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ABSTRACT 

This study evaluated the application of magnetised powdered activated 

carbons and biochars, in the removal of typical pollutants encountered in refinery 

and other wastewaters. Phenol, pharmaceuticals and heavy metals were chosen 

as representatives of priority pollutants, organic micropollutants and metals. 

In the sorption of the organics, there existed a strong correlation (Pearson 

correlation 𝑅 up to 0.9990) between isotherm models’ capacity parameters and 

sorbents’ capacity influencing properties. In the case of the metals, the sorbents’ 

capacities are not dependent upon surface area and micropore volume. In some 

instances, the biochars have on the average about 20.45 % higher uptake of the 

metals than the activated carbons. 

A general decrease in phenol uptake on the biochars with increase in pH 

was recorded, due to electrostatic repulsion between like charged surface and 

sorbates. For the activated carbons, peak phenol sorption was found within the 

vicinity of the pKa and point of zero charge when there is maximum electrostatic 

attraction between the opposite charged surface and sorbates. For the 

micropollutants, ibuprofen was negatively affected by an increase in pH while 

diclofenac sorption was not sensitive to changes in pH. Sorption of metals was 

found to increase with an increase in pH.  

Synthetic wastewater (SWW) did not have a significant impact on the 

sorption of the phenol and heavy metals. In the case of phenol, the highest 

impact, an average of just 6.15 % for all sorbents was recorded. For the 

micropollutants, according to the linear model, there is, on the other hand, about 

92 and 96 % less uptake of diclofenac and ibuprofen respectively due to 

competition. Finally, in an equimolar solution, due to its high solubility, Zn2+ was 

outcompeted by Cu2+ and Pb2+ for binding to available sorption sites.  
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CHAPTER 1.  INTRODUCTION 

1.1  HISTORY OF CARBON ADSORPTION AS A WATER 
TREATMENT PROCESS 

The binding forces on the surfaces of solid materials interact in similar yet 

specific ways with different compounds. This makes it possible for them to 

preferentially attract and accumulate many compounds from solution onto their 

surface in what is known as adsorption. There is seemingly an endless array of 

possible outcomes due to this difference in the level of interaction for any given 

pair of sorbent and sorbate in a sorption system. The difference in nature of 

interactions can be controlled to enable the utilisation of adsorption process to 

serve many specific purposes. This application can be traced almost throughout 

history, or in the least, carbon adsorption has been in use for centuries before 

biblical times. The description of carbon adsorption has been found on ancient 

manuscripts dating 1550 BC. Ancient Hindus were known to have used charcoal 

to filter their water. However, it was not until in the late 18th century that the 

phenomenon was first scientifically documented (Dąbrowski, 2001; Hung et al., 

2012). The earliest applications of carbon adsorption processes was in the 

industries, where it has been used for the purification or separation of compounds 

(Çeçen and Aktas, 2011), as a catalyst or catalyst support (Dąbrowski, 2001). 

The application of carbon adsorption has ever since been utilised to serve the 

separation of solutes from solutions and as a result, many purification purposes 

were made possible. With the advent of more stringent environmental regulations 

since the early ‘70s, the interest in carbon adsorption has received genuine 

attention for application in pollution prevention and control (Cheremisinoff, 2002; 

Çeçen and Aktas, 2011).  

To date, carbon adsorption has remained a reliable technological option; in 

the treatment of potable water and wastewaters to meet regulatory requirements, 

in environmental pollution clean-ups and in amendment of contaminated soils 

and sediments. In the agricultural fields, it has been found that when added to 

soils, charcoal (or biochar) whose main composition is carbon, helps to maintain 

or enhance soil fertility (Chan et al., 2007; Atkinson et al., 2010; Agegnehu et al., 

2015), facilitate root development, improve soil moisture retention potentials 
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(Jones et al., 2012), prevent the leaching of nutrients and contaminants from the 

soil (Xu et al., 2012), reduces the dissipation of herbicides and the emission of 

greenhouse gasses from the soil (Spokas et al., 2009).  

1.2  DEFINITION OF TERMS 

1.2.1  CHARCOAL, BIOCHAR OR ACTIVATED CARBON? 

These terms are sometimes used interchangeably (Lehmann and Joseph, 

2009; Spokas and Reicosky, 2009), because the materials they refer to are much 

related. Therefore, for the purpose of this work, there is a need to establish proper 

definitions for the two types of carbon sorbents used in this research; i.e. 

activated carbon and biochar to avoid ambiguity.  

To begin with, any organic material that is subjected to incomplete 

combustion in an oxygen deficient condition will produce a solid charred material 

that is composed mostly of carbon. Charcoal, biochar and activated carbon are 

all related in this way. What differentiate them is the processes that they are made 

to undergo before obtaining the final product and the purpose it is meant to serve 

(Lehmann and Joseph, 2009). With this in mind, the following applies; 

Charcoal: Is obtained when for all purpose and intent, organic biomass 

material is charred to obtain a carbon rich material that is to be used as a fuel. 

Biochar: Is obtained when for all purpose and intent, modern (i.e. non-fossil) 

organic biomass material is charred to obtain a carbon rich material that is to be 

used for pollutants removal or carbon sequestration or conditioning of soil. 

Activated carbon: Is obtained when carbon rich material obtained from the 

charring of organic biomass is subjected to further chemical and/or heat treatment 

or processes by which its surface area and pore structure is amplified. It is mainly 

used for water and wastewater treatment, environmental pollution control and 

purification of industrial products. 
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1.2.2  SORPTION, SORBATE AND SORBENT,  

Sorption (also termed adsorption) is a phenomenon by which a sorbate (the 

solute in a solution) is transferred from an aqueous or gaseous phase to attach 

and accumulate onto a sorbent (solid body or solid phase). 

The constituent that undergoes adsorption onto a surface is called the 

adsorbate, and the solid onto which the constituent is adsorbed is called the 

adsorbent. 

1.3  PRACTICAL USE OF ACTIVATED CARBON IN 
WASTEWATER TREATMENT. 

Activated carbon adsorption is used in wastewater treatment usually as a 

polishing stage to achieve higher effluent qualities (Bush, 1980; Ranade and 

Bhandari, 2014). A typical arrangement for industrial wastewater treatment is 

shown in Figure 1.1. The effectiveness of the adsorption process can be impaired 

in the presence of competing materials i.e. suspended and dissolved matter 

(Ratnayaka et al., 2009; Chowdhury et al., 2013). Therefore, to maximise the 

efficacy of this process, it is usually employed at the tail end of the treatment train 

i.e after clarification and/or filtration, just before the final disposal of the treated 

wastewater (IPIECA, 2010; Çeçen and Aktas, 2011). The two most common 

forms of activated carbon used in wastewater treatment are the granular activated 

carbon (GAC) and powdered activated carbon (PAC).  

 

Figure 1.1: Typical flow diagram for wastewater treatment system. Adapted 
from (Sundstrom and Klei, 1979; Metcalf et al., 1991) 

1.3.1  GAC BED 

GAC is normally contacted with wastewater in the form of filtration type fixed 

bed arrangement, whereby the wastewater to be treated flows through the GAC 
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bed (Chowdhury et al., 2013). As the wastewater flows through the carbon bed, 

contaminants are removed by adsorption within the mass transfer zone. With time 

the MTZ is saturated and it continually moves downward through the column until 

breakthrough is attained i.e. when a predetermined concentration of 

contaminants is detected in the effluent. The bed is then exhausted and the 

carbon is removed for regeneration and is replaced with fresh or reactivated GAC 

(Çeçen and Aktas, 2011). 

 

Figure 1.2: Comparison of estimated carbon costs: Source (EPA, 1979) 

1.3.2  PAC 

PAC is usually contacted with the wastewater in the form of slurry  to adsorb 

contaminants and is removed with other particles in solid management 

(Ratnayaka et al., 2009). Its low capital cost together with the ability to apply PAC 

seasonally to address periodic spikes in target contaminants gives it an inherent 

advantage. However, the regeneration of PAC is rather difficult because it cannot 

be separated easily from treated wastewater (Newcombe, 2008; Chowdhury et 

al., 2013). 
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1.3.3  SEPARATION OF PAC 

The particles of PAC are too fine to settle by gravity within the practicable 

treatment detention times that are normally adopted. They are usually removed 

through coagulation/flocculation or membrane filtration. Alternatively, magnetised 

form of PAC can be used and easily separated using principles of magnetism. 

Numerous studies have proven the efficacy of using magnetic materials in the 

adsorption of different pollutants from water and wastewaters (Bitton et al., 1976; 

Bolto, 1990; Šafařík et al., 1997; Hu et al., 2005; Girginova et al., 2010; Fan et 

al., 2012). These magnetic materials have been reported to be separated from 

the treatment medium using magnetic attraction to a permanent magnet or 

induced magnetic field (van Velsen et al., 1991; Mikhailovsky and Radovenchik, 

1996)  

 

Figure 1.3: Schematic diagram of high gradient magnetic separation 
technique. Adopted form (van Velsen et al., 1991) 

The magnetite materials can be separated from the treatment medium using 

magnetic drum separator, cleaned by means of shear forces generated e.g. by 

ultrasonic agitation and regenerated using appropriate solvents. The magnetic 

separation procedure has been used successfully in the separation of magnetic 

materials that are used for the treatment of water and wastewater at industrial 

scale (Sundstrom and Klei, 1979; Booker et al., 1991; van Velsen et al., 1991; 
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Carlos et al., 2013). The schematic diagram of one such system is shown in 

Figure 1.3 

1.4  REFINERY WASTEWATER 

Each refinery is uniquely configured, depending on the type of crude refined 

and desired products. Generally refineries consume large quantities of water and 

as a result they generate high volumes of wastewater. Different units within the 

refinery generate different volumes of wastewater with varying degree of 

contamination (Al-Zarooni and Elshorbagy, 2006; Coelho et al., 2006; 

Diya’uddeen et al., 2011). Typical composition of effluents from some units of the 

refinery are shown in Table 1.1. Refinery wastewater usually includes cooling 

tower blowdown, boiler blowdown, oily process water, stripper effluent, residential 

sewage and contaminated runoff. Water that has not been in contact with 

hydrocarbons may require no treatment and can be discharged, recycled or 

reused within the refinery to minimise water consumption. Otherwise, highly 

contaminated water require comprehensive treatment before being released to 

the environment (IPIECA, 2010). 

Table 1.1: Typical concentrations of pollutants found in effluents of some 
refinery units (IPIECA, 2010) 

Contaminant Desalter Stripped sour water Crude tank bottom 
sediment 

COD (mg/L) 400 to 1000 600 to 1200 400 to 1000 

Free hydrocarbons, (mg/L) Up to 1000 < 10 Up to 1000 

Suspended solids, (mg/L) Up to 500 < 10 Up to 500 

Phenol, (mg/L) 10 to 100 Up to 200  

Benzene, (mg/L) 5 to 15 0  

Sulphides, (mg/L) Up to 100 < 10 Up to 100 

Ammonia, (mg/L) Up to 100 < 100  

In general, wastewater from refineries is composed of wide variety of 

contaminants that includes; hydrocarbons, dissolved and suspended solids, 

organics, inorganics and bacteria (Hale et al., 1979; WORLD BANK GROUP, 

1998; Lahcen and Jean-Luc, 2011). Therefore except for slight modifications of 

the pre-treatment stage, refinery effluents are treated by similar processes used 

in the treatment of conventional domestic sewage and industrial wastewaters. 

Consequently, a refinery wastewater treatment plant is also comprised of 
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preliminary, primary, secondary and tertiary treatment stages (as shown in Figure 

1.1). Ultimately, carbon adsorption has been used effectively as a tertiary 

treatment to remove residual organics after the wastewater has received 

secondary treatment processes (Bush, 1980; IPIECA, 2010). 

1.5  STATEMENT OF PROBLEM AND JUSTIFICATION OF 
STUDY 

Numerous studies have been conducted in the area of wastewater 

treatment using carbon adsorption. Notwithstanding, the basic principles behind 

this process is still not completely understood. This study is conceived in this light, 

with the hope of providing additional understanding of the application of 

adsorption process in wastewater treatment. Especially after advancements in 

analytical technologies made it possible to discover more pollutants that are 

difficult to treat using conventional methods. This brings about an urgent need for 

the redesigning and upgrading of existing water and wastewater treatment plants 

to achieve removal levels required with respect to pollutants that have hitherto 

remained recalcitrant to existing treatment technologies. This calls for researches 

to be conducted at fundamental levels so as to have a better understanding of 

processes involved in the removal of these pollutants. Those processes that are 

found to be ineffective can be evaluated to further understand their shortcomings 

and possibly proffer solutions as to how they can be modified to make them 

effective. Other processes that appear to be effective need also to be studied, to 

have an in-depth understanding of the principles that make them work in order to 

make them even more efficient. The need to be innovative in attending to the 

needs of environmental pollution and control is too conspicuous to be ignored. 

The following problems have been identified to be the focus of this study 

and they are discussed in more detail in chapter 2. 

1. Proliferation of pollutants that could escape conventional, biological 

processes. Adsorption has been shown to be a reliable wastewater 

polishing process that can handle the removal of these pollutants. 

2. Understand and improving upon the limitation of adsorption process to 

increase its acceptability as a reliable treatment option; this is to 

address difficulties such as  
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i. Separation of the adsorbent in its most effective, fine particulate 

form, from treatment medium 

ii. Custom made process to attend to different types of pollutants 

iii. Unknown sorption outcomes especially for magnetised sorbents.  

3. Possibility of arriving at wrong judgements due to application of linear 

model fitting methods in the analysis of sorption data during 

mathematical modelling. 

1.6  RESEARCH QUESTIONS 

1. How does magnetisation affect the physicochemical properties of 

activated carbons (ACs) and biochars (BCs)? 

2. What is the effect of magnetisation on the sorption of organic 

contaminants and heavy metals by activated carbons and biochars? 

3. What sorption mechanisms are relevant for the binding of different 

types of pollutants by the magnetic activated carbons and biochars?  

4. How do solution properties such as pH or dissolved organic carbon 

contents influence the sorption of organic contaminant and heavy 

metals on magnetic activated carbons (MACs) and biochars (MBCs), 

and how does the influence compare to that on nonmagnetic sorbent? 

1.7  HYPOTHESES 

1. The presence of precipitated magnetic iron oxides on the surface of 

the magnetised ACs and BCs, will reduce their surface area and 

porosity. Magnetisation will also alter other surface properties of the 

sorbents. 

2. Due to the decrease in surface area and porosity, the sorption 

capacities of the magnetised sorbents will be lower than those of their 

corresponding pristine pairs. Therefore, the magnetised sorbents will 

have reduced removal of organic contaminants and heavy metals from 

wastewater.  

3. The magnetic sorbents will have different sorption mechanisms from 

their nonmagnetic pairs. Thus they will differ in terms of their sorption 

kinetics and responses to pH changes. 
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4. The influence of competing compounds on the sorption of organic 

contaminants and heavy metals on magnetic and nonmagnetic 

sorbents will be comparable. 

1.8  AIMS AND OBJECTIVES 

The aim of this research is to study the effect of magnetisation on the 

sorption properties of activated carbon and biochar in the sorption of typical 

organic pollutants and heavy metals from aqueous solutions using batch 

experiments in an attempt to have a better understanding of the possible 

application of magnetic activated carbon and magnetic biochars in the treatment 

of refinery and other wastewaters.  

The objectives of the research are as follows; 

1. To produce magnetic activated carbon and magnetic biochar using a 

wet co-precipitation method. 

2. To assess the effect of magnetisation on the sorption characteristics 

of MACs and MBCs in the sorption of typical organic contaminants and 

heavy metals from aqueous solutions using batch methods. This will 

be achieved using mathematical models to evaluate the following; 

i. Sorption isotherms, 

ii. Sorption capacities, 

iii. Nature of surface coverage of sorbate on sorbent, 

iv. Sorption kinetics, 

v. Sorption energies. 

3. To compare the quality of results obtained from the modelling of 

experimental data using linear and nonlinear fitting methods. 

4. To evaluate the effect of external factors such as pH, temperature and 

presence of competitors in the sorption of the selected pollutants on 

MAC and MBC. 

1.9  SCOPE AND LIMITATION 

It is not the interest of the work to produce any carbonaceous sorbent from 

feedstock materials. All sorbents will be used as obtained from suppliers except 

for their being modified to have magnetic properties. The data on the sorbents’ 
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characterisation was obtained as part of a research collaboration with a second 

party (Dr Zhantao Han). Therefore, the procedures to measure these properties 

are not presented in this study. 

Real wastewater from refineries could not be sourced for use in this study. 

However, wastewaters generally consist of similar types of contaminants which 

include, dissolved and suspended solids, organic and inorganic compounds and 

microorganisms. Furthermore, it is practically impossible to examine all types of 

compounds present in such wastewaters. Therefore this study focused on typical 

compounds found in refineries, industrial and domestic sewage. To measure the 

effect of competition from other adsorbable compounds other than the target 

pollutants, the study was conducted using CaCl2, synthetic wastewater and 

domestic wastewater as background solutions. 

1.10  THESIS STRUCTURE 

Chapter 1: General introduction and background 

This chapter is intended to give a brief overview of the study, why it is 

conducted, what it hopes to achieve, the area it covers and the format by which 

it is presented. 

Chapter 2: Literature review  

This chapter gives an overview of research activities conducted that are 

both specifically and generally related to the scope of this research. This is to 

have a better understanding of the research topic so as to help in developing 

appropriate concepts and procedures that can be adopted towards attaining the 

objectives of the study. 

Chapter 3: Materials and methods 

This chapter presents the sorbents and sorbates used in this study and why 

they are chosen. It also discusses about the methods adopted in the analysis of 

experimental data. 

Chapter 4: Adsorption of phenol 

This chapter forms the baseline study of the research. Phenol is used as 

the probe pollutant to derive preliminary insights into the sorption potentials of the 
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selected sorbents. Results from this chapter are used to develop the procedures 

that are used in the proceeding chapters. 

Chapter 5: Adsorption of pharmaceuticals. 

Micropollutants are especially more difficult to treat than heavier organic 

pollutants using carbon adsorption. This chapter is intended to consolidate the 

findings of the previous chapter as regards the sorption of organic pollutants.  

Chapter 6: Adsorption of heavy metals 

This chapter evaluated the sorption of heavy metals on the sorbents to 

enable the coverage of an additional category of pollutants whose sorption 

characteristics differ from those of organic pollutants. 

Chapter 7: Summary and conclusion 

This chapter gives a summarised discussion of the findings obtained in the 

preceding three chapters and suggestion for future work. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1  POLLUTANTS FROM WASTEWATER 

The world is witnessing a continuous trend of population increase which 

results in a similar trend in the need for constant exploration, exploitation and 

procession of all manners of resources in large quantities (Kundzewicz, 2007). At 

the background of all these activities is a constant demand for energy and water. 

These trends are presented in Figure 2.1. 

      

Figure 2.1: Global extraction of natural resources, (Nabzar, 2011; SERI and 
WU Vienna database: Visualising Global Material Flows, 2014) 

The nature of utilisation or consumption of these resources differs but they 

contribute in the release of parent pollutants and their by-products to the 

environment through countless pathways. For instance, crude oil refining requires 

significant amounts of energy and large volumes of water. It has been estimated 

that on the average, at global level, to produce a litre of oil, 3 – 5 litres of 

wastewater is generated (Nabzar, 2011). Wastewater from refineries is 

associated with biochemical oxygen demand (BOD) and chemical oxygen 

demand (COD) levels of approximately 150–250 milligrams per litre (mg/L) and 

300–600 mg/L, respectively; it may also contain, bacteria, suspended particles 

(TSS), dissolved salts (TDS), phenol levels of 20–200 mg/L; oil levels of 100–300 

mg/L in desalter water and up to 5,000 mg/L in tank bottoms; benzene levels of 

1–100 mg/L; benzo(a)pyrene levels of less than 1 to 100 mg/L; heavy metals 

levels of 0.1–100 mg/L for chrome and 0.2–10 mg/L for lead; and other pollutants 

including radioactive metals, dissolved organic products especially hydrocarbons 
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such as toluene, ethylbenzene, xylene polycyclic aromatic hydrocarbons, and 

naphthalenes (Hale et al., 1979; WORLD BANK GROUP, 1998; Lahcen and 

Jean-Luc, 2011). Some of these compounds are toxic, recalcitrant to degradation 

and capable of bioaccumulation when they enter the food chain, posing serious 

threat to the ecosystem and human health (Onwumere and Oladimeji, 1990; 

Sandrin and Maier, 2003; Chuah et al., 2005; Marrot et al., 2006; Indu et al., 2008; 

Song et al., 2012). Furthermore, they are less likely to be removed completely by 

conventional biologic treatment units. Phenol in particular, has been reported to 

be observed in concentrations higher than permissible levels even after biological 

treatment (Al-Zarooni and Elshorbagy, 2006; Otokunefor and Obiukwu, 2005). 

The human history, since the ancient times has been littered with incidences of 

environmental pollution resulting in adverse effects on human health and fatal 

consequences on the ecosystems sometimes leading to loss of biodiversity 

(Nriagu, 1988; Nriagu, 1996; Makra and Brimblecombe, 2004). 

2.1.1  PRIORITY POLLUTANTS 

The priority pollutants are listed in regulations such as section 307(a)(1) of 

the Clean Water Act 1977 (EPA, 2002) and Article 16(2) of Directive 2000/60/EC 

(European Commission, 2000). The inclusion of a substance on this list requires 

it to pose a threat to human health or to the aquatic environment. This can be 

through acute or chronic toxicity to receptor organism, accumulation in the 

ecosystem and losses to habitats and biodiversity. Accordingly, guidelines and 

standards have been developed that will enable adequate monitoring to ensure 

their production and utilisation conform to approved best practices and available 

technology. It is necessary that these pollutants conveyed in wastewaters are not 

released at levels that could harm or pose a threat to the environment. For 

instance, in compliance to the European Union recommendation, the limits for 

phenol have been set as follows; in potable and mineral waters it is 0.5 µg/l, while 

the limits for wastewater emissions are 0.5 mg/l, for surface waters and 1 mg/l for 

the sewerage system (Busca et al., 2008). In Germany, a phenol index of ≤ 0.15 

mg/L has been set for wastewater before mixture with other waste water for the 

production of hydrocarbons and oil processing. In the UK, a non-statutory 

environmental quality standard recommends 300 µg/L as maximum allowable 

phenol concentration (JRC, 2006). Also, the annual mean concentration set 
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environmental quality standards limits of 10 µg/L for copper and lead, and 75 µg/L 

for zinc in England and Wales (Gray, 2004). In the US, EPA regulation “40 CFR 

Part 419” has set effluent limits for various industries. According to the “best 

practicable control technology currently available (BPT)” criteria, the maximum 

effluent limit for phenolic compounds for any one day from any category of point 

sources discharge from petroleum refining ranges between 0.168 to 0.40 kg/1000 

m3 of feedstock (EPA, 2013). Likewise, EPA regulation “40 CFR Part 439” has 

set the maximum daily limit for effluents COD from different categories of point 

sources in pharmaceutical industries at 228 to 1675 mg/L. While phenol has been 

set at 0.05 mg/L according to the “best available technology economically 

achievable (BAT)” criteria (EPA, 2015). The list of EPA regulations for various 

industries can be found in (Federation, 2008). Depending on the processes 

involved, wastewater treatment offers reliable effluent qualities within approved 

guidelines. Conventional wastewater treatment plants do not always provide 

100 % removal of these pollutants (Sonune and Ghate, 2004). For instance, it 

has been reported that phenol contents of effluents of biological wastewater 

purification plants can be as high as 48 mg/L (JRC, 2006). 

