
Elastic Bundles:

Modelling and Architecting Asynchronous

Circuits with Granular Rigidity

Johnson Fernandes

A Thesis submitted for the degree of Doctor of Philosophy

School of Electrical and Electronic Engineering

Newcastle University

March 2017

Abstract

Integrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs).

The complexity of designing a SoC has increased rapidly over the years due to growing

process and environmental variations coupled with global clock distribution di�culty.

Moreover, traditional synchronous design is not apt to handle the heterogeneous timing

nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed

a strong revival of asynchronous design principles. A new paradigm of digital circuits

emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave

of recent innovations in synchronous-asynchronous CAD integration, this paradigm is

showing signs of commercial adoption in future SoCs mainly due to the scope for reuse

of synchronous functional blocks and IP cores, and the co-existence of synchronous and

asynchronous design styles in a common EDA framework.

However, there is a lack of formal methods and tools to facilitate mixed synchronous-

asynchronous design. In this thesis, we propose a formal model based on Petri nets with

step semantics to describe these circuits behaviourally. Implication of this model in the

veri�cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till

date, this paradigm has been mainly explored on the basis of Globally Asynchronous

Locally Synchronous (GALS) systems. Despite decades of research, GALS design has

failed to gain traction commercially. To understand its drawbacks, a simulation framework

characterising the physical and functional aspects of GALS SoCs is presented.

A novel method for synthesising mixed synchronous-asynchronous circuits with varying

levels of rigidity is proposed. Starting with a high-level data�ow model of a system which

is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity

levels in the model without changing functional behaviour. The system is then partitioned

into functional blocks of synchronous and asynchronous elements before being transformed

into an equivalent circuit which can be synthesised using standard EDA tools.

i

Acknowledgements

I would like to thank my supervisors; Prof. Alex Yakovlev, Dr. Alex Bystrov and Dr.

Danil Sokolov for their invaluable guidance throughout this research. This thesis would

not have been possible without their support, patience and encouragement over the last

�ve years.

I would also like to thank Prof. Maciej Koutny and Dr. Marta Pietkiewicz-Koutny

for formalisation of concepts presented in Chapter 4.

Thanks goes to Dr. James Docherty, Dr. Athanasios Grivas, Dr. Graeme Coapes and

Mr. Alessandro De Gennaro for their hours of friendly discussions that kept the research

atmosphere lively.

Special thanks goes to my parents Joseph and Apoline, and to my sisters Jenifer and

Jessica for their love and constant encouragement during the course of this research. I

am also thankful to Ravneet for her patience and wholehearted support, especially during

the writing up of this thesis.

Finally, I would like to acknowledge that this work was partly sponsored by the School

of Electrical and Electronic Engineering, Newcastle University and the EPSRC under the

research grant GAELS EP/I038551/1.

iii

Publications

Parts of this work have appeared in the following publications:

• Journal Paper

� J. Fernandes, M. Koutny, L. Mikulski, M. Pietkiewicz-Koutny, D. Sokolov,

and A. Yakovlev, �Persistent and Nonviolent steps and the design of GALS

systems�, Fundamenta Informaticae, vol. 137, pp. 143�170, 2015.

• Conference Papers

� J. Fernandes, D. Sokolov, and A. Yakovlev, �Elastic Bundles: Modelling and

synthesis of asynchronous circuits with granular rigidity�, International Sym-

posium on Asynchronous Circuits and Systems (ASYNC), 2017. (in press)

� J. Fernandes, M. Koutny, M. Pietkiewicz-Koutny, D. Sokolov, and A. Yakovlev,

�Step persistence in the design of GALS systems�, International Conference on

Applications and Theory of Petri Nets and Concurrency (ICATPN), vol. 7927,

pp. 190�209, 2013.

• Technical Report

� J. Fernandes, M. Koutny, M. Pietkiewicz-Koutny, D. Sokolov, and A. Yakovlev,

�Step persistence in the design of GALS systems�, Technical Report Series, CS-

TR-1349, School of Computing Science, Newcastle University, 2012.

v

Contents

Abstract i

Acknowledgements iii

Publications v

List of Figures xiii

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goals and Thesis Contribution 5

1.3 Thesis Organisation . 6

2 Background 9

2.1 Behavioural Modelling . 9

2.1.1 Step Transition Systems . 9

2.1.2 Petri nets . 10

2.2 Bundled-Data Asynchronous Pipelines . 14

2.2.1 Synchronous vs. Asynchronous Pipelines 14

2.2.2 Bundled-data protocols . 16

2.2.3 RT-based Bundled-Data Circuit Synthesis 17

vii

3 Physical Partitioning and its Limitations 21

3.1 Introduction . 21

3.2 Methodology . 24

3.2.1 Characterising a GALS Design . 24

3.2.2 Simulation Framework . 29

3.2.3 Trade-o� Analysis . 36

3.2.4 Tool Description . 39

3.3 Results . 40

3.3.1 GALS Design Impact to System Latency 40

3.3.2 GALS Design Bene�t to System Power 42

3.3.3 Energy E�ciency Analysis . 45

3.4 Conclusions and Future Work . 47

4 Theory of Bundles 51

4.1 Introduction . 51

4.2 Step Persistence in Nets . 55

4.2.1 De�ning Persistent Steps . 56

4.2.2 Basic Properties of Persistent Steps 58

4.2.3 Global Persistence in Safe pt-nets 61

4.3 Pruning Reachability Graphs . 63

4.4 Signi�cance of Bundles in Digital Circuits 73

4.5 Conclusions and Future Work . 76

5 Synthesis of Asynchronous Circuits with Granular Rigidity 79

5.1 Introduction . 79

5.2 Modelling Digital Systems . 81

5.2.1 PN building blocks . 82

5.2.2 Modelling a Conceptual Design . 83

5.2.3 Partitioning with Bundles . 84

5.3 Digital Circuit Synthesis from PN Models 87

5.3.1 Model Transformation to Asynchronous Pipeline Models 87

viii

5.3.2 Partitioning into Elastic Bundles 88

5.3.3 From PN Models to Digital Circuits 91

5.4 16-point FFT Case Study . 95

5.5 Conclusions and Future Work . 99

6 Conclusion 101

6.1 Summary of Contributions . 102

6.2 Future Work . 104

Bibliography 105

Appendix A 117

MATLAB code of GALS physical partitioning analysis 117

Appendix B 148

16-point FFT Top-Level Verilog Code . 148

16-point FFT Control Verilog Code . 153

4-point FFT Datapath Verilog Code . 167

4-point FFT Bundled-Data Control Verilog Code 169

4-point FFT EB Maximal Control Verilog Code 185

4-point FFT Top-Level Verilog Code . 189

Appendix C 192

Timing Assumption Scripts for EB Maximal 4-point FFT 192

Appendix D 195

4-point FFT Asynchronous CDFG . 195

4-point FFT Temporal Bundle CDFG . 196

4-point FFT Maximal Bundle CDFG . 197

4-point FFT Reuse Bundle CDFG and Control Circuits 198

ix

List of Figures

1.1 Illustration of mixed synchronous-asynchronous circuits 4

2.1 A pt-net N (a); and its concurrent reachability graph CRG(N) (b). Note

that arcs (in fact, self-loops) labelled by the empty step are not shown in

CRG(N). 11

2.2 A safe persistent pt-net N (a); and its concurrent reachability graph

CRG(N) (b). 13

2.3 Synchronous versus asynchronous pipelines 15

2.4 Four-phase and two-phase asynchronous signalling protocols 16

2.5 Relative-timing based asynchronous design �ow (reproduced from [1]) . . . 17

2.6 Characterised handshake control element for bundled-data circuits 19

3.1 Typical GALS design block. 22

3.2 Global CDN and GALS partitioning. 25

3.3 Linear versus bidirectional block communication. 34

3.4 GALS inter-island communication distribution 41

3.5 System latency analysis of GALS versus synchronous chip 42

3.6 Design power breakdown at 218MHz clock (65nm) 43

3.7 Power e�ciency analysis of GALS versus synchronous design (65nm) . . . 44

3.8 REE analysis of GALS versus synchronous chip at 544MHz clock (65nm) . 46

3.9 Trend of REE with process technology (41,210 FFs) 47

3.10 Trend of REE with design size (65nm) . 48

4.1 Hazardous switching of an AND gate. 52

x

4.2 Temporal representations of systems having concurrent, parallel and mixed

concurrent-parallel behaviours: (a) interleaving model for asynchronous

behaviour; (b) step model for synchronous behaviour; and (c) mixed model

for mixed synchronous-asynchronous behaviour. 53

4.3 A safe persistent pt-net and its concurrent reachability graph. 58

4.4 A safe pt-net and its concurrent reachability graph. 59

4.5 Three safe pt-nets and their concurrent reachability graphs. 60

4.6 A safe pt-net N (a); and its concurrent reachability graph CRG(N) (b). . 63

4.7 Three safe persistent pt-nets N (a, d, g); their concurrent reachability

graphs CRG(N) (b, e, h); and the corresponding CRGmax (N) 4local
pers CRG(N)

obtained in the pruning procedure (c, f, i). 68

4.8 A safe persistent pt-net N (a); its concurrent reachability graph CRG(N)

(b); and CRGmax (N) 4local
pers CRG(N) obtained in the pruning procedure

(c). 69

4.9 A safe persistent pt-net N (a); its concurrent reachability graph CRG(N)

(b); CRGmax (N) obtained in the pruning procedure which does not satisfy

CRGmax (N) 4local
pers CRG(N) (c); a persistent and safe pt-net N ′ = Nb↔c

(d); and its concurrent reachability graph CRG(N ′) = CRGmax (N ′) which

trivially satis�es CRGmax (N ′) 4local
pers CRG(N ′) (and also CRGmax (N ′) 4global

pers

CRG(N ′)) (e). 70

4.10 A safe persistent pt-netN (a); CRGmax (N) not satisfying CRGmax (N) 4local
pers

CRG(N) (b); N ′ = Nd↔c (c); CRGmax (N ′) (d); N ′′ = Nb↔c (e); and

CRGmax (N ′′) (f). Both N ′ and N ′′ have been obtained as by-products of

the successful runs of the pruning and modi�cation algorithm. It is not

possible to obtain in this way N ′′′ in (g) even though CRGmax (N ′′′) 4global
pers

CRG(N) (h). 72

xi

4.11 A pt-net generating the concurrent reachability graph of Figure 4.2(c)

under the assumption that a and b belong to two di�erent clock domains,

while c and d belong to a third clock domain (a); and another mixed

synchronous-asynchronous implementation of the same system (assuming

the same clock domains as in (a)) both behaviourally (b) and as a derived

pt-net (c). 75

4.12 Hazardous switching in mixed synchronous-asynchronous step execution

semantics. 76

5.1 Design methodology �ow . 80

5.2 Basic PN elements . 82

5.3 PN building blocks for digital systems . 82

5.4 Example of PN model designs . 82

5.5 Wagging [2] . 83

5.6 Conceptual design . 84

5.7 PN models of conceptual design . 85

5.8 Pruned reachability graphs describing bundles 86

5.9 Modelling bundles with Policy Nets . 87

5.10 Transformation to bundled-data asynchronous pipeline 89

5.11 Elastic-bundle pipeline transformation (bundle set 1) 90

5.12 Elastic-bundle pipeline transformation (bundle set 2) 90

5.13 Elastic-bundle pipeline transformation (bundle set 3) 91

5.14 Fork join circuit . 92

5.15 Bundled-data asynchronous circuit of conceptual design 94

5.16 Elastic-bundle circuit (bundle set 1) . 94

5.17 Elastic-bundle circuit (bundle set 2) . 95

5.18 Elastic-bundle circuit (bundle set 3) . 95

5.19 PN model for 16-point FFT . 97

6.1 Petri net of asynchronous 4-point FFT . 195

6.2 Policy net of 4-point FFT with temporal partitioning 196

xii

6.3 Policy net of 4-point FFT with maximal partitioning 197

6.4 Policy net of 4-point FFT with ADD/SUB reuse partitioning 198

6.5 Signal transition graph (STG) for 4-point FFT reuse bundle control 198

6.6 4-point FFT pipeline stage 1 bundle control circuit 199

6.7 4-point FFT pipeline stage 2 bundle control circuit 199

xiii

List of Tables

3.1 Process technology and design parameters 30

3.2 Technology parameter 3 · σ variations . 32

3.3 GALS wrapper speci�cation . 38

5.1 Synthesis results for several 16-point FFT designs 98

xiv

List of Abbreviations

ASIC - Application-Speci�c Integrated Circuit

CAD - Computer Aided Design

CDFG - Control Data Flow Graph

CDN - Clock Distribution Network

CRG - Concurrent Reachability Graph

DFG - Data Flow Graph

DSM - Deep Submicron

EDA - Electronic Design Automation

EMI - Electro-Magnetic Interference

FF - Flip Flop

FFT - Fast Fourier Transform

GALS - Globally Asynchronous Locally Synchronous

HLS - High-Level Synthesis

IC - Integrated Circuit

NoC - Network-On-Chip

PN - Petri Net

REE - Relative Energy E�ciency

RT - Relative Timing

RTL - Register-Transfer Level

SoC - System-On-Chip

STG - Signal Transition Graph

xv

Chapter 1

Introduction

1.1 Motivation

Traditional circuit design styles have been following one of the two main strands, namely

synchronous and asynchronous. In a nutshell, these two approaches di�er in their techni-

ques of synchronising interaction between circuit elements. Asynchronous designs adopt

`on request' synchronisation where interaction is regulated by means of handshake control

signals. They are designed to be adaptive to delays of signal propagation. Synchronous

designs, on the other hand, assume worst case delay between circuit elements and de-

termine a global periodic control signal for synchronisation called the clock. The clock

signal limits the many sequencing options considered in asynchronous control. Synchro-

nous circuits are, therefore, considered to be a proper subset of asynchronous circuits [3].

Asynchronous logic was the dominant design style with most early computers. In par-

ticular, David Muller's speed-independent circuits, dating back to the late 1950s, have

served many interesting applications such as the ILLIAC I and ILLIAC II computers [4].

However, since 1960, an era when fabrication of integrated circuits (ICs) became a feasi-

ble business, synchronous design became the mainstream technique as it met the market

needs with its shorter design �ow cycle. Today, majority of designs are synchronous, well

etched in the heart of semiconductor industry together with superior CAD tools and EDA

�ows.

IC designs these days are predominantly system-on-chip (SoC) implementations. Most

SoCs consist of various intellectual property (IP) blocks embedded into one chip, with

1

each block having its own timing requirement. This design technique favours the reuse of

pre-designed and pre-veri�ed IP blocks, bene�ting the semiconductor industry with large

productivity gains [5]. The complexity of designing a SoC has grown rapidly over the

years due to demand for increased functionality, faster processing speeds and the increas-

ing impact of previously ignorable e�ects on chip reliability. One of the main reasons

is that transitioning to very deep submicron manufacturing (DSM) process has revealed

process and environmental variation related problems coupled with the complexity to

manage a global clock distribution network (CDN). Moreover, the traditional synchron-

ous clocking style, being more appealing towards processor and instruction-�ow designs, is

not apt to handle the heterogeneous timing nature of modern SoCs. The semiconductor

industry has been constantly researching and adopting new methodologies to improve

designer productivity. Consequently, two distinct strategies have emerged, namely Phys-

ical Partitioning and Functional Partitioning, to tackle the design challenges of modern

SoCs. Design partitioning creates smaller manageable islands with optimal CDNs that

would reduce the e�ect of DSM variability whilst allowing individual islands to operate at

their native clock speeds, thereby o�ering superior design quality than traditional globally

clocked SoCs.

Some of the well-known physical partitioning techniques are ARM's big.LITTLE archi-

tecture [6], Teklatech's FloorDirector partitioning engine [7], NoCs [8, 9] and GALS-based

physical partitioning [10, 11, 12, 13, 14, 15, 16]. These techniques partition a digital design

based on physical characteristics to simplify clock distribution, reduce global interconnect

complexity, reduce electro-magnetic interference (EMI), improve energy-e�ciency and im-

plement voltage frequency scaling on a coarse-grained level. Functional partitioning, on

the other hand, partitions a design based on system functionality creating timing-related

functional islands that are �ne-grained. This o�ers greater �exibility for design optim-

isation, thus demonstrating scope for larger bene�ts than those gained from the physical

partitioning approach. High-level synthesis �ows such as BlueSpec [17, 18] and Chisel [19];

data�ow synthesis �ows such as Click [20] and eTeak [21]; and Petri net (PN) based parti-

tioning techniques such as [22] and [23] fall under this category. With exception of Click,

eTeak, PN based partitioning and GALS-based physical partitioning which are based on

2

asynchronous design principles, all the other techniques are implemented using traditional

synchronous EDA tool �ow.

In the recent decade, the semiconductor industry has witnessed a strong revival of

asynchronous design principles due to its robustness to DSM variability coming from �ne-

grained circuit timing �exibility, its inherent elasticity and heterogeneity o�ering great

design �exibility, its lower energy consumption pro�le coming from inherent automatic

�ne-grained clock gating, and its independence from the need for global clock distribution.

Currently, the traditional asynchronous design approach is still infeasible commercially

due to the lack of mature CAD tools, signi�cant overheads of asynchronous control pro-

tocol, inability to reuse synchronous IP cores and high transitioning costs. However,

due to growing semiconductor variability and demand for energy-aware computing, it

has been predicted that it is only a matter of time before asynchronous logic penet-

rates a vast majority of SoCs [24]. Recent innovations in asynchronous design �ows

such as those in [25, 26, 27, 28, 29, 30, 31, 32, 33] have enabled rapid integration of

asynchronous logic into synchronous CAD tools thereby bridging the gap between asyn-

chronous design and designer productivity. In the realm of SoCs, this trend has resulted

in an active area of research revolving around mixed synchronous-asynchronous digital

design [34, 35, 12, 36, 13, 37, 38, 39, 40, 41, 16, 23, 42, 43]. Figure 1.1 illustrates the

positioning of this research area.

Mixed synchronous-asynchronous design can be viewed as a revolutionary step in VLSI

design paving the way for commercial adoption of asynchronous design techniques in future

SoCs. With a growing trend of synchronous-asynchronous CAD tool �ow integration, the

mixed synchronous-asynchronous paradigm shows promise to survive the market forces of

the semiconductor industry mainly due to the scope for reuse of synchronous functional

blocks and IP cores, and the co-existence of synchronous and asynchronous design styles

in a common EDA framework. However, there is a lack of tools and design methodologies

to facilitate mixed synchronous-asynchronous design. So far, this research area has been

mainly explored on the basis of GALS systems [44]. Most GALS design implementations

emphasised on physical partitioning and followed an assemble-and-validate design style.

They lacked formal reasoning methods and considered functional partitioning aspects

3

elasticity

area

overhead

rigid

delay
insensitive

circuits

synchronous
handshake circuits

bundled-data
circuits

mixed
synchronous-asynchronoussynchronous asynchronous

Figure 1.1: Illustration of mixed synchronous-asynchronous circuits

on a very coarse-grain level de�ned by top-level hierarchical boundaries. Furthermore

in the realm of circuits, GALS design would only comprise a subset of the shaded area

shown in Figure 1.1. In fact, the mixed synchronous-asynchronous design paradigm would

encapsulate a range of design practices starting from synchronous handshake circuits [26],

which are synchronous circuits embracing principles of asynchronous elasticity, all the way

to bundled-data circuits [45, 46], which are asynchronous circuits embracing principles of

synchronous rigidity. Hence, we propose a strong motivation for three distinct research

areas in this �eld:

1. Discovery of sub-classes of mixed synchronous-asynchronous circuits

2. Speci�cation of a common formal method for mixed synchronous-asynchronous cir-

cuit description, and

3. Reasoning behind functional and physical partitioning strategies for mixed synchronous-

asynchronous SoC design.

4

1.2 Research Goals and Thesis Contribution

Entering the paradigm of mixed synchronous-asynchronous circuits, we encountered the

following questions which de�ned the research goals of this thesis:

• How do we model and verify circuits exhibiting mixture of synchronous and asyn-

chronous behaviour?

• What is the ideal strategy for designing mixed synchronous-asynchronous SoCs; is

it the physical partitioning approach or a functional partitioning strategy?

• What level of granularity is justi�ed for synchronous and asynchronous logic ele-

ments in SoC design?

This thesis is centred around �nding answers to these questions.

Decades of research have undergone in GALS-based physical partitioning methodology

for mixed synchronous-asynchronous SoC design. However, the method has failed to gain

traction commercially. It was unclear as to why there was no clear consensus about

GALS design in the research community. Thus, the �rst research goal was to develop

an extensive model that could characterise the physical and functional aspects of GALS

SoCs and analyse the design technique's bene�ts and drawbacks. An extensive parametric

model considering variability of several technology nodes was developed and GALS design

was analysed versus its fully synchronous counterpart.

Secondly, it was conceptualised that mixed synchronous-asynchronous systems would

require a unique mathematical model to represent its behaviour. The theory of step per-

sistence and bundles was developed to cater this goal. Petri nets with step semantics were

used to represent mixed synchronous-asynchronous behaviour. Implications of the model

in veri�cation and synthesis of mixed synchronous-asynchronous circuits were studied.

A pruning algorithm was developed that would generate a suitable mixed synchronous-

asynchronous behavioural model by pruning a system's concurrent speci�cation to achieve

desired design characteristics. This result demonstrated how a fully asynchronous design

could be formally re-engineered to a mixed synchronous-asynchronous design that couples

elastic asynchronous design �exibility with rigid synchronous design simplicity.

5

The �nal research goal was motivated from the exploration of research area identi�ed in

Figure 1.1. This led to a novel method for synthesising mixed synchronous-asynchronous

circuits with varying levels of rigidity. The hypothesis was that bundles would reduce the

area overheads of asynchronous design by relaxing granularity of handshake control. A

Petri net based data�ow modelling technique was developed to model digital systems on

a higher level of abstraction than RTL. Functional partitioning was then introduced in

these data�ow models by identifying sets of bundles that could restrict elasticity whilst

retaining functional behaviour. Taking the case of asynchronous bundled-data circuits,

these sets of bundles were extended to a novel notion of Elastic Bundles which basically

re-partitioned the design into coarse-grained locally clocked elements (synchronous) and

�ne-grained locally clocked elements (asynchronous). This net transformation enabled

synthesis of the mixed synchronous-asynchronous circuit under standard EDA tool �ow.

1.3 Thesis Organisation

The thesis is structured as follows:

Chapter 1 presents the motivation behind this research and outlines the main con-

tributions of this thesis.

Chapter 2 introduces the formal modelling languages used throughout the thesis and

provides background on the asynchronous synthesis �ow adopted in this research.

Chapter 3 studies the impact of GALS-based physical partitioning in SoC design

and presents the �rst contribution, a simulation framework that evaluates GALS design

versus its fully synchronous counterpart considering physical and functional parameters.

Chapter 4 presents the second contribution, theory of step persistence and bundles,

which provides a mathematical model to model and verify mixed synchronous-asynchronous

circuits.

Chapter 5 applies the concepts discussed in Chapter 4 to synthesise asynchronous

circuits of varying levels of rigidity. The notion of `Elastic Bundles' is introduced to enforce

rigidity in fully asynchronous circuits, demonstrating mixed synchronous-asynchronous

circuits consisting of granular locally clocked circuit elements. The �nal contribution is a

novel method for modelling and synthesising `Elastic Bundles'.

6

Chapter 6 summarises the key results and contributions, and presents directions for

future work.

Appendix A presents the MATLAB code written to derive the results shown in

Chapter 3.

Appendix B presents main parts of the verilog code for the 16-point FFT design

discussed in Chapter 5.

Appendix C presents the synthesis timing constraints used to synthesise the 4-point

FFT Elastic-bundle Maximal circuit of Chapter 5.

Appendix D presents the Petri net and Policy net models of the 4-point FFT archi-

tecture on the basis of which the results of Chapter 5 were derived.

7

8

Chapter 2

Background

This chapter summarises the fundamental concepts on the basis of which the thesis is

constructed. Section 2.1 introduces the formal modelling languages used to model and

verify digital systems in this thesis. In Section 2.2, the principles of bundled-data asyn-

chronous pipelines is discussed and the CAD �ow adopted to synthesise these circuits is

summarised.

2.1 Behavioural Modelling

In this section, we introduce the modelling languages used for the speci�cation and veri-

�cation of digital system behaviour. We recall de�nitions and notations of these formal

models used throughout the thesis, speci�cally of step transition systems, Petri nets and

step semantics of Petri nets. These preliminaries are based on the literature presented

in [47, 48, 49, 50, 51, 3].

2.1.1 Step Transition Systems

This section introduces the step transition system model which is the chosen modelling

language to describe the behaviour of both asynchronous circuits as well as synchronous

circuits in this thesis. We de�ne this model formally as follows:

Let T be a �nite set of net transitions representing actions of a concurrent system.

A set of transitions is called a step, and we use α, β, γ, . . . to range over all steps P(T).

Sometimes we identify a step α with its characteristic function α : T → {0, 1}, and then

9

write α =
∑

a∈T α(a) · a.1 The size |α| of α is de�ned as the number of its elements.

De�nition 2.1.1. (step transition system)

A step transition system (or st-system) over a set of net transitions T is a triple

STS = (Q,A, q0) consisting of a set of states Q, including the initial state q0 ∈ Q, and a

set of labelled arcs A ⊆ Q× P(T)×Q. It is assumed that:

• (q,∅, q) ∈ A for all q ∈ Q;2

• the transition relation is deterministic, i.e., if (q, α, q′) ∈ A and (q, α, q′′) ∈ A then

q′ = q′′;

• each state is reachable, i.e., if q ∈ Q then there are sequences of steps α1, . . . , αn

(n ≥ 0) and states q1, . . . , qn = q such that (qi−1, αi, qi) ∈ A for 1 ≤ i ≤ n. �

For an st-system STS as above, we introduce the following notations:

• q α−→ q′ and q
α−→ whenever (q, α, q′) ∈ A;

• EnSTS(q) = {α | q
α−→} ⊆ P(T) is the set of all steps enabled at a state q;

• EnSTS =
⋃
q∈Q EnSTS(q) ⊆ P(T) is the set of all the enabled steps of STS;

• max(q) = {α ∈ EnSTS (q) | ∀β ∈ EnSTS (q) : α 6⊂ β} is the set of all maximal steps

enabled at a state q.

• readySTS(q) =
⋃

EnSTS(q) =
⋃
α∈EnSTS(q) α ⊆ T is the set of all transitions ready

to be executed at a state q, i.e., those belonging to steps enabled at q.

2.1.2 Petri nets

Petri nets, introduced by C. A. Petri in his PhD dissertation [52], are widely used as a

formal model to express concurrent systems. It is a powerful language which can be used

to generate graphical and mathematical representation of asynchronous digital circuits

and other distributed systems [50, 51, 3, 53, 54]. The place/transition net (or pt-net) is

the most frequently used and best studied class of Petri nets where a place can hold any

1The ` · ' operator used here denotes scalar multiplication.
2For technical reasons we want to keep empty steps, as they might be important in future algorithms.

10

number of tokens. In this section, we recall de�nitions, notations and basic properties of

place/transition nets.

(a)

a b

c d {c, d}
{c} {d}

{d} {c}

{a, b}
{a} {b}

{b} {a}{c}

{b}
{c, b}

(b)

Figure 2.1: A pt-net N (a); and its concurrent reachability graph CRG(N) (b). Note
that arcs (in fact, self-loops) labelled by the empty step are not shown in CRG(N).

De�nition 2.1.2. (place/transition net)

A place/transition net (or pt-net) is a tuple N = (P, T,W,M0), where P and T are

�nite disjoint sets of respectively places and transitions, W : (P × T) ∪ (T × P) → N is

an arc weight function, and M0 : P → N is an initial marking (in general, any mapping

M : P → N is a marking). �

We use the standard conventions concerning the graphical representation of pt-nets,

as shown in Figure 2.1(a). For every element x ∈ P ∪ T , we use

•x = {y | W (y, x) > 0} and x• = {y | W (x, y) > 0}

to denote the pre-set and post-set of x, respectively. If x ∈ T , then any p ∈ •x is a

pre-place of x, and any p ∈ x• is a post-place. The dot-notation extends in the usual way

to a set X ⊆ P ∪ T :
•X =

⋃
x∈X

•x and X• =
⋃
x∈X

x• .

Moreover, for every place p ∈ P and step α ∈ P(T), we denote:

W (p, α) =
∑
a∈T

α(a) ·W (p, a) and W (α, p) =
∑
a∈T

α(a) ·W (a, p) .

11

In other words, W (p, α) gives the number of tokens that the execution of α removes from

p, and W (α, p) is the total number of tokens inserted into p after the execution of α.

De�nition 2.1.3. (place/transition net behaviour)

Let M be a marking of N . A step α ∈ P(T) is enabled and may be executed at M if,

for every p ∈ P :

M(p) ≥ W (p, α) . (2.1)

We denote this by M [α〉. Executing such a step leads to the marking M ′, for every p ∈ P

de�ned by:

M ′(p) =M(p)−W (p, α) +W (α, p) . (2.2)

We denote this by M [α〉M ′. Moreover, for a singleton step α = {a}, we write M [a〉 and

M [a〉M ′ rather than M [{a}〉 and M [{a}〉M ′. �

The concurrent reachability graph of N is the st-system

CRG(N) = ([M0〉, A,M0)

over T where:

[M0〉 = {Mn | ∃α1, . . . , αn,M1, . . . ,Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi} (2.3)

is the set of reachable markings and (M,α,M ′) ∈ A i� M [α〉M ′. Furthermore, we call

α1 . . . αn, as in the formula (2.3), a step sequence and writeM0[α1 . . . αn〉Mn. Figure 2.1(b)

shows the concurrent reachability graph of the pt-net in Figure 2.1(a).

Remark 2.1.1. Note that for any Petri net N , CRG(N) is an st-system, but we have

di�erent requirements for steps enabled in CRG(N) and in an arbitrary st-system. This

is intentional distinction. In Chapter 4, we de�ne sub-st-systems, and a sub-st-system

of a CRG might not be a CRG of a Petri net.

De�nition 2.1.4. (sequential and concurrent con�ict)

Two distinct transitions, a and b, of N are in:

12

• sequential con�ict at a marking M whenever M [a〉 and M [b〉, but M [ab〉 does not

hold;

• concurrent con�ict at a marking M whenever M [a〉 and M [b〉, but M [{a, b}〉 does

not hold. �

Note that sequential con�ict implies concurrent con�ict, but reverse implication does not

hold; e.g., transitions a and b in Figure 2.2 are in concurrent con�ict but not in a sequential

one.

(a)

a b

M0

{a} {b}

(b)

Figure 2.2: A safe persistent pt-net N (a); and its concurrent reachability graph
CRG(N) (b).

De�nition 2.1.5. (safe net)

N is safe if, for all reachable markings M ∈ [M0〉 and places p ∈ P , M(p) ≤ 1. �

Note that reachable markings of safe nets can be treated as sets of places. Moreover,

being a safe pt-net does not depend on the chosen semantics, i.e., the sequential semantics

where only singleton steps are executed, or the full step semantics.

A step α of a pt-net N is:

• active if there is a reachable marking of N enabling it;

• positive if W (α, p) ≥ W (p, α), for every p ∈ P ;

• disconnected if (•a ∪ a•) ∩ (•b ∪ b•) = ∅, for all distinct a, b ∈ α;3

• lying on self-loops if W (p, a) = W (a, p), for all a ∈ α and p ∈ P .

Clearly, the empty step is lying on self-loops, and if α is lying on self-loops then it is also

positive.

3 The notion of disconnectedness as de�ned here is not related to the standard graph-theoretic notion
of disconnectedness (i.e., that a graph is disconnected if there is a pair of vertices without a connecting
path).

13

Fact 2.1.1. (marking monotonicity)

If M [α〉 and M ′(p) ≥M(p), for all p ∈ P , then M ′[α〉. �

Fact 2.1.2. (step monotonicity)

If M [α〉 and β ⊆ α, then M [β(α \ β)〉. �

Fact 2.1.3. (disconnectedness)

A step α is enabled at a reachable marking M of a safe pt-net i� α is disconnected

and consists of transitions enabled at M . �

Remark 2.1.2. The above facts are very intuitive and look trivial. However, they have a

crucial importance in the discussion on persistence in Chapter 4.

2.2 Bundled-Data Asynchronous Pipelines

In this section, the principles of bundled-data asynchronous pipelines is discussed and a

summary of the relative-timing (RT) based CAD �ow is provided. The concepts presented

in this section are based on literature presented in [45, 46, 55, 32, 1].

2.2.1 Synchronous vs. Asynchronous Pipelines

Pipelining is a principle element of high-performance digital design catering both synchro-

nous as well as asynchronous systems. The fundamental di�erence between synchronous

and asynchronous pipelines lies in the communication channel that enables data items to

move from one pipeline stage to the next. Figure 2.3 illustrates this with a simple example

showing a traditional synchronous linear pipeline and an asynchronous linear pipeline. In

synchronous pipelines, a global clock signal handles the communication between pipeline

stages in a lock step fashion. A critical requirement of such a globally clocked system is

that each stage's worst-case data path delay should be lower than the �xed clock period.

Hence, traditional synchronous systems feature a rigid communication scheme where all

pipeline stages operate at a �xed clock frequency.

In contrast, asynchronous pipelines do not have a global clock and achieve communica-

tion between pipeline stages by handshaking between neighbouring registers. Figure 2.3b

14

FF1

DoutDin CL

FF2

d dq q CL

FF3

d q

CLOCK

(a) Synchronous pipeline

L1

HC1

ck
lr

la

rr

ra

Dout

req1
delay

Din CL

L2

HC2

ck
lr

la

rr

ra

d dq

ack1

req2

ack2

q

delay

CL

L3

HC3

ck
lr

la

rr

ra

d

req3

ack3

q

req4

ack4

(b) Bundled-data asynchronous pipeline

Figure 2.3: Synchronous versus asynchronous pipelines

15

Sender Receiver

req

ack

req

ack

Four-phase handshaking

One transaction

initiate reset

req

ack

Two-phase handshaking

Two transactions

Transaction 1 Transaction 2

Figure 2.4: Four-phase and two-phase asynchronous signalling protocols

depicts a bundled-data asynchronous pipeline where the global clock signal is replaced by

handshake control (HC) logic blocks that implement �ne-grained local locking at regis-

ters. A request-acknowledge based handshake protocol consisting of handshake signals,

request (req) and acknowledge (ack), advance data items on a per-stage basis. Delay

elements, implemented as inverter chains, matching each stage's critical path delay, are

inserted on req signals to ensure data stability and validity before reaching the next pi-

peline stage. Thus, in comparison to synchronous design, bundled-data handshaking can

be viewed as system of multiple �ne-grained local clocks whose period is determined by

actual critical path delay of individual pipeline stages.

2.2.2 Bundled-data protocols

The scheme of using a synchronous-style data path coupled with a bundling signal (req)

that enforces a worst-case delay for valid data being received stable at a neighbouring pi-

peline stage is what de�nes the class of bundled-data asynchronous circuits [46]. Bundled-

data handshaking can follow two basic asynchronous signalling protocols, namely four-

phase and two-phase. Figure 2.4 illustrates these two communication protocols. In the

case of four-phase handshaking, req and ack are initially deasserted low. A transaction

is initiated with a rising req from the sender. The receiver responds with a rising ack

acknowledging the transaction. These two signals are then deasserted low to allow for

16

Figure 2.5: Relative-timing based asynchronous design �ow (reproduced from [1])

the next transaction. The four-phase handshake protocol is also known as return-to-zero

(RTZ) signalling or level signalling. In the case of two-phase handshaking, a single toggle

of req initiates a transaction which is followed by a single toggle of ack acknowledging

the transaction. The two-phase handshake protocol is also known as non-return-to-zero

(NRZ) signalling or transition signalling. This protocol only requires a single round-trip

communication per transaction as compared to double round-trip communications in four-

phase signalling. Between the two protocols, the four-phase protocol is widely used due

to simpler hardware design.

2.2.3 RT-based Bundled-Data Circuit Synthesis

Relative timing (RT) is a method of modelling and controlling the �ring order of two

events based on logic path delays. This method can accurately capture, model and validate

heterogeneous timing behaviour of synchronous as well as asynchronous circuits [32]. RT

constraints are enforced during circuit synthesis so that hazardous states are �ltered out.

RT constraints consist of a common timing reference, called as point-of-divergence (pod),

and a pair of events ordered in time, called as point-of -convergence (poc) [1]. Path-

based RT constraints specify the order of arrival of two paths from a common causal pod

to ordered events poc. Such RT constraints are represented as pod 7→ poc0 +m ≺ poc1

where poc1 is ordered to �re after poc0 occurs in time with margin m.4 Let us consider the

bundled-data linear pipeline in Figure 2.3b to illustrate this further. The delay element

between stages L1 and L2 can be sized by enforcing the following RT constraint:

4 7→ is an arrow symbol used here to de�ne the function. ≺ is a relation operator denoting precedence.

17

req1 ↑ 7→ L2/d + margin ≺ L2/ck ↑

The RT-based design �ow enables rapid development of asynchronous designs by pro-

viding a set of characterised asynchronous templates that can be easily integrated with

synchronous CAD tools [32]. These templates can be inserted in designs with supporting

clocked CAD tool constraints for synthesis, place and route, timing driven sizing, optimi-

sation and validation. A version of RT asynchronous design �ow taken from [1] is shown

in Figure 2.5.

The RT design �ow enables the adoption of bundled-data asynchronous circuits in the

traditional synchronous design �ow with little expertise in asynchronous design. First, the

bundled-data design is partitioned into data path logic and control logic. The data path

is synthesised using normal synchronous CAD synthesis procedures. Handshake clocking

is, then, implemented by replacing the global clock with the HC logic blocks as shown

in Section 2.2.1. Characterised asynchronous design elements of the HC block are used

to implement the control logic. Figure 2.6a shows the circuit implementation of an HC

block based on four-phase handshaking as characterised in [32]. The HC circuit's verilog

implementation in our in-house 90nm Faraday library is shown in Figure 2.6b. Next, RT

constraints are speci�ed based on the timing constraints elaborated in [32]. These con-

straints are integrated into clocked CAD tool �ow by specifying them as sdc constraints

which are supported by commercial tools. For example, RT constraints represented by

set_max_delay and set_min_delay commands are used to perform timing driven synt-

hesis. These constraints are responsible for constraining the data path logic and adding

delay elements on the control path. Finally, the RT constrained architecture is passed

through usual clocked CAD tools and �ows. In this fashion, bundled-data asynchronous

circuits can be synthesised by leveraging clocked CAD tool �ow.

18

(a) HC Circuit Implementation (reproduced from [1])

(b) Verilog Implementation of HC in 90nm Faraday library

Figure 2.6: Characterised handshake control element for bundled-data circuits

19

20

Chapter 3

Physical Partitioning and its

Limitations

One of the �rst partitioning techniques for mixed synchronous-asynchronous digital designs,

and a popular one, was introduced by Chapiro in his doctoral thesis titled 'Globally-

asynchronous locally-synchronous systems' [44]. Chapiro's technique abbreviated as GALS

was designed to exploit the advantages of asynchronous design while maximally reusing

the products of the synchronous design �ow. This is achieved by partitioning a system

into synchronous islands that inter-communicate by asynchronous handshaking. Over the

last couple of decades, GALS system design has been widely researched as an alternat-

ive to synchronous SoC designs mainly as a physical partitioning strategy. However, this

technique has gained mixed reviews from the research community with no clear indication

of its future in SoC design. In this chapter, we are motivated to investigate the GALS

physical partitioning technique and review its applicability to SoC design.

3.1 Introduction

Globally asynchronous locally synchronous (GALS) design [44] is a promising approach

that can reduce the design complexity of modern SoCs and improve energy e�ciency

by incorporating heterogeneity. This design principle has been mainly implemented as a

physical partitioning strategy for SoC design where top-level hierarchical blocks of varying

clock speeds such as heterogeneous IP cores are partitioned into distinct clock domains

21

transmitter

L FF

input
port

FF

output
port

synchronous
receiver

synchronous

ack

req

clk_r

en_r

ta_r

ta_t

en_t

ack_rack_t req_r

data_t data_r

clk_t req_t

rst

clock generator clock generator

asynchronous wrapper asynchronous wrapper

Figure 3.1: Typical GALS design block.

known as synchronous islands. Clock distribution is handled locally in synchronous is-

lands and communication across clock domain boundaries is achieved by asynchronous

design principles. A typical GALS system is shown in Figure 3.1. Each synchronous

island has its own local clock which would be �paused� during data transfer and resumed

after acknowledging the transfer. Synchronous islands are enclosed within asynchronous

wrappers which handle asynchronous handshake control and local clock management.

GALS design can provide genuine scope for power savings, performance improvement

and energy e�ciency compared to its synchronous counterpart owing to its scheme of

multiple clock domains. One of the main bene�ts is a simpli�ed clock distribution net-

work (CDN) o�ering signi�cant power savings and performance improvement. GALS

methodology, however, induces certain design overheads such as latency penalty between

clock domains which would impose restrictions on the partitioning granularity. There are

several research works such as [10, 56, 57, 58, 35, 12, 36, 37, 41, 15] that demonstrate the

potential of GALS design but the bene�ts reported are not consistent and in some cases

contradictory. Most of them follow an assemble-and-validate design style and lack system

analysis procedures to justify GALS partitioning scenarios.

The authors in [11, 58] make a good e�ort to judge the applicability of GALS meth-

odology by comparing the power and performance �gures against a fully synchronous

design. They showed that GALS performance penalty is around 6.3% when using paus-

able clocks with �ve clock domains. The main reason for system throughput reduction is

due to frequent inter-island communications and the presence of communication feedback

22

loops. The observations were made from a processor case study and hence, the same

e�ect would not hold true for application speci�c designs. For example, parallel pipelined

data path implementations of complex operations such as FFT [1] or JPEG Encoder [41]

will have fewer such loops and would show much lower performance penalty with GALS.

The study also demonstrated 10% of average power savings across several GALS imple-

mentations. However, the e�ect of process variations was not accounted in the study.

This e�ect is quite important for comparing digital design implementations, especially

for newer semiconductor process technologies, because a growing portion of clock period

budget is allocated for variability which directly has an impact on the CDN power and

maximum clock frequency per island.

Yu and Bass studied the impact of CDN design on the peak performance of processor

cores considering both GALS and globally synchronous design styles [41]. The GALS

processor being of a constant size has the highest peak performance compared to the

larger synchronous processor array due to lower clock skew. Further decrease in peak

performance of the synchronous processor is seen due to additional skew penalty from

process and environment variations, and a performance �gure of 76.8% to the GALS case

is reported for an array of 121 processors. Their main contribution was the performance

analysis of several applications on GALS and synchronous processor array architectures.

Each application was mapped onto the processor cores and performance was compared.

Performance reduction from GALS was in the range of 0% to 2.3% and power savings

of upto 40% was demonstrated. Their method of analysis is for a GALS chip multipro-

cessor with FIFO style of synchronisation wherein computations are localised within each

processor's clock domain. Inter-island communications are less frequent thus explaining

the low performance degradation �gure. Similar performance results are expected from

GALS-based application speci�c designs.

Hemani et al suggested that signi�cant clock power reduction of about 70% can be

obtained by dividing a system into N equally sized islands [10]. However, till date, there

are only a few of GALS implementations that report actual power performance measure-

ments of GALS fabricated chips. In [36], a GALS baseband processor was designed and

fabricated on 250 nm process, and compared with its synchronous implementation. Power

23

savings of only 1% were reported when about 17% was to be expected. The authors in [16]

evaluated GALS versus synchronous implementation of an OFDM baseband transmitter

in 40nm CMOS technology. 20% power savings in the clock power was reported with a

total of 6% power reduction in the overall chip power. Furthermore, the number of levels

in the clock tree dropped from 27 to less than 10 in the GALS implementation. It was

reported that the design was partitioned into six islands based on functional and physical

criteria. However in both the implementations, the choice of partitioning granularity and

boundaries is unclear.

The applicability of GALS methodology to modern SoC design will depend on several

factors such as system data�ow, design size and process technology. One of the main

bene�ts of GALS is a CDN which consumes lower power and delivers a low-skew clock.

However, these gains will have to be weighed against the penalties introduced due to

the GALS synchronisation protocol in order to determine overall system improvement. A

calculated system level analysis is hence required before choosing to GALSify a system and

many studies lack this. In this chapter, we discuss the parameters and metrics required

to conduct such a trade-o� analysis.

The chapter is organised as follows. Section 3.2 discusses the analysis methodology

and simulation framework for analysing GALS chip partitioning. Section 3.3 discusses

the results obtained from the physical partitioning simulation. Section 3.4 concludes this

chapter and presents scope for future work.

3.2 Methodology

3.2.1 Characterising a GALS Design

Several design parameters will in�uence the decision towards a GALS architecture. This

section discusses some of the key factors that govern an e�ective GALS implementation.

3.2.1.1 Clock Distribution Network

The clock distribution network is a very important component of a synchronous design

governing its functioning and performance. Any violation to the clock timing speci�c-

24

Block A

Block B Block C

Block D

Figure 3.2: Global CDN and GALS partitioning.

ations can a�ect logical operation of the circuit and lead to design functional failure.

