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Abstract

Communication channels can severely degrade a signal, not only due to

fading effects but also interference in the form of impulsive noise. In

conventional communication systems, the additive noise at the receiver

is usually assumed to be Gaussian distributed. However, this assump-

tion is not always valid and examples of non-Gaussian distributed noise

include power line channels, underwater acoustic channels and man-

made interference. When designing a communication system it is useful

to know the theoretical performance in terms of bit-error probability

(BEP) on these types of channels. However, the effect of impulses on

the BEP performance has not been well studied, particularly when error-

correcting codes are employed. Today, advanced error-correcting codes

with very long block lengths and iterative decoding algorithms, such as

Low-Density Parity-Check (LDPC) codes and turbo codes, are popu-

lar due to their capacity-approaching performance. However, very long

codes are not always desirable, particularly in communications systems

where latency is a serious issue, such as in voice and video communica-

tion between multiple users. This thesis focuses on the analysis of short

LDPC codes. Finite length analyses of LDPC codes have already been

presented for the additive white Gaussian noise channel in the literature,

but the analysis of short LDPC codes for channels that exhibit impulsive

noise has not been investigated.

The novel contributions in this thesis are presented in three sections.

First, uncoded and LDPC-coded BEP performance on channels exhibit-

ing impulsive noise modeled by symmetric α-stable (SαS) distributions

are examined. Different sub-optimal receivers are compared and a new

low-complexity receiver is proposed that achieves near-optimal perfor-

mance. Density evolution is then used to derive the threshold signal-to-

noise ratio (SNR) of LDPC codes that employ these receivers. In order



to accurately predict the waterfall performance of short LDPC codes, a

finite length analysis is proposed with the aid of the threshold SNRs of

LDPC codes and the derived uncoded BEPs for impulsive noise channels.

Second, to investigate the effect of impulsive noise on wireless channels,

the analytic BEP on generalized fading channels with SαS noise is de-

rived. However, it requires the evaluation of a double integral to obtain

the analytic BEP, so to reduce the computational cost, the Cauchy-

Gaussian mixture model and the asymptotic property of SαS process

are used to derive upper bounds of the exact BEP. Two closed-form ex-

pressions are derived to approximate the exact BEP on a Rayleigh fading

channel with SαS noise. Then density evolution of different receivers is

derived for these channels to find the asymptotic performance of LDPC

codes. Finally, the waterfall performance of LDPC codes is again esti-

mated for generalized fading channels with SαS noise by utilizing the

derived uncoded BEP and threshold SNRs.

Finally, the addition of spatial diversity at the receiver is investigated.

Spatial diversity is an effective method to mitigate the effects of fad-

ing and when used in conjunction with LDPC codes and can achieve

excellent error-correcting performance. Hence, the performance of con-

ventional linear diversity combining techniques are derived. Then the

SNRs of these linear combiners are compared and the relationship of

the noise power between different linear combiners is obtained. Non-

linear detectors have been shown to achieve better performance than

linear combiners hence, optimal and sub-optimal detectors are also pre-

sented and compared. A non-linear detector based on the bi-parameter

Cauchy-Gaussian mixture model is used and shows near-optimal perfor-

mance with a significant reduction in complexity when compared with

the optimal detector. Furthermore, we show how to apply density evolu-

tion of LDPC codes for different combining techniques on these channels

and an estimation of the waterfall performance of LDPC codes is derived

that reduces the gap between simulated and asymptotic performance.

In conclusion, the work presented in this thesis provides a framework

to evaluate the performance of communication systems in the presence



of additive impulsive noise, with and without spatial diversity at the

receiver. For the first time, bounds on the BEP performance of LDPC

codes on channels with impulsive noise have been derived for optimal

and sub-optimal receivers, allowing other researchers to predict the per-

formance of LDPC codes in these type of environments without needing

to run lengthy computer simulations.
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Chapter 1

Introduction

1.1 Introduction

The performance of the communication system degraded by fading effects and ad-

ditive Gaussian noise has been investigated for many years in the literature. How-

ever, there are many applications where the dominant background noise has a non-

Gaussian distribution, such as impulsive noise. The presence of non-Gaussian im-

pulsive noise can severely degrade a communication system since many decoders

assume the noise is still Gaussian. As a class of powerful error-correction codes,

low-density parity-check (LDPC) codes have been employed in many applications.

In addition, the LDPC code was adopted as a part of the standard for powerline

communications, which suffer from impulsive noise. In this thesis, the uncoded

and LDPC-coded performance on impulsive noise channels is examined. Moreover,

fading channels with impulsive noise are also investigated and the performance of

diversity combining techniques to mitigate fading are analyzed.

1.2 Motivation and Challenges

Several famous models have been proposed to model impulsive noise, such as the

Gaussian mixture model, Middleton Class A model and symmetric alpha stable

(SαS) distributions [2–4]. Recently, the class of SαS distributions was shown to be

an accurate model for impulsive noise, namely, radio frequency interference (RFI)

in laptop and desktop computers [5] and background noise in power-line communi-

cations [6]. However, unlike Gaussian distributions, the probability density function
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1.3 Aims and Objectives

(pdf) of SαS distributions is not given in closed-form. Hence, the first error proba-

bility analysis of the communication system with SαS noise is presented.

As we know, LDPC codes have been adopted in many applications, such as

powerline communications. Hence, it motivates us to examine the LDPC-coded

performance in an impulsive environment. Conventionally, the noise is assumed to

be Gaussian and the corresponding log-likelihood ratio (LLR) demapper is linear,

which is far from the optimal LLR for impulsive noise. Since the optimal LLR is

not given in closed-form, sub-optimal receivers need to be designed to reduce the

complexity and it is important to examine the coded performance of optimal and

sub-optimal receivers. Diversity combining techniques have been used for many

years to mitigate fading effects and different combiners have been investigated for

fading channels with impulsive noise in the literature. To the best of our knowledge,

there is no literature on LDPC coded performance in impulsive noise with spatial

diversity and one of the major contributions of this thesis is the evaluation of the

performance of LDPC codes in such environments with diversity combining methods.

1.3 Aims and Objectives

The aim of this thesis is to provide a framework to analyze the error probability

of communication channels in the presence of SαS noise. More importantly, the

performance of LDPC codes will be explored and analyzed on these channels by

simulations and density evolution, respectively. To closely estimate the simulated

bit-error rate (BER) and block-error rate (BLER) performance of LDPC codes, a

method to predict the waterfall performance is proposed. The objectives of this

thesis are:

• To derive the theoretical performance of communication channels with SαS

noise.

• To investigate the LDPC-coded performance with optimal and sub-optimal

receivers for channels with SαS noise.

• To derive an estimation of the waterfall performance of LDPC codes on mem-

oryless channels with SαS noise.

• To examine diversity combining methods and the performance of LDPC codes
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combined with different combiners on fading channels with impulsive noise.

1.4 Statement of Originality

The contributions of this thesis are focused on the performance analysis of uncoded

and coded system with impulsive noise. The novelty of the thesis is described as

follows:

In Chapter 4, the uncoded error probability of SαS noise channels is derived.

To examine the performance of LDPC codes on these channels, density evolution

(DE) is performed to find the threshold SNRs of different receivers. Moreover,

a near-optimal receiver is proposed to reduce the complexity and maintain good

performance. Finally, an accurate estimation of the waterfall performance of finite

length LDPC codes is proposed.

In Chapter 5, the bit error probability (BEP) of generalized fading channels

with SαS noise is derived. To reduce the computational cost, we present two closed-

form approximations of the exact error probability on Rayleigh fading channels with

SαS noise. Then we present a DE analysis to find the asymptotic performance of

LDPC codes with optimal and sub-optimal receivers on fading channels with SαS

noise. Finally, the finite length performance LDPC codes on these channels is also

predicted.

In Chapter 6, we first derive the uncoded BEP of traditional linear diversity com-

bining methods and non-linear detectors on Rayleigh fading channels with SαS noise.

In addition, a near-optimal non-linear detector is proposed. Similarly, to examine

the LDPC-coded performance, we derive the threshold SNR of linear combiners by

using DE and the waterfall performance is predicted using the same approach we

have given in the thesis.

1.5 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 introduces the background and current research in impulsive noise in

the relevant literature. In addition, the development and applications of LDPC codes

are presented. Moreover, the signal detection and the performance of error correction

codes with soft decision decoders on impulsive noise channels are described.
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Chapter 3 presents the background theory related to this work. Different models

of non-Gaussian noise are introduced with particular focus on symmetric alpha-

stable (SαS) distributions. The properties, generation and parameter estimation of

SαS random variables are presented. In terms of LDPC codes, a very efficient con-

struction method called the progressive edge-growth (PEG) algorithm is introduced.

In addition, the message passing decoding algorithm: sum-product algorithm (SPA)

and the asymptotic analysis of this algorithm are described.

In Chapter 4, the performance of LDPC codes on SαS noise channels with dif-

ferent receivers are investigated and we propose a near-optimal receiver with low

complexity. Then a density evolution analysis is performed to find the asymptotic

performance of these receivers. In addition, to reduce the gap between asymptotic

and simulated performance, a finite length analysis of LDPC codes on SαS noise

channels is presented. In order to calculate the estimation of the waterfall per-

formance of LDPC codes, the uncoded bit error probability (BEP) of SαS noise

channels is first derived. By observing the real-time channel quality, the block and

bit error probability of finite length LDPC codes are then predicted.

In Chapter 5, we have derived the analytic BEP of BPSK on generalized fading

channels with SαS noise. To reduce the computational cost, we have derived two

approximations of the exact BEP on Rayleigh fading channels with SαS noise, which

are based on the bi-parameter Cauchy-Gaussian mixture (BCGM) model and the

asymptotic expansion of SαS process. These two bounds are given in closed-from,

which can greatly reduce the complexity. Then we have investigated the LDPC-

coded BEP of generalized fading channels with SαS noise. We propose a DE analysis

to find the asymptotic performance of LDPC codes with optimal and sub-optimal

receivers on these channels. Finally, the waterfall performance of finite length LDPC

codes on these channels is predicted.

In Chapter 6, the uncoded and LDPC-coded performance of linear diversity com-

bining techniques and non-linear detectors are examined on Rayleigh fading channels

with independent SαS noise. The decoding threshold of linear combiners is derived

by using DE. By utilizing uncoded BEP and threshold, a closed-form approxima-

tion of the waterfall performance is obtained. In addition, the performance of LDPC

codes with non-linear detectors are investigated and a near-optimal detector based

on the BCGM model is proposed.

The thesis is concluded in Chapter 7 and we also provide some suggestions for
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future research in this field.
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Chapter 2

Literature Survey

2.1 Introduction

In this chapter, signal detection and channel coding schemes, with particular focus

on LDPC codes on impulsive noise channels, will be reviewed. First, examples of

common communication systems are presented that are modelled as symmetric alpha

stable processes. This is followed by different types of signal detection for additive

impulsive noise channels. A review of the different design methods for LDPC codes

is presented and finally the design of receivers for soft-decision decoders on impulsive

noise channels concludes this chapter.

2.2 Impulsive Noise

In conventional communication systems, noise is usually modeled as Gaussian and

is called additive white Gaussian noise (AWGN). However, in some scenarios, the

system suffers from non-Gaussian noise which contains a significant interference

component. This type of noise is also known as impulsive noise. Impulsive noise can

be generated naturally or by man-made noise, which includes atmospheric noise,

underwater acoustic noise, the background noise of powerline communications, mul-

tiple access interference (MAI) in ultra-wideband systems and the electromagnetic

interference (EMI) [2,7,8]. The presence of impulses will severely degrade the com-

munication system, which is likely to assume the noise is Gaussian and a redesigning

of the system is required. Hence a statistical-physical model is required to describe

the behavior of impulsive noise. Based on this, several famous models have been
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2.3 Signal detection in Impulsive Noise

proposed to model impulsive noise, such as the Gaussian mixture model, Middleton

Class A model and symmetric alpha stable (SαS) distributions [2–4]. In particular,

the SαS family of distributions can accurately model impulsive noise present in un-

derwater acoustic noise and atmospheric noise [9], as well as realistically modeling

the statistics of radio frequency interference (RFI) generated by clocks and buses

in laptop and desktop computers [5] and impulsive noise in power-line communica-

tions [6].

Recently, SαS noise was employed as an accurate model of multiple access inter-

ference (MAI) in a wireless ad hoc network and as near-field interference in wireless

transceivers [5, 8]. If we also consider fading effects, the underwater acoustic chan-

nel can be modeled as a Rayleigh fading channel with SαS noise [9]. Theoretically,

to exploit the spatial diversity, different diversity combining techniques and space

time coding were investigated in [10, 11]. In addition, SαS noise had been used to

model the multiple-access interference (MAI) at the receiver for Nakagami-m and

Rician fading channels [12, 13]. In this thesis, we will focus on the SαS model and

investigate signal detection and LDPC-coded performance in the presence of SαS

noise.

2.3 Signal detection in Impulsive Noise

The conventional receiver assumes the additive noise is Gaussian, which is not cor-

rect when impulse occurs, and leads to a severe performance degradation. The

optimal receiver needs to have the knowledge of the pdf of the non-Gaussian SαS

noise [14, 15]. However, the pdf of SαS distributions is not given in closed-form

which will lead to high computational cost. Hence, suboptimal receivers that do

not need to know the exact pdf of the noise are more desirable for practical use.

Some suboptimal receivers have been proposed that estimate the pdf or reduce the

effect of impulses [16], such as the Cauchy receiver, which assume the noise has a

fixed Cauchy pdf since it has algebraic tails, and the much simpler limiter and hole-

puncher [17], which limits or blanks the magnitude of the received values. Recently,

a soft limiter with an adaptive threshold was proposed to further improve the per-

formance [18]. To achieve near-optimal performance, a new analytic expression of

the SαS pdf, which is based on the finite mixture of Gaussian approximations, was

proposed in [19].
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2.4 Low-Density Parity-Check codes

Diversity combining is an important technique that combats fading effects by

exploiting spatial diversity. Traditional combining schemes such as maximal-ratio

combining (MRC), equal-gain combining (EGC) and selection combining (SC) are

chosen depending on the required trade-off between performance and complexity at

the receiver. Conventionally, the noise added at each branch of the diversity com-

biner is assumed to be Gaussian. However, interference can exhibit an impulsive

behavior [2,20] and it is important to take this impulsive nature into account when

analyzing spatial diversity. The optimal receivers on fading channels with impulsive

noise were investigated in [21] and [22]. An adaptive diversity receiver was proposed

to combat the impulsive noise with unknown parameters [23]. The receivers which

are designed for Gaussian noise was investigated for fading channels with impul-

sive noise in [24] to examine the robustness of these combiners to impulsive noise

and the impulsive noise was modeled as Middleton Class-A distributions. Nasri et

al have analyzed the asymptotic BEP of diversity combining schemes under gen-

eral non-Gaussian noise [25], but this work cannot be applied to SαS distributions

because they have an infinite variance. Rajan et al also performed a diversity com-

bining analysis for Rayleigh fading channels and isotropic SαS noise with dependent

components [10], where diversity gain and asymptotic BEP were derived. We note

that a complex SαS variable can be classified as a sub-Gaussian variable where

its real and imaginary components are dependent [26]. However, if the bandpass

sampling frequency fs is at least four times the carrier frequency fc, components

become independent and this type of SαS noise is called additive white SαS noise

(AWSαSN) [27,28]. As we mentioned above, optimal and sub-optimal detectors for

AWSαSN have already been investigated in the literature [16,29]. For diversity com-

bining, different linear combiners were compared in [30, 31]. However, the analytic

BEP has not been derived for these linear combiners and it will be addressed in this

thesis.

2.4 Low-Density Parity-Check codes

Low-Density Parity-Check (LDPC) codes were first proposed in Robert Gallager’s

doctoral thesis in 1960 and then published in [32]. However, LDPC codes were

overlooked at that time due to the computational limitation of hardware and the

development of Reed-Solomon codes. In 1981, a graphical representation of LDPC
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2.4 Low-Density Parity-Check codes

codes called Tanner graph was proposed [33]. Until 1996, after the invention of turbo

codes in 1993, LDPC codes were rediscovered by David Mackay and also shown to

achieve near Shannon limit performance [34] followed by LDPC codes over finite

field proposed in [35]. LDPC codes over GF(q) were shown better performance than

their binary counterparts, but with a much higher decoding complexity and some

algorithms were proposed to reduce the complexity of the decoder of non-binary

LDPC codes [36–40]. Recently, LDPC codes have been adopted in many modern

applications such as DVB-S2/T2, WiFi 802.11 standard and ITU-T G.hn standard.

LDPC codes are preferred to turbo codes in these applications due to their lower

decoding complexity and lower error floor.

The iterative message passing algorithm of LDPC codes has shown near Maxi-

mum likelihood (ML) decoding performance with very low complexity. To analyze

the iterative decoder, the density evolution (DE) technique was proposed to find

the asymptotic performance of iterative decoders [41]. By using DE, the decoding

threshold SNR of a specific LDPC ensemble can be found. Naturally, when DE is

extended to irregular LDPC ensembles, this method can be used to design irregular

LDPC codes [42]. To avoid instability due to large amounts of numerical calcula-

tions and reduce the complexity, a quantized density evolution (QDE) was proposed

in [43] and showed very accurate estimation of the threshold SNR with only 11-bit

quantization. Furthermore, an alternative method called Gaussian approximation

(GA) was proposed to simplify DE on binary-input additive white Gaussian noise

(BI-AWGN) channels [44]. Instead of tracking densities in the decoding process, GA

assumes the message passed through the iterative decoder is Gaussian or Gaussian

mixtures. Hence it only needs to track the mean and variance of the message’s

pdf which results in a huge reduction in the complexity. Compared with DE and

GA, an alternative method called extrinsic information transfer (EXIT) chart was

proposed to visualize the exchange of extrinsic information between component de-

coders [45, 46]. Then the EXIT chart was extended to LDPC codes [47] and it is a

tool to find the decoding threshold SNR as well as design good codes by reducing it

to a curve fitting problem.

It is well known that the performance of LDPC codes degrades as the code length

decreases. Hence, the asymptotic analysis of LDPC codes is not useful to predict the

actual performance since it assumes that the code length is infinite and cycle-free.

Finite length analyses need to be studied to evaluate the performance of short length
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LDPC codes. In the literature, a finite length analysis of LDPC code ensembles on

the binary erasure channel (BEC) was presented in [48] using a recursive approach.

In [49], the waterfall region of LDPC codes was proved to follow a scaling law over

the BEC and the performance was predicted accurately. However, the procedure

of finding the scaling parameters on the BEC cannot be easily transferred to other

channels and decoding algorithms. Recently, a waterfall region analysis based only

on the threshold SNR was proposed [50, 51]. This method estimates the block-

error probability by observing the real-time channel quality which is worse than the

decoding threshold. Then an EXIT chart and GA combined with the block-error

probability were used to obtain the bit-error probability. This method is simple

and provides a good estimation of the waterfall region performance of short LDPC

codes without any scaling parameters or curve fitting. In [52, 53], Noor-A-Rahim

et al present a similar approach, which observes the actual channel quality and

provides a more accurate estimation, but has a higher complexity.

To the best of our knowledge, the finite length analysis of LDPC codes is only

investigated on the BEC, binary symmetric channel (BSC) and BI-AWGN channel,

but not impulsive noise channels. Recently, LDPC codes were adopted in the pro-

posed standard for powerline channels (G.hn/G.9960) [54], which are impulsive in

nature and therefore, show that LDPC codes are good error-correcting codes in this

kind of environment. However, there is no literature on the finite length analysis

of LDPC codes on channels with impulses. Hence a method to closely predict the

actual performance of LDPC codes on impulsive noise channels is required.

2.5 Soft Decision decoders and Receiver design

on Impulsive Noise Channels

It is known that the soft decision decoders have shown better performance than

hard decision decoders on AWGN channels and the fundamental limit of the coded

systems with impulsive noise was give in [55]. For SαS noise, the capacity of the

channel is also calculated [56, 57] and different code schemes were employed to ap-

proach this capacity. The soft decision decoders have shown better performance than

hard decision decoders on AWGN channels. Conventionally, the log-likelihood ratio

(LLR) is chosen as the metric of reliability and the initial input of the soft decision

10
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decoders. For impulsive noise channels, sub-optimal LLR demappers were proposed

for convolutional codes to achieve good performance with low complexity [58,59]. In

addition, the bit-interleaved coded modulation with iterative decoding (BICM-ID)

system with impulsive noise was analyzed by EXIT chart [60]. For turbo codes, the

performance of different receivers was investigated in [61–63] and a robust p-norm

receiver was proposed suitable for very impulsive environment [64]. As a class of

powerful error correction codes, the performance of LDPC codes with different re-

ceivers on impulsive noise channels have also been presented in the literature [65–67].

