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Abstract 

 

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum that spans 

simple steatosis, through steatohepatitis (NASH) to fibrosis and ultimately cirrhosis. 

NAFLD is characterised by substantial inter-patient variation in rate of progression 

and disease outcome: whilst up to 25% of the general population are at risk of 

progressive disease, only a minority experience associated liver-related morbidity. 

Inter-patient genetic variation and environment determine severity and progression of 

NAFLD. This thesis reports a series of studies examining the association of genetic 

variations in two genes patatin-like phospholipase domain-containing 3 (PNPLA3, 

rs738409 c.444 C>G, p.I148M) and transmembrane 6 superfamily member 2, 

(TM6SF2, rs58542926 c.449 C>T, p.E167K) with severity of NAFLD and risk of 

NAFLD-associated hepatocellular carcinoma (HCC).  

Addressing first the role of PNPLA3, I demonstrate that the rs738409 variant is 

associated with steatosis, steatohepatitis and fibrosis in the largest histologically 

characterised NAFLD cohort of European-Caucasian descent (n=1,005) studied to 

date. Subsequently, adopting a case-control analyses in a cohort of 100 consecutive 

Northern European Caucasian patients with NAFLD-associated HCC arising and a 

cohort of patients with histologically characterised NAFLD, I demonstrate that 

carriage of the rs738409 minor (G) allele is significantly associated with increased 

risk of developing NAFLD-associated HCC, independent of potential confounding 

factors including gender, age at diagnosis, presence of advanced fibrosis/cirrhosis, 

T2DM and BMI.  

During my studies, a genome-wide association study identified a SNP in TM6SF2 as 

a modifier of hepatic triglyceride accumulation measured by MR Spectroscopy. It was 

therefore pertinent to determine whether this variant also affected risk of 

steatohepatitis or fibrosis in NAFLD. Using the aforementioned cohorts, I 

demonstrate for the first time that, in addition to its association with steatosis, the 

rs58542926 SNP is significantly associated with stage of fibrosis in NAFLD. In 

contrast to PNPLA3 however, no association with NAFLD-HCC was found.  

In conclusion, the current thesis confirms the association of PNPLA3 with NAFLD 

severity and provides new evidence of its association with HCC risk. In addition, it 
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demonstrates for the first time that TM6SF2 is associated with NAFLD-fibrosis 

severity. These studies provide important new insights into NAFLD pathogenesis and 

mandate further functional study.  

 

  



iii 
 

Acknowledgements  

 

I would like to show my gratitude to my supervisors Professor Quentin M. Anstee, 

Professor Ann K. Daly, and Professor Christopher Day for giving me the opportunity 

to work in their lab and for their full guidance and support throughout this journey. I 

am grateful for the support and help of my colleagues: Julian Leathart, Julia Patch, 

Jeremy Palmer, Mohammad Alshabeeb, Tom Chamberlain, Salah Abohelaika, 

Salwani Bakar, Wipaporn Phatvej, Olivier Govaere, and Emma Scott.  

I am also grateful for the support of my dearest friends through this journey: Yvonne 

Lai, Shirley Ho, Tawei Wang, Axilleas Floudas, Eirini Giannoudaki, Evie Mallini, 

Karolien Jordens, Michael Jin, and Chiao-En Peter Wu.  

This thesis would not have been possible without the support of my supervisory team 

and most importantly, my beloved family. I thank my father and my sisters for their 

love, encouragement and many years of support. I owe my deepest gratitude to my 

late mother for her endless love, support, patience and understanding throughout this 

time. This work is dedicated to her. 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Declaration of Originality 

 

I hereby certify that the work described in this thesis is entirely my own, except where 

specifically stated otherwise. 

 

Yang-Lin Liu 



v 
 

Table of Contents 

 

Abstract ........................................................................................................................ i 

Acknowledgements .................................................................................................... iii 

Declaration of Originality ............................................................................................ iv 

Table of Contents ........................................................................................................ v 

Publications ................................................................................................................ ix 

Abbreviations ............................................................................................................... x 

List of Figures ........................................................................................................... xvi 

List of Tables ........................................................................................................... xvii 

Chapter 1. Introduction ................................................................................................ 1 

1.1 NAFLD ........................................................................................................... 2 

1.2 Epidemiology .................................................................................................. 3 

1.3 Diagnosis, staging and grading of NAFLD ..................................................... 4 

1.3.1 Diagnosis ................................................................................................. 4 

1.3.2 Staging and grading of NAFLD ................................................................ 7 

1.4 Natural history of NAFLD ............................................................................. 10 

1.5 Risk factors .................................................................................................. 16 

1.5.1 NAFLD and obesity ................................................................................ 17 

1.5.2 NAFLD and type 2 diabetes mellitus ...................................................... 18 

1.5.3 NAFLD, cardiovascular disease and chronic kidney disease ................ 19 

1.6 Pathogenesis ............................................................................................... 20 

1.6.1 Lipid metabolism in NAFLD ................................................................... 21 

1.6.2 Oxidative stress ..................................................................................... 23 

1.6.3 Lipotoxicity and insulin resistance in NAFLD ......................................... 28 

1.7 Genetics of NAFLD ...................................................................................... 31 

1.7.1 Evidence for a heritable component to NAFLD ...................................... 31 

1.7.2 Approaches to identify genetic risk factors for NAFLD ........................... 33 



vi 
 

1.7.3 Identified genetic risk factors for NAFLD by GWAS ............................... 34 

1.8 Aims ............................................................................................................. 49 

Chapter 2. Materials and Methods ............................................................................ 50 

2.1 Patients ........................................................................................................ 51 

2.2 Liver biopsy .................................................................................................. 51 

2.3 Laboratory methods ..................................................................................... 53 

2.3.1 Materials ................................................................................................ 53 

2.3.2 DNA extraction from blood samples ...................................................... 54 

2.3.3 Polymerase chain reaction (PCR) .......................................................... 54 

2.3.4 Genotyping ............................................................................................ 56 

2.3.5 Statistical analysis ................................................................................. 60 

2.4 Tissue culture ............................................................................................... 60 

2.4.1 Cell culture conditions ............................................................................ 60 

2.4.2 DNA/RNA isolation from cultured cells .................................................. 61 

2.4.3 Western-blot analysis ............................................................................ 65 

Chapter 3. Candidate Gene Association Study between PNPLA3 and Severity of 

NAFLD in FLIP Cohort .............................................................................................. 70 

3.1 Introduction .................................................................................................. 71 

3.2 Methods ....................................................................................................... 73 

3.2.1 Patients .................................................................................................. 73 

3.2.2 Liver biopsy ........................................................................................... 73 

3.2.3 DNA preparation from blood samples .................................................... 73 

3.2.4 PNPLA3 SNPs genotyping .................................................................... 73 

3.2.5 Statistical analysis ................................................................................. 74 

3.3 Results ......................................................................................................... 77 

3.3.1 PNPLA3 rs738409 genotype analyses .................................................. 77 

3.3.2 PNPLA3 rs139051 genotype analyses .................................................. 81 

3.4 Discussion .................................................................................................... 85 



vii 
 

Chapter 4. TM6SF2 rs58542926 Influences Hepatic Fibrosis Progression in Patients 

with Non-Alcoholic Fatty Liver Disease ..................................................................... 88 

4.1 Introduction .................................................................................................. 89 

4.2 Methods ....................................................................................................... 92 

4.2.1 Patients .................................................................................................. 92 

4.2.2 Liver biopsy ........................................................................................... 92 

4.2.3 DNA preparation from blood samples .................................................... 93 

4.2.4 TaqMan SNP genotyping assays ........................................................... 93 

4.2.5 Statistical analysis ................................................................................. 93 

4.3 Results ......................................................................................................... 96 

4.3.1 Increased TM6SF2 rs58542926 C>T minor allele carriage in NAFLD ... 96 

4.3.2 TM6SF2 and degree of histological steatosis ........................................ 97 

4.3.3 TM6SF2 and severity of histological steatohepatitis .............................. 97 

4.3.4 TM6SF2 and stage of histological fibrosis ........................................... 100 

4.4 Discussion .................................................................................................. 102 

Chapter 5. Genetic Modifiers for NAFLD-Associated Hepatocellular Carcinoma .... 108 

5.1 Introduction ................................................................................................ 109 

5.2 Methods ..................................................................................................... 111 

5.2.1 Patients ................................................................................................ 111 

5.2.2 Liver biopsy ......................................................................................... 112 

5.2.3 DNA preparation from blood samples .................................................. 112 

5.2.4 PNPLA3 rs738409 and TM6SF2 rs58452926 genotyping ................... 112 

5.2.5 Statistical analysis ............................................................................... 112 

5.3 Results ....................................................................................................... 114 

5.3.1 Cohort characteristics .......................................................................... 114 

5.3.2 PNPLA3 rs738409 C>G polymorphism carriage is associated with 

increased risk of HCC relative to a tertiary centre NAFLD cohort ..................... 115 

5.3.3 PNPLA3 rs738409 C>G polymorphism carriage in NAFLD-HCC relative 

to an unselected population cohort ................................................................... 115 



viii 
 

5.3.4 Contribution of the PNPLA3 rs738409 C>G polymorphism to NAFLD-

HCC risk is independent of presence of cirrhosis ............................................. 119 

5.3.5 TM6SF2 rs58542926 C>T polymorphism and risk of hepatocellular 

carcinoma ......................................................................................................... 121 

5.4 Discussion .................................................................................................. 122 

Chapter 6. Investigation of the Functional Significance of the PNPLA3 rs738409 and 

TM6SF2 rs58542926 ............................................................................................... 128 

6.1 Introduction ................................................................................................ 129 

6.2 Methods ..................................................................................................... 131 

6.2.1 Cell culture ........................................................................................... 131 

6.3 Results ....................................................................................................... 138 

6.3.1 The role of PNPLA3 polymorphism rs738409 in vitro .......................... 138 

6.3.2 The effect of oleic acid treatment on PNPLA3 expression in vitro ....... 140 

6.3.3 The effect of retinol/palmitate treatment on PNPLA3 expression in LX-2  

.                .......................................................................................................... 142 

6.3.4 The role of TM6SF2 rs58542926 polymorphism in vitro ...................... 146 

6.4 Discussion .................................................................................................. 148 

Chapter 7. General Discussion ................................................................................ 152 

7.1     General discussion ..................................................................................... 153 

References .............................................................................................................. 159 

 



ix 
 

Publications 

 

Liu, Y.L., Patman, G.L., Leathart, J.B., Piguet, A.C., Burt, A.D., Dufour, J.F., Day, 

C.P., Daly, A.K., Reeves, H.L. and Anstee, Q.M. (2014) 'Carriage of the PNPLA3 

rs738409 C>G polymorphism confers an increased risk of non-alcoholic fatty liver 

disease associated hepatocellular carcinoma', J Hepatol, 61(1), pp. 75-81. 

Liu, Y.L., Reeves, H.L., Burt, A.D., Tiniakos, D., McPherson, S., Leathart, J.B., 

Allison, M.E., Alexander, G.J., Piguet, A.C., Anty, R., Donaldson, P., Aithal, G.P., 

Francque, S., Van Gaal, L., Clement, K., Ratziu, V., Dufour, J.F., Day, C.P., Daly, 

A.K. and Anstee, Q.M. (2014) 'TM6SF2 rs58542926 influences hepatic fibrosis 

progression in patients with non-alcoholic fatty liver disease', Nat Commun, 5, p. 

4309. 

Liu, Y.L., Day, C.P. and Anstee, Q.M. (2016) 'Can genetic influence in non-alcoholic 

fatty liver disease be ignored?', Clinical Dilemmas in Non-Alcoholic Fatty Liver 

Disease (eds R. Williams and S. D. Taylor-Robinson). 

Liu, W., Anstee, Q.M., Wang, X., Gawrieh, S., Gamazon, E.R., Athinarayanan, S., 

Liu, Y.L., Darlay, R., Cordell, H.J., Daly, A.K., Day, C.P. and Chalasani, N. (2016) 

'Transcriptional regulation of PNPLA3 and its impact on susceptibility to nonalcoholic 

fatty liver disease (NAFLD) in humans', Aging (Albany NY), 9(1), pp. 26-40. 

Anty, R., Liu, Y.L., Canivet, C.M., Iannelli, A., Patouraux, S., Ben-amor, I., Schneck, 

A.-S., Saint-Paul, M.C., Gugenheim, J., Day C.P., Daly A.K., Tran, A., Gual, P. and 

Q.M., A. (2016) 'The FNDC5 rs3480 is protective on the steatosis and fibrosis in 

patients with NAFLD', submitted to publication. 



x 
 

Abbreviations  

 

·OH Hydroxyl radical  

1H-MRS Proton magnetic resonance spectroscopy 

1O2 Singlet oxygen 

ABCC ATP-binding cassette, sub-family C (CFTR/MRP), member 2 

ACC Acetyl-coenzyme A carboxylase 

AFP Alpha-fetoprotein  

AGTR1 Type-1 angiotensin II receptor 

Akt Protein kinase B 

ALT Alanine transaminase  

AMPK Adenosine monophosphate-activated protein kinase 

ApoB Apolipoprotein B 

APOC3 Apolipoprotein C-III 

APOE Apolipoprotein E 

AST Aspartate transaminase  

ATF6 Activating transcription factor 6 

ATG16L1  Autophagy related 16 like 1 

ATGL Adipose triglyceride lipase  

ATP Adenosine triphosphate  

AUROC Area under the receiver operator characteristics curve 

BMI Body mass index 

BSA Bovine serum albumin 

CAPS  3-(Cyclohexylamino)-1-propanesulfonic acid 

CARD15  Known as NOD2, nucleotide binding oligomerization domain containing 2 

CD14 Monocyte differentiation antigen CD14 

CE Cholesterol ester  

ChREBP Carbohydrate response element-binding protein  

CHUK  Conserved helix-loop-helix ubiquitous kinase 

CILP2  Cartilage intermediate layer protein 2 

CKD Chronic kidney disease  

CPN1 Carboxypeptidase N subunit 1 

CPT-I Carnitine palmitoyl transferase I 

CPT-II Carnitine palmitoyl transferase II  



xi 
 

CT X-ray computed tomography  

CVD Cardiovascular disease  

DAG Diacylglycerol 

DEN Diethylnitrosamine  

DEPC Diethylpyrocarbonate 

DM Diabetes mellitus  

DMEM F-12  Dulbecco's modified Eagle's medium-F12 

DNL de novo lipogenesis 

ECM Extracellular matrix  

eQTL  Expression quantitative trait 

ER Endoplasmic reticulum 

ERGIC ER-Golgi intermediate compartments 

ERLIN1 ER lipid raft associated 1 

ETC Electron transport chain 

FADH2 Flavin adenine dinucleotide  

FAS Fatty acid synthase 

FDFT1  Farnesyl diphosphate farnesyl transferase 1 

FDR False discovery rate  

FFAs Free fatty acids  

FOXO1 Folkhead box protein O1  

G6Pase Glucose-6-phosphatase  

GCKR Glucokinase regulatory protein 

GCL Glutamate cysteine ligase  

GCLC Glutamate cysteine ligase, catalytic subunit 

GCLM Glutamate cysteine ligase, modifier subunit 

GPx Glutathione peroxidase  

GS Glycogen synthase  

GSH Glutathione  

GSK3 Glycogen synthase kinase-3  

GSSG Glutathione disulphide 

GULT Glucose transporter  

GWAS Genome-wide association studies  

GWAS Genome-wide association studies  

H2O2 Hydrogen peroxide 



xii 
 

HapMap  Haplotype map 

HbA1c Haemoglobin A1c  

HCC Hepatocellular carcinoma  

HCV Hepatitis C virus  

HFE Hereditary hemochromatosis protein 

HIV Human immunodeficiency virus infection 

HMG-CoA Hydroxymethylglutaryl-CoA 

HNE 4-hydroxy-2-nonenal   

HOMA-IR Homeostatic model assessment  

HSCs Hepatic stellate cells  

HSD17B13  Hydroxysteroid 17-beta dehydrogenase 13 

HSL Hormone-sensitive lipase  

HTGC  Hepatic triglyceride content  

IL23R Interleukin 23 receptor 

IL-6 Interleukin-6  

IL-8 Interlukine-8  

IMT Intima-media thickness  

IR Insulin resistance 

IRE-1 Inositol-requiring enzyme-1  

IRS Insulin receptor substrates  

JAK Janus kinases 

KCNJ11  Potassium voltage-gated channel subfamily J member 11 

KLF6 Kruppel-like factor 6 

LCFAs Long chain fatty acids  

LD Linkage disequilibrium 

LDL-C Low-density lipoprotein-cholesterol  

LPIN1 Phophatidate phosphatase LPIN1 

L-PK Liver-type pyruvate kinase  

LXR Liver X receptor  

LXR-RXR Liver X receptor–retinoid X receptor 

LYPLAL1 Lysophospholipase-like protein 1  

MAF Minor allele frequency  

MAPK10  Mitogen-activated protein kinase 10 

MAT Methionine adenosyl transferase  



xiii 
 

MDA Malondialdehyde  

MRI Magnetic resonance imaging 

mRNA Messenger RNA  

mtDNA Mitochondrial DNA 

mTOR Mammalian/Mechanistic target of rapamycin 

MTTP Microsomal triglyceride transfer protein  

NADH Nicotinamide adenine dinucleotide 

NAFLD Non-alcoholic fatty liver disease 

NAS NAFLD activity score  

NASH Non-alcoholic steatohepatitis  

NASH CRN NASH Clinical Research Network 

NCAN Neurocan  

NEAA   Non-essential amino acid 

NECP: ATPIII National Cholesterol Education Program’s Adult Treatment Panel III  

NEFAs Nonesterifed fatty acids 

NF-ĸB Nuclear factor kappa-light-chain-enhancer of activated B-cells 

NO· Nitric oxide  

NO2· Nnitric dioxide  

NR1I2 Nuclear receptor subfamily 1 group I member 2  

O2- Superoxide anion  

OONO- Peroxynitrite  

OR Odds ratio 

OXPHOS Oxidative phosphorylation  

PAR Population attributable risk 

PBS Phosphate-buffered saline 

PBX4  PBX homeobox 4 

PC Pyruvate carboxylase  

PEMT Phosphatidylethanolamine N-methyltransferase 

PEPCK Phosphoenolpyruvate carboxykinase  

PERK Protein kinase R-like ER kinase  

PI3K Phosphoinositide-3 kinase 

PKC Protein kinase C  

PKCε Protein kinase C isoform in the liver 

PNPLA3 Patatin-like phospholipase domain-containing 3  



xiv 
 

PPARG  Peroxisome proliferator activated receptor gamma 

PPAR-α Peroxisome-proliferator-activated receptor α  

PPP1R3B  Protein phosphatase 1 regulatory subunit 3B 

PUFAs Polyunsaturated fatty acids 

PVDF Polyvinylidene fluoride  

RFLP Restriction fragment length polymorphism  

RO· Alkoxyl radical  

ROO· Peroxyl radical  

SAF Steatosis, activity and fibrosis 

SAMe S-adenosylmethionine  

SAMM50 Sorting and assembly machinery component 

SFAs Saturated fatty acids  

SLC27A5  Very long-chain acyl-CoA synthetase 

SLC2A1 Solute carrier family 2, facilitated glucose transporter member 1 

SNPs Single nucleotide polymorphisms 

SOD Superoxide dismutase  

SREBP-1c Sterol regulatory element-binding protein-1c  

STAT Signal transducers and activators of transcription  

SUGP1  SURP and G-patch domain containing 1 

T2DM Type 2 diabetes mellitus  

TAE Tris-acetate-EDTA 

TC Total cholesterol  

TCF7L2 Transcription factor 7-like 2 

TEMED Tetramethylethylenediamine 

TG Triglycerides 

TGFβ Transforming growth factor beta 

TLR4 Toll-like receptor 4 

TM6SF2  Transmembrane 6 superfamily member 2  

TNF Tumour necrosis factor 

TNFα Tumour necrosis factor-alpha  

TRIB1 Tribbles pseudokinase 1 

UPCs Uncoupling proteins  

UPR Unfolded protein response  

VLDLs Very low-density lipoproteins  



xv 
 

WHO World Health Organization  



xvi 
 

List of Figures 

 

Figure 1.1: Summary of the progression and natural history of NAFLD. ................... 15 

Figure 2.1: Allelic discrimination is achieved by the selective annealing of TaqMan® 

MGB probes ....................................................................................................... 58 

Figure 2.2: Example of an allelic discrimination plot of TaqMan SNP genotyping 

assay. ................................................................................................................. 59 

Figure 2.3: The assembly of electrophoretic blotting sandwich. ................................ 68 

Figure 4.1: Outcomes of the metabolic syndrome: TM6SF2 dissociates NAFLD from 

cardiovascular disease. .................................................................................... 107 

Figure 6.1: Layout of study design and purposes for retinol or/and palmitate 

treatment on LX-2. ........................................................................................... 135 

Figure 6.2: Study procedure for group B, LX-2 treated with retinol (10 µM) alone. . 135 

Figure 6.3: Study procedure for group C, LX-2 treated with palmitate (300 µM) alone.

 ......................................................................................................................... 136 

Figure 6.4: Study procedure for group D, LX-2 treated with both retinol (10 µM) and 

palmitate (300 µM). .......................................................................................... 136 

Figure 6.5: Basal messenger RNA levels and protein expression of PNPLA3 in 

HepG2, Hep3B, HUH-7, SNU182, LX-2 and primary human hepatocytes. ...... 139 

Figure 6.6: Effect of oleic acid on expression of PNPLA3 in the selected cell lines. 141 

Figure 6.7: Effect of retinol/palmitate treatment on expression of PNPLA3 in LX-2 for 

0, 12, 24, and 48 hours. ................................................................................... 144 

Figure 6.8: Oil red O staining of LX-2 at 4 time points. ............................................ 145 

Figure 6.9: Basal expression levels of TM6SF2 mRNA in the selected cell lines .... 147 



xvii 
 

List of Tables  

 

Table 1.1: Comparison of the FLIP SAF Score and the NAFLD CRN Score for the 

histological grading and staging of NAFLD/NASH. .............................................. 9 

Table 1.2: Genetic risk factors identified by GWAS ................................................... 40 

Table 1.3: Additional genetic risk factors for NAFLD identified in candidate gene 

studies. ............................................................................................................... 41 

Table 2.1: List of suppliers and addresses. ............................................................... 53 

Table 2.2: Compositions of commonly used stock solutions. .................................... 53 

Table 2.3: Reagents used for PCR. ........................................................................... 55 

Table 2.4: Composition of 2% agarose gel. ............................................................... 55 

Table 2.5: DNeasy Blood & Tissue Kit contents abstracted from the QIAGEN manual 

provided. ............................................................................................................ 64 

Table 2.6: Materials used for RNA isolation. ............................................................. 64 

Table 2.7: Reagents used for reverse transcription. .................................................. 64 

Table 2.8: Materials used for Western blotting. ......................................................... 69 

Table 3.1: Clinical characteristics of FLIP cohort. ...................................................... 75 

Table 3.2: Genotype frequency of PNPLA3 rs738409 in FLIP NAFLD Cohort vs. the 

1000 Genomes European Caucasian population. .............................................. 77 

Table 3.3: Multivariate analysis of association between PNPLA3 rs738409 genotype 

and histological steatosis. .................................................................................. 78 

Table 3.4: Multivariate analysis of association between PNPLA3 rs738409 genotype 

and histological steatohepatitis. ......................................................................... 79 

Table 3.5: Multivariate analysis of association between PNPLA3 rs738409 genotype 

and histological fibrosis. ..................................................................................... 80 

Table 3.6: Genotype frequency of PNPLA3 rs139051 in FLIP NAFLD Cohort vs. the 

1000 Genomes European Caucasian population. .............................................. 81 

Table 3.7: Multivariate analysis of association between PNPLA3 rs139051 genotype 

and histological NAFLD. ..................................................................................... 83 

Table 3.8: Haplotype association with NAFLD histological features and effect of each 

haplotype on phenotype severity in the FLIP NAFLD Cohort ............................. 84 

Table 4.1: Patients were recruited from hepatology clinics across Europe. .............. 94 

Table 4.2: Demographic characteristics of patient cohorts. ....................................... 95 



xviii 
 

Table 4.3: Genotype frequency of TM6SF2 rs58542926 in Discovery Cohort NAFLD 

patients vs. the 1000 Genomes European Caucasian population. ..................... 96 

Table 4.4: Genotype frequency of PNPLA3 rs738409 in Discovery Cohort NAFLD 

patients vs. the 1000 Genomes European Caucasian population. ..................... 96 

Table 4.5: Multivariate analysis of association between TM6SF2 rs58542926 

genotype and steatosis stage S0-1 (mild) vs. S2-3 (advanced). ........................ 98 

Table 4.6: Multivariate analysis of association between TM6SF2 rs58542926 

genotype and steatohepatitis stage (Activity Score A0-4). ................................. 99 

Table 4.7: Multivariate analysis of association between TM6SF2 rs58542926 

genotype and fibrosis stage F0-1 (mild) vs. F2-4 (advanced). ......................... 101 

Table 5.1: Details of NAFLD-HCC and NAFLD Cohorts. ......................................... 114 

Table 5.2: PNPLA3 rs738409 genotype frequencies and their relationship to risk of 

HCC development. ........................................................................................... 117 

Table 5.3: Comparison of selected characteristics according to PNPLA3 rs738409 

genotype within NAFLD-HCC and NAFLD Cohorts. ........................................ 118 

Table 5.4: Multivariate analysis of the effect of PNPLA3 genotype on NAFLD-related 

HCC risk. .......................................................................................................... 119 

Table 5.5: Multivariate analysis of the effect of PNPLA3 genotype on NAFLD-related 

HCC risk adjusted for age, gender, BMI and diabetes but not cirrhosis. .......... 120 

Table 5.6: PNPLA3 rs738409 genotype frequencies and their relationship to risk of 

HCC development adjusted for age, gender, BMI and diabetes but not cirrhosis.

 ......................................................................................................................... 120 

Table 6.1: Complete RPMI medium for growing HepG2, Huh-7, Hep3B and SNU182 

cells. ................................................................................................................. 132 

Table 6.2: Complete RPMI medium for growing LX-2 cells. .................................... 132 

Table 6.3: Materials used for BSA-bound oleic/palmitic acids. ................................ 133 

Table 6.4: PNPLA3 rs738409 genotypes of the selected cell lines. ........................ 138 

Table 6.5: TM6SF2 rs58542926 genotypes of the selected cell lines. .................... 146 

Table 7.1: Reanalysis focusing on clinical utility of PNPLA3 genotype testing in HCC 

risk prediction. .................................................................................................. 158 



1 
 

 

 

 

 

 

 

 

 

 

1 Chapter 1. Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

1.1 NAFLD 

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver 

dysfunction worldwide (Angulo, 2007; Yilmaz, 2012). It is estimated that one 

third of the population in Western countries is afflicted by NAFLD (Day, 2010), 

and the prevalence is increasing owing to its close association with metabolic 

syndrome (central obesity, insulin resistance/type 2 diabetes mellitus (T2DM), 

dyslipidaemia, hypertension and thus with cardiovascular disease (CVD)) 

(Sanyal and American Gastroenterological, 2002; Anstee et al., 2013b). 

NAFLD represents a spectrum of liver disease that ranges from steatosis to 

more progressive forms of non-alcoholic steatohepatitis (NASH), fibrosis, 

cirrhosis, and ultimately hepatocellular carcinoma (HCC) and liver failure 

without a history of excess alcohol consumption (Anstee et al., 2011b).  

Observations on fatty degeneration in the liver was first described by Thomas 

Addison in 1836 (Addison, 1836). A “fatty liver hepatitis” was first described by 

Adler and Schaffner more than three decades ago, discovering that the 

histopathological patterns of non-alcoholic patients resembled those of 

alcoholics (Adler and Schaffner, 1979). However, it was Ludwig that originally 

coined the term non-alcoholic steatohepatitis ‘’NASH’’ one year later (Ludwig 

et al., 1980) whilst describing a small group of 20 patients with fatty liver 

disease of unknown cause. The majority of these patients were obese and 

had comorbidities including hyperlipidaemia and diabetes. Their liver biopsy 

specimens were characterized by lobular hepatitis, focal necrosis with mixed 

inflammatory infiltrates and Mallory bodies, the most common histological 

feature of alcohol-induced liver disease (Ludwig et al., 1980). In line with the 

resemblance of histopathology between the two diseases, several other terms 

as pseudo-alcoholic liver disease, alcohol-like hepatitis, diabetic hepatitis, 

non-alcoholic Laennec’s disease and steatonecrosis had been adopted to 

refer to this entity prior to the umbrella term NAFLD which was first introduced 

in 1986 (Schaffner and Thaler, 1986; Sheth et al., 1997). Ever since then, 

both clinical and research interest in NAFLD has increased, with 

investigations encompassing heritability, diagnosis and natural history, the 

association with the metabolic syndrome, underlying mechanisms, and 
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developing possible pharmaceutical treatments (Dietrich and Hellerbrand, 

2014). 

 

1.2 Epidemiology 

The prevalence of NAFLD has risen rapidly due to prevalent lifestyle habits of 

diets enriched in fat and carbohydrates and sedentary behaviour, which have 

changed profoundly over the past few decades (Angulo, 2007; Ratziu et al., 

2010). However, accurate estimates of NAFLD/NASH prevalence remain 

challenging as the numbers vary greatly by the population studied (different 

ethnicities, genders, and comorbidities), and the sensitivity of the diagnostic 

methods employed (radiology or histology). Nevertheless, studies performed 

so far provide some information on the global trend of the NAFLD epidemic. A 

recent meta-analysis that included twenty-one population-based studies 

(Europe: 6, East Asia: 7, South Asia: 5, and 3 in Middle East) has 

demonstrated that the pooled worldwide prevalence of NAFLD is 24.24% and 

was significantly correlated to economic status (Zhu et al., 2015). When taking 

regions/ethnicity into account, the numbers changed slightly: Western 

countries have a higher incidence rate of NAFLD with 20-30% of the 

population affected (Day, 2010; Masarone et al., 2014) compared to a rate of 

5-18% in Asia (Masarone et al., 2014). Using proton magnetic resonance 

spectroscopy (1H-MRS) to assess hepatic steatosis in a multi-ethnic 

population from The Dallas Heart Study, 33.6% of 2349 US individuals were 

found to have NAFLD. Once again, an ethnicity effect was seen: the 

frequency of hepatic steatosis showed a distinct variation between Hispanics 

(45%), Caucasians (33%), and African Americans (17%) (Browning et al., 

2004b; Szczepaniak et al., 2005). As liver biopsy remains the diagnostic gold 

standard to reliably assess the degree of severity of NAFLD, histological 

studies in apparently healthy, prospective living liver donors indicate that the 

prevalence of NAFLD was 12–18% in Europe (Browning et al., 2004b; 

Nadalin et al., 2005) and 27–38% in the USA (Ryan et al., 2002; Browning et 

al., 2004b; Tran et al., 2006). Estimates increase further when populations 

with known risk factors are targeted. For instance, NAFLD was found in 91% 

of obese patients (body mass index (BMI) ≥30 kg/m2), 67% of overweight 
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(>25-<30) and 25% of normal individuals (Bellentani et al., 2004) reported by 

the European DIONYSOS study. Additionally, the overall prevalence of 

NAFLD is much greater in patients with T2DM with an incidence of 40-70% 

(Argo and Caldwell, 2009).  

 

1.3 Diagnosis, staging and grading of NAFLD  

1.3.1 Diagnosis  

The most common symptoms reported by NAFLD patients are fatigue, 

malaise and an uncomfortable feeling or fullness in the right upper abdomen. 

Patients should have a history of excess alcohol intake (<20g/day for women; 

<30g/day for men) excluded together with alternative diagnoses including 

chronic viral hepatitis (hepatitis B and hepatitis C), autoimmune liver diseases, 

hereditary hemochromatosis, α1-antitrypsin deficiency, Wilson’s disease and 

drug induced liver injury (Anstee et al., 2011a). Obesity and insulin resistance 

or other features of the metabolic syndrome are the most common 

comorbidities found in NAFLD patients. Liver function tests in NAFLD patients 

are commonly within the normal range or exhibit only moderate elevations of 

aspartate transaminase (AST) and alanine transaminase (ALT). Generally, 

the AST/ALT ratio is less than one, but increases in the presence of fibrosis. 

Although hepatic steatosis can be demonstrated by ultrasound and other non-

invasive radiological diagnostic approaches (computerised tomography (CT), 

proton magnetic resonance spectroscopy (1H-MRS) and magnetic resonance 

imaging), a solid histopathological diagnosis of NAFLD (and the presence of 

NASH) can only be confirmed by the golden diagnostic method - liver biopsy 

which effectively documents disease stage and grade (Angulo, 2007; 

Wieckowska and Feldstein, 2008; Burt et al., 2015).     

 

1.3.1.1 Steatosis 

The hallmark and initiation stage of NAFLD is hepatic steatosis, characterised 

by the accumulation of triglycerides (TG) affecting > 5% hepatocytes. 

Steatosis in NAFLD usually is presented as a mixture of macrovesicular 

(large) and microvesicular (small) droplet vacuoles within hepatocytes; true 
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microvesicular steatosis is rarely detected (Yeh and Brunt, 2014). Although 

hepatic steatosis is generally considered to be benign or self-limited, it may 

progress towards NASH in some patients. A widely accepted semiquantitative 

method for steatosis assessment is based on the percentage of hepatocytes 

involvement: four different degrees of steatosis are reported, comprising <5% 

steatosis, 5-33%, 34-66%, and over 66% (Kleiner et al., 2005). 

 

1.3.1.2 NASH 

NASH, the more progressive form of NAFLD, is characterised by specific 

histological features in addition to steatosis. These include hepatocellular 

injury (hepatocellular ballooning degeneration) and lobular inflammation, with 

or without fibrosis. These key lesions usually occur in acinar zone 3, however 

there may be loss of acinar localization in the presence of progressive fibrosis 

and parenchymal remodelling (Yeh and Brunt, 2014). Hepatocellular 

ballooning is characterized by a swollen shape of hepatocytes, usually 

enlarged and lightly stained cytoplasm, in which Mallory-Denk Bodies are 

frequently found on routine histology with cellular diameter > 30 µm. The loss 

of cytoplasmic staining of keratins 8 and 18 by immunohistochemistry has 

been proposed to be the key feature in identification of ballooned hepatocytes 

(Guy et al., 2012). Other helpful, but not necessary, morphological features for 

diagnosis of NASH include micrograulomas and acinar lipograulomas, 

megamitochondria, apoptotic bodies, and pericellular and perivenular fibrosis 

(Neuschwander-Tetri and Caldwell, 2003; Sanyal et al., 2011). Lobular 

inflammatory infiltrates are usually composed of lymphocytes (mainly T cells), 

eosinophils, macrophages, and less frequently neutrophils. Mild, chronic and 

mixed portal inflammation may also be present at this stage, and is suggested 

to be correlated with advanced severity of NASH and serological indicator of 

insulin resistance (IR), homeostatic model assessment (HOMA-IR) in both 

adult and paediatric cases (Brunt et al., 2009; Harmon et al., 2011; Smith, 

2013). Notably, there is a blurred gap between steatosis and NASH 

depending on whether NASH is destined to occur after steatosis or both forms 

are discrete entities (Cohen et al., 2011; Yilmaz, 2012). Around 10-29% of 



6 
 

NASH patients could progress to a more advanced stage of cirrhosis in a 10-

year period (Argo and Caldwell, 2009).  

 

1.3.1.3 Fibrosis and cirrhosis 

Hepatic fibrosis is a result of repeated wound-healing in response to chronic 

liver injury, occurring in most types of chronic liver diseases (Albanis and 

Friedman, 2001; Bataller and Brenner, 2005). The predominant concept of 

liver fibrosis is the imbalance between increased generation and reduced 

degradation of extracellular matrix (ECM) proteins under a persistent liver 

injury. The excessive accumulation of ECM proteins results in the 

transformation of hepatic architecture by substituting hepatocytes for ECM, 

including fibrillar collagens. Collagens (I, III and IV), fibronectin, undulin, 

elastin, laminin, hyaluronan, and proteoglycans were found to increase 6 

times more than the normal level in advanced fibrotic-stage (Bataller and 

Brenner, 2005). Hepatic stellate cells (HSCs) are the major ECM producing 

source in prolonged liver injury (Gabele et al., 2003). HSCs are located in the 

space of Disse (between hepatocytes and sinusoidal endothelial cells) and 

are responsible for vitamin A storage. HSCs are activated by inflammatory 

insults to the liver, undergoing a phenotype transformation into myofibroblast-

like cells which lay down ECM. HSC maintaining methods (activated HSC 

model on plastic culture dishes) from rodent and human livers were studied 

and established in the 1980s to provide a useful tool for researchers to 

investigate the essential role of HSCs in liver fibrosis (Otto and Veech, 1980; 

Friedman et al., 1992).  

Mild fibrosis (either in zone 3 perisinusoidal or portal) can be seen in NASH 

patients and it can further progress to bridging fibrosis and consequent 

cirrhosis if inflammatory insults are sustained (Brunt et al., 1999). Patients 

with progressive fibrosis over a period of 15-20 years could develop cirrhosis 

(Bataller and Brenner, 2005). Cirrhosis, the key risk factor for development of 

hepatocellular carcinoma, is encountered when normal hepatic lobules are 

replaced by fibrotic nodules thus causing disruption of the hepatic architecture 

and loss of liver function (Bircher, 1999). 
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1.3.1.4 Hepatocellular carcinoma (HCC) 

HCC is the fifth most frequently diagnosed cancer worldwide and the third 

most common cause of cancer mortality (Baffy et al., 2012). The progression 

to HCC is most frequently associated with cirrhosis secondary to chronic liver 

infections such as hepatitis B or hepatitis C viruses or by alcoholic injury, 

while genetically defined diseases such as hemochromatosis are associated 

with a lesser proportion (Bosch et al., 2005; El-Serag and Rudolph, 2007). 

The tumour marker blood test alpha-fetoprotein (AFP) is often used to detect 

liver cancer (60-70% of HCC patients are found AFP positive). However, 

patients with elevated AFP should be screened by radiological examinations 

(abdominal ultrasound, X-ray computed tomography (CT), or magnetic 

resonance imaging (MRI)). If serological AFP together with radiological 

evidence is highly significant toward to a diagnosis of liver cancer, the liver 

biopsy is then not warranted. The histopathological hallmark of HCC is the 

resemblance both in its cytology and plate-like morphology, however, this 

aspect is beyond the scope of this chapter and has been summarized 

elsewhere (Paradis, 2013). HCC has been linked to NAFLD in a large number 

of epidemiological studies, illustrating several common NAFLD risk factors 

(overweight, obesity, insulin resistance, and diabetes mellitus) also associated 

with HCC morbidity (Baffy et al., 2012). Though the accurate prevalence of 

NAFLD-related HCC is unclear, it is suggested that 4 to 27% of cirrhotic 

NAFLD patients could develop HCC (Cohen et al., 2011) while HCC is rarer in 

non-cirrhotic NAFLD patients (Baffy et al., 2012).  

 

1.3.2 Staging and grading of NAFLD 

A semi-quantitative scoring system – the NAFLD Activity Score (NAS) 

developed by NASH Clinical Research Network (NASH CRN) Pathology 

Committee, sponsored by National Institute of Diabetes and Digestive and 

Kidney Diseases, is currently the most widely used approach for grading 

disease severity of NAFLD and stage of fibrosis in clinical trials (Kleiner et al., 

2005). It is a revision of the original NAFLD grading system proposed by Brunt 

et al., illustrating the NASH grades according to the combinations mixed by  

steatosis, ballooning and inflammation (Brunt et al., 1999). The NAS is differ 
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from the original one as it is derived from the sum of the discrete scores of 

steatosis (0-3), hepatocellular ballooning (0-2) and lobular (acinar) 

inflammation (0-3), therefore provides a NAS range from 0 to 8. CRN also 

issued a 5-tier method for staging of fibrosis (0-4) (Table 1.1) (Kleiner et al., 

2005).   

Although NAS has been well validated in current clinical and medical practice, 

its sensitivity and specificity for a threshold NAS ≥ 5 as a histological 

diagnosis of NASH was only 57% and 95%, respectively (Hjelkrem et al., 

2011). A further report on a study performed in a cohort of 976 individuals 

demonstrated that only 75% of the biopsies with ‘definite NASH’ reached this 

threshold whilst 28% with borderline NASH, and 7% of them without NASH 

had NAS ≥ 5 (Brunt et al., 2011). Caution therefore should be taken when 

applying NAS for diagnostic purposes as the threshold value does not always 

reflect the actual disease severity. This discrepancy may be best explained by 

inter-observer-related variation among pathologists and the different 

histopathological criteria adopted (Machado et al., 2006; Younossi et al., 

2011). 

