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Abstract 

 

Congenital myasthenic syndromes (CMS) are inherited disorders characterised by 

fatigable muscle weakness resulting from impaired transmission at the neuromuscular 

junction (NMJ). CMS occur due to mutations in genes encoding proteins responsible for 

maintaining the structure and function of the NMJ.  

Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme in 

the hexosamine biosynthetic pathway which yields precursors required for protein and 

lipid glycosylation. Mutations in GFPT1 and genes downstream of this pathway are 

pathogenic for CMS. One hypothesis is that hypoglycosylation of NMJ proteins results 

in defective neurotransmission.  

The aim of this study is to generate and characterise a GFPT1 deficient mouse model of 

CMS. One of the challenges we face is the viability of Gfpt1 knockout mice. Here we 

generate a novel muscle-specific GFPT1 knockout mouse model using Cre/loxP 

technology. We demonstrate that a deficiency of GFPT1 in muscle only, is sufficient for 

causing a CMS phenotype. Our model recapitulates many aspects of the phenotype 

observed in patients with GFPT1-related CMS. Mutant mice display early changes in 

the morphology of postsynaptic components of the NMJ, which are accompanied by 

presynaptic alterations. They later develop a myopathic phenotype and formation of 

tubular aggregates. We further identify proteins in skeletal muscle that are differentially 

regulated because of GFPT1 deficiency. 

Our data demonstrates a critical role for GFPT1 in the development of the NMJ, 

neurotransmission, and skeletal muscle integrity. The muscle-specific GFPT1 deficient 

mouse model allows us to investigate the implications of not only GFPT1 mutations, 

but may also give us an insight into the pathophysiological consequences of mutations 

in genes downstream of GFPT1, which also result in hypoglycosylation. This model has 

the potential to enhance our understanding of current drug therapies, and to drive 

forward the development of new compounds which can be implemented in the clinic.  
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Chapter 1. Introduction 

 

1.1 Myasthenic syndromes 

Myasthenic Syndromes are a group of autoimmune and inherited disorders characterised 

by muscle weakness and fatigability. Both arise due to impairment of neuromuscular 

transmission and are categorised in terms of etiological mechanisms and clinical 

phenotype (Verschuuren et al., 2010; Parr et al., 2014). Congenital Myasthenic 

Syndromes (CMS) are caused by gene mutations which affect proteins responsible for 

maintaining the structure and function of the neuromuscular junction (NMJ). CMS 

differ to the more common myasthenia gravis and Lambert-Eaton myasthenic 

syndrome, which are autoimmune disorders characterised by the presence of antibodies 

targeting the acetylcholine receptor (AChR) or the Muscle Specific Kinase (MuSK), and 

PQ-type voltage-gated calcium channels respectively (Hoch et al., 2001; Jacob et al., 

2009; Finlayson et al., 2013; Le Panse and Berrih-Aknin, 2013). Whilst there are 

currently no cures for myasthenic syndromes, symptomatic treatments are widely 

available. Correct treatment is highly dependent on recognising the type of myasthenic 

syndrome, molecular pathology, and identification of the gene mutated in inherited 

myasthenic syndromes (Basiri et al., 2013). Myasthenia gravis and CMS can be 

distinguished according to phenotypic presentation, onset and progression of disease 

and response to immunosuppressive therapy (Abicht et al., 2012). More recently, the 

discovery of gene mutations that give rise to CMS, alongside functional studies to 

determine whether these mutations are indeed pathogenic have facilitated the 

differential diagnosis of CMS subtypes and selection of effective drugs for treatment.  

 

1.2 Congenital myasthenic syndromes  

CMS are a heterogeneous group of rare inherited disorders of neurotransmission. The 

prevalence of genetically confirmed CMS is approximately 9.2 cases per million 

children under 18 years old in the UK (Parr et al., 2014). CMS are usually characterised 

by fatigable muscle weakness in skeletal muscle affecting the ocular, bulbar and limb 

muscles, whilst cardiac and smooth muscle remain unaffected. The severity and 

progression of CMS is highly variable amongst patients, ranging from mild weakness to 

more disabling symptoms. If left untreated CMS can potentially cause life threatening 

respiratory insufficiency (Senderek et al., 2011). The different types of CMS are 
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classified based on the site of the underlying defect, which primarily involves the 

presynaptic compartment, synaptic cleft or the postsynaptic basal lamina of the NMJ. 

They are further subdivided according to the pathophysiological involvement of specific 

proteins that impair the formation, maintenance and function of the NMJ. The genes 

implicated in CMS encode membrane receptors, enzymes, ion channels and neurally 

secreted proteins at the NMJ (Huze et al., 2009). More recently, mutations in genes 

encoding ubiquitously expressed enzymes involved in glycosylation have also been 

implicated in CMS (Senderek et al., 2011; Belaya et al., 2012; Selcen et al., 2013; 

Belaya et al., 2015). Table 1.1 provides a summary of the known genes encoding 

proteins implicated in CMS (Abicht et al., 2016; O'Connor et al., 2016; Souza et al., 

2016).  
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Type of 

CMS/protein 

impaired 

Genes % of CMS attributed to 

pathogenic variants in this 

gene 

Molecular Pathology Treatment 

POSTSYNAPTIC 

AChR deficiency  CHRNE 

CHRNA 

CHRNB 

CHRND 

 

 

<1% CHRNA, 

 

<1% CHRNB, 

 

<1% CHRND, 

 

50% CHRNE 

 

 

Low expression of AChR in the postsynaptic 

membrane 

Pyridostigmine, 3,4 

DAP 

AChR-Slow channel 

syndrome 

CHRNA* 

CHRNE* 

CHRNB* 

CHRND* 

Prolonged channel opening in response to ACh Fluoxetine, quinidine 

AChR-Fast channel 

syndrome 

CHRNA 

CHRNE 

CHRND 

Shortened channel opening in response to ACh Pyridostigmine, 3,4 

DAP 

Escobar Syndrome CHRNG <1% Low expression of fetal AChR gamma subunit ___ 

Rapsyn deficiency RAPSN 15%-20% Impaired AChR clustering Pyridostigmine, 3,4 

DAP 

Dok-7 synaptopathy DOK7 10%-15% Synaptopathy; small and simplified 

presynaptic and postsynaptic structures  

Ephedrine, 

salbutamol, 3,4 DAP 

MuSK MUSK <1% Impaired AChR clustering Pyridostigmine, 3,4 

DAP 

LRP4  LRP4  <1% Impaired AChR clustering Pyridostigmine, 3,4 

DAP (no/negative 

effect on patients) 

Nav1.4 (voltage-gated 

sodium channel) 

SCN4A <1% Altered postsynaptic voltage-gated sodium 

function  

AChE inhibitors 

Plectin  PLEC <1% Reduced plectin (cytoskeletal linking protein 

at the postsynaptic junctional folds) 

Pyridostigmine, 3,4 

DAP 

https://en.wikipedia.org/wiki/Voltage-gated_sodium_channel
https://en.wikipedia.org/wiki/Voltage-gated_sodium_channel
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Type of 

CMS/Protein 

impaired 

Genes % of CMS attributed to 

pathogenic variant in this 

gene 

Molecular Pathology Treatment 

SYNAPTIC 

Laminin beta-2  LAMB2 <1% Reduced β2-laminin, required for the 

alignment of nerve and muscle at the NMJ  

Ephedrine 

Acetylcholinesterase 

deficiency 

COLQ 10%-15% Failure to anchor AChE in the synaptic cleft Ephedrine 

PRESYNAPTIC 

Choline 

acetyltransferase 

deficiency 

CHAT 4%-5% Failure of ACh synthesis Pyridostigmine, 3,4 

DAP 

Agrin AGRN <1% Impaired AChR clustering Pyridostigmine, 3,4 

DAP 

MYO9A  MYO9A <1% Impairment of neuronal morphology and 

function 

Pyridostigmine 

High-affinity choline 

transporter 

SLC5A7 <1% Impairs reuptake of choline from the synaptic 

cleft  

AChE inhibitors, 

Salbutamol 

Vesicular acetylcholine 

transporter  

SLC18A3 <1% Impairs uptake of ACh into presynaptic 

vesicles 

Pyridostigmine 

SLC25A1  SLC25A1 <1% Abnormal mitochondrial citrate carrier 

function.  

Pyridostigmine, 3,4 

DAP 

SNAP25 SNAP25* <1% Compromised quantal release at endplates 3,4 DAP  

Synaptobrevin-1  SYB1 (also known as 

VAMP1) 

<1% Reduction in EPP amplitude Pyridostigmine 

 

Synaptotagmin-2 SYT2* <1% Calcium sensors - Disruption of synaptic 

vesicle exocytosis  

3,4 DAP 

https://www.ncbi.nlm.nih.gov/gene/60482
https://www.ncbi.nlm.nih.gov/gene/6576
https://www.ncbi.nlm.nih.gov/gene/6576
https://www.ncbi.nlm.nih.gov/gene/127833
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Table 1.1. Congenital myasthenic syndromes. 3,4 DAP, 3,4-diaminopyridine; ACh, acetylcholine; AChE, acetylcholinesterase; AChR, acetylcholine 

receptor. Slow channel syndromes, SNAP25 and SYT2 mutations are acquired via autosomal dominant inheritance, *; All other syndromes are 

autosomal recessive. NB: Agrin is expressed neurally but acts postsynaptically.  

 

Type of 

CMS/Protein 

impaired 

Genes % of CMS attributed to 

pathogenic variant in this 

gene 

Molecular Pathology Treatment 

PROTEINS AT MULTIPLE SITES 

Glycosylation 

deficiency  

DPAGT1 

GFPT1 

ALG2  

ALG14  

GMPPB 

<1% 

2% 

<1%  

<1% 

<1% 

Abnormal glycosylation of synaptic 

components   

Pyridostigmine, 

Pyridostigmine & 

Salbutamol 

(GMPPB) 

PREPL  PREPL <1% Reduced ACh content within vesicles Pyridostigmine 

COL13A1 COL13A1 <1% Abnormal formation and maintenance of the 

NMJ 

3,4 DAP 
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1.3 The neuromuscular junction  

In order to identify the pathological mechanisms underlying CMS, it is important to 

understand how the NMJ functions in healthy individuals. The two main processes 

associated with normal NMJ function involves proteins and signalling events 

responsible for (i) neurotransmission; (ii) formation and maintenance of the NMJ. Here 

we describe the functional significance of the proteins that are implicated in CMS.  

 

1.3.1 The acetylcholine receptor system and neurotransmission   

The neuromuscular junction is highly specialised to enable synaptic transmission 

through the activation of AChRs on the postsynaptic membrane. When an action 

potential reaches the presynaptic nerve terminal, voltage gated Ca2+ channels are opened 

causing an increase in intracellular Ca2+ levels. This is detected by the Ca2+ sensor, 

synaptotagmin-2 which subsequently results in trafficking of neurotransmitter filled 

vesicles to the presynaptic membrane. Vesicle fusion to the membrane is facilitated by 

soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) 

proteins, including synaptobrevin-1 attached to synaptic vesicles, and synaptosomal-

associated protein 25 (SNAP25) which are anchored in the presynaptic membrane 

(Mohrmann et al., 2013; Sudhof, 2013; Shen et al., 2014; Salpietro et al., 2017; Shen et 

al., 2017). Once fused, acetylcholine (ACh) is released from motor neurons into the 

synaptic cleft where it binds to postsynaptic AChRs. The AChR ion channel opens, 

allowing a flow of cations through the central pore which depolarises the muscle 

membrane and generates an endplate potential (EPP). If the EPP reaches threshold, 

voltage gated- Na+ channels (Nav1.4) along the membrane open to produce an action 

potential resulting in Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol 

which ultimately induces muscle contraction (Ferraro et al., 2012). 

After dissociation from the AChR, ACh molecules are hydrolysed by 

acetylcholinesterase (AChE) which comprises a collagenic-tail (COLQ). Choline is 

transported back into the nerve terminal by a high-affinity choline uptake transporter. 

ACh is resynthesized from choline and acetyl coenzyme A by choline acetyltransferase 

(ChAT), and is packaged into synaptic vesicles via the vesicular acetylcholine 

transporter (VAChT), (Figure 1.1). 
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Figure 1.1 Schematic of the acetylcholine receptor system and neurotransmission. 

Key proteins directly involved in neurotransmission are shown. ACh synthesis is 

catalysed by ChAT. ACh are packaged into synaptic vesicles via VAChT. 

Neurotransmitter filled vesicles are transported to the presynaptic membrane and 

released into the synaptic cleft by SNARE proteins (synaptotagmin-2, synaptobrevin-1 

and SNAP25). ACh binds to AChRs to depolarise the muscle membrane. Subsequently 

Nav1.4 channels along the membrane open to produce an action potential. AChE 

hydrolyses ACh, and the resulting choline molecules are transported back into the 

presynaptic terminal for recycling via the high affinity choline transporter. Genes 

encoding proteins implicated in CMS are shown (red). CHRN* represents genes 

encoding all the AChR subunits (CHRNA, CHRNB, CHRND, CHRNE).  
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1.3.2 Proteins involved in the development and maintenance of the NMJ 

Presynaptic and postsynaptic differentiation of the NMJ involves various proteins that 

participate in a series of signalling cascades. MuSK is a key molecule located on the 

postsynaptic muscle membrane. It is an important organiser that acts as a scaffold 

protein and plays a central role in co-ordinating the formation of the NMJ through its 

binding partners (Zong and Jin, 2013). Activation of MuSK mediates postsynaptic 

differentiation and aggregation of AChR on the postsynaptic membrane (Okada et al., 

2006; Chevessier et al., 2008). One mechanism by which MuSK is activated is through 

the binding of neurally secreted agrin to low-density lipoprotein-related protein receptor 

4 (LRP4) (Maselli et al., 2010; Choi et al., 2013). Formation of the agrin-LRP4-MuSK 

complex stimulates tyrosine phosphorylation of MuSK. This complex is essential for 

mediating the downstream signalling cascade required for AChR clustering (Zong and 

Jin, 2013). Once phosphorylated, MuSK recruits docking-protein 7 (Dok-7), a 

cytoplasmic adaptor protein selectively expressed in muscle. Dok-7 further stimulates 

MuSK kinase activity through phosphorylation (Maselli et al., 2010). Together, this 

stimulates rapsyn which is also a scaffolding protein at the NMJ. Activation of rapsyn 

results in the reorganisation of the cytoskeleton and anchoring of AChR on the muscle 

membrane (Ohkawara et al., 2014), (Figure 1.2). 
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Figure 1.2 Key molecules involved in the development and maintenance of the 

NMJ. AChRs are recruited and anchored to the muscle membrane through a series of 

presynaptic and postsynaptic protein interactions involving agrin, LRP4, MuSK, Dok-7 

and rapsyn. Genes encoding proteins directly involved in AChR clustering are shown 

(black). Additional genes encoding proteins that are implicated in CMS are shown (red).  
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1.4. The safety margin of neurotransmission is compromised in CMS 

Neurotransmission is a highly reliable process whereby an excess of neurotransmitters 

is released into the synaptic cleft, which is more than the amount required to initiate an 

action potential. Even during prolonged high-frequency activation of muscles, 

transmission does not fail due to the substantial number of neurotransmitters available. 

This has given rise to the idea of a ‘safety margin’ at the NMJ. The safety margin of the 

NMJ is described as the factors that maintain the efficacy of chemical synapses. In 

CMS, the safety margin of neurotransmission is compromised by one or more 

mechanisms. Factors affecting the ability to propagate an action potential are grouped 

into the following categories: (i) compromised number of ACh molecules available per 

synaptic vesicle which arises due to impaired synthesis, hydrolysis and packaging of 

ACh into vesicles, and the reuptake of choline; (ii) impaired quantal release of ACh due 

to impairment in trafficking, vesicle docking and fusion to the membrane; (iii) factors 

affecting the efficacy of quanta released such as the rate of ACh hydrolysis in the 

synaptic space, AChR affinity for ACh, and the density, kinetic properties and 

localization of AChRs and Nav1.4 ion channels. These factors ultimately compromise 

the amplitude of the EPP and formation of an action potential (Wood and Slater, 2001; 

Engel and Sine, 2005; Slater, 2008; Engel, 2012).  

The safety margin may also be compromised by structural changes in presynaptic or 

postsynaptic components of the NMJ. The number of neurotransmitters released is 

relative to the size of the motor nerve terminal, therefore abnormally smaller nerve 

terminals may impair quantal release. Postsynaptic junctional folds harbour a high 

density of Na+ channels in the troughs of the folds and increase the series resistance of 

the postsynaptic membrane, which are both important for membrane depolarisation. 

Another possibility is an increased chance of acetylcholine escaping the synaptic cleft 

before it reaches the postsynaptic membrane. Simplification of the folds may therefore 

be a major contributor to impaired neurotransmission (Wood and Slater, 2001).  

 

1.4.1 Pathology of the acetylcholine receptor system 

The most common type of CMS arises due to defects in the nictonic AChR itself, which 

accounts for approximately 60% of all CMS cases (Hantai et al., 2013). The adult 

AChR is a pentameric structure composed of alpha (α), beta (β), delta (δ), and epsilon 
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(ε) subunits in a 2:1:1:1 ratio. The fetal form of AChR contains a gamma (γ) subunit in 

place of the ε subunit. This structure permits binding of two ACh molecules to the 

AChR ion channel. The correct configuration of AChR is important for 

neurotransmission. Mutations in individual subunits can result in reduced expression of 

the AChR or impair the kinetic properties of the channel, giving rise to fast and slow 

channel CMS. Dominantly inherited slow channel syndromes occur because of 

prolonged opening of the AChR ion channel. This is in contrast to the recessively 

inherited fast channel syndromes, which occur due to premature closure of the AChR 

channel (Webster et al., 2013). Each AChR subunit is also subject to post-translational 

modifications including glycosylation. Defective glycosylation of AChR subunits 

impair the assembly, structure, and function of AChRs on the postsynaptic membrane 

(Ramanathan and Hall, 1999). Mutations in the CHRNG gene encoding the fetal γ 

subunit of the ACh gives rise to the fetal myasthenic disease, Escobar syndrome. This 

disease is believed to affect neuromuscular organogenesis, with no pathogenicity later in 

life since γ expression is restricted to early development (Hoffmann et al., 2006).  

CMS also arise due to defects in the processes involved in the synthesis and hydrolysis 

of ACh. Mutations in SLC5A7 encoding the high affinity choline transporter impairs 

reuptake of choline into the presynaptic nerve terminal (Bauche et al., 2016), and 

mutations in SLC18A3 encoding the vesicular ACh transporter impairs uptake of ACh 

into synaptic vesicle (O’Grady et al., 2016; Aran et al., 2017). The synthesis of ACh is 

impaired as a result of CHAT mutations (Brandon et al., 2003; Dilena et al., 2014), and 

mutations in COLQ, (the gene encoding the collagenic-tail subunit that binds AChE) 

resulting in endplate AChE deficiency (Sigoillot et al., 2016). Consequently, 

hydrolysis of ACh is disrupted (Guven et al., 2012; Wargon et al., 2012).  

More recently, genes encoding proteins required for mediating exocytosis have been 

identified as pathogenic in CMS. Mutations in SYT2, the gene encoding   

synaptotagmin-2, impairs trafficking of neurotransmitter filled vesicles to the 

presynaptic membrane (Herrmann et al., 2014; Whittaker et al., 2015). Docking and 

fusion of vesicles to the presynaptic membrane is compromised by mutations in 

SNAP25 (Mohrmann et al., 2013) and SBY1 (Shen et al., 2017) that express defective 

SNAP25 and synaptobrevin-1 proteins respectively. Defects in any of the processes 

described that lead to compromised quantal release and a reduction of EPP amplitude, 

ultimately leads to impaired neurotransmission.   
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Defective Nav1.4 channels on the muscle membrane directly affects the ability to 

propagate an action potential which demonstrates that the safety margin for 

neuromuscular transmission can be compromised despite have a normal EPP (Tsujino et 

al., 2003). 

 

1.4.2 Impaired development and maintenance of the NMJ 

Efficient neurotransmission can only occur upon the correct assembly and maintenance 

of the NMJ which is dependent on several signalling molecules and sequential 

communication between the presynaptic motor neuron and the postsynaptic muscle 

membrane (Witzemann et al., 2013; Zong and Jin, 2013). Neurotransmission is 

compromised in the absence of fully functional proteins encoded by AGRN, MUSK, 

LRP4, DOK7, and RAPSN (Gautam et al., 1996; Ioos et al., 2004; Okada et al., 2006; 

Chevessier et al., 2008; Huze et al., 2009;). Ultimately, defective proteins involved in 

this signalling complex affect the clustering properties of AChR on the postsynaptic 

membrane.       

 

1.4.3 Mutations in CMS-causing genes with indirect functions 

Several proteins have been identified as causative genes in CMS other than those having 

a direct effect on the development and maintenance of the NMJ and neurotransmission. 

Some of these proteins are known to affect NMJ morphology, which subsequently 

affects neurotransmission. Other proteins are required to yield precursors, or undergo 

protein interactions upstream or downstream of NMJ formation and synaptic 

transmission.  

Mutations in genes encoding plectin, laminin beta-2, COL13A, and MYO9A induce 

morphological changes to the NMJ. A deficiency in plectin results in a lack of 

cytoskeletal support of the junctional folds at the NMJ. Simplified junctional folds 

affect the density of Nav1.4 channels concentrated in troughs between the folds, thus 

increasing the threshold for the generation of an action potential (Selcen et al., 2011). 

Laminin beta-2 deficiency also induces simplification of synaptic folds as well as 

hypoplastic nerve terminals. Together these morphological changes impair EPP quantal 

content and efficacy (Maselli et al., 2009).  
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A deficiency in COL13A results in impaired maturation and maintenance of the 

synaptic structure, whereby AChR clustering and co-localisation of the nerve terminal 

and postsynaptic AChR is compromised, and overshooting of the presynaptic nerve 

terminal is observed (Logan et al., 2015). Mutations in MYO9A lead to impairment of 

neuronal morphology and function through the regulation of Rho activity in neurons 

(O'Connor et al., 2016). Mutations in SLC25A1 results in abnormal mitochondrial 

citrate carrier function, and abnormal nerve outgrowth and synapse formation is 

observed (Chaouch et al., 2014). Defects in the geometry of both presynaptic and 

postsynaptic structures reduces the surface contact at the NMJ which ultimately impairs 

neurotransmission.   

The safety factor of neurotransmission is also compromised by mutations in PREPL. 

PREPL is an essential activator of the clathrin associated adaptor protein 1 (AP1). AP1 

facilitates packaging of ACh molecules into synaptic vesicles. Impaired PREPL 

function results in decreased vesicular content of ACh (Régal et al., 2014; Engel et al., 

2015).  

 

1.4.4 The role of glycosylation defects in CMS  

Whilst mutations in proteins active at the NMJ are known to be pathogenic in CMS, 

recent genetic analysis has also led to the implication of genes involved in the 

glycosylation of these proteins. Protein glycosylation is important for protein folding, 

secretion, solubility, stability and ability to bind to other proteins (Ramanathan and 

Hall, 1999; Martin, 2003). To date, 5 CMS-causing glycosylation genes have been 

discovered, GFPT1 (Senderek et al., 2011), DPAGT1 (Belaya et al., 2012), ALG2 and 

ALG14 (Cossins et al., 2013), and GMPPB (Belaya et al., 2015). GFPT1 encodes an 

enzyme that catalyses the rate-limiting step of the hexosamine pathway (Figure 1.5). 

DPAGT1, ALG2 and ALG14 encode the early components of the N-linked glycosylation 

pathway (Bretthauer, 2009; Basiri et al., 2013; Cossins et al., 2013). GMMPB catalyses 

the synthesis of GDP-mannose which is a precursor for N- and O-linked glycosylation 

(Belaya et al., 2015).   

All 5 glycosylation genes identified are ubiquitous and potentially modify hundreds of 

proteins in other biological process in addition to NMJ proteins. DPAGT1 (Wu et al., 

2003; Carrera et al., 2012; Wurde et al., 2012), ALG2 (Thiel et al., 2003) and GMPPB 
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(Carss et al., 2013) have previously been associated with congenital disorders of 

glycosylation (CDG). CDG encompass an array of phenotypically diverse disorders 

affecting multiple systems including the central nervous system, muscle function, 

transport of molecules, the immune and endocrine systems, and coagulation (Leroy, 

2006; Scott et al., 2014). It is therefore surprising why mutations in CMS-causing genes 

predominantly affect the NMJ with little or no involvement of multiple organ systems.  

 

1.5 Glycosylation 

Glycosylation is a post-translational modification which occurs in numerous 

biosynthetic pathways and is essential for obtaining functional lipids and proteins 

(Parkinson et al., 2013; Freeze et al., 2014). The attachment of glycans (sugar residues) 

to a protein through enzymatic glycosylation is essential to produce functional proteins 

(Parkinson et al., 2013; Zoltowska et al., 2013). Two major protein glycosylation 

pathways are the N- and O-glycosylation pathways (Spiro, 2002).   

 

1.5.1 N- and O- linked glycosylation pathways  

N-glycosylation is the most prevalent type of post-translational modification where 

glycans attach onto an amide nitrogen on an asparagine residue of the protein being 

modified. The N-acetylglucosamine (GlcNAc) glycan linkage is the most common type 

of N-glycosylation (Parkinson et al., 2013). O-linked carbohydrate attachments to 

proteins involve a linkage between a monosaccharide and amino acids serine or 

threonine. There are many different classes of O-linked glycosylation that differ based 

on the monosaccharide involved in the linkage. Examples of O-linked glycans include 

O-GalNAc, O-fucose, O-glucose, O-mannose and O-GlcNAc. In this study we are 

interested in the O-GlcNAc modification whereby proteins are modified by the 

attachment of GlcNAc in an O-glycosidic linkage to serine or threonine residues (Figure 

1.3).

https://en.wikipedia.org/wiki/Serine
https://en.wikipedia.org/wiki/Threonine
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Figure 1.3. Examples of protein-glycan linkages in N- and O-linked glycosylation. 

The difference between the two types of glycosylation is where the oligosaccharide is 

attached to the protein. In N-linked glycosylation the glycan is attached through a 

nitrogen atom (NH) at the asparagine or arginine residues on the protein. In O-

linked glycosylation the glycan is attached through an oxygen on a hydroxyl group 

(OH) to a serine or threonine residue. This image was adapted from (Lodish et al., 

2000). 

 

The biosynthesis of N-linked glycans occurs via 3 major steps. The first step is the 

synthesis of a dolichol-linked precursor oligosaccharide. This process occurs whereby 

dolichol phosphate (Dol-P) located on the cytoplasmic face of the endoplasmic 

reticulum (ER) membrane receives GlcNAc-1-P from the nucleotide sugar donor 

Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to generate dolichol 

pyrophosphate N-acetylglucosamine (Dol-P-P-GlcNAc). This reaction is catalysed by 

Dolichyl-Phosphate N-Acetylglucosaminephosphotransferase 1 enzyme encoded by 

DPAGT1.   

