acid suppression therapies, commonly 

used in the treatment of GORD, BAs can deconjugate (Theisen et al., 2000), which means 

that there may be an increased ratio of deconjugated to conjugated BAs for patients 

undertaking GORD treatment procedures (Theisen et al., 2000). One possible explanation for 

this could be that an overgrowth of bacteria within the patient’s stomach may arise as a result 

of suppression therapies, and this increased number of microbes deconjugate more of the 

patient’s bile acids (Dettmar et al., 2011). CDCA, DCA, and LCA have all been identified in 

their unconjugated forms within secretions of the airway (Wu et al., 2009); implying that, for 

patients with GORD, the effect of these may be of a particular relevance.  

As per the current view in this area of research, the understanding of the impact bile acids 

have in the airways is currently limited by a lack of reports that identify and quantify specific 

bile acid quantities within the lungs using accurate methodology. This is mainly because of 

difficulties with the sampling procedure and the low reliability of the bile acid assays. Until 

now, studies on BAL have been the primary subject of research.  The highest bile acid 

concentration in BAL was reported to be 100 μmol/L (D’Ovidio et al., 2005; Parikh et al., 

2013); as BAL samples are diluted at an estimated 100 to 200 fold in practice this implies that 

bile acid concentrations may be substantially more dilute in the BAL than those that the real-

life airways of the patient are actually exposed to. Because of this, the bile acid concentrations 

used in the current study ranged from 1 to 100 µmol/L, which more closely emulated the 

physiological bile acid content in gastric refluxate estimated to reach a patient in a real-life 

scenario. 
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Increased levels of GM-CSF, IL-6 and IL-8 following bile acid challenge have been 

demonstrated by my research, and these are frequently found in airways in lung disease where 

the injury had been impacted by reflux and aspiration. My findings reveal that BEAS-2B, 

NCI-H292, 16HBE14O and Calu-3 cell lines are useful and sensitively efficient models for 

studying respiratory processes in humans and for studying diseases related to lung injury 

induced by the aspiration of BAs. These cell lines provide data that are complimentary to the 

rarer and harder to obtain PHBECs. Overall my data in cell lines and PHBECs indicate that 

bile acid aspiration could be linked to airway inflammation via the production of 

inflammatory cytokines. 

This study’s second primary aim was to explore the link between the epithelial–mesenchymal 

transition (EMT), that may be causing airway fibrosis; and the presence of bile acids that may 

be injuring epithelial cells within the airway that enables this to occur. In embryonic 

development EMT is known to play a role in organogenesis, and also plays a vital role in the 

body’s wound healing process (Hay, 2005). However, when EMT becomes unregulated, it 

can also facilitate the progression of metastasis and cancer. EMT may also  play a role in 

chronic degenerative fibrotic disorders in the lung as well as in other organs within the body 

(Thiery, 2002; Wilson and Wynn, 2009). These effects have been implicated in a number of 

airway and lung pathophysiologies, including pulmonary fibrosis, COPD and the rejection of 

lung allografts. Despite the growing evidence that shows an association between fibrotic 

remodelling within organs and the lungs, and the presence of EMT, its role in fibrosis and 

airway remodelling has not been definitively demonstrated and there is little evidence to 

suggest this has any impact on bronchial epithelial cells (Doerner and Zuraw, 2009). 

E-cadherin has been demonstrated by various studies as a marker of differentiated epithelial 

phenotype (Arias, 2001; Zeisberg et al., 2003). Also, it is critical in maintaining epithelial 

polarity and  tight junction development (Tunggal et al., 2005). EMT comprises a number of 

stages, the first of these is E-cadherin downregulation. An increase in mesenchymal markers 

defines the acquisition of the mesenchymal phenotype, this includes fibronectin production, a 

protein that holds a function of reparing tissue and is involved in the adhesion and migration 

of cells (Miettinen et al., 1994). The production of matrix metalloproteinase (MMP) 9 by 

epithelial cells also characterises epithelial damage and EMT. The true reticular basement 

membrane, on which the epithelial cells are layered, contains Collagen type IV and MMP-9 is 

a type IV collagenase. By disrupting the airway epithelium’s basement membrane, MMPs can 
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cause inflammation, translocation, further EMT and other damage (Kalluri and Neilson, 

2003). 