Since the industrial revolution, the mining and smelting, transportation, 

electroplating and petroleum refining industries continue to be the main sources 

from which heavy metals are released into the environment (Mohammed et al., 

2011). Furthermore, heavy metals are not degraded and sometimes even toxic 

to microorganisms in biological wastewater treatment process (Ochoa-Herrera et 

al., 2011). Consequently, they have become persistent and widespread in the 

environment at levels that have since raised concerns. Exposure to some of these 

metals -even at trace levels- are reported to have an adverse effect on the human 

health or the environment. For instance, kidney damage and renal failure may be 

due to exposure to cadmium (Järup et al., 2000; Mohammed et al., 2011), copper 

has been associated with Wilson disease (Bull et al., 1993; Thomas et al., 1995), 

exposure to lead can cause damage to the brain, kidney and central nervous 

system, (Lanphear et al., 2005; Tchounwou et al., 2012), and zinc has been 

implicated in the pathogenesis and progression of prostate malignancy (Plum et 

al., 2010). Already measures have been taken to minimise the release of heavy 

metals and so far, their levels have been on the decline, especially in developed 

countries (Järup, 2003). Nevertheless, they are still encountered in aquatic and 
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soil environments that are used in the disposal of industrial and domestic 

wastewaters (Audry et al., 2004). Treatment of wastewaters has for long been a 

reliable means by which the proliferation of heavy metals in the environment is 

controlled. The removal of heavy metals from wastewater can be achieved by 

many processes that include; ion exchange, chemical precipitation, membrane 

filtration and adsorption (Srivastava and Majumder, 2008). Of these processes, 

adsorption by carbon has been found to be one of the most reliable, due to the 

following reasons; its low energy requirement and as a result lower operational 

cost, abundance of raw materials for the production of the sorbents, ability to 

regenerate spent carbon and recover metals for reuse and the absence of 

otherwise highly contaminated sludge which is difficult and expensive to handle 

and dispose of.  

2.1.2  POLLUTANTS OF EMERGING CONCERNS 

While the focus of environmental regulation has so far been mainly on 

priority pollutants, there exist also in the background an ever increasing hazard 

posed by yet to be prioritised compounds. Also known as compounds or 

contaminants of emerging concern (CECs), their occurrence in the environment 

is drawing increasing attention (Luo et al., 2014). These CECs can be broadly 

classified into six categories as; pharmaceuticals, personal care products, 

hormones, steroids, industrial chemicals, surfactants and pesticides (Daughton 

and Ternes, 1999; Çeçen and Aktas, 2011). These group of emerging pollutants 

potentially pose at least an equivalent impact to the environment in the long run 

as do the priority pollutants (Rivera-Utrilla et al., 2013). These anthropogenic 

compounds follow many pathways to enter the environment including, the 

discharge of improperly treated industrial and domestic wastewater, improper 

disposal of unused drugs and daily usages of personal care products (Boxall, 

2004). In the case of administered drugs, some fraction is excreted as 

unmetabolised parent compound or as active metabolites (Zuccato et al., 2000; 

Schwaiger et al., 2004). These compounds find their way to the wastewater 

treatment plant where their removal varies depending on the treatment process 

involved (Stumpf et al., 1999; Ellis, 2006; Rivera-Utrilla et al., 2013). In some 

instances, they are released into receiving water because conventional treatment 

plants are not designed to eliminate most of these compounds from wastewater 
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(Lindqvist et al., 2005; Nakada et al., 2006; Cabrita et al., 2010; Sotelo et al., 

2013; Mailler et al., 2016). Another way by which these compounds are released 

into the environment is through the use of; excreta from farm animals, improperly 

treated biosolids and wastewater for agricultural purposes (Boxall, 2004). Recent 

advancements in analytical methods have made the detection of numerous of 

these compounds possible even when at low levels in the environment. 

Therefore, a large number of them are detected in trace levels in receiving water 

bodies (Ahrer et al., 2001; Blair et al., 2013). This has as a result brought to lime 

light the existence of an additional frontier of environmental pollution which 

hitherto has gone undetected (Daughton and Ternes, 1999). Consequently, a lot 

of these compounds are yet to be regulated or at best are undergoing regulatory 

processes. Individually, they may not pose serious ecological hazard at the trace 

concentration levels they are detected. However, a cocktail of these compounds 

could have inductive or synergetic effects that may pose serious threat to the 

aquatic organisms (Hernando et al., 2006). Furthermore, these compounds are 

pseudo persistent due to their continuous discharge. There is thus the uncertainty 

of their effect due to long term exposure on aquatic organism, especially over 

many generations (Ferrari et al., 2003). 

Hazardous compounds such as pesticides, pharmaceuticals, 

polychlorinated biphenyls, flame retardants, dioxins and many others can 

contaminate the soil matrix (Kinney et al., 2006; Elskens et al., 2013; Fairbairn et 

al., 2015) thereby making it a long-lasting source of many of these chemicals. 

Especially persistent compounds have become ubiquitous in soil because they 

are resistant to biological and chemical degradation (Sotelo et al., 2013). Studies 

have found that the use of reclaimed water can cause the accumulation of 

pharmaceuticals in the soil, with the potentials of leaching into deeper soil layers 

(Kinney et al., 2006; Li et al., 2013). Some of these contaminants remain bio-

available, and lipophile, persistent compounds may bio-accumulate and bio-

magnify to concentrations that can cause harmful effects along the food chain 

(Eichbaum et al., 2014). 

2.2  WASTEWATER TREATMENT 

To make it less harmful to the environment, numerous treatment 

processes are employed to treat wastewater, usually in combination to have final 
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effluent with pollutants’ concentration below threshold levels that poses hazard 

to the environment. Treatment processes of choice include, oxidation ponds, 

activated sludge, trickling filters, rotating biological contactors, ion exchange, 

carbon adsorption and reverse osmosis (Escwa, 2010; Ramalho, 2012). Hardly 

is any one process adequate in meeting this requirement and more so, each 

treatment process has its peculiarity (Belhateche, 1995). Hence the selection of 

a treatment process is influenced by many factors such as efficiency in the 

removal of target pollutants, cost, flexibility in terms of its integration with other 

processes, adaptability in terms of land and climatic constraints, and importantly 

in the final fate of the treated pollutants (Metcalf & Eddy Inc et al., 2003; Muga 

and Mihelcic, 2008). Most processes produce substantial volumes of sludge that 

is usually heavily contaminated and requires special handling and perhaps further 

treatment before its disposal (Stover et al., 1976; Kelessidis and Stasinakis, 

2012). Not only emerging pollutants, but also relatively recalcitrant, water-soluble 

compounds such as phenols, or heavy metals are not just resistant to 

conventional treatment processes but also toxic (Çeçen and Aktas, 2011). Thus 

they can have an adverse effect on microorganisms that are responsible for 

biological processes. This leads to the release of partially treated wastewater 

leading to the accumulation of toxic pollutants in receiving waters. Some 

processes have been rated high in the treatment of these and other pollutants 

based on reduction in the concentration of target compounds (Mailler et al., 

2016). This may be misleading because, in some cases the reduction in 

concentration of a target pollutant simply result from decrease in the 

concentration of the parent compound when in reality it is simply transformed to 

a substituted compound at the background continuing to pose a similar degree of 

hazard (Luo et al., 2014). Carbon adsorption has received wide acceptability as 

a process that can eliminate these compounds from wastewater (Jusoh et al., 

2007; Schneider et al., 2007; Piero, 2009b; Aghav et al., 2011; Figueiredo et al., 

2011; Zhuang et al., 2011). Furthermore, adsorption process does not result in 

the production of by-products of pollutants which pose perhaps at least an equal 

environmental hazard as does the parent compound (Rivera-Utrilla et al., 2013). 

Finally, since adsorption utilizes a completely different mechanism than 

conventional, biological wastewater treatment, it may be ideally suited for the 

polishing of effluents from biological wastewater treatment plants. 
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2.3  APPLICATION OF ADSORPTION IN ENVIRONMENTAL 
POLLUTION AND CONTROL 

Over many years, adsorption processes using activated carbon or 

biochars have demonstrated promising outcomes in the removal of such 

contaminants from wastewater and, more recently as amendments of such 

contaminated soils and sediments to minimize the transfer of pollutant into the 

aquatic or terrestrial food chains (Pelekani and Snoeyink, 2000; Le Cloirec and 

Faur-Brasquet, 2008; Yu et al., 2009; Cabrita et al., 2010; Ghosh et al., 2011; 

Han et al., 2013a).  

2.3.1  REMOVAL FROM AQUEOUS SOLUTIONS 

The application of as little as 10 to 20 mg/L of PAC resulted in the removal 

of a wide range of micropollutants by over 80% from wastewater in a large scale 

pilot treatment plant (Margot et al., 2013). PAC adsorption is flexible and can be 

conveniently used in conjunction with other treatment processes. Combined use 

of PAC with the coagulation process facilitated the removal of micropollutants 

from wastewater treatment plant effluent by up to > 90%, especially after 

sufficient contact time (Altmann et al., 2015). A study by Secondes et al. (2014), 

used a hybrid process that involves a combination of membrane ultrafiltration, 

activated carbon adsorption and ultrasound irradiation. This hybrid process was 

able to achieve well above 99% removal of emerging contaminants (ECs) with 

adsorption being the main removal mechanism. In another work, Mailler et al. 

(2015), studied a pilot scale use of fluidised PAC at a dosage of 10 mg/L, as a 

tertiary treatment process. The process was observed to have resulted in an 

average removal of 72 – 80% of total of wide range of emerging and priority 

micropollutants from wastewater treatment plant effluents. 

2.3.2  SOIL AMENDMENT 

For the in-situ use of sorbents, it has been reported (Cho et al., 2012), that 

the uptake of polychlorinated biphenyls (PCBs) by passive samplers in sediments 

amended with just 3.7 dry wt% activated carbon dose was decreased by up to 

73% over a period of 5 years. Wang et al. (2012), have demonstrated that, 

amendment of agricultural soils with biochar enhances and also dominates the 
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sorption of pesticides, such that, a remarkable reduction in the uptake of pesticide 

by earthworms was observed. In another study by Yu et al. (2009), the 

amendment of soil with just 1% by weight of biochar was observed to be capable 

of sequestering pesticide residue and as a result, a remarkable reduction in its 

uptake by plants was recorded. These and similar studies have further 

demonstrated the ability of biochar amendment in the immobilisation of 

contaminants in the soils and sediments. It has however been reported (Zhang 

et al., 2010a) that the effect of ageing can cause a substantial decrease in the 

sorption ability of the biochar. This decrease is influenced by competition with 

other compounds, especially soil dissolved organic matter, for the available 

sorption sites (Yang and Sheng, 2003). Therefore, it is theoretically possible that 

with time, the added biochar becomes less effective in providing continuous 

protection against possible future recontaminations.  

2.4  WASTEWATER TREATMENT BY ADSORPTION 

Of the treatment processes, carbon adsorption appears to be promising in 

the removal of otherwise difficult to treat pollutants (Ahmaruzzaman and Sharma, 

2005; Schneider et al., 2007; Cabrita et al., 2010; El-Naas et al., 2010). Although 

wastewater treatment by activated carbon adsorption has been extensively 

studied over the years, the need to have a better understanding of its application 

on the removal of micropollutants cannot be ignored (Ebie et al., 2001; Yu et al., 

2008). Especially within conditions that closely resemble real scenarios under 

which it will eventually be applied. For instance, in batch treatment process, the 

smaller the size of the sorbent, the better the kinetics and the shorter the time 

required for treatment objective to be met (Jain et al., 2003; Özacar and Şengil, 

2003; Roostaei and Tezel, 2004). However, in real scenario, there is always the 

need for powdered activated carbon (PAC) to be separated from the wastewater 

stream before discharge, ideally for reuse in another batch, for regeneration or 

permanent disposal. However, smaller particles are often difficult to be separated 

from the treated wastewater (Weber, 1974; Kim et al., 2010; Çeçen and Aktas, 

2011) and are usually removed with the addition of a coagulant as part of the 

sludge. The sludge produced under such arrangement will be heavily 

contaminated because it contains in addition to a lot of water, the coagulant, the 

added sorbent and all the pollutants it has sorbed. Separation of the sorbent from 
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the sludge is practically impossible making it more difficult to handle and dispose 

(Snoeyink and Summers, 1999; Chowdhury et al., 2013). Separation of fine 

particles from water can be achieved by the membrane filtration technology which 

requires a lot of energy to create high pressures necessary to force the water 

through the membrane (Côté et al., 1997; Šostar-Turk et al., 2005). Alternatively, 

separate sorption process unit can be used; which can incorporate for instance, 

coagulation process (Margot et al., 2013; Altmann et al., 2015), but this will add 

to the overall detention time of the wastewater treatment plant as it typically 

requires flocculation and sludge settling tanks and often also sand filter units. 

Consequently, leading to higher overall cost of construction, operation and 

maintenance of the treatment plant. An alternative is either to use granular 

activated carbon (GAC) in fixed bed column operation or by magnetising PAC to 

enable easy separation from treatment units using magnetic principles (Wang et 

al., 2015a). 

The use of more expensive GAC with larger particles but slower kinetics 

than PAC in a fixed bed column adsorption is usually the favoured solution (Li et 

al., 2003; Kim et al., 2010). With this, the treatment objective can be met in a 

shorter period and there is no need for the provision of additional treatment units 

for the separation of exhausted sorbents from wastewater. However, utilisation 

of the sorbent’s full sorption capacity is often not achieved because the contact 

is for a short period and slower kinetics of larger sorbent particles prevent the 

achievement of sorption equilibrium (Weber, 1974; Al-Degs et al., 2009); such 

that at breakthrough point, only partial sorption capacity is utilised (Snoeyink and 

Summers, 1999; Worch, 2012).  

2.4.1  NEED FOR MAGNETISATION OF SORBENTS 

By using magnetic separation techniques, fine sized magnetic sorbents 

can be readily separated from treated wastewater within the same treatment unit 

used to contact wastewater with sorbent. This is easier than separation by 

membrane filtration which requires more energy (Côté et al., 1997; Šostar-Turk 

et al., 2005). This will ensure full utilisation of sorbents’ sorption capacities as 

compared to contact using GAC in fixed bed where partial utilisation is achieved. 

Furthermore, because the sorbent is recovered without being enmeshed in floc 
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particles aggregated with the coagulant, it can be more readily disposed of or 

regenerated.  

Although several works have been conducted on the use of activated 

carbons and biochars in the adsorption of several pollutants (Lijuan et al., 2011; 

Maher et al., 2012; Mandu et al., 2012; Muhtab et al., 2012), the process of 

magnetisation may change the surface characteristics of the carbon. This can 

have an influence on the sorption properties of the magnetised sorbent such that 

in the overall, their sorption behaviour may differ substantially from the pristine 

sorbent. Additionally, the magnetisation can be achieved using different methods 

each resulting to a sorbent with unique sorption properties (Šafařík et al., 1997; 

Nguyen et al., 2011; Jiang et al., 2015). At the moment, there is limited literature 

coverage on the effect of magnetisation on the sorption properties of sorbents 

and their application in control of environmental pollution. Therefore, there is the 

need to assess the effect of the modification and the possible trade-off between 

the necessity of magnetisation and altered sorption properties. 

2.5  ACTIVATED CARBON 

Biochars and activated carbon (also called active carbon, activated 

charcoal, or activated coal) are obtained by the pyrolysis of carbonaceous 

materials to obtain a material that is composed mainly of carbon atoms. Activated 

carbon can be prepared from many materials such as coal, peat, wood, sawdust, 

coconut shell, petroleum based residues and almost any material with a high 

carbon content (Cameron Carbon Incorporated, 2006). The production of 

activated carbon involves two stages; carbonisation and activation. During 

carbonisation, the carbonaceous feedstock is pyrolysed at high temperatures 

under oxygen deficient conditions. The carbonised product (coal or biochar) –

which consist basically of carbon as most of the other elements are eliminated as 

volatile gaseous species- has pores that are not well developed therefore has a 

rather small surface area. In thermal activation, the charred material is further 

heated in an atmosphere of air, carbon dioxide or steam at temperatures in the 

range of 800oC to 900oC. In chemical activation, the original feedstock is 

impregnated with chemicals that include; phosphoric acid, potassium hydroxide 

and zinc chloride. The activation process result in a product that is extremely 

porous with a highly amplified surface area (Çeçen and Aktas, 2011).  
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2.5.1  TYPES 

Activated carbon can be classified based on the parent material from 

which it was produced and for which they can be named as coconut shell, coal, 

wood, peat, petroleum based activated carbon activated carbon etc. (Cameron 

Carbon Incorporated, 2006). Classification can also be based on shape of 

material such as fibrous activated carbon and activated carbon cloth or based on 

additives used in its production such as impregnated activated carbon. However, 

the main classification is based on the particle size where it can either be granular 

activated carbon (GAC) if it has particle size within 0.1 to 4.0mm or powdered 

activated carbon (PAC) if the particle size is within 0.001 to 0.25mm (Metcalf & 

Eddy Inc et al., 2003; Roop and Meenakshi, 2005; Norit Americas Inc., 2012). 

2.5.2  STRUCTURE 

Activated carbon consist of microcrystallite structure which closely 

approximate the structure of an ideal graphite (Snoeyink and Weber, 1967; 

Coughlin and Ezra, 1968; Çeçen and Aktas, 2011). Based on the ideal graphite 

structure, the microcrystallite structure of activated carbon is assumed to be 

composed of infinite layers of fused hexagonal rings of carbon atoms. Typical 

graphite crystal is shown in Figure 2.2. 

 

Figure 2.2: Structural elements of activated carbons: (a) graphite structure, 
(b) randomly oriented graphite microcrystallites (Worch, 2012) 

Three of the carbon’s four electrons are localised and they participate in 

regular covalent bonds with neighbouring atoms. The fourth electron (usually 
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called the π electron) resonates between several valence-bond structures, giving 

each carbon-carbon bond a one-third double-bond character (Walker, 1962; 

Snoeyink and Weber, 1967). In a more recent study, Harris et al. (2008) used 

aberration-corrected transmission electron microscopy imaging to show evidence 

that activated carbon is made up of a highly disordered structure consisting 

mostly of hexagonal and a few pentagonal rings of carbon atoms. Adsorption on 

the microcrystallite planes are normally due to the effect of van der Waals forces 

(Roop and Meenakshi, 2005; Çeçen and Aktas, 2011).  

2.5.3  PROPERTIES 

With reference to sorption, the behaviour of an activated carbon may 

depend on the precursor organic material and the process used in its production. 

Variation in any of these would result in differences in behaviour or properties of 

an activated carbon sample. The properties that influence the sorption 

characteristics of AC include; surface area, porosity, particle size, surface 

functional groups and surface charges. 

2.5.3.1  Surface Area:  

Because adsorption is a surface phenomenon, adsorption capacities are 

usually proportional to the surface area (Weber, 1974). Therefore, large surface 

area is a significant property of activated carbon that makes them sorbents of 

choice in water and wastewater treatment. Typical ACs have surface area within 

the range 500 – 1500 m2/g (Çeçen and Aktas, 2011; Worch, 2012; Chowdhury et 

al., 2013), although surface area as high as 2500 m2/g has been reported 

(Snoeyink and Weber, 1967; Roop and Meenakshi, 2005). The total surface area 

of the AC consists of internal and external surface areas. The external area arises 

due to bulges and cavities that have greater width than depth and they serve as 

conduits for the conveyance of sorbates to sorption sites. The internal surface 

area -which arises due to activation process where the porosity of the coal is 

amplified and developed even further- consists of pores of different sizes. Hence, 

it takes the largest fraction of the total surface area (Worch, 2012) and as a result 

determines the sorption capacity of activated carbon (Roop and Meenakshi, 

2005). In the case of metal cations, the surface area does not directly dictate the 
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sorption capacity, rather the surface chemistry is more important (Leyva Ramos 

et al., 2002). 

2.5.3.2  Porosity 

The IUPAC classification, developed by (Everett, 1972), classified pores 

based on their sizes into the following three types; macropore (> 50 nm) 

mesopore (between 20 and 50 nm) and micropore (< 2 nm). The macropore and 

mesopore here also facilitate mass transfer of sorbates to the interior of the 

sorbent particle. Generally the macropores contribute little to the total surface 

area and sorption capacity of activated carbons (Weber, 1974). The micropores 

constitute about 95% of the total surface area of the activated carbon and 

therefore determines its sorption capacity. This is particularly true if the sorbate 

molecules are small enough to access the micropores (Roop and Meenakshi, 

2005). Walker and Weatherley (2001), studied the sorption of acid dyes on solid 

adsorbent, they found that much of the specific surface area was left redundant 

due to molecular weight aggregation. For ACs having similar surface area and 

micropore volume, larger mesopore volume also contribute to the sorption 

capacity of the activated carbon especially for larger adsorbates (Hsieh and Teng, 

2000). Also, sorbates with molecules having similar sizes will compete equally for 

the available sorption sites either within the micropore or mesopore accordingly 

(Pelekani and Snoeyink, 1999). In the same vein, loss of sorption capacity for 

smaller sized sorbates due to pore blockage by competing larger sized sorbates 

can be minimised if micropore size distribution is adjusted to include a significant 

volume of secondary micropores (Pelekani and Snoeyink, 2001). It is therefore 

essential to select sorbents that have compatible porosity with respect to the size 

and nature of the sorbate to adsorb to ensure efficient utilisation of its sorption 

capacity (Gergova et al., 1994). Pore size also influences the sorption intensity. 

Sorbate molecules tend to have more contact with the surface of the sorbent as 

the pore size decreases, leading to increase in sorption intensity. Also, sorption 

potential between opposite pore walls begin to overlap once the pore size is less 

than twice the diameter of the sorbate molecule (Li et al., 2002).  
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2.5.3.3  Surface Chemistry 

Compounds are able to adsorb on the surface of carbon sorbents mainly 

due to action of intermolecular interaction that results from van der Waals forces, 

electrostatic attractions and π interactions (Worch, 2012). The aromatic sheets 

have edges due to limited dimensions, defects, dislocations and discontinuities. 

The atoms at the edges are rich in potential energy and are thus highly reactive 

because they have impaired electrons and unsaturated valencies. These 

constitute the active sites on carbon surfaces and they exercise a profound 

influence on the sorption capacity of carbon sorbents (Coughlin and Ezra, 1968; 

Roop and Meenakshi, 2005). Heteroatoms such as oxygen, hydrogen, nitrogen 

and sulphur can interact with the adsorption sites at the edges to form surface 

functional groups carbon (Mattson et al., 1969; Li et al., 2002; Dąbrowski et al., 

2005). The carbon-oxygen surface groups are the most important functional 

groups that influence the surface characteristics of carbon sorbents. The 

presence and relative concentration of these function groups goes a long way in 

determining the sorption behaviour of activated carbon (Roop and Meenakshi, 

2005; Çeçen and Aktas, 2011).  