The second step involves the addition of glucose and mannose sugar molecules in a 

step-wise manner. The addition of each sugar is catalysed by specific glycotransferases. 

ALG2 and ALG14 encode glycotransferase enzymes required for extension of the 

glycan.   
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During assembly, the oligosaccharide is transported to the luminal side of the ER where 

further sugar residues are added. Once formation of the oligosaccharide is completed, 

the glycan is transferred from the dolichol to a nascent protein. The final step is 

remodelling of the protein bound N-glycan in the ER and Golgi through the addition 

and removal of sugar residues to produce different glycoforms (Figure 1.4), (Stanley et 

al., 2009; Aebi, 2013).  

O-linked glycosylation is a more diverse and complex process which involves the 

attachment of a single monosaccharide to a hydroxyl group on serine or threonine 

residues on the newly synthesised protein. The O-GlcNAc modification is a highly 

dynamic process that takes place within the nuclear and cytoplasmic compartments of a 

cell. This reaction utilises the UDP-GlcNAc precursor and is catalysed by O-GlcNAc 

transferase (OGT) (Hanover et al., 2010). The GlcNAc is generally not extended by 

sugar residues to form more complex structures. Instead, it is attached and removed 

several times at the same or different O-linked sites on a polypeptide, mimicking 

phosphorylation of proteins rather than the extension of sugars observed in the typical 

protein glycosylation system (Yang et al., 2007). This process is commonly referred to 

as O-GlcNAcylation (Hart and Akimoto, 2009).  
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Figure 1.4. Schematic showing the N-glycosylation and O-mannosylation 

pathways. N-glycosylation begins with the addition of UDP-GlcNAc to a dolichol 

anchor. Subsequent steps involve the addition of sugar residues in the cytoplasm and 

ER. Once assembled, the oligosaccharide is transferred to an N-linked site on a nascent 

protein. O-mannosylation involves the transfer of a mannose sugar to an O-linked site 

on a nascent protein. All 5 glycosylation enzymes associated with CMS are shown 

(red). This image was adapted from (Belaya et al., 2015). 

 

1.5.2 Essential precursors for N- linked glycosylation, O-GlcNAcylation, and O-

mannosylation  

The first step of the N-linked glycosylation and O-GlcNAcylation pathways require 

UDP-GlcNAc which acts as a nucleotide sugar donor. This activated precursor is 

produced by a series of enzymatic reactions in the hexosamine biosynthesis pathway 

(Freeze et al., 2014). The GFPT1 enzyme catalyses the first rate-limiting step of these 

reactions which ultimately yields UDP-GlcNAc (Figure 1.5).  
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Figure 1.5. The hexosamine biosynthetic pathway. GFPT1 catalyses the conversion 

of fructose-6-phosphate and glutamine to glucosamine-6-phosphate and glutamate. 

Subsequent steps yield UDP-GlcNAc, an important precursor required for N- and O- 

linked glycosylation of proteins. This figure was adapted from (Zoltowska et al., 2013).  

  

Subsequent steps involving the extension of glycans in the N-glycosylation pathway 

require GDP-mannose precursor molecules. GDP-mannose is also the substrate of 

cytosolic mannosyltransferases required for the first step in O-mannosylation of 

proteins (Figure 1.4) (Carss et al., 2013; Belaya et al., 2015; Rodriguez Cruz et al., 

2016). GMPPB catalyses the synthesis of GDP-mannose from GTP and mannose-1-

phosphate. Mutations in GMPPB have also been implicated in CMS (Belaya et al., 

2015). 
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1.5.3 NMJ proteins that undergo glycosylation 

Several presynaptic, synaptic and postsynaptic NMJ proteins are known to harbour N-

linked glycosylation sites (Table 1.2). These proteins use UDP-GlcNAc as the initial 

precursor for N-linked glycosylation. Importantly, some proteins mentioned here also 

undergo O-linked glycosylation, but are processed in pathways which require sugar 

nucleotide donors other than GlcNAc. Mutations in these proteins have previously been 

implicated in CMS (Herbst et al., 2009; Senderek et al., 2011; Zoltowska et al., 2013).  

Protein Gene 

PRESYNAPTIC 

Agrin AGRN 

High-affinity choline transporter SLC5A7 

Vesicular acetylcholine transporter  SLC18A3 

Synaptotagmin-2 SYT2 

SYNAPTIC 

Collagen-like tail of AChE  COLQ 

Laminin beta-2 LAMB2 

POSTSYNAPTIC 

MuSK MUSK 

LRP4  LRP4  

Nav1.4 - voltage-gated sodium channel SCN4A 

AChR (α, β, δ, ε, fetal γ) subunits CHRN* 

MULTIPLE SITES 

Dolichyl-Phosphate N-

Acetylglucosaminephosphotransferase 1 

DPAGT1 

 

Table 1.2. NMJ proteins with known N-linked glycosylation sites. Mutations in these 

proteins have previously been implicated in CMS, (* represents any AChR subunit). 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/gene/60482
https://en.wikipedia.org/wiki/Voltage-gated_sodium_channel
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1.6 Mutations in GFPT1 cause CMS 

 

1.6.1 Biology of the GFPT1 protein  

The GFPT1 gene is located on chromosome 2p13.3 and comprises 19 exons, plus an 

additional alternative exon 8a. Splicing of GFPT1 gives rise to two variants, the 

ubiquitous GFPT1 isoform and GFPT1-L. The latter is a long muscle-specific isoform 

expressed predominantly in skeletal muscle and the heart. This isoform contains a 54-bp 

(18 amino acid) insertion (exon 8a) in the coding sequence of GFPT1, at the position 

229 in human GFPT1. Missense mutations in GFPT1 have been found outside of the 

muscle-specific exon, yet impaired function seems to be restricted to the muscle, and in 

particular the NMJ (Zoltowska et al., 2013). Since protein glycosylation is an essential 

process for cell survival, it is believed that mutations in GFPT1 may generate 

hypomorphic alleles. A total of 31 GFPT1 pathogenic variants have been identified 

which comprise missense, frameshifts, nonsense and one variant in the 3’-UTR (Figure 

1.6). No individual with CMS that harbour 2 null variants have been identified (Abicht 

et al., 2016). These variants lead to reduced expression of the GFPT1 protein. Only one 

patient has been identified who harbours a nonsense mutation in the ubiquitous GFPT1 

isoform and a second mutation that disrupts the muscle-specific exon, leading to a 

complete loss of glycoprotein expression in muscle (Senderek et al., 2011; Selcen et al., 

2013).  
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Figure 1.6. Schematic representation of the GFPT1 exon and protein structure. (A) 

GFPT1 exon structure with 3 domains. The muscle-specific exon is shown in red. 

Predicted peptides of mutant transcripts from a patient with a nonsense mutation in the 

ubiquitous GFPT1 isoform, and a nonsense mutation in the muscle-specific GFPT1 

isoform are shown. (B) The localization of the missense and truncation mutations 

identified in GFPT1-CMS patients are shown. A single mutation was identified in the 

muscle specific exon (red). GATase_2, glutamine amidotransferase type 2 domain; 

SIS1, sugar isomerase domain-1, SIS-2, sugar isomerase domain-2. This image was 

adapted from (Zoltowska et al., 2013).  
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1.6.2 Clinical presentation of patients with mutations in GFPT1 

Patients with mutations in GFPT1 usually display a limb-girdle pattern of weakness that 

may present as early as infancy through to adulthood. The limb-girdle phenotype is 

characterised by weakness of the proximal limb muscles including the shoulders and 

pelvis. The weakness is slowly progressive, but the rate of progression varies between 

patients. These patients also demonstrate sparing of the ocular, facial and bulbar 

muscles (Guergueltcheva et al., 2012; Huh et al., 2012; Selcen et al., 2013). 

Studies have shown that some patients display a decremental response to 

electromyography (EMG) (Selcen et al., 2013; Maselli et al., 2014) and repetitive nerve 

stimulation (Guergueltcheva et al., 2012; Huh et al., 2012). Patients display endplates 

with a simplification of the postsynaptic membrane with fewer poorly developed 

junctional folds and the presence of tubular aggregates of the SR in muscle biopsies 

(Huh et al., 2012; Selcen et al., 2013; Maselli et al., 2014). These individuals 

demonstrate an improvement in symptoms in response to cholinesterase inhibitors and 

3,4-diaminopyridine (3,4-DAP) (Nicole et al., 2014). More recently magnetic resonance 

imaging (MRI) studies have detected fatty infiltration of muscles in GFPT1-CMS 

patients, indicative of progressive muscle damage (Finlayson et al., 2016).    

Until now there has only been one report of a mutation which disrupts the GFPT1-L 

isoform resulting in the absence of glycosylated proteins. A muscle biopsy from this 

patient demonstrates a vacuolar autophagic myopathy with abnormal variation of 

myofibre size, sparse regenerating and necrotic muscle fibres and densely packed 

membranous tubular aggregates (Selcen et al., 2013). A molecular link between the 

presence of tubular aggregates and NMJ remains to be established.    

Notably, patients with GFPT1-related CMS share many phenotypic and morphological 

characteristics to patients with mutations in other glycosylation enzymes implicated in 

CMS. Patients with mutations in DPAGT1 also demonstrate a limb-girdle pattern of 

weakness, tubular aggregates in muscle biopsies and a prominent fatty infiltration of 

muscles revealed by MRI imaging (Belaya et al., 2012; Basiri et al., 2013; Carss et al., 

2013; Belaya et al., 2015; Finlayson et al., 2016).  
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1.7 Diagnosis and treatment of CMS 

 

1.7.1 Diagnosis of CMS  

Indications for CMS at initial presentation are based on a clinical examination and 

family history of fatigable weakness consistent with the patterns of autosomal dominant 

or recessive inheritance. Electrophysiological testing using a decremental EMG 

response of the compound muscle action potential (CMAP) is also a good indicator of 

CMS. Differential diagnosis is based on the absence of AChRs and anti-MuSK auto-

antibodies in serum, and failure to respond to immunosuppressive therapy as a test to 

rule out myasthenia gravis. Furthermore, lack of major pathology in skeletal muscle 

biopsies can help distinguish CMS from other neuromuscular diseases (Abicht et al., 

2012).  

Pharmacological intervention greatly depends on our understanding of the mechanisms 

underlying the different subtypes of CMS. Some drugs used to treat one subtype of 

CMS may worsen symptoms in a patient suffering from another subtype (Engel, 2007; 

Lorenzoni et al., 2012; Engel et al., 2015). The use of functional studies to enhance our 

understanding of the molecular mechanisms underlying a CMS subtype may prove 

useful when choosing a personalised treatment regime (Schara and Lochmüller, 2008; 

Barisic et al., 2011). 

Clinical manifestations amongst individuals harbouring the same genetic defect vary in 

terms of onset and course of disease which often hinders correct diagnosis. This is 

overcome by in vitro electrophysiological studies of the patient endplate and molecular 

genetic studies. A definitive genetic diagnosis is important for choosing treatment 

regimes, prognosis and genetic counselling (Engel, 2012). 

 

1.7.2 Treatment of CMS 

Common drugs used to alleviate CMS symptoms include AChE inhibitors, 3,4-DAP, 

fluoxetine, quinidine sulphate, salbutamol and ephedrine (Schara and Lochmüller, 

2008).  
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Pyridostigmine is an AChE inhibitor that has demonstrated positive effects in several 

different forms of CMS. AChE inhibitors prevent the hydrolysis of ACh in the synaptic 

cleft, prolonging ACh activity. Patients who suffer from CMS as a result of AChE 

deficiency should not be given AChE inhibitors as it may worsen muscle weakness and 

have harmful effects (Schara and Lochmüller, 2008). 3,4-DAP is a potassium channel 

blocker which acts on the presynaptic nerve terminal resulting in an increase in the 

quantal release of ACh into the she synaptic cleft. Again, it may be detrimental to 

administer 3,4-DAP to individuals with fast-channel CMS emphasising the importance 

of understanding the pathophysiology at the NMJ (Abicht et al., 2012). Both 

pyridostigmine and 3,4-DAP reduce myasthenic weakness by facilitating 

neurotransmission.  

Slow-channel CMS are often treated with quinidine sulphate and fluoxetine. Both drugs 

are AChR channel blockers which reduces the amount of time that the AChR pore 

remains open and may be harmful in the other forms of CMS (Engel, 2007).  

Orally administered salbutamol, a β2-adrenergic receptor agonist demonstrates 

improved muscle function in patients harbouring mutations in DOK-7 (Burke et al., 

2013). Ephedrine has also shown to exert positive effects in various forms of CMS. In 

vitro studies demonstrate its ability to increase quantal ACh release and reduce AChR 

opening time. However, this mechanism is yet to be seen in humans (Schara and 

Lochmüller, 2008). CMS drugs are frequently used in combinations to achieve optimal 

relief from symptoms.    

 

1.8 Functional models used to study CMS  

To date several experimental assays have been developed to help broaden our 

understanding of the molecular mechanisms responsible for the formation and 

maintenance of the NMJ. Whole exome sequencing has accelerated the rate at which 

new disease-causing genes are being discovered (Lyon and Wang, 2012). As more and 

more gene mutations are identified, we need to be able to investigate and understand the 

functions of NMJ proteins in order to choose the best possible treatment options for 

patients with CMS. Methods currently being used include observing structural and 

functional abnormalities in patient muscle biopsies and analysing changes in the level of 

protein expression (Belaya et al., 2012; Zoltowska et al., 2013). Functional assays 
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which have been developed include recombination expression studies, the use of 

siRNAs to knockdown gene function in cell culture and zebrafish, and in vitro 

electrophysiological tests to measure AChR activity (Senderek et al., 2011; Cossins et 

al., 2013; Zoltowska et al., 2013). Several in vivo mouse models have also been 

developed which have contributed to our understanding of major synaptic regulators at 

the NMJ which are implicated in CMS. These include models for studying the role 

MuSK (Chevessier et al., 2008; Messéant et al., 2015), AGRN (Bogdanik and Burgess, 

2011), DOK-7 (Okada et al., 2006), ChAT (Brandon et al., 2003), ColQ (Sigoillot et al., 

2016) and the AChR epsilon subunit at the NMJ (Chevessier et al., 2012; Webster et al., 

2013). As of yet, there are no mouse models for the 5 glycosylation genes found to be 

pathogenic in CMS.      

 

1.8.1 Functional studies that have contributed to understanding the role of GFPT1 at 

the NMJ  

Several experiments were conducted in attempt to deduce the molecular pathogenesis of 

GFPT1 in neurotransmission. There are several lines of evidence which suggest that 

GFPT1 has a direct effect on the number of AChR clusters expressed on the muscle 

membrane. The use of siRNA to silence GFPT1 and a chemical inhibitor to reduce the 

levels of GFPT1 in cell culture, have both demonstrated a reduction in AChR 

expression, consistent with AChR expression pattern in patient muscle biopsies 

(Zoltowska et al., 2013). Furthermore, treatment with tunicamycin, an N-glycosylation 

inhibitor was also found to reduce the levels of AChR expression in vitro (Merlie et al., 

1982; Belaya et al., 2012). Further investigation has shown that silencing GFPT1 results 

in a reduction in AChR α, δ, and ε subunits (Zoltowska et al., 2013). This observation is 

consistent with the idea that glycosylation is an essential process for the correct 

assembly and export of the AChR pentamer from the ER. The CMS phenotype was 

examined in zebrafish embryos using morpholino-mediated knockdown of gfpt1. 

Embryos show a delayed onset of NMJ maturation alongside aberrant motility and 

swimming behaviour (Senderek et al., 2011). Together these data reinforce the 

importance of GFPT1 in normal formation of the NMJ. 
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There is currently no knockout mouse model for studying the role of GFPT1 in muscle 

and NMJ structure and function. A Gfpt1 knockout mouse model will provide an 

invaluable tool for studying numerous pathological changes occurring because of 

glycosylation defects. 

 

1.9 The use of mouse models for studying CMS   

Mouse models serve as better tools for studying CMS related gene mutations than in 

vitro and zebrafish models due to the disparity between the latter and the patients. 

Morphological abnormalities in zebrafish can only be studied in the developmental 

phenotype as morpholino knockdowns that are currently available are only effective for 

4-5 days. This model therefore does not allow for long-term progression studies.  

There are many advantages of using mouse models over other model organisms. There 

is ~99% genetic homology between mice and humans (Waterston et al., 2002; 

Vandamme, 2014), whereas zebrafish display ~70% genetic homology to humans 

(Kerstin et al., 2013). Furthermore, the structural components and functional properties 

encompassing mouse muscle closely resembles that of human muscle. Knockout mice 

provide valuable information about the function of a gene and the pathways it is 

involved in. The development of transgenic mice has been greatly facilitated by 

advancements in technology that have made genetically modified mice widely 

available.  

In addition to the parameters measured in vitro, mouse models allow phenotype analysis 

and observation of general muscle pathology, examination of whole NMJ and testing 

for fatigue, which can be correlated to phenotypes seen in CMS patients. More 

importantly, they enable the assessment and development of therapeutic compounds.  

 

1.10 Strategies for generating knockout mouse models 

Advancements in mouse mutagenesis has made the mouse model a valuable tool for 

studying gene function. Numerous techniques have been developed to create knockin 

and knockout mouse models of human disease. Here we describe the gene targeting 

strategies used to modify Gfpt1 in the mouse genome for this study.     



27 
 

 

1.10.1 Gene targeting strategies 

In a germline knockout strain, the target gene is inactivated in all cells throughout 

development (Figure 1.7A). Often knockout mice homozygous for the null allele may 

result in embryonic or postnatal lethality due to unpredicted activity of that gene and 

whether it is essential for the viability of the mice. One method to overcome this 

problem is using a conditional knockout strategy which allows inactivation of the gene 

in specific cell types. In conditional knockout strains, the gene of interest is modified in 

the germline, but is only inactivated following intervention (Figure 1.7 B). A third 

strategy often used in an inducible-Cre transgenic mouse model. This model allows for 

spatial and temporal regulation of Cre-mediated recombination which can be activated 

by in vivo administration of tamoxifen (Figure 1.7C), (Friedel et al., 2011). 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Gene targeting strategies. (A) Germline inactivation of a gene results in 

inactivation of all cells. (B) Conditional mutants demonstrate knockout of a gene in 

targeted tissues only. (C) Selected cells are inactivated following administration of 

tamoxifen. Inactivation of genes are shown in grey. This image was adapted from 

(Friedel et al., 2011). 
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1.10.2 Site specific recombination using Cre/loxP technology  

One method of gene targeting is site-specific recombination widely used to carry out 

deletions, translocations and inversions at specific sites in DNA. This method relies on 

site-specific recombinases, Cre recombinase derived from bacteriophage P1 and 

flippase (FLP) recombinase derived from yeast which recombine DNA between 

identical loxP and FRT sites respectively. The 34 base pair recombinase target site 

sequence consists of an asymmetric 8bp sequenced flanked by 13bp palindromic 

sequences. The orientation of the loxP and FRT sites is important for determining the 

type of recombination (Nagy et al., 2000; Skarnes et al., 2011). The forthcoming 

chapters will further describe the Cre/loxP techniques used to generate a knockout 

mouse model in this study.  
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1.11 Statement of aims 

 

Chapter 3  

To generate a GFPT1 deficient mouse model using Cre/loxP technology. The efficiency 

and specificity of Cre activity will be assessed to verify GFPT1 deficiency.  

 

 

Chapter 4  

To observe the viability of homozygous and heterozygous Gfpt1tm1a and Gfpt1tm1b mice. 

Viable mouse models will be investigated to see whether they display phenotypical 

abnormalities. The Gfpt1tm1b allele will be used to track GFPT1 expression in mouse 

muscle using the lacZ-reporter. 

 

Chapter 5  

To further characterise the muscle-specific Gfpt1 knockout mouse model. The 

morphology of the synapse will be studied paying attention to the clustering properties 

of AChRs. This will be tested using immunohistochemical labelling of NMJs. Ultra-

structural analyses will be used to identify any abnormalities at the NMJ and in muscle. 

Functional tests will be used to assess muscle strength. Any failure of efficient assembly 

and maintenance of the structures at the synapse will be investigated. Proteomic studies 

will enhance our understanding of the pathophysiological changes in muscle because of 

GFPT1 deficiency.  
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Chapter 2. Material and methods 

 

2.1 Standard molecular biology techniques 

 

2.1.1 DNA extractions  

Ear clips and tail tips were digested in 0.5 mg/ml Proteinase K in DNA digestion buffer 

(Table 2.1) and incubated at 55˚C overnight. The next day 700 µl of 

phenol/chloroform/isoamyl alcohol was added and mixed vigorously. Samples were 

centrifuged at 14,000 rpm for 5 minutes. The supernatant was mixed with 100% ethanol 

and incubated at -80˚C for 2 hours. Samples were centrifuged at 14,000 rpm for 20 

minutes at 4˚C. Supernatants were discarded and pre-cooled 75% ethanol was added to 

each sample. Samples were centrifuged at 8,000 rpm for 5 minutes at 4˚C. Supernatants 

were discarded and pellets were suspended in TE buffer.   

 

DNA was extracted from muscle and heart tissues using a DNeasy Blood and Tissue kit 

(Qiagen). 25 mg of tissue was minced and transferred to a microcentrifuge tube. 

Samples were processed according to the manufacturer’s instructions.  

 

2.1.2 RNA extractions 

Tissues were homogenised with 1ml Trizol and incubated for 5 minutes at room 

temperature. Samples were then centrifuged at 12,000 g for 10 minutes at 4°C. The 

supernatant was mixed with 200 μl chloroform and samples were incubated for 3 

minutes at room temperature. Next, samples were centrifuged at 12,000 g for 15 

minutes at 4°C. The resulting upper aqueous phase was transferred to a fresh 

microcentrifuge tube and mixed with 500 μl of isopropanol. The samples were 

incubated for 10 minutes at room temperature and centrifuged at 12,000 g for 15 

minutes at 4°C. The supernatant was discarded. The remaining RNA pellet was washed 

with 500 μl 70% ethanol in DEPC-treated H2O and centrifuged at 12,000 g for 5 

minutes at 4 °C. The supernatant was discarded and the pellet was air dried. The pellet 

was resuspended in 30 μl DEPC-treated H2O.  
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2.1.3 Reverse transcription cDNA synthesis 

Reverse transcription was performed using a High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) according to the manufacturer’s guidelines.  

The reverse transcription master mix was prepared in a 10 μl reaction mixture listed 

below.  

 

 

 

 

 

 

 

 

10 μl of RNA was mixed with 10 μl of the reverse transcription master mix and the 

samples were placed in a thermocycler.   

The thermocycler was set to the following program:    

Step 1: 10 minutes at 25°C 

Step 2: 120 minutes at 37°C 

Step 3: 5 minutes at 85°C 

Step 4: ∞ at 4°C 

 

2.1.4 DNA and RNA measurement 

DNA and RNA concentrations were determined using a NanoDrop spectrophotometer 

(Thermo Scientific, NanoDrop 2000). 

 

 

 

 

 

 

 

 

 

 

 

Component Volume/Reaction  

10X RT Buffer 2.0 µl 

25X dNTP mix (100 mM) 0.8 µl 

10X RT Random Primers 2.0 µl 

MultiScribe™ Reverse Transcriptase 1.0 µl 

Nuclease-free H2O 4.2 µl 

Total per reaction 10 µl 
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2.1.5 Genotyping and RT-PCR 

Genotyping was performed by polymerase chain reaction (PCR) using genomic DNA 

isolated from ear punches and muscle tissue from adult mice, and tail tips from embryos 

and neonatal mice. RNA isolated from ear punches from adult mice was used for 

reverse transcription polymerase chain reaction (RT-PCR).  

 

2.1.6 Polymerase chain reaction 

PCR amplification was conducted using a thermal cycler (SensoQuest, Labcycler 48). 

Primers used are listed in Table 2.2, 2.3 and 2.4. The PCR reaction was prepared in a  

25 μl reaction mixture as listed below. 

 

Component  Volume (25 μl)  

dNTP mix 1 μl 

10x PCR Buffer 2.5 μl 

PCR Enhancer  2 μl 

Forward primer (10 µM) 1 μl 

Reverse primer (10 µM) 1 μl 

Template DNA (50 ng/μl) 1 μl 

Moltaq DNA polymerase 1 μl 

ddH2O 15.5 μl 

Total  25 μl 

 

 

PCR reactions were run using the following program: 

 

1. Initial denaturation: 94 °C for 5 minutes 

2. Denaturation: 94 °C for 30 seconds 

3. Annealing: 60 °C for 30 seconds 

4. Extension: 72 °C for 30 seconds 

5. Last extension: 72 °C for 5 minutes 

39 cycles for steps 2-4. Hold at 4 °C 

 

 

 

 

 



33 
 

 

2.1.7 Agarose gel electrophoresis  

0.8-2% agarose gels were prepared containing 1 x Tris-Acetate-EDTA (Table 2.1) and 

SafeView nucleic acid stain (NBS Biologicals). 5 µl of samples were mixed with 6x 

Blue/Orange loading dye (Promega) and loaded onto gels. Gels were run at 80V for 1 

hour. DNA was visualised under UV light using GelDoc-it 310 Imaging System (UVP). 

The size of the DNA fragments were measured relative to a 100 bp DNA ladder 

(Promega). 

 

2.1.8 DNA purification by gel extraction 

For the isolation and purification of a single DNA band, the desired product was 

visualised and excised under a UV transilluminator. The band was extracted and 

purified from the agarose gel using QIAquick Gel Extraction Kit (Qiagen) according to 

manufacturer’s instructions.  

 

2.1.9 DNA sequencing and alignments  

Sequencing was carried out by sequencing service MWG Biotech in Ebersberg, 

Germany. 15 μl of purified plasmid DNA at a concentration of 100 ng/μl was sent with 

15 μl of the appropriate primer at 5 pmol/μl. Sequence alignments were carried out 

using the online Basic Local Alignment Search Tool (BLAST).  

 

 

 

2.2 Immunofluorescence and histology  

 

2.2.1 Sample preparation 

Mice were euthanized via cervical dislocation. Tissues were dissected and mounted onto 

labelled cork disks. Tissues were covered in O.C.T compound and frozen by immersion 

in isopentane cooled on dry ice. Samples were stored at -80˚C until sectioning. 
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2.2.2 Cryosectioning tissues  

10 μm serial sections of frozen tissues were cut with a cryostat (Microm HM 560, Zeiss) 

and mounted on Superfrost Plus Slides (VWR). Slides were wrapped in cling film and 

stored at -80 °C.    

 

2.2.3 Immunofluorescence labelling of tissue sections 

Slides were thawed at room temperature and sections were circled with an ImmEdge 

Hydrophobic Barrier PAP Pen (Vector Laboratories). Sections were fixed in 4% PFA 

(Paraformaldehyde, Sigma) in 1x PBS (Phosphate Buffered Saline, Gibco) for 5 

minutes and permeabilised with 0.1% Triton X-100 (Sigma) in 1x PBS for 15 minutes. 