The LDPC codes combined with a limiter in coded OFDM system with impulsive

noise was investigated in [68,69]. In [70], a robust LLR which is suitable for different

non-Gaussian noise models was proposed. Recently, a new type of soft limiter which

is called the clipper was proposed. It combines with the LLR demapper to achieve

good LDPC coded performance. In [71], the threshold of the clipper was further

optimized by three methods. To approach near-optimal performance of iterative

decoders, some receivers were proposed to approximate the optimal LLR demap-

per [29, 58, 72, 73]. We call this type of receiver the LLR approximation receiver.

The LLR demapper was closely estimated in [72] and [73] by dividing the LLR into

two parts (a linear part and asymptotic part) and using the asymptotic expansions

of SαS pdf. In [58], the authors approximated the optimal piecewise linear LLR

and corresponding coefficients were computed by minimizing the mean square error

(MSE). Hence, the design of sub-optimal receivers for LDPC codes is still an open

problem which needs to be explored.

If we take the fading into account, diversity combining techniques should be con-

sidered to mitigate the fading effect. The performance of LDPC codes with spatial

diversity on AWGN channels was investigated in [74–76] and the cascaded combin-

ing techniques with LDPC codes is also shown in the literature [77, 78]. Recently,

the performance of protograph-based LDPC codes with diversity was analyzed [79].

However, there are no publications that have examined the performance of LDPC

codes with diversity combining on non-Gaussian channels.

2.6 Conclusion

As we discussed in this chapter, for the signal detection problem, different sub-

optimal detectors were proposed to reduce the complexity of the optimal detector.
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Recently, in cooperation with the decoder, the sub-optimal receivers based on LLR

approximation were also proposed. We will follow this methodology to design the

receiver and investigate the asymptotic performance of LDPC codes with different

receivers. In addition, the finite length analysis for impulsive noise channels has

not been examined in the literature. Inspired by [50], we will propose a method

to closely estimate the waterfall performance of LDPC codes on these channels.

Finally, to combat fading effects, optimal linear combiners and non-linear detectors

were investigated for impulsive noise channels in the literature. In this thesis, we

will derive theoretical uncoded and LDPC-coded performance for linear combiners

to provide a benchmark when evaluating these systems.
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Chapter 3

Theoretical Background

3.1 Symmetric alpha-stable noise

In this chapter, background theory on symmetric alpha-stable noise (SαS) is first ex-

plained, which includes the definition of the probability density function, a modified

signal-to-noise ratio known as geometric SNR, the generation of SαS noise samples

and estimation of the different parameters of SαS noise. The chapter concludes with

detailed explanations on the construction of low-density parity-check (LDPC) codes

using the Progressive Edge Growth algorithm, the decoding of LDPC codes using

the message passing algorithm and the asymptotic performance of LDPC codes us-

ing density evolution, Gaussian approximation and Extrinsic Information Transfer

charts. This is the essential prerequisite material for the novel work presented in

chapters four, five and six.

3.1.1 Impulsive Noise Models

There are various distributions to model a non-Gaussian environment. In this

chapter, we introduce some famous models including the Gaussian mixture model

(GMM), Middleton Class A model and α-stable model. As a widely used model, the

pdf of Symmetric α-stable (SαS) distribution has no closed-form expression which

makes it difficult to analyze and we will focus on this model in this thesis. However,

we will begin by reviewing the other popular models first.
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3.1 Symmetric alpha-stable noise

3.1.1.1 Gaussian Mixture Model

The Gaussian Mixture model (GMM) is defined by the weighted sum of N Gaussian

densities. The pdf is given as

fGMM(x) =
N∑
i=1

cifG(x;µi;σ
2
i ), (3.1)

where fG(x;µi;σ
2
i ) is the Gaussian pdf with mean µi and variance σ2

i . This model

is quite general since the Middleton Class A model is a GMM with infinite number

of components and the symmetric α-stable (SαS) model can also be approximated

by a scaled GMM model [2, 80].

In this thesis, we also introduce a commonly used GMM model which has two

components [81]. The pdf is defined as

fε(x) = (1− ε)fG(x; 0;σ2) + εfG(x; 0;κσ2), (3.2)

with 0 ≤ ε ≤ 1 and κ ≥ 1. In this two-component GMM model, fG(x; 0;σ2)

represents the background noise and fG(x; 0;κσ2), which has a larger variance that

represents the impulsive component. As a mathematical model, the two-component

GMM has been widely used in the analysis of many non-Gaussian channels [81,82].

3.1.1.2 Middleton Class A Model

Three statistics-physical models of non-Gaussian noise were proposed by Middleton,

which are called the Middleton Class A, B and C models [2]. The Middleton Class

A model describes narrowband noise while the Class B model represents broadband

noise and the Class C model is the sum of the Class A and Class B models. In this

section, we introduce the most famous Middleton Class A model which has been

shown accurately model electromagnetic interference (EMI) and background noise

in powerline channels [2,83]. As we mentioned above, the pdf of Middleton Class A

model is a GMM with an infinite number of normal distributions. Hence the pdf is

defined as

fGMM(x) =
∞∑
m=1

PmfG(x; 0;σ2
m), (3.3)

where

Pm =
Ame−A

m!
, (3.4)
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3.1 Symmetric alpha-stable noise

and

σ2
m = σ2

I

m

A
+ σ2

g = σ2
g

( m
AΓ

+ 1
)
. (3.5)

σ2
g is the variance of the AWGN background noise and σ2

I is the variance of the im-

pulsive noise component. Parameter Γ represents the ratio of Gaussian to impulsive

noise power and A is the density of the impulses.

3.1.1.3 α-stable model

The stable law is a generalization of normal distribution and includes the normal dis-

tribution as a special case. Compared with other models, the α-stable distribution

is very flexible and is an accurate model in many areas, including signal process-

ing, underwater acoustic communications and powerline communications [6,9]. The

characteristic function of α-stable distributions is

ϕ(t) = exp {jδt− | γt |α (1− jβsign(t)ω(t, α))} . (3.6)

where

ω(t, α) =

tan(πα/2), α 6= 1,

−2/π log |t|, α = 1.

There are four parameters to determine the pdf of an α-stable variable x ∼ S(α, β, δ, γ).

1) α is the characteristic exponent (0 < α ≤ 2) which controls the heaviness of the

tail of the pdf [4] and indicates the impulsiveness of the channel. 2) β is the skewness

of the pdf. 3) δ is location parameter which represents the mean or the median of

the pdf. 4) γ is called the dispersion which measures the spread of the SαS pdf,

which is similar to the variance of a Gaussian distribution.

3.1.2 Symmetric α-stable (SαS) noise

As an important class of heavy-tailed distributions, symmetric alpha-stable (SαS)

distributions have successfully modeled multiple access interference in ad-hoc net-

works, near-field interference in wireless transceivers and underwater acoustic noise

[5, 9, 84]. Compared with general α-stable distributions, the skewness parameter β

of SαS pdf is 0. Then the characteristic function is given as

ϕ(t) = exp (jδt− γα | t |α) . (3.7)
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Figure 3.1: Standard SαS distributions(γ = 1, δ = 0)

The pdf of symmetric alpha stable distributions can be obtained by performing

the inverse Fourier transform (IFT) of the characteristic function. Hence a SαS

random variable, x ∼ S(α, 0, 0, γ) has a pdf denoted as

fα(x; δ, γ) =
1

2π

∫ ∞
−∞

exp(jδt− γα|t|α)e−jtxdt. (3.8)

A general SαS distribution has no closed-form expressions, except for two special

cases: α = 2 and α = 1. When α = 1, the distribution is Cauchy and the pdf is

given as

f1(x; δ, γ) =
1

π

γ

γ2 + (x− δ)2
, (3.9)

when α = 2, the distribution is Gaussian and the standard pdf is

f2(x; δ, γ) =
1

2
√
πγ

exp

[
−(x− δ)2

4γ2

]
, (3.10)

when α = 2, the variance is finite and the relationship between variance and disper-

sion is σ2 = 2γ2. For convenience, we also denote fα(x; δ, γ) as fα(x − δ; γ). Fig.

3.1 plots the pdf of SαS distributions with different αs. As shown in Fig. 3.1, when

α decreases the tail of the pdf becomes thicker.
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3.1 Symmetric alpha-stable noise

SαS distribution has some useful properties, which is described in [4, 26]. Here

we list several important properties:

Property 1. A random variable X is stable if and only if

a1X1 + a2X2
d
= aX + b, (3.11)

where a1, a2, a and b are constants and X1 and X2 have the same distribution as

X. X
d
= Y denotes that X and Y follow the same distribution.

Property 2. The generalized central limit theorem states that the sum of a number

of SαS distributed random variables will tend to a stable distribution.

Property 3. For a SαS random variable v with dispersion γ, we have

lim
x→∞

P (v > x) =
γαCα
xα

, (3.12)

where Cα = 1
π
Γ(α) sin

(
πα
2

)
.

Property 4. If vi ∼ S(α, 0, 0, γi), i = 1, 2, · · · , N , then
∑N

i=1 vi ∼ S(α, 0, 0, γ),

where γ =
(∑N

i=1 γ
α
i

) 1
α
.

Property 5. Let v ∼ S(α, 0, 0, γ) and c is a constant. Then cv ∼ S(α, 0, 0, |c|γ).

Property 6. Any SαS random variable v ∼ S(α, 0, 0, γ) can be classified as α-

sub-Gaussian, which can be expressed as

Z =
√
AG, (3.13)

where A and G are independent. A ∼ S(α/2, 1, 0, [cos(πα/4)]2/α) is a skewed α-

stable random variable and G ∼ N(0, 2γ2) is a Gaussian random variable.
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3.1 Symmetric alpha-stable noise

3.1.3 Geometric Signal-to-Noise Ratio

Conventionally, the power is defined as the second-order moment of a process and it

has been widely accepted as a measure of the signal strength. However, the second-

order moment of a SαS process is infinite, which means the definition of traditional

noise power is not feasible. In [4], fractional lower order moments (FLOM) are

proposed to characterize the SαS process since only moments of order less than α

exist. Let X be a SαS random variable, then

E{|X|p} <∞, if 0 ≤ p < α, (3.14)

where E{·} is the expectation operator. The FLOM can be calculated from the

characteristic exponent α and dispersion γα and it is given as

E{|X|p} = D(p, α)γp, if 0 < p < α, (3.15)

where

D(p, α) =
2p+1Γ

(
p+1

2

)
Γ
(
− p
α

)
α
√
πΓ
(
−p

2

) , (3.16)

and Γ(·) is the Gamma function. However, if p ≥ α, the FLOMs are not defined.

Recently, zero-order statistics (ZOS) were proposed to characterize the SαS process

[85]. The logarithmic-order moments E{log |X|} are employed to define the power,

since E{log |X|} <∞. Then the geometric power of X is defined as

S0(X) = eE{log |X|}. (3.17)

After some derivation, a closed-form expression for geometric power is given as

S0 =
(Cg)

1/αγ

Cg
, (3.18)

where Cg ≈ 1.78 is the exponential of the Euler constant. Hence the geometric SNR,

SNRG is defined as

SNRG =
1

2Cg

(
A

S0

)2

, (3.19)

where A is the signal amplitude and 1/(2Cg) is a normalization constant to ensure

SNRG can still be applied when the noise is Gaussian (α = 2). For a coded system,

we can define Eb
N0

for binary phase-shift keying (BPSK) modulation in terms of the
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3.1 Symmetric alpha-stable noise

geometric SNR and code rate, R as

Eb
N0

=
SNRG

2R
=

1

4RCg

(
A

S0

)2

, (3.20)

where R is the code rate and A = 1. For M-ary modulation, we have

Eb
N0

=
1

4 log2(M)RCg

(
A

S0

)2

, (3.21)

where A2 = Es. When M = 2 and A = 1, which is BPSK, (3.21) becomes (3.20).

Hence (3.21) is a universal expression of Eb
N0

.

3.1.4 Generation of SαS random variables

The generation of SαS random variables is given in [16] and we give the procedure

here. Let U be uniform in (−π/2, π/2) and W is the standard exponential. To

generate U and W we need two uniformly distributed samples u1 and u2. Then

U = π(u1 − 0.5) and W = − ln(u2).

When α = 1, the SαS random variables are

Z = γ tan(U). (3.22)

When α 6= 1,

Z = γ
sin(αU)

(cos(U))
1
α

[
cos[(1− α)U ]

W

] 1−α
α

, (3.23)

where γ is obtained from (3.21).

There is an alternative method to generate SαS random variables by using prop-

erty 6, so that any SαS random variable w ∼ S(α, 0, γ, 0) can be expressed as

Z =
√
AG, (3.24)

where A ∼ S(α/2, 1, [cos(πα/4)]2/α, 0) and G ∼ N(0, 2γ2).

We notice that A is a skewed α-stable random variable which does not follows

SαS pdf. To generate a standard α-stable random variable As ∼ S(α, β, 0, 1), the

following expression is derived [86]:

S(α, β, 0, 1) = Dα,β
sinα(U − U0)

(cosU)1/α

(
cos(U − α(U − U0))

W

) 1−α
α

, α 6= 1, (3.25)
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3.1 Symmetric alpha-stable noise

and

S(1, β, 0, 1) =
2

π

[(π
2

+ βU
)

tanU − β ln

( π
2
W cosU
π
2

+ βU

)]
, α = 1, (3.26)

where W is standard exponential and U is uniform distributed on (−π/2, π/2).

In addition, Dα,β = [cos(arctan(β tan(πα/2)))]1/α, and U0 = −π
2
β(k(α)/α) with

k(α) = 1− |1− α|. Then the α-stable variable A with dispersion γ can be obtained

from As as

A = γAs. (3.27)

In this section, we introduce two methods to generate SαS random variables. By

using these methods, the noise samples with different αs are shown in Fig. 3.2-3.7,

which shows the behavior of noise from Gaussian (α = 2) to extremely impulsive

(α = 1).
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3.1 Symmetric alpha-stable noise

Figure 3.2: α = 2
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Figure 3.3: α = 1.99
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Figure 3.4: α = 1.8
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Figure 3.5: α = 1.5
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Figure 3.6: α = 1
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Figure 3.7: α = 0.5
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3.1 Symmetric alpha-stable noise

3.1.5 Parameter Estimation

After SαS noise has been received, the knowledge of the parameters of SαS is very

important since most detectors require this to achieve a good performance. In this

section, we introduce a method to accurately estimate the parameters α, γ and δ of

SαS noise [87].

The algorithm is described as follows: assume we receive N independent samples

with the same parameters from a SαS distribution. These N samples are denoted

as X1, X2, · · · , XN . Then α, γ and δ will be estimated by these N samples.

(1) Estimation of δ

To estimate the mean or the median of the SαS pdf, the sample median is used.

The estimated location parameter δ is given as

δ̂ = median {X1, X2, · · · , XN} . (3.28)

If N is odd, the median is the center order statistic. If N is even, the sample median

is defined as the average of two center values. This estimator has shown to be very

close to the maximum-likelihood (ML) estimator [87].

(2) Estimation of α

To estimate α, the knowledge of δ is required. Hence δ should be estimated first.

The algorithm is given as follows: the N samples are divided into L non-overlapping

segments. The length of each segment is K = N/L and these L segments are ex-

pressed as

{
X1 − δ̂, X2 − δ̂, · · · , XN − δ̂

}
= {X(1),X(2), · · · ,X(L)} , (3.29)

where X(l) =
{
X(l−1)K+1 − δ̂, X(l−1)K+2 − δ̂, · · · , XlK − δ̂

}
and l = 1, 2, · · · , L. If

Xl and Xl represent the maximum and minimum of X(l), we define

X̃l = logXl, (3.30)

X̂l = − log(−Xl). (3.31)

22



3.2 LDPC codes

The standard deviations of defined X̃l and X̂l are

s =

√√√√ 1

L− 1

L∑
l=1

(X̃l − µ)2, (3.32)

and

s =

√√√√ 1

L− 1

L∑
l=1

(X̂l − ζ)2, (3.33)

where µ = 1
L

∑L
l=1 X̃l and ζ = 1

L

∑L
l=1 X̂l. The estimation of α can be expressed by

s and s as

α̂ =
π

2
√

6

(
1

s
+

1

s

)
. (3.34)

(3) Estimation of γ

The estimation of γ is based on FLOM of the pdf. The estimated γ is given as

γ̂ =

[
1
N

∑N
k=1 |Xk − δ̂|p

C(p, α̂)

]α̂/p
, (3.35)

where

C(p, α̂) =
1

cos
(
π
2
p
) Γ
(
1− p

α̂

)
Γ (1− p)

. (3.36)

The value of p (0 < p < α̂
2
) is arbitrary and the simulations shown that this esti-

mation is most accurate when p ≈ α̂
3
. As presented above, the estimation of the

characteristic exponent α requires the knowledge of δ and the estimation of disper-

sion γ can only be performed after δ and α. We note these estimators provide better

performance as N and L increase.

3.2 LDPC codes

Low-density parity-check (LDPC) codes were discovered by Gallager [32] and shown

to have near Shannon limit performance in [34]. As a class of capacity-approaching

error correction codes, low-density parity-check (LDPC) codes have been widely

used in many applications such as DVB-S2/T2, WIMAX and G.hn/G.9960. In this

section, we introduce the construction and decoding algorithms of LDPC codes.
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3.2 LDPC codes

Moreover, the asymptotic performance of LDPC codes on AWGN and more general

BMSC (binary memoryless symmetric channel) is analyzed.

3.2.1 Construction of LDPC codes

Normally, there are two ways to construct a LDPC code: random construction and

algebraic construction [88]. In this subsection, a well-known construction method

called the Progressive Edge-Growth (PEG) algorithm, which can effectively con-

struct short or medium length LDPC codes, is presented.

3.2.1.1 PEG Construction Algorithm

Most LDPC codes are randomly constructed by eliminating cycles of length 4. For

LDPC codes with large code lengths, random construction gives very good perfor-

mance since they avoid short cycles in the Tanner graph. However, when construct-

ing short length LDPC codes, the probability of obtaining short cycles is very high

and the minimum distance becomes a critical issue for an irregular LDPC ensemble.

The Progressive Edge-Growth (PEG) algorithm was proposed in [1] and it can

construct the Tanner graph with a large girth by progressively establishing edges

between check nodes and symbol nodes. The inputs of this algorithm are the number

of check nodes m, the number of symbol nodes n and symbol nodes degree sequence

of the graph Ds. Then an edge selection procedure is performed to make the place-

ment of a new edge have the least impact on the girth. The PEG algorithm has two

advantages: 1. it is simple to construct LDPC codes and a good girth property can

be guaranteed by the lower bound. 2. it can be used to generate good codes for any

given code length and code rate which is very flexible. Moreover, with some modi-

fications, linear time encoding is also feasible for PEG algorithm. In the following,

we will define the notation and introduce the PEG algorithm.

As we defined above, a parity check matrix H can be characterized by a bipartite

graph with n symbol andm check nodes nodes. Such a graph is called a Tanner graph

and we define a Tanner graph as (V,E). V is the set of nodes where V = Vc∪Vs. Vc
is the set of check nodes and Vs is set of symbol nodes with Vc = {c0, c1, · · · , cm−1}

and Vs = {s0, s1, · · · , sn−1}. E is the set of edges and edge (cj, sj) ∈ E if hi,j 6= 0.
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3.2 LDPC codes

Figure 3.8: Sub-graph spreading from sj [1]

Hence the symbol nodes degree sequence Ds is given as

Ds =
{
ds0 , ds1 , · · · , dsn−1

}
, (3.37)

where dsj is the degree of the symbol node sj with 0 ≤ j ≤ n − 1 and ds0 ≤ ds1 ≤

· · · ≤ dsn−1 . Similarly, the check nodes degree sequence is denoted as

Dc =
{
dc0 , dc1 , · · · , dcn−1

}
, (3.38)

where dcj is the degree of the check node cj, 0 ≤ j ≤ m − 1, in non-decreasing

order. Also, E can be divided into subsets as E = Es0 ∪Es1 ∪ · · · ∪Esn−1 , where Esj

contains all edges connected to sj. The k-th edge incident on sj is denoted by Ek
sj

with 0 ≤ k ≤ dsj − 1.