Because the carbon atoms on the planar surface of AC are involved in 

covalent bonding with neighbouring carbon atoms, adsorption on the basal plane 

is usually due to the action of van der Waals forces and π coordination with 

compatible sorbates (Snoeyink and Weber, 1967). The delocalised π electron 

facilitates the sorption of a multiplicity of sorbates through π interactions. This 

type of interaction is stronger for molecules having more than two double and 

triple bonds or poly-nuclear aromatics (Heibati et al., 2015). 

The surface of carbon sorbents has a net charge density, depending on 

the pH of the solution it interacts with. At low pH it has a positive charge, at high 

pH a negative charge and a neutral charge in between. The pH at which the 

surface has a zero net charge density is called the point of zero charge (pHPZC). 

This behaviour is due to the protonation and deprotonation of surface -OH groups 

(Worch, 2012). The pHPZC can be determined using methods such as suspension 

effect; electrophoretic mobility; change of pH by adding of adsorbent to solution; 

titration with acid and alkali (Tschapek et al., 1974) 
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2.5.3.4  Particle Size 

The particle size influences the rate at which adsorption progresses, as it 

determines the length that a sorbate must travel to reach a sorption site. Under 

same conditions therefore, the smaller the particle size the faster sorption 

progresses. Therefore, the particle size determines the mode of AC sorption 

method that can be applied; either in batch or fixed bed continuous flow reactors. 

While smaller size yields faster kinetics, in fixed bed reactors, particle sizes that 

practical flow conditions allow are chosen (Weber, 1974). Below this limit 

excessive pressures would be required to force wastewater through the bed 

resulting to higher energy demand. Thus PAC application is limited to batch 

process where the AC is added to the wastewater to be treated in the form of 

slurry (Chowdhury et al., 2013). On the other hand, larger particle sizes as in 

GAC results in slower kinetics, hence there is practical limitation in the size of AC 

to use in a batch process. The use of GAC in batch process is not economical as 

it would require longer detention time or provision of larger reactors before 

treatment objectives can be achieved. GAC is more expensive than PAC, but the 

former can easily be recovered and regenerated for repeated use (Roop and 

Meenakshi, 2005). 

2.6  MAGNETISED SORBENTS 

Sorbents are modified in order to facilitate their separation from a medium 

or matrix (Šafařík et al., 1997; Oliveira et al., 2002; Zhang et al., 2007; Chen et 

al., 2011a; Han et al., 2015a; Han et al., 2015b), or to provide a support for 

catalysts to enhance decomposition and degradation of organic compounds in 

aqueous medium and photocatalytic disinfection (Roop and Meenakshi, 2005; 

Castro et al., 2009; Nguyen et al., 2011; Gamage McEvoy and Zhang, 2014). 

Numerous lab based simple procedures have been adopted to achieve the 

magnetisation of activated carbon and biochars. These include;  

i) Chemical co-precipitation technique alone at low temperature (Šafařík et al., 

1997; Oliveira et al., 2002) 

CuCl2, FeCl3 and NaOH (Zhang et al., 2007), FeCl3, FeSO4 and NaOH 

(Oliveira et al., 2002) FeSO4•7H2O and NaOH, (Šafařík et al., 1997); 

FeSO4•7H2O and FeCl3•6H2O and NaOH (Han et al., 2015a; Han et al., 

2015b) 
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ii) Chemical co-precipitation of iron salts on biomass then pyrolysis at elevated 

temperature (Chen et al., 2011a) 

FeCl2, FeCl3 and NaOH (Chen et al., 2011a) 

iii) Chemical impregnation of activated carbon followed by heat treatment at 

elevated temperature Fe(NO3)3•9H2O and HNO3 or Fe(NO3)3•9H2O and 

MnSO4•H2O (Nguyen et al., 2011) 

iv) Hydrothermal synthetic method 

NiSO4•6H2O, FeCl3•6H2O and NaOH mixed at low temperature, then diluted 

with water and heated at 435 K for 10 hours (Jiang et al., 2015). 

These methods produce unique magnetised sorbents whose properties 

are changed either for better or for worse compared to the original sorbents from 

which they are synthesised. For instance, Castro et al. (2009), recorded reduction 

in BET surface area and micropore volume with increase in iron oxide content. 

SEM micrography of the magnetised AC reveals well-dispersed iron oxide 

particles covering the surface of the activated carbon for higher iron oxide 

content, while much of the surface is exposed when the iron content is lower. 

XRD analysis suggests the presence in the composite of only goethite, although 

the presence of maghemite or magnetite and small amounts of goethite, were 

seen in the pure iron oxide. Using a different method, Nguyen et al. (2011) 

recorded improvement in surface area and porosity were improvement despite 

the presence of iron oxides within the sorbent particles -in the case of 

impregnation without MnSO4·H2O; which they attributed to further activation 

action of Fe(III) salt. Impregnation with MnSO4·H2O did not affect the surface area 

and porosity significantly. XRD indicated the presence of metal oxides in the form 

of ferrite and manganese ferrite spinels. SEM shows that the porous nature of 

the magnetic particle deposits on the carbon surface could be the reason for the 

maintenance of high surface area and porosity of the activated carbon even after 

magnetisation. The magnetisation however increased the pHPZC slightly from 8.0 

to 9.0  

Various magnetic sorbents have been tested in the removal of different 

compounds that include volatile organic compounds (phenol, chloroform and 

chlorobenzene) from aqueous solutions (Oliveira et al., 2002), hydrophobic 

organic compounds (p-nitrotoluene and naphthalene) and phosphate (Chen et 

al., 2011a), water soluble organic dyes (Šafařík et al., 1997) acid orange II dye 
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(Zhang et al., 2007). In general, the sorption of the magnetised sorbents has been 

shown to depend on the organic carbon content while the magnetic iron oxide 

contribution is negligible or almost nothing (Šafařík et al., 1997; Chen et al., 

2011a). Sorption of organic compounds show slight reduction in sorption 

capacities due to small surface area of iron oxide, which reduces the overall 

surface area of the composite to about 30%. (Oliveira et al., 2002). Zhang et al. 

(2007), recorded an increase in the sorption of acid orange dye due the presence 

of CuFe2O4 because the modified surface makes it more heterogeneous which 

may alter the sorption behaviour from monolayer to multilayer.  

2.7  ADSORPTION OF ORGANIC COMPOUNDS 

The application of adsorption process in the removal of organic 

compounds from aqueous solutions has been extensively studied (Damaskin et 

al., 1971; Kim et al., 1976; Šafařík et al., 1997; Pelekani and Snoeyink, 1999; You 

et al., 2002; Lazar et al., 2013). Activated carbon and biochars in their pure and 

modified forms have been reported to be very effective in the adsorption of 

organic compounds (Moore et al., 2010; Gupta et al., 2014; Jing et al., 2014; Jung 

et al., 2015; Sun et al., 2015). The sorption of organic compounds is influenced 

by factors that include; the surface area, surface chemistry and porosity of the 

sorbent, the solubility, speciation, size and molecular weight of the sorbate, the 

pH, temperature and presence of competing species (Roop and Meenakshi, 

2005; Worch, 2012). The sorption of organic compounds onto carbon sorbents 

occurs according to mechanism which arise due to the interaction of the factors 

mentioned above. The following mechanisms have been identified; (i) sorption by 

electrostatic interactions, (ii) sorption by interaction of dispersive forces, (iii) 

sorption due to formation of complexes with surface functional groups, (iv) 

sorption due to hydrophobic interactions (Ahmaruzzaman and Sharma, 2005; 

Dąbrowski et al., 2005; Kennedy et al., 2007; Moreno-Castilla, 2008). Generally, 

the solution pH has a profound influence on the mechanism and can affect the 

sorption either for better or for worse. Additionally, distinction between these 

mechanisms is not in a strict sense since they tend to occur simultaneously. 
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2.7.1  SORPTION BY ELECTROSTATIC INTERACTION 

This mechanism occurs due to the ability of both the sorbate and the 

surface of the sorbent to have net charge(s) due to the influence of the solution 

pH. The interaction can be attractive or repulsive depending on the ionic strength 

of the solution and the charge densities of the sorbent and the sorbate (Moreno-

Castilla, 2008). Generally, the sorption fate of the sorbate is influenced by the 

position of the pH with respect to its pKa and the charge density constant of the 

sorbent (pHPZC) as shown in Table 2.1.  

At low pH, the surface of the sorbent becomes positively charged (if pH < 

pHPZC) due to the existence of electron-rich regions acting as Lewis basic sites 

that accepts protons from the solution (Moreno-Castilla, 2004). At lower pH, 

below pKa, organic acids exist in neutral form, while the anionic specie 

predominates at higher pH above the pKa. The reverse is the case for bases, as 

such at lower pH below pKa, the protonated (cationic) specie is dominant while 

the neutral specie is dominant at high pH above pKa. 

Table 2.1: Sorption of organic compounds by electrostatic interaction 
(Worch, 2012) 

Sorbate 
character 

Relative position 
of pHPZC and pKa 

pH range 
Dominating 

sorbate charge 

Dominating 
sorbent surface 

charge 

Resulting 
electrostatic 
interactions 

Acidic 

pHPZC < pKa pH > pKa Negative Negative Repulsion 

pHPZC > pKa 
pKa < pH < 

pHPZC 
Negative Positive Attraction 

 pH > pHPZC Negative Negative Repulsion 

Basic 

pHPZC > pKa pH < pKa Positive Positive Repulsion 

pHPZC < pKa 
pHPZC < pH 

< pKa 
Positive Negative Attraction 

 pH < pHPZC Positive Positive Repulsion 

Generally, the sorption of neutral species is relatively favoured (Limousin 

et al., 2007), while the sorption of charged species on charged surface is 

influenced by electrostatic forces of attraction or repulsion. Cationic species are 

attracted to negatively charged surface and sorption is favoured, while their 

sorption is hindered on negatively charged sorbent surface due to repulsive 

forces. Anionic sorbate species are sorbed better on positively charged sorbent 

surface and their sorption is hindered on negatively charged surfaces due to 

repulsive forces (Leyva Ramos et al., 2002). It can thus be inferred that sorption 

will be maximal in the pH range where the sorbate specie has an opposite charge 
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as the surface of the sorbent (Rodrigues et al., 2011). In the case of organic acids, 

this is possible only when a compounds with low pKa interacts with a sorbent with 

high pHPZC. 

2.7.2  ADSORPTION BY COMPLEXATION:  

This can be through a complex formation between surface carbonyl 

groups acting as donors and the aromatic hydroxyl or nitro-substituted 

compounds acting as electron acceptors (Weber, 1974). The ability of a sorbent 

to partake in the formation of a donor-acceptor complexes increases if it is 

processed at a higher temperature such that the number of surface oxygen 

groups of basic character is increased. Consequently, its sorption of organic 

compounds increases through electron donor-acceptor complexes, with the basic 

surface oxygen group as the donors and the phenol aromatic ring as the acceptor 

(Moreno-Castilla et al., 1995; Dąbrowski et al., 2005). In the other way, oxidation 

of the carbonyl and carboxyl groups impairs the formation of the electron donor-

acceptor complex and thus adsorption decreases (Rodrigues et al., 2011). 

2.7.3  ADSORPTION BY HYDROPHOBIC INTERACTIONS:  

The amphoteric nature of the surface of carbon materials are influenced 

by the type of carbon-oxygen surface groups. When oxygen surface complexes 

or oxygen functionalities such as carboxyls, anhydrides, lactones and phenols 

are the predominant functional groups, the surface has an acidic, hydrophilic and 

polar behaviour (Roop and Meenakshi, 2005; Foo and Hameed, 2012). At low 

sorbate concentrations, polar sorption sites would preferentially sorb water 

molecules through hydrogen bonding with carboxylic acid and phenolic hydroxyl 

groups (Moreno-Castilla, 2008). Eventually water clusters could form on such 

sites rendering the graphitic basal planes and pores inaccessible to the sorbate 

molecules (Moreno-Castilla, 2004; Dąbrowski et al., 2005). Presence of acidic 

oxygen complexes on the surface of carbon increases its polarity, thus sorption 

of a sorbate can only occur after the stronger solvent-activated carbon bond is 

broken (Snoeyink and Weber, 1967; Snoeyink and Summers, 1999). If however 

the oxygen and nitrogen containing groups are supressed and functionalities 

such as carbonyl, pyrenes, ethers and chromenes predominate, then sorbent will 
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have a basic character and thus be capable of sorbing both hydrophobic and 

hydrophilic sorbates (Lopez-Ramon et al., 1999; Li et al., 2002). In a like manner 

compounds with lower solubility are preferentially sorbed over those with higher 

solubility (Weber, 1974).  

2.7.4  SORPTION BY DISPERSIVE INTERACTIONS:  

Although not a general case, the sorption of phenol is possible by the 

formation of hydrogen bonding between phenolic protons and the oxygen groups 

of basic character (Coughlin and Ezra, 1968; Li et al., 2014). Another way for 

compounds with aromatic structure to interact, is by π- π interaction between the 

delocalised π electrons of the hexagonal rings on the surface of the sorbent 

(acting as electron donor) and that of the aromatic ring on the compound (as 

electron acceptor) (Moreno-Castilla, 2004). Oxidation of the sorbent results in the 

withdrawal of the surface π electron system leading to a decrease in sorption 

(Dąbrowski et al., 2005; Rodrigues et al., 2011). Also coordination between the 

aromatic ring of the sorbate and the hexagonal carbon ring on the sorbent’s 

surface or between molecules of adjacent sorbed layers could induce dipole-

dipole interaction (Lee et al., 2016) leading to sorption by aromatic stacking 

(Kundu et al., 2013). 

2.8  ADSORPTION OF HEAVY METALS. 

Several types of sorbents such as; activated carbon (Carrott et al., 1997; 

Leyva Ramos et al., 2002; Wang et al., 2008; Cronje et al., 2011), biochar (Tong 

et al., 2011; Pellera et al., 2012), agricultural residues (Ho, 2003; Chen et al., 

2012), nanomaterials (Boparai et al., 2011; Hu and Shipley, 2013), peat (Ho and 

McKay, 2002), and clay (Celis et al., 2000; Lukman et al., 2013) have been used 

for the removal of heavy metals from aqueous solutions. Generally, the sorption 

of metals is heavily influenced by the solution pH, such that sorption has a 

minimum at low pH and as the pH increases, sorption increases to a maximum 

within a narrow pH adsorption edge (Yu et al., 2000; Kula et al., 2008). The 

sorption of metals onto carbon sorbents is governed by several factors that relate 

to the sorbent, sorbate and solution. The sorbent related factors include; nature 

and concentration of surface functional groups, pHPZC and porosity; sorbate 

related factors include, metal speciation, ionic radius, electronegativity and 
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solubility; finally, solution related factors include; pH, ionic strength, presence of 

competing compounds and temperature (Pagnanelli et al., 2003; Le Cloirec and 

Faur-Brasquet, 2008; Tong et al., 2011; Wiwid Pranata et al., 2014). The uptake 

of metals by carbon sorbents has been identified to progress according to four 

main mechanisms which are influenced by the interaction of the aforementioned 

factors. The mechanisms identified include; adsorption, ion exchange, formation 

of surface complex and surface precipitation (Kadirvelu et al., 2001; Faur-

Brasquet et al., 2002; Inyang et al., 2012; Lu et al., 2012; Xu et al., 2013). The 

heavy metals sorption capacity of a sorbent is dependent on the nature and 

concentration of specific sorption sites not surface area (Leyva Ramos et al., 

2002). Nonetheless, a sorbent with large surface area that contains sufficient 

specific sites is always desired in the removal of these metals.  

2.8.1  UPTAKE BY ADSORPTION: 

This manifests due to electrostatic and π - π interactions (Xu et al., 2013). 

Adsorption may be due to columbic interaction between positively charged metal 

species and the negatively charged sorbent surface (Le Cloirec and Faur-

Brasquet, 2008). This mechanism is most effective over a narrow moderate pH 

range (also known as the pH adsorption edge) i.e. when pH > pHPZC, and the free 

form of the metal specie is the dominant. At low pH, the surface of the sorbent is 

positively charged, therefore sorption of metal is impaired due to electrostatic 

repulsion and competition by H+ in solution for coordination with surface oxygen 

functional groups (Liu and Zhang, 2009; Pellera et al., 2012). At high pH, this 

mechanism is less effective due to higher solubility of the hydrolysed metal specie 

which becomes dominant under such conditions or due to the precipitation of the 

metal and subsequent loss of concentration. In addition to sorption by 

electrostatic interaction, transition metals (especially those with exposed π-

orbitals) can sorb by π - π interaction mechanism if there is sufficient energy to 

overcome the electrostatic repulsion forces (Leyva Ramos et al., 2002; Lehmann 

and Joseph, 2009). Adsorption due to dispersive interactions between the 

surface of the sorbent and ionic species in solution is usually small (Roop and 

Meenakshi, 2005).  



Chapter 2: LITERATURE REVIEW 

 

 

Badruddeen Saulawa SANI  33 January, 2017 

2.8.2  UPTAKE BY ION EXCHANGE:  

This mechanism is manifest when heavy metal from solution replaces 

another in existing precipitates or complexed functional groups such as -OH and 

-COOH on the surface of the carbon. Because the replaced metal specie is 

released into the solution, Lu et al. (2012), detected significant concentrations of 

the divalent alkaline earth cations, Ca2+ and Mg2+ in supernatants following 

sorption of Pb2+ on sludge-derived biochar. Sorption by ion exchange can be 

associated with a decrease in final pH due to the release of H3O+ (Le Cloirec and 

Faur-Brasquet, 2008). The ion exchange potentials of the Me2+ species differ and 

one specie is preferentially removed from solution over another, essentially due 

to the effects of electrostatic binding strength. This depends on the radius of 

hydrated metal ion and the charge of the metal ion. The electrostatic binding 

strength increases with decrease in hydrated metal radius and increase in 

charge. The larger the radius the more the energy required to dehydrate the metal 

ion (Mohan and Singh, 2005). Therefore, selectivity increases with decrease in 

ionic radius of hydrated metal ion (Pehlivan and Altun, 2006).  

2.8.3  UPTAKE BY COMPLEXATION WITH SURFACE FUNCTIONAL GROUPS: 

This is due to the coordination of heavy metal with especially oxygen 

surface functional groups to form complexes (Roop and Meenakshi, 2005). The 

carboxyl and hydroxyl groups can act as proton donor and once deprotonated, 

they can coordinate with Me2+ forming complexes (Lu et al., 2012). Therefore, 

uptake by formation of complexation will be favoured by an increase in pH, such 

that the carboxyl and hydroxyl groups get deprotonated leading to higher metal 

sorption (Tong et al., 2011). 

2.8.4  UPTAKE BY SURFACE PRECIPITATION: 

This can result in the formation of a new solid or gel metal hydroxide at the 

surface of the sorbent when heavy metals react with negatively charged ions such 

as carbonate and phosphate on the surface of biochars (Le Cloirec and Faur-

Brasquet, 2008; Tong et al., 2011). Xu et al. (2013), also observed a decrease in 

the concentration of phosphate and carbonate in supernatant following the 

sorption of Cu2+, Zn2+ and Cd2+ on dairy manure biochar from solution. They also 
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attributed this to the formation of metal phosphate and carbonate precipitates on 

the surface of the biochar. Using both SEM and XRD analysis, Inyang et al. 

(2012) were able to observe the presence of precipitate on the surface of biochar 

after the sorption of Pb2+. 

2.9  EVALUATION OF BATCH ADSORPTION PROCESS 

The sorption of a compound from solution can be described based on 

sorption capacity, affinity and kinetics. The sorption capacity is influenced by the 

space on the sorbent that is potentially available for sorption, while sorption 

affinity is influenced by interaction of intermolecular forces (Yang and Xing, 2010). 

Sorption kinetics determines how much of the sorption capacity is utilised in a 

given time interval. Normally, the better the kinetics the more rapid the approach 

to equilibrium or attainment of treatment objectives (Weber, 1974). 

Generally, sorption equilibrium can be represented by the expression  

𝑄 = 𝑓(𝐶)  - - - - - - - - - (2.1) 

The solid phase sorbate concentration or amount sorbed can be computed 

using the mass balance equation. 

𝑄𝑒 =
(𝐶𝑜−𝐶𝑒)

𝑚
𝑉 - - - - - - - - (2.2) 

Where: 𝑄𝑒 is the solid phase sorbate concentration at equilibrium; (mg/g) or 

(mmol/g), 

𝐶𝑜 and 𝐶𝑒 are the initial and equilibrium liquid phase sorbate 

concentration respectively; (mg/L) or (mmol/L). 

𝑚 is the mass of sorbent; (g) 

𝑉 is the volume of solution; (L) 

2.10  SORPTION ISOTHERMS 

For a given sorption system at a particular temperature, the graphical plot 

of various corresponding pairs of 𝑄𝑒 against 𝐶𝑒 gives the sorption isotherm. 

Isotherms can be grouped into four main groups based on the nature of the initial 
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part of the plot as classes C, L, H and S (Giles et al., 1974; Dąbrowski et al., 

2005). Examples of the typical isotherms is shown in Figure 2.3.  

 

Figure 2.3: Four main types of sorption isotherms (Limousin et al., 2007) 

The sorption isotherm can provide some information on the nature of the 

sorbent-solute interactions. With particular reference to the use of carbon based 

sorbents in the sorption of most wastewater pollutants, the ‘L’ class is mostly 

encountered while the ‘H’ class is a special type of ‘L’ class where the sorbate 

exhibits a very high affinity for the sorbent. The ‘C’ class is used to obtain a one-

point estimate of sorbate partitioning. (Limousin et al., 2007). 

2.10.1  MODELLING OF ISOTHERM DATA:  

Isotherm models provide a means for mathematical description of the 

experimental data and consequently the dependence of sorption capacity on 

concentration can be evaluated (Weber, 1974).  

2.10.1.1  Linear Model 

This is a 1-parameter model and is the simplest sorption isotherm model. It 

is primarily based on Henry’s Law (Burwell, 1976), hence the solid phase 

concentration has a direct relationship with the equilibrium concentration. It can 

be represented by the mathematical expression; 

𝑄𝑒 = 𝐾𝑑𝐶𝑒   - - - - - - - - - (2.3) 
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Where: 𝐾𝑑 is the partition or dispersion coefficient; (L/kg) 

This model presents an infinite adsorption potential, but in reality it is valid 

over the low concentration range, in which the isotherm tends to be approximately 

linear (Limousin et al., 2007). At higher concentration adsorption ceases to be 

linear and this model is not applicable. Although this model was derived 

empirically, it is particularly useful for modelling contaminant adsorption provided 

the conditions are similar to those within which the 𝐾𝑑 value was measured 

(Cantrell et al., 2002; Goldberg et al., 2005). It can be used to estimate the 

sorbate partitioning preference of a given sorption system. Higher 𝐾𝑑 values may 

indicate preference for the solid phase while lower 𝐾𝑑 values may indicate 

preference for the liquid phase. 

2.10.1.2  Nonlinear Models 

Sorption isotherms are mostly nonlinear; therefore, their characteristics are 

better evaluated using one or more nonlinear models. However, each of these 

models was developed to explain particular properties of the sorption system 

based on some assumptions and limitations (Kumar et al., 2008a; Liu, 2009). 