Sections were subsequently blocked with 4% BSA (Bovine Serum Albumin, Sigma) in 

1x PBS for 1 hour at room temperature. Sections were incubated with 50 μl primary 

antibody diluted in blocking medium (Table 2.1) at 4 °C overnight. The next day 

sections were incubated with a secondary antibody diluted in blocking medium for 1 

hour at room temperature. Sections were washed several times with 1x PBS between 

incubation periods. Sections were mounted in Vectashield mounting medium with 4,6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories).   

 

2.2.4 Whole-mount staining of adult muscle 

Whole muscles were dissected and fixed in 1% PFA in 0.1 M phosphate buffer for 30 

minutes. They were then incubated with α-bungarotoxin, Alexa Fluor 594 conjugate 

(Life Technologies) in Liley’s solution (Table 2.1) for 1 hr, and washed thoroughly. 

Muscle fibres were teased into small bundles during washes. Muscles were 

permeabilised in ethanol followed by methanol (10 minutes at -20˚C each), followed by 

incubation in 0.1% Triton-X-100 in PBS for 15 minutes at room temperature. Tissues 

were washed thoroughly in PBS. Muscles were incubated with anti-neurofilament 

(1:200) and anti-synaptophysin (1:100) antibodies in PBS containing 3% BSA and     

0.1 M lysine (Sigma-Aldrich). The next day, muscles were washed thoroughly in PBS 

and incubated in goat anti-rabbit 488 (1:500) and goat anti-mouse 488 (1:500) 

secondary antibodies for 3 hours at room temperature. Bundles were washed in PBS 
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overnight. The next day they were mounted on slides with Vectashield mounting 

medium with DAPI (Vector Laboratories).  

 

2.2.5 In vivo visualization and measurement of AChR turnover rate 

Mice were administered an intramuscular injection of α-bungarotoxin 488 (green) in the 

tibialis anterior (TA) muscle. This was repeated using α-bungarotoxin 647 (red) 10 days 

later to label the old and new receptor pool respectively. Following the second 

administration, superficial TA muscles were examined immediately. Briefly, 3D stacks 

at 512 × 512 pixel resolution were taken of α-bungarotoxin 488 signals (“old 

receptors”) and of α-bungarotoxin 647 signals (“new receptors”) using a 63x objective 

and confocal in vivo imaging. The 3D stacks were automatically segmented using a 

custom-made algorithm, and pixel signal intensity values for each channel were 

extracted. The fraction of pixels per NMJ was calculated.  

 

2.2.6 Hematoxylin and eosin staining  

Frozen tissue sections were air-dried for 30 minutes and stained with Hematoxylin 

Harris (VWR) for 10 minutes. Slides were washed in running tap water for 1 minute, 

dipped in 1% HCl (Hydrochloric Acid, Fluka; diluted in 70% ethanol) for 5 seconds, 

and rinsed in tap water for 30 seconds. Slides were immersed in eosin for 30 seconds 

and rinsed in running tap water for 30 seconds. Slides were dipped in an ascending 

alcohol series of 70%, 90% and 100% ethanol for 5 seconds each and placed in 

Histoclear (National Diagnostics) twice for 2 minutes each. The slides were then 

mounted with DPX Mounting Medium (LAMB). 

 

 

2.2.7 β-galactosidase staining of whole mouse embryos  

Pregnant mice were sacrificed via cervical dislocation. The embryo sack was removed 

and immediately placed in cold PBS on ice. Embryos were separated from their 

extraembryonic membranes, washed twice with cold PBS and placed in fixing solution 

(Table 2.1) for 15 minutes at 4°C. Embryos were washed 3 times in wash buffer (Table 

2.1) at room temperature. Embryos were gently shaking during fixation and wash steps. 
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5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) staining solution (Table 

2.1) was prepared fresh, placed on ice for 10 minutes and the precipitate was spun down 

for 5 minutes. Embryos were incubated with X-gal staining solution between 4 hours to 

overnight at 37°C in the dark. Embryos were washed twice with wash buffer and fixed 

in 1% PFA overnight. The next day embryos were stored in fresh 1% PFA until 

imaging.  

 

 

2.2.8 β-galactosidase staining of adult mouse tissues 

Frozen tissue sections (10 µm) were air dried for 30 minutes and fixed in 1.5% 

gluteraldehyde in PBS pH 7.4 for 1 minute and washed briefly in pure H2O 3 times 

followed by PBS once. Sections were incubated overnight with X-gal staining solution 

(Table 2.1) at 37°C in a humidified chamber. Following the overnight incubation, 

sections were washed three times for 5 minutes each with PBS. Samples were mounted 

with DPX mounting medium.  

 

 

2.3 Electron microscopy 

 

2.3.1 Transmission electron microscopy 

Fresh tissue samples of intercostal muscles were fixed in 3.9 % buffered glutaraldehyde, 

osmicated in 1 % phosphate-buffered osmiumtetroxyde, dehydrated and embedded in 

epoxy resin. 1 μm semithin sections were stained with toluidine blue. Ultrathin sections 

(100 nm) of at least one transverse and one longitudinal block per animal were 

contrasted by uranyl acetate and lead citrate as previously described (Weis et al., 1995). 

Electron microscopy images were recorded using a CM10 transmission electron 

microscopy (Philips, Amsterdam, The Netherlands). 
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2.4 Protein extraction and western blotting    

 

2.4.1 Preparation of lysates 

Whole tissues were homogenised in 400 µl lysis buffer (Table 2.1) using a tissue raptor 

(Qiagen). The lysate was transferred to an eppendorf tube and spun at 700 g and 4 °C 

for 10 minutes. The supernatant was transferred into a clean eppendorf tube and spun 

down at 10,000 g for 30 minutes. The supernatant containing the cytosol fraction was 

collected. The resulting pellet containing membrane protein was lysed in 50 µl lysis 

buffer.  

 

 

2.4.2 Protein quantification 

Protein concentration was measured using the Qubit Fluorometer (Invitrogen by Life 

Sciences) according to the manufacturer’s recommendations.  

 

2.4.3 SDS-PAGE and western blotting   

25 µg of protein in a final volume of 20 µl was placed in an eppendorf tube. 7.5 µl 

NuPAGE LDS Sample Buffer 4x (Life Technologies) and 3 µl NuPAGE Reducing 

Agent 10x (Life Technologies) were added to the sample and denatured on a heat block 

at 95 °C for 5 minutes. 10 µl Chameleon Duo Ladder (Licor) and the total volume of 

samples (30 µl) were loaded on Novex NuPAGE 4-12% Bis-Tris Gels (Life 

Technologies), and the tank (Life Technologies, Novex Mini-Cell) was filled with 

MOPS running buffer. The gel was run at 200 V for 45 minutes. Proteins were 

transferred onto a PVDF membranes (Licor) in a transfer tank (Mini Trans-Blot 

Electrophoresis Transfer Cell, BIO-RAD). The chamber was filled with chilled 1x 

transfer buffer (Table 2.1) and surrounded by ice at 350 mA for 1.5 hours. Following 

transfer, the membrane was soaked in methanol for 1 minute then rinsed in ultra-pure 

water. The membrane was blocked in 1x TBS (Table 2.1) followed by an incubation in 

TBS blocking buffer (Licor) on a shaker for 1 hour. The membrane was incubated with 

primary antibodies diluted in TBS blocking buffer overnight. The next day primary 

antibodies were drained off and the membrane was rinsed three times in 1x TBS-T 

(Table 2.1) for 5 minutes each. The membrane was incubated with secondary antibodies 

diluted in TBS blocking buffer containing 0.2% tween and 0.01% SDS, at room 
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temperature on a shaker for 1 hour in the dark. Membranes were washed with TBS-T 3 

times for 5 minutes each, followed by a rinse in TBS. Protein bands were detected with 

an Odyssey Family Imaging System (Licor Biosicences). 

 

A list of primary antibodies and dilutions used for these experiments are shown in 

Table 2.5.  

 

2.5 Proteomic profiling experiments  

 

2.5.1 Cell lysis, sample preparation and trypsin digestion 

Approximately 5 mg of muscle tissue was lysed in 500 µl lysis buffer (Table 2.1) using 

a manual glass grinder, and samples were centrifuged for 5 minutes at 4°C and 5000 g. 

Protein concentration of the supernatant was determined using a BCA assay (Thermo 

Fisher Scientific, Dreieich, Germany) (according to the manufacturer’s protocol). 

Cysteines were reduced by addition of 10 mM dithiothreitol (Roche Diagnostics) and 

subsequent incubation at 56°C for 30 minutes. Free thiol groups were alkylated with   

30 mM iodoacetamide (Sigma Aldrich) at room temperature in the dark for 30 minutes. 

Sample preparation were performed using filter-aided sample preparation (FASP) 

(Wisniewski et al., 2009) with some minor changes. Briefly, 100 µg of protein lysate 

was diluted 10-fold with freshly prepared buffer composed of 8 M urea (Sigma Adrich) 

and 100 mM Tris-HCl (pH 8.5) (Kollipara and Zahedi, 2013) and placed on a Microcon 

centrifugal device (30 kDa cut off). The filter was centrifuged at 13,500 g at room 

temperature for 15 minutes (all the following centrifugation steps were performed under 

the same conditions). Three washing steps were carried out with 100 µl of 8 M urea/ 

100 mM Tris-HCl (pH 8.5). For buffer exchange, the device was washed three times 

with 100 µl of 50 mM NH4HCO3 (pH 7.8). 100 µl of digestion buffer (Table 2.1) was 

added to the concentrated proteins and the samples were incubated at 37°C for 14 hours. 

Resulting tryptic peptides were recovered by centrifugation with 50 µl NH4HCO3 (50 

mM) followed by 50 µl of ultra-pure water. Finally, acidification of the peptides was 

achieved by addition of 10% trifluoroacetic acid (Biosolve, Valkenswaard, The 

Netherlands(v/v)). The digests were quality controlled as described previously 

(Burkhart et al., 2012).  
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2.5.2 LC-MS/MS analysis 

Samples were measured using an Ultimate 3000 nano RSLC system coupled to an 

Orbitrap Fusion Lumos mass spectrometer (both Thermo Scientific) and analyzed in a 

randomized order to minimize systematic errors. Briefly, peptides were pre-

concentrated on a 100 µm x 2 cm C18 trapping column for 10 minutes using 0.1 % 

trifluoroacetic acid (v/v) at a flow rate of 20 µl/min followed by separation on a 75 µm 

x 50 cm C18 main column (both Pepmap, Thermo Scientific) with a 120 minutes LC 

gradient ranging from 3-35 % of 84 % acetonitrile (Biosolve, Valkenswaard, 

Netherlands), 0.1 % formic acid (Biosolve, Valkenswaard, Netherlands (v/v) at a flow 

rate of 230 nl/min. MS survey scans were acquired in the Orbitrap from 300 to 1500 

m/z at a resolution of 120000 using the polysiloxane ion at m/z 445.12003 as lock mass 

(Olsen et al., 2005), an automatic gain control target value of 2.0x105 and maximum 

injection times of 50 ms. Top speed most intense signals were selected for 

fragmentation by HCD with a collision energy of 30 % and MS/MS spectra were 

acquired in the Orbitrap using a target value of 2.0x103 ions, a maximum injection time 

of 300 ms and a dynamic exclusion of 15 s.   

 

 

2.6 Microscopy and image analysis  

 

2.6.1 Microscopy  

Whole-mount immunofluorescent samples were visualised using a Nikon A1R laser 

inverted scanning confocal microscope. Z-stack images were acquired and processed 

using NIS-elements AR 4.20.02 software. Images of histological sections were captured 

using a Zeiss Axioplan brightfield imaging microscope and AxioVision software. 

Embryos were imaged using a Zeiss stereomicroscope and AxioVision software.     

 

2.6.2 Image analysis 

Image analysis software ImageJ was used for the following: (i) quantification of AChR 

cluster area, (ii) quantification of muscle fibre cross-sectional area, (iii) to measure the 

relative expression levels of proteins in immunoblots using the gel analysis tool.  
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2.7 Statistical analysis 

Statistical analyses were performed with IBM SPSS Statistics 22.0 software. Data were 

analysed using a two-sample t-test. An independent sample Mann–Whitney U test was 

performed to compare myofibre size variation. Proteomic data were analysed using 

analysis of variance (ANOVA) (Progenesis Stats). p<0.05 was considered statistically 

significant. 

 

 

2.8 Transgenic mouse models 

 

2.8.1 Animal care and husbandry 

Mice used for this study were bred in the animal facility at the Functional Genomics 

Unit, Newcastle University, Institute of Genetic Medicine (Table 2.6). Breeders were 

housed as pairs of one male and one female, or trios of one male and two females. 

Offspring were housed together in groups of 2-6. All procedures were approved by the 

Home Office and were carried out under Animals Scientific Procedures Act of 1986 

under project licence PPL70/8538, and personal licence PIL I1D9CFB05. AChR 

turnover experiments were approved by German authorities and were conducted 

according to national law (TierSchG7).  

  

 

2.9 In vivo experiments 

 

2.9.1 Four limb inverted screen test  

Animals were suspended from an inverted wire grid and their latency to release the grid 

was recorded. Mice were allowed to hold on for a fixed maximum time of 600 seconds. 

Mice that released their grasp before reaching 600 seconds were allowed to rest for a 

period of 5 minutes and were given two more tries. The maximum hang time was used 

for further analysis. Data was collected from mice as early as 6 weeks old. Animals 

were tested once a week over a period of 6 months. This procedure was carried out in 

accordance with TREAT-NMD protocols (Carlson, 2011). 
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2.9.2 Ex vivo isometric tension analysis 

3 month old mice were sacrificed via cervical dislocation and a strip of diaphragm 

muscle from the central tendon to the ribs was excised immediately and assembled in a 

tissue organ bath (Aurora Scientific) filled with oxygenated Krebs- Ringer solution 

(Table 2.1) at pH 7.4, maintained at 22°C. One end of the diaphragm was attached to a 

300C dual-mode servomotor transducer (Aurora scientific) and the central tendon 

secured to a rigid post using 4-0 surgical thread. Diaphragm muscles were stimulated by 

supramaximal 0.2 ms square wave pulses delivered via platinum electrodes positioned 

on either side of the muscle. Data acquisition and control of the servomotor was 

conducted using a LabView based DMC program (Dynamic muscle control and Data 

Acquisition; Aurora Scientific, Version 3.2). We established a force-frequency 

relationship and assessed the muscles resistance to fatigue. The fatigue protocol 

involved 100 isometric contractions at a frequency of 150 Hz. This procedure was 

carried out in accordance with TREAT-NMD protocols (Barton, 2008). 

 

2.9.3 In situ force measurement 

Mice were anaesthetized with an intraperitoneal injection of 

Hypnorm®/Hypnovel®/water (1:1:2) at a dosage of 6 µl/g. Anaesthesia was maintained 

by mask inhalation of isoflurane vaporized at concentrations of up to 4% during surgical 

procedures and at 0.8-1.3% throughout the rest of the procedure. The distal tendon of 

the TA muscle was exposed and freed from surrounding fascia and the tendon tied with 

4-0 surgical braided silk. The sciatic nerve was exposed and all branches were severed 

except for the common peroneal nerve (CPN) that innervates the TA. A piece of silk 

thread was secured on the sciatic nerve and the nerve was transected proximal to this 

ligature. The mouse was placed on a heated stage (Aurora scientific) to maintain body 

temperature at 37˚C. The TA tendon was attached to the lever arm of a 300C dual-mode 

servomotor transducer (Aurora scientific). Contractions of the TA muscle were 

stimulated via supramaximal square-wave pulses of 0.02 ms (701B Stimulator; Aurora 

Scientific) to the distal part of the CPN via bipolar platinum electrodes. Data acquisition 

and control of the servomotor was conducted using a LabView based DMC program 

(Dynamic muscle control and Data Acquisition; Aurora Scientific, Version 3.2). We 

established the force-frequency relationship and assessed the susceptibility of the TA 
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muscle to fatigue. At the end of the experiment muscles were excised and weighed. This 

procedure was carried out in accordance with TREAT-NMD protocols (Lynch, 2009). 
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Reagent  Application Recipe  Supplier 

Blocking 

buffer  

Immunofluorescence  2.5 % BSA and 5 % goat serum in 0.5 % Triton 

X-100/PBS) 

BSA (NBS Biologicals), goat serum (Thermo 

Scientific), Triton X-100 (Sigma) 

Digestion 

Buffer  

DNA extraction 50 mM Tris, 20 mM NaCl, 1 mM EDTA, 1% 

SDS. pH 8.  

All chemicals from Sigma-Aldrich 

Digestion 

Buffer  

Proteomic profiling 

experiments 

Trypsin (Promega) (1:25 w/w, protease to 

substrate), 0.2 M GuHCl and 2 mM CaCl2 in 50 

mM NH4HCO3 (pH 7.8) 

Sequencing grade modified trypsin (Promega, 

Madison, WI USA), Benzonase®, CaCl2 (Merck, 

Darmstadt). All other components from sigma. 

Fixing Solution  β-galactosidase 

Staining Mouse 

Embryos   

0.1 M phosphate buffer, 2% PFA  

 5 mM EGTA pH 8, 0.2% glutaraldehyde, 2 

mM MgCl2  

All chemicals from Sigma-Aldrich 

Kreb’s-

Ringer’s 

Solution  

Ex vivo isometric 

tension analysis 

154 mM NaCl, 5 Mm KCl, 2 mM CaCl2,   1 

mM MgCl2, 11 mM Glucose, 5 mM HEPES 

All chemicals from Sigma-Aldrich  

Liley’s 

Solution  

Immunofluorescence  12 mM NaHCO3, 4 mM KCl, 1 mM KH2PO4, 

138.8 mM NaCl, 1 mM MgCl2,       2 mM CaCl2, 

11 mM Glucose  

All chemicals from Sigma-Aldrich  

Lysis Buffer  Proteomic profiling 

experiments 

50 mM Tris-HCl (pH 7.8), 150 mM NaCl, 1 % 

SDS, and cOmplete Mini, EDTA-free protease 

inhibitor 

Tris-HCL (Applichem Biochemica, Darmstadt, 

Germany), NaCl (Merck, Darmstadt), Sodium 

dodecyl sulfate (Carl Roth, Karlsruhe, Germany), 

EDTA-free protease inhibitor (Complete Mini) 

(Roche Diagnostics) 

Lysis Buffer  Western Blots RIPA Buffer, 1 tablet cOmplete ULTRA 

Tablets, Mini, EDTA-free protease inhibitor 

RIPA buffer (Thermo Scientific), protease inhibitor 

(Roche)  
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Table 2.1. Reagents and buffers used in this project 

Reagent  Application Recipe  Supplier 

TBS (10 X) and 

TBS-T 

Western Blot  24 g Tris-HCl, 5.6 g Tris base, 88 g NaCl, 

Dissolve in 900 mL distilled water. For TBST-

add 0.1% Tween-20. 

 

All chemicals from Sigma-Aldrich 

Transfer Buffer  Western Blot 25 mM Tris, 190 mM glycine, 20% methanol. 

pH 8.3 

All chemicals from Sigma-Aldrich 

Tris-Acetate-

EDTA  

 

Agarose gel, gel 

electrophoresis 

40 mM Tris, 20 mM acetic acid, and 1mM 

EDTA 

All chemicals from Sigma-Aldrich 

Wash Buffer  β-galactosidase 

Staining of Whole 

Mouse Embryos   

0.1 M phosphate buffer, 0.01 % Na-

deoxycholate, 0.02% Igepal CA-630, 2 mM 

MgCl2  

 

All chemicals from Sigma-Aldrich 

X-gal staining 

solution  

β-galactosidase 

Staining of Whole 

Mouse Embryos 

10 mM Potassium Ferricyanide, 10 mM 

Potassium Ferrocyanide, 1 mg/ml X-Gal (made 

up in wash buffer) 

All chemicals from Sigma-Aldrich 

X-gal staining 

solution 

β-galactosidase 

Staining of adult 

mouse tissues 

5 mM Potassium Ferricyanide, 5 mM Potassium 

Ferrocyanide, 1 mM MgCl2 and 2mg/ml of X-gal 

All chemicals from Sigma-Aldrich 
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Table 2.2. Primers used for genotyping 

 

 

  

 

 

 

 

 

 

 

 

 

 

Table 2.3. Combinations of primers used for genotyping. Forward primers: 5arm-

WTF (F1), SV40-FRT-F (SV40F), Transgene Forward (CreF), FlpE-F1 (FlpE-F1). 

Reverse primers: Crit-WTR (R1), 5mut-R1 (mutR1), 3arm-WTR (R2), Cre R (CreR), 

FlpE1-R1 (FLpE1-R1).            

 

 

Primer name  Primer Sequence (5’-3’) 

5arm-WTF CAT GCG TGA ACC TGT GTA CA 

SV40-FRT-F            CGC GTC GAG AAG TTC CTA TT  

Crit-WTR GTC AGA GTT TGC TCA CAT CA 

5mut-R1     GCT TCA AGG ATA AGG CTT CAA G 

3arm-WTR    GGG TTT CGT AAT TGG AAG AG  

FlpE-F1 GGA CCG GCA ATT CTT CAA GCA 

FlpE-R1 CCA CGG CAG AAG CAC GCT TAT 

Transgene Forward TAA GTC TGA ACC CGG TCT GC 

Cre R GTG AAA CAG CAT TGC TGT CAC TT 

Genotype Forward Primer Reverse Primer  Band Size  

Wild type 5arm-WTF  Crit-WTR ~310bp 

All targeted alleles 5arm-WTF 5mut-R1     ~170bp 

Gfpt1tm1a SV40-FRT-F            3arm-WTR    ~910bp 

Gfpt1tm1b SV40-FRT-F            3arm-WTR    ~140bp 

Gfpt1tm1c 5arm-WTF Crit-WTR ~500bp 

Gfpt1tm1d 5arm-WTF 3arm-WTR    ~290bp 

Cre Transgene Forward Cre R ~450bp 

Flp FlpE-F1 FlpE-R1 ~230bp 
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Table 2.4. Primers used for RT-PCR 

 

 

Table 2.5. Antibodies used in this study  

Primer name  Primer Sequence (5’-3’) 

Exon6F TGA AAC AGA CAC AGA AAC CAT TGC C 

NeoF GAA TGG GCT GAC CGC TTC C 

NeoR GCT CGC GCC AGC CGA ACT G 

Exon7R GGC GCC TTT GCT CTT GTG 

Exon8R CGG AGT GAA CAT AAG CTT TC 

Exon8aR CAT GGT GGG GAT CAC AGG CAG 

Exon7/8R CAG TTG GCA CAA GGC GAG GTA 

Exon8/8aR GTA CAG AAC AGCT AGG ACT C 

Exon8/9R GTA CAG AAC AGG CAA AGA CAA G 

Antibody Description Application in this 

study  

Supplier 

Anti-Neurofilament 

heavy polypeptide 

Mouse 

monoclonal 

IHC (1:200) Abcam 

Anti-Synaptophysin Rabbit polyclonal IHC (1:100) Fisher Scientific 

Anti-GFPT1 Rabbit polyclonal WB (1:500) Proteintech 

Anti-GAPDH Mouse 

monoclonal 

WB (1:1000) Abcam 

Anti-Glypican 1 Rabbit polyclonal WB (1:1000) Abcam 

Anti-MuSK Rabbit polyclonal WB (1:1000) Abcam 

Anti-alpha Actinin  Mouse 

monoclonal 

WB (1:250) Sigma 

Alexa Fluor® 594  α-Bungarotoxin 

conjugate 

IHC (1:500) Life 

Technologies 

Alexa Fluor® 488  Goat anti-Mouse IHC (1:500) Life 

Technologies 

Alexa Fluor® 488 Goat anti-Rabbit IHC (1:500) Life 

Technologies 

IRDye® 800CW  Donkey anti-

Mouse IgG 

WB (1:15000) Licor 

IRDye® 680CW  Goat anti-Rabbit 

IgG 

WB (1:15000) Licor 

Alexa Fluor® 647  α-Bungarotoxin 

conjugate 

AChR Turnover 

(25 pmol) 

Life 

Technologies 

Alexa Fluor® 488 

 

α-Bungarotoxin 

conjugate 

AChR Turnover 

(25 pmol) 

Life 

Technologies 
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Table 2.6. Mice used in this study  

 

 

Strain name  Origin  

Wild type C57BL/6  MRC Mammalian Genetics Unit, Harwell 

C57BL/6NTac-Gfpt1tm1a(EUCOMM)Wtsi/H MRC Mammalian Genetics Unit, Harwell 

C57BL/6NTac-Gfpt1tm1b(EUCOMM)Wtsi/H  MRC Mammalian Genetics Unit, Harwell 

C57BL/6NTac-Gfpt1tm1c(EUCOMM)Wtsi/H  MRC Mammalian Genetics Unit, Harwell 

C57BL/6NTac-Gfpt1tm1d(EUCOMM)Wtsi/H  Functional Genomics Unit 

B6.FVB(129S4)-Tg(Ckmm-cre)5Khn/J The Jackson Laboratory 

B6;SJL-Tg(ACTFlpe)9205Dym/J FGU- originally from The Jackson 

Laboratory  

B6;129S4-Gt(ROSA)26Sortm1Sor/J FGU- originally from The Jackson 

Laboratory 

http://www.mousebook.org/stocks/c57bl6ntac-gfpt1h
http://www.mousebook.org/stocks/c57bl6ntac-gfpt1h
http://www.mousebook.org/stocks/c57bl6ntac-gfpt1h
http://www.mousebook.org/stocks/c57bl6ntac-gfpt1h
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Chapter 3: Generation of transgenic mice 

 

3.1 Introduction  

Over the years the use of rodents to model human disease has become increasingly 

popular. Rodents serve as powerful tools for studying disease progression, 

understanding the roles of specific genes in biological pathways, and preclinical 

screening and safety testing of new compounds. The advantages of using mice over 

other model organisms are numerous. Genomic studies have established that the house 

mouse (Mus musculus) exhibits a remarkable 99% genetic homology to humans 

(Waterston et al., 2002; Vandamme, 2014). Moreover, due to their small size, short 

gestation period and ease of maintenance in the laboratory, mice have become 

increasingly desirable models to use for scientific research.  

Advancements in technology which enable genetic manipulation of the mouse genome 

and the availability of a substantial number of knockin and knockout strains has rapidly 

enhanced our understanding of the pathology behind human diseases and the 

development of therapies (Vandamme, 2014). Deciding whether a germline or 

conditional knockout mouse is a more appropriate model for studying gene function 

depends on the viability of transgenic mice and the parameters that you wish to 

investigate. The Cre/loxP strategy utilises gene-trap mutagenesis which facilitates 

modification of the knockout first allele in crosses to transgenic Flp and Cre mice to 

generate null or conditional tissue-specific alleles (Skarnes et al., 2011; Heffner et al., 

2012). As of yet, there is currently no Gfpt1 knockout mouse model. A GFPT1 deficient 

mouse model will provide an invaluable tool in which to study numerous pathological 

changes occurring as a result of glycosylation defects. In this study we breed mice that 

will generate a complete Gfpt1 knockout mouse model. Offspring that inherit the lacZ 

reporter gene will allow us to track GFPT1 expression during development and in the 

adult mouse. One of the challenges we face is the viability of the Gfpt1 knockout 

mouse. Therefore, we also generate a conditional knockout mouse model which will 

overcome the problem of embryonic or early postnatal lethality in mice that harbour 

both copies of the null allele.   