Moreover, the CDN can consume up to about 40% of the chip dynamic power in high

performance designs [59] and hence any optimisation reducing the clock tree power is con-

sidered a signi�cant design improvement. For example, the authors in [60] demonstrated

overall chip power savings of 25% by optimising the CDN using a combination of energy

recovery and clock gating techniques. CDN design depends on the chip �oorplan size,

total load to distribute the clock signal and clock design constraints such as bu�er/load

rise time and skew budgets. For instance, greater area to distribute the clock requires

stronger bu�ers to deliver clock signal due to larger interconnect capacitance.

GALS design has been shown to reduce the clock switching power of larger designs by

partitioning into smaller CDNs [10]. Figure 3.2 shows a clock tree distribution network

of a generic design and a trivial case of GALS partitioning. It can be visualised that

clock power is reduced due to removal of the global clock tree. There will, however, be an

optimal number of partitions for any design to bene�t from such CDN power savings [57].

This e�ect is seen due to additional power consumption from GALS architecture over-

heads: wrapper circuit and local clock generator. In this study, we extend the analysis to

determine the CDN power savings for a design over di�erent process technologies.

25

3.2.1.2 Sensitivity to Process Variations

Clock signals act as control signals that guide data movement between registers in a

sequential data path. The timing of these signals has to be precise for proper system

operation. Any delay uncertainty can cause system failure if the CDN design has not

accounted these e�ects.

Each element of a clock path is sensitive to process, environmental and geometric

variations which lead to di�erent clock arrival times at the sinks of the CDN. This temporal

di�erence is simply the clock skew that has to be characterised by the designer and

accounted for, which if not, would violate the setup and hold time constraints required for

safe data latching. Timing violations are avoided by either reducing the delay uncertainty

of the CDN or relaxing the timing constraints [59]. The latter involves accommodating

a larger clock skew budget by increasing the clock period of the design at the cost of

reduced system performance. Delay uncertainty of the CDN is reduced by desensitising

the interconnects in the clock net [61] and/or increasing the clock bu�er sizes [62]. This,

however, comes at cost of higher power consumption.

A typical CDN consists of a tree of bu�ers interconnected by metal wires. Every

bu�er and interconnect is susceptible to variability which gets accumulated from source

to sink [63] giving rise to global clock skew. As technology scales, clock frequencies

are increasing and variability is worsening. The resulting global clock skew will become

more profound and drastically a�ect system performance. Skew management techniques

such as active de-skewing can manage the global skew while adhering to the traditional

clocking principles but at heavy cost of power and area [64]. Sometimes, clock skew is

not all that bad as techniques such as time borrowing and skew scheduling employ the

clock skew to enable e�ective timing closure. However, as modern designs are getting

increasingly complex with strict timing margins, timing closure is getting increasingly

di�cult to achieve. GALS architecture minimises on-chip skew owing to the reduced

e�ect of accumulated delay uncertainty coming from a smaller CDN. GALS is, thus, seen

to be a promising design solution for future technologies where variability is severe.

In this chapter, we analyse the e�ect of process variations and clock skew on the

CDN and suggest the optimum granularity of GALS blocks for a process technology

26

node. Upadhyay et al. provided a method to approximate the optimum number of GALS

partitions for a die size while optimising the CDN power [57]. However, the research did

not consider the e�ect of variability and clock skew on the optimum number of GALS

partitions. In [58], the authors make a relation between GALS partition granularity and

clock skew due to variability. However, only the e�ect of temperature variation was

considered. The clock skew minimisation feature of GALS was exploited to speed-up the

design by allowing the independent clock domains to operate at their own maximum clock

frequency. GALS design could potentially tune the power-performance values of a system

by either increasing the system frequency or optimising the CDN power or �nd a sweet

spot optimising both. In this research, we chose to optimise the clock bu�er sizes in the

CDN to �t a given skew budget and �xed clock frequency.

3.2.1.3 System Data�ow

The system data�ow structure is another important consideration that a�ects the quality

of a GALS implementation. Data�ow indicates the �ow and frequency of data communic-

ation between pipeline stages. This is important when deciding the partitioning boundar-

ies since data transfer between GALS islands requires crossing asynchronous boundaries

wherein a penalty will be paid in the form of synchronisation latency by the communica-

tion circuitry. Though increasing the number of partitions can provide signi�cant power

savings, there will be a greater cost of performance penalty incurred which could render

GALS design unacceptable [11]. Maintaining a low inter-island communication probabil-

ity would keep the penalty down. Hence, each design has to be carefully partitioned to

�nd the right balance of power savings versus latency penalty.

In addition to design partitioning granularity, the behaviour of communication cir-

cuitry is also critical to GALS system performance. Basically, three �avours of syn-

chronisation techniques exist for communicating between clock domains: synchronisers,

asynchronous wrappers and asynchronous FIFOs. The two-�op synchroniser experiences

multi-cycle latency which can decrease system throughput signi�cantly [65, 66]. In case of

the asynchronous wrapper, the latency penalty is the least alongside minimal throughput

loss [67, 13, 68]. For high performance systems, asynchronous FIFOs are quite e�ective

27

at maintaining system throughput [41, 69].

We thoroughly investigated these synchronisation techniques. The asynchronous wrap-

per approach works best when synchronisation between islands is infrequent [70]. How-

ever, an upper limit to the operating system clock frequency should be enforced to ensure

acceptable metastability resolution [13]. In contrast, FIFOs provide good bandwidth for

communication and support higher clock frequencies but its complex design makes it dif-

�cult for comparative analysis. Moreover, their application costs more area and power,

comparatively, and hence would not be the best choice of synchronisation for systems

with tight design budgets. Finally, standard two-�op synchronisers could cause multi-

cycle latency of upto 12 clock cycles in the worst case and hence will always lag in overall

system performance compared to asynchronous wrappers [66]. They, however, do not

pose any clock frequency limitation and can even provide acceptable performance �gures

in certain design scenarios. For example, mesochronous, multi-synchronous, plesiochron-

ous and ratiochronous systems [71, 72, 65] are a special case of GALS where strategic

synchroniser design can eliminate performance penalty signi�cantly at an added design

cost.

In this research, the pausable asynchronous wrapper [73, 13, 74, 68] was chosen as

it seemed best suited for analysing the impact of wrapper performance penalties with

increasing partition granularity. The technique stretches the transmitter clock pulse so

that su�cient timing window is available for safe data latching during asynchronous com-

munication between islands. The wrapper circuitry consists of MUTEX elements [67],

which, in fact, dictate the minimum resolution time window that should be accommod-

ated in the event of metastability. For a mean time between failures (MTBF) of 10,000

years, which is an acceptable metric for su�cient metastability resolution, a minimum

clock period restriction of (100× dFO4) is incurred [68]. This restriction is not a grave

concern in GALS-based SoC designs since the shortest clock period, coincidently, happens

to be in the range of clock speeds synthesised using standard cell tools [13]. dFO4, called

the fan-out-of-4 (FO4) delay, is a common metric used to indicate the performance of a

process technology node.

28

3.2.1.4 Dynamic Voltage and Frequency Scaling

The inter-island asynchronous communicating scheme of GALS allows for �ne-grain voltage-

frequency tuning of the islands according to design speci�cations of power and perform-

ance. Each island working at its optimum speed rather than on a single frequency domain

provides scope for additional power savings without drastically a�ecting system perform-

ance. In [58], the authors showed that GALS architecture with dynamic voltage and

frequency scaling (DVFS) can provide an average energy reduction of 25%-30% at an ex-

pense of 5%-7% performance penalty. Several other research works have also successfully

demonstrated the potential of DVFS using the GALS approach [56, 35, 12]. The percent-

age of energy reduction is application-speci�c and depends on functional characteristics

of the system and choice of partition granularity. In this research, the e�ects of DVFS on

power-performance of GALS partitioning is left for future work.

3.2.2 Simulation Framework

To conduct realistic comparison of GALS trade-o�s across di�erent process technologies,

we constructed a parametric model that simulates the physical and functional properties

of a digital design.

3.2.2.1 Design Set-up and Partitioning

A generic system mimicking an application-speci�c SoC core synthesised under standard

cell methodology is assumed in this research. The design will be GALSi�ed using a phys-

ical partitioning approach where �xed overall �oorplan size will be maintained throughout

partitioning. Purely for comparative analysis, the design will be sliced into equally sized

islands whilst preserving the overall aspect ratio. Figure 3.2 illustrates such a partitioning

strategy where a globally clocked system is being planned for partitioning into 4 equally

sized islands.

The generic design consists of 41, 210 �ip-�ops (FFs) which are assumed to be placed

regularly on a die. The parameter FF density estimates the �oorplan size per technology

node for a given number of FFs. We have chosen the FF density based on a survey

of the Moonrake chip [15, 16] and the OFDM Gigabit Baseband Processor chip [39].

29

Year 1999 2001 2004 2007

LT (nm) 180 130 90 65

Tox (nm) 4.5 4 3.5 3

VDD (V) 1.8 1.5 1.2 0.9

VT (V) 0.45 0.4 0.35 0.3

W (µm) 0.65 0.5 0.4 0.3

H (µm) 1.0 0.9 0.8 0.7

ρ (mΩ
∪) 50 55 60 75

Wire thickness (µm) 1.25 1.2 1.2 1.2

Dielectric ε 3.5 3.2 2.8 2.2

dFO4 (ps) 62.6 39.4 24.9 18.4

Clock freq (MHz) 159.7 254 402.2 544.3

Max. logic delay (ps) 5,949 3,740 2,362 1,745

Total skew budget (ps) 313 197 124 92

Process Variation

skew budget (ps)

75 47 30 22

Floorplan (mm2) 87.04 42.65 20.9 10.24

FF density

(FFs/mm2)

473 966 1972 4025

FF capacitance (fF) 7 5.5 4 2.5

Table 3.1: Process technology and design parameters

Using scaling theory [75], we have estimated the FF density for all technology nodes.

The clock frequency of the design is scaled as (100× dFO4)
−1 to account for performance

improvement per process technology while satisfying the MTBF constraint discussed in

Section 3.2.1.3. For simplicity of analysis, identical clock frequencies are chosen for all

islands. It should be noted that this assumption of identical clock frequency provides the

least amount of energy savings while GALS islands operating at their optimal frequency

would provide the best case for GALS energy savings. However, our assumption is �ne

for the comparative analysis as we are mainly evaluating GALS bene�ts on the basis of

physical partitioning criteria. The dFO4 is chosen for typical operating and typical process

conditions [76].

In the next section, the CDN design of the generic SoC core is discussed. The paramet-

ers considered for modelling the generic design and its CDN are given in Table 3.1. The

CMOS technology parameters have been adopted from [77], the Arizona State University

PTM [78] and the International Technology Roadmap for Semiconductors (ITRS) [79].

30

3.2.2.2 CDN Design

In our design, we employ the bu�ered H-tree technique for clock distribution, a popular

technique in various CDN studies [80, 81, 82]. The H-tree assumes uniform clock loads

and can be geometrically scaled depending on �oorplan size.

A local grid comprising between 100 FFs and 360 FFs is chosen as the range of capa-

citive load at every H-tree sink. This is done because spanning the H-tree to reach every

single FF is not considered optimal [83]. We follow the same scheme of interconnect thick-

ness scaling as implemented in [81]. The interconnect closest to the sink is given minimum

thickness. The interconnect thickness is then multiplied by a factor of 2 for every third

wire segment. This is done to minimise the e�ect of process variations by desensitising

the wires closest to the clock source [61]. A clock tree bu�er is placed at every junction of

the H-tree. The capacitances of the CDN bu�ers and interconnects are calculated using

models and approximation formulae given in [84] and [81]. These measurements will be

required during bu�er sizing and clock tree delay estimation.

Clock skew in application-speci�c integrated circuits (ASICs) are typically in the range

of 5% - 10% of their clock periods [76]. For our design, we set the clock skew budget at

5% of the clock period. 40% of this budget is allowed for local skew and the rest 60% is

allotted for global skew. Local skew arises from geometric variation of FF placement across

local CDN sink grids and from process variation of grid interconnects. The global skew

comprises of delay variations due to environmental factors in addition to process variation

of CDN interconnects and CDN bu�ers. Skew due to process variation is accounted to take

up 40% of the global skew budget. The remaining 60% of the budget is for environmental

variations. This assumption is based on the skew budget generalisation adopted in [41].

3.2.2.3 Variation Model

In this section, we discuss the skew modelling technique used for estimating the clock

skew due to transistor length and interconnect variability in the GALS CDNs. The

standard deviation values for the process parameters used in our study, based on a normal

distribution, have been adopted from [77] and are listed in Table 3.2. Our goal is to

model the e�ect of process variations and resulting clock skew on the CDN power for

31

Parameter 180nm 130nm 90nm 65nm

Leff (nm) 60 45 40 33

Tox (nm) 0.36 0.39 0.42 0.48

VT (mV) 45 40 40 40

W (µ) 0.17 0.14 0.12 0.1

H (µ) 0.3 0.27 0.27 0.25

ρ (mΩ
∪) 12 15 19 25

Table 3.2: Technology parameter 3 · σ variations

varying GALS partition granularity in di�erent process technologies. Skew arising from

environmental variations will be modelled in future extension of this work.

The clock skew algorithm given by Jiang et al. in [84] is used in our model. Other

statistical techniques such as [85] can also be used. First, the variation in individual

CDN branch segments are computed based on branch delay estimations derived in Sec-

tion 3.2.2.2. The clock skew algorithm then processes every variation calculation, cumu-

latively, along clock paths and statistically estimates the clock skew for that particular

CDN design. For a balanced H-tree CDN, the expected clock skew E(χ) and skew vari-

ance D(χ) is given by Eq. 3.1 and Eq. 3.2, respectively [84], where N is the number of

hierarchical tree levels in the CDN and di, i = 1, ..., N is the propagation delay in branch

i of the clock tree. D(di) represents the variance of di, and ρ is the correlation coe�cient

metric which is recursively evaluated according to the methodology provided in [84].

E(χ) =
2√
π

N∑
i=1

√√√√ i∑
k=1

(
π − 1

π

)k−1

· D (dN−i+k) (3.1)

D(χ) = 2 · (1− ρ)
N∑
i=1

(
π − 1

π

)i
·D (di) (3.2)

Eq. 3.1 and Eq. 3.2 clearly show the nature of growing clock skew with increase in

H-tree size as an e�ect of accumulated variations along clock paths.

3.2.2.4 Clock Tree Synthesis and Optimisation

Here, we describe the clock tree synthesis (CTS) algorithm used in our simulation frame-

work. The CDN is individually built for the synchronous chip and its GALS partitions up

to a maximum of 16 islands. Taking Figure 3.2 as an example, each of the four partitioned

32

islands will have their own local clock network and the global CDN, indicated by thick

lines, will be removed. The four isolated H-trees now distribute local clocks to 64 sinks

each as opposed to the global CDN which managed 256 sinks.

First, the CDN skeleton is built based on bu�ered H-tree arrangement described in

Section 3.2.2.2. Next, the clock tree delay in each branch of the CDN is calculated based

on the derived physical design parameters. The CDN bu�ers are then sized as per a

constant ratio λ, the bu�er sizing factor, such that transition time at every branch of the

CDN is the same [86]. This is an important requirement to ensure e�ective clock signal

delivery. There will, however, be a maximum bound for the output transition time of

the clock signal, also known as the clock slew rate, in order to meet the hold time and

clock-to-Q delay constraints of FFs [83]. Clock slew for the H-tree is estimated using the

PERI method [87, 88] and a budget of 15% of the clock period is set.

Next, CDN bu�ers are optimised to handle sensitivity from process variations. The

skew due to process variations is estimated in Section 3.2.2.3. The CTS algorithm optim-

ises the CDN bu�ers, recursively, until both skew and slew targets are met. Smaller design

partitions will experience skew lower than the skew budget, if the original CDN bu�er

sizing of the unpartitioned synchronous chip was retained. This is because variability

accumulation is lower across fewer clock paths as discussed in Sec. 3.2.2.3. The reduced

skew margin in smaller designs can be used to reduce CDN bu�er driving strength. This

information is, �nally, used by the CTS algorithm to decrease local bu�er sizes and optim-

ise the CDN accordingly, which in turn reduces CDN power consumption. Experimental

results in [16] demonstrate the same e�ect wherein CDN power reduction was due to loc-

ally optimised clock trees. In this fashion, the CDN is modelled and optimised for various

physical partition sizes and CDN arrangements.

The lower clock skew in smaller partitions can also be exploited for localised perform-

ance improvement by retaining the original CDN bu�er sizing. This is very applicable

for large high performance designs when problems in timing closure and CTS limit the

global clock speed after Standard Cell Place and Route design �ow. This e�ect, requiring

a di�erent set of design targets, is not demonstrated in this chapter and is left for future

work.

33

Block A

Block B Block C

Block D Block A

Block B Block C

Block D

LINEAR
COMMUNICATION

BIDIRECTIONAL
COMMUNICATION

IN INOUT OUT

Figure 3.3: Linear versus bidirectional block communication.

3.2.2.5 System Data�ow Model

In this section, we evaluate the system data�ow metrics that cause design penalties from

GALSi�cation. In an application-speci�c SoC core, the data �ow is tuned to perform

a speci�c application. Communication between blocks can be evaluated beforehand and

utilised for data�ow optimisation. Unlike general purpose processor architectures where

blocks communicate with each other every clock cycle, data computations in SoC cores

are highly localised within partitions and hence inter-block communication is infrequent.

We term such blocks, which inter-communicate in bursts and/or once in several hundred

clock cycles, as localised computation blocks.

In our analysis, we assume that our physical partitions/islands coincide with the data-

�ow blocks. We introduce the Single Handshake Communication Probability (Probcomm)

metric which will model the inter-island communication frequency. This metric denotes

the average inter-island single handshake communication frequency amongst all partitions

in the GALS implementation. In other words, it can be assumed that every GALS island

will communicate with its neighbouring island at a �xed rate Probcomm. Single handshake

simply means the �ow of a single data token from the output port of a transmitter block

to the input port of a receiver block.

The next step is to model the overall impact of inter-island communications. As the

number of islands increase, the number of asynchronous wrappers or communication links

also increase. We generalise the inter-island communication to follow either a linear or a

bidirectional data�ow communication path as shown in Figure 3.3. The total number of

34

GALS single wrapper links NW for linear and bidirectional communication is determined

by Eq. 3.3 and Eq. 3.4 respectively [57], where B denotes the total number of GALS

partitions, L is the maximum number of localised computation blocks in the design and

K is a constant determined from L [57]. In this analysis, a single wrapper link consists

of a output port of the transmitter GALS block and a input port of the receiver GALS

block.

NW = (B − 1) (3.3)

NW =

(
2.L.
√
B

2K
− 4
√
L

)
(3.4)

We can now estimate the total number of wrappers that are actually involved in inter-

island communication per unit of time. Given the average inter-island communication

frequency and the total number of GALS wrapper links, the number of active wrappers

per clock cycle NWact can be determined as indicated in Eq. 3.5. This metric is used in

determining the wrapper latency and power overheads incurred from GALS partitioning.

NWact = Probcomm.NW (3.5)

In this fashion, we have divided a generic system data�ow into localised computation

blocks associated with a �xed number of wrappers that inter-communicate at an average

frequency Probcomm.

3.2.2.6 Synchronisation Model

In this section, we model the impact of GALS inter-island synchronisation to the latency

of the system. Our choice of synchronisation between islands is the pausable wrapper

approach owing to its popularity in GALS implementation [58, 13, 68]. Pausable syn-

chronisation can transmit data every clock cycle by stretching the clock pulse so that

su�cient timing window is available for safe data latching during asynchronous com-

munication between islands. The pausable wrapper model presented in [68] is used as

the reference wrapper in our simulations. This type of wrapper costs a maximum data

35

synchronisation latency (LatW) of one receiver's clock cycle. The exact data synchron-

isation latency will depend on the arrival of data synchronisation request with reference

to positive edge of the receiver's clock. In our simulations, we consider the worst case

synchronisation latency for comparative analysis.

3.2.3 Trade-o� Analysis

3.2.3.1 System Latency

GALS wrappers cost synchronisation latency which can severely a�ect overall system

latency if the chip was not carefully partitioned. Here, we model the latency penalty paid

over the course of the system operation and evaluate the quality of GALS partitioning by

comparing system latency with the synchronous chip.

System latency is simply the execution time of the system to process a �xed number of

input samples. Let us say that system latency of a synchronous chip Tsync is the number of

clock cycles taken to process X input samples and produce a result. For a GALS chip, if

TWGALS is the total synchronisation latency paid by inter-island wrapper communication,

then the overall system latency can be given by Eq. 3.6.

TGALS = Tsync + TWGALS (3.6)

To determine TWGALS, we �rst calculate the total data synchronisation latency pen-

alty (LatWGALS) paid per clock cycle for the entire GALS system operation. This para-

meter, given by Eq. 3.7, is derived using the models discussed in Section 3.2.2.5 and

Section 3.2.2.6.

LatWGALS = NWact.LatW (3.7)

Then, the total wrapper synchronisation latency in clock cycles TWGALS can be calcu-

lated as

TWGALS = LatWGALS.Tsync (3.8)

36

Finally, Eq. 3.6 becomes

TGALS = (1 +NWact.LatW).Tsync (3.9)

3.2.3.2 Power Estimation

CDN power savings is inherent to a GALS implementation. However, due to the overheads

from GALS circuitry, power savings will reduce or power consumption may even increase

past a certain number of islands. Therefore, the total power estimation of the CDN, local

clock generator and wrapper circuitry are required to evaluate the overall power bene�t

from GALS.

CDN power comprises of the power consumed by the wire capacitance, clock bu�er

capacitance and the total FF load and is given by Eq. 3.10.

PCDN = (NBuff .CBuff + CTotWire +NFF .CFF)fc.V
2
DD (3.10)

where NBuff is the number of equivalent minimum sized inverters as clock bu�ers,

CBuff is the capacitance of the each minimum sized inverter, CTotWire is the total wire

capacitance in the H-tree, NFF is the number of FF loads, CFF is the capacitance per

FF, fc is the system clock frequency and VDD is the switching voltage.

The local clock generator in our chosen reference wrapper [68] employs a tunable

delay line to provide �exible on-chip clock oscillations. This methodology is well-known

in the GALS research community [34, 89, 67, 74, 70]. The easiest way to represent such

a system is a ring oscillator which is simply an odd number of inverters connected in a

circular fashion [57]. In this way, the power consumed by a local clock generator in the

GALS chip can be given by Eq. 3.11.

Pclkgen = Ninv.Cinv.fc.V
2
DD (3.11)

where Ninv is the number of inverters in the ring oscillator and Cinv is the capacitance

of each inverter in the oscillator circuit.

The total GALS wrapper power depends on the circuit speci�cation of communication

37

Process Technology 180nm 130nm 90nm 65nm

Wrapper capacitance

(pF)

2.41 1.69 1.18 0.826

Wrapper power PW
(mW)

1.2 0.72 0.68 0.36

Table 3.3: GALS wrapper speci�cation

interface, namely, the number of input and output ports, the number of synchronisation

latches and �ow of data transfer. In our analysis, we refer to the 180nm GALS wrapper

characterised in [57] as our reference pausable wrapper and scale the single wrapper power

reading PW for other technology nodes. PW is calculated with the worst case assumption

that each wrapper operates every clock cycle at system clock frequency fc. Table 3.3 lists

the power parameters of the wrapper employed in our analysis. By estimating the total

number of GALS wrappers as given in Section 3.2.2.5 , the total GALS wrapper power

consumption is given by Eq. 3.12.

PWGALS = NWact.PW (3.12)

Total power of the GALS chip is given as

PGALS =
∑
bεB

PCDN(b) +
∑
bεB

Pclkgen(b) + PWGALS (3.13)

where B is the total number of GALS partitions, b represents a particular GALS par-

tition, PCDN(b) denotes the power consumed by the CDN of that partition and Pclkgen(b)

denotes the power consumed by the local clock generator of partition instance, b.

3.2.3.3 Energy E�ciency

GALS design reduces system power but at the cost of synchronisation latency penalty. A

good indicator on the overall bene�t of GALSi�cation would be to compare the energy

consumption between GALS and the synchronous chip. Relative energy e�ciency (REE)

is a good metric that can be used to evaluate the quality of the GALS chip with its syn-

chronous counterpart by comparing their energy consumption. Total energy consumption

is simply calculated by multiplying the system latency with chip power. REE is given by

38

Eq. 3.14 and Eq. 3.15.

REE =
Esync
EGALS

(3.14)

REE =
PCDN(sync).Tsync
PGALS.TGALS

(3.15)

where Esync and EGALS are the energy consumption estimates of the fully synchronous

chip and GALS partitioned chip, respectively, when X input samples are processed and

the required result is obtained. PCDN(sync) represents the power consumed by the CDN

of the fully synchronous chip.

Higher REE implies an energy e�cient GALS implementation, either being faster or

more power e�cient. Lower REE means that the penalties paid by GALS exceed any

bene�ts indicating no overall bene�t from GALSi�cation. Substituting formulae derived

in Section 3.2.3.1 and Section 3.2.3.2, Eq. 3.15 becomes

REE =
PCDN(sync)(∑

bεB

PCDN(b) +
∑
bεB

Pclkgen(b) +NWact.PW

)
(1 +NWact.LatW)

(3.16)

3.2.4 Tool Description

The tool has been wholly implemented in MATLAB. Using the parametric model, CTS

and statistical clock skew algorithms, data�ow and synchronisation models and energy

estimation formulae, we have a framework that realistically simulates the bene�ts versus

penalties of GALS partitioning. The tool can easily be updated to re�ect newer process

technology nodes and di�erent chip geometries. To simplify our analysis, we divided the

chip into equally-sized islands and generalised inter-block communication. However, this

would not be the case in real-life SoC applications. Since the tool employs a parametric

model, custom �oorplan partitioning and multiple inter-island communication probabil-

ities can be assigned, and targeted power-performance measurements can be generated.

This tool would provide an intuitive platform for a designer acting as a guide towards

e�ective GALS implementation. Appendix A provides the main source code of the simu-

39

lation tool.

3.3 Results

3.3.1 GALS Design Impact to System Latency

Latency penalties of GALS are estimated from predicting the number of synchronisation

events occurring between islands. As a design is subject to �ner levels of partitioning

granularity, the frequency of communication between islands increase, causing latency

penalties to multiply.

As discussed in Section 3.2.2.5, we can estimate the total number of linear or bidirec-

tional GALS wrapper links. This number multiplied with the single handshake commu-

nication probability will simply give us the total number of active wrapper links per unit

of time. The total number of GALS wrappers for di�erent partition sizes in shown in

Figure 3.4a. Figure 3.4b shows the activity of these wrappers per clock cycle depending

on inter-island communication frequency. Single handshake communication probabilities

of 0.5% and 1% are chosen for our analysis, considering both linear and bidirectional

wrapper communication paths. These values were speci�cally chosen to represent designs

having highly localised computation data�ow blocks where GALS synchronisation latency

penalty would be minimum. Our range of values are in line with [41] where GALS imple-

mentation of applications such as 64-point complex FFT, JPEG encoder and 802.11a/g

show similar low inter-island communication frequency. To simplify our analysis, we as-

sume that the single handshake communication probability remains the same with �ner

grain of partitioning.

The penalties paid by the communication links can, thus, be estimated based on

probability of occurrence every cycle. By using the metrics discussed in Section 3.2.3.1,

we have plotted the system latency penalty versus increasing number of GALS partitions.

The number of islands pointing to 1 indicates the globally synchronous chip. The latency

penalty su�ered due to GALS wrapper penalties in our case is depicted in Figure 3.5. As

expected, it is seen that the performance penalties worsen with more number of GALS

partitions. The latency penalty paid by bidirectional wrappers increases at a greater rate

40

0 2 4 6 8 10 12 14 16

Number of Islands

0

5

10

15

20

25

30

35

40

45

50

T
ot

al
 N

um
be

r
of

 W
ra

pp
er

 L
in

ks

Inter-Island Communication

Linear Dataflow
Bidirectional Dataflow

(a) Number of GALS wrapper links

0 2 4 6 8 10 12 14 16

Number of Islands

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ct

iv
e

W
ra

pp
er

 L
in

ks
 p

er
 c

lo
ck

 c
yc

le

Inter-Island Communication Activity

Linear 0.5%
Linear 1%
Bidirectional 0.5%
Bidirectional 1%

(b) Active GALS wrapper links

Figure 3.4: GALS inter-island communication distribution

41

0 2 4 6 8 10 12 14 16

Number of Islands

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

N
or

m
al

iz
ed

 to
 G

lo
ba

lly
 S

yn
ch

ro
no

us
 C

hi
p

GALS System Latency Comparison

Linear 0.5%
Linear 1%
Bidirectional 0.5%
Bidirectional 1%

Figure 3.5: System latency analysis of GALS versus synchronous chip

than linear wrappers due to presence of signi�cantly more number of wrapper links. For

GALS partitioning of seven islands, linear inter-island communication path costs worst-

case system latency increment of 3% and 6% for inter-island frequencies of 0.5% and

1%, respectively, while bidirectional inter-island communication path costs worst-case

system latency increment of 14% and 28% for inter-island frequencies of 0.5% and 1%

respectively. Thus, the system data�ow, partition granularity and inter-island activity

will have a signi�cant impact to system latency during GALSi�cation.

3.3.2 GALS Design Bene�t to System Power

The power consumption of individual islands and various partition sizes of the generic

design were calculated according to the formulae given in Section 3.2.3.2. Figure 3.6

illustrates the power consumption proportion of di�erent components in the synchronous

chip and its GALS version of 16 physical partitions. It is seen that overheads of GALS

design only cost about 2% to the GALS chip power for bidirectional data�ow activity of

1%. 4% overall reduction in power contribution from clock bu�ers and clock interconnects

of the GALS chip is seen compared to the synchronous chip. This clearly shows the e�ect

of reduced chip power due to locally optimised CDNs. The number of clock tree levels

reduced from eight to four for the case of 16 GALS partitions.

42

Synchronous Power Breakdown

83%

12%
5%

Flip-flops Clock buffers Clock interconnects

(a) Synchronous design power (only CDN)

GALS Power Breakdown (16 Islands)

85%

2%10%
3%

Flip-flops GALS overheads Clock buffers Clock interconnects

(b) GALS design power with 1% bidirectional data�ow activity (CDN plus GALS overheads)

Figure 3.6: Design power breakdown at 218MHz clock (65nm)

43

0 2 4 6 8 10 12 14 16

Number of Islands

-3

-2

-1

0

1

2

3

4

P
ow

er
 R

ed
uc

tio
n

(%
)

GALS Power Comparison against Synchronous Design

Linear 0.5%
Linear 1%
Bidirectional 0.5%
Bidirectional 1%

(a) Power analysis at 218MHz clock

0 2 4 6 8 10 12 14 16

Number of Islands

-4

-2

0

2

4

6

8

10

P
ow

er
 R

ed
uc

tio
n

(%
)

GALS Power Comparison against Synchronous Design

Linear 0.5%
Linear 1%
Bidirectional 0.5%
Bidirectional 1%

(b) Power analysis at 544MHz clock

Figure 3.7: Power e�ciency analysis of GALS versus synchronous design (65nm)

44

The overall power consumed by GALS and its overheads was computed and plotted

against varying number of partitions of the same design. The power consumed by the

GALS wrapper has been accounted for four cases of wrapper communication styles as

presented in the previous section. Figure 3.7 shows the GALS versus synchronous power

consumption analysis for two cases of system clock frequency. It can be visualised that

GALS o�ers greater power reduction bene�t at higher clock frequencies. This is purely

because faster clocks, having larger CDN bu�ers, o�er greater savings from CDN optim-

isation due to smaller clock variation budget. At 544 MHz clock, GALS partitioning shows

power reduction of 4% when partitioned into three islands with maximum reduction of

8.35% observed at partition sizing of eleven islands. There is a trend of reduced power con-

sumption with increasing partitioning granularity due to smaller and less power-hungry

CDNs. However, the trend is not consistent across the graph. After analysing the CTS

and CDN optimisation algorithms, it was noted that this e�ect was due to suboptimal

bu�er synthesis arising from certain cases of �oorplan geometry, bu�er sizing factor, sink

capacitance and global skew attributes. Furthermore, it can be seen that the contribu-

tion of wrapper communication activity to the GALS chip power is insigni�cant. If we

compare Figure 3.5 and Figure 3.7, we can observe that higher number of GALS wrapper

links cost much greater penalty to the system latency than to the chip power.

3.3.3 Energy E�ciency Analysis

Here, the quality of a GALS implementation over its synchronous counterpart is evalu-

ated by conducting an energy e�ciency analysis. The metric REE derived in Sec. 3.2.3.3

is employed for the analysis. This metric shows whether the GALS implementation can

justify the design overheads and perform better than a globally synchronous design. Fig-

ure 3.8 shows the REE for the four cases of wrapper communication probability at the

65nm technology node. It is observed that, for linear wrapper communication activity of

0.5%, the best case scenario of energy e�ciency is three and eleven GALS islands. Energy

e�ciency improvement of 3.2% and 3.9% is experienced, respectively, over the synchron-

ous implementation. For the case of 1% linear wrapper activity, only one energy e�cient

implementation is seen for three island GALS partitioning. The bidirectional wrapper

45

0 2 4 6 8 10 12 14 16

Number of Islands

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

R
el

at
iv

e
E

ne
rg

y
E

ffi
ci

en
cy

GALS Energy Efficiency Analysis with Inter-Island Communication Activity

Linear 0.5%

Linear 1%

Bidirectional 0.5%

Bidirectional 1%

Figure 3.8: REE analysis of GALS versus synchronous chip at 544MHz clock (65nm)

communication data�ow costs signi�cant system latency penalty and hence, poor REE

�gures for GALS can be observed versus the synchronous chip. This �gure demonstrates

that REE does not necessarily improve with higher number of partitions. Inter-island

communication penalty reduces the design bene�t gained from power-e�cient CDNs.

Figure 3.9 shows the REE of GALS versus synchronous chip for the four process tech-

nologies listed in Table 3.1, taking the case of linear wrapper communication path with

0.5% single handshake probability. The designs compared at each technology node are

equivalent having the same distribution of �ip-�ops. It can be seen that all technologies

show similar patterns of REE measurements with number of GALS islands. Furthermore,

there is a noticeable trend of REE improvement as we move away from the older 180nm

technology node towards the newer 65m technology node. This is mainly because power-

e�ciency of GALS CDNs is multiplied at newer process technologies due to scope for

greater CDN bu�er size optimisation arising from larger variability-induced clock skew

in the fully synchronous CDN. This result clearly shows the potential of GALS design

for future technology nodes. We have also modelled REE with increasing design size.

Figure 3.10 depicts the REE of four di�erent design sizes at the 65nm process technology

46

Figure 3.9: Trend of REE with process technology (41,210 FFs)

node considering linear wrapper communication path with 0.5% single handshake probab-

ility. Here, we have increased the partitioning granularity from 16 islands to 64 islands for

better visibility of the trends. We can clearly see that REE increases with larger design

sizes. In this case, REE improvement is due to greater CDN optimisation opportunity

from a larger CDN and a larger capacitive clock load.

3.4 Conclusions and Future Work

In this work, we have presented a physical partitioning methodology to help evaluate

GALS design technique over a fully synchronous implementation. We considered a gen-

eric design example subjected to a certain probability of inter-island communication, from

which we analysed di�erent cases of GALS island granularity and communication tra�c.

Also, several metrics were discussed to model the penalties and gains of GALS design.

The extent of GALS energy e�ciency was observed to be dependent on design size, pro-

cess technology. system data�ow, clock frequency and partition granularity. The results

47

Figure 3.10: Trend of REE with design size (65nm)

indicate that an optimum number of GALS islands can be suggested per technology node

for a digital design given its design size, system data�ow and system clock frequency.

Furthermore, it was seen that GALS design does well as we transition to newer process

technologies demonstrating noticeable energy e�ciency improvement. This work high-

lights how GALS design could address the variability problem of future SoC designs by

reducing clock distribution complexity. The methodology presented is this chapter can

be adapted for designs of di�erent characteristics and such a tool can be used to evaluate

GALS applicability to chip design before expensive design hours are commissioned for

GALSi�cation.

Our results, however, show mediocre energy bene�t from employing the GALS physical

partitioning technique. It was observed that slicing a design into more islands does not

necessarily deliver higher energy e�ciency. In our analysis, GALSi�cation only o�ered

maximum CDN power reduction of 8.35% at the 65nm technology node. This lower

power reduction margin, compared to the 20% CDN power reduction achieved in [16]

after GALSi�cation, is due to the H-tree CDN employed in our analysis, being a low

48

power and low skew CDN. This is evident from the fact that the number of clock tree

levels dropped from 27 to 10 in [16] for six GALS partitions while the number of clock tree

levels dropped from 8 to 4 in our case for 16 GALS partitions. The H-tree, however, has

low �oorplan �exibility and hence most SoC designs would undergo the standard clock

tree synthesis methods. Therefore, better power reduction margins can be expected in

practice than demonstrated in this research. Furthermore, additional power bene�t could

be gained from voltage frequency scaling of individual islands. It should, however, be

noted that our analysis methodology did not consider proven chip power optimisation

techniques such as clock gating and power gating. Such techniques would reduce the

extent of GALS energy savings that come from low-power GALS CDNs. For example, a

combination of energy recovery and clock gating techniques is shown to reduce the CDN

power of a clocked multiplier by 69% [60]. Moreover, the power savings margin would

reduce further when dynamic and leakage power consumption of logic and memory are

taken into account. For example, 20% CDN power reduction after GALSi�cation only

resulted in overall power savings of 6% [16].

Our analysis also indicated that the nature of inter-island communication activity has

a greater impact on GALS design bene�t. Chip partitioning should, hence, be carefully

planned for minimum inter-island communication frequency so that power savings from

GALSi�cation could overcome the latency penalty of GALS wrappers. System functio-

nality and data�ow model thus dictates the extent of energy bene�ts seen from GAL-

Si�cation. A generic assumption on system data�ow was made in the analysis for com-

parison simplicity, that the inter-island communication probability remains the same as

we partition into more islands. In some situations, the average inter-island communica-

tion frequency would increase with more design partitions, when sub-partitions within

localised computation blocks communicate at a faster rate. The system data�ow model

could be extended to cover several data�ow styles, sub-block communication rates and

other inter-island communication interfaces. Furthermore, partitioning a design is also

known to a�ect timing closure positively which could improve individual island clock fre-

quency delivering better system performance. For future work, the simulation framework

could be extended or modi�ed to carry out extensive design bene�t analysis by incorpo-

49

rating accurate system data�ow pattern, voltage-frequency scaling, elaborate chip power

pro�ling and design-speci�c communication interfaces.

Through this work, we have identi�ed several limitations of the physical partitioning

approach in GALS-based SoC design. Firstly, GALS design provides marginal overall

energy bene�t over synchronous design with optimal partitioning strategy governed by

design size and extent of inter-island communications. Secondly, the parameter having the

most impact on chip energy e�ciency is the inter-island communication activity which is

design dependent and not a physical characteristic. Thirdly, inter-island communication

activity occurs between localised computation data�ow blocks and the assumption that

physical partitions coincide with these data�ow blocks is suboptimal. For instance, the

physical partitioning approach could ignore �ner grain data�ow blocks, within larger

physical partitions, that could bene�t greatly from voltage frequency scaling. Finally,

the potential of voltage frequency scaling is, again, determined from behavioural analysis

of the system logic and not physical partitioning methods. Therefore, the factors that

strongly a�ect the REE metric are ruled by functional properties of the design making

system data�ow analysis a crucial factor before chip partitioning.

The physical partitioning strategy for designing mixed synchronous-asynchronous SoCs

only provides a subset of solutions towards energy e�cient system design. Overall system

energy savings o�ered by this approach would not be enough to justify the loss of design

productivity encountered with this design style. To gain acceptable design bene�ts from

chip partitioning, we need to understand and analyse the functional aspects of a system

and adopt custom design partitioning strategies. This strongly motivates the case for

functional partitioning, a system level approach to chip partitioning whereby behavioural

logic islands are identi�ed based on system data�ow analysis.

In the next chapter, we introduce the theory of bundles and approach functional

partitioning in a formal manner.

50

Chapter 4

Theory of Bundles

With chip sizes scaling to deep sub-micron level, semiconductors are experiencing severe

variability making it extremely complicated to design ICs in the traditional synchronous

fashion. Mixed synchronous-asynchronous design techniques have emerged and are sho-

wing great promise in tackling this problem. There is a wealth of formal methods and tools

for modelling, verifying and synthesising synchronous and asynchronous circuits. Howe-

ver, the mixed synchronous-asynchronous paradigm is yet to witness a formal method for

its complex representation. With regards to circuit veri�cation, satisfying the property

of signal persistence is one of the key requirements for modelling hazard-free asynchro-

nous circuits. For synchronous designs, persistence is self-evident as every tick of the

clock triggers a sequence of persistent transitions. This, however, is not trivial in mixed

synchronous-asynchronous designs due to the presence of asynchrony. We are, hence, mo-

tivated to present a mathematical model that describes mixed synchronous-asynchronous

behaviour, together with an extension to the traditional notion of persistence for verifying

these circuits.

4.1 Introduction

One of the main issues with the complexity of asynchronous circuits was the handling of

hazards. Hazards are manifestations of undesirable switching activity called glitches. In

the asynchronous style of synchronisation, the output of each circuit element is potentially

sensitive to its inputs. This can give rise to non-monotonic pulses (or glitches) when

51

non−monotonic

Volts

time

pulse

a

b

c

a

b
c

Figure 4.1: Hazardous switching of an AND gate.

transitioning between output states, as illustrated in the waveform of Figure 4.1 taking

the case of an AND gate. Due to tight timing between the rising edge of input a and

falling edge of input b, the output c produces a non-monotonic pulse before stabilising to

a low. This behaviour is hazardous as it is uncertain how the fanout of the AND gate will

interpret the glitch; the output c temporary switching to logical 1 or staying at logical 0

all the time.

As shown, for instance, in paper [50], the phenomenon described in the above example

can be conveniently interpreted in terms of formal models such as Keller's named transi-

tion systems [47] or Petri nets [3]. In particular, what we see in this circuit is the e�ect

where a signal that is enabled (rising edge of c) in a certain state of the circuit may become

disabled without �ring after the occurrence of another signal (falling edge of b). Such an

e�ect corresponds to the violation of persistence property at the level of signal transitions

if the latter are used to label the corresponding named transition system. Furthermore,

when such a circuit is modelled by a labelled Petri net following the technique of [50], the

Petri net would also be classi�ed as a non-persistent one. Thus, it was shown in [50] that

the modelling and analysis of an asynchronous circuit with respect to hazard-freedom is

e�ectively reduced to the analysis of persistence of its corresponding Petri net model.

Synchronous circuits, on the other hand, do not require persistence satisfaction as

they are intrinsically immune to hazardous behaviour. The principle reason being that

the clock, set at worst-case latency period, �lters out undesirable circuit switching. This

greatly simpli�es circuit design compared to asynchronous methods wherein the same ci-

rcuit had to be analysed for persistence and redesigned to ensure glitch-free operation.

Clocked circuits are thus preferred over asynchronous circuits for designing functionally

correct (hazard-immune) ICs e�ciently. However with chip sizes scaling to deep sub-

52

a

d

c d

d c

a b

b ac

b

(a)

{a, b}

{c, d}

(b)

a b

b a

{c, d}

(c)

Figure 4.2: Temporal representations of systems having concurrent, parallel and mixed
concurrent-parallel behaviours: (a) interleaving model for asynchronous behaviour; (b)
step model for synchronous behaviour; and (c) mixed model for mixed synchronous-
asynchronous behaviour.

micron level, semiconductors are experiencing severe variability and it is becoming extre-

mely complicated to design chips in the synchronous fashion. This is because designing

for variability requires longer safety margins which in turn reduces the clock frequency

and degrades circuit performance. To cope with these challenges, asynchronous design

methodologies have re-emerged owing to their inherent adaptiveness [90]. However, they

still su�er signi�cant challenges such as complicated design �ow, high overhead costs from

control and, lack of CAD support tools and legacy design reuse. Therefore attempts are

being made to �nd a compromise.

Presently, the mixed synchronous-asynchronous design paradigm is showing strong

signs of adoption in the semiconductor industry by 2020 [38, 41, 24, 23, 42, 91]. Such sy-

stems comprise a mixed temporal behaviour. Asynchronous handshakes handle switching

between components where adaptability can signi�cantly improve performance, while

clocking is applied to components where worst case performance is tolerable. Howe-

ver, it is worthy of note that modelling such systems would involve detection of potential

hazardous states due to presence of asynchronous components, making their design and

veri�cation a signi�cant research challenge.