Consisting of over 30 different types and all with significant biological roles, the transforming 

Growth Factor (TGF)-β1 family of growth factors is a well-known and especially effective 

inducer of EMT in either pathological or normal conditions. TGF- β1 is a pleiotropic growth 

factor and regulates both proliferation and epithelial cell plasticity, which on one hand inhibits 

the usual proliferation of epithelial cells (which thereby opposes the development of cancer), 

but on the other hand stimulates fibroblast characteristics.  

I have demonstrated in this study that the development of airway fibrosis may be associated 

with the presence of BAs, which may involve EMT. My study showed that BA’s triggered the 

production of excessive levels of growth factor and cytokines, as well as leading to the 

migration and proliferation of fibroblasts. It has been demonstrated by experiments in lung 

fibrosis that the growth factors and cytokines produced following BA stimulation result in the 

formation of myofibroblasts (Kim et al., 2006; Kim et al., 2009). The myofibroblast is 

defined as possessing a phenotype between that of a fibroblast and a smooth muscle cell, 

(Gabbiani, 1992). They can be found in all tissues in the body and play a vital role in 

remodelling after inflammation or injury (Powell et al., 1999). Collagenous and 

noncollagenous matrix molecules are produced by myofibroblasts, which may cause 

thickening and stiffening of the basement membrane. Consequently the myofibroblasts may 

be involved in the development of airway diseases (Singh and Hall, 2008).  

This study has provided evidence of EMT markers in primary epithelial cell cultures from 

lung allograft, tracheal epithelial cells (upper airway cells) from the subglottic area, BEAS-2B 

cell lines and 16HBE14o- cell lines. The process of EMT may provide an incentive for a 

pathway following injury in common diseases that is characterised by fibrosis and airway 

remodelling 

One interesting point to note is that these results confirm that, through exposure to BAs, EMT 

was induced in 16HBE14o- and BEAS-2B cells, which indicates that this effect is not 

constrained to the primary bronchial epithelial cells found in humans. This indicates that 

16HBE14O- and BEAS-2B cell lines are a useful and efficient model to study the processes 

of human diseases linked to the aspiration of BAs and the possible links with EMT.  These 

findings may have translational significance and may present new opportunities in therapy. 

My results indicate that modification of GORD could have a positive impact on the airways in 
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patients with existing lung disease. The process of EMT may represent a final common 

pathway following airway injury in diseases that leads to the characteristic fibrosis and airway 

remodelling.  

The final goal of the study was to investigate the impact BAs have on the expression of 

MUC5B and MUC5AC from Calu-3 and NCI-H292 cells. The production of mucus is an 

important part of the body’s immune response to pathogens within the respiratory tract. 

Mucus hyper-secretion is also an important contribution to the pathophysiology of common 

airways diseases such as COPD and asthma.  Within the human airway, cells that produce 

mucin comprise of secretory (serous and mucous) cells present in the submucosal glands and 

the goblet cells that are found on the surface of the airway epithelium. Neither mucous cells 

nor goblet cells have proven easy to isolate, nor have terminally differentiated cells from 

healthy epithelia been maintained as cell lines or established as a culture (Rose et al., 2000).  

When grown on plastic, primary epithelial cells that are isolated from tissues in the airway or 

the lungs can be conserved for two to three passages, but do not possess the phenotype 

associated with mucin-expressing cells. Additional problems are that culture conditions are 

rigorous, the populations of the cells are heterogeneous and the components required for the 

process are expensive. Conversely, carcinoma-derived cell lines of epithelial origin grow 

quickly, are passaged with ease and so these cell lines have been used for the study of 

epithelial-specific diseases such as asthma, COPD, CF and processes of inflammation (Berger 

et al., 1999). NCI H292 and Calu-3 cells are both epithelial carcinoma-derived cell lines. As 

an in vitro model system, they have been used frequently for research into regulation and 

present major advantages as the regulation of both the glycoprotein MUC5AC and MUC5B 

can be studied under this same framework (Berger et al., 1999; Rose et al., 2000).  