Consequently, no single model can comprehensively explain the nature of the 

isotherm (Ho et al., 2002; Allen et al., 2004). As a result, it has been the usual 

practice to use as many models as possible to complement each other in 

describing the sorption system (Kumar and Porkodi, 2006; Hamdaoui and 

Naffrechoux, 2007b; Hamdaoui and Naffrechoux, 2007a; Giraldo and Moreno-

Piraján, 2014). In this study, the following two 2-parameter and three 3-parameter 

models were selected to evaluate the isotherms of phenol, ibuprofen, diclofenac 

and divalent metal cations sorption on the ACs and BCs.  

A. 2- parameter models 

a) The Langmuir model (Langmuir, 1918);  

Although this model was originally developed to describe the sorption of 

gasses, it is being applied to explain the sorption from liquids. The Langmuir 

model depicts a monolayer sorption on a surface containing finite number of 

identical sites (energetically and sterically) (Mc Kay et al., 1983). Each of these 

sites can accommodate only one molecule of a given compound at a time and 
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although adsorption and desorption are reversible, there is no lateral interaction 

between adsorbed molecules (Roop and Meenakshi, 2005; Limousin et al., 2007; 

Armenante, 2009a).  

The Langmuir model is given as; 

𝑄𝑒 =
𝑄𝑚𝐾𝐿𝐶𝑒

1+𝐾𝐿𝐶𝑒
    - - - - - - - - (2.4) 

The Langmuir model can be linear transformed in at least two different 

ways, with each having different inherent error structure, thus yielding different 

estimated parameter values (Ho, 2004; Hamdaoui and Naffrechoux, 2007a; 

Kumar, 2007; Boulinguiez et al., 2008). The constants can be determined from 

the slope and intercept of a linear data fit. The most common linear forms of the 

Langmuir model are; 

Either;  

Linear transformed Langmuir model type 1 

𝐶𝑒

𝑄𝑒
=

1

𝑄𝑚1𝐾𝐿1
+

𝐶𝑒

𝑄𝑚1
      - - - - - - (2.5) 

Slope = 1

𝑄𝑚1
   Intercept = 1

𝑄𝑚1𝐾𝐿1
 

Or;  

Linear transformed Langmuir model type 2 

1

𝑄𝑒
=

1

𝑄𝑚2
+ (

1

𝐾𝐿2𝑄𝑚2
)

1

𝐶𝑒
  - - - -- - - (2.6) 

Slope =
1

𝑄𝑚2𝐾𝐿2
   Intercept = 1

𝑄𝑚2
 

Where: The constants Qmi and KLi are the maximum monolayer adsorption 

capacity, (mg/g) or (mol/g) and Langmuir equilibrium constant, (L/mg) 

or (L/mol). 

The Langmuir constant KL is related to the energy of adsorption and it 

increases as the strength of adsorption bond increases. It is the ratio of sorption 

rate to desorption rate, thus it is a measure of sorption intensity (Armenante, 
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2009a). Therefore, it can be used to evaluate the favourability of the sorption by 

assessing a dimensionless constant known as the separation factor ‘SL’ or 

equilibrium parameter (Hall et al., 1966; Ho, 2003) expressed as;   

𝑆𝐿 =
1

1+𝐾𝐿𝐶𝑜
    - - - - - - - - (2.7) 

Slope of isotherm may be interpreted based on the values of SL as  

Table 2.2: Classification of isotherms according to separation factor 

Separation factor Nature of isotherm slope 

SL > 1 Unfavourable 

SL = 1 Linear 

0 < SL < 1 Favourable 

SL = 0 Irreversible 

b) The Freundlich model (Freundlich, 1906) 

This model depicts sorption considering heterogeneous surface energies 

allowing for multilayer surface coverage.  

The Freundlich model is expressed as; 

𝑄𝑒 = 𝐾𝐹𝐶𝑒

1

𝑛    - - - - - - - - (2.8) 

The term 𝑛 is a dimensionless constant related to energetic heterogeneity 

describing sorption intensity, a larger 1 𝑛⁄  value represents a more 

homogeneous adsorbent with a narrower site energy distribution (Li et al., 2002). 

Although in principle ‘𝑛’ can assume any value, it is in practice mostly greater 

than unity. Consequently the following can be inferred; 𝑛 = 1 implies a linear 

isotherm, 𝑛 > 1 implies favourable sorption possibility of higher loadings at low 

concentrations and 𝑛 < 1 implies unfavourable sorption (Mc Kay et al., 1983; 

Worch, 2012). The constant 𝐾𝐹 is related to adsorbent adsorption capacity for a 

given adsorbent, (mg1-1/nL1/ng-1).  

The linearized Freundlich isotherm equation can be written as: 

Log 𝑄𝑒 = Log 𝐾𝑓 +
1

n
× Log 𝐶𝑒    - - - - - (2.9) 
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The constants can be determined from the slope and intercept of a linear 

data fit. 

This model lacks theoretical basis and is incapable of describing neither the 

low concentration linear range of the isotherm nor the saturation effect at very 

high concentration (Roop and Meenakshi, 2005; Worch, 2012; Chowdhury et al., 

2013). However, it generally agrees well with the Langmuir equation and 

experimental data over moderate ranges of concentration (Weber, 1974).  

B 3- Parameter Models 

a) Redlich-Peterson 

The model can be expressed in the form; 

𝑄𝑒 =
𝐾𝑅𝐶𝑒

1+𝐴𝑅𝐶𝑒
𝛾  - - - - - - -          (2.10) 

The constants 𝐾𝑅 and 𝐴𝑅 are the Redlich-Peterson isotherm constants 

(L/g) and (L/mg)𝛾 respectively, while 𝛾 is an exponent that lies between 0 and 

1 (Ho et al., 2002; Wu et al., 2010). 

This model constitute both Freundlich and Langmuir characteristics (Wong 

et al., 2004) and therefore allows the evaluation of sorption isotherm data over a 

wide range of concentration. It reduces to the Freundlich isotherm at low 

concentration and Langmuir isotherm at high concentration. Based on the 

exponent term, two possible special cases are possible; when 𝛾 = 1 the model 

becomes a special case of Langmuir model and when 𝛾 = 0 the model becomes 

linear (Sips, 1948; Sips, 1950; Redlich and Peterson, 1959).  

In linear form it can be expressed as; 

ln (𝐾𝑅
𝐶𝑒

𝑄𝑒
− 1) = ln 𝐴𝑅 + 𝛾 ln 𝐶𝑒 - - - -        (2.11) 

The model parameters can be obtained from a plot of ln (𝐾𝑅
𝐶𝑒

𝑄𝑒
− 1) against 

ln 𝐶𝑒 and using trial and error linear regression by adjusting the value of 𝐾𝑅 to 

obtain the highest possible value of the coefficient of determination (𝑅2). 
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b) Models based on Polanyi theory for potential adsorption. 

This theory stipulates that a sorbate molecule within the sorption space on 

a sorbent surface will experience an attractive force whose strength is 

proportional to the distance from the surface. It defines the adsorption potential 

‘𝜀’ (J/mol) as the work done by the adsorption forces in bringing a molecule from 

the fluid phase to an adsorption point within an adsorbed film. In essence, 𝜀 is a 

measure of the adsorption force of attraction (Manes and Hofer, 1969; Roop and 

Meenakshi, 2005; Yan et al., 2008).  

𝜀 = 𝑅𝑇 ln (
𝐶𝑠

𝐶𝑒
⁄ )  - - - - - -       (2.12) 

Where: 𝐶 is the universal gas constant, T is the Kelvin temperature (K), 𝐶𝑠 is 

the sorbate’s water solubility (mg/L). 

The theory describes the volume of an adsorption space enclosed between 

parallel equipotential planes and the surface of the sorbent within which the 

formation of adsorbed film takes place. Adsorption is thought to occur by capillary 

condensation of the sorbate in the sorbent pores. The relationship between the 

volume of the adsorption space and ‘𝜀’ for a given pair of sorbent-sorbate system 

is defined by the characteristic curve which is temperature-independent. The 

characteristic curve is usually obtained as a plot of adsorbed volume ‘𝑄𝑣 ’ against 

‘𝜀’ (Manes and Hofer, 1969; Roop and Meenakshi, 2005; Sander and Pignatello, 

2005). According to this theory, the isotherm obtained for a given sorbent as a 

plot of adsorbed volume per unit mass of sorbent ‘𝑄𝑣 ’ against the adsorption 

potential density ‘𝜀 𝑉𝑠⁄ ’ will be the same for all liquid sorbates provided there is 

no specific interactions between sorbates and sorbent surface (Xia and Ball, 

1999). 

i) The Polanyi-Dubinin-Manes model 

The most common Polanyi based sorption isotherm model is the one 

suggested by (Crittenden et al., 1987) and commonly referred to by many as the 

“Polanyi-Manes” (Xia and Ball, 1999; Yang et al., 2006b; Xu et al., 2008) or 

“Polanyi-Dubinin-Manes” (Long et al., 2008) model and it has been successfully 

adopted to describe sorption isotherms for aqueous medium.  
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log 𝑄𝑒 = log 𝑄𝑜 − 𝑎(𝜀𝑠𝑤/𝑉𝑠)𝑏  - - - - -           (2.13) 

Where: 𝑄𝑜 is the sorbed mass at saturation (i.e. complete filling of volume of 

adsorption space); (mg/g) 

𝑎 and 𝑏 are fitting parameters. 

𝑉𝑠 is the molar volume of the adsorbate (cm3/mol), which is estimated 

as the ratio of molecular weight (𝑀𝑤) and the density of the adsorbate 

(𝜌) in its pure form (Yan et al., 2008) 

 

ii) The Dubinin-Ashtakov Polanyi based model 

Another model describing the theory of “Volume Filling of Micropores” was 

proposed by (Dubinin and Astakhov, 1971). Like the Polanyi based model, its 

theory is based on the concept of temperature invariance of the characteristic 

equation which related the degree of pore filling to the differential molar work of 

adsorption. Here instead, the differential molar work of adsorption is determined 

with respect to the Gibbs loss of free energy instead of adsorption potential, in 

contrast to the Polanyi theory. 

log 𝑄𝑒 = log 𝑄𝑜 − (𝜀/𝐸)𝑏 - - - - -        (2.14) 

Where: E is the characteristic energy of adsorption; ‘J/mol’ 

This model has also exhibited very good fitting to sorption isotherm data for 

sorption in aqueous medium (Yang et al., 2006a; Yang et al., 2008). 

2.11  MODELLING OF KINETICS DATA:  

Sorption of compounds on sorbents progresses according to diffusion 

based and reaction based mechanisms and as such, mathematical models have 

been developed to describe the sorption kinetics, in terms of both mass transfer 

and chemisorption (Ho et al., 2000). For the chemisorption, kinetic models have 

been presented describing the order of reaction either based on the solution 

concentration (for which they are termed first and second order) or based on the 

capacity of the sorbent (for which they are termed as pseudo first and pseudo 

second order). The difference between the solid phase concentration at time t 
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and that at equilibrium (𝑄𝑒 − 𝑄𝑡) is the driving force governing the pseudo-first 

and second order models (Chiou and Li, 2002; Yang and Al-Duri, 2005). To 

describe the kinetics using the reaction based model, it is important to establish 

the sorption mechanism, since in some instances, sorption process is essentially 

physical in nature (Ho, 2006; Qiu et al., 2009). 

2.11.1  CHEMISORPTION BASED MODELS 

2.11.1.1  Pseudo First Order Model 

The earliest equation describing sorption kinetics as first order rate based 

on sorption capacity was presented by Lagergren (1898) for sorption of oxalic 

acid and malonic acid onto charcoal, (Ho and McKay, 1998; Qiu et al., 2009). The 

equation is popularly referred to as the pseudo-first order rate equation to 

distinguish it from rate equation based on solution concentration (Wu et al., 2001; 

Chen et al., 2010). 

𝑑𝑄𝑡

𝑑𝑡
= 𝑘1(𝑄𝑒 − 𝑄𝑡)  - - - - - -      (2.15) 

Integrating this expression with the boundary conditions 𝑄𝑡 = 0 at 𝑡 = 0 and 

𝑄𝑡 = 𝑄𝑡 at 𝑡 = 𝑡, we have the expression as presented by (Yuh-Shan, 2004; 

Khambhaty et al., 2009); 

𝑄𝑡 = 𝑄𝑒(1 − 𝑒(−𝑘1𝑡)) - - - - - -       (2.16) 

Or in linear form as; 

log(𝑄𝑒 − 𝑄𝑡) = log 𝑄𝑒 − (
𝑘1

2.303
) 𝑡 - - - - - -     (2.17) 

Where: 𝑄𝑡 the adsorption capacity at time t (mgg-1) and 𝑘1 the pseudo-first 

order rate constant (min-1). 

The slope of the linear fit of log(𝑄𝑒 − 𝑄𝑡) versus t allows the determination 

of the value of (−
𝑘1

2.303
). The intercept of the straight line gives the value of logQ𝑒. 

Azizian (2004), used a theoretical approach to derive the pseudo-first order 

model and was able to determine the conditions for using the first-order model. 

He eventually found that the model is applicable in cases where the initial 
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concentration ‘𝐶𝑜 ’ is very high. In fact, 𝑘1 is a function of ‘𝐶𝑜 ’ and both sorption 

and desorption rate constants ‘𝑘𝑎𝑑𝑠 ’ and ‘𝑘𝑑𝑒𝑠 ’ respectively. 

𝑘1 = 𝑘𝑎𝑑𝑠𝐶𝑜 + 𝑘𝑑𝑒𝑠  - - - - -       (2.18) 

The ratio 𝑘𝑎𝑑𝑠/𝑘𝑑𝑒𝑠 gives the equilibrium constant 𝐾 ‘Lmg-1’ and it can be 

computed from the slope and intercept of a linear plot of 𝑘1 vs 𝐶𝑜. 

The pseudo-first order model does not fit well over the whole range of 

contact time. It has been shown in most literature to be applicable over the initial 

20 to 30 minutes of the sorption process and the equilibrium sorption capacity is 

normally obtained by trial and error (Ho and McKay, 1998). 

2.11.1.2  Pseudo Second Order Model 

The equation describing sorption kinetics as second order rate according to 

the sorption capacity is commonly referred to as the pseudo-second order rate 

equation. This model assumes that chemisorption reaction rate depends on the 

amount of sorbate sorbed on the surface of the sorbent at time 𝑡 and that at 

equilibrium (Ho and McKay, 1998; Qiu et al., 2009).  

𝑑𝑄𝑡

𝑑𝑡
= 𝑘2(𝑄𝑒 − 𝑄𝑡)2  - - - - -       (2.19) 

It can be expressed as (Khambhaty et al., 2009; Tonucci et al., 2015); 

𝑄𝑡 =
𝑘2𝑄𝑒

2𝑡

1+𝑘2𝑄𝑒𝑡
  - - - - - - - -     (2.20) 

Or in linear form as (Ho and McKay, 1999); 

𝑡

𝑄𝑡
= (

1

ℎ
) + (

1

𝑄𝑒
) 𝑡 - - - - - - - -       (2.21) 

Where k2 is the pseudo-second order rate constant (g mg-1min-1) and 

ℎ = 𝑘2𝑄𝑒
2  is the initial sorption rate (mg g-1 min-1). 

If the kinetics follows the pseudo-second order equation, a plot of 
1

𝑄𝑡
 against 

𝑡 will give a straight line with 
1

𝑄𝑒
 and 

1

ℎ
 as the slope and the intercept respectively. 
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According to Azizian (2004), 𝑘2 is a complex function of ‘𝐶𝑜 ’ and this model 

has a good fit for values of 𝐶𝑜 that are not too high. 

2.11.1.3  Elovich Equation. 

The equation considers both chemisorption rate and desorption constant. It 

is suitable for describing heterogeneous sorption systems (Ho and McKay, 2002). 

𝑄𝑡 = (
1

𝛽
) 𝑙𝑛(𝛼𝛽) + (

1

𝛽
) 𝑙𝑛(𝑡) - - - - - -         (2.22) 

Where:  𝛼 is the initial chemisorption rate (mg g-1 min-1) and 𝛽 is the 

desorption constant (g mg-1).  

If sorption progresses according to the Elovich model, then, a plot of 𝑄𝑡 

versus ln(𝑡) will be a straight line with (
1

𝛽
)  and  (

1

𝛽
) ln(𝛼𝛽) as the slope and 

intercept respectively (Ho and McKay, 1998). Both constants are related to the 

relative concentrations of sorbate and sorbent. Ho and McKay (2002) showed 

that in the sorption of copper (II) on peat, increasing 𝐶𝑜 resulted to a decrease in 

𝛼 and an increase in 𝛽. While increasing the sorbent dose resulted in an increase 

in 𝛼 and a decreases in 𝛽. 

2.11.2  DIFFUSION BASED MODEL 

2.11.2.1  The Intraparticle Diffusion Model 

This model assumes that in well mixed systems, external diffusions are 

negligible and the intra-particle diffusion is the controlling step (Ho et al., 2000). 

It is based on two assumptions; (i) intra-particle diffusivity ‘𝐷’ is constant and (ii) 

the uptake of sorbate by sorbent is small relative to the liquid phase concentration 

(Yang and Al-Duri, 2005). The (Weber and Morris, 1963) equation is the most 

widely applied in describing the intra-particle diffusion and is given as;  

𝑄𝑡 ≈ 𝑘𝑖𝑑𝑡0.5 - - - - - - - - -      (2.23) 

Where: 𝑘𝑖𝑑 (mg g-1 min−0.5) is the intra-particle diffusion rate constant and is 

related to the intra-particle diffusivity ‘𝐷’ in the following way, 
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𝑘𝑖𝑑 =
6𝑄𝑒

𝑅
√

𝐷

𝜋
 - - - - - - - -       (2.24) 

Where: 𝐷 (cm2 min-1) and R (cm) is the particle radius.  

When sorption progresses according to the intra-particle diffusion, a plot 𝑄𝑡 

versus 𝑡0.5  will yield a straight line passing through the origin with 𝑘𝑖𝑑 as the 

slope (Qiu et al., 2009). 

Some authors (Ho and McKay, 2002; Khambhaty et al., 2009), refer to this 

equation as fractional power and is written in the general form expressed as  

𝑄𝑡 = 𝑘𝑖𝑑𝑡𝑧 - - - - - - - - -      (2.25) 

This equation can be expressed in linear form as  

ln 𝑄𝑡 = ln 𝑘𝑖𝑑 + 𝑧 ln 𝑡 - - - - - - -      (2.26) 

Where: 𝑘𝑖𝑑 (mg g-1 min−1) and ‘𝑧’ is usually < 1 is a constant. The product of 

𝑘𝑖𝑑 and z gives another constant known as the specific sorption rate 

at unit time, i.e. when 𝑡 = 1. In the linear form, 𝑧 and 𝑘𝑖𝑑 can be 

determined as the slope and intercept of a linear plot of ln 𝑄𝑡 vs ln 𝑡 

respectively. 

This model is usually valid at the initial stage, since sorption will not continue 

indefinitely, and because it is only an approximate solution of the actual 

intraparticle diffusion differential equation.  

2.12  SORPTION THERMODYNAMICS. 

Energy requirement is crucial in the successful operation of sorption 

process in wastewater treatment. Thus, it is essential that the process progresses 

without the input of energy other than what is required to move the wastewater 

through the treatment unit. This is possible if the process is spontaneous. To 

determine whether the process is spontaneous or not, it is necessary to evaluate 

both energy ∆𝐻𝑜 and entropy ∆𝑆𝑜 factors (Ho et al., 2005a). The change Gibbs 

free energy (∆𝐺𝑜) is commonly used to assess the spontaneity of the process 
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(Lataye et al., 2006; Liu and Zhang, 2009; Han et al., 2013a). A more 

energetically favoured process is characterised by a higher negative value of 

∆𝐺𝑜 (Dubey et al., 2010). Additionally, thermodynamic details are useful in 

understanding the type of sorption and the mechanism governing the process. 

The sorption can either be of the physisorption type, if the heat evolved is in the 

range of heat of condensation (2.1 to 20.9 kJ/mol). Or it can be chemisorption 

type, if the heat evolved is high in the range of (80 to 200 kJ/mol). Sorption 

process can be exothermic; if the value of ∆𝐻𝑜 is positive otherwise it is 

endothermic. The value of ∆𝑆𝑜 is a measure of randomness, the higher the value 

the more the spontaneity (Liu, 2009). At equilibrium, ∆𝐺𝑜 is related to the sorption 

thermodynamic equilibrium constant (𝐾𝑒𝑞) in the following expression; 

∆𝐺𝑜 = −𝑅𝑇 ln 𝐾𝑒𝑞 - - - - - - -    (2.27) 

The mathematical expression relating the changes in Gibbs free energy, 

enthalpy and entropy is given as;  

∆𝐺𝑜 = ∆𝐻𝑜 − 𝑇∆𝑆𝑜 - - - - - - -    (2.28) 

Finally, a combination of the above two equation yields the linear form of 

the Van’t Hoff equation as follows; 

ln 𝐾𝑒𝑞 = −
∆𝐻𝑜

𝑅𝑇
+

∆𝑆𝑜

𝑅
 - - - - - - -    (2.29) 

The values of ∆𝐻𝑜 and ∆𝑆𝑜 are calculated as the slope and intercept of a 

linear plot of ln 𝐾𝑒𝑞 vs 1 𝑇⁄ . 

Where; ∆𝐺𝑜 is the change in free Gibbs energy, (kJ/mol); ∆𝐻𝑜 is the change 

in enthalpy, (kJ/mol); ∆𝑆𝑜 is the change in entropy, (kJ/mol/K); 𝐾𝑒𝑞 is 

the thermodynamic equilibrium constant and is dimensionless, 𝑇 is the 

absolute temperature (K) and 𝑅 is the gas constant (8.314x10-3 

kJ/mol/K). 

The equilibrium constant is a very important term in the estimation of the 

thermodynamic status of the process. Different approaches have been adopted 

in the estimation of 𝐾𝑒𝑞. Commonly encountered ones include; the use of 
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Langmuir 𝐾𝐿 (Han et al., 2013a; García-Mateos et al., 2015), the y-intercept of a 

plot of ln(𝑄𝑒 𝐶𝑒⁄ ) vs 𝑄𝑒  (Khan and Singh, 1987; Calvet, 1989), the slope of a 

plot of 𝑄𝑒  vs 𝐶𝑒 (Sawalha et al., 2006) or simply the 𝐾𝑑 (Liu and Zhang, 2009) 

or the 𝐾𝑑 value for very low initial concentration (Han et al., 2009). These 

approaches eventually produce different values of 𝐾𝑒𝑞 (Milonjić, 2007; Tosun, 

2012) since different standard states were adopted in expressing the units of the 

phase concentrations (Salvestrini et al., 2014). Therefore, it becomes imperative 

to approach the calculation of 𝐾𝑒𝑞 with caution since the correctness of 

estimating the energy terms are all based on its value. With appropriate units 

(preferably L/mol), 𝐾𝐿 can be used in place of 𝐾𝑒𝑞 for neutral sorbates, sorbates 

with very weak charge and dilute solution of charged sorbates (Liu, 2009). 
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CHAPTER 3.  MATERIALS AND METHODS 

3.1  INTRODUCTION 

This chapter presents the selection of materials used in the study. It also 

presents methods adopted to attain the objectives (such as production of 

magnetised sorbents, modelling of sorption data) that are common to the 

proceeding chapters. Specific methods of sorption experiments are presented at 

the beginning of their respective chapters for ease of reference. 