Being a recent trend, there is a lack of formal models that describe correctness of mixed

synchronous-asynchronous circuits. The complexity in modelling them begins with the

investigation of persistence. It should be noted that the standard notion of persistence has

been de�ned at the level of single actions, which is also known as interleaving semantics of

concurrency. This notion has been adequate for representing the correctness of the behavi-

53

our of circuits that are fully asynchronous. In asynchronous circuits, there is concurrency

between independent actions and sequential order between causally related actions. This

notion is well represented by Keller's named transition systems [47]. Figure 4.2(a) depicts

such a model capturing the asynchronous behaviour of a system with four events: a, b,

c and d. Now, in synchronous circuits, the clock signal would trigger a single action or

several actions. These circuits exhibit parallelism between actions in the same clock cycle

and sequential order between groups of actions in adjacent clock cycles. To represent this

group execution of actions, we will use steps, and therefore we need step transition systems

to represent such a behaviour. A step represents a single action or a group of actions that

are triggered simultaneously from a particular state by the clock signal. Figure 4.2(b)

shows such a transition system model capturing the temporal behaviour of a synchronous

system with the help of steps. For the case of mixed synchronous-asynchronous systems,

there is a mixture of synchrony and asynchrony and hence both concurrent and parallel

behaviour have to be represented. Figure 4.2(c) illustrates the mixed temporal behavi-

our seen in such systems. In all three cases, step transition systems provide a suitable

behavioral model, as a single transition can be treated as a singleton step.

Synchronous and asynchronous systems have distinct techniques to guarantee functio-

nally correct behaviour. However, for mixed synchronous-asynchronous systems, it is not

so straightforward as correctness should be accounted from both angles. We would like to

�nd an adequate representation of the correct behaviour of such systems. Here, it would

be natural to de�ne such a behaviour in analogous way as it was done for asynchronous

circuits, i.e., with the use of the notion of persistence. However, when modelling mixed

synchronous-asynchronous systems we have to consider complex actions, namely steps,

and corresponding transition systems. This chapter is hence centred around extending

the notion of persistence to steps.

The chapter is organised as follows. Section 4.2 introduces the notion of persistent

steps and discusses their basic properties. Section 4.3 presents the main result of the chap-

ter, an algorithm that prunes the concurrent reachability graph of a net, which serves as

an initial system speci�cation, to obtain a representation of desired mixed synchronous-

asynchronous behavior. Section 4.4 explains the main motivation behind studying per-

54

sistent steps in the context of mixed synchronous-asynchronous system design. Finally,

Section 4.5 contains conclusions and presents directions for future work.

4.2 Step Persistence in Nets

A concurrent system is persistent [92, 93, 94, 95] if throughout its operation no activity

which became enabled can subsequently be prevented from being executed by any other

activity. This is often a highly desirable (or even necessary) property; in particular, if the

system is to be implemented in hardware [50, 96, 22].

Muller's speed independence theory provided a unique method for guaranteeing hazard-

freeness of asynchronous circuits [97]. The semimodularity condition in this work required

that an excitation of a circuit element must not be withdrawn before being absorbed by

the system [98]. This condition was identi�ed by Keller in [47] to be the same as the

property of persistence1 in a transition system model for asynchronous parallel compu-

tation. Thus, satisfying the property of persistence became one of the key requirements

when designing hazard-free asynchronous circuits. Over the past 40 years, persistence has

been investigated and applied in practical implementations assuming that each activity is

a single atomic action which can be represented, for example, by a single transition of a

Petri net. In other words, persistence was considered assuming the sequential execution

semantics of concurrent systems [45].

The idea of persistence has been investigated in many papers, for example, in [99, 95,

93, 96, 22, 92, 50, 94]. However, with the exception of [96, 22], it was only considered in

the context of sequential executions of systems, and de�ned for single transitions (rather

than steps) as follows:2

De�nition 4.2.1. (persistent net, [92])

A pt-net N = (P, T,W,M0) is persistent if, for all distinct transitions a, b ∈ T and

any reachable marking M ∈ [M0〉, M [a〉 and M [b〉 imply M [ab〉. �

We can re-write this de�nition from the point of view of single transition as follows:

1[47] was the �rst work to consider persistence in the context of Petri nets.
2For simplicity, we do not distinguish transitions as input, output or internal signals here. Application

of step persistence to signal persistence and output persistence properties [3] will be explored in the future.

55

De�nition 4.2.2. (persistent transition)

Let a be a transition enabled at a marking M of a pt-net N = (P, T,W,M0). Then

a is locally persistent at M if, for every transition b enabled at M , b 6= a =⇒ M [ba〉.

Moreover, an active transition a is globally persistent in N if it is locally persistent at

every reachable marking of N at which it is enabled. �

The above net-oriented and transition-oriented de�nitions are closely related as, due

to the symmetric roles played by a and b in De�nition 4.2.2, we immediately obtain the

following.

Proposition 4.2.1. The following are equivalent:

• N is persistent;

• N contains only globally persistent transitions.

4.2.1 De�ning Persistent Steps

We now introduce the central de�nition of this chapter, in which we lift the notions of

persistence from the level of individual transitions to the level of steps. The following

de�nition gives three versions (type-a, type-b and type-c) of a de�nition of a persistent

step. In each case, we try to capture the fact that a persistent step, which is enabled at

some reachable marking M , cannot be disabled by another enabled step. The di�erence

in the versions lies either in the di�erent understanding of what `not to be disabled' means

or what we mean by a `di�erent' step.

De�nition 4.2.3. (persistent step in a net)

Let α be a step enabled at a marking M of a pt-net N = (P, T,W,M0). Then:

• α is locally a-persistent at marking M (or la-persistent) if, for every step β enabled

at M ,

β 6= α =⇒M [β(α \ β)〉

• α is locally b-persistent at marking M (or lb-persistent) if, for every step β enabled

at M ,

56

β ∩ α = ∅ =⇒M [βα〉

• α is locally c-persistent at marking M (or lc-persistent) if, for every step β enabled

at M ,

β 6= α =⇒M [βα〉

Furthermore, an active step α is globally a/b/c-persistent (or ga/gb/gc-persistent)

in N if it is respectively la/lb/lc-persistent at every reachable marking of N at which

it is enabled. �

Each of the three types of step persistence is a conservative extension of transition

persistence of De�nition 4.2.2. Type-a persistence requires that only the unexecuted

part of a delayed step is kept enabled, and in this case a persistent step can fail to fully

`survive'. Type-b and type-c persistence, however, insist on preserving the enabledness of

whole steps. In type-b persistence, two steps are considered distinct if they are disjoint,

whereas in the other two cases it is enough that they are di�erent, and so they can

have a nonempty intersection. The empty step is trivially persistent according to all the

persistence types in De�nition 4.2.3. Note also that although one could drop β 6= α in

the de�nitions of type-a persistence, we decided to keep it in order to emphasize a link

with the original notion of persistence introduced in [92].

Since, as proven later, type-a and type-b persistence are equivalent, in the

examples we discuss only the type-a and type-c variants of persistence.

Moving from sequential to step semantics changes the perception of persistence in

pt-nets introduced by the standard De�nition 4.2.1. In particular, in the sequential

semantics, by Proposition 4.2.1, all transitions in a persistent net are globally persistent.

In the step semantics, the situation is di�erent. Consider, for example, the pt-net in

Figure 4.3. It is persistent, and all of its active steps are ga-persistent. However, its

nonempty steps fail to be lc-persistent at some of the markings that enable them. More

precisely, {a}, {b} and {a, b} are not lc-persistent at M0, while {c}, {d} and {c, d} are

not lc-persistent at M1 = {p5, p6, p7, p8}. This should not come as a surprise, as type-c

persistence is a demanding property. Type-a persistence, on the other hand, is close in

spirit to its sequential counterpart.

57

p1

p2

p3

p4

p5

p6

p7

p8

a

b

c

d

M2

M3

M4

M5

M0 M1

{b}{a}

{a}{b}

{c}{d}

{d}{c}

{a, b}
{c, d}

Figure 4.3: A safe persistent pt-net and its concurrent reachability graph.

4.2.2 Basic Properties of Persistent Steps

In this section, we investigate the expressiveness of di�erent notions of persistence de�ned

for steps, assuming �rst that N = (P, T,W,M0) is a general pt-net.

Proposition 4.2.2. Let α be a step enabled at a reachable marking M of N . If α is

ga/gb/gc-persistent in N , then α is la/ lb/ lc-persistent at M .

Proof. Follows directly from De�nition 4.2.3.

We then obtain a number of inclusions between di�erent types of persistent steps.

Proposition 4.2.3. Let α be an active step and M be a marking of N . Then α is

la-persistent at M i� α is lb-persistent at M .

Proof. Assume that α is enabled at M , and β is another step enabled at M .

Suppose that α is la-persistent atM and β∩α = ∅. ThenM [β(α \ β)〉 and α\β = α.

Hence M [βα〉, and so α is lb-persistent at M .

Conversely, suppose that α is lb-persistent at M and β 6= α. Then M [(β \ α)α〉 as

(β \ α) ∩ α = ∅ and M [β \ α〉 (cf. Fact 2.1.2). Hence M [(β \ α)(α ∩ β)(α \ β)〉 (cf.

Fact 2.1.2). Thus, by M [β〉, M [β(α \ β)〉. Hence α is la-persistent at M .

Corollary 4.2.1. Let α be an active step of N . Then α is ga-persistent in N i� α is

gb-persistent in N .

Proposition 4.2.4. Let α be an active step andM a marking of N . If α is lc-persistent

at M , then α is la-persistent at M .

58

Proof. Since enabledness of steps is monotonic in pt-nets (cf. Fact 2.1.2), the implication

follows directly from De�nition 4.2.3, where the statement for lc-persistence has stronger

consequence.

Corollary 4.2.2. Let α be an active step of a N . If α is gc-persistent in N , then α is

ga-persistent in N .

p1 p2 p3

p4

b a c

d

M0

M1

M3

M2

M4

{b}

{d}

{a}

{a}, {a, c}

{c}

{c}

Figure 4.4: A safe pt-net and its concurrent reachability graph.

We now make a series of statements and observations concerning the general pt-net

model.

• The implications in Proposition 4.2.4 cannot be reversed. A counterexample is

provided in Figure 4.4, where {a} is la-persistent at M3 = {p2, p3}. However, it is

not lc-persistent atM3. The example in Figure 4.4 can as well be an illustration for

Proposition 4.2.2 (type-a) showing the case of an la-persistent step {a} (at M3),

which is not ga-persistent (because of M0).

• The implications in Corollary 4.2.2 cannot be reversed. A counterexample is again

provided in Figure 4.4, where {a, c} is ga-persistent, but it is not gc-persistent.

As this step is only enabled at marking M3, it fails to be lc-persistent as well.

Moreover, in Figure 4.4, {d} is a step that is type-a and type-c globally persistent,

because it is only enabled at one marking, M1, and no other nonempty step is

enabled at M1.

59

p1 p2

p3 p4 p5

b ac

M0

M1

M2

M3 M4

M5

{b}

{c}

{a} {b}

{a}{b}
{a, b}

p1

p2 p3 p4

a b c

M1

M3 M4

M0

M2

{a}

{b}

{c}{a}

p1 p2

p3 p4 p5

a b c

M0

M1M2

M3

M4

{b}{a}{c}

{a, c}

{c}{a}

Figure 4.5: Three safe pt-nets and their concurrent reachability graphs.

• The top pt-net in Figure 4.5 shows that a step {a} may be ga-persistent, but only

lc-persistent (at M4). Step {a} is not gc-persistent, because it is not lc-persistent

at M2.

• The middle pt-net in Figure 4.5 shows an example of a step, {a}, that is lc-persis-

tent atM0 (hence also la-persistent atM0), but it is not ga-persistent (consequently

not gc-persistent).

• There may be steps in pt-nets that fail to satisfy all the types of persistence; for

example, {a, c} and {b} in the bottom pt-net of Figure 4.5.

60

• There are pt-nets where all steps not persistent whatever type (a or c) we choose.

For example, take the bottom pt-net in Figure 4.5 and delete p2, p5 and c with all

adjacent arcs. Then, the only nonempty steps in the concurrent reachability graph

are {a} and {b}, and they prevent each other from being persistent.

4.2.3 Global Persistence in Safe pt-nets

In this section, we focus our attention on safe pt-nets, and assume throughout that

N = (P, T,W,M0) is such a net.

It turns out that all non-singleton steps in N , which are gc-persistent, are built out

of transitions lying on self-loops. To show this, we �rst prove an auxiliary result.

Proposition 4.2.5. Let α be a gc-persistent step enabled at a reachable marking M of

a safe pt-net N . Then •(α ∩ β) = (α ∩ β)•, for every step β 6= α enabled at M .

Proof. We may assume that α ∩ β 6= ∅ as for α ∩ β = ∅ the result holds by •(α ∩ β) =

∅ = (α ∩ β)•.

Assume that α is gc-persistent and consider two cases.

Note that by Fact 2.1.3 steps α, β and α ∩ β are disconnected.

Case 1: p ∈ •(α ∩ β), for some step β 6= α enabled at M . Clearly, M(p) = 1 and

there exists b ∈ (α ∩ β) such that p ∈ •b. If α is gc-persistent, there is a marking M ′

such that M [β〉M ′[α〉. As M ′[α〉 and p ∈ •(α ∩ β), we have M ′(p) = 1. Furthermore,

M ′(p) =M(p)−W (p, β) +W (β, p).

And so, by disconnectedness of α and β, and the fact that M(p) = M ′(p) = 1 we

get W (b, p) = W (p, b) = 1. Moreover, for any c ∈ (α ∪ β) such that c 6= b we get

W (c, p) = W (p, c) = 0. Therefore W (p, a) = W (a, p) for each a ∈ (α ∪ β). Hence

p ∈ (α ∩ β)•, and so •(α ∩ β) ⊆ (α ∩ β)•.

Case 2: p ∈ (α∩ β)• \ •(α∩ β). Then, by M [α ∩ β〉 and the safeness of N , M(p) = 0.

Hence, by M [α〉 and M [β〉, we must have p /∈ •α ∪ •β. Consequently, since there is M ′′

such that M [βα〉M ′′ in case of gc-persistence of α, we obtainM ′′(p) ≥ 2, a contradiction

with N being safe. Thus (α ∩ β)• \ •(α ∩ β) = ∅.

Hence •(α ∩ β) = (α ∩ β)• and the result holds.

61

Theorem 4.2.1. Let α be a non-singleton active step of a safe pt-net N . If α is gc-

persistent, then it is lying on self-loops.

Proof. If α = ∅ the result holds. Let |α| ≥ 2. Suppose that a ∈ α and M be a reachable

marking enabling α. Since {a} 6= α and M [a〉 for any marking M such that M [α〉, we

have •(α ∩ {a}) = (α ∩ {a})• (cf. Proposition 4.2.5). Hence •a = a•.

We now want to relate the persistence of a step with the persistence of its constituent

transitions in safe nets. We �rst consider ga-persistent steps, but as we already know,

from Corollary 4.2.1, the results would also hold for gb-persistent steps.

Theorem 4.2.2. Let α be an active step in a safe pt-net N . If all the transitions in α

are globally persistent, then α is ga-persistent.

Proof. Let M be a reachable marking and β 6= α be a step in N such that M [α〉 and

M [β〉.

We assume that all the transitions in α are globally persistent. We need to show that

M [β(α \ β)〉.

Let α ∩ β = {a1, . . . , am}, α \ β = {b1, . . . , bn} and β \ α = {c1, . . . , ck}. Note that

all the transitions in these three sets are di�erent. From M [β〉 and Fact 2.1.2, we have

M [a1 . . . amc1 . . . ck〉. Now, since each bi is globally persistent and enabled at M , we have

thatM [a1 . . . amc1 . . . ckb1 . . . bn〉. Since α and β are steps in a safe net N enabled at some

marking (M), we have, from Fact 2.1.3, that transitions in α and β have disjoint pre-sets

and post-sets. Hence we have M [β(α \ β)〉.

We now consider gc-persistent steps. In this case the antecedent in the implication is

stronger.

Theorem 4.2.3. Let α be an active step in a safe pt-net N . If all the transitions in α

are globally persistent and lying on self-loops, then α is gc-persistent.

Proof. Let M be a reachable marking and β 6= α be a step such that M [α〉 and M [β〉.

We need to show that M [βα〉.

62

Let α ∩ β = {a1, . . . , am}, α \ β = {b1, . . . , bn} and β \ α = {c1, . . . , ck}. Proceeding

similarly as in the previous proof we can show that

M [a1 . . . amc1 . . . ckb1 . . . bn〉 .

Since all transitions in α are lying on self-loops and are globally persistent, we further

obtain

M [a1 . . . amc1 . . . cka1 . . . amb1 . . . bn〉 .

Hence, from M [α〉, M [β〉 and Fact 2.1.3, we have M [βα〉.

In Theorems 4.2.2 and 4.2.3, the reverse implications do not hold. A counterexample

is provided in Figure 4.6, where a persistent step α = {a, c} contains a non-globally

persistent transition a. Indeed, α = {a, c} is both ga-persistent and gc-persistent, but

a ∈ α is not persistent at M0 = {p1, p2}, because there exists b 6= a such that M0[a〉 and

M0[b〉, but M0[ba〉 does not hold.

(a)

p1 p2 p3

p4

b a c

d

(b)

M0

M1

M2

{b}

{d}

{a}

{a}

{c}

{a, c}

Figure 4.6: A safe pt-net N (a); and its concurrent reachability graph CRG(N) (b).

4.3 Pruning Reachability Graphs

In this section, we turn from general considerations relating to the persistence of active

steps to more application oriented discussion, restricting ourselves to the case of global

persistence.

63

The original motivation for studying persistent steps in this chapter was to discover

which sets of transitions � called later bundles � can be executed synchronously and

therefore be treated as some kind of `atomic actions', giving rise to new `bigger' transitions,

which would execute in a `hazard-free' way. In the application area of asynchronous

circuits, bundling actions would reduce signal management by merging concurrent signals

into one event. This merging must be done in a consistent fashion.

The best candidates for bundles are, in fact, persistent steps, but if we want to form

`bigger' transitions from them, we must make sure that one enabled persistent step does

not include another enabled persistent step. All the transitions in a bundle must always

appear together, in the same con�gurations. In the ideal situation (we say ideal, because

it might be di�cult to achieve), we do not want to allow, for example, three persistent

steps {a, b}, {a} and {b} to be enabled in a given transition system. We need to choose:

either to opt for {a, b} and delete {a} and {b}, or the other way round. Therefore, we

need to develop an algorithm which, for a given net N = (P, T,W,M0), would allow us to

prune its reachability graph CRG(N) in such a way that all persistent steps would satisfy

an additional `non-inclusion' condition. The `pruned' transition system would represent

the desired behaviour, which then we would like to implement in a form of a Petri net

in a process of synthesis. The `non-inclusion' condition could be of a local nature (less

restrictive) or global nature (more restrictive) as introduced later in Problem 1 as (lni)

and (gni) respectively. The (lni) condition determines the possibility of having {a} and

{b} occurring concurrently in one place of the transition system and {a, b} occurring as

bundled in another place of the transition system, while (gni) allows either {a} and {b},

or {a, b}.

We start by de�ning sub-st-systems which will be obtained by pruning concurrent

reachability graphs.

De�nition 4.3.1. (sub-ST-system)

An st-system S = (Q,A, q0) is a sub-st-system of an st-system S ′ = (Q′, A′, q0) if

Q ⊆ Q′, A ⊆ A′ and, for every q ∈ Q, readyS(q) = readyS′(q). We denote this by S 4 S ′.

�

In the above de�nition, EnS of a `properly pruned' reachability graph S ′ will be a set

64

of bundles. What we mean by `properly pruned' will be described by conditions stated in

Problem 1.

We now re-de�ne for st-systems the three notions concerned with global persistence

introduced for pt-nets. The reason is that once we start pruning an st-system, we need

to check whether the remaining steps that were previously persistent remain persistent.

Such checks will be carried out for st-systems that might not be concurrent reachability

graphs of any pt-nets.

De�nition 4.3.2. (persistent step in an ST-system)

A step α ∈ EnS is ga/gb/gc-persistent in an st-system S = (Q,A, q0) if, for all

states q ∈ Q and steps β such that α, β ∈ EnS(q) we respectively have:

(ga) β 6= α =⇒ q
β(α\β)−−−−→

(gb) β ∩ α = ∅ =⇒ q
βα−→

(gc) β 6= α =⇒ q
βα−→ .

�

Proposition 4.3.1. A step α is ga/gb/gc-persistent in a pt-net i� α is respectively

ga/gb/gc-persistent in its concurrent reachability graph.

Proof. Follows directly from the de�nitions.

We have the following relationships between just introduced notions of step persistence.

Proposition 4.3.2. Let S = (Q,A, q0) be an st-system.

1. If α ∈ EnS is ga-persistent, then it is also gb-persistent.

2. If α ∈ EnS is gc-persistent, then it is also gb-persistent.

Proof. (1) Let q ∈ Q and q
α−→ and q

β−→ be such that β ∩ α = ∅. Since α ∈ EnS is ga-

persistent, we have q
β(α\β)−−−−→. Hence q

βα−→ which means that α ∈ EnS is gb-persistent.

(2) Follows directly from De�nition 4.3.2.

Unlike for pt-nets, in the case of st-systems, gb-persistence does not imply ga-persistence

of steps. Indeed, let α ∈ EnS be a gb-persistent step in S, and β 6= α and q ∈ Q be such

65

that q
α−→ and q

β−→. We know that β ∩ (α \ β) = ∅. However, with such assumptions,

we cannot in general guarantee that q
α\β−−→. Though the latter is true for the concurrent

reachability graphs of pt-nets, we must also consider st-systems resulting from their pru-

ning (see the st-system depicted on Figure 4.8(c), where the step {b, d} is gb-persistent,

but not ga-persistent). For similar reasons, in the case of st-systems, gc-persistence

does not imply ga-persistence.

We now can formulate a problem which is our main concern in this section.

Problem 1. Let N be a pt-net and CRG(N) be its concurrent reachability graph. Con-

struct an st-system S such that S 4 CRG(N) and all steps in EnS are gb-persistent in

S3, and additionally satisfying (gni) or (lni), where the latter conditions are de�ned as

follows:

(gni) α 6⊂ β, for all nonempty steps α, β ∈ EnS

(lni) α 6⊂ β, for all states q and all nonempty steps α, β ∈ EnS(q) .

We denote this respectively by

S 4global
pers CRG(N) and S 4local

pers CRG(N) .

We also refer to (gni) as global non-inclusion, and to (lni) as local non-inclusion. �

The di�erence between 4global
pers and 4local

pers is that the latter only requires non-inclusion of

bundles locally for each state, whereas the former insists that non-inclusion holds globally.

Proposition 4.3.3. S 4global
pers CRG(N) implies S 4local

pers CRG(N).

Proof. Follows directly from the de�nition.

In our �rst attempt to solve Problem 1, we will concentrate on pt-nets that are

persistent according to De�nition 4.2.1. We then have the following result.

Theorem 4.3.1. Let N be a pt-net which is persistent according to De�nition 4.2.1.

Then there is an st-system S satisfying S 4global
pers CRG(N).

3Alternatively, we could require ga-persistence or gc-persistence. We opted here for gb-persistence,
because it is the weakest of the three notions.

66

Proof. It su�ces to take CRG(N) and delete all nonempty non-singleton steps.

As the above proof produces completely sequential solution, we call such pruning to

be trivial. We will now search for nontrivial, hence more concurrent ones. We will also

require that the original pt-net is not only persistent, but also safe.

Proposition 4.3.4. Let N be a safe pt-net which is persistent according to De�ni-

tion 4.2.1. Then all active steps in N are gb-persistent in CRG(N).

Proof. Let α ∈ EnCRG(N). As N is persistent according to De�nition 4.2.1, all transitions

in α are globally persistent according to De�nition 4.2.2. Hence, from Theorem 4.2.2 and

the fact that N is safe, we have that α is ga-persistent in N , and also gb-persistent in N

(see Proposition 4.2.1). Following Proposition 4.3.1, we conclude that α is gb-persistent

in CRG(N).

The last result guarantees the gb-persistence of steps in the concurrent reachability

graph of a safe persistent pt-net N , but the non-inclusion conditions ((gni) and (lni))

are not, in general, satis�ed in CRG(N) due to Fact 2.1.2. To satisfy the non-inclusion

conditions, we need to prune CRG(N), but in such a way that gb-persistence of steps

is maintained. We now explore what happens if we choose to prune all but the maximal

steps at every reachable marking.

In what follows, the st-system CRGmax (N) is obtained from CRG(N), the concurrent

reachability graph of a pt-net N , by deleting at every reachable marking M , all the arcs

labelled by non-maximal nonempty steps (we do not delete the empty steps for technical

reasons), and then removing those nodes that became unreachable from the initial state

by the removal of such steps.

Proposition 4.3.5. CRGmax (N) 4 CRG(N).

Proof. Follows directly from the de�nitions and the fact that, for each enabled step, there

is a maximal step enabled at the same marking.

Proposition 4.3.6. CRGmax (N) satis�es (lni) in Problem 1.

Proof. Follows from the fact that maximal nonempty steps are incomparable.

67

(a)

a b

(b)

M0

{a, b}
{a} {b}

{b} {a}
(c)

M0

{a, b}

(d)

a b c

(e)

M0

{a} {a, c}{a, b}

{b} {c}

{b} {c}

(f)

M0

{a, c}{a, b}

{b} {c}

(g)

a b c

(h)

M0

{a, b}{a}

{b}

{b} (i)

M0

{a, b}

{b}

Figure 4.7: Three safe persistent pt-nets N (a, d, g); their concurrent reachability graphs
CRG(N) (b, e, h); and the corresponding CRGmax (N) 4local

pers CRG(N) obtained in the
pruning procedure (c, f, i).

Figures 4.7 and 4.8 show examples of persistent and safe pt-nets for which the des-

cribed pruning procedure works as their CRGmax (N) graphs contain only gb-persistent

steps. In all these examples the pruned reachability graph satis�es CRGmax (N) 4local
pers

CRG(N), and in case of the example in Figure 4.7(a), we even have CRGmax (N) 4global
pers

CRG(N). So, the proposed pruning procedure helped to achieve local non-inclusion

without jeopardising gb-persistence of the remaining steps. However, in Figures 4.7(f)

and 4.8(c), the persistence in initial markings is achieved only because the steps enabled

there are not disjoint, and so type-b persistence holds trivially.

In general, pruning non-maximal steps may make some of the remaining steps non-

68

(a)

da b

c

(c)

M0

{c}

{b, c}

{b, d}{a, d}

{a}

(b)

M0

{c}

{c}

{d} {c, d}

{b}

{b, c}
{b, d}

{b, c, d}

{c}

{c}

{b} {b, c}

{d} {c, d}

{d}

{b}

{b, d}

{b}

{d}

{a}

{a, d}

{a}

{d}

{b} {a}

{d}

{b}

{a}
{a, d}

{b, d}

Figure 4.8: A safe persistent pt-net N (a); its concurrent reachability graph CRG(N)
(b); and CRGmax (N) 4local

pers CRG(N) obtained in the pruning procedure (c).

gb-persistent. Figure 4.9(c) shows that the initially enabled step {b} is not gb-persistent

after the pruning procedure, as after executing {a} it is not longer enabled. Instead

step {b, c} is enabled, because it was the maximal step in the marking M . We therefore

propose a weaker version of condition (gb) which holds for safe and persistent pt-nets.

Proposition 4.3.7. Let N be a safe pt-net which is persistent according to De�ni-

tion 4.2.1. Then, for every marking M in CRGmax (N), M
α−→ and M

β−→ implies:

(gb′) β ∩ α = ∅ =⇒ ∃γ : α ⊆ γ ∧M βγ−→ .

Proof. From Proposition 4.3.4 we know that M
βα−→ in CRG(N). Moreover, there is a

maximal step γ available (as it is not removed by the pruning) after executing β from M

such that α ⊆ γ. Hence M
βγ−→ in CRGmax (N).

69

(a)

a b

c (b)

M0

M

{c}

{b} {c}
{b, c}

{b}{a}

{a}{b}

(c)

M0

M

{c}
{b, c}

{b}{a}

{a}

(d)

p

a b

c (e)

M0

M

{c}

{b} {c}

{b}{a}

{a}{b}

Figure 4.9: A safe persistent pt-netN (a); its concurrent reachability graph CRG(N) (b);
CRGmax (N) obtained in the pruning procedure which does not satisfy CRGmax (N) 4local

pers

CRG(N) (c); a persistent and safe pt-net N ′ = Nb↔c (d); and its concurrent reachability
graph CRG(N ′) = CRGmax (N ′) which trivially satis�es CRGmax (N ′) 4local

pers CRG(N ′)
(and also CRGmax (N ′) 4global

pers CRG(N ′)) (e).

Hence, pruning non-maximal steps may result in the loss of persistence when α ⊂ γ

in (gb′). In such a case we may, however, `repair' N by disabling γ. The mechanism for

achieving this is simple, namely we select one transition from α, one transition from γ \α,

and make sure that they cannot be executed in the same step.

Let N be a pt-net and x 6= y be two transitions. Then Nx↔y is obtained from N

by adding a new place p marked with one token, and such that W (p, x) = W (x, p) =

W (p, y) = W (y, p) = 1. This construction is illustrated in Figure 4.9(d, e), where we try

to �x the problem of the net N in Figure 4.9(a). We added a new place p and chose b and

c to play the roles of x and y (the only choice in this example) creating N ′ = Nb↔c. The

new place disables the concurrent step {b, c} at M , leaving enabled only the singleton

steps {b} and {c}. They are now maximal steps atM . In fact, in this simple example, we

70

have only singleton steps in the concurrent reachability graph of N ′, and so the pruning

is trivial.

In the following propositions we show that after the proposed modi�cation the pt-net

generates a concurrent reachability graph which is a sub-st-system of the reachability

graph of the initial net. Also, the modi�ed net is still safe and persistent according to

De�nition 4.2.1.

The two following facts result directly from de�nitions:

Fact 4.3.1. Let N be a safe pt-net which is persistent according to De�nition 4.2.1.

Then we have

CRG(Nx↔y) 4 CRG(N)

Moreover, the reachable markings of CRG(Nx↔y) and CRG(N) are the same, if we iden-

tify each reachable marking M of N with the marking M ∪ {p} of Nx↔y. �

Fact 4.3.2. Let N be a safe pt-net which is persistent according to De�nition 4.2.1.

Then CRG(Nx↔y) is also persistent (according to De�nition 4.2.1) and safe. �

We can now propose a dynamic way of pruning embodied by the following algorithm:

while ¬(CRGmax (N) 4local
pers CRG(N)) do

choose M,α, β, γ in CRGmax (N) satisfying (gb′) with α ⊂ γ

choose x ∈ α, y ∈ γ \ α

N := Nx↔y

It follows from what we already demonstrated that the above algorithm always terminates

and for the �nal pt-net N ′ we have:

CRGmax (N ′) 4local
pers CRG(N ′) 4 CRG(N)

and therefore:

CRGmax (N ′) 4local
pers CRG(N).

Since the algorithm is non-deterministic, we may try various strategies for choosing

x and y. Figure 4.10 shows that di�erent strategies may lead to di�erent solutions. It

is possible to have a semi-lattice of pruning solutions or even arrive at a unique solution

71

(a)

a b

c

d

(b)

M0

{c}
{b, c, d}

{b, d}{a}

{a}

(c)

a b

c

d

(d)

M0

{b, c}

{d} {c}

{b, d}{a}

{a}{b, d}

(e)

a b

c

d

(f)

M0

{c, d}

{b} {c}

{b, d}{a}

{a}{b, d}

(g)

a b

c

d

(h)

M0

{c}

{b, d} {c}

{b, d}{a}

{a}{b, d}

Figure 4.10: A safe persistent pt-net N (a); CRGmax (N) not satisfying
CRGmax (N) 4local

pers CRG(N) (b); N ′ = Nd↔c (c); CRGmax (N ′) (d); N ′′ = Nb↔c (e); and
CRGmax (N ′′) (f). Both N ′ and N ′′ have been obtained as by-products of the successful
runs of the pruning and modi�cation algorithm. It is not possible to obtain in this way
N ′′′ in (g) even though CRGmax (N ′′′) 4global

pers CRG(N) (h).

by adding timing information to steps and using heuristics to determine optimal pruning

strategies. For example, [100] provides a method where heuristics is used on timed mar-

ked graphs for determining optimal scheduling solutions to reduce control complexity of

synchronous elastic circuits.

72

4.4 Signi�cance of Bundles in Digital Circuits

Digital system design based on formal models is normally associated with two main tasks:

one is the veri�cation of a system's behavioural speci�cation or checking the model of the

system implementation, while the other is the synthesis of the circuit implementation from

its speci�cation. In the context of veri�cation we would like, for example, to check if the

Petri net model of a mixed synchronous-asynchronous system satis�es the requirement of

hazard-freedom under a particular form of synchronisation of actions (in steps). In the

context of synthesis, we would like to �nd the optimal partitioning of actions into syn-

chronous steps so that the complexity of control of these steps is minimised. For example,

the intuitive complexity of handling synchronisations safely in the three scenarios of Fi-

gure 4.2 varies between them, from the most intricate in the fully asynchronous one (case

(a)) to the simplest in fully synchronous one (case (b)), placing the mixed synchronous-

asynchronous version in the middle (case (c)). With this varying complexity, one can

design systems that may exhibit hazards if they are treated as fully asynchronous, but

when actions are synchronised into steps the system would behave safely. Amongst the

methods for synchronising actions into steps, we can consider those that are based on the

insertion of additional control circuits to physically `bundle' actions together, or based on

ensuring the appropriate `bundling' constraints based on timing, or delays. Traditional

globally clocked systems, self-timed systems working under fundamental mode assumpti-

ons, and asynchronous systems with relative timing [3] are all of the latter category.

It is this idea of bundling those steps of actions that are `hazard-free' or persistent

that motivated our notion of bundles, introduced in this chapter. In terms of nets and

corresponding transition systems, bundles are informally sets of transitions that can be

executed synchronously and therefore be treated as some kind of `atomic actions', giving

rise to new `bigger' transitions. Section 4.3 provided a formal treatment for bundles

and showed a constructive procedure for deriving them by pruning reachability graphs

or transition systems, depending on whether we are solving the veri�cation or synthesis

problem. For example, in the process of synthesis of the control policy for a mixed

synchronous-asynchronous system, such a `pruned' transition system would represent the

desired behaviour, which then we would like to implement in a form of a Petri net.

73

In the design of mixed synchronous-asynchronous systems, pruning a system's con-

current speci�cation enables a designer to generate a suitable behavioural model that

o�ers the �exibility of asynchronous design coupled with the simplicity of synchronous

design. The control circuit synthesised from such a speci�cation will hence manage a

mixture of sequential, parallel and concurrent request signals that execute the bundles of

the pruned system while maintaining a functionally correct system �ow. Speci�cally, a

bundle deals with the execution of a single action or simultaneous execution of multiple

actions in a single clock domain, while concurrent interactions between distinct bundles

indicate synchronisation between di�erent clock domains. For example, let us consider

the Petri net model in Figure 4.11(a) which satis�es the temporal speci�cation given in

Figure 4.2(c). Actions {a} and {b} belong to di�erent clock domains and have been speci-

�ed to execute asynchronously. However, their completions must be synchronised before

the execution of bundle {c, d} which belongs to a third clock domain. Another mixed

synchronous-asynchronous implementation of the same system is depicted behaviourally

in Figure 4.11(b) and its derived Petri net model is shown in Figure 4.11(c). To give an

idea of the practical implications of pruning in digital system design, the two pruned ex-

amples can be viewed as a classic case of trade-o� between power and latency. A scenario

where the latter implementation would be bene�cial is the reduction of electromagnetic

interference (EMI) which is caused by the simultaneous switching of circuit elements [14].

Here, if the concurrent execution of actions {a} and {b} leads to higher peak power as

compared to the execution of bundle {c, d}, then the designer would want to order the

bundles as indicated. This would be particularly intuitive when considering a complex

system where many such blocks exist and a pruned behavioural speci�cation is required

to ensure low spectral energy peaks.

It is essential that pruning is performed in a step persistent manner, according to

the rules introduced in this chapter. Each rule will ensure a distinct case of hazard-free

step execution and also a�ect control circuit complexity di�erently. To brie�y motivate

how these rules a�ect mixed synchronous-asynchronous circuits, we discuss the case of

(lni) using the examples given in Figure 4.10. It should be noted that the enabling of

a step, when translated to circuit behaviour, results in switching the concerned request

74

signal to a logical 1, triggering the execution of its comprising actions. The following

paragraph explains how a non-monotonic pulse can arise if speci�c countermeasures are

not considered in the circuit synthesis procedure.

The case of local non-inclusion of steps is compared with the case of global non-

inclusion taking Figure 4.10(b) and Figure 4.10(h), respectively. In the former speci�ca-

tion, the execution of {a} and {b, d} is concurrent but not simultaneous due to shared

resources, as indicated in the Petri net model shown in Figure 4.10(a). If the arbitration

of the shared resource favours executing action {a}, the step {b, d} should get its resource

after the completion of action {a}. However, owing to the given temporal speci�cation,

a new request signal pertaining to step {b, c, d} will be generated, disabling the request

of step {b, d}. This results in a non-monotonic pulse, as illustrated in Figure 4.12, which

could lead to a hazardous computation as it is uncertain how the system will interpret

the glitch. Such a glitch will not occur when executing the speci�cation of Figure 4.10(h),

as the action {b, d} that was enabled does not get disabled until execution and hence is

step persistent.

Now, if the former speci�cation is a requirement for the design, only an arbitration

between the request signals for the two steps {b, d} and {b, c, d} can ensure hazard freedom.

This, however, complicates control circuit synthesis due to the requirement of an extra

arbitration block in the control circuit which would not the case when implementing the

a

c

b

d

(a)

{a}

{b}

{c, d}

(b)

a

c

b

d

(c)

Figure 4.11: A pt-net generating the concurrent reachability graph of Figure 4.2(c) under
the assumption that a and b belong to two di�erent clock domains, while c and d belong to
a third clock domain (a); and another mixed synchronous-asynchronous implementation
of the same system (assuming the same clock domains as in (a)) both behaviourally (b)
and as a derived pt-net (c).

75

latter. The Opportunistic Merge element [101] is an example of an arbitration block that

implements hazard-free inclusion of steps. This circuit element is designed to implement

opportunistic bundling of closely arriving input signals.

Step persistence therefore plays a vital role in the two main aspects of formal modelling

of digital systems: in the veri�cation of mixed synchronous-asynchronous systems to

ensure freedom from hazards, and in the synthesis of mixed synchronous-asynchronous

circuit implementation to ensure optimal control circuitry.

Volts

time

non−monotonic
pulse

req({b, c, d})

req({b, d})

req({a})

Figure 4.12: Hazardous switching in mixed synchronous-asynchronous step execution se-
mantics.

4.5 Conclusions and Future Work

In mixed synchronous-asynchronous circuits, bundling is envisaged to reduce signal ma-

nagement, and could reduce the cost of scheduling and control, and improve system per-

formance. The ideal way to model mixed synchronous-asynchronous systems is to start

with a concurrent model that is persistent and fully asynchronous in behaviour. Then

run several iterations that derive a combination of bundles that represents the temporal

nature the designer requires. Careful selection of bundles is essential so that the pruned

behaviour of the fully asynchronous model still exhibits some characteristics of its parent

and is persistent. Step persistence is hence an important characteristic that will guarantee

true persistent behaviour for mixed synchronous-asynchronous models.

In this chapter, we developed a pruning procedure for reachability graphs of persistent

and safe nets. This procedure constructs a step transition system that contains only

bundles. The bundles in our algorithm represent maximally concurrent steps of the initial

76

system that are persistent and satisfy non-inclusion constraints. We hope that the theory

presented in this chapter will pave the way towards formal design and veri�cation of mixed

synchronous-asynchronous systems. Right now, we are not trying to comprehensively

describe how this theory would be applied in the scenarios of veri�cation and synthesis

mentioned in the introduction. This will be done in our future research, where will have

to answer many new questions arising on the way, including, for example, what a rigorous

metric for the complexity of bundle control is, how the notions of maximal steps (global

and local) a�ect such a complexity, or what the di�erent forms of step persistence (type-a,

type-b and type-c) imply in terms of hazard-avoidance in the system.

A move into the realm of step based execution semantics creates a wealth of new

fundamental problems and intriguing questions, some of which have been addressed

in [102, 103, 104]. In particular, there are di�erent ways in which the standard notion

of persistence could be lifted from the level of sequential semantics to the level of step

semantics. For example, if part of an enabled step has been executed by another step,

should we insist on the whole delayed step to be still enabled, or just its remaining part?

Moreover, one may consider steps which are persistent and cannot be disabled by other

steps, as well as steps which are nonviolent [99, 95, 103, 104] and cannot disable other

steps.

In the future, we intend to investigate other possible pruning algorithms, weakening

our constraints and allowing the initial system's behaviour to be given by a net that is

not necessarily persistent. Furthermore, we plan to allow in the algorithms the choice of

non-maximal bundles in certain cases. For example, input signals are usually behaving in

fully asynchronous way and should not be bundled. We will also explore the practical im-

plications of bundles on the veri�cation and synthesis of mixed synchronous-asynchronous

circuits such as �xing hazardous circuits by bundling.

In the next chapter, we employ the concept of bundles for functional partitioning of

digital circuits and demonstrate degrees of elasticity in circuits synthesised with bundles.

77

78

Chapter 5

Synthesis of Asynchronous Circuits

with Granular Rigidity

For decades, GALS circuits have represented the class of mixed synchronous-asynchronous

circuits. This methodology, however, has been shown to have limitations and under-

represent the mixed synchronous-asynchronous paradigm. In this chapter, we were hence

motivated to introduce a new class of asynchronous circuits exhibiting synchrony by met-

hod of granular rigidity, and propose a novel method to synthesise these circuits based on

functional partitioning of their asynchronous speci�cation.

5.1 Introduction

Mixed synchronous-asynchronous design can be viewed as a revolutionary step in VLSI

design paving the way for commercial adoption of asynchronous design techniques in

future SoCs. Chapter 1 illustrated this paradigm with a classi�cation of synchronous,

asynchronous and mixed synchronous-asynchronous circuits. Each technique has distinct

consequences to system behaviour and design implementation as illustrated in Figure 1.1.

This �gure was motivated from the classi�cation of `Elastic Circuits' made in [31]. In

this chapter, our focus is on elastic circuits that provide elasticity with small overhead,

speci�cally the group of circuits encapsulating bundled-data circuits and synchronous

handshake circuits, as highlighted in the shaded area of Figure 1.1.

We classify the low-overhead elastic circuits paradigm to encapsulate a range of design

79

Figure 5.1: Design methodology �ow

practices starting from synchronous handshake circuits [26], which are synchronous cir-

cuits embracing principles of asynchronous elasticity, all the way to bundled-data cir-

cuits [45, 46], which are asynchronous circuits embracing principles of synchronous rigidity.

Bundled-data circuits are a class of asynchronous circuits that resemble synchronous be-

haviour due to its nature of �ne-grained local clocking scheme. They can be implemented

with the same data path used in synchronous circuits and only di�er in the implementa-

tion of clock. Several authors have proposed schemes to implement bundled-data circuits

using the clocked CAD �ow [105, 106, 28, 32]. Synchronous handshake circuits fall in

the class of synchronous elastic circuits where asynchronous-like elasticity is implemented

in a globally clocked domain. Synchronous handshake circuits have been formalised and

investigated by several authors in [26, 107, 108, 29, 31, 109]. Design techniques on either

end of the classi�cation have been well researched with strong theoretical and mathemat-

ical foundations being laid along with automated synthesis �ows integrated into standard

synchronous EDA tool �ows.

This chapter introduces `Elastic Bundles', a novel class of asynchronous circuits with

varying levels of rigidity. Elastic-bundle circuits exhibit granular rigidity through a com-

bination of coarse-grained locally clocked elements and �ne-grained locally clocked ele-

ments. Modelling these circuits starts from a high-level data�ow model of a system which

is intrinsically asynchronous. The key idea is to introduce rigidity of chosen granularity

levels across the model, without changing functional behaviour, for achieving the design

simplicity of synchronous principles. In this manner, the system is partitioned into func-

80

tional blocks of �ne-grained and coarse-grained asynchronous elements based on functional

criteria. Figure 5.1 depicts the design �ow of this methodology.

In this chapter, we focus purely on bundled-data asynchronous circuits, as this circuit

classi�cation was identi�ed to display the �nest granularity of elasticity in the class of low-

overhead elastic digital circuits. Bundled-data circuits emerged as a design simpli�cation

practice for asynchronous circuits by bundling control logic with datapath. Here, such

circuits are optimised further by identifying groups of circuit elements that can be bundled

in succession without changing functional behaviour. Such bundling, named as Elastic

Bundles, is implemented by performing coarse-grain local clocking on bundled-data circuit

models. Furthermore, this design style can share the same data path used for synchronous

design as opposed to other asynchronous circuit classes [46]. This is a very strong feature

because it enables reuse of existing synchronous functional blocks improving designer pro-

ductivity. Moreover, a bundled-data design can be synthesised using traditional clocked

CAD �ows by replacing the global clock of the synchronous �ow with multiple number of

local handshake clocks from the asynchronous control logic [32]. Elastic-bundle circuits

can be synthesised in a similar manner using such methods of synchronous-asynchronous

CAD tool �ow integration. In this paper, we have adopted the relative timing (RT) based

CAD �ow [1] for the synthesis of elastic circuits. Our method, however, is not limited

to this tool �ow; any other synchronous-asynchronous CAD tool �ows can be applied to

synthesise elastic-bundle circuits.