To address this, a simplified steatosis (S), activity (A) and fibrosis (F) (SAF) 

score has recently been designed by the European Fatty Liver Inhibition of 

Progression (FLIP) consortium, in an attempt to improve inter-observer 

variability (Bedossa and Consortium, 2014). The key difference in SAF 

scoring evaluation from NASH CRN score is that the degree of steatosis is 

separated from those of inflammation/ballooning to prove three separate 

measures of NAFLD severity. Basically, the FLIP algorithm encompasses 

semi-quantitative scoring of the key features: steatosis (0-3), activity (0-4) as 

the sum for hepatocellular ballooning and lobular inflammation, and fibrosis 

(0-4). Hence, NAFLD activity can be histologically divided into 2 categories; 

mild (A <2 and/or F <2) and significant (A >2 and/or F >2). In a study with 679 

obese patients, the threshold of A >2 correctly identified all patients with 

NASH, and none of the patients below this threshold had NASH (Bedossa 

and Consortium, 2014). Comparison of the SAF Score and the NAFLD Kleiner 

Score for the histological grading and staging of NAFLD/NASH is shown in 

Table 1.1. 
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Table 1.1: Comparison of the FLIP SAF Score and the NAFLD CRN Score for the 

histological grading and staging of NAFLD/NASH. 

SAF Score (Bedossa and Consortium, 2014) Kleiner Score (Kleiner et al., 2005) 

Histological 
Feature 

Category Definition Histological 
Feature 

Category Definition 

Steatosis 0 

1 

2 

3 

<5% 

5-33% 

34-66% 

>66% 

Steatosis 0 

1 

2 

3 

<5% 

5-33% 

34-66% 

>66% 

(S) Steatosis Score 0-3 PLUS 

Hepatocyte 
Ballooning 

0 

1 

2 

None 

Clusters of hepatocytes with rounded 
shape and pale cytoplasm 

Same as grade 1 with enlarged 
hepatocytes (>2x normal size) 

Hepatocyte 
Ballooning 

0 

1 

2 

None 

Few 

Many 

PLUS PLUS 

Inflammation 0 

1 

2 

None 

< 2 foci per 20x field 

> 2 foci per 20x field 

Inflammation 0 

1 

2 

3 

None 

1–2 foci per x20 field 

2–4 foci per x20 field 

>4 foci per x20 field 

(A) Total = Activity Score 0-4 (NAS) Total = NAFLD Activity Score 0-8 

Fibrosis 0 

1a 

1b 

1c 

2 

3 

4 

No fibrosis 

Zone 3 mild perisinusoidal fibrosis 

Zone 3 moderate perisinusoidal 
fibrosis 

Periportal/portal fibrosis only 

Zone 3 plus portal/periportal fibrosis 

Bridging fibrosis 

Cirrhosis 

Fibrosis 0 

1a 

1b 

1c 

2 

3 

4 

No fibrosis 

Zone 3 mild perisinusoidal 
fibrosis 

Zone 3 moderate 
perisinusoidal fibrosis 

Periportal/portal fibrosis 
only 

Zone 3 plus 
portal/periportal fibrosis 

Bridging fibrosis 

Cirrhosis 

(F) Fibrosis Stage 0-4 Fibrosis Stage 0-4 

Table modified from (Dyson et al., 2014) with permission. 
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1.4 Natural history of NAFLD  

A US-based long-term study with 23-year length revealed that patients with NAFLD 

had higher mortality compared to those in the general population, and the outcome 

of a lower survival rate was associated with age (hazard ratio per decade 2.2, 95%CI 

[1.7-2.7], P<0.0001), impaired fasting glucose (hazard ratio 2.6, 95%CI [1.3-5.2], 

P=0.005), and cirrhosis diagnosed at baseline (hazard ratio 3.1, 95%CI [1.2-7.8], 

P=0.02) (Adams et al., 2005). Other studies on long-term mortality in NAFLD 

patients during 15 year follow-up showed 26% death rate, and this increased 

profoundly to 34-69% compared to the general population sharing the same age and 

gender (Angulo, 2013). In general, the majority of NAFLD patients exhibit only simple 

steatosis which is considered to be benign and self-limited, whilst a small fraction of 

individuals progress to NASH, fibrosis, cirrhosis and HCC. However, recent study 

using serial biopsy data (a median interval of 6.6 years) has challenged this dogma, 

showing that 44% of the NAFLD patients with ‘pure fatty liver’ graduated to NASH, 

and 37% had fibrosis progression (22% of them were at advanced stage) 

(McPherson et al., 2015). Another systematic study of follow-up biopsies over a 

mean of 3.7 years documented that 64% of NAFLD patients progressed to NASH 

from steatosis, while 24% developed advanced fibrosis (Pais et al., 2013). The 

summary of disease progression and natural history of NAFLD is displayed in Figure 

1.1. 

Poor disease prognosis and reduced survival is predicted once patients develop 

NASH. A Swedish study investigated the survival and cause of death within a cohort 

of 129 NAFLD patients with a mean follow-up period of 13.7 years; mortality was not 

increased in patients with steatosis, patients with NASH however exhibited a greater 

than 10-fold increased risk of liver-induced causes (2.8% versus 0.2%) and twofold 

higher risk from CVD-related death (15.5% versus 7.5%) compared with a matched 

reference population (Ekstedt et al., 2006). Estimates of disease progression from 

patients with NASH to fibrosis vary between 27-53% by several studies using paired 

serial histological data within 3-6 years (Fassio et al., 2004; Hui et al., 2005; Wong et 

al., 2010). Correspondingly, a recent meta-analysis pooled 11 studies with a total of 

411 histologically confirmed NAFLD patients and with over 2145.5 person-years of 

follow-up evaluation; this study discovered that the annual fibrosis progression rate 

in patients with steatosis only at index biopsy was 0.07 stages (95%CI [0.02-0.11 
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stages]) and it was 0.14 stages in those with NASH (95%CI [0.07-0.21 stages]). 

Namely, patients with steatosis only progressed to fibrosis stage one on average in 

14.3 years while the average was 7.1 years for those diagnosed with NASH at 

baseline (Singh et al., 2015). Another study suggested that an overall annual rate of 

fibrosis progression from steatosis and NASH patients at baseline were 0.067 and 

0.08 stages, respectively (McPherson et al., 2015). Notably, although fibrosis 

progression is generally slow, rapid progression from simple steatosis or NASH (both 

at F0) to F3-4 does occur in a small set of patients over a mean follow-up period of 

5.9 years (Singh et al., 2015).  

The increased risk of mortality in patients with NASH compared with those with 

steatosis could be explained by the greater incidence and the higher severity of 

fibrosis found in NASH patients as the presence of fibrosis is the key histological 

determinant of long-term prognosis (Younossi et al., 2011; Chan et al., 2014; Singh 

et al., 2015). Supporting evidence from a study with 209 NAFLD patients over a 

median of 12.1 years demonstrated that NASH only correlated with liver-related 

mortality in the presence of advanced fibrosis; only F3 portal fibrosis was 

independently associated with liver mortality (hazard ratio 5.68, 95%CI [1.5-21.5]) 

when those with histological features of NASH were selected (Younossi et al., 2011). 

Additional study also supports this assertion; a longitudinal study with a median 

follow-up period of 12.6 years recruited 619 NAFLD patients at medical centres in 

USA, Europe and Thailand, investigating the long-term prognostic relevance of 

histological features and analysing the overall mortality, liver transplantation and 

liver-related events as outcomes (Angulo et al., 2015). The key finding was that 

histologic feature of fibrosis, but no other features of steatohepatitis, was 

independently associated with death, liver transplantation and liver-induced events 

included fibrosis stage 1 (hazard ratio 1.88, 95%CI [1.28-2.77]), stage 2 (hazard ratio 

2.89, 95%CI [1.93-4.33]), stage 3 (hazard ratio 3.76, 95%CI [2.40-5.89]) and stage 4 

(hazard ratio 10.9, 95%CI [6.06-19.62]).  

Approximately 10-25% of NASH patients progress to extensive fibrosis and cirrhosis 

(McCullough, 2004; Onnerhag et al., 2014; Goh and McCullough, 2016). The natural 

history of cirrhosis is characterised by two phases termed ‘compensated’ and 

‘decompensated’ with the status of portal pressure as the watershed. The 

decompensated phase is subject to a series of liver complications once portal 
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hypertension develops, including varices, portal hypertensive gastrointestinal 

bleeding, ascites, jaundice, hepatic encephalopathy, and ultimately to HCC (D'Amico 

et al., 2006). Accumulating data has provided some information on the mortality of 

cirrhosis due to NASH (Hui et al., 2003; Sanyal et al., 2006; Yatsuji et al., 2009; 

Bhala et al., 2011). An Australian study compared the rates of liver complications 

and survival between 23 patients with NASH-associated cirrhosis and those with 

hepatitis C virus (HCV)-related disease over 7 years follow-up; liver failure was the 

main cause of morbidity and mortality in NASH-related cirrhosis, but with a lower risk 

of HCC development despite a similar survival was seen in both groups (Hui et al., 

2003). Conversely, a separate study over 10-year period (152 NASH-cirrhosis 

patients vs. 150 HCV-cirrhosis) reached different conclusions; compensated 

cirrhosis due to NASH had a lower mortality rate and lower incidence for 

development of ascites, hyperbilirubinemia, and HCC against HCV-cirrhosis. 

However, patients with NASH-cirrhosis had a higher risk of CVD-related mortality 

(Sanyal et al., 2006). Nonetheless, one Japanese study with 5-year follow-up using a 

relatively small cohort of 68 NASH cases demonstrated that similar rates of 

complications of cirrhosis (ascites, varices, hepatic encephalopathy and HCC) were 

found in both cohorts of NASH and HCV related cirrhosis (Yatsuji et al., 2009). The 

discrepancy between the above studies may be explained by ethnic differences and 

variation in study design. Further information on the natural history of NAFLD/NASH-

associated cirrhosis could be obtained from data on cryptogenic cirrhosis as there is 

growing recognition that NAFLD/NASH may be responsible for a great proportion of 

cryptogenic cirrhosis since metabolic syndrome is also the most common feature in 

those patients (Powell et al., 1990; Bugianesi et al., 2002). Moreover, as a frequent 

cause of cirrhosis, NASH is projected to be the leading indication for liver 

transplantation in the US by 2020 (Ratziu et al., 2010; Sanyal et al., 2011). 

As progression to advanced fibrosis and cirrhosis in NASH patients has become a 

global concern, this also naturally extends to the risk for development of HCC 

(Adams et al., 2005; Rafiq et al., 2009; Satapathy and Sanyal, 2015). Available data 

suggests that the prevalence of HCC in NAFLD and NASH patients is estimated to 

be 0.5% and 2.8%, respectively (Starley et al., 2010). A recent Surveillance, 

Epidemiology, and End Results (SEER) database study in United States 

demonstrated that individuals affected by NAFLD had 2.6-fold higher risk for HCC, 
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with a 9% annual increase over 6-year period (Younossi et al., 2015). These 

estimates are forecast to be greatly increased in parallel to the NAFLD epidemic 

(Baffy et al., 2012). In general, HCV and alcohol currently account for the majority of 

HCC underlying causes. However, a US-based study with 4,406 HCC patients 

recruited between 2002-2008 challenged this assertion, providing evidence that 

NAFLD/NASH was the most common aetiological factor among those cases (59%), 

followed by T2DM (36%) and HCV (22%) (Sanyal et al., 2010). The presence of 

cirrhosis is the key risk factor for HCC and a surveillance study from Japan indicates 

that 80% of HCC patients are cirrhotic irrespective of aetiology (Hashimoto et al., 

2009). The cumulative incidence of HCC in patients with NASH-related cirrhosis has 

been suggested in one systemic review to range from 2.4% (over 7 years) to 12.8% 

(over 3 years) (White et al., 2012), whilst another study reported the annually 

cumulative incidence of HCC was 2.6% in NASH-associated cirrhosis compared to 

4% for those with HCV-related cirrhosis (Ascha et al., 2010).  

Yet, a growing number of case reports suggest that cirrhosis is not a necessary 

determinant for HCC, especially in NAFLD patients. In a US prospective study, the 

absence of cirrhosis was found to be 54% in all NAFLD-HCC cases while there was 

only 22% with absence in the HCV-cirrhosis group (Sanyal et al., 2010). Another 

German study examined the prevalence of HCC with different aetiologies and 

revealed that 41.7% of NAFLD/NASH-related HCC patients were non-cirrhotic (Ertle 

et al., 2011). In a study involving 1,500 U.S veterans over 6-year period, non-

cirrhotic HCC was mainly due to NAFLD and patients with either NAFLD (unadjusted 

odds ratio 5.4; 95% CI [3.4-8.5]) or metabolic syndrome (unadjusted odds ratio, 5.0; 

95% CI [3.1-7.8]) had a greater than 5-fold risk to present with HCC in the absence 

of cirrhosis, compared with the cohort of HCV-related HCC (Mittal et al., 2016).  

This specific characteristic (the absence of cirrhosis in progression of NAFLD-HCC) 

could be explained by the well-known NAFLD-associated risk factors, obesity and 

metabolic syndrome (Hardy et al., 2016). A large American prospective study with 

more than 900,000 adults demonstrated that men with a BMI of 35 kg/m2 or above 

had 4.5 times higher risk of dying from liver cancer while the risk was 1.68 higher in 

women when compared to individuals with normal BMI (Calle et al., 2003). One 

meta-analysis also concluded that the summary relative risks for HCC were 1.17 for 

overweight and 1.89 for obese subjects (Larsson and Wolk, 2007). Substantial data 
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suggests that T2DM promotes the development and progression of HCC (El-Serag 

et al., 2004; Davila et al., 2005; El-Serag et al., 2006; Welzel et al., 2011). 

Supporting evidence from a systematic review of 26 studies published during the last 

decade, 13 case-control studies and another 13 cohort studies, shows that the 

presence of diabetes was associated with a relatively consistent 2.5-fold increase in 

HCC risk in different populations and geographic areas (El-Serag et al., 2006). Since 

NAFLD is the major hepatic manifestation of obesity, impaired glucose tolerance and 

insulin resistance, T2DM and other associated metabolic conditions, this once again 

supports the notion that NAFLD/NASH would be the leading future cause of HCC 

and liver transplantation (Marrero et al., 2002; Starley et al., 2010). 
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Figure 1.1: Summary of the progression and natural history of NAFLD. Adapted and modified from (Cohen et al., 2011; Goh and McCullough, 2016).
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1.5 Risk factors  

NAFLD is best considered as a paradigm of complex genetic disease trait, since 

susceptibility appears to involve a combination of inter-patient genetic variation and 

environmental factors. With respect to environmental risk factors contributing to 

NAFLD, high calorific diet and sedentary life-style are well-known risk factors (Day, 

2006). Older age has also been linked to NAFLD (Chen et al., 2007a; Frith et al., 

2009). One Chinese case-control study investigated 4,226 adults aged above 60 

years compared with 3,145 randomly selected younger controls and found that the 

prevalence of NAFLD was slightly higher in the elderly (26.7%) than in non-elderly 

(22.8%) (Wang et al., 2013). It is noteworthy that whether age has its true effect on 

NAFLD/NASH or this is owing to a cumulative end results of other risk components 

(metabolic syndrome and fibrosis for example) and longer duration of disease 

progression in these patients (Vacca et al., 2015). Available data investigating 

gender difference in NAFLD remains conflicting. Women accounted for 60%-83% of 

NAFLD/NASH diagnosis in several early clinical studies (Ludwig et al., 1980; Powell 

et al., 1990; Angulo et al., 1999; Caldwell et al., 1999; Matteoni et al., 1999). In 

further studies on women, NAFLD has recently been reported to associate with late 

menopausal transition and postmenopausal stages (Ryu et al., 2015b), miscarriage 

and induced abortion (Liu et al., 2013), but an inverse association was found 

between age at menarche and NAFLD in a Korean study involved 76,415 middle-

aged women (Ryu et al., 2015a). Although some of these findings suggest a 

particular female predisposition, several other reports suggest a male predominance 

in NAFLD (Bacon et al., 1994; Sanyal and American Gastroenterological, 2002; 

Browning et al., 2004b; Williams et al., 2011).  

It is globally acknowledged that NAFLD is strongly correlated with the metabolic 

syndrome, especially obesity and T2DM (Bian and Ma, 2012; Ortiz-Lopez et al., 

2012) and this section mainly focuses on this aspect. The metabolic syndrome, also 

known as the X syndrome, the insulin resistance syndrome, and the deadly quartet, 

was recognized at least eight decades ago (Cameron et al., 2004; Eckel et al., 

2005). Although the definitions of metabolic syndrome slightly differ between the 

criteria established either by World Health Organization (WHO) (Alberti and Zimmet, 

1998), European Group for the Study of Insulin Resistance (Balkau and Charles, 

1999), and the National Cholesterol Education Program’s Adult Treatment Panel III 



17 
 

(NECP: ATPIII) (Expert Panel on Detection and Treatment of High Blood Cholesterol 

in, 2001), the agreed essential elements are glucose intolerance, central obesity, 

dyslipidaemia and hypertension. The criterion of ‘glucose intolerance’ also involves 

impaired glucose tolerance, impaired fasting glycaemia, IR and T2DM (Eckel et al., 

2005). These key components of metabolic syndrome have been proposed as 

potential risk factors in developing diabetes, CVD, stroke, chronic kidney disease 

(CKD), and NAFLD (Eckel et al., 2005; Anstee et al., 2013b). A proportion greater 

than 90% of the NAFLD patients have at least one component of the metabolic 

syndrome (Marchesini et al., 2003). While environmental factors in NAFLD are well-

established, the underlying mechanisms of genetic factors remain unclear. Current 

understanding on the genetic basis of NAFLD is described in detail in the next 

section 1.7. 

 

1.5.1 NAFLD and obesity  

Obesity is defined by BMI ≥ 30 kg/m2 and BMI ≥ 40 kg/m2  is defined as morbid 

obesity (Kubik et al., 2013). NAFLD was first recognized as a clinical entity based on 

the studies discovering the presence of fatty liver, variable degrees of inflammation 

and fibrosis in morbidly obese individuals (Payne et al., 1963; Kern et al., 1973; 

Catlin, 1976). Since then, accumulating data confirmed that obesity is a major risk 

factor in the development of NAFLD (Nasrallah et al., 1981; Braillon et al., 1985; 

Angulo et al., 1999; Matteoni et al., 1999). As described in section 1.2, the 

prevalence of NAFLD increased greatly in obese patients (Bellentani et al., 2004). 

One Italian study reported that 75.8% of obese patients had NAFLD compared to 

only 16% of those with normal BMI and without metabolic syndrome (Bellentani et 

al., 2000). Overall, the prevalence of NAFLD is estimated at between 74-91% in 

obese subjects (Angulo, 2002; Abrams et al., 2004; Bellentani et al., 2004) while 

NASH is thought to be present in 25-30% of an obese population and >35% when 

coexisting with T2DM (Silverman et al., 1989; Musso et al., 2011; Smith and Adams, 

2011). Visceral adiposity (central obesity), not overall obesity, is significantly 

associated with NASH (Kral et al., 1993; Omagari et al., 2002; Thomas et al., 2005; 

Farrell and Larter, 2006), especially for ‘non-obese’ NAFLD (Ha et al., 2015). On the 

other hand, bariatric surgery does ameliorate disease severity in NAFLD (Angulo, 

2006; Mummadi et al., 2008). One meta-analysis pooled 15 studies which 
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investigated the effect of bariatric surgery on NAFLD and revealed that 91.6% of 

patients had improvement or resolution in steatosis (95%CI [82.4%-97.6%]), 81.3% 

in NASH (95%CI [61.9%-94.9%]), and 65.5% in fibrosis (95%CI [38.2%-88.1%]); the 

completely disappearance of NASH was found in 69.5% (95%CI [42.2%-90.8%]) 

(Mummadi et al., 2008). A recent study with 1-year of follow-up also showed that 

nearly 85% of patients had reversal of NASH and reduced pathologic features of the 

disease after bariatric surgery (Lassailly et al., 2015).  

 

1.5.2 NAFLD and type 2 diabetes mellitus 

NAFLD is closely associated with IR and T2DM, it however remains unclear whether 

it is NAFLD that induces T2DM or vice versa. NAFLD patients have an average of 2 

fold increased risk of incident T2DM as reported in numerous studies (Fan et al., 

2007; Shibata et al., 2007; Fraser et al., 2009; Yamada et al., 2010; Sung et al., 

2012). These studies however performed a NAFLD diagnosis by ultrasonography or 

serum levels of liver enzymes which has limitations due to intraobserver variability 

and the fact that 80-85% of patients with T2DM and NAFLD are negative for 

increased serum levels of liver enzymes (Targher et al., 2007a; Williams et al., 2011; 

Williamson et al., 2011). Only one available data has so far demonstrated the 

association between histologically diagnosed NAFLD and the risk of incident T2DM. 

In a cohort of 129 histologically-proven NAFLD patients who were followed up for a 

mean period of 13.7 years, Ekstedt et al. showed that the prevalence of previously 

known T2DM was 8.5% at baseline, but a striking proportion of 78% of these 

individuals developed either T2DM (58%) or impaired glucose tolerance at the end of 

the study (Ekstedt et al., 2006).  

When considering NAFLD in patients with established T2DM, the prevalence of 

NAFLD is thought to be over 70% (Targher et al., 2007a; Leite et al., 2009). Both a 

personal and family history of IR and diabetes mellitus (DM) increases predisposition 

to NASH and fibrosis (Loomba et al., 2012). One study reinforced the notion that 

NAFLD is an independent risk factor for T2DM after adjustment for other elements of 

metabolic syndrome (Musso et al., 2011). In addition, patients with both T2DM and 

NAFLD often have poorer glycaemic control compared to those with T2DM only 

(Jimba et al., 2005; Williamson et al., 2011). The presence of T2DM itself is a strong 
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risk factor for liver disease as its long-term prognostic significance includes NASH, 

cirrhosis and HCC (de Marco et al., 1999; Bugianesi et al., 2002; El-Serag et al., 

2004; Bugianesi, 2007; Anstee et al., 2013b). 

 

1.5.3 NAFLD, cardiovascular disease and chronic kidney disease 

The recognition that NAFLD may stimulate the progression and development of CVD 

has already been a heated topic as common features of NAFLD (i.e. hypertension, 

atherogenic dyslipidaemia, dysglycaemia, IR and obesity) are risk factors for CVD 

(Marchesini et al., 2003). Numerous reports showed that NAFLD has been linked to 

markers of subclinical atherosclerosis (i.e. impaired flow-mediated vasodilation) that 

are dependent on endothelium, increased arterial stiffness, and increased carotid 

artery intima-media thickness (IMT) (Anstee et al., 2013b; Oni et al., 2013). One 

meta-analysis with seven cross-sectional studies (involving a total of 3,497 subjects) 

confirmed that NAFLD patients diagnosed with ultrasonography had a significantly 

increased prevalence of carotid artery IMT and carotid plaques (Sookoian and Pirola, 

2011). In a recent prospective study of 465 consecutive patients with ischaemic 

heart disease diagnosed by coronary angiography, the prevalence of fatty liver was 

64.7% and fatty liver was associated with more severe coronary artery disease 

(Wong et al., 2011). The intimate correlation between CVD and NAFLD could be 

further demonstrated by several retrospective studies (NAFLD diagnostic approach 

as imaging or biopsy) examining the natural history of NAFLD patients within a 

reasonably long duration; CVD is a very common cause of death among these 

patients (Adams et al., 2005; Ekstedt et al., 2006; Targher et al., 2007b; Rafiq et al., 

2009; Soderberg et al., 2010; Treeprasertsuk et al., 2012; Zhou et al., 2012). Two of 

the studies with biopsy-proven NAFLD also reported that patients with NASH, not 

those with simple steatosis, possess an increased risk of death from CVD compared 

with the reference population (Ekstedt et al., 2006; Soderberg et al., 2010).  

There is growing awareness regarding the interaction between NAFLD and CKD as 

it is a microvascular diabetic complication in people with T2DM which is also a 

common feature in NAFLD (Targher et al., 2011). The presence of CKD is usually 

defined as estimated glomerular filtration rate of <60 mL/min/1.73 m2 and/or 

microalbuminuria and/or overt proteinuria. In a study with 2,103 Type 2 diabetic 
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patients, those who coexisted with NAFLD (ultrasonography) had almost 2-fold 

increased prevalence of CKD (OR 1.87, 95CI% [1.3-4.1]) and proliferative/laser-

treated retinopathy (OR 1.75, 95CI% [1.1-3.7]) than in those without NAFLD (after 

adjustment for age, gender, BMI, waist circumference, blood pressure level, 

hypertension, duration of T2DM, haemoglobin A1c (HbA1c), lipids, smoking status and 

medications use) (Targher et al., 2008). An increased incidence of CKD in NAFLD 

patients also has been reported in several other cross-sectional studies (Hwang et 

al., 2010; Arase et al., 2011; Yasui et al., 2011).  

Although there is accumulating data concerning the close correlation between 

NAFLD and CVD/CKD, study bias should be noted; factors such as ethnicity, 

population studied (hospital-based or community-based), an adequate adjustment 

with potential confounders (i.e. IR, obesity, T2DM, hypertension and other traditional 

and non-traditional risk factors for CVD) and the diagnostic method used is needed. 

Whether NAFLD is simply a risk marker which coexists in patients of these two 

disease entities or is an independent risk factors remains to be fully elucidated. 

However, data to date is sufficient to consider that NAFLD patients are at high-risk 

for CVD/CKD events. More comprehensive information regarding current knowledge 

on the relationship between NAFLD and CVD/CKD can be found in two other review 

articles (Anstee et al., 2013b; Vanni et al., 2015).  

 

1.6 Pathogenesis 

The preeminent hypothesis for NAFLD pathogenesis was proposed by Day and 

James in 1998, suggesting that NAFLD might be driven in a “two-hit” fashion. The 

initial stage of NAFLD, steatosis, begins with an imbalance between lipid acquisition 

and removal in the liver, followed by steatohepatitis resulted from a complex system 

of inflammatory cascade which promotes lipotoxicity, oxidative stress and further 

induction of subsequent stages of NAFLD (Day and James, 1998). However, 

accumulating evidence during the past decade suggests that NAFLD may be 

contributed from “multiple hits”, a combination of several biochemical and 

immunological effects, rather than a simple “two-hit” manner. It is generally accepted 

that initiation of NAFLD is dependent on development of obesity and IR/T2DM, 

therefore this section mainly focuses on involvement of lipotoxicity, damage caused 
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by overwhelming oxidative stress, impaired metabolic homeostasis, cellular 

dysfunction (Hardy et al., 2016) and how these effects are governed by insulin and 

nutrient-sensing transcription factors.  

 

1.6.1 Lipid metabolism in NAFLD 

The liver plays a crucial role in the metabolism of carbohydrate, lipid and protein. 

Hepatic dysfunction usually is associated with systemic metabolic imbalances, and it 

is universally agreed that an imbalance in the acquisition, delivery and removal of 

long chain fatty acids (LCFAs) and triglycerides (TGs) is fundamental to NAFLD. 

 

1.6.1.1 Free fatty acids supply 

Free fatty acids (FFAs) are the key elements forming TGs, which can be further 

stored in adipocytes or be hydrolysed into three FFAs when the body requires higher 

energy demand. Liver FFAs are sourced from dietary TGs intake, enhanced de novo 

lipogenesis (DNL), and excess fatty acids influx via adipose tissue lipolysis (Vacca et 

al., 2015). In NAFLD cases, it has been reported that 59% of TG in the liver is 

derived from circulating FFAs, also known as nonesterifed fatty acids (NEFAs), 26% 

from DNL, and the remaining 15% from the diet (Donnelly et al., 2005). Acetyl-

coenzyme A carboxylase (ACC) and fatty acid synthase (FAS) are the predominant 

enzymes that catalyse FFA synthesis in the liver, while acetyl-coenzyme A (acetyl-

CoA) and malonyl-coenzyme A (malonyl-CoA) are the essential metabolic 

intermediates in DNL (Mendez-Sanchez et al., 2007) since increased DNL is found 

in NAFLD patients (Adams et al., 2005). DNL is strongly regulated by nutritional level 

of insulin and glucose, via two transcription factors - carbohydrate response element-

binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-

1c), respectively. SREBP-1c, a membrane bound transcription factor to the 

endoplasmic reticulum (ER) (Horton et al., 2002), is regulated by insulin, saturated 

fatty acids (SFAs) and a nuclear receptor, liver X receptor (LXR), to promote fatty 

acid synthesis under hyperglycaemia. Conversely, glucagon, polyunsaturated fatty 

acids (PUFAs) inhibit its expression (Vacca et al., 2015). Mice with a SREBP-1c 

deletion showed remarkable reduction of insulin-mediated lipogenic gene expression 

(Shimano et al., 1999). Similar results were reported in LXRα-null mice with 
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decreased SREBP-1c and reduced lipogenesis (Repa et al., 2000). In 

hyperglycaemia, excess carbohydrates are converted to FFAs/TGs in the liver via 

glycolytic enzymes such as glucokinase, liver-type pyruvate kinase (L-PK), and the 

previously mentioned enzymes of DNL - ACC and FAS (Towle et al., 1997). 

ChREBP is expressed abundantly in lipogenic organs: liver, brown and white 

adipose tissue, small intestine, kidney, and muscle (Yamashita et al., 2001). Genes 

that are regulated by ChREBP are involved in glycolysis (L-PK), the NADPH supply 

system (e.g. glucose-6-phosphate dehydrogenase, transketolase, and malic 

enzyme), gluconeogenesis, and lipogenesis (ACC, FAS) (Iizuka et al., 2004; Ma et 

al., 2006). Inhibition of ChREBP in vivo resulted in suppression of lipogenic 

genes/enzymes expression in the liver, and amelioration of hepatic steatosis, insulin 

signalling and glucose intolerance (Iizuka et al., 2004; Dentin et al., 2006). Taken 

together, SREBP-1c and ChREBP are activated by insulin and glucose during 

hyperglycaemia, inducing glycolysis (to release more acetyl-Co A as substrate for 

FFA synthesis) and lipogenesis, thus further worsening steatosis. 

 

1.6.1.2 Free fatty acids removal  

Clearance of hepatic TG is accomplished by the only disposal pathway – through the 

formation of very low-density lipoproteins (VLDLs) which can be further secreted 

from the liver. Apolipoprotein B-100 (apoB-100) is required for VLDL assembly, and 

microsomal triglyceride transfer protein (MTTP) is required for incorporating TG. In 

general, TG, cholesterol ester (CE) and phospholipid are first transferred to rough 

ER to be incorporated with newly formed apo B, known as the formation of the 

primordial particle. Further in the lumen of the rough ER, TG-enriched globules 

produced by the smooth ER are incorporated into the primordial particle to form the 

mature VLDL. Once VLDL is assembled, it is then transported to the Golgi and 

released from the cell as secretory vesicles. This secretory pathway is entirely 

assisted by apo B-100 (Mason, 1998). The secretion of VLDL is inhibited by SREBP-

1c through decreasing expression of MTTP (Sato et al., 1999).   
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1.6.1.3 Free fatty acids oxidation  

FFAs can be utilised for energy production, the most efficient mechanism during 

energy deficiency. FFAs oxidation may be performed in three unique locations: 1) β-

oxidation in the mitochondria, 2) in the peroxisomes, and 3) ω-oxidation in the ER of 

hepatocytes (Koek et al., 2011). Under normal physiological conditions, β-oxidation 

of FFA in the mitochondria is the main source of short, medium, and long chain fatty 

acids (LCFAs) (Anstee and Goldin, 2006). Oxidation of FFA yields acetyl-CoA which 

is an important substrate for entering the citric acid cycle to generate electrons. 

These electrons further pass to oxygen via mitochondrial ‘respiratory chain’ (electron 

transport chain, ETC) and providing the energy for adenosine triphosphate (ATP) 

synthesis by oxidative phosphorylation (OXPHOS) (Lehninger et al., 2000). Short- 

and medium-chain FFAs (below 12 carbons length) can simply diffuse across the 

mitochondrial membrane for β-oxidation. However, LCFAs (chain length with 14 or 

more carbons) are activated by acyl-CoA-synthetase in the cytosol as acyl-CoA, 

which then be catalyzed and be transported into the mitochondrial matrix in 3 steps 

(Serviddio et al., 2011): 

1. Acyl-CoA is catalyzed by carnitine palmitoyl transferase I (CPT-I) as fatty acyl-

carnitine at the outer mitochondrial membrane, then passing through the 

intermembrane space. 

2. The inner membrane delivery is accomplished by acyl-carnitine translocase. 

3. At the inner face of the inner mitochondrial membrane, the reconversion of 

acyl-CoA is catalyzed and released by carnitine palmitoyl transferase II (CPT-

II) into the matrix along with free carnitine.  

Notably, CPT-I can be inhibited by malonyl-CoA, the key intermediate of DNL, and 

insulin. In general, hepatic lipogenesis is activated with carbohydrate feeding, 

resulting in elevated levels of insulin and malonyl-CoA; the expression of CPT-I is 

therefore suppressed and LCFAs are not oxidised but instead esterified, principally 

into TG (McGarry and Brown, 1997). 

 

1.6.2 Oxidative stress 

Oxidative stress, the essential underlying mechanisms of NAFLD, occurs when 

reactive oxygen species (ROS) exceed the production of protective antioxidants. 

Oxidation of FFAs is the primary source of ROS. ROS are constituted by oxygen-
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centered radicals and oxygen-centered nonradicals. Superoxide anion (O2
-), 

hydroxyl radical (·OH), alkoxyl radical (RO·), and peroxyl radical (ROO·) comprised 

the former group, while the latter one includes hydrogen peroxide (H2O2) and singlet 

oxygen (1O2). Other reactive species are nitrogen species such as nitric oxide (NO·), 

nitric dioxide (NO2·), and peroxynitrite (OONO-) (Halliwell et al., 1995; Simon et al., 

2000). The nature of oxygen is readily to accept electrons, forming oxygen radicals 

which react with proteins, FFAs and DNA causing biological and physiological 

damage. The hydroxyl radical, nitric oxide radical and superoxide anion are the most 

dangerous ones among ROS group. Although the dominant source of cellular ROS 

is β-oxidation in the mitochondria, alternative pathways of β-oxidation in the 

peroxisomes and ω-oxidation in the ER are also ROS donors while oxidative 

capacity in mitochondria becomes overwhelmed in the event of FFAs overloading 

(Reddy, 2001). Upregulation in β-oxidation of LCFAs within peroxisomes and ω-

oxidation in the ER has been reported in NASH (Robertson et al., 2001). This could 

also be explained by an accumulation of malonyl-CoA in hyperglycaemia causing 

reduced mitochondrial β-oxidation due to inhibition of CPT-I (Donnelly et al., 2005; 

Dentin et al., 2006).   

Once ROS are elevated, peroxisome-proliferator-activated receptor α (PPAR-α) is 

then activated for compensation. PPAR-α is expressed predominantly in the liver, 

and it belongs to the nuclear receptor subfamily of ligand-activated transcription 

factors, the key regulator of long chain and PUFAs catabolism (Reddy, 2001). 

Although the major function of PPAR-α is to increase FFA utilization during fasting 

for gluconeogenesis (Le May et al., 2000; Atherton et al., 2009), it is one of the key 

regulators that drives an adaptive response to FFA overloading. PPAR-α is involved 

in several aspects: modulation of FFA uptake, lipid trafficking, promotion of β-

oxidation, and inhibition of DNL (Vacca et al., 2015). PPAR-α regulates proteins 

involved in mitochondrial, peroxisomal and microsomal oxidation with the latter two 

preferentially induced by PPAR-α (Anstee and Goldin, 2006).  

 

1.6.2.1 FFA oxidation in mitochondria, peroxisomes and microsomes 

Two major physiological and chemical events occur in the mitochondria: fat 

metabolism and energy production. Each β-oxidation generates reducing equivalents 
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of nicotinamide adenine dinucleotide (NADH, reduced form) and flavin adenine 

dinucleotide (FADH2), which serve as substrate and donate their electrons to the 

ETC. The ETC, a collection of mitochondrial membrane protein complexes 

embedded in the inner membrane (Pessayre et al., 2001), is the main source of ROS 

and the dominant site of ATP synthesis in eukaryotic organelles. Under physiological 

conditions, electron transport throughout the respiratory chain matches with the 

pumping of protons (from matrix to intermembrane space) via Complexes I, III and 

IV. A proton gradient is then generated during this process, creating an 

electrochemical potential difference across the inner membrane. By this potential 

force, ATP is ultimately synthesized at Complex V (ATP synthase) (Pessayre et al., 

2001; Serviddio et al., 2011).  

Normally, a large fraction of electrons participating in ETC is safely dissipated via 

cytochrome c oxidase with oxygen and water (Pessayre, 2007). Two regions of ETC, 

Complex I and III, however are the major sources of ROS by production of the 

superoxide anion. Estimates of the fraction of oxygen that is diverted into ROS 

production are between 0.15 to 4% (Brand, 2010; Koek et al., 2011; Serviddio et al., 

2011).  

A rodent study revealed that 50% of FFA β –oxidation takes place in the 

peroxisomes (Latruffe et al., 2000). However, peroxisomal β-oxidation only accounts 

for a minority of total FFA oxidation in human body under normal status. Peroxisomal 

proliferation is only augmented when the capacity of oxidation in the mitochondria is 

overwhelmed. Hydrogen peroxide, generated during peroxisomal β-oxidation, can be 

easily transformed into reactive hydroxyl radicals, thus contributing more ROS 

production. As previously mentioned, peroxisomal β-oxidation is also regulated by 

PPAR-α as it encodes acetyl-CoA oxidase, the rate-limiting enzyme for the oxidation 

(Benzie, 1996). The microsomal ω-oxidation is mediated by cytochrome P450 4A 

(CYP4A) and cytochrome P450 2A1 (CYP2E1). Both P450s produce ROS during ω-

oxidation, further exacerbating oxidative stress within hepatocytes (Anstee and 

Goldin, 2006; Koek et al., 2011).  
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1.6.2.2 Antioxidants  

Human body develops a defence system of anti-oxidants to compensate oxidative 

stress. This protective system is performed by scavenging free radicals and reactive 

metabolites. The major enzymatic anti-oxidants include superoxide dismutase 

(SOD), catalase, and glutathione peroxidase (GPx). There are three different forms 

and localizations of SOD: 1) SOD1: copper/zinc-containing SOD, localized to 

cytoplasm (Cu/Zn-SOD); 2) SOD2: manganese-containing SOD, located in 

mitochondrial matrix (MnSOD), 3) SOD3: presented in extracellular space (EC-

SOD). SOD mediates the conversion of superoxide anion radicals into hydrogen 

peroxide. This is followed by the detoxification of hydrogen peroxide into H2O which 

is accomplished by catalase and GPx (Pessayre et al., 2001). SOD2 has been 

suggested to be associated with NAFLD due to its mitochondrial localization; NASH-

related fibrotic patients show an increased frequency of a common non-synonymous 

polymorphism in SOD2 (C47T; rs4880) which is associated with a reduction in SOD2 

mitochondrial targeting and activity (Al-Serri et al., 2012).  

Glutathione (GSH), S-adenosylmethionine (SAMe), and vitamins are major sources 

of non-enzymatic anti-oxidants. GSH is the dominant anti-oxidant in the liver with two 

forms: thiol-induced glutathione (GSH) and oxidized state of glutathione (glutathione 

disulphide, GSSG) (Chen et al., 2007b; Koek et al., 2011). The rate of GSH 

synthesis is mediated by cysteine, with assistance of two subunits of glutamate 

cysteine ligase (GCL): a catalytic form (GCLC) and a modifier (GCLM) (Meister and 

Anderson, 1983). GCLC knock-out mice resulted in depletion of GSH, leading to 

promotion of steatosis, mitochondrial and hepatic injuries has been reported (Chen 

et al., 2007b).  