3.2  SORBENTS 

As has been presented in chapter 2, the sorption properties of a sorbent 

depend on the nature of the feedstock and the production process (Lorenc-

Grabowska and Rutkowski, 2014; Mailler et al., 2016). Therefore, in this study, 

the sorbents are selected according to their difference in feedstock, activation 

and magnetisation such as to evaluate the sorption variations that these 

differences can allow. 

In terms of the differences of feedstock, two kinds of commercial activated 

carbon were investigated, one produced from Coconut shells by Norit (GCN 

1240), labelled “CoAC”, and one produced from anthracite coal by Calgon 

(Calgon Filtrasorb 400) and obtained from Chemviron (Lancashire, United 

Kingdom), labelled “CoalAC”. Two kinds of commercial biochar were obtained 

from Romchar (Harghita, Romania) labelled “Bio-1”, and Oxford Biochar Ltd. 

(Dorset, UK) labelled “OrgBio”, respectively. According to the manufacturers, 

both biochars were made from mixed wood chips with a maximum pyrolysis 

temperature of 500 oC, and the UK biochar was described by the producer as 

sustainable and organic (Han et al., 2015b). All sorbents were ground to a fine 

particle size < 212 µm before use and they were not subjected to any further pre-

treatment. The characteristics of the sorbents are presented in Table 3.1. 

Biochars (BCs) and activated carbons (ACs) were both assessed in order 

to evaluate the benefits of activation (larger surface area and enhanced porosity) 

in the sorption of the target pollutants from wastewater. Overall, it is expected 

that comparable behaviour will be recorded among the pairs of these two groups 
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of sorbents. Hence due to their superior surface area and porosity, it is expected 

that the ACs will have superior sorption capacities, at least for organic 

compounds. While the BCs, having not been subjected to elevated temperatures 

that are necessary during activation are likely to have better sorption of heavy 

metals, due to their higher oxygen contents.  

Finally, the variation in sorbent properties due to magnetisation was 

assessed by producing magnetised sorbents from each of the aforementioned 

ACs and BCs. It is expected that due to the magnetisation (procedure presented 

in 3.2.1), the surface area and porosity of the magnetised sorbents will be 

decreased compared to those of their pristine pairs, especially for the activated 

carbons. The resulting difference in sorption capacities as well as, their affinity 

for the different types of sorbates should also be evaluated. 

3.2.1  PRODUCTION OF MAGNETIC SORBENTS. 

 

Figure 3.1: Production of magnetic sorbent 

The magnetic sorbents were produced using the co-precipitation method as 

explained in (Han et al., 2015b). Briefly, the procedure as shown in Figure 3.1, 

involves the continuous heating and stirring of a mixture containing 2.5 g sorbent, 

3.33 g of FeCl3·6H2O, 1.83 g of FeSO4·7H2O and 100 mL deionised water in a 

beaker to 65 oC. While still stirring, the mixture is allowed to cool to below 40 oC 

and then 5 M NaOH solution is added dropwise to raise the pH to 10-11 to 

precipitate the iron hydroxides. It is allowed to stir further for an hour and then left 

to settle overnight. The supernatant is carefully decanted using a pipette and the 

precipitate-laden sorbent is washed with deionized water into a coffee filter paper. 

The product is further rinsed with ethanol after the water has drained, and then 
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dried at 80 oC overnight. The dried composite material is then washed into a 

beaker and rinsed thoroughly with deionised water. The magnetic activated 

carbon or biochar composite is collected with magnetic rods and dried again at 

80 oC overnight. The final product is a powder consisting of about 36% magnetite 

impregnated on the surface and in the macropores of the activated carbon or 

biochar. The magnetic carbon composites are labelled after their pristine pairs as 

MCoAC, MCoalAC, MBio-1 and MOrgBio respectively. Their characteristics are 

presented in Table 3.1. 

Table 3.1: Properties of sorbents (Han et al., 2015b) 

Sorbent CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio 

Surface Area (m2/g) 975 643 974 659 261 219 6.1 68 

Open Surface Areaa(m2/g) 40 70 120 130 50 110 0 70 

Pore Volume (cm3/g) 0.47 0.41 0.58 0.50 0.17 0.23 0.01 0.15 

Micropore Volume (cm3/g) 0.43 0.26 0.40 0.24 0.10 0.05 0.00 0.00 

Pore Size (Å) 37.1 91.1 52.0 67.9 52.1 66.9 304.4 91.1 

Geometric mean Particle Size (μm) 7.3 
 

6.5  7.3 
 

25.5 
 

pHPZC 10.4 6.3 9.8 9.0 9.2 9.0 8.7 7.8 

Theoretical mass magnetic susceptibility 
b[10-6 m3/kg] 

 
156.5  129.7 

 
107.4 

 
122.8 

Measured mass magnetic susceptibility 
[10-6 m3/kg] 

 
119.7  145.4 

 
108.3 

 
178.6 

a Due to macropores 
b.The theoretical mass magnetic susceptibility was calculated by the mass fraction of magnetite in each material, 
and the mass magnetic susceptibility of magnetite (6.0 ×10-4 m3/kg, (Dearing, 1999)). 

The surface areas of CoAC, CoalAC and Bio-1 were decreased by about 

34.05, 32.34 and 16.09% respectively. Similarly, their micropore volumes were 

also reduced by about 39.53, 40.00 and 50.00% respectively. It should be noted 

however, that these decreases are as a result of lower carbon content in the 

composites. The composites contain about 36% lesser carbon content (Han et 

al., 2015b), therefore, corresponding pairs of sorbents will have comparable 

values for these parameters when measured with respect to their carbon content 

only. On the contrary however, the surface area and micropore volumes of the 

OrgBio, were increased dramatically by about 1014.75 and 1400% respectively. 

This increase in surface area and micropore volume could be due to the 

dissolution of carbonate deposits in the pores of biochar during the magnetisation 

process, i.e. due to excessive acidic conditions, which results in the creation of 
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new accessible pore-space. Also, the deposition of magnetic particles on the 

surface of AC could result in formation of new pores as observed by Nguyen et 

al. (2011). The acidic conditions created during the magnetisation resulted to the 

lowering of the pHPZC of all the sorbents after magnetisation. This will favour the 

sorption anionic species by electrostatic attraction, while on the other hand it will 

weaken the sorption of cationic species due to electrostatic repulsion. 

3.2.2  SORBENT CHARACTERISATION 

The properties of the sorbent presented in Table 3.1 were obtained from a 

collaborative research with Dr Zhantao Han and their measurement is not 

repeated in this study. The data has already been published, therefore detailed 

description of the methods can be found in (Han et al., 2015b). 

3.3  SORBATES 

The list of priority pollutants as well as compounds of emerging concern 

(CEC) is vast and each of them affects the environment in a specific manner. 

Their compositional make up makes them have different characteristics and it is 

practically impossible to study them individually when evaluating the applicability 

of a given treatment process. Yet there is a good chance that compounds which 

share similar properties are more likely to behave in a similar way when subjected 

to the same treatment process. So a representative member of a group of 

pollutants can be studied in order to have an idea on the probable effectiveness 

of the chosen treatment process against other members of the same general 

group. 

3.3.1  PHENOL 

 

Figure 3.2: Structure of phenol 
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Phenol was chosen because it is a typical, toxic organic compound with a 

simple structure and is also listed among priority pollutants (European 

Commission, 2001; EPA, 2014). It is among the organic compounds that have 

been reported to exist in high concentrations in effluents of biological treatment 

processes (Al-Zarooni and Elshorbagy, 2006; JRC, 2006; Çeçen and Aktas, 

2011; Otokunefor and Obiukwu, 2005). Therefore, like in many other studies, it is 

chosen as an ideal exemplar compound that can be used in the evaluation of 

sorption characteristics of various sorbents. It is expected that sorbents with large 

surface area and amplified porosity will be most suitable for its removal by 

adsorption from wastewater. 

 Its chemical structure is presented in Figure 3.2 and some of its properties 

are presented in Table 3.2. Phenol solution (30 g/L) was obtained from VWR 

(Lutterworth, UK). 

Table 3.2: Properties of phenol, ibuprofen and diclofenac 

Compound Phenol Ibuprofen Diclofenac sodium 

Molecular formula C6H5OH C13H18O2 C14H10Cl2NO2.Na 

Molar mass (g/mol) 94.11 206.29c 318.13d 

Mass density 1.07 1.03 0.63 

Molar volume (mL/mol) 87.872 200.282 504.968 

Size (nm) 0.43 x 0.57b 1.0 x 0.6e 0.97 x 0.96d 

Solubility (mg/mL) 
81.68j&k (10oC) and 

90.61j&k (22oC) 
0.021f 50i 

pKa  9.98 b 4.82 - 4.91g 4.15 – 4.18 g 

LogKow  1.57 a 3.97h 4.51 h 

a(Schwarzenbach et al., 2005) b(Lorenc-Grabowska and Rutkowski, 2014), c(Lindqvist et 

al., 2005), d(Sotelo et al., 2013), e(Narayanan, 2008), f(Yalkowsky and Dannenfelser, 1992) 

g(Lekkerkerker-Teunissen et al., 2012), h(Baccar et al., 2012), i(Fisher Scientific Ltd, Prod. 

no 12317163), j(Góral et al., 2011), k(Henrigton, 1974) 

3.3.2  MICROPOLLUTANTS 

This category of sorbates represents contaminants of emerging concerns 

(CECs) that are found in wastewaters, and not readily removed in biological 

wastewater treatment. In many cases within a refinery, sewage from residential 

and administrative facilities and wastewater from refining facilities are treated 
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Figure 3.3: Structure of (a) ibuprofen and (b) diclofenac (sodium salt) 

centrally (IPIECA, 2010). Pharmaceuticals are selected as representatives of 

micropollutants that originate from domestic sewage from within the refinery. 

Although they share common sorption mechanisms with other major organic 

pollutants such as phenol, they are larger and more complex molecules which 

are often less susceptible to removal from wastewater by sorption. Ibuprofen and 

diclofenac are chosen to represent this group. Their chemical structure is shown 

in Figure 3.3. Both are pharmaceuticals that belong to a group of drugs known as 

nonsteroidal anti-inflammatory drugs (NSAIDs), which are being extensively used 

in the treatment of pain, fever and rheumatic disorders (Mestre et al., 2009). They 

are produced in large quantities with an estimated annual global production 

running into several kilotons for ibuprofen alone (Cleuvers, 2004; Jolliffe and 

Gerogiorgis, 2015). Some of their properties of interest are shown in Table 3.2. 

a)          b) 

 

 

 

 

 

Ibuprofen and diclofenac were chosen as typical pharmaceuticals because 

they are among the pharmaceuticals that have been detected at high 

concentrations in effluent of WWTP (Ellis, 2006; Verlicchi et al., 2012; Margot et 

al., 2013). Sometimes, all that conventional, biological treatment process do is to 

convert them to other hydrolysed or conjugate forms (Hernando et al., 2006). 

They have been reported to be toxic to aquatic microflora and fauna, 

invertebrates and fish (Farré et al., 2001; Ferrari et al., 2003; Cleuvers, 2004). 

Diclofenac was reported to delay the hatching time of fish eggs, cause alterations 

or damage to kidney and gills of fish after prolonged exposure (Hallare et al., 

2004; Schwaiger et al., 2004). Evidence of Ibuprofen induced liver damage, 

changes in the production of hormones and testosterone in freshwater fish has 

been reported (Han et al., 2010; Islas-Flores et al., 2014). Yet the overall impact 

of these compounds on environmental entities is still unpredictable due to the 

diversity of species and variations in individual communities. One thing is for sure, 
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their release to the environment should be minimised and if possible historical 

exposures be reversed. Consequently, the treatment or removal of these 

compound has to this day remain an essential field that demands continuous 

research. 

Ibuprofen was purchased from Sigma-Aldrich Company Ltd, while 

diclofenac sodium was obtained from Fisher Scientific UK Ltd and both were in 

analytical purity.  

3.3.3  HEAVY METALS. 

This category is chosen because they do not degrade and are persistent, 

thereby making them ubiquitous in the environment at levels that have since 

raised concerns (JRC, 2010; Carlos et al., 2013). Exposure to some of these 

metals -even at trace levels- are reported to have an adverse effect on the human 

health or the environment (Dabrowski and Curie, 1999; Çeçen and Aktas, 2011). 

The metals chosen to represent this category are Cu2+, Pb2+ and Zn2+. They are 

expected to share common sorption mechanism, which will be influenced by how 

they interact with the sorbent properties according to the differences in their 

properties such as the ones listed in Table 3.3. The mechanism by which they 

are removed by adsorption from the wastewater is different from that responsible 

for the removal of most organic pollutants. They are usually removed by sorption 

to specific, electronegative sites on the surface of the sorbents (Worch, 2012). 

Therefore, unlike the organic pollutants, sorbents’ surface area will only be 

advantageous if it is associated with sufficient number of the specific sites. 

Table 3.3: Properties of heavy metals 

Metal/salt Solubility (g/100 mL)* Effective ionic radius (pm)* Electronegativity** 

Cu2+ - 73 1.93 

CuCl2·2H2O 76.4 - - 

Pb2+ - 119 2.33 

Pb(NO3)2 56 - - 

Zn2+ - 74 1.63 

ZnCl2 395 - - 

*Data obtained from (Speight, 2005).  ** data obtained from (Wiwid Pranata et al., 2014) 
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3.4  WASTEWATER 

Two types of wastewater sample were used in this study, one real and the 

other synthetic.  

3.4.1  REAL WASTEWATER SAMPLE 

Wastewater sample (termed WWTPE) was obtained from the effluent of 

Tudhoe Mill Sewage Treatment Plant, Spennymore, Durham, UK. This is a 

nitrifying domestic wastewater treatment plant that serves a population of about 

22,000 (Neal et al., 2000; Nurthumbrian Water, 2009; Brown et al., 2015). The 

satellite image of the site is shown in Figure 3.4. The characteristic of wastewater 

from this plant is shown in the Table 3.4. 

 

Figure 3.4: Satellite image of Tudhoe Sewage Treatment Plant, UK. 
[Courtesy of: Imagery ©2016 Getmapping plc, Infoterra Ltd & 
Bluesky, Map data ©2016 Google] 

The WWTPE was autoclaved at 120°C for 15 min and allowed to cool to 

room temperature before filtration through glass-microfiber filter FT-3-1101-070 

(Sartorius stedim Biotech GmbH Goettingen, Germany). Aliquot of the filtered 

sample was taken for DOC measurement and the rest is stored in the dark at 4°C 
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until required (usually in less than a week). The DOC of the sample was 11.08 

mg/L.  

Table 3.4: Comparison of wastewater compositions 

Parameter 
Tudoe Mill 
wastewater 
treatment plant 

Port Harcourt 
Refinery e,f 

Refinery sour 
water g 

COD (mg/L) 602a,b 232.1 850-1020 

BOD (mg/L) 240 a,b 216 570 

DOC(mg/L)   300-440 

TSS (mg/L) 243 a,b   

VSS (mg/L) 206 a,b   

TDS (mg/L)  335.4  

SO4
2- (mg/L) 6.38 a,b 30.31 15-23 

NH3 (mg/L) 25.1-36.8 c,d 26.01 5.1-21.1 

TNh (mg/L) 41.7-48 c,d   

Phosphate (mg/L)  15.4  

Phenol (mg/L)  69.11 98-128 

Oil and grease (mg/L)  12.48 12.7 

pH  7-7.7 c,d 8.3 8.0-8.2 

a[(Petropoulos et al., 2016)], b[Screened raw influent], c[(Bundy et al., 2017)], d[post 
primary clarification], e[(Otokunefor and Obiukwu, 2005)], f[raw wastewater Port Harcourt 
Refinery Nigeria], g[(Coelho et al., 2006)], h[TN is defined as the sum of TKN and anions-
N (NO−3 + NO−2)]. 

3.4.2  SYNTHETIC WASTEWATER 

Synthetic wastewater (termed SWW) was prepared using a similar 

procedure adopted by (Pholchan et al., 2008) which was based on the OECD test 

guidelines 209 protocols (OECD, 2010). Briefly, peptone (160 mg), meat extract 

(110 mg), urea (30 mg), NaCl (7 mg), CaCl2•2H2O (4 mg), MgSO4•7H2O (2 mg), 

and K2HPO4 (28 mg) were dissolved in 1 L of deionised water. Immediately after 

preparation, the stock SWW was autoclaved at 120°C for 15 min and allowed to 

cool to room temperature. Aliquot of the SWW sample was taken for DOC 

measurement and the rest is stored in the dark at 4°C until required (usually in 

less than a week). The DOC of the sample diluted at 1:100 was 6.45 mg/L. 

3.4.3  DOC MEASUREMENT 

For the DOC measurement, aliquot of the wastewater samples were treated 

according to the HACH LCK 385 kit procedure, using HACH LT200 dry 
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thermostat digester and HACH DR 1900 spectrophotometer. The kit and 

instruments used were all supplied by HACH LANGE United Kingdom.  

3.5  SORPTION TEST 

The batch process is chosen to test the sorption characteristics of the 

sorbents. This provides a simple and straightforward method of analysing the 

characteristics of a sorption system and its response to internal and external 

changes. Isotherms were generated using the batch process bottle point method 

by varying the initial concentration. This makes it possible to find the relationship 

between sorbent dosage, sorbate initial concentration and amount adsorbed. 

Also, existing isotherm models can easily be applied not just to estimate the 

sorption capacity, but also the nature of interaction between the sorbate and the 

sorbent surface and the nature of the adsorbed layer (Crini and Badot, 2008). In 

the same vein, the rate of the utilisation of the sorption capacity can be evaluated 

by using kinetic models to analyse the rate of uptake of the sorbate on the sorbent 

with respect to time. 

3.6  MODELLING OF SORPTION DATA 

Mathematical expressions will be used to evaluate the sorption data. 

Sorption models are many, each with unique sets of parameters that describe 

specific properties of the sorption system. Furthermore, since these models were 

developed based on different assumptions -each with inherent limitations- no 

single model can explain in entirety the real characteristics of the system. As a 

result, it is a good precaution to adopt as many sorption models as possible in 

the evaluation of sorption data. These models complement each other i.e. the 

parameters of one model can help in explaining the behaviour of another model 

and accordingly, a better assessment of the process becomes possible.  

3.6.1  MODELLING OF ISOTHERM DATA 

The following five models whose details were presented in chapter 2 were 

chosen to analyse the isotherm data. 
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i) The linear model is only applicable at low concentration. It can be used to 

evaluate the partitioning preference of the sorbate between the solid and 

aqueous phases at the lower concentration range end of the isotherm data. 

ii) The Langmuir and Freundlich models are among those chosen to analyse 

the isotherm data, not just because of their wide acceptability but because 

of their simplicity and ability to simulate the experimental data. To run these 

models, only the basic data from isotherm experiment is required. These 

models are capable of estimating the sorption capacities, the nature of 

surface coverage, affinity or intensity of the sorbed layer and whether it is 

favourable or not. 

iii) The Redlich-Peterson model incorporates the features of both Langmuir 

and Freundlich types of isotherm. Additionally, it tends to have better fitting 

to isotherm data over them. Therefore, it is chosen to confirm the type of 

isotherm, especially in cases where the decision to choose which of the two 

models best described the data is not straightforward.  

iv) The Polanyi based models (Polanyi-Dubinin-Manes and Dubinin-Ashtakov) 

are chosen to help explain the mechanism of sorption of organic 

compounds. Either their sorption is by micropore filling or not. They also 

good at data fitting and can help in estimating the sorption capacities. 

3.6.1.1  Choosing Among Models 

The model selection criteria (MSC) can be used to choose models with 

consideration to degrees of freedom for a given number of model parameters and 

number of data points. This compensates for the bias due to overparametrisation 

of models, since models with higher number of parameters tend to fit 

experimental data better than those with lesser number of parameters (Sander 

and Pignatello, 2005; Yang and Xing, 2010; Worch, 2012). It is recommended 

that the number of fitted parameters should be kept as minimum as possible 

(Koeppenkastrop and De Carlo, 1993; Limousin et al., 2007). The MSC is defined 

as follows;  

MSC = ln (
∑ 𝑤𝑖(𝑄𝑒,𝑚−𝑄𝑒,𝑚̅̅ ̅̅ ̅̅ ̅)

𝑖

2𝜑
𝑖=1

∑ 𝑤𝑖(𝑄𝑒,𝑚−𝑄𝑒,𝑐)
𝑖

2𝜑
𝑖=1

) −
2𝜇

𝜑
  - - - - (3.1) 
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Where: 𝑄𝑒,𝑚 and 𝑄𝑒,𝑐 are the measured and model-calculated equilibrium solid 

phase sorbate concentration respectively, 

𝑄𝑒,𝑚
̅̅ ̅̅ ̅̅   is the average measured value of observed 𝑄𝑒,𝑚,  

𝜑 is the number of variables or data points, 

𝜇 is the number of fitted parameters, 

𝑤 is the weight factor (if needed), 

The model with the highest MSC value for a given experimental data set 

has the highest information content and is therefore assumed to be the most 

appropriate for describing the experimental data. In the MSC expression, 𝑤𝑖 

cancels out when measurement errors are approximately uniform (Saiers and 

Hornberger, 1996). 

3.6.2  MODELLING OF KINETICS DATA:  

Sorption of compounds on sorbents progresses according to diffusion 

based and reaction based mechanisms and as such, mathematical models have 

been developed to describe the sorption kinetics, in terms of both mass transfer 

and chemisorption (Ho et al., 2000). The following models will be used to analyse 

the kinetics data to determine if the kinetics is governed by chemisorption; 

Pseudo first order, pseudo second order and Elovich models. The intraparticle 

diffusion model will be used to test for mass transfer dependence. The details of 

the models are presented in chapter 2. 

3.7  DATA FITTING AND DETERMINATION OF MODEL 
PARAMETERS 

The application of mathematical modelling enables the prediction of the 

characteristics of a sorption system under consideration. It is essential that the 

data is handled in such a way that simulation outputs are the closest resemblance 

of experimental data. In doing so, care should be taken to avoid unnecessary 

alterations of models so as to minimise the introduction of redundant errors which 

could lead to erroneous interpretations (Kumar and Sivanesan, 2005). Sorption 

data is usually fitted against established mathematical models which are 

nonlinear in nature and it has been the tradition to transform them to linear forms 

to enable easier fitting of experimental data. Unfortunately, linearization of these 
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models alters their error structure (Kinniburgh, 1986; Ho, 2004; Kumar et al., 

2008b), therefore, data obtained under such condition could in some instances 

be misleading resulting to wrong decisions taken that could undermine the 

success of the entire process. 