The chapter is organised as follows. Section 5.2 introduces the Petri net modelling

framework to describe digital circuits. Section 5.3 provides the method for synthesising

elastic-bundle circuits from Petri net speci�cations. Section 5.4 presents the results of

implementing the proposed methodology on a 16-point FFT design. Section 5.5 contains

conclusions and presents directions for future work.

5.2 Modelling Digital Systems

In our design �ow, the Petri net (PN) modelling tool is the chosen mathematical language

to describe digital systems. The language o�ered us a convenient tool to capture essential

properties of a system from theory formulation to synthesis of control circuits. The

81

(a) Enabled
Transition

(b) Fork (c) Join (d) Choice (e) Merge

Figure 5.2: Basic PN elements

(a) Bu�er (b) Computa-
tion

(c) Multiplexer (d) Demultiplexer

Figure 5.3: PN building blocks for digital systems

WORKCRAFT framework [110, 111, 112] has been used in this research for graphical

interpretation and simulation of Petri nets, and for veri�cation of important properties of

Petri nets.

5.2.1 PN building blocks

We employ pt-net class of Petri nets in this thesis. The notations, de�nitions and basic

properties of these nets have been introduced in Section 2.1.2. pt-nets employ token

game semantics to describe net behaviour. System behaviour is captured by �ow of

tokens according to enabling and �ring rules. Figure 5.2 shows some of the fundamental

elements of pt-nets that are widely used in modelling systems [49].

With regards to a su�cient abstract model to describe digital systems, we wanted

to use the most compact form of pt-nets for both asynchronous and synchronous im-

plementations. Digital systems were hence modelled to represent system behaviour on

(a) Three stage pipeline (b) Computation with multiple
inputs and multiple outputs

Figure 5.4: Example of PN model designs

82

Figure 5.5: Wagging [2]

a high-level abstraction of data�ows and �ow control, rather than register-transfer level

(RTL) description. Data structures and timing information are excluded in the language

description. Such information is labelled on the graph for designer reference. Safe class of

pt-nets were employed which ensure that each place can have utmost 1 token. Based on

this, we have extracted a set of elements shown in Figure 5.3 that form the building blocks

for digital systems in our framework. The bu�er is used for data storage and channel de-

coupling. Computation blocks are used to denote digital logic from basic gates to complex

calculations. The multiplexer and demultiplexer provide capability to route multiple data

streams and computations to a single stream, or split a single stream to multiple streams.

For simplicity, the control switch logic for multiplexer and demultiplexer is not repres-

ented in the PN models. Since �ring of transitions in pt-nets is instant and atomic, we

have colour-coded logic blocks in grey so that di�erentiation can be made during design

optimisation. We also colour-code input places and transitions in red and output places

and transitions in blue. Figure 5.4 and Figure 5.5 show examples of designs built using

these building blocks. In such a way, a wide range of digital designs can be built using

PNs. Sokolov and Yakovlev listed several other interaction patterns of system behaviour

represented with PNs [23].

5.2.2 Modelling a Conceptual Design

In this section, we move on to a speci�c design example to explain the research concepts

of this chapter. Let us try to represent a digital system designed to executed a function

Fn depicted in Figure 5.6a. The system processes two input signals,A and B, to produce

outputs X and Y which are de�ned as: X = A+B , Y = A−B

The design is �rst modelled as a data �ow graph (DFG) and subsequently, as a PN to

83

Fn
A

B

X

Y

(a) System speci�cation

A

B

X

Y

(b) Data �ow graph

Figure 5.6: Conceptual design

illustrate the signi�cance of modelling �ow control. DFGs [113, 114] have been widely used

to describe digital systems but they are limited as they can not model control su�ciently.

A basic DFG of the system is shown in Figure 5.6b. PN models represent what is known as

a control data �ow graph (CDFG). Figure 5.7a shows the CDFG of the conceptual design

modelled as a PN. The functional behaviour of the design is depicted in Figure 5.7b based

on scoping of reachable states. It can be visualised that the PN model describes the digital

system in its native form featuring highest level of concurrency. Hence, we also treat this

model as a purely elastic or asynchronous description of the design.

5.2.3 Partitioning with Bundles

In this section, we implement the principles of step persistence and bundles to partition

the conceptual design based on functional criteria. Bundles are identi�ed by pruning

a concurrent reachability graph (CRG) of a system into a set of persistent steps. The

CRG of the design example is shown in Figure 5.7c. By observing the CRG, it makes

intuitive sense that the steps ADD and SUB should be bundled because 1) they are ena-

bled together and 2) their concurrent execution can be restricted to parallel execution

because they can be synchronised to complete at a worst-case delay without reducing

circuit performance. However, there would be certain situations where data-dependent

computation delays or variable-latency ADD/SUB circuit implementations could be ex-

ploited to improve system performance or energy e�ciency. Such scenarios would require

special cases of bundling with some form of run-time adaptability, or simply run-time

bundling, that would trigger control for faster synchronisation between pipeline stages

84

(a) CDFG of design modelled as a PN

A

ADD

A

B

B

SUB

X
SUB ADD Y

Y ADDSUB

Y X

X

(b) Reachability graph

A

ADD

A

B

B

SUB

X
SUB ADD Y

Y ADDSUB

Y X

{ADD,SUB}

{X,SUB} {ADD,Y}

{X,Y}

X

{A,B}

(c) Concurrent reachability graph

Figure 5.7: PN models of conceptual design

85

or trigger switching between appropriate situation-driven circuit implementations. For

example, research on adaptive parametrised circuits [115] demonstrates the practicality

of run-time adaptability of circuits to wide range of operating conditions. This particular

area of research is outside the scope of this thesis and will be explored in the future.

The choice of bundling the inputs and outputs depends purely on where the signals

arrive from and go to. For instance, if the inputs arrive from di�erent timing domains,

it is not possible to bundle the inputs. Similarly, bundling of outputs depends on the

nature of the system receiving these output signals. We have considered three pruning

behaviours as shown in Figure 5.8 to study the impact of bundling on digital circuit

realisation. Step persistence property was checked to avoid hazardous bundling. The

implication of these three variations of bundle sets on the PN model is shown in Figure 5.9.

Di�erent partitioning scenarios of the design example can be visualised. By bundling, the

transitions of a partition would only �re in a step, i.e., they would only execute together

in a lock-step manner. Partitioning and step �ring behaviour have been described using

a novel extension to Petri nets, called Policy nets. Policy nets are, basically, Petri nets

with step �ring policies. This net classi�cation was introduced into the WORKCRAFT

framework during the research phase of Chapter 4. Support for the usage of Policy nets

can be found in [112].

A

A

B

B

Y

Y X

{ADD,SUB}

X

(a) Bundle set 1

A

A

B

B

{ADD,SUB}

{X,Y}

(b) Bundle set 2

{ADD,SUB}

{X,Y}

{A,B}

(c) Bundle set 3

Figure 5.8: Pruned reachability graphs describing bundles

86

(a) Bundle set 1

(b) Bundle set 2 (c) Bundle set 3

Figure 5.9: Modelling bundles with Policy Nets

5.3 Digital Circuit Synthesis from PN Models

In this section, we describe our method for synthesising elastic digital circuits from PN

models. The key idea here is to introduce synchronous-like rigidity into the asynchronous

PNmodels by functional partitioning with bundles without changing functional behaviour.

Granularity of these partitions can be varied according to the level of elasticity and rigidity

required by the designer. By starting with a pure asynchronous model of a design, we

can enforce varying levels of granular rigidity which could eventually transcend to a pure

synchronous speci�cation.

5.3.1 Model Transformation to Asynchronous Pipeline Models

The �rst step in circuit synthesis is to transform the PN speci�cation into asynchronous

pipeline models. We intentionally did not include synchronous clocking or asynchronous

handshaking in the the PN models in Section 5.2 so that a designer can focus on functional

elements and not worry about the aspects of circuit timing implementation. In this

87

section, we introduce hardware description language (HDL) elements into the PN model

such as registers, combinatorial logic, control logic and clocking information.

We have focused mainly on bundled-data asynchronous pipelines in this research, as

this circuit classi�cation was identi�ed to display the �nest granularity of elasticity in the

class of mixed synchronous-asynchronous digital circuits, as discussed in Chapter 1. This

design style can share the same data path used for synchronous design as opposed to other

asynchronous circuit classes [46]. This is a very strong feature because it enables reuse

of existing synchronous functional blocks improving designer productivity. Moreover, a

bundled-data design can be synthesised using traditional clocked CAD �ows by replacing

the global clock of the synchronous �ow with multiple number of local handshake clocks

from the control logic [32].

The �rst step in transformation is to introduce pipelining into the PN models. Pipeli-

ning is conducted without changing the behaviour of the system based on the principles

of slack elasticity [116]. Handshaking happens between neighbouring pipeline stages and

so, distinction between registers and combinatorial logic is made. The bundled-data asyn-

chronous control elements of handshake control and matched delay are incorporated next.

Handshake control signals signifying the HC block (introduced in Chapter 2) are indica-

ted in the model. Finally, the forks and join in the CDFG are now mapped to control

paths. In this manner, a PN-based CDFG model of a digital design can be transformed

to its PN-based HDL-like description.

Figure 5.10 depicts the transformation of the conceptual design from a CDFG to its

HDL speci�cation. Pipeline registers A, B, X and Y have been introduced. HC control

signals manage the handshake clocking of these registers. Distinction between data path

and control logic can now be visualised more clearly. Here, the transformation and design

veri�cation is done manually at this moment. This would be automated in the future for

design productivity.

5.3.2 Partitioning into Elastic Bundles

In this section, the implication of bundle transformation to digital circuits is shown. The

transformations of bundle set partitions 1, 2 and 3 are shown in Figures 5.11, 5.12 and

88

Figure 5.10: Transformation to bundled-data asynchronous pipeline

89

Figure 5.11: Elastic-bundle pipeline transformation (bundle set 1)

Figure 5.12: Elastic-bundle pipeline transformation (bundle set 2)

90

Figure 5.13: Elastic-bundle pipeline transformation (bundle set 3)

5.13, respectively. It can be seen that bundle partitions do not necessarily o�er the same

partitions in the transformed graph. For instance, in Figure 5.11, according to bundle set

1, bundling of ADD and SUB did not re�ect accordingly in the transformation. This was

because the asynchronous nature of inputs and outputs makes it impossible to �re the

register X and Y in step.

We can now visualise how partitioning into bundles results in lower control overhead.

Registers can be controlled by fewer handshake signals by bundling the requests and

acknowledge signals. The transformed PN model can thus be viewed as a mixture of

coarse-grained locally clocked elements and �ne-grained locally clocked elements. Our

outlook is that the coarse-grained locally clocked elements are synchronous to a degree of

rigidity viewing them as synchronised actions sharing a common clock signal, and the �ne-

grained locally clocked elements are asynchronous and elastic. The transformed circuits

hence exhibit mixed synchronous-asynchronous characteristics but remain asynchronous

globally. We introduce such sets of re-partitioned bundles exhibiting granular rigidity in

bundled-data pipelines as Elastic Bundles .

5.3.3 From PN Models to Digital Circuits

In this section, we discuss the method employed to synthesise the PN-based HDL descrip-

tion into digital circuits using standard clocked CAD tools. The RT-based synchronous-

asynchronous EDA tool �ow, summarised in Section 2.2.3, is used for synthesising the

91

1

Figure 5.14: Fork join circuit

elastic-bundle circuit.

The �rst step is to create and characterise the asynchronous control elements, spe-

ci�cally the HC blocks and fork/join elements. Pre-built HC blocks borrowed from the

RT tool �ow is utilised. The characterised HC element introduced in Figure 2.6a is used

here. Fork/Join elements are required for implementing the control of non-linear pipeli-

nes. These elements are introduced with the rule that every fork in the data path is

associated with a join, and every join in a data path associated with a fork [32]. The

characterised fork join elements are shown in Figure 5.14. The join elements employ

Muller's C-elements [97] for synchronising request signals as well as synchronising ac-

knowledge signals. The complex gate in Figure 5.14 depicts an implementation of the

Muller's C-element.

Next, the PN-based HDL model is mapped to a behavioural HDL language such as

Verilog. Active high latches are used for register implementation. In the case of our

conceptual design, Figure 5.10 was thus manually mapped into the following behavioural

Verilog description:

module Fn (A_in, A_lr, A_la, B_in, B_lr, B_la,

. X_out, X_rr, X_ra, Y_out, Y_rr, Y_ra, rst);

. input [31:0] A_in, B_in;

. output [31:0] X_out, Y_out;

. input A_lr, B_lr, X_ra, Y_ra, rst;

. output A_la, B_la, X_rr, Y_rr;

. wire [31:0] A, B, X, Y, ADD1_in1, ADD1_in2, SUB1_in1, SUB1_in2;

. // Datapath Logic

. reg32_async R1 (.D(A_in), .Q(A), .ck(A_ck), .rst(rst));

. reg32_async R2 (.D(B_in), .Q(B), .ck(B_ck), .rst(rst));

92

. assign ADD1_in1 = A; assign ADD1_in2 = B;

. assign SUB1_in1 = A; assign SUB1_in2 = B;

. assign X = ADD1_in1 + ADD1_in2;

. assign Y = SUB1_in1 - SUB1_in2;

. reg32_async R3 (.D(X), .Q(X_out), .ck(X_ck), .rst(rst));

. reg32_async R4 (.D(Y), .Q(Y_out), .ck(Y_ck), .rst(rst));

. // Control Logic

. // Input Handshake Control

. handshake_ctl HC1 (.lr(A_lr), .la(A_la), .rr(lr1), .ra(la1), .ck(A_ck), .rst(~rst));

. handshake_ctl HC2 (.lr(B_lr), .la(B_la), .rr(lr2), .ra(la2), .ck(B_ck), .rst(~rst));

. // Control Stage 1 (Fork - Join)

. assign r11 = lr1; assign r12 = lr1;

. assign r21 = lr2; assign r22 = lr2;

. Celement j1 (.in1(a11), .in2(a21), .out(la1));

. Celement j2 (.in1(a12), .in2(a22), .out(la2));

. // Control Stage 2 (Join - Fork)

. Celement j1 (.in1(r11), .in2(r21), .out(lr3_pre));

. Celement j2 (.in1(r12), .in2(r22), .out(lr4_pre));

. assign a11 = la3; assign a12 = la3;

. assign a21 = la4; assign a22 = la4;

. // Delay elements for 32 bit adder & subtractor pipeline

. DelayElement d1 (.in(lr3_pre), .out(lr3));

. DelayElement d2 (.in(lr4_pre), .out(lr4));

. // Output Handshake Control

. handshake_ctl HC3 (.lr(lr3), .la(la3), .rr(X_rr), .ra(X_ra), .ck(X_ck), .rst(~rst));

. handshake_ctl HC4 (.lr(lr4), .la(la4), .rr(Y_rr), .ra(Y_ra), .ck(Y_ck), .rst(~rst));

endmodule

By employing such an HDL speci�cation, the design can now be synthesised using the

RT-based EDA tool �ow which would result in the circuit shown in Figure 5.15. Similarly,

elastic-bundle sets 1, 2 and 3 modelled in Section 5.3.2 would result in circuits depicted

in Figures 5.16, 5.17 and 5.18 respectively, after synthesis. Figure 5.17 is partitioned into

three asynchronous domains with HC3 block introducing a coarse-grain level of rigidity on

registers R3 and R4. The partitioning in Figure 5.18 results in two asynchronous domains

both with the same level of granular rigidity. Note that this particular implementation

behaves in the manner of a linear pipeline.

Intuitively, one would notice that the �rst level of bundling is trivially carried out

in bundled-data design where a designer bundles the control signals for latching the �ip-

�ops of a register. Elastic-bundle design extends this notion to bundle functionally related

elements of a design, spatially or temporally or both.

93

R1

HC1

ck
lr

la

rr

ra

R2

HC2

ck
lr

la

rr

ra

R3

HC3

ck
lr

la

rr

ra

R4

HC4

ck
lr

la

rr

ra

+

_

A

B

X

Y

C

C

C

C

delay

delay

Figure 5.15: Bundled-data asynchronous circuit of conceptual design

R1

HC1

ck
lr

la

rr

ra

R2

HC2

ck
lr

la

rr

ra

R3

HC3

ck
lr

la

rr

ra

R4

HC4

ck
lr

la

rr

ra

+

_

A

B

X

Y

C

C delay

Figure 5.16: Elastic-bundle circuit (bundle set 1)

94

R1

HC1

ck
lr

la

rr

ra

R2

HC2

ck
lr

la

rr

ra

R3

HC3

ck
lr

la

rr

ra

R4

+

_

A

B

X

Y

C delay

Figure 5.17: Elastic-bundle circuit (bundle set 2)

R1

HC1

ck
lr

la

rr

ra

R2

R3

HC2

ck
lr

la

rr

ra

R4

+

_

A

B

X

Y

delay

Figure 5.18: Elastic-bundle circuit (bundle set 3)

5.4 16-point FFT Case Study

In this section, we consider an asynchronous 16-point FFT architecture as a case study to

implement and test the methodology presented in this paper. Detailed description of the

95

architecture and implementation are outside the scope of this paper. The FFT architec-

ture is based on the design presented by the authors in [117, 1]. In this architecture, the

FFT algorithm is described in a multirate format which is highly concurrent and hetero-

geneous by nature. This very nature of the architecture proved to be an ideal case study

for us because it allowed for modelling of the algorithm in its native asynchronous/elastic

form. Figure 5.19a provides a snapshot of the 16-point FFT architecture described in

PNs. Four-way wagging structure captures the behaviour of high frequency input stream

being decimated to lower frequency data streams and then expanded back to high fre-

quency output stream. Distributed pipelining manages parallel operation of data streams

at di�erent frequencies. Furthermore, the 16-point FFT architecture is hierarchically de-

composed of eight identical 4-point FFT blocks, denoted as dotted boxes in the top-level

PN model. The PN model for the 4-point FFT datapath is shown in Figure 5.19b.

The case study was subjected to the proposed design �ow, starting from PN description

to EB functional partitioning, and HDL direct mapping to circuit synthesis using the

RT design �ow. For comparative analysis, �ve implementations of the 16-point FFT

architecture were conducted: one bundled-data and four elastic-bundle (EB) asynchronous

circuit implementations. The circuits were described in Verilog and synthesised using

Design Compiler in the 90nm Faraday library. The circuits were tested using pre-de�ned

input stream of 1024 random numbers. Circuit simulations were conducted using VCS

simulator. The output data stream was veri�ed for each partitioning scheme by comparing

with MATLAB 16-point FFT computation. The SAIF (Switching Activity Interchange

Format) �le from the VCS simulations was used to calculate the power for each design

by PrimeTime-PX. The EB implementations are compared against the bundled-data 16-

point implementation. Table 5.1 summarises the pre-layout synthesis results of the case

study. Appendix B provides the verilog code of the FFT architecture for further reference.

Appendix C presents the synthesis timing constraints and setup scripts for the synthesis

of the asynchronous FFT circuits.

The bundled-data implementation represents a fully elastic or asynchronous imple-

mentation of the 16-point FFT architecture. EB Temporal is the �rst elastic-bundle

implementation of the architecture. Here, the adders and subtractors within the 4-point

96

(a) Top-level PN model

(b) PN model for Datapath block

Figure 5.19: PN model for 16-point FFT

97

Design
Total Area Control Area Control Logic Energy/Point Energy Control Area

(gates) (gates) Power (mW) (pJ) Bene�t Bene�t

EB Temporal 58,533 3,015 1.34 17.107 1.069 2.45

Opt EB Temporal 58,185 2,667 1.28 17.089 1.071 2.77

EB Maximal 57,921 2,403 1.24 17.105 1.069 3.08

EB Reuse 58,753 3,235 1.38 17.194 1.064 2.29

Bundled Data 62,993 7,399 2.03 18.294 1.000 1.00

Table 5.1: Synthesis results for several 16-point FFT designs

FFT datapath blocks are bundled according to their natural order of arrival of data tokens.

In this case, the circuit area overhead of asynchronous control got reduced by nearly 60%

compared to the bundled-data implementation, with a 34% improvement in control power

consumption. Opt EB Temporal implementation optimised the previous implementation

by restricting concurrency further whilst maintaining the natural order of data token ar-

rival. EB Maximal implementation restricted concurrency even further with less regard

to natural order of data arrival and more focus on reducing control overhead. This case is

described in Figure 5.19 where a maximal case of bundling adders and subtractors with

reduced concurrency can be visualised. Finally, the EB Reuse implementation focussed

on reducing datapath computation logic by exploiting natural order of data arrival tokens

to reuse adders and subtractors. The savings in area, as evident from the results, were

due to reduction of 50% of adders and subtractor logic. This implementation, however,

added control design complexity and control overhead in comparison to other EB imple-

mentations of the 16-point FFT. Appendix D provides the CDFGs for the 4-point FFT

datapath of remaining elastic-bundle implementations.

The range of circuit area overheads demonstrated in this case study is clearly in line

with the illustration of low-overhead elastic circuits presented earlier in Figure 1.1 (shad-

owed). Amongst the implementations, EB Maximal proves the most optimum demon-

strating lowest control logic power consumption and an improvement of 3.08× in terms of

control area over its bundled-data counterpart. All of the 16-point FFT EB implement-

ations demonstrate ∼ 7% improvement in energy per data point. Noting that all FFT

implementations share the same datapath, the energy improvement was due to reductions

in control logic switching power coming from optimised bundled-data control.

It should be noted that the synthesis of datapath and control logic delay elements

98

were conducted under worst-case timing-driven analysis. The possibility of average-case

performance of asynchronous circuits and recalculation of delay elements when bundling

concurrent computations using statistical timing analysis methods [118] have not been

incorporated in this study. As future work, these techniques will be employed in the

synthesis �ow along with place and route for determining more accurate results.

5.5 Conclusions and Future Work

The chapter was motivated from the exploration of research area identi�ed in Figure 1.1.

We proposed a novel method for synthesising asynchronous circuits with varying levels of

rigidity. The hypothesis was that bundles would reduce the area overheads of asynchron-

ous design by relaxing granularity of handshake control. A PN-based data�ow modelling

technique was developed to model digital systems on a higher level of abstraction than

RTL. Functional partitioning was then introduced in these data�ow models by identi-

fying sets of bundles that could restrict elasticity whilst retaining functional behaviour.

Taking the case of asynchronous bundled-data circuits, these sets of bundles were exten-

ded to a novel notion of Elastic Bundles which basically re-partitioned the design into

coarse-grained locally clocked elements (synchronised) and �ne-grained locally clocked

elements (asynchronous). This net transformation enabled synthesis of the elastic-bundle

circuits under standard EDA tool �ow. The method was tested on a 16-point FFT

algorithm and the synthesis results look promising.. The elastic-bundle FFT implement-

ations reduced control area overhead by a margin > 2× whilst demonstrating > 30%

reduction in control power consumption when compared against the bundled-data coun-

terpart.

Though the methodology presented in this research is in its infancy, we have presented

a strong case for further exploration. Using small design examples, we have proposed

methods that could apply to larger designs. However, design automation is required to be

able to test the principles with manageable designer productivity. Extraction of Petri nets

from C-like high level speci�cation of systems, automated direct mapping of PN-based

HDL to behavioural verilog and automating the generation of RT timing constraints are

good areas for future work.

99

100

Chapter 6

Conclusion

Design complexity of traditionally clocked SoCs have resulted in emerging trends of

mixed synchronous-asynchronous design. With growing research support in synchronous-

asynchronous CAD tool integration, the design style is a promising approach for future

SoCs. However, this paradigm is still in its infancy begging for formal methods, tools and

design methodologies.

In this thesis, we have presented a formal model based on Petri nets with step semantics

to represent the behaviour of mixed synchronous-asynchronous circuits. Theory of step

persistence and bundles were formulated for veri�cation and synthesis of these circuits.

We hope that this theory would pave the way towards formal design and veri�cation of

mixed synchronous-asynchronous systems. With regards to tools and design methodology,

a novel method for synthesising asynchronous circuits with varying levels of rigidity was

proposed. Petri net modelling tool was used to describe the CDFG of a system and

facilitate functional partitioning. The resulting elastic-bundle circuit was synthesised

using standard EDA tools based on the RT synchronous-asynchronous design �ow.

We think that this is the �rst work of its kind which presents a common formal method

to represent mixed synchronous-asynchronous circuits. The work also demonstrated synt-

hesis of mixed synchronous-asynchronous circuits starting from formal models to standard

EDA tool �ows. The results demonstrate strong potential of the method which would scale

well for larger SoC designs.

101

6.1 Summary of Contributions

In Chapter 3, we started with the evaluation of GALS-based physical partitioning. We

think that the work presented here is distinct amongst previous GALS literature as it

provides an elaborate and thorough physical partitioning methodology for judging the

applicability of GALS to SoC architectures. A parametric model is presented to design

the CDN according to speci�c design constraints. Using this scheme, a simulation frame-

work based on statistical system modelling was built where we analysed the e�ects of

GALS partition granularity over di�erent process technologies. Energy consumption of

various GALS partitioning scenarios have been estimated and compared against a globally

synchronous implementation. We have analysed the impact of GALS physical partition-

ing on latency and power of a system considering a generic design scenario. Our analysis

was targeted at application-speci�c SoC designs as it was noted that their data path style

architecture would bene�t the most from GALS. Investigation in this chapter identi�ed

several limitations of the physical partitioning approach in GALS-based SoC design. The

physical partitioning strategy would only provide a subset of solutions towards energy

e�cient system design. The design bene�ts gained from this approach does not justify

the amount of design hours that would be encountered with this design style.

In Chapter 4, we investigated the behaviour of mixed synchronous-asynchronous ci-

rcuits. The speci�cation of a system is given in the form of a Petri net. Our aim was

to re-design the system to optimise signal management, by grouping together concurrent

events. Looking at the concurrent reachability graph of the given Petri net, we were in-

terested in discovering events that appear in `bundles', so that they all can be executed

in a single clock tick. The best candidates for bundles are sets of events that appear

and re-appear over and over again in the same con�gurations, forming `persistent' sets of

events. Persistence was considered so far only in the context of sequential semantics. In

this chapter, we moved to the realm of step based execution and consider steps which are

persistent and cannot be disabled by other steps. We introduce the notion of persistent

steps and discuss their basic properties. We then introduce a formal de�nition of a bundle

and propose an algorithm to prune the behaviour of a system, so that only bundled steps

remain. The pruned reachability graph represents the behaviour of a re-engineered sy-

102

stem, which in turn can be implemented in a new Petri net using the standard techniques

of net synthesis. The proposed algorithm prunes reachability graphs of persistent and safe

nets leaving bundles that represent maximally concurrent steps. The signi�cance of the

formal model and its various properties in the veri�cation and synthesis of digital circuits

was investigated. The implications of di�erent classes of bundles on the complexity of

control design was suggested.

In Chapter 5, we employed the formal methods and algorithm proposed in Chapter

4 to synthesise asynchronous circuits of varying levels of rigidity. A compact representa-

tion of system behaviour based on CDFG was proposed using Petri nets. Bundles were

identi�ed to relax elastic handshaking so that area overhead could be reduced whilst

retaining functional behaviour. A scheme of varying granularity levels of rigidity was

demonstrated to facilitate partitioning of the design into functional blocks of synchro-

nised and asynchronised elements. The bundled design was veri�ed on the basis of the

formalised theory and then transformed into an equivalent circuit. Using the RT-based

synchronous-asynchronous design �ow, the mixed synchronous-asynchronous circuit was

synthesised using standard EDA tools. The methodology was demonstrated on a 16-

point FFT algorithm. The asynchronous circuit of the 16-point FFT was implemented

as a bundled-data asynchronous pipeline with �ne-grained handshake clocking. Elastic

bundles were identi�ed as those bundles in bundle-data circuits which are constrained to

be handshake-clocked in step mannerism. Based on this principle, the design was par-

titioned the into coarse-grained locally clocked elements (synchronised) and �ne-grained

locally clocked elements (asynchronous). Asynchronous circuits with a range of granular

rigidity were identi�ed. Synthesis results demonstrated signi�cant savings in area over-

head and power consumption of the control circuitry. The area overhead reduction was

shown to lie in the range of the shaded area depicted in Figure 1.1. In summary, we explo-

red functional partitioning of an asynchronous system by identifying elastic bundles that

can be bundled in time with similar synchronisation delay. In the realm of SoCs, `Elastic

Bundles' are viewed as �ne-grained heterogeneous islands. We successfully demonstrated

the use of clocked CAD tool to synthesise these elastic-bundle circuits.

103

6.2 Future Work

In order to develop this work further, the methodology needs to be tested over a variety

of small designs covering heterogeneous processor �ows and non-deterministic data�ows.

Based on observations made in this research, the theory can be expanded to cover an

extensive set of properties and problem statements. A good direction for future theoreti-

cal investigation would be to understand the signi�cance of nonviolence[103, 104] in the

behaviour of circuits.

The next move would be to explore avenues for automation of data�ow analysis and

functional partitioning. Here, we would want to introduce the concept of timing in these

graphs together with an annotation system for considering design considerations such as

peak power. Timed Petri nets would be a good place to start. Automation of bundling

could then be used to explore larger designs. Our method can then be compared with

other functional partitioning schemes such as [18, 20, 42].

The principle of enforcing granular rigidity can be conducted on a coarser grain level to

represent a granular clock signal similar to synchronous clock without a�ecting functional

behaviour. This principle can reduce area overhead and maintain elasticity if designed

well. Here, functional partitions would be wrapped in physical boundaries where a clock

signal can replace local handshaking. Elastic clocks [91] demonstrates the same principle.

Another area of future work would be to synthesise synchronous handshake circuits or

synchronous elastic circuits using the scheme of Elastic bundles. The principle of enforcing

rigidity can be used to reduce the area overheads of synchronous elastic circuits.

104

Bibliography

[1] W. Lee, V. Vij et al., �Design of Low Energy, High Performance Synchronous and

Asynchronous 64-Point FFT,� Proc. Design, Automation & Test in Europe (DATE),

pp. 242�247, 2013.

[2] C. Brej, �Wagging logic: Implicit parallelism extraction using asynchronous metho-

dologies,� in Int. Conf. on Application of Concurrency to System Design (ACSD),

2010, pp. 35�44.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic

synthesis for asynchronous controllers and interfaces, ser. Integrated Circuits and

Systems. Springer-Verlag, 2002.

[4] C. Myers, Asynchronous circuit design. Wiley, 2004.

[5] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. P. Pande,

C. Grecu, and A. Ivanov, �System-on-chip: Reuse and integration,� Proc. of the

IEEE, vol. 94, no. 6, pp. 1050�1069, 2006.

[6] P. Greenhalgh, �Big.little processing with arm cortex-a15 & cortex-a7,� ARM White

paper, pp. 1�8, 2011.

[7] X. Fan, M. B. Stegmann, O. Schrape, S. Zeidler, I. G. Jensen, J. Thorsen, T. Bjer-

regaard, and M. Krsti¢, �Frequency-domain optimization of digital switching noise

based on clock scheduling,� IEEE Trans. on Circuits and Systems, vol. 63, no. 7,

pp. 982�993, 2016.

[8] L. Benini and G. De Micheli, �Networks on chips: A new SoC paradigm,� Computer,

vol. 35, no. 1, pp. 70�78, 2002.

105

[9] J. Henkel, W. Wolf, and S. Chakradhar, �On-chip networks: A scalable,

communication-centric embedded system design paradigm,� in Proc. Int. Conf. on

VLSI Design, 2004, pp. 845�851.

[10] A. Hemani, T. Meincke et al., �Lowering power consumption in clock by using

globally asynchronous locally synchronous design style,� Proc. Design Automation

Conference (DAC), pp. 873�878, 1999.

[11] A. Iyer and D. Marculescu, �Power and performance evaluation of globally asyn-

chronous locally synchronous processors,� Proc. Computer Architecture, no. 4901,

pp. 158�168, 2002.

[12] A. Chattopadhyay and Z. Zilic, �Galds: a complete framework for designing multi-

clock asics and socs,� IEEE Trans. on Very Large Scale Integration (VLSI) Systems,

vol. 13, no. 6, pp. 641�654, 2005.

[13] R. Dobkin, R. Ginosar, and C. Sotiriou, �High Rate Data Synchronization in GALS

SoCs,� IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 10,

pp. 1063�1074, 2006.

[14] T. Krol, M. Krstic, X. Fan, and E. Grass, �Modeling and reducing emi in gals

and synchronous systems,� Proc. Int. Workshop on Power And Timing Modeling,

Optimization and Simulation (PATMOS), vol. 5953, pp. 146�155, 2009.

[15] X. Fan, M. Krstic, and E. Grass, �Performance Analysis of GALS Datalink Based

on Pausible Clocking,� Proc. Asynchronous Circuits and Systems (ASYNC), pp.

126�133, 2012.

[16] X. Fan, M. Krstic et al., �Exploring pausible clocking based gals design for 40-nm

system integration,� in Proc. Design, Automation & Test in Europe (DATE), 2012,

pp. 1118�1121.

[17] E. Czeck, R. Nanavati, and J. Stoy, �Reliable design with multiple clock domains,�

Proc. Formal Methods and Models for Co-Design (MEMOCODE), 2006.

106

[18] R. S. Nikhil, �Bluespec: A general-purpose approach to high-level synthesis based on

parallel atomic transactions,� in High-Level Synthesis. Springer, 2008, pp. 129�146.

[19] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Aviºienis, J. Wawrzynek,

and K. Asanovi¢, �Chisel: constructing hardware in a scala embedded language,� in

Proc. Design Automation Conference (DAC), 2012, pp. 1216�1225.

[20] A. Peeters, F. te Beest, M. de Wit, and W. Mallon, �Click elements: An implemen-

tation style for data-driven compilation,� in Int. Symp. on Asynchronous Circuits

and Systems (ASYNC), 2010, pp. 3�14.

[21] M. Mamaghani, W. Toms, and J. Garside, �eTeak: A Data-driven Synchronous

Elastic Synthesiser,� Int. Conf. on Application of Concurrency to System Design

(ACSD), 2013.

[22] S. Dasgupta and A. Yakovlev, �Desynchronisation Technique Using Petri Nets,�

Electronic Notes in Theoretical Computer Science, vol. 245, pp. 51�67, 2009.

[23] D. Sokolov and A. Yakovlev, �GALS Partitioning by Behavioural Decoupling Ex-

pressed in Petri Nets,� Proc. Asynchronous Circuits and Systems (ASYNC), pp.

17�26, 2014.

[24] K. Stevens, D. Gebhardt, J. You, Y. Xu, V. Vij, S. Das, and K. Desai, �The Future

of Formal Methods and GALS Design,� Electronic Notes in Theoretical Computer

Science, vol. 245, pp. 115�134, 2009.

[25] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, �Asynchronous

design using commercial hdl synthesis tools,� in Int. Symp. on Asynchronus Circuits

and Systems (ASYNC), 2000, pp. 114�125.

[26] A. Peeters and K. Van Berkel, �Synchronous handshake circuits,� in Int. Symp. on

Asynchronus Circuits and Systems (ASYNC), 2001, pp. 86�95.

[27] A. Kondratyev and K. Lwin, �Design of asynchronous circuits by synchronous cad

tools,� in Proc. Design Automation Conference (DAC), 2002, pp. 411�414.

107

[28] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, �Desynchronization:

Synthesis of asynchronous circuits from synchronous speci�cations,� IEEE Trans.

on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, pp.

1904�1921, 2006.

[29] J. Cortadella, M. Kishinevsky, and B. Grundmann, �Synthesis of synchronous elastic

architectures,� in Proc. Design Automation Conference (DAC), 2006, pp. 657�662.

[30] N. Andrikos, L. Lavagno, D. Pandini, and C. P. Sotiriou, �A fully-automated desyn-

chronization �ow for synchronous circuits,� in Proc. Design Automation Conference

(DAC), 2007, pp. 982�985.

[31] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin, �Elastic circuits,� IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,

no. 10, pp. 1437�1455, 2009.

[32] K. S. Stevens, Y. Xu, and V. Vij, �Characterization of asynchronous templates for

integration into clocked cad �ows,� in Proc. Asynchronous Circuits and Systems

(ASYNC), 2009, pp. 151�161.

[33] M. J. Mamaghani, J. D. Garside, W. B. Toms, and D. Edwards, �Optimised synthe-

sis of asynchronous elastic data�ows by leveraging clocked eda,� in Euromicro Conf.

on Digital System Design (DSD), 2014, pp. 607�614.

[34] J. Muttersbach, T. Villiger, and W. Fichtner, �Practical design of globally-

asynchronous locally-synchronous systems,� in Proc. Asynchronous Circuits and

Systems (ASYNC), 2000, pp. 52�59.

[35] Y. Zhu, D. H. Albonesi, and A. Buyuktosunoglu, �A high performance, energy

e�cient gals processor microarchitecture with reduced implementation complexity,�

in Proc. Int. Symp. on Performance Analysis of Systems and Software (ISPASS),

2005, pp. 42�53.

[36] M. Krstic, E. Grass, and C. Stahl, �Request-Driven GALS Technique for Wireless

Communication System,� Proc. Asynchronous Circuits and Systems (ASYNC), pp.

76�85, 2005.

108

[37] F. Gurkaynak, S. Oetiker et al., �GALS at ETH Zurich: Success or Failure,� Proc.

Asynchronous Circuits and Systems (ASYNC), pp. 150�159, 2006.

[38] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu, �Voltage-frequency

island partitioning for gals-based networks-on-chip,� in Proc. Design Automation

Conference (DAC), 2007, pp. 110�115.

[39] M. Krstic, M. Piz, M. Ehrig, and E. Grass, �Ofdm datapath baseband processor for

1 gbps datarate,� Proc. IFIP/IEEE VLSI-SoC, pp. 13�15, 2008.

[40] S. Suhaib, D. Mathaikutty, and S. Shukla, �Data�ow architectures for gals,� Elec-

tronic Notes in Theoretical Computer Science, vol. 200, no. 1, pp. 33�50, 2008.

[41] Z. Yu and B. Baas, �High Performance, Energy E�ciency, and Scalability With

GALS Chip Multiprocessors,� IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, vol. 17, no. 1, pp. 66�79, 2009.

[42] M. Jelodari Mamaghani, D. Sokolov, and J. Garside, �Asynchronous data�ow de-

elastisation for e�cient heterogeneous synthesis,� in Int. Conf. on Application of

Concurrency to System Design (ACSD), 2016.

[43] M. J. Mamaghani, M. Krstic, and J. Garside, �Automatic clock: A promising ap-

proach toward galsi�cation,� in Int. Symp. on Asynchronous Circuits and Systems

(ASYNC), 2016.

[44] D. Chapiro, �Globally-asynchronous locally-synchronous systems,� Ph.D. disserta-

tion, Stanford University, 1984.

[45] J. Sparso and S. Furber, Principles of asynchronous circuit design: a systems per-

spective. Kluwer Academic Publishers, 2001.

[46] S. M. Nowick and M. Singh, �High-performance asynchronous pipelines: an over-

view,� IEEE Design & Test of Computers, vol. 28, no. 5, pp. 8�22, 2011.

[47] R. Keller, �A fundamental theorem of asynchronous parallel computation,� Lecture

Notes in Computer Science, vol. 24, pp. 102�112, 1975.

109

[48] M. Koutny and M. Pietkiewicz-Koutny, �Transition systems of elementary net sys-

tems with localities,� in Proc. Int. Conf. on Concurrency Theory, 2006, pp. 173�187.

[49] T. Murata, �Petri nets: Properties, analysis and applications,� Proc. of the IEEE,

vol. 77, no. 4, pp. 541�580, 1989.

[50] A. Yakovlev, A. Koelmans, A. Semenov, and D. Kinniment, �Modelling, analysis

and synthesis of asynchronous control circuits using petri nets,� Integration , the

VLSI Journal, vol. 21, pp. 143�170, 1996.

[51] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, �Har-

dware and petri nets application to asynchronous circuit design,� in Int. Conf. on

Application and Theory of Petri Nets, 2000, pp. 1�15.

[52] C. A. Petri, �Kommunikation mit automaten,� Ph.D. dissertation, Rheinisch-

Westfälisches Institut für Instrumentelle Mathematik an der Universität Bonn, 1962.

[53] D. Sokolov and A. Yakovlev, �Clockless circuits and system synthesis,� IEE

Proceedings-Computers and Digital Techniques, vol. 152, no. 3, pp. 298�316, 2005.

[54] S. Tugsinavisut, R. Su, and P. A. Beerel, �High-level synthesis for highly concurrent

hardware systems,� in Int. Conf. on Application of Concurrency to System Design

(ACSD), 2006, pp. 79�90.

[55] S. A. Seshia, R. E. Bryant, and K. S. Stevens, �Modeling and verifying circuits using

generalized relative timing,� in Proc. Asynchronous Circuits and Systems (ASYNC),

2005, pp. 98�108.

[56] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and

M. L. Scott, �Energy-e�cient processor design using multiple clock domains with

dynamic voltage and frequency scaling,� in Proc. Int. Symp. on High-Performance

Computer Architecture, 2002, pp. 29�40.

[57] A. Upadhyay, S. R. Hasan, and M. Nekili, �Optimal partitioning of globally asychro-

nous locally synchronous processor arrays,� Proc. ACM Great Lakes Symposium on

VLSI, pp. 7�12, 2004.

110

[58] E. Talpes and D. Marculescu, �Toward a multiple clock/voltage island design style

for power-aware processors,� IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, vol. 13, no. 5, pp. 591�603, 2005.

[59] E. Friedman, �Clock distribution networks in synchronous digital integrated cir-

cuits,� Proc. of the IEEE, vol. 89, no. 5, pp. 665�692, 2001.

[60] H. Mahmoodi, V. Tirumalashetty, M. Cooke, and K. Roy, �Ultra low-power clocking

scheme using energy recovery and clock gating,� IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. 17, pp. 33�44, 2009.

[61] S. Pullela, N. Menezes, and L. Pillage, �Reliable non-zero skew clock trees using

wire width optimization,� Proc. Design Automation Conference (DAC), pp. 165�

170, 1993.

[62] D. Velenis, R. Sundaresha, and E. Friedman, �Bu�er sizing for delay uncertainty

induced by process variations,� in Proc. Int. Conf. on Electronics, Circuits and

Systems (ICECS), 2004, pp. 415�418.

[63] A. Fisher and H. Kung, �Synchronizing large VLSI processor arrays,� IEEE Trans.

on Computers, vol. c, no. 8, pp. 734�740, 1985.

[64] S. Tam, Modern Clock Distribution Systems, ser. Integrated Circuits and Systems,

T. Xanthopoulos, Ed. Springer US, 2009.

[65] Y. Semiat and R. Ginosar, �Timing measurements of synchronization circuits,� Proc.

Asynchronous Circuits and Systems (ASYNC), pp. 68�77, 2003.

[66] R. Dobkin and R. Ginosar, �Zero latency synchronizers using four and two phase

protocols,� Tech. Rep., 2007.

[67] S. Moore, G. Taylor, R. Mullins, and P. Robinson, �Point to point gals interconnect,�

in Proc. Asynchronous Circuits and Systems (ASYNC), 2002, pp. 69�75.

[68] X. Fan, M. Krstic, and E. Grass, �Analysis and optimization of pausible clocking

based GALS design,� IEEE Int. Conf. on Computer Design, pp. 358�365, 2009.

111

[69] T. Chelcea and S. Nowick, �A low-latency �fo for mixed-clock systems,� Proc. IEEE

Computer Society Workshop on VLSI, pp. 119�126, 2000.

[70] P. Teehan, M. Greenstreet, and G. Lemieux, �A survey and taxonomy of gals design

styles,� IEEE Design Test of Computers, vol. 24, pp. 418�428, 2007.

[71] J.-M. Chabloz and A. Hemani, �Lowering the latency of interfaces for rationally-

related frequencies,� Proc. Int. Conf. on Computer Design, pp. 23�30, 2010.

[72] R. Ginosar, �Metastability and synchronizers: A tutorial,� IEEE Design and Test

of Computers, vol. 28, no. 5, pp. 23�35, 2011.

[73] K. Y. Yun and A. E. Dooply, �Pausible clocking-based heterogeneous systems,�

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 7, pp. 482�488,

1999.

[74] R. Mullins and S. Moore, �Demystifying Data-Driven and Pausible Clocking Sche-

mes,� Proc. Asynchronous Circuits and Systems (ASYNC), pp. 175�185, 2007.

[75] S. Borkar, �Design challenges of technology scaling,� IEEE Micro, vol. 19, pp. 23�29,

1999.

[76] D. Chinnery and K. Keutzer, Closing the gap between ASIC & custom: tools and

techniques for high-performance ASIC design, 2007.

[77] S. Nassif, �Modeling and analysis of manufacturing variations,� Proc. Custom Inte-

grated Circuits Conference, pp. 223�228, 2001.

[78] Predictive technology model. [Online]. Available: http://ptm.asu.edu/

[79] Semiconductor Industry Association. (2001) International Technology Roadmap

for Semiconductors (ITRS). [Online]. Available: http://www.itrs2.net/

[80] X. Jiang and S. Horiguchi, �Optimization of wafer scale h-tree clock distribution

network based on a new statistical skew model,� in Proc. Defect and Fault Tolerance

in VLSI Systems, 2000, pp. 96�104.

112

http://ptm.asu.edu/
http://www.itrs2.net/

[81] M. Hashimoto, T. Yamamoto, and H. Onodera, �Statistical analysis of clock skew

variation in h-tree structure,� in Proc. Quality of Electronic Design (ISQED), 2005,

pp. 402�407.