Deficiency of GSH could be due to SAMe shortage as it is a precursor for GSH 

synthesis. SAMe is synthesized from methionine and catalysed by methionine 

adenosyl transferase (MAT) (Mato et al., 2002). MAT is encoded by MAT1A and 

MAT2A. Deletion of MAT1A leads to liver injury due to a profound reduction of SAMe 

expression (Lu et al., 2001). Additionally, SAMe knock-out mice had a tendency of 

developing hepatic steatosis and NASH (Wortham et al., 2008). Other anti-oxidants 

such as vitamin C and E are also major free radical scavengers (Valko et al., 2004). 
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1.6.2.3 Multiple insults driven by ROS  

As previously described, excess accumulation of fat eventually lead to ROS 

overproduction. Although ROS have a short half-life, they are able to oxidise nuclear 

and mitochondrial DNA (mtDNA), causing mtDNA lesions and somatic point 

mutations (Pessayre, 2007). A comprehensive pathway of cellular injury can 

therefore be activated by the liberation of pro-inflammatory, necro-inflammatory or 

pro-fibrotic cytokines due to nuclear and mtDNA damage, phospholipid membrane 

disruption by lipid peroxidation, and mitochondrial dysfunction (Browning and Horton, 

2004). Impaired mtDNA-encoded polypeptides (e.g. cytochrome c oxidase) involved 

in ETC can be affected by mtDNA lesions further aggravating ROS effects by 

blocking electron flow along through the ETC and disrupting hepatic ATP 

homeostasis (Pessayre, 2007). Reduced ATP synthesis due to impaired ETC has 

been demonstrated in both rodent models and NASH patients (Cortez-Pinto et al., 

1999; Serviddio et al., 2008). Lipid peroxidation of PUFAs generates toxic 

intermediates of aldehyde such as 4-hydroxy-2-nonenal (HNE) and malondialdehyde 

(MDA). These by-products possess longer half-lives than ROS and so can damage 

more distant intracellular targets, causing cell death (Levene and Goldin, 2012).  

ROS is a well-known inducer of nuclear factor kappa-light-chain-enhancer of 

activated B-cells (NF-ĸB), a pro-inflammatory signalling pathway which can also be 

activated by tumour necrosis factor-alpha (TNFα) (Serviddio et al., 2011). NF-ĸB 

promotes survival of hepatic myofibroblasts and hepatic fibrogenesis (Oakley et al., 

2009). TNFα is secreted by enlarged adipocytes (Kern et al., 1995) and fat-laden 

hepatocytes (Crespo et al., 2001; Feldstein et al., 2004), triggering permeability of 

the mitochondrial membranes by the reaction with its receptor on hepatocytes. 

Upregulation of cascade-8, Bid and Bax are mediated by TNFα, triggering 

hepatocyte apoptosis by releasing cytochrome C (Pessayre and Fromenty, 2005). 

Other key inflammatory mediators such as transforming growth factor beta (TGFβ) 

and interleukin-8 (IL-8) are also activated by oxidative stress, worsening hepatic 

inflammation and promoting fibrogenesis by activation of HSCs (Bataller and 

Brenner, 2005; Levene and Goldin, 2012).  

When ER stress is overwhelmed due to the presence of excess FFAs, misfolded or 

unfolded proteins (also known as uncoupling proteins, UPCs) may ensue as ER is 

an intracellular membranous network where the majority of secreted and membrane 
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proteins are folded. An activation called the unfolded protein response (UPR) is then 

triggered by the aggregation of UPCs. This response helps re-establish normal 

homeostasis within the cell by triggering cell cycle arrest, folding catalysts, induction 

of ER-localized chaperone proteins, and ER-associated protein degradation. The 

UPR can lead to the induction of autophagy if required (Yang et al., 2010). Apoptosis 

can also be triggered if this response fails by activation of stress-sensor proteins 

which include activating transcription factor 6 (ATF6), inositol-requiring enzyme-1 

(IRE-1), and protein kinase R-like ER kinase (PERK) (Puri et al., 2008; Tilg and 

Moschen, 2010). 

 

1.6.3 Lipotoxicity and insulin resistance in NAFLD 

Lipotoxicity is induced by fat overloading. The phenomenon - ‘adipose tissue 

remodeling’ refers to a phenotypic alteration of adipocytes to compensate for excess 

nutrition and fat within the cell; adipocyte enlargement results in the release of 

several cytokines. These cytokines are principally adiponectin, leptin, TNFα, and 

Interleukin-6 (IL-6). Although adiponectin has anti-inflammation, anti-fibrosis, anti-

angiogenesis, sensitization of insulin, and tumor-growth limiting properties 

(Dalamaga et al., 2012; Karagozian et al., 2014), its availability is diminished in 

obesity, IR, and NAFLD (Pajvani et al., 2003; Targher et al., 2004; Pagano et al., 

2005; Levene and Goldin, 2012). Adiponectin mediates FFA and glucose 

metabolism by activating adenosine monophosphate-activated protein kinase 

(AMPK), a metabolic regulator. AMPK was first identified as a kinase which 

phosphorylates and inhibits ACC (rate-limiting enzyme for DNL) and 

hydroxymethylglutaryl-CoA synthase (HMG-CoA) reductase (rate-limiting enzyme for 

DNL cholesterol synthesis). Overall, activation of AMPK stimulates FFA oxidation, 

inhibits FFA synthesis and esterification, enhances insulin sensitivity, stimulates 

glucose uptake in muscle, negatively regulates hepatic glucose production, and 

diminishes pro-inflammatory activity (Luo et al., 2010). AMPK has been suggested to 

inhibit lipogenesis by negatively regulating SREBP-1c (Zhou et al., 2001). 

Adiponectin promotes lipogenesis not only through activation of AMPK, but also via 

PPAR-γ (Anstee and Goldin, 2006; Levene and Goldin, 2012). Hepatic stellate cells 

(HSCs) are also regulated by adiponectin which has anti-fibrotic effects including 

inhibition of a pro-inflammatory pathway involving NF-ĸB, decreased transforming 
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growth factor beta (TGFβ) -induced profibrogenic gene expression, and increased 

caspase-mediated apoptosis. The apoptosis effect is via activation of AMPK which 

downregulates the mammalian target of rapamycin, mTOR (Ding et al., 2005).  

Conversely, leptin possesses totally opposite functions to adiponectin, pro-

inflammatory and pro-fibrotic. Leptin deficient (ob/ob) mice have reduced 

fibrogenesis (Leclercq et al., 2002). Leptin is predominantly secreted from 

adipocytes, but can also be produced by HSCs (Bian and Ma, 2012). Leptin also 

targets sinusoidal endothelial and Kupffer cells, inducing the expression of TGFβ 

(Wang et al., 2009). Activation of HSCs is modulated by leptin as its functional 

receptors are located on stellate cells. Levels of leptin appear low in quiescent HSCs 

and increase after activation (Ding et al., 2005). Leptin can induce inflammation and 

fibrosis via HSC activation, including stimulation of proliferation, activation of NADPH 

and ROS, and increase in collagen 1 and tissue inhibitor of metalloproteinase 1 

expression (Marra, 2007). Leptin can ultimately promote carcinogenesis via Janus 

kinase/signal transducers and activators of transcription (JAK/STAT) and 

phosphoinositide-3 kinase/protein kinase B/mTOR (PI3K/Akt/mTOR) signalling 

pathways (Saxena et al., 2007).  

TNFα, a potent activator of pro-inflammation and oncogenesis, was found to be 

upregulated in both obese human and mice studies (Anstee and Goldin, 2006; Park 

et al., 2010). Overexpression of TNFα disrupts insulin-mediated suppression of 

hormone-sensitive lipase (HSL, the enzyme involved in TG hydrolysis) by inhibited 

phosphorylation of insulin receptor substrates (IRS-1 & IRS-2), hence more FFA is 

released (Anstee and Goldin, 2006; Sugimoto and Takei, 2011). Available data also 

indicates that dietary or genetic obesity promoted the growth of diethyl nitrosamine 

(DEN)-induced liver tumours in mice and this effect was dependent on TNFα and IL-

6 mediated oncogenic signalling pathways via activation of STAT3 (Park et al., 

2010). 

Insulin plays an essential role in glucose and lipid metabolism (Schreuder et al., 

2008). Insulin is released from β-cells in the islets of Langerhans, and further binds 

to its receptor, insulin receptor substrate proteins (IRS-1 and IRS-2) to transmit the 

signal. IRS-1 act as the initiator in glucose metabolism via stimulating PI3K/Akt 

pathway, resulting in recruitment of glucose transporter (GULT) and the suppression 
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of hepatic glucose production. Whereas IRS-2 is responsible for lipid metabolism as 

a regulator of DNL via SREBP-1c (Schreuder et al., 2008). Insulin resistance (IR) is 

a condition when the signalling pathway has been disrupted by several insults, 

leading to an impaired cellular responses to insulin. NAFLD patients commonly have 

both hepatic and adipose tissue IR, together with diminished whole-body insulin 

sensitivity (Marchesini et al., 2001; Seppala-Lindroos et al., 2002; Bugianesi et al., 

2005). Whether IR is a result of lipotoxicity due to excess FFA flux to the liver or vice 

versa however remains unclear. The potential molecular mechanism of lipid-induced 

IR has been discussed thoroughly in a recent review article (Perry et al., 2014). In 

summary, increased liver fat content (especially diacylglycerol, DAG) cause a key 

alteration – the translocation of the primary novel protein kinase C (PKC) isoform in 

the liver, PKCε. Following PKCε translocation (from cytosol to the plasma 

membrane), the enzyme binds to and inhibits the activity of the intracellular kinase 

domain of insulin receptors (Perry et al., 2014), disrupting insulin signalling. This 

results in decreased IRS-2 phosphorylation, decreased IRS-2-induced PI3K activity, 

impaired phosphorylation of Akt, and suppression of glycogen synthase kinase-3 

(GSK3) phosphorylation. The overall effect is a reduction of insulin-mediated 

glycogen synthesis via diminished activity of glycogen synthase (GS). The other way 

for insulin suppression of glucose production is the inhibition of gluconeogenesis in 

the liver; insulin decreases the expression of gluconeogenic enzymes by 

phosphorylation and nuclear exclusion of the folkhead box protein O1 (FOXO1) and 

its downstream targets. Impaired Akt activity promotes FOXO1 translocation to the 

nucleus (due to reduced phosphorylation of this transcriptional regulator) thus 

inducing the expression of key gluconeogenic proteins, principally pyruvate 

carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-

phosphatase (G6Pase) (Perry et al., 2014).  

Insulin resistance in NAFLD could be driven by multiple insults including direct toxic 

effects of FFAs, inflammation, oxidative injury and ER stress associated with obesity. 

These factors may impair the insulin signalling pathway, consequently leading to 

hyperinsulinemia resulting in increased glucose synthesis and lipogenesis (Saltiel 

and Kahn, 2001). Expression of SREBP-1c and ChREBP thus be activated once 

increased circulating levels of glucose and insulin occur, initiating a vicious cycle 

from promotion of glucose synthesis and lipogenesis to lipotoxicity. In addition, 
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adipose expansion, adipocytokine imbalance, immune dysregulation, ectopic fat 

deposition, lipotoxicity, IR, and hyperinsulinemia have all been suggested to be the 

fundamental risk factors that promote HCC development in NAFLD (Baffy et al., 

2012; Karagozian et al., 2014). 

 

1.7 Genetics of NAFLD 

NAFLD is now considered as the product of multi-directional interactions between 

intrinsic factors (genetic, epigenetic and age related) and a range of extrinsic 

(environmental) influences (including dietary/nutritional factors, intestinal 

flora/microbiome, xenobiotics as well as activity/behavioural factors). Intestinal 

flora/microbiome and xenobiotics in NAFLD is beyond the scope of this thesis, but 

have been reviewed in depth by (Leung et al., 2016) and (Naik et al., 2013), 

respectively. Identification of genetic factors involved in susceptibility to NAFLD not 

only sheds light onto the background of disease pathogenesis, but also allows a non-

invasive strategy that could help prevent/control disease initiation/progression and 

more importantly may develop new pharmacological treatments that exploit this 

knowledge. 

 

1.7.1 Evidence for a heritable component to NAFLD 

As has already been discussed, NAFLD is best considered a complex disease trait 

(Anstee and Day, 2013). Unlike Mendelian disorders (i.e. cystic fibrosis and sickle-

cell disease) when rare and highly penetrant single-gene mutations are necessary 

and sufficient to cause disease, complex diseases traits are attributable to multiple 

genetic modifiers (where disease susceptibility in a population is determined by 

multiple variants as each is insufficient in isolation to cause disease) (Hirschhorn and 

Gajdos, 2011). Thus, a complex disease arises from a contribution of individual 

genetic variants in the presence of a permissive environment. In the case of NAFLD, 

the degree of heritability (fraction of the variation in the disease attributable to 

genetic causes) is estimated to be 26%-27% for radiologically measured hepatic 

triglyceride content (HTGC) (Speliotes et al., 2011). Established evidence comes 

from familial disease clustering and inter-ethnic variation studies further supporting 

that there is a heritable component to NAFLD. 
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 Familial aggregation: a study comparing HTGC in parents and siblings of 

obese children with NAFLD to those without discovered that steatosis was 

significantly more common in the siblings and parents of children than those 

without NAFLD (59% and 78% vs. 17% and 37% respectively) (Schwimmer et 

al., 2009). Additionally, MRI-measured hepatic fat fraction was correlated 

more closely with BMI in the families of children with NAFLD than those 

without (Schwimmer et al., 2009). Further evidence from a Finnish study with 

a large cohort of twins discovered that intra-pair correlations of ALT and 

fasting serum levels were much higher in monozygotic than dizygotic twins 

(Makkonen et al., 2009). Another study performed a cross-sectional analysis 

of a cohort of well-characterized twins in Southern California, reporting that 

hepatic steatosis and fibrosis were correlated with monozygotic but not 

dizygotic twins (Loomba et al., 2015). Studies in adults with NAFLD showed 

co-existence of NASH and/or cryptogenic cirrhosis in 7 out of 8 kindreds 

(Struben et al., 2000). Another familial study found that 18% of NASH patients 

had an affected first-degree relative (Willner et al., 2001).  

 Inter-ethnic variations in susceptibility to NAFLD: the prevalence of 

NAFLD and NAFLD-associated ‘cryptogenic cirrhosis’ varied substantially 

between ethnicities in the presence of similar incidences of T2DM (Browning 

et al., 2004a; Bambha et al., 2012). Further evidence from the Dallas Heart 

Study in a multi-ethnic population (n=2349) reported that NAFLD was present 

in 45% of Hispanics, 33% of whites and 24% of blacks, independent of BMI, 

IR, ethanol ingestion, or use of medication (Browning et al., 2004b). It is 

difficult to make a precise interpretation of these data because of the 

differences in some metabolic risk factors and socioeconomic characteristics 

associated with NAFLD in these ethnic groups. As discussed below, 

differences in population prevalence of one genetic variant, rs738409 in the 

gene called patatin-like phospholipase domain-containing 3 (PNPLA3), which 

contributed to this variability, accounted for up to 72% of ethnic differences in 

the Dallas Heart Study cohort (Romeo et al., 2008).  
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1.7.2 Approaches to identify genetic risk factors for NAFLD 

Genetic approach such as linkage analysis has been very successful in identifying 

causative variants for many rare single-gene disorders (Risch and Merikangas, 

1996). However, linkage analysis has limited value for detection of common genetic 

risk factors associated with complex diseases due to: 1) the principle of linkage 

analysis is based on chromosomal crossover during meiosis, therefore it is restricted 

in familial cluster; 2) limitations for discovering weakly penetrant alleles; 3) low 

feasibility to obtain large families with complex diseases (Risch and Merikangas, 

1996; Hirschhorn and Gajdos, 2011). These issues however can be addressed by 

candidate gene case-control association studies, performing direct association within 

large unrelated population (considered as a single family with unknown pedigree) 

between phenotype (disease) and variants in targeted genes with a priori biological 

support (Witte, 2010). Nonetheless, other causal genes that may influence a disease 

could be easily missed as it only focuses on particular genes. Logically, it would be 

inappropriate to adopt candidate gene studies to test genetic basis of any disease in 

the absence of a biological hypothesis (Hirschhorn and Daly, 2005). Up to date, 

candidate-gene studies have only identified a small number of genes that are 

reproducibly associated with common diseases; this may owe to the small sample-

size used in the analyses or insufficient background knowledge of the genes 

targeted (Hirschhorn, 2009). After the establishment of final draft of human genome 

sequence, the International HapMap (haplotype map) Project, revolutionized the 

study of complex diseases (International HapMap, 2003; International HapMap, 

2005). The HapMap Project was to determine the patterns of common sequence 

variation in human genome, providing sequence variants and their frequencies and 

correlations. Millions of common variants (single nucleotide polymorphisms, SNPs) 

were tagged by using the techniques of linkage disequilibrium (LD) and haplotype, 

and were further served as proxies for group of other SNPs that are nearby, thus 

eventually enabled the development of SNP genotyping arrays (International 

HapMap, 2005). These tools allow the majority of common (minor allele frequency 

[MAF]>5%) variability in human genome (approximately 1 million of different SNPs) 

to be captured by genotyping methods of cases and controls in genome-wide 

association studies (GWAS) (International HapMap, 2005). GWAS have the ability to 

discover variants with modest effects across the whole genome without particular 

biological evidence, improving the weakness of linkage analysis and candidate-gene 
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studies. But the loci identified are usually fairly novel, requiring further replications 

and functional experiments to ascertain their significance and to elucidate their 

biological/pathogenic role in disease mechanisms (Witte, 2010). A few years after 

the HapMap was established, GWAS in seven different complex diseases were 

reported (Wellcome Trust Case Control, 2007). Additional GWAS data relating to 

other important diseases, including cancer, soon became available  (Manolio et al., 

2008). 

 

1.7.3 Identified genetic risk factors for NAFLD by GWAS 

Several genes have been identified to influence susceptibility to NAFLD by GWAS 

Table 1.2, and their suggested effects have been independently confirmed in either 

GWAS or candidate-gene association studies. Among all, two loci PNPLA3 and 

TM6SF2 genes on chromosome 22 and chromosome 19 deserve particular attention 

and so will be discussed in detail in section 1.7.3.6 and section 1.7.3.7, respectively. 

 

1.7.3.1 Identified genetic risk factors by radiological-based GWAS 

The first GWAS-like association study in NAFLD was published in 2008 (Romeo et 

al., 2008), this study partly covered the whole genome involving only genotyping for 

nonsynonymous variants. This study examined 9229 non-synonymous 

polymorphisms in a multi-ethnic population (Hispanic, African-American and 

European ancestry) from the Dallas Heart Study (Victor et al., 2004), 2051 patients 

with 1H-MRS-measured HTGC were recruited. Romeo et al. provided preliminary 

evidence that a SNP (rs738409) located in PNPLA3 is significantly associated with 

increased HTGC (P=5.9x 10-10) and elevated level of ALT (P=3.7x 10-4). This index 

SNP is a non-synonymous transversion from cytosine to guanine, resulting in an 

amino acid substitution from isoleucine to methionine at residue 148 (I148M). The 

MAF of this polymorphism was most common in Hispanics (0.49), the group with 

higher prevalence of aggressive NAFLD and increased levels of ALT and AST 

(P=3.7x10-4), and was lower in European ancestry (0.23) and African-Americans 

(0.17). A gene dosage effect of PNPLA3-I148M has been reported with a stepwise 

increase in HTGC with increasing carriage of the minor allele, and the homozygous 

148M had twofold elevated HTGC compared to the wild-type carriers (Romeo et al., 
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2008). Conversely, the other SNP also located in PNPLA3 (rs6006460, p.S453I) had 

opposite ethnic distribution; African-Americans (0.104), European ancestry (0.003), 

and Hispanics (0.008), and was strongly linked to reduced HTGC. Taken together, 

these two SNPs accounted for 72% of the ethnic differences in the population 

studied, indicating that PNPLA3 may be responsible for the ethnic variation in 

susceptibility to NAFLD (Romeo et al., 2008).  

Three years later, a two-stage study with a large US-based population (n=7,176) 

confirmed the association between PNPLA3 genotype and fatty liver (Speliotes et al., 

2011). At stage 1 with computer-based imputation, Speliotes et al. performed a 

meta-analysis from four studies (Age/Gene/Environment Susceptibility –Reykjavik 

Study, Old Order Amish Study, Family Heart Study, and Framingham Heart Study). 

In this analysis, 2.4 million SNPs were examined and 45 loci were identified to be 

greatly associated with CT-measured HTGC (P<10-3 was adopted as a permissive 

significant threshold). These loci were subsequently tested in stage 2 using a 

candidate-gene approach in a separate cohort with histology-proven NAFLD 

(n=592). To summarize, this study validated that carriage of PNPLA3 rs738409 

polymorphism was a major genetic modifier of NAFLD and also identified other 

potential variant risk factors; these included neurocan (NCAN, rs2228603), 

glucokinase regulatory protein (GCKR, rs780094), protein phosphatase 1 regulatory 

subunit 3B (PPP1R3B, rs4240624), and lysophospholipase-like protein 1 (LYPLAL1, 

rs12137855). The above SNPs were significantly associated with both CT and 

histological confirmed steatosis, lobular inflammation and/or fibrosis, with the 

exception of PPP1R3B (rs4240624) as its effect did not remain significant in 

histologic NAFLD. Nonetheless, another SNP near PPP1R3B (rs2126259), in 

complete linkage disequilibrium with rs4240624 (LD=1, r2=0.8), has been suggested 

to be associated with CT-measured steatosis in a later GWAS (Feitosa et al., 2013).  

 

1.7.3.2 Identified genetic risk factors for NAFLD by histological-based GWAS 

In terms of histologically based GWAS for NAFLD, the first one was performed by 

Chalasani et al. on a limited cohort of 236 female NAFLD patients (Chalasani et al., 

2010). Instead of reporting associations with each stage of NAS (namely the 

individual stages of steatosis, ballooning degeneration, portal/lobular inflammation, 
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and fibrosis), they reported that the overall NAS (as primary outcome of interest) was 

significantly associated with a variant in a gene on chromosome 8 - FDFT1 (farnesyl 

diphosphate farnesyl transferase 1, rs2645424) after adjustment for age, BMI, 

waist/hip ratio, diabetic status, and HbA1c level, (P=6.8x10-7). Although FDFT1 has 

been suggested to have a role in biosynthesis of cholesterol, this effect was not 

replicated in a later study using a cohort of 340 NAFLD cases (Ballestri et al., 2011). 

PNPLA3 was not associated with any NAFLD phenotype in the GWAS published by 

Chalasani et al.; the key rs738409 SNP was not captured in their study and the other 

5 SNPs in complete LD with rs738409 also failed to show significance. Additional loci 

were associated with secondary outcomes; a SNP on chromosome 7 was linked to 

the degree of fibrosis (rs343062, P=2.7x10-8) and a variant on chromosome 10 with 

lobular inflammation (rs1227756, P=2.0x10-7). Notably, caution should be taken in 

interpreting these results as type I or type II error may have occurred due to limited 

statistical power within this small cohort. Further independent validations are 

warranted.  

Up to date, there have been two histological-based GWAS reported in East Asian 

populations (Kawaguchi et al., 2012; Kitamoto et al., 2013). Kawaguchi et al. 

recruited 529 biopsy-diagnosed NAFLD patients according to Matteoni classification 

and 932 population controls; 484,751 SNPs were genotyped (Kawaguchi et al., 

2012). The second study by Kitamoto et al. was a two-stage study; 261,540 SNPs 

were initially genotyped in 392 NAFLD patients and 932 population controls, and the 

findings were subsequently validated in a separate cohort of 172 NAFLD versus 

1,012 controls (Kitamoto et al., 2013). Both studies clearly confirmed the association 

between NAFLD and the SNPs flanking PNPLA3 (with rs738409 having strongest 

signal) in this population, but no novel findings were identified.   

 

1.7.3.3 Identified genetic factors for NAFLD by clinical chemistry-based GWAS 

Although liver biochemistry is insufficient for NAFLD diagnosis and results in reports 

of a 3-12% lower disease prevalence than studies based on radiology or histology 

(Musso et al., 2011), there are two established GWAS identifying genes that 

influence plasma levels of liver enzymes, principally ALT (Yuan et al., 2008; 

Chambers et al., 2011). The first one was reported by Yuan et al. and included 3 
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discovery and 3 replication groups with a total number of 12,419 patients. Two loci 

were identified to be associated with rasied serum ALT level, including 22q13.31 

where PNPLA3 is found (rs738409, rs22949158, rs2076211, rs2281135, rs2073081 

were all genome-wide significant) and 10q24.2 spanning three genes CPN1-

ERLIN1-CHUK (carboxypeptidase N subunit 1-ER lipid raft associated 1-conserved 

helix-loop-helix ubiquitous kinase; rs11597390, rs11591741, rs11597086) (Yuan et 

al., 2008). The latter association has since been confirmed with CT-measured 

steatosis and ALT levels in another GWAS-correlated meta-analysis using ~2.5 

million imputed SNPs with 9 variants genome-wide significant (rs2862954, 

rs1408579, rs10883451, rs11597086, rs11591741, rs17729876, rs17668255, 

rs17668357, rs12784396) (Feitosa et al., 2013). A second GWAS on liver enzymes 

with 61,089 individuals enrolled identified 42 novel loci that associated with serum 

liver transaminase; 4 of them were associated with raised ALT, the major PNPLA3 

rs738409, rs2954021 near TRIB1 (tribbles pseudokinase 1), rs10883437 near CPN1 

(carboxypeptidase N subunit 1), and rs6834314 near HSD17B13 (hydroxysteroid 17-

beta dehydrogenase 13) and MAPK10 (mitogen-activated protein kinase 10) 

(Chambers et al., 2011).  

 

1.7.3.4 Novel genetic risk factors for NAFLD reported in recent GWAS  

One recent GWAS published by the same group that originally reported the PNPLA3 

association (Kozlitina et al., 2014) deserves particular attention as they discovered 

another novel SNP involved in the pathogenic mechanisms of NAFLD, also 

suggesting that this SNP is the causative variant within the well-known region 

(19p13.11) which has been associated with lipid levels (Kathiresan et al., 2008; 

Teslovich et al., 2010). In addition to the well-established association between 

PNPLA3 and NAFLD, Kozlitina et al. determined that a non-synonymous SNP in a 

gene of unknown function called TM6SF2 (rs58542926 c.449 C>T, p.Glu167Lys 

(E167K)), transmembrane 6 superfamily member 2 on chromosome 19 (19p13.11), 

was strongly associated with 1H-MRS quantified HTGC based on genotyping with a 

genome-wide exome chip (Kozlitina et al., 2014).  

The region (19p13.11) that the TM6SF2 rs58542926 SNP is located on also contains 

several genes including NCAN, CILP2 (cartilage intermediate layer protein 2), and 
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PBX4 (PBX homeobox 4) which have been reported in a previous study (Speliotes et 

al., 2011). This region had also been associated with variations in plasma 

cholesterol, triglyceride and low-density lipoprotein levels in the previous studies 

(Kathiresan et al., 2008; Teslovich et al., 2010). Initial research focussed on NCAN 

as the lead candidate gene for this association, which was replicated for steatosis, 

inflammation and fibrosis. However, NCAN lacked biologically plausible evidence of 

a functional role in NAFLD (Anstee and Day, 2013). The use of a genome-wide 

exome-chip genotyping approach in 2,736 individuals, combined with detailed 

association analysis conditioning on previously identified variants across the 

19p13.11 region, determined that the causative non-synonymous variant affecting 

HTGC is in strong linkage disequilibrium (D’=0.926, r2=0.798) with the previously 

identified NCAN variant (rs2228603) but actually lies within the neighbouring gene, 

TM6SF2 (rs58542926) (Kozlitina et al., 2014). Most importantly, the effect of the 

NCAN variant was completely abrogated when conditioning on the TM6SF2 variant 

whilst the reverse did not occur, suggesting that the association with HTGC at this 

locus is driven by TM6SF2 rs58542926. Homozygous carriage of the TM6SF2 

rs58542926 minor (T) allele was shown to be associated with a modest but 

statistically significant increase in 1H-MRS measured HTGC from 5.86±0.25% in CC 

homozygotes to 15.04±2.23% in TT homozygotes (Kozlitina et al., 2014). While 

carriage of the TM6SF2 rs58542926 minor (T) allele was associated with increased 

HTGC, another group coincidentally demonstrated that carriage of the common (C) 

allele of the TM6SF2 rs58542926 was significantly associated with increased 

circulating cholesterol levels and greater risk for developing cardiovascular disease 

(CVD) (Holmen et al., 2014). Another newly published GWAS enrolled 2,300 

extremely obese individuals with liver biopsy data, once again validating the 

strongest association of PNPLA3 and suggesting a locus (rs10401969) in the gene 

SURP and G-patch domain containing 1 (SUGP1) near TM6SF2 was significantly 

linked to hepatic steatosis (DiStefano et al., 2015). 

 

1.7.3.5 Additional genetic risk factors for NAFLD identified in candidate gene studies 

Other than PNPLA3 and TM6SF2, only a few loci associated with NAFLD have been 

independently validated and can be considered of proven importance. These 

include: GCKR, a key regulator of glucokinase activity that controls glucose 
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metabolism (Speliotes et al., 2011); SOD2, which affects intracellular resistance to 

oxidative stress (Al-Serri et al., 2012); phosphatidylethanolamine N-

methyltransferase (PEMT), which catalyses the conversion of 

phosphatidylethanolamine to phosphatidylcholine and so is needed for normal 

hepatic VLDL secretion (Dong et al., 2007); and kruppel-like factor 6 (KLF6), a 

transcription factor that is highly expressed by activated stellate cells soon after 

injury (Ratziu et al., 1998; Miele et al., 2008).  

The rs780094 SNP in GCKR is in strong LD with a functional nonsynonymous SNP 

(rs1260326, encoding Pro446Leu), and has been associated with hepatic TAG 

accumulation due to consistent increase in glucokinase activity and glucose uptake 

caused by impaired GCKR ability (Beer et al., 2009). The role of GCKR in NAFLD 

has also been independently validated across several ethnic groups (Palmer et al., 

2013; Tan et al., 2014). The rs4880 SNP in SOD2 has been linked to advanced 

fibrosis in Japanese (Namikawa et al., 2004) and European (Al-Serri et al., 2012) 

cohorts. Carriers of the common (C) allele of rs4880 have more effective MnSOD 

mitochondrial transport and are thus potentially protected from cell damage 

compared to those are homozygous mutant (TT). Two studies reported that carriers 

of the PEMT variant (rs7946, p.Val175Met) had an increased susceptibility to NAFLD 

(Song et al., 2005; Dong et al., 2007). The KLF6–IVS1 –27G>A (rs3750861) SNP 

has been associated with milder NAFLD-related hepatic fibrosis in three separate 

European cohorts (Miele et al., 2008). Carriage of the KLF6-IVS1 –27A polymor-

phism generates more of the KLF6-SV1 alternative spice isoform, lowering hepatic 

insulin resistance and blood glucose levels. This may in part be mediated through 

GCKR and glucokinase activity (Bechmann et al., 2012).   

Other genetic modifiers that have been identified by GWAS or candidate-gene 

association studies, involving in different aspects of NAFLD pathogenic mechanisms 

are summarised in Table 1.3. 

 

 

 

 



40 
 

Table 1.2: Genetic risk factors identified by GWAS, adapted and slightly modified from (Liu et al., 2016b). 

Genetic risk factor  Population (sample size, n) Methodology (Numbers of SNPs) Reference 

Chr 22: PNPLA3 (rs738409) United States, mixed ethnicity (n=2,051) 

(B: 1,032; W: 636; H: 383) 

1H-MRS Steatosis (9,229) (Romeo et al., 2008) 

Chr 22: PNPLA3 (rs738409, rs22949158, 

rs2076211, rs2281135, rs2073081) 

CPN1-ERLIN1-CHUK  

(rs11597390, rs11591741, rs11597086) 

European, mixed ethnicity (n=12,419) 

(3 discovery and 3 replication groups) 

Clinical Biochemistry, ALT (not applicable) (Yuan et al., 2008) 

FDFT1 (rs2645424), COL13A1 (rs1227756) 
EFCAB4B (rs887304), PZP (rs6487679) 
Chromosome 7 (rs343062) 

United States, European Caucasian with 
female only (n=236) 

Histology (324,623)  (Chalasani et al., 2010) 

Chr 22: PNPLA3 (rs738409) 
Chr 19: NCAN (rs2228603) 
GCKR (rs780094), LYPLAL1 (rs12137855), 

PPP1R3B (rs4240624) 

Meta-analysis of previous studies from 
United States & Europe (n=7,176) 

CT-measured steatosis with histological 
‘candidate gene’ validation set (Range 329k-618k 
before imputation) 

(Speliotes et al., 2011) 

Chr 22: PNPLA3 (rs738409) 
TRIB1 (rs2954021) 
Loci near HSD17B13 and MAPK10 
(rs6834314) 
CPN1 (rs10883437) 

European, mixed ethnicity (n=61,089) Clinical Biochemistry, ALT (~2.6 million) (Chambers et al., 2011) 

Chr 22: PNPLA3 (rs738409) Japanese (n=529) Histology (484,751) (Kawaguchi et al., 2012) 

Chr 22: PNPLA3 (rs738409) Japanese (n=392) Histology (261,540) 

 

(Kitamoto et al., 2013) 

Chr 22: PNPLA3 (rs738409), 
PPP1R3B (rs2126259), 
ERLIN1–CHUK–CWF19L1 gene cluster 
(9 SNPs in two haplotype blocks) 

United States (n=2,705) CT-measured steatosis (~2.5 million) (Feitosa et al., 2013) 

Chr 22: PNPLA3 (rs738409) 
Chr 19: TM6SF2 (rs58542926) 

United States, mixed ethnicity (n=2,736) 

(B: 1,324; W: 882; H: 467; O:63) 

1H-MRS Steatosis (138,374, exome) (Kozlitina et al., 2014) 

PNPLA3 and SUGP1  
(neighbouring gene to TM6SF2) 

United States, mixed ethnicity (n=2,300) Histology (DiStefano et al., 2015) 
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Table 1.3: Additional genetic risk factors for NAFLD identified in candidate gene studies.  

Gene Protein Comments 

Glucose metabolism and insulin resistance 

ENPP1; 
IRS1 

Ectonucleotide pyrophosphatase/phosphodiesterase 
family member 1; Insulin receptor substrate 1 

Functional variants in ENPP1/PC-1 and IRS1 impair insulin receptor signalling and promote insulin resistance (McGettrick 
et al., 2005; Grarup et al., 2006). 

In 702 biopsy-proven NAFLD cases, carriage of nonsynonymous SNPs in ENPP1 (rs1044498, encoding Lys121Gln) and IRS1 
(rs1801278, encoding Gln972Arg) reduced AKT activation, promoted insulin resistance and were independently 
associated with greater fibrosis (Dongiovanni et al., 2010b). 
A second smaller (underpowered) study on ENPP1 did not find a significant effect (Carulli et al., 2009). 
 

GCKR Glucokinase regulatory protein GCKR SNP rs780094 is in strong LD with a functional nonsynonymous SNP (rs1260326, encoding Pro446Leu) and has 
been associated with hepatic TAG accumulation in several studies (Chambers et al., 2011; Speliotes et al., 2011). 
 

SLC2A1 Solute carrier family 2, facilitated glucose transporter 
member 1 

A study examining 3,072 SNPs across 92 candidate genes identified variants in SLC2A1 associated with NAFLD, 
independent of insulin resistance or T2DM (Petta et al., 2014). 

Downregulation of SLC2A1 in vitro promoted lipid accumulation and increased oxidative stress, potentially linking the key 
pathogenic features of NAFLD: oxidative injury and increased lipid storage (Vazquez-Chantada et al., 2013). 
 

TCF7L2 Transcription factor 7-like 2 A role for TCF7L2, which has a key role in Wnt signalling and has been implicated in T2DM, has been reported in NAFLD 
(Musso et al., 2009). 
 

PPARG Peroxisome proliferator-activated receptor γ A loss-of-function SNP (rs1805192, encoding Pro12Ala) impairs transcriptional activation and affects insulin sensitivity 
(Tonjes et al., 2006). Carriage of haplotypes including the Pro12Ala allele were associated with progressive NAFLD 
(Gawrieh et al., 2012), but two studies found no association (Dongiovanni et al., 2010a; Rey et al., 2010). 
 

Steatosis 

Hepatic lipid import or synthesis 

SLC27A5  Very long-chain acyl-CoA synthetase Two principal isoforms of FATPs are expressed in the liver, SLC27A2 (also known as FATP2) and SLC27A5 (also known as 
FATP5) (Hirsch et al., 1998). 

Silencing Slc27a5 reverses diet-induced NAFLD and improves hyperglycaemia in mice (Doege et al., 2008). 
Carriage of the SLC27A5 rs56225452 promoter region polymorphism has been associated with higher ALT levels, and 
greater postprandial insulin and triglyceride levels (Doege et al., 2008). 
In patients with histologically proven NAFLD, the effect of BMI on degree of steatosis differed with SLC27A5 genotype 
(Auinger et al., 2010). 
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LPIN1 Phophatidate phosphatase LPIN1 LPIN1 is required for adipogenesis and the normal metabolic flux between adipose tissue and liver, where it also acts as 
an inducible transcriptional co-activator to regulate fatty-acid metabolism (Reue and Zhang, 2008; Reue, 2009). 
Variants have been associated with multiple components of the metabolic syndrome (Reue and Zhang, 2008; Wiedmann 
et al., 2008). 
Although a large case–control study found no association with T2DM, obesity or related traits in 17,538 individuals 
(Burgdorf et al., 2010), a meta-analysis in 8,504 individuals found that the LPIN1 rs13412852 [T] allele was associated 
with lower BMI and insulin levels (Fawcett et al., 2008). 
This same polymorphism was under-represented in paediatric (but not adult) NAFLD with a suggestion of less severe liver 
damage (Valenti et al., 2012). 

Hepatic lipid export or oxidation in steatosis 

PNPLA3 Patatin-like phospholipase domain-containing 3 The nonsynonymous 617C>G nucleotide transversion mutation SNP (rs738409, encoding Ile148Met) has been 
consistently associated with steatosis, steatohepatitis and hepatic fibrosis; however, function remains incompletely 
understood (Romeo et al., 2008; Valenti et al., 2010a). 
 

NR1I2 Nuclear receptor subfamily 1 group I member 2 (also 
known as pregnane X receptor) 

NR1I2 encodes a transcription factor that regulates hepatic detoxification (Zhang et al., 2008) and acts through CD36 
(fatty-acidtranslocase) and various lipogenic enzymes to control lipid metabolism (Zhou et al., 2006). 
Nr1i2-deficient mice develop steatosis (Zhou et al., 2006). 
Two SNPs (rs7643645 and rs2461823) were associated with NAFLD and were also a predictor of disease severity 
(Sookoian et al., 2010). 
 

PPARA Peroxisome proliferator-activated receptor α PPAR-α is a molecular sensor for long-chain fatty acids, eicosanoids and fibrates; activated by increased hepatocyte fatty-
acid load, it limits TAG accumulation by increasing fatty-acid oxidation (Kim et al., 2003). 
Carriage of a nonsynonymous SNP (rs1800234, encoding Val227Ala) increases activity, and was associated with NAFLD 
despite reduced BMI (Yamakawa-Kobayashi et al., 2002; Chen et al., 2008). 
A loss-of-function polymorphism (rs1800206, encoding Leu162Val) was not associated with NAFLD (Dongiovanni et al., 
2010a). 
 

PEMT Phosphatidylethanolamine N-methyltransferase Two studies have reported an association between NAFLD and a nonsynonymous PEMT exon 8 590G>A transversion 
(rs7946, encoding Val175Met) (Song et al., 2005; Dong et al., 2007). 
 

MTTP Microsomal triglyceride transfer protein  MTTP mediates hepatic synthesis and secretion of VLDL. 
Abetalipoproteinaemia (OMIM#200100) results from a loss-of-function frameshift mutation in MTTP; however, whereas 
this mutation causes severe hepatic TAG accumulation, steatohepatitis and fibrosis are infrequent (Lonardo et al., 2006). 
A promoter region transversion (–493G>T; rs1800591), predisposed to steatosis and NASH (Bernard et al., 2000; 
Namikawa et al., 2004) in a small cohort, but a larger study in 131 patients found no association (Oliveira et al., 2010). 
 

APOC3 Apolipoprotein C-III Two promoter region SNPs –455T>C; rs2854116 and –482C>T; rs2854117) that increased steatosis were reported in 
small (n = 95 and 163) cohorts of Asian-Indian and non-Asian ethnicity (Petersen et al., 2010). 

To date, studies together examining >4,000 individuals have been unable to replicate these findings (Kozlitina et al., 
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2011; Sentinelli et al., 2011; Valenti et al., 2011a; Verrijken et al., 2013). 
 

APOE Apolipoprotein E ApoE is a plasma protein involved in lipid transport and metabolism (Utermann et al., 1977). 
Three alleles (ε2, ε3 and ε4) determine three isoforms (ApoE2, ApoE3 and ApoE4) resulting in six ApoE genotypes (E2/2, 
E3/3, E4/4, E2/3, E2/4, E3/4). Overall homozygosity for the ε2 allele in one study was associated with dyslipidaemia, but 
not NAFLD (Demirag et al., 2007). 
In a subgroup of nonobese individuals, the ε2 allele and the E2/3 genotype were more prevalent in controls, suggesting 
this allele might be protective. (Demirag et al., 2007).  
Consistent with this result, the ApoE3/3 genotype was associated with NASH in a Turkish cohort, whereas ApoE3/4 was 
protective (Sazci et al., 2008). 