Within the process of mucus secretion, mucins are one of the primary components. Mucins 

themselves belong to a group of large glycoproteins and possess a molecular mass of several 

thousand kilodaltons. In mucus secretions, the mucin composition is the a major determinant 

of viscoelasticity (Corfield, 2015). MUC5B and MUC5AC appear to be the genes most 

prevalently expressed, and their glycoprotein products  are the most abundantly identified in 

secretions of mucus (Thornton et al., 1997; Voynow, 2002). Furthermore, MUC5AC appears 

to be mostly  manufactured by goblet cells within the airway epithelium (Suzaki et al., 2016), 

while MUC5B is mostly manufactured within the submucosal glands that lie underneath 

(Zanin et al., 2016). 
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For the colonic mucosa and gastric mucosa (Gadacz and Zuidema, 1978; Gillen et al., 1988), 

bile acids have a toxic impact (Turjman and Nair, 1981; Owen et al., 1984). Their toxic 

impact on the oesophageal mucosa however has undergone less significant research (Nasr et 

al., 2013). A much stronger link has been suggested between the exposure to oesophageal 

acid (OAE) and the presence of mucosal damage e.g. Barrett’s oesophagus, along with the 

complications that come with it (Legrand et al., 1990; Iftikhar et al., 1993; Takahashi et al., 

2011)  

In the case of many common, important airway diseases such as asthma and COPD, mucin is 

hyper secreted and reflux and aspiration has been implicated in the overall pathophysiology. 

In my project, the production of mucus was significantly increased over the course of this 

study by the NCI H292 and Calu-3, when the cells were exposed to varying levels of BAs. As 

a whole, the data from this study therefore strongly supports the hypothesis that exposure to 

BAs may have a substantial effect on mucus upregulation. This may therefore lead to injury in 

the airway and airflow limitation. My results also confirmed that within in vitro model 

system, NCI H292 and Calu-3 cells can be used for further research into the processes of 

mucin gene regulation. 
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6.1 Summary 

It has long been suspected that there is a significant association between lung disease 

and GOR. A high prevalence of GOR has been found amongst patients with cystic 

fibrosis, idiopathic pulmonary fibrosis and asthma (Feigelson et al., 1987; Tobin et al., 

1998). GORD patients’ refluxate can contain bile acids in concentrations up to 

millimolar levels.  

To conclude the work done in this project has extended this research area by showing:  

- Cell death was encountered after stimulation of Calu-3, BEAS-2B and 16HBE14O-cell 

lines with primary BAs (CA - CDCA) and secondary BAs (LCA- DCA). In contrast NCI-

H292 cell viability was affected by secondary BAs (LCA- DCA) only.   This suggests 

aspiration may be an important cause of injury to airway epithelium cells and the 

secondary BAs are more cytotoxic than primary BAs. 

- The cells used in this study increased the levels of IL-8, IL-6 and GMCSF released 

after challenge by primary and secondary bile acids. IL-8, IL-6 and GM-CSF are 

commonly implicated in airways and lung disease where reflux and aspiration have 

been implicated as a possible injury. 

- This study confirmed that NCI-H292, Calu-3, BEAS-2B and 16HBE14O-cell lines 

are a useful model to study human respiratory processes and diseases related to BAs 

aspiration-induced lung injury. 

- E-cadherin (an epithelial marker) expression was downregulated and Fibronectin (a 

mesenchymal marker) was upregulated by BA treatment in primary human 

bronchial epithelial cell cultures from lung allografts (PHBEC). These findings were 

also confirmed in tracheal epithelial cells (upper airway cells) from the subglottic 

area, BEAS-2B and 16HBE14O-cell lines 

- The level of TGF-β1, MMP9 and pro-collagen were increased from primary human 

bronchial epithelial cell cultures from lung allografts (PHBEC), tracheal epithelial 

cells from the subglottic area, BEAS-2B and 16HBE14O-cell lines after challenge 

with BAs.  