A full understanding of Cre mediated excision of one or more exons relies on a well-

characterised Cre-line. Several reports have shown unspecific activity of a number of 

Cre-driver lines displaying gene excision beyond the desired cell type or time point, due 
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to poorly characterised expression of the promoter (Heffner et al., 2012). Premature Cre 

expression may result in a false positive phenotype or perhaps even embryonic lethality. 

There are also reports of inconsistent Cre activity depending on whether the Cre 

transgene is inherited maternally or paternally (Hayashi et al., 2003; Gallardo et al., 

2007). When using this experimental strategy, it is important to monitor Cre activity to 

ensure we achieve the desired spatio-temporal excision of our gene of interest. A 

number of transgenic Cre-reporter mouse lines have been developed to track Cre 

expression. In this study we use the [B6;129S4-Gt(ROSA)26Sortm1Sor/J] (ROSA26R-

lacZ) mouse line which allows us to evaluate expression of the Ckm-Cre transgene 

using β-galactosidase activity in the developing mouse embryo and adult tissues.  

 

 

3.1.1 Aims   

• To generate a GFPT1 knockout mouse model as part of the IMPC international 

effort at the MRC mammalian Genetics Unit, Harwell. Mice carrying one copy 

of the Gfpt1tm1a and Gfpt1tm1b allele obtained from the International Knockout 

Mouse Consortium will be bred and maintained at the Functional Genomics 

Unit, Newcastle University.   

 

• To generate a homozygous Gfpt1tm1c line through conversion of the Gfpt1tm1a 

allele using Flp recombinase.  

 

• To generate the conditional muscle-specific GFPT1 knockout mouse using a 

muscle-specific Cre line.   

 

• To demonstrate the efficiency and specificity of Cre activity using genomic 

PCR, western blotting and β-galactosidase activity in the ROSA26R reporter 

mouse.  
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3.2 Generation of transgenic mice 

The European Conditional Mouse Mutagenesis (EUCOMM) program uses promoterless 

and promotor-driven targeting cassettes to generate the ‘knockout-first allele’ in 

C57BL/6N embryonic stem (ES) cells. The design of conditional alleles is facilitated by 

a computational tool used to identify oligonucleotide sequences suitable for 

recombineering. These sequences are used to replace the coding sequence of GFPT1 

with a lacZ reporter and promoter-driven selection cassette using bacterial artificial 

chromosome (BAC) recombineering. Successful targeted events were identified using a 

novel high-throughput allele-counting assay. The final targeting constructs were used 

for ES cell electroporation. Homologous recombinants were screened using long-range 

PCR and sequencing. Positive clones were implanted into the host mouse blastocyst and 

implanted into the mouse (Friedel et al., 2011; Skarnes et al., 2011).  

3.2.1 Gene targeting via homologous recombination  

A gene-trap cassette containing a neomycin and lacZ-reporter gene flanked by FRT sites 

has been inserted in the intronic region of mouse Gfpt1 between exons 6 and exon 7. 

The critical exon (exon 7) is flanked by loxP sites producing the initial targeted allele 

Gfpt1tm1a. The marker allele Gfpt1tm1b, expected to be a null, and the conditional allele 

Gfpt1tm1c, expected to be wildtype, can be generated upon exposure to Cre or Flp 

recombinases respectively. The Gfpt1tm1b allele reports the activity of the promoter and 

can be used to track the expression pattern of GFPT1 during development and across 

tissues using lacZ staining. Upon Cre mediated recombination, the Gfpt1tm1c allele can 

be converted to the Gfpt1tm1d knockout allele (Figure 3.1).   
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Figure 3.1. Schematic diagram of the targeting strategy. The knockout-first allele 

Gfpt1tm1a contains a lacZ-neomycin trapping cassette. Cre deletes the loxP flanked exon 

of the Gfpt1tm1a allele to generate the lacZ-tagged marker allele, Gfpt1tm1b. The 

conditional allele Gfpt1tm1c is generated by removal of the gene-trap cassette by Flp 

recombinase which restores the allele to wild type except for insertion of loxP sites. Cre 

deletes the Gfpt1tm1c floxed exon to generate a frameshift mutation, Gfpt1tm1d.   

 

3.2.2 Generation of Gfpt1tm1a, Gfpt1tm1b and Gfpt1tm1c alleles 

Mice heterozygous for the Gfpt1tm1a and Gfpt1tm1b alleles were obtained from the 

International Knockout Mouse Consortium, Harwell. These mice were generated using 

the EUCOMM strategy to develop the ‘knockout-first’ conditional allele as previously 

described. Mouse lines were maintained via heterozygote crosses. To generate the 

Gfpt1tm1c allele, Gfpt1+/tm1a mice were bred with mice carrying the Flp transgene. The 

lacZ-neomycin cassette was excised upon FlpE recombinase activity to generate 

Gfpt1+/tm1c offspring which carry the Flp gene. Gfpt1+/tm1c mice were crossed with wild 

type mice. Gfpt1+/tm1c offspring negative for Flp were selected and crossed to generate 

Gfpt1tm1c/tm1c mice (Figure 3.2). 
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Figure 3.2. Generation of Gfpt1tm1c/tm1c mice. Gfpt1+/tm1a mice were crossed with mice 

hemizygous for FlpE recombinase resulting in the conversion of the Gfpt1tm1a allele to 

the Gfpt1tm1c allele in 25% of progeny (F1). Gfpt1+/tm1c mice carrying the FlpE transgene 

were crossed with wild type mice. Gfpt1+/tm1c offspring (F2) free of the FlpE transgene 

(25%) were selected and crossed to generate Gfpt1tm1c/tm1c mice. 25% of offspring were 

Gfpt1tm1c homozygous. These mice were obtained after 3 generations of breeding. 

 

3.2.3 Generation of the GFPT1 muscle-specific knockout mouse 

To generate a conditional Gfpt1 knockout allele, homozygous Gfpt1tm1c/tm1c mice were 

bred with mice harbouring the muscle creatine kinase, Ckm-Cre transgene 

[B6.FVB(129S4)-Tg(Ckmm-cre)5Khn/J] obtained from Jackson Laboratories. These 

mice express Cre recombinase under the control of the Ckm promoter. Cre mediated 

recombination results in the deletion of Gfpt1 in skeletal and cardiac muscle after 2 

generations of breeding. Offspring are referred to as muscle-specific Gfpt1tm1d/tm1d 

(Figure 3.3). 
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Figure 3.3. Breeding strategy for generating the muscle-specific Gfpt1 knockout 

mouse. The homozygous tm1c allele, Gfpt1tm1c/tm1c is bred with a hemizygous Ckm-Cre 

mouse. 50% of offspring are heterozygous for the tm1c allele, Gfpt1+/tm1c and express 

Cre recombinase activity in striated muscle only (F1). These mice are crossed with 

homozygous Gfpt1tm1c/tm1c mice. 25% of offspring are homozygous for the tm1c allele, 

Gfpt1tm1c/tm1c and express Cre recombinase activity in striated muscle only to generate 

the muscle-specific Gfpt1tm1d/tm1d mouse (F2).  

3.2.4 Genotyping and sequencing transgenic lines  

Insertion of the gene-trap cassette, deletion of the critical exon, conversion to the 

conditional allele and the presence of the Cre transgene was validated by PCR. Primers 

were designed to produce a fragment of ~310 bp in the Gfpt1 wild type allele. Primers 

positioned on the 5’ homology arm and the first FRT site produce bands of ~170 bp in 
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all targeted alleles (Gfpt1tm1a, Gfpt1tm1b, and Gfpt1tm1c). The Gfpt1tm1a allele also produces 

a band of ~910 bp band when amplified with primers flanking the floxed critical exon. 

Upon Cre-mediated recombination the same primers generate a smaller product of 

~140bp following excision of the critical exon to produce the Gfpt1tm1b allele. Flp 

mediated recombination of the Gfpt1tm1a allele removes the gene-trap cassette to 

produce the Gfpt1tm1c conditional allele producing a band of ~500bp. Upon Cre 

mediated recombination the conditional allele is converted to the Gfpt1tm1d allele by 

removal of the critical exon in muscle only. DNA extracted from ear clip biopsies from 

these mice are homozygous for the Gfpt1tm1c conditional allele in the presence of Cre 

(Gfpt1tm1c/tm1c Cre). Primers were designed within the Cre gene to produce a band of 

~450bp (Figure 3.4A, B). All alleles were verified via DNA sequencing. 
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Figure 3.4. Analysis of targeting events in the Gfpt1 gene. (A) Schematic 

representation of the targeting vector. Exons are shown in numbered rectangles and the 

positions of the inserted FRT and loxP sites are shown. The positions of primers used 

for genotyping and the length of the amplified PCR products in wild type, Gfpt1tm1a, 

Gfpt1tm1b, Gfpt1tm1c and Gfpt1tm1d are indicated. (B) PCR on genomic DNA extracted 

from ear clips showing amplified fragments of ~310bp for the Gfpt1 wild type allele, 

~170 bp fragment for all targeted alleles, ~910bp for the Gfpt1tm1a allele, ~140 bp for 

the Gfpt1tm1b allele and ~500 bp for the Gfpt1tm1c allele. All bands are measured against 

a 100 bp DNA ladder. Each gel represents PCR products derived from heterozygous 

mice (Gfpt1
+/tm1a

, Gfpt1
+/tm1b

 and Gfpt1
+/tm1c

).  Forward primers: 5arm-WTF (F1), 

SV40-FRT-F (SV40F). Reverse primers: Crit-WTR (R1), 5mut-R1 (mutR1), 3arm-

WTR (R2).
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3.3 Efficiency and specificity of Cre recombinase activity 

The efficiency and specificity of Cre-mediated activity was verified using genomic 

PCR, immunoblotting, and the ROSA26R-lacZ reporter line which demonstrates Cre 

expression.   

3.3.1 Tissue specific genotyping  

Cre-mediated gene alteration in muscle of Gfpt1 mutant mice was confirmed by 

genomic PCR. Primers were designed to detect the deletion of exon 7. PCR on genomic 

DNA extracted from muscle tissues and non-muscle tissues from Gfpt1tm1c/tm1c mice 

produce fragments of ~500 bp. DNA amplified from muscle specific Gfpt1tm1d/tm1d mice 

produce fragments of ~500 bp in non-muscle tissues and a band of ~290 bp in skeletal 

and cardiac muscle in the presence of Cre (~450 bp). All targeted alleles produce 

fragments of ~170 bp. Tissues analysed include ear clips, brain, kidney, heart and 

skeletal muscle (Figure 3.5).  

 

 

 

 

 

 

 

 

 

Figure 3.5. Muscle-specific allele conversion in Gfpt1tm1d mice. Representative 

images verifying the conversion of Gfpt1tm1c allele to the Gfpt1tm1d allele in skeletal and 

cardiac muscle of Gfpt1 mutant mice carrying the Cre transgene under the control of the 

Ckm promoter. Cre-mediated recombination does not take place in non-muscle tissues. 

Forward primers: 5arm-WTF (F1), Transgene Forward (CreF). Reverse primers: Crit-

WTR (R1), 5mut-R1 (mutR1), 3arm-WTR (R2), Cre R (CreR). 
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3.3.2 Immunoblot analysis of GFPT1 expression in control and Gfpt1tm1d/tm1d mice  

We performed immunoblotting analyses on lysates from control and Gfpt1tm1d/tm1d 

mouse tissues. Here Gfpt1tm1c/tm1c littermates were used as controls. Expression of 

GFPT1 in tissues was examined by western blotting using a polyclonal antibody against 

GFPT1. GFPT1 (~79 kDa) is expressed in muscle and non-muscle components in 

control mice. Results confirmed the absence of GFPT1 in skeletal and cardiac muscle 

from Gfpt1tm1d/tm1d mice but not in brain or kidney. Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) (~38 kDa) was used as a loading control (Figure 3.6).       

 

 

 

 

 

 

Figure 3.6. Western blot analysis of GFPT1 expression in muscle and non-muscle 

tissues from control and Gfpt1tm1d/tm1d mice. GFPT1 protein (~79kDa) is detected in 

muscle and non-muscle tissues in control mice. GFPT1 is not detected in skeletal 

muscle from Gfpt1tm1d/tm1d mice. GAPDH (~38kDa) was used as a loading control. All 

bands were measured against an 8-260 kDa Chameleon Duo Pre-stained protein ladder.  

 

 

3.3.3 ROSA26R-lacZ as a Cre reporter mouse line  

To understand the spatial and temporal expression of Cre recombinase we use the lacZ 

reporter mouse line ROSA26R-lacZ which demonstrates the activity of the Ckm 

promoter. ROSA26R mice have a loxP flanked transcriptional termination element, or a 

‘stop’ sequence inserted downstream of a transcription start site at the ubiquitously 

expressed ROSA26 locus, between the promoter and transgene lacZ sequence. When 

intact this cassette inhibits transcription of the lacZ reporter transgene. Tissues 

expressing Cre recombinase undergo Cre-mediated recombination resulting in excision 

of the ‘stop’ sequence allowing expression of β-galactosidase encoded by the lacZ 

transgene (Figure 3.7A).    
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Hemizygous Ckm-Cre mice were crossed with homozygous ROSA26R mice. Male and 

female mice were mated accordingly to generate offspring with either maternal or 

paternal Cre inheritance. Offspring were used to investigate whether Cre expression 

varied based on parental inheritance (Figure 3.7B).   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Mechanism of the ROSA26R-lacZ reporter line and generation of 

ROSA26R-Cre mice. (A) Schematic demonstrating Cre-mediated recombination 

events in the ROSA26R-lacZ reporter mouse. When intact the ‘stop’ cassette prevents 

the expression of β-galactosidase from the downstream lacZ coding sequence. Upon 

exposure to Cre recombinase, the stop cassette is excised by recombination of loxP 

sites, allowing the expression of β-galactosidase. (B) Schematic showing mice mated in 

order to generate offspring that acquire the Cre transgene via maternal or paternal 

inheritance. 50% of progeny will inherit the Cre transgene.  
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3.3.4 Ckm-Cre activity in the developing mouse embryo  

ROSA26R-Cre mice carry the lacZ-reporter gene which expresses β-galactosidase. To 

analyse Cre expression pattern in the mouse, we detected the enzymatic activity of β-

galactosidase using X-gal. Cells which express Cre recombinase are stained blue. We 

analysed Ckm-Cre expression in the developing mouse embryo. Whole ROSA26R-Cre 

embryos were isolated at E10.5, E11.5, E12.5 and E13.5, and were subsequently treated 

with X-gal. The expression of β-galactosidase activity is evident from E11.5 in muscles 

of the head and neck. As the embryo develops we see expression in the somites (E12.5) 

and a rapid accumulation in other skeletal muscles by E13.5. β-galactosidase expression 

appears to be restricted to muscle only (Figure 3.8). No differences were seen in 

embryos that inherited the Cre transgene via maternal or paternal inheritance, or 

amongst littermates.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Expression of β-galactosidase in ROSA26R-Cre embryos. Representative 

whole-mount images of embryos at various embryonic stages demonstrating the 

temporal and spatial specificity of Cre activity. Expression of the lacZ reporter 

transgene is restricted to skeletal and cardiac muscle only.  

 



60 
 

 

3.3.5 Ckm-Cre reporter activity in the adult mouse tissues   

To determine the expression pattern of the lacZ transgene in the adult mouse, transverse 

sections of muscle and non-muscle tissues from adult mice were sectioned and stained 

with X-gal. β-galactosidase activity is present in skeletal and cardiac muscle only. 

Gastrocnemius, TA, extensor digitorum longus (EDL), soleus, intercostal, extraocular 

and diaphragm muscles display β-galactosidase activity when treated with X-gal 

forming a blue precipitate. β-galactosidase activity was absent in non-muscle treated 

tissues including the brain, kidney and non-muscle components of the eye. There were 

no observed differences in the pattern of β-galactosidase activity between tissues 

obtained from mice that acquired the Cre transgene via maternal and paternal 

inheritance.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Expression of β-galactosidase in ROSA26R-Cre adult mouse tissues. 

There is abundant expression of β-glactosidase in skeletal (gastrocnemius, TA, EDL, 

soleus, intercostals, diaphragm and extraocular) and cardiac muscles. β-galactosidase 

activity is absent in non-muscle tissues (brain, kidney and eye). Scale bar = 400µm 

(brain), 20µm (all other tissues).   
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3.4 Discussion   

Our ability to understand the molecular mechanisms underlying disease states has 

rapidly progressed due to advancements in genomic manipulation, making the mouse 

model one of the most desirable research tools used for studying human disease 

(Perlman, 2016). Mouse models are particularly useful for the investigation of rare 

diseases as low patient numbers and phenotype heterogeneity greatly impede the 

establishment of clinical trials. The generation of CMS mouse models have enabled 

phenotype analysis which can be correlated to features seen in patients (Chevessier et 

al., 2008; Bogdanik and Burgess, 2011; Chevessier et al., 2012; Messéant et al., 2015). 

Here we report the generation of a GFPT1 deficient mouse model which will allow us to 

explore the pathological molecular involvement of GFPT1 which contributes to the 

phenotype observed in patients with CMS. We also describe the generation of mouse 

variants which will enhance our understanding of GFPT1 expression and allow us to 

investigate the spatio-temporal activity of Cre recombinase. Together these data verify 

that any phenotypes we observe in our mouse model will be purely as a consequence of 

GFPT1 deficiency.   

The gene-trap strategy used in our study relies on identification of the 5’-most critical 

exon that will lead to a frameshift mutation when deleted, is common to all transcript 

variants, and disrupts at least 50% of the protein-coding sequence of the gene of interest 

(Skarnes et al., 2011). Since alternative splicing of the GFPT1 muscle-specific exon 

occurs downstream of exon 7, positioning of the gene-trap cassette ensures disruption of 

both isoforms. Due to the ubiquitous nature of GFPT1 (Dehaven et al., 2001; Yang et 

al., 2007), it is highly probable that homozygous Gfpt1 knockout mice are embryonic 

lethal. For this reason, we have also generated a conditional model whereby GFPT1 is 

knocked out in skeletal and cardiac muscle only. Several studies have reported 

metabolic and behavioural phenotypes in mouse strains expressing Cre recombinase 

(Loonstra et al., 2001; Forni et al., 2006; Naiche and Papaioannou, 2007). It is therefore 

important to generate a pure model free from Flp and Cre recombinases, or use 

appropriate controls which rule out the possibility of false positive phenotypes. In our 

conversion of the Gfpt1tm1a allele to the Gfpt1tm1c allele, we ensure that progeny used for 

subsequent breeding steps are free from FlpE recombinase. Since our conditional 

Gfpt1tm1d/tm1d mice maintain the expression of Cre recombinase, we will also use the Cre 

line for some initial characterisation to ensure that the presence of Cre is not a 
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confounding variable which contributes to the observed phenotype. High levels of Cre 

expression can also lead to Cre toxicity affecting cell physiology and possibly the 

viability of animals. Thus, when setting up matings we ensure that offspring only inherit 

one copy of the Cre transgene, making it is less likely that the mice will acquire a Cre 

phenotype.  

Optimising gene targeting relies largely on the choice of the Cre recombinase 

expressing mouse line, which needs to target the gene of interest in the correct tissues at 

the right time. Therefore, when choosing a Cre recombinase it is important to keep in 

mind the aims of the study. In this project we want to understand the role of GFPT1 in 

the formation and maintenance of the NMJ. Formation of the NMJ begins with pre-

patterning of AChRs from embryonic day 12.5, and by embryonic day 18.5 AChR 

clusters have differentiated and are well innervated (Lin et al., 2001; Wu et al., 2010). 

The expression of muscle creatine kinase has been reported in skeletal and cardiac 

muscle of the mouse embryo 13 days post coitum, which rapidly increases by 

embryonic day 15 (Lyons et al., 1991; Bruning et al., 1998). Using a Ckm-Cre mouse 

line is ideal for generating a mouse model which will allow us to achieve our aims as 

the expression of Ckm-Cre and hence depletion of GFPT1 temporally correlates with 

events taking place during the formation of the NMJ. Consequently, the phenotype we 

observe is a reflection of pathophysiology of the formation as well as the maintenance 

of the NMJ.  

 

Reproducible excision is vital for the analysis of experimental data. Numerous studies 

have reported mosaic or inconsistent Cre activity in other Cre lines (Heffner et al., 

2012). Discrepancies arise depending on whether the Cre transgene is maternally or 

paternally inherited due to persistence of the Cre protein in the female germline 

(Hayashi et al., 2003; Gallardo et al., 2007; Heffner et al., 2012), inconsistent Cre 

recombination between littermates and unreported Cre activity in certain tissues due to 

poorly characterised promoters (Heffner et al., 2012). Therefore, in order to interpret 

our data informatively, we need to be certain of time/tissue-specific Cre activity. 

Several Cre-reporter lines have been developed which express fluorescent proteins such 

as green fluorescent protein (GFP) and other fluorescent colour variants, EYFP and 

ECFP (Srinivas et al., 2001). Additional Cre reporter lines include luciferase reporters 

(Ishikawa and Herschman, 2011) and the ROSA26R-lacZ reporter (Soriano, 1999). 

Extensive characterisation of the different Cre-reporter lines have demonstrated the 
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ROSA26R-lacZ reporter line appears to be amongst the most desirable due to their 

reliability and minimal level of background signal, allowing easy identification of 

reporter expression (Heffner et al., 2012). We examined offspring produced from 

hemizygous Ckm-Cre and ROSA26R matings and tracked Cre activity by tracing β-

galactosidase expression. Cre activity seems to be present in the head mesenchyme in 

the mouse embryo at E11.5, consistent with reports which first detect Ckm mRNA in 

the head and neck region, followed by remaining skeletal muscles in the developing 

mouse embryo (Lyons et al., 1991). Here we also show that Cre activity is restricted to 

skeletal and cardiac tissue only in the adult mouse.  

Collectively, our immunoblot analyses, tissue-specific genotyping and analysis of Cre 

expression data verify that GFPT1 is knocked out in the desired tissues in our model. 

We confirm the generation of a robust GFPT1 deficient mouse model which will 

subsequently be characterised to enhance our understanding of the pathological changes 

occurring as a result of hypoglycosylation.  
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Chapter 4: Characterisation of the Gfpt1tm1a  

and Gfpt1tm1b allele 
 

4.1 Introduction  

Full understanding of the pathophysiological consequences of a knockout mouse model 

is dependent on knowing where and when the gene of interest is expressed. Only then 

can we make informative genotype-phenotype correlations in transgenic mice. The 

Gfpt1tm1blacZ reporter allele provides a means of detecting where GFPT1 is normally 

expressed in the mouse. One advantage of using this line is that β-galactosidase 

expression can easily be detected in the developing mouse embryo and in adult tissues 

using simple well established protocols. This overcomes having to design and 

troubleshoot a protocol specific to the gene of interest. There is currently no GFPT1 

antibody that demonstrates the localisation of GFPT1 in mouse tissues. Furthermore, the 

specificity of antibodies in general is often poor and requires optimisation. Since a 

single copy of the lacZ transgene expresses sufficient levels of β-galactosidase 

(Coleman et al., 2015), we are able to use the Gfpt1+/tm1b line to track GFPT1 

expression.  

Occasionally heterozygous knockout mice display a sufficient reduction in the amount 

of protein expressed to produce a phenotype. In some cases, these mice can be used to 

further investigate gene function. Based on the positioning of insertion of the lacZ-

neomycin trapping cassette, the Gfpt1tm1a allele is predicted to produce either a 

hypormorphic or null allele, and the Gfpt1tm1b allele a null allele. Should homozygous 

mice be viable, or heterozygous mice demonstrate an adequate reduction in the amount 

of GFPT1 expression to produce a muscle phenotype, these mice could serve as 

potential models to investigate GFPT1 deficiency. 

The most prominent feature examined in existing mouse models of CMS is the 

morphology of the neuromuscular junction. The neuromuscular junction in adult mouse 

muscle has a highly specialised ending. AChR display a ’pretzel’-like structure which 

are innervated by presynaptic motor axons. Endplate pathologies commonly seen in 

mouse models of CMS include smaller and fragmented AChRs, reduced intensity of 

AChR staining, and reduced expression of AChRs. Motor nerves often project beyond 

their target, lose their ability to innervate AChR, and sprouting is often observed in 

nerve terminals (Brandon et al., 2003; Chevessier et al., 2008; Bogdanik and Burgess, 



65 
 

 

2011; Chevessier et al., 2012; Barik et al., 2014; Messéant et al., 2015). A 

developmental delay in maturation of the NMJ is also observed in both MuSK and agrin 

associated mouse models of CMS (Chevessier et al., 2008; Kim and Burden, 2008; 

Bogdanik and Burgess, 2011).  

In this study, we wish to investigate the pathophysiology of the NMJ as a consequence 

of GFPT1 deficiency. Furthermore, due to the ubiquitous nature of GFPT1, it is highly 

probable that we will observe pathological changes in muscle which we will examine 

using standard histological techniques.  

 

 

4.1.1 Aims 

 

• To breed and observe the viability of Gfpt1+/tm1a, Gfpt1+/tm1b, Gfpt1tm1a/tm1a and 

Gfpt1tm1b/tm1b mice.  

 

• To validate mutant transcripts from the Gfpt1tm1a and Gfpt1tm1b allele using     

RT-PCR. 

 

• To study the morphology of the synapse and perform histological analyses on 

muscle from viable mouse models. 

 

• To study the relative expression levels of GFPT1 in mouse tissues using 

immunoblot analyses.  

 

• To track GFPT1 expression in mouse tissues using the lacZ-reporter in the 

Gfpt1tm1b allele.  
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4.2 Viability of mice harbouring the Gfpt1tm1a and Gfpt1tm1b allele 

 

4.2.1 Frequency of heterozygous and homozygous Gfpt1tm1a and Gfpt1tm1b mice  

Offspring generated from heterozygote crosses do not follow the expected Mendelian 

pattern of inheritance with an expected genotypic ratio of 1:2:1; (Gfpt1+/+ :Gfpt1+/tm1a : 

Gfpt1tm1a/tm1a ); (Gfpt1+/+ :Gfpt1+/tm1b : Gfpt1tm1b/tm1b) . Only wild type (27%) and 

Gfpt1+/tm1a (73%) mice were obtained from heterozygote Gfpt1tm1a crosses (Figure 4.1A). 

No Gfpt1tm1a/tm1a mice were observed. Similarly, only wild type (39%) and Gfpt1+/tm1b 

(61%) mice were obtained from heterozygote Gfpt1tm1b crosses. No Gfpt1tm1b/tm1b mice 

were born (Figure 4.1B).   