Steatohepatitis 

Oxidative stress 

HFE Hereditary hemochromatosis protein Hepatic iron accumulation promotes oxidative stress. Two studies, examining 177 patients, reported carriage of an HFE 
polymorphism (rs1800562, encoding Cys282Tyr) that was associated with more severe steatohepatitis and advanced 
fibrosis (George et al., 1998; Nelson et al., 2007). 
However, three other studies (Bugianesi et al., 2004; Raszeja-Wyszomirska et al., 2010; Valenti et al., 2010c)have not 
shown increased carriage of either the Cys282Tyr or His63Asp (rs1799945) mutations. 
Meta-analyses have also provided conflicting results, with the latest finding no evidence of an effect (Ellervik et al., 2007; 
Hernaez et al., 2011). 
 

GCLC; 
GCLM 

Glutamate-cystein ligase catalytic unit; glutamate-
cystein ligase regulatory unit 

Glutamate-cysteine ligase (γ-glutamyl cysteine synthetase) is the rate-limiting step in glutathione synthesis; absence of 
Gclc causes steatosis and liver failure in mice (Buch et al., 2007). 
A study of 131 patients with NAFLD found the GCLC promoter region polymorphism (–129C>T, rs17883901) was 
associated with steatohepatitis compared with simple steatosis (Oliveira et al., 2010). 
 

ABCC2 ATP-binding cassette, sub-family C (CFTR/MRP), 
member 2 

Association studies support a role for ABCC2 (also known as MRP2), which facilitates terminal excretion and 
detoxification of endogenous and xenobiotic organic anions, including lipid peroxidation products (Sookoian et al., 
2009a). 
 

SOD2 Superoxide dismutase [Mn], mitochondrial Carriage of the nonsynonymous SNP (rs4880, encoding Ala16Val) has been associated with advanced hepatic fibrosis in 
NAFLD in both Japanese (Namikawa et al., 2004) and European (Al-Serri et al., 2012) cohorts.  

Endotoxin response 

TLR4 Toll-like receptor 4 Study of a spontaneous Tlr4 null mutation in C3H/J mice has established the contribution of TLR4/endotoxin to NAFLD 
pathogenesis in the laboratory (Spruss et al., 2009). 
TLR4 polymorphisms (rs4986791 and rs4986790) influence hepatitis-C-related fibrosis (Huang et al., 2007; Guo et al., 
2009), but no association with NAFLD and either TLR4 or NOD2 (bacterial cell wall peptidoglycan receptor) variants has 
been found. 
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CD14 Monocyte differentiation antigen CD14 CD14 is a lipopolysaccharide receptor expressed on monocytes, macrophages and neutrophils that enhances TLR4 
endotoxin signaling. An association with a promoter-region polymorphism (–159C>T, rs2569190) that increases CD14 
expression has been reported (Baldini et al., 1999; Day et al., 2006). 

Cytokines 

TNF Tumour necrosis factor A TNF (–238G>A, rs361525) promoter polymorphism has been associated with NASH (Valenti et al., 2002; Tokushige et 
al., 2007), suggesting a primary role in the transition from steatosis to steatohepatitis; a separate study, found that two 
other promoter region polymorphisms (–1031T>C, rs1799964 and –863C>A, rs1800630) were more common in NASH 
than steatosis, but were no more common in NAFLD than a control population (Tokushige et al., 2007). 
 

IL6 Interleukin 6 An IL6 promoter region polymorphism (–174G>C, rs1800795) has been associated with NASH (Carulli et al., 2009). 
 

Fibrosis 

AGTR1 Type-1 angiotensin II receptor Two studies have linked the ATGR1 rs3772622 SNP with grade of steatohepatitis and stage of fibrosis, with the most 
recent study also suggesting an interaction with PNPLA3 genotype (Yoneda et al., 2009; Zain et al., 2013). 

KLF6 Kruppel-like factor 6 The KLF6–IVS1 –27G>A (rs3750861) SNP has been associated with milder NAFLD-related hepatic fibrosis in three 
separate European cohorts (Miele et al., 2008). 
 

MBOAT7/ 
LPIAT1 

Membrane bound O-acyltransferase domain 
containing 7 (also known as Lysophosphatidylinositol 
acyltransferase-1) 

A recent study with two large cohort sets (Dalles Heart Study, n=3854 and Liver Biopsy Cross-Sectional Cohort, n=1,149) 
reported the rs641738 SNP in MBOAT7 was associated with increased risk in developing steatosis, severe necro-
inflammation and advanced fibrosis (Mancina et al., 2016). The effect of rs641738 variant on NAFLD/NASH development 
may be mediated by alterations in the hepatic phosphatidylinositol acyl-chain remodeling (Mancina et al., 2016). 
 

Adapted and slightly modified from (Liu et al., 2016b).  
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1.7.3.6 Biological relevance of PNPLA3  

Ever since the association of PNPLA3 with NAFLD was identified by the first GWAS-

like study in NAFLD (Romeo et al., 2008), this association has been validated across 

multiple patient cohorts. The link between PNPLA3 and NAFLD was established in 

radiologically phenotyped cohorts however such studies are unable to assess the 

presence of features such as NASH or stage of liver fibrosis that can only be 

detected histologically. This deficiency reflects the difficulty in assembling sufficiently 

large patient cohorts that have undergone invasive testing by liver biopsy to provide 

a well-powered fully phenotyped cohort and means that the majority of GWAS 

studies are radiologically based and so ‘phenotype limited’ to detecting variations in 

HTGC. Candidate-gene disease association studies in histologically characterised 

patient cohorts have therefore been necessary to establish whether genetic variants 

identified by GWAS, such as PNPLA3, do indeed influence disease progression 

towards the more clinically relevant phenotypes.  

The PNPLA3 rs738409 variant has been shown to increase the risk of NASH and 

advanced liver fibrosis, independent of potential confounding factors such as age, 

BMI or T2DM (Valenti et al., 2010a; Anstee and Day, 2013). This variant has also 

been associated with increased HCC risk in alcohol-related liver disease (Nischalke 

et al., 2011; Trepo et al., 2012; Guyot et al., 2013; Trepo et al., 2014) and, more 

variably, in chronic viral hepatitis (Falleti et al., 2011; Nischalke et al., 2011; Valenti 

et al., 2011b; Guyot et al., 2013; Trepo et al., 2014). Data has also been presented 

showing an association with HCC in morbidly obese patients (Burza et al., 2012) and 

a mixed-aetiology cohort (Hassan et al., 2013). Although it may be hypothesised that 

these latter associations are related to underlying NAFLD, prior to the studies within 

this thesis, no studies had specifically addressed the effect of PNPLA3 rs738409 

C>G carriage on HCC risk in a NAFLD cohort.  

As a strong genetic risk factor for NAFLD, the biological function of PNPLA3 has 

been extensively studied. The PNPLA3 gene encodes a 481 amino acid protein (also 

referred to as adiponutrin) that belongs to a family of lipid hydrolases (patatin-like 

phospholipase domain containing proteins, PNPLA1-9) (Park et al., 1983). Among 

the human PNPLA proteins, PNPLA3 is structurally related to adipose triglyceride 

lipase (ATGL, also known as PNPLA2), the major triglyceride hydrolase in adipose 

tissue (Zimmermann et al., 2004; Kienesberger et al., 2009). Hence, PNPLA3 was 
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first thought to possess a similar function as ATGL. However, in contrast to the 

excessive TG accumulation that occurs following ATGL loss in mice, PNPLA3 knock-

out mice do not show increased hepatic TG content (Zimmermann et al., 2004). 

Similarly, reduced TG content was not seen when the PNPLA3 (I148) wild-type 

variant was overexpressed whereas this did occur with ATGL overexpression (He et 

al., 2010). These studies both suggest that the function of PNPLA3 differs 

substantially from ATGL. Evidence established so far suggests that there are some 

differences in tissue distribution of PNPLA3 expression between humans and mice 

which has made functional study of PNPLA3 more difficult. Amongst metabolically 

active organs, PNPLA3 is mainly expressed in the liver of humans (Wilson et al., 

2006) whilst adipose tissue expression dominates in mice (Lake et al., 2005). The 

expression of PNPLA3 is controlled in a nutrition-dependent manner: on fasting, 

expression is down-regulated whilst consumption of a high-carbohydrate diet up-

regulates expression (Dubuquoy et al., 2011). PNPLA3 is regulated by ChREBP 

under hyperglycaemia resulting in increased hepatic glycolysis and lipogenesis 

(Rae-Whitcombe et al., 2010; Perttila et al., 2012b). Insulin also controls postprandial 

PNPLA3 expression through liver X receptor–retinoid X receptor (LXR-RXR) and 

SREBP-1c that also promotes de novo lipogenesis (Shimomura et al., 1999a; Huang 

et al., 2010).  

Despite the plethora of genetic evidence for an effect, the physiological role of 

PNPLA3 and how it is perturbed by carriage of the rs738409 (I148M) variant has 

remained elusive. Although some progress has been made, the data is at times 

conflicting and there remains some debate as to whether the variant is a true loss-of-

function mutation or not. In vitro studies with both wild-type and mutant isoforms of 

recombinant adiponutrin indicate that PNPLA3 mediates hydrolysis of acylglycerols 

and that maximal hydrolytic activity is towards any of the three major glycerolipids 

(triacylglycerol, diacylglycerol and monoacylglycerol) as substrates, with a strong 

preference for oleic acid as the acyl moiety (He et al., 2010; Huang et al., 2011). 

Compared to the PNPLA3 wild-type protein, the I148M variant possesses 

substantially reduced enzymatic activity but there does not appear to be any change 

in substrate affinity (He et al., 2010; Huang et al., 2011). These findings are 

consistent with the results of stable isotope tracer studies in overweight or obese 

men and in vitro studies which show that carriage of the rs738409 (I148M) variant 
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reduces VLDL secretion, an effect attributed to failure to mobilize TG from 

intracellular lipid droplets (Pirazzi et al., 2012). Arguing against a simple loss-of-

function effect however, PNPLA3 knockout mice do not develop steatosis (Basantani 

et al., 2011). Indeed, others have suggested that the l148M substitution acts as a 

gain-of-function mutation with the variant form possessing some lysophosphatidic 

acid acetyltransferase activity, leading to an increase of TG synthesis (Kumari et al., 

2012). Supporting this, murine overexpression of wild-type PNPLA3 does not induce 

steatosis but overexpression of the variant (I148M) form does (Li et al., 2012). A 

recent study with PNPLA3 I148M knockin mice showed that HTGC level was normal 

on a chow diet but increased 2 to 3-fold compared to wild-type littermates with high 

sucrose diet. This increased fat was accompanied by a 40-fold increase in PNPLA3 

on hepatic lipid droplets, without increase in hepatic PNPLA3 messenger RNA 

(mRNA). Similar results were observed when inactivating the catalytic dyad of 

PNPLA3 by substituting the catalytic serine with alanine (S47A), suggesting that the 

catalytically inactive PNPLA3 protein is necessitate to drive NAFLD pathogenesis 

instead of a complete absence of PNPLA3 activity (Smagris et al., 2015).Taken 

together, the currently available data would suggest that the PNPLA3 I148M variant 

alters TG remodelling in lipid droplets within hepatocytes (Li et al., 2012; Ruhanen et 

al., 2014). 

Beyond steatosis, the underlying mechanisms through which PNPLA3 influences 

progression to NASH and hepatic fibrosis still remained uncertain. Recent data 

suggests that PNPLA3 may have a role in retinol metabolism, acting as retinyl-

palmitate hydrolase in human HSCs which are dominant players in fibrogenesis 

(Pirazzi et al., 2014). Overexpressed wild-type PNPLA3 in HSCs resulted in a 

substantial reduction of lipid droplets, an effect that was lost with I148M. However, 

how this alters HSC activation and affects collagen deposition and fibrosis is not 

known however it does suggest that PNPLA3 may have specific roles in different cell 

types and metabolic conditions which each contribute to the progression of NAFLD 

from steatosis to fibrosis. Thus, challenges remain in which cell types to target and 

what kinds of experimental conditions should be applied in order to investigate the 

comprehensive role of PNPLA3 in NAFLD. 
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1.7.3.7 Biological aspects of TM6SF2 

Reflecting the recent nature of the discoveries mentioned in section 1.7.3.4, little is 

currently known about the biological function of TM6SF2. It was first described as a 

multi-pass membrane protein in 2000 (Carim-Todd et al., 2000), and was later 

discovered to be highly expressed in liver, kidney and intestines (Kozlitina et al., 

2014; Surakka et al., 2015). In vitro study using confocal microscopy, GFP-tagged 

TM6SF2 was mainly localized to the endoplasmic reticulum (ER) and ER-Golgi 

intermediate compartments (ERGIC) (Mahdessian et al., 2014). In the same study, 

TM6SF2 siRNA inhibition led to a reduction of lipid secretion (triglycerides (TG) and 

Apolipoprotein B (ApoB)) and an increase in the number and overall size of lipid 

droplets, which represented as a manifestation of cellular triglyceride accumulation. 

On the contrary, overexpression of TM6SF2 caused a decrease in the lipid droplet 

contents (Mahdessian et al., 2014). Prediction of mouse knockout phenotype by 

analysis of coexpressed gene profiles based on Mouse Genome Informatics (MGI) 

Database, TM6SF2 is linked to abnormal lipids levels (decreased total cholesterol 

(TC), low-density lipoprotein-cholesterol (LDL-C) and VLDL) and may act as lipid 

transporter and interact with proteins involved in intestinal absorption (Surakka et al., 

2015). In vivo studies may provide more clues for above statements; adenovirus-

mediated short hairpin RNA knockdown of Tm6sf2 in mice has been shown to 

increase hepatic triglyceride content and reduce plasma cholesterol and VLDL 

secretion, suggesting that TM6SF2 activity is necessary for normal VLDL secretion 

and that impaired TM6SF2 function causally contributes to NAFLD (Kozlitina et al., 

2014). On the other hand, transient overexpression of Tm6sf2 in C57BL/6J mice 

resulted in a significant increase of serum TC, LDL-C and TG. These in vivo (Holmen 

et al., 2014; Kozlitina et al., 2014) and in vitro (Holmen et al., 2014; Kozlitina et al., 

2014; Mahdessian et al., 2014) functional studies indicate that TM6SF2 has effects 

on fat retention in the liver, lipid efflux and alteration in the number and average size 

of lipid droplets. However, the genetic and biological studies previously mentioned 

only focused on relevance to hepatic steatosis. Whether the effect of TM6SF2 is 

limited to steatosis or has broader clinical relevance, affecting susceptibility to both 

steatohepatitis and fibrosis as has already been shown for PNPLA3, remains 

undetermined. Further research is needed to establish the precise function of the 

TM6SF2 protein and to determine how this knowledge can be exploited clinically. 
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1.8 Aims  

NAFLD is best considered a complex disease trait in which subtle inter-patient 

genetic variations and environmental factors interact to determine disease 

phenotype and progression. Recent technical advances have led to the identification 

of important genetic modifiers, in particular non-synonymous gene variants in 

PNPLA3 (I148M) and TM6SF2 (E167K) that are associated with NAFLD. The aims 

of this thesis are to identify and validate candidate genes/SNPs based on the 

aforementioned literature that confer progression of NAFLD to its progressive 

stages, principally the PNPLA3 and TM6SF2 genes.  

The work of this thesis can be divided into two parts: case-control association 

studies (the majority of the thesis) and functional studies: 

 Case-control association studies: 

 To validate the PNPLA3 association in the FLIP GWAS cohort 

(n=1,005) to confirm its relevance to disease spectrum of NAFLD 

(steatosis, steatohepatitis and fibrosis) 

 To validate and expand the relevance of TM6SF2 to NAFLD severity   

 To investigate the relevance of PNPLA3 and TM6SF2 to NAFLD-

related HCC 

 With the available genetic data, pilot studies investigating the function of 

PNPLA3 were subsequently conducted: 

 To explore biological differences caused by the amino-acid substitution 

in vitro, mainly focused on the investigation of the correlation between 

PNPLA3-I148M and lipid metabolism in different cultured cells 
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2.1 Patients 

The patients involved in this project can be divided into two cohorts: 1) the patients 

recruited from Newcastle, UK and 2) the patients from a FP7 project (FLIP, Fatty 

liver: Inhibition of Progression) funded by European Commission. These samples 

were collected at NAFLD clinics and bariatric surgery clinics across Europe. 

 Newcastle-based patients: Patients with biopsy-proven NAFLD were recruited 

from the Freeman hospital NAFLD clinic. 

 FLIP-based patients: Patients were recruited from hepatology clinics at 

several European specialist centres: the Freeman Hospital, Newcastle-upon-

Tyne, UK; Addenbrooke’s Hospital, Cambridge, UK; Queen’s Medical Centre, 

Nottingham, UK; Inselspital Hospital, Bern, Switzerland; Pitié-Salpêtrière 

Hospital, Paris, France; and Antwerp University Hospital, Belgium.  

 

All the necessary ethical approvals were obtained for this project and all participants 

gave informed consent. In all cases, alternative diagnoses were excluded, including 

excess alcohol intake (alcohol consumption < 20g/day for women; < 30g/day for 

men), chronic viral hepatitis (hepatitis B and hepatitis C), autoimmune liver diseases, 

hereditary hemochromatosis, α1-antitrypsin deficiency, Wilson’s disease and drug-

induced liver injury. Clinical and laboratory data were collected at the time of 

diagnosis including basic anthropometrics so that body mass index (BMI) could be 

calculated, and relevant co-morbidity including the presence of type 2 diabetes 

mellitus (fasting glucose ≥7.1 mmol/L [≥128 mg/dl] or treatment with anti-diabetic 

drugs) and evidence of underlying cirrhosis was recorded. 

 

2.2 Liver biopsy 

Liver biopsy was performed under radiological guidance. Specimens (at least 1.6 cm 

length and 1.5 mm thick) were fixed in 10% neutral formalin for evaluation and 

embedded in paraffin for histological examination. Tissue sections were stained with 

hematoxylin and eosin, impregnated with silver for visualizing reticulin framework 

and stained with Sirius Red Fast Green for visualizing collagen. Liver biopsies for 

Newcastle samples were reviewed by two expert liver pathologists: Alastair Burt and 

Dina Tiniakos. Liver biopsies for FLIP samples were performed by the collaborators 
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at each participating centre. Liver histology scoring was performed according to 

Kleiner et al. (Kleiner et al., 2005) and this provided a NAFLD activity score (NAS) 

which covers the degree of steatosis (0-3), hepatocyte ballooning (0-2) and lobular 

inflammation (0-3), and a separate fibrosis stage (0-4). A recently released scoring 

system, the validated semi-quantitative SAF score, is similar to the NAS score but 

separates the degree of steatosis from those of inflammation/ballooning to prove 

three separate measures of NAFLD severity. On this system, NAFLD is classified 

into the degree of steatosis (0-3), activity of steatohepatitis (A0-4) and stage of 

fibrosis (F0-4) (Bedossa and Consortium, 2014). This SAF score system was also 

considered in this study. Comparison of the SAF Score and the NAFLD Kleiner 

Score for the histological grading and staging of NAFLD/NASH is shown in Table 

1.1. 
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2.3 Laboratory methods 

2.3.1 Materials 

Materials and methods described in this chapter is relevant to several different 

chapters. More specific methods sections are provided in Chapters 3, 4, 5 and 6. 

Suppliers of materials commonly used in this work are shown in Table 2.1 or 

otherwise stated in the text. The composition of stock solutions commonly used is 

listed in Table 2.2. 

 

Table 2.1: List of suppliers and addresses. 

Suppliers Address 

Applied Biosystems California, USA 

Bioline London, UK 

Bio-Rad Hemel Hempstead, UK 

Fisher scientific Loughborough, UK 

Greiner Bio-One Stonehouse, UK 

Lonza Slough, UK 

New England Biolabs (NEB) Hitchin, UK  

QIAGEN  Crawley, UK  

Sigma Aldrich Gillingham, UK  

Thermo Scientific  Loughborough, UK 

 

Table 2.2: Compositions of commonly used stock solutions. 

Solution Composition 

10X TAE (Tris-acetate-EDTA) buffer per litre  10 mM Tris-base 48.4 g/L 

17.4 M Glacial acetic acid 11.4 ml/L 

10 mM EDTA 3.7 g/L 

DNA loading buffer 0.25% (w/v) bromophenol blue 

0.25% (w/v) xylene cyanol 

30 % glycerol 

2X protein sample loading buffer 0.125 M Tris-HCl pH 6.8 

4% SDS 

20% glycerol 

0.004% bromophenol blue 

10% β-mercaptoethanol 
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2.3.2 DNA extraction from blood samples 

Venous blood was collected from each patient and DNA was prepared from 

peripheral blood lymphocytes using a perchlorate-chloroform isolation method (Daly 

et al., 1996). Briefly, 35 ml lysis buffer (10 mM Tris-HCl (pH 8.0), 320 mM Sucrose, 5 

mM Magnesium Chloride, 1% Triton X-100) was added to 5 ml venous blood in a 50 

ml polypropylene centrifuge tube. After mixing, the tube was centrifuged at 3000G for 

10 min. The supernatant was discarded and the cell pellet was re-suspended in 2 ml 

of solution B (400 mM Tris-HCl (pH 8.0) 60 mM EDTA, 150 mM NaCl, 1% SDS). 500 

µl of sodium perchlorate (5 M) was added and the sample was mixed at room 

temperature for 15 min before incubating in a preheated hot block at 65oC for 30 

min. Next, 2 ml chloroform was added and the sample was further mixed for 10 min 

at room temperature. Having been centrifuged at 1400G for 10 min, the upper and 

clear DNA-containing phase was transferred to a new 15 ml polypropylene tube. 

Cold ethanol (7 ml) was added to the aqueous phase and the tube was gently 

inverted until the DNA precipitated. The DNA was spooled by using a soft plastic 

sterile loop and allowed to air dry for 20 min. DNA was then re-suspended in 200 µl 

of 5 mM Tris-HCl solution (pH 8) followed by the incubation at 60oC overnight. 

Samples were quantitated and quality assessed by absorbance measurements at 

260 and 280 nm. Some DNA preparation on Newcastle samples was performed by 

Julian Leathart and Julia Patch (Newcastle University, ICM). DNA isolation from FLIP 

samples was performed locally by the collaborators.  

 

2.3.3 Polymerase chain reaction (PCR) 

Lyophilised primers were purchased from Sigma Aldrich (UK). Forward primers were 

designed approximately 180 base pairs upstream from the polymorphism of interest, 

while reverse primers were around 100 base pairs downstream. Primers were re-

suspended in sterile water for stock purpose (200 μΜ). Further dilutions (25 μΜ) 

were performed during each work. Stock primers and working dilutions were stored 

at -20°C and 4°C, respectively. A total reaction volume of 25 µl of polymerase chain 

reaction was performed in a 200 µl sterile tube, reagents used including 0.1 mM 

dNTPs, 0.25 μΜ for both forward and reverse primers, 0.025 units of Taq DNA 

polymerase, 1X ThermoPol reaction buffer, and genomic DNA (typically 0.2 μg). 

Standard cycling conditions were used with varying annealing temperature according 
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to different nature of primers. 8 µl of PCR products were mixed with 3 µl of DNA 

loading buffer (Table 2.2) and viewed on 2% agarose gel (Table 2.4) at 50 mA for 30 

min. Materials and suppliers used for PCR are listed in Table 2.3. 

 

 

Table 2.3: Reagents used for PCR. 

Name Supplier Concentration 

100X dNTP mix solution Bioline, London, UK 0.1 mM  

100X forward and reverse primers Sigma Aldrich, Gillingham, UK 25 μM 

200X Taq DNA polymerase New England Biolabs, Hitchin, UK 0.025 units 

10X Thermopol Reaction Buffer New England Biolabs, Hitchin, UK 1X 

DNA Samples listed in section 2.1 0.2 μg  

Sterile water Braun Medical Supplies, Inc. 

Melsungen, Germany 

 

 

Table 2.4: Composition of 2% agarose gel. 

Composition  

2% Agarose gel 2 g Agarose powder  

100 ml 1X TAE buffer  

0.5 μg/ml ethidium bromide 
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2.3.4 Genotyping 

Genotyping was performed without knowledge of clinical status or histology of 

patients using two methods: digestion of PCR products by restriction fragment length 

polymorphism (PCR-RFLP) and TaqMan SNP genotyping assay. The method used 

depended on the individual polymorphism being studied. 

 

2.3.4.1 Digestion of PCR products by restriction fragment length polymorphism (PCR-

RFLP)  

Restriction fragment length polymorphism (RFLP) is a technique that genotypes for 

polymorphisms by using highly locus-specific restriction enzymes which digest one 

variant only. Following digestion, fragments are separated according to their size by 

gel electrophoresis. Digestion was performed in a total reaction volume of 22 µl, 

containing 17 µl PCR product, 3 units restriction enzyme (NEB, UK), and digestion 

buffer (NEB, UK). Samples were incubated at 37°C at least for 3 hours but usually 

overnight. Digested products (8 µl) were mixed with DNA loading buffer (3 µl) and 

electrophoresed on 2% agarose gel (Table 2.4) at 50 mA for an hour. Various sizes 

of DNA ladders were included for reference. Agarose gels were visualized and 

photographed on a transilluminator (GENi documentation system, Cambridge, UK). 

 

2.3.4.2 TaqMan SNP genotyping assay 

Genotyping was also performed by TaqMan SNP Genotyping Analysis (Applied 

Biosystems, USA). TaqMan SNP genotyping is a fast, simple and high-quality 

approach to genotyping a large number of samples. Each TaqMan assay was 

supplied as a solution (20X or 40X, 188 µl) containing unlabelled forward and 

reverse primers (1X final concentration was 900 nM) and two reporter probes (1X 

final concentration was 200 nM): VIC dye is linked to the 5´ end of the Allele 1 

sequence while fluorescein amidite (FAM) dye is linked to the 5´ end of the Allele 2. 

The 3´ end of each probe is incorporated with minor groove binder (MGB) 

technology, which the manufacturers assert delivers superior allelic discrimination. A 

2X TaqMan universal master mix (Applied Biosystems, USA) including AmpliTaq 

Gold® DNA polymerase, dNTPs and a passive internal reference based on 

proprietary ROX™ dye for the Applied Biosystems® real-time PCR instrument 
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(StepOne Real-Time PCR system) was also used. Materials and background 

TaqMan chemistry are displayed in Figure 2.1. 

The PCR was performed using a 48-well reaction plate (Applied Biosystems, USA). 

Enough reaction mix was made for 50 samples to avoid volume loss in pipetting. 20X 

working solution (12.5 ul) of SNP Genotyping Assay (6.25 µl for 40X) were added to 

273.5 µl 2X universal master mix. After briefly vortexing, 5 µl of the mixture were 

then transferred into each well of a 48-well plate already containing 5 µl of genomic 

DNA (5 ng/µl) diluted in sterile H2O. Quality controls were also included in each plate 

(duplicate of negative, homozygous wild-type, homozygous mutant, and 

heterozygous controls). The plate was sealed and briefly centrifuged at 300 rpm for 1 

min to avoid air bubbles, and further inserted into the StepOne Real-Time PCR 

machine. A standard 40 cycles of PCR was performed. Each PCR cycle was started 

with a hold mode at 95°C for 10 min, the denaturation process was run at 92°C for 

15 sec, and stages of annealing and extension were performed at 60°C for 1 min. 

Allelic discrimination plots were generated by the proprietary StepOne software. 

Well-distributed clusters were displayed on a XY axis chart based on the different 

fluorescence signals each genotype defined. A cluster located horizontally at the 

bottom end of X axis represented homozygosity of one allele (XX), whereas a cluster 

of homozygous of the other allele (YY) located vertically toward to Y axis. The cluster 

located in between indicated heterozygotes (XY) (Figure 2.2).  
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Figure 2.1: Allelic discrimination is achieved by the selective annealing of TaqMan® MGB 
probes extracted from 

(https://products.appliedbiosystems.com/ab/en/US/adirect/abcmd=catNavigate2&catID=601283

&tab=Literature). 

https://products.appliedbiosystems.com/ab/en/US/adirect/abcmd=catNavigate2&catID=601283&tab=Literature
https://products.appliedbiosystems.com/ab/en/US/adirect/abcmd=catNavigate2&catID=601283&tab=Literature
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Figure 2.2: Example of an allelic discrimination plot of TaqMan SNP genotyping assay. 

 

 

 

 

 

 

 

 

Homozygous Allele 2 (FAM signal) 

Heterozygotes Allele 1 + Allele 2 (VIC + FAM signal) 

Homozygous Allele 1 (VIC signal) 

No DNA template control 
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2.3.5 Statistical analysis 

Statistical analyses were performed using SPSS version 22.0 (IBM, USA) and PLINK 

version 1.07 (Purcell et al., 2007) (via the gPLINK version 2.050 GUI) to collate and 

analyze cohort phenotype data. Continuous variables were analyzed by independent 

two samples t-test and presented as means and standard deviations. Categorical 

variables were analysed by Chi-squared test unless otherwise stated. Multivariate 

logistic regression analysis was conducted incorporating biologically relevant 

covariates that were associated with risk of NAFLD development (age, gender, BMI 

and presence of T2DM) to test the genetic association. An additive genetic model 

best fitted the data and was reported. Results were expressed as beta β ± SEM for 

continuous parameters or odds ratio (OR) for categorical variables, with 95% 

confidence intervals (CI) as appropriate. Significance was taken as P value < 0.05 

throughout.  

 

2.4 Tissue culture 

2.4.1 Cell culture conditions 

All cell lines were cultured in 75cm2 sterile filtered flasks (Greiner Bio-One, 

Stonehouse, UK), and were incubated at 37°C in an atmosphere with 5% humidified 

CO2. Subculture was performed when cells reached to 80-90% confluence with cells 

normally were split into 1:3 ratio. All the solutions for cell culture were filter-sterilized 

by 0.22 μm filter (Merck Millipore, Hertfordshire, UK). When harvesting cultured cells, 

cells were washed by 1X PBS (Lonza, Slough, UK; Cat. No BE17-516F) once and 

were incubated with 1X trypsin for 10 min for cells detachment from flasks. All 

suspension was transferred into a 15 ml sterile tube and the sample was centrifuged 

twice (1st: fresh medium to deactivate trypsinization; 2nd: PBS, to wash the cells 

again) at 400G for 5 min. After centrifugation, cultured cell pellets were ready for 

further experimental purpose. For frozen stock purpose, cell pellets were re-

suspended in freezing medium (5% (v/v) dimethyl sulfoxide (Sigma Aldrich) in filtered 

FBS), kept in freezing container (Nalgene, Thermo Scientific) and stored in liquid 

nitrogen. 
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2.4.2 DNA/RNA isolation from cultured cells 

2.4.2.1 DNA extraction 

DNA extraction was performed by using the DNeasy blood and tissue kit from 

QIAGEN, UK (Cat.no 69504) according to the manufacturer’s instructions. Cells 

were detached by trypsin, then transferred into a 15 ml sterile tube and centrifuged 

twice at 400G for 5 min (1st: fresh medium to deactivate trypsinization; 2nd: PBS, to 

wash the cells again). The supernatant (PBS) of the final cell pellet was discarded 

and the pellet was re-suspended in 200 μl fresh PBS. The pellet was further mixed 

with 20 μl of proteinase K and 200 μl of Buffer AL, following a thorough mix by 

vortexing and an incubation at 56°C water bath for 10 min. The mixture was again 

thoroughly mixed with ethanol (96-100%) by vortexing.  

In the following steps, the mixture underwent centrifugation four times. Firstly, the 

mixture was transferred into the DNeasy mini spin column in a 2 ml collection tube 

(provided in the kit) and was centrifuged at 6000G for 1 min. The flow-through and 

the collection tube were discarded.  

The DNeasy mini spin column was placed in a new 2 ml collection tube, the Buffer 

AW1 (500 μl) was added to the mixture followed by the second centrifugation at 

6,000G for 1 min. The flow-through and the bottom tube were discarded.  

The third time, centrifugation was performed after adding 500 μl Buffer AW2 to the 

mixture and centrifuged at 20,000G to dry the DNeasy membrane, the flow-through 

and the bottom tube was discarded. For the last centrifugation, the DNeasy mini spin 

column was placed in a clean 1.5 ml microfuge tube (not provided in the kit) and 

mixed with 200 μl Buffer AE directly onto the DNeasy membrane. The mixture was 

further incubated at room temperature for 1 min followed by the centrifugation at 

6,000G for 1 min (materials in Table 2.5). The final flow-through would be the DNA 

itself. The concentration and the purity of extracted DNA were measured by using 

absorbance 260/280 and 260/230 ratios provided in Nanodrop spectrophotometer 

software (version: 3.5.2). The DNA product was stored at 4°C. 
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2.4.2.2 RNA isolation 

Cultured cell pellet was prepared as described in section 2.4.1. The pellet was re-

suspended with 1 ml TRI reagent (Sigma Aldrich, Gillingham, UK) and the liquid was 

transferred into a sterile microfuge tube. The tube was allowed to stand at room 

temperature for 5 min. Chloroform (200 μl) was then added to the mixture which 

underwent vigorous shaking for 15 sec to ensure all reagents were mixed 

thoroughly. The tube was allowed to stand at room temperature for 10 min, followed 

by a centrifugation at 12,000G for 15 min at 4°C to separate the mixture into three 

phases: a red organic phase (containing protein), an interphase (containing DNA) 

and a colourless supernatant (RNA). 

The upper aqueous phase (RNA containing) was carefully transferred into a new 

sterile microfuge tube, mixed with 500 μl isopropanol, and allowed to stand at room 

temperature for 5 min. The mixture was centrifuged at 18,000G for 10 min at 4°C to 

precipitate the RNA as a pellet on the side and bottom of the tube. The supernatant 

was discarded. The pellet was further washed by 1 ml of 75% ethanol and vortexed 

thoroughly, followed by a 5-min centrifugation at 8,500G at 4°C to yield the final RNA 

pellet. The RNA pellet was dissolved in 50 μl of RNAse-free water. Samples were 

quantitated and quality assessed by absorbance measurements at 260 and 280 nm 

using Nanodrop spectrophotometer software (version: 3.5.2). RNA was stored at -

80°C for further use (materials used in Table 2.6). 

 

2.4.2.3 Reverse transcription and gene expression analysis 

The RNA was thawed on ice and a master mix of oligo dT primers (0.4 μg), dNTPs 

(10 mM each) and DEPC water (make the volume up to 8 μl) was made. RNA from 

the samples (1 μg) was then mixed with the above reagents (total volume of 10 μl) 

followed by a 10-minute incubation at 65oC. After cooling on ice for 2 min, the 

mixture was further mixed with a second master mix containing 4 units RNAse 

inhibitor, 50 units of reverse transcriptase enzyme, 2 μl 10X reverse transcriptase 

reaction buffer, and DEPC water (total volume up to 10 μl). The RNA was reverse 

transcribed in a total reaction volume of 20 μl. The final mixture was incubated at 

37oC for 50 min and then at 70oC for 15 min to inactivate any remaining enzyme. All 

reagents and suppliers are listed in Table 2.7. The cDNA was then used immediately 

for gene expression analysis or stored at -20oC. 
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Quantitative analysis of gene expression was performed using TaqMan gene 

expression assays (Applied Biosystems). A 20X assay for gene of interest was 

delivered in a tube (250 μl) contains two unlabelled primers (1X final concentration is 

900 nM) and a FAM-dye labelled on 5´ end of the MGB probe (250 nM, final 

concentration). Another 20X assay (250 μl) used for an endogenous housekeeping 

gene contains a VIC-dye labelled on 5´ end of the MGB probe (250 nM) and two 

unlabelled primers (150 nM, primer-limited). Each MGB probe is labelled with non-

fluorescent quencher on 3´ end. 2X TaqMan universal master mix (described in 

section 2.3.4.2) and RNAse-free water were also applied. 

A duplex gene expression analysis was performed using a 48-well plate. Each well 

contained a total reaction volume of 20 μl: 1 μl from the assay of target gene (FAM-

dye labelled), 1 μl from the assay of housekeeping gene (VIC-dye labelled, primer-

limited), 10 μl of 2X TaqMan universal master mix, 4 μl of RNAse-free water, and 4 

μl of cDNA template (1-100 ng). Each sample was run in triplicate and negative 

control (no cDNA template) was included in each experiment. The plate was sealed 

and briefly centrifuged at 300 rpm for 1 min to avoid air bubbles, and was further 

inserted into the StepOne Real-Time PCR machine. PCR performance was 

described in section 2.3.4.2.  

The comparative Ct (cycle threshold) method of PCR data analysis was generated 

by StepOne software version 2.1 (ABI-Biosystems, 1997). Basically, Ct values of 

different samples are directly normalised to an endogenous gene to generate ΔCt 

values. Next, ΔCt values of all samples are normalised to a reference sample (also 

known as calibrator sample) when performing relative quantification. The given 

equation is ΔΔCt = average ΔCt (sample of interest) – average ΔCt (reference 

sample).  
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Table 2.5: DNeasy Blood & Tissue Kit contents abstracted from the QIAGEN manual provided. 

DNeasy Blood & Tissue Kit (50) (250) 

Catalogue Number 69504 69506 

DNeasy mini spin columns (colourless) in 2 ml collection tubes 50 250 

Collection tubes (2 ml) 100 500 

Buffer ATL 10 ml 50 ml 

Buffer AL 12 ml 54 ml 

Buffer AW1 (concentrate) 19 ml 95 ml 

Buffer AW2 (concentrate) 13 ml 66 ml 

Buffer AE 22 ml 2 x 60 ml 

Proteinase K 1.25 ml 6 ml 

 

Table 2.6: Materials used for RNA isolation. 

 

Table 2.7: Reagents used for reverse transcription. 

 

Name Supplier Cat. No./Lot No. 

Tri-reagent (100 ml) Sigma Aldrich, Gillingham, UK T9424 

Chloroform (2.5 L) Fisher Scientific,  Loughborough, UK Code: C/4920/17, Lot:1203452 

Propan-2-ol (1 L) Fisher Scientific,  Loughborough, UK Code: P/7500/15, Lot:1202163 

Ethanol, absolute  Fisher Scientific,  Loughborough, UK Code: E/0650DF/17, 

Lot:1349671 

RNAse-free water (1 L) Fisher Scientific,  Loughborough, UK Code: 10245203, Lot:120135 

Name Supplier Concentration Cat. No. 

Oligo dT primers  QIAGEN, Crawley, UK 0.4 µg/μl 79237 

dNTPs  QIAGEN, Crawley, UK 10 mM each  201901 

DEPC water Fisher Scientific,  

Loughborough, UK 

- BP5611 

Reverse transcriptase 

Reaction Buffer 

New England Biolabs, 

Hitchin, UK 

10X B0253S 

RNase inhibitor New England Biolabs, 

Hitchin, UK 

40,000 units/ml M0307S 

Reverse transcriptase 

enzyme 

New England Biolabs, 

Hitchin, UK 

200,000 units/ml M0253S 
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2.4.3 Western-blot analysis 

The procedure of Western blotting consists of several steps: protein extraction, 

protein concentration determination, polyacrylamide gel electrophoresis, 

electrophoretic transfer of protein, blocking, probing and immunodetection of protein 

blots, and membrane staining. Materials used in these procedures are listed in Table 

2.8. 

 

2.4.3.1 Protein extraction 

A refrigerated centrifuge was precooled to 4oC. A cultured cell pellet was prepared 

as described in section 2.4.1. The cell pellet was washed in 1X PBS (Lonza) and 

transferred into a microfuge tube followed by a 5-min centrifugation at 400G. The 

supernatant was discarded. The cell pellet was re-suspended in chilled CelLytic M 

buffer (Sigma Aldrich) with protease inhibitor (Roche, Welwyn Garden City, UK). The 

mixture was further vortexed moderately till fully dissolved and was left on ice for 10 

min. After centrifugation was performed at 18,000G for 10 min at 4oC to remove cell 

debris, the supernatant (the protein extracts) was transferred to a new microfuge 

tube without disturbing the pellet. The protein extracts were ready to be used for 

Western blotting or frozen at -80oC long-term.  