3.7.1  LINEAR FITTING METHOD 

With particular reference to sorption isotherm and kinetics data, it has been 

the most common tradition to obtain model parameters using the linear 

regression method, such that experimental data is fitted to linear transformed 

models (LTFM) (Porter et al., 1999). The popular practice is to assess the 

conformity of a given linear model to the experimental data based on the 𝑟2 value 

of its linear regression fit plot (Potgieter, 1991; Shi et al., 2009; Hua et al., 2012; 

Belaid et al., 2013; Zhang et al., 2013; Nekouei et al., 2015). As such, the higher 

the value of the correlation coefficient for a given fitted model the better it is 

assumed to describe the experimental isotherm (Ho et al., 2002). Additionally, 

the suitability of the model is further confirmed by the assessment of the residuals 

between experimental and model simulated data based on some error function 

(Wong et al., 2004). Hence if the model is adequate, it will be able to predict the 

experimental data with significant accuracy (Özkaya, 2006). 

On the one hand, the linear method enjoys popularity because of its 

simplicity and in some instances its capability of generating very precise model 

parameters. On the other hand, the linearization of models distorts their error 

structure (Porter et al., 1999; Ho, 2004) and parameters obtained hence could be 

less precise and sometimes even misleading (Wong et al., 2004; Ho et al., 2005b; 

Foo and Hameed, 2010). For instance, the Langmuir model can be linearly 

transformed in at least two different ways, with each having different inherent 

error functions, thus yielding different estimated parameters (Ho, 2004; 

Hamdaoui and Naffrechoux, 2007a; Boulinguiez et al., 2008). It can thus be seen 

that there is higher chance of choosing a less accurate set of parameters using 

one of the different forms of the LTFM Langmuir model. 
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3.7.2  NONLINEAR FITTING METHOD 

In their original form, the nonlinear models conform to the nonlinear nature 

of the sorption isotherm and kinetics data and these models are developed based 

on this important consideration. A nonlinear regression method offers a 

mathematically rigorous way of determining model parameters using numerical 

approximations (Ho et al., 2002; Kumar and Porkodi, 2006). Here, experimental 

data is fitted to mathematical models by minimising the error distribution between 

experimental and model simulated data using a defined error function (Ng et al., 

2002; Kumar et al., 2008b). Several error functions have been used to evaluate 

the conformity of both linear and nonlinear models to experimental data. The 

nature of the error functions is well documented in the literature (Porter et al., 

1999; Allen et al., 2004; Wong et al., 2004; Boulinguiez et al., 2008; Kumar et al., 

2008b). For a given model, each error function will generate a different set of 

parameters and a different value for that error function (e.g., for CoD = 0 < R2 < 

1). Therefore, the choice of the best model to describe the experimental data is 

not straightforward, necessitating the adoption of a selection criterion by which 

models can be compared considering the overall bias due to all error functions 

for each given model (Ho et al., 2002).  

3.7.3  ERROR FUNCTIONS 

The advent of computer programming has made it possible to apply 

nonlinear regression method (also called nonlinear least squares) in determining 

model parameters. As a result, many researchers have recommended such as a 

better way of fitting sorption experimental data against the use of linear least 

square method (Kinniburgh, 1986; Porter et al., 1999; Ho, 2004; Kumar, 2007). 

The use of error functions in the fitting of experimental sorption data has been 

widely accepted in contemporary literature (Ho et al., 2002; Ng et al., 2002; Allen 

et al., 2004; Boulinguiez et al., 2008; Davis and Di Toro, 2015; Wu et al., 2016). 

These error functions are based on the measured squared deviations between 

experimental and predicted data (Kinniburgh, 1986; Kapoor and Yang, 1989). 

Thus a good approximation of experimental data would imply small deviation i.e. 

a model that best fit experimental data would have low values of error function 

(large R2 value in the case of coefficient of determination). 
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In this study, models will be compared based on the average of the values 

of optimised error functions and consequently, the model that has the least 

average sum of error (ASE) is chosen as the best to describe the experimental 

data. The following six error functions were applied to solve the model equations 

and approximations were done using the “solver add-in function” on the Excel 

spreadsheet 2013 edition of Microsoft Corporation. 

i) Error Sum of Squares (ERSSQ) (Porter et al., 1999) 

This is the primary form of error functions and its main drawback is, it biases 

fitting towards data obtained at high end of concentration range. 

ERSSQ = ∑ (𝑄𝑒,𝑐 − 𝑄𝑒,𝑚)
𝑖

2𝜑
𝑖=1  - - - - - (3.2) 

 

ii) Coefficient of determination (CoD) (Boulinguiez et al., 2008) 

This function represents the degree (e.g. in percentage) of the variance 

dependent variable (predicted data) about the mean (Foo and Hameed, 

2010). Its value ranges between 0 and 1. The closer to unity the value of 

CoD due to a fitted data the better the prediction of the variation. 

CoD =
∑ (𝑄𝑒,𝑐−𝑄𝑒,𝑚)

2𝜑
𝑖=1

∑ (𝑄𝑒,𝑐−𝑄𝑒,𝑚)
2𝜑

𝑖=1 +∑ (𝑄𝑒,𝑚−𝑄𝑒,𝑐)
2𝜑

𝑖=1

  - - - (3.3) 

 

iii) HYBRID error function (Porter et al., 1999) 

This error function reduces the bias due to the sum of squares of error s 

encountered at low concentration. Here, in addition to the squared residuals 

being divided by the measured value, the number of degrees of freedom of 

the system are also considered. Thus the summed residual is ultimately 

divided by the dumber of degrees of freedom. 

HYBRID =
100

𝜑−𝜇
∑ [

(𝑄𝑒,𝑚−𝑄𝑒,𝑐)
2

𝑄𝑒,𝑚
]

𝑖

𝜑
𝑖=1  - - - - (3.4) 

 

iv) Marquardt’s Percentage Standard Deviation (MPSD) (Marquardt, 1963) 

This is a modified version of geometric mean error distribution which 

incorporates the number of degrees of freedom (Ng et al., 2002; Lataye et 

al., 2006; Wu et al., 2010). 
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MPSD = 100 (√
1

𝜑−𝜇
∑ [

(𝑄𝑒,𝑚−𝑄𝑒,𝑐)

𝑄𝑒,𝑚
]

𝑖

2
𝜑
𝑖=1 ) - - - (3.5) 

 

v) Sum of absolute errors (EABS) (Porter et al., 1999) 

The isotherms predicted using this function usually have better fit towards 

the high concentration range. This bias is reduced if experiments are 

conducted using mass to volume ratio of 1 mg/mL., since both solid and 

liquid phase concentrations contribute equally to the error weighting 

criterion for the model solution. 

EABS = ∑ |𝑄𝑒,𝑐 − 𝑄𝑒,𝑚|
𝑖

𝜑
𝑖=1  - - - - - - (3.6) 

 

vi) Average Relative Error (ARE) (Kapoor and Yang, 1989) 

This function incorporates the features of the last two functions (MPSD and 

EABS). Instead of being squared, the absolute values of the residuals is 

taken and the number of data points is used as a divisor. 

ARE =
100

𝜑
∑ |

(𝑄𝑒,𝑐−𝑄𝑒,𝑚)

𝑄𝑒,𝑚
|

𝑖

𝜑
𝑖=1  - - - - - (3.7) 

 

With this, numerical comparison can be made to understand how variations in 

source material and production affects the performance of the sorbents on their 

removal of target compounds form aqueous solution, synthetic and autoclaved 

real wastewater. These methods will be used to assess the sorption capacities 

and kinetics of the sorbents in their pristine and magnetised form. The sorption 

experiments conducted to achieve these objectives are presented in the 

continuing chapters. 
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CHAPTER 4.  SORPTION OF PHENOL 

4.1  INTRODUCTION 

This chapter investigates the effect of magnetisation on the characteristics 

of phenol sorption on activated carbons and biochars. Phenol is a typical organic 

compound with a simple chemical structure. It is the parent compound of many 

derivative organics and has made it to the list of priority pollutants. It is wide 

spread in wastewaters including refinery effluents and as a result it has been 

considered as an ideal probe compound that can be used in the appraisal of the 

sorption properties of sorbents. Phenol has been identified as one of the 

pollutants that have a wide range of toxic effects in humans and pose a significant 

threat to the environment due to its toxicity to the aquatic ecosystem (Barber et 

al., 1995; Tišler and Zagorc-Končan, 1997; Park et al., 2012). Additionally, it is 

capable of undermining the efficiency of some biological wastewater treatment 

processes due to its toxicity to the microorganisms involved in the treatment 

(Fang and Chan, 1997; Scully et al., 2006). Phenol can be effectively removed 

from wastewaters using aerobic biological processes and carbon sorption 

process. The sorption progresses according to mechanisms that include, 

electrostatic interaction between charged sorbent surface and dissociated 

phenolate anion, hydrogen bonding between –OH groups of phenol and 

functional groups such as carboxylic on the surface of the carbon, π - π 

interaction between the hexagonal carbon rings on the sorbent surface and the 

aromatic ring, complexation with oxygen functional groups and hydrophobic 

interactions (Nevskaia et al., 1999; Salame and Bandosz, 2003; Tseng et al., 

2003; Busca et al., 2008). 

4.2  EXPERIMENTAL SECTION 

4.2.1  DETERMINATION OF SORPTION ISOTHERMS 

To determine the sorption isotherms, experiment was conducted according 

to the method used by (Han et al., 2015b). Briefly, 60 mg of ACs (or 100 mg of 

BCs) were added to 60 mL amber glass vials with a Teflon-lined screw cap 

supplied by VWR (Lutterworth, UK). The vial was closed using the screw cap and 
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the sample was autoclaved. The vial was filled with 59 mL (49 mL for BCs) of 

autoclaved 0.01 M CaCl2 solution, then closed once again with the screw cap and 

agitated on a shaker (KS 4000i by IKA) at 90 rpm and room temperature 

overnight. The desired initial batch phenol concentrations (5-450 mg/L) were 

obtained by adding 1 mL of pre-diluted stock solution into the equilibrated CaCl2 

sorbent mixture. Blank controls containing phenol solution without sorbent were 

run in parallel with the samples to check for phenol degradation. The vials were 

then returned to the shaker and allowed to shake under the conditions stated 

before for 7 days at 22°C. Duplicate batches were set up for all phenol 

concentrations. After shaking, the samples were filtered using a 25 mm syringe 

filter with a 0.45 µm PTFE membrane obtained from VWR International 

(Lutterworth, UK). High-Performance Liquid Chromatography (HPLC) was used 

to determine the amount of phenol remaining in the filtrate. The amount of phenol 

adsorbed per unit weight of adsorbent was computed using the difference 

between equilibrium concentrations of treatment and control samples. The HPLC 

system (Shimadzu; Kyoto, Japan) consisted of an LC-10AD VP pump, SIL-10A 

VP autosampler, SPD-10A VP UV detector, and SCL 10 A-VP controller unit. 

Data were acquired and processed by CLASS-VP V 5.032 software. The 

stationary phase was a Gemini-NX 150 x 4.6 mm, 5µ, C18, 110 Ε column 

(Phenomenex, USA). The mobile phase consisted of acetonitrile and water (50: 

50 % v/v), at an isocratic flow rate of 1 mL min-1. The elution profiles were 

recorded at 254 nm, and the injection volume was 10 µL. 

4.2.2  DETERMINATION OF INFLUENCE OF TEMPERATURE ON SORPTION 

In order to evaluate the effect of temperature on the sorption of phenol, the 

same experiment was repeated as described in 4.2.1, under refrigeration at a 

temperature of 10oC. 

4.2.3  DETERMINATION OF PH INFLUENCE ON SORPTION 

To evaluate the influence of pH on the sorption of phenol, 60 mg of ACs (or 

100 mg of BCs) were added to 60 mL amber glass vials with a Teflon-lined screw 

cap supplied by VWR (Lutterworth, UK). The vial was closed using the screw cap 

and the sample was autoclaved. The vial was then filled with 59 mL (49 mL for 
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BCs) of autoclaved 0.01 M CaCl2 solution, then closed once again with the screw 

cap and agitated on a shaker (KS 4000i by IKA) at 90 rpm and room temperature 

overnight (22oC). The pH of the CaCl2 conditioned samples were then adjusted 

to 3, 5, 7, 9 and 11 using aliquot of 0.01 M of HNO3 or KOH. The pH was 

monitored over 72 hours and necessary adjustments were made to maintain 

target values. Thereafter, 1 mL of appropriate phenol stock solution was then 

added to the preconditioned sorbents to have a predetermined volume and initial 

phenol concentration in the order; 60 mL, 300 mg/L for activated carbon or 

magnetic activated carbon and 50 mL, 45 mg/L for biochar or magnetic biochar. 

All samples are in duplicate including control samples containing no sorbent and 

treated in similar manner. The vials were shaken on a constant temperature 

oscillator (KS 4000i by IKA) at 90 rpm for 7 days at 22 °C. After shaking, the 

samples were filtered using a 25 mm syringe filter with a 0.45 µm PTFE 

membrane obtained from VWR International (Lutterworth, UK). High-

Performance Liquid Chromatography (HPLC) was used to determine the amount 

of phenol remaining in the filtrate. The amount of phenol adsorbed per unit weight 

of adsorbent was computed using the difference between equilibrium 

concentrations of treatment and control samples 

4.2.4  DETERMINATION OF SORPTION KINETICS 

To evaluate the phenol sorption kinetics, 60 mg of AC or MAC (100 mg of 

BC or MBC) were added to 60 mL amber glass vials with a Teflon-lined screw 

cap supplied by VWR (Lutterworth, UK). The vial was closed using the screw cap 

and the sample was autoclaved. The vials were filled with (59 and 49 mL for AC 

and BC samples) autoclaved 0.01 M CaCl2 solution and then allowed to shake 

overnight at 90 rpm and room temperature. Thereafter, 1 mL of appropriate 

phenol stock solution was then added to the preconditioned sorbents to have a 

predetermined volume and initial phenol concentration in the order; 60 mL, 300 

mg/L for activate carbon or magnetic activated carbon and 50 mL, 45 mg/L for 

biochar or magnetic biochar. All samples are in duplicate, including control 

samples containing no sorbent and treated in similar manner. The vials were 

shaken on a constant temperature oscillator (KS 4000i by IKA) at 90 rpm. 

Duplicate vials each from the ACs BCs and control samples were removed after 

5, 15, 30 min, 1, 6, 12, 24, 48 hrs, 5 and 7 days and the samples were filtered 
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using a 25 mm syringe filter with a 0.45 µm PTFE membrane obtained from VWR 

International (Lutterworth, UK). High-Performance Liquid Chromatography 

(HPLC) was used to determine the amount of phenol remaining in the filtrate. The 

amount of phenol adsorbed per unit weight of adsorbent was computed using the 

difference between equilibrium concentrations of treatment and control samples. 

4.2.5  DETERMINATION OF EFFECT OF FOULING ON SORPTION 

In order to evaluate the effect of fouling on the sorption of phenol, synthetic 

wastewater (SWW) prepared according to the OECD test guidelines 209 

protocols (OECD, 2010) as described in 3.4.2, was introduced to the sorption 

system. As a factor of safety, all materials for the experiment were autoclaved. 

The experiment was planned in such a way as to allow for the appraisal of the 

impact of the order by which the phenol (at 200 and 45 mg/L for ACs and BCs 

resp.) and the SWW (at 16 mg/L DOC) were contacted with the sorbents (at 1 

and 2 mg/mL for ACs and BCs resp.). The following order of contact wad adopted; 

4.2.5.1  Phenol Sorbed before SWW Addition (Phenol first) 

In this order, phenol was given a 24-hour head start for adsorption before 

the SWW was introduced. The sorbents (40 and 80 mg for ACs and BCs resp.) 

were contacted with 39 mL of 0.01 M CaCl2 in a 40 mL amber glass vials with a 

Teflon-lined screw cap supplied by VWR (Lutterworth, UK). The set up was 

allowed to shake overnight on a constant temperature oscillator (KS 4000i by 

IKA) at 90 rpm and room temperature. Thereafter, 1 mL of appropriate phenol 

stock solution was added to the preconditioned sorbents to have a predetermined 

initial phenol concentration as; 200 and 45 mg/L for ACs and BCs respectively. 

The samples were returned to shake for 24 hours and then 1 mL of appropriate 

SWW was added such as to have a concentration of 16 mg/L (as DOC). The vials 

were shaken for a further 6 days, after which they were filtered using a 25 mm 

syringe filter with a 0.45 µm PTFE membrane obtained from VWR International 

(Lutterworth, UK). All samples are in duplicate, including control samples 

containing no sorbent and treated in similar manner. High-Performance Liquid 

Chromatography (HPLC) was used to determine the amount of phenol remaining 

in the filtrate. The amount of phenol adsorbed per unit weight of adsorbent was 



Chapter 4: SORPTION OF PHENOL 

 

 

Badruddeen Saulawa SANI  68 January, 2017 

computed using the difference between equilibrium concentrations of treatment 

and control samples. 

4.2.5.2  Synthetic Wastewater Sorbed before Phenol Addition (SWW 
first) 

In this order, SWW was given a 24-hour head start before the phenol was 

introduced. The same procedure as in 4.1.5.1 was adopted, it should be noted 

that 7 days shaking was maintained after phenol was added.  

4.2.5.3  Simultaneous Contact of Phenol and SWW 

In this order, both phenol and SWW were added at the same time. The same 

procedure as in 4.1.5.1 was adopted, with slight modification. Sorbents were 

conditioned with 38 mL of CaCl2 overnight before the addition of 1 mL each of the 

phenol and SWW stock solutions. The rest is the same. 

4.3  RESULT AND DISCUSSION 

4.3.1  EVALUATION OF SORPTION ISOTHERMS 

 

  

Figure 4.1: Sorption of phenol @ 22oC on (a) CoAC & MCoAC, (b) CoalAC 
& MCoalAC, (c) Bio-1 & MBio-1 and (d) OrgBio & MOrgBio 
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The sorption isotherms for the sorption of phenol on ACs and BCs is shown 

in Figure 4.1. The isotherms depict nonlinear curves that are very steep at low 

concentration. In this range, sorbent-sorbate interaction supersedes by far the 

sorbate-solute interaction, therefore the phenol has higher affinity to partition in 

the solid phase more than it does the liquid phase. As the concentration 

increases, the curves gradually lose steepness because the sorbent dosage is 

constant. Thus, at high concentration the sorption sites are almost completely 

occupied and the sorbent is within its saturation limit.  

Phenol uptake on the ACs is within the same order of magnitude, although 

the coconut based activated carbon (CoAC) seem to have better phenol sorption 

than the coal based activated carbon (CoalAC). This can be seen that in Figure 

4.1(a), the isotherm for the CoAC is steeper and corresponding 𝐶𝑒 values are 

less that what is recorded for the CoalAC. As has been presented in Table 3.1, it 

can easily be seen that the two sorbents have equal surface area (𝐴𝑆). However, 

CoAC has higher micropore volume (𝑉𝑀𝑃) value which could be the reason why 

it has better phenol sorption capacity. This suggests that phenol sorption is 

influenced by the 𝑉𝑀𝑃. There is no doubt that 𝑉𝑀𝑃 together with 𝐴𝑆 significantly 

govern the sorption capacities of the sorbents, hence the ACs –due to their 

superior surface area and well developed pore system– present about 2 order of 

magnitude higher phenol uptake as compared to the BCs. Accordingly, Bio-1, 

which has higher 𝐴𝑆 and 𝑉𝑀𝑃 exhibit higher phenol uptake as compared to 

OrgBio.  

The magnetic sorbents appear to have lower phenol uptake compared to 

their corresponding pristine pairs. It should be noted however, that the 

composites have about 36% less carbon content than their pristine pairs, 

because they are composites with magnetite. This by extension indicate they 

have in the same proportion, less 𝐴𝑆 and 𝑉𝑀𝑃 available for phenol uptake. 

Therefore, when phenol sorption on the composites is normalised with respect to 

the mass of carbon in the composites, the isotherms almost overlap, as observed 

in Figure 4.1. It can therefore be deduced that, in order to have the same phenol 

sorption, the dosage of magnetic composites should be increased by 36 % to 

make up for the deficit in carbon content. 
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4.3.2  MODELLING OF SORPTION ISOTHERMS DATA:  

For the purpose of assessment and design of sorption processes, 

mathematical models are used to evaluate the experimental data. The result is a 

summary of numerical values that are useful for direct comparison of different 

materials as well as the prediction of sorption behaviour in a replicated/modified 

conditions. This is crucial in the transfer of the process from laboratory to field 

application.  

4.3.2.1  Linear Isotherm Model 

  

Figure 4.2: Partitioning coefficient for sorption of phenol @ 22oC on (a) ACs 
and (b) BCs 
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level, the presence of iron oxide on the surface of the sorbents can somewhat 

reduce their phenol partition behaviour. Nonetheless, excepting the reading for 

OrgBio and MOrgBio, the 𝐾𝑑 value is satisfactory for the rest of the sorbents to 

be used in water treatment.  

4.3.2.2  Nonlinear Isotherm Models  

Unlike the linear model, the nonlinear models can be used to evaluate the 

isotherm over the entire range of concentration considered. Another advantage 

of the nonlinear models is that they can give an insight into the intensity of 

sorbent-sorbate interaction, nature of surface coverage and mechanism of 

sorption. 

Table 4.1: Model parameters for sorption isotherms of phenol @ 22oC on 
ACs and BCs; (obtained using linear regression) 

Model Parameter CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio 

LANG 

𝑄𝑚 231.15 145.51 207.62 131.52 25.21 18.85 14.49 6.78 

𝐾𝐿 0.23 0.10 0.13 0.08 0.44 0.34 0.10 0.08 

𝑅2 0.9854 0.9843 0.9830 0.9761 0.9717 0.9773 0.9486 0.9783 

FREU 

1 𝑛⁄  0.28 0.27 0.31 0.27 0.35 0.33 0.38 0.54 

𝐾𝐹 63.71 35.13 46.31 30.37 7.36 5.31 2.57 0.69 

𝑅2 0.9422 0.9533 0.9552 0.9702 0.9737 0.9745 0.9731 0.9914 

RED-PET 

𝐾𝑅 433.25 84.79 192.62 70.87 61.26 40.63 3.82 0.85 

𝐴𝑅 4.80 1.54 2.89 1.58 5.82 5.64 0.82 0.35 

𝛾 0.80 0.82 0.77 0.80 0.77 0.76 0.76 0.77 

𝑅2 0.9869 0.9920 0.9867 0.9943 0.9980 0.9956 0.9756 0.9937 

Methods of linear regression were used to fit the isotherm data to linear 

transformed models (LTFM). The plots of the LTFM are presented in appendix 

A1 and the model parameters presented in Table 4.1 were obtained from the 

slopes and intercepts of those plots, as explained in 2.10.1.2. These parameters 

were used to simulate isotherms, and the model that gives the 𝑅2 value closest 

to unity is regarded as the best to describe the experimental isotherm data. All 

models correlated well with experimental data and generally, high 𝑅2 values were 

recorded (0.9422 – 0.9980) as can be seen.  