 

 

 

 

 

 

 

Figure 4.1 The percentage of offspring representing each genotype. (A) Gfpt1+/tm1a 

crosses generated wild type and Gfpt1+/tm1a offspring only. Gfpt1tm1a/tm1a mice were never 

observed (n=132). (B) Gfpt1+/tm1b crosses generated wild type and Gfpt1+/tm1b offspring 

only. Gfpt1tm1b/tm1b mice were never observed (n= 153). 
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4.2.2 Frequency of heterozygous and homozygous Gfpt1tm1a and Gfpt1tm1b embryos  

Since no homozygous offspring were observed, we analysed the genotype of embryos 

generated from heterozygote crosses. The age of embryos taken ranged from E11.5 to 

E15.5. No Gfpt1tm1a/tm1a or Gfpt1tm1b/tm1b embryos were observed (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. The percentage of embryos representing each genotype between E11.5-

E15.5. (A) Gfpt1tm1a crosses generated wild type and Gfpt1+/tm1a embryos only. 

Gfpt1tm1a/tm1a embryos were never observed (n=28). (B) Gfpt1tm1b crosses generated wild 

type and Gfpt1+/tm1b embryos only. Gfpt1tm1b/tm1b embryos were never observed (n= 33).       
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4.3 Validation of mutant transcripts by RT-PCR 

We used RT-PCR to identify transcripts generated from wild type, Gfpt1tm1a and 

Gfpt1tm1b alleles. RNA extracted from heterozygous Gfpt1+/tm1a and Gfpt1+/tm1b mice was 

transcribed to cDNA. A forward primer was designed in exon 6 and reverse primers in 

exons 7, 8, 8a. For further confirmation, we designed reverse primers in 7/8, 8/8a, and 

8/9. Fragments from the wild type allele produces expected bands of 130 bp, 217 bp, 

293 bp, 179 bp, 260 bp and 262 bp (Figure 4.3A, Table 4.1). The Gfpt1tm1a allele is 

predicted to produce either a hypormorphic or null allele, and the Gfpt1tm1b is expected 

to produce a null allele. To detect Gfpt1tm1a and Gfpt1tm1b transcripts, reactions were run 

using a forward primer designed in the gene trapping neomycin cassette, and reverse 

primers in the neomycin cassette and exons 7, 8, 8a, 7/8, 8/8a, and 8/9. We observe a 

control band of 220 bp corresponding to an amplicon within the neomycin cassette from 

Gfpt1tm1a and Gfpt1tm1b transcripts. No transcripts were detected downstream of the 

neomycin cassette (Table 4.1, Figure 4.3B).      

 

Table 4.1. PCR reactions used to detect transcripts from wild type, Gfpt1tm1a and 

Gfpt1tm1b alleles. A list of primers used with the expected and observed band size for each 

reaction are shown.   

Allele Forward Primer Reverse 

Primer 

Expected 

Amplicon 

Observed 

Amplicon 

 

 

Wild type 

 

 

 

 

Exon6F 

 

 

Exon7R 130 bp ✓ 

Exon8R 217 bp ✓ 

Exon8aR 293 bp ✓ 

Exon7/8R 179 bp ✓ 

Exon8/8aR 260 bp ✓ 

Exon8/9R 262 bp ✓ 

 

 

Gfpt1tm1a 

 

 

NeoF 

 

NeoR 220bp ✓ 

Exon7R None/211 bp  

Exon8R None/298 bp  

Exon8aR None/374 bp  

Exon7/8R None/260 bp  

Exon8/8aR None/341 bp  

Exon8/9R None/343 bp  

 

 

Gfpt1tm1b 

 

 

NeoF 

 

NeoR 220bp ✓ 

Exon7R No bands  

Exon8R No bands  

Exon8aR No bands  

Exon7/8R No bands  

Exon8/8aR No bands  

Exon8/9R No bands  
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Figure 4.3. Representative RT-PCR showing transcripts from Gfpt1+/tm1a and 

Gfpt1+/tm1b mice. (A) We observe bands with expected sizes corresponding to transcripts 

from the wild type allele. (B) Example of PCR products from the Gfpt1tm1a and 

Gfpt1tm1b allele. We observe a 220 bp band for the control reaction (NeoF and NeoR), 

but no bands were detected in all other reactions. All bands are measured against a 100 

bp DNA ladder. 
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4.4 Histological analysis of skeletal muscle in Gfpt1+/tm1b mice 

 

4.4.1 Hematoxylin and eosin staining of skeletal mouse muscle 

Histological analysis of skeletal muscle was achieved by staining with hematoxylin and 

eosin (H&E). TA, gastrocnemius, diaphragm, intercostal, soleus and EDL muscles were 

dissected from 3 month old wild type and Gfpt1+/tm1b mice. 10 µm thick transverse 

sections were prepared and the muscles were stained with H&E. There appears to be no 

histological difference between wild type and Gfpt1+/tm1b mice. Myofibres maintain their 

characteristic polygonal shape with peripheral nuclei. The sarcolemma and sarcoplasm 

remain intact and muscle tissues show a homogenous fibre size distribution (Figure 

4.4).  

 

Figure 4.4 Histological analysis of skeletal muscle in wild type and Gfpt1+/tm1b mice. 

Brightfield images of H&E stained TA, gastrocnemius, diaphragm, intercostal, soleus, 

and EDL muscles from wild type and Gfpt1+/tm1b mice. Eosin labels the sarcoplasm 

(pink). Hematoxylin labels the nuclei (blue). No histological difference was observed in 

Gfpt1+/tm1b muscle tissue compared to controls. Scale bar = 10µm for diaphragm, and 20 

µm for all remaining tissues. 
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4.4.2 Quantification of myofibre area 

The cross-sectional area of individual myofibres were measured using ImageJ software 

(Figure 4.5A). There were no significant differences in myofibre size in all muscles 

examined compared to their corresponding controls (Figure 4.5B).  

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Quantitative analysis of the area of individual myofibres in skeletal 

muscle. (A) Screenshot image demonstrating how myofibre area was calculated using 

ImageJ software. (B) Muscles analysed include TA, gastrocnemius, diaphragm, 

intercostal, soleus, and EDL muscles from wild type and Gfpt1+/tm1b mice. No significant 

differences in the area of individual myofibres was observed. Data represent mean + 

SEM. (n=4 mice per genotype) p>0.05, ns, not significant.   
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4.5 Analysis of the NMJ in Gfpt1+/tm1b mice 

 

4.5.1 Immunofluorescence staining of AChRs 

In order to establish whether transgenic mice display an NMJ phenotype, we analysed 

AChRs in TA, diaphragm, intercostal, and EDL muscles from 3 month old control and 

Gfpt1+/tm1b mice. Whole-mount muscles were stained with α-bungarotoxin to label 

AChRs. AChRs maintain their characteristic ‘pretzel’-like structure and appear normal 

in size in all muscles analysed (Figure 4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Immunofluorescence analysis of AChRs in skeletal mouse muscle from 

wild type and Gfpt1+/tm1b mice. Confocal Z-stack projections of whole-mount TA, 

diaphragm, intercostal and EDL muscles were labelled with Alexa fluor 594 α-

bungarotoxin (red) to label AChRs. Scale bar = 20µm.  
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4.5.2 Quantification of AChR cluster area  

For quantification of AChR cluster area, single-projected images derived from 

overlaying image stacks were quantified using ImageJ analysis software (Figure 4.7A). 

No significant differences in the area of individual AChR clusters was observed 

between wild type and Gfpt1+/tm1b mice (Figure 4.7B).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Quantitative analysis demonstrating AChR cluster area. (A) Screenshot 

image demonstrating how the area of individual AChR clusters was calculated using 

ImageJ software. (B) No differences in the size of AChR was observed between wild 

type and Gfpt1+/tm1b mice. (n=4 mice per genotype). Data are mean + SEM. (n=6) 

p>0.05, ns, not significant.   
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4.5.3 Immunofluorescence staining of presynaptic and postsynaptic components of 

the NMJ 

To study presynaptic and postsynaptic co-localisation and morphology, whole-mount 

muscles were stained with α-bungarotoxin to label AChRs and antibodies against 

neurofilament and synaptophysin to label axonal branches and nerve terminals, 

respectively. Neurofilament is a key component of the neuronal cytoskeleton and 

synaptophysin is a major synaptic vesicle protein p38. In control mice, axonal branches 

project normally and innervate the well-defined ‘Pretzel’-like AChR. Gfpt1+/tm1b show 

normal morphology of the NMJ which resemble endplates seen in wild type mice. 

AChRs maintain their characteristic ‘Pretzel’-shape and axons project normally forming 

synaptic contacts with AChRs (Figure 4.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Immunofluorescence analysis of endplates in skeletal mouse muscle 

from wild type and Gfpt1+/tm1b mice. Confocal Z-stack projections of whole-mount TA 

muscles labelled with Alexa fluor 594 α-bungarotoxin (red), anti-neurofilament (green) 

and anti-synaptophysin (green). Neurofilament (NF), Synaptophysin (Syn). Scale bar = 

10µm.  
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4.6 Summary of phenotypes observed in Gfpt1+/tm1b mice 

The International Mouse Phenotyping Consortium (IMPC) is a collaborative team of 

research centres and funding organisations whose goal is to discover a functional insight 

for every gene by generating and systematically characterising knockout mouse strains. 

Each mutant line available is characterised according to a broad criterion which covers 

all the major adult organ systems and human disease. The phenotype data collected for 

the Gfpt1+/tm1b mouse line demonstrates that the Gfpt1tm1b allele results in 

happloinsufficiency which is evident in some organ systems. We have collected and 

summarised the phenotype data from Gfpt1+/tm1b mice (Table 4.2) (Brown and Moore, 

2012).  
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Table 4.2. A summary of clinical findings observed in Gfpt1+/tm1b mice. Data 

collected from the IMPC and in-house (bold) demonstrates some phenotypical 

differences between wild type and Gfpt1+/tm1b mice.  

System  Outcome 
Statistical 

Significance  

Spleen Decreased weight  

 

p<0.001 

Tibia length Reduction in length   

Eye morphology 
Persistence of hyaloid vascular 

system 

Intraperitoneal glucose tolerance 

test  

Increased mean blood glucose 

concentration 

Body Composition (DEXA 

lean/fat) 

 

Reduced bone area (BMC/BMD) 

 

p<0.01 

Reduced bone mineral content 

(excluding skull) 

X-ray Abnormal shape of vertebrae 

Organ Weight Increase weight of kidney 

Clinical Blood Chemistry Increased levels of potassium 

Hematology Increased red blood cell count 

Body Composition (DEXA 

lean/fat) 
Reduced lean mass 

 

p<0.05 

 

 

 

Clinical Blood Chemistry 

 

 

Increased HDL-cholesterol 

Increased total cholesterol 

Variable Iron 

Variable alkaline phosphatase 

Variable total bilirubin 

Contact Righting Impaired righting reflex 

 

Electrocardiogram (ECG) 

 

Variable ST 

Variable PR 

Variable QRS 

Haematology 

 

Variable white blood cell count 

Variable platelet count 

Increased haemoglobin 

Decreased mean cell volume 

Intraperitoneal glucose tolerance 

test  

Increased mean blood glucose 

concentration (fasting) 

X-ray Abnormal pelvis shape 

Muscle 

Grip strength  

Not 

significant, 

p>0.05  

Myofibre area  

Neuromuscular junction – 

AChR cluster area  
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4.7 Analysis of GFPT1 expression  

 

4.7.1 Western blot analysis of GFPT1 expression  

Expression of GFPT1 in tissues from wild type mice was examined by western blotting 

using a polyclonal antibody against GFPT1. GFPT1 (~79 kDa) is expressed in the heart, 

TA, gastrocnemius, diaphragm, intercostal, soleus, brain and kidney. Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (~38 kDa) was used as a loading control (Figure 

4.9).  

 

 

 

 

 

 

Figure 4.9. Western blot analysis of GFPT1 expression in muscle and non-muscle 

tissues from wild type mice. GFPT1 protein (~79kDa) is detected in the gastrocnemius, 

TA, diaphragm, intercostal, EDL, soleus, heart, brain and kidney. GAPDH (~38kDa) was 

used as a loading control. All bands were measured against an 8-260 kDa Chameleon 

Duo Ladder protein ladder. 
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4.7.2 Densitometry analysis showing the relative expression of GFPT1 in mouse 

tissues 

The relative expression levels between tissues was analysed using the gel analysis tool 

on ImageJ software. All blots were converted to greyscale images and bands were 

analysed by producing profile plots representing the relative density of each band 

(Figure 4.10A). The area of the peaks in the profile plots correspond to the intensity of 

the bands. The software subtracts the background and represents each peak as a 

percentage of the total intensity. The density of GFPT1 bands were normalised, 

followed by that of GAPDH loading control bands. The relative density of GFPT1 was 

then divided by the relative density of the corresponding loading control. The levels of 

GFPT1 expression varies between different tissues. The greatest amount of GFPT1 

appears to be expressed in the brain, followed by the kidney, heart and skeletal muscles. 

The level of GFPT1 expression varies between different skeletal muscles (Figure 

4.10B). 

Figure 4.10. Quantitative analysis showing the relative expression levels of GFPT1 

in mouse tissues. (A) Modified screenshot image of a profile plot demonstrating how 

band intensity was quantified using ImageJ gel analysis. (B) Graph demonstrating 

GFPT1 expression levels normalised to their corresponding GAPDH loading controls. 

Data corresponds to immunoblot bands seen in Figure 4.9.  
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4.7.3 GFPT1 expression detected by β-galactosidase activity in mice   

Gfpt1+/tm1b mice carry the lacZ-reporter gene which expresses β-galactosidase under the 

control of the Gfpt1 promoter. To analyse the pattern of GFPT1 expression we detected 

the enzymatic activity of β-galactosidase using X-gal in mouse embryos and adult 

tissues.  

 

β-galactosidase activity in the mouse embryo 

 

We mated Gfpt1+/tm1b mice which generated wild type and Gfpt1+/tm1b embryos. Embryos 

aged E11.5, E12.5 and E13.5 were isolated and stained with X-gal. We observe 

ubiquitous expression of β-galactosidase in Gfpt1+/tm1b embryos but not in control 

littermates. Tail tips were taken from the embryos which was used for genotype 

verification.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Gfpt1 lacZ transgene expression in mouse embryos. E11.5, E12.5 and 

E13.5 wild type and Gfpt1+/tm1b embryos were stained with X-gal. β-galactosidase 

activity (blue) was detected throughout the entire Gfpt1+/tm1b embryo at all time points. 

β-galactosidase activity is not observed in wild type embryos.  
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β-galactosidase activity in adult mouse tissues 

We analysed the pattern of GFPT1 expression in the adult mouse by tracking the 

enzymatic activity of β-galactosidase in the gastrocnemius, TA, diaphragm, EDL, 

intercostal, soleus, and heart muscles. We also analysed non-muscle tissues including 

the eye, kidney and brain. Transverse sections of adult mouse tissues were sectioned 

and stained with X-gal. We observed β-galactosidase activity in all skeletal muscles and 

the heart. GFPT1 is also expressed in extraocular muscles, eyes, kidneys and the brain.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Gfpt1 lacZ transgene expression in adult mouse tissues.                        

β-galactosidase activity was detected with X-Gal as a substrate on sections of tissues 

from 3 month old Gfpt1+/tm1b mice. β-galactosidase activity (blue) is present in all 

tissues analysed. Scale bar = 400µm in the brain; 20µm in all remaining tissues.  
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4.7.4 Summary of GFPT1 expression in Gfpt1+/tm1b mice 

The IMPC also work on understanding the pattern of protein expression of mouse lines 

which harbour the lacZ-reporter gene that expresses β-galactosidase. The GFPT1 

expression data collected for the Gfpt1+/tm1b mouse line demonstrates ubiquitous 

expression of GFPT1 in numerous organ systems (Table 4.3) (Dehaven et al., 2001; 

Petryszak et al., 2016).  

 

Table 4.3. A summary of GFPT1 expression in adult mouse tissues. Data 

summarised represents observations of β-galactosidase activity in numerous organ 

systems. Data collected from the IMPC and those generated in-house (bold) are shown.  

 

 

 

 

Systems/structures Adult tissues 

Cardiovascular  Heart, aorta 

Musculoskeletal Gastrocnemius, TA, diaphragm, EDL, soleus, 

intercostal, bone, cartilage 

Nervous  Cerebral cortex, hippocampus, striatum, olfactory 

lobe, hypothalamus, cerebellum, brainstem, spinal cord, 

peripheral nervous system 

Reproductive Ovary, oviduct, uterus, prostate, lower urinary tract, 

testis, prostate 

Sensory Eye - including extraocular muscles 

Integumentary  Skin, mammary glands 

Endocrine  Adrenal gland, thyroid gland, parathyroid gland, pituitary 

gland 

Renal/urinary  Lower urinary tract, kidney - renal medulla, renal 

cortex 

Respiratory  Trachea, lungs, cartilage 

Digestive/ alimentary 

system 

Large intestine, liver, gall bladder, small intestine, 

stomach, esophagus 

Lymphatic  Lymph node, spleen 

Immune  Thymus, payers patch  
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4.8 Discussion 

The frequency of mice born does not reflect the Mendelian frequencies for the expected 

genotypes. Homozygous Gfpt1tm1a/tm1a and Gfpt1tm1b/tm1b mice were never obtained from 

heterozygote crosses, but Gfpt1+/tm1a and Gfpt1+/tm1b are viable. Genotype analysis of 

embryos revealed no GFPT1 deficient homozygous mice were observed as early as 

embryonic day 11.5. This information is supported by data from the IMPC, which states 

that no viable homozygous embryos were observed at E12, but when screening E9.5 

Gfpt1tm1b embryos few were viable (Brown and Moore, 2012). For the purpose of our 

study, we need to examine the morphology of the NMJ. AChR cluster formation and 

innervation occurs between E12-E18.5 in the mouse embryo (Lin et al., 2001; Wu et al., 

2010). Therefore, viable embryos younger than E12 are inadequate for our study as they 

do not permit investigation of the NMJ.  

We do not detect transcripts from the Gfpt1tm1a and Gfpt1tm1b alleles, suggesting that 

insertion of the lacZ gene-trap cassette in the Gfpt1 gene completely disrupts its 

function generating a null allele. Since both alleles are essentially nulls, we selected one 

model (Gfpt1+/tm1b) to analyse whether these mice present with happloinsufficiency. 

Gfpt1+/tm1b display normal morphology of both the presynaptic and postsynaptic 

components at the NMJ in all muscles analysed. Moreover, histological analysis of 

different muscles revealed no signs of a muscle pathology. Analysis of myasthenia 

conducted using a grip strength assay carried out as part of the IMPC revealed no 

significant changes in Gfpt1+/tm1b mice when compared to age-matched controls. 

Together these data suggest that happloinsufficiency does not impair muscle function in 

Gfpt1+/tm1b mice. These findings reflect the asymptomatic status of human carriers with 

loss of function GFPT1 mutations. The IMPC report significant variations in a number 

of non-muscle related phenotypes in Gfpt1+/tm1b mice. Although many of these findings 

are not representative of the human GFPT1-CMS phenotype, previous reports have 

established that GFPT1 is implicated in glucose metabolism and insulin resistance in 

humans (Elbein et al., 2004) and mice (Hebert et al., 1996; Cooksey et al., 1999). More 

recently, studies have demonstrated that upregulation of SIL-1, which is commonly 

found in surviving neurons of Alzheimer’s patients, leads to an increase in GFPT1 

expression (Labisch et al., 2017).  
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Immunoblot analyses of control tissue shows ubiquitous expression of GFPT1 in both 

muscle and non-muscle tissues consistent with findings from previous studies (Dehaven 

et al., 2001; Niimi et al., 2001). Furthermore, there appears to be differences in the 

relative expression levels between individual muscle and non-muscle tissues. Increasing 

the number of replicates in immunoblot experiments will confirm these preliminary 

findings. β-galactosidase activity used to analyse GFPT1 expression further 

demonstrates widespread GFPT1 expression in tissues from numerous organ systems. 

This data emphasises the importance of GFPT1 for normal development and function, 

and is indicative as to why homozygous knockout mice are not viable.   

In summary, these data suggest that GFPT1 is essential for mouse embryogenesis and is 

responsible for proper functioning of numerous organ systems. Although 

happloinsufficiency is apparent in the Gfpt1+/tm1b model, the phenotypes observed are 

not specific to muscle or the NMJ. This model is therefore not particularly useful for 

investigating pathomechanisms in CMS, but has proven useful for tracking GFPT1 

expression.   
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Chapter 5: Characterisation of the muscle-specific GFPT1              

deficient mouse model 

 

5.1 Introduction    

The overall aim of this project is to generate a mouse model that recapitulates the 

phenotypes seen in patients with CMS as a result of GFPT1 deficiency. Most of these 

patients harbour mutations in the ubiquitous GFPT1 isoform, resulting in reduced, but 

not complete loss of GFPT1 expression (Guergueltcheva et al., 2012; Huh et al., 2012). 

The only exception is seen in a single patient with a nonsense mutation in the muscle-

specific exon, which is predicted to result in complete loss of GFPT1-L, but conserves 

the ubiquitous isoform (Selcen et al., 2013). Since homozygous Gfpt1 knockout mice 

are embryonic lethal, we generated the Gfpt1 muscle-specific knockout mouse model 

which disrupts both isoforms in muscle only. All remaining tissues continue to express 

the ubiquitous GFPT1 isoform.     

To evaluate the validity of the GFPT1 deficient mouse model, we must investigate 

whether this model exhibits phenotypes observed in human GFPT1-CMS. The general 

pathological changes observed in human CMS include morphological alterations at the 

endplate, and histopathological changes in muscle including the presence of tubular 

aggregates due to a deficiency in glycosylation enzymes. Initially, these features will be 

analysed in the Gfpt1tm1d/tm1d model.  

Patients with CMS present with fatigable muscle weakness. A series of tests have been 

devised to assess muscle function in mouse models. Tests that do not enhance disease 

progression allows evaluation of the natural course of disease and the efficacy of 

potential treatments on muscle function. The four-limb inverted screen test is a 

functional tool which measures the ability of mice to oppose their gravitational force 

through sustained limb tension. This test has proven useful for demonstrating fatigable 

muscle weakness in mice with neuromuscular disorders (Bogdanik and Burgess, 2011; 

Webster et al., 2013; Messéant et al., 2015). In situ isometric force measurements 

provide a means of assessing muscle fatigue through neural stimulation under 

physiological conditions. In vitro isometric force measurements allow critical 

evaluation of muscle contractile function. These tests are commonly used to assess 

myopathic and dystrophic phenotypes in mice (Chiu et al., 2009; Sharp et al., 2011; 
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Tamayo et al., 2016) and can be used to identify changes in muscle strength and fatigue 

in GFPT1 deficient mice.  

Ultimately, our goal is to discover the pathological mechanisms which can be 

therapeutically targeted with the aim of relieving CMS symptoms. This requires a 

thorough understanding of the molecular mechanisms underlying glycosylation 

deficient CMS. One method of enhancing our knowledge of disease causing 

mechanisms, and subsequently how the body responds to these changes, is through 

investigation of differentially regulated proteins. Proteome profiling is a powerful tool 

which can be used for the unbiased investigation of pathophysiological processes in 

neuromuscular disorders (Roos et al., 2016). Identification of regulated proteins as a 

consequence of abnormal glycosylation will prove useful in deducing the molecular 

pathways implicated in the CMS phenotype observed.  

In this chapter Gfpt1tm1c/tm1c mice are used as controls and muscle-specific GFPT1 

knockout mice are referred to as Gfpt1tm1d/tm1d. We also show preliminary 

characterisation of the Cre line using Ckm-Cre mice.   

 

5.1.1 Aims  

The overall aim of this chapter is to characterise the muscle-specific Gfpt1 knockout 

mouse model, Gfpt1tm1d/tm1d. This entails the following: 

 

• To study the morphology of presynaptic and postsynaptic components of the 

NMJ. 

 

• To investigate histopathological changes in mouse muscle. 

 

• To use functional tests to assess muscle strength and fatigue in mutant mice.   

 

• To analyse contractile properties of the diaphragm muscle using an in vitro test 

apparatus.  

 

• Global proteomic analysis of regulated proteins as a result of GFPT1 deficiency.  

 

• Immunoblot analysis of protein targets downstream of GFPT1.  
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5.2 Frequency and gross phenotype of Gfpt1tm1d/tm1d mice 

5.2.1 Frequency of Gfpt1tm1d/tm1d mice 

Gfpt1tm1c/tm1c mice were mated with Gfpt1+/tm1c Ckm-Cre mice to generate Gfpt1tm1c/tm1c 

Ckm-Cre (Gfpt1tm1d/tm1d) mice. According to our breeding strategy, offspring generated 

do not follow the expected Mendelian pattern of inheritance with an expected genotypic 

ratio of 1:1:1:1 (Gfpt1tm1c/tm1c: Gfpt1+/tm1c: Gfpt1+/tm1c Ckm-Cre: Gfpt1tm1c/tm1c Ckm-Cre). 

Instead Gfpt1+/tm1c (5%), Gfpt1+/tm1c Ckm-Cre (50%), Gfpt1tm1c/tm1c (41%), and 

Gfpt1tm1c/tm1c Ckm-Cre (4%) of mice were obtained from crosses using this breeding 

strategy (Figure 5.1). We observe a very low frequency of Gfpt1tm1d/tm1d mice.     

 

 

 

 

 

 

 

 

 

 

Figure 5.1. The percentage of offspring representing each genotype. 50% of 

offspring from Gfpt1tm1c/tm1c and Ckm-Cre crosses carry the Cre allele (F1). We acquire 

offpring from all the expected genotypes; Gfpt1+/tm1c, Gfpt1+/tm1c Ckm-Cre, Gfpt1tm1c/tm1c 

and Gfpt1tm1c/tm1c Ckm-Cre. The frequency of mice expected (blue boxes) and obtained 

(red boxes) for each genotype are shown (F2).  
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5.2.2 Gross phenotype and growth of Gfpt1tm1d/tm1d mice 

Gfpt1tm1d/tm1d mice do not exhibit gross phenotypical defects when compared to age-

matched control mice. Control, Ckm-Cre controls and Gfpt1tm1d/tm1d were weighed 

weekly from 6 weeks old to 6 months old. The general trend shows that Gfpt1tm1d/tm1d 

mice are slightly smaller when compared to control mice over the course of 

development. However, no significant difference was observed in the growth curve 

between control and Gfpt1tm1d/tm1d mice (Figure 5.2). We further demonstrate there is no 

change in body weight between control mice (Cre negative) and mice carrying the Cre 

transgene (Figure 5.2). 