- Primary human bronchial epithelial cell cultures from lung allografts (PHBEC), 

tracheal epithelial cells from the subglottic area, BEAS-2B and 16HBE14O-cell 

lines underwent EMT after stimulation with BAs.  
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- The EMT process may represent a pathway following airway injury in diseases 

characterised by airway remodelling and fibrosis where GOR and aspiration are also 

implicated. 

- MUC5AC and MUC5B levels were induced in response to stimulation of Calu-3 

and NCI H292 cells with BAs. This suggests that aspiration may lead to mucus 

hypersecretion as seen in the disease.  

- The Calu-3 and NCI H292 cells can be used as an in vitro model system to study 

MUC gene regulation. 
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Figure 6-1: A proposed sequence of events following epithelial cells injury after exposure to bile acids 
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Future directions 

- In this study, submerged culture systems were used to study the association between 

airways diseases and BAs. Future work could include establishing an air-liquid interface 

of the primary bronchial epithelial cells. The cells will differentiate into ciliated epithelial 

cells. The BAs stimulation would then be repeated and a number of cytokine and mucins 

could be measured.  

- There is evidence that bile acids may be taken up by lung epithelia cells. It may therefore 

be of interest to stain biopsies and epithelial cells taken from lung transplant recipients for 

BAs, in an attempt to further understand what happens to the bile acids once they have 

been aspirated into the lungs. 

- Bile acids can be taken up by laryngeal epithelial cells (extra-oesophageal reflux disease);  

for this reason the impact of bile acids on a pharyngeal cell line should be investigated. 

- In this study cells were stimulated with BAs for 48 hours, future studies could evaluate 

the effect of longer term stimulation with bile acids.  

- My results showed that PHBEC, tracheal epithelial cells from the subglottic area, BEAS-

2B and 16HBE14O-cell lines underwent EMT after stimulation with BAs. These results 

should be confirmed by immunohistochemistry. 

- A study should be set up to investigate sensitive methods that can be used to measure bile 

acids in the airways. 

-  Mucus gel removed from the lungs of patient undergoing bronchoscopy with airway 

disease should be studied. Mucus gels consist of mucin IgA, protein, lipid, and nucleic 

acid. Studying the rheological properties of mucus gels is fundamental to understand the 

role of these non-mucin components.  

- The airway cancer cell line models could be used to provide additional insight into the 

differential regulation of EMT-associated phenotypes. For example, flow cytometry could 

be used to count epithelial and mesenchymal cell types within cultured cell samples. Flow 

cytometers separate different cell types suspended within a fluid stream through 

hydrodynamic focussing. One or more lasers are then pointed at the fluid stream and 

photomultipliers detect the resultant fluorescent and scattered light. Fluorophores on or 

within the cells are detected using optical filters and their emission spectra peaks can be 

used to establish a reliable cell-type count (O'Neill et al., 2013). Flow cytometry remains 
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the preferred method for sorting viable cells by focussing on multiple cell surface proteins 

and their quantitative, simultaneous analysis (Strauss et al., 2013). Flow based methods 

have been used for the quantification of EMT in the setting of lung transplantation. Flow 

cytometry may have several advantages including the fact that several markers can be 

detected at once and large numbers of cells can be counted. This could be a useful future 

development of EMT research in my future studies. 

Mesenchymal marker expression, specifically αSMA, S100A4 and ED-A FN and HLA-

DR, has been assessed using flow cytometry, whilst TGFβ1 and HGF expression has been 

measured in Bronchoalveolar Lavage (BAL). Patients with Bronchiolitis Obliterans 

Syndrome (BOS) exhibited increased expression of all three mesenchymal markers as 

well as HLA-DR. BAL HGF was also seen to increase, but TGFβ1 was not. Analysing 

bronchial brushing samples using flow cytometry has been shown to be safe, fast, simple 

and quantitative (Hodge et al., 2009). On this basis, the method is proposed as an 

important additional means for EMT development studies. 