[82] A. Narasimhan and R. Sridhar, �Impact of Variability on Clock Skew in H-tree

Clock Networks,� Proc. Quality Electronic Design (ISQED), pp. 458�466, 2007.

[83] M. Seok, D. Blaauw, and D. Sylvester, �Robust clock network design methodology

for ultra-low voltage operations,� IEEE Journal on Emerging and Selected Topics

in Circuits and Systems, vol. 1, no. 2, pp. 120�130, 2011.

[84] X. Jiang and S. Horiguchi, �Statistical skew modeling for general clock distribu-

tion networks in presence of process variations,� IEEE Trans. on Very Large Scale

Integration (VLSI) Systems, vol. 9, no. 5, pp. 704�717, 2001.

[85] A. Agarwal, V. Zolotov, and D. T. Blaauw, �Statistical clock skew analysis con-

sidering intradie-process variations,� IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 23, no. 8, pp. 1231�1242, 2004.

[86] D. Mijuskovic, �Clock distribution in application speci�c integrated circuits,� Mi-

croelectronics Journal, vol. 18, no. 4, pp. 15 � 27, 1987.

[87] C. Kashyap, C. Alpert et al., �PERI: a technique for extending delay and slew

metrics to ramp inputs,� Proc. Timing Issues in the Speci�cation and Synthesis of

Digital Systems, 2002.

[88] Min Pan, Chris Chong-Nuen Chu, and J. Morris Chang, �Transition Time Bounded

Low-power Clock Tree Construction,� Proc. Int. Symp. on Circuits and Systems

(ISCAS), pp. 2445�2448, 2005.

[89] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D. Mullins, and P. Robinson,

�Self calibrating clocks for globally asynchronous locally synchronous systems,� in

Proc. Int. Conf. on Computer Design, 2000, pp. 73�78.

[90] A. Davis and S. M. Nowick, An Introduction to Asynchronous Circuit Design, ser.

The Encyclopedia of Computer Science and Technology, 1997.

113

[91] J. Cortadella, L. Lavagno, D. Amiri, J. Casanova, C. Macian, F. Martorell, J. A.

Moya, L. Necchi, D. Sokolov, and E. Tuncer, �Narrowing the margins with elastic

clocks,� in Int. Conf. on IC Design and Technology (ICICDT), 2010, pp. 146�150.

[92] L. Landweber and E. Robertson, �Properties of con�ict-free and persistent Petri

nets,� Journal of the ACM (JACM), vol. 25, pp. 352�364, 1978.

[93] E. Best and P. Darondeau, �Decomposition theorems for bounded persistent Pe-

tri nets,� Int. Conf. on Applications and Theory of Petri Nets and Concurrency

(ICATPN), vol. 5062, pp. 33�51, 2008.

[94] E. Best and P. Darondeau, �Separability in persistent petri nets,� Int. Conf. on

Applications and Theory of Petri Nets and Concurrency (ICATPN), vol. 6128, pp.

246�266, 2010.

[95] K. Barylska, L. Mikulski, and E. Ochmanski, �On persistent reachability in petri

nets,� Information and Computation, vol. 223, pp. 67�77, 2013.

[96] S. Dasgupta, D. Potop-Butucaru, B. Caillaud, and A. Yakovlev, �Moving from

Weakly Endochronous Systems to Delay-Insensitive Circuits,� Electronic Notes in

Theoretical Computer Science, vol. 146, pp. 81�103, 2006.

[97] D. Muller and W. Bartky, �A theory of asynchronous circuits,� Proc. Int. Symp. on

the Theory of Switching, pp. 204�243, 1959.

[98] A. Yakovlev, �Designing self-timed systems,� VLSI System Design, vol. vi, pp. 70�

90, 1985.

[99] K. Barylska and E. Ochmanski, �Levels of persistency in place/transition nets,�

Fundamenta Informaticae, vol. 93, pp. 33�43, 2009.

[100] J. Carmona, J. Julvez, J. Cortadella, and M. Kishinevsky, �Scheduling synchronous

elastic designs,� in Int. Conf. on Application of Concurrency to System Design

(ACSD, ser. ACSD '09, 2009, pp. 52�59.

114

[101] A. Mokhov, V. Khomenko, D. Sokolov, and A. Yakovlev, �Opportunistic merge

element,� in Int. Symp. on Asynchronus Circuits and Systems (ASYNC), 2015, pp.

116�123.

[102] J. Fernandes, M. Koutny, M. Pietkiewicz-Koutny, D. Sokolov, and A. Yakovlev,

�Step persistence in the design of gals systems,� Int. Conf. on Applications and

Theory of Petri Nets and Concurrency (ICATPN), vol. 7927, pp. 190�209, 2013.

[103] M. Koutny, L. Mikulski, and M. Pietkiewicz-Koutny, �A taxonomy of persistent

and nonviolent steps,� Int. Conf. on Applications and Theory of Petri Nets and

Concurrency (ICATPN), vol. 7927, pp. 210�229, 2013.

[104] J. Fernandes, M. Koutny, L. Mikulski, M. Pietkiewicz-Koutny, D. Sokolov, and

A. Yakovlev, �Persistent and nonviolent steps and the design of gals systems,� Fun-

damenta Informaticae, vol. 137, pp. 143�170, 2015.

[105] I. Blunno and L. Lavagno, �Automated synthesis of micro-pipelines from behavioral

verilog hdl,� in Int. Symp. on Asynchronus Circuits and Systems (ASYNC), 2000,

pp. 84�92.

[106] F. Te Beest, A. Peeters, K. Van Berkel, and H. Kerkho�, �Synchronous full-scan for

asynchronous handshake circuits,� Journal of Electronic Testing, vol. 19, no. 4, pp.

397�406, 2003.

[107] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G. Mercer,

and C. J. Myers, �Synchronous interlocked pipelines,� in Int. Symp. on Asynchronus

Circuits and Systems (ASYNC), 2002, pp. 3�12.

[108] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli, �A

methodology for correct-by-construction latency insensitive design,� in The Best of

ICCAD, 2003, pp. 143�158.

[109] M. J. Mamaghani, J. Garside, and D. Edwards, �De-elastisation: from asynchronous

data�ows to synchronous circuits,� in Proc. Design, Automation & Test in Europe

(DATE), 2015, pp. 273�276.

115

[110] I. Poliakov, D. Sokolov, and A. Mokhov, �Workcraft: a static data �ow structure

editing, visualisation and analysis tool,� in Int. Conf. on Applications and Theory

of Petri Nets and Concurrency (ICATPN).

[111] I. Poliakov, V. Khomenko, and A. Yakovlev, �Workcraft�a framework for interpre-

ted graph models,� in Int. Conf. on Applications and Theory of Petri Nets and

Concurrency (ICATPN).

[112] �Workcraft homepage, URL: http://www.workcraft.org.�

[113] J. B. Dennis and D. P. Misunas, �A preliminary architecture for a basic data-�ow

processor,� in ACM SIGARCH Computer Architecture News, vol. 3, no. 4, 1975, pp.

126�132.

[114] D. Culler, �Data�ow architectures,� Annual Review of Computer Science, vol. 1,

no. 1, pp. 225�253, 1986.

[115] A. Mokhov, D. Sokolov, and A. Yakovlev, �Adapting asynchronous circuits to ope-

rating conditions by logic parametrisation,� in Int. Symp. on Asynchronus Circuits

and Systems (ASYNC), 2012, pp. 17�24.

[116] R. Manohar and A. J. Martin, �Slack elasticity in concurrent computing,� in Inter-

national Conference on Mathematics of Program Construction, 1998, pp. 272�285.

[117] D. J. Barnhart, �An improved asynchronous implementation of a fast fourier trans-

form architecture for space applications,� Air Force Institute of Technology, United

States Air Force, Tech. Rep., 1999.

[118] D. Blaauw, K. Chopra, A. Srivastava, and L. Sche�er, �Statistical timing analysis:

From basic principles to state of the art,� IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, vol. 27, no. 4, pp. 589�607, 2008.

116

http://www.workcraft.org

Appendix A

MATLAB code of GALS physical partitioning analysis

The following code is a MATLAB script �le that provides the source code for the simulation framework

used in Chapter 3. CMOS technology parameters for each of the process technology nodes will need to be

uncommented out before deriving results for respective process technologies. The script can be modi�ed

for designer-desired chip sizes. However, the script does not automate partitioning. The sizes of the parti-

tions would need to be manually computed from an external script and modi�ed accordingly in the script.

clear;

clc;

%�������������������

%CMOS Technology Parameters (Ref:Nassif)

%65nm

Vdd=0.9;

Vt_m=0.3;

Vt_3sd=0.04;

Tox_m=3e-9; Tox_3sd=0.48e-9; %gate oxide thickness in metres

Res_m=0.075 ; Res_3sd=0.025; %Sheet resistance ohm/sq block=(resistivity/T_INT)

W_INT_m=0.3 ; W_INT_3sd=0.1; %um

H_INT_m=0.7 ; H_INT_3sd=0.25; %um this is inter layer dielectric (ILD) height not thickness

% Parameters from Ref: ASU PTM

T_INT=1.2; %um thickness of wire

k=2.2;

DielCon0=885.4e-14; %F/m 8.854e-14F/cm

DielCon=k*DielCon0; %F/m

Cox=DielCon/Tox_m; %gate unit area cap

mu=0.0067; % charge carrier mobility (670 cm2/(V*s))

%Minimum sized inverter (Ref: scaled from Jiang)

Lt_m=0.065; Lt_3sd=0.033; %um transistor length (3sd from Nassif)

wt_nmos=0.37*65/250; %um

117

wt_pmos=1.1*65/250; %um

K=mu*Cox*wt_nmos/Lt_m; %On resistance depends on nmos

Ro=1/(K*(Vdd-Vt_m)); % output impedance

Co=Cox*Lt_m*(wt_nmos+wt_pmos)*1e-6*1e-6/1e-15; %fF input capacitance

Cd=Co/(2.5); %fF output parasitic capactiance (2.5=14.3/5.8 from Ref: Hashimoto)

%FF Capacitance

FF_Cap=2.5; %fF

FO4dly=Ro*(4*Co+Cd)*1e-3; %ps

C_INT=DielCon*1e-6*((W_INT_m/H_INT_m)+0.77 ...

+1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

%fF/um capacitance of nominal width interconnect

R=Res_m/W_INT_m; %ohm/um Resistance of nominal width interconnect

%SoC Design Parameters

%CDN Sink Density

SinkD=(18069/2.2)*0.49; %FFs per mm2

%Clock constraints

f=(1e12/(100*FO4dly)); %scaled clock frequency to satisify MUTEX resolution time constraint

CP=(1/f)*1e12; %Clock period (ps)

Budget=0.05;

TlenVARbudget=0.4; % Budget percentage for process variations. 0.6 for environmental

Target_Skew=CP*Budget; %Total Skew Budget

Target_LocSkew=Target_Skew*0.4 ; %Local Skew Budget

Target_GloSkew=Target_Skew*0.6*TlenVARbudget ; %Global Skew Budget

Target_Rise=CP*0.15; %Clock Signal Rise Time

MAX_LogicDly=CP*(1-Budget); %Worst case delay of comb logic

%����������������

%Island Matrix sizing for 65nm

%Using Values generated from Equal area sizing script

%1 island

GALS(1,1)=3200;GALS(1,2)=3200;

%2 islands

GALS(2,1)=1600;GALS(2,2)=3200;

%3 islands

GALS(3,1)=2133.33;GALS(3,2)=1600;GALS(4,1)=1066.67;GALS(4,2)=3200;

%4 islands

GALS(5,1)=1600;GALS(5,2)=1600;

%5 islands

GALS(6,1)=1600;GALS(6,2)=1280;GALS(7,1)=960;GALS(7,2)=2133.33;

GALS(8,1)=1066.67;GALS(8,2)=1920;

118

%6 islands

GALS(9,1)=1600;GALS(9,2)=1066.67;

%7 islands

GALS(10,1)=1600;GALS(10,2)=914.33;GALS(11,1)=2133.33;GALS(11,2)=685.67;

GALS(12,1)=1371.4;GALS(12,2)=1066.67;

%8 islands

GALS(13,1)=800;GALS(13,2)=1600;

%9 islands

GALS(14,1)=1600;GALS(14,2)=711.11;GALS(15,1)=888.89;GALS(15,2)=1280;

GALS(16,1)=960;GALS(16,2)=1185.2;GALS(17,1)=592.6;GALS(17,2)=1920;

%10 islands

GALS(18,1)=640;GALS(18,2)=1600;

%11 islands

GALS(19,1)=1600;GALS(19,2)=581.8;GALS(20,1)=1280;GALS(20,2)=727.3;

GALS(21,1)=960;GALS(21,2)=969.7;GALS(22,1)=1920;GALS(22,2)=484.8;

%12 islands

GALS(23,1)=1600;GALS(23,2)=533.33;

%13 islands

GALS(24,1)=1600;GALS(24,2)=492.3;GALS(25,1)=914.3;GALS(25,2)=861.5;

GALS(26,1)=1148.7;GALS(26,2)=685.7;GALS(27,1)=1371.4;GALS(27,2)=574.4;

%14 islands

GALS(28,1)=1600;GALS(28,2)=457.1;

%15 islands

GALS(29,1)=426.67;GALS(29,2)=1600;GALS(30,1)=914.3;GALS(30,2)=746.67;

GALS(31,1)=995.56;GALS(31,2)=685.7;GALS(32,1)=1371.4;GALS(32,2)=497.78;

%16 islands

GALS(33,1)=800; GALS(33,2)=800;

%Design sizing for two cases of chip sizes

%GALS=GALS*2.35; %size = 7.52mm X 7.52mm

%GALS=GALS*0.625; %size = 2mm X 2mm

%Number of islands per partition granularity

NI(1)=1; NI(2)=2;NI(3)=2;NI(4)=1; NI(5)=4;NI(6)=2; NI(7)=2;NI(8)=1;NI(9)=6;

NI(10)=4;NI(11)=2; NI(12)=1; NI(13)=8; NI(14)=4; NI(15)=2;NI(16)=2;NI(17)=1;

NI(18)=10;NI(19)=6;NI(20)=2; NI(21)=2;NI(22)=1;NI(23)=12;NI(24)=6;NI(25)=4;

NI(26)=2; NI(27)=1; NI(28)=14; NI(29)=8; NI(30)=4;NI(31)=2;NI(32)=1;NI(33)=16;

%����������������

%����������������

%Clock Tree Synthesis of Synchronous Chip

y=1;

h=GALS(y,1); %�oorplan height (um)

w=GALS(y,2); %�oorplan width (um)

%initialise to enter while loop

lamda=50;

Max_Skew=400;

119

Local_Skew=400;

RISE=1000;

L=0;

W=0;

Cint=0;

Variance_Cint=0;

Rint=0;

Variance_Rint=0;

x=0;

Pdly=0;

Rdly=0;

Rdly_out=0;

Testdly=0;

Variance_Rdly=0;

Variance_Pdly=0;

SD_Rdly=0;

SD_Pdly=0;

FFs_sink=256; %Maximum allowed FF per sink

FF_Tot=round(SinkD*(h*w)*1e-6) ;

Total_L=FF_Tot*FF_Cap; %fF

C_L=FFs_sink*FF_Cap; %fF Load per sink

N=Total_L/C_L; %no of sinks

alpha=(log(N)/log(4)); %alpha denotes Number of Hs� alpha*2 =clock tree levels

if alpha < 0

alpha=0;

end

%Algorithm to distribute FFs evenly

if mod(2*alpha,2)>0

alpha=ceil(log(N)/log(4));

N=4^alpha;

FFs_sink=round(FF_Tot/N);

C_L=FFs_sink*FF_Cap;

end

D=((2^alpha)-1)*(h+w)/((2^(alpha+1))); %distance from root of tree to sink

%Clock Tree bu�er optimisation

if alpha == 0

%Only Local interconnect bu�er optimisation

Max_Skew=0;

120

sz=0;

while (Local_Skew>Target_LocSkew)||(RISE>Target_Rise)

lamda=lamda-0.1;

if (lamda<1)

lamda=lamda+0.333333; %also debug purpose

break;

end

Variance_K= ((mu*(DielCon/(Tox_m)^2)*(wt_nmos/Lt_m))^2)*...

((Tox_3sd/3)^2)+ ((mu*(DielCon/Tox_m)*...

(wt_nmos/(Lt_m)^2))^2)*((Lt_3sd/3)^2);

Variance_Ro= ((1/((K^2)*(Vdd-Vt_m)))^2)*Variance_K+ ...

((1/(K*((Vdd-Vt_m)^2)))^2)*((Vt_3sd/3)^2);

x(sz+1)= round(C_L/(lamda*Co-Cd));

RISE=(10^-3)*2.3*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Pdly(sz+1)=(10^-3)*0.69*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Variance_Pdly(sz+1)=(((0.69/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Pdly(sz+1)= (10^-3)*sqrt(Variance_Pdly(sz+1));

%Local Skew calculation (skew = Max path delay - Min path delay)

%Min path is at starting point of grid.... delay is only bu�er delay

%Max path is at end of grid (determined by Manhattan Distance)

%Local skew = Max path + 3sigma (max path delay)

% + 3sigma (max path input bu�er) + 3sigma(min path input bu�er)

h_hsize= h/(2^alpha);

w_hsize= w/(2^alpha);

Cint_internal=(h_hsize+w_hsize)*DielCon*1e-6*((W_INT_m/H_INT_m)+0.77...

+1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint_internal=(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*...

((1/H_INT_m) + (1.06*0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(1/H_INT_m))))^2)*((W_INT_3sd/3)^2) + ...

(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*(-(W_INT_m)*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(-(W_INT_m)*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

Rint_internal=(h_hsize+w_hsize)*R;

Variance_Rint_internal=(((h_hsize+w_hsize)/(W_INT_m))^2)*((Res_3sd/3)^2) + ...

((((h_hsize+w_hsize)*Res_m)/((W_INT_m^2)))^2)*((W_INT_3sd/3)^2);

internal= (10^-3)*0.38*Rint_internal*Cint_internal;

Variance_internal=((0.38*Cint_internal)^2)*(Variance_Rint_internal) + ...

((0.38*Rint_internal)^2)*(Variance_Cint_internal);

SD_internal= (10^-3)*sqrt(Variance_internal);

Local_Skew= internal + 3*SD_internal + 6*SD_Pdly(sz+1);

121

end

else

%Local and Global interconnect bu�er optimisation

%H-Tree interconnect construction

for i=1:alpha

L((2*i)-1)= w/4/(2^(i-1)); %L is interconnect length per stage

L(2*i)= h/4/(2^(i-1));

W((2*i)-1)=2^(alpha-i); %W is interconnect width multiplicative factor

W(2*i)=2^(alpha-i);

end;

sz=size(L,2);

for i=sz:-1:1

Cint(i)=L(i)*DielCon*1e-6*((W_INT_m*W(i)/H_INT_m)+0.77+ ...

1.06*((W_INT_m*W(i)/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint(i)=((L(i)*DielCon*1e-6/1e-15*((W(i)/H_INT_m) + ...

(1.06*0.25*((W_INT_m*W(i)/H_INT_m)^(0.25-1))*(W(i)/H_INT_m))))^2)*...

((W_INT_3sd/3)^2) + ((L(i)*DielCon*1e-6/1e-15*(-(W_INT_m*W(i))*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m*W(i)/H_INT_m)^(0.25-1))*...

(-(W_INT_m*W(i))*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

Rint(i)=L(i)*R/W(i);

Variance_Rint(i)=((L(i)/(W_INT_m*W(i)))^2)*((Res_3sd/3)^2) + ...

(((L(i)*Res_m)/((W_INT_m^2)*W(i)))^2)*((W_INT_3sd/3)^2);

end;

%Bu�er sizing algorithm to meet clock skew and slew targets

while (Max_Skew>Target_GloSkew)||(Local_Skew>Target_LocSkew)||(RISE>Target_Rise)

lamda=lamda-0.1;

if (lamda<1)

lamda=lamda+0.333333; %also debug purpose

break;

end

%Bu�er size

x(sz+1)= round(C_L/(lamda*Co-Cd));

x(sz)= round(2.3*Ro*2*(x(sz+1)*Co+...

Cint(sz))/(2.3*Ro*C_L/x(sz+1)-Rint(sz)*...

(2.3*x(sz+1)*Co+Cint(sz))));

for i=sz:-1:2

x(i-1)= round((2.3*2*Ro*(x(i)*Co+Cint(i-1))) / ...

(2.3*2*Ro/x(i)*(x(i+1)*Co+Cint(i))+ Rint(i)*(2.3*x(i+1)*Co+Cint(i)) ...

- Rint(i-1)*(2.3*x(i)*Co+Cint(i-1))));

122

if(x(i-1)<1)

x(i-1)=1; %really high value for debug purpose

end

end

%x(1) is clock root bu�er size

Variance_Co=((Lt_m*(wt_nmos+wt_pmos)*1e-6*1e-6*DielCon/(Tox_m)^2)^2)*...

((Tox_3sd/3)^2) +(((wt_nmos+wt_pmos)*1e-6*1e-6*DielCon/Tox_m)^2)*...

((Lt_3sd/3)^2) ;

Variance_K= ((mu*(DielCon/(Tox_m)^2)*(wt_nmos/Lt_m))^2)*...

((Tox_3sd/3)^2)+((mu*(DielCon/Tox_m)*(wt_nmos/(Lt_m)^2))^2)...

*((Lt_3sd/3)^2);

Variance_Ro= ((1/((K^2)*(Vdd-Vt_m)))^2)*Variance_K+ ...

((1/(K*((Vdd-Vt_m)^2)))^2)*((Vt_3sd/3)^2);

%Interconnect propagation delay estimation and Rise time estimation

%Using Lumped-RC interconnect model

for i=1:sz

%Propagation delay

Pdly(i)=(10^-3)*((0.69*(Ro/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))...

+ 0.38*Rint(i)*Cint(i) + 0.69*Rint(i)*(x(i+1)*Co));

%Rise Time

Rdly(i)=(10^-3)*((2.3*(Ro/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))...

+ 1.0*Rint(i)*Cint(i) + 2.3*Rint(i)*(x(i+1)*Co));

Variance_Rdly(i)=(((2.3/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))^2)*...

(Variance_Ro) + ((2.3*(((Ro/x(i))*(2*x(i+1)))+...

(Rint(i)*x(i+1))))^2)*(Variance_Co)+ ...

((Cint(i)+(2.3*(x(i+1)*Co)))^2)*(Variance_Rint(i))+ ...

(((2.3*2*Ro/x(i))+Rint(i))^2)*(Variance_Cint(i));

SD_Rdly(i)= (10^-3)*sqrt(Variance_Rdly(i));

Variance_Pdly(i)=(((0.69/x(i))*(2*x(i+1)*Co + x(i)*Cd +...

2*Cint(i)))^2)*(Variance_Ro) + ...

((0.69*(((Ro/x(i))*(2*x(i+1)))+(Rint(i)*x(i+1))))^2)*(Variance_Co)+ ...

(((0.38*Cint(i))+(0.69*(x(i+1)*Co)))^2)*(Variance_Rint(i))+ ...

(((0.69*2*Ro/x(i))+(0.38*Rint(i)))^2)*(Variance_Cint(i));

SD_Pdly(i)= (10^-3)*sqrt(Variance_Pdly(i));

end

Pdly(sz+1)=(10^-3)*0.69*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Rdly(sz+1)=(10^-3)*2.3*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Variance_Rdly(sz+1)=(((2.3/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Rdly(sz+1)= (10^-3)*sqrt(Variance_Rdly(sz+1));

Variance_Pdly(sz+1)=(((0.69/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Pdly(sz+1)= (10^-3)*sqrt(Variance_Pdly(sz+1));

123

TPdly=0;

TRdly=0;

for i=1:sz+1

TPdly=TPdly+Pdly(i);

TRdly=TRdly+Rdly(i);

end

%PERI estimation formula for clock slew estimation

Rdly_out(1)= Rdly(1);

for i=2:sz+1

Rdly_out(i)= sqrt((Rdly_out(i-1)^2)+(Rdly(i)^2));

end

RISE=Rdly_out(sz+1);

RISE2=max(Rdly); %checking across all bu�ers almost equal transition times

%Local Skew calculation

h_hsize= h/(2^alpha);

w_hsize= w/(2^alpha);

Cint_internal=(h_hsize+w_hsize)*DielCon*1e-6*((W_INT_m/H_INT_m)+...

0.77+1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint_internal=(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*...

((1/H_INT_m) + (1.06*0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(1/H_INT_m))))^2)*((W_INT_3sd/3)^2) + ...

(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*(-(W_INT_m)*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(-(W_INT_m)*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

Rint_internal=(h_hsize+w_hsize)*R;

Variance_Rint_internal=(((h_hsize+w_hsize)/(W_INT_m))^2)*...

((Res_3sd/3)^2) +((((h_hsize+w_hsize)*Res_m)/((W_INT_m^2)))^2)...

*((W_INT_3sd/3)^2);

internal= (10^-3)*0.38*Rint_internal*Cint_internal;

Variance_internal=((0.38*Cint_internal)^2)*(Variance_Rint_internal) + ...

((0.38*Rint_internal)^2)*(Variance_Cint_internal);

SD_internal= (10^-3)*sqrt(Variance_internal);

Local_Skew= internal + 3*SD_internal + 6*SD_Pdly(sz+1);

MSk=0;

VSk=0;

%Global skew calculation Ref: Jiang et al

for i=1:sz

temp=0;

for j=1:i

temp=sqrt((((pi-1)/pi)^(j-1))*((SD_Pdly(sz-i+j))^2));

end

MSk=MSk+temp;

124

VSk=VSk+((((pi-1)/pi)^i)*(SD_Pdly(i)^2));

end

%Recursive algorithm to calculate correlation coe�cient

varskew(sz+1)=(SD_internal^2) + 2*(SD_Pdly(sz+1)^2);

for i=sz:-1:1

vardelay=0;

for j=1:sz

vardelay=vardelay+((((pi-1)/pi)^j)*(SD_Pdly(j)^2));

end

cofu(i)=1-(varskew(i+1)/(2*vardelay));

varskew(i)=2*(1-cofu(i))*vardelay;

end

%Global Clock Skew estimation considering technology variations

Mean_Skew=(2/sqrt(pi))*MSk;

Coe�=cofu(1); %correlation coe�cient

Var_Skew=2*(1-Coe�)*VSk;

SD_Skew=sqrt(Var_Skew);

Max_Skew=Mean_Skew+(3*sqrt(Var_Skew)); %Mean + 3*sigma

end

end

%CDN capacitance calculation

Cint_Tot=0;

for i=1:alpha

Cint_Tot=Cint_Tot+(Cint(2*i-1)*(2^(2*i-1)))+(Cint(2*i)*(4^i));

end

%CDN total bu�er size calculation

Bu�_Tot=x(1);

no=1;

for i=1:alpha

Bu�_Tot=Bu�_Tot+(x(2*i)*(2^(2*i-1)))+(x(2*i+1)*(4^i));

no=no+(2^(2*i-1))+(4^i);

end

Cb=Co+Cd;

Total_Cap= (Cb*Bu�_Tot + Cint_Tot + N*C_L)*1e-15; %With FFs

Cap_Clk= (Cb*Bu�_Tot + Cint_Tot)*1e-15;

%CDN Power estimation

Power=Total_Cap*Vdd*Vdd*f;

Power_Clk=Cap_Clk*Vdd*Vdd*f;

Cap_Wire= Cint_Tot;

125

Power_Wire=Cap_Wire*Vdd*Vdd*f*1e-15;

Cap_Bu�= Cb*Bu�_Tot;

Power_Bu�=Cap_Bu�*Vdd*Vdd*f*1e-15;

Power_Load=N*C_L*Vdd*Vdd*f*1e-15;

%Store CDN parameters and power estimation in Matrix

MAT(y,1)=h;

MAT(y,2)=w;

MAT(y,3)=Power;

MAT(y,4)=((MAT(1,3)-(NI(y)*Power))/(MAT(1,3)))*100;

MAT(y,5)=Power_Clk;

MAT(y,6)=((MAT(1,5)-(NI(y)*Power_Clk))/(MAT(1,5)))*100;

MAT(y,7)=Power_Bu�;

MAT(y,8)=((MAT(1,7)-(NI(y)*Power_Bu�))/(MAT(1,7)))*100;

MAT(y,9)=Power_Wire;

MAT(y,10)=((MAT(1,9)-(NI(y)*Power_Wire))/(MAT(1,9)))*100;

MAT(y,11)=CP;

MAT(y,12)=lamda;

%Clock Tree Synthesis and Bu�er Optimisation of GALS partitions

for y=2:33

h=GALS(y,1); %�oorplan height (um)

w=GALS(y,2); %�oorplan width (um)

%initialise to enter while loop

lamda=50;

Max_Skew=400;

Local_Skew=400;

RISE=1000;

L=0;

W=0;

Cint=0;

Variance_Cint=0;

Rint=0;

Variance_Rint=0;

x=0;

Pdly=0;

Rdly=0;

Rdly_out=0;

Testdly=0;

Variance_Rdly=0;

Variance_Pdly=0;

SD_Rdly=0;

SD_Pdly=0;

FFs_sink=256; %Max allowed FFs per sink

FF_Tot=round(SinkD*(h*w)*1e-6);

126

Total_L=FF_Tot*FF_Cap; %fF

C_L=FFs_sink*FF_Cap;

N=Total_L/C_L; %no of sinks

alpha=(log(N)/log(4)); %alpha denotes Number of Hs� alpha*2 =clock tree levels

if alpha < 0

alpha=0;

end

%Algorithm to distribute FFs evenly

if mod(2*alpha,2)>0

alpha=ceil(log(N)/log(4));

N=4^alpha;

FFs_sink=round(FF_Tot/N);

C_L=FFs_sink*FF_Cap;

end

D=((2^alpha)-1)*(h+w)/((2^(alpha+1))); %distance form root of tree to sink

%Clock Tree bu�er optimisation

if alpha == 0

%Only Local interconnect bu�er optimisation

Max_Skew=0;

sz=0;

while (Local_Skew>Target_LocSkew)||(RISE>Target_Rise)

lamda=lamda-0.1;

if (lamda<1)

lamda=lamda+0.333333; %also debug purpose

break;

end

Variance_K= ((mu*(DielCon/(Tox_m)^2)*(wt_nmos/Lt_m))^2)*...

((Tox_3sd/3)^2)+ ((mu*(DielCon/Tox_m)*(wt_nmos/(Lt_m)^2))^2)...

*((Lt_3sd/3)^2);

Variance_Ro= ((1/((K^2)*(Vdd-Vt_m)))^2)*Variance_K+ ...

((1/(K*((Vdd-Vt_m)^2)))^2)*((Vt_3sd/3)^2);

x(sz+1)= round(C_L/(lamda*Co-Cd));

RISE=(10^-3)*2.3*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Pdly(sz+1)=(10^-3)*0.69*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Variance_Pdly(sz+1)=(((0.69/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Pdly(sz+1)= (10^-3)*sqrt(Variance_Pdly(sz+1));

%Local Skew calculation

127

h_hsize= h/(2^alpha);

w_hsize= w/(2^alpha);

Cint_internal=(h_hsize+w_hsize)*DielCon*1e-6*((W_INT_m/H_INT_m)+...

0.77+1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint_internal=(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*...

((1/H_INT_m) + (1.06*0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(1/H_INT_m))))^2)*((W_INT_3sd/3)^2) + ...

(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*(-(W_INT_m)*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(-(W_INT_m)*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

Rint_internal=(h_hsize+w_hsize)*R;

Variance_Rint_internal=(((h_hsize+w_hsize)/(W_INT_m))^2)*...

((Res_3sd/3)^2) + ((((h_hsize+w_hsize)*Res_m)/((W_INT_m^2)))^2)...

*((W_INT_3sd/3)^2);

internal= (10^-3)*0.38*Rint_internal*Cint_internal;

Variance_internal=((0.38*Cint_internal)^2)*(Variance_Rint_internal) + ...

((0.38*Rint_internal)^2)*(Variance_Cint_internal);

SD_internal= (10^-3)*sqrt(Variance_internal);

Local_Skew= internal + 3*SD_internal + 6*SD_Pdly(sz+1);

Local_Skew= internal + 3*SD_internal + 6*SD_Pdly(sz+1);

end

else

%Local and Global interconnect bu�er optimisation

%H-Tree interconnect construction

for i=1:alpha

L((2*i)-1)= w/4/(2^(i-1));%L is interconnect length per stage

L(2*i)= h/4/(2^(i-1));

W((2*i)-1)=2^(alpha-i); %W is interconnect width multiplicative factor

W(2*i)=2^(alpha-i);

end;

sz=size(L,2);

for i=sz:-1:1

Cint(i)=L(i)*DielCon*1e-6*((W_INT_m*W(i)/H_INT_m)+0.77+ ...

1.06*((W_INT_m*W(i)/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint(i)=((L(i)*DielCon*1e-6/1e-15*((W(i)/H_INT_m) + ...

(1.06*0.25*((W_INT_m*W(i)/H_INT_m)^(0.25-1))*(W(i)/H_INT_m))))^2)*...

((W_INT_3sd/3)^2) + ((L(i)*DielCon*1e-6/1e-15*(-(W_INT_m*W(i))*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m*W(i)/H_INT_m)^(0.25-1))*...

(-(W_INT_m*W(i))*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

128

Rint(i)=L(i)*R/W(i);

Variance_Rint(i)=((L(i)/(W_INT_m*W(i)))^2)*((Res_3sd/3)^2) + ...

(((L(i)*Res_m)/((W_INT_m^2)*W(i)))^2)*((W_INT_3sd/3)^2);

end;

%Bu�er sizing algorithm to meet clock skew and slew targets

while (Max_Skew>Target_GloSkew)||(Local_Skew>Target_LocSkew)||(RISE>Target_Rise)

lamda=lamda-0.1;

if (lamda<1)

lamda=lamda+0.333333; %also debug purpose

break;

end

%Bu�er size

x(sz+1)= round(C_L/(lamda*Co-Cd));

x(sz)= round(2.3*Ro*2*(x(sz+1)*Co+...

Cint(sz))/(2.3*Ro*C_L/x(sz+1)-Rint(sz)*(2.3*x(sz+1)*Co+Cint(sz))));

for i=sz:-1:2

x(i-1)= round((2.3*2*Ro*(x(i)*Co+Cint(i-1))) / ...

(2.3*2*Ro/x(i)*(x(i+1)*Co+Cint(i))+ Rint(i)*(2.3*x(i+1)*Co+Cint(i)) ...

- Rint(i-1)*(2.3*x(i)*Co+Cint(i-1))));

if(x(i-1)<1)

x(i-1)=1; %really high value for debug purpose

end

end

%x(1) is clock root bu�er size

Variance_Co=((Lt_m*(wt_nmos+wt_pmos)*1e-6*1e-6*DielCon/(Tox_m)^2)^2)*...

((Tox_3sd/3)^2) +(((wt_nmos+wt_pmos)*1e-6*1e-6*...

DielCon/Tox_m)^2)*((Lt_3sd/3)^2) ;

Variance_K= ((mu*(DielCon/(Tox_m)^2)*(wt_nmos/Lt_m))^2)*((Tox_3sd/3)^2)+ ...

((mu*(DielCon/Tox_m)*(wt_nmos/(Lt_m)^2))^2)*((Lt_3sd/3)^2);

Variance_Ro= ((1/((K^2)*(Vdd-Vt_m)))^2)*Variance_K+ ...

((1/(K*((Vdd-Vt_m)^2)))^2)*((Vt_3sd/3)^2);

%Interconnect propagation delay estimation and Rise time estimation

%Using Lumped-RC interconnect model

for i=1:sz

%Propagation delay

Pdly(i)=(10^-3)*((0.69*(Ro/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))...

+ 0.38*Rint(i)*Cint(i) + 0.69*Rint(i)*(x(i+1)*Co));

%Rise Time Rdly(i)=(10^-3)*((2.3*(Ro/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))...

+ 1.0*Rint(i)*Cint(i) + 2.3*Rint(i)*(x(i+1)*Co));

Variance_Rdly(i)=(((2.3/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))^2)*...

(Variance_Ro) + ((2.3*(((Ro/x(i))*(2*x(i+1)))+...

129

(Rint(i)*x(i+1))))^2)*(Variance_Co)+ ...

((Cint(i)+(2.3*(x(i+1)*Co)))^2)*(Variance_Rint(i))+ ...

(((2.3*2*Ro/x(i))+Rint(i))^2)*(Variance_Cint(i));

SD_Rdly(i)= (10^-3)*sqrt(Variance_Rdly(i));

Variance_Pdly(i)=(((0.69/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))^2)*...

(Variance_Ro) +((0.69*(((Ro/x(i))*(2*x(i+1)))+...

(Rint(i)*x(i+1))))^2)*(Variance_Co)+ ...

(((0.38*Cint(i))+(0.69*(x(i+1)*Co)))^2)*(Variance_Rint(i))+ ...

(((0.69*2*Ro/x(i))+(0.38*Rint(i)))^2)*(Variance_Cint(i));

SD_Pdly(i)= (10^-3)*sqrt(Variance_Pdly(i));

end

Pdly(sz+1)=(10^-3)*0.69*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Rdly(sz+1)=(10^-3)*2.3*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Variance_Rdly(sz+1)=(((2.3/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Rdly(sz+1)= (10^-3)*sqrt(Variance_Rdly(sz+1));

Variance_Pdly(sz+1)=(((0.69/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Pdly(sz+1)= (10^-3)*sqrt(Variance_Pdly(sz+1));

TPdly=0;

TRdly=0;

for i=1:sz+1

TPdly=TPdly+Pdly(i);

TRdly=TRdly+Rdly(i);

end

%PERI estimation formula for clock slew estimation

Rdly_out(1)= Rdly(1);

for i=2:sz+1

Rdly_out(i)= sqrt((Rdly_out(i-1)^2)+(Rdly(i)^2));

end

RISE=Rdly_out(sz+1);

RISE2=max(Rdly); %checking across all bu�ers almost equal transition times

%Local Skew calculation

h_hsize= h/(2^alpha);

w_hsize= w/(2^alpha);

Cint_internal=(h_hsize+w_hsize)*DielCon*1e-6*((W_INT_m/H_INT_m)+0.77+ ...

1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint_internal=(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*...

((1/H_INT_m) + (1.06*0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(1/H_INT_m))))^2)*((W_INT_3sd/3)^2) + ...

(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*(-(W_INT_m)*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(-(W_INT_m)*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

130

Rint_internal=(h_hsize+w_hsize)*R;

Variance_Rint_internal=(((h_hsize+w_hsize)/(W_INT_m))^2)*...

((Res_3sd/3)^2) +((((h_hsize+w_hsize)*Res_m)/...

((W_INT_m^2)))^2)*((W_INT_3sd/3)^2);

internal= (10^-3)*0.38*Rint_internal*Cint_internal;

Variance_internal=((0.38*Cint_internal)^2)*(Variance_Rint_internal) + ...

((0.38*Rint_internal)^2)*(Variance_Cint_internal);

SD_internal= (10^-3)*sqrt(Variance_internal);

Local_Skew= internal + 3*SD_internal + 6*SD_Pdly(sz+1);

MSk=0;

VSk=0;

%Global Skew Algorithm Ref: Jiang et al

%sz+1 is used to calculate local skew

for i=1:sz

temp=0;

for j=1:i

temp=sqrt((((pi-1)/pi)^(j-1))*((SD_Pdly(sz-i+j))^2));

end

MSk=MSk+temp;

VSk=VSk+((((pi-1)/pi)^i)*(SD_Pdly(i)^2));

end

%Recursive algorithm to calculate correlation coe�cient

varskew(sz+1)=(SD_internal^2) + 2*(SD_Pdly(sz+1)^2);

for i=sz:-1:1

vardelay=0;

for j=1:sz

vardelay=vardelay+((((pi-1)/pi)^j)*(SD_Pdly(j)^2));

end

cofu(i)=1-(varskew(i+1)/(2*vardelay));

varskew(i)=2*(1-cofu(i))*vardelay;

end

%Global Clock Skew estimation considering technology variations

Mean_Skew=(2/sqrt(pi))*MSk;

Coe�=cofu(1); %correlation coe�cient

Var_Skew=2*(1-Coe�)*VSk;

SD_Skew=sqrt(Var_Skew);

Max_Skew=Mean_Skew+(3*sqrt(Var_Skew)); %Mean + 3*sigma

end

end

%Final Clock Tree parameter estimation after bu�er sizing

131

if alpha == 0

Max_Skew=0;

sz=0;

Variance_K= ((mu*(DielCon/(Tox_m)^2)*(wt_nmos/Lt_m))^2)*...

((Tox_3sd/3)^2)+ ((mu*(DielCon/Tox_m)*...

(wt_nmos/(Lt_m)^2))^2)*((Lt_3sd/3)^2);

Variance_Ro= ((1/((K^2)*(Vdd-Vt_m)))^2)*Variance_K+ ...

((1/(K*((Vdd-Vt_m)^2)))^2)*((Vt_3sd/3)^2);

x(sz+1)= round(C_L/(lamda*Co-Cd));

RISE=(10^-3)*2.3*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Pdly(sz+1)=(10^-3)*0.69*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Variance_Pdly(sz+1)=(((0.69/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Pdly(sz+1)= (10^-3)*sqrt(Variance_Pdly(sz+1));

%Local Skew calculation

h_hsize= h/(2^alpha);

w_hsize= w/(2^alpha);

Cint_internal=(h_hsize+w_hsize)*DielCon*1e-6*((W_INT_m/H_INT_m)+0.77+ ...

1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint_internal=(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*...

((1/H_INT_m) + (1.06*0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(1/H_INT_m))))^2)*((W_INT_3sd/3)^2) + ...

(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*(-(W_INT_m)*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(-(W_INT_m)*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

Rint_internal=(h_hsize+w_hsize)*R;

Variance_Rint_internal=(((h_hsize+w_hsize)/(W_INT_m))^2)*...

((Res_3sd/3)^2) + ((((h_hsize+w_hsize)*Res_m)/...

((W_INT_m^2)))^2)*((W_INT_3sd/3)^2);

internal= (10^-3)*0.38*Rint_internal*Cint_internal;

Variance_internal=((0.38*Cint_internal)^2)*(Variance_Rint_internal) + ...

((0.38*Rint_internal)^2)*(Variance_Cint_internal);

SD_internal= (10^-3)*sqrt(Variance_internal);

Local_Skew= internal + 3*SD_internal + 6*SD_Pdly(sz+1);

else

x(sz+1)= round(C_L/(lamda*Co-Cd));

x(sz)= round(2.3*Ro*2*(x(sz+1)*Co+...

Cint(sz))/(2.3*Ro*C_L/x(sz+1)-Rint(sz)*(2.3*x(sz+1)*Co+Cint(sz))));

for i=sz:-1:2

x(i-1)= round((2.3*2*Ro*(x(i)*Co+Cint(i-1))) / ...

(2.3*2*Ro/x(i)*(x(i+1)*Co+Cint(i))+ Rint(i)*(2.3*x(i+1)*Co+Cint(i)) ...

- Rint(i-1)*(2.3*x(i)*Co+Cint(i-1))));

132

if(x(i-1)<1)

x(i-1)=1; %really high value for debug purpose

end

end

%x(1) is clock root bu�er size

Variance_Co=((Lt_m*(wt_nmos+wt_pmos)*1e-6*1e-6*DielCon/(Tox_m)^2)^2)*...

((Tox_3sd/3)^2) +(((wt_nmos+wt_pmos)*1e-6*1e-6*...

DielCon/Tox_m)^2)*((Lt_3sd/3)^2) ;

Variance_K= ((mu*(DielCon/(Tox_m)^2)*(wt_nmos/Lt_m))^2)*...

((Tox_3sd/3)^2)+ ((mu*(DielCon/Tox_m)*...

(wt_nmos/(Lt_m)^2))^2)*((Lt_3sd/3)^2);

Variance_Ro= ((1/((K^2)*(Vdd-Vt_m)))^2)*Variance_K+ ...

((1/(K*((Vdd-Vt_m)^2)))^2)*((Vt_3sd/3)^2);

%Interconnect propagation delay estimation and Rise time estimation

%Using Lumped-RC interconnect model

for i=1:sz

%Propagation delay

Pdly(i)=(10^-3)*((0.69*(Ro/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))...

+ 0.38*Rint(i)*Cint(i) + 0.69*Rint(i)*(x(i+1)*Co));

%Rise Time

Rdly(i)=(10^-3)*((2.3*(Ro/x(i))*(2*x(i+1)*Co + x(i)*Cd + 2*Cint(i)))...

+ 1.0*Rint(i)*Cint(i) + 2.3*Rint(i)*(x(i+1)*Co));

Variance_Rdly(i)=(((2.3/x(i))*(2*x(i+1)*Co + x(i)*Cd +...

2*Cint(i)))^2)*(Variance_Ro) + ...

((2.3*(((Ro/x(i))*(2*x(i+1)))+(Rint(i)*x(i+1))))^2)*(Variance_Co)+ ...

((Cint(i)+(2.3*(x(i+1)*Co)))^2)*(Variance_Rint(i))+ ...