 

 

Figure 5.2. Growth curve of control, Ckm-Cre and Gfpt1tm1d/tm1d mice. Growth curves 

demonstrating changes in body weight over a 6 month period. Data = mean + SEM. 

p>0.05. Not significant. Control and Gfpt1tm1d/tm1d mice (n=8), Cre (n=6).  
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5.3 Morphology of the neuromuscular junction  

5.3.1 Immunofluorescence of the NMJ  

We analysed the presynaptic and postsynaptic structure of NMJ in TA, intercostal, 

soleus, lumbrical and EDL muscles from 3 month old mice. Whole-mount muscles were 

stained with α-bungarotoxin to label AChRs, and with antibodies against neurofilament 

and synaptophysin to label axonal branches and nerve terminals, respectively. In control 

mice, axonal branches project normally and innervate the well-defined ‘Pretzel’-like 

AChR. Observation of presynaptic components showed that Gfpt1tm1d/tm1d mice exhibit 

some morphological differences including the appearance of discontinuous and rather 

disorganised axonal projections. Nevertheless, axons project to endplates and form 

synaptic contacts with existing AChR. We do not observe overshooting, retractions or 

axonal sprouting. Analysis of postsynaptic structures revealed that AChR in 

Gfpt1tm1d/tm1d mice do not maintain the characteristic ‘Pretzel’-shape that we see in 

control mice. Instead they appear smaller and fragmented in all muscles analysed in 

comparison to control mice (Figure 5.3).  
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Figure 5.3 
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Figure 5.3. Aberrant NMJ in 3 month old Gfpt1tm1d/tm1d mice. Confocal Z-stack 

projections of whole-mount TA (A), intercostal (B), soleus (C), lumbrical (D) and EDL 

(E) muscles were labelled with anti-neurofilament (green), anti-synaptophysin (green) 

and Alexa fluor 594 α-bungarotoxin (red). Neurofilament (NF), Synaptophysin (Syn). 

Scale bar = 20μm. 

 

 

 

Figure 5.3 continued 
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5.3.2 Co-localisation of presynaptic and postsynaptic components of the NMJ 

To further analyse remodelling of endplates in Gfpt1tm1d/tm1d mice, whole-mount TA, 

intercostal, soleus, lumbrical and EDL muscles from 3 month old mice were stained 

with α-bungarotoxin to label AChR and with antibodies against synaptophysin to 

visualise nerve terminals. In control mice, we see a precise spatial overlap of nerve 

terminals and their respective AChR. Synaptophysin labelling in Gfpt1tm1d/tm1d mice 

revealed fragmented nerve terminals which appear to align and form synaptic contacts 

with the existing AChR fragments. The overlap of nerve terminals and their respective 

AChR appear normal, as seen in control mice. These findings are consistent across all 

muscles analysed (Figure 5.4).  
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Figure 5.4. Co-localisation of nerve terminals and AChR. Confocal Z-stack 

projections of whole-mount muscles labelled with Alexa fluor 594 α-bungarotoxin (red) 

and anti-synaptophysin (green) demonstrate the degree of nerve terminal and AChR 

overlap from TA (A), intercostal (B), soleus (C), lumbrical (D) and EDL (E) muscles. 

Synaptophysin (Syn). Scale bar = 20μm (A-E).  
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5.3.3 Quantitative analysis demonstrating the changes in AChR structure and the 

area of synaptic contacts between presynaptic and postsynaptic components 

To study presynaptic and postsynaptic changes at the NMJ, TA, intercostal, EDL, 

lumbrical and soleus muscles from 3 month old control and Gfpt1tm1d/tm1d mice were 

used to analyse the area, degree of fragmentation, and expression of AChR clusters. We 

further analysed the overlap area between presynaptic and postsynaptic components 

using AChR and nerve terminal stained muscles.  

Single-projected images derived from overlaying image stacks were quantified using 

ImageJ analysis software as previously described. Quantitative analysis revealed a 

reduction in the size of AChRs which were greatest in the lumbrical muscles, followed 

by the TA, EDL, soleus and intercostals muscles (Figure 5.5A), (Percentage decrease in 

AChR cluster area lumbrical: 62.8% TA: 45%, EDL: 33%, soleus: 28%, intercostals: 

27%.). The degree of fragmentation was measured by a mean fold increase in the no. of 

fragments per AChR cluster, (TA: 2.2 fold, EDL: 1.9 fold, intercostals: 1.8 fold, soleus: 

1.3 fold and lumbrical: 0.3). Statistical analysis revealed the greatest degree of 

fragmentation was observed in the soleus, followed by the EDL, intercostal, TA and 

lumbrical muscles (Figure 5.5B). The number of AChR clusters expressed per field 

view remained unchanged in all muscles analysed (Figure 5.5C). Analysis of the 

overlap area between presynaptic and postsynaptic components revealed no significant 

difference in NMJ from control and Gfpt1tm1d/tm1d mice (Figure 5.5D).  
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Figure 5.5. Quantification of AChR cluster area, fragmentation, expression and 

overlap area of presynaptic and postsynaptic elements. Quantitative analysis 

demonstrating area of AChR clusters (A), fragmentation of AChR clusters (B), the 

number of AChR clusters expressed per field view (C), and the presynaptic and 

postsynaptic overlap in control and Gfpt1tm1d/tm1d mice (n = 6-8 animals per genotype). 

Data are mean + SEM. *p<0.05, **p<0.01 ***p<0.001. ns, Not significant. 
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5.4 Electron microscopy 

To gain an enhanced understanding of the phenotype observed in Gfpt1tm1d/tm1d mice, we 

examined endplates and muscle at the ultrastructural level using electron microscopy in 

intercostal muscles from 3 month old control and mutant mice.  

 

5.4.1 Examination of NMJ ultrastructures  

Endplates in control mice exhibit uniform postsynaptic junctional folds at the NMJ. We 

also observe subcellular specialisations such mitochondria and synaptic vesicles in the 

presynaptic nerve terminal (Figure 5.6A). In contrast, analysis of endplates from 

Gfpt1tm1d/tm1d mice revealed fewer, simplified or highly disorganised junctional folds. 

Presynaptic terminals appear smaller, but maintain their subcellular specialisations 

(Figures 5.6B and 5.6C). Further examination of presynaptic elements show that control 

mice display regular concentric myelin sheaths (Figure 5.6D). Differences observed in 

Gfpt1tm1d/tm1d mice include occasional highly irregular convoluted myelin sheaths 

surrounding axons (Figures 5.6E and 5.6F).   

Examination of the sarcoplasm revealed an abundant accumulation of tubular 

aggregates beneath the sarcolemma in mutant mice (Figure 5.6G). We also see the 

presence of subsarcolemmal vesicular structures that may correspond to caveolae 

(Figure 5.6H). Tubular aggregates were absent in control mouse muscle. These data 

indicate both presynaptic and postsynaptic alterations in Gfpt1tm1d/tm1d mice. 
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Figure 5.6 
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Figure 5.6. Altered morphology at the ultrastructural level in Gfpt1tm1d/tm1d mouse 

muscle. Representative electron micrographs from 3 month old control and 

Gfpt1tm1d/tm1d intercostal muscles. Examples of NMJs from control (A), and Gfpt1tm1d/tm1d 

(B, C) mice. Examples of control (D), and Gfpt1tm1d/tm1d (E, F) myelin sheaths. 

Accumulation of tubular aggregates (G) and subsarcolemmal vesicular structures (H) in 

Gfpt1tm1d/tm1d mouse muscle. Synaptic vesicles (*), junctional folds (black arrow), 

mitochondria (M), myelin sheaths (white arrows), rounded tubular aggregates (TA), 

subsarcolemmal vesicular structures (black arrow head). Scale bar = 1μm (A,B,G,H); 

2μm (C,D,E,F).   

 

 

 

 

 

 

 

 

 

Figure 5.6 continued 
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 5.4.2 Quantification of presynaptic and postsynaptic changes in Gfpt1tm1d/tm1d mouse 

muscle 

Presynaptic and postsynaptic changes in Gfpt1tm1d/tm1d mouse muscle were quantified by 

analysing the number of postsynaptic junctional folds per nerve terminal, the diameter of 

myelin sheaths, and sarcomere length by measuring the distance between z-lines.    

The number of junctional folds were counted manually, and the diameter of myelin 

sheaths and the distance between z-lines were measured using ImageJ software. Mutant 

mice display fewer junctional folds (34% decrease) on the postsynaptic membrane 

(Figure 5.7A). Analysis of myelin sheaths showed a reduction in diameter (32% 

decrease) (Figure 5.7B). Analysis of the sarcoplasm revealed smaller sarcomeres shown 

by a decrease in the distance between z-lines (11%) (Figure 5.7C). All data were 

analysed relative to data from control mice.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Quantification analyses demonstrating presynaptic and postsynaptic 

alterations in Gfpt1tm1d/tm1d mouse muscle. Quantitative analysis demonstrating the 

number of junctional folds (A), myelin sheath diameter (B), and distance between z-

lines (C), in control and Gfpt1tm1d/tm1d mouse muscle. (n=4 animals per genotype). Data 

are mean + SEM. *p<0.05, ***p<0.001. 
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5.5 Histological analysis of skeletal muscle in Gfpt1tm1d/tm1d mice 

 

5.5.1 Histological analysis of skeletal muscle using hematoxylin and eosin staining  

TA, intercostal, soleus, EDL and diaphragm muscles were dissected from 3 month old 

control and Gfpt1tm1d/tm1d mice. 10 µm thick transverse sections were prepared and the 

muscles were stained with hematoxylin and eosin.  

Whilst control mice maintain their characteristic polygonal shape and peripherally 

located nuclei, we observe numerous myopathic changes in Gfpt1tm1d/tm1d mouse muscle 

(Figure 5.8). Muscles from Gfpt1tm1d/tm1d mice exhibit occasional rounded myofibres, 

and a few fibres with internal nuclei indicative of regenerating fibres. There also 

appears to be a greater variability in myofibre size due to the presence of atrophic and 

hypertrophic myofibres, which occasionally exhibit splitting. We observe necrotic fibres 

in the TA, EDL and diaphragm muscles, and the presence of tubular aggregates which 

are stained as dark aggregates or appear like slits within the myofibre. Tubular 

aggregates are found in some myofibres in all muscles examined. Analysis of the EDL 

and diaphragm muscle demonstrates the replacement of myofibres with fibro-adipose 

tissue. This finding is more prevalent in the diaphragm muscle.  
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Figure 5.8 
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Figure 5.8 continued 
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Figure 5.8. Myopathic changes in muscle from Gfpt1tm1d/tm1d mice. Brightfield images 

of TA, intercostal, soleus, EDL and diaphragm muscles stained with hematoxylin and 

eosin from 3 month old control and Gfpt1tm1d/tm1d mice. Legend: Black star indicates 

rounded myofibres, black arrow points to centrally-located nuclei in myofibres, black 

arrow head points to tubular aggregates, white arrow head points to necrotic fibres, 

white arrow points to adipose tissues. Hypertrophic and atrophic myofibres are also 

present. Scale bar = 20µm for main figures and 10µm for insets.      
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5.5.2 Quantification of myofibre variation  

The cross-sectional area of individual myofibres from control and Gfpt1tm1d/tm1d mice 

were measured using ImageJ software as described previously. Quantitative analysis of 

myofibre area showed higher variability in Gfpt1tm1d/tm1d mouse muscle when compared 

to control mouse muscle. Variations in fibre size between control and Gfpt1tm1d/tm1d 

mouse muscle are greatest in the EDL (61%), followed by the soleus (56%), intercostal 

(29%) and TA (26%) muscles as shown by the percentage difference of the interquartile 

range. Median cross-sectional area measurements are indicative of the proportion of 

fibres that tend to be either smaller or larger when comparing control and mutant 

muscles. The intercostal (28.91%) and soleus (25.84%) muscles exhibit a shift towards 

smaller fibres, the EDL exhibits a shift towards larger fibres (17.72%), whilst the TA 

fibres remain unchanged in Gfpt1tm1d/tm1d mice (Figure 5.9).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Quantitative analyses demonstrating the distribution of myofibre size 

according to cross-sectional area. The cross-sectional area of individual myofibres 

from control and Gfpt1tm1d/tm1d mice were measured (n=4 animals per genotype). Data 

are median, 25th percentile, 75th percentile, minimum and maximum values (including 

outliers). **p<0.01,***p<0.001. ns, Not significant.  
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5.6 Evaluation of myasthenia in transgenic mice  

 

5.6.1 The four limb inverted screen test  

Fatigable muscle weakness was measured using an inverted screen test. Mice were 

suspended from a wire grid and the length of time it took for the mice to release their 

grasp of all four limbs was recorded. Data was collected from mice from 6 weeks of 

age. The mice were set a maximum time of 10 minutes. Control mice up to the age of 

18 weeks old demonstrate the ability to hold on for the maximum threshold of 10 

minutes. There was a small reduction in the latency to fall in older mice which is 

accounted for by an increase in body weight. Gfpt1tm1d/tm1d mice demonstrate poor motor 

performance detected as early as 6 weeks old up until 6 months old as shown by a 

reduction in the latency to fall from the grid compared to controls (Latency decrease: 8 

weeks old, 62%; 12 weeks old, 69%; 16 weeks old, 66%; 20 weeks old, 64%; 24 weeks 

old, 63%; Figure 5.10). The deficit in motor performance is not progressive over time. 

We further demonstrate there is no difference in the longest hang time between control 

mice (Cre negative) and mice carrying the Cre transgene over the 6 month period.  

 

 

 

 

 

 

 

 

 

 

Figure 5.10. A comparison of muscle strength between control, Ckm-Cre controls 

and Gfpt1tm1d/tm1d mice. Quantitative analysis of latency to fall from a wire grid at 

various time points up to the age of 6 months. Gfpt1tm1d/tm1d mice perform worse than 

control mice at all time points (p<0.01) (n=8). Ckm-Cre control mice do not exhibit any 

changes compared to controls (n=6). p>0.05, not significant. Data are mean + SEM. 
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5.6.2 Isometric force measurements in situ 

The main procedure for preparing the mouse for measuring force measurements 

produced by the TA muscle is described in the materials and methods chapter of this 

thesis. The electrophysiology measurements were made using an in vivo protocol that 

has been previously described (Dellorusso et al., 2001; Sharp et al., 2008; Sharp et al., 

2011; TREAT- NMD protocols). 

Surgical preparation 

The sciatic nerve branches into the sural, tibial and peroneal nerves. The sural and tibial 

nerves were transected, but the peroneal nerve was left intact. This ensures that only the 

TA muscle remains innervated, and there is no contraction from any other muscle. The 

sciatic nerve was also transected proximally. The sciatic nerve was then placed over 

bipolar platinum electrodes (Figure 5.11).     

 

 

 

 

 

 

 

 

Figure 5.11. Schematic demonstrating surgical preparation required prior to in 

situ force measurements. The tibial and sural nerves were transected. The peroneal 

nerve that innervates the TA muscle was left intact. Finally, the sciatic nerve was 

transected proximally, and bipolar platinum electrodes (grey), were place beneath the 

sciatic nerve. All nerves were transected as indicated (red dotted lines). Medial 

Gastrocnemius (MG), Lateral Gastrocnemius (LG), Plantaris (PL), Soleus (SOL), 

Tibialis Anterior (TA). This image was adapted from (Duraku et al., 2012; Lorenz and 

Jones, 2014). 
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Isometric force measurements  

To confirm the presence of muscle weakness in Gfpt1tm1d/tm1d mice, we studied the 

ability of TA muscles from 3 month old control and Gfpt1tm1d/tm1d mice to evoke twitch 

and tetanic contractions in response to stimulation of the sciatic nerve in situ. Muscles 

were stimulated using a warm up protocol which consisted of 5 stimulations at 50 Hz 

with a minute rest period between each stimulation. The muscle was subject to a series 

of single twitches at increasing tensions (Figure 5.12). The muscle’s optimum length 

(Lo) was determined and the resting tension that produced the strongest twitch was used 

for the remainder of the experiment. The force frequency relationship was determined 

using a series of stimulations at 10, 30, 40, 50, 80, 100, 120, 150 and 180 Hz, each 1 

minute apart. A small drop in force occurs during the contractions elicited at stimulation 

frequencies of 150 Hz and 180 Hz, which is indicative of fatigue. A stimulation 

frequency 120 Hz produces a fully fused tetanus with no reduction in force over the 

stimulation period (Figure 5.13). This is the maximum isometric tetanic force (Po) 

which is used for the remaining fatigue experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Representative trace demonstrating the force produced by a single 

twitch in the TA muscle. Twitches were produced by stimulation of the common 

peroneal branch of the sciatic nerve. The resting tension was adjusted until the 

maximum twitch force was produced. The resulting trace was analysed to obtain the 

peak twitch force.  
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Figure 5.13. Representative traces demonstrating the force produced by tetanic 

stimulation of the TA muscle. The sciatic nerve was stimulated at increasing 

frequencies (10, 30, 40, 50, 80, 100, 120, 150 and 180 Hz) with a rest period of 1 

minute between each stimulation.  
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Determining specific force 

The force readings at each frequency recorded in grams (absolute force) were converted 

to specific force (kN/m2). Specific force is the absolute force normalised to cross-

sectional area (CSA) of the of the muscle.  

The following formula was used to determine the CSA of the muscle:   

 

The force produced at each stimulation frequency was measured in grams and converted 

to Newtons (N) by multiplying by 0.00981.  

 

Specific force (N/cm2) was calculated using the following formula: 

 

Specific force was plotted against frequency. Our data demonstrates that there is no 

significant difference in muscle strength between control and Gfpt1tm1d/tm1d mouse 

following upon tetanic stimulations (Figure 5.14).  

 

 

 

 

 

 

 

 

 

 

 

 

Specific force (N/cm2) = Absolute force (N)/CSA (cm2) 

CSA = muscle weight (g)/[Optimum TA fibre length (Lf, cm) × 1.06 (g/cm3] 

 

1.06g/cm3 is the density of mammalian skeletal muscle.  

Lf = optimal length (Lo) x 0.6 which represents the fibre length: muscle length ratio 

for the TA (Brooks and Faulkner, 1988).  
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Figure 5.14. Mean specific force produced by the TA muscle following tetanic 

stimulation of the sciatic nerve at increasing stimulation frequencies in 3 month 

old control and Gfpt1tm1d/tm1d mice. The sciatic nerve was stimulated by a series of 

isometric contractions with frequencies of 10, 30, 40, 50, 80, 100, 120, 150 and 180 Hz, 

with a delay of 1 minute between each stimulation. There is no observed difference in 

the force produced between control and Gfpt1tm1d/tm1d mice. (n=5). Data are mean + SEM. 

p>0.05. ns, not significant at any frequency. 

 

Testing for fatigue in Gfpt1tm1d/tm1d mice  

We assessed muscle fatigue following a series of tetanic nerve stimulations at 120 Hz 

(the frequency that usually resulted in Po) over 100 stimulations. Muscle fatigue was 

observed in both control and Gfpt1tm1d/tm1d mice. After 100 stimulations control mice 

demonstrated a 26.1% reduction in force produced compared to baseline, whereas 

Gfpt1tm1d/tm1d mice showed a 64.7% deficit, exhibiting a more pronounced degree of 

fatigue. A progressive decrease in the force produced in Gfpt1tm1d/tm1d mice is evident 

from 60 stimulations (60, 22.3%; 70, 26.0%; 80, 42.9; 90, 47.7%; 100, 64.7%), whereas 

a significant reduction in control mice is only evident following 100 stimulations 

compared to baseline (Figure 5.15A). A comparison of fatigability between control and 

Gfpt1tm1d/tm1d mice showed the latter exhibit a significant and progressive reduction in 

force produced after 80 (20.77%), 90 (26.37%) and 100 (38.67%) stimulations (Figure 

5.15B). Our data demonstrates that although Gfpt1tm1d/tm1d mice do not display 

pronounced changes in TA muscle strength, the muscle is more susceptible to 

fatigability.  
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Figure 5.15. Analysis of muscle fatigue. (A) Quantitative analysis of force generated 

by the TA muscle after every 10 stimulations of the sciatic nerve in 3 month old control 

and Gfpt1tm1d/tm1d mice (n=5). Data are expressed as a percentage of baseline force. (B) 

Quantification of fatigability of the TA muscle after 80, 90 and 100 stimulations of the 

sciatic nerve in 3 month old control and Gfpt1tm1d/tm1d mice (n=5). Data are expressed as 

the percentage decrease of baseline force. Data are mean + SEM. *p<0.05, **p<0.01, 

***p<0.001.  
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5.6.3 Isometric force measurements in vitro 

We assessed the contractile properties of the diaphragm muscle from Gfpt1tm1d/tm1d mice 

using an in vitro test apparatus which has been previously described in Chapter 2 of this 

thesis. We examined the ability of muscles to contract following a series of tetanic 

stimulations. Control and Gfpt1tm1d/tm1d muscles maintained tetanic contractions with 

stimulation frequencies ranging from 30-150 Hz. However, Gfpt1tm1d/tm1d muscles 

develop less force than control ones (Figure 5.16). Quantitative analysis revealed that 

the isometric tetanic maximal force on muscle strength was significantly reduced 

compared to controls (150 Hz, 35.3%).  

 

 

 

 

 

 

 

 

 

Figure 5.16. Analysis of contractile properties of diaphragm muscle from 

Gfpt1tm1d/tm1d mice. Average isometric tetanic maximal force at 150 Hz on diaphragm 

muscle from control and Gfpt1tm1d/tm1d mice (n = 4). Data are mean + SEM. ***p<0.001.  
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Fatigue 

We tested for fatigue using a series 100 tetanic nerve stimulations at 150 Hz (the 

frequency resulting in Po). We did not observe signs of fatigue in control diaphragms, 

but we see a progressive reduction in force between 50 and 100 stimulations in 

Gfpt1tm1d/tm1d diaphragms compared to baseline (50, 5.6%; 60, 16.8%; 70 19.4%; 80, 

20.9%; 90, 23.5%; 100, 29.8%) (Figure 5.17A). We compared the reduction in force 

produced between control and Gfpt1tm1d/tm1d mice expressed as percentage fatigability. 

Gfpt1tm1d/tm1d mice demonstrate a significant and progressive reduction in force from 50-

100 stimulations when compared to controls, (50, 5.6%; 60, 16.8%; 70, 19.4%; 80, 

20.9%; 90, 23.5%; 100, 29.8%) (Figure 5.17B).  

 

 

Figure 5.17. Analysis of fatigue in diaphragm muscle from Gfpt1tm1d/tm1d mice. (A) 

Quantitative analysis of force generated by the diaphragm muscle after every 10 

stimulations in 3 month old control and Gfpt1tm1d/tm1d mice. Data are expressed as a 

percentage of baseline force. (B) Quantification of fatigability of the diaphragm muscle 

between 50 and 100 stimulations in 3 month old control and Gfpt1tm1d/tm1d mice. Data are 

expressed as a percentage reduction in force. (n=4). Data are mean + SEM. NC, no 

change. *p<0.05, **p<0.01,***p<0.001.  
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5.7 Evaluation of AChR stability   

To establish whether the stability of AChRs is compromised in Gfpt1tm1d/tm1d mice, we 

assessed the turnover rate of AChR in the TA muscle of 3 month old control and mutant 

mice over a 10 day period. Fluorescence signals of ‘old’ and ‘new’ receptors labelled 

green and red respectively were monitored using confocal microscopy (Figure 5.18A). 

Quantitative assessment of relative pixel intensities using automated image analysis 

demonstrates no significant difference between Gfpt1tm1d/tm1d and control mice (Figure 

5.18B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. AChR turnover in TA muscles from control and Gfpt1tm1d/tm1d mice. 

(A) Confocal Z-stack images of old-receptor signals labelled with BGT-488 (green), 

new-receptor signals labelled with BGT-647 (red) and overlay. (B) Quantification of 

relative pixel intensity between control and Gfpt1tm1d/tm1d mouse muscle (n=3). Data are 

mean + SEM. p>0.05, ns, not significant.  
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5.8 Proteomic profiling experiments  

5.8.1 Effects of GFPT1 deficiency on the intercostal muscle proteome 

Proteomics is a powerful tool for the unbiased investigation of pathophysiological 

processes in neuromuscular disorders (Roos et al., 2016). We compared the proteome 

profile of intercostal muscles from 3 month old control and Gfpt1tm1d/tm1d mice using 

quantitative mass spectrometry (label-free shotgun proteomic approach). We found that 

2.8 % of the quantified proteins (43 out of 1517) were differentially expressed upon 

GFPT1 deficiency in intercostal muscles, 39 of these proteins were upregulated (29 

identified with two or more unique peptides and 10 with one unique peptide) and 4 

downregulated (all identified with one unique peptide). Most of the affected proteins are 

localized in the ER-Golgi network, plasma membrane, cytoplasm, nucleus and 

mitochondria. For a list of regulated proteins, their subcellular localization and proposed 

functions, see Appendix A (Pundir et al., 2017). 5 out of the 39 upregulated proteins, 

and 1 out of the 4 downregulated proteins harbour N-glycosylation (N-GlcNAc) sites. 1 

out of the 4 downregulated proteins harbor O-glycosylation (O-GlcNAc) sites, (Table 

5.1). To provide insight into GFPT1 myopathology, the spectrum of affected proteins 

was analyzed for enriched gene ontology (GO) terms using STRING (Figure 5.19). 

Regulated proteins found to have connections with each other are shown in the 

STRING.     
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Table 5.1. Regulated proteins with N- and O-glycosylation sites.  

Protein Gene Abundance Type and no. of 

glycosylation sites 

Aminopeptidase N Anpep Upregulated N- GlcNAc (17) 

 

Complement C4-B  C4b Upregulated N- GlcNAc (4) 

 

Glypican-1  Gpc1 Upregulated N- GlcNAc (2)  

O-Xylose (3) 

Vesicular integral-membrane 

protein  

Lman2 Upregulated N- GlcNAc (1) 

 

Vitronectin Vtn Upregulated N- GlcNAc (3) 

UDP-N-acetylglucosamine-peptide 

N-acetylglucosaminyltransferase  

 

Ogt Upregulated O- GlcNAc (2) 

Uncharacterized family 31 

glucosidase KIAA1161  

 

Kiaa1161 Downregulated  N- GlcNAc (3) 
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Figure 5.19. Analysis of protein interaction network by STRING. The spectrum of 

affected proteins was analyzed for enriched gene ontology (GO) terms. Upregulated 

proteins are shown in green and downregulated proteins are shown in red; p< 0.05. The 

relative expression of remaining proteins did not change. All proteins shown 

demonstrate known and predicted protein-protein interactions. 
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5.8.2 Immunoblot analysis showing the relative expression of glypican-1 and MuSK 

in control and Gfpt1tm1d/tm1d mouse tissues 

Using immunoblot studies, we have verified the proteomic findings for glypican-1, a 

cell surface proteoglycan that bears heparan sulfate and participates in axon guidance, 

Schwann cell myelination and is required for proper skeletal muscle differentiation. 

Moreover, we demonstrated an increased abundance of the MuSK protein, a major 

regulator required for the formation and maintenance of the NMJ (Figure 5.20A). 

Muscles used for analysis were derived from 3 month old control and Gfpt1tm1d/tm1d 

intercostal muscles. The relative expression levels between control and mutant 

intercostal tissues was analysed using the gel analysis tool on ImageJ software. 