 

2.4.3.2 Protein concentration determination 

Concentrations of solubilized protein were determined using Coomassie Plus Assay 

Kit (Thermo Scientific, UK) based on the method of Bradford (Bradford, 1976). 10 µL 

of protein sample was added to 250 μl of Coomassie Plus Assay Reagent solution in 

each well of a single 96-well plate, mixed well on a plate shaker with 30 sec and 

incubated at room temperature for 10 min. The absorbance was measured at 595 

nm. A standard curve was created using bovine serum albumin (BSA stock, 2 mg/ml) 

provided in the Coomassie Plus (Bradford) Assay Kit, diluted in PBS with working 

range from 0 to 2000 µg/ml protein. All standard curves and unknown samples were 

performed in triplicate.  
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2.4.3.3 Polyacrylamide gel electrophoresis of protein samples 

Electrophoresis was carried out on a 12.5% polyacrylamide mini-gels containing 

30% acrylamide, 0.378 M Tris/HCl (pH 8.8), 0.1% (w/v) SDS, 0.1% (w/v) ammonium 

persulphate and 0.05% TEMED. The separating gel was poured between glass 

plates (100 mm x 100 mm x 0.75 mm) to within 40 mm of the top. A few drops of 

butanol was applied on the top of the gel to ensure the gel was flatten. The gel was 

allowed to polymerise for 30 min. The butanol was gently removed by water. Next, 

the stacking gel solution (30% acrylamide, 0.126 M Tris/HCl (pH 6.8), 0.1% (w/v) 

SDS, 0.1% (w/v) ammonium persulphate and 0.05% TEMED) was added onto the 

polymerized separating gel, and a comb to form wells was inserted immediately. 

All the samples were mixed with 2X or 4X sample loading buffer (Table 2.2) to reach 

a final dilution of 1X (62.5 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 0.002% 

bromophenol blue, and 5% β-mercaptoethanol) at an equivalent volume (20 μl). The 

mixtures were then heated at 95oC for 5 min, and immediately applied to a 12.5% 

SDS-PAGE gel for size-fractionation. Electrophoresis was performed at 40 mA for 50 

min in running buffer (25 mM Tris, 0.2 M glycine, 0.1% SDS). 

 

2.4.3.4 Electrophoretic blotting procedure of proteins separated by SDS-PAGE 

Electrophoretic transfer of protein from polyacrylamide gel to polyvinylidene fluoride 

(PVDF) membrane was carried out based on a method described by (Towbin et al., 

1979), using an Amersham Biosciences TE 22 Mighty Small Transphor. The physical 

assembly of electrophoretic blotting sandwich is shown in Figure 2.3. A sheet of 

PVDF (0.45 µm pore size) is pre-wetted with methanol briefly and soaked in transfer 

buffer (1X CAPS (3-(Cyclohexylamino)-1-propanesulfonic acid) buffer: 0.01 M CAPS, 

10% (v/v) methanol and 80% (v/v) H2O). The membrane was laid on two sheets of 

thick filter paper with a foam sponge underneath with the sponge supported by a stiff 

plastic grid. The gel to be blotted was removed carefully from the gel electrophoresis 

tank and layered onto the membrane, avoiding air bubbles. A second set of filter 

papers, foam sponge and a stiff plastic grid in the same order as described above 

was applied to the top of the gel. All items were kept submerged with transfer buffer 

to avoid any dryness. The blotting sandwich was inserted into the support holder of 

the transfer tank with the orientation from gel side/cathode (-) to membrane 
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side/anode (+). Electrophoretic blotting was conducted in the same transfer buffer at 

50 mA (overnight) or 250 mA (one hour) alternatively. 

 

2.4.3.5 Blocking, probing and immunodetection of protein blots  

The membranes were rinsed by PBST buffer (1X PBS and 0.1% Tween 20) twice. 

An incubation of membranes in blocking solution (5% dried skimmed milk in PBST 

buffer) was performed at room temperature for 1 hour to achieve blocking of non-

specific binding by the primary antibody. After the primary antibody and anti-GAPDH 

(1:25000) were diluted in the blocking solution, the membranes were incubated with 

the blocking solution at 4oC overnight on a shaker. On the following morning, 

membranes were washed four times for 5 min each in PBST buffer. The goat anti-

rabbit IgG conjugated to horseradish peroxidase was incubated with membranes in a 

dilution of 1:5000 for 1 hour at room temperature with shaking. Membranes were 

subjected to four washes in PBST buffer. Immunoblots were visualised using Super 

Signal West Pico chemiluminescent substrate (Thermo scientific) and blue X-ray film 

(CL-Xposure film, Thermo scientific). To measure protein expression levels, 

intensities of specific bands, and corresponding to the proteins of interest, 

densitometric analyses of the blots were performed using a GS-800 calibrated 

densitometer (Bio-Rad), and signal intensities were analysed using Quantity One – 

4.2.3 software (GraphPad Prism version 5.0a, San Diego, USA). Images of the blots 

were imported into the software, the area around each band was selected by 

drawing a tight boundary around them. The signal intensities of bands were then 

displayed in an excel format which can be exported for statistical analyses, graphic 

representation as mean ± S.E.M. 
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2.4.3.6 Staining of the PVDF membrane 

Membranes were stained by 0.05% copper solution for 1 min on a shaker. Next, 

membranes were rinsed three times in 10 mM HCl to remove unbound dye. 

Membranes were left to dry at room temperature and stored as a loading reference. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The assembly of electrophoretic blotting sandwich. A) PVDF membrane, B) 

Polyacrylamide gel, C) two sheets of thick filter paper, D) foam sponges, E) stiff plastic grids, 

F)cathode (-), G) anode (+). 
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Table 2.8: Materials used for Western blotting. 

Protein extraction Supplier Cat. No. 

CelLytic M buffer Lysis buffer  Sigma Aldrich, Gillingham, UK C2978 

Protease inhibitor Roche, Welwyn Garden City, UK 11 836 170 001 

Protein measurement Supplier Cat. No. 

Pierce Coomassie Plus Assay and  Thermo Scientific, Loughborough, UK 23236 

SDS-PAGE Supplier Cat. No. 

30% Acrylamide Sigma Aldrich, Gillingham, UK A3699 

Ammonium persulphate Sigma Aldrich, Gillingham, UK A3678 

SDS Sigma Aldrich, Gillingham, UK L3771 

Tris-base Sigma Aldrich, Gillingham, UK T1503 

TEMED Sigma Aldrich, Gillingham, UK T9281 

Butanol BDH Laboratory Supplies,  

Leicestershire, UK 

275006E 

Electrophoretic  transfer Supplier Cat. No. 

TE 22 Mighty Small Transphor Amersham Biosciences, 

Buckinghamshire, UK 

80-6204-26 

PVDF membrane Merck Millipore, Hertfordshire, UK IPVH00010 

CAPS Sigma Aldrich, Gillingham, UK C2632 

Glycine Sigma Aldrich, Gillingham, UK G8898 

Blocking, probing and 

immunodetection 

Supplier Cat. No. 

Methanol VWR Chemicals, Leicestershire, UK 67-56-1 

10X PBS Lonza, Slough, UK BE17-517Q 

Tween 20 Sigma Aldrich, Gillingham, UK P2287 

Rabbit polyclonal anti-PNPLA3 Abcam, Cambridge, UK ab81874 

Rabbit polyclonal anti-GAPDH Santa Cruz Biotechnology, Inc. sc-25778 

Horseradish peroxidase conjugated 

secondary antibody  

Sigma Aldrich, Gillingham, UK A6154 

SuperSignal West Pico 

chemiluminescence 

Thermo Scientific, Loughborough, UK 23236 

CL-Xposure film Thermo scientific, Loughborough, UK 34089 
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3 Chapter 3. Candidate Gene Association Study between PNPLA3 

and Severity of NAFLD in FLIP Cohort 
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3.1 Introduction  

The basis for the effect of PNPLA3 on genetic susceptibility to NAFLD up to the 

present has been described in detail in Chapter 1. Given the numerous gene 

association studies that had been performed for PNPLA3, and that its association 

has already been extensively replicated worldwide, there are limitations to be 

mentioned. The majority of genome-wide association studies (GWAS) reported to 

date are radiology-based but the diagnostic gold standard that can reliably assess 

NAFLD severity is liver biopsy. Although a few GWAS and candidate gene 

association studies reporting the PNPLA3 association were histology-based, many 

have weaknesses in study design and have very limited cohort size. Lack of 

statistical power due to relatively small sample size could easily produce 

misinterpretation of both false positive and false negative results. To validate the 

genetic correlation between the PNPLA3 gene and severity of NAFLD and to 

perform a better and more reliable genetic analysis, a large unrelated cohort of 

European-Caucasian descent (n=1,005) with histologically characterized NAFLD 

(representing the full spectrum of disease from simple steatosis through 

steatohepatitis to advanced fibrosis and cirrhosis) was assembled from centres 

across Europe by the FLIP consortium. This cohort was analysed by a GWAS using 

the Illumina OmniExpress chip platform however the PNPLA3 rs738409 SNP, that is 

considered to be the causative variation, is not represented on this chip so direct 

genotyping was needed. 

In addition to performing a candidate-gene association study upon the major SNP 

rs738409 in the PNPLA3 gene using the FLIP cohort, another SNP rs139051 was 

also tested. This polymorphism has been reported to be associated with obesity and 

NAFLD (Johansson et al., 2009; Peng et al., 2012). A Swedish study with a total 

number of 466 obese children and adolescents compared to 491 non-obese 

reference group first demonstrated that carriage of the minor allele (A) of rs139051 

was linked to obesity (P=0.014) but this effect was attenuated after adjustment for 

age and gender (P>0.05) (Johansson et al., 2009). The other study was performed in 

a Han Chinese population with 553 ultrasonography diagnosed NAFLD patients 

(Peng et al., 2012). When a dominant model was adapted, Peng et al. reported that 

the rs139051 homozygous mutant (AA) carriers were significantly associated with 
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increased risk of NAFLD in a multivariate analyses including gender, age, body mass 

index and other clinical characteristics (Peng et al., 2012).  

Little is known about this rs135091 polymorphism. This variant is an intronic 

polymorphism, located in intron 2 of PNPLA3 causing a single nucleotide substitution 

from guanine (G) to adenine (A). The rs135091 SNP is 51bp upstream of rs738409 

and 28bp away from the intron-exon boundary. A recent study using a locus-wide 

expression quantitative trait (eQTL) approach to assess SNPs that might be relevant 

to transcriptional regulation of PNPLA3 conducted by a collaborator, Prof. Wanqing 

Liu (Purdue University, USA), has suggested that rs135091 influences hepatic 

PNPLA3 expression with the A variant associated with increased gene expression 

(Liu et al., 2016a). HapMap data (CEU, Northern Europeans in Utah) indicates that 

rs738409 and rs135091 are in relatively low linkage disequilibrium, the D’ (coefficient 

of linkage disequilibrium) value is 0.61. 

The aims of the studies described in this chapter were:  

 Firstly, to validate the PNPLA3 rs738409 association with histologically 

characterised NAFLD in the FLIP cohort.  

 Secondly, to assess the relationship between the PNPLA3 rs139051 

polymorphism and severity of NAFLD in view of the recent eQTL result.  

 Thirdly, to also investigate the relevance of combined genotypes for 

rs738409/rs139051 to severity.  
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3.2 Methods  

3.2.1 Patients 

A large cohort of unrelated patients of European-Caucasian descent with biopsy-

proven NAFLD was recruited from centres across Europe. These patients were 

enrolled in a FP7 project (FLIP, Fatty liver: Inhibition of Progression) funded by 

European Commission. The centers that involved in FLIP cohort recruitment are 

described in section 2.1. Baseline characteristics of the cohort are shown in Table 

3.1. 

 

3.2.2 Liver biopsy 

Liver biopsy performance is described in section 2.2. Liver biopsies for Newcastle 

samples were reviewed by two expert liver pathologists: Alastair Burt and Dina 

Tiniakos. Liver biopsies for other FLIP samples were performed by the collaborators 

at each participating centre. The criteria adapted for biopsy assessment includes 

NAFLD activity score (NAS) designed by Kleiner (Kleiner et al., 2005), and semi-

quantitative SAF score (Bedossa and Consortium, 2014; Dyson et al., 2014). The 

histological phenotypes including degree of steatosis, stages of steatohepatitis and 

fibrosis were listed in Table 3.1. 

 

3.2.3 DNA preparation from blood samples 

DNA extraction from blood samples was described in section 2.3.2. DNA preparation 

from some Newcastle samples was performed by Julian Leathart and Julia Patch 

(Newcastle University, ICM). DNA samples from cases enrolled at other centres 

across Europe were prepared locally by the collaborators. 

 

3.2.4 PNPLA3 SNPs genotyping  

Assays for the two SNPs, PNPLA3 rs738409 (reference number: C___7241_10, Cat. 

#4351379) and rs139051 (reference number: C_176091868_10, Cat. #4351379) 

were purchased from Applied Biosystems Inc., USA. Genotypes for these SNPs 

were determined by allelic discrimination using TaqMan reagents according to the 

manufacturer’s protocol. Procedures were described in section 2.3.4.2. Control 
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samples of known genotype were also included in every 48-well plate (blank, 

homozygous wild-type, homozygous mutant and heterozygous). 

 

3.2.5 Statistical analysis  

Statistical analyses were performed using SPSS v19.0 (IBM, USA) and PLINK v1.07 

(Purcell et al., 2007) (via the gPLINK v2.050 GUI). Initially, univariate chi-squared 

analysis was performed followed by multivariate linear/logistic regression analysis 

incorporating biologically relevant covariates that were associated with risk of 

NAFLD (age, gender, BMI, and presence of T2DM) to test the genetic association. 

An additive genetic model best fitted the data and was used throughout this chapter. 

Results were expressed as beta (β ± SEM) or odds ratio (OR) with 95% confidence 

intervals (CI) as appropriate. P<0.05 was considered as the statistically significant 

level. Advanced haplotype analyses examining interactions between the SNPs 

(rs738409 and rs139051) and NAFLD-related phenotypes were performed in 

collaboration with Professor Heather Cordell (Institute of Genetic Medicine, 

Newcastle University) and Professor Wanqing Liu (Department of Medicinal 

Chemistry and Molecular Pharmacology, Purdue University) using the software 

programs R, PLINK (Purcell et al., 2007) and UNPHASED (Dudbridge, 2008; 

Dudbridge et al., 2011).  
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Table 3.1: Clinical characteristics of FLIP cohort. 

 Newcastle (UK) Nottingham (UK) Cambridge (UK) Paris (France) Antwerp (Belgium) Bern 

(Switzerland) 

OVERALL 

Number 311 56 32 292 254 60 1005 

Age, years 50.23 ± 12.7 51.52 ± 11.54 51.43 ± 12.32 47.71 ± 12.07 44.87 ± 12.31 52.7 ± 11.16 48.4 ± 12.48 

Gender (% Female) 124 (39.9%) 24 (42.9%) 14 (43.8%) 174 (59.6%) 164 (64.6%) 20 (33.3%) 520 (51.7%) 

BMI, kg/m2 34.29 ± 5.18 30.41 ± 4.95 32.87 ± 4.79 41.77 ± 10.88 39.03 ± 6.56 31.99 ± 4.94 37.26 ± 8.44 

DM (YES %) 129 (41.5%) 11 (19.6%) 14 (43.8%) 132 (45.2%) 30 (11.8%) 30 (50.0%) 346 (34.4%) 

ALT 81.97 ± 59.23 90.27 ± 54.37 70.97 ± 39.07 54.28 ± 33.05 47.63 ± 23.62 86.10 ± 62.53 65.60 ± 47.34 

AST# 53.57 ± 34.90 - 52.64 ± 36.50 38.27 ± 22.28 33.91 ± 17.01 66.37 ± 39.63 44.05 ± 29.23 

Steatosis* 

S0 4 (1.3%) 1 (1.8%) 0 (0.0%) 8 (2.7%) 51 (20.1%) 0 (0.0%) 64 (6.4%) 

S1 88 (28.3%) 13 (23.2%) 12 (37.5%) 63 (21.6%) 91 (35.8%) 20 (33.3%) 287 (28.6%) 

S2 150 (48.2%) 20 (35.7%) 11 (34.4%) 114 (39.0%) 61 (24.0%) 27 (45.0%) 383 (38.1%) 

S3 68 (21.9%) 19 (33.9%) 9 (28.1%) 107 (36.6%) 51 (20.1%) 13 (21.7%) 267 (26.6%) 

Activity score (composite hepatocyte ballooning and necro-inflammation scores)* 

A0 90 (28.9%) 2 (3.6%) 5 (15.6%) 58 (19.9%) 41 (16.1%) 12 (20.0%) 208 (20.7%) 

A1 57 (18.3%) 7 (12.5%) 13 (40.6%) 63 (21.6%) 42 (16.5%) 12 (20.0%) 194 (19.3%) 

A2 88 (28.3%) 17 (30.4%) 6 (18.8%) 100 (34.2%) 53 (20.9%) 36 (60.0%) 300 (29.9%) 

A3 48 (15.4%) 15 (26.8%) 6 (18.8%) 48 (16.4%) 80 (31.5%) 0 (0.0%) 197 (19.6%) 
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*Steatosis and Activity score data incomplete in 4 (0.4%) and 11 (1.1%) of samples respectively. #Phenotypes of AST levels were not obtained by the 

collaborators. 

 

A4 20 (6.4%) 13 (23.2%) 2 (6.3%) 22 (7.5%) 38 (15.0%) 0 (0.0%) 95 (9.5%) 

Fibrosis 

F0 109 (35.0%) 14 (25.0%) 8 (25%) 75 (25.7%) 157 (61.8%) 15 (25.0%) 378 (37.65) 

F1 77 (24.8%) 9 (16.1%) 14 (43.8%) 91 (31.2%) 42 (16.5%) 9 (15.0%) 242 (24.1%) 

F2 52 (16.7%) 22 (39.3%) 3 (9.4%) 77 (26.4%) 33 (13.0%) 13 (21.7%) 200 (19.9%) 

F3 47 (15.1%) 5 (8.9%) 5 (15.6%) 34 (11.6%) 21 (8.3%) 5 (8.3%) 117 (11.6%) 

F4 (Cirrhosis) 26 (8.4%) 6 (10.7%) 2 (6.3%) 15 (5.1%) 1 (0.4%) 18 (30.0%) 68 (6.8%) 
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3.3 Results 

3.3.1 PNPLA3 rs738409 genotype analyses  

3.3.1.1 Increased PNPLA3 rs738409 C>G minor allele carriage in NAFLD 

The PNPLA3 rs738409 genotypes in the overall NAFLD cohort showed borderline 

agreement with the Hardy-Weinberg equilibrium (P=0.048). The minor allele 

frequency was 0.34 which is significantly higher than that observed in a reference 

Northern European population sample (MAF 0.22, http://browser.1000genomes.org). 

This result provides some initial evidence for an association between this variant and 

NAFLD generally. There was a gene-dosage effect for this variant in the cohort with 

the incidence of NAFLD increasing with the number of minor alleles possessed (Χ2 

for trend, P<0.0001), Table 3.2. The relationship between the rs738409 SNP and 

specific histological components of the NAFLD disease phenotype were assessed 

individually. 

 

 

Table 3.2: Genotype frequency of PNPLA3 rs738409 in FLIP NAFLD Cohort vs. the 1000 

Genomes European Caucasian population. 

ChiSq for trend p<0.0001 (X2=36.04, df=1). 1000 Genomes MAF (EUR) = 0.22 

(http://browser.1000genomes.org) 

 

 

 

 

 

PNPLA3 

rs738409 

Genotypes 

FLIP NAFLD   

n=1005 (%) 

EUR Pop. 

n=379 (%) 

OR (95% CI) P-value 

CC 455 (45.3%) 233 (61.5%) - - 

CG 421 (41.8%) 128 (33.8%) 1.68 (1.38-2.17) <0.0001 

GG 129 (12.8%) 18 (4.7%) 3.67 (2.19-6.16) <0.0001 

http://browser.1000genomes.org/
http://browser.1000genomes.org/
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3.3.1.2 PNPLA3 rs738409 C>G polymorphism is associated with steatosis  

The PNPLA3 rs738409 association with hepatic steatosis diagnosed either by 

radiology or histology was reported by several studies (Romeo et al., 2008; Valenti et 

al., 2010a). In the FLIP cohort, carriage of the PNPLA3 rs738409 minor allele was 

significantly associated with degree of steatosis in the univariate analysis (β 

0.256±0.039, P=1.18x10-12). This strong effect remained significant after adopting an 

additive model and adjusted for age at biopsy, gender, BMI and presence of T2D (β 

0.308±0.038, 95%CI 0.23-0.38, P=5.4x10-15). When the patients were classified into 

mild steatosis (S0-1) compared to advanced steatosis (S2-3), the PNPLA3 rs738409 

C>G minor allele was associated with increased risk of greater steatosis in an 

additive model (OR 1.87, 95%CI 1.52-2.29, P=2.98x10-9), Table 3.3.  

 

 

Table 3.3: Multivariate analysis of association between PNPLA3 rs738409 genotype and 

histological steatosis.

 

 

 

 

 

 

Variables Steatosis (S0-S3) 
 

Steatosis (S0-1 vs. S2-3) 
 

OR (95% CI)                  P-value β (95% CI) P-value 

rs738409 
genotype 

0.3 (0.23-0.38) 5.4 x10-15 1.87 (1.52-2.29) 2.98 x10-9 

Age -0.002 (-0.007-0.001) 0.22 0.99 (0.98-1.006) 0.29 

Gender 
(Female) 

-0.16 (-0.27- -0.05) 0.0034 0.51 (0.38-0.68) 6.8 x10-6 

BMI 0.018 (0.01-0.02) 8.45 x10-8 1.05 (1.03-1.07) 2.18 x10-6 

T2DM 0.22 (0.1-0.33) 0.0001 1.59 (1.17-2.15) 0.003 
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3.3.1.3 PNPLA3 rs738409 C>G polymorphism is associated with NASH 

The NAS scoring system covers the degree of steatosis (0-3), hepatocyte ballooning 

(0-2) and lobular inflammation (0-3), and a separate fibrosis stage (0-4) (Kleiner et 

al., 2005). This scoring system aimed to provide a numerical order for assessing 

those patients who most likely to have NASH. The association with steatohepatitis 

activity was then tested using NAS score. The PNPLA3 rs738409 was associated 

with severity of steatohepatitis in the FLIP cohort by both univariate (β 0.45±0.08, 

P=4.32x10-8) and multivariate analysis. The modifier effect remained strong after 

adjustment for gender, age at biopsy, BMI, and presence of T2DM (β 0.48±0.008, 

95%CI 0.32-0.64, P=5.24x10-9). The other NASH scoring system, the validated 

semi-quantitative SAF score, is similar to the NAS score but separates the degree of 

steatosis from those of inflammation and ballooning to provide three separate 

domain measures of NAFLD severity (Bedossa and Consortium, 2014). The 

association with steatohepatitis activity was secondly tested using a composite score 

incorporating severity of necroinflammation and ballooning hepatocyte degeneration, 

generating the activity score (A0-A4). Similar results were found in the second 

analyses using SAF score. PNPLA3 rs738409 was associated with severity of 

steatohepatitis in the FLIP cohort by both univariate (β 0.172±0.06, P=0.004) and 

multivariate analysis. The modifier effect remained strong after adjustment with 

gender, age at biopsy, BMI, and presence of T2DM (β 0.174±0.059, 95%CI 0.056-

0.291, P=0.0037), Table 3.4. Beta coefficients instead of odds ratio were applied due 

to the nature of continuous variables. 

Table 3.4: Multivariate analysis of association between PNPLA3 rs738409 genotype and 

histological steatohepatitis. 

Variables SAF activity score (A0-A4) 
 

NAS (0-8) 
 
β (95% CI)                     P-value β (95% CI) P-value 

PNPLA3 
genotype 

0.17 (0.05-0.29) 0.004 0.48 (0.32-0.64) 5.24 x10-9 

Age 0.13 (0.006-0.02) 0.0001 0.01(0.001-0.02) 0.02 

Gender 
(Female) 

-0.04 (-0.21-0.12) 0.58 -0.2 (-0.43-0.02) 0.07 

BMI 0.01 (0.004-0.02) 0.004 0.03 (0.01-0.05) 4.41 x10-6 

T2DM 0.1 (-0.06-0.28) 0.22 0.33 (0.09-0.56) 0.006 
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3.3.1.4 PNPLA3 rs738409 C>G polymorphism is associated with fibrosis 

The association with NAFLD fibrosis stage were tested using linear and binary 

parameters. When a linear parameter of fibrosis score (F0-4) was applied, carriage 

of the minor allele of PNPLA3 rs738409 was significantly associated with stage of 

fibrosis; univariate (β 0.22±0.06, P=9.87x10-5), and linear regression analysis with 

major covariates included (gender, age at biopsy, BMI, and presence of T2DM) (β 

0.22±0.05, 95%CI 0.11-0.32, P=4.67x10-5). When patients were subdivided into mild 

fibrosis (F0-1) and advanced fibrosis (F2-4), individuals with the minor allele were at 

higher risk of developing NAFLD-related fibrosis in an additive model (OR 1.38, 

95%CI 1.14-1.66, P=0.0008). A significant result was also found in the multivariate 

analysis adopting an additive model adjusted for gender, age at biopsy, BMI, and 

presence of T2DM (OR 1.4, 95%CI 1.15-1.7, P=0.0006), Table 3.5. 

 

 

Table 3.5: Multivariate analysis of association between PNPLA3 rs738409 genotype and 

histological fibrosis.

 

 

 

 

 

Variables Fibrosis (F0-F4) 
 

Fibrosis (F0-1 VS. F2-4) 
 
OR (95% CI)                  P-value β (95% CI) P-value 

PNPLA3 
genotype 

0.3 (0.11-0.32) 4.67 x10-5 1.41 (1.16-1.70) 0.0005 

Age -0.02 (0.01-0.02) 1.99 x10-11 1.03 (1.01-1.03) 2.01 x10-5 

Gender 
(Female) 

-0.26 (-0.41~-0.1) 0.0006 0.67 (0.51-0.89) 0.007 

BMI 0.02 (0.01-0.03) 1.06 x10-5 1.03 (1.02-1.05) 1.42 x10-5 

T2DM 0.58 (0.4-0.73) 2.7 x10-12 2.27 (1.70-3.00) 1.77 x10-8 
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3.3.2 PNPLA3 rs139051 genotype analyses 

3.3.2.1 PNPLA3 rs139051 genotype distributions between NAFLD patients and general 

population   

The PNPLA3 rs139051 genotypes were confirmed to be in Hardy-Weinberg 

equilibrium (P=0.08) with a minor allele frequency of 0.40. This MAF is slightly higher 

than that observed in the same reference population as mentioned in section 3.3.1.1 

(MAF 0.38, http://browser.1000genomes.org). However, the genotype distributions of 

PNPLA3 rs139051 in the FLIP cohort and Northern European population were very 

similar, and did not show statistical significance (Χ2 for trend, P=0.46), Table 3.6. 

 

Table 3.6: Genotype frequency of PNPLA3 rs139051 in FLIP NAFLD Cohort vs. the 1000 

Genomes European Caucasian population. 

ChiSq for trend p=0.47 (X2=0.53, df=1). 1000 Genomes MAF (EUR) = 0.38 

 (http://browser.1000genomes.org) 

 

 

3.3.2.2 PNPLA3 rs139051 G>A polymorphism and histological NAFLD severity 

To investigate whether rs139051 contributes to NAFLD risk, the relationship between 

rs139051 and NAFLD phenotypes in FLIP cohort was then tested. A significant effect 

was observed between carriage of rs139051 G>A polymorphism and severity of 

NAFLD, including steatosis (β 0.13±0.04, P=0.003), and steatohepatitis (P=0.02 and 

P=0.002 for SAF score and NAS score, respectively) but not fibrosis (P=0.8) in the 

univariate analyses. These strong genetic modifier effects on hepatic steatosis and 

steatohepatitis remained significant in the multivariate analyses when adjusted for 

age at biopsy, gender, BMI and presence of T2D; P=2.0x10-4 and P=0.02 (for both 

SAF and NAS scoring systems), respectively. The association with stage of fibrosis 

remained non-significant after testing in a multivariate analysis (P=0.6).  

PNPLA3 

rs139051 

Genotypes 

FLIP NAFLD   

n=961 (%) 

EUR Pop. 

n=503 (%) 

OR (95% CI) P-value 

GG 330 (34.3%) 184 (36.6%) - - 

AG 489 (50.9%) 247 (49.1%) 1.10 (0.87-1.39) 0.43 

AA 142 (14.7%) 72 (14.3%) 1.10 (0.78-1.54) 0.31 

http://browser.1000genomes.org/
http://browser.1000genomes.org/
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Since the PNPLA3 rs738409 SNP is a well-known and well-replicated genetic 

modifier for NAFLD, another sets of multivariate analyses that included gender, age 

at biopsy, BMI, T2DM, and PNPLA3 rs738409 genotype were performed. 

Interestingly, the significant effects described above were completely abolished 

when the PNPLA3 rs738409 genotype was taken into account (P>0.05 for all 

phenotypes), suggesting that rs139051 is not independent of rs738409 as a risk 

factor for NAFLD, Table 3.7. 

 

3.3.2.3 Haplotype analyses of PNPLA3 SNPs in FLIP cohort 

As previously identified by our collaborator, Prof. Wanqing Liu, during his eQTL 

studies, rs139051 (51bp upstream of rs738409 in intron 2, and 28bp away from the 

intron-exon boundary) was the most significant cis-acting eQTL for PNPLA3 

transcription [P=6.6×10-8, false discovery rate (FDR) < 0.05] (Liu et al., 2016a). 

Detailed LD analysis of variants across the entire locus revealed that rs139051 was 

in low LD with all other significant eQTLs (r2 ≤ 0.50 for all tests). The data indicated 

that the minor (A) allele of rs139051 was associated with increased PNPLA3 gene 

expression. In contrast, after correcting for multiple testing, the rs738409 

polymorphism was not a significant eQTL for hepatic PNPLA3 expression (FDR > 

0.05) (Liu et al., 2016a).  

To investigate further whether rs139051 modifies the effect of rs738409 alleles in 

contributing to NAFLD risk, we tested the association between the rs139051-

rs738409 haplotype and aforementioned phenotypes. However, analyses examining 

the relative contribution of the SNP to the haplotype effect did not identify a 

statistically significant independent effect of rs139051 in the FLIP population. Indeed, 

the carriage of the A-G haplotype which combines both the high-expression 

rs139051 A allele and the disease-risk rs738409 G (148M) allele, conferred similar 

risk for NAFLD phenotypes as compared to the G-G haplotype which contains the 

rs738409 risk allele, but possesses a relatively lower expression level (P=0.51), 

Table 3.8 (Liu et al., 2016a). 
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Table 3.7: Multivariate analysis of association between PNPLA3 rs139051 genotype and 

histological NAFLD. 

 

 

 

 

Variables 

 

Steatosis 

Steatosis (S0-S3) 

 

Steatosis (S0-1 vs. S2-3) 

  

β (95% CI) P-value OR (95% CI)  P-value 

rs139051 genotype 0.02 (-0.06-0.21) 0.6 0.98 (0.78-1.23) 0.84 

Age -0.002 (-0.006-0.002) 0.35 0.99 (0.98-1.007) 0.39 

Gender (Female) -0.15 (-0.26~-0.04) 0.009 0.52 (0.39-0.70) 1.64 x10-5 

BMI 0.018 (0.012-0.026) 8.93 x10-8 1.05 (1.03-1.07) 2.23 x10-6 

T2DM 0.23 (0.11-0.35) 1.4 x10-4 1.62 (1.15-2.21) 0.003 

rs738409 genotype 0.29 (0.21-0.38) 4.18 x10-11 1.87 (1.48-2.37) 1.28 x10-7 

Variables 

 

 

Steatohepatitis 

SAF activity score (A0-A4) NAS (0-8) 

β (95% CI) P-value β (95% CI) P-value 

rs139051 genotype 0.08 (-0.05-0.22) 0.22 0.1 (-0.08-0.28) 0.29 

Age 0.014 (0.006-0.02) 1.4 x10-4 0.01 (0.002-0.02) 0.021 

Gender (Female) -0.06 (-0.23-0.11) 0.48 -0.21 (-0.44-0.02) 0.08 

BMI 0.013 (0.002-0.02) 0.013 0.03 (0.02-0.05) 1.52 x10-5 

T2DM 0.08 (-0.09-0.26) 0.36 0.03 (0.002-0.002) 0.01 

rs738409 genotype 0.13 (0.004-0.27) 0.042 0.43 (0.25-0.61) 2.93 x10-6 

Variables 

 

Fibrosis 

Fibrosis (F0-F4) 

 

Fibrosis (F0-1 vs. F2-4) 

 

β (95% CI) P-value OR (95% CI) P-value 

rs139051 genotype -0.08 (-0.2-0.04) 0.18 0.87 (0.69-1.01) 0.25 

Age 0.02 (0.01-0.03) 4.89 x10-12 1.03 (1.02-1.04) 7.64 x10-6 

Gender (Female) -0.27 (-0.42~-0.12) 5.56 x10-4 0.66 (0.49-0.88) 0.005 

BMI 0.02 (0.01-0.03) 2.92 x10-5 1.04 (1.02-1.06) 2.38 x10-6 

T2DM 0.54 (0.38-0.71) 1.10 x10-10 2.09 (1.56-2.80) 6.56 x10-7 

rs738409 genotype -0.27 (-0.43~-0.12) 9.78 x10-5 1.49 (1.19-1.86) 4.10x10-4 
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Table 3.8: Haplotype association with NAFLD histological features and effect of each 

haplotype on phenotype severity in the FLIP NAFLD Cohort (n=949). Adapted from (Liu et al., 

2016a). 

†Haplotype frequencies across entire NAFLD cohort: A-G 0.2425; G-G 0.09797; A-C 0.1628; G-C 0.4968. 

Estimated r2 between rs139051 and rs738409 = 0.20.  #Tests for the effect of each haplotype compared to A-G. 
*Tests for the effect of each haplotype compared to A-C. ‡Tests for the effect of each haplotype compared to 

all other haplotypes combined. *NAFLD histologically characterized using the semi-quantitative NASH CRN 

Score (Kleiner et al., 2005). The NAFLD Activity Score (NAS) equals the sum of the scores for steatosis, 

hepatocyte ballooning degeneration and lobular inflammation and reflects disease activity.  

 

Histological 

Phenotype* 

Haplotype† Added Value 

(95%CI)# 

P# P* Beta‡ P‡ 

Steatosis (0-3) A-G 0 - 9.85 x10-7 0.33 3.36x10-11 

G-G -0.08 (-0.31, 

0.16) 

0.51 3.78 x10-4 0.23 0.0014 

A-C -0.46 (-0.65, -

0.28) 

9.85 x10-7 - -0.15 0.0108 

G-C -0.46 (-0.60, -

0.32) 

1.33 x10-11 0.96 -0.23 3.15x10-8 

NAS (0-8) A-G 0 - 4.81 x10-4 0.56 4.27x10-8 

G-G -0.06 (-0.17, 

0.05) 

0.30 0.05 0.27 0.06 

A-C -0.16 (-0.25, -

0.07) 

4.81 x10-4 - -0.15 0.2 

G-C -0.18 (-0.25, -

0.12) 

2.66 x10-8 0.61 -0.4 2.45x10-6 

Fibrosis (0-4) A-G 0 - 0.04 0.17 0.01 

G-G 0.11 (-0.04, 

0.27) 

0.15 9.64 x10-4 0.32 0.0013 

A-C -0.14 (-0.28, -

0.008) 

0.04 - -0.15 0.06 

G-C -0.12 (-0.22, -

0.03) 

0.0089 0.74 -0.17 0.0092 
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3.4 Discussion 

Performing a case-control association study within a well-characterized population 

and with an appropriate sample size, we have validated the association between 

PNPLA3 rs738409 and severity of NAFLD. Carriage of the minor allele (G) is 

profoundly associated with disease severity across the entire NAFLD disease 

spectrum (steatosis, steatohepatitis, and fibrosis). As described in Chapter 5, we 

also investigated its association with NAFLD-related HCC, the ultimate stage of 

NAFLD.  

The other SNP rs139051 (G>A) which is 51bp upstream of rs738409 (Liu et al., 

2016a) has been suggested to be relevant to NAFLD susceptibility (Peng et al., 

2012). However, an earlier study demonstrated in obese children and adolescents 

provided opposite results (Johansson et al., 2009). It would be inappropriate to 

compare these two studies directly as their study aims (obesity vs. NAFLD) and 

population design (children and adolescents vs. adults) were totally different, as is 

the variation in ethnicities. Since NAFLD is closely associated with obesity, these 

findings should not be ignored entirely and require further investigations to be 

ascertain the relevance of rs139051 as a genetic risk factor.  

The rs139051 variant was identified as a strong eQTL, playing an independent role 

in regulating PNPLA3 transcription in man (Liu et al., 2016a). In our association 

analyses, a weaker but statistically significant association between rs139051 and 

steatosis, steatohepatitis but not fibrosis was observed. However, in the multivariate 

analysis with the rs738409 genotype included, the association was completely 

abolished (P>0.05 for all tests), suggesting that rs139051 is not independent of 

rs738409 as a risk factor for NAFLD. Furthermore, the apparent changes in hepatic 

PNPLA3 expression due to rs139051 carriage do not modify the effects of rs738409 

G-allele carriage in promoting NAFLD and related phenotypes. This was supported 

by the analysis of associations between rs139051-rs738409 haplotypes and 

histological features of NAFLD. While the A-G haplotype potentially represents an 

increased expression of the high-risk allele than the G-G haplotype, there was no 

significant difference between these two haplotypes in conferring risk to NAFLD or 

disease severity. A similar effect was observed between the A-C and G-C haplotype 

in conferring reduced risk for NAFLD. 
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As has already been discussed in section 1.7.1, a complex disease trait is a 

contribution of strong and weak genetic risk factors when combined together in the 

presence of a permissive environment (Hirschhorn and Gajdos, 2011). Taken 

Crohn’s disease as one of the examples for polygenic disease, several strong 

(P<5X10-8 with OR ≥1.8) genetic risk factors that have been identified and replicated: 

particularly, CARD15 (also known as NOD2, nucleotide binding oligomerization 

domain containing 2) on chromosome 16q12, IL23R (interleukin 23 receptor) on 

chromosome 1p31, and ATG16L1 (autophagy related 16 like 1) on chromosome 

2p37 are considered as the well-demonstrated SNPs associated with Crohn’s 

disease. Unlike Crohn’s disease, T2DM is best considered as a polygenic disease 

where multiple common variants with weak effects (P>5X10-4 with OR≤ 1.3) 

contribute to the outcomes and appear to combine in an additive manner to increase 

overall disease susceptibility, such as PPARG on chromosome 3q25 (peroxisome 

proliferator activated receptor gamma) and KCNJ11 (potassium voltage-gated 

channel subfamily J member 11) on chromosome 11q15. It has been estimated that 

only 10% of the genetic risk were identified in T2DM despite there have been 

intensive effort to identify the genetics of T2DM in the past two to three decades 

(Wellcome Trust Case Control, 2007; Donaldson et al., 2015). 

The effect size of the PNPLA3 rs738409 identified by the first GWAS-like study 

(P=5.9x 10-10) (Romeo et al., 2008) is even stronger than those identified in T2DM 

and Crohn’s disease, and to date it remains the strongest and the most widely 

replicated genetic risk factor for NAFLD (P<5X10-8 with OR≥1.8). In addition, there 

are multiple SNPs in the chromosome 22 region (22q13.31) on the Illumina chip that 

were reported to be associated with NAFLD but with weaker effect sizes compared 

to rs738409 even in a strong LD, the rs3761472 located in the neighbouring gene 

SAMM50 (SAMM50 sorting and assembly machinery component) would be an 

example, pointing that rs738409 is the true causative locus (Kawaguchi et al., 2012; 

Kitamoto et al., 2013).   

In summary, the rs738409 PNPLA3 polymorphism represents a biologically plausible 

candidate gene and remains the strongest genetic signal for NAFLD across the 

whole genome. However, the biological effect of rs738409 remains elusive as 

discussed in detail in section 1.7.3.6, investigation into the functional role of PNPLA3 
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on pathogenic mechanisms of NAFLD is therefore needed in order to possibly 

provide therapeutic approaches to NAFLD management in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

 

 

 

 

 

 

 

4 Chapter 4. TM6SF2 rs58542926 Influences Hepatic Fibrosis 

Progression in Patients with Non-Alcoholic Fatty Liver Disease 
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4.1 Introduction 

As described in section 1.7.3, genome-wide association studies (GWAS) (Romeo et 

al., 2008; Chambers et al., 2011; Speliotes et al., 2011) and candidate-gene studies 

(Dongiovanni et al., 2010b; Valenti et al., 2010a; Al-Serri et al., 2012; Aravinthan et 

al., 2014; Tan et al., 2014) have contributed greatly to the understanding of the 

genetic contribution to NAFLD pathogenesis and variability of prognosis (reviewed 

(Anstee and Day, 2013)). Amongst the loci identified, the non-synonymous SNP in 

PNPLA3 (rs738409 c.444 C>G, p.Ile148Met), has been validated across multiple 

patient cohorts (Romeo et al., 2008; Valenti et al., 2010a; Speliotes et al., 2011; 

Kawaguchi et al., 2012). Importantly, carriage of this SNP has been robustly 

associated not only with steatosis, but also with clinically relevant factors including 

severity of hepatic fibrosis/cirrhosis (Valenti et al., 2010a). However, its association 

with NAFLD-related HCC remains to be elucidated (Trepo et al., 2014). 