(((2.3*2*Ro/x(i))+Rint(i))^2)*(Variance_Cint(i));

SD_Rdly(i)= (10^-3)*sqrt(Variance_Rdly(i));

Variance_Pdly(i)=(((0.69/x(i))*(2*x(i+1)*Co + x(i)*Cd + ...

2*Cint(i)))^2)*(Variance_Ro) + ...

((0.69*(((Ro/x(i))*(2*x(i+1)))+(Rint(i)*x(i+1))))^2)*(Variance_Co)+ ...

(((0.38*Cint(i))+(0.69*(x(i+1)*Co)))^2)*(Variance_Rint(i))+ ...

(((0.69*2*Ro/x(i))+(0.38*Rint(i)))^2)*(Variance_Cint(i));

SD_Pdly(i)= (10^-3)*sqrt(Variance_Pdly(i));

end

Pdly(sz+1)=(10^-3)*0.69*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Rdly(sz+1)=(10^-3)*2.3*(Ro/x(sz+1))*(C_L + x(sz+1)*Cd);

Variance_Rdly(sz+1)=(((2.3/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Rdly(sz+1)= (10^-3)*sqrt(Variance_Rdly(sz+1));

Variance_Pdly(sz+1)=(((0.69/x(sz+1))*(C_L + x(sz+1)*Cd))^2)*(Variance_Ro);

SD_Pdly(sz+1)= (10^-3)*sqrt(Variance_Pdly(sz+1));

TPdly=0;

133

TRdly=0;

for i=1:sz+1

TPdly=TPdly+Pdly(i);

TRdly=TRdly+Rdly(i);

end

%PERI estimation formula for clock slew estimation

Rdly_out(1)= Rdly(1);

for i=2:sz+1

Rdly_out(i)= sqrt((Rdly_out(i-1)^2)+(Rdly(i)^2));

end

RISE=Rdly_out(sz+1);

RISE2=max(Rdly); %checking across all bu�ers almost equal transition times

%Local SKew calculation

h_hsize= h/(2^alpha);

w_hsize= w/(2^alpha);

Cint_internal=(h_hsize+w_hsize)*DielCon*1e-6*((W_INT_m/H_INT_m)+...

0.77+ 1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

Variance_Cint_internal=(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*...

((1/H_INT_m) + (1.06*0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(1/H_INT_m))))^2)*((W_INT_3sd/3)^2) + ...

(((h_hsize+w_hsize)*DielCon*1e-6/1e-15*(-(W_INT_m)*...

(H_INT_m)^-2 + (1.06*(0.25*((W_INT_m/H_INT_m)^(0.25-1))*...

(-(W_INT_m)*(H_INT_m)^-2) + 0.5*((T_INT/H_INT_m)^(0.5-1))*...

-T_INT*(H_INT_m)^-2))))^2)*((H_INT_3sd/3)^2);

Rint_internal=(h_hsize+w_hsize)*R;

Variance_Rint_internal=(((h_hsize+w_hsize)/(W_INT_m))^2)*...

((Res_3sd/3)^2) + ...((((h_hsize+w_hsize)*Res_m)/((W_INT_m^2)))^2)...

*((W_INT_3sd/3)^2);

internal= (10^-3)*0.38*Rint_internal*Cint_internal;

Variance_internal=((0.38*Cint_internal)^2)*(Variance_Rint_internal) + ...

((0.38*Rint_internal)^2)*(Variance_Cint_internal);

SD_internal= (10^-3)*sqrt(Variance_internal);

Local_Skew= internal + 3*SD_internal + 6*SD_Pdly(sz+1);

end

MSk=0;

VSk=0;

%Global Skew Calculation Ref: Jiang et al

for i=1:sz

temp=0;

for j=1:i

temp=sqrt((((pi-1)/pi)^(j-1))*((SD_Pdly(sz-i+j))^2));

end

MSk=MSk+temp;

134

VSk=VSk+((((pi-1)/pi)^i)*(SD_Pdly(i)^2));

end

%Recursive algorithm to calculate correlation coe�cient

varskew(sz+1)=(SD_internal^2) + 2*(SD_Pdly(sz+1)^2);

for i=sz:-1:1

vardelay=0;

for j=1:sz

vardelay=vardelay+((((pi-1)/pi)^j)*(SD_Pdly(j)^2));

end

cofu(i)=1-(varskew(i+1)/(2*vardelay));

varskew(i)=2*(1-cofu(i))*vardelay;

end

%Global Clock Skew estimation considering technology variations

Mean_Skew=(2/sqrt(pi))*MSk;

Coe�=cofu(1); %correlation coe�cient

Var_Skew=2*(1-Coe�)*VSk;

SD_Skew=sqrt(Var_Skew);

Max_Skew=Mean_Skew+(3*sqrt(Var_Skew)); %Mean + 3*sigma

%CDN capacitance calculation

Cint_Tot=0;

for i=1:alpha

Cint_Tot=Cint_Tot+(Cint(2*i-1)*(2^(2*i-1)))+(Cint(2*i)*(4^i));

end

%CDN total bu�er size calculation

Bu�_Tot=x(1);

no=1;

for i=1:alpha

Bu�_Tot=Bu�_Tot+(x(2*i)*(2^(2*i-1)))+(x(2*i+1)*(4^i));

no=no+(2^(2*i-1))+(4^i);

end

Cb=Co+Cd;

Total_Cap= (Cb*Bu�_Tot + Cint_Tot + N*C_L)*1e-15; %With FFs

Cap_Clk= (Cb*Bu�_Tot + Cint_Tot)*1e-15;

%Individual GALS island CDN Power estimation

Power=Total_Cap*Vdd*Vdd*f;

Power_Clk=Cap_Clk*Vdd*Vdd*f;

Cap_Wire= Cint_Tot;

Power_Wire=Cap_Wire*Vdd*Vdd*f*1e-15;

Cap_Bu�= Cb*Bu�_Tot;

Power_Bu�=Cap_Bu�*Vdd*Vdd*f*1e-15;

135

Power_Load=N*C_L*Vdd*Vdd*f*1e-15;

%Store CDN parameters and power estimation in Matrix

MAT(y,1)=h;

MAT(y,2)=w;

MAT(y,3)=Power;

MAT(y,4)=((MAT(1,3)-(NI(y)*Power))/(MAT(1,3)))*100;

MAT(y,5)=Power_Clk;

MAT(y,6)=((MAT(1,5)-(NI(y)*Power_Clk))/(MAT(1,5)))*100;

MAT(y,7)=Power_Bu�;

MAT(y,8)=((MAT(1,7)-(NI(y)*Power_Bu�))/(MAT(1,7)))*100;

MAT(y,9)=Power_Wire;

MAT(y,10)=((MAT(1,9)-(NI(y)*Power_Wire))/(MAT(1,9)))*100;

MAT(y,11)=CP;

MAT(y,12)=lamda;

end

%Inter-Island Communication Metric

Prob_IslandComm(16,3)=0;

woot(16,3)=0;

MAX=16; %to determine no. of inp and output ports (total no. of wrappers)

K=(log2(MAX)/2)-1;

for j=1:4

woot(1,j)=1;

end

for i=2:16

for j=1:4

woot(i,j)=i;

end

Prob_IslandComm(i,1)=0.005*(i-1); %linear 0.5%

Prob_IslandComm(i,2)=0.01*(i-1); %linear 1%

Prob_IslandComm(i,3)=0.005*2*ceil((MAX*sqrt(i)/2^K)-(2*sqrt(MAX))); %bir 0.5%

Prob_IslandComm(i,4)=0.01*2*ceil((MAX*sqrt(i)/2^K)-(2*sqrt(MAX))) ;%bir 1%

end

for i=1:16

pl(i)=i;

end

�gure(1);

plot(woot,Prob_IslandComm,'o-');

title('Inter-Island Communication Activity');

ylabel('Active Communication Links per clock cycle');

xlabel('Number of Islands');

136

for i=2:33

%Local clock generator - estimation of number of odd inverters

N_osc=round(1/((2/(MAT(i,11)*1e-12))*Ro*(Co+Cd)*1e-15));

if(mod(N_osc,2)==0)

N_osc=N_osc+1; %increasing N will reduce clock frequency so that you have su�cient time for critical path

end

%Wrapper Power - Ref:Upadhay - 180nm scaled to estimate for relevant process technology

Wrapper_Cap=(0.000117/(15e6*1.8*1.8))*0.7^3;

Wrapper_Power(i)=(Wrapper_Cap*Vdd*Vdd)/(MAT(i,11)*1e-12);

%Local clock generator power estimation

LocalOsc_Power(i)=N_osc*(Co+Cd)*1e-15*Vdd*Vdd/(MAT(i,11)*1e-12);

end

%GALS System Power and Latency Estimation

% Here the sliced islands are put together to form single GALS chips of varying granularity.

for k=1:4

for j=1:16

ma(j)= Prob_IslandComm(j,k);

end

Design_Latency = 25000; %system execution time in clock cycles

Wrapper_Lat_WC=1; %One clock cycle worst case latency penalty of Pausable wrapper

Wrapper_Prob=1; %worst case anlaysis taken*

%PERF above is the average clock period of GALS chip in seconds

%ott and ot are used to calculate power of wrappers and compute total GALS chip power.

ott(1,k)=NI(1)*MAT(1,3);

ot(1,k)=((ott(1,k)-ott(1,k))/(ott(1,k)))*100;

PERF(1,k) = (1e-12*MAT(1,11));

ott(2,k)=NI(2)*MAT(2,3)+Prob_IslandComm(2,k)*Wrapper_Power(2)+...

(pl(2)*LocalOsc_Power(2));

ot(2,k)=((ott(1,k)-ott(2,k))/(ott(1,k)))*100;

PERF(2,k) = (NI(2)*(1e-12*MAT(2,11)))/pl(2);

ott(3,k)=NI(3)*MAT(3,3)+NI(4)*MAT(4,3) + ...

Prob_IslandComm(3,k)*((NI(3)*Wrapper_Power(3)+...

NI(4)*Wrapper_Power(4))/pl(3))+...

(pl(3)*((NI(3)*LocalOsc_Power(3)+NI(4)*LocalOsc_Power(4))/pl(3)));

ot(3,k)=((ott(1,k)-ott(3,k))/(ott(1,k)))*100;

PERF(3,k) = (NI(3)*(1e-12*MAT(3,11))+NI(4)*(1e-12*MAT(4,11)))/pl(3);

137

ott(4,k)=NI(5)*MAT(5,3)+Prob_IslandComm(4,k)*Wrapper_Power(5)+...

(pl(4)*LocalOsc_Power(5));

ot(4,k)=((ott(1,k)-ott(4,k))/(ott(1,k)))*100;

PERF(4,k) = (NI(5)*(1e-12*MAT(5,11)))/pl(4);

ott(5,k)=NI(6)*MAT(6,3)+NI(7)*MAT(7,3)+NI(8)*MAT(8,3)+...

Prob_IslandComm(5,k)*((NI(6)*Wrapper_Power(6)+..

NI(7)*Wrapper_Power(7)+NI(8)*Wrapper_Power(8))/pl(5))+...

(pl(5)*((NI(6)*LocalOsc_Power(6)+NI(7)*LocalOsc_Power(7)+...

NI(8)*LocalOsc_Power(8))/pl(5)));

ot(5,k)=((ott(1,k)-ott(5,k))/(ott(1,k)))*100;

PERF(5,k) = (NI(6)*(1e-12*MAT(6,11))+NI(7)*(1e-12*MAT(7,11))+...

NI(8)*(1e-12*MAT(8,11)))/pl(5);

ott(6,k)=NI(9)*MAT(9,3)+Prob_IslandComm(6,k)*Wrapper_Power(9)+...

(pl(6)*LocalOsc_Power(9));

ot(6,k)=((ott(1,k)-ott(6,k))/(ott(1,k)))*100;

PERF(6,k) = (NI(9)*(1e-12*MAT(9,11)))/pl(6);

ott(7,k)=NI(10)*MAT(10,3)+NI(11)*MAT(11,3)+NI(12)*MAT(12,3)+...

Prob_IslandComm(7,k)*((NI(10)*Wrapper_Power(10)+..

NI(11)*Wrapper_Power(11)+NI(12)*Wrapper_Power(12))/pl(7))+...

(pl(7)*((NI(10)*LocalOsc_Power(10)+NI(11)*LocalOsc_Power(11)+..

NI(12)*LocalOsc_Power(12))/pl(7)));

ot(7,k)=((ott(1,k)-ott(7,k))/(ott(1,k)))*100;

PERF(7,k) = (NI(10)*(1e-12*MAT(10,11))+NI(11)*(1e-12*MAT(11,11))+...

NI(12)*(1e-12*MAT(12,11)))/pl(7);

ott(8,k)=NI(13)*MAT(13,3)+Prob_IslandComm(8,k)*Wrapper_Power(13)+...

(pl(8)*LocalOsc_Power(13));

ot(8,k)=((ott(1,k)-ott(8,k))/(ott(1,k)))*100;

PERF(8,k) = (NI(13)*(1e-12*MAT(13,11)))/pl(8);

ott(9,k)=NI(14)*MAT(14,3)+NI(15)*MAT(15,3)+NI(16)*MAT(16,3)+...

NI(17)*MAT(17,3)+Prob_IslandComm(9,k)*((NI(14)*...

Wrapper_Power(14)+NI(15)*Wrapper_Power(15)+...

NI(16)*Wrapper_Power(16)+NI(17)*Wrapper_Power(17))/pl(9))+...

(pl(9)*((NI(14)*LocalOsc_Power(14)+NI(15)*LocalOsc_Power(15)+...

NI(16)*LocalOsc_Power(16)+NI(17)*LocalOsc_Power(17))/pl(9)));

ot(9,k)=((ott(1,k)-ott(9,k))/(ott(1,k)))*100;

PERF(9,k) = (NI(14)*(1e-12*MAT(14,11))+NI(15)*(1e-12*MAT(15,11))+...

NI(16)*(1e-12*MAT(16,11))+NI(17)*(1e-12*MAT(17,11)))/pl(9);

ott(10,k)=NI(18)*MAT(18,3)+Prob_IslandComm(10,k)*Wrapper_Power(18)+...

(pl(10)*LocalOsc_Power(18));

ot(10,k)=((ott(1,k)-ott(10,k))/(ott(1,k)))*100;

138

PERF(10,k) = (NI(18)*(1e-12*MAT(18,11)))/pl(10);

ott(11,k)=NI(19)*MAT(19,3)+NI(20)*MAT(20,3)+NI(21)*MAT(21,3)+...

NI(22)*MAT(22,3)+Prob_IslandComm(11,k)*((NI(19)*...

Wrapper_Power(19)+NI(20)*Wrapper_Power(20)+...

NI(21)*Wrapper_Power(21)+NI(22)*Wrapper_Power(22))/pl(11))+...

(pl(11)*((NI(19)*LocalOsc_Power(19)+NI(20)*LocalOsc_Power(20)+...

NI(21)*LocalOsc_Power(21)+NI(22)*LocalOsc_Power(22))/pl(11)));

ot(11,k)=((ott(1,k)-ott(11,k))/(ott(1,k)))*100;

PERF(11,k) = (NI(19)*(1e-12*MAT(19,11))+NI(20)*(1e-12*MAT(20,11))+...

NI(21)*(1e-12*MAT(21,11))+NI(22)*(1e-12*MAT(22,11)))/pl(11);

ott(12,k)=NI(23)*MAT(23,3)+Prob_IslandComm(12,k)*Wrapper_Power(23)+...

(pl(12)*LocalOsc_Power(23));

ot(12,k)=((ott(1,k)-ott(12,k))/(ott(1,k)))*100;

PERF(12,k) = (NI(23)*(1e-12*MAT(23,11)))/pl(12);

ott(13,k)=NI(24)*MAT(24,3)+NI(25)*MAT(25,3)+NI(26)*MAT(26,3)+NI(27)*MAT(27,3)+...

Prob_IslandComm(13,k)*((NI(24)*Wrapper_Power(24)+NI(25)*Wrapper_Power(25)+...

NI(26)*Wrapper_Power(26)+NI(27)*Wrapper_Power(27))/pl(13))+...

(pl(13)*((NI(24)*LocalOsc_Power(24)+NI(25)*LocalOsc_Power(25)+...

NI(26)*LocalOsc_Power(26)+NI(27)*LocalOsc_Power(27))/pl(13)));

ot(13,k)=((ott(1,k)-ott(13,k))/(ott(1,k)))*100;

PERF(13,k) = (NI(24)*(1e-12*MAT(24,11))+NI(25)*(1e-12*MAT(25,11))+...

NI(26)*(1e-12*MAT(26,11))+NI(27)*(1e-12*MAT(27,11)))/pl(13);

ott(14,k)=NI(28)*MAT(28,3)+Prob_IslandComm(14,k)*Wrapper_Power(28)+...

(pl(14)*LocalOsc_Power(28));

ot(14,k)=((ott(1,k)-ott(14,k))/(ott(1,k)))*100;

PERF(14,k) = (NI(28)*(1e-12*MAT(28,11)))/pl(14);

ott(15,k)=NI(29)*MAT(29,3)+NI(30)*MAT(30,3)+NI(31)*MAT(31,3)+...

NI(32)*MAT(32,3)+Prob_IslandComm(15,k)*((NI(29)*...

Wrapper_Power(29)+NI(30)*Wrapper_Power(30)+...

NI(31)*Wrapper_Power(31)+NI(32)*Wrapper_Power(32))/pl(15))+...

(pl(15)*((NI(29)*LocalOsc_Power(29)+NI(30)*LocalOsc_Power(30)+...

NI(31)*LocalOsc_Power(31)+NI(32)*LocalOsc_Power(32))/pl(15)));

ot(15,k)=((ott(1,k)-ott(15,k))/(ott(1,k)))*100;

PERF(15,k) = (NI(29)*(1e-12*MAT(29,11))+NI(30)*(1e-12*MAT(30,11))+...

NI(31)*(1e-12*MAT(31,11))+NI(32)*(1e-12*MAT(32,11)))/pl(15);

ott(16,k)=NI(33)*MAT(33,3)+Prob_IslandComm(16,k)*Wrapper_Power(33)+...

(pl(16)*LocalOsc_Power(33));

ot(16,k)=((ott(1,k)-ott(16,k))/(ott(1,k)))*100;

PERF(16,k) = (NI(33)*(1e-12*MAT(33,11)))/pl(16);

139

%below formula is redundant.. kept to prevent changing whole script

for i=1:16

POW(i,k)=ott(i,k);

POW_saving(i,k)=ot(i,k);

end

%Synchronous Chip System Latency

PERF_Overall(1,k) = Design_Latency;

PERF_Overall_Norm(1,k) = 1;

RPP_Prob_Overall(1,k)=1;

for i=2:16

%GALS System Latency

PERF_Overall(i,k) = Prob_IslandComm(i,k)*Design_Latency*...

Wrapper_Prob*Wrapper_Lat_WC + Design_Latency;

%GALS System Latency normalised comparison to synchronous chip

PERF_Overall_Norm(i,k) = PERF_Overall(i,k)/PERF_Overall(1,k);

%REE metric to compare energy of GALS vs energy of synchronous chip

RPP_Prob_Overall(i,k)=(PERF_Overall(1,k)*PERF(1,k)*POW(1,k))...

/(PERF_Overall(i,k)*PERF(i,k)*POW(i,k));

end

end

%Synchronous Chip Power Breakdown

�gure(2);

island1_tot=NI(1)*MAT(1,3);

island1_FF=NI(1)*(MAT(1,3)-MAT(1,5))/island1_tot;

island1_BU=NI(1)*MAT(1,7)/island1_tot;

island1_WI=NI(1)*MAT(1,9)/island1_tot;

pie3([island1_FF island1_BU island1_WI]);

title('Synchronous Chip Power Breakdown');

colormap summer

%5 Islands Power Breakdown

�gure(3);

island5_tot=NI(6)*MAT(6,3)+NI(7)*MAT(7,3)+NI(8)*MAT(8,3)+...

Prob_IslandComm(5,3)*((NI(6)*Wrapper_Power(6)+...

NI(7)*Wrapper_Power(7)+NI(8)*Wrapper_Power(8))/pl(5))+...

(pl(5)*((NI(6)*LocalOsc_Power(6)+NI(7)*LocalOsc_Power(7)+...

NI(8)*LocalOsc_Power(8))/pl(5)));

island5_FF=(NI(6)*(MAT(6,3)-MAT(6,5))+NI(7)*(MAT(7,3)-MAT(7,5))+...

NI(8)*(MAT(8,3)-MAT(8,5)))/island5_tot;

island5_BU=(NI(6)*MAT(6,7)+NI(7)*MAT(7,7)+NI(8)*MAT(8,7))/island5_tot;

island5_WI=(NI(6)*MAT(6,9)+NI(7)*MAT(7,9)+NI(8)*MAT(8,9))/island5_tot;

island5_WR=(Prob_IslandComm(5,3)*((NI(6)*Wrapper_Power(6)+...

NI(7)*Wrapper_Power(7)+NI(8)*Wrapper_Power(8))/pl(5)))/island5_tot;

140

island5_OS=(pl(5)*((NI(6)*LocalOsc_Power(6)+NI(7)*LocalOsc_Power(7)+...

NI(8)*LocalOsc_Power(8))/pl(5)))/island5_tot; is

land5_OVH=island5_WR+island5_OS;

pie3([island5_FF island5_OVH island5_BU island5_WI]);

title('GALS Chip Power Breakdown (5 Islands)');

colormap summer

%7 Islands Power Breakdown

�gure(4);

island7_tot=NI(10)*MAT(10,3)+NI(11)*MAT(11,3)+NI(12)*MAT(12,3)+...

Prob_IslandComm(7,3)*((NI(10)*Wrapper_Power(10)+NI(11)*Wrapper_Power(11)+...

NI(12)*Wrapper_Power(12))/pl(7))+...

(pl(7)*((NI(10)*LocalOsc_Power(10)+...

NI(11)*LocalOsc_Power(11)+NI(12)*LocalOsc_Power(12))/pl(7)));

island7_FF=(NI(10)*(MAT(10,3)-MAT(10,5))+NI(11)*(MAT(11,3)-MAT(11,5))+...

NI(12)*(MAT(12,3)-MAT(12,5)))/island7_tot;

island7_BU=(NI(10)*MAT(10,7)+NI(11)*MAT(11,7)+NI(12)*MAT(12,7))/island7_tot;

island7_WI=(NI(10)*MAT(10,9)+NI(11)*MAT(11,9)+NI(12)*MAT(12,9))/island7_tot;

island7_WR=(Prob_IslandComm(7,3)*((NI(10)*Wrapper_Power(10)+...

NI(11)*Wrapper_Power(11)+...

NI(12)*Wrapper_Power(12))/pl(7)))/island7_tot;

island7_OS=(pl(7)*((NI(10)*LocalOsc_Power(10)+NI(11)*LocalOsc_Power(11)+...

NI(12)*LocalOsc_Power(12))/pl(7)))/island7_tot;

island7_OVH=island7_WR+island7_OS;

pie3([island7_FF island7_OVH island7_BU island7_WI]);

title('GALS Chip Power Breakdown (7 Islands)');

colormap summer

%16 Islands Power Breakdown

�gure(5);

island16_tot=NI(33)*MAT(33,3)+Prob_IslandComm(16,3)*Wrapper_Power(33)+...

(pl(16)*LocalOsc_Power(33));

island16_FF=NI(33)*(MAT(33,3)-MAT(33,5))/island16_tot;

island16_BU=NI(33)*MAT(33,7)/island16_tot;

island16_WI=NI(33)*MAT(33,9)/island16_tot;

island16_WR=(Prob_IslandComm(16,3)*Wrapper_Power(33))/island16_tot;

island16_OS=(pl(16)*LocalOsc_Power(33))/island16_tot;

island16_OVH=island16_WR+island16_OS;

pie3([island16_FF island16_OVH island16_BU island16_WI]);

title('GALS Chip Power Breakdown (16 Islands)');

colormap summer

�gure(6);

plot(woot,ott,'*-');

title('Chip Power (CDN and GALS Overhead)');

%Taking all FFs switching at every clock cycle.

141

ylabel('Power (W)');

xlabel('Number of Islands');

�gure(7);

plot(woot,ot,'o-');

title('Chip Power (CDN and GALS Overhead)');

%Taking all FFs switching at every clock cycle.

ylabel('Power Reduction (%)');

xlabel('Number of Islands');

�gure(8);

plot(woot,PERF_Overall,'o-');

title('GALS System Latency');

ylabel('Latency (clock cycles)');

xlabel('Number of Islands');

�gure(9);

plot(woot,PERF_Overall_Norm,'o-');

title('GALS System Latency Comparison');

ylabel('Normalized to Globally Synchronous Chip');

xlabel('Number of Islands');

�gure(10);

plot(woot,RPP_Prob_Overall,'o-');

title('GALS Energy E�ciency Analysis with Inter-Island Communication Activity');

ylabel('Relative Energy E�ciency');

xlabel('Number of Islands');

% %�������������������

% %90nm CMOS Technology Parameters (Ref:Nassif)

% Vdd=1.2;

% Vt_m=0.35; Vt_3sd=0.04;

% Tox_m=3.5e-9; Tox_3sd=0.42e-9; %gate oxide thickness in metres

% Res_m=0.06 ; Res_3sd=0.019; %Sheet resistance ohm/sq block=(resistivity/T_INT)

% W_INT_m=0.4 ; W_INT_3sd=0.12; %um

% H_INT_m=0.8 ; H_INT_3sd=0.27; %um this is inter layer dielectric (ILD) height not thickness

% DielCon0=885.4e-14; %F/m 8.854e-14F/cm %

% % parameters from Ref: ASU PTM

% T_INT=1.2; %um thickness of wire

% k=2.8;

% % DielCon=k*DielCon0; %F/m

% Cox=DielCon/Tox_m; %gate unit area cap

%mu=0.0067; % charge carrier mobility (670 cm2/(V*s))

% % %Minimum sized inverter (Ref: scaled from Jiang)

%wt_nmos=0.37*90/250; %um wt_pmos=1.1*90/250;

% Lt_m=0.09; Lt_3sd=0.040; %um transistor length

142

% K=mu*Cox*wt_nmos/Lt_m; %On resistance depends on nmos

% Ro=1/(K*(Vdd-Vt_m)); % output impedance

% Co=Cox*Lt_m*(wt_nmos+wt_pmos)*1e-6*1e-6/1e-15; %fF input capacitance

% Cd=Co/(2.5); %fF output parasitic capactiance (2.5=14.3/5.8 from Ref: Hashimoto)

% % %FF Capacitance

% FF_Cap=4; %fF

% FO4dly=Ro*(4*Co+Cd)*1e-3; %ps

% C_INT=DielCon*1e-6*((W_INT_m/H_INT_m)+0.77+...

1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

% %fF/um capacitance of nominal width interconnect

% R=Res_m/W_INT_m; %ohm/um Resistance of nominal width interconnect

%SoC Design Parameters

% SinkD=(18069/2.2)*0.49*0.49; %FFs per mm2

% f=(1e12/(100*FO4dly)); %scaled clock frequency to satisify MUTEX resolution time constraint

% CP=(1/f)*1e12 %Clock period ps

%Island Matrix sizing for 90nm

% %1 island

% GALS(1,1)=4571.4; % GALS(1,2)=4571.4;

% %2 islands

% GALS(2,1)=2285.7; % GALS(2,2)=4571.4;

% %3 islands

% GALS(3,1)=3047.6; % GALS(3,2)=2285.7;

% GALS(4,1)=1523.8;% GALS(4,2)=4571.4;

% %4 islands

% GALS(5,1)=2285.7; % GALS(5,2)=2285.7;

% %5 islands

% GALS(6,1)=1828.6; % GALS(6,2)=2285.7;

% GALS(7,1)=3047.6; % GALS(7,2)=1371.4;

% GALS(8,1)=2742.8;% GALS(8,2)=1523.8;

% %6 islands

% GALS(9,1)=1523.8; % GALS(9,2)=2285.7;

% %7 islands

% GALS(10,1)=2285.7; % GALS(10,2)=1306.1;

% GALS(11,1)=3047.6;% GALS(11,2)=979.6;

% GALS(12,1)=1523.8; % GALS(12,2)=1959.2; %

%8 islands

% GALS(13,1)=2285.7; % GALS(13,2)=1142.8;

% %9 islands

% GALS(14,1)=2285.7; % GALS(14,2)=1015.9;

% GALS(15,1)=1828.6; % GALS(15,2)=1269.8;

% GALS(16,1)=1371.4; % GALS(16,2)=1693.1;

% GALS(17,1)=2742.8; % GALS(17,2)=846.6;

% %10 islands

% GALS(18,1)=914.3; % GALS(18,2)=2285.7;

% %11 islands

% GALS(19,1)=2285.7; % GALS(19,2)=831.2;

143

% GALS(20,1)=1828.6;% GALS(20,2)=1039;

% GALS(21,1)=1371.4; % GALS(21,2)=1385.3;

% GALS(22,1)=2742.8; % GALS(22,2)=692.6;

% %12 islands

% GALS(23,1)=2285.7; % GALS(23,2)=761.9;

% %13 islands

% GALS(24,1)=2285.7;% GALS(24,2)=703.3;

% GALS(25,1)=1306.1;% GALS(25,2)=1230.8;

% GALS(26,1)=979.6; % GALS(26,2)=1641;

% GALS(27,1)=1959.2; % GALS(27,2)=820.5;

% %14 islands

% GALS(28,1)=653.1;% GALS(28,2)=2285.7;

% %15 islands

% GALS(29,1)=2285.7; % GALS(29,2)=609.5;

% GALS(30,1)=1066.7; % GALS(30,2)=1306.1;

% GALS(31,1)=979.6;% GALS(31,2)=1422.2;

% GALS(32,1)=1959.2; % GALS(32,2)=711.1;

% %16 islands

% GALS(33,1)=1142.8;% GALS(33,2)=1142.8;

% %�������������������

% %130nm CMOS Technology Parameters (Ref: Nassif)

% Vdd=1.3;

% Vt_m=0.4; Vt_3sd=0.03;

% Tox_m=4e-9; Tox_3sd=0.39e-9; %gate oxide thickness in metres

% Res_m=0.055 ; Res_3sd=0.015; %Sheet resistance ohm/sq block=(resistivity/T_INT)

% W_INT_m=0.5 ; W_INT_3sd=0.14; %um

% H_INT_m=0.9 ; H_INT_3sd=0.27; %um this is inter layer dielectric (ILD) height not thickness

% DielCon0=885.4e-14; %F/m 8.854e-14F/cm

% % % parameters from Ref: ASU PTM

% T_INT=1.2; %um thickness of wire

% k=3.2;

% % DielCon=k*DielCon0;

%F/m % Cox=DielCon/Tox_m; %gate unit area cap

% mu=0.0067; % charge carrier mobility (670 cm2/(V*s))

% % %Minimum sized inverter (Ref: scaled from Jiang)

% wt_nmos=0.37*130/250; %um

% wt_pmos=1.1*130/250; %um

% Lt_m=0.13; Lt_3sd=0.045; %um transistor length

% K=mu*Cox*wt_nmos/Lt_m; %On resistance depends on nmos

% Ro=1/(K*(Vdd-Vt_m)); % output impedance

% Co=Cox*Lt_m*(wt_nmos+wt_pmos)*1e-6*1e-6/1e-15; %fF input capacitance

% Cd=Co/(2.5); %fF output parasitic capactiance (2.5=14.3/5.8 from Ref:Hashimoto)

% % %FF Capacitance

% FF_Cap=5.5; %fF

% FO4dly=Ro*(4*Co+Cd)*1e-3

144

% C_INT=DielCon*1e-6*((W_INT_m/H_INT_m)+0.77+...

1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15;

% %fF/um capacitance of nominal width interconnect

% R=Res_m/W_INT_m; %ohm/um Resistance of nominal width interconnect

%SoC Design Parameters

% SinkD=(18069/2.2)*0.49*0.49*0.49; %FFs per mm2

% f=(1e12/(100*FO4dly)); %scaled clock frequency to satisify MUTEX resolution time constraint

% CP=(1/f)*1e12 %Clock period ps

% %Island Matrix sizing for 130nm

% %1 island

% GALS(1,1)=6530.6;% GALS(1,2)=6530.6;

% %2 islands

% GALS(2,1)=3265.3;% GALS(2,2)=6530.6;

% %3 islands

% GALS(3,1)=3265.3;% GALS(3,2)=4353.7;

% GALS(4,1)=6530.6; % GALS(4,2)=2176.9;

% %4 islands

% GALS(5,1)=3265.3; % GALS(5,2)=3265.3;

% %5 islands

% GALS(6,1)=3265.3; % GALS(6,2)=2612.2;

% GALS(7,1)=4353.7; % GALS(7,2)=1959.2;

% GALS(8,1)=2176.9;% GALS(8,2)=3918.4;

% %6 islands

% GALS(9,1)=3265.3; % GALS(9,2)=2176.9;

% %7 islands

% GALS(10,1)=3265.3; % GALS(10,2)=1865.9;

% GALS(11,1)=4353.7;

% GALS(11,2)=1399.4;% GALS(12,1)=2176.9;

% GALS(12,2)=2798.8;

% %8 islands

% GALS(13,1)=1632.6;% GALS(13,2)=3265.3;

% %9 islands

% GALS(14,1)=1451.2; % GALS(14,2)=3265.3;

% GALS(15,1)=1814.4; % GALS(15,2)=2612.2;

% GALS(16,1)=2418.7; % GALS(16,2)=1959.2;

% GALS(17,1)=1209.4;% GALS(17,2)=3918.4;

% %10 islands

% GALS(18,1)=1306.1;% GALS(18,2)=3265.3;

% %11 islands

% GALS(19,1)=3265.3;% GALS(19,2)=1187.4;

% GALS(20,1)=1484.2;% GALS(20,2)=2612.2;

% GALS(21,1)=1979;% GALS(21,2)=1959.2;

% GALS(22,1)=3918.4; % GALS(22,2)=989.5;

% %12 islands

% GALS(23,1)=1088.4; % GALS(23,2)=3265.3;

% %13 islands

145

% GALS(24,1)=3265.3; % GALS(24,2)=1004.7;

% GALS(25,1)=1758.2;% GALS(25,2)=1865.9;

% GALS(26,1)=2344.3;% GALS(26,2)=1399.4;

% GALS(27,1)=2798.8;% GALS(27,2)=1172.2;

% %14 islands

% GALS(28,1)=3265.3; % GALS(28,2)=932.9;

% %15 islands

% GALS(29,1)=870.7;% GALS(29,2)=3265.3;

% GALS(30,1)=1865.9; % GALS(30,2)=1523.8;

% GALS(31,1)=2031.7;% GALS(31,2)=1399.4;

% GALS(32,1)=1015.9; % GALS(32,2)=2798.8;

% %16 islands

% GALS(33,1)=1632.6; % GALS(33,2)=1632.6;

% %�������������������

% %180nm CMOS Technology Parameters (Ref: Nassif)

% Vdd=1.8;

% Vt_m=0.45; Vt_3sd=0.045;

% Tox_m=4.5e-9; Tox_3sd=0.36e-9; %gate oxide thickness in metres

% Res_m=0.05 ; Res_3sd=0.012; %Sheet resistance ohm/sq block=(resistivity/T_INT)

% W_INT_m=0.65 ; W_INT_3sd=0.17; %um

% H_INT_m=1 ; H_INT_3sd=0.3; %um this is inter layer dielectric (ILD) height not thickness

% DielCon0=885.4e-14; %F/m 8.854e-14F/cm

% % % parameters from Ref: ASU PTM

% T_INT=1.25; %um thickness of wire

% k=3.5;

% DielCon=k*DielCon0; %F/m

% Cox=DielCon/Tox_m; %gate unit area cap

% mu=0.0067; % charge carrier mobility (670 cm2/(V*s))

% % %Minimum sized inverter (Ref: scaled from Jiang)

% wt_nmos=0.37*180/250; %um

% wt_pmos=1.1*180/250; %um

% Lt_m=0.18; Lt_3sd=0.060; %um transistor length

% K=mu*Cox*wt_nmos/Lt_m; %On resistance depends on nmos

% Ro=1/(K*(Vdd-Vt_m)); % output impedance

% Co=Cox*Lt_m*(wt_nmos+wt_pmos)*1e-6*1e-6/1e-15; %fF input capacitance

% Cd=Co/(2.5); %fF output parasitic capactiance (2.5=14.3/5.8 from Ref: Hashimoto)

% % %FF Capacitance

% FF_Cap=7; %fF

% FO4dly=Ro*(4*Co+Cd)*1e-3 %ps

% C_INT=DielCon*1e-6*((W_INT_m/H_INT_m)+0.77+...

1.06*((W_INT_m/H_INT_m)^0.25+(T_INT/H_INT_m)^0.5))/1e-15

% %fF/um capacitance of nominal width interconnect

% R=Res_m/W_INT_m; %ohm/um Resistance of nominal width interconnect

%SoC Design Parameters

%SinkD=18069/(2.2); %FFs per mm2

146

% f=(1e12/(100*FO4dly)); %scaled clock frequency to satisify MUTEX resolution time constraint

% CP=(1/f)*1e12 %Clock period ps

% %Island Matrix sizing for 180nm

% %1 island

% GALS(1,1)=9329.4; % GALS(1,2)=9329.4;

% %2 islands

% GALS(2,1)=4664.7; % GALS(2,2)=9329.4;

% %3 islands

% GALS(3,1)=4664.7;% GALS(3,2)=6219.6; % GALS(4,1)=9329.4; % GALS(4,2)=3109.8;

% %4 islands

% GALS(5,1)=4664.7; % GALS(5,2)=4664.7;

% %5 islands

% GALS(6,1)=4664.7; % GALS(6,2)=3731.8; % GALS(7,1)=6219.6; % GALS(7,2)=2798.8;

% GALS(8,1)=3109.8; % GALS(8,2)=5597.6;

% %6 islands

% GALS(9,1)=4664.7;% GALS(9,2)=3109.8;

% %7 islands

% GALS(10,1)=4664.7; % GALS(10,2)=2665.5;% GALS(11,1)=6219.6; % GALS(11,2)=1999.2;

% GALS(12,1)=3109.8; % GALS(12,2)=3998.3;

% %8 islands

% GALS(13,1)=2332.3;% GALS(13,2)=4664.7;

% %9 islands

% GALS(14,1)=2073.2; % GALS(14,2)=4664.7;% GALS(15,1)=2591.5; % GALS(15,2)=3731.8;

% GALS(16,1)=3455.3; % GALS(16,2)=2798.8; % GALS(17,1)=1727.7; % GALS(17,2)=5597.6;

% %10 islands

% GALS(18,1)=1865.9;% GALS(18,2)=4664.7;

% %11 islands

% GALS(19,1)=4664.7;% GALS(19,2)=1696.3; % GALS(20,1)=2120.3; % GALS(20,2)=3731.8;

% GALS(21,1)=2827.1;% GALS(21,2)=2798.8; % GALS(22,1)=5597.6; % GALS(22,2)=1413.5;

% %12 islands

% GALS(23,1)=1554.9; % GALS(23,2)=4664.7;

% %13 islands

% GALS(24,1)=4664.7; % GALS(24,2)=1435.3; % GALS(25,1)=2511.8; % GALS(25,2)=2665.5;

% GALS(26,1)=3349; % GALS(26,2)=1999.2; % GALS(27,1)=3998.3;% GALS(27,2)=1674.5;

% %14 islands

% GALS(28,1)=4664.7; % GALS(28,2)=1332.8;

% %15 islands

% GALS(29,1)=1243.9; % GALS(29,2)=4664.7; % GALS(30,1)=2665.5; % GALS(30,2)=2176.9;

% GALS(31,1)=2902.5; % GALS(31,2)=1999.2;% GALS(32,1)=1451.2; % GALS(32,2)=3998.3;

% %16 islands

% GALS(33,1)=2332.3; % GALS(33,2)=2332.3;

147

Appendix B

The Verilog codes listed below provide main parts of the behavioural HDL code for bundled-data and

elastic-bundle maximal implementations of the 16-point FFT multirate architecture. Note that the

datapath and high-level descriptions for both the implementations are the same. Only the control logic

codes would change depending on whether the design is a bundled-data implementation or an elastic-

bundle implementation.