Assessment of the 𝑅2 values indicates that for all sorbents, the Redlich-

Peterson model has the highest 𝑅2 value, therefore it has the closest 

resemblance with the experimental data. Furthermore, except for Bio-1, OrgBio 

and MOrgBio, the Langmuir model is more capable of describing the 



Chapter 4: SORPTION OF PHENOL 

 

 

Badruddeen Saulawa SANI  72 January, 2017 

experimental isotherm because its 𝑅2 values are higher than the Freundlich 

model. Therefore, this indicates that the sorption of phenol on CoAC, MCoAC, 

CoalAC, MCoalAC and MBio-1 is due to monolayer coverage over a homogenous 

surface, according to the Langmuir theory. While sorption on Bio-1, OrgBio and 

MOrgBio likely is due to multilayer coverage over a heterogeneous surface 

according to the Freundlich theory. It should be noted that this distinction is not 

significant, since the 𝑅2 values for the two models about a given sorbent are not 

much different. The Redlich-Peterson model is usually adopted to further 

distinguish which of the two models (Langmuir or Freundlich) is more appropriate 

in describing the type of isotherm. If the Redlich-Peterson heterogeneous 

exponent ‘𝛾’ is close to 1, the isotherm is Langmuir type, otherwise it is 

Freundlich. The value of 𝛾, is not so close to unity and therefore tends to favour 

the Freundlich type of isotherm which contradicts the outcome of phenol sorption 

on the ACs and MBio-1 according to the 𝑅2 value. This therefore highlights the 

need to exercise caution when judgement is drawn based on 𝑅2 value and by 

extension the limitation of the LTFM methods. It is apparent a more rigorous error 

analysis involving more error functions is required to further distinguish the 

suitability of models under consideration.  

Table 4.2: Results of optimised error functions for the sorption of phenol @ 
22oC on CoAC 

Model CoD HYBRID MPSD ARE EABS ERSSQ ASE* 

LANG_L 0.9666 529.14 36.27 19.22 116.75 2134.03 472.58 

FR_L 0.9355 346.55 17.03 12.58 157.57 4132.25 777.68 

RP_L 0.9865 66.73 7.26 4.96 63.77 655.2 132.99 

LANG 0.9700 324.51 22.01 17.19 109.61 1693.59 361.16 

FREU 0.9609 272.59 16.55 12.01 100.96 1675.16 346.22 

RED-PET 0.9973 35.71 6.98 4.03 44.34 124.6 35.94 

DA 0.9996 5.57 3.03 1.26 8.79 18.15 6.13 

PDM 0.9996 0.06 3.03 1.53 0.09 0.00 0.79 
* ASE = [(1-CoD) + HYBRID + MPSD + ARE + EABS + ERSSQ]/6 

Key: LANG_L (LTFM Langmuir), FR_L (LTFM Freundlich), RP_L (LTFM Redlich-Peterson), LANG 
(Langmuir), FREU (Freundlich), RED-PET (Redlich-Peterson), DA (Dubinin-Ashtakov) and PDM 
(Polanyi-Dubinin-Manes) 

Nonlinear regression method was applied to fit the isotherm data to the 

models in their original nonlinear form by optimising each of the six error functions 

mentioned earlier in 3.7.3. For a given model, each error function will generate a 

unique set of parameters and consequently a unique simulated isotherm. The 

parameters generated by all the error functions for each model for all the sorbents 
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are presented in appendix A2. For a given model and sorbent, the error function 

whose simulated isotherm had the best coefficient of non-determination will have 

its parameters chosen to represent that model (Kumar et al., 2008b). 

Furthermore, the values of individual error function were averaged. This average 

–referred here as the average sum of error (ASE)– was used to compare the 

conformity of the models to the experimental data. The result for optimised error 

functions for phenol sorption on CoAC is shown in Table 4.2 as an example.  

The ASE is used to evaluate the overall relative error distribution between 

experimental and simulated isotherm. Therefore, the less the ASE value for a 

given model, the more is the resemblance between its predicted isotherm and the 

experimental isotherm. The summary of the ASE for all the sorbents is shown in 

Table 4.3. 

Table 4.3: Summary of ASE for the sorption of phenol @ 22oC on ACs and 
BCs 

Model CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio 

LANG_L 472.58 171.07 300.48 166.68 28.56 18.48 10.64 6.77 

FR_L 777.68 178.94 419.28 87.50 15.39 9.37 4.61 4.28 

RP_L 132.99 27.81 98.07 15.41 1.74 1.87 4.34 2.52 

LANG 361.16 129.72 261.91 133.78 19.40 13.50 7.80 4.80 

FREU 346.22 108.62 209.68 56.09 10.27 7.02 4.46 3.96 

RED-PET 35.94 16.46 47.47 11.90 1.48 1.62 4.03 1.93 

DA 6.13 4.99 21.52 3.99 1.41 0.33 4.41 1.85 

PDM 0.79 0.53 1.10 0.42 0.91 0.20 2.38 1.69 

Although the LTFM exhibit satisfactory fitting of experimental data, the 

nonlinear fitting method generally produce better error function values. As a 

result, the nonlinear models have much lower ASE value than their corresponding 

LTFM pairs, for all sorbents. Therefore, the nonlinear models are considered 

henceforth since they are expected to return more accurate model parameters. 

With particular reference to the 2-parameter models, it should be noted that 

based on the result of optimised error functions for the nonlinear models, for all 

sorbents, the Freundlich model has better conformity to experimental data 

compared to the Langmuir model. This agrees with the conclusion drawn earlier 

based on the value of 𝛾 in the case of the LTFM.  
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Table 4.4: Summary of MSC for isotherm prediction using optimised model 
parameters for sorption of phenol @ 22oC on ACs and BCs 

Model CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio 

LANG 2.57 2.53 2.84 2.11 2.57 2.47 2.08 3.30 

FREU 2.78 2.79 3.06 3.36 3.73 3.69 2.98 4.49 

RED-PET 5.22 4.92 4.41 4.87 6.02 5.69 2.76 5.83 

DA 7.15 6.16 5.25 6.13 6.50 7.47 2.71 5.76 

PDM 7.15 6.16 5.27 6.13 6.50 7.47 2.70 5.76 

Compared to the 3-parameter models, the 2-parameter models have higher 

values of the ASE, which shows that they have higher relative error distribution 

between their simulated isotherm and the experimental data. This shows the 

superiority of the 3-parameter models in conforming to experimental data. In 

particular, the PDM model has the overall best ASE values, suggesting phenol 

uptake to progress according to the micropore filling mechanism. The result for 

the test for redundancy of model parameters presented in Table 4.4, shows that 

that the 3-parameter models actually contain more information about the system 

(Koeppenkastrop and De Carlo, 1993; Saiers and Hornberger, 1996) and thus 

have higher MSC values compared to the 2-parameter models. Hence the 3-

parameter models can reliably be applied to evaluate the experimental data. It is 

worth mentioning that, although the two Polanyi related models differ in in terms 

of their derivations and expressions, they produce very similar parameters. 

The summary of the optimised model parameters is presented in Table 4.5, 

while the parameters obtained using each of the error function for all the sorbents 

is presented in appendix A2 (Tables A1 to A8). A plot of the optimised simulated 

isotherms as compared to the experimental curve for CoalAC, MCoalAC, Bio-1 

and MBio-1 is shown in Figure 4.3 as example. The remaining plots for the other 

sorbents are presented in appendix A3. The simulated and experimental 

isotherms are quite identical. This suggests that their parameters can help in 

describing the sorption system within the examined range of concentration. 
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Figure 4.3: Comparison of simulated and experimental isotherm plot for 
sorption of phenol @ 22oC on (a) CoalAC, (b) MCoalAC, (c) Bio-
1 and (d) MBio-1 

Table 4.5: Optimised isotherm model parameters for sorption of phenol @ 
22oC on ACs and BCs 

Model Parameters CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio 

Linear 𝐾𝑑  1.53E+06 5.98E+05 1.18E+06 6.36E+05 3.84E+04 2.10E+04 1.73E+03 6.42E+02 

LANG 
𝑄𝑚  225.21 144.76 205.35 131.89 24.73 18.83 14.44 7.39 

𝐾𝐿 0.21 0.10 0.11 0.06 0.33 0.23 0.09 0.06 

FREU 
1 𝑛⁄  0.21 0.22 0.25 0.24 0.28 0.28 0.36 0.47 

𝐾𝐹  85.03 43.59 58.80 36.19 8.77 6.23 2.76 0.84 

RED-
PET 

𝐾𝑅  206.06 53.76 86.64 49.71 49.65 24.05 5.69 1.31 

𝐴𝑅 1.76 0.79 0.98 0.97 4.38 2.83 1.50 0.93 

𝛾 0.86 0.86 0.83 0.83 0.79 0.80 0.71 0.63 

DA 

𝑄𝑜  272.96 173.32 265.09 171.91 39.78 27.97 44.39 22.47 

𝐸 32.89 30.68 30.52 30.19 32.51 32.13 24.66 23.03 

𝑏 3.42 3.29 3.11 2.78 2.80 2.93 1.81 2.14 

PDM 

𝑄𝑜  272.97 173.34 265.12 171.16 39.74 27.98 41.69 22.49 

𝑎 28.75 31.80 26.82 19.55 16.20 19.06 10.59 17.56 

𝑏 3.42 3.29 3.11 2.79 2.80 2.93 1.88 2.14 
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4.3.2.3  Phenol Sorption Capacities  

According to the capacity parameter of all models presented in Table 4.5, 

the ACs have higher phenol sorption capacities than the BCs. Similarly, the ACs 

can be ranked in the order of phenol uptake as MCoalAC < MCoAC < CoalAC < 

CoAC. However, there is some discrepancy in the ranking of the BCs. According 

to Langmuir, Freundlich and Redlich-Peterson models, the ranking for the BCs is 

in the order MOrgBio < OrgBio < MBio-1 < Bio-1, while their order is MOrgBio < 

MBio-1 < Bio-1 < OrgBio according to the Polanyi based models. Assessment of 

the MSC values in Table 4.4 indicates that the Polanyi based models are not 

good in describing the sorption of phenol on OrgBio. Instead, the Freundlich 

model has highest MSC value and thus can describe its isotherm better. Hence 

it is more likely that the order for the BCs is as presented by Freundlich.  

Table 4.6: Sorption of phenol @ 22oC on ACs and BCs; Pearson correlation 
coefficients between model parameters and sorbent properties 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.9573 0.8488 0.9731 0.4483 

Langmuir 
𝑄𝑚 0.9834 0.9070 0.9895 0.4512 

𝐾𝐿 0.0308 0.1637 0.0031 0.3490 

Freundlich 
1 𝑛⁄  0.7726 0.7195 0.7633 0.4405 

𝐾𝐹 0.9579 0.8418 0.9762 0.4623 

Redlich-Peterson 

𝐾𝑅 0.8094 0.6264 0.8483 0.4788 

𝐴𝑅 0.3158 0.3958 0.2979 0.1782 

𝛾 0.8029 0.7602 0.7902 0.5079 

Dubinin-Ashtakov 

𝑄𝑜 0.9754 0.8970 0.9829 0.4045 

𝐸 0.6080 0.5584 0.5949 0.6496 

𝑏 0.8242 0.7929 0.8085 0.7720 

Polanyi-Dubinin-
Manes 

𝑄𝑜 0.9769 0.8994 0.9841 0.4119 

𝑎 0.8276 0.7997 0.8214 0.6013 

𝑏 0.8280 0.7900 0.8144 0.7522 

Additionally, the sorbents capacity influencing properties (AS, VP, VMP and 

PS) from Table 3.1, were correlated with model capacity parameters (Kd, Qm, KF 

and Qo) from Table 4.5. The result shown in Table 4.6 reveals that the 𝑉𝑀𝑃 has 

the highest correlation (generally, Pearson correlation coefficient 𝑅 =

0.9731 to 0.9895) with model capacity parameters. This suggest that phenol 

sorption is significantly influenced by 𝑉𝑀𝑃. Therefore, it is not unusual that the 

Polanyi related models –whose derivation were based on the micropore filling 
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mechanism– are poor in describing the sorption of OrgBio (which is strictly non-

microporous). 

There still exist some satisfactory correlation (generally, Pearson correlation 

coefficient 𝑅 = 0.9059 to 0.9711) as shown in Table 4.7, between the model 

capacity parameters and the mass normalised sorbents’ capacity factors. This 

therefore is a further indication that the sorption of phenol depends on surface 

area and pore characteristics. However, there is poor correlation between 

sorbents capacity influencing properties and the sorption intensity parameters. 

Table 4.7: Sorption of phenol @ 22oC on ACs and BCs; Pearson correlation 
coefficients between normalised model capacity factors and 
sorbent properties 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.9686 0.9059 0.9711 0.4515 

Langmuir 𝑄𝑚 0.9312 0.9190 0.9196 0.4330 

Freundlich 𝐾𝐹 0.9424 0.8829 0.9445 0.4567 

Dubinin-Ashtakov 𝑄𝑜 0.9260 0.9201 0.9132 0.4012 

PDM 𝑄𝑜 0.9277 0.9221 0.9146 0.4077 

Finally, according to 𝑄𝑚 and 𝑄𝑜, the difference in phenol uptake between the 

composites and their pristine pairs is in the range of 36.11 to 49.11 % with an 

average of 36.87 %. This difference is very similar to that due to varied carbon 

content (ca 36 %) between corresponding pairs. Which is therefore an indication 

that over the concentration range studied, the presence of iron oxide on the 

surface of the sorbents does not cause a significant alteration in their phenol 

partition behaviour. 

4.3.2.4  Phenol Sorption Affinity 

From Table 4.5, the order of sorbents ranking according to models sorption 

intensity and heterogeneity factors for Freundlich and Redlich-Peterson models 

goes as: [𝑛, MOrgBio < OrgBio < MBio-1 = Bio-1 < CoalAC ≈ MCoalAC < MCoAC 

≈ CoAC; and 𝛾, MOrgBio < OrgBio < Bio-1 ≈ MBio-1 < MCoalAC = CoalAC < 

MCoAC = CoAC respectively]. The order of ranking based on the two models is 

quite similar which in turn differs much from the Langmuir sorption intensity factor 

whose ranking goes as: [𝐾𝐿: MOrgBio = MCoalAC < OrgBio < MCoAC < CoalAC 

< CoAC < MBio-1 < Bio-1]. It has been previously shown in Table 4.3, that the 
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Freundlich has better conformity to experimental data compared to the Langmuir. 

Therefore, the Freundlich model is most suitable to describe the sorption 

preference of phenol with respect to the nature of the sorbent’s surfaces. Hence, 

the sorption of phenol is favourable on the sorbents, since in all instances, the 

heterogeneity exponent n > 1 (Hamdaoui and Naffrechoux, 2007a; Murugesan 

et al., 2013). The larger the value of 𝑛, the more the heterogeneity (Newcombe 

et al., 1997; Goldberg et al., 2005; Zhang et al., 2007). The values of both 𝑛 and 

𝛾 can be grouped into two classes; higher values for the ACs and lower values 

for the BCs. The ranking of these groups, indicates that the sorption of phenol is 

more favourable as the heterogeneity of the surfaces increases (Li et al., 2002). 

It should also be noted that excepting OrgBio and MOrgBio, the intensity and 

heterogeneity factors for both Freundlich and Redlich-Peterson models for 

corresponding pairs of sorbents are quite identical. This shows that the phenol 

sorption affinity for the magnetic composites and the pristine carbon are similar.  

From the foregone, it can be concluded that the two ACs have about the 

same phenol sorption properties. However, since the coconut shell based AC has 

slightly better sorption capacity and affinity, it is selected to represent the ACs in 

subsequent experiments. In the case of the BCs, it is obvious that the woodchip 

based biochar has superior sorption properties and is thus selected to represent 

the BCs in further work.  

4.3.3  EFFECT OF TEMPERATURE ON SORPTION OF PHENOL 

Temperature can influence the sorption of a compound from solution for 

better or for worse, due to its impact on the properties of the sorbate, sorbent 

surface properties and sorbent-sorbate interactions. Notwithstanding, the 

outcome of a given sorption system cannot be predicted easily, despite the 

knowledge of the aforesaid principles, since the influence is not unidirectional in 

all cases. For instance, increase in temperature can on the one hand, bring about 

increased mobility of sorbate molecules. This can be advantageous to both 

sorption systems that have diffusion process as rate determining and those in 

which the sorbate binds to the surface of the sorbent mainly by chemisorption 

(endothermic based). While on the other hand, increased solubility at higher 

temperature can undermine sorption systems in which the removal of sorbate 
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from solution depends on hydrophobic interactions. Also, the uptake of the 

sorbate is impaired if sorption progresses mainly as physisorption (exothermic 

based). Furthermore, it has been reported by Dąbrowski et al. (2005); Busca et 

al. (2008) that, in the case of phenol, increase in temperature causes a decrease 

in the effect of the sorbent’s surface-chemical composition on its sorption. Under 

such a situation, the mechanism of phenol sorption then depends mainly on the 

porous structure of the sorbent and so sorption kinetics is governed by 

intraparticle diffusion.  

  

Figure 4.4: Sorption of phenol @ 10oC on (a) ACs* and (b) BCs* 

Most phenol sorption experiments are conducted at moderate temperatures 

(Banat et al., 2000; Yang et al., 2008; Mohd Din et al., 2009; Kilic et al., 2011), 

which shows that its uptake is majorly by an exothermic process (physical 

adsorption). Therefore, within this temperature region it has mostly been reported 

that adsorption capacities tend to increase with a decrease in temperature 

(Weber, 1974; Kennedy et al., 2007; Gundogdu et al., 2012; Hua et al., 2012).  

Table 4.8: Summary of ASE for the sorption of phenol @ 10oC on ACs* and 
BCs* 

Model CoAC* MCoAC* Bio-1* MBio-1* 

LANG_L 683.38 238.17 34.37 23.98 

FR_L 449.46 124.90 7.79 5.01 

RP_L 129.13 44.44 1.75 1.32 

LANG 564.76 199.95 24.73 16.74 

FREU 215.82 83.41 5.61 4.01 

RED-PET 60.46 31.97 1.47 1.19 

DA 7.04 10.93 0.30 0.65 

PDM 0.61 0.80 0.21 0.38 
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The isotherm for the sorption of phenol at lowered temperature (10oC) is 

shown in in Figure 4.4. The isotherms exhibit quite similar features with those 

obtained at 22oC, i.e. presented in Figure 4.1. In general, there is no significant 

difference between the two data sets (p-value = 0.697). Hence, quite similar 

outcomes were obtained when the data was subjected to the same analysis as 

was done previously and the results are presented in Tables 4.8 to 4.10 and 

Figure 4.5.  

Table 4.9: Optimised isotherm model parameters for sorption of phenol @ 
10oC on ACs* and BCs* 

Model Parameters CoAC* MCoAC* Bio-1* MBio-1* 

LANG 
𝑄𝑚 223.31 143.16 24.65 18.45 

𝐾𝐿 0.17 0.09 0.28 0.30 

FREU 
1 𝑛⁄  0.19 0.21 0.26 0.24 

𝐾𝐹 85.65 45.97 8.80 6.69 

RED-PET 

𝐾𝑅 540.66 121.14 84.01 50.18 

𝐴𝑅 5.29 2.03 8.10 6.62 

𝛾 0.84 0.84 0.78 0.79 

DA 

𝑄𝑜 284.13 182.50 44.19 31.14 

𝐸 32.92 30.64 31.18 31.28 

𝑏 2.75 2.74 2.27 2.29 

PDM 

𝑄𝑜 288.55 182.52 44.03 31.17 

𝑎 14.18 17.88 10.56 10.58 

𝑏 2.70 2.74 2.28 2.28 

The nonlinear fitting method generally produce better error function values. 

As a result, the nonlinear models have much lower ASE value than their 

corresponding LTFM pairs, for all sorbents (see Table 4.8). Consequently, the 

nonlinear models are chosen for further discussions. The 3-parameter models 

have lower ASE values than the 2-parameter model which suggests higher 

conformity to experimental data. Overall, the PDM model has the best ASE 

values, once again suggesting phenol sorption according to the micropore filling 

mechanism as observed at room temperature (22oC). Furthermore, the 

Freundlich has better conformity to experimental data compared to the Langmuir, 

suggesting sorption over heterogeneous surface. The optimised isotherm model 

parameters are summarised in Table 4.9, while the parameters obtained using 

all the error functions are presented in Appendix A (Tables A9 to A12). Here once 

again, the Polanyi related models produced very identical parameters. 
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It can be observed in the Table 4.10, that test for redundancy of model 

parameters shows that the 3-parameter models have higher MSC values and are 

thus reliable in describing the experimental isotherm. Also, plots of the optimised 

simulated isotherms for both the ACs and BCs are overlying the experimental 

data points as shown in Figure 4.5. 

Table 4.10: Summary of MSC for isotherm prediction using optimised model 
parameters for sorption of phenol @ 10oC on ACs* and BCs* 

MODEL CoAC* MCoAC* Bio-1* MBio-1* 

Langmuir 1.96 2.05 2.16 2.09 

Freundlich 3.23 3.18 4.35 4.15 

Redlich-Peterson 4.45 4.00 6.20 5.61 

Dubinin-Ashtakov 6.70 5.21 7.94 6.37 

Polanyi-Dubinin-
Manes 

6.62 5.21 7.89 6.37 

  

  

Figure 4.5: Comparison of simulated and experimental isotherm plot for 
sorption of phenol @ 10oC on (a) CoAC*, (b) MCoAC*, (c) Bio-1* 
and (d) MBio-1* 

While the data for both temperatures are identical, a slight increase in 

phenol sorption capacity is recorded with decrease in temperature according to 

the capacity factors of both the Freundlich and the Polanyi theory based models. 
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However, the decrease is not statistically significant (p-value = 0.697). Probably, 

the extended equilibrium duration (7 days), as used in this study, may have 

neutralised the effect of temperature on sorption kinetics over the studied range; 

[shorter equilibrium periods; 48 hr and less; were used in most studies (Park et 

al., 2010; Gundogdu et al., 2012; Giraldo and Moreno-Piraján, 2014) where 

significant increase in sorption was recorded for a decrease in temperature]. 

Therefore, to have a better understanding of the effect of temperature on phenol 

sorption for the given sorbents, it is essential that further work should be done 

over short duration and/or at elevated temperature.  

4.3.4  POLANYI CHARACTERISTIC CURVE 

From the forgone, the Polanyi theory based models have recorded very high 

quality data fitting for both temperatures. These models are mainly used to verify 

whether sorption progresses according to the micropore filling mechanism or not. 

Essentially, the characteristic curve for the system is used to further test whether 

the model mechanistically captures this. According to this theory, the correlation 

curve is temperature invariant for a given system. As such, the curve for the same 

system at a different temperature will be identical.  

  

Figure 4.6: Polanyi characteristic curve for the sorption of phenol @ both 10 
and 22oC on; a) ACs and (b) BCs 

The characteristic curve for the sorbents at the two temperatures is 

presented in Figure 4.6. For the ACs, including the coal based AC, two distinct 

groups of data points representing the somewhat single curve, one each for the 

magnetic and nonmagnetic types can be observed i.e. Figure 4.6(a). This 

indicates that the sorption of phenol by micropore filling mechanism is valid on 

these sorbents. A similar curve for the BCs, including the organic biomass based 
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biochars is presented in Figure 4.6(b). The seemingly single curve can be 

observed one each for the magnetic and nonmagnetic type. However, no such 

single curve was observed for the OrgBio which is strictly non-microporous. 