Recently, Kozlitina et al. showed that a non-synonymous SNP in TM6SF2 

(rs58542926 c.449 C>T, p.Glu167Lys (E167K)), transmembrane 6 superfamily 

member 2, a gene of unknown function on chromosome 19, was associated with 1H-

MRS quantified HTGC based on genotyping with a genome-wide exome chip 

(Kozlitina et al., 2014). This variant has also been associated with dyslipidaemia and 

cardiovascular risk (Holmen et al., 2014). The TM6SF2 rs58542926 SNP lies within 

50kb of an NCAN gene variant (rs2228603 c.274 C>T, p.Pro92Ser) that has 

previously been associated with HTGC in another GWAS (Speliotes et al., 2011; 

Gorden et al., 2013). Both SNPs are in strong linkage disequilibrium (D’=0.926, 

r2=0.798). Conditioning on the TM6SF2 variant abrogated the effect of the NCAN 

variant whilst the reverse did not occur, suggesting that TM6SF2 rs58542926 is 

more strongly associated with the HTGC phenotype. Homozygote TM6SF2 

rs58542926 minor (T) allele carriage was shown to be associated with a modest but 

statistically significant increase in 1H-MRS measured HTGC from 5.86±0.25% in CC 

homozygotes to 15.04±2.23% in TT homozygotes (Kozlitina et al., 2014).  

Limited knowledge has been established for the protein structure or the functional 

role of TM6SF2. The TM6SF2 rs58542926 c.449 C>T variant is a non-synonymous 

change producing a glutamate to lysine amino acid substitution at residue 167 

(Glu167Lys), which is highly conserved across mammals (Kozlitina et al., 2014). 

First descried as a multi-pass membrane protein in 2000 (Carim-Todd et al., 2000), 
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TM6SF2 was later discovered to be highly expressed in liver, kidney and intestines 

(Kozlitina et al., 2014; Surakka et al., 2015). In vitro study using confocal 

microscopy, GFP-tagged TM6SF2 was mainly localized to the endoplasmic reticulum 

(ER) and ER-Golgi intermediate compartments (ERGIC) (Mahdessian et al., 2014). 

In the same study, TM6SF2 siRNA inhibition led to a reduction of lipid secretion 

(triglycerides (TG) and Apolipoprotein B (ApoB)) and an increase in the number and 

overall size of lipid droplets, which represented as a manifestation of cellular 

triglyceride accumulation. On the contrary, overexpression of TM6SF2 caused a 

decrease in the lipid droplet contents (Mahdessian et al., 2014). Prediction of mouse 

knockout phenotype by analysis of coexpressed gene profiles based on Mouse 

Genome Informatics (MGI) Database, TM6SF2 is linked to abnormal lipids levels 

(decreased Total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and 

very-low-density lipoprotein (VLDL)) and may act as lipid transporter and interact 

with proteins involved in intestinal absorption (Surakka et al., 2015). In vivo studies 

may provide more clues for above statements, adenovirus-mediated short hairpin 

RNA knockdown of Tm6sf2 in mice has been shown to increased hepatic triglyceride 

content and reduced plasma cholesterol and VLDL secretion, suggesting that 

TM6SF2 activity is necessary for normal VLDL secretion and that impaired TM6SF2 

function causally contributes to NAFLD (Kozlitina et al., 2014). On the other hand, 

transiently overexpressed of Tm6sf2 in C57BL/6J mice resulted in a significant 

increase of serum TC, LDL-C and TG. These in vivo (Holmen et al., 2014; Kozlitina 

et al., 2014) and in vitro (Holmen et al., 2014; Kozlitina et al., 2014; Mahdessian et 

al., 2014) functional studies indicate that TM6SF2 has gene effects on fat retention in 

the liver, lipid efflux and alteration in the number and average size of lipid droplets. 

However, the genetic and biological studies previously mentioned only focused on 

the scope of hepatic steatosis. Whether the effect of TM6SF2 was limited to 

steatosis or had broader clinical relevance, possessing the susceptibility to 

steatohepatitis or fibrosis as has already been shown for PNPLA3, remains 

undetermined.  

The aim of the current study was firstly to determine whether the association with 

NAFLD reported by Kozlitina et al. (Kozlitina et al., 2014) could be independently 

validated; and secondly to establish whether the TM6SF2 rs58542926 variant was 
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associated with clinically important disease endpoints that have prognostic relevance 

(in particular stage of hepatic fibrosis).  

To address this, I performed a quantitative analysis within a well-characterised 

European Caucasian ‘discovery’ cohort with histologically characterised NAFLD, 

controlling for relevant co-morbidities and factors that have previously been linked 

with disease progression (age, gender, BMI, presence of T2DM and PNPLA3 

rs738409 genotype), and replicated our findings in a separate histologically 

characterised European Caucasian ‘validation’ cohort. The association between this 

SNP and development of NAFLD-related HCC was also examined (described in 

Chapter 5).  
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4.2 Methods 

4.2.1 Patients  

Patients were recruited from hepatology clinics at several European specialist 

centres, including UK, Switzerland, Belgium and France (details are listed in Table 

4.1). The study had all the necessary ethical approvals (Table 4.1). All participants 

gave informed consent. Criteria for NAFLD diagnosis and patients’ clinical and 

laboratory data are described in section 2.1.   

 An initial discovery cohort of 349 consecutive European Caucasian patients 

from the UK with histologically characterised NAFLD of different stages of 

disease. These were unrelated patients with histologically characterised 

NAFLD, derived from a patient population originally identified as having 

ultrasonographically detected bright liver and abnormal biochemical tests 

(ALT and/or GGT).  

 A validation cohort of 725 consecutive European Caucasian patients from 

centres in UK and mainland Europe with histologically characterised NAFLD 

of different stages of disease. Patients in this cohort were unrelated patients 

with histologically characterised NAFLD, derived from a patient population 

originally identified as having ultrasonographically detected bright liver and 

abnormal biochemical tests (ALT and/or GGT) or identified as having 

evidence of NAFLD at the time of bariatric surgery.  

Together, these comprised the combined cohort of 1,074 patients with histologically 

characterised NAFLD. Demographic and histological details are shown in Table 4.2. 

A description of the ‘healthy workers’ cohort recruited in the North East of the UK has 

previously been published (Velaga et al., 2004).  

 

4.2.2 Liver biopsy 

Liver biopsies for Newcastle samples were reviewed by two expert liver pathologists: 

Alastair Burt and Dina Tiniakos. Liver biopsies for FLIP samples were performed by 

the collaborators at each participating centre. Liver biopsy performance is written in 

section 2.2. The degree of steatosis (S0-3), activity of steatohepatitis (A0-4) and 
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stage of fibrosis (F0-4) were scored according to the validated semi-quantitative SAF 

score (Bedossa and Consortium, 2014; Dyson et al., 2014), Table 1.1. 

 

4.2.3 DNA preparation from blood samples 

DNA preparation from blood samples were descried in section 2.3.2. Some DNA 

preparation on Newcastle samples was performed by Julian Leathart and Julia Patch 

(Newcastle University, ICM). DNA isolation from FLIP samples was performed locally 

by the collaborators.  

 

4.2.4 TaqMan SNP genotyping assays 

The TaqMan SNP genotyping assays for TM6SF2 rs58542926 (reference number: 

C___8709053_10, Cat. # 4351379), NCAN rs2228603 (reference number: 

C___16171492_10, Cat. # 4351379) and PNPLA3 rs738409 (reference number: 

C___7241_10, Cat. # 4351379) were purchased from Applied Biosystems Inc., USA. 

Genotypes for these SNPs were determined by allelic discrimination using TaqMan 

reagents according to the manufacturer’s protocol. Procedures were described in 

section 2.3.4.2. Control samples of known genotype were also included in every 48-

well plate (blank, homozygous wild-type, homozygous mutant and heterozygous).  

 

4.2.5 Statistical analysis 

Statistical analyses were performed using SPSS v19.0 (IBM, USA) to collate and to 

analyze cohort phenotype data. Continuous variables were analysed using Student’s 

t-test/one-way ANOVA and categorical variables were analysed by Chi-squared test 

unless otherwise stated. PLINK v1.07  (Purcell et al., 2007) (via the gPLINK v2.050 

GUI) was used to conduct the genetic analysis. An initial univariate chi-squared 

analysis was performed. Subsequently, multivariate logistic regression analysis was 

conducted incorporating biologically relevant covariates that were associated with 

risk of NAFLD (age, gender, BMI, presence of T2DM and PNPLA3 rs738409 

genotype) to test the genetic association. An additive genetic model best fitted the 

data and was reported. Results were expressed as beta β ± SEM or odds ratio (OR) 
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with 95% confidence intervals (CI) as appropriate. P<0.05 was considered as 

statistically significant level. 

 

Table 4.1: Patients were recruited from hepatology clinics across Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

Recruitment Centre Country  Ethical Approval 

Freeman Hospital Newcastle-upon-

Tyne, UK 

Newcastle & North Tyneside 1 REC 

[10/H0906/41] 

Addenbrooke’s Hospital Cambridge, UK Norfolk REC [06/Q0106/70] 

Nottingham University 

Hospitals NHS Trust 

Nottingham, UK Nottingham 2 REC [GM010201] 

Inselspital Hospital Bern, Switzerland Inselspital Bern Local Ethics Committee 

Antwerp University 

Hospital 

Belgium Antwerp University Hospital Ethics 

Committee 

Pitié-Salpêtrière Hospital Paris, France CPP (Comité de Protection des Personnes) 

Paris VI IDF Pitié - Salpêtrière Hospital 
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Table 4.2: Demographic characteristics of patient cohorts. 

*Steatosis and Activity score data incomplete in 8 (0.7%) and 15 (1.3%) of samples respectively. 

 

 

 

 

 Discovery Cohort Validation Cohort Combined cohort 

Number 349 725 1074 

Ethnicity European Caucasian European Caucasian European Caucasian 

Gender (Female) 147 (42.1%) 407 (56.1%) 554 (51.6%) 

Age, years 51 .5 ± 12.0 47.6 ± 12.4 48.9 ± 12.4 

BMI, kg/m2 34.5 ± 5.7 38.5 ± 9.1 37.2 ± 8.3 

T2DM (Yes) 161 (46.1%) 235 (32.4%) 396 (36.9%) 

Steatosis score* 

S0 5 (1.4%) 60 (8.3%) 65 (6.1%) 

S1 99 (28.4%) 206 (28.4%) 305 (28.4%) 

S2 166 (47.6%) 247 (34.1%) 413 (38.5%) 

S3 79 (22.6%) 204 (28.1%) 283 (26.4%) 

Activity score (composite hepatocyte ballooning and necro-inflammation scores)* 

A0 81 (23.2%) 132 (18.2%) 213 (19.8%) 

A1 65 (18.6%) 133 (18.3%) 198 (18.4%) 

A2 101 (28.9%) 214 (29.5%) 315 (29.3%) 

A3 64 (18.3%) 149 (20.6%) 213 (19.8%) 

A4 31 (8.9%) 89 (12.3%) 120 (11.2%) 

Fibrosis score 

F0 108 (30.9%) 277 (38.2%) 385 (35.8%) 

F1 90 (25.8%) 162 (22.3%) 252 (23.5%) 

F2 55 (15.8%) 161 (22.2%) 216 (20.1%) 

F3 66 (18.9%) 75 (10.3%) 141 (13.1%) 

F4 (Cirrhosis) 30 (8.6%) 50 (6.9%) 80 (7.4%) 
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4.3 Results 

4.3.1 Increased TM6SF2 rs58542926 C>T minor allele carriage in NAFLD 

In the NAFLD discovery cohort, the TM6SF2 rs58542926 genotypes were confirmed 

to be in Hardy-Weinberg equilibrium with a minor allele frequency of 0.12, 

significantly higher than that observed in a reference Northern European population 

sample (MAF 0.07, http://browser.1000genomes.org) or a cohort of 265 Caucasian 

self-reported ‘healthy workers’ recruited from offices and factories locally in the North 

East of England (MAF 0.07) and so supportive of an association between these 

variants and NAFLD. Indeed, a gene-dosage effect was observed for both variants in 

the discovery cohort with the incidence of NAFLD increasing with the number of 

minor alleles possessed (Χ2 for trend, P=0.0008), Table 4.3. A similar association 

was also confirmed for PNPLA3 rs738409, P=0.0001 (Table 4.4). Specific 

histological components of the NAFLD disease phenotype were next assessed 

individually. 

 

Table 4.3: Genotype frequency of TM6SF2 rs58542926 in Discovery Cohort NAFLD patients vs. 
the 1000 Genomes European Caucasian population. 

ChiSq for trend p=0.0008 (X2=11.34, df =1). 1000 Genomes MAF (EUR) = 0.07 

(http://browser.1000genomes.org). 

Table 4.4: Genotype frequency of PNPLA3 rs738409 in Discovery Cohort NAFLD patients vs. 

the 1000 Genomes European Caucasian population. 

ChiSq for trend p<0.0001 (X2=31.29, df =1). 1000 Genomes MAF (EUR) = 0.22 

(http://browser.1000genomes.org). 

 

TM6SF2 

Genotypes 

NAFLD   

n=349 (%) 

EUR Pop.  

n=379 (%) 

OR (95% CI) P-value 

CC 271 (77.6%) 328 (86.5%) - - 

CT 70 (20%) 49 (12.9%) OR 1.72 (1.16-2.57) 0.008 

TT 8 (2.3%) 2 (0.5%) OR 4.84 (1.01-22.9) 0.049 

PNPLA3  

Genotypes 

NAFLD   

N=349 (%) 

EUR Pop. 

N=379 (%) 

OR (95% CI) P-value 

CC 152 (43.5%) 233 (61.5%) - - 

CG 148 (42.4%) 128 (33.8%) OR 1.77 (1.29-2.42) 0.0003 

GG 49 (14%) 18 (4.7%) OR 4.17 (2.34-7.43) 3.04 x10-7 
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4.3.2 TM6SF2 and degree of histological steatosis 

As a positive control, and consistent with our previously reported analysis (Valenti et 

al., 2010a), carriage of the PNPLA3 rs738409 minor allele was significantly 

associated with degree of steatosis in multivariate analysis adopting an additive 

model adjusted for gender, age at biopsy, BMI and presence of T2DM (β 

0.192±0.056, 95%CI 0.082-0.301, P=6.74x10-4). However, in contrast to the report 

by Kozlitina et al., neither TM6SF2 rs58542926 (β 0.087±0.083, 95%CI -0.076-

0.250, P=0.296) nor NCAN rs2228603 (β 0.050±0.085, 95%CI -0.116-0.216, 

P=0.554) were found to be significantly associated with degree of histologically 

determined steatosis in the 349-patient discovery cohort. This was also the case in 

the 725-patient validation cohort (P=0.17). However, a trend towards significance 

was observed when the two cohorts were combined (β 0.111±0.059, 95%CI -0.0041-

0.2268, P=0.053), suggesting that an underlying effect on degree of steatosis may 

be present but of relatively small size. An effect became apparent when the 

multivariate analysis in the combined cohort was repeated after subdividing the 

cohort into those with mild steatosis (S0-1) and pronounced steatosis (S2-3). Here, 

carriage of each copy of the TM6SF2 rs58542926 C>T minor allele was associated 

with increased risk of greater steatosis (OR 1.379, 95%CI 1.019-1.865, P=0.037), 

although with a marginal level of significance (Table 4.5).  

 

4.3.3 TM6SF2 and severity of histological steatohepatitis  

Next, the association with steatohepatitis activity was tested using a composite score 

incorporating severity of necroinflammation and ballooning hepatocyte degeneration. 

TM6SF2 rs58542926, but not NCAN rs2228603, was associated with severity of 

steatohepatitis in the discovery cohort by multivariate analysis adopting an additive 

model adjusted for gender, age at biopsy, BMI, T2DM and PNPLA3 rs738409 

genotype (β 0.288±0.139, 95%CI 0.015-0.561, P=0.039). However, this effect was 

not replicated in the validation or combined cohorts (Table 4.6). Beta coefficients 

instead of odds ratio were applied due to the nature of continuous variables. 
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Table 4.5: Multivariate analysis of association between TM6SF2 rs58542926 genotype and steatosis stage S0-1 (mild) vs. S2-3 (advanced). 

Additive model including age, gender, BMI, T2DM and PNPLA3 rs738409 genotype as covariates.  
Discovery/Validation/Combined cohorts: Stage S0-1 (mild) n=104/266/370, Stage S2-3 (advanced) n=245/451/696. 

 
 

 

 

 

 

 

 

 

 

Variables 

 

Discovery cohort (n=349) Validation cohort (n=725) Combined cohort (n=1074) 

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

TM6SF2 genotype 1.39 (0.83-2.35) 0.202 1.32 (0.90-1.92) 0.15 1.38 (1.01-1.86) 0.037 

PNPLA3 genotype 1.51 (1.06-2.13) 0.021 2.02 (1.59-2.59) 1.66 x10-8 1.84 (1.51-2.25) 1.57 x10-9 

Age 0.97 (0.95-0.99) 0.022 0.99 (0.98-1.008) 0.41 0.99 (0.98-1.003) 0.137 

Gender (Male) 1.02 (0.61-1.71) 0.94 0.48 (0.34-0.68) 2.70 x10-5 0.57 (0.43-0.75) 7.53 x10-5 

BMI 1.03 (0.98-1.08) 0.174 1.05 (1.03-1.07) 1.04 x10-6 1.04 (1.02-1.06) 6.00 x10-6 

T2DM 1.40 (0.86-2.28) 0.175 1.43 (0.99-2.09) 0.058 1.52 (1.13-2.03) 5.01 x10-3 
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Table 4.6: Multivariate analysis of association between TM6SF2 rs58542926 genotype and steatohepatitis stage (Activity Score A0-4). 

 

Additive model including age, gender, BMI, T2DM and PNPLA3 rs738409 genotype as covariates. 

Variables 

 

Discovery cohort (n=349) Validation cohort (n=725) Combined cohort (n=1074) 

β±SEM (95% CI) P-value β±SEM (95% CI) P-value β±SEM (95% CI) P-value 

TM6SF2 genotype 0.288±0.139 (0.015-0.561) 0.039 0.01±0.11 (-0.207-0.22) 0.921 0.1±0.087 (-0.067-0.276) 0.236 

PNPLA3 genotype 0.19±0.096 (0.005-0.382) 0.044 0.17±0.07 (0.032-0.31) 0.016 0.17±0.057 (0.065-0.289) 0.002 

Age 0.017±0.006 (0.006-0.03) 0.0034 0.014±0.004 (0.006-0.02) 7.0 x10-4 0.014±0.003 (0.007-0.02) 2.87 x10-5 

Gender (Male) -0.005±0.146 (-0.29-0.28) 0.972 -0.146±0.1(-0.34-0.051) 0.146 -0.049±0.08 (-0.21-0.11) 0.546 

BMI 0.02±0.012 (-0.0028-0.04) 0.085 0.01±0.005 (-0.001-0.02) 0.108 0.013± 0.005(0.003-0.02) 0.006 

T2DM 0.463±0.137 (0.194-0.733) 0.0008 0.079±0.11 (-0.13-0.29) 0.477 0.189± 0.086(0.01-0.358) 0.029 
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4.3.4 TM6SF2 and stage of histological fibrosis 

Finally, the association with NAFLD fibrosis stage was tested. In the discovery cohort 

multivariate analyses adopting an additive model adjusted for gender, age at biopsy, 

BMI, T2DM and PNPLA3 rs738409 genotype found that TM6SF2 rs58542926 (β 

0.549±0.135, 95%CI 0.285-0.813, P=5.57x10-5) and NCAN rs2228603 (β 

0.419±0.138, 95%CI 0.148-0.689, P=0.0026) were both significantly associated with 

stage of fibrosis. The association between TM6SF2 rs58542926 and fibrosis stage 

persisted when analysis included both the NCAN rs2228603 and the PNPLA3 

rs738409 SNPs as co-variates (β 0.552±0.205, 95%CI 0.151-0.953, P=0.0074). 

However, the association with NCAN rs2228603 was lost when the analysis was 

conditioned on rs58542926. Thus, the association is driven by the TM6SF2 

rs58542926 variant and carriage of its minor allele confers significantly greater 

NAFLD-related hepatic fibrosis independent of gender, age at biopsy, BMI, T2DM, 

and PNPLA3 rs738409 genotype.  

This strong association between TM6SF2 rs58542926 and fibrosis stage was 

replicated independently in the validation cohort (β 0.238±0.097, 95%CI 0.047-0.428, 

P=0.014) and also clearly demonstrated in the combined cohort (β 0.357±0.079, 

95%CI 0.203-0.511, P=6.36 x10-6) using an additive model adjusted for gender, age 

at biopsy, BMI, T2DM and PNPLA3 rs738409 genotype in both cases. To illustrate 

the potential clinical relevance of this finding, when the multivariate analysis was 

repeated subdividing the NAFLD cohort into those with mild fibrosis (F0-1) and 

advanced fibrosis (F2-4), carriage of each copy of the TM6SF2 rs58542926 C>T 

minor allele was associated consistently with a significant increased risk of advanced 

fibrosis, independent of gender, age at biopsy, BMI, T2DM, and PNPLA3 rs738409 

genotype across each cohort studied (Table 4.7). 
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Table 4.7: Multivariate analysis of association between TM6SF2 rs58542926 genotype and fibrosis stage F0-1 (mild) vs. F2-4 (advanced). 

 

Additive model including age, gender, BMI, T2DM and PNPLA3 rs738409 genotype as covariates.  
Discovery/Validation/Combined cohorts: Stage F0-1 (mild) n=198/439/637, Stage F2-4 (advanced) n=151/286/437. 

 

 

 

Variables 

 

Discovery cohort (n=349) Validation cohort (n=725) Combined cohort (n=1074) 

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

TM6SF2 genotype 2.94 (1.76-4.89) 3.44x10-5 1.46 (1.03-2.09) 0.0362 1.88 (1.41-2.5) 1.63 x10-5 

PNPLA3 genotype 1.57 (1.21-2.19) 0.0086 1.32 (1.05-1.66) 0.0183 1.40 (1.16-1.69) 4.84 x10-4 

Age 1.03 (1.01-1.06) 0.0045 1.02 (1.01-1.04) 0.0041 1.03 (1.01-1.04) 1.57 x10-5 

Gender (Male) 1.05 (0.64-1.74) 0.8297 0.55 (0.39-0.77) 4.50 x10-4 0.69 (0.53-0.91) 0.0096 

BMI 1.05 (1.00-1.10) 0.0368 1.03 (1.01-1.05) 9.80 x10-4 1.04 (1.02-1.05) 3.78 x10-5 

T2DM 2.39 (1.49-3.84) 0.0003 2.73 (1.93-3.88) 1.68 x10-8 2.57 (1.95-3.39) 1.78 x10-11 
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4.4 Discussion 

A region on chromosome 19 (19p13.11) that contains multiple genes previously 

known as NCAN/CLIP2/PBX4/TM6SF2 has been reported to be associated with 

NAFLD (Speliotes et al., 2011; Gorden et al., 2013; Kozlitina et al., 2014) as well as 

variations in plasma cholesterol, triglyceride and low-density lipoprotein levels in 

several earlier studies (Kathiresan et al., 2008; Teslovich et al., 2010; Holmen et al., 

2014). In particular, a variant within the NCAN gene (rs2228603 C>T) that is in 

strong linkage disequilibrium (D’=0.926, r2=0.798) with TM6SF2 rs58542926 was 

reported to be associated with radiologically and histologically characterized NAFLD 

in both GWAS and candidate-gene studies (Speliotes et al., 2011; Gorden et al., 

2013). Prior to the recent publication by Kozlitina et al. (Kozlitina et al., 2014), 

examination of linkage disequilibrium patterns across the region had already brought 

that association into question (Anstee and Day, 2013). It was however the use of a 

genome-wide exome-chip genotyping approach, combined with detailed association 

analysis conditioning on previously published variants across the 19p13.11 region, 

which determined that the causative variant affecting HTGC was TM6SF2 

rs58542926 (Kozlitina et al., 2014). In clinical practice, simple steatosis is generally 

considered to have a benign course and so degree of HTGC is of limited prognostic 

relevance (Ekstedt et al., 2006; Anstee et al., 2011b; Anstee et al., 2013b). In 

contrast, progressive hepatic fibrosis leading to cirrhosis is the principal common 

pathway to hepatic failure and a liver-related death (Ekstedt et al., 2006; Musso et 

al., 2011). Using two large, well-characterised European Caucasian cohorts with 

biopsy-proven NAFLD I demonstrate that carriage of the TM6SF2 rs58542926 

variant is strongly associated with the presence of NAFLD and in particular with a 

significantly greater risk of developing advanced hepatic fibrosis/cirrhosis.  

Evidence to support a modifier effect of the TM6SF2 rs58542926 variant on 

histologically determined HTGC (steatosis), seen only when the 1,074-patient strong 

combined cohort was studied, is arguably more modest than might be expected. Our 

findings do support the previously reported association (Speliotes et al., 2011; 

Gorden et al., 2013; Kozlitina et al., 2014), although differences in sensitivity to 

subtle changes in HTGC between radiological and histological modalities may have 

reduced the power to detect this effect (McPherson et al., 2009). Kozlitina et al. 

reported that the maximal effect of the TM6SF2 variant in European Caucasians was 
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only a mean 9.2% increase in 1H-MRS quantified HTGC in TT homozygotes above 

the ~5.9% observed in CC homozygotes (Kozlitina et al., 2014). Histological 

assessment of hepatic steatosis uses broad microscopic categories reflecting the 

proportion of hepatocytes that are visibly steatotic (S0 <5%, S1 5-33%, S2 33-66%, 

S3 >66%) (Bedossa and Consortium, 2014). Based on data from previous 

comparative modality analysis (McPherson et al., 2009), the modest gene effect size 

reported by Kozlitina (less-than a 3-fold increase in HTGC above normal) would 

likely be encompassed within the histological S1 bracket and therefore may not be 

apparent histologically. Combined with the relatively low minor allele frequency in the 

background population, smaller cohorts may therefore have insufficient statistical 

power for an association to become evident.  

The modifier effect of the TM6SF2 variant on grade of steatohepatitis (disease 

activity) was apparent in the initial discovery cohort analysis however statistical 

significance was not reached in the subsequent validation analysis. The validation 

cohort comprised a mixture of patients recruited from both hepatology and bariatric 

services and, although the cohorts appear well matched histologically, the validation 

cohort exhibited higher mean BMI levels (38.5±9.1 vs. 34.5±5.7 kg/m2, P<0.0001), a 

younger mean age (47.6±12.4 vs. 51.5±12.0 years, p<0.0001), a greater female 

preponderance (56.1% vs. 32.1%, P<0.0001) and a lower prevalence of T2DM 

(32.4% vs. 46.1%, P<0.0001) than the discovery cohort (Table 4.2). These factors 

may have impacted on our ability to replicate the initial association with 

steatohepatitis in a multivariate analysis. Further study of the variant in other patient 

cohorts and exploration of the functional effects of TM6SF2 on inflammatory 

response will be needed to address this point.  

The key finding of the current study is that carriage of the TM6SF2 rs58542926 C>T 

minor allele is unequivocally associated with an increased risk of advanced NAFLD-

associated hepatic fibrosis. This highly significant effect was consistently 

demonstrated across all the cohorts studied and was independent of potentially 

confounding factors including gender, age at time of biopsy, BMI, T2DM, and 

PNPLA3 rs738409 genotype. Conditional analysis undertaken as part of the present 

study adds further weight to the assertion that the 19p13 signal is causally related to 

TM6SF2 and not NCAN, not only for HTGC as was previously reported (Kozlitina et 

al., 2014) but now also for stage of hepatic fibrosis. These findings therefore 
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establish a new and important clinical relevance to the recently described 

association between TM6SF2 and NAFLD and suggest that TM6SF2 should be 

considered alongside PNPLA3 (Romeo et al., 2008; Valenti et al., 2010a) and GCKR 

(Speliotes et al., 2011; Anstee et al., 2013a; Petta et al., 2014), as one of a handful 

of genes so far identified that are associated not only with variations in hepatic 

triglyceride accumulation but also with fibrogenesis (Anstee and Day, 2013). It is 

noteworthy that across all the cohorts studied, the odds ratio for advanced fibrosis 

conferred by each copy of the TM6SF2 variant carried was consistently of similar or 

up to 2-fold greater magnitude than that which was observed, or has previously been 

reported (Valenti et al., 2010a; Valenti et al., 2010b), for the widely-studied PNPLA3 

rs738409 variant (Table 4.7).  

After our findings were published in mid-2014, the role of genetic modifier of 

TM6SF2 rs58542926 variant on severity of NAFLD, particularly the stage of simple 

steatosis, was soon replicated in studies performed in adults (Dongiovanni et al., 

2015; Sookoian et al., 2015; Wang et al., 2015; Zhou et al., 2015) and in paediatric 

patients (Mancina et al., 2015; Goffredo et al., 2016; Grandone et al., 2016). One 

study with large European cohort identified that NAFLD patients with TM6SF2 

rs58542926 E167K variant are not only more steatotic but also more prone to have 

steatohepatitis (necroinflammation and lobular ballooning) and fibrosis which 

validated our key finding (Dongiovanni et al., 2015). Two studies from China (Wong 

et al., 2014) and Argentina (Sookoian et al., 2015) failed to replicate the effect of 

TM6SF2 rs58542926 variant upon hepatic fibrosis. The former study used a 

community-based cohort rather than selecting individuals afflicted by NAFLD, 

suggesting the cohort is more likely to be a representative of ‘healthy population’. 

Together with the given generally low minor allele frequency of TM6SF2 rs58542926 

(MAF 0.07), they reported that this variant has limited impact on NAFLD. Whereas 

the other Chinese group with a more appropriate study design (a case-control 

association study between equivalent numbers of healthy controls and biopsy-

proven NAFLD patients) demonstrated a positive association between NAFLD and 

rs58542926 (Wang et al., 2015). The latter Argentinian study only contained a cohort 

of 226 NAFLD cases with histologically characterised disease: 96 of them had 

simple steatosis and the remaining 130 exhibited relatively mild fibrosis (mean 

fibrosis stage of 1.4 out of 4). The statistical power of this low quality study would 
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therefore be questionable, and Type II error may often occur. Interestingly, this 

significant genetic influence of TM6SF2 E167K on fibrosis even remained in a 

GWAS recently published suggesting carrier of this variant increased susceptibility to 

alcohol-induced cirrhosis (Buch et al., 2015).  

When Kozlitina et al. first linked the TM6SF2 rs58542926 minor allele (T) to NAFLD, 

a separate GWAS published around the same time assessing modifiers of serum 

lipid levels and cardiovascular disease (CVD) revealed that carriage of the common 

allele (C) of the same SNP was strongly associated with raised circulating TG/LDL-

C/TC levels and increased risk of myocardial infraction/cardiovascular disease while 

carriage of the (T) minor allele was protective (Holmen et al., 2014). One study 

applied two separate groups (a NAFLD patient cohort from Italy and Finland and a 

Swedish obese population) reinforced above findings (Dongiovanni et al., 2015). In 

427 NAFLD patients evaluated carotid atherosclerosis, the minor allele carriers of 

E167K had lower risk of developing carotid plaques (OR 0.49, 95%CI 0.25-0.94) 

while decreased serum lipid levels (TC, non HDL-C and ApoB) and lower prevalence 

of cardiovascular events (hazard ratio 0.61, 95%CI 0.39-0.95) were found in E167K 

carriers among 1,819 obese subjects (Dongiovanni et al., 2015). Above findings 

suggest that TM6SF2 rs58542926 C-allele carriage increases circulating lipid profiles 

whilst T-allele carriage promotes hepatic triglyceride/cholesterol retention. Although 

hepatic steatosis is often accompanied by insulin resistance, this dual role of 

TM6SF2 rs58542926 on fatty liver and serum lipid profiles was not found to be 

correlated (Mancina et al., 2015; Zhou et al., 2015). In fact, TM6SF2 E167K carriers 

had a higher level of hepatic insulin sensitivity of glucose production and adipose 

tissue lipolysis than those wild-type subjects (Zhou et al., 2015).  

In vivo (Holmen et al., 2014; Kozlitina et al., 2014) and in vitro (Holmen et al., 2014; 

Kozlitina et al., 2014; Mahdessian et al., 2014) functional studies indicate that 

TM6SF2 has gene effects on fat retention in the liver, lipid efflux and alteration in the 

number and average size of lipid droplets. However, these studies were of too short 

a duration to adequately address the effects on steatohepatitis or fibrogenesis. 

Furthermore, previous experimental evidence has shown that hepatic triglyceride 

accumulation may not itself be directly hepatotoxic. This was elegantly demonstrated 

in mice by silencing hepatic gene expression of diacylglycerol O-acyltransferase 2 

(Dgat2), a key enzyme mediating the conversion of free fatty acids to triglyceride 
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(Yamaguchi et al., 2007). Rather than ameliorating steatohepatitis, the consequent 

reduction in hepatocyte triglyceride synthesis was associated with increased fatty 

acid oxidation, particularly through Cyp2e1, leading to greater oxidative stress, 

cellular damage and higher serum transaminase levels (Yamaguchi et al., 2007). It is 

therefore tempting to speculate that the function of TM6SF2 and the mechanism 

through which TM6SF2 drives NAFLD-associated hepatic fibrosis may be other than 

through increased triglyceride accumulation.  

In conclusion, the current study confirms that TM6SF2 is associated with 

histologically defined NAFLD and is the first demonstration that this gene serves as a 

powerful modifier of hepatic fibrogenesis. That this gene is also associated with 

disturbed cholesterol metabolism and so may modify risk of cardiovascular events 

including myocardial infarction (Holmen et al., 2014), suggesting that TM6SF2 may 

be an important determinant of clinical outcome across several facets of metabolic 

syndrome related end-organ damage. 

Based on the available data it appears that TM6SF2 is an important determinant of 

clinical outcome across several facets of metabolic syndrome related end-organ 

damage. It is tempting to speculate that TM6SF2 may act as a ‘switch’ with TM6SF2 

rs58542926 T-allele mediated hepatic retention of triglyceride and cholesterol 

predisposing to NAFLD-fibrosis whilst C-allele carriage promotes VLDL excretion, 

protecting the liver but at the expense of an increased risk of atherosclerosis and 

ultimately, cardiovascular disease (Figure 4.1). NAFLD is globally acknowledged to 

be associated with CVD which is the most common causes of mortality in NAFLD 

patients rather than malignancy and a liver-related death (Targher et al., 2007a; 

Rafiq et al., 2009; Angulo, 2013; Anstee et al., 2013b), therefore carriage of different 

alleles of TM6SF2 may dissociate this. The minor (T) allele of TM6SF2 rs58542926 

carriers may likely to experience liver-induced death while individuals carrying the 

major (C) allele are prone to afflicted by cardiovascular morbidity and mortality. 

These data surely mandate further mechanistic study to determine the physiological 

and pathophysiological role of this gene in various tissues and cell types as a 

modifier of fibrogenesis, and hopefully could develop a putative therapeutic target.  
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Figure 4.1: Outcomes of the metabolic syndrome: TM6SF2 dissociates NAFLD from cardiovascular disease. Adapted from (Kahali et al., 2015). 
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5.1 Introduction 

The rise in the burden of NAFLD coincides with a marked increase in the incidence 

of HCC in many countries (El-Serag and Rudolph, 2007; European Association For 

The Study Of The Liver and Cancer, 2012; Dyson et al., 2014). Worldwide, most 

HCC cases are related to chronic viral hepatitis; however, more than half of all HCC 

cases in developed countries occur in the viral hepatitis negative population (Parkin, 

2006; Baffy et al., 2012). Features of the metabolic syndrome, particularly obesity 

and T2DM (with gender, age and ethnicity), are well-known independent risk factors 

for HCC (Guzman et al., 2008; Starley et al., 2010) whilst the pathogenic processes 

that favour progression from steatosis to steatohepatitis are also pro-carcinogenic 

(El-Serag and Rudolph, 2007). Accumulating evidence suggests that a substantial 

proportion of HCC occurs in the absence of advanced fibrosis (Hashimoto et al., 

2009; Ascha et al., 2010; Sanyal et al., 2010; Ertle et al., 2011). 

Despite the high prevalence of NAFLD, only a minority of patients exhibit 

steatohepatitis, progress to significant fibrosis or experience associated morbidity 

and mortality (Anstee et al., 2013b). The reasons for the apparent variation in 

individual susceptibility to progressive NAFLD in general and NAFLD-related HCC in 

particular are incompletely understood (Baffy et al., 2012; Anstee and Day, 2013). 

NAFLD-related HCC develops through the complex interplay of environmental and 

genetic factors that determine individual risk ('EASL-EORTC clinical practice 

guidelines: management of hepatocellular carcinoma,' 2012; Valenti et al., 2013). 

The role of the PNPLA3 c.444C>G SNP (rs738409) is well recognized as a modifier 

of hepatic triacylglycerol accumulation and NAFLD progression (Romeo et al., 2008; 

Valenti et al., 2010a; Anstee and Day, 2013). This variant has been associated with 

increased HCC risk in alcohol-related liver disease (Nischalke et al., 2011; Trepo et 

al., 2012; Guyot et al., 2013; Trepo et al., 2014) and, more variably, in chronic viral 

hepatitis (Falleti et al., 2011; Nischalke et al., 2011; Valenti et al., 2011b; Guyot et 

al., 2013; Trepo et al., 2014). Data has also been presented showing an association 

with HCC in morbidly obese patients (Burza et al., 2012) and a mixed-aetiology 

cohort (Hassan et al., 2013). Although it may be hypothesised that these latter 

associations are related to underlying NAFLD, to date no studies have specifically 

addressed the effect of PNPLA3 rs738409 C>G carriage on HCC risk in a NAFLD 

cohort.  
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As part of the current project, the TM6SF2 association with NAFLD was expanded 

after Kozlitina et al. first linked the rs58542926 minor allele (T) to steatosis (Kozlitina, 

2014); this gene was also found to serve as a powerful modifier of hepatic 

fibrogenesis (Liu et al., 2014b). Whether the TM6SF2 SNP is also relevant to 

NAFLD-associated HCC was therefore tested. 

The aim of the current study was to determine whether carriage of the PNPLA3 

rs738409 C>G or TM6SF2 rs58452926 C>T polymorphisms confers an increased 

risk of NAFLD-related HCC, and whether that effect is independent of the presence 

of cirrhosis. To address this, I performed a case-control association study in a well-

characterised Northern European cohort with NAFLD-related HCC. 
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5.2 Methods 

5.2.1 Patients  

Patients were recruited from hepatology clinics at two European specialist centres, 

the Freeman Hospital, Newcastle-upon-Tyne, UK and Inselspital Hospital, Bern, 

Switzerland. The study had all the necessary ethical approvals in both the countries 

and all participants gave informed consent (Table 5.1). A cohort of 100 Northern 

European Caucasian patients, were recruited prospectively, with primary HCC 

arising on a background of NAFLD was identified (UK 82, Switzerland 18 patients). 

The diagnosis of HCC was established histologically or through non-invasive 

assessment according to the EASL-EORTC clinical practice guidelines ('EASL-

EORTC clinical practice guidelines: management of hepatocellular carcinoma,' 

2012). The presence of NAFLD was determined through histological assessment of 

non-tumour liver tissue or, when biopsy was not clinically appropriate, through 

radiological evidence of hepatic steatosis. As a comparator, a cohort of 275 UK 

patients recruited prospectively, with histologically characterised NAFLD of different 

stages of disease but without clinical evidence of HCC was assembled. These were 

unrelated patients with histologically characterised NAFLD, derived from a patient 

population originally identified as having ultrasonographically detected bright liver 

and abnormal biochemical tests (ALT and/or GGT). In all cases, alternative 

diagnoses were excluded, including excess alcohol intake (alcohol intake <20g/day 

for women; <30g/day for men), chronic viral hepatitis (hepatitis B and hepatitis C), 

autoimmune liver diseases, hereditary hemochromatosis, α1-antitrypsin deficiency, 

Wilson’s disease and drug induced liver injury.  