- Discovery and quantification of transcripts can be carried out in a single experiment using 

the high-throughput assay RNA-Seq, or ‘whole transcriptome sequencing’ (Cloonan et 

al., 2008; Guttman et al., 2010). For experiments that involve a broader dynamic range of 

gene expression, it has been shown that RNA-Seq provides more accuracy than 

expression microarrays (Marioni et al., 2008; Fu et al., 2009). Such approaches may be 

useful for future studies of EMT. 

RNA-Seq is now a standard tool in many large-scale genomic analyses, which seek to 

establish connections between genetic variation and epigenetic state, and transcriptional 

and post-transcriptional regulation. A number of these studies have indicated that cell 

type and specificity are determined by alternative splicing and isoform selection (Pan et 

al., 2008; Graveley et al., 2011). Furthermore, a large number of genes are characterised 

by having a large genomic ‘footprint’, containing a range of splice variants, promoters 

and proteins. Measuring changes in the way individual transcripts are expressed allows 

investigation into the regulation of isoform selection and diversity. In airway diseases, 

RNA-Seq may be employed to identify airway transcriptome and gene expression 

alterations that are linked with exposure to BAs and inflammatory diseases. This assay is 

likely to enable better understandings of the molecular mechanisms involved in EMT 

therefore and could represent a future direction for this area of work. 
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APPENDICES 

APPENDIX 1 

Influence of individual bile acid on 16HBE14o- cell viability and inflammatory cytokine 

(IL-8, IL-6 and GM-CSF) release 

 

Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with LCA. ELISA was used 

to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS-not significant). 



249 

 

 

Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with DCA. ELISA was used 

to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with CA. ELISA was used 

to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from 16HBE14o- cells treated with CDCA. ELISA was 

used to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-

way ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: 

p<0.001. (NS- not significant). 
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APPENDIX 2 

Influence of individual bile acid on BEAS-2B cell viability and inflammatory cytokine 

(IL-8, IL-6 and GM-CSF) release 

 

Measurement of IL-8, IL-6 and GM-CSF production from BEAS-2B cells treated with LCA. ELISA was used 

to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from BEAS-2B cells treated with DCA. ELISA was used 

to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from BEAS-2B cells treated with CA. ELISA was used to 

measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from BEAS-2B cells treated with CDCA. ELISA was used 

to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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APPENDIX 3 

Influence of individual bile acid on NCI-H292 cell viability and inflammatory cytokine 

(IL-8, IL-6 and GM-CSF) release 

 

Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with LCA. ELISA was used 

measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with DCA. ELISA was used 

to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with CA. ELISA was used to 

measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from NCI-H292 cells treated with CDCA. ELISA was 

used to measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-

way ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: 

p<0.001. (NS- not significant). 
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APPENDIX 4 

Influence of individual bile acid on Calu-3 cell viability and inflammatory cytokine (IL-

8, IL-6 and GM-CSF) release 

 

Measurement of IL-8, IL-6 and GM-CSF production from Calu-3 cells treated with LCA. ELISA was used to 

measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001.  

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from Calu-3 cells treated with DCA. ELISA was used 

measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from Calu-3 cells treated with CA. ELISA was used to 

measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: p<0.001. 

(NS- not significant). 
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Measurement of IL-8, IL-6 and GM-CSF production from Calu-3 cells treated with CDCA. ELISA was used to 

measured cytokine secretion. Statistical analysis was conducted using repeated-measures-paired-one-way 

ANOVA (n=6). Bars represent mean ± S.E.M values of each group, *: p<0.05, **: p<0.01and, ***: 

p<0.001.(NS- not significant). 
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APPENDIX 5 
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APPENDIX 6 

- RPMI Medium 
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