For a given sj, its neighborhood with depth l, N l
sj

can be defined as the set

containing all check nodes reached by sj within depth l. Its complementary set is

defined asN−lsj . This spreading graph is shown in Fig. 3.8. The sub-graph starts from

sj and traverses all edges incident on sj, which are (sj, ci1), (sj, ci2), · · · , (sj, cidsj ).

Then all other edges which are incident on ci1 , ci2 , · · · , cidsj are traversed and this

procedure will continue until the desired depth is reached. In the following, we

introduce the PEG algorithm in detail.

Two situations need to be noticed when spreading the sub-graph of sj: (1) N l
sj

is
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3.2 LDPC codes

smaller than m, but it stops increasing. It means some check nodes are not reachable

from sj. In this case, the PEG algorithm chooses the unreachable one, hence it does

not create additional cycles. (2) N−lsj 6= ∅ and N
−(l+1)
sj = ∅. In this situation, all

check nodes are reached from sj, hence the PEG algorithm chooses the check node

with the largest distance from sj at depth l+ 1. The PEG algorithm is summarized

as follows:

Progressive Edge-Growth Algorithm

from j = 0 to n− 1

begin

from k = 0 to dsj − 1

begin

if k = 0

Edge (ci, sj), which is represented by E0
sj

, is established. E0
sj

is the first edge

incident to sj and ci is the check node with the lowest degree under the current

graph.

else

Expand the subgraph from sj to depth l and there are two stop conditions: (1)

N l
sj

is smaller than m, but it stops increasing. (2) N−lsj 6= ∅ and N
−(l+1)
sj = ∅. Then

edge Ek
sj

is established, where the check node is chosen from N l
sj

with the lowest

check node degree.

end

end

When sj has multiple choices to connect, the one with smallest number of incident

edges is chosen. If there are multiple check nodes in N−lsj that have same lowest

degree, then we can randomly choose one of these or always select the first one.

3.2.2 Message Passing Decoding of LDPC codes

A class of algorithms to decode LDPC codes is called the message passing algorithms

since the decoding process is based on the passing of message along the edges of

the Tanner graph. If the messages passing through the graph are binary, these

algorithms are called hard decision decoding algorithms such as the bit flipping

algorithm. If the messages are probabilities or log-likelihood ratios (LLRs), these
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3.2 LDPC codes

algorithms are soft decision decoding algorithms such as the sum-product algorithm

(SPA). Soft decision decoding performs much better than hard decision decoding

and it has been shown that a near Shannon-limit performance can be achieved by

the SPA [34].

In this subsection, LLR based SPA is described. Compared with the probability

based SPA decoder, log-SPA calculates LLRs instead of probabilities. The initial

LLR of the i-th coded bit is given as

Li = ln
P (ci = 0|yi)
P (ci = 1|yi)

= ln
P (yi|ci = 0)

P (yi|ci = 1)
, (3.39)

where yi is the i-th received signal and ci is the i-th coded bit. If we rearrange (3.39)

and use the relationship that P (yi|ci = 0) + P (yi|ci = 1) = 1, we can obtain

P (yi|ci = 0) =
eLi

1 + eLi
. (3.40)

If there are l variables where c1, c2, ..., cl are binary random variables and y1, y2, ..., yl

are independent random variables, then

2P (y1, y2, ...yl|c1 + c2 + ...+ cl = 0)− 1 =
l∏

i=1

(2P (yi|ci = 0)− 1). (3.41)

Substituting (3.40) to (3.41), we have

2P (y1, y2, ...yl|c1 + c2 + ...+ cl = 0)− 1 =
l∏

i=1

eLi − 1

eLi + 1
=

l∏
i=1

tanh
Li
2
. (3.42)

Hence for multiple variables, the LLR is given as:

L(y1, y2, ...yl|c1 + c2 + ...+ cl = 0) = ln
1 +

∏l
i=1 tanh L

2

1−
∏l

i=1 tanh Li
2

. (3.43)

With knowledge of the above derivations, the log-SPA algorithm is given as follows:

• Initialization

Initialize the LLR Lj of the j-th coded bit according to (3.39), where (j =

1, 2, ..., n). Use Lj to initialize matrix Q, where qij = Lj, when hij = 1.

• Check Node Update
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Update R by calculating rij for each check node i (i = 1, 2, ...,m). Note that

the check node i itself should be excluded since what we calculate is the extrinsic

information. The updating equation is given as

rij = ln
1 +

∏l
k∈N(i)\j tanh

(
qik
2

)
1−

∏l
k∈N(i)\j tanh

(
qik
2

) . (3.44)

• Variable Node Update

For each variable (symbol) node j (j = 1, 2, ..., n), calculate qij as

qij = Lj +
∑

i′∈M(j)\i

ri′j. (3.45)

• Hard Decision

The decision metric is calculated as

q̂j = Lj +
∑
i∈M(j)

rij. (3.46)

This final decision contains both intrinsic and extrinsic information. If q
′
j > 0,

the estimated coded bit ĉj = 0. Otherwise, ĉj = 1. If ĉ = [ĉ1, ĉ2, · · · , ĉn] satisfy

ĉ ·HT = 0, stop the iterations. Otherwise go back to check node update to continue

the loop until it either satisfies the parity check equations or reaches the maximum

number of iterations.

3.2.3 Asymptotic Performance of LDPC codes

3.2.3.1 Density Evolution

The asymptotic behavior of the log-SPA decoder had been analyzed numerically

in [41] by the density evolution (DE) algorithm. It demonstrated that for binary-

input symmetric memoryless channels (BSMC), the threshold of an ensemble of

LDPC codes can be calculated which determines the upper bound of the channel

parameter to guarantee error-free transmission, as the length of the codeword goes

to infinity and assuming the Tanner graph is cycle-free. Moreover, the threshold

provides us with a tool to find good irregular ensembles. In [42], a code design based

on DE and differential evolution was proposed. The designed optimized ensembles
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were shown to achieve near-capacity performance. In the following, we will introduce

DE in detail.

First we provide some definitions of the ensemble of LDPC codes. The regular

LDPC ensemble can be defined by a degree pair (dv, dc), where dv is the maximum

variable node degree and dc is the maximum check node degree. In this thesis,

symbol nodes and variable nodes are used interchangeably. An irregular LDPC

ensemble can be characterized by edge degree distributions λ(x) and ρ(x), which

are defined as

λ(x) =
dv∑
j=2

λjx
j−1, (3.47)

and

ρ(x) =
dc∑
i=2

ρix
i−1, (3.48)

where λj and ρi are the fraction of edges that are connected to variable and check

nodes with degree j and i, respectively. In this section, we introduce DE for regular

LDPC codes, and then we will extend it to irregular LDPC codes. To perform the

DE, the symmetric conditions of channels are required and we assume that the all-

zero codeword c = [0, 0, · · · , 0] is transmitted. According to the BPSK mapping,

the modulated signal is x = [+1,+1, · · · ,+1]. Under this assumption, an error will

occur if the output message of the variable node is negative. Conventionally, we

use LLRs to represent the message and v = ln P (y|x=+1)
P (y|x=−1)

is the outgoing message for

variable nodes where x is the BPSK symbol. Hence, there is no decision error if

lim
l→∞

∫ 0

−∞
p(l)
v (τ)dτ = 0, (3.49)

where p
(l)
v is the pdf of v in the l-th iteration. The decoding threshold κ∗ is defined

as the maximum noise level which allows error-free transmission for LDPC codes

with an infinite length. Hence, κ∗ is expressed as

κ∗ = sup

{
κ : lim

l→∞

∫ 0

−∞
p(l)
v (τ)dτ = 0

}
. (3.50)

For the BSC, κ is the crossover probability ε and for the AWGN channel, κ is the

standard deviation σ. For the SαS channel which is the focus of this thesis, κ

becomes the dispersion γ. The corresponding SNR of κ∗ is called threshold SNR.

Now we describe the process of the DE algorithm for computing p
(l)
v . First, the

29



3.2 LDPC codes

initial pdf p
(0)
v of the message from the channel is calculated. Then we perform an

iterative two-stage algorithm which contains the pdf evolution of the check node

update and variable node update. The check node update in (3.44) can be rewritten

as

u
(l)
j = 2 tanh−1

(
dc−1∏
i=1

tanh

(
v

(l−1)
i

2

))
, (3.51)

where u
(l)
j is the message of j-th check node in the l-th iteration. To calculate the

densities of this step, we define a G-density g(z) which represents the pdf of g(z) [89],

where

g(z) = (sign (z) ,− ln tanh |z/2|) . (3.52)

Hence, (3.51) can also be written in terms of g(·) and g−1(·) as

u
(l)
j = g−1

(
dc−1∑
i=1

g(v
(l−1)
i )

)
. (3.53)

With this notation, the DE of the check node update is given as

p(l)
u = Γ−1

[(
Γ
[
p(l−1)
v

])⊗(dc−1)
]
, (3.54)

where p
(l)
v is the pdf of each v

(l)
i in the l-th iteration. Similarly, p

(l)
u is the pdf of each

u
(l)
j . Γ(·) and Γ−1(·) represent the change of density due to g(·) and g−1(·). ⊗ is the

convolution operation.

For variable node update, the DE for the sum of messages is the convolution of

their densities, such that

p(l)
v = p(0)

v ⊗
(
p(l)
u

)⊗(dv−1)
. (3.55)

Then (3.54) and (3.55) are performed iteratively as l→∞. We note that convolution

operations can be efficiently performed by using the fast Fourier transform (FFT).

For irregular LDPC codes, only small modifications are required on (3.54) and

(3.55), which we should average over all variable and check node degrees. The DE

of the check node update and variable node update is given as

p(l)
u = Γ−1

[
dc∑
i=2

ρi
(
Γ
[
p(l−1)
v

])⊗(i−1)

]
, (3.56)
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and

p(l)
v = p(0)

v ⊗
dv∑
i=2

λi
(
p(l)
u

)⊗(i−1)
. (3.57)

Finally, the probability of errors occurring at l-th iteration is given as

P (l)
e =

∫ 0

−∞
p(l)
v (τ)dτ. (3.58)

3.2.3.2 Gaussian Approximation

DE tracks the change of pdf during the decoding process. Although it is valid for

general BMSC channels, the computational cost is high. In many applications, the

noise added at the receiver is assumed to be Gaussian. Hence, a simple method

to estimate the threshold of LDPC codes on binary-input AWGN channels was

proposed, which is called Gaussian approximation (GA) [44]. It approximates the

densities as Gaussian or Gaussian mixtures. In this way, instead of tracking densities,

it can track the mean of the Gaussian pdf which greatly reduces the complexity. In

this section, we will show how to use GA to find the asymptotic performance of

LDPC codes on AWGN channels.

If we assume the channel is Gaussian, the initial message can be calculated as

v = ln
P (y|x = +1)

P (y|x = −1)
=

2y

σ2
, (3.59)

where σ2 is the variance of the noise. It is easy to determine that v is still Gaus-

sian with mean 2/σ2 and variance 4/σ2. We note that the symmetry condition is

preserved under DE and it can be expressed as f(τ) = f(−τ)eτ [42], where f(τ) is

the pdf of LLR. Hence for AWGN channels, we observe that σ2 = 2m, where m is

the mean. It implies that we only need to monitor the mean of the messages when

performing GA with the symmetry condition, which greatly reduces the complexity.

First we investigate GA for regular LDPC ensembles.

For the check node update, (3.51) can be rewritten as

tanh

(
u

(l)
j

2

)
=

dc−1∏
i=1

tanh

(
v

(l−1)
i

2

)
. (3.60)
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We take the expectations of this equation as

E

[
tanh

(
u(l)

2

)]
= E

[
tanh

(
v(l−1)

2

)]dc−1

, (3.61)

where index i and j are omitted since vj’s and uj’s are i.i.d. (independent and

identically distributed). The v(l−1) and u(l) are Gaussian with N(mu(l) , 2mu(l)) and

N(mv(l−1) , 2mv(l−1)). Hence, we have

E
[
tanh

(u
2

)]
=

1√
4πmu

∫ ∞
−∞

tanh
u

2
exp

(
−(u−mu)

2

4mu

)
du. (3.62)

According to this equation, a function φ(x) for x ≥ 0 can be defined as

φ(x) = 1− 1√
4πx

∫ ∞
−∞

tanh
u

2
exp

(
−(u− x)2

4x

)
du, if x > 0. (3.63)

When x = 0, φ(x) = 1. The means of the variable node update can be expressed as

m(l)
v = mv0 + (dv − 1)m(l)

u , (3.64)

where mv0 is the mean of v0. m
(l)
v and m

(l)
u represents the mean of u and v in the

l-th iteration. According to (3.62), the GA updating rule is given as

m(l)
u = φ−1

(
1−

[
1− φ

(
mv0 + (dv − 1)m(l−1)

u

)]dc−1
)
, (3.65)

where m
(0)
u = 0 to initialize the algorithm. Also, to reduce the complexity for

computing φ(x), an accurate approximation was proposed in [44] and it is given as

φ(x) =

exp(−0.4527x0.86 + 0.0218), 0 < x < 10,√
π
x
e−

x
4

(
1− 10

7x

)
, x > 10.

For irregular LDPC codes, the mean of the message from the variable node of

degree j is expressed as

m
(l)
v,j = mv0 + (j − 1)m(l)

u . (3.66)

Hence, the message v(l) has a Gaussian mixture pdf f
(l)
v as

f (l)
v =

dv∑
j=2

λiN(m
(l)
v,j, 2m

(l)
v,j). (3.67)
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By using (3.67), the mean m
(l)
u,i of the check node with degree i is given as

m
(l)
u,i = φ−1

1−

[
1−

dv∑
j=2

λjφ
(
m

(l−1)
v,j

)]i−1
 . (3.68)

By combining the mean of check nodes with different degrees, m
(l)
u is calculated as

m(l)
u =

dc∑
i=2

ρiφ
−1

1−

[
1−

dv∑
j=2

λjφ
(
mv0 + (j − 1)m(l−1)

u

)]i−1
 . (3.69)

The error probability of the l-th iteration is

P l
e =

dv∑
i=2

λ
′

iQ

(√
mv0 + iml

u

2

)
, (3.70)

where

λ
′

i =
λi/i∑dv
j=2 λj/j

. (3.71)

3.2.3.3 EXIT charts

Compared with DE and GA, an alternative method called an extrinsic information

transfer (EXIT) chart was proposed to visualize the exchange of the extrinsic in-

formation between component decoders [45]. The EXIT chart is a tool to find the

decoding threshold as well as design good codes by reducing it to a curve fitting

problem. In this section, we will briefly introduce the EXIT charts for regular and

irregular LDPC codes on the AWGN channel.

To derive the EXIT chart of LDPC codes, the check node update and variable

node update are considered as two component decoders, respectively [47]. Then the

EXIT chart can plot the input and output mutual information of the variable-node

decoder (VND) and the check-node decoder (CND). The input of the VND and CND

is called a priori information, denoted by ”A”. The output is extrinsic information

which is denoted as ”E”. Hence the mutual information between inputs (a priori)

or outputs (extrinsic) of the VND and the coded bit are denoted as IA,V or IE,V ,

respectively. Similarly, IA,C or IE,C are defined for the CND.

We first derive the IE,V versus IA,V transfer function for the VND. The output
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of VND can be expressed as

Li,out = Lch +
∑
j 6=i

Lj,in, (3.72)

where extrinsic LLR Li,out is Gaussian with σ2 = σ2
ch+(dv−1)σ2

A, σ2
ch is the variance

of input from the channel and σ2
A is the variance of the a priori inputs. Now we can

use the definition of mutual information to calculate IE,V as

IE,V = J(σ) = J

(√
(dv − 1)σ2

A + σ2
ch

)
, (3.73)

where

J(σ) = 1−
∫ ∞
−∞

e−(ξ−σ2/2)/2σ2

√
2πσ2

log2

(
1 + e−ξ

)
dξ. (3.74)

We can express IE,V by IA,V by using the relationship that IA,V = J(σA). Hence,

IE,V = J(σ) = J

(√
(dv − 1) [J−1(IA,V )]2 + σ2

ch

)
, (3.75)

where J−1(·) is the inverse function of J(·). The accurate approximations of J(·)

and J−1(·) are also given in [47]. Similarly, the EXIT function for CND is given as

IE,C = 1− J
(√

dc − 1 · J−1(1− IA,C)
)
. (3.76)

We note the EXIT curve of the VND is dependent on the channel condition

while the EXIT curve for the CND remains unchanged. As an example, the EXIT

curves of the VND and CND for regular (4, 6) LDPC codes at Eb/N0 = 3 dB and

0.5 dB are plotted in Fig. 3.9. As indicated in this figure, as Eb/N0 decreases, the

tunnel between VND and CND curves becomes smaller, which means the decoder

needs more iterations to converge. If Eb/N0 is below the threshold, the tunnel will

be closed, which means the decoder cannot guarantee an error-free transmission.

The red-dashed lines represent the number of iterations required for the decoder to

converge. For irregular LDPC codes, similar to DE and GA, the mutual information

can be expressed as the sum of the fractions of mutual information for different

degrees, where

IE,V =
dv∑
j=2

λjIE,V (j, IA,V ). (3.77)
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Figure 3.9: EXIT curves of (4,6) LDPC codes at Eb/N0 = 3 dB and 0.5 dB

IE,V (j, IA,V ) is obtained by replacing dv in (3.75) with j. Similarly, IE,V is given as

IE,C =
dc∑
i=2

λiIE,C(i, IA,C). (3.78)

Hence the optimization of LDPC codes can be regarded as a curve-fitting problem,

which can be solved efficiently by linear programming. For a given SNR (close to

the capacity), if we can find a VND curve which is just above the CND curve, then

the selected degree distributions are nearly optimized values.

3.3 Conclusion

In this chapter, different impulsive noise models have been presented. In particular,

the SαS noise model has been explained in detail, which includes the definition of

the pdf, a new definition of SNR, the generation of SαS samples and the parameter

estimation. This chapter has also given the details of the construction and the

decoding of LDPC codes. To analyze the asymptotic performance of LDPC codes,

density evolution, Gaussian approximation and EXIT charts have been described in

detail. To conclude, this chapter provides the essential background theory for the
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following novel chapters.
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Chapter 4

Receiver Design and Finite Length

Analysis of LDPC codes on

Impulsive Noise Channels

In this chapter, different detectors for SαS noise are compared and a near-optimal

detector is proposed that can achieve almost optimal performance as well as reduce

the complexity. In addition, a density evolution analysis is employed to examine

the asymptotic performance of LDPC codes with different receivers. However, there

is still a gap between asymptotic and practical performance of finite length LDPC

codes. Finite length analyses of LDPC codes have already been presented in the

literature for the AWGN channel, but in this chapter we consider the analysis of

short LDPC codes for channels that exhibit impulsive noise. We propose a method to

estimate the waterfall performance of LDPC codes on SαS channels, which requires

knowledge of the uncoded BEP and the decoding threshold SNR of LDPC codes on

such channels. Hence, the uncoded BEP is also derived in this chapter.

37



4.1 Channel Model

4.1 Channel Model

We consider an LDPC-coded system with a codeword of length N bits. The code-

word is mapped to a binary phase shift keying (BPSK) constellation to generate the

transmitted signal. The received signal is contaminated by additive impulsive noise

with a SαS distribution and is defined as

yj = xj + ηj, (4.1)

where yj is the j-th received signal, xj ∈ {−1,+1} is the BPSK symbol, ηj is an

SαS distributed noise sample and j = 1, 2, . . . , n.

4.2 Receivers Design and Asymptotic Performance

Analysis

4.2.1 Optimal and Suboptimal Receivers

The LLR of the channel output is assumed to have the knowledge of the channel

and it is given as

Lj = ln

(
P (yj|xj = 1)

P (yj|xj = −1)

)
= ln

(
fα(yj − 1; γ)

fα(yj + 1; γ)

)
, (4.2)

where fα(x; γ) is the pdf of the SαS noise. However, if we use this optimum LLR as

the input of the decoder, the complexity is high due to the integration in the cal-

culation of pdf. Hence, a suboptimal receiver is necessary to reduce the complexity

and still maintain a good performance.