Clinical and laboratory data were collected at the time of diagnosis. These included 

basic anthropometrics so that body mass index (BMI) could be calculated. Relevant 

co-morbidity including the presence of diabetes mellitus (fasting glucose ≥7.1 

mmol/L [≥128 mg/dl] or treatment with anti-diabetic drugs) and evidence of 

underlying cirrhosis was recorded. Laboratory evaluation included routine liver 

biochemistry (alanine and aspartate aminotransferase, total bilirubin, albumin, 

alkaline phosphatase and gamma glutamyl transpeptidase); full blood count; total- 

and HDL-cholesterol and total triglycerides; viral serology for hepatitis B and C 

infection and autoantibodies. Demographic details of the cohorts are shown in Table 

5.1. 
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5.2.2 Liver biopsy 

Liver biopsy performance is described in section 2.2. The severity of steatosis, 

necroinflammatory grade and stage of fibrosis were scored according to the 

validated Kleiner criteria (Kleiner et al., 2005). This assessment allowed confirmation 

of a NAFLD diagnosis and assessment of fibrosis so that patients were classified as 

cirrhotic or non-cirrhotic. In 25 HCC patients, the diagnosis of HCC was confirmed 

histologically and staged according to Edmondson (Edmondson and Steiner, 1954), 

adapted for needle biopsy specimens.  

 

5.2.3 DNA preparation from blood samples 

DNA extraction from blood samples was described in section 2.3.2. DNA preparation 

from some Newcastle samples was performed by Julian Leathart and Julia Patch 

(Newcastle University, ICM). DNA samples from Bern were isolated locally by the 

collaborators. 

 

5.2.4 PNPLA3 rs738409 and TM6SF2 rs58452926 genotyping  

Genotypes for the two SNPs were determined by allelic discrimination using TaqMan 

reagents. TaqMan SNP genotyping assays for PNPLA3 rs738409 (reference 

number: C___7241_10, Cat. # 4351379) and TM6SF2 rs58542926 (reference 

number: C___8709053_10, Cat. # 4351379) were purchased from Applied 

Biosystems Inc., USA. Genotypes for these SNPs were determined by allelic 

discrimination using TaqMan reagents according to the manufacturer’s protocol. 

Procedures were described in section 2.3.4.2. 

 

5.2.5 Statistical analysis  

Statistical analyses was performed using SPSS v19.0 (IBM, USA) to collate and 

analyse cohort phenotype data. Continuous variables were tested using Student’s t-

test/one-way ANOVA and categorical variables were analysed by Chi-squared test 

unless otherwise stated. PLINK v1.07 (Purcell et al., 2007) (via the gPLINK v2.050 

GUI) was used to conduct the genetic analysis. An initial univariate chi-squared 

analysis was performed to determine whether PNPLA3 rs738409 C>G carriage 
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differed between the NAFLD-HCC and control NAFLD-Cohort. Subsequently 

multivariate logistic regression analysis was conducted, incorporating rs738409 

genotype and those biologically relevant covariates that were associated with risk of 

disease progression to HCC (age, gender, coexisting T2DM, BMI and presence of 

cirrhosis) to test the genetic association. Consistent with previous studies (Romeo et 

al., 2008; Sookoian et al., 2009b; Rotman et al., 2010), an additive genetic model 

best fitted the data and was reported. Results were expressed as odds ratio (OR) 

with 95% confidence intervals (CI). Significance was taken as p<0.05 throughout.  
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5.3 Results 

5.3.1 Cohort characteristics 

One hundred NAFLD-HCC patients and 275 histologically characterised NAFLD 

control patients were recruited. Characteristics of the NAFLD-HCC and NAFLD 

control populations are provided in Table 5.1. Patients with NAFLD-HCC were 

significantly older (mean age 70.3±8.0 vs. 50.9±12.4 years, P<0.0001) than a 

general NAFLD cohort. NAFLD-HCC patients were also significantly more likely to 

be male (82% vs. 59%, P<0.0001) and to be diabetic (68% vs. 43%, P<0.0001). The 

presence of NAFLD-HCC was also significantly associated with underlying advanced 

fibrosis/cirrhosis (Kleiner F4 67% vs. 9%, P<0.0001). NAFLD-HCC patients exhibited 

a lower mean BMI than the NAFLD control population.  

 

 

Table 5.1: Details of NAFLD-HCC and NAFLD Cohorts. 

Categorical values are shown as n (%). Continuous variables are shown as mean ± SD. *Fibrosis 

stage distribution in NAFLD Cohort: F0 89 (32.4%), F1 97 (35.3%), F2 37 (13.5%), F3 26 (9.5%), F4 

26 (9.5%).

 

Phenotype NAFLD-HCC Cohort 

n=100 

NAFLD Cohort 

n=275 

P-Value 

 

PNPLA3 rs738409  

G-Allele Frequency 

0.505 0.333 <0.0001 

Age (Mean±SD) 70.3±8.0 50.9±12.4 <0.0001 

Male Gender (%) 82 (0.82) 161 (0.59) <0.0001 

BMI (Mean±SD) 32.0±6.6 34.4±5.2 0.0003 

Diabetes (%) 68 (0.68) 117 (0.43) <0.0001 

Cirrhosis (%) 67 (0.67) 26 (0.09)* <0.0001 
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5.3.2 PNPLA3 rs738409 C>G polymorphism carriage is associated with 

increased risk of HCC relative to a tertiary centre NAFLD cohort 

To determine whether carriage of the PNPLA3 rs738409 C>G allele influenced 

susceptibility to NAFLD-related HCC, we studied a cohort of Northern European adult 

patients with established NAFLD. The total study population of 375 individuals (100 

NAFLD-HCC, 275 NAFLD only) was genotyped for PNPLA3 rs738409. PNPLA3 

rs738409 genotypes were confirmed to be in Hardy-Weinberg equilibrium. Reflecting 

the known association with NAFLD, the minor allele (G) frequency observed in the 

present study (G617: 0.38) was slightly higher than that observed in a population of 

North-Western European descent by the International HapMap project 

(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=738409) but similar to that 

reported in previous NAFLD studies (International HapMap Consortium, 2003; 

Valenti et al., 2010a). Genotype frequencies are summarised in Table 5.2. 

Compared to a cohort of NAFLD patients with varying severity, carriage of the 

PNPLA3 rs738409 minor (G) allele (I148M variant) was strongly associated with the 

presence of NAFLD-related HCC (unadjusted OR 2.046, 95%CI 1.47-2.84, Χ2 18.50, 

P<0.0001) and exhibited a gene-dosage effect with the incidence of HCC increasing 

with the number of G alleles present (Cochran-Armitage Χ2 for trend 16.92, 

P<0.0001). Adopting an additive model relative to the NAFLD patient cohort, an 

approximate doubling of HCC risk was observed for each copy of the minor (G) allele 

carried (unadjusted OR 1.95, 95%CI 1.40-2.70, P<0.0001). The unadjusted odds 

ratio increased to 3.92 (95%CI 2.06-7.48, P=0.0001) when only homozygotes were 

considered (Table 5.2). The relationship between PNPLA3 genotype and a number 

of relevant patient-specific and clinical parameters is summarised in Table 5.3. 

Amongst those samples where HCC was histologically characterised, carriage of the 

rs738409 C>G polymorphism was associated with the presence of more poorly 

differentiated tumour (Fisher’s Exact Test P=0.018), (Table 5.3).  

 

5.3.3 PNPLA3 rs738409 C>G polymorphism carriage in NAFLD-HCC relative to 

an unselected population cohort 

The published PNPLA3 rs738409 C>G minor allele frequency in a UK general 

population sample (the MRC/Wellcome Trust UK 1958 Birth Cohort, 

http://www.b58cgene.sgul.ac.uk/) is 0.23 (95%CI 0.21-0.24) with genotype 

frequencies of CC 0.59, CG 0.36, GG 0.05. Carriage of the rs738409 C>G 

http://www.b58cgene.sgul.ac.uk/
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polymorphism was increased in the NAFLD-HCC cohort relative to this unselected 

population (Table 5.2). As limited phenotype data is available on the population 

cohort only unadjusted odds ratios could be calculated however, adopting an additive 

model relative to the UK general population, a greater than 3-fold increased HCC risk 

was observed for each copy of the minor (G) allele carried (OR 3.43, 95%CI 2.54-

4.62, P<0.0001). When only homozygotes were considered an odds ratio of 12.19 

(95%CI 6.89-21.58, P<0.0001) for GG over CC was observed.   
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Table 5.2: PNPLA3 rs738409 genotype frequencies and their relationship to risk of HCC development. 

♯ Odds ratio for HCC relative to CC genotype adjusted for age, gender, diabetes, BMI and cirrhosis. 

† The MRC/Wellcome Trust UK 1958 Birth Cohort. 

Genotype NAFLD-HCC 

n(%) 

NAFLD 

Cohort 

n(%) 

Unadjusted 

OR (95%CI) 

P-value Adjusted 

OR 

(95%CI)♯ 

P-value UK Popn. 

n(%)† 

Unadjusted OR 

(95%CI) 

P-value 

CC 28 (0.28) 125 (0.46) - - - - 871 (0.59) - - 

GC 43 (0.43) 117 (0.42) 1.64  

(0.96-2.81) 

0.072 2.35  

(0.90-6.13) 

0.082 531 (0.36) 2.52  

(1.55-4.10) 

0.0002 

GG 29 (0.29) 33 (0.12) 3.92  

(2.06-7.48) 

<0.0001 5.05  

(1.47-17.29) 

0.01 74 (0.05) 12.19 

(6.89-21.58) 

<0.0001 
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Table 5.3: Comparison of selected characteristics according to PNPLA3 rs738409 genotype within NAFLD-HCC and NAFLD Cohorts. 

Categorical values are shown as n (%). Continuous variables are shown as mean ± SD.  

† Comparison between PNPLA3 genotypes within each study cohort (chi-squared test used for categorical variables and one-way ANOVA for continuous 
variables unless otherwise stated).  

* 25 cases had histologically characterised HCC. Results expressed as n (%) of cases with ‘well differentiated’/’moderate-poorly differentiated’ tumour. P-
value calculated by Fisher’s Exact Test.

 NAFLD-HCC Cohort NAFLD Cohort 

Genotype  

n(%) 

CC 

n = 28 (0.28) 

CG 

n = 43 (0.43) 

GG 

n = 29 (0.29) 

P-Value† CC 

n = 125 (0.46) 

CG 

n = 117 (0.42) 

GG 

n = 33 (0.12) 

P-value† 

Age (Mean±SD) 73.6±8.1 68.9±7.9 69.2±7.4 0.034 50.9±12 51±12 50±15.2 0.906 

Male Gender (%) 23 (0.82) 36 (0.84) 23 (0.79) 0.892 75 (0.60) 74 (0.63) 12 (0.36) 0.020 

BMI (Mean±SD) 30.4±6.7 31.9±4.5 33.6±8.9 0.201 34.4±4.8 34.6±5.7 33.9±4.8 0.765 

Diabetes (%) 18 (0.64) 31 (0.72) 19 (0.66) 0.744 51 (0.41) 56 (0.48) 10 (0.30) 0.171 

Cirrhosis (%) 13 (0.46) 30 (0.70) 24 (0.83) 0.012 11 (0.01) 9 (0.01) 6 (0.18) 0.181 

Histological Grade of 

HCC* 

5 (0.45) /  

6 (0.54) 

8 (0.80) /  

2 (0.20) 

0 (0.00) /  

4 (1.00) 

0.018 - - - - 
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5.3.4 Contribution of the PNPLA3 rs738409 C>G polymorphism to NAFLD-

HCC risk is independent of presence of cirrhosis 

Given the previous reports demonstrating a role for rs738409 C>G as a modifier of 

disease progression and fibrosis in NAFLD, and the association between presence 

of age, T2DM, obesity and cirrhosis with HCC, a multivariate logistic regression 

analysis using an additive model was performed to control for any potential 

confounding effects. Along with genotype, gender, age at diagnosis, presence of 

advanced fibrosis/cirrhosis, T2DM and BMI were included in the analysis. PNPLA3 

genotype (OR 2.26, 95%CI 1.23-4.14, P=0.0082), gender, age and presence of 

cirrhosis were independent predictors of NAFLD-HCC (Table 5.4). Of these factors, 

male gender (OR 11.11, 95%CI 4.17-33.33, P<0.0001) and the presence of 

underlying cirrhosis (OR 9.37, 95%CI 3.82-23.00, P<0.0001) conferred the greatest 

risk. The presence of T2DM or raised BMI were not significant predictors of HCC risk 

in this analysis, although a trend towards significance was observed for T2DM (OR 

2.33, 95%CI 0.93-5.81, P=0.070). No significant interactions were identified within 

the regression model. The results of multivariate analysis correcting for age, gender, 

T2DM and BMI but not cirrhosis are shown in Table 5.5 and Table 5.6.  

 

Table 5.4: Multivariate analysis of the effect of PNPLA3 genotype on NAFLD-related HCC risk. 

Variables OR (95% CI) P-value 

PNPLA3 rs738409 genotype 2.26 (1.23-4.14) 0.0082 

Age 1.24 (1.17-1.32) <0.0001 

Gender (Male) 11.11 (4.17-33.33) <0.0001 

BMI 0.94 (0.87-1.02) 0.148 

Diabetes 2.33 (0.93-5.81) 0.070 

Cirrhosis 9.37 (3.82-23.00) <0.0001 

Additive Model including age, gender, BMI, diabetes and cirrhosis as covariates.
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Table 5.5: Multivariate analysis of the effect of PNPLA3 genotype on NAFLD-related HCC risk 
adjusted for age, gender, BMI and diabetes but not cirrhosis. 

Additive Model including age, gender, BMI and diabetes (but not cirrhosis) as covariates.  

 

 

 

Table 5.6: PNPLA3 rs738409 genotype frequencies and their relationship to risk of HCC 
development adjusted for age, gender, BMI and diabetes but not cirrhosis.  

♯ Adjusted odds ratio for HCC relative to CC genotype (covariates age, gender, T2DM and BMI).  

  

 

 

 

 

Variables OR (95% CI) P-value 

PNPLA3 rs738409 genotype 3.06 (1.76-5.29) <0.0001 

Age 1.28 (1.21-1.36) <0.0001 

Gender (Male) 9.52 (3.85-23.26) <0.0001 

BMI 0.98 (0.91-1.05) 0.593 

Diabetes 2.71 (1.19-6.17) 0.018 

Genotype NAFLD-HCC 

n(%) 

NAFLD Cohort  

n(%) 

Adjusted Odds Ratio 

(95%CI)♯ 

P-value 

CC 28 (0.27) 125 (0.46) - - 

CG 43 (0.43) 117 (0.42) 2.50 (1.03-6.08) 0.043 

GG 29 (0.3) 33 (0.12) 9.61  (3.21-28.75) <0.0001 
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NAFLD-HCC patients carrying the G allele on average developed HCC at a younger 

age than those that do not (Table 5.3). When NAFLD-HCC patients were stratified by 

median age (</>70 years) a significant enrichment in G allele carriage was present in 

the younger HCC patients over the older ones (MAF Young 0.59 vs. Old 0.42, Χ2 

5.76, P=0.016). Similarly, when compared to the NAFLD-Cohort control group, the 

effect of rs738409 carriage was statistically significant in those younger than the 

median age (OR 2.85, 95%CI 1.85-4.37, Χ2 24.09, P<0.0001) but not in those older. 

Consistent with previous reports (Valenti et al., 2010a), carriage of the rs738409 

C>G polymorphism was also significantly associated with the presence of NAFLD-

related cirrhosis (OR 2.33, 95%CI 1.66-3.27, Χ2 24.8, P<0.0001) across the entire 

375 patient NAFLD cohort and exhibited a gene-dosage effect with the incidence of 

cirrhosis increasing with the number of G alleles present (Cochran-Armitage Χ2 for 

trend 22.68, P<0.0001). To further examine the effect of PNPLA3 on HCC risk 

independent of degree of fibrosis, only those patients with coexistent cirrhosis were 

studied (NAFLD-HCC n=67, NAFLD-Cohort n=26). Study-group sizes were relatively 

small in this sub-analysis however carriage of the rs739409 C>G polymorphism 

remained significantly associated with NAFLD-HCC (OR 2.06, 95%CI 1.07-3.94, Χ2 

4.78, P=0.029) in patients with cirrhosis. Adopting an additive model incorporating 

genotype, gender, age at diagnosis, T2DM and BMI, PNPLA3 remained significantly 

associated with HCC (OR 3.41, 95%CI 1.39-8.37, P=0.0074) amongst patients with 

cirrhosis. The effect did not reach statistical significance in the non-cirrhotic cohort, 

but for HCC this group included only 23 cases. 

 

5.3.5 TM6SF2 rs58542926 C>T polymorphism and risk of hepatocellular 

carcinoma 

We also sought to determine whether TM6SF2 rs58542926 had a similar effect to 

PNPLA3 rs738409. TM6SF2 rs58542926 allele and genotype frequencies in this 

cohort were compared to the NAFLD cohort described above. In the univariate 

analysis, homozygote carriage of the TM6SF2 rs58542926 minor allele was 

associated with an increased risk of NAFLD-HCC with respect to CC (OR 1.922, 

95%CI 1.31-2.81, P=6.81 x10-4), however significance was lost in the multivariate 

analysis incorporating known risk factors including age, gender, BMI, T2DM and 

presence of cirrhosis (P=0.42).
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5.4 Discussion 

Using a large, well-characterised Northern European cohort with biopsy-proven 

NAFLD we show a strong association between PNPLA3 rs738409 genotype and 

HCC risk, but not with TM6SF2 rs58542926 genotype. This highly significant effect 

between the PNPLA3 rs738409 SNP and HCC risk was independent of potentially 

confounding factors including age, gender, co-existent diabetes, obesity and the 

presence of cirrhosis. Although PNPLA3 rs738409 is principally recognised as a 

disease risk factor in NAFLD (Anstee and Day, 2013), studies thus far reporting 

associations with HCC have been in individuals with viral hepatitis (Falleti et al., 

2011; Nischalke et al., 2011; Valenti et al., 2011b; Guyot et al., 2013), alcoholic liver 

disease (Nischalke et al., 2011; Trepo et al., 2012; Guyot et al., 2013) or obesity 

(Burza et al., 2012) (reviewed (Valenti et al., 2013; Trepo et al., 2014). We report the 

first NAFLD study in which multivariate analysis relative to a well-characterised 

NAFLD population demonstrates that carriage of each G allele is associated with a 

doubling of HCC risk (adjusted OR 2.26, 95% CI 1.23-4.14, P=0.0082).  

As they were recruited in a tertiary centre, our NAFLD cohort is likely to represent a 

more severe spectrum of disease than is present in an unselected population cohort, 

and so is likely to be enriched for rs738409 C>G minor allele carriage. We therefore 

also compared the NAFLD-HCC cohort with a UK general population sample (the 

MRC/Wellcome Trust funded UK 1958 Birth Cohort) to provide a measure of effect 

relative to an unselected background population. Although additional phenotype data 

for this secondary analysis was limited and so only univariate comparisons could be 

made, the results were striking. Carriage of the G allele was strongly associated with 

HCC with the homozygote GG genotype being associated with an unadjusted odds 

ratio for HCC of 12.19 (95%CI 6.89-21.58) over CC. By its nature, this secondary 

analysis cannot control for potential confounders including age, gender, co-existent 

diabetes, obesity and the presence of cirrhosis as these data are not available for 

the 1958 Birth Cohort and so care should be taken not to over-interpret the estimates 

of effect-size in this comparison. However, taken together with the results of our 

primary analysis comparing NAFLD-HCC with histologically characterised NAFLD, 

the results consistently demonstrate significantly increased HCC risk with PNPLA3 

rs738409 C>G minor allele carriage and suggest that the effect-size reported by our 

primary analysis using a tertiary centre NAFLD cohort may be a conservative 
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estimate. These results have implications for our understanding of HCC 

pathogenesis in NAFLD and, if supported by further validation, are also potentially of 

clinical relevance.  

In keeping with established predictors of progression from steatosis to NASH and 

fibrosis, and the recognised independent associations of HCC with both cirrhosis and 

T2DM (El-Serag et al., 2004; Anstee et al., 2013b), we show that NAFLD-HCC 

patients are likely to be older males with T2DM and underlying cirrhosis. In contrast, 

although NAFLD-HCC patients were generally obese, at the time of HCC diagnosis 

the mean BMI was lower than that of the reference NAFLD population. The reason 

for this is not clear however this observation is possibly attributable to HCC induced 

cachexia.  

A key finding in the current study is that the influence of rs738409 C>G on HCC risk 

was greater than can be accounted for by the associated increased risk of 

progression to cirrhosis. This was demonstrated both in the multivariate analysis, 

where the effect of cirrhosis was controlled by inclusion as a covariate, and also in a 

sub-analysis with the cohort stratified according to presence of cirrhosis. Amongst 

cirrhotics, rs738409 C>G remained a highly significant factor even after the other 

covariates were included in the model (OR 3.41, 95%CI 1.39-8.37, P=0.0074), 

indeed the adjusted odds ratio increased. Thus, supporting the conclusions of the 

multivariate regression analysis, HCC risk conferred by PNPLA3 genotype is not 

mediated solely through progression to advanced fibrosis. The effect of PNPLA3 did 

not reach significance in the non-cirrhotic sub-group and so it is tempting to 

speculate that the effect of rs738409 on HCC risk is largely confined to those with 

cirrhosis; however, only 23 HCC patents were included in that analysis and overall G 

allele carriage was low, severely limiting statistical power and so the negative result 

should be interpreted with caution. Furthermore, no significant interaction between 

genotype and cirrhosis was identified in the logistic regression model making this 

interpretation less likely. Validation in a larger NAFLD-HCC cohort will be required to 

clarify this point; irrespective of this our data supports the view that HCC promotion 

by PNPLA3 in NAFLD is independent of its role in fibrosis progression.  

It is noteworthy rs738409 C>G polymorphism carriage was associated with a mean 

4-year younger age at tumour presentation than the CC genotype (Table 5.3). 
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Consistent with a recent report that PNPLA3 genotype may have a greater impact on 

hepatic fibrosis progression at younger onset of alcohol consumption (Burza et al., 

2013), our observation that minor allele carriers were younger at HCC diagnosis 

possibly suggests the influence of genetic factors on HCC risk diminishes with age, 

whilst acquired exposure to environmental factors exerts a greater effect. 

Stratification by median age showed the greatest effect of PNPLA3 in those aged 

less than seventy and so would support this view however, as discussed earlier, 

such an interaction is not supported by the multivariate analysis and so further 

studies in larger cohorts will be needed to address this.  

The PNPLA3 gene encodes a protein that is closely related to adipose triglyceride 

lipase (ATGL/PNPLA2), the major TAG hydrolase in adipose tissue (Zimmermann et 

al., 2004; Romeo et al., 2010). PNPLA3 represents one of a small number of genes 

that has been consistently identified as a modifier of NAFLD severity (reviewed 

(Anstee and Day, 2013)). Notably, the variant has also been associated with 

inflammation and fibrosis independent of TAG accumulation (Sookoian et al., 2009b; 

Rotman et al., 2010; Valenti et al., 2010a; Al-Serri et al., 2012). The pathogenesis of 

HCC in NAFLD has been the subject of recent reviews, highlighting the likely 

contributions of lipotoxicity (Baffy et al., 2012), metabolic or stress response 

pathways (Michelotti et al., 2013), gut microbiota, bile acid receptors, vitamin D, 

senescence and autophagy in hepatic stellate cells as well as progenitor cell 

dysregulation (Lade et al., 2014). However, our findings suggest that the contribution 

of PNPLA3, probably in the context of these proposed mechanisms, warrants further 

study. 

In terms of lipotoxicity, the phenomenon called ‘adipose tissue expansion’ - is a 

compensatory response to an overwhelming uptake of fat/nutrition when obesity 

occurs. This process releases several cytokines, typically leptin, tumour necrosis 

factor alpha (TNF-α) and interleukin-6 (IL-6), promoting a pro-inflammatory and pro-

fibrotic environment through activation of JAK/STAT, PI3K/Akt, mTOR and Nf-KB 

signalling pathways (Saxena et al., 2007; Baffy et al., 2012; Nakagawa et al., 2014). 

Sustained lipid/nutrition overloading results in an increase in de novo lipogenesis 

coincident with a decrease in excretion of VLDL and a reduction in free fatty acids 

(FFA) clearance. Aberrant level of circulating FFA could induce ER stress and JNK-

dependent hepatocyte lipoapoptosis (Malhi et al., 2006; Wei et al., 2006). In the 
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context of overwhelmed fatty acid oxidation, reactive oxygen species (ROS) can 

therefore be produced at high levels. These free radicals target DNA, RNA, proteins 

and lipids, causing inflammation, damage to genomic DNA and other 

macromolecules, mitochondrial dysfunction, ER stress and apoptosis, forming a 

fundamental process for oncogenesis (Hussain et al., 2003; Malhi et al., 2006; Wei 

et al., 2006). Because PNPLA3 is known to be expressed in the liver and adipose 

tissue, suggested to be localized in the ER and in lipid droplets and possibly 

functioning as a lipid hydrolase (Pirazzi et al., 2012), it is tempting to speculate that 

mutation of PNPLA3-I148M may stimulate or accelerate the conditions described 

above by means of loss of function. Namely, the mutated protein causes excess fat 

retention within lipid droplets via a reduced activity of lipid hydrolysis and an impaired 

secretion of VLDL in the ER. Hence, PNPLA3-I148M may profoundly promote the 

effects of adipose tissue remodelling and following cascades of lipotoxicity.  

Moreover, insulin resistance (IR) and hyperinsulinemia are essential elements in 

obesity-associated conditions. The actions of insulin involve a complex signalling 

network, with insulin receptor-mediated tyrosine phosphorylation of insulin receptor 

substrates (IRS), activation of PI3K/Akt pathway, and enzymatic regulators for 

glucose uptake, glycogen and lipid synthesis (Saltiel and Kahn, 2001). Multiple 

insults driven by elevated circulating FFA and ROS may cause impaired insulin 

signalling, resulting in insulin resistance and hyperinsulinemia (Saltiel and Kahn, 

2001; Jou et al., 2008; Karagozian et al., 2014). Evidence indicates that consistently 

high levels of insulin, insulin-like growth factors (IGF) and IRS-1 are involved in the 

development of angiogenesis and HCC, by activating oncogenic pathways of 

PI3K/Akt, vascular endothelial growth factor (VEGF) and mitogen-activated protein 

kinase (MAPK) (Tanaka et al., 1997; Kim et al., 1998). Insulin also activates the 

gene expression of transcription factor steroid regulatory element-binding protein 

(SREBP) -1c  to promote hepatic de novo lipogenesis (Ferre and Foufelle, 2007). 

Increased activation of SREBP-1c due to insulin resistance/hyperinsulinemia would 

therefore worsen steatosis. Additionally, carbohydrate response element-binding 

protein (ChREBP) is another key transcription factor responsible for promotion of 

glycolysis and de novo lipogenesis (Iizuka and Horikawa, 2008). It has been 

demonstrated that the degree of steatosis was markedly improved by liver-specific 

inhibition of ChREBP in mouse, decreasing lipogenic rates and improving insulin 
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sensitivity in liver, skeletal muscles and adipose tissue (Dentin et al., 2006). Hence, 

PNPLA3 is very likely to share a part of the underpinning mechanisms of NAFLD-

HCC as it is regulated by both SREBP-1c and ChREBP (Rae-Whitcombe et al., 

2010; Perttila et al., 2012a). Besides, PNPLA3 also has been suggested to have 

retinyl-palmitate lipase activity in human hepatic stellate cells, which may explain its 

pathophysiological role in liver fibrosis (Pirazzi et al., 2014). 

Taken together with our data, the observation that carriage of the rs738409 GG 

genotype was associated with more poorly differentiated tumours amongst those 

with histologically characterised NAFLD-HCC, these findings suggest that PNPLA3 

genotype may directly influence tumour biology. Additional studies will be required to 

establish how these effects of PNPLA3 are mediated. However, the general concept 

of PNPLA3 in determining the susceptibility to NAFLD-related HCC could be that 

accumulating fat promoted by PNPLA3 I148M, oxidative stress and the low-grade 

inflammatory response present in NAFLD, favour a pro-carcinogenic milieu within the 

liver (Baffy et al., 2012). This interpretation would be consistent with previous studies 

that suggest a greater effect of the PNPLA3 variant on HCC risk in steatotic liver 

diseases (e.g. ALD, and here NAFLD) than that observed in non-steatotic conditions 

such as viral hepatitis (Sookoian and Pirola, 2013; Trepo et al., 2014).  

The high prevalence of NAFLD within the general population and the potential for 

disease progression both to cirrhosis and HCC poses a major challenge to existing 

healthcare infrastructure (Anstee et al., 2011b). Understanding the contribution of 

PNPLA3 to this process may theoretically have relevance to future preventive or 

therapeutic strategies targeting NAFLD-HCC. Ultrasonography and serological 

examinations (alpha-fetoprotein, AFP) ('EASL-EORTC clinical practice guidelines: 

management of hepatocellular carcinoma,' 2012) are presently used surveillance 

strategies, but even when targeting the cirrhotic population, their cost-effectiveness 

is debatable (Sarasin et al., 1996; Trevisani et al., 2007). Like most common 

diseases, NAFLD-related HCC is a complex disease trait with risk influenced by a 

combination of genetic and environmental factors. Whilst the odds ratios reported 

here are substantial and highly statistically significant, these do not mean that the 

PNPLA3 rs738409 variant is the sole driver for HCC or could alone be used to 

stratify individual HCC risk (Manolio, 2013). However, if the results of the current 

study are corroborated, PNPLA3 rs738409 genotype could potentially be included in 
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a broader multi-factorial risk assessment to help physicians to identify those amongst 

the expanding population of obese individuals with NAFLD at greatest risk of HCC, 

both in the presence and absence of cirrhosis (Baffy et al., 2012; Dyson et al., 2014). 

If the current findings are validated, a prospective economic evaluation of strategies 

incorporating assessment of PNPLA3 rs738409 C>G status to target surveillance to 

those at greatest HCC risk may be warranted.  

It should however be noted that the NAFLD-HCC cohort contained only 100 patients 

in the case-control analyses (NAFLD vs. NAFLD-HCC) for both PNPLA3 and 

TM6SF2. However, a significant association was only observed between the 

PNPLA3 rs738409 genotype and NAFLD-related HCC, not TM6SF2 rs58542926. 

One possible explanation for the differences between the two SNPs in the 

association with NAFLD-HCC could be due to their minor allele frequencies. In the 

Northern European population, minor allele frequencies of 0.22 and 0.07 were 

reported for PNPLA3 rs738409 and TM6SF2 rs58542926, respectively. The 

numbers increased slightly and were found to be 0.34 (rs738409) and 0.12 

(rs58542926) in our NAFLD cohort. Combined with a relatively modest TM6SF2 

rs58542926 minor allele frequency, the current study had approximately 70% power 

to detect an effect if an additive genetic model and risk similar to that seen for 

fibrosis (described in Chapter 4) is assumed (α=0.05) (Purcell et al., 2003). Failure to 

detect an association for TM6SF2 due to limited statistical power cannot therefore be 

completely excluded but would seem unlikely. Studies using larger cohorts of 

NAFLD-HCC patients than are presently available will be required to provide 

sufficient power to study this further. Alternatively, differences between the two 

proteins in overall function (e.g. the reported additional role for PNPLA3 in retinyl-

palmitate lipase activity) may explain the association of PNPLA3 with fibrosis and 

HCC but TM6SF2 with fibrosis only. 

In summary, we report a striking association between PNPLA3 rs738409 and the 

development of NAFLD-HCC, which is independent of other known risk factors. 

These data highlight the importance of understanding the contribution of PNPLA3 

I148M to NAFLD-HCC pathogenesis, and if validated, may contribute to a tailored 

approach to the cost effective surveillance and detection of NAFLD-HCC in those at 

greatest risk. 
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6.1 Introduction 

As described in Chapter 1, the two SNPs in the genes PNPLA3 (rs738409 c.444 

C>G, p.I148M) and TM6SF2 (rs58542926 c.449 C>T, p.E167K) are significantly 

associated with severity of NAFLD. Our statistical data in the previous Chapters also 

suggested that the PNPLA3 rs738409 SNP is a strong genetic risk factor associated 

with susceptibility to steatosis, inflammation and fibrosis using a well-characterised 

histologically proven NAFLD cohort. Moreover, we demonstrated the novel finding 

that this SNP was independently associated with the end-stage of NAFLD - 

hepatocellular carcinoma (data described in Chapter 5). Therefore, investigating the 

functional role of PNPLA3 in NAFLD pathogenesis is important, including how this 

variant may biologically influence development of steatosis and fibrosis.    

As described in detail in section 1.7.3.6, recent research suggests that PNPLA3 

mediates hydrolysis of acylglycerols and the I148M, which results in reduced 

enzymatic activity, causes fat accumulation in the liver. (He et al., 2010; Huang et al., 

2011). The PNPLA3 I148M variant has also been reported to alter hepatic lipid 

metabolism especially TG remodelling in lipid droplets within hepatocytes (Li et al., 

2012; Ruhanen et al., 2014). Beyond steatosis, its role in underlying biological 

mechanisms through which PNPLA3 influences progression to NASH and hepatic 

fibrosis still remain obscure. One study recently published by Pirazzi et al. has shed 

some light on the association between PNPLA3 I148M and hepatic fibrogenesis, 

demonstrating that PNPLA3 may possess a role of retinyl-palmitate hydrolase in 

human HSCs (Pirazzi et al., 2014). PNPLA3 was reported to be highly expressed in 

both the retina and the liver thus pointing to a key feature within the two organs, 

retinol metabolism. Retinol is converted into retinyl ester for storage in quiescent 

HSCs and is released during stellate cell activation (Lee and Jeong, 2012; Pirazzi et 

al., 2014). Pirazzi et al. further demonstrated that PNPLA3 is indeed highly 

expressed in HSCs, the dominant contributors to fibrogenesis. Incubation of primary 

human HSCs or immortalized human HSCs – LX-2 with retinol and palmitate up to 

48 hours showed that a time-dependent increase in lipid droplet accumulation 

coexisted with a down-regulation of PNPLA3 protein expression, suggesting that 

PNPLA3 expression may also be regulated by retinol availability in human HSCs. 

Additionally, overexpressed wild-type PNPLA3 in HSCs resulted in a substantial 

reduction of lipid droplet content, an effect that was lost with I148M. These findings 
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reinforce that PNPLA3 is a regulator of lipid metabolism influenced by retinol levels 

and the I148M variant is a loss-of-function mutation (Pirazzi et al., 2014). How 

activation of HSC, collagen deposition and fibrogenesis may be affected by this 

mutated protein remains unknown but however indicates that PNPLA3 may be 

expressed in multiple cell types. Thus, challenges remain in targeting relevant cell 

types and optimising experimental conditions to further investigate the key role of 

PNPLA3 in NAFLD. 

In respect of TM6SF2 rs58542926 SNP, unlike studies for PNPLA3, little is known in 

terms of the pathogenic role of TM6SF2 in NAFLD. The current understandings of 

this protein are that: 1) TM6SF2 is a multi-pass membrane protein (Carim-Todd et 

al., 2000), 2) is highly expressed in liver, kidney and intestines (Kozlitina et al., 2014; 

Surakka et al., 2015), 3) is mainly localized to the ER and ER-Golgi intermediate 

compartments (ERGIC) (Mahdessian et al., 2014), and 4) both in vivo (Holmen et al., 

2014; Kozlitina et al., 2014) and in vitro (Holmen et al., 2014; Kozlitina et al., 2014; 

Mahdessian et al., 2014) functional studies indicate that TM6SF2 has effects on fat 

retention in the liver, lipid efflux and alteration in the number and average size of lipid 

droplets. Taking the current knowledge of TMS6F2 together with our data in Chapter 

4 that the TM6SF2 rs58542926 polymorphism was strongly linked to hepatic fibrosis, 

it appears that this variant is an important determinant of clinical outcome across 

several facets of metabolic syndrome related end-organ damage.  

To investigate of the functional significance of the PNPLA3 rs738409 and TM6SF2 

rs58542926 in fatty liver disease, a series of studies were performed as described in 

this Chapter. In this preliminary investigation, I aimed to establish in vitro models to 

demonstrate the effect of fatty acid treatment on PNPLA3 and TM6SF2 expression. 

Commercially available human hepatoblastoma/hepatoma cell lines were 

characterised in detail and compared with primary hepatocytes. Additionally, the 

effect of retinol-palmitate treatment on PNPLA3 expression in the immortalized 

human HSCs – LX-2 was also investigated. 
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6.2 Methods 

6.2.1 Cell culture 

6.2.1.1 Cell lines employed and cell culture conditions 

Three human HCC cell lines (Hep3B, HUH-7 and SNU182), and one human 

hepatoblastoma cell line (HepG2) were obtained from Gillian Patman, Northern 

Institute for Cancer Research, Newcastle University. The human hepatic stellate cell 

line LX-2 was kindly provided by Prof. Fiona Oakley, Institute for Cellular Medicine, 

Newcastle University. Cell culture conditions and DNA/RNA isolation are described 

in section 2.4.1 and section 2.4.2, respectively. Materials used are listed in Table 6.1 

and Table 6.2. 

Cultured primary human hepatocytes were purchased from Biopredic International 

(Saint-Grégoire, France, catalogue number: HEP220). These primary hepatocytes 

were isolated from a single donor, 54-year old male Caucasian, who had been 

diagnosed with liver metastases from carcinoma of the colon. Alternative diagnoses 

were excluded, including excess alcohol intake, chronic viral hepatitis (hepatitis B 

and hepatitis C), hypertension, diabetes, cardiovascular disease, and human 

immunodeficiency virus infection (HIV).  

The isolation of hepatocytes was performed by the supplier using an undisclosed 

protocol (for commercial reasons). Primary hepatocytes were cultured by the 

supplier in a 6-well plate for one day after isolation with undisclosed culture 

conditions. Cell morphology was maintained and cell viability and culture confluence 

were reported to be 88% and 98%, respectively.  

The 6-well plate was dispatched and delivered on the second day after isolation. 

After arrival, the cells were washed once with 1X PBS (Lonza, Slough, UK; 

catalogue number: BE17-516F) and the culture medium was replaced by the basal 

hepatic cell medium (Biopredic International, Saint-Grégoire, France, catalogue 

number: MIL600, 100 ml) supplemented with the 10X long term culture medium 

(Biopredic International, Saint-Grégoire, France, catalogue number: ADD271, 11 ml). 

All the solutions for cell culture were filter-sterilized by 0.22 μm filter (Merck Millipore, 

Hertfordshire, UK). The cells were incubated at 37°C in an atmosphere with 5% 

humidified CO2. On the following morning, the hepatocytes were harvested for DNA 

(section 2.4.2.1), RNA (section 2.4.2.1) and protein extraction (section 2.4.2.3).  
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Table 6.1: Complete RPMI medium for growing HepG2, Huh-7, Hep3B and SNU182 cells. 

Name Supplier 

RPMI 1640 500 ml Lonza, Cat: BE12-167F 

Sodium Pyruvate 100 mM (5 ml) Lonza, Cat: BE13-115E 

L-glutamine 200 mM (5 ml) Lonza, Cat: BE17-605E 

Non-essential amino acids 100X (5 ml) Lonza, Cat: BE13-114E 

10% Foetal bovine serum FBS (50 ml) Lonza, Cat: DE14-801F 

Penicillin/ Streptomycin (5 ml) Lonza, Cat: DE17-603E 

 

 

Table 6.2: Complete RPMI medium for growing LX-2 cells. 