Glypican-1 (Figure 5.20B) and MuSK (5.20C) are considerably more abundant in 

Gfpt1tm1d/tm1d mice when compared to controls.  

 

 

 

Figure 5.20. Immunoblot analyses showing the relative expression levels of 

glypican-1 and MuSK in mouse tissues. Glypican-1 (~62 kDa) and MuSK (~97 kDa) 

proteins are upregulated in Gfpt1tm1d/tm1d intercostal muscles (A). Alpha-actinin (~103 

kDa) was used as a loading control. All bands were measured against an 8-260 kDa 

Chameleon Duo Ladder protein ladder. Graph demonstrating the relative expression 

levels of glypican-1 (B) (n=3), and MuSK (C) (n=2), normalised to their corresponding 

alpha-actinin loading controls.  
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5.9 Discussion 

The frequency of mice born does not reflect the Mendelian frequencies of the four 

expected genotypes. Only 4% of offspring harbour the Gfpt1tm1d/tm1d genotype, instead 

of the expected 25%. These findings suggest potential embryonic lethality upon 

disruption of Gfpt1. Why some mutant mice survive and not others will require further 

investigation. In Chapter 3 we describe the spatial and temporal expression of Cre 

recombinase using the ROSA26R-lacZ reporter line. Although we rule out inconsistent 

Cre activity in the developing embryo and major adult tissues, there may be some Cre 

activity which remains undetected. Ckm-Cre may be expressed prematurely in embryos 

or in extraembryonic tissues, which consequently depletes GFPT1 required for survival. 

Since we observe normal litter sizes, it is possible that the mice are lethal prior to pre-

implantation due to premature GFPT1 depletion. Alternatively, it is possible that the 

embryos that experience Cre activity on the lower end of the spectrum, i.e. lower 

recombination efficiency, can survive through to adulthood due to small amounts of 

residual GFPT1 expression. Although we do not address the level of GFPT1 depletion 

at different stages in the developing embryo, we demonstrate complete knockout of 

GFPT1 in skeletal and cardiac tissues of the adult mouse using immunoblot analyses, 

which validates this model for studying the maintenance of the NMJ. Whilst the 

survival of CMS knockout mouse models often result in embryonic or early postnatal 

lethality (Dechiara et al., 1996; Gautam et al., 1996; Okada et al., 2006; Weatherbee et 

al., 2006), Gfpt1tm1d/tm1d offspring survive through to adulthood and do not die 

prematurely. Furthermore, we do not observe any gross phenotypical defects or 

significant changes in body weight in mutant mice.   

In humans GFPT1 expression is ubiquitous. Consequently, the NMJ phenotypes we see 

in patients may be due to a deficiency of GFPT1 in both presynaptic and postsynaptic 

structures at the NMJ. The Gfpt1tm1d/tm1d mouse model conserves GFPT1 expression in 

all tissues except muscle. Prior to this study it was unknown whether depletion of 

GFPT1 in muscle only would be sufficient to produce a CMS-like phenotype.  

 

Examination of NMJs in muscles from Gfpt1tm1d/tm1d mice demonstrate changes in 

endplate architecture, highlighting the importance of muscle derived GFPT1 in NMJ 

differentiation. Pathology of the AChR is illustrated by fragmentation and reduction in 

size of AChR clusters in all muscles examined.  
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Pathological endplates were also evident at the ultrastructural level in NMJs of 

intercostal muscles which harboured fewer, simplified junctional folds; a common 

feature seen in GFPT1 patients (Selcen et al., 2013; Maselli et al., 2014), as well as 

other mouse models of congenital myasthenia (Chevessier et al., 2008; Bogdanik and 

Burgess, 2011; Messéant et al., 2015). Structural changes in the presynaptic or 

postsynaptic components of the NMJ may compromise the safety margin of 

neurotransmission. Junctional folds harbour a high density of Na+ channels in the 

troughs of the folds as well as increase the series resistance of the postsynaptic 

membrane. Both factors are important for membrane depolarisation. Simplification of 

the folds may therefore be a major contributor to impaired neurotransmission. Another 

possible pathomechanism is an increased chance of acetylcholine escaping the synaptic 

cleft before it reaches the postsynaptic membrane (Wood and Slater, 2001). This theory 

is supported by patient use of cholinesterase inhibitors which ameliorate muscle 

weakness in many subtypes of CMS. A reduction in the number of junctional folds may 

therefore be accountable for the fatigable muscle weakness we observe in Gfpt1tm1d/tm1d 

mice.  

 

We also observe presynaptic morphological alterations in mutant mice. We see 

remodelling of motor nerve terminals which form synaptic contacts with the fragmented 

AChRs. Since our model conserves GFPT1 expression in non-muscle tissues we 

hypothesise that the presynaptic alterations we observe in Gfpt1tm1d/tm1d NMJs are 

secondary to the pathological changes in the postsynaptic apparatus, via impaired 

retrograde signalling required for axon guidance during synaptogenesis (Chen and 

Cheng, 2009; Wu et al., 2010). Previous studies have shown the implication of muscle 

derived BMP in stimulating presynaptic growth and development (Ball et al., 2010; 

Berke et al., 2013). Furthermore, the inducible LRP4 muscle-specific knockout mouse 

model displays both presynaptic and postsynaptic remodelling (Barik et al., 2014), 

where muscle derived LRP4 has been shown to mediate presynaptic differentiation via a 

retrograde signalling mechanism (Yumoto et al., 2012). Similarly, a muscle-specific 

conditional β-catenin knockout mouse strain demonstrates morphological and functional 

defects in nerve terminals at the NMJ, yet in motor neuron specific β-catenin knockout 

mice, the morphology and function of the NMJ remains unaffected (Li et al., 2008).  

These findings indicate the roles of muscle-derived proteins in regulating presynaptic 

differentiation and function. It is therefore highly plausible that the presynaptic changes 
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we observe in Gfpt1tm1d/tm1d mice, occurs due to defective secreted proteins from the 

muscle. We speculate that misglycosylation of muscle derived proteins in this mouse 

model impairs retrograde signalling mechanisms required for neuronal differentiation or 

maintenance. Interestingly BMP and LRP4 harbour N-glycosylation sites for GlcNAc 

and β-catenin undergoes O-GlcNAcylation. These proteins could potentially be affected 

by GFPT1 deficiency. Alternatively, misglycosylated binding partners or activators of 

retrograde signalling proteins can also disrupt their function. Examples include N-linked 

Wnt glycoproteins of Wnt/β-catenin pathway and N-glycosylated LRP4 binding 

partners such as agrin and MuSK (Zhang et al., 2009).  

 

We also observe thinner, irregular myelin sheaths in mutant mice. Perisynaptic 

Schwann cells that myelinate motor axons at the NMJ are known contributors of 

synaptogenesis and synaptic transmission (Feng et al., 2005; Cao and Ko, 2007; Wu et 

al., 2010). Cross-talk between proteins of the postsynaptic membrane, motor nerve and 

Schwann cells is essential for the integrity and function of the synapse (Wu et al., 

2010). Previous studies have shown the role of laminin β2 (Maselli et al., 2009), agrin 

(Maselli et al., 2012) and COL13A1 (Latvanlehto et al., 2010; Logan et al., 2015) in the 

correct organisation of Schwann cells. A deficiency in these proteins results in 

remodelling of Schwann cells often resulting is encasement of the nerve terminal and 

invasion of the synaptic space, which subsequently impairs surface contact for 

neurotransmission. The changes we see in myelination in GFPT1 deficient mice may 

occur because of misglycosylated muscle proteins that directly affect Schwann cell 

morphology and function. Alternatively, the changes we observe in the motor neuron 

may subsequently induce changes in Schwann cell myelination. It is challenging to 

study the precise mechanisms underlying presynaptic alterations due to the complexity 

of processes underlying NMJ differentiation, together with the ubiquitous nature of the 

GFPT1 glycosylation pathway which may give rise to thousands of NMJ proteins that 

are potentially affected.  

 

Examination of muscle biopsies from patients with mutations in GFPT1 revealed 

variations in myofibre size, an increase in the number of central nuclei, atrophic fibres, 

fibres that showed splitting and few necrotic and regenerating fibres. Additionally, there 

is an increase in glycogen staining, rimmed vacuoles and tubular aggregates (Selcen et 

al., 2013; Brady et al., 2016). Analyses of second biopsies from the same patients 



121 
 

 

demonstrate that pathological changes are progressive over time. Tubular aggregates 

further appear to increase in size, but their relative expression remains unchanged 

(Brady et al., 2016). Histopathological alterations seen in muscle biopsies from patients 

with mutations in GFPT1 closely resembles those with mutations in DPAGT1.  

 

Examination of Gfpt1tm1d/tm1d mouse muscle revealed abnormal variations in myofibre 

size, few regenerating and necrotic fibres and the presence of tubular aggregates. Our 

model more closely resembles the myopathic phenotype that we see in a single patient 

harbouring the c.686-2A>G mutation which disrupts the longer muscle-specific isoform 

of GFPT1 resulting in the absence of glycosylated protein expression (Selcen et al., 

2013). In the diaphragm muscle, we observe a progressive replacement of muscle tissue 

by fibroadipose tissue, indicative of muscle fibre atrophy, which was not apparent in 

younger (6 week old) mice. Similar features are also seen in muscle biopsies from 

DPAGT1-CMS patients (Basiri et al., 2013). Recent investigations into myopathic 

changes in patients has been facilitated by muscle MRI. Findings demonstrate fatty 

infiltration in muscle which is more pronounced in patients with mutations in genes 

encoding proteins in the glycosylation pathway (Finlayson et al., 2016). Whilst minor 

myopathic changes are sometimes seen in some subtypes of CMS, secondary to 

neurotransmission failure (Selcen et al., 2011; Nicole et al., 2014), myopathic changes 

are more pronounced in patients with mutations in GFPT1 and DPAGT1. Dystrophic 

changes are also observed in patients with GMPPB mutations. These findings are not 

surprising due to the ubiquitous activity of these glycosylation enzymes.   

 

Since glycosylation is a ubiquitous post-translational modification, it is highly probable 

that glycosylation of proteins other than those required for the formation and 

maintenance of the NMJ complex are misglycosylated in GFPT1 deficient mice, which 

explains the myopathic phenotype and disruption of contractile properties observed. 

Hypoglycosylation may disrupt cytoskeletal proteins that maintain the integrity of 

skeletal muscle during muscle contractions (Huizing et al., 2004; Reed et al., 2004; 

Herbst et al., 2009) or affect regulatory and contractile proteins that modulate Ca2+ 

homeostasis and muscle contraction, as well as structural proteins of the sarcomere 

(Hedou et al., 2007; Cieniewski-Bernard et al., 2012; Leung et al., 2013; Cieniewski-

Bernard et al., 2014a). Many of these proteins harbour N- and O-linked GlcNAc 

acceptor sites, making them potential candidates subject to misglycosylation 
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downstream of impaired glycosylation enzymes implicated in CMS. Proteins that 

maintain the integrity of the sarcolemma which are modified by N-GlcNAc moieties 

include the sarcoglycan subunits (α, β, δ, γ), α-dystroglycan and β-dystrogylcan. 

Contractile proteins such as actin, myosin heavy chain and myosin light chain proteins 

as well as key proteins involved in the sarcomeric structure including desmin, actinin, 

αB-crystallin, and ZASP are known to be O-GlcNAc modified (Hedou et al., 2007; 

Cieniewski-Bernard et al., 2012; Leung et al., 2013). Localisation of OGT (the enzyme 

that mediates O-GlcNAcylation) at the sarcomere, and in particular the Z-disk region, 

suggests an important role of O-GlcNAcylation of sarcomeric proteins (Cieniewski-

Bernard et al., 2014b). Our preliminary data shows a reduction in sarcomere length in 

mutant mice which may be attributed to misglycoslylated structural proteins of the 

sarcomere. Identification of affected proteins will require further investigation.  

 

Analysis of muscle from 3 month old Gfpt1tm1d/tm1d mice shows the presence of tubular 

aggregates, which was absent in muscle tissues from younger (6 week old) mice. These 

findings are consistent with the idea that tubular aggregate formation is age-dependent 

(Boncompagni et al., 2012). Not only are they present in muscle biopsies from patients 

with mutations in proteins involved in the glycosylation pathway (Belaya et al., 2012; 

Huh et al., 2012; Cossins et al., 2013; Selcen et al., 2013; Selcen et al., 2014), but they 

are also implicated in other myopathies as a result of STIM1 and ORAI1 mutations 

(Chevessier et al., 2005; Bohm et al., 2014; Endo et al., 2015). Tubular aggregates have 

also been identified in Caveolin1-/- and Caveolin2-/- mouse models (Schubert et al., 

2007), and wild type inbred male or ageing mice (Chevessier et al., 2004). 

Subsarcolemmal tubular aggregates are classified as densely packed vesicular or tubular 

membranes derived from the terminal cisternae or longitudinal components of the SR, 

and are located between myofibrils beneath the sarcolemma (Chevessier et al., 2004; 

Schubert et al., 2007; Schiaffino, 2012). Other studies have demonstrated that 

mitochondria may be implicated in the formation of tubular aggregates (Novotova et al., 

2002; Schubert et al., 2007). Whether tubular aggregates are direct pathological 

components contributing to the observed phenotype, or whether they represent a 

compensatory mechanism to pathological events, is poorly understood. 

The main function of the SR is to regulate muscle contraction through calcium uptake, 

storage and release (Brady et al., 2016). A common hypothesis is that tubular 

aggregates are products of a disruption of Ca2+ homeostasis. Immunohistochemistry 
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studies on inbred mouse muscle have shown that tubular aggregates are immunoreactive 

to SR markers SERCA1, sarcalumenin, calsequestrin, Ryanodine receptor 1 (RyR1), 

and triadin (Chevessier et al., 2004). Furthermore, SERCA-1, SERCA-2, GRP78 and 

calsequestrin were identified in tubular aggregates found in caveolin-2 deficient mice 

(Schubert et al., 2007). Analysis of cytoskeleton markers, spectrin, dystrophin, and 

desmin remain undetected (Chevessier et al., 2004). Immunoblot studies further 

demonstrate that the expression levels of these SR proteins remained unchanged when 

compared to control mice, suggesting the formation of tubular aggregates is not because 

of an increase in SR proteins, but rather translocation of existing proteins (Schubert et 

al., 2007).   

In the context of defective glycosylation induced-CMS, one hypothesis is that the 

tubular aggregates occur due to an accumulation of hypoglycosylated proteins. 

Immunohistochemistry studies on GFPT1-CMS and DPAGT1-CMS patient muscle 

biopsies have confirmed the presence of proteins that regulate Ca2+ homeostasis, RyR1, 

SERCA1, SERCA2 and DHPR (dihydropyridine receptors) in tubular aggregates. Some 

tubular aggregates also contain dysferlin in some, but not all patient biopsies. Since 

these proteins do not harbour N- and O- glycosylation (GlcNAc) sites, we hypothesise 

that these findings occur secondary to misglycosylated muscle proteins. SR markers 

calsequestrin, triadin and sarcalumenin are known to harbour N-GlcNAc sites. Further 

investigation is required to see whether these proteins are observed in tubular aggregates 

of Gfpt1tm1d/tm1d muscle.   

 

Interactions between stromal interaction molecule 1 (STIM1) and calcium release-

activated calcium channel protein 1 (ORAI1), are also involved in Ca2+ regulation and 

are responsible for store-operated Ca2+ entry (Wang et al., 2015). Stromal interaction 

molecule 1 (STIM1) contains an extracellular SAM domain which is modified by N-

linked glycosylation (Williams et al., 2002). One hypothesis that deficiency in GFPT1 

may impair glycosylation of STIM1, destabilising the Ca2+ channel ORAI1 (Kilch et 

al., 2013) resulting in the formation of tubular aggregates (Endo et al., 2015). Notably, 

STIM1 mutations identified outside of the SAM domain also induce the formation of 

tubular aggregates (Böhm et al., 2014). Therefore, the presence of tubular aggregates is 

not solely attributed to hypoglycosylation of STIM1, but may occur because of a 

combination of pathomechanisms.  

 

http://topics.sciencedirect.com/topics/page/Sarcalumenin
http://topics.sciencedirect.com/topics/page/Ryanodine_receptor
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Analysis of tubular aggregates in biopsies from patients with tubular aggregate 

myopathies are immunoreactive to some but not all proteins mentioned here (Brady et 

al., 2016). This further demonstrates that tubular aggregates are not defined by a 

conserved group of proteins but differ between patients and disease causing 

mechanisms. Moreover, tubular aggregates vary in size and morphology suggesting 

there are different subtypes of tubular aggregates with different compositions (Brady et 

al., 2016).  

 

We also observe abnormal subsarcolemmal vesicular structures in Gfpt1tm1d/tm1d mouse 

muscle that may correspond to caveolae. Caveolae are plasma membrane invaginations 

found in numerous cell types found under normal conditions (Cohen et al., 2004; Lo et 

al., 2016). They are characterised by their size, morphology and are accompanied by 

presence of caveolin proteins. Caveolins are known to have multiple functions, and are 

required for the formation of caveolae (Williams and Lisanti, 2004). One proposition 

for the functional role of caveolae in skeletal muscle is protection of muscle 

sarcolemma against damage. Caveolae provide an increased surface area of the 

sarcolemma which serves as a reservoir during excess membrane activity during muscle 

contraction. The number of caveolae might be upregulated as a protective mechanism in 

muscle disease (Lo et al., 2016). There are currently no reports of distinct caveolae 

structures in GFPT1-CMS or DPAGT1-CMS patient muscle biopsies, nor were they 

immunoreactive for caveolin proteins (Brady et al., 2016). Identification of caveolins in 

Gfpt1tm1d/tm1d mouse muscle will confirm whether these structures are indeed caveolae. 

These studies can be facilitated by immunoelectron microscopy.   

 

Muscle weakness and fatigue are common characteristics of numerous muscle 

disorders, with several possible causes. Fatigable muscle weakness can be induced by a 

disruption in neuromuscular transmission, defective propagation of an action potential, 

or aberrant excitation-contraction coupling and contractile mechanisms (Boyas and 

Guevel, 2011). Whilst morphological differences are often observed in human CMS and 

other mouse models of CMS, suggesting impairment of the NMJ, they are not 

necessarily indicators of impaired neurotransmission. This is evident in recent 

investigations that reveal no decline in neurotransmission in age-related fragmentation 

of AChRs (Willadt et al., 2016). It is therefore important to use direct methods to 

evaluate the efficacy of neurotransmission by testing muscle strength and fatigue. Here 
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we use functional tests including the inverted screen test and isometric force 

measurements of the TA muscle by direct stimulation of the sciatic nerve which 

demonstrates that Gfpt1tm1d/tm1d mice show a greater susceptibility to fatigue. This a 

common feature seen in other mouse models of congenital myasthenia (Chevessier et 

al., 2008; Bogdanik and Burgess, 2011; Messéant et al., 2015) and characteristic of 

human CMS (Guergueltcheva et al., 2012; Huh et al., 2012; Belaya et al., 2015).     

Interestingly, we also see a pronounced deficit in muscle strength and fatigue following 

direct stimulation of the diaphragm muscle from GFPT1 deficient mice. These findings 

are indicative of a myopathic phenotype consistent with our histopathological findings 

and EMG recordings in patients with mutations in GFPT1 as well as other genes in the 

glycosylation pathway such as ALG2, ALG14, DPAGT1, and GMPPB (Guergueltcheva 

et al., 2012; Huh et al., 2012; Basiri et al., 2013; Cossins et al., 2013; Selcen et al., 

2013; Maselli et al., 2014; Selcen et al., 2014; Belaya et al., 2015). Since Gfpt1tm1d/tm1d 

mice demonstrate fatigue following direct stimulation of the muscle, the force deficit we 

observe resulting from direct stimulation of the sciatic nerve is likely to be due to a 

combination of impaired neurotransmission and myopathic changes. Further 

investigation would involve isolated nerve-muscle preparations of the diaphragm which 

would allow us to compare differences between contractile response upon electrical 

stimulation of the nerve and direct stimulation of the muscle membrane. Any changes 

between the two contractile responses can be attributed to a defect in NMJ function. 

Alternatively, ex vivo electrophysiological recordings can be used to measure miniature 

EPPs and nerve-evoked EPPs which can also be used to estimate quantal release (Plomp 

et al., 2015). 

 

Under normal conditions, AChRs cluster and stabilise at the postsynaptic membrane. 

Thereafter they are endocytosed, recycled back to the membrane or are degraded. The 

AChR turnover rate is rapid (half-life ~ 1 day) in newly formed synapses. In adult 

synapses the turnover rate is slower (half-life ~10days) (Fumagalli et al., 1982; 

Yampolsky et al., 2010; Rudell and Ferns, 2013; Rudolf et al., 2013; Khan et al., 2014). 

Recycling of the AChR may serve as a quality control mechanism whereby defective 

AChRs are degraded, and new ones are generated and reinserted into the muscle 

membrane (Yampolsky et al., 2010). One hypothesis is that the pathological findings 

seen in CMS maybe be due to instability of AChRs. In the context of GFPT1 
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deficiency, we hypothesise that the turnover rate of AChRs may be increased due to 

defective glycosylation of the AChR subunits. Alternatively, hypoglycosylation of 

proteins that stabilise AChRs on the muscle membrane may also increase the AChR 

turnover rate. Here we found that not only is the relative expression of AChRs in the 

Gfpt1tm1d/tm1d model maintained, but there is also no change in the turnover rate of 

AChRs, suggesting that the stability of AChRs are not compromised. It may be the case 

that (i) impaired glycosylation of individual AChR subunits is not pathogenic with 

regards to AChR stability, or perhaps (ii) GFPT1 is not primarily responsible for the 

glycosylation of NMJ proteins involved in the formation and stability of AChRs.  

Our proteomic data has highlighted many differentially regulated proteins in GFPT1 

deficient intercostal muscle. We observe regulation of proteins involved in organisation 

of the cytoskeleton (Rho GDP-dissociation inhibitor 2, Annexin A1, Ras GTPase-

activating-like protein IQGAP1, KN motif and ankyrin repeat domain-containing 

protein 2), transport and sorting of glycoproteins (Vesicular integral-membrane protein 

VIP36), and extracellular matrix proteins important for skeletal muscle fibre integrity 

(Vitronectin). Proteins of interest discussed here include those involved in the 

glycosylation pathway, proteins that harbour N- and O- GlcNAc acceptor sites, and 

proteins that have a functional role at the NMJ.   

 

We identify an upregulation of UDP-N-acetylglucosamine-peptide N 

acetylglucosaminyltransferase, also referred to as O-GlcNAc transferase (OGT), 

encoded by the Ogt gene. OGT is responsible for catalysing the addition of a single 

GlcNAc to a serine or threonine residue in the O-GlcNAcylation pathway (Hanover et 

al., 2010). There are several possible reasons why we observe an increase in OGT 

expression resulting from GFPT1 deficiency. Notably, the most important factor that 

regulates OGT activity is the cellular levels of UDP and UDP-GlcNAc. Under normal 

conditions, upon transfer of the GlcNAc moiety, the UDP released acts as a feedback 

inhibitor of OGT. When UDP is removed from cells, OGT is dependent on the levels of 

UDP-GlcNAc. It is likely that the abnormally abundant expression of OGT we observe 

in GFPT1 deficient muscle occurs due to a lack of the precursor donor UDP-GlcNAc, 

and reduced suppression of OGT (Hart and Akimoto, 2009). Interestingly, a global 

increase in O-GlcNAcylation of proteins is known to occur in all mammalian cell types 

in response to cellular stress. An increase in OGT activity results in cells that are more 

tolerant to cellular stress, by upregulating heat shock proteins that protect cells from 
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stress, amongst numerous other mechanisms (Groves et al., 2013). Therefore, it is 

possible that the upregulation of OGT we observe in Gfpt1tm1d/tm1d mouse muscle may 

occur because of the pathological changes taking place in the muscle. 

Finally, OGT itself is O-GlcNAcylated. One possible explanation for the upregulation 

of OGT is to compensate for defective OGT activity. 

Our proteomic profiling data also highlights an increase in the expression levels of the 

farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha (FNTA) protein, an 

essential subunit of the geranylgeranyltransferase (GGT) complex which is implicated 

in synapse formation by playing an active role in the agrin/MuSK pathway (Luo et al., 

2003). The α subunit of GGT interacts with the kinase domain of MuSK. Thereafter, 

agrin increases tyrosine phosphorylation of GGT which facilitates Rho GTPase 

activation required for the regulation of actin dynamics responsible for AChR 

trafficking (Wu et al., 2010). Inhibition of GGT activity prevents agrin-induced AChR 

clustering (Luo et al., 2003; Strochlic et al., 2005). Since we observe aberrant AChR 

clusters in GFPT1 deficient mouse muscle, we speculate that GGT is upregulated in 

attempt to recruit and cluster more AChRs to the muscle membrane. Notably, we also 

see an increase in the expression of MuSK proteins, also essential for AChR clustering 

(Chevessier et al., 2008; Maselli et al., 2010; Messéant et al., 2015), which we 

hypothesise may serve a similar purpose. This idea stems from experimental evidence 

from denervation studies which show that under normal conditions MuSK is restricted 

to the motor endplate, but upon denervation there is a marked upregulation of MuSK in 

the extrasynaptic membrane (Bowen et al., 1998). Moreover, increasing MuSK activity 

was shown to delay denervation and improve motor function mice (Perez-Garcia and 

Burden, 2012). Despite an upregulation of MuSK in Gfpt1tm1d/tm1d mice, AChR clusters 

appear smaller than those in control mice. This finding suggests that increased levels of 

MuSK is unable to promote AChR clustering. Further studies would involve 

investigating proteins downstream of MuSK in attempt to identify proteins with 

possible pathogenic mechanisms.   

 

We see a robust increase in the expression levels of glypican-1, a cell surface, lipid- raft 

associated heparan sulphate proteoglycan (HSPG) that participates in axon guidance, 

Schwann cell myelination (Chernousov et al., 2006), and is important for modulating 

growth factors and influencing skeletal muscle differentiation (Litwack et al., 1998). 
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Since suppression of glypican-1 significantly inhibits myelination (Chernousov et al., 

2006), it is possible that hypomyelination of the presynaptic nerve that we observe in 

Gfpt1tm1d/tm1d mice may induce upregulation of glypican-1 as a compensatory 

mechanism. Interestingly, glypican-1 also harbours N-GlcNAc glycans, but was shown 

to maintain its folded conformation in the absence of N-linked glycans (Svensson et al., 

2012). Glypican-1 is mainly expressed in neural tissues and skeletal muscle, with some 

expression in other tissues. Expression of glypican-1 in skeletal muscle typically occurs 

during late embryonic development and in the early postnatal stages in rodents (Litwack 

et al., 1998; Yamaguchi, 2002; Casar et al., 2004; Gutierrez and Brandan, 2010; 

Sigoillot et al., 2010). Although there is no obvious evidence of a muscle phenotype in 

glypican-1 knockout mice, myoblasts display defective differentiation in the absence of 

glypican-1 expression. Studies have also shown that glypican-1, as well as other 

heparan sulphate proteoglycans perlecan, syndecan-3, and syndecan-4 are upregulated 

during skeletal muscle regeneration (Casar et al., 2004; Gutierrez and Brandan, 2010; 

Brandan and Gutierrez, 2013). This may account for the robust increase in glypican-1 

expression we observe in GFPT1 deficient mice.  