In this section, we discuss some well known and recent suboptimal receivers

presented in the literature. As we know, the pdf of SαS distributions has a closed-

form expression when α = 2 and α = 1. When α = 2, the conventional Gaussian

receiver is given as

Lj = ln

(
f2(yj − 1; γ)

f2(yj + 1; γ)

)
=
yj
γ2
, (4.3)

where σ2 = 2γ2. This linear demapper is optimum when the channel is AWGN.

However, it is not suitable for non-Gaussian noise since it does not consider the

impulsive nature. A well-known receiver is based on the Cauchy distribution (α = 1)
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to detect SαS signals, since it exhibits algebraic tails which shares the same property

as other SαS pdfs (α < 2). The LLR of the Cauchy receiver is given as

Lj = ln

(
γ2 + (yj + 1)2

γ2 + (yj − 1)2

)
. (4.4)

Another way to cope with impulses is to use non-linear operations to limit the

received values, such as a soft limiter and hole-puncher [17]. Recently, a variant of

the soft limiter, called the clipper, was proposed in [71]. The equation of this LLR

demapper is

Lj =

pyj, if −h/p < yj < h/p,

hsign(yj), otherwise.

(4.5)

where p is the signal amplitude and h is the clipping level of the impulse. The

optimized p and h can be found through density evolution.

The third type of detector approximates the optimal LLR values of the received

symbols. Recently, a LLR-approximation based demapper was proposed and shown

to achieve near-optimal performance [72]. This LLR demapper is divided into two

parts: a linear part and an asymptotic part. The linear part of the demapper is

proportional to the received signal and is related to γ. The asymptotic part is

obtained by using the asymptotic property (Property 3) of the SαS process. The

LLR demapper for yj > 0 is expressed as

Lj = min

(√
2yj
γ

,
2(α + 1)

yj

)
. (4.6)

For yj < 0, the LLR demapper is calculated by replacing the min in (4.6) by a max

operation. However, this receiver requires knowledge of α and γ.

We propose a new demapper which can achieve a near-optimal performance

without knowledge of the dispersion γ. For our receiver, the LLR demapper is still

decomposed into linear and asymptotic parts. However, the linear part of (4.6) is

replaced with pyj where p is the optimized gradient which can be obtained from

density evolution and only related to α. Hence this receiver only requires knowledge

of α and the estimation of parameters of SαS noise can be obtained by referring to
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Figure 4.1: LLR demapper (α = 1.6, Eb/N0 = 2 dB)

Chapter 3. The new LLR demapper is

Lj =

min(pyj,
2(α+1)
yj

), yj ≥ 0,

max(pyj,
2(α+1)
yj

), yj < 0.

(4.7)

Fig. 4.1 gives curves of different LLR demappers which are discussed in this

section when α = 1.6 and Eb/N0 = 2 dB. It is clear that Gaussian receiver is linear

and becomes incorrect when |y| is large. Compared with the Cauchy receiver and

the clipper, our demapper matches the optimal demapper closely, which implies that

it should approach the performance of the optimal demapper. Compared with LLR

approximation demapper, our demapper gives a better approximation of the linear

part of the true LLR. In the next section, the asymptotic performance of the these

receivers will be evaluated through density evolution.
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4.2.2 Asymptotic Performance of LDPC codes on SαS chan-

nels

4.2.2.1 The Capacity of SαS channels

Channel capacity is a fundamental upper bound on the rate at which information can

be reliably transmitted. For the AWGN channel, the channel capacity has been well

studied in the literature [89]. For binary memoryless symmetric channels (BMSC),

the capacity can be evaluated as a function of the pdf of log-likelihood ratios (LLRs)

[89]. As a type of BMSC, the capacity of SαS channels can be expressed as

Cα = 1− E
{

log2

(
1 + e−L

)}
, (4.8)

where L = ln P (x=+1|y)
P (x=−1|y)

is the channel LLR. The expectation operator in (4.8) can

be replaced by a time average. Hence the capacity of SαS channels can be obtained

as

Cα = 1− lim
N→∞

{
1

N

N∑
n=1

log2

(
1 + e−xnLn

)}
, (4.9)

where xn is the modulated signal. This capacity limit can be measured by a large

number, N , of LLR values and it will be used as a benchmark for the coded perfor-

mance in the result section.

4.2.2.2 Density Evolution of LDPC codes on SαS Channels

The asymptotic performance of an LDPC ensemble can be accurately predicted by

several tools, namely, DE, GA and EXIT chart. These tools assume the LDPC

codes are cycle-free with an infinite codeword length. As introduced in Chapter

3, the EXIT chart and GA assume that the channel is Gaussian which is not of

interest in this chapter. However, DE can be applied to any binary memoryless

symmetric channels (BMSC). The impulsive noise we study has a non-Gaussian

SαS distribution, hence, DE can be employed to analyze the iterative behavior of

the Sum-Product decoder.

DE starts with the calculation of the pdf of the initial LLR. The optimal LLR

of the i-th variable node for the i-th iteration is expressed as

v
(0)
i = ln

P (xi = +1|yi)
P (xi = −1|yi)

= ln
fα(yi − 1; γ)

fα(yi + 1; γ)
. (4.10)
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For suboptimal receivers, the expression of the LLR demapper has been given above.

With the exception of the Gaussian linear receiver (α = 2), there is no analytic

expression for the densities of LLRs for other receivers. Hence, we employ a Monte-

Carlo simulation and histogram method to find the pdf of these LLRs. The DE

tracks the pdf of the LLRs between check nodes and variable nodes during the iter-

ative decoding and it allows us to calculate the threshold SNR of a LDPC ensemble

which indicates where the waterfall region begins. For SαS noise, the threshold can

be defined by the dispersion γth:

γth = sup

{
γ : lim

l→∞

∫ 0

−∞
p(l)
v (x)dx = 0

}
, (4.11)

where p
(l)
v is the pdf of v

(0)
i at the l-th iteration. If γ < γth, the error converges to

zero as l →∞ and if γ > γth, the decision error diverges from zero. The DE of the

check node update and the variable noise update have been introduced in Chapter

3, and they are given as

p(l)
u = Γ−1

[
dc∑
i=2

ρi
(
Γ
[
p(l−1)
v

])⊗(i−1)

]
, (4.12)

and

p(l)
v = p(0)

v ⊗
dv∑
i=2

λi
(
p(l)
u

)⊗(i−1)
, (4.13)

respectively. According to (4.12) and (4.13), we can obtain densities passed from

variable nodes to check nodes in the l-th iteration as

p(l)
v = p(0)

v ⊗ λ
(
Γ−1

(
ρ
(
Γ
(
p(l−1)
v

))))
. (4.14)

We assume that the all-zero codeword is transmitted, Hence, the BEP is

P (l)
e =

∫ 0

−∞
p(l)
v (x)dx. (4.15)

The effectiveness of our DE analysis will be shown in the results section. We note

that DE only gives us the asymptotic performance of LDPC codes since it assumes

the LDPC code has an infinite length and cycle-free. However, there is a large gap

between the asymptotic performance and practical performance when we consider

finite length LDPC codes. In order to estimate the performance more accurately,
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we propose a method to analyze the finite length LDPC codes in the next section.

4.3 Finite Length Analysis of LDPC codes on SαS

Channels

In this section, the analytic BEP of SαS channels will be derived first. Then we will

combine the analytic BEP and DE analysis which has been given above to calculate

the estimated block and BEP for finite length LDPC codes.

4.3.1 Uncoded Bit Error Probability on SαS Channels

In this part, we will derive the BEP, Pα
b , of BPSK modulation on SαS channels,

which will be employed to estimate the block and BEP of the LDPC-coded system.

When α = 2, the pdf of the noise is known but the cdf is not given in closed-form.

Hence the right tail probability function is defined as

Q(x) =
1√
2π

∫ ∞
x

exp

(
−t

2

2

)
dt. (4.16)

We can define a right tail probability function Qα(x) for SαS noise as

Qα(x) =

∫ ∞
x

fα(t; 0, 1)dt, (4.17)

where fα(t; 0, 1) is the standard SαS distribution which is defined by letting γ = 1.

We note that the integral in (4.17) can be calculated by a numerical method given

in [90]. Hence, Pα
b for SαS channels is derived as

Pα
b = P (x = +1)P (e|x = +1) + P (x = −1)P (e|x = −1)

=
1

2

∫ 0

−∞
fα(t− 1; γ)dt+

1

2

∫ ∞
0

fα(t+ 1; γ)dt

=

∫ ∞
1

fα(u; γ)du, (4.18)

where e is a symbol error and P (x = +1) = P (x = −1) = 1
2
. According to the

standardization of SαS random variables, if x ∼ S(α, γ), then x/γ ∼ S(α, 1) and the

pdf should be scaled by 1/γ [90]. By using this parametrization of the SαS process,
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(4.18) can be rewritten as

Pα
b =

∫ ∞
1

1

γ
fα

(
u

γ
; 1

)
du

=

∫ ∞
1
γ

fα(v; 1)dv

= Qα

(
1

γ

)
. (4.19)

Since the geometric SNR is defined for the whole range of α, (4.19) is a general

expression for all SαS channels. From (3.20) and (4.19), we can obtain Pα
b in terms

of Eb/N0 as

Pα
b = Qα

(
1

γ

)
= Qα

(√
4RcC

( 2
α
−1)

g
Eb
N0

)
. (4.20)

When Rc = 1, (4.20) represents the BEP of an uncoded BPSK system on SαS

channels.

There are two special cases of SαS random variables which have a closed-form

expression for the pdf: α = 1 and α = 2. Hence their BEP can be derived to further

verify the correctness of our analysis. First we consider the case of Cauchy noise

(α = 1), where PCauchy
b is given as

PCauchy
b =

∫ ∞
0

γ

π

1

(t+ 1)2 + γ2
dt

=

∫ ∞
1
γ

1

π

1

x2 + 1
dx, (4.21)

The Cauchy distribution of (4.21) has been converted to a standard pdf and PCauchy
b

can be expressed in terms of Qα(x) as

PCauchy
b = Qα

(
1

γ

)
. (4.22)

Now we examine the case for AWGN (α = 2). Notice that according to the definition

of the standard SαS pdf, the variance of the normal distribution is equal to two,

since σ2 = 2γ2. Hence the standard SαS distribution when α = 2 is

fα=2(t; 1) =
1

2
√
π

exp(−t
2

4
). (4.23)
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Figure 4.2: Uncoded performance of BPSK on SαS channels at α = 2, 1.99, 1.5, 1
and 0.8, respectively.

Then the uncoded BEP of BPSK on the AWGN channel can be expressed in terms

of the Qα-function as

PGauss
b = Q

(√
2Eb
N0

)
= Qα=2

(
2

√
Eb
N0

)
. (4.24)

When α = 2, (4.20) reduces to (4.24), hence (4.20) is universal for all values of

α. The derived analytic expression is verified by Fig. 4.2, where Pα
b in (4.20) for

different α’s are shown to be identical to the simulated BER.

4.3.2 Block and Bit Error Probability of finite length LDPC

codes on SαS Channels

4.3.2.1 Estimating the Block Error Probability

The block error probability (BLEP) of finite length LDPC codes can be derived by

considering the real-time channel quality for transmitting each codeword. First we

define the observed bit error rate Pα
obs as the bit error rate of any received word of

length N [51]. Assuming the all-zero codeword c is transmitted, an error will occur

if L(yj) =
P (cj=0|yj)
P (cj=1|yj) is negative. The pdf of Pα

obs can be found by taking N samples
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from the LLR distribution with a BEP of Pα
b . Hence, the probability mass function

(pmf) of Pα
obs is given as

fPαobs(N,P
α
obs) =

(
N

NP α
obs

)
(Pα

b )NP
α
obs(1− Pα

b )N−NP
α
obs , (4.25)

where NP α
obs is the average number of errors in the codeword of length N and it

has a binomial distribution B(N,Pα
b ). When N → ∞, the pdf of NP α

obs is well

approximated by the Gaussian distribution N(NPα
b , NP

α
b (1−Pα

b )). Hence, the pdf

of Pα
obs is approximated by N(Pα

b , P
α
b (1− Pα

b )/N).

Now we employ a threshold method to predict the BLEP Pα
B for LDPC codes

with block length N in SαS noise. As defined above, the threshold SNR of a specific

ensemble of LDPC codes is the maximum channel parameter where the decision error

of the SPA decoder can converge to zero. The threshold γth of LDPC codes on SαS

channels can be calculated by the DE analysis which we introduced in this chapter.

Then we give the procedure for estimating Pα
B by using the obtained threshold SNR.

First, we calculate the threshold BEP Pth which corresponds to the threshold

dispersion γth on the SαS channel using (4.20). Hence,

Pth = Qα

(√
4RcC

( 2
α
−1)

g

(
Eb
N0

)
th

)
, (4.26)

where
(
Eb
N0

)
th

is the threshold SNR defined by γth. To find Pα
B for short LDPC codes,

the probability that the observed channel behaves worse than the decoding threshold

is calculated by using the pdf of Pα
obs. Hence, the probability that Pα

obs > Pth can be

calculated by fPαobs(N,P
α
obs) and the block length N . Hence, the BLEP is estimated

as

Pα
B (N, λ, ρ) =

∫ 1

Pth

fPαobs(N, x)dx, (4.27)

where (4.27) gives the BLEP for a LDPC ensemble with code length N and edge de-

gree distributions λ(x) and ρ(x). As discussed earlier, when N is large, fPαobs(N,P
α
obs)

can be approximated by a Gaussian distribution. Hence the BLEP is given as

Pα
B (N, λ, ρ) = Q

(
Pth − µPαobs

σPαobs

)
, (4.28)

where µPαobs = Pα
b and σPαobs = Pα

b (1− Pα
b )/N .
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4.3.2.2 Estimating the Probability of Bit Error

The BEP is derived from the BLEP by observing that the error rate does not change

significantly for channel parameters which are slightly worse than the threshold when

the decoder fails to converge. There is a BEP Pe when the decoder fails, as given

in (4.15). As derived above, each block has the probability Pα
B (N, λ, ρ) of an error

occuring, hence the coded BEP is given as

Pα
b (N, λ, ρ) = P (lmax)

e Pα
B (N, λ, ρ), (4.29)

where lmax is the maximum number of iterations in the process of DE. We note that

P
(l)
e is the BEP obtained from GA in [51], but this is not valid in our situations

since the SαS noise channel is non-Gaussian. Hence density evolution is essential to

calculate P
(l)
e .

4.4 Results

4.4.1 LDPC codes with Different Receivers on SαS Chan-

nels

Table 4.1: the threshold SNRs in dB for the different receivers

optimal LLR appro. proposed Cauchy Clipper

α = 1.8 1.54 1.64 1.63 1.90 1.65

α = 1.6 1.88 1.98 1.98 2.08 2.05

α = 1.2 2.72 2.79 2.78 2.76 3.55

α = 1.0 3.31 3.38 3.36 3.31 4.80

The threshold SNRs of optimal and suboptimal receivers derived from DE are

given in table 4.1. As shown in table 4.1, the threshold SNRs for the LLR ap-

proximation receiver and the proposed receiver are similar and both of them are

very close to the optimal receiver for a large range of α. When α = 1, the Cauchy

receiver is the optimal receiver. It also exhibits a good performance for various val-
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Figure 4.3: Density evolution at variable node with the optimal receiver, when
α = 1.8 and Eb/N0 = 2 dB.
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Figure 4.4: Density evolution at variable node with our proposed receiver, when
α = 1.8 and Eb/N0 = 2 dB.
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Figure 4.5: Density evolution at variable node with Cauchy receiver when α = 1.8
and Eb/N0 = 2 dB

ues of α. However, we observe that the performance of the Cauchy receiver suffers

from degradation when the channel is only slightly impulsive, such as α = 1.8. The

simple clipper receiver is also attractive in this case since it achieves near-optimal

performance at α = 1.8. In addition, the threshold SNR of the clipper approaches

the optimal receiver as α increases. This implies that the clipper receiver is very

suitable for lightly impulsive environments compared with the other receivers due

to its excellent performance and low complexity.

Additionally, we plot the pdf of the message passed from variable nodes for

different receivers at α = 1.8 and Eb/N0 = 2 dB in Fig. 4.3 - Fig. 4.5. As given

in (4.11), the error probability Pe of the decoder is the integration of p
(l)
ω evaluated

in the range (−∞, 0]. As shown in Fig. 4.3 - Fig. 4.5, the area of the density for

negative LLRs which corresponds to Pe becomes smaller as the number of iterations

increases. For example, it requires 50 iterations for the Cauchy receiver to make

Pe → 0 while the optimal receiver and proposed receiver only require 16 and 20

iterations, respectively. This observation verify the thresholds given in table 4.1 for

the Cauchy, optimal and proposed receivers, which are 1.90 dB, 1.54 dB and 1.63

dB respectively. We also observe that the LLR becomes larger as the number of
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iterations increases and there are a few spikes at LLR = 25 and 30 for 16 iterations

and 20 iterations in Fig. 4.3 and Fig. 4.4, respectively. It is known that LLR

measures the reliability of the received signal. This implies that as the number of

iterations increases, the decoder is more confident on the decision of the received

symbols and the LLR will converge to a specific value and no longer increase.
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Figure 4.6: LDPC codes (nb = 20000 bits) on the SαS channel with α = 1.8

To examine the simulated performance of optimal and suboptimal receivers and

validate the obtained thresholds, we use a (3, 6) LDPC code with code length

nb = 20000 and code rate Rc = 0.5. The LDPC code is randomly constructed

and the maximum iterations number is set to 20. The BER performance is evalu-

ated for SαS channels with α = 1.8 and α = 1 which represent lightly impulsive and

extremely impulsive noise, respectively. As shown in Fig. 4.6, when α = 1.8, the

clipper receiver, the proposed receiver and the LLR approximation receiver achieve

similar performances and are 0.1 dB worse than the optimal receiver, but the Cauchy

receiver is 0.4 dB away from the optimal receiver. In Fig. 4.7, α = 1 and the Cauchy

receiver is optimal, but the proposed receiver still matches the performance of the

optimal receiver while the LLR approximation receiver achieves a slightly worse per-

formance. However, in this situation, the clipper receiver is 1.7 dB worse than the

optimal receiver.
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Figure 4.7: LDPC codes (nb = 20000 bits) on the SαS channel with α = 1

We note that the threshold SNRs for the different receivers obtained from DE

analysis are denoted by dashed vertical lines in these figures and the threshold SNRs

match the beginning of the waterfall region for these BER curves. Hence, this shows

that our asymptotic analysis is valid on these channels.

4.4.2 Waterfall performance of LDPC codes on SαS Chan-

nels

We investigate the accuracy of our estimated BLEPs and BEPs for finite length

LDPC codes by comparing analytic BEP with the simulated BER of LDPC codes.

We employ both rate 1/2 regular and irregular LDPC codes with different codeword

lengths (N = 1000, 4000, 20000) at different values of α (α = 0.8, 1, 1.5, 1.9). The

decoding algorithm is the SPA and the maximum number of iterations is 100. For

regular LDPC codes, the degree of dv and dc are 3 and 6, respectively. For irregular

codes, the degree distributions are selected to be λ(x) = 0.30013x + 0.28395x2 +

0.41592x7, ρ(x) = 0.22919x5+0.77081x6 and λ(x) = 0.4x2+0.4x5+0.2x8, ρ(x) = x8.

The first degree distribution pair is chosen from [42] which is an optimized code with

maximum variable node degree of 8. The second degree distribution pair is chosen

from [51]. In the simulation, LDPC codes with short or medium length (N ≤ 4000
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Figure 4.8: BEP comparison of regular (3, 6) LDPC codes showing estimated and
simulation results with different block lengths on SαS channels when α = 1.9.
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Figure 4.9: BEP comparison of regular (3, 6) LDPC codes showing estimated and
simulation results with different block lengths on SαS channels when α = 1.
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Figure 4.10: BEP comparison of regular (3, 6) LDPC codes showing estimated and
simulation results with different block lengths on SαS channels when α = 0.8.
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Figure 4.11: Block and bit error probability of irregular LDPC codes with degree dis-
tribution λ(x) = 0.4x2 + 0.4x5 + 0.2x8, ρ(x) = x8 showing estimated and simulation
results with N = 4000 on SαS channels when α = 1.5.
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Figure 4.12: BEP comparison of irregular LDPC codes with degree distribution
λ(x) = 0.30013x + 0.28395x2 + 0.41592x7, ρ(x) = 0.22919x5 + 0.77081x6 showing
estimated and simulation results with different block lengths on SαS channels when
α = 1.

bits) are constructed using the progressive edge-growth (PEG) algorithm [1], which

maximizes the local girth. For long LDPC codes, random construction is used since

the computational cost of the PEG algorithm for long LDPC codes is very high.