16-point FFT Top-Level Verilog Code

module FFT16async(

input wire [31:0] D_in,

output wire [31:0] D_out,

input wire reqi,

output wire acki,

output wire reqo,

input wire acko,

input wire reset

);

wire [1:0] sel,sel_nxt,sel_temp,select,select_nxt,select_temp;

wire M1_rout,M2_rout,M3_rout,M4_rout,M1_aout,M2_aout,M3_aout,M4_aout;

wire FFT4_1_rout,FFT4_2_rout,FFT4_3_rout,FFT4_4_rout;

wire FFT4_5_rout,FFT4_6_rout,FFT4_7_rout,FFT4_8_rout;

wire FFT4_1_aout,FFT4_2_aout,FFT4_3_aout,FFT4_4_aout;

wire FFT4_5_aout,FFT4_6_aout,FFT4_7_aout,FFT4_8_aout;

wire [31:0] Din,Dout,M1_out,M2_out,M3_out,M4_out,crossbar_out;

wire [31:0] y1,y2_2,y3_2,y4_2,y2_3,y3_3,y4_3,y2_4,y3_4,y4_4;

wire [31:0] FFT4_1_Dout,FFT4_2_Dout,FFT4_3_Dout,FFT4_4_Dout;

wire [31:0] FFT4_5_Dout,FFT4_6_Dout,FFT4_7_Dout,FFT4_8_Dout;

wire req1,req2,req3,req4,ack1,ack2,ack3,ack4;

wire r1,r2,r3,r4,a1,a2,a3,a4;

wire ri,ai,ro,ao,ri_delay;

wire ci,co,c_M1,c_M2,c_M3,c_M4;

wire Xr1,Xr2,Xr3,Xr4,Xa1,Xa2,Xa3,Xa4;

//Twiddle factors

assign y1[31:16] = $unsigned(16'h1000); //1+0i consider adding a gating logic for this

assign y1[15:0] = $unsigned(16'h0);

148

assign y2_2[31:16] = $unsigned(16'h0ec8);

assign y2_2[15:0] = $unsigned(16'hf9e1);

assign y3_2[31:16] = $unsigned(16'h0b50);

assign y3_2[15:0] = $unsigned(16'hf4b0);

assign y4_2[31:16] = $unsigned(16'h061f);

assign y4_2[15:0] = $unsigned(16'hf138);

assign y2_3[31:16] = $unsigned(16'h0b50);

assign y2_3[15:0] = $unsigned(16'hf4b0);

assign y3_3[31:16] = $unsigned(16'h0);

assign y3_3[15:0] = $unsigned(16'hf000);

assign y4_3[31:16] = $unsigned(16'hf4b0);

assign y4_3[15:0] = $unsigned(16'hf4b0);

assign y2_4[31:16] = $unsigned(16'h061f);

assign y2_4[15:0] = $unsigned(16'hf138);

assign y3_4[31:16] = $unsigned(16'hf4b0);

assign y3_4[15:0] = $unsigned(16'hf4b0);

assign y4_4[31:16] = $unsigned(16'hf138);

assign y4_4[15:0] = $unsigned(16'h061f);

handshake_ctl HC1(.lr(reqi),.la(acki),.rr(ri),.ra(ai),.ck(ci),.reset(~reset));

reg32_async R1(.D(D_in),.Q(Din),.ck(ci),.reset(reset));

//delay element for Clock to Q delay

// delay element maynot be required here since, decimatot delays logic

delayele_Reg2Reg d1(.in(ri),.out(ri_delay));

//First stage at ack ai

reg_counter2_async R2(.D(sel_nxt),.Q(sel_temp),.ck(ai),.reset(reset));

//Second stage at ack ~ai

//Time between ai and ~ai is about 400 ps, CtoQ delay is not violated

reg_counter2_async R3(.D(sel_temp),.Q(sel),.ck(~ai),.reset(reset));

//There is enough delay between consecutive ai pulses. Delay element not required . (actually satis�ed by delay d1)

counter2_async count1(.in(sel),.out(sel_nxt));

//no delay element required here since request is automatically delayed by logic

decimator4_async decimator(

.R(ri_delay),

.sel(sel),

.a1(a1),

.a2(a2),

.a3(a3),

.a4(a4),

.r1(r1),

.r2(r2),

.r3(r3),

.r4(r4),

.A(ai)

);

FFT4async FFT4_1(

.D_in(Din),

149

.D_out(FFT4_1_Dout),

.reqi(r1),

.acki(a1),

.reqo(FFT4_1_rout),

.acko(FFT4_1_aout),

.reset(reset)

);

FFT4async FFT4_2(

.D_in(Din),

.D_out(FFT4_2_Dout),

.reqi(r2),

.acki(a2),

.reqo(FFT4_2_rout),

.acko(FFT4_2_aout),

.reset(reset)

);

FFT4async FFT4_3(

.D_in(Din),

.D_out(FFT4_3_Dout),

.reqi(r3),

.acki(a3),

.reqo(FFT4_3_rout),

.acko(FFT4_3_aout),

.reset(reset)

);

FFT4async FFT4_4(

.D_in(Din),

.D_out(FFT4_4_Dout),

.reqi(r4),

.acki(a4),

.reqo(FFT4_4_rout),

.acko(FFT4_4_aout),

.reset(reset)

);

MULT_1_async M1(

.M_in(FFT4_1_Dout),

.clock(c_M1),

.reset(reset),

.M_out(M1_out)

);

MULT16_async M2(

.y1(y1),

.y2(y2_2),

.y3(y3_2),

.y4(y4_2),

.M_in(FFT4_2_Dout),

150

.clock(c_M2),

.A(FFT4_2_aout),

.reset(reset),

.M_out(M2_out)

);

MULT16_async M3(

.y1(y1),

.y2(y2_3),

.y3(y3_3),

.y4(y4_3),

.M_in(FFT4_3_Dout),

.clock(c_M3),

.A(FFT4_3_aout),

.reset(reset),

.M_out(M3_out)

);

MULT16_async M4(

.y1(y1),

.y2(y2_4),

.y3(y3_4),

.y4(y4_4),

.M_in(FFT4_4_Dout),

.clock(c_M4),

.A(FFT4_4_aout),

.reset(reset),

.M_out(M4_out)

);

FFT16_control_async control(

.reset(~reset),

.FFT4_1_rout(FFT4_1_rout),.FFT4_2_rout(FFT4_2_rout),

.FFT4_3_rout(FFT4_3_rout),.FFT4_4_rout(FFT4_4_rout),

.M1_aout(M1_aout),.M2_aout(M2_aout),.M3_aout(M3_aout),.M4_aout(M4_aout),

.FFT4_1_aout(FFT4_1_aout),.FFT4_2_aout(FFT4_2_aout),

.FFT4_3_aout(FFT4_3_aout),.FFT4_4_aout(FFT4_4_aout),

.c_M1(c_M1),.c_M2(c_M2),.c_M3(c_M3),.c_M4(c_M4),

.M1_rout(M1_rout),.M2_rout(M2_rout),.M3_rout(M3_rout),.M4_rout(M4_rout)

);

crossbar4_async crossbar(

.reset(reset),

.r1(M1_rout),

.r2(M2_rout),

.r3(M3_rout),

.r4(M4_rout),

.a1(M1_aout),

.a2(M2_aout),

.a3(M3_aout),

151

.a4(M4_aout),

.D1(M1_out),

.D2(M2_out),

.D3(M3_out),

.D4(M4_out),

.REQ1(Xr1),

.REQ2(Xr2),

.REQ3(Xr3),

.REQ4(Xr4),

.ACK1(Xa1),

.ACK2(Xa2),

.ACK3(Xa3),

.ACK4(Xa4),

.Dout(crossbar_out)

);

FFT4async FFT4_5(

.D_in(crossbar_out),

.D_out(FFT4_5_Dout),

.reqi(Xr1),

.acki(Xa1),

.reqo(FFT4_5_rout),

.acko(FFT4_5_aout),

.reset(reset)

);

FFT4async FFT4_6(

.D_in(crossbar_out),

.D_out(FFT4_6_Dout),

.reqi(Xr2),

.acki(Xa2),

.reqo(FFT4_6_rout),

.acko(FFT4_6_aout),

.reset(reset)

);

FFT4async FFT4_7(

.D_in(crossbar_out),

.D_out(FFT4_7_Dout),

.reqi(Xr3),

.acki(Xa3),

.reqo(FFT4_7_rout),

.acko(FFT4_7_aout),

.reset(reset)

);

FFT4async FFT4_8(

.D_in(crossbar_out),

.D_out(FFT4_8_Dout),

.reqi(Xr4),

152

.acki(Xa4),

.reqo(FFT4_8_rout),

.acko(FFT4_8_aout),

.reset(reset)

);

//delay element for Clock to Q delay from datapath output

delayele_Reg2Reg d2(.in(FFT4_5_rout),.out(req1));

delayele_Reg2Reg d3(.in(FFT4_6_rout),.out(req2));

delayele_Reg2Reg d4(.in(FFT4_7_rout),.out(req3));

delayele_Reg2Reg d5(.in(FFT4_8_rout),.out(req4));

//First stage at ack a0

reg_counter2_async R4(.D(select_nxt),.Q(select_temp),.ck(ao),.reset(reset));

//Second stage at ack falls ~ao

//Time between ao and ~ao is 400 ps, CtoQ delay is not violated

reg_counter2_async R5(.D(select_temp),.Q(select),.ck(~ao),.reset(reset));

counter2_async count2(.in(select),.out(select_nxt));

expander4_async expander(

.sel(select),

.r1(req1),

.r2(req2),

.r3(req3),

.r4(req4),

.A(ao),

.D1(FFT4_5_Dout),

.D2(FFT4_6_Dout),

.D3(FFT4_7_Dout),

.D4(FFT4_8_Dout),

.R(ro),

.a1(FFT4_5_aout),

.a2(FFT4_6_aout),

.a3(FFT4_7_aout),

.a4(FFT4_8_aout),

.Dout(Dout)

);

handshake_ctl HC2(.lr(ro),.la(ao),.rr(reqo),.ra(acko),.ck(co),.reset(~reset));

reg32_async R6(.D(Dout),.Q(D_out),.ck(co),.reset(reset));

endmodule

16-point FFT Control Verilog Code

module delayele_inv_7 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

153

module delayele_inv_6 (in, out);

input in;

output out;

wire n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16,

n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27, n28, n29, n30,

n31, n32, n33, n34, n35, n36, n37, n38, n39, n40, n41, n42, n43, n44,

n45, n46, n47, n48, n49, n50, n51, n52, n53, n54, n55, n56, n57, n58,

n59, n60, n61, n62, n63, n64, n65, n66, n67, n68, n69, n70, n71, n72,

n73, n74, n75, n76, n77, n78, n79, n80, n81, n82, n83, n84, n85, n86,

n87, n88, n89, n90, n91, n92, n93, n94, n95, n96, n97, n98, n99, n100,

n101, n102, n103, n104, n105, n106, n107, n108, n109, n110, n111,

n112, n113, n114, n115, n116, n117;

BUFX1 U1 (.I(n2), .O(out));

BUFX1 U2 (.I(n3), .O(n2));

BUFX1 U3 (.I(n4), .O(n3));

BUFX1 U4 (.I(n5), .O(n4));

BUFX1 U5 (.I(n6), .O(n5));

BUFX1 U6 (.I(n7), .O(n6));

BUFX1 U7 (.I(n8), .O(n7));

BUFX1 U8 (.I(n9), .O(n8));

BUFX1 U9 (.I(n10), .O(n9));

BUFX1 U10 (.I(n11), .O(n10));

BUFX1 U11 (.I(n12), .O(n11));

BUFX1 U12 (.I(n13), .O(n12));

BUFX1 U13 (.I(n14), .O(n13));

BUFX1 U14 (.I(n15), .O(n14));

BUFX1 U15 (.I(n16), .O(n15));

BUFX1 U16 (.I(n17), .O(n16));

BUFX1 U17 (.I(n18), .O(n17));

BUFX1 U18 (.I(n19), .O(n18));

BUFX1 U19 (.I(n20), .O(n19));

BUFX1 U20 (.I(n21), .O(n20));

BUFX1 U21 (.I(n22), .O(n21));

BUFX1 U22 (.I(n23), .O(n22));

BUFX1 U23 (.I(n24), .O(n23));

BUFX1 U24 (.I(n25), .O(n24));

BUFX1 U25 (.I(n26), .O(n25));

BUFX1 U26 (.I(n27), .O(n26));

BUFX1 U27 (.I(n28), .O(n27));

BUFX1 U28 (.I(n29), .O(n28));

BUFX1 U29 (.I(n30), .O(n29));

BUFX1 U30 (.I(n31), .O(n30));

BUFX1 U31 (.I(n32), .O(n31));

BUFX1 U32 (.I(n33), .O(n32));

BUFX1 U33 (.I(n34), .O(n33));

BUFX1 U34 (.I(n35), .O(n34));

154

BUFX1 U35 (.I(n36), .O(n35));

BUFX1 U36 (.I(n37), .O(n36));

BUFX1 U37 (.I(n38), .O(n37));

BUFX1 U38 (.I(n39), .O(n38));

BUFX1 U39 (.I(n40), .O(n39));

BUFX1 U40 (.I(n41), .O(n40));

BUFX1 U41 (.I(n42), .O(n41));

BUFX1 U42 (.I(n43), .O(n42));

BUFX1 U43 (.I(n44), .O(n43));

BUFX1 U44 (.I(n45), .O(n44));

BUFX1 U45 (.I(n46), .O(n45));

BUFX1 U46 (.I(n47), .O(n46));

BUFX1 U47 (.I(n48), .O(n47));

BUFX1 U48 (.I(n49), .O(n48));

BUFX1 U49 (.I(n50), .O(n49));

BUFX1 U50 (.I(n51), .O(n50));

BUFX1 U51 (.I(n52), .O(n51));

BUFX1 U52 (.I(n53), .O(n52));

BUFX1 U53 (.I(n54), .O(n53));

BUFX1 U54 (.I(n55), .O(n54));

BUFX1 U55 (.I(n56), .O(n55));

BUFX1 U56 (.I(n57), .O(n56));

BUFX1 U57 (.I(n58), .O(n57));

BUFX1 U58 (.I(n59), .O(n58));

BUFX1 U59 (.I(n60), .O(n59));

BUFX1 U60 (.I(n61), .O(n60));

BUFX1 U61 (.I(n62), .O(n61));

BUFX1 U62 (.I(n63), .O(n62));

BUFX1 U63 (.I(n64), .O(n63));

BUFX1 U64 (.I(n65), .O(n64));

BUFX1 U65 (.I(n66), .O(n65));

BUFX1 U66 (.I(n67), .O(n66));

BUFX1 U67 (.I(n68), .O(n67));

BUFX1 U68 (.I(n69), .O(n68));

BUFX1 U69 (.I(n70), .O(n69));

BUFX1 U70 (.I(n71), .O(n70));

BUFX1 U71 (.I(n72), .O(n71));

BUFX1 U72 (.I(n73), .O(n72));

BUFX1 U73 (.I(n74), .O(n73));

BUFX1 U74 (.I(n75), .O(n74));

BUFX1 U75 (.I(n76), .O(n75));

BUFX1 U76 (.I(n77), .O(n76));

BUFX1 U77 (.I(n78), .O(n77));

BUFX1 U78 (.I(n79), .O(n78));

BUFX1 U79 (.I(n80), .O(n79));

BUFX1 U80 (.I(n81), .O(n80));

155

BUFX1 U81 (.I(n82), .O(n81));

BUFX1 U82 (.I(n83), .O(n82));

BUFX1 U83 (.I(n84), .O(n83));

BUFX1 U84 (.I(n85), .O(n84));

BUFX1 U85 (.I(n86), .O(n85));

BUFX1 U86 (.I(n87), .O(n86));

BUFX1 U87 (.I(n88), .O(n87));

BUFX1 U88 (.I(n89), .O(n88));

BUFX1 U89 (.I(n90), .O(n89));

BUFX1 U90 (.I(n91), .O(n90));

BUFX1 U91 (.I(n92), .O(n91));

BUFX1 U92 (.I(n93), .O(n92));

BUFX1 U93 (.I(n94), .O(n93));

BUFX1 U94 (.I(n95), .O(n94));

BUFX1 U95 (.I(n96), .O(n95));

BUFX1 U96 (.I(n97), .O(n96));

BUFX1 U97 (.I(n98), .O(n97));

BUFX1 U98 (.I(n99), .O(n98));

BUFX1 U99 (.I(n100), .O(n99));

BUFX1 U100 (.I(n101), .O(n100));

BUFX1 U101 (.I(n102), .O(n101));

BUFX1 U102 (.I(n103), .O(n102));

BUFX1 U103 (.I(n104), .O(n103));

BUFX1 U104 (.I(n105), .O(n104));

BUFX1 U105 (.I(n106), .O(n105));

BUFX1 U106 (.I(n107), .O(n106));

BUFX1 U107 (.I(n108), .O(n107));

BUFX1 U108 (.I(n109), .O(n108));

BUFX1 U109 (.I(n110), .O(n109));

BUFX1 U110 (.I(n111), .O(n110));

BUFX1 U111 (.I(n112), .O(n111));

BUFX1 U112 (.I(n113), .O(n112));

BUFX1 U113 (.I(n114), .O(n113));

BUFX1 U114 (.I(n115), .O(n114));

BUFX1 U115 (.I(n116), .O(n115));

BUFX1 U116 (.I(n117), .O(n116));

INVX1 U117 (.I(in), .O(n117));

endmodule

module DelayElement_73 (in, out);

input in;

output out;

wire t1;

delayele_inv_7 d1 (.in(in), .out(t1));

delayele_inv_6 d2 (.in(t1), .out(out));

endmodule

module delayele_inv_0 (in, out);

156

input in;

output out;

wire n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16,

n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27, n28, n29, n30,

n31, n32, n33, n34, n35, n36, n37, n38, n39, n40, n41, n42, n43, n44,

n45, n46, n47, n48, n49, n50, n51, n52, n53, n54, n55, n56, n57, n58,

n59, n60, n61, n62, n63, n64, n65, n66, n67, n68, n69, n70, n71, n72,

n73, n74, n75, n76, n77, n78, n79, n80, n81, n82, n83, n84, n85, n86,

n87, n88, n89, n90, n91, n92, n93, n94, n95, n96, n97, n98, n99, n100,

n101, n102, n103, n104, n105, n106, n107, n108, n109, n110, n111,

n112, n113, n114, n115, n116, n117;

BUFX1 U1 (.I(n2), .O(out));

BUFX1 U2 (.I(n3), .O(n2));

BUFX1 U3 (.I(n4), .O(n3));

BUFX1 U4 (.I(n5), .O(n4));

BUFX1 U5 (.I(n6), .O(n5));

BUFX1 U6 (.I(n7), .O(n6));

BUFX1 U7 (.I(n8), .O(n7));

BUFX1 U8 (.I(n9), .O(n8));

BUFX1 U9 (.I(n10), .O(n9));

BUFX1 U10 (.I(n11), .O(n10));

BUFX1 U11 (.I(n12), .O(n11));

BUFX1 U12 (.I(n13), .O(n12));

BUFX1 U13 (.I(n14), .O(n13));

BUFX1 U14 (.I(n15), .O(n14));

BUFX1 U15 (.I(n16), .O(n15));

BUFX1 U16 (.I(n17), .O(n16));

BUFX1 U17 (.I(n18), .O(n17));

BUFX1 U18 (.I(n19), .O(n18));

BUFX1 U19 (.I(n20), .O(n19));

BUFX1 U20 (.I(n21), .O(n20));

BUFX1 U21 (.I(n22), .O(n21));

BUFX1 U22 (.I(n23), .O(n22));

BUFX1 U23 (.I(n24), .O(n23));

BUFX1 U24 (.I(n25), .O(n24));

BUFX1 U25 (.I(n26), .O(n25));

BUFX1 U26 (.I(n27), .O(n26));

BUFX1 U27 (.I(n28), .O(n27));

BUFX1 U28 (.I(n29), .O(n28));

BUFX1 U29 (.I(n30), .O(n29));

BUFX1 U30 (.I(n31), .O(n30));

BUFX1 U31 (.I(n32), .O(n31));

BUFX1 U32 (.I(n33), .O(n32));

BUFX1 U33 (.I(n34), .O(n33));

BUFX1 U34 (.I(n35), .O(n34));

BUFX1 U35 (.I(n36), .O(n35));

157

BUFX1 U36 (.I(n37), .O(n36));

BUFX1 U37 (.I(n38), .O(n37));

BUFX1 U38 (.I(n39), .O(n38));

BUFX1 U39 (.I(n40), .O(n39));

BUFX1 U40 (.I(n41), .O(n40));

BUFX1 U41 (.I(n42), .O(n41));

BUFX1 U42 (.I(n43), .O(n42));

BUFX1 U43 (.I(n44), .O(n43));

BUFX1 U44 (.I(n45), .O(n44));

BUFX1 U45 (.I(n46), .O(n45));

BUFX1 U46 (.I(n47), .O(n46));

BUFX1 U47 (.I(n48), .O(n47));

BUFX1 U48 (.I(n49), .O(n48));

BUFX1 U49 (.I(n50), .O(n49));

BUFX1 U50 (.I(n51), .O(n50));

BUFX1 U51 (.I(n52), .O(n51));

BUFX1 U52 (.I(n53), .O(n52));

BUFX1 U53 (.I(n54), .O(n53));

BUFX1 U54 (.I(n55), .O(n54));

BUFX1 U55 (.I(n56), .O(n55));

BUFX1 U56 (.I(n57), .O(n56));

BUFX1 U57 (.I(n58), .O(n57));

BUFX1 U58 (.I(n59), .O(n58));

BUFX1 U59 (.I(n60), .O(n59));

BUFX1 U60 (.I(n61), .O(n60));

BUFX1 U61 (.I(n62), .O(n61));

BUFX1 U62 (.I(n63), .O(n62));

BUFX1 U63 (.I(n64), .O(n63));

BUFX1 U64 (.I(n65), .O(n64));

BUFX1 U65 (.I(n66), .O(n65));

BUFX1 U66 (.I(n67), .O(n66));

BUFX1 U67 (.I(n68), .O(n67));

BUFX1 U68 (.I(n69), .O(n68));

BUFX1 U69 (.I(n70), .O(n69));

BUFX1 U70 (.I(n71), .O(n70));

BUFX1 U71 (.I(n72), .O(n71));

BUFX1 U72 (.I(n73), .O(n72));

BUFX1 U73 (.I(n74), .O(n73));

BUFX1 U74 (.I(n75), .O(n74));

BUFX1 U75 (.I(n76), .O(n75));

BUFX1 U76 (.I(n77), .O(n76));

BUFX1 U77 (.I(n78), .O(n77));

BUFX1 U78 (.I(n79), .O(n78));

BUFX1 U79 (.I(n80), .O(n79));

BUFX1 U80 (.I(n81), .O(n80));

BUFX1 U81 (.I(n82), .O(n81));

158

BUFX1 U82 (.I(n83), .O(n82));

BUFX1 U83 (.I(n84), .O(n83));

BUFX1 U84 (.I(n85), .O(n84));

BUFX1 U85 (.I(n86), .O(n85));

BUFX1 U86 (.I(n87), .O(n86));

BUFX1 U87 (.I(n88), .O(n87));

BUFX1 U88 (.I(n89), .O(n88));

BUFX1 U89 (.I(n90), .O(n89));

BUFX1 U90 (.I(n91), .O(n90));

BUFX1 U91 (.I(n92), .O(n91));

BUFX1 U92 (.I(n93), .O(n92));

BUFX1 U93 (.I(n94), .O(n93));

BUFX1 U94 (.I(n95), .O(n94));

BUFX1 U95 (.I(n96), .O(n95));

BUFX1 U96 (.I(n97), .O(n96));

BUFX1 U97 (.I(n98), .O(n97));

BUFX1 U98 (.I(n99), .O(n98));

BUFX1 U99 (.I(n100), .O(n99));

BUFX1 U100 (.I(n101), .O(n100));

BUFX1 U101 (.I(n102), .O(n101));

BUFX1 U102 (.I(n103), .O(n102));

BUFX1 U103 (.I(n104), .O(n103));

BUFX1 U104 (.I(n105), .O(n104));

BUFX1 U105 (.I(n106), .O(n105));

BUFX1 U106 (.I(n107), .O(n106));

BUFX1 U107 (.I(n108), .O(n107));

BUFX1 U108 (.I(n109), .O(n108));

BUFX1 U109 (.I(n110), .O(n109));

BUFX1 U110 (.I(n111), .O(n110));

BUFX1 U111 (.I(n112), .O(n111));

BUFX1 U112 (.I(n113), .O(n112));

BUFX1 U113 (.I(n114), .O(n113));

BUFX1 U114 (.I(n115), .O(n114));

BUFX1 U115 (.I(n116), .O(n115));

BUFX1 U116 (.I(n117), .O(n116));

INVX1 U117 (.I(in), .O(n117));

endmodule

module delayele_inv_1 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_70 (in, out);

input in;

output out;

wire t1;

159

delayele_inv_1 d1 (.in(in), .out(t1));

delayele_inv_0 d2 (.in(t1), .out(out));

endmodule

module delayele_inv_2 (in, out);

input in;

output out;

wire n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16,

n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27, n28, n29, n30,

n31, n32, n33, n34, n35, n36, n37, n38, n39, n40, n41, n42, n43, n44,

n45, n46, n47, n48, n49, n50, n51, n52, n53, n54, n55, n56, n57, n58,

n59, n60, n61, n62, n63, n64, n65, n66, n67, n68, n69, n70, n71, n72,

n73, n74, n75, n76, n77, n78, n79, n80, n81, n82, n83, n84, n85, n86,

n87, n88, n89, n90, n91, n92, n93, n94, n95, n96, n97, n98, n99, n100,

n101, n102, n103, n104, n105, n106, n107, n108, n109, n110, n111,

n112, n113, n114, n115, n116, n117;

BUFX1 U1 (.I(n2), .O(out));

BUFX1 U2 (.I(n3), .O(n2));

BUFX1 U3 (.I(n4), .O(n3));

BUFX1 U4 (.I(n5), .O(n4));

BUFX1 U5 (.I(n6), .O(n5));

BUFX1 U6 (.I(n7), .O(n6));

BUFX1 U7 (.I(n8), .O(n7));

BUFX1 U8 (.I(n9), .O(n8));

BUFX1 U9 (.I(n10), .O(n9));

BUFX1 U10 (.I(n11), .O(n10));

BUFX1 U11 (.I(n12), .O(n11));

BUFX1 U12 (.I(n13), .O(n12));

BUFX1 U13 (.I(n14), .O(n13));

BUFX1 U14 (.I(n15), .O(n14));

BUFX1 U15 (.I(n16), .O(n15));

BUFX1 U16 (.I(n17), .O(n16));

BUFX1 U17 (.I(n18), .O(n17));

BUFX1 U18 (.I(n19), .O(n18));

BUFX1 U19 (.I(n20), .O(n19));

BUFX1 U20 (.I(n21), .O(n20));

BUFX1 U21 (.I(n22), .O(n21));

BUFX1 U22 (.I(n23), .O(n22));

BUFX1 U23 (.I(n24), .O(n23));

BUFX1 U24 (.I(n25), .O(n24));

BUFX1 U25 (.I(n26), .O(n25));

BUFX1 U26 (.I(n27), .O(n26));

BUFX1 U27 (.I(n28), .O(n27));

BUFX1 U28 (.I(n29), .O(n28));

BUFX1 U29 (.I(n30), .O(n29));

BUFX1 U30 (.I(n31), .O(n30));

BUFX1 U31 (.I(n32), .O(n31));

160

BUFX1 U32 (.I(n33), .O(n32));

BUFX1 U33 (.I(n34), .O(n33));

BUFX1 U34 (.I(n35), .O(n34));

BUFX1 U35 (.I(n36), .O(n35));

BUFX1 U36 (.I(n37), .O(n36));

BUFX1 U37 (.I(n38), .O(n37));

BUFX1 U38 (.I(n39), .O(n38));

BUFX1 U39 (.I(n40), .O(n39));

BUFX1 U40 (.I(n41), .O(n40));

BUFX1 U41 (.I(n42), .O(n41));

BUFX1 U42 (.I(n43), .O(n42));

BUFX1 U43 (.I(n44), .O(n43));

BUFX1 U44 (.I(n45), .O(n44));

BUFX1 U45 (.I(n46), .O(n45));

BUFX1 U46 (.I(n47), .O(n46));

BUFX1 U47 (.I(n48), .O(n47));

BUFX1 U48 (.I(n49), .O(n48));

BUFX1 U49 (.I(n50), .O(n49));

BUFX1 U50 (.I(n51), .O(n50));

BUFX1 U51 (.I(n52), .O(n51));

BUFX1 U52 (.I(n53), .O(n52));

BUFX1 U53 (.I(n54), .O(n53));

BUFX1 U54 (.I(n55), .O(n54));

BUFX1 U55 (.I(n56), .O(n55));

BUFX1 U56 (.I(n57), .O(n56));

BUFX1 U57 (.I(n58), .O(n57));

BUFX1 U58 (.I(n59), .O(n58));

BUFX1 U59 (.I(n60), .O(n59));

BUFX1 U60 (.I(n61), .O(n60));

BUFX1 U61 (.I(n62), .O(n61));

BUFX1 U62 (.I(n63), .O(n62));

BUFX1 U63 (.I(n64), .O(n63));

BUFX1 U64 (.I(n65), .O(n64));

BUFX1 U65 (.I(n66), .O(n65));

BUFX1 U66 (.I(n67), .O(n66));

BUFX1 U67 (.I(n68), .O(n67));

BUFX1 U68 (.I(n69), .O(n68));

BUFX1 U69 (.I(n70), .O(n69));

BUFX1 U70 (.I(n71), .O(n70));

BUFX1 U71 (.I(n72), .O(n71));

BUFX1 U72 (.I(n73), .O(n72));

BUFX1 U73 (.I(n74), .O(n73));

BUFX1 U74 (.I(n75), .O(n74));

BUFX1 U75 (.I(n76), .O(n75));

BUFX1 U76 (.I(n77), .O(n76));

BUFX1 U77 (.I(n78), .O(n77));

161

BUFX1 U78 (.I(n79), .O(n78));

BUFX1 U79 (.I(n80), .O(n79));

BUFX1 U80 (.I(n81), .O(n80));

BUFX1 U81 (.I(n82), .O(n81));

BUFX1 U82 (.I(n83), .O(n82));

BUFX1 U83 (.I(n84), .O(n83));

BUFX1 U84 (.I(n85), .O(n84));

BUFX1 U85 (.I(n86), .O(n85));

BUFX1 U86 (.I(n87), .O(n86));

BUFX1 U87 (.I(n88), .O(n87));

BUFX1 U88 (.I(n89), .O(n88));

BUFX1 U89 (.I(n90), .O(n89));

BUFX1 U90 (.I(n91), .O(n90));

BUFX1 U91 (.I(n92), .O(n91));

BUFX1 U92 (.I(n93), .O(n92));

BUFX1 U93 (.I(n94), .O(n93));

BUFX1 U94 (.I(n95), .O(n94));

BUFX1 U95 (.I(n96), .O(n95));

BUFX1 U96 (.I(n97), .O(n96));

BUFX1 U97 (.I(n98), .O(n97));

BUFX1 U98 (.I(n99), .O(n98));

BUFX1 U99 (.I(n100), .O(n99));

BUFX1 U100 (.I(n101), .O(n100));

BUFX1 U101 (.I(n102), .O(n101));

BUFX1 U102 (.I(n103), .O(n102));

BUFX1 U103 (.I(n104), .O(n103));

BUFX1 U104 (.I(n105), .O(n104));

BUFX1 U105 (.I(n106), .O(n105));

BUFX1 U106 (.I(n107), .O(n106));

BUFX1 U107 (.I(n108), .O(n107));

BUFX1 U108 (.I(n109), .O(n108));

BUFX1 U109 (.I(n110), .O(n109));

BUFX1 U110 (.I(n111), .O(n110));

BUFX1 U111 (.I(n112), .O(n111));

BUFX1 U112 (.I(n113), .O(n112));

BUFX1 U113 (.I(n114), .O(n113));

BUFX1 U114 (.I(n115), .O(n114));

BUFX1 U115 (.I(n116), .O(n115));

BUFX1 U116 (.I(n117), .O(n116));

INVX1 U117 (.I(in), .O(n117));

endmodule

module delayele_inv_3 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

162

module DelayElement_71 (in, out);

input in;

output out;

wire t1;

delayele_inv_3 d1 (.in(in), .out(t1));

delayele_inv_2 d2 (.in(t1), .out(out));

endmodule

module delayele_inv_4 (in, out);

input in;

output out;

wire n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16,

n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27, n28, n29, n30,

n31, n32, n33, n34, n35, n36, n37, n38, n39, n40, n41, n42, n43, n44,

n45, n46, n47, n48, n49, n50, n51, n52, n53, n54, n55, n56, n57, n58,

n59, n60, n61, n62, n63, n64, n65, n66, n67, n68, n69, n70, n71, n72,

n73, n74, n75, n76, n77, n78, n79, n80, n81, n82, n83, n84, n85, n86,

n87, n88, n89, n90, n91, n92, n93, n94, n95, n96, n97, n98, n99, n100,

n101, n102, n103, n104, n105, n106, n107, n108, n109, n110, n111,

n112, n113, n114, n115, n116, n117;

BUFX1 U1 (.I(n2), .O(out));

BUFX1 U2 (.I(n3), .O(n2));

BUFX1 U3 (.I(n4), .O(n3));

BUFX1 U4 (.I(n5), .O(n4));

BUFX1 U5 (.I(n6), .O(n5));

BUFX1 U6 (.I(n7), .O(n6));

BUFX1 U7 (.I(n8), .O(n7));

BUFX1 U8 (.I(n9), .O(n8));

BUFX1 U9 (.I(n10), .O(n9));

BUFX1 U10 (.I(n11), .O(n10));

BUFX1 U11 (.I(n12), .O(n11));

BUFX1 U12 (.I(n13), .O(n12));

BUFX1 U13 (.I(n14), .O(n13));

BUFX1 U14 (.I(n15), .O(n14));

BUFX1 U15 (.I(n16), .O(n15));

BUFX1 U16 (.I(n17), .O(n16));

BUFX1 U17 (.I(n18), .O(n17));

BUFX1 U18 (.I(n19), .O(n18));

BUFX1 U19 (.I(n20), .O(n19));

BUFX1 U20 (.I(n21), .O(n20));

BUFX1 U21 (.I(n22), .O(n21));

BUFX1 U22 (.I(n23), .O(n22));

BUFX1 U23 (.I(n24), .O(n23));

BUFX1 U24 (.I(n25), .O(n24));

BUFX1 U25 (.I(n26), .O(n25));

BUFX1 U26 (.I(n27), .O(n26));

BUFX1 U27 (.I(n28), .O(n27));

163

BUFX1 U28 (.I(n29), .O(n28));

BUFX1 U29 (.I(n30), .O(n29));

BUFX1 U30 (.I(n31), .O(n30));

BUFX1 U31 (.I(n32), .O(n31));

BUFX1 U32 (.I(n33), .O(n32));

BUFX1 U33 (.I(n34), .O(n33));

BUFX1 U34 (.I(n35), .O(n34));

BUFX1 U35 (.I(n36), .O(n35));

BUFX1 U36 (.I(n37), .O(n36));

BUFX1 U37 (.I(n38), .O(n37));

BUFX1 U38 (.I(n39), .O(n38));

BUFX1 U39 (.I(n40), .O(n39));

BUFX1 U40 (.I(n41), .O(n40));

BUFX1 U41 (.I(n42), .O(n41));

BUFX1 U42 (.I(n43), .O(n42));

BUFX1 U43 (.I(n44), .O(n43));

BUFX1 U44 (.I(n45), .O(n44));

BUFX1 U45 (.I(n46), .O(n45));

BUFX1 U46 (.I(n47), .O(n46));

BUFX1 U47 (.I(n48), .O(n47));

BUFX1 U48 (.I(n49), .O(n48));

BUFX1 U49 (.I(n50), .O(n49));

BUFX1 U50 (.I(n51), .O(n50));

BUFX1 U51 (.I(n52), .O(n51));

BUFX1 U52 (.I(n53), .O(n52));

BUFX1 U53 (.I(n54), .O(n53));

BUFX1 U54 (.I(n55), .O(n54));

BUFX1 U55 (.I(n56), .O(n55));

BUFX1 U56 (.I(n57), .O(n56));

BUFX1 U57 (.I(n58), .O(n57));

BUFX1 U58 (.I(n59), .O(n58));

BUFX1 U59 (.I(n60), .O(n59));

BUFX1 U60 (.I(n61), .O(n60));

BUFX1 U61 (.I(n62), .O(n61));

BUFX1 U62 (.I(n63), .O(n62));

BUFX1 U63 (.I(n64), .O(n63));

BUFX1 U64 (.I(n65), .O(n64));

BUFX1 U65 (.I(n66), .O(n65));

BUFX1 U66 (.I(n67), .O(n66));

BUFX1 U67 (.I(n68), .O(n67));

BUFX1 U68 (.I(n69), .O(n68));

BUFX1 U69 (.I(n70), .O(n69));

BUFX1 U70 (.I(n71), .O(n70));

BUFX1 U71 (.I(n72), .O(n71));

BUFX1 U72 (.I(n73), .O(n72));

BUFX1 U73 (.I(n74), .O(n73));

164

BUFX1 U74 (.I(n75), .O(n74));

BUFX1 U75 (.I(n76), .O(n75));

BUFX1 U76 (.I(n77), .O(n76));

BUFX1 U77 (.I(n78), .O(n77));

BUFX1 U78 (.I(n79), .O(n78));

BUFX1 U79 (.I(n80), .O(n79));

BUFX1 U80 (.I(n81), .O(n80));

BUFX1 U81 (.I(n82), .O(n81));

BUFX1 U82 (.I(n83), .O(n82));

BUFX1 U83 (.I(n84), .O(n83));

BUFX1 U84 (.I(n85), .O(n84));

BUFX1 U85 (.I(n86), .O(n85));

BUFX1 U86 (.I(n87), .O(n86));

BUFX1 U87 (.I(n88), .O(n87));

BUFX1 U88 (.I(n89), .O(n88));

BUFX1 U89 (.I(n90), .O(n89));

BUFX1 U90 (.I(n91), .O(n90));

BUFX1 U91 (.I(n92), .O(n91));

BUFX1 U92 (.I(n93), .O(n92));

BUFX1 U93 (.I(n94), .O(n93));

BUFX1 U94 (.I(n95), .O(n94));

BUFX1 U95 (.I(n96), .O(n95));

BUFX1 U96 (.I(n97), .O(n96));

BUFX1 U97 (.I(n98), .O(n97));

BUFX1 U98 (.I(n99), .O(n98));

BUFX1 U99 (.I(n100), .O(n99));

BUFX1 U100 (.I(n101), .O(n100));

BUFX1 U101 (.I(n102), .O(n101));

BUFX1 U102 (.I(n103), .O(n102));

BUFX1 U103 (.I(n104), .O(n103));

BUFX1 U104 (.I(n105), .O(n104));

BUFX1 U105 (.I(n106), .O(n105));

BUFX1 U106 (.I(n107), .O(n106));

BUFX1 U107 (.I(n108), .O(n107));

BUFX1 U108 (.I(n109), .O(n108));

BUFX1 U109 (.I(n110), .O(n109));

BUFX1 U110 (.I(n111), .O(n110));

BUFX1 U111 (.I(n112), .O(n111));

BUFX1 U112 (.I(n113), .O(n112));

BUFX1 U113 (.I(n114), .O(n113));

BUFX1 U114 (.I(n115), .O(n114));

BUFX1 U115 (.I(n116), .O(n115));

BUFX1 U116 (.I(n117), .O(n116));

INVX1 U117 (.I(in), .O(n117));

endmodule

module delayele_inv_5 (in, out);

165

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_72 (in, out);

input in;

output out;

wire t1;

delayele_inv_5 d1 (.in(in), .out(t1));

delayele_inv_4 d2 (.in(t1), .out(out));

endmodule

module FFT16_control_async(

input wire reset,

input wire FFT4_1_rout,

input wire FFT4_2_rout,

input wire FFT4_3_rout,

input wire FFT4_4_rout,

input wire M1_aout,

input wire M2_aout,

input wire M3_aout,

input wire M4_aout,

output wire FFT4_1_aout,

output wire FFT4_2_aout,

output wire FFT4_3_aout,

output wire FFT4_4_aout,

output wire c_M1,

output wire c_M2,

output wire c_M3,

output wire c_M4,

output wire M1_rout,

output wire M2_rout,

output wire M3_rout,

output wire M4_rout

);

wire FFT4_1_rout_delay, FFT4_2_rout_delay, FFT4_3_rout_delay, FFT4_4_rout_delay;

//Multiplier delay element should include Clock to Q delay as well

//Delay element named changed here as it clashed with FFT4 control

DelayElement_73 d1(.in(FFT4_1_rout), .out(FFT4_1_rout_delay));

DelayElement_72 d2(.in(FFT4_2_rout), .out(FFT4_2_rout_delay));

DelayElement_71 d3(.in(FFT4_3_rout), .out(FFT4_3_rout_delay));

DelayElement_70 d4(.in(FFT4_4_rout), .out(FFT4_4_rout_delay));

handshake_ctl HC1(.lr(FFT4_1_rout_delay),.la(FFT4_1_aout),.rr(M1_rout),.ra(M1_aout),.ck(c_M1),.reset(reset));

handshake_ctl HC2(.lr(FFT4_2_rout_delay),.la(FFT4_2_aout),.rr(M2_rout),.ra(M2_aout),.ck(c_M2),.reset(reset));

handshake_ctl HC3(.lr(FFT4_3_rout_delay),.la(FFT4_3_aout),.rr(M3_rout),.ra(M3_aout),.ck(c_M3),.reset(reset));

handshake_ctl HC4(.lr(FFT4_4_rout_delay),.la(FFT4_4_aout),.rr(M4_rout),.ra(M4_aout),.ck(c_M4),.reset(reset));

endmodule

166

4-point FFT Datapath Verilog Code

module FFT4_data path_async(

input wire reset,

input wire [31:0] x,

input wire ci1,

input wire ci2,

input wire ci3,

input wire ci4,

input wire c1,

input wire c2,

input wire c3,

input wire c4,

input wire c5,

input wire c6,

input wire c7,

input wire c8,

input wire c9,

input wire c10,

input wire c11,

input wire c12,

input wire c13,

input wire c14,

input wire c15,

input wire c16,

output wire [31:0] X1,

output wire [31:0] X2,

output wire [31:0] X3,

output wire [31:0] X4

);

wire [31:0] x1,x2,x3,x4;

wire [15:0] ra,rb,rc,rd,ia,ib,ic,id;

wire signed [15:0] reala,realb,realc,reald;

wire signed [15:0] imaga,imagb,imagc,imagd;

wire signed [15:0] realx1,realx2,realx3,realx4;

wire signed [15:0] imagx1,imagx2,imagx3,imagx4;

wire signed [15:0] ADD1_in1,ADD1_in2,ADD2_in1,ADD2_in2,SUB1_in1;

wire signed [15:0] SUB1_in2,SUB2_in1,SUB2_in2,ADD1_out,ADD2_out,SUB1_out,SUB2_out;

wire signed [15:0] ADD3_in1,ADD3_in2,ADD4_in1,ADD4_in2,SUB3_in1;

wire signed [15:0] SUB3_in2,SUB4_in1,SUB4_in2,ADD3_out,ADD4_out,SUB3_out,SUB4_out;

wire signed [15:0] ADD5_in1,ADD5_in2,ADD6_in1,ADD6_in2,SUB5_in1;

wire signed [15:0] SUB5_in2,SUB6_in1,SUB6_in2,ADD5_out,ADD6_out,SUB5_out,SUB6_out;

wire signed [15:0] ADD7_in1,ADD7_in2,ADD8_in1,ADD8_in2,SUB7_in1;

wire signed [15:0] SUB7_in2,SUB8_in1,SUB8_in2,ADD7_out,ADD8_out,SUB7_out,SUB8_out;

reg32_async R1(.D(x),.Q(x1),.ck(ci1),.reset(reset));

reg32_async R2(.D(x),.Q(x2),.ck(ci2),.reset(reset));

167

reg32_async R3(.D(x),.Q(x3),.ck(ci3),.reset(reset));

reg32_async R4(.D(x),.Q(x4),.ck(ci4),.reset(reset));

assign realx1 = $signed(x1[31:16]);

assign imagx1 = $signed(x1[15:0]);

assign realx2 = $signed(x2[31:16]);

assign imagx2 = $signed(x2[15:0]);

assign realx3 = $signed(x3[31:16]);

assign imagx3 = $signed(x3[15:0]);

assign realx4 = $signed(x4[31:16]);

assign imagx4 = $signed(x4[15:0]);

assign ADD1_in1 = realx1;

assign ADD1_in2 = realx3;

assign ADD2_in1 = imagx1;

assign ADD2_in2 = imagx3;

assign SUB1_in1 = realx1;

assign SUB1_in2 = realx3;

assign SUB2_in1 = imagx1;

assign SUB2_in2 = imagx3;

assign ADD3_in1 = realx2;

assign ADD3_in2 = realx4;

assign ADD4_in1 = imagx2;

assign ADD4_in2 = imagx4;

assign SUB3_in1 = realx2;

assign SUB3_in2 = realx4;

assign SUB4_in1 = imagx2;

assign SUB4_in2 = imagx4;

assign ADD1_out = (ADD1_in1 >�>�> 1) + (ADD1_in2 >�>�> 1); //reala

assign ADD2_out = (ADD2_in1 >�>�> 1) + (ADD2_in2 >�>�> 1); //imaga

assign SUB1_out = (SUB1_in1 >�>�> 1) - (SUB1_in2 >�>�> 1); //realc

assign SUB2_out = (SUB2_in1 >�>�> 1) - (SUB2_in2 >�>�> 1); //imagc

assign ADD3_out = (ADD3_in1 >�>�> 1) + (ADD3_in2 >�>�> 1); //realb

assign ADD4_out = (ADD4_in1 >�>�> 1) + (ADD4_in2 >�>�> 1); //imagb

assign SUB3_out = (SUB3_in1 >�>�> 1) - (SUB3_in2 >�>�> 1); //reald

assign SUB4_out = (SUB4_in1 >�>�> 1) - (SUB4_in2 >�>�> 1); //imagd

reg16_async R5(.D($unsigned(ADD1_out)),.Q(ra),.ck(c1),.reset(reset));

reg16_async R6(.D($unsigned(ADD2_out)),.Q(ia),.ck(c2),.reset(reset));

reg16_async R7(.D($unsigned(ADD3_out)),.Q(rb),.ck(c3),.reset(reset));

reg16_async R8(.D($unsigned(ADD4_out)),.Q(ib),.ck(c4),.reset(reset));

reg16_async R9(.D($unsigned(SUB1_out)),.Q(rc),.ck(c5),.reset(reset));

reg16_async R10(.D($unsigned(SUB2_out)),.Q(ic),.ck(c6),.reset(reset));

reg16_async R11(.D($unsigned(SUB3_out)),.Q(rd),.ck(c7),.reset(reset));

reg16_async R12(.D($unsigned(SUB4_out)),.Q(id),.ck(c8),.reset(reset));

assign reala = $signed(ra);

assign imaga = $signed(ia);

assign realb = $signed(rb);

assign imagb = $signed(ib);

168

assign realc = $signed(rc);

assign imagc = $signed(ic);

assign reald = $signed(rd);

assign imagd = $signed(id);

assign ADD5_in1 = reala; //r1 control

assign ADD5_in2 = realb; //r3 control

assign ADD6_in1 = imaga; //r2 control

assign ADD6_in2 = imagb; //r4 control

assign SUB5_in1 = reala; //r1 control

assign SUB5_in2 = realb; //r3 control

assign SUB6_in1 = imaga; //r2 control

assign SUB6_in2 = imagb; //r4 control

assign ADD7_in1 = realc; //r5 control

assign ADD7_in2 = imagd; //r8 control

assign ADD8_in1 = imagc; //r6 control

assign ADD8_in2 = reald; //r7 control

assign SUB7_in1 = imagc; //r6 control

assign SUB7_in2 = reald; //r7 control

assign SUB8_in1 = realc; //r5 control

assign SUB8_in2 = imagd; //r8 control

assign ADD5_out = (ADD5_in1 >�>�> 1) + (ADD5_in2 >�>�> 1); //X1[31:16]

assign ADD6_out = (ADD6_in1 >�>�> 1) + (ADD6_in2 >�>�> 1); //X1[15:0]

assign SUB5_out = (SUB5_in1 >�>�> 1) - (SUB5_in2 >�>�> 1); //X3[31:16]

assign SUB6_out = (SUB6_in1 >�>�> 1) - (SUB6_in2 >�>�> 1); //X3[15:0]

assign ADD7_out = (ADD7_in1 >�>�> 1) + (ADD7_in2 >�>�> 1); //X2[31:16]

assign ADD8_out = (ADD8_in1 >�>�> 1) + (ADD8_in2 >�>�> 1); //X4[15:0]

assign SUB7_out = (SUB7_in1 >�>�> 1) - (SUB7_in2 >�>�> 1); //X2[15:0]

assign SUB8_out = (SUB8_in1 >�>�> 1) - (SUB8_in2 >�>�> 1); //X4[31:16]

reg16_async R13(.D($unsigned(ADD5_out)),.Q(X1[31:16]),.ck(c9),.reset(reset));

reg16_async R14(.D($unsigned(ADD6_out)),.Q(X1[15:0]),.ck(c10),.reset(reset));

reg16_async R15(.D($unsigned(ADD7_out)),.Q(X2[31:16]),.ck(c11),.reset(reset));

reg16_async R16(.D($unsigned(ADD8_out)),.Q(X4[15:0]),.ck(c12),.reset(reset));

reg16_async R17(.D($unsigned(SUB5_out)),.Q(X3[31:16]),.ck(c13),.reset(reset));

reg16_async R18(.D($unsigned(SUB6_out)),.Q(X3[15:0]),.ck(c14),.reset(reset));

reg16_async R19(.D($unsigned(SUB7_out)),.Q(X2[15:0]),.ck(c15),.reset(reset));

reg16_async R20(.D($unsigned(SUB8_out)),.Q(X4[31:16]),.ck(c16),.reset(reset));

endmodule

4-point FFT Bundled-Data Control Verilog Code

module delayele_adder16_31 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

169

module delayele_adder16_30 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module DelayElement_15 (in, out);

input in;

output out;

wire t1;

delayele_adder16_31 d1 (.in(in), .out(t1));

delayele_adder16_30 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_0 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_1 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_0 (in, out);

input in;

output out;

wire t1;

delayele_adder16_1 d1 (.in(in), .out(t1));

delayele_adder16_0 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_2 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