Name Supplier 

RPMI 1640 500 ml Lonza, Cat: BE12-167F 

Sodium Pyruvate 100 mM (5 ml) Lonza, Cat: BE13-115E 

L-glutamine 200 mM (5 ml) Lonza, Cat: BE17-605E 

Non-essential amino acids 100X (5 ml) Lonza, Cat: BE13-114E 

5% Foetal bovine serum FBS (50 ml) Lonza, Cat: DE14-801F 

Penicillin/ Streptomycin (5 ml) Lonza, Cat: DE17-603E 

 

 

6.2.1.2 Genotyping and gene expression 

Genotyping was conducted using TaqMan SNP genotyping assays for PNPLA3 

rs738409 (reference number: C___7241_10, Cat. # 4351379) and TM6SF2 

rs58542926 (reference number: C___8709053_10, Cat. # 4351379) purchased from 

Applied Biosystems Inc., USA. The procedure of genotyping is described in section 

2.3.4.2. TaqMan gene expression assays were purchased from Applied Biosystems 

Inc., USA for PNPLA3 (Hs00228747_m1, Cat: #4331182), TM6SF2 

(Hs00403495_m1, Cat: #4331182) and GAPDH (Dm01843827_s1, Cat. # 4331182) 

as the reference gene. Materials used and performance of reverse transcription and 

gene expression are described in section 2.4.2.3. Unpaired student T-test was 

adapted for statistical analyses using 2-^delta CT value.  
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6.2.1.3 Preparation of BSA-bound oleic acid 

Oleic acid (317 µl) was taken from the stock solution (SIGMA, Cat: O1008, 3.15M), 

and was added to 50 ml of a 0.15 M (8.76 mg/ml) NaCl solution at 70°C to reach a 

concentration of 20 mM. Another 25 ml of 3.4 mM (224 mg/ml) bovine serum 

albumin (BSA) already dissolved in Dulbecco's modified Eagle's medium-F12 

(DMEM-F12) at 37°C was prepared, filtered by 0.22 μm filter (Millex-GP), and kept at 

37°C. Once the 20 mM oleic acid solution was fully mixed, 25 ml of it was then 

added to 25 ml 3.4 mM BSA-DMEM solution at 70°C, under constant agitation to 

provide the final solution of BSA-bound oleic acid (10 mM). The final solution of BSA-

bound oleic acid was adjusted to pH 7.4, sterilized by 0.22 μm filter (Millex-GP), and 

stored at -20°C for fatty acid treatments on cell lines. Materials used are listed in 

Table 6.3. Selected cells were grown under the same culture conditions and treated 

with a final concentration of 1 mM oleic acid, loading for 8, 24 and 48 hours. 

 

 

 

Table 6.3: Materials used for BSA-bound oleic/palmitic acids. 

Name Supplier 

Oleic acid SIGMA, Cat: O1008 Mwt 282.46; Density 

0.891/ml 

Palmitate (palmitic acid) SIGMA, Cat: P9767 

BSA SIGMA, Cat: A7030 

DMEM F-12 

(Dulbecco's modified Eagle's medium-F12) 

500ml 

Lonza, Cat: BE12-719F 
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6.2.1.4 Retinol/palmitate treatment on LX-2  

25 mg of retinol powder purchased from Sigma (Cat: R7632) was first dissolved in 1 

ml of ethanol to make the original stock at 87.2 mM, 25.8 µl of it was then diluted in a 

45 ml of 5% BSA-PBS solution to make the 50 µM BSA-bound retinol stock solution. 

The stock solution was adjusted to pH 7.4 and was sterilized by a 0.22 μm filter.  

Sodium palmitate (palmitic acid) was purchased from SIGMA (Cat: P9767). 278 mg 

palmitate was first dissolved in a 50 ml of 0.15 M NaCl solution (8.76mg/ml) at 70°C 

for 1h to reach a concentration of 20 mM. 25 ml of the palmitate solution was then 

added to another 25 ml solution of 3.4 mM BSA (224 mg/ml) already dissolved in 

DMEM-F12 and stored at 37°C. The 50 ml mixture was under constant agitation at 

70°C to make the final BSA-conjugated palmitate solution (10 mM). Afterwards, the 

final solution was adjusted to pH 7.4, sterilized using 0.22 μm filter (Millex-GP), and 

stored at -20°C (materials are listed in Table 6.3).  

The study design and the procedure for retinol/palmitate treatment of LX-2 are 

shown in Figure 6.1- 6.4. Cells were divided into 4 groups depending on the culture 

conditions: untreated (group A), treated with retinol 10 µM alone (group B), with 

palmitate 300 µM alone (group C) and group D treated with both retinol (10 µM) and 

palmitate (300 µM). Four different time points were selected as read-out references 

(0 hour, 12 hours, 24 hours, and 48 hours). It has been suggested that an increased 

retinol uptake within HSCs occurred in the presence of palmitate pre-incubation prior 

to retinol loading (Randolph and Ross, 1991; Vogel et al., 2000). Except for the 

group A and B, group C and D were therefore pre-incubated with palmitate (300 µM) 

for 12 hours prior to further incubation of palmitate or a mixture of retinol and 

palmitate, thus the actual durations of palmitate loading for these two groups were 0 

hour, 24 hours, 36 hours, and 60 hours. All the standard media or conditioned media 

(supplemented with either retinol, palmitate or both) were changed at the same time 

to minimise variations. Once the experiment was complete, cells were washed twice 

by 1X PBS and harvested for Western blotting, gene expression analysis and Oil red 

O staining. 
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Figure 6.1: Layout of study design and purposes for retinol or/and palmitate treatment on LX-2. 

PA, palmitate; RA, retinol. 

 

 

 

Figure 6.2: Study procedure for group B, LX-2 treated with retinol (10 µM) alone. 
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Figure 6.3: Study procedure for group C, LX-2 treated with palmitate (300 µM) alone. 

 

 

 

Figure 6.4: Study procedure for group D, LX-2 treated with both retinol (10 µM) and palmitate 
(300 µM). 
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6.2.1.5 Western-blotting 

A series of Western-blotting procedures including protein extraction, protein 

concentration determination, polyacrylamide gel electrophoresis of protein samples, 

electrophoretic blotting procedure of proteins separated by SDS-PAGE, blocking, 

probing and immunodetection of protein blots, and staining of the PVDF membrane 

are described thoroughly in section 2.4.3. The rabbit polyclonal anti-PNPLA3 was 

purchased from Abcam, Cambridge, UK (ab81874, with 1:900 dilution) and the rabbit 

polyclonal anti-GAPDH was purchased from Santa Cruz Biotechnology, Inc. (sc-

25778, with 1:25000 dilution). Two commercial anti-TM6SF2 were employed, the 

mouse polyclonal anti-TM6SF2 from Abcam (ab169629) and the rabbit polyclonal 

anti-TM6SF2 from ANTYBODY VERIFY (AAS00444C). 

 

6.2.1.6 Oil Red O staining  

Oil Red O is a fat-soluble dye used for staining of neutral triglycerides and lipids on 

frozen or paraffin tissues. Cells were fixed overnight using a 10% formalin solution 

(VWR, prolabo, Cat: 361387P), and were then incubated with 60% isopropanol 

(VWR, prolabo, Cat: 20842.330) for 5 min at room temperature after washing with 1 

ml of sterile water twice. Having been dried completely, cells were loaded with 1 ml 

of 60% Oil Red O working solution (6 parts of Oil Red O purchased from SIGMA 

(Cat: O-0625) and 4 parts of 100% isopropanol) and left on the bench for 10 min 

incubation at room temperature. At the final stage, cells were washed 4 times by 

sterile water, and all images were acquired under the microscope.  
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6.3 Results 

6.3.1 The role of PNPLA3 polymorphism rs738409 in vitro  

6.3.1.1 PNPLA3 rs738409 genotypes of selected cell lines 

To investigate the effect of PNPLA3-I148M in vitro three human hepatoma cell lines 

(Hep3B, HUH-7 and SNU182), one hepatoblastoma cell line (HepG2), primary 

human hepatocytes and one human hepatic stellate cell line (LX-2) were employed. 

Each cell line was genotyped for PNPLA3 rs738409. Interestingly, 50% of cell lines 

targeted are homozygous mutant (GG). Subsequently, the basal expression of 

PNPLA3 (both RNA and protein levels) among these cell lines were investigated and 

compared to primary human hepatocytes. Genotypes of PNPLA3 (rs738409) in 

these cell lines are listed in Table 6.4. 

 

6.3.1.2 Basal mRNA levels and protein expression of PNPLA3  

Primary hepatocytes and the five cell lines were characterized for PNPLA3 mRNA 

expression in triplicate. It should be noted that the primary hepatocytes used in this 

gene expression analysis were technical replicates (n=3) as they were isolated from 

a single donor whilst the other commercial cell lines were biological replicates (n=3). 

However, primary human hepatocytes showed the highest expression of PNPLA3, 

whereas the lowest level was found in LX-2. Using primary hepatocytes as the 

reference, PNPLA3 is highly expressed in primary hepatocytes compared to HepG2 

(P=0.001), HUH-7 (P=0.038), SNU182 (P=0.001), and LX-2 (P=0.02). No significant 

difference was found between Hep3B and primary hepatocytes (P=0.43). With 

regard to expression of PNPLA3, it is highly expressed in primary human 

hepatocytes compared to the others which shared a similar level, Figure 6.5 (this 

preliminary data contains a low n-value, n=1).  

 

 Table 6.4: PNPLA3 rs738409 genotypes of the selected cell lines. 

CC for homozygous wild-type and GG for homozygous mutant. 
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Figure 6.5: Basal messenger RNA levels and protein expression of PNPLA3 in HepG2, Hep3B, 

HUH-7, SNU182, LX-2 and primary human hepatocytes. (A) Basal mRNA levels of PNPLA3 (n=3) 

and (B) Western blot analysis of PNPLA3 (n=1) in the selected cell lines. (C) Densitometry 

based on Western blot results. Unpaired student T-test was used as the test for statistical 

significance test using 2-^delta CT values, with human hepatocytes as the reference. * 

represents p value <0.05. 
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6.3.2 The effect of oleic acid treatment on PNPLA3 expression in vitro 

To investigate differences in expression of PNPLA3 following fat loading in cells of 

different genotypes, two cell lines which possess two copies of common (C) or minor 

(G) allele respectively were selected: Hep3B homozygous wild-type CC and HUH-7 

homozygous mutant GG. Hep3B and HUH-7 were treated with the same culture 

condition, the medium supplemented with 1 mM BSA-bound oleic acid, and were fat-

loaded for the same time points of 8, 24, and 48 hours, Figure 6.6. 

For the experiments performed by using Hep3B (homozygous wild-type, CC), protein 

intensities were quantified by densitometry at three exposure times, 2, 5, and 17 

minutes (Figure 6.6. A). An increased expression of PNPLA3 was observed in 

Hep3B compared to the control 8 hours after start of treatment. However, this result 

could be affected by a bubble between the SDS gel and the blotting membrane, 

therefore no firm conclusion could be made upon this. Distinct alterations in 

expression of PNPLA3 were not detectable when comparisons were made between 

the untreated and the treated groups at the 24- and 48-hour time points.  

For the results of fat-loading on HUH-7 displayed in Figure 6.6 (B), the densitometric 

analyses were performed by three different exposure times, 15, 30 seconds, and 2 

minutes. Once again, no major differences could be identified in the protein level of 

PNPLA3 between each groups at the three time points.    
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Figure 6.6: Effect of oleic acid on expression of PNPLA3 in the selected cell lines. (A) Hep3B and (B) HUH-7 cells were treated for 8 hours, 24 hours, 

and 48 hours with 1 mM Oleic acid (n=1). The expression of PNPLA3 were visualised by Western blot analysis and quantified using densitometry 

at different time exposures (+ represents treated condition, CTL, control). 
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6.3.3 The effect of retinol/palmitate treatment on PNPLA3 expression in LX-2 

A recent study reported that PNPLA3 may be involved in retinyl-palmitate hydrolysis 

in hepatic stellate cells (HSC/LX-2), by demonstrating that a decreased expression 

of PNPLA3 coexisted with an increased lipid droplet accumulation in the presence of 

retinol and palmitate incubation for up to 48 hours (Pirazzi et al., 2014). To 

investigate the role of PNPLA3 in a fibrogenic cell type, I therefore performed a 

similar study to that from Pirazzi et al. but with LX-2 employed only to test the effect 

of retinol/palmitate treatment upon expression of PNPLA3. 

As described in section 6.2.1.4 (methods), this study is composed of 4 groups 

(untreated, treated with retinol or palmitate alone, and with both) for 4 time points (0, 

12, 24, 48 hours). The study design and procedure is shown in Figure 6.1.-6.4. At 

each time point, cells were harvested for RNA/protein extraction and Oil red O 

staining.  

Before reporting our results, the limitations of these preliminary data should be 

noted. A key limitation is that the cells were overly stressed by the incubations with 

palmitate (alone or in combination with retinol) due to the nature of saturated fat 

toxicity. In fact, the viability of LX-2 could only be maintained for 24 hours of 

incubation. Beyond this time point, the LX-2 were severely stressed and cell 

death/cell detachment from the flasks could be easily observed. The palmitate 

treatment of the LX-2 cells resulted in a strongly reduced RNA 280/260 ratio (data 

not shown) due to a large loss of cell numbers. Therefore, I focussed on analysing 

protein expression rather than gene expression as a more acceptable amount of 

protein extracted from the cells allowed Western blotting to be performed (results are 

displayed in Figure 6.7).  

Taken the results from those blots and densitometric data, an increased expression 

of PNPLA3 was found in the untreated controls and those treated with palmitate 

alone. The expression of PNPLA3 in those treated with retinol alone increased 

slightly at the beginning followed by a trend towards a decrease. Treatment with 

combined retinol and palmitate showed a reduced level of PNPLA3 in a time-

dependent manner, similar to the findings published by (Pirazzi et al., 2014).  

Lastly, Oil Red O staining was used to visualise intracellular neutral lipid content in 

LX-2 incubated with palmitate, retinol or both combined (Figure 6.8). No major 
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differences were detectable for the group incubated with retinol alone (Figure 6.8 - 

B). In regard to the groups treated with palmitate only (Figure 6.8 - C) or in 

combination with retinol (Figure 6.8 - D), it is clear that both palmitate and combined 

treatments induced intracellular lipid uptake in a time-dependent manner. However, 

reduced cell viability and cell loss after 24 hours incubation were observed with 

treatment by palmitate or both compounds during the experiment thus quantification 

of intracellular lipid accumulation was not comparable. Also noteworthy is that the 

study described in this section has only been conducted once, hence all data should 

be interpreted with caution.
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Figure 6.7: Effect of retinol/palmitate treatment on expression of PNPLA3 in LX-2 for 0, 12, 24, and 48 hours. (A) Exposure time for 50 seconds, and 

(B) exposure time for 2 minutes. The signal intensities presented by densitometric analyses with different time exposures are shown underneath. 
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Figure 6.8: Oil red O staining of LX-2 at 4 time points. (A) Untreated control, (B) LX-2 treated with 10 µM retinol alone, (C) LX-2 treated with 300 µM 

palmitate alone, (D) LX-2 treated with 10 µM retinol and 300 µM palmitate. Arrows showed above are the examples of stained lipids within the cells.
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6.3.4 The role of TM6SF2 rs58542926 polymorphism in vitro 

6.3.4.1 TM6SF2 rs58542926 genotypes of each cell line 

The functional study of TM6SF2-E167K is covered briefly in this thesis as it is an 

ongoing study. Primary human hepatocytes, human hepatoma and hepatic stellate 

cell lines (HepG2, Hep3B, HUH-7, SNU182 and LX-2) were genotyped for TM6SF2 

rs58542926 (results displayed in Table 6.5). All of them are homozygous wild-type 

(CC) except the SNU182 cells are heterozygotes (CT). A high genotype frequency of 

homozygous wild-type identified in the cell lines is conceivable as the minor allele 

frequency of this SNP is only 0.07, observed in a Northern European population 

(http://browser.1000genomes.org). Interestingly, the low frequency of minor allele (T) 

carriage among these cell line is also in line with the non-statistically significant 

association between rs58542926 C>T and NAFLD-related HCC (already described 

in Chapter 5).  

 

6.3.4.2 Basal mRNA levels and protein expression of TM6SF2

To get a general idea of TM6SF2 expression, quantitative gene expression (n=1) 

and Western blot analyses were used to investigate mRNA levels and protein 

expression of this gene in the aforementioned cell lines. All the cell lines used in this 

gene expression analysis were technical replicates. Primary human hepatocytes 

showed the highest expression level of TM6SF2, whereas HUH-7 are the second 

highest and the others shared a similar level of TM6SF2 mRNA (Hep3B, LX-2 and 

SNU182), Figure 6.9. The expression of TM6SF2 of these cell lines was tested by 

Western blot analysis. However, the two commercial antibodies employed in this 

study failed to detect the protein (data not shown).    

 

Table 6.5: TM6SF2 rs58542926 genotypes of the selected cell lines. 

CC for homozygous wild-type and CT for heterozygous. 
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Figure 6.9: Basal expression levels of TM6SF2 mRNA in the selected cell lines, n=1.  
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6.4 Discussion  

To investigate the functional significance of PNPLA3 (mainly) and TM6SF2, a series 

of preliminary in vitro studies were described in this chapter, including genotyping for 

both PNPLA3 rs738409 and TM6SF2 rs58542926 SNPs, the quantitative gene 

expression of endogenous mRNA levels and immunoblotting for protein expressions 

of the two genes, and fatty acids treatments with oleic acid/retinol/palmitate using 

human hepatoma, hepatoblastoma, and hepatic stellate cell lines.  

Regarding the study for PNPLA3 rs738409, 50% of the cell lines were identified as 

homozygous mutant (GG) whilst only 30% in homozygous wild-type (CC). Although 

the sample number of the cell lines employed is quite small, only 3 hepatoma cell 

lines and the primary hepatocytes were obtained from only one individual, enriched 

G-allele in these cell lines roughly mirrors the statistical association between the 

rs738409 variant and liver cancer. Investigations on mRNA/protein expression of 

PNPLA3 were subsequent performed to test any variations by different genotypes. 

Relatively high levels of PNPLA3 mRNA were observed in primary hepatocytes and 

Hep3B (homozygous wild-type for both) compared to the others either are 

heterozygous CG (SNU182) or homozygous mutant (HepG2, HUH-7, and LX-2). For 

the protein levels, PNPLA3 is once again highly expressed in the primary 

hepatocytes while the other cell lines possess a similar but lower level. Notably, the 

levels of PNPLA3 mRNA varied among the commercial cell lines however no major 

differences in expression of PNPLA3 were detected. This discrepancy of the 

expression patterns between mRNA and protein of PNPLA3 in those cell lines may 

be explained by the following points: 1) Cancer cells or artificial immortalized cells 

(LX-2) may have alterations in transcription/translation/metabolism process 

compared to primary cells. Several biological factors have been suggested may 

influence translational efficiency, including RNA secondary structure, weak Shine-

Dalgarmo sequence (imperfect complementarity to ribosomal RNA), blocking 

translation by regulatory proteins (i.e. R-protein) and small RNA, low ribosome 

occupancy, and codon bias. Additionally, protein turnover may also influence the 

correlation between mRNA and protein abundances as individual protein half-lives 

vary from seconds to hours (Maier et al., 2009). 2) Technical factors: varied sensitivity 

in methodology used for quantitative analysis of mRNA and protein. Real time PCR 

provides fast, precise and accurate results, by collecting data as the reaction is 

proceeding not measured at End-Point (plateau) as traditional PCR does. An 

increase in reporter fluorescent signal is directly proportional to the number of 
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amplicons generated thus it is more sensitive for DNA and RNA quantitation. On the 

contrary, Western blot is a semiquantitative technique with several processing-steps 

for protein detection. Various parameters during the processing steps may influence 

sensitivity of the results: blot transfer conditions, blot irregularities, concentration of 

antibodies and ECL substrate, exposure time, camera sensitivity, colour format and 

adjustments, band definition and background correction (Heidebrecht et al., 2009). 3) 

Ethnicity, genetic background may be one of the determinants which exert different 

levels of PNPLA3 expression, as HepG2 cells are derived from a Caucasian patient 

while Hep3B, HUH-7, SNU182 are from African American, Japanese, and Korean, 

respectively. Notably, LX-2 is a transfected cell line which was made immortal for 

research purposes (Xu et al., 2005), and the origin of this cell line remains elusive. 4) 

Complex disease trait is a phenotype contributed from more than one SNP, therefore 

other SNPs near rs738409 may also have effects on the expression of PNPLA3. 5) A 

coding SNP is generally considered to slightly alter function of a protein rather than 

changing expression. Though there is growing evidence for the significant role of 

PNPLA3 in severity of NAFLD, it is uncertain that whether under this amino acid 

substitution of PNPLA3-I148M, the other ‘rescue’ pathways in human body are 

activated to cover this subtle defect so as to maintain the original function or 

metabolic role that PNPLA3 is involved in.  

The next step after characterization of the cell lines for PNPLA3 rs738409 was to 

investigate whether any alteration/activation of PNPLA3 expression could be 

observed in response to fat loading by different genotypes as FFA metabolism is one 

of the key elements for NAFLD development (Ricchi et al., 2009), and PNPLA3 was 

suggested to mediate hydrolysis of acylglycerols with a strong preference for oleic 

acid as the acyl moiety (He et al., 2010; Huang et al., 2011). Additionally, studies 

also revealed that a decreased unsaturated/saturated fatty acid ratio in serum, fat 

and liver tissue was found in obese NAFLD patients (de Almeida et al., 2002; Videla 

et al., 2004). An in vitro study also reported that oleic acid (unsaturated FFA) was 

more steatogenic but less toxic than palmitate (saturated FFA) (Ricchi et al., 2009). 

Therefore, a preliminary study of oleic acid treatments on Hep3B (wild-type, 

PNPLA3-148I) and HUH-7 (mutant isoform, PNPLA3-148M) was performed with time 

points of 8, 24 and 48 hours selected. 

Although the previous in vitro studies on PNPLA3 showing an inactivated TG 

hydrolysis coexisted with intracellular fat deposition resulted from overexpression of 
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PNPLA3-148M under fat loading (He et al., 2010; Perttila et al., 2012a), no apparent 

effect on expression of PNPLA3 was in either the homozygous wild-type or 

homozygous mutant cells after treatment with oleic acid in the present study. Once 

again, this preliminary study has low n-value (n=1) thus no firm conclusion could be 

made, and the present data is not comparable to those studies mentioned above as 

the study designs such as cell type employed and procedure of overexpression are 

totally different. Replicate studies are definitely required, including further 

optimization of experimental conditions. These include the concentration and 

components of fatty acids applied and the duration of treatment. Other co-culture 

variables such as glucose or insulin could also be considered as PNPLA3 is 

regulated by ChREBP and SREBP-1c under hyperglycaemia and hyperinsulinemia, 

respectively, to promote de novo lipogenesis (Shimomura et al., 1999b; Rae-

Whitcombe et al., 2010; Perttila et al., 2012b).  

As PNPLA3 is highly expressed in HSCs, which have a key role in hepatic 

fibrogenesis and are the main reservoir of retinoids stored in lipid droplets (Senoo et 

al., 2010), and suggested to be regulated by retinol availability in human HSCs 

(Pirazzi et al., 2014), other fat loading experiments using retinol/palmitate/combined 

treatment on immortalized LX-2 cells were also performed in the present work to 

demonstrate the role of PNPLA3 in a fibrogenic cell type. In particular this was to 

further investigate the underlying mechanisms of the association between the 

PNPLA3 rs738409 variant and fibrosis. The study design is similar to the work by 

Pirazzi et al. with the difference that LX-2 cells were not only treated with retinol and 

palmitate but also with the palmitate separately. Our results showed that treatment 

with palmitate alone induced increased expression of PNPLA3 whilst a reduced level 

was found in the combined treatment with no effect was detectable under incubation 

with retinol alone. Although our data shares a similar trend with the work 

demonstrated by Pirazzi et al., the limitations of this present study should be 

considered; reduced cell viability due to palmitic toxicity together with low n-value of 1  

and it is therefore inappropriate to make a solid conclusion. Replicate experiments 

with optimised procedures are required to clarify whether PNPLA3 expression can be 

induced by retinol, palmitate or a combined effect as Pirazzi et al. only reported the 

combined effect of retinyl-palmitate on expression of PNPLA3 in primary human 

HSCs. Nonetheless, they stated that the same results were found in LX-2 with these 

data not included in the publication, though the absence of these data makes a direct 

comparison difficult. However, studies recently published provided more information 
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for the functional role of PNPLA3 in fibrogenesis; overexpression of wild-type 

PNPLA3 induced a reduction in secretion of proteins involved in extracellular matrix 

formation and remodelling, secretion of matrix metallopeptidase 2 and tissue inhibitor 

of metalloproteinase 1 and 2 (Pingitore et al., 2016). Conversly, PNPLA3-I148M 

potentiates the fibrogenic features of HSCs (Bruschi et al., 2017). 

To date, the majority of studies examining the functional role of PNPLA3 or TM6SF2 

in NAFLD involve either overexpression or knock-down of the protein, resulting in 

alterations in the entire protein level, which cannot completely reflect functional 

effects due to a SNP mutation. CRISPR/Cas9 may be a possible approach to 

address this issue, it is a nuclease guided by small RNAs through Watson-Crick base 

pairing with target DNA, representing a system that is markedly easier to design, 

highly specific, efficient and well-suited for high-throughput and multiplexed gene 

editing for a variety of cell types and organisms (Ran et al., 2013). By adopting 

CRISPR/Cas9, the ease of customization, higher targeting efficiency and the ability 

to facilitate multiplex genome editing (simply knock-in the SNP of interest), a greater 

precision and prediction in functional effect of one SNP could be easily achieved. 

Other challenges remain in targeting different organs or cell types to establish in vitro 

models for NAFLD. Lipotoxicity-mediated inflammation and prolonged liver injury by 

oxidative stress triggers proliferation/activation of hepatic progenitor cells which can 

differentiate into hepatocytes and cholangiocytes. Activated progenitor cells are 

correlated to ductular reaction initiating fibrosis via epithelial-mesenchymal transition 

contributing to the portal myofibroblast pool or production of chemotactic agents for 

inflammatory cells activating progenitor cells (Wruck et al., 2017). Macrophage-

derived foam cells due to excessive lipid deposition are also presented in 

progression to NASH (Walenbergh et al., 2013). By future work targeting cell types 

not only involving hepatocytes and HSCs but also hepatic progenitor cells or 

macrophages (Kupffer cells in the liver), and optimized experimental variables (fatty 

acid compositions and their saturation degree for instance) in combination with 

CRISPR/Cas9, the functional roles of PNPLA3 and TM6SF2 in NAFLD progression 

may be better assessed.  
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7.1   General discussion 

Non-alcoholic fatty liver disease represents a spectrum of progressive liver disease 

characterised by increased HTGC in the absence of excess alcohol consumption. It 

incorporates NASH, fibrosis and ultimately cirrhosis and is strongly associated with 

features of the metabolic syndrome (obesity, insulin resistance/T2DM and 

dyslipidaemia) (Anstee et al., 2013b). NAFLD is best considered as a complex 

disease trait resulting from a combination of environmental exposures acting on a 

susceptible polygenic background (Altshuler et al., 2008; Hirschhorn and Gajdos, 

2011; Anstee and Day, 2013). Although NAFLD is estimated to affect approximately 

one-third of the population in many developed countries, only a minority of patients 

exhibit progressive steatohepatitis leading to cirrhosis and/or hepatocellular 

carcinoma (HCC), suggesting that inter-patient genetic variations may exert a greater 

effect upon the pathogenesis of NAFLD (Anstee et al., 2013b; Loomba and Sanyal, 

2013). Therefore, investigation into the genetic contribution to NAFLD may be useful 

to determine those are at high risk in developing severe disease and possibly provide 

tailored surveillance. 

This thesis reports a series of studies examining the association of genetic variations 

in two genes patatin-like phospholipase domain-containing 3 (PNPLA3, rs738409 

c.444 C>G, p.I148M) and transmembrane 6 superfamily member 2, (TM6SF2, 

rs58542926 c.449 C>T, p.E167K) with severity of NAFLD and risk of NAFLD-

associated hepatocellular carcinoma (HCC). The patient cohort used is the largest 

histologically characterised NAFLD cohort assembled up to date and represents the 

full spectrum of disease from simple steatosis through steatohepatitis to advanced 

fibrosis and cirrhosis. Patients are of European-Caucasian descent (n=1,005) and 

were assembled during the FLIP (Fatty liver: Inhibition of Progression) project funded 

by the European Commission. To test the association between SNPs of interest and 

the end stage of NAFLD, another cohort of 100 Northern European Caucasian 

patients with primary HCC arising on a background of NAFLD was identified and 

were recruited from UK and Switzerland. As a comparator with NAFLD-related HCC 

population, a cohort of 275 biopsy-proven NAFLD patients of different stages of 

disease but without clinical evidence of HCC was also assembled. Healthy controls 

were not studied due to the invasive nature of liver-biopsy, hence the analyses were 

conducted comparing severity of disease within the NAFLD spectrum. This approach 

differs from most case-control studies where comparison is made to a normal healthy 

population. However, in the absence of non-invasive methods to establish absence 
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of NAFLD this would have required the conduct of liver biopsy in heathy people and 

so was not ethically appropriate or feasible.  

Using candidate gene association studies in the FLIP cohort to address first the role 

of PNPLA3, the rs738409 variant was significantly associated with steatosis (OR 

1.87, 95%CI 1.52-2.29, P=2.98x10-9), steatohepatitis (β 0.174±0.059, 95%CI 0.056-

0.291, P=0.0037) and fibrosis (OR 1.4, 95%CI 1.15-1.7, P=0.0006), independent of 

age at biopsy, gender, BMI and presence of T2DM. Our data supports the well-

established assertion that the PNPLA3 rs738409 is a major genetic determinant for 

susceptibility to NAFLD. Subsequently, adopting a case-control analysis in a cohort 

of 100 NAFLD-associated HCC and a cohort of 275 NAFLD patients without HCC, 

carriage of the rs738409 minor (G) allele was shown to significantly associate with an 

increased risk of developing NAFLD-associated HCC, independent of potential 

confounding factors including gender, age at diagnosis, T2DM, BMI, and presence of 

advanced fibrosis/cirrhosis (OR 2.26, 95%CI 1.23-4.14, P=0.0082). As 22-54% of 

NAFLD-HCC occur in the absence of cirrhosis (Sanyal et al., 2010; Ertle et al., 2011), 

the effect of PNPLA3 on HCC risk independent of degree of fibrosis was further 

examined selecting those patients with coexistent cirrhosis (NAFLD-HCC n=67, 

NAFLD-Cohort n=26). Here, although the study-group sizes were relatively small in 

this sub-analysis, the effect of rs739409 variant remained significantly associated 

with NAFLD-HCC (OR 2.06, 95%CI 1.07-3.94, Χ2 4.78, P=0.029). When the non-

cirrhotic group were studied however, the effect did not attain statistical significance, 

although this may be due to insufficient statistical power given that only 23 cases 

were available in non-cirrhotic HCC group.  

The work in this thesis not only confirms the association between PNPLA3 with 

NAFLD severity but also provides the most robust evidence to date of its association 

with HCC risk which was published in 2014 (Liu et al., 2014a). Several studies have 

validated the PNPLA3 effect on NAFLD-related HCC (Casper et al., 2016; 

Vespasiani-Gentilucci et al., 2016). It is well-acknowledged that NAFLD as a complex 

disease trait, unlike Mendelian disorders, is often considered an outcome attributed 

from multiple genetic modifiers, where each genetic variant may alone be insufficient 

to cause disease (Hirschhorn and Gajdos, 2011; Anstee and Day, 2013). Strikingly, a 

12-fold increased risk of HCC was demonstrated in our work for rs738409 minor (G) 

allele homozygotes relative to C-allele homozygotes (OR 12.19, 95%CI 6.89-21.58, 

P<0.0001), when comparing the genotype frequencies between the NAFLD-HCC 
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patients and an unselected UK general population sample (the MRC/Wellcome Trust 

UK 1958 Birth Cohort). In response to our data, Krawczyk et al. compared the effect 

of PNPLA3 to the monogenic condition hereditary haemochromatosis due to HFE 

rs1800562 (A>G, p.C282Y) as the rs738409 SNP carries such strong genetic effect. 

Their detailed comparison demonstrated that carriage of either variant confers a 

similar risk of HCC (Krawczyk et al., 2015). Although statistical techniques to assess 

proportion of variability explained by genetic variations are imperfect (Witte et al., 

2014), our data indicates a Population Attributable Risk (PAR) of PNPLA3 rs738409 

for HCC of 55% and an area under the receiver operator characteristics curve 

(AUROC) of 0.68 attributable to this variant (Liu et al., 2014a). Further supporting the 

independent role of PNPLA3 rs738409 as a risk factor for HCC, it is telling that other 

genetic variants that are strong modifiers of NAFLD severity and fibrosis progression 

such as TM6SF2 (Liu et al., 2014b), do not appear to confer an additional, 

independent increased risk of HCC (Liu et al., 2014b; Dongiovanni et al., 2015). We 

agree with Krawczyk et al. that PNPLA3 is an important genetic risk factor for liver 

disease. For the moment, we would however caution against a move towards 

considering “PNPLA3-associated NAFLD”, or by extension “PNPLA3-associated 

HCC”, as distinct, monogenic conditions analogous to HFE in haemochromatosis but 

rather suggest that PNPLA3 should be considered a strong modifier within a 

complex, polygenic disease trait that is subject both to genetic and substantial 

environmental influence (e.g. due to dietary factors and the intestinal microbiota) 

(Anstee et al., 2013b).  

Given the mounting evidence of an association between PNPLA3 and HCC (Burza et 

al., 2012; Trepo et al., 2014), it is timely to consider the clinical utility of PNPLA3 

genotyping to assist in patient risk stratification. It has been suggested that, 

assuming a sensitivity of 80%, an odds ratio of >50 is required to control false-

positive rates to an acceptable level of <10% (Manolio, 2013). A re-analysis of the 

data from our previously published article (Liu et al., 2014a) to assess 

sensitivity/specificity is shown in Table 7.1. Based on these data, the use of PNPLA3 

genotyping alone to positively predict risk of HCC is unlikely to be tenable. However, 

even in this HCC-enriched dataset, the negative predictive value was substantially 

greater, both within the NAFLD vs. NAFLD-HCC comparison and the NAFLD-HCC vs. 

unselected background population comparison, and so it may be that knowledge of 

PNPLA3 rs738409 genotype has utility to select out those individuals least likely to 

develop HCC and therefore least likely to benefit from surveillance. As Krawczyk et al. 
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suggest, studies addressing the interaction between PNPLA3 and HFE in 

determining HCC risk would be of great interest. Given the increasing prevalence of 

NAFLD-HCC and consequent clinical need for improved risk-stratification care 

pathways (Dyson et al., 2014), we would also suggest that large, prospective studies 

are needed urgently to validate our findings and to determine the utility and health-

economic merits of a multi-factorial risk stratification that incorporates PNPLA3 

rs738409 genotype along with other recognised risk factors for HCC.  

Recently, a novel non-synonymous SNP in TM6SF2 (rs58542926 c.449 C>T, 

p.Glu167Lys (E167K) was identified to be associated with 1H-MRS quantified HTGC 

by an exome-wide association study (Kozlitina et al., 2014). This variant has also 

been associated with dyslipidaemia and cardiovascular risk (Holmen et al., 2014). It 

was therefore pertinent to determine whether this variant also affected risk of 

steatohepatitis or fibrosis in NAFLD. Using the aforementioned cohorts (FLIP and 

NAFLD-HCC ones), our data demonstrated the first time that, in addition to its 

association with steatosis, the rs58542926 SNP is significantly associated with stage 

of fibrosis in NAFLD. P-values are P=5.57 x10-5, P=0.014, and P=6.36 x10-6 for our 

discovery (n=349), validation (n=725), and combined cohort (n=1,074), respectively 

(Liu et al., 2014b). Our data once again confirmed that the causal SNP showing a 

strong genetic signal on 19p13.11 region for steatotic association would actually be 

the TM6SF2 rs58542926 variant rather than the NCAN gene (rs2228603 C>T) that is 

in strong LD (D’=0.926, r2 =0.798) with TM6SF2 rs58542926.  

After our findings were published, this genetic effect of TM6SF2 rs58542926 has 

been well replicated, including a recent study carriage of this variant increased 

susceptibility to alcohol-induced cirrhosis (Buch et al., 2015). Relevance to simple 

steatosis has been confirmed in studies performed in adults (Dongiovanni et al., 2015; 

Sookoian et al., 2015; Wang et al., 2015; Zhou et al., 2015) and in paediatric patients 

(Mancina et al., 2015; Goffredo et al., 2016; Grandone et al., 2016). This variant not 

only influences initiation of steatosis but also steatohepatitis (necroinflammation and 

lobular ballooning) and our key finding - its effect upon fibrosis was also validated 

(Dongiovanni et al., 2015). Two studies from China (Wong et al., 2014) and 

Argentina (Sookoian et al., 2015) disagreed with our data by reporting no 

associations between rs58542926 and stage of fibrosis. The former study only used 

a community-based cohort rather than selecting individuals afflicted by NAFLD, given 

generally low MAF of TM6SF2 rs58542926 (MAF 0.07), they reported that this variant 
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has limited impact on NAFLD. Whereas the other Chinese group with a more 

appropriate study design demonstrated a positive association between NAFLD and 

rs58542926 (Wang et al., 2015).  

The current thesis confirms the association of PNPLA3 with NAFLD severity and 

provides novel evidence of its association with HCC risk. In addition, it demonstrates 

for the first time that TM6SF2 is associated with NAFLD-fibrosis severity. Certainly, 

our data needs further validation such as GWAS or candidate gene association study 

with a considerably larger sample size of NAFLD patients and healthy populations of 

different ethnicities to test whether these effects apply to all ethnic groups. Moreover, 

it would be worthwhile to investigate whether there is a joint effect of these two SNPs 

as one study performed in Chinese Han population reported the strong additive 

effects of the risk alleles of PNPLA3 and TM6SF2 with an overall significance 

between the number of risk alleles and NAFLD (OR 1.64, 95%CI 1.34–2.01, 

P=1.4×10-6) (Wang et al., 2016). Furthermore, it would be interesting to test whether 

carriers of the PNPLA3 rs738409 variant show a different response compared to 

those with wild-type genotypes to drugs currently under investigation for treatment of 

NAFLD such as Elafibranor (Ratziu et al., 2016).  

The association of PNPLA3 and NAFLD-HCC demonstrated in this thesis may 

provide a useful tool that the PNPLA3 rs738409 genotyping, acting upon a broader 

multi-factorial risk assessment, to identify those NAFLD patients that are at higher 

risk of advanced NAFLD and possibly HCC development (particularly homozygous 

mutant, GG) or those are at low risk of less progressive NAFLD (homozygous wild-

type, CC). It seems very unlikely that this approach alone could predict or exclude 

the occurrence of HCC, but might lower the possibility of HCC by early life style 

interventions. Ideally, if genotyping data was available at the early stage of NAFLD, 

patients could be encouraged to modify their life style including diet and physical 

activity and the frequency of targeted surveillance could be individualised. Given the 

current knowledge that CVD is closely associated with NAFLD and is a very common 

cause of death in these patients (Adams et al., 2005; Ekstedt et al., 2006; Targher et 

al., 2007b; Rafiq et al., 2009; Soderberg et al., 2010; Treeprasertsuk et al., 2012; 

Zhou et al., 2012), the dual role of the TM6SF2 rs58452926 SNP cannot be ignored; 

the minor T-allele is associated with increased risk of NAFLD while the common C-

allele is associated with dyslipidaemia and cardiovascular risk, making targeted 

advice on the basis of this genotype more difficult. However, genotyping for these 
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two genetic risk factors should be considered further as a means of stratifying clinical 

care. 

The functions of both PNPLA3 and TM6SF2 remain elusive despite numerous 

studies already preformed especially for PNPLA3. In spite of this, positive 

associations have been detected and well replicated in genetic studies. Further 

studies on the roles of both proteins are needed with better cell culture models and 

well-designed experimental conditions. Our group is currently conducting a GWAS on 

additional biopsy-proven NAFLD samples from Northern Europe (EPoS: Elucidating 

Pathways of Steatohepatitis) to identify more SNPs associated with NAFLD. Use of 

this larger (approx. 2000 case) cohort may lead to the discovery of novel genetic risk 

factors. In the meantime, use of CRISPR/Cas9 to knock-in the SNPs of interest could 

provide higher targeting efficiency and the ability to facilitate multiplex genome 

editing to further investigate functional roles of PNPLA3 and TM6SF2. A better 

understanding of these roles may lead to novel therapeutic approaches to NAFLD 

management in the future. 

 

 

Table 7.1: Reanalysis focusing on clinical utility of PNPLA3 genotype testing in HCC risk 

prediction. 

Cohorts (n) Genotype 

Comparison 

Sensitivity Specificity PPV* NPV* 

NAFLD-HCC (100) 

vs. NAFLD Cohort 

(275) 

GG vs CC: 51% 79% 47% 82% 

CG/GG vs CC: 72% 45% 32% 82% 

NAFLD-HCC (100) 

vs. Background 

UK Popn(1476) 

GG vs CC: 51% 92% 28% 97% 

CG/GG vs CC: 72% 59% 10% 97% 

*PPV, positive predictive value; NPV, negative predictive value. PPV/NPV will alter according to the 

underlying prevalence of HCC in population assessed.  
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