As shown in Figs. 4.8 - 4.10, the gap between the estimated and simulated bit

error rate becomes smaller as the code length increases for each value of α. When

N = 1000, the gap between the estimated and simulated performance is about 0.2

dB and it reduces to 0.1 dB when N increases to 4000. For long LDPC codes where

N = 20000, the estimation and the simulation result are almost the same. We also

observe that these performance differences are independent of α.

For irregular LDPC codes, our estimation method is also shown to be effective-

ness. As shown in Fig. 4.11, the actual performance is accurately predicted by the

analytically derived Pα
B and Pα

b in (4.28) and (4.29) with only a 0.15 dB difference

at a bit error rate of 10−5, while the gap to the threshold SNR is 1.04 dB. In Fig.

4.12, the performance of optimized LDPC codes is presented when α = 1. It is

shown that the gaps between the estimated and simulated performance for different

block lengths are similar to the results for the regular LDPC codes, with both sets
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of results becoming almost identical when N = 20000 bits. Compared with Fig.

4.9, we note that the performance of this optimized code is about 1 dB better than

regular (3, 6) LDPC codes with the same block lengths.

It is observed that the gap between the estimated and simulated results is greater

at shorter block lengths. There are two reasons for this result: First, the thresh-

old γth and its corresponding Pth obtained from DE assumes the LDPC code is

cycle-free. However, short cycles cannot be avoided for short LDPC codes. Hence,

the effect of cycles on short block length LDPC codes is more serious and this

degrades performance [1]. For long LDPC codes, the prediction becomes more

accurate since the concentration theorem states that the average behavior of in-

dividual codes concentrates around its expected behavior as the block length grows

and this average behavior converges to the cycle-free case [41]. Second, the pdf of

Pα
obs is not well approximated as a Gaussian distribution when N is small, which

means (4.28) and (4.29) become less accurate. To numerically evaluate the accu-

racy of the Gaussian approximation, the Kullback-Leibler (KL) divergence is em-

ployed to calculate the difference between the two pdfs. KL divergence is defined

as DKL(P ||Q) =
∑

i P (i) log P (i)
Q(i)

, where P is the true pdf and Q is an approxi-

mation of P . In our case, P is the binomial pdf B(N,Pα
0 ) and Q is the normal

distribution N(Pα
0 , P

α
0 (1 − Pα

0 )/N). For example, the threshold Eb/N0 is given in

Fig. 4.8 and the corresponding BEP Pth can be calculated by (4.26). Knowing the

value of block length N and Pth, the pdf of Pα
obs can be determined. Therefore,

the KL divergence between the pdf of Pα
obs and Gaussian distribution is obtained as

1.4×10−3, 3×10−4, 6.7×10−5 for N = 1000, 4000, 20000, respectively. This indicates

that the approximation becomes more accurate as the block length increases and

when N = 20000, these two pdfs are almost identical.

4.5 Conclusion

In this chapter, we have examined the performance of LDPC codes on SαS channels

with different receivers. A sub-optimal receiver has been proposed that provides

a good approximation of the exact LLR but does not require calculation of the

SαS pdf or its dispersion, which greatly reduces the complexity. In addition, a DE

analysis of the LDPC code for each receiver on SαS channels was presented. With

DE, we have derived the threshold SNRs which represent the start of the waterfall
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region. Moreover, simulation results of LDPC codes with different receivers have

been presented to validate the DE analysis.

The asymptotic and simulated results show that the proposed receiver can achieve

near-optimal performance with only the knowledge of the channel impulsiveness α.

We also observe that the clipper receiver is most suitable for only slightly impul-

sive(as α approaches two) since it is simple and presents excellent performance,

while the Cauchy receiver approaches optimum performance as α approaches one.

The LLR approximation receiver also shows good performance over a large range of

α, but it also requires the knowledge of γ and additionally the proposed receiver is

slightly better for some α values due to the better approximation of the LLR. We

can conclude that the proposed receiver is a good choice for SαS channels and it

can achieve a good performance at a low complexity.

In order to better estimate the waterfall performance of LDPC codes on impulsive

noise channels, we have analyzed finite length performance of regular and irregular

LDPC codes by deriving the BLEP and BEP on SαS impulsive noise channels.

We observed that at long block lengths (N = 20000 bits), the estimated BEPs are

almost identical to the simulated bit error rates for different values of α, but it is also

found that the gap between theoretical and simulation results increases as the block

length decreases. The reasons for this are the effect of short cycles on the Tanner

graph and the Gaussian approximation of the observed error probabilities becoming

weaker as the block length is reduced, although the gap was still only around 0.2 dB

when the block length is as low as N = 1000 bits. Hence, we have shown that for a

given degree distribution pair our method can be used to obtain accurate estimates

of the BLEP and BEP of finite length LDPC codes on SαS additive impulsive noise

channels. Furthermore, our analysis implies that for a given uncoded BEP and

threshold, predictions of the actual performance for short LDPC codes could be

accomplished on more general memoryless channels.
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Chapter 5

Performance Analysis of LDPC

codes over Fading Channels with

Impulsive Noise

5.1 Introduction

In chapter 4, a performance analysis of LDPC codes on additive impulsive noise

channels was presented and closed form expressions for the coded BEP were derived.

In this chapter, we extend the work from chapter 4 to first derive the uncoded BEP

on generalized fading channels, encompassing Rayleigh, Ricean and Nakagami-m

fading channels, with additive SαS noise. In order to reduce the computational

cost of calculating the exact BEP we derive two approximations for the case of the

BEP of Rayleigh fading channels with SαS noise. One approximation is based on

the utilization of a bi-parameter Cauchy-Gaussian mixture (BCGM) model and the

other one uses the asymptotic property of SαS random variables. Both of them

are given as closed-form expressions which greatly reduce the complexity and show

accurate estimation of the exact BEP.

We then derive the asymptotic performance of LDPC codes on these channels

with optimal and sub-optimal receivers using density evolution (DE). Finally, we

extend this analysis to estimate the BEP of finite length LDPC codes, which becomes

more accurate as block size increases.
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Noise

5.2 Error Probability Analysis of Generalized Fad-

ing Channels with SαS Noise

We consider a point-to-point system with a coherent receiver. The n-th received

signal y(n) is described as

y(n) = aejφx(n) + z(n), (5.1)

where x(n) is the BPSK modulated signal with x(n) ∈ {−1, 1}, a is the normalized

fading amplitude with E[a2] = 1 and φ is the phase of the channel. z(n) is complex

noise where the real part zR(n) and imaginary part zI(n) are i.i.d. and they both

follow a symmetric alpha-stable (SαS) distribution. According to [27], the real

and imaginary components of any complex SαS noise samples are independent and

identically distributed if the bandpass sampling frequency is four times greater than

the carrier frequency. Hence, with this assumption the BEP for SαS channels is

derived as

Pα
b = P (x = +1)P (e|x = +1) + P (x = −1)P (e|x = −1)

=

∫ ∞
1

fα(u; γ)du, (5.2)

where e is a symbol error and P (x = +1) = P (x = −1) = 1
2
. According to the

standardization of SαS random variables, if x ∼ S(α, γ), then x/γ ∼ S(α, 1) and

the pdf should be scaled by 1/γ. By using this parametrization of the SαS process,

(5.2) can be rewritten as

Pα
b =

∫ ∞
1

1

γ
fα

(
u

γ
; 1

)
du =

∫ ∞
1
γ

fα(v; 1)dv = Qα

(
1

γ

)
. (5.3)

Since geometric SNR is defined for the whole range of α, (5.3) is a general expression

for all SαS channels. From (3.20) and (5.3), we can obtain Pα
b in terms of Eb/N0 as

Pα
b = Qα

(
1

γ

)
= Qα

(√
4RcC

( 2
α
−1)

g
Eb
N0

)
. (5.4)
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Table 5.1: PDF p(a) and p(ω; Ω) for normalized fading amplitude a and instanta-
neous SNR for selected fading channels

Channel Type PDF of Fading Amplitude a and SNR/bit, ω

Rayleigh p(a) = 2a exp(−a2); a ≥ 0

p(ω; Ω) = 1
Ω

exp(−ω/Ω); ω ≥ 0
Rician p(a) = 2(1 +K)e−Ka exp (−(1 +K)a2)

K ≥ 0 ×I0

(
2a
√
K(1 +K)

)
; a ≥ 0

p(ω; Ω) = (1+K)e−K

Ω
exp

(
− (1+K)ω

Ω

)
×I0

(
2
√

K(1+K)ω
Ω

)
; ω ≥ 0

Nakagami-m p(a) = 2mma2m−1

Γ(m)
exp (−ma2); a ≥ 0

m ≥ 1/2

p(ω; Ω) = mmωm−1

ΩmΓ(m)
exp

(
−mω

Ω

)
; ω ≥ 0

The BEP on generalized fading channels with SαS noise for BPSK is given as

Pα,F
b =

∫ ∞
0

Pα
b|a(ω)p(ω; Ω)dω

=

∫ ∞
0

Qα

(√
4RcC

( 2
α
−1)

g ω

)
p(ω; Ω)dω, (5.5)

where p(ω; Ω) is the pdf of ω and Ω = Eb
N0

. We note that (5.5) is valid for generalized

fading channels. In this chapter, we consider Rayleigh, Rician and Nakagami-m

fading to verify our analysis. Their corresponding pdfs p(a) of the fading amplitude

a and pdfs p(ω; Ω) of the instantaneous SNR ω are given in Table 5.1.

We note that the calculation of Qα(x) requires a double integral, but this can

be reduced to only one integral. We can first write Qα(x) = 1− Fα(x) where Fα(x)

is the cumulative distribution function (cdf) of the SαS distribution. Hence, we

propose to use an alternative expression of Fα(x) [90] to reduce the complexity of

calculating Qα(x). For x > 0:

(a) When α 6= 1,

Qα(x) = c1 +
sign(α− 1)

π

∫ π
2

0

exp
(
−x

α
α−1V (θ;α)

)
dθ, (5.6)
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where

c1 =


1
2
, α < 1,

0, α > 1,

and

V (θ;α) =

(
cos θ

sinαθ

) α
α−1 cos(α− 1)θ

cos θ
.

(b) When α = 1,

Qα(x) = −1

2
− 1

π
arctan(x). (5.7)

This new general expression of Qα-function reduces the complexity of calculating

Qα(x) by replacing the double integral with a single integral. Hence, by using this

alternate expression ofQα(x), we can efficiently calculate the analytic BEP for fading

channels with SαS noise.

5.3 Approximated Error Probabilities of Rayleigh

Fading Channels with SαS Noise

We have derived the exact BEP for generalized fading channels with SαS noise.

However, as discussed earlier, the computational cost of calculating the exact BEP

is very high. A double-integral is needed if we use the alternative expression of

Fα(x). In this section, two closed-form approximations of the BEP on Rayleigh

fading channels with SαS noise will be derived to greatly reduce the complexity.

5.3.1 BEP approximation from the BCGM model

The first approximation is to use a recently proposed bi-parameter Cauchy-Gaussian

mixture (BCGM) model to approximate SαS distributions (1 ≤ α ≤ 2) [91]. This

model mixes a Gaussian distribution (α = 2) and a Cauchy distribution (α = 1)

with only two parameters, ε and γ which is very simple. The pdf of the BCGM

model is given as [91]

fCG(x) = (1− ε) 1

2
√
πγ

exp

(
− x2

4γ2

)
+ ε

γ

π(x2 + γ2)
, (5.8)
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where ε is the mixture ratio and its near-optimal value is given as

ε =
2Γ(−p/α)− αΓ(−p/2)

2αΓ(−p)− αΓ(−p/2)
. (5.9)

The gamma function is Γ(x) =
∫∞

0
e−ttx−1dt and p < α [91]. Then we can define

the standard BCGM distribution as

f sCG(x) = (1− ε) 1

2
√
π

exp

(
−x

2

4

)
+ ε

1

π(x2 + 1)
. (5.10)

The BEP of SαS channel can be approximated by f sCG(x) as

Pα,BCGM
b =

∫ ∞√
4C

( 2
α−1)
g

Eb
N0

f sCG(x)dx. (5.11)

Hence, the BEP on Rayleigh fading channels with SαS noise can be approximated

as

Pα,Ray
b ≈ 1

Ω

∫ ∞
0

Pα,BCGM
b|a (ω) exp(−ω/Ω)dω

=
1

Ω

∫ ∞
0

(∫ ∞
√

4C1ω

f sCG(t)dt

)
exp(−ω/Ω)dω

=
1− ε

2

(
1−

√
C1Ω

1 + C1Ω

)
+
ε

2

(
1− exp

(
1

4C1Ω

)
erfc

(√
1

4C1Ω

))
,

(5.12)

where C1 = C
( 2
α
−1)

g . It is observed that the original expression of the approximated

Pα,Ray
b requires a double-integral. After some simplifications, a closed-form expres-

sion of BEP is obtained which is given in (5.12). Compared with the exact analytic

BEP, this approximation can greatly reduce the computational cost. We note that

when ε = 0, (5.12) is reduced to the exact BEP for Rayleigh fading channels with

Gaussian noise. When ε = 1, (5.12) is the exact BEP of Rayleigh fading channels

with Cauchy noise. The derivation of (5.12) is given in the Appendix.
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5.3.2 Asymptotic performance of Rayleigh Fading Channels

with SαS noise

In addition to approximating the pdf of SαS distributions by the BCGM model,

another approximation uses the asymptotic property of SαS distributions to ap-

proximation the tail probability function Qα(x). According to [4] and Property 3,

for a α-stable random variable X with dispersion γα, we have

lim
x→∞

P (X > x) =
γαCα
xα

, (5.13)

where

Cα =
1

π
Γ(α) sin

(πα
2

)
. (5.14)

Hence the asymptotic right-tail probability function Qα(x) is given as

lim
x→∞

Qα(x) =
Cα
xα
, (5.15)

By substituting (5.15) into (5.4), we can obtain the asymptotic BEP of uncoded

BPSK on SαS channels as

Pα,asy
b = Cα

(√
4C

( 2
α
−1)

g Ω

)−α
. (5.16)

After some manipulations, the asymptotic BEP of uncoded BPSK on Rayleigh fad-

ing channels with SαS noise is given as

Pα,Ray
b → 1

Ω

∫ ∞
0

Pα,asy
b|a (ω) exp(−ω/Ω)dω

=
Cα(

4C
( 2
α
−1)

g Ω
)α

2

Γ
(

1− α

2

)
. (5.17)

The derived expression of the asymptotic BEP is very simple as it only contains

a Gamma function Γ(·) and the derivation of this final expression is given in the

Appendix . Numerical and simulated results for the exact and approximated BEP

of BPSK on Rayleigh fading channels with SαS noise are shown in Fig. 5.1.

As shown in Fig. 5.1, our analytic BEPs match the simulation results for different

values of α. The BCGM model gives a very accurate approximation of the exact
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Figure 5.1: The BEP of BPSK on Rayleigh fading channels with SαS noise at
α = 1.9, 1.5, 1.1.

BEP at the high error-rate region. As an example, when α = 1.9, the BCGM’s

BEP curve for uncoded BPSK closely matches the exact BEP when BEP > 10−2.

However, as SNR increases, the estimation becomes less accurate. In contrast, the

asymptotic BEP closely approximates the low error-rate region of the exact BEP,

but the approximation is less accurate in the high error-rate region. As presented

in Fig. 5.1, for each α, the asymptotic BEP matches the exact BEP closely when

the BEP is equal to or less than 10−2.

5.4 BEP on Rayleigh fading channel with SαS

noise with extensions to M-QAM

As we know, the the BEP of BPSK on the AWGN channel is given as

PGauss
b = Q

(√
2Eb
N0

)
. (5.18)
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Hence, according to (5.4), the mapping between Q(x) and Qα(x) is

Q(x)→ Qα

(√
2C

( 2
α
−1)

g x

)
. (5.19)

For AWGN channels, according to [92], the closed-form BEP of M-QAM is cal-

culated as

PM
b =

2√
M log2

√
M

{log2

√
M}∑

k=1

{(1−2−k)
√
M−1}∑

i=0

{
f(k, i)Q

(
(2i+ 1)

√
3Ω log2M

M − 1

)}
,

(5.20)

where Ω = Eb
N0

and bxc is the largest integer which is not greater than x. f(k, i) is

defined as

f(k, i) = (−1)

⌊
i2k−1
√
M

⌋(
2k−1 −

⌊
i2k−1

√
M

+
1

2

⌋)
. (5.21)

From the relationship between Q(x) and Qα(x), the theoretical BEP of M-QAM

over SαS noise is given as

PM
b,α =

2√
M log2

√
M

{log2

√
M}∑

k=1

{(1−2−k)
√
M−1}∑

i=0

f(k, i)Qα

(2i+ 1)

√
6C

( 2
α
−1)

g Ω log2M

M − 1

 .

(5.22)

Hence, the exact BEP of uncoded M-QAM on Rayleigh fading channels with SαS

noise is given as

PM,Ray
b,α =

∫ ∞
0

PM
b|a,α(ω)p(ω)dω, (5.23)

where p(ω) = 1
Ω

exp(−ω/Ω).

5.4.1 BEP approximation from the BCGM model

The BEP of uncoded M-QAM on the SαS channel can be approximated by the

BCGM model as

PM,BCGM
b,α =

2√
M log2

√
M

{log2

√
M}∑

k=1

{(1−2−k)
√
M−1}∑

i=0

{
f(k, i)

∫ ∞
√
g(i)Ω

f sCG(x)dx

}
,

(5.24)
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PM,Ray
b,α ≈ 1

Ω

∫ ∞
0

PM,BCGM
b|a,α (ω) exp(−ω/Ω)dω

=
2√

M log2

√
M

{log2

√
M}∑

k=1

{(1−2−k)
√
M−1}∑

i=0{
f(k, i)

[
1− ε

2

(
1−

√
g(i)Ω

4 + g(i)Ω

)
+
ε

2

(
1− exp

(
1

g(i)Ω

)
erfc

(√
1

g(i)Ω

))]}
,

(5.27)

where

g(i) =
6C

( 2
α
−1)

g log2M

M − 1
(2i+ 1)2. (5.25)

The exact BEP on Rayleigh fading channels with SαS noise is now approximated

by using the BCGM model as

PM,Ray
b,α ≈ 1

Ω

∫ ∞
0

PM,BCGM
b|a,α (ω) exp(−ω/Ω)dω. (5.26)

It is observed that (5.26) contains a double integral. Similar to uncoded BPSK, a

closed-form expression of BEP for M-QAM is obtained in (5.27).

5.4.2 Asymptotic performance of a Rayleigh fading channel

with SαS noise

Another approximation can be obtained by using the heavy tailed property of SαS

distributions. By substituting (5.15) into (5.22), we obtain the asymptotic BEP for

M-QAM on SαS channels

PM,asy
b,α =

2Cα√
M log2

√
M

{log2

√
M}∑

k=1

{(1−2−k)
√
M−1}∑

i=0

{
f(k, i) (g(i)Ω)−

α
2

}
. (5.28)

After the simplification, the asymptotic BEP of M-QAM on Rayleigh fading
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channels with SαS noise is obtained as

PM,Ray
b,α → 1

Ω

∫ ∞
0

PM,asy
b|a,α (ω) exp(−ω/Ω)dω

=
2Cα√

M log2

√
M

{log2

√
M}∑

k=1

{(1−2−k)
√
M−1}∑

i=0

{
f(k, i) (g(i)Ω)−

α
2 Γ
(

1− α

2

)}
.