 

The experiments performed in this chapter establishes a muscle-specific GFPT1 

deficient mouse model representative of the human GFPT1-CMS phenotype. This is the 

first report of a CMS mouse model depicting defective glycosylation. Since GFPT1 lies 

upstream of other glycosylation enzymes also implicated in CMS, it is possible that 

some of findings from this model may also be true for DPAGT1, ALG2, and ALG14 

CMS. Our model provides new insights into differentially regulated proteins that 

demonstrates possible pathological and compensatory mechanisms, and highlights the 

importance of protein glycosylation in maintaining the integrity of the NMJ and muscle.   
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Chapter 6: General discussion and future directions 

 

6.1 Pre-clinical studies for CMS 

An increase in the number of individuals diagnosed with CMS, together with the 

discovery of novel CMS-causing genes, has driven the expansion of research within this 

field. Genotype-phenotype correlations in CMS are greatly impeded by the rarity of the 

disease with few patients harbouring the same mutation, giving rise to heterogenous 

phenotypes. Successful treatment of CMS requires an understanding of the pathogenic 

mechanisms underlying the disease, making it increasingly important for conducting 

pre-clinical research.  

So far, mouse models of CMS have been developed to facilitate the investigation of 

defective NMJ proteins that have a direct effect on neurotransmission, depolarisation of 

the endplate or the development and maintenance of the synapse. These studies have 

provided insights into affected pathways that give rise to the observed CMS phenotype, 

and demonstrate the benefits of treatment with therapeutic compounds (Webster et al., 

2013; Barik et al., 2014; Messéant et al., 2015). 

Whilst CDGs have been widely studied over the years, only recently were mutations in 

genes encoding enzymes in the glycosylation pathway identified as CMS-causing. 

Correct diagnoses of disorders of glycosylation are often hindered, as patients often 

present with multisystem disorders that display highly variable phenotypes. Even if a 

patient were to present exclusively with a CMS phenotype, discovery of the exact 

pathological mechanisms remains challenging due to the multitude of proteins that are 

potentially misglycosylated. This emphasises the need for in vivo models designed to 

facilitate functional studies. A mouse model displaying aberrant glycosylation is 

particularly useful for testing the effects of drug therapies, as the precise molecular 

targets underlying this subtype of CMS remains largely unknown. 

Until now, a mouse model representative of defective glycosylation in CMS had not 

been generated. The work presented in this thesis establishes a mouse model to 

investigate the pathological molecular mechanisms underlying GFPT1 deficiency. We 

report the generation of a novel muscle-specific GFPT1 knockout mouse model which 

recapitulates many aspects of the phenotype observed in patients with GFPT1-CMS. 

We further identify potential molecular pathways which are altered in response to a 
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deficit in GFPT1. We speculate that some of the changes in comparison to wild type 

animals serve as compensatory mechanisms, whilst others may contribute directly to the 

CMS phenotype. 

 

6.2 Evaluation of mouse models for studying CMS 

 

6.2.1 The use of mouse models for investigating CMS  

Although cell culture techniques and zebrafish studies have proven useful for the initial 

characterisation of CMS phenotypes, they are limited to short-term studies and are not 

representative of the complex systems of the human body. In vivo mouse models are 

particularly useful for studying neuromuscular disorders as they permit examination of 

NMJ morphology, muscle pathology and allow testing of motor abilities. Mouse models 

can further be used to study disease progression and the benefits of therapeutic 

treatments.   

There are however some discrepancies between humans and mice which can sometimes 

affect the ability to reproduce mouse models representative of human disease. An 

example specific to neuromuscular disorders is difference in the safety margin of the 

NMJ. The safety margin in humans is quite small whereby neurotransmission is 

impaired due to subtle pathological changes. By contrast, the safety margin in the 

mouse has a higher threshold (Wood and Slater, 2001; Trontelj et al., 2002). This may 

explain why transgenic mouse models of neuromuscular diseases do not always show a 

phenotype, or display abnormalities that are less severe than the patient phenotype. 

Differences in the severity of phenotype between humans and mice are usually 

anticipated by the investigator and can be overcome by critical evaluation of the 

experimental design. Once a valid transgenic mouse line has been established, the 

model becomes a valuable tool for understanding the pathogenesis of the disorder and 

for testing therapeutic compounds (Vainzof et al., 2008).   
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6.2.2 The Gfpt1tm1d/tm1d mouse model for CMS    

The ubiquitous GFPT1 isoform in humans and the house mouse (Mus musculus) share 

approximately 99% of their amino acid sequence (Dehaven et al., 2001), making 

GFPT1 transgenic mice good models for studying human CMS. In human GFPT1-

CMS, mutations reside predominantly in the ubiquitous GFPT1 isoform which often 

results in a reduction in either one of both GFPT1 isoforms. Interestingly, even though 

the muscle-specific knockout mouse model results in complete loss of both isoforms, 

these mice are viable and do not display the debilitating symptoms seen in some 

patients with GFPT1 mutations. One possible explanation for these findings is the 

disparity of the safety margin between humans and mice.  

The Gfpt1tm1d/tm1d model is muscle-specific and does not address functions of the 

presynaptic apparatus that are potentially disrupted. Although this can be regarded as a 

limitation to the model, we demonstrate that GFPT1 deficiency in the postsynaptic 

apparatus alone is enough to cause a CMS phenotype in mice. Moreover, we discovered 

morphological alterations of presynaptic components which is secondary to GFPT1 

deficiency in muscle. Whether the CMS phenotype we observe in patients is exclusively 

attributed to postsynaptic GFPT1 deficiency, requires further investigation. It would be 

interesting to compare data from the muscle-specific knockout model with data from a 

motor neuron-specific Gfpt1 knockout mouse model, to establish the extent to which 

neural and muscle GFPT1 deficiency contributes to the CMS phenotype we observe in 

patients with a global reduction of GFPT1.   

Although GFPT1 is also expressed in cardiac tissues in humans (Dehaven et al., 2001), 

very few patients present with a developing cardiomyopathy. This phenotype occurs 

because of aberrant glycosylation of cardiac proteins (Lewis et al., 2014). GFPT1 is 

also depleted in cardiac tissues in the Gfpt1tm1d/tm1d mouse model. Although we do not 

investigate the possibility of cardiac phenotype in this study, which has the potential to 

influence our muscle fatigue data, we validate our data using unbiased ex vivo and in 

situ techniques to measure force from mouse muscle. Studies to deduce whether these 

mice develop a cardiac phenotype can be facilitated by histopathological staining and 

MRI studies (Stuckey et al., 2012). 
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6.2.3 Alternative gene targeting approaches  

Developments in gene targeting strategies have revolutionised manipulation of the 

genome making it easier and faster to generate transgenic models of human disease. 

Prior to selecting the best approach for generating our transgenic mouse line, we 

critically evaluated the different Cre strains available at The Jackson Laboratory Cre 

Repository. Alternative muscle-specific Cre lines that were considered did not offer any 

advantage over the Ckm-Cre strain. Rather, some strains expressed Cre earlier in the 

developing embryo, whilst others illustrated ectopic expression and mosaicism making 

embryonic lethality more likely (Miniou et al., 1999; Guo et al., 2002).  

CRISPR/Cas9 gene editing technology has proven highly successful for studying 

human diseases (Ablain et al., 2015; Logan et al., 2015; Qin et al., 2016; Torres-Ruiz 

and Rodriguez-Perales, 2017). The advantages of CRISPR/Cas9 over conventional gene 

targeting approaches include improved efficiency, simplicity of the target design and 

allowing mutations to be introduced in multiple genes at the same time. Global 

knockouts and tissue-specific knockout mice are achievable using CRISPR/Cas9, but is 

currently limited to small insertions into the genome which may not be suitable for 

some studies. Due to the novelty of CRISPR/Cas9 and the uncertainty of some of its 

off-site effects, the EUCOMM knockout-first approach is often the preferred choice as 

it is well characterised and most embryonic stem cells are readily available in the 

EUCOMM repository. Another advantage of using the EUCOMM knockout-first 

strategy is its flexibility to generate different alleles. If the global or tissue-specific 

knockout model happens to be embryonic lethal, an inducible Cre strain can be 

incorporated into the strategy to overcome this problem. For now, it is recommended 

that the CRISPR/Cas9 approach is used in parallel to EUCOMM strategies if possible 

(Coleman et al., 2015).   

 

6.3 Congenital disorders of glycosylation  

Since glycosylation is a ubiquitous process, it is not surprising that patients with 

mutations in glycosylation genes exhibit multisystem disorders. An attempt to 

understand why some patients present with certain disease states and not others, as well 

as the selective vulnerability of certain tissues and organ systems remains challenging.  
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The diversity of processes required for glycosylation gives rise to thousands of 

potentially pathogenic mechanisms. CDG may occur because of defects in one or more 

of the following processes: (i) activation or transport of sugar residues, (ii) dolichol and 

dolichol-linked glycan synthesis, (iii) translocation of glycans to different compartments 

(eg. cytoplasmic to lumen of the ER), (iv) transfer of oligosaccharides to the protein (v) 

trafficking or processing of the glycoprotein through the Golgi apparatus, (vi) secretion 

at the end of the multistep pathway (Scott et al., 2014).  

DPAGT1 (Wu et al., 2003; Carrera et al., 2012; Imtiaz et al., 2012; Wurde et al., 2012; 

Jaeken et al., 2015), ALG2 (Thiel et al., 2003) and GMPPB (Carss et al., 2013) have 

previously been associated with CDG. It is yet to be determined why the clinical 

outcome is variable amongst patients with mutations in the same gene. Some patients 

present with multisystem disorders such as CDG, whilst others exhibit a CMS 

phenotype which predominantly results in myasthenia due to impaired neuromuscular 

transmission (Cossins et al., 2003). Analysis of serum transferrin glycoform, commonly 

used to detect defective glycosylation (Sparks and Krasnewich, 2005; Jeppsson et al., 

2007), suggests mild impairment of N-glycosylation in CMS patients in comparison 

with that from CDG patients (Cossins et al., 2003). Thus, it is possible that we observe 

a wide spectrum of clinical outcomes based on the pathogenicity of different mutations 

(Marklova and Albahri et al., 2007).   

Defects in the O-linked glycosylation pathway have also been found to be responsible 

for multiple forms of muscular dystrophy (Martin, 2005; Muntoni et al., 2007; Muntoni 

et al., 2008). So far, mutations in 6 glycotransferases have been discovered which result 

in hypoglycosylation of α-dystroglycan through aberrant events in the O-mannosylation 

pathway. These mutations give rise to dystroglycanopathies with variable phenotypes 

(Muntoni et al., 2007). More recently, reports of overlapping phenotypes of myasthenic 

disorders and dystroglycanopathies as a result of GMPPB mutations have been 

described (Belaya et al., 2015; Montagenese et al., 2016). GMMPB-associated muscular 

dystrophy is marked by hypoglycosylation of α-dystrogylcan (Carrs et al., 2013; 

Raphael et al., 2014). These patients exhibit dystrophic features with variable severities. 

Some patients present with a more severe congenital muscular dystrophy phenotype 

with brain and eye abnormalities, whilst others display a milder limb-girdle muscular 

dystrophy in the proximal limb muscles. Furthermore, a neurotransmission defect is 

only evident in a subset of patients with GMPPB-muscular dystrophy 
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dystroglycanopathy and not others (Belaya et al., 2015). Further reports demonstrate an 

expansion in the phenotypic spectrum of GMPPB mutations including limb-girdle 

muscular dystrophies, with some cases involving intellectual impairment and 

rhabdomyolysis (Cabrera-Serrano et al., 2015). These expanding phenotypes are likely 

due to the ubiquitous nature of GMPPB and its involvement in the glycosylation of 

numerous proteins. The widespread and variable clinical outcomes due to mutations 

within the same gene is yet to be determined.  

It is likely that patients with glycosylation deficient CMS remain undiagnosed due to 

presentation of a complex clinical phenotype which hinders correct diagnosis. Some 

patients also present with a myopathic phenotype which can often be misleading. It is 

possible that with time, more and more genes implicated in CDG will also be identified 

as pathogenic for CMS. Similarly, patients with CMS are also likely to present with 

multisystem disorders, and the characteristic CMS phenotype is likely to expand with 

time (Wurde et al., 2012).  

Common glycotherapies that have been proposed or implemented include the delivery 

of synthetic glycans or glycoproteins downstream of the defective biosynthetic steps, 

upregulating glycosyltransferase expression or activity, and the delivery of 

glycosyltransferase genes via cell or gene therapy techniques (Martin, 2003; Hudak and 

Bertozzi, 2014). One example which demonstrates the successful use of glycotherapies 

in mice, is an overexpression of LARGE in Large myd mice that exhibit impaired 

glycosylation of α-dystroglycan. The outcome of this study demonstrates that 

hyperglycosylation of α-dystroglycan ameliorates muscle pathology and contractile 

performance, and restores neuromuscular junction architecture and transmission deficits 

(Gumerson et al., 2013). Although the NMJ alterations observed in Large myd mice are 

likely to be secondary to the dystrophic phenotype, and thus an improvement in 

neurotransmission occurs through stabilizing the endplate, the idea of restoring 

glycosylation as a therapy, looks promising and can potentially be implemented in 

CMS-CDGs.   
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6.4 Future directions 

Prospective studies will include characterisation of tubular aggregates in Gfpt1tm1d/tm1d 

mice. Tubular aggregates in mouse muscle can be tested for proteins that have 

previously been described in biopsies from GFPT1-CMS and DPAGT1-CMS patients 

and other myopathies. They can also be tested for proteins that harbour GlcNAc 

acceptor sites which have known functions in neurotransmission, muscle stability and 

muscle contraction. Identification of these aggregates will help deduce whether tubular 

aggregates are pathogenic or merely secondary to the CMS phenotype.   

An understanding of the molecular pathology is vital for developing more targeted 

therapies. It is therefore important to perform studies to determine the functional 

significance of regulated proteins that we identified using proteomic profiling studies. 

Investigation of ubiquitous enzymes can be extremely challenging, and it is not feasible 

to address hundreds of potentially modified proteins. An alternative to proteomic 

profiling experiments, which will be particularly useful in this study is the use of 

glycomic studies to address changes in the glycosylation status of proteins. Additional 

experiments will involve investigating the implication of GFPT1 deficiency in cardiac 

tissues and further characterisation of nerve pathology. 

Ultimately, the long-term goal is the discovery of therapeutic strategies that will reverse 

the myasthenic phenotype observed in patients with CMS. To date there are no cures for 

CMS but symptomatic off-label treatments are available. Clinical trial studies are 

currently recruiting CMS patients for the evaluation of 3,4 DAP and amifampridine 

phosphate (phosphate form of 3,4 DAP). These trials involve studies that will enhance 

our understanding of the effects of therapies on the natural course of the disease. Other 

trials involve dose optimisation and drug combination studies to improve muscle 

strength. Some trials aim to provide substantial evidence for the therapeutic benefits of 

these compounds in attempt to make them commercially available.   

Therapies used for CMS are limited as the underlying mechanisms of action are not 

well understood. Some drugs display variable efficacies and side effects amongst 

patients and in different subtypes of CMS. The Gfpt1tm1d/tm1d mouse model will prove 

useful for testing current treatments in attempt to deduce the mode of action which will 

help maximise their clinical use. Further studies will involve the development of new 

compounds. Gfpt1tm1d/tm1d mice can be used to test the efficacy of compounds, determine 

their optimal doses, and examine potential adverse effects.  
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As the number of patients diagnosed with glycosylation associated CMS increases, 

together with the discovery of novel glycosylation enzymes, it is likely that future 

studies will involve the development of glycotherapies aiming to restore NMJ function. 

Although proven successful in muscular dystrophies, such studies will be the first of its 

kind for CMS. Whilst restoring glycosylation may reverse the myasthenic phenotype 

observed in CMS, and perhaps even reverse primary myopathic changes, it is less likely 

that myopathic alterations secondary to NMJ dysfunction can be reversed. Pre-clinical 

studies in mice that prove efficacious in ameliorating myasthenic symptoms, or perhaps 

even stabilising and restoring NMJ function will provide crucial evidence needed to 

drive forward patient therapies.  
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Appendix A 

Differentially regulated proteins in Gfpt1tm1d/tm1d intercostal muscles, their subcellular localisation, and proposed functions. Proteins 1-29 are 

upregulated with 2 or more unique peptides, 30-39 are upregulated with 1 unique peptide, 40-43 are downregulated with 1 unique peptide, p<0.05.  

 
Protein  Subcellular 

Localisation  

Proposed Functions 

1 Galectin-3  Cytoplasm, 

extracellular space, 

nucleus 

Involved in acute inflammatory responses including neutrophil activation and 

adhesion, chemoattraction of monocytes macrophages, opsonisation of apoptotic 

neutrophils, and activation of mast cells. 

2 UDP-N-acetylglucosamine-peptide 

N-acetylglucosaminyltransferase  

Cytoplasm, 

nucleus, plasma 

membrane 

Catalyses the transfer of a single N-acetylglucosamine from UDP-GlcNAc to a 

serine or threonine residue in cytoplasmic and nuclear proteins. 

3 Plastin-2  Cytoplasm Actin-binding protein. Plays a role in the activation of T-cells.  

4 Actin-related protein 2/3 complex 

subunit 1B  

Cytoplasm Functions as component of the Arp2/3 complex which is involved in regulation 

of actin polymerization and together with an activating nucleation-promoting 

factor mediates the formation of branched actin networks. 

5 Vitronectin Extracellular space Cell adhesion and spreading factor found in serum and tissues. Vitronectin 

interacts with glycosaminoglycans and proteoglycans. It is recognized by certain 

members of the integrin family and serves as a cell-to-substrate adhesion 

molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic 

complement pathway. 

6 Perilipin-1 ER-Golgi network  Modulator of adipocyte lipid metabolism. Coats lipid storage droplets to protect 

them from breakdown by hormone-sensitive lipase (HSL). Its absence may result 

in leanness. Plays a role in unilocular lipid droplet formation by activating 

CIDEC.  

7 Membrane primary amine oxidase  Plasma membrane  Has monoamine oxidase activity. May play a role in adipogenesis. 
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Protein  Subcellular 

Localisation  

Proposed Functions 

8 Histone H1.5  Nucleus Histone H1 protein binds to linker DNA between nucleosomes forming the 

macromolecular structure known as the chromatin fibre.  

9 BTB/POZ domain-containing 

protein KCTD12  

Extracellular space, 

plasma membrane 

Auxiliary subunit of GABA-B receptors that determines the pharmacology and 

kinetics of the receptor response. Increases agonist potency and markedly alters 

the G-protein signalling of the receptors by accelerating onset and promoting 

desensitization.  

10 Rho GDP-dissociation inhibitor 2 Cytoplasm  Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the 

dissociation of GDP from them, and the subsequent binding of GTP to them. 

Regulates reorganization of the actin cytoskeleton mediated by Rho family 

members.  

11 Sec1 family domain-containing 

protein 1  

Cytoplasm, ER-

Golgi network 

Plays a role in SNARE-pin assembly and Golgi-to-ER retrograde transport via its 

interaction with COG4. Involved in vesicular transport between the endoplasmic 

reticulum and the Golgi. 

12 Annexin A1  Cytoplasm, 

nucleus, plasma 

membrane 

Plays a role in glucocorticoid-mediated down-regulation of the early phase of the 

inflammatory response. Promotes rearrangement of the actin cytoskeleton, cell 

polarization and cell migration. Negatively regulates hormone exocytosis via 

activation of the formyl peptide receptors and reorganization of the actin 

cytoskeleton. Has high affinity for Ca2+ and can bind up to eight Ca2+ ions. 

13 Protein 

farnesyltransferase/geranylgeranyl

transferase type-1 subunit alpha  

Cytoplasm, plasma 

membrane 

Essential subunit of both the farnesyltransferase and the 

geranylgeranyltransferase complex. May positively regulate neuromuscular 

junction development downstream of MuSK. 

14 Macrophage-capping protein  Cytoplasm, nucleus   Calcium-sensitive protein which reversibly blocks the barbed ends of actin 

filaments but does not sever preformed actin filaments. May play an important 

role in macrophage function.  
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Protein  Subcellular 

Localisation  

Proposed Functions 

15 Glypican-1  Plasma membrane Required for proper skeletal muscle differentiation by sequestering FGF2 in lipid 

rafts preventing its binding to receptors (FGFRs) and inhibiting the FGF-

mediated signalling.  

16 Cysteine-rich protein 1  Cytoplasm  Participates in zinc absorption and may function as an intracellular zinc transport 

protein. 

17 Ras GTPase-activating-like 

protein IQGAP1  

Plasma membrane  Binds to activated CDC42 but does not stimulate its GTPase activity. It 

associates with calmodulin. May serve as an assembly scaffold for the 

organization of a multimolecular complex that would interface incoming signals 

to the reorganization of the actin cytoskeleton at the plasma membrane. May 

promote neurite outgrowth. 

18 Vesicular integral-membrane 

protein VIP36  

ER-Golgi network  Plays a role as an intracellular lectin in the early secretory pathway. Interacts 

with N-acetyl-D-galactosamine and high-mannose type glycans and may also 

bind to O-linked glycans. Involved in the transport and sorting of glycoproteins 

carrying high mannose-type glycans  

19 Complement C4-B Extracellular space Non-enzymatic component of C3 and C5 convertases and thus essential for the 

propagation of the classical complement pathway.  

20 Tubulin-specific chaperone A  Cytoplasm  Tubulin-folding protein. 

21 Aminopeptidase N  Plasma membrane  Plays a role in the final digestion of peptides generated from hydrolysis of 

proteins by gastric and pancreatic proteases. May be involved in the metabolism 

of regulatory peptides of diverse cell types, responsible for the processing of 

peptide hormones, such as angiotensin III and IV, neuropeptides, and 

chemokines. May have a role in angiogenesis.  

22 SH3 domain-binding glutamic 

acid-rich-like protein 3  

Cytoplasm, nucleus May act as a modulator of glutaredoxin biological activity. 
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Protein  Subcellular 

Localisation  

Proposed Functions 

23 Syntaxin-7  Plasma membrane May be involved in protein trafficking from the plasma membrane to the early 

endosome as well as in homotypic fusion of endocytic organelles. Mediates the 

endocytic trafficking from early endosomes to late endosomes and lysosomes. 

24 Coatomer subunit gamma-1  Cytoplasm, ER-

Golgi network 

Reversibly associates with Golgi non-clathrin-coated vesicles which further 

mediates biosynthetic protein transport from the ER, via the Golgi up to the trans 

Golgi network.  

 

25 Ras-related protein Rab-7a  Cytoplasm Key regulator in endo-lysosomal trafficking. Governs early-to-late endosomal 

maturation, microtubule minus-end as well as plus-end directed endosomal 

migration and positioning, and endosome-lysosome transport through different 

protein-protein interaction cascades.  

26 Myristoylated alanine-rich C-

kinase substrate  

Cytoplasm, plasma 

membrane 

The most prominent cellular substrate for protein kinase C. This protein binds 

calmodulin, actin, and synapsin. It is a filamentous actin cross-linking protein. 

27 Transcription intermediary factor 

1-beta  

Nucleus  Nuclear corepressor for KRAB domain-containing zinc finger proteins. Mediates 

gene silencing. Ubiquitinates p53/TP53 leading to its proteosomal degradation;  

28 Coatomer subunit beta Cytoplasm, ER-

Golgi network, 

plasma membrane  

A cytosolic protein complex that binds to dilysine motifs and reversibly 

associates with Golgi non-clathrin-coated vesicles, which further mediate 

biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi 

network.  

29 Protein disulfide-isomerase A3  ER-Golgi network Catalyzes the rearrangement of -S-S- bonds in proteins. 

30 60S ribosomal protein L3 Cytoplasm, nucleus  The L3 protein is a component of the large subunit of cytoplasmic ribosomes. 

31 Periostin  ER-Golgi network Induces cell attachment and spreading and plays a role in cell adhesion. 

Enhances incorporation of BMP1 in the fibronectin matrix of connective tissues, 

and subsequent proteolytic activation of lysyl oxidase. 

32 Complement C1q subcomponent 

subunit B  

Extracellular space  C1q associates with the proenzymes C1r and C1s to yield C1, the first 

component of the serum complement system. 
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Protein  Subcellular 

Localisation  

Proposed Functions 

33 Coiled-coil domain-containing 

protein 127  

ER-Golgi network, 

extracellular space 

Function is unknown. 

34 Bone marrow proteoglycan Cytoplasm Induces non-cytolytic histamine release from basophils. It is involved in 

antiparasitic defense mechanisms and immune hypersensitivity reactions. 

35 Minor histocompatibility antigen 

H13  

ER-Golgi network, 

plasma membrane 

Catalyzes intramembrane proteolysis of some signal peptides after they have 

been cleaved from a preprotein, resulting in the release of the fragment from the 

ER membrane into the cytoplasm. May play a role in graft rejection. 

36 KN motif and ankyrin repeat 

domain-containing protein 2  

Cytoplasm, 

mitochondria 

Involved in transcription regulation. Involved in the negative control of vitamin 

D receptor signalling pathway. May be involved in the control of cytoskeleton 

formation by regulating actin polymerization. Involved in regulation of caspase-

independent apoptosis. May be involved in promotion of cell proliferation 

37 Heme oxygenase 2 ER-Golgi network Heme oxygenase cleaves the heme ring at the alpha methene bridge to form 

biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin 

reductase. Heme oxygenase 2 could be implicated in the production of carbon 

monoxide in brain where it could act as a neurotransmitter. 

38 Histone H1.3 Nucleus Histone H1 protein binds to linker DNA between nucleosomes forming the 

macromolecular structure known as the chromatin fibre.  

39 Cytochrome P450 20A1  Plasma membrane Catalyses oxidation of flavoproteins.  

40 Selenoprotein T  ER-Golgi network Involved in glucose homeostasis, insulin secretion, cellular response to glucose 

stimulus and response to glucose.  

41 Fructosamine-3-kinase Cytoplasm May initiate a process leading to the deglycation of fructoselysine and of 

glycated proteins. May play a role in the phosphorylation of 1-deoxy-1-

morpholinofructose (DMF), fructoselysine, fructoseglycine, fructose and 

glycated lysozymes. 

42 Uncharacterized family 31 

glucosidase KIAA1161  

Plasma membrane  Putative glucosidase. 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0042593
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009749
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Protein  Subcellular 

Localisation  

Proposed Functions 

43 Nitric oxide synthase, brain Plasma membrane  Produces nitric oxide (NO) which is a messenger molecule with diverse 

functions throughout the body. In the brain and peripheral nervous system, NO 

displays many properties of a neurotransmitter.  
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