170

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_3 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_1 (in, out);

input in;

output out;

wire t1;

delayele_adder16_3 d1 (.in(in), .out(t1));

delayele_adder16_2 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_4 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_5 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_2 (in, out);

input in;

output out;

wire t1;

delayele_adder16_5 d1 (.in(in), .out(t1));

delayele_adder16_4 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_6 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

171

endmodule

module delayele_adder16_7 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_3 (in, out);

input in;

output out;

wire t1;

delayele_adder16_7 d1 (.in(in), .out(t1));

delayele_adder16_6 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_8 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_9 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_4 (in, out);

input in;

output out;

wire t1;

delayele_adder16_9 d1 (.in(in), .out(t1));

delayele_adder16_8 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_10 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_11 (in, out);

172

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_5 (in, out);

input in;

output out;

wire t1;

delayele_adder16_11 d1 (.in(in), .out(t1));

delayele_adder16_10 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_12 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_13 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_6 (in, out);

input in;

output out;

wire t1;

delayele_adder16_13 d1 (.in(in), .out(t1));

delayele_adder16_12 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_14 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_15 (in, out);

input in;

output out;

173

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_7 (in, out);

input in;

output out;

wire t1;

delayele_adder16_15 d1 (.in(in), .out(t1));

delayele_adder16_14 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_16 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_17 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_8 (in, out);

input in;

output out;

wire t1;

delayele_adder16_17 d1 (.in(in), .out(t1));

delayele_adder16_16 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_18 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_19 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

174

module DelayElement_9 (in, out);

input in;

output out;

wire t1;

delayele_adder16_19 d1 (.in(in), .out(t1));

delayele_adder16_18 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_20 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_21 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_10 (in, out);

input in;

output out;

wire t1;

delayele_adder16_21 d1 (.in(in), .out(t1));

delayele_adder16_20 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_22 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_23 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_11 (in, out);

input in;

175

output out;

wire t1;

delayele_adder16_23 d1 (.in(in), .out(t1));

delayele_adder16_22 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_24 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_25 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_12 (in, out);

input in;

output out;

wire t1;

delayele_adder16_25 d1 (.in(in), .out(t1));

delayele_adder16_24 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_26 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_27 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_13 (in, out);

input in;

output out;

wire t1;

176

delayele_adder16_27 d1 (.in(in), .out(t1));

delayele_adder16_26 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_28 (in, out);

input in;

output out;

wire n2, n3, n4, n5;

DELAX3 U1 (.I(n5), .O(n4));

INVCKXLP U2 (.I(in), .O(n5));

BUFX1 U3 (.I(n2), .O(out));

BUFX1 U4 (.I(n3), .O(n2));

BUFX1 U5 (.I(n4), .O(n3));

endmodule

module delayele_adder16_29 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_14 (in, out);

input in;

output out;

wire t1;

delayele_adder16_29 d1 (.in(in), .out(t1));

delayele_adder16_28 d2 (.in(t1), .out(out));

endmodule

module FFT4_control_async(

input wire reset,

input wire rin1,

input wire rin2,

input wire rin3,

input wire rin4,

input wire ao1,

input wire ao2,

input wire ao3,

input wire ao4,

output wire ro1,

output wire ro2,

output wire ro3,

output wire ro4,

output wire ain1,

output wire ain2,

output wire ain3,

output wire ain4,

output wire ci1,

output wire ci2,

output wire ci3,

177

output wire ci4,

output wire c1,

output wire c2,

output wire c3,

output wire c4,

output wire c5,

output wire c6,

output wire c7,

output wire c8,

output wire c9,

output wire c10,

output wire c11,

output wire c12,

output wire c13,

output wire c14,

output wire c15,

output wire c16

);

wire ri_pre,ri1,ri2,ri3,ri4,ai1,ai2,ai3,ai4;

wire reqa1_1,reqa1_2,reqa2_1,reqa2_2,reqa3_1,reqa3_2,reqa4_1,reqa4_2,reqa5_1,re

qa5_2,reqa6_1,reqa6_2;

wire reqa7_1,reqa7_2,reqa8_1,reqa8_2;

wire reqb1_1,reqb1_2,reqb2_1,reqb2_2,reqb3_1,reqb3_2,reqb4_1,reqb4_2,reqb5_1,re

qb5_2,reqb6_1,reqb6_2;

wire reqb7_1,reqb7_2,reqb8_1,reqb8_2;

wire acka1_1,acka1_2,acka2_1,acka2_2,acka3_1,acka3_2,acka4_1,acka4_2;

wire ackb1_1,ackb1_2,ackb2_1,ackb2_2,ackb3_1,ackb3_2,ackb4_1,ackb4_2;

wire ackre1,ackre2,ackre3,ackre4,ackim1,ackim2,ackim3,ackim4;

wire acka5_1,acka5_2,acka6_1,acka6_2,acka7_1,acka7_2,acka8_1,acka8_2;

wire ackb5_1,ackb5_2,ackb6_1,ackb6_2,ackb7_1,ackb7_2,ackb8_1,ackb8_2;

wire req1,req2,req3,req4,req5,req6,req7,req8;

wire req1_pre,req2_pre,req3_pre,req4_pre,req5_pre,req6_pre,req7_pre,req8_pre;

wire ack1,ack2,ack3,ack4,ack5,ack6,ack7,ack8;

wire r1,r2,r3,r4,r5,r6,r7,r8;

wire a1,a2,a3,a4,a5,a6,a7,a8;

wire req9,req10,req11,req12,req13,req14,req15,req16;

wire req9_pre,req10_pre,req11_pre,req12_pre,req13_pre,req14_pre,req15_pre,req16

_pre;

wire ack9,ack10,ack11,ack12,ack13,ack14,ack15,ack16;

wire r9,r10,r11,r12,r13,r14,r15,r16;

wire a9,a10,a11,a12,a13,a14,a15,a16;

wire n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13;

wire n14, n15, n16, n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27;

wire n28, n29, n30, n31, n32n33, n34, n35, n36, n37, n38, n39, n40, n41;

wire n42, n43, n44, n45, n46, n47, n48, n49, n50, n51, n52, n53, n54, n55;

wire n56, n57, n58, n59, n60, n61, n62, n63, n64, n65, n66, n67, n68, n69;

178

wire n70, n71, n72, n73, n74, n75, n76, n77, n78, n79, n80, n81, n82, n83;

wire n84, n85, n86, n87, n88, n89, n90, n91, n92, n93, n94, n95, n96;

handshake_ctl HC1(.lr(rin1),.la(ain1),.rr(ri1),.ra(ai1),.ck(ci1),.reset(reset))

;

handshake_ctl HC2(.lr(rin2),.la(ain2),.rr(ri2),.ra(ai2),.ck(ci2),.reset(reset))

;

handshake_ctl HC3(.lr(rin3),.la(ain3),.rr(ri3),.ra(ai3),.ck(ci3),.reset(reset))

;

handshake_ctl HC4(.lr(rin4),.la(ain4),.rr(ri4),.ra(ai4),.ck(ci4),.reset(reset))

;

//Control Stage 1 (Fork/Join)

//Fork

assign reqa1_1 = ri1;

assign reqa2_1 = ri1;

assign reqb1_1 = ri1;

assign reqb2_1 = ri1;

assign reqa3_1 = ri2;

assign reqa4_1 = ri2;

assign reqb3_1 = ri2;

assign reqb4_1 = ri2;

assign reqa1_2 = ri3;

assign reqa2_2 = ri3;

assign reqb1_2 = ri3;

assign reqb2_2 = ri3;

assign reqa3_2 = ri4;

assign reqa4_2 = ri4;

assign reqb3_2 = ri4;

assign reqb4_2 = ri4;

//Join

//Substage 1

Celement j1(.in1(ackre1),.in2(ackim1),.out(ai1));

Celement j2(.in1(ackre2),.in2(ackim2),.out(ai2));

Celement j3(.in1(ackre3),.in2(ackim3),.out(ai3));

Celement j4(.in1(ackre4),.in2(ackim4),.out(ai4));

//Substage 2

Celement j5(.in1(acka1_1),.in2(ackb1_1),.out(ackre1));

Celement j6(.in1(acka2_1),.in2(ackb2_1),.out(ackim1));

Celement j7(.in1(acka3_1),.in2(ackb3_1),.out(ackre2));

Celement j8(.in1(acka4_1),.in2(ackb4_1),.out(ackim2));

Celement j9(.in1(acka1_2),.in2(ackb1_2),.out(ackre3));

Celement j10(.in1(acka2_2),.in2(ackb2_2),.out(ackim3));

Celement j11(.in1(acka3_2),.in2(ackb3_2),.out(ackre4));

Celement j12(.in1(acka4_2),.in2(ackb4_2),.out(ackim4));

//Control Stage 2 (Fork/Join)

//Join

Celement j13(.in1(reqa1_1),.in2(reqa1_2),.out(req1_pre)); //reala

179

Celement j14(.in1(reqa2_1),.in2(reqa2_2),.out(req2_pre)); //imaga

Celement j15(.in1(reqa3_1),.in2(reqa3_2),.out(req3_pre)); //realb

Celement j16(.in1(reqa4_1),.in2(reqa4_2),.out(req4_pre)); //imagb

Celement j17(.in1(reqb1_1),.in2(reqb1_2),.out(req5_pre)); //realc

Celement j18(.in1(reqb2_1),.in2(reqb2_2),.out(req6_pre)); //imagc

Celement j19(.in1(reqb3_1),.in2(reqb3_2),.out(req7_pre)); //reald

Celement j20(.in1(reqb4_1),.in2(reqb4_2),.out(req8_pre)); //imagd

//delay elements for 16 bit adder pipeline

DelayElement_15 d1 (.in(n6), .out(req1));

DelayElement_14 d2 (.in(n12), .out(req2));

DelayElement_13 d3 (.in(n30), .out(req3));

DelayElement_12 d4 (.in(n36), .out(req4));

DelayElement_11 d5 (.in(n18), .out(req5));

DelayElement_10 d6 (.in(n24), .out(req6));

DelayElement_9 d7 (.in(n42), .out(req7));

DelayElement_8 d8 (.in(n48), .out(req8));

//Fork

assign acka1_1 = ack1;

assign acka1_2 = ack1;

assign acka2_1 = ack2;

assign acka2_2 = ack2;

assign acka3_1 = ack3;

assign acka3_2 = ack3;

assign acka4_1 = ack4;

assign acka4_2 = ack4;

assign ackb1_1 = ack5;

assign ackb1_2 = ack5;

assign ackb2_1 = ack6;

assign ackb2_2 = ack6;

assign ackb3_1 = ack7;

assign ackb3_2 = ack7;

assign ackb4_1 = ack8;

assign ackb4_2 = ack8;

handshake_ctl HC5(.lr(req1),.la(ack1),.rr(r1),.ra(a1),.ck(c1),.reset(reset));

handshake_ctl HC6(.lr(req2),.la(ack2),.rr(r2),.ra(a2),.ck(c2),.reset(reset));

handshake_ctl HC7(.lr(req3),.la(ack3),.rr(r3),.ra(a3),.ck(c3),.reset(reset));

handshake_ctl HC8(.lr(req4),.la(ack4),.rr(r4),.ra(a4),.ck(c4),.reset(reset));

handshake_ctl HC9(.lr(req5),.la(ack5),.rr(r5),.ra(a5),.ck(c5),.reset(reset));

handshake_ctl HC10(.lr(req6),.la(ack6),.rr(r6),.ra(a6),.ck(c6),.reset(reset));

handshake_ctl HC11(.lr(req7),.la(ack7),.rr(r7),.ra(a7),.ck(c7),.reset(reset));

handshake_ctl HC12(.lr(req8),.la(ack8),.rr(r8),.ra(a8),.ck(c8),.reset(reset));

//Control Stage 3 (Fork/Join)

//Fork

assign reqa5_1 = r1;

assign reqb5_1 = r1;

assign reqa6_1 = r2;

180

assign reqb6_1 = r2;

assign reqa5_2 = r3;

assign reqb5_2 = r3;

assign reqa6_2 = r4;

assign reqb6_2 = r4;

assign reqa7_1 = r5;

assign reqb8_1 = r5;

assign reqa8_1 = r6;

assign reqb7_1 = r6;

assign reqa8_2 = r7;

assign reqb7_2 = r7;

assign reqa7_2 = r8;

assign reqb8_2 = r8;

//Join

Celement j21(.in1(acka5_1),.in2(ackb5_1),.out(a1));

Celement j22(.in1(acka6_1),.in2(ackb6_1),.out(a2));

Celement j23(.in1(acka5_2),.in2(ackb5_2),.out(a3));

Celement j24(.in1(acka6_2),.in2(ackb6_2),.out(a4));

Celement j25(.in1(acka7_1),.in2(ackb8_1),.out(a5));

Celement j26(.in1(acka8_1),.in2(ackb7_1),.out(a6));

Celement j27(.in1(acka8_2),.in2(ackb7_2),.out(a7));

Celement j28(.in1(acka7_2),.in2(ackb8_2),.out(a8));

//Control Stage 4 (Fork/Join)

//Join

Celement j29(.in1(reqa5_1),.in2(reqa5_2),.out(req9_pre)); //X1[31:16]

Celement j30(.in1(reqa6_1),.in2(reqa6_2),.out(req10_pre)); //X1[15:0]

Celement j31(.in1(reqa7_1),.in2(reqa7_2),.out(req11_pre)); //X2[31:16]

Celement j32(.in1(reqa8_1),.in2(reqa8_2),.out(req12_pre)); //X4[15:0]

Celement j33(.in1(reqb5_1),.in2(reqb5_2),.out(req13_pre)); //X3[31:16]

Celement j34(.in1(reqb6_1),.in2(reqb6_2),.out(req14_pre)); //X3[15:0]

Celement j35(.in1(reqb7_1),.in2(reqb7_2),.out(req15_pre)); //X2[15:0]

Celement j36(.in1(reqb8_1),.in2(reqb8_2),.out(req16_pre)); //X4[31:16]

//delay elements for 16 bit adder pipeline

DelayElement_7 d9 (.in(n54), .out(req9));

DelayElement_6 d10 (.in(n66), .out(req10));

DelayElement_5 d11 (.in(n78), .out(req11));

DelayElement_4 d12 (.in(n90), .out(req12));

DelayElement_3 d13 (.in(n60), .out(req13));

DelayElement_2 d14 (.in(n72), .out(req14));

DelayElement_1 d15 (.in(n96), .out(req15));

DelayElement_0 d16 (.in(n84), .out(req16));

//Fork

assign acka5_1 = ack9;

assign acka5_2 = ack9;

assign acka6_1 = ack10;

assign acka6_2 = ack10;

181

assign acka7_1 = ack11;

assign acka7_2 = ack11;

assign acka8_1 = ack12;

assign acka8_2 = ack12;

assign ackb5_1 = ack13;

assign ackb5_2 = ack13;

assign ackb6_1 = ack14;

assign ackb6_2 = ack14;

assign ackb7_1 = ack15;

assign ackb7_2 = ack15;

assign ackb8_1 = ack16;

assign ackb8_2 = ack16;

handshake_ctl HC13(.lr(req9),.la(ack9),.rr(r9),.ra(a9),.ck(c9),.reset(reset));

handshake_ctl HC14(.lr(req10),.la(ack10),.rr(r10),.ra(a10),.ck(c10),.reset(rese

t));

handshake_ctl HC15(.lr(req11),.la(ack11),.rr(r11),.ra(a11),.ck(c11),.reset(rese

t));

handshake_ctl HC16(.lr(req12),.la(ack12),.rr(r12),.ra(a12),.ck(c12),.reset(rese

t));

handshake_ctl HC17(.lr(req13),.la(ack13),.rr(r13),.ra(a13),.ck(c13),.reset(rese

t));

handshake_ctl HC18(.lr(req14),.la(ack14),.rr(r14),.ra(a14),.ck(c14),.reset(rese

t));

handshake_ctl HC19(.lr(req15),.la(ack15),.rr(r15),.ra(a15),.ck(c15),.reset(rese

t));

handshake_ctl HC20(.lr(req16),.la(ack16),.rr(r16),.ra(a16),.ck(c16),.reset(rese

t));

//In/Out Fork-Join

//OUTPUT Join

Celement j37(.in1(r9),.in2(r10),.out(ro1)); //X1

Celement j38(.in1(r11),.in2(r15),.out(ro2)); //X2

Celement j39(.in1(r13),.in2(r14),.out(ro3)); //X3

Celement j40(.in1(r12),.in2(r16),.out(ro4)); //X4

//INPUT Fork

assign a9 = ao1;

assign a10 = ao1;

assign a11 = ao2;

assign a15 = ao2;

assign a13 = ao3;

assign a14 = ao3;

assign a12 = ao4;

assign a16 = ao4;

DELAX3 U1 (.I(req1_pre), .O(n1));

DELAX3 U2 (.I(n1), .O(n2));

DELAX3 U3 (.I(n2), .O(n3));

DELAX3 U4 (.I(n3), .O(n4));

182

DELAX3 U5 (.I(n4), .O(n5));

DELAX3 U6 (.I(n5), .O(n6));

DELAX3 U7 (.I(req2_pre), .O(n7));

DELAX3 U8 (.I(n7), .O(n8));

DELAX3 U9 (.I(n8), .O(n9));

DELAX3 U10 (.I(n9), .O(n10));

DELAX3 U11 (.I(n10), .O(n11));

DELAX3 U12 (.I(n11), .O(n12));

DELAX3 U13 (.I(req5_pre), .O(n13));

DELAX3 U14 (.I(n13), .O(n14));

DELAX3 U15 (.I(n14), .O(n15));

DELAX3 U16 (.I(n15), .O(n16));

DELAX3 U17 (.I(n16), .O(n17));

DELAX3 U18 (.I(n17), .O(n18));

DELAX3 U19 (.I(req6_pre), .O(n19));

DELAX3 U20 (.I(n19), .O(n20));

DELAX3 U21 (.I(n20), .O(n21));

DELAX3 U22 (.I(n21), .O(n22));

DELAX3 U23 (.I(n22), .O(n23));

DELAX3 U24 (.I(n23), .O(n24));

DELAX3 U25 (.I(req3_pre), .O(n25));

DELAX3 U26 (.I(n25), .O(n26));

DELAX3 U27 (.I(n26), .O(n27));

DELAX3 U28 (.I(n27), .O(n28));

DELAX3 U29 (.I(n28), .O(n29));

DELAX3 U30 (.I(n29), .O(n30));

DELAX3 U31 (.I(req4_pre), .O(n31));

DELAX3 U32 (.I(n31), .O(n32));

DELAX3 U33 (.I(n32), .O(n33));

DELAX3 U34 (.I(n33), .O(n34));

DELAX3 U35 (.I(n34), .O(n35));

DELAX3 U36 (.I(n35), .O(n36));

DELAX3 U37 (.I(req7_pre), .O(n37));

DELAX3 U38 (.I(n37), .O(n38));

DELAX3 U39 (.I(n38), .O(n39));

DELAX3 U40 (.I(n39), .O(n40));

DELAX3 U41 (.I(n40), .O(n41));

DELAX3 U42 (.I(n41), .O(n42));

DELAX3 U43 (.I(req8_pre), .O(n43));

DELAX3 U44 (.I(n43), .O(n44));

DELAX3 U45 (.I(n44), .O(n45));

DELAX3 U46 (.I(n45), .O(n46));

DELAX3 U47 (.I(n46), .O(n47));

DELAX3 U48 (.I(n47), .O(n48));

DELAX3 U49 (.I(req9_pre), .O(n49));

DELAX3 U50 (.I(n49), .O(n50));

183

DELAX3 U51 (.I(n50), .O(n51));

DELAX3 U52 (.I(n51), .O(n52));

DELAX3 U53 (.I(n52), .O(n53));

DELAX3 U54 (.I(n53), .O(n54));

DELAX3 U55 (.I(req13_pre), .O(n55));

DELAX3 U56 (.I(n55), .O(n56));

DELAX3 U57 (.I(n56), .O(n57));

DELAX3 U58 (.I(n57), .O(n58));

DELAX3 U59 (.I(n58), .O(n59));

DELAX3 U60 (.I(n59), .O(n60));

DELAX3 U61 (.I(req10_pre), .O(n61));

DELAX3 U62 (.I(n61), .O(n62));

DELAX3 U63 (.I(n62), .O(n63));

DELAX3 U64 (.I(n63), .O(n64));

DELAX3 U65 (.I(n64), .O(n65));

DELAX3 U66 (.I(n65), .O(n66));

DELAX3 U67 (.I(req14_pre), .O(n67));

DELAX3 U68 (.I(n67), .O(n68));

DELAX3 U69 (.I(n68), .O(n69));

DELAX3 U70 (.I(n69), .O(n70));

DELAX3 U71 (.I(n70), .O(n71));

DELAX3 U72 (.I(n71), .O(n72));

DELAX3 U73 (.I(req11_pre), .O(n73));

DELAX3 U74 (.I(n73), .O(n74));

DELAX3 U75 (.I(n74), .O(n75));

DELAX3 U76 (.I(n75), .O(n76));

DELAX3 U77 (.I(n76), .O(n77));

DELAX3 U78 (.I(n77), .O(n78));

DELAX3 U79 (.I(req16_pre), .O(n79));

DELAX3 U80 (.I(n79), .O(n80));

DELAX3 U81 (.I(n80), .O(n81));

DELAX3 U82 (.I(n81), .O(n82));

DELAX3 U83 (.I(n82), .O(n83));

DELAX3 U84 (.I(n83), .O(n84));

DELAX3 U85 (.I(req12_pre), .O(n85));

DELAX3 U86 (.I(n85), .O(n86));

DELAX3 U87 (.I(n86), .O(n87));

DELAX3 U88 (.I(n87), .O(n88));

DELAX3 U89 (.I(n88), .O(n89));

DELAX3 U90 (.I(n89), .O(n90));

DELAX3 U91 (.I(req15_pre), .O(n91));

DELAX3 U92 (.I(n91), .O(n92));

DELAX3 U93 (.I(n92), .O(n93));

DELAX3 U94 (.I(n93), .O(n94));

DELAX3 U95 (.I(n94), .O(n95));

DELAX3 U96 (.I(n95), .O(n96));

184

endmodule

4-point FFT EB Maximal Control Verilog Code

module delayele_adder16_3 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module delayele_adder16_2 (in, out);

input in;

output out;

wire n2, n3;

DELAX3 U1 (.I(n3), .O(n2));

INVCKXLP U2 (.I(in), .O(n3));

BUFX1 U3 (.I(n2), .O(out));

endmodule

module DelayElement_1 (in, out);

input in;

output out;

wire t1;

delayele_adder16_3 d1 (.in(in), .out(t1));

delayele_adder16_2 d2 (.in(t1), .out(out));

endmodule

module delayele_adder16_0 (in, out);

input in;

output out;

wire n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16,

n17, n18, n19, n20, n21, n22, n23, n24, n25, n26, n27, n28, n29, n30,

n31, n32, n33, n34, n35, n36, n37, n38, n39, n40;

BUFX1 U1 (.I(n2), .O(out));

BUFX1 U2 (.I(n3), .O(n2));

BUFX1 U3 (.I(n4), .O(n3));

BUFX1 U4 (.I(n5), .O(n4));

BUFX1 U5 (.I(n6), .O(n5));

BUFX1 U6 (.I(n7), .O(n6));

BUFX1 U7 (.I(n8), .O(n7));

BUFX1 U8 (.I(n9), .O(n8));

BUFX1 U9 (.I(n10), .O(n9));

BUFX1 U10 (.I(n11), .O(n10));

BUFX1 U11 (.I(n12), .O(n11));

BUFX1 U12 (.I(n13), .O(n12));

BUFX1 U13 (.I(n14), .O(n13));

BUFX1 U14 (.I(n15), .O(n14));

BUFX1 U15 (.I(n16), .O(n15));

185

BUFX1 U16 (.I(n17), .O(n16));

BUFX1 U17 (.I(n18), .O(n17));

BUFX1 U18 (.I(n19), .O(n18));

BUFX1 U19 (.I(n20), .O(n19));

BUFX1 U20 (.I(n21), .O(n20));

BUFX1 U21 (.I(n22), .O(n21));

BUFX1 U22 (.I(n23), .O(n22));

BUFX1 U23 (.I(n24), .O(n23));

BUFX1 U24 (.I(n25), .O(n24));

BUFX1 U25 (.I(n26), .O(n25));

BUFX1 U26 (.I(n27), .O(n26));

BUFX1 U27 (.I(n28), .O(n27));

BUFX1 U28 (.I(n29), .O(n28));

BUFX1 U29 (.I(n30), .O(n29));

BUFX1 U30 (.I(n31), .O(n30));

BUFX1 U31 (.I(n32), .O(n31));

BUFX1 U32 (.I(n33), .O(n32));

BUFX1 U33 (.I(n34), .O(n33));

BUFX1 U34 (.I(n35), .O(n34));

BUFX1 U35 (.I(n36), .O(n35));

BUFX1 U36 (.I(n37), .O(n36));

BUFX1 U37 (.I(n38), .O(n37));

BUFX1 U38 (.I(n39), .O(n38));

BUFX1 U39 (.I(n40), .O(n39));

INVX1 U40 (.I(in), .O(n40));

endmodule

module delayele_adder16_1 (in, out);

input in;

output out;

INVX1 U1 (.I(in), .O(out));

endmodule

module DelayElement_0 (in, out);

input in;

output out;

wire t1;

delayele_adder16_1 d1 (.in(in), .out(t1));

delayele_adder16_0 d2 (.in(t1), .out(out));

endmodule

module FFT4_control_async(

input wire reset,

input wire rin1,

input wire rin2,

input wire rin3,

input wire rin4,

input wire ao1,

input wire ao2,

186

input wire ao3,

input wire ao4,

output wire ro1,

output wire ro2,

output wire ro3,

output wire ro4,

output wire ain1,

output wire ain2,

output wire ain3,

output wire ain4,

output wire ci1,

output wire ci2,

output wire ci3,

output wire ci4,

output wire c1,

output wire c2,

output wire c3,

output wire c4,

output wire c5,

output wire c6,

output wire c7,

output wire c8,

output wire c9,

output wire c10,

output wire c11,

output wire c12,

output wire c13,

output wire c14,

output wire c15,

output wire c16

);

wire ri1,ri2,ri3,ri4,ai1,ai2,ai3,ai4;

wire req_a,req_b,req_c,req_d,req1,req2;

wire ack_a,ack_b,ack_c,ack_d;

wire req_bundle1,req_bundle2;

wire req_bundle1_pre;

wire ack_bundle1,ack_bundle2;

wire r_bundle1,r_bundle2;

wire a_bundle1,a_bundle2;

wire c_bundle1,c_bundle2;

wire n1, n2, n3, n4, n5, n6;

handshake_ctl HC1(.lr(rin1),.la(ain1),.rr(ri1),.ra(ai1),.ck(ci1),.reset(reset));

handshake_ctl HC2(.lr(rin2),.la(ain2),.rr(ri2),.ra(ai2),.ck(ci2),.reset(reset));

handshake_ctl HC3(.lr(rin3),.la(ain3),.rr(ri3),.ra(ai3),.ck(ci3),.reset(reset));

handshake_ctl HC4(.lr(rin4),.la(ain4),.rr(ri4),.ra(ai4),.ck(ci4),.reset(reset));

//Control Stage 1 (Fork/Join)

187

//Fork

assign ai1 = ack_bundle1;

assign ai2 = ack_bundle1;

assign ai3 = ack_bundle1;

assign ai4 = ack_bundle1;

//Bundle1 <x1 x2 x3 x4 > => <reala imaga realb imagb realc imag c reald imag d>

//Join

//Substage 1

Celement j1(.in1(ri1),.in2(ri3),.out(req1));

Celement j2(.in1(ri2),.in2(ri4),.out(req2));

//Substage 2

Celement j3(.in1(req1),.in2(req2),.out(req_bundle1_pre));

//delay elements for 16 bit adder pipeline

DelayElement_1 d1 (.in(n6), .out(req_bundle1));

handshake_ctl HC5(.lr(req_bundle1),.la(ack_bundle1),.rr(r_bundle1),

.ra(a_bundle1),.ck(c_bundle1),.reset(reset));

//Bundle FORK/JOIN

//Fork

assign c1 = c_bundle1;

assign c2 = c_bundle1;

assign c5 = c_bundle1;

assign c6 = c_bundle1;

assign c3 = c_bundle1;

assign c4 = c_bundle1;

assign c7 = c_bundle1;

assign c8 = c_bundle1;

//Control Stage 2 (Fork/Join)

assign a_bundle1 = ack_bundle2;

//Bundle2 <a b c d> => <X1 X2 X3 X4>

//delay elements for 16 bit adder pipeline

DelayElement_0 d2 (.in(r_bundle1), .out(req_bundle2));

handshake_ctl HC6(.lr(req_bundle2),.la(ack_bundle2),.rr(r_bundle2),

.ra(a_bundle2),.ck(c_bundle2),.reset(reset));

//Bundle FORK/JOIN

//Fork

assign c9 = c_bundle2;

assign c10 = c_bundle2;

assign c11 = c_bundle2;

assign c12 = c_bundle2;

assign c13 = c_bundle2;

assign c14 = c_bundle2;

assign c15 = c_bundle2;

assign c16 = c_bundle2;

//Not a join. Since we know the order that ao1 -> ao2 -> ao3 -> ao4, ack ao4 will indicate when bundle <X1 X2 X3

X4> should be generated. hence below

assign a_bundle2 = ao4;

188

handshake_ctl HC7(.lr(r_bundle2),.rr(ro1),.ra(ao1),.reset(reset));

handshake_ctl HC8(.lr(r_bundle2),.rr(ro2),.ra(ao2),.reset(reset));

handshake_ctl HC9(.lr(r_bundle2),.rr(ro3),.ra(ao3),.reset(reset));

handshake_ctl HC10(.lr(r_bundle2),.rr(ro4),.ra(ao4),.reset(reset));

DELAX3 U1 (.I(req_bundle1_pre), .O(n1));

DELAX3 U2 (.I(n1), .O(n2));

DELAX3 U3 (.I(n2), .O(n3));

DELAX3 U4 (.I(n3), .O(n4));

DELAX3 U5 (.I(n4), .O(n5));

DELAX3 U6 (.I(n5), .O(n6));

endmodule

4-point FFT Top-Level Verilog Code

module FFT4async(

input wire [31:0] D_in,

output wire [31:0] D_out,

input wire reqi,

output wire acki,

output wire reqo,

input wire acko,

input wire reset

);

wire [31:0] x1,x2,x3,x4,Din,Dout;

wire [1:0] sel,sel_nxt,sel_temp,select,select_nxt,select_temp;

wire [31:0] X1,X2,X3,X4;

wire r1,r2,r3,r4,a1,a2,a3,a4;

wire ri,ai,ro,ao,ri_delay;

wire ci,co,t1,t2,t3,t4,t5,t6;

wire req1,req2,req3,req4,ack1,ack2,ack3,ack4;

wire req1_delay,req2_delay,req3_delay,req4_delay;

wire ci1,ci2,ci3,ci4,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16;

handshake_ctl HC1(.lr(reqi),.la(acki),.rr(ri),.ra(ai),.ck(ci),.reset(~reset));

reg32_async R1(.D(D_in),.Q(Din),.ck(ci),.reset(reset));

//delay element for Clock to Q delay

delayele_Reg2Reg d1(.in(ri),.out(ri_delay));

//First stage at ack ai

reg_counter2_async R2(.D(sel_nxt),.Q(sel_temp),.ck(ai),.reset(reset));

//Second stage at ack ~ai

//Time between ai and ~ai is about 400 ps, CtoQ delay is not violated

reg_counter2_async R3(.D(sel_temp),.Q(sel),.ck(~ai),.reset(reset));

//There is enough delay between consecutive ai pulses. Delay element not require

d . (actually satis�ed by delay d1)

counter2_async count1(.in(sel),.out(sel_nxt));

//no delay element required here since request is automatically delayed by logic

189

decimator4_async decimator(

.R(ri_delay),

.sel(sel),

.a1(a1),

.a2(a2),

.a3(a3),

.a4(a4),

.r1(r1),

.r2(r2),

.r3(r3),

.r4(r4),

.A(ai)

);

FFT4_control_async control(

.reset(~reset),

.rin1(r1),.rin2(r2),.rin3(r3),.rin4(r4),

.ao1(ack1),.ao2(ack2),.ao3(ack3),.ao4(ack4),

.ro1(req1),.ro2(req2),.ro3(req3),.ro4(req4),

.ain1(a1),.ain2(a2),.ain3(a3),.ain4(a4),

.ci1(ci1),.ci2(ci2),.ci3(ci3),.ci4(ci4),

.c1(c1),.c2(c2),.c3(c3),.c4(c4),.c5(c5),.c6(c6),.c7(c7),.c8(c8),

.c9(c9),.c10(c10),.c11(c11),.c12(c12),.c13(c13),.c14(c14),.c15(c15),.c16(c16

)

);

FFT4_data path_async data path(

.reset(reset),

.x(Din),

.ci1(ci1),.ci2(ci2),.ci3(ci3),.ci4(ci4),

.c1(c1),.c2(c2),.c3(c3),.c4(c4),.c5(c5),.c6(c6),.c7(c7),.c8(c8),

.c9(c9),.c10(c10),.c11(c11),.c12(c12),.c13(c13),.c14(c14),.c15(c15),.c16(c16

),

.X1(X1),.X2(X2),.X3(X3),.X4(X4)

);

//delay element for Clock to Q delay from data path output

delayele_Reg2Reg d2(.in(req1),.out(req1_delay));

delayele_Reg2Reg d3(.in(req2),.out(req2_delay));

delayele_Reg2Reg d4(.in(req3),.out(req3_delay));

delayele_Reg2Reg d5(.in(req4),.out(req4_delay));

//First stage at ack a0

reg_counter2_async R4(.D(select_nxt),.Q(select_temp),.ck(ao),.reset(reset));

//Second stage at ack falls ~ao

//Time between ao and ~ao is 400 ps, CtoQ delay is not violated

reg_counter2_async R5(.D(select_temp),.Q(select),.ck(~ao),.reset(reset));

counter2_async count2(.in(select),.out(select_nxt));

expander4_async expander(

.sel(select),

190

.r1(req1_delay),

.r2(req2_delay),

.r3(req3_delay),

.r4(req4_delay),

.A(ao),

.D1(X1),

.D2(X2),

.D3(X3),

.D4(X4),

.R(ro),

.a1(ack1),

.a2(ack2),

.a3(ack3),

.a4(ack4),

.Dout(Dout)

);

handshake_ctl HC2(.lr(ro),.la(ao),.rr(reqo),.ra(acko),.ck(co),.reset(~reset));

reg32_async R6(.D(Dout),.Q(D_out),.ck(co),.reset(reset));

endmodule

191

Appendix C

Timing Assumption Scripts for EBMaximal 4-point FFT

This section presents the synthesis timing constraints and assumptions used to synthesise the 4-point

FFT EB Maximal circuit of Chapter 5.

setup.tcl

This script sets up the design to technology library and gives basic timing assumptions for design synthesis.

set search_path {. /eda/designkit/Faraday/L90_SP_RVT/

fsd0a_a/2009Q2v2.0/GENERIC_CORE_1D0V/FrontEnd/synopsys}

set target_library {fsd0a_a_generic_core_ss0p9v125c.db

fsd0a_a_generic_core_�1p1vm40c.db}

set symbol_library {fsd0a_a_generic_core.sdb}

set link_library [concat * $target_library]

set design FFT4async

set testbench FFT4async_tb

set top_level FFT4async

set clk clock

set clk_period 2

set expander4_period 0.175

set counter2_period 0.03

set latch_ckq 0.3

set req_del_min 2.3

set req_del_max 2.5

set lib_name "fsd0a_a_generic_core_ss0p9v125c"

set d�_cell "DFFRBX1"

set lib_d�_d "$lib_name/$d�_cell/D"

set d�_setup 0.1

set d�_ckq 0.1

set rst reset

set race_margin 0.1

192

delays.sdc

This script provides the timing constraints for handshake control logic and datapath control logic. The

script is responsible for sizing and synthesis of delay elements.

set_max_delay $expander4_period -from expander/D1 -to R6/D

set_max_delay $expander4_period -from expander/D2 -to R6/D

set_max_delay $expander4_period -from expander/D3 -to R6/D

set_max_delay $expander4_period -from expander/D4 -to R6/D

set_min_delay $expander4_period -from expander/r1 -to expander/R

set_min_delay $expander4_period -from expander/r2 -to expander/R

set_min_delay $expander4_period -from expander/r3 -to expander/R

set_min_delay $expander4_period -from expander/r4 -to expander/R

set_max_delay $counter2_period -from count1/in -to count1/out

set_max_delay $counter2_period -from count2/in -to count2/out

set_max_delay $clk_period -from data path/R1/Q -to data path/R5/D

set_max_delay $clk_period -from data path/R1/Q -to data path/R6/D

set_max_delay $clk_period -from data path/R1/Q -to data path/R9/D

set_max_delay $clk_period -from data path/R1/Q -to data path/R10/D

set_max_delay $clk_period -from data path/R3/Q -to data path/R5/D

set_max_delay $clk_period -from data path/R3/Q -to data path/R6/D

set_max_delay $clk_period -from data path/R3/Q -to data path/R9/D

set_max_delay $clk_period -from data path/R3/Q -to data path/R10/D

set_max_delay $clk_period -from data path/R2/Q -to data path/R7/D

set_max_delay $clk_period -from data path/R2/Q -to data path/R8/D

set_max_delay $clk_period -from data path/R2/Q -to data path/R11/D

set_max_delay $clk_period -from data path/R2/Q -to data path/R12/D

set_max_delay $clk_period -from data path/R4/Q -to data path/R7/D

set_max_delay $clk_period -from data path/R4/Q -to data path/R8/D

set_max_delay $clk_period -from data path/R4/Q -to data path/R11/D

set_max_delay $clk_period -from data path/R4/Q -to data path/R12/D

set_max_delay $clk_period -from data path/R5/Q -to data path/R13/D

set_max_delay $clk_period -from data path/R7/Q -to data path/R13/D

set_max_delay $clk_period -from data path/R6/Q -to data path/R14/D

set_max_delay $clk_period -from data path/R8/Q -to data path/R14/D

set_max_delay $clk_period -from data path/R5/Q -to data path/R17/D

set_max_delay $clk_period -from data path/R7/Q -to data path/R17/D

set_max_delay $clk_period -from data path/R6/Q -to data path/R18/D

set_max_delay $clk_period -from data path/R8/Q -to data path/R18/D

set_max_delay $clk_period -from data path/R9/Q -to data path/R15/D

set_max_delay $clk_period -from data path/R12/Q -to data path/R15/D

set_max_delay $clk_period -from data path/R10/Q -to data path/R16/D

set_max_delay $clk_period -from data path/R11/Q -to data path/R16/D

set_max_delay $clk_period -from data path/R10/Q -to data path/R19/D

set_max_delay $clk_period -from data path/R11/Q -to data path/R19/D

set_max_delay $clk_period -from data path/R9/Q -to data path/R20/D

set_max_delay $clk_period -from data path/R12/Q -to data path/R20/D

193

#Datapath Control constraints

set_min_delay $latch_ckq -rise_from HC1/rr -rise_to decimator/R

set_min_delay $latch_ckq -rise_from control/ro1 -rise_to expander/r1

set_min_delay $latch_ckq -rise_from control/ro2 -rise_to expander/r2

set_min_delay $latch_ckq -rise_from control/ro3 -rise_to expander/r3

set_min_delay $latch_ckq -rise_from control/ro4 -rise_to expander/r4

#control constraints

set_min_delay $req_del_min -rise_from control/HC1/rr -rise_to control/HC5/lr

set_min_delay $req_del_min -rise_from control/HC3/rr -rise_to control/HC5/lr

set_min_delay $req_del_min -rise_from control/HC2/rr -rise_to control/HC5/lr

set_min_delay $req_del_min -rise_from control/HC4/rr -rise_to control/HC5/lr

set_min_delay $req_del_min -rise_from control/HC5/rr -rise_to control/HC6/lr

constraints.tcl

This script provides the constraints for timing-driven synthesis of asynchronous control logic and control

logic optimisation.

#Latch timing constraints (critical path optimisation and delay element)

source "delays.sdc"

#Prevent tool from optimising gates

set_size_only -all_instances { */lc1 }

set_size_only -all_instances { */lc3 }

set_size_only -all_instances { */lc4 }

set_size_only -all_instances { */lc5 }

set_size_only -all_instances { */lc6 }

set_size_only -all_instances { */*/lc1 }

set_size_only -all_instances { */*/lc3 }

set_size_only -all_instances { */*/lc4 }

set_size_only -all_instances { */*/lc5 }

set_size_only -all_instances { */*/lc6 }

set_dont_touch [get_cells { */j1 */j2 */j3 }]

#set_size_only -all_instances { */*/Cele1 }

#break local cycles

set_disable_timing -from B3 -to O [�nd -hier cell *lc1]

set_disable_timing -from A2 -to O [�nd -hier cell *lc1]

set_disable_timing -from B3 -to O [�nd -hier cell *lc3]

set_disable_timing -from A2 -to O [�nd -hier cell *lc3]

set_disable_timing -from B1 -to O [�nd -hier cell *lc5]

set_disable_timing -from B1 -to O [�nd -hier cell *Cele1]

#break handshake protocol cycles

set_disable_timing -from B2 -to O [�nd -hier cell *lc1]

set_disable_timing -from B2 -to O [�nd -hier cell *lc3]

set_disable_timing -from A1 -to O [�nd -hier cell *lc3]

set_disable_timing -from B1 -to O [�nd -hier cell *lc3]

194

Appendix D

In this section, the CDFG of the 4-point FFT architectures used in the several implementations of the

16-point FFT case study is depicted. Note that the EB Reuse Bundle implementation involves additional

control circuit requirement due to additional control overhead of switching the muxes and demuxes for

resource sharing of ADDs and SUBs.

4-point FFT Asynchronous CDFG

Figure 6.1: Petri net of asynchronous 4-point FFT

195

4-point FFT Temporal Bundle CDFG

Figure 6.2: Policy net of 4-point FFT with temporal partitioning

196

4-point FFT Maximal Bundle CDFG

Figure 6.3: Policy net of 4-point FFT with maximal partitioning

197

4-point FFT Reuse Bundle CDFG and Control Circuits

Figure 6.4: Policy net of 4-point FFT with ADD/SUB reuse partitioning

(a) Mux control for pipeline stage 1 (b) Mux control for pipeline stage 2

Figure 6.5: Signal transition graph (STG) for 4-point FFT reuse bundle control

198

Figure 6.6: 4-point FFT pipeline stage 1 bundle control circuit

Figure 6.7: 4-point FFT pipeline stage 2 bundle control circuit

199

	Abstract
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Research Goals and Thesis Contribution
	Thesis Organisation

	Background
	Behavioural Modelling
	Step Transition Systems
	Petri nets

	Bundled-Data Asynchronous Pipelines
	Synchronous vs. Asynchronous Pipelines
	Bundled-data protocols
	RT-based Bundled-Data Circuit Synthesis

	Physical Partitioning and its Limitations
	Introduction
	Methodology
	Characterising a GALS Design
	Simulation Framework
	Trade-off Analysis
	Tool Description

	Results
	GALS Design Impact to System Latency
	GALS Design Benefit to System Power
	Energy Efficiency Analysis

	Conclusions and Future Work

	Theory of Bundles
	Introduction
	Step Persistence in Nets
	Defining Persistent Steps
	Basic Properties of Persistent Steps
	Global Persistence in Safe pt-nets

	Pruning Reachability Graphs
	Significance of Bundles in Digital Circuits
	Conclusions and Future Work

	Synthesis of Asynchronous Circuits with Granular Rigidity
	Introduction
	Modelling Digital Systems
	PN building blocks
	Modelling a Conceptual Design
	Partitioning with Bundles

	Digital Circuit Synthesis from PN Models
	Model Transformation to Asynchronous Pipeline Models
	Partitioning into Elastic Bundles
	From PN Models to Digital Circuits

	16-point FFT Case Study
	Conclusions and Future Work

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Appendix A
	MATLAB code of GALS physical partitioning analysis

	Appendix B
	16-point FFT Top-Level Verilog Code
	16-point FFT Control Verilog Code
	4-point FFT Datapath Verilog Code
	4-point FFT Bundled-Data Control Verilog Code
	4-point FFT EB Maximal Control Verilog Code
	4-point FFT Top-Level Verilog Code

	Appendix C
	Timing Assumption Scripts for EB Maximal 4-point FFT

	Appendix D
	4-point FFT Asynchronous CDFG
	4-point FFT Temporal Bundle CDFG
	4-point FFT Maximal Bundle CDFG
	4-point FFT Reuse Bundle CDFG and Control Circuits