(5.29)

The resulting expression of the asymptotic BEP is also very simple, containing only a

Gamma function. We note that for Rayleigh fading channels with slightly impulsive

noise (i.e. α = 1.8), only the first two terms (i = 0, 1) of (5.23), (5.27) and (5.29)

are needed to provide a good estimate of the exact BEP. However, when the channel

becomes very impulsive (i.e. α = 1), more terms (i = 0, 1, 2...) should be included

since Qα(x) decays slowly for small α’s as SNR increases.
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Figure 5.2: BEP of M-QAM on Rayleigh fading channels with SαS noise when
α = 1.9.

Numerical and simulated results for the exact and approximated BEP’s of M-

QAM on Rayleigh fading channels with SαS noise are shown in Fig 5.2 - 5.4. When

the channel is slightly impulsive (α = 1.9) or extremely impulsive (α = 1.1), our

analytic BEPs closely match the simulated BERs for different order M of QAM.

The BCGM model gives a good estimation of the exact BEP at the high error-
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Figure 5.3: BEP of M-QAM on Rayleigh fading channels with SαS noise when
α = 1.5.
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Figure 5.4: BEP of M-QAM on Rayleigh fading channels with SαS noise when
α = 1.1.
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rate region, but when the SNR increases this estimation becomes less accurate. In

contrast, the asymptotic BEPs approximate the low error-rate region of the exact

BEPs very accurately, but are less accurate in the high error-rate region.

When the channel is moderately impulsive (α = 1.5), our analytic BEPs still

closely match the simulated BER curves in Fig. 5.3. Similar to the case of α = 1.9

and α = 1.1, the asymptotic BEP accurately approximates the low error-rate region

of the exact BEP. However, for the BCGM model it is less accurate compared with

α = 1.9 and α = 1.1. This is because the BCGM model can better estimate the

actual SαS pdf when α is close to 2 or 1.

5.5 Performance Analysis of LDPC codes over

Generalized Fading Channels with SαS noise

5.5.1 Asymptotic performance of LDPC codes

As discussed in previous sections, only DE is valid for BMSC and it can be adopted

here to calculate the threshold SNR of a specific ensemble of LDPC codes. DE

tracks the change of LLRs during the Sum-Product decoding process which has

been described in Chapter 3. In this section, we will show how to use DE for

uncorrelated generalized fading channels with SαS noise.

DE assumes that the channel output is symmetric and here we prove the sym-

metry property for fading channels with SαS noise as follows:

P (y|x = 1, a) =
1

2π

∫ ∞
−∞

exp(−γα|t|α)e−jt(y−a)dt

=
1

2π

∫ ∞
−∞

exp(−γα|t|α)e−jt[−(y−a)]dt

= P (−y|x = −1, a), (5.30)

hence P (y|x = 1) = P (−y|x = −1). If we know the side information (SI), the initial

message v(0) is given as

v(0) = ln
P (x = +1|y, a)

P (x = −1|y, a)
= ln

fα(y − a; γ)

fα(y + a; γ)
. (5.31)

The pdf of (5.31) has no analytic expression except for α = 2 which cannot be
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calculated numerically, hence, a Monte-Carlo simulation with a histogram method

is used to obtain the conditional density function p(v(0)|a) of v(0). Finally, to obtain

the unconditional density function of v(0), we average p(v(0)|a) over the pdf of a as

p(0)
v =

∫ ∞
0

p(v(0)|a)p(a)da, (5.32)

where p(a) is the pdf of the fading amplitude a. After the calculation of the pdf of

the initial LLR, the DE of the check node update and variable node update are the

same as we previously introduced.

The optimal receiver in (5.31) requires the calculation of the pdf of SαS noise

which has a high complexity and is not practical. Hence some sub-optimal receivers

are required to reduce the computational cost but achieve good performance. In

this chapter, two types of sub-optimal receivers are examined for generalized fading

channels with SαS channels. The first type of sub-optimal receiver approximates

the SαS pdf by a closed-form expression, such as the BCGM model [91] and the

Cauchy distribution. The other type of sub-optimal receivers employs simple non-

linear operations such as hole-punching or clipping on the received signal or the LLR

to reduce the effect of the presence of impulses. In Chapter 4, our DE method has

shown its effectiveness for these sub-optimal receivers. For fading channels, it is still

applicable as a tool to analyze the asymptotic performance of LDPC codes. Similar

to optimal receivers, the conditional pdf p(v(0)|a) of v(0) for sub-optimal receivers

should be calculated by a simulation-based approach.

5.5.2 Waterfall Performance Analysis of LDPC codes

As in Chapter 4, we define the observed BER Pα
b,obs as the BER of any received

codeword of length N , implying Pα
b,obs is a random variable. Each bit of the codeword

has a probability Pα,F
b of being in error and the probability mass function (pmf) is

obtained as

fPαb,obs(N,P
α
b,obs) =

(
N

K

)
(Pα,F

b )K(1− Pα,F
b )N−K , (5.33)

where K = NP α
b,obs is the number of errors in a codeword of length N , which

follows a binomial distribution B(N,Pα,F
b ). When N → ∞, the pmf of K becomes

a Gaussian distribution N(NPα,F
b , NPα,F

b (1−Pα,F
b )). Hence the pdf of Pα

b,obs can be
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approximated by N(Pα,F
b , Pα,F

b (1− Pα,F
b )/N).

To find Pα
B of a specific ensemble of LDPC codes, first the threshold γth for

an ensemble of LDPC codes is obtained through DE. Then the obtained threshold

dispersion is used to calculate the corresponding threshold BEP Pth. According to

(5.5), we have

Pth =

∫ ∞
0

Qα

(√
4RcC

( 2
α
−1)

g ω

)
p

(
ω;

(
Eb
N0

)
th

)
dω, (5.34)

where
(
Eb
N0

)
th

is the corresponding threshold SNR defined by γth. Then the block-

error probability is obtained by calculating the probability that Pα
b,obs > Pth.

Pα
B (N, λ, ρ) =

∫ 1

Pth

fPαb,obs(N, x)dx

= Q

(
Pth − µPαb,obs

σPαb,obs

)
, (5.35)

where Pα
B (N, λ, ρ) is our estimated block error probability for an ensemble of LDPC

codes with block length N and degree distributions λ(x) and ρ(x). Also, µPαb,obs =

Pα,F
b and σPαb,obs = Pα,F

b (1− Pα,F
b )/N .

The bit-error probability Pα
b (N, λ, ρ) can be derived from Pα

B (N, λ, ρ). Each

block has probability Pα
B (N, λ, ρ) of being in error, hence the coded BEP is given as

Pα
b (N, λ, ρ) = P (lmax)

e Pα
B (N, λ, ρ). (5.36)

5.6 Results and Discussion

5.6.1 Uncoded BER for fading channels with SαS noise

As shown in Fig. 5.5-5.7, the analytic BEP closely matches the simulated BER

for Rician, Nakagami-m and Rayleigh fading channels with SαS noise for different

levels of impulsiveness. Another observation is when the degradation caused by

fading is not very strong, even very slightly impulsive noise will severely degrade

the performance at low values of SNR. For example, even when α = 1.99, there are

very few impulses but it leads to a 6dB degradation at BER = 10−5 compared with

Gaussian noise (α = 2) on Rician fading channels. When the fading effect becomes

stronger, this performance loss due to impulsive noise becomes smaller. As shown
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Figure 5.5: Uncoded performance of BPSK on the Rician fading channel (K = 10)
with SαS noise at α = 2, 1.99, 1.9, 1.5, 1 and 0.5 respectively.
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Figure 5.6: Uncoded performance of BPSK on the Nakagami-m fading channel
(m = 2) with SαS noise at α = 2, 1.99, 1.9, 1.5, 1 and 0.5 respectively.
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Figure 5.7: Uncoded performance of BPSK on the Rayleigh fading channel with
SαS noise at α = 2, 1.9, 1.5, 1 and 0.5 respectively.

in Fig. 5.6, the loss is about only 2 dB for Nakagami-m fading with m = 2. For the

Rayleigh fading channel, which is a special case of Nakagami-m fading with m = 1,

the influence of slightly impulsive noise is not obvious. As illustrated in 5.7, even

when α = 1.9, the performance loss due to impulses is small.

When the SαS channel is very impulsive (α = 1), it always leads to a large

performance degradation for different fading channels. For example, the gap at

BER = 10−2 between α = 1 and α = 2 for Rician, Nakagami-m and Rayleigh fading

channels are 16, 15 and 12 dB, respectively.

5.6.2 Coded BER for fading channels with SαS noise

In this section, the asymptotic and waterfall performance of regular and irregular

LDPC codes on fading channels with SαS noise will be investigated by numerical

and simulated results. The rate 1/2 regular (3, 6) LDPC codes and irregular LDPC

codes with two pairs of degree distributions λ(x) = 0.247x + 0.339x2 + 0.414x3,

ρ(x) = 0.1x4 + 0.9x5 and λ(x) = 0.4x2 + 0.4x5 + 0.2x8, ρ(x) = x8 are considered

with the following block sizes: N = 1000, 4000, 20000. LDPC codes with short and

medium code length (N ≤ 4000 bits) are constructed using the PEG algorithm [1] to
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Figure 5.8: Performance of regular LDPC codes with different length on Rayleigh
fading channels with SαS noise at α = 1.9.
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Figure 5.9: Performance of regular LDPC codes with different length on Rician
fading channels (K = 10) with SαS noise at α = 1.
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Figure 5.10: Block and bit error probability of irregular LDPC codes (N = 4000)
with degree distributions λ(x) = 0.4x2+0.4x5+0.2x8 and ρ(x) = x8 on Nakagami-m
fading channels (m = 3) with SαS noise at α = 0.5.

3 3.5 4 4.5 5 5.5 6 6.5 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
b

 

 

simulation

prediction

N=4000

threshold

N=1000

N=20000

Figure 5.11: Performance of irregular LDPC codes with degree distributions λ(x) =
0.247x + 0.339x2 + 0.414x3 and ρ(x) = 0.1x4 + 0.9x5 on Rician fading channels
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maximizes the girth properties. For long LDPC codes (N = 20000), we use Mackay’s

construction method since the PEG’s complexity is too high when constructing long

codes. The maximum number of the decoding iterations is set to 100.

As shown in Fig. 5.8-5.9, the numerical results from our analytic expression

accurately predict the performance of finite length regular (3, 6) LDPC codes with

different lengths on Rayleigh fading channels and Rician fading channels with SαS

noise at different degrees of impulsiveness (α = 1.9 and α = 1, respectively). As

the code length increases, the prediction becomes more and more accurate. When

N = 20000, our prediction are almost identical to the simulation results. To adopt

more generalizations, more case studies are presented to verify our analysis for ir-

regular LDPC codes. As shown in Fig. 5.10, both our analytic block and bit error

probability have closely predicted the simulated BER for α = 0.5. The analytic Pb

presents a 0.3 dB gap to the simulation result while the asymptotic performance is

about 3.3 dB away from the practical performance at BER = 10−5. As given in

Fig. 5.11, our analysis is still effective for different lengths of LDPC codes and for

a different irregular LDPC ensemble.

As we observed, the gap between the predicted and simulated results is larger for

LDPC codes with shorter code length. The reason is that the pdf of Pα
b,obs is not well

approximated by a Gaussian distribution when N is small. In addition, short cycles

appear more frequently for short LDPC codes, which will degrade performance. As

the concentration theorem states, the average behavior of LDPC codes concentrates

around its expected behavior as the code length increases and this average behavior

converges to cycle-free case [41].

In Fig. 5.12, we investigate the finite length performance of LDPC codes (N =

20000) with optimal and sub-optimal receivers (optimal, BCGM, Cauchy and clipper

[71]) on Nakagami-m (m = 2) fading channels with moderate impulsive noise (α =

1.43). The value of α is selected from [5] which is used to model the impulsiveness

in wireless transceivers. Fig. 5.12 shows the thresholds of optimal sub-optimal

receivers as well as the waterfall region estimation of each receiver, which is denoted

by the dashed lines. The simulation results can verify the threshold obtained from

DE and the waterfall performance estimation. One exception is the clipper, where

the waterfall performance prediction is not as accurate as other receivers. The

reason is due to the Gaussian assumption not holding in this situation when non-

linear operations like clipping are performed on the LLRs. Nevertheless, even for
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Figure 5.12: Performance of regular LDPC codes with different receivers on
Nakagami-m (m = 2) fading channels with SαS noise at α = 1.43.

the clipper, our estimation is still much closer to the simulated performance than

the threshold.

5.7 Conclusion

In this chapter, we derive the theoretical BEP of the uncoded and coded BEP of

generalized fading channels with SαS noise. Due to the high complexity in the calcu-

lation of the exact BEP, two closed-form approximations are proposed on Rayleigh

fading channels with SαS noise, based on the BCGM model and an asymptotic

approximation. The numerical and simulated results show that the BCGM model

matches the high error-rate region of the exact BEP curve and becomes less accurate

in the low error-rate region. In contrast, the asymptotic BEP can provide a good

approximation for the exact BEP in the low error-rate region.

In terms of the LDPC coded performance, a DE analysis is performed to find

the asymptotic performance of LDPC codes with optimal and sub-optimal receivers.

Then, we accurately predict the waterfall performance of finite length LDPC codes

on these channels by modeling the BER of each codeword as a random variable. As

the code length increases, the accuracy of the predicted waterfall region compared
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with the simulated BERs increases. At long block lengths (N = 20000 bits), the

estimated bit error probabilities are almost identical to the simulated bit error rates,

showing that our work is a useful tool to predict the actual performance of LDPC

codes on fading channels with additive impulsive noise.

5.8 Appendix

5.8.1 Derivation of (5.12)

The standard BCGM distribution can be written by the sum of two SαS distribu-

tions:

f sCG = (1− ε) 1

2
√
π

exp

(
−x

2

4

)
+ ε

1

π(x2 + 1)

= (1− ε)fα=2(x; 0, 1) + εfα=1(x; 0, 1). (5.37)

Hence (5.12) can be simplified as

Pα,Ray
b ≈ 1

Ω

∫ ∞
0

(∫ ∞
√

4C1ω

f sCG(t)dt

)
exp

(
−ω

Ω

)
dω

=
1− ε

Ω

∫ ∞
0

(∫ ∞
√

4C1ω

fα=2(t; 0, 1)dt

)
exp

(
−ω

Ω

)
dω

+
ε

πΩ

∫ ∞
0

(∫ ∞
√

4C1ω

fα=1(t; 0, 1)dt

)
exp

(
−ω

Ω

)
dω

= PG
b + PC

b , (5.38)

where PG
b is the component of BEP for Gaussian noise and PC

b is the component of

BEP for Cauchy noise on Rayleigh fading channels.

Since 0 < ω < ∞ and
√

4C1ω ≤ t < ∞, thus we have 0 < ω ≤ t2/4C1, where

C1 = C
( 2
α
−1)

g . Then PG
b is calculated as

PG
b =

1− ε
Ω

∫ ∞
0

1

2
√
π

exp

(
−t

2

4

)(∫ t2

4C1

0

exp
(
−ω

Ω

)
dω

)
dt

=
1− ε
2
√
π

∫ ∞
0

exp

(
−t

2

4

)(
1− exp

(
− t2

4C1Ω

))
dt

=
1− ε

2

(
1−

√
C1Ω

1 + C1Ω

)
.
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Similar to PG
b , PC

b is calculated as

PC
b =

ε

πΩ

∫ ∞
0

(∫ ∞
√

4C1ω

1

1 + t2
dt

)
exp

(
−ω

Ω

)
dω

=
ε

πΩ

∫ ∞
0

(∫ t2

4C1

0

exp
(
−ω

Ω

)
dω

)
1

1 + t2
dt

=
ε

2

(
1− exp

(
1

4C1Ω

)
erfc

(√
1

4C1Ω

))
(5.39)

5.8.2 Derivation of (5.17)

In this Appendix, we simplify (5.17). The asymptotic BEP of uncoded BPSK on

Rayleigh fading channels with SαS noise is given as

Pα,Ray
b →

∫ ∞
0

Cα

(√
4C1ω

)−α
p(ω)dω

=
Cα

(4C1)
α
2 Ω

∫ ∞
0

ω−
α
2 exp(−ω

Ω
)dω

=
Cα

(4C1Ω)
α
2

∫ ∞
0

t−
α
2 exp(−t)dt

=
Cα

(4C1Ω)
α
2

Γ
(

1− α

2

)
(5.40)
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Chapter 6

Performance Analysis of

LDPC-Coded Diversity

Combining on Rayleigh Fading

Channels with Impulsive Noise

6.1 Introduction

Diversity combining is an important technique that combats fading effects by ex-

ploiting spatial diversity. Conventional combining schemes such as MRC, EGC

and SC are selected depending on the required trade-off between performance and

complexity at the receiver. Conventionally, the noise added at each branch of the

diversity combiner is assumed to be Gaussian. However, there are many applications

where the interference can exhibit an impulsive behavior and it is important to take

this impulsive nature into account when analyzing spatial diversity.

The contributions of this chapter are as follows: First, the analytic or semi-

analytic BEPs of SC, EGC and MRC on Rayleigh fading channels with SαS noise

with independent components are derived. In addition, the relationship of differ-

ent combiners in terms of SNR is derived, regardless of fading types. Second, the

asymptotic and waterfall performance of LDPC codes with different linear combin-

ers on these channels is investigated in this chapter. Finally, a non-linear detector

based on the bi-parameter Cauchy-Gaussian mixture (BCGM) model [91] is used to

achieve near-optimal performance with a significantly reduced complexity than the
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optimal detector.

6.2 System and Channel Models

6.2.1 Channel Model and SαS distributions

In this chapter, we consider a single-input-mutiple-output (SIMO) system where the

transmitted signal is received over Lr independent flat Rayleigh fading channels.

Assuming perfect phase and timing synchronization, the received signal of the l-th

branch can be modeled as

rl = hlx+ nl, 1 ≤ l ≤ Lr, (6.1)

where rl, hl and nl denote the received signal, channel gain and additive noise for the

l-th branch, respectively. hl = ale
jφl is the complex Gaussian channel gain, where

al is Rayleigh distributed and φl is the phase of hl. We also assume that {al}Ll=1 are

i.i.d. variables with E[a2
l ] = 1. nl is the SαS noise where the real and imaginary

components are i.i.d. and follow the univariate SαS distribution. SαS distributed

random variables share many interesting properties, which have been described in

the Chapter 3. Here we recall three important properties that will be used in this

chapter:

Property 1. If vi ∼ S(α, 0, 0, γi), i = 1, 2, · · · , N , then
∑N

i=1 vi ∼ S(α, 0, 0, γ),

where γ =
(∑N

i=1 γ
α
i

) 1
α
.

Property 2. Let v ∼ S(α, 0, 0, γ) and c is an arbitrary constant. Then cv ∼

S(α, 0, 0, |c|γ).

Property 3. Any real SαS random variable v ∼ S(α, 0, 0, γ) can be written as

v =
√
BG, where B and G are independent, with B ∼ S(α/2, 1, 0, [cos(πα/4)]2/α)

and G is a Gaussian random variable with zero mean and variance σ2.

According to Property 3, the complex SαS noise with i.i.d. components can be
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described as

nl =
√
B1G1 + j

√
B2G2, (6.2)

where B1 and B2 are i.i.d. and have the same distribution as B. G1 and G2 are i.i.d.

Gaussian random variables which follow N(0, σ2). The SαS noise is assumed to be

independent from channel to channel. The instantaneous SNR of the l-th branch is

ηl = (a2
lEs)/Nl, where Es is the energy of the modulated symbol and Nl is the noise

power for the l-th channel.

In the receiver, the noise parameters α and γ are usually not known. However,

in the detection of SαS noise, the knowledge of parameters is very important since

most soft detectors and decoders require knowledge of the noise statistics. Hence,

parameter estimation methods are required. In Chapter 3, a fast estimation method

[87] based on the extreme value theory was introduced. In this chapter, the LDPC-

coded performance with exact and estimated parameters will be shown in the result

section.

6.3 Uncoded BEP Analysis of Diversity Combin-

ing on Rayleigh fading channels with AWSαSN

In this section, the uncoded BEP of several linear diversity combining methods

(SC, EGC and MRC) on Rayleigh fading channels with SαS noise will be derived

analytically and semi-analytically. As discussed in previous chapters, the geometric

SNR (SNRG) is used since the second order moment of SαS random variables does

not exist. For a coded system, Eb
N0

for BPSK modulation is defined as

Eb
N0

=
1

4RcC
( 2
α
−1)

g γ2
, (6.3)

where Rc is the code rate. The uncoded BEP of a point-to-point system on SαS

channels has also been derived in Chapter 4 and is given as

Pb,α = Qα

(
1

γ

)
= Qα

(√
4RcC

( 2
α
−1)

g
Eb
N0

)
. (6.4)

With the value of geometric SNR and derived Pb,α, the uncoded BEP of conventional

linear diversity combining schemes (SC, EGC and MRC) can be determined.
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6.3.1 Uncoded BEP of Selection Combining

For SC, only the channel with the maximum output SNR is chosen and the combined

signal y is given as

y =
Lr∑
l=1

wlrl = wkrk, (6.5)

where

wk =


1, if ηk = max

l
{ηl}

0, otherwise

,

and ηl = a2
l
Eb
N0

is the output SNR of the l-th branch. Hence, the combined signal y

can also be rewritten as

y = hscx+ nsc, (6.6)

where hsc = asce
jφsc and nsc are the channel gain and the noise of the branch with the

largest output SNR, respectively. When we consider the fading effect, the uncoded

BEP we obtained in (6.4) becomes a conditional BEP and it is denoted as

Pb|asc,α(η) = Qα

(√
4RcC

( 2
α
−1)

g η

)
, (6.7)

where η = a2
sc
Eb
N0

. Since hsc is random, (6.7) is then averaged over the pdf of η to

obtain the unconditional BEP. The final expression of the uncoded BEP for SC on

Rayleigh fading channels with AWSαSN is given as

P SC
b,α =

∫ ∞
0

Pb|asc,α(η)p(η; η)dη

=

∫ ∞
0

Qα

(√
4RcC

( 2
α
−1)

g η

)
p(η; η)dη, (6.8)

where p(η; η) is the pdf of η for SC and η = Eb
N0

. For SC, p(η; η) can be obtained from

the outage probability. The outage probability of SC on Rayleigh fading channels

is given as

Pout(ηs) = P [η < ηs] =
Lr∏
l=1

P [ηl < ηs] =
(
1− e−ηs/η

)Lr
. (6.9)

It is known that Pout(ηs) also represents the cdf of the output SNR as a function of

the threshold ηs. Hence, the pdf of the output SNR can be calculated by differenti-
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ating (6.9). The resulting p(η; η) is given as

p(η; η) =
dPout(η)

dη
=
Lr
η
e−η/η

(
1− e−η/η

)Lr−1
. (6.10)

By substituting (6.10) to (6.8), the analytic BEP for SC can be obtained.

6.3.2 Uncoded BEP of Equal-Gain Combining

For EGC, all branches have the same unit gain and the combined signal y is obtained

by dividing the received signal rl by the phase of hl:

y =
Lr∑
l=1

e−jφlrl = x
Lr∑
l=1

al +
Lr∑
l=1

ñl, (6.11)

where ñl = nle
−jφl . If we represent the combined channel gain of EGC by aegc, the

combined signal y in (6.11) is rewritten as

y = aegcx+ negc, (6.12)

where aegc =
∑Lr

l=1 al and negc =
∑Lr

l=1 ñl. In addition, ñl = nle
−jφl is also SαS

distributed with the same α and γ as nl. The proof is given in the Appendix.

Hence, according to Property 1, negc ∼ S(α, 0, γegc, 0), where the dispersion of negc

is given as

γegc = L1/α
r γ. (6.13)

Hence, the conditional BEP for EGC is given as

Pb|aegc,α = Qα

L− 1
α

r

√
4RcC

( 2
α
−1)

g

a2
egcEb

N0


= Qα

(
aegcL

− 1
α

r

√
4RcC

( 2
α
−1)

g
Eb
N0

)
. (6.14)

Finally, the uncoded BEP for EGC on Rayleigh fading channels with AWSαSN is

calculated as

PEGC
b,α =

∫ ∞
0

Pb|aegc,αp(aegc)daegc

=

∫ ∞
0

Qα

(
aegcL

− 1
α

r

√
4RcC

( 2
α
−1)

g
Eb
N0

)
p(aegc)daegc, (6.15)
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p(aegc) =
a

(2Lr−1)
egc e−

a2egc
2b

2Lr−1bLr(Lr − 1)!
− (aegc − a2)(2Lr−2)e−

a1(aegc−a2)
2

2b

2(Lr−1)b
(
b
a1

)Lr
(Lr − 1)!

× a0

[
b(2Lraegc − a2)− a1aegc(aegc − a2)2

]
(6.17)

where p(aegc) is the pdf of the output channel gain aegc. The exact pdf of aegc

cannot be evaluated in closed-form, but accurate closed-form approximations can

be obtained. In [93,94], the pdf of Rayleigh sum distributions was proposed and here

we use these models to find p(aegc). When Lr = 2, a small argument approximation

(SAA) proposed in [93] is used and the pdf of aegc is given as

p(aegc) =
a

(2Lr−1)
egc e−

a2egc
2b

2Lr−1bLr(Lr − 1)!
, (6.16)

where

b =
σ2

Lr

(
Lr∏
x=1

(2x− 1)

)1/Lr

.

When Lr ≥ 3, a more accurate closed-form approximation of p(aegc) is given in

(6.17) and values of a0, a1 and a2 for different Lr were given in [94]. In our case, we

note that the standard deviation σ for Rayleigh distributions in the calculation of b

in (6.17) should be normalized as σ =
√

Lr
2

.

6.3.3 Uncoded BEP of Maximal-Ratio Combining

Compared with AWGN, the maximal-ratio combining does not exist for SαS noise

when α 6= 2 since the second order moment of SαS process is infinite [4]. Hence, the

MRC here only refers to a particular choice of weights which is the same as AWGN.

In order to calculate the BEP of MRC, we must use a different approach that

(6.11) is now divided by
∑Lr

l=1 wlal. Since the weights are chosen as wl = h∗l = ale
−jφl

for MRC, (6.11) becomes

ŷ = x+ n̂, (6.18)

where

ŷ =
y∑Lr
l=1 a

2
l

, (6.19)
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and

n̂ =

∑Lr
l=1 ale

−jφlnl∑Lr
l=1 a

2
l

. (6.20)

It is known that the BEP will not change if y is divided by a positive constant. n̂ is

still an SαS random variable but with a different dispersion. According to Properties

1 and 2, the dispersion γmrc of n̂ is calculated as

γmrc =

(
Lr∑
l=1

∣∣∣∣∣ ale−jφl∑Lr
l=1 a

2
l

∣∣∣∣∣
α) 1

α

γ =

(∑Lr
l=1 a

α
l

) 1
α∑Lr

l=1 a
2
l

γ. (6.21)

Then the conditional BEP can be obtained by substituting (6.21) and (6.3) into

(6.4). It is given as

Pb|amrc,α = Qα

(
ω

√
4RcC

( 2
α
−1)

g
Eb
N0

)
, (6.22)

where

ω =

∑Lr
l=1 a

2
l(∑Lr

l=1 a
α
l

) 1
α

. (6.23)

As shown in (6.23), p(ω) cannot be evaluated by an analytic expression, hence a

Monte-Carlo simulation and histogram method is employed to find p(ω). Then a

semi-analytic BEP on Rayleigh fading channels with AWSαSN is given as

PMRC
b,α =

∫ ∞
0

Qα

(
ω

√
4RcC

( 2
α
−1)

g
Eb
N0

)
p(ω)dω. (6.24)

6.3.4 SNR Comparison of linear Combiners

The SNR gain of optimal linear combiners over MRC and EGC was presented in

[30,31]. In this subsection, the relationship of the dispersion of SC, EGC and MRC

are derived to give an insight into the performance of different combiners. Similar

to our BEP analysis for MRC, (6.6) and (6.12) are also rewritten as ŷ = x + n̂.

n̂ = nsc/hsc for SC and n̂ = negc/aegc for EGC. Hence, the dispersions of the noise

for SC and EGC are obtained as

γ̂sc =
1

am
γ and γ̂egc =

L
1/α
r∑Lr
l=1 al

γ, (6.25)
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where am = max {a1, a2, · · · , aLr}. After some derivations, the relationship of the

dispersions between these three combiners is given as

(a) When 0 < α ≤ 1,

γ̂sc ≤ γmrc ≤ γ̂egc ≤ L
1
α
r γ̂sc, (6.26)

(b) When 1 ≤ α < 2,

L
1
α
−1

r γ̂sc ≤ γmrc ≤ γ̂egc ≤ L
1
α
r γ̂sc. (6.27)

The relationships in (6.26) and (6.27) are independent of fading types since they are

only related to the dispersion. The proof of (6.26) and (6.27) is given in the Ap-

pendix. According to the definition, the noise power is proportional to the dispersion

of the noise. Hence,(6.26) and (6.27) imply that MRC should perform better than

EGC in all cases. In particular, SC shows the best performance when the channel

is very impulsive (α < 1). In addition, the upper bound and lower bound of the

performance for MRC and EGC can be determined by SC from (6.26) and (6.27).

The numerical results of the SNR comparison of these combiners will be shown in

the result section.

6.3.5 Optimal and Sub-optimal Detectors

The linear combiners just discussed are very simple to implement however, they

do not take the impulsive nature of the interference into account. As presented

in the literature, non-linear detectors usually achieve much better performance on

impulsive noise channels [16, 31]. The decision metric of the optimal detector for

fading channels with AWSαSN is denoted as

λop =
Lr∑
l=1

ln
P (xl = +1|rl, al)
P (xl = −1|rl, al)

=
Lr∑
l=1

ln
fα(rl − al; γ)

fα(rl + al; γ)
. (6.28)

(6.28) also represents the initial log-likelihood ratios (LLRs) for soft-input-soft-

output decoding.

The complexity in the calculation of (6.28) is high since the pdf of SαS distribu-

tions is not given in closed-form, thus reduced complexity sub-optimal detectors are

required. In the literature, the Cauchy detector showed very good performance for

a large range of α, especially when α is small and approaches one [95]. The Cauchy
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detector is expressed as

λCauchy =
Lr∑
l=1

ln

(
γ2 + (yl + al)

2

γ2 + (rl − al)2

)
. (6.29)

In contrast, the Cauchy detector will lead to a significant degradation when the

channel is near Gaussian (α is close to two), since the Cauchy distribution is only

a special case of SαS distributions at small α (α = 1). In order to give a better

approximation of SαS distributions as closed-form expressions, two classes of mixture

models were proposed. One is called the Gaussian mixture model (GMM) which is

the sum of scaled Gaussian pdfs. However, GMM cannot accurately estimate the tail

behavior of SαS distributions. The other one is Cauchy-Gaussian mixture (CGM)

model which is a mixture of Gaussian distribution and Cauchy distribution. The

CGM model can better approximate the tail of SαS distributions since the Cauchy

pdf is also heavy-tailed. The conventional CGM model requires three parameters:

mixture ratio ε, the variance σ2 of the Gaussian distribution and the dispersion

γ of Cauchy distribution. The BCGM model is a new type of CGM model with

only two parameters, a mixture ratio ε and γ, and it approximates SαS pdf well

at α ∈ [1, 2] [91]. Hence the BCGM model can be used to achieve near-optimal

performance. The BCGM pdf is given as

fCG(x; γ) = (1− ε) 1

2
√
πγ

exp

(
− x2

4γ2

)
+ ε

γ

π(x2 + γ2)
. (6.30)

A near-optimal value of ε can be achieved when

ε =
2Γ(−ω/α)− αΓ(−ω/2)

2αΓ(−ω)− αΓ(−ω/2)
, (6.31)

where the gamma function is defined as Γ(x) =
∫∞

0
e−ttx−1dt and ω < α. By using

this BCGM model, the decision metric of the detector is obtained by replacing the

SαS pdf in (6.28) by (6.30). The BCGM model was only proposed for α ∈ [1, 2] and

we note that when α < 1, the BCGM detector reduces to a Cauchy detector. The

complexity of this new detector is much lower than the optimal detector since its

pdf is given in closed-form. The performance of optimal and sub-optimal detectors

will also be presented in the result section.
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6.4 Coded BEP analysis for linear diversity com-

bining techniques

6.4.1 Asymptotic Performance of LDPC Codes

Similar to previous chapters, DE is used to calculate the threshold of a specific

ensemble of LDPC codes. In this section, we will show how to apply DE to different

linear combining techniques on Rayleigh fading channels with AWSαSN by deriving

the initial pdf of the LLRs for these combiners.

Assuming the side information of the channel is known, the initial LLR of the

decoder for SC or EGC is calculated as

v(0) = ln
P (x = +1|y, a)

P (x = −1|y, a)
= ln

fα(y − a; γ)

fα(y + a; γ)
, (6.32)

where a is the combining channel gain over i.i.d. Rayleigh fading channels, which

is denoted as asc or aegc for SC or EGC, respectively. Similarly, γ becomes γegc for

EGC. The pdf of (6.32) has no analytic expression with the exception of α = 2.

Hence, Monte-Carlo simulations with a histogram method can be used to obtain the

conditional pdf of v(0) as p(v(0)|a). The unconditional pdf of v(0) can be obtained

by averaging p(v(0)|a) over the pdf of a as

p(0)
v =

∫ ∞
0

p(v(0)|a)p(a)da, (6.33)

where p(a) is the pdf of the combining channel gain a.

The pdf of asc for SC can be derived by changing the variable of (6.10), asc, using

the relationship p(η)dη = p(asc)dasc and a2
sc = η/η. Hence, the pdf of asc is then

given as

p(asc) = 2ascLre
−a2sc

(
1− e−a2sc

)Lr−1

. (6.34)

For EGC, closed-form approximated pdfs of aegc have already been given in

(6.17). Alternatively, a simulation-based approach can also be employed to find the

pdf of aegc using a histogram method.

For MRC, we should use a different approach to calculate the pdf of the initial
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LLRs. According to (6.18) and (6.21), the initial LLR can be written as

v(0) = ln
fα(ŷ − 1; γmrc)

fα(ŷ + 1; γmrc)
. (6.35)

The relationship between γmrc and γ has been given in (6.21) as γmrc = ξγ, where ξ

is expressed as

ξ =

(∑Lr
l=1 a

α
l

) 1
α∑Lr

l=1 a
2
l

. (6.36)

Hence the unconditional pdf of v(0) is obtained as

p(0)
v =

∫ ∞
0

p(v(0)|ξ)p(ξ)dξ, (6.37)

where p(ξ) is the pdf of ξ. We note that p(ξ) cannot be evaluated in closed-form

and a similar simulation-based approach is used to find p(ξ). After the initialization

step, DE of the sum-product algorithm is then performed and it consists of DE for

both the check node update and variable node update.

6.4.2 Waterfall Performance Estimation of LDPC Codes

In this section, we follow our analysis in previous chapters and an accurate estimation

of block and bit-error probability of finite length LDPC codes on Rayleigh fading

channels with AWSαSN for SC, EGC and MRC is given by observing the real-time

channel quality.

P c
b,α is the probability of a bit error and is denoted as either P SC

b,α , PEGC
b,α or PMRC

b,α ,

depending on the type of linear combiner. When N is large, the pmf of NP obs
b,α can

be well approximated by a normal distribution N(NP c
b,α, NP

c
b,α(1 − P c

b,α)). Hence,

the pdf of P obs
b,α is denoted as N(P c

b,α, P
c
b,α(1 − P c

b,α)/N). Finally, the block-error

probability of LDPC codes with ensemble (λ, ρ) is given as

Pα
B (N, λ, ρ) =

∫ 1

Pth

fP obs
b,α

(N, x)dx

= Q

(
Pth − µP obs

b,α

σP obs
b,α

)
, (6.38)

where µP obs
b,α

= P c
b,α and σP obs

b,α
= P c

b,α(1 − P c
b,α)/N . Pth is the corresponding BEP of

the threshold SNR
(
Eb
N0

)
th

and the block-error probability is P obs
b,α > Pth. We note
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Figure 6.1: SNR gain of SC over EGC and MRC with different α for Lr = 3.

that the threshold SNR
(
Eb
N0

)
th

can be calculated from γ∗ which has been found

by DE in the previous section. Hence for SC, EGC and MRC, Pth is obtained by

substituting
(
Eb
N0

)
th

into (6.8), (6.15) and (6.24), respectively.

The coded bit error probability Pα
b (N, λ, ρ) can be derived from Pα

B (N, λ, ρ).

In the description of DE, we know that the decoder has a probability P
(lmax)
e of

failing, where lmax is the maximum number of iterations when DE is performed.

The estimated coded BEP can be expressed as

Pα
b (N, λ, ρ) = P (lmax)

e Pα
B (N, λ, ρ). (6.39)

6.5 Results and Discussion

6.5.1 SNR Comparison

To verify the effectiveness of our SNR analysis for linear combiners (SC, EGC and

MRC), the SNR gain of SC over EGC and MRC is shown in Fig. 6.1. The SNR

gain in dB over EGC and MRC is defined as 20 log10(γ̂egc/γ̂sc) and 20 log10(γmrc/γ̂sc),

respectively. As shown in Fig. 6.1, MRC always performs better than EGC for each

α, which agrees with our theoretical results in (6.26) and (6.27). Moreover, we find
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that SC achieve the best performance when α is small. However, it will degrade as α

increases and starts to present no gain (SNR gain is 0 dB) over MRC and EGC from

α = 1.3 and α = 1.55, respectively. The SNR comparison of different combiners

provide us a very good insight into their performance, regardless of fading effects.

In the following subsections, these observations from Fig. 6.1 will be verified by

results of our uncoded and LDPC-coded BEP.
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Figure 6.2: Uncoded BEP of SC, EGC and MRC with Lr = 2 on Rayleigh fading
channels with SαS noise at α = 0.8.

6.5.2 Uncoded BEP

In this subsection, both numerical results of analytic performance and simulated

performance of different combiners on Rayleigh fading channels with AWSαSN are

investigated. Moreover, the performance of non-linear detectors is also presented.

As seen in Fig. 6.2 - 6.7, our derived analytic BEP matches with simulated BER

for SC, EGC and MRC at different α (α = 0.8, 1.4, 1.9) and different number of

branches (Lr = 2, 4).

As seen in Fig. 6.2 and 6.3, compared with EGC and MRC, SC achieves the

best performance at small values of α (α = 0.8) and this result agrees with the

observations in the literature [31]. The relationship of the uncoded BEP for SC,
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Figure 6.3: Uncoded BEP of SC, EGC and MRC with Lr = 4 on Rayleigh fading
channels with SαS noise at α = 0.8.
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Figure 6.4: Uncoded BEP of SC, EGC and MRC with Lr = 2 on Rayleigh fading
channels with SαS noise at α = 1.4.
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Figure 6.5: Uncoded BEP of SC, EGC and MRC with Lr = 4 on Rayleigh fading
channels with SαS noise at α = 1.4.
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Figure 6.6: Uncoded BEP of SC, EGC and MRC with Lr = 2 on Rayleigh fading
channels with SαS noise at α = 1.9.
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Figure 6.7: Uncoded BEP of SC, EGC and MRC with Lr = 4 on Rayleigh fading
channels with SαS noise at α = 1.9.
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Figure 6.8: BER performance of different detectors with Lr = 3 on Rayleigh fading
channels with SαS noise at α = 1.9, 1.2, 0.6.

94



6.5 Results and Discussion

EGC and MRC is P SC
b,α < PMRC

b,α < PEGC
b,α . Moreover, it is observed that SC achieves

more gain for additional number of branches in this extremely impulsive noise, while

the performance of EGC and MRC is even worse for Lr = 4. When the channel

is less impulsive (α = 1.4), compared with EGC and MRC, the performance of

SC degrades and we have PMRC
b,α < P SC

b,α < PEGC
b,α , which agrees with the result in

Fig. 6.1 that SC becomes worse than MRC and EGC at α = 1.3 and α = 1.55

since 1.3 < 1.4 < 1.55. When the channel exhibits very few impulses (α = 1.9), as

shown in Fig. 6.6 and 6.7, SC gives the worst performance among these three linear

combiners and we have PMRC
b,α < PEGC

b,α < P SC
b,α . In addition, when the number of

branches increases, MRC can achieve a larger gain over SC and MRC.

We observe that SC can achieve superior performance when the channel is more

impulsive and the performance starts to degrade as α increases. Although MRC

only refers to a particular set of weights, it can still achieve a very good performance

when compared with SC and EGC, especially when the noise is near Gaussian. To

conclude, the uncoded BEP we obtained in Fig. 6.2 - 6.7 illustrates good agreement

with our observations from the SNR gain in Fig. 6.1.

The simulated performance of optimal, Cauchy and BCGM detectors are shown

in Fig. 6.8. When the channel is extremely impulsive (α = 0.6), the BCGM detector

reduces to the Cauchy detector and shows near-optimal performance. When α is

close to one (α = 1.2), both BCGM and Cauchy detectors achieve almost optimal

performance. However, when α approaches two which means the channel is slightly

impulsive, the Cauchy detector presents a significant degradation. As shown in Fig.

6.8, when α = 1.9 and Lr = 3, the optimal detector shows about 0.8 dB gain over

the Cauchy detector. In contrast, the BCGM detector shows superior performance

for all α.

6.5.3 Coded BEP

In this subsection, the asymptotic and waterfall performance of regular and irreg-

ular LDPC codes are evaluated with both numerical and simulation results. The

rate 1/2 regular (3,6) LDPC codes and for irregular LDPC codes, the degree dis-

tribution is λ(x) = 0.4x2 + 0.4x5 + 0.2x8, ρ(x) = x8. The codeword lengths are

N = 1000, 4000, 20000 bits. For short and moderate length LDPC codes (N ≤ 4000),

PEG algorithm is employed and for very long LDPC codes (N = 20000), Mackay’s
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Figure 6.9: Performance of regular (3, 6) LDPC codes with EGC for N =
1000, 4000, 20000 at Lr = 2 on Rayleigh fading channels with SαS noise at α = 0.6.
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Figure 6.10: Performance of irregular LDPC codes with SC at Lr = 2 and N = 4000
on Rayleigh fading channels with SαS noise at α = 1.5.
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Figure 6.11: Performance of irregular LDPC codes with different combiners at Lr =
3 and N = 4000 on Rayleigh fading channels with SαS noise at α = 1.8.
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parameters on Rayleigh fading channels with SαS noise at α = 1.5 and Lr = 3.
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Table 6.1: The threshold SNRs in dB of regular LDPC codes with SC, EGC and
MRC for Rayleigh fading channels with SαS noise

Lr = 2 Lr = 4
SC EGC MRC SC EGC MRC

α = 1.8 0.91 0.52 -0.18 -1.02 -2.31 -3.43
α = 1.4 1.90 2.44 1.53 -0.19 0.37 -0.98
α = 1 3.02 5.32 4.10 0.92 4.93 3.16
α = 0.6 4.32 10.55 9.15 2.17 14.31 12.10

construction method is used since the complexity of PEG is very high in this case.

As shown in Table 6.1, the threshold SNRs of (3, 6) regular LDPC codes for SC,

EGC and MRC are given. The relationship of asymptotic performance of LDPC

codes we obtained for these combiners show good agreement with the uncoded per-

formance we analyzed for different linear combiners. As shown in Table 6.1, SC

presents the best performance for strongly impulsive noise (α = 0.6 and α = 1)

for Lr = 2 and Lr = 4. When the effect of impulses is moderate (α = 1.4), MRC

outperforms SC and when the channel is only slightly impulsive, the performance

of MRC is better the gap between MRC and SC is larger. As an example, the

threshold SNR of MRC is 1.53 dB at α = 1.4 and Lr = 2, which is 0.37 dB smaller

than SC. When α = 1.8, the gap increases to 1.09 dB. For EGC, it only shows good

performance for a slightly impulsive channel (α = 1.8).

Furthermore, there is an interesting observation that more branches do not al-

ways give better performance for impulsive noise channels. As shown in Table 6.1,

as α decreases, Lr = 4 has a smaller gain than Lr = 2 over EGC and MRC, re-

spectively. When the channel is extremely impulsive (α = 0.6), thresholds of EGC

and MRC for Lr = 4 are even larger than for Lr = 2. It indicates that strong im-

pulses will lead to a larger degradation with EGC and MRC when more branches are

used, which implies that the received signals from other branches become a source

of interference.

In addition to the asymptotic performance obtained in Table 6.1, the numerical

results of predicted waterfall performance and simulation results for LDPC codes

are presented in Figs. 6.9 - 6.12. As shown in Fig. 6.9, the estimated performance

closely matches the simulation results very closely for EGC at α = 0.6. Also, a

reduction is found in the gap between the predicted and simulated results as the

block length N increases. The estimation inaccuracy decreases from 0.3 dB to

0.15 dB as N increases from 1000 to 4000. When N = 20000, the estimated and

98



6.5 Results and Discussion

simulated performance are almost identical. On the other hand, when compared

with the asymptotic performance, even for long LDPC codes (N = 20000), the gap

between the threshold SNR and simulation results is 1.3 dB which is much larger

than our predicted performance.

Fig. 6.10 shows both the estimated and simulated block and bit error rates for

irregular LDPC codes with N = 4000 when α = 1.5. To show the generalization

of our method, three individual LDPC codes are constructed from the same degree

distribution we have given and their performance is presented. As shown in Fig.

6.10, the performance is accurately predicted by our analytic PB and Pb in (6.38)

and (6.39) with a 0.2 dB gap at the error rate of 10−5, while the gap between

asymptotic and simulated performance is 1.25 dB.

Linear combiners and non-linear detectors in slightly impulsive noise are com-

pared in Fig. 6.11. For linear combiners SC, EGC and MRC, the threshold SNR and

numerical predictions are given. It is shown that the coded BEP of different combin-

ers agrees with the uncoded BEP we obtained above, where MRC outperforms SC

and EGC for slightly impulsive noise. Meanwhile, the non-linear detectors perform

better than the linear combiners due to the utilization of the noise statistics. The

performance of the optimal detector and our proposed detector are almost identical,

which achieve 0.7 dB gain over the Cauchy detector and MRC.

To examine the accuracy of the parameter estimation algorithm and the ro-

bustness of the decoder. The performance with known and estimated α and γ is

presented in Fig. 6.12. The curves named ”sim. no est.” and ”sim. est.” represent

simulated performance with exact and estimated parameters, respectively. In our

simulations, the average estimation errors of α are found to be 8%, 6% and 4% at

N = 1000, 4000 and 20000, respectively. The corresponding estimation errors of γ

are 16%, 17% and 18% at Eb/N0 = 0 dB (γ = 0.64). As presented in Fig. 6.12, the

difference between the performance with known and estimated parameters is small,

which is less than 0.1 dB. It shows that the LDPC decoder is very robust against

estimation errors.

It has been observed that the waterfall performance prediction of LDPC codes is

more accurate when N is large. The reasons are as follows: first, the Pth is obtained

from DE and DE assumes the LDPC codes are cycle-free and the codeword length

is infinite. However, the effect of cycles cannot be avoided and ignored. It is more

serious at short block length which will degrade the performance. For LDPC codes

99



6.6 Conclusion

with long block length, the concentration theorem states that the average behavior

of individual codes will converge to the cycle-free case as the code length grows [41].

Hence the our estimation becomes more accurate in this case. Second, it worth

examining the accuracy of Gaussian approximation since according to central limit

theorem, the pdf of Pα
obs converges to Gaussian pdf when N is large.

To numerically evaluate the accuracy of the Gaussian approximation, the KL

divergence is employed to calculate the difference between the two pdfs. In our case,

the binomial pdfB(N,P c
b,α) is the true pdf and the normal distribution N(P c

b,α, P
c
b,α(1−

P c
b,α)/N) is an approximation of B(N,P c

b,α). It is obvious that these two pdfs are

both determined by N and P c
b,α which is related to α. In order to examine the

influence of N and α on the accuracy of the approximation, we take Fig. 6.9 and

Fig. 6.12 as examples. As shown in Fig. 6.9, the channel is extremely impulsive

with α = 0.6. N = 1000, 4000, 20000 and P c
b,α can be calculated by (6.15). The

accuracy of the Gaussian approximation improves as N increases and P c
b,α is not

near to 0 or 1. Hence, in order to investigate the validity of our approximation, for

the worst case, we choose the smallest P c
b,α = 0.0948 which can be calculated from

(6.15) at Eb/N0 = 16 dB in Fig. 6.9. Hence the KL divergence between the pdf

of Pα
obs and Gaussian distribution is obtained as 6.4 × 10−4, 1.6 × 10−4, 3.2 × 10−5

for N = 1000, 4000, 20000, respectively. Similarly, as shown in Fig. 6.12, when the

channel is moderate impulsive (α = 1.5), the KL divergence at Eb/N0 = 3 dB is

obtained as 9.2×10−4, 2.3×10−4, 4.6×10−5 for N = 1000, 4000, 20000, respectively.

Hence, the Gaussian approximation is very accurate even for short length LDPC

codes (N = 1000), since the KL divergence is very small. In addition, we observe

that the value of α has little impact on the accuracy of approximation.

6.6 Conclusion

In this chapter, we investigate the uncoded and coded performance of linear di-

versity combining schemes on Rayleigh fading channels with AWSαSN noise. The

asymptotic performance of LDPC codes is also derived using DE to verify the ef-

fectiveness of our analysis. In addition, a closed-form expression of the waterfall

performance is given that reduces the gap between the asymptotic and simulated

performance of LDPC codes. As discussed in the result section, MRC is no longer

the optimal linear combiner, especially when the channel becomes more impulsive,
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and SC shows superior performance when the effect of impulses is very strong. An

interesting result is found when the channel is very impulsive. In this case, more

branches have no benefit and may even degrade the performance of EGC and MRC.

Meanwhile, non-linear detectors present a better performance than linear combin-

ers, but with higher complexity. We have proposed a reduced complexity detector

by approximating the SαS pdf through a closed-form BCGM pdf which can achieve

near optimal performance for all α.

6.7 Appendix

6.7.1 The noise distribution of EGC

The noise of the combined signal for EGC in (6.12) is given as

negc =
Lr∑
l=1

ñl, (6.40)

where ñl = nle
−jφl and nl is an complex SαS random variable with i.i.d. components.

Hence, according to (6.2), ñl is written as

ñl =
√
B1G1e

−jφl + j
√
B2G2e

−jφl

=
√
B1G

′

1 + j
√
B2G

′

2, (6.41)

where G
′
1 = G1e

−jφl and G
′
2 = G2e

−jφl . According to the isotropic property of

Gaussian random variables, G
′
1 and G

′
1 are also Gaussian with the same mean and

variance as G1 and G2. Hence ñl also follows SαS distribution with the same α and

γ as nl.

6.7.2 The relationship of the dispersion between SC, MRC

and EGC

First, we start from proving γmrc ≤ γ̂egc for 0 < α < 2. According to the power

mean inequality, for real numbers k1, k2 and positive real numbers a1, a2, · · · , an. If

k1 ≤ k2, we have (∑n
i=1 a

k1
i

n

) 1
k1

<

(∑n
i=1 a

k2
i

n

) 1
k2

. (6.42)
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Then by using this inequality we can obtain

(
Lr∑
l=1

aαl

) 1
α

≤ L
1
α
− 1

2
r

(
Lr∑
l=1

a2
l

) 1
2

. (6.43)

For MRC, by substituting (6.43) to (6.21), we have

γmrc ≤
L

1
α
− 1

2
r(∑Lr
l=1 a

2
l

) 1
2

γ ≤ L
1
α
r(∑Lr

l=1 al

)γ = γ̂egc. (6.44)

After the proof of γmrc ≤ γ̂egc, for EGC, one obtains

γ̂egc =
L

1/α
r∑Lr
l=1 al

γ ≤ L
1/α
r

am
γ = L1/α

r γ̂sc. (6.45)

When 0 < α ≤ 1, it was proved that γ̂sc ≤ γmrc in [31]. Hence, the relationship of

the dispersions of SC, MRC and EGC is given as

γ̂sc ≤ γmrc ≤ γ̂egc ≤ L1/α
r γ̂sc. (6.46)

When 1 ≤ α < 2, γ̂sc is not always less than γmrc. Again by using (6.42), the

relationship is obtained as

γmrc ≥
∑Lr

l=1 al∑Lr
l=1 a

2
l

L
1
α
−1

r γ

≥
∑Lr

l=1 al∑Lr
l=1 alam

L
1
α
−1

r γ

=
1

am
L

1
α
−1

r γ = L
1
α
−1

r γ̂sc. (6.47)

Finally, the relationship of the dispersion for SC, MRC and EGC when 1 ≤ α < 2

is given as

L
1
α
−1

r γ̂sc ≤ γmrc ≤ γ̂egc ≤ L1/α
r γ̂sc. (6.48)
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Chapter 7

Conclusions and Future Research

7.1 Conclusion

When the noise or interference can be modeled as SαS distributions, this thesis ad-

dresses the signal detection in LDPC-coded system on such impulsive noise channels.

The optimal LLR demapper in SαS noise is too complex since the pdf is not given

in closed-form. Hence in this thesis, we compare different sub-optimal receivers and

propose a new near-optimal receiver. In terms of the coded performance in additive

impulsive noise, the asymptotic and finite length performance of LDPC codes are

investigated. Furthermore, by considering the fading effect, the uncoded and coded

performance are also analyzed. Finally, by exploiting the spatial diversity to combat

the fading, the performance of diversity combining techniques are explored.

In Chapter 4, we have investigated the performance of LDPC codes on SαS

noise channels with different receivers designed to mitigate the effect of impulses.

We have proposed a low-complexity sub-optimal receiver that produces a very good

approximation of the LLRs but does not require the knowledge of the dispersion.

The asymptotic performance of LDPC codes was presented by a DE analysis of

each receiver on impulsive noise channels with different levels of impulsiveness to

derive the threshold SNR that indicates the beginning of the waterfall region. The

numerical results from DE and the simulation results show that our receiver can

achieve near-optimal performance. We have also observed that the clipper is suitable

for slightly impulsive noise channels due to its simplicity and good performance,

whereas the Cauchy receiver is suitable when the channel presents severe impulses.

Although the threshold of LDPC codes can be found by DE, there is still a large
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gap between the threshold and the actual performance. Hence, we have performed

a finite length analysis of regular and irregular LDPC codes to derive the block and

bit error probabilities on additive impulsive noise channels with SαS pdfs. At long

block lengths (N = 20000 bits), the estimated bit error probabilities are almost

identical to the simulated bit error rates for different values of α, but it has been

observed that the gap between theoretical and simulation results increases as the

block length decreases. Furthermore, our analysis implies that for a given uncoded

BEP and threshold, the prediction of the actual performance for short LDPC codes

could be accomplished on more general memoryless channels.

In Chapter 5, we have first derived the exact uncoded BEP of BPSK on gener-

alized fading channels with SαS noise. In addition, to reducing the computational

cost, we have derived two approximations of the exact BEP on Rayleigh fading

channels with SαS noise, which are based on the BCGM model and the asymptotic

expansion of the SαS process. The BCGM model has been shown to match the high

error-rate region of the exact BEP. The asymptotic BEP has consistently provided

a good approximation for the BEP in the low error-rate region. Most importantly,

these two approximations have closed-from expressions, which greatly reduces the

computational complexity.

Then we investigated the LDPC-coded BEP of generalized fading channels with

SαS noise. The DE analysis is performed to find the asymptotic performance of

LDPC codes with optimal and sub-optimal receivers on these channels. Finally,

we accurately predict the waterfall performance of finite length LDPC codes on

these channels by modeling the BER of each codeword as a random variable. For

large block sizes the estimated bit error probabilities are almost identical to the

simulated bit error rates, showing that this work is a useful tool to predict the actual

performance of LDPC codes on fading channels with additive impulsive noise.

In Chapter 6, we investigate the uncoded and coded performance of linear diver-

sity combining schemes (SC, EGC and MRC) and non-linear detectors on Rayleigh

fading channels with independent SαS noise. The asymptotic performance of LDPC

codes is derived using DE to verify the effectiveness of our analysis. In addition,

a closed-form expression of the waterfall performance is given that reduces the gap

between the asymptotic and simulated performance of LDPC codes. As discussed in

the results section, MRC is not the best linear combiner, especially when the chan-

nel becomes more impulsive, and SC shows superior performance when the effect of

104



7.2 Future Research

impulses is very strong. An interesting result is when the channel is very impulsive,

where more branches have no benefit and can even degrade the performance with

EGC and MRC. Meanwhile, non-linear detectors show a better performance than

linear combiners with higher complexity and we proposed a reduced complexity de-

tector by approximating the SαS pdf through a closed-form BCGM pdf which can

achieve near optimal performance for all α.

In conclusion, this thesis investigates the uncoded and coded performance of

communication systems in the presence of impulsive noise. We derive the theo-

retical uncoded BEP for the SISO (single-input single-output) system with fading

or without fading. To reduce the effect of fading, diversity combining methods

are also examined for the SIMO (single-input multiple-output) system. For coded

performance, LDPC codes with different receivers are examined. In addition, the

asymptotic performance of LDPC codes on these channels are derived. Finally, to

reduce the gap between the asymptotic and simulated performance, we propose a

framework to derive the finite length performance of LDPC codes on impulsive noise

channels.

7.2 Future Research

In this thesis, the performance of LDPC codes on impulsive noise channels is ex-

amined. However, the LDPC codes we employ are not optimized codes for these

channels. In the literature, the optimized degree distributions were only presented

for AWGN channels. Although the codes designed for AWGN channels should also

be good choices for other channels, the codes optimized for the specific channel are

expected to perform slightly better. Hence, it is still an open problem to design

LDPC codes for non-Gaussian channels.

In more and more applications, MIMO (multiple-input multiple-output) is adopted

to achieve diversity or multiplexing. For future work, an LDPC-coded analysis of

MIMO system on impulsive noise can be carried out. Furthermore, the error cor-

rection codes we use are not only restricted to LDPC codes, but more advanced

codes such as polar codes. As we know, power-line communications employ LDPC

codes in the most recent standard. However, we might find other coding schemes

which are more suitable on impulsive noise channels and thus further improve the

performance.
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Furthermore, the code design and performance analysis can also be performed on

frequency selective channels with impulsive noise since they are more realistic models

of applications like power-line channels. Finally, as we have modeled the noise as SαS

distributions, the accurate estimation of the parameters is very important on the

performance of a communication system since the detector requires the knowledge

of the noise. Hence a real-time and simple estimation method is required. Naturally,

we also need to design a robust detector or decoder that can reduce the degradation

caused by inaccurate estimation of parameters.
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LDPC decoding in impulsive channel,” IEEE Commun. Lett., vol. 17, no. 5,

pp. 968–971, 2013.

[72] V. Dimanche, A. Goupil, L. Clavier, and G. Gelle, “On detection method for

soft iterative decoding in the presence of impulsive interference,” IEEE Com-

mun. Lett., vol. 18, no. 6, pp. 945–948, 2014.

[73] Y. Hou, R. Liu, and L. Zhao, “A non-linear LLR approximation for LDPC de-

coding over impulsive noise channels,” in 2014 IEEE/CIC International Con-

ference on Communications in China (ICCC). IEEE, 2014, pp. 86–90.

[74] S. W. Kim, S.-J. Park, and W. Chang, “Diversity selection combining to en-

hance the coding gain,” in Vehicular Technology Conference, 2004. VTC2004-

Fall. 2004 IEEE 60th, vol. 3. IEEE, 2004, pp. 1861–1864.

[75] S. Gounai and T. Ohtsuki, “Performance analysis of ldpc code with spatial

diversity,” in IEEE Vehicular Technology Conference. IEEE, 2006, pp. 1–5.

[76] B. S. Tan, K. H. Li, and K. C. Teh, “Performance analysis of ldpc codes with

selection diversity combining over identical and non-identical rayleigh fading

channels,” IEEE Communications Letters, vol. 14, no. 4, pp. 333–335, 2010.

[77] ——, “Performance analysis of ldpc codes with maximum-ratio combining cas-

caded with selection combining over nakagami-m fading,” IEEE Trans. Wireless

Commun., vol. 10, no. 6, pp. 1886–1894, 2011.

[78] ——, “Efficient ber computation of ldpc coded sc/mrc systems over rayleigh

fading,” in Signal Processing and Communication Systems (ICSPCS), 2010 4th

International Conference on. IEEE, 2010, pp. 1–5.

[79] Y. Fang, P. Chen, L. Wang, F. C. Lau, and K.-K. Wong, “Performance analysis

of protograph-based low-density parity-check codes with spatial diversity,” IET

Commun., vol. 6, no. 17, pp. 2941–2948, 2012.

114



REFERENCES
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