A further test for the validity of the micropore filling mechanism is that a 

single curve should be obtained for different sorbents when their characteristic 

curve is normalised with respect to their micropore volume (Long et al., 2008). A 

single curve was obtained for the ACs after normalisation as can be observed in 

Figure 4.7(a). This strongly suggests that the Polanyi theory is valid for the 

sorption of phenol on the ACs. However, from Figure 4.7(b), it can be seen that 

for the BCs, no such single curve was obtained after normalisation. It can 

therefore be concluded for the BCs that while the Polanyi theory was satisfied in 

terms of isotherm fitting, it was only partially satisfied in terms of the characteristic 

mechanism. This is because of their low microporosity or its complete lack of it. 

  

Figure 4.7: Normalised Polanyi correlation curve for the sorption of phenol 
@ both 10 and 22oC on; (a) ACs and (b) BCs 

4.3.5  MECHANISM OF PHENOL SORPTION 

It has been established in the forgone section, that the sorption of phenol 

progresses according to the micropore filling mechanism. This is to say that the 

main active sites are contained in the micropores of the AC. Although, other 

active sites located in the macropores and external surface also contribute -to a 

much lesser degree- to the total sorption of phenol. Generally, phenol sorption on 

an active site is possible due to the action of electrostatic interactions and van 

der Waals forces that include the formation of hydrogen bonding, dispersion 

interactions, aromatic staking and π - π interactions (Busca et al., 2008).  
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The delocalised π electrons of the basal planes of the microcrystalline 

structure of the AC can engage the π electrons of the aromatic rings of phenol. 

This facilitates the binding of phenol to the surface of the AC by the so called “π 

- π interactions” (Snoeyink and Weber, 1967). In such interaction, the π electron 

on the basal plane of the AC act as the donor, while that of the aromatic ring of 

phenol act as the acceptor (Mattson et al., 1969). The π electron rich regions 

constitute the Lewis base type of sites whose electron density diminishes as the 

oxygen content of the carbon is increased (Lopez-Ramon et al., 1999). This 

oxidation brings about the localisation of the π electron (Coughlin and Ezra, 1968) 

and thus a reduction in phenol uptake, since sorption of phenolic compounds is 

more favoured on basic carbon surfaces (Dąbrowski et al., 2005) . 

Phenol also sorb on active sites by the formation of another donor-acceptor 

mechanism with surface oxygen groups (Tseng et al., 2003). Particularly the 

carbonyl oxygen groups which have a larger dipole moment than the carboxylic 

acid groups can engage phenol in the formation of a strong donor-acceptor 

complex mechanism. The carbonyl oxygen and other basic surface groups will 

act as the electron donors and the aromatic ring of phenol acts as the acceptor  

(Dąbrowski et al., 2005). In contrast, the oxidation of the surface carbonyl groups 

to carboxylic acid groups reduces the carbon’s electron acceptor capacity and 

this causes a reduction in phenol sorption (Mattson et al., 1969). Also, at low pH, 

the sorption of phenol is decreased due to the competition of H+ for sorption to 

carbonyl sites. 

Electrostatic interaction is another mechanism by which phenols sorb to the 

carbon. This interaction is governed by the influence of pH on both the 

dissociation potentials of phenol molecules and the surface charge of the carbon. 

At low pH, i.e. pH < pKa, phenol molecules exist in neutral form. At high pH, they 

exist as dissociated phenolate anions. In a similar manner, the surface of the AC 

is positively charged at pH < pHPZC and negatively charged at pH > pHPZC. At 

moderate pH, i.e. pH > pKa and pH < pHPZC, there will be electrostatic attraction 

between the positively charged carbon surface and negatively charged phenolate 

anion. Therefore, phenol sorption is favoured in this region. At high pH, i.e. if pH > 

pKa and pH > pHPZC, there will be electrostatic repulsion between the negatively 

charged carbon surface and the phenolate anion. Therefore, phenol sorption is 

not favoured in this region, because in addition to electrostatic repulsion, the 
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dissociated form of the phenol molecule is more soluble (Liu and Pinto, 1997; 

Snoeyink and Summers, 1999; Dąbrowski et al., 2005). 

  

Figure 4.8: Final solution pH for the sorption isotherm of phenol on (a) ACs 
and (b) BCs 

The experiments were conducted at moderate pH (see Figure 4.8), which is 

below both the pKa of phenol and the pHPZC value for all the sorbents except 

MCoAC. Therefore, it is generally expected that since the neutral specie is 

predominant, phenol sorption should have progressed through the action of π - 

π dispersion interactions, electron donor-acceptor complex and solvent effects 

(Nevskaia et al., 1999; Fierro et al., 2008; Hameed and Rahman, 2008; 

Rodrigues et al., 2011). 

4.3.6  EFFECT OF SOLUTION PH ON SORPTION 

According to the sorption pattern depicted by the AC over the range of pH 

examined. CoAC and MCoAC behaved in a similar way, the sorption of phenol 

was low at both extreme ends of the pH range (refer to Figure 4.9(a)). The 

sorption of phenol has be shown (Mattson et al., 1969) to be governed by the 

“donor-acceptor complex” mechanism in which the carbonyl surface-oxygen 

groups acts as electron donor, and the aromatic ring of the solute acts as an 

acceptor. Thus at low pH, there exist additional/excess protons in the solution 

which compete with phenol for carbonyl sites resulting in a decrease in adsorption 

with decrease in solution pH (Snoeyink et al., 1969; Dąbrowski et al., 2005).  
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Figure 4.9: Partition coefficient for the effect of pH on sorption of phenol on 
a) ACs and b) BCs 

Additionally, the sorbent becomes more polar and hydrophilic. Therefore, it 

preferentially engages water molecules to form hydrogen bonds and as a result, 

water clusters are formed that prevents phenol molecules access to sorption 

sites. It has been reported (Moreno-Castilla, 2004) that phenol is poorly adsorbed 

on acidic activated carbons. Increasing the surface acidity of activated carbons 

resulted in a decrease in the amount of phenol adsorbed from diluted aqueous 

solutions. Also the π electrons on the basal plane of the sorbent are localised due 

to increased oxidation. This impairs the sorption of phenol by the interaction of 

the π electrons. Hence, there is a general decrease in the uptake of phenol with 

increased acidity of the sorbent. 

According to (Yang and Xing, 2010), neutral and dissociated species 

(cations by protonation) are the dominant species for organic acids and organic 

bases respectively at pH < pKa, while dissociated species (anion) and neutral 

species are dominant species for organic acids and organic bases respectively 

at pH > pKa. Acidic phenol exist in non-dissociated form at pH less than its pKa 

and it is preferentially adsorbed on carbon sorbents in this molecular form 

(Moreno-Castilla et al., 1995). That is why there is an increase in phenol uptake 

as the acidity decreases. Also, the surface becomes increasingly hydrophobic as 

the pH increases resulting in an increase in phenol uptake (Weber, 1974). This 

continues until peak sorption is recorded around pH 9. In their work on the 

sorption of lubricating oil on Spirulina sp. and Scenedesmus abundans with pHPZC 

of 8.5 and 7.5 respectively, (Mishra and Mukherji, 2012) reported that the uptake 

of lube oil increased with increase pH to a peak around their respective pHPZC. 

This has been reported for several compounds.  
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In the high pH region, i.e. beyond the pKa region, the molecule dissociates 

and the concentration of the anionic specie continues to increase as the pH is 

increased further (Srivastava et al., 1987; Aravindhan et al., 2009). Our sorbents 

have high pHPZC values, all in excess of 9.0 (except for MCoAC). So it is expected 

that they will have net negative charge within the pH range higher than their 

pHPZC. Therefore, the decrease in phenol uptake at pH above both the pHPZC of 

the sorbents and pKa of phenol is due to repulsion between the negatively 

charged sorbent surface and the anionic phenolate and also that between 

neighbouring anionic species (Dąbrowski et al., 2005). However, the presence of 

0.01 M CaCl2 background solution can aid in neutralising this repulsive forces 

due to increased pairing of calcium ion with the phenolate specie. This trend was 

observed in the sorption of p-nitrophenol (PNP) on coconut-shell activated carbon 

in the presence of 1.0 M NaCl solution at pH 10.0 (Snoeyink et al., 1969). 

Nonetheless, the dissociated specie is more hydrophilic, therefore its removal 

from the aqueous medium becomes even harder and can be possible only after 

a relatively higher solute-solvent bond is broken. The coal based ACs also 

exhibited the same trend to a lesser extent as observed in the coconut shell 

based ACs. 

For the biochars, Figure 4.9(b) shows that there is a general decrease in 

phenol uptake with increase in pH. Although, the sorption of phenol on MBio-1 

appears somewhat resistive to pH changes up to pH 9, the least phenol uptake 

was recorded at the highest pH. This is due to the increased solubility of the 

phenolate anion and electrostatic repulsion due to it having similar charge with 

the sorbent’s surface. The high uptake of phenol on Bio-1 recorded at low pH is 

a bit unexpected, because the sorption of phenol is normally impaired in this 

region due to the high oxidation of its surface, its increased hydrophilicity and 

competition by H+ for carbonyl adsorption sites. It is possible that the Bio-1 has 

special sites which makes it possible to preferentially bond with phenol. This 

could be due to the formation of ester bonds between the hydroxyl group of 

phenol and the carboxylic groups on the biochar surface (Salame and Bandosz, 

2003). 

The adsorption edge plot can show the relative fractions of the phenol 

sorbed in either neutral or ionised species over the studied pH range. The 

speciation model can be used to fit the adsorption edge data, the usual 
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expression for the model is given as (Schwarzenbach et al., 2005; Yang et al., 

2008; Werner et al., 2013). 

𝐾𝑑 = 𝐴
1

1+10(pH−𝑝𝐾𝑎) + 𝐵 (1 −
1

1+10(pH−𝑝𝐾𝑎))  - - - (4.1) 

Where: 𝐴 and 𝐵 are the distribution coefficients of the neutral and ionised 

species of the sorbate respectively. 

 

 

Figure 4.10: Modelling of pH data for sorption of phenol on (a) coconut shell AC, 
(b) coal AC and (c) biochar. Asterisk (*) represents fitted data 

In situations where the model mechanistically captures the adsorption edge 

of a compound, good fitting is recoded and a point of inflection appears at a pH 

region near its pKa value. In this study, except for MBio-1 with 𝑅2 = 0.9658, the 

model failed to yield good fitting to the adsorption edge data (generally 𝑅2 < 

0.6850) as presented in Figure 4.10. 
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and Schwarzenbach, 1993; Xiao and Pignatello, 2014). In essence, only the 
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similar cases where the model failed to mechanistically capture the adsorption 

edge of various compounds and sorbents. They postulated that due to inherent 

adsorption nonlinearity, it is possible for deviations to occur between the model 

predicted and observed adsorption edge. They even proposed a new model that 

considers the nonlinear nature of sorption and requires the isotherm data at 

different pH values to enable a better prediction of the adsorption edge. According 

to (Schwarzenbach et al., 2005) the sorption of anionic species may be 

considered when dealing with hydrophobic acids. Otherwise, in weak acids with 

𝐵 significantly smaller than 𝐴, the sorption of neutral species dominates up to a 

pH of about 2 units above their pKa. Therefore the sorption of the anion may be 

neglected and consequently, 𝐴 can be assumed to be constant over the whole 

pH range considered (Haderlein and Schwarzenbach, 1993) and the adsorption 

edge model reduces to the expression; 

𝐾𝑑 = 𝐴
1

1+10(pH−𝑝𝐾𝑎) - - - - - - - (4.2) 

4.3.7  EVALUATION OF SORPTION KINETICS 

  

Figure 4.11: Plot of sorption kinetics for phenol on; (a) ACs and (b) BCs 

Within 24 and 48 hours, all sorbents have reached at least 87 and 90% of 

the 7-day equilibrium respectively. In other words, it took another 24 hours just to 

add about 3% more uptake of phenol. This shows that phenol sorption continues 

at a very slow rate beyond the first 24 h. Therefore, apparent equilibrium is 

assumed to be attained within 48 hours and only the data within the first 24 hours 

is considered for analysis of the rapid adsorption kinetics.  
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The plot for the sorption kinetics is shown in Figure 4.11, and the curves are 

generally characterised by steep slopes within the first 6 hours. This zone of very 

fast kinetics is due to high concentration gradient and abundance of free potential 

sorption sites. The pores are more or less empty, hence the phenol molecules 

can access the interior sorption sites with much ease. With time, the pores and 

sorption sites gets progressively loaded. This in addition to loss in concentration 

gradient, leads to a reduction in sorption kinetics, consequently, the slope 

assumes a somewhat horizontal or plateau status which is maintained as the 

system approaches or attains equilibrium. 

4.3.7.1  Attainment to Equilibrium 

  

Figure 4.12: Phenol sorption kinetics fractional uptake on; (a) ACs and (b) 
BCs 

A plot of fractional uptake with time, the “𝑓 − 𝑡 plot”, Figure 4.12, gives an 

insight to how close the system is to attaining an apparent equilibrium. It can be 

observed that magnetic sorbents have slightly lower 𝑓 value compared to their 

corresponding pristine counterparts. In fact, there is no strong evidence to 

suggest that they are statistically similar (p-value ≤ 0.063; α = 0.05, in both MAC 

and MBC). This suggests that the magnetite impregnation hinders the smooth 

access of phenol molecules to sorption sites and this results in slower kinetics. 

Within the first hour, the coal based AC has the highest kinetics with an average 

of 78% attainment, followed by coconut based ACs with 69% and the slowest is 

the biochar with 59% attainment. This will be relevant for practical applications; 

as shorter contact times enable smaller dimensions of contact tanks in continuous 

flow systems. 
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4.3.8  MODELLING OF KINETICS DATA 

Reaction and diffusion based kinetics models were used to fit the 

experimental data using linear and nonlinear regression methods. 

4.3.8.1  Linear Sorption Kinetics Models 

The suitability of a given model in describing the experimental data was 

assessed using the correlation method. Usually, the model that gives the highest 

𝑅2 value with respect to the fitted experimental data is chosen as the best model 

to describe the sorption kinetics of the system under consideration. The model 

parameters were obtained from the slope and intercept of the plots of linear fitted 

data in Figures 4.13 – 4.16.  

  

Figure 4.13: Data fitting using pseudo 1st order linear model for sorption 
kinetics of phenol on (a) Coconut based ACs and, (b) Coal based 
ACs. 

 
Figure 4.14: Data fitting using pseudo 2nd order linear model for sorption 

kinetics of phenol on (a) Coconut based ACs and, (b) Coal based 
ACs 

y = -0.0007x + 1.8951
R² = 0.8999

y = -0.0008x + 1.7682
R² = 0.8400

0.0

0.5

1.0

1.5

2.0

2.5

0 500 1000 1500 2000

lo
g
(Q

e
-Q

t)

Time (min)

a) CoAC

MCoAC

y = -0.0006x + 1.7158
R² = 0.9221

y = -0.0006x + 1.4686
R² = 0.8597

0.0

0.5

1.0

1.5

2.0

2.5

0 500 1000 1500 2000

lo
g
(Q

e
-Q

t)

Time (min)

b) CoalAC

MCoalAC

y = 0.0048x + 0.0659
R² = 0.9996

y = 0.0072x + 0.1129
R² = 0.9998

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

t/
Q

t

Time (min)

a) CoAC

MCoAC

y = 0.0057x + 0.0599
R² = 0.9997

y = 0.0086x + 0.0669
R² = 0.9998

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

t/
Q

t

Time (min)

b)
CoalAC

MCoalAC



Chapter 4: SORPTION OF PHENOL 

 

 

Badruddeen Saulawa SANI  92 January, 2017 

  

Figure 4.15: Data fitting using Elovich model for sorption kinetics of phenol on 
(a) Coconut based ACs and, (b) Coal based ACs. 

  

  

Figure 4.16: Phenol sorption on biochars: fitting kinetics data using (a) pseudo 
1st order, (b) pseudo 2nd order, (c) Elovich and (d) correlation 
between experimental and simulated data for MBio-1 

Model parameters obtained from the linear data fitting are summarised in 

Table 4.11. It can be observed that the Elovich model has the highest 𝑅2 value 

for all sorbents, this suggests it has the best compatibility with the experimental 

kinetics data. It may therefore be inferred that the sorption kinetics of the 

examined sorbents is governed by the rate of chemisorption of phenol on their 

heterogeneous surfaces. The pseudo 1st order model has the least 𝑅2 value, and 

as reported in other similar works (Park et al., 2010; Kilic et al., 2011; Gundogdu 

et al., 2012), the 𝑄𝑒 predicted by this model is not similar to the experimental 𝑄𝑒. 
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Table 4.11: Model parameters for kinetics of phenol sorption on ACs and 
BCs; (obtained using linear regression). 

Model Parameter CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 

1st 

𝑄𝑒 78.54 58.64 51.97 29.42 7.95 6.68 

𝑘1 1.54E-03 1.74E-03 1.47E-03 1.30E-03 1.03E-03 1.08E-03 

𝑅2 0.8247 0.7710 0.8657 0.7549 0.8379 0.8482 

2nd 

𝑄𝑒 209.30 139.12 175.44 115.71 14.77 11.99 

𝑘2 3.46E-04 4.58E-04 0.00 0.00 2.70E-03 2.99E-03 

𝑅2 0.9023 0.9394 0.8228 0.8948 0.9283 0.9324 

Elovich 

𝛼 2.66E+03 1.83E+02 1.21E+05 5.14E+05 24.57 13.48 

𝛽 0.06 0.07 0.10 0.16 0.70 0.83 

𝑅2 0.9849 0.9653 0.9813 0.9696 0.9991 0.9982 

Intra-P 

𝑘𝑖𝑑 98.16 49.20 103.79 73.81 5.38 4.07 

𝑧 0.11 0.16 0.07 0.06 0.14 0.15 

𝑅2 0.9709 0.9223 0.9817 0.9563 0.9907 0.9905 

Experimental 𝑄𝑒 208.08 137.89 174.77 115.36 14.63 11.86 

4.3.8.2  Nonlinear Sorption Kinetics Models 

A nonlinear fitting method was used to simulate the experimental data. The 

parameters generated by all the error functions for each model for all the sorbents 

are presented in appendix B1. Compared to the linear fitting method, the kinetic 

curves obtained were closer in resemblance to the experimental data. The 

superiority of the Elovich model is obvious. For instance, in Figure 4.17, the 

kinetics for sorption of phenol on CoAC, the curves obtained from Elovich for both 

linear and nonlinear fits overlap the experimental data.  

  

Figure 4.17: Sorption kinetics of phenol on CoAC: Fitting of experimental data 
using (a) linear models and (b) nonlinear models 

The plots for nonlinear fitting method is presented in appendix B2. 
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function values (see Table 4.12 and 4.13) compared to what was obtained for the 

linear method. 

Table 4.12: Results of optimised error functions for the kinetics of phenol 
sorption on CoAC 

Err. Fxn 1st_L 2nd_L Elovich_L Intra-P_L 1st 2nd Elovich Intra-P 

CoD 0.5049 0.7910 0.9849 0.9717 0.7526 0.8561 0.9851 0.9719 

HYBRID 1.73E+04 936.00 15.46 29.09 418.07 183.01 15.37 28.67 

MPSD 108.88 28.02 3.31 4.46 15.92 10.67 3.27 4.45 

ARE 91.29 16.62 2.29 3.35 10.98 7.94 1.83 3.11 

EABS 954.28 148.36 23.46 35.15 135.24 82.34 19.72 33.37 

ERSSQ 1.32E+05 5644.00 111.47 223.19 3401.55 1443.60 111.47 209.54 

ASE 2.50E+04 1128.87 26.00 49.21 663.67 287.95 25.28 46.53 

Table 4.13: Summary of ASE for optimised error functions for the kinetics of 
phenol sorption on ACs and BCs 

Sorbent 1st_L 2nd_L Elovich_L Intra-P_L 1st 2nd Elovich Intra-P 

CoAC 2.50E+04 1128.87 26.00 49.21 663.67 287.95 25.28 46.53 

MCoAC 9727.20 259.73 47.31 109.37 332.44 119.63 46.48 94.21 

CoalAC 22286.99 1156.32 13.15 13.00 357.27 179.99 13.14 12.71 

MCoalAC 11615.06 384.53 9.26 12.63 112.25 43.06 9.08 12.40 

Bio-1 3.00E+02 29.67 0.36 1.65 24.89 10.84 0.35 1.47 

MBio-1 226.15 25.48 0.46 1.69 24.04 9.66 0.43 1.60 

The parameters obtained using the nonlinear methods appear to be more 

suitable for the evaluation of the sorption kinetics. Table 4.14 presents the 

summary of optimised model parameters and once again, the Elovich model is 

best in describing the experimental data. It can be observed that according to the 

Elovich constant 𝛼 (the initial chemisorption rate), the sorbents can be ranked in 

the order; MBio-1 < Bio-1 < MCoAC < CoAC < CoalAC < MCoalAC. This 

arrangement agrees well with the result obtained for the fractional attainment i.e. 

Figure 4.12. Hence, it can be inferred that the coal based ACs have faster kinetics 

compared to the other sorbents. This is likely due to its superiority in pore volume 

over the other sorbents. Additionally, the data shows that MCoalAC has faster 

kinetics than CoalAC, (p-value = 0.02; α = 0.05), hence, the presence of the 

magnetite on its surface enhances its rate of phenol uptake. Therefore, the coal 

based ACs could be better sorbents in the removal of phenol from aqueous 

medium.  
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Table 4.14: Optimised model parameters for kinetics of phenol sorption on 
ACs and BCs. 

Model Parameter CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 

1st 

𝑄𝑒 173.52 117.73 147.40 101.50 11.86 9.87 

𝑘1 1.42E-01 8.41E-02 2.48E-01 2.44E-01 8.57E-02 6.70E-02 

𝑅2 0.5678 0.7450 0.3730 0.5329 0.6000 0.6571 

2nd 

𝑄𝑒 187.66 128.59 157.24 107.23 12.90 10.44 

𝑘2 1.08E-03 8.58E-04 0.00 0.00 9.12E-03 9.74E-03 

𝑅2 0.8099 0.9065 0.6908 0.8214 0.8111 0.8236 

Elovich 

𝛼 2.66E+03 183.0724 1.21E+05 5.14E+05 24.57 13.48 

𝛽 0.06 0.07 0.10 0.16 0.70 0.83 

𝑅2 0.9849 0.9653 0.9813 0.9696 0.9991 0.9982 

Intra-P 

𝑘𝑖𝑑 98.16 49.20 103.99 75.96 5.38 4.07 

𝑧 0.11 0.16 0.07 0.06 0.14 0.15 

𝑅2 0.9709 0.9223 0.9817 0.9580 0.9907 0.9905 

Experimental 𝑄𝑒 208.08 137.89 174.77 115.36 14.63 11.86 

The sorbents can be arranged in order of the Elovich constant 𝛽 (the 

desorption constant) as; CoAC < MCoAC < CoalAC < MCoalAC < Bio-1 < MBio-

1. This is about the reversed order of their sorption capacity, hence it confirms 

that the coconut ACs have higher number of sites available (assessed as 1/𝛽) 

for the chemisorption of phenol (Tseng et al., 2003; Baccar et al., 2012; Guedidi 

et al., 2013). Generally, a higher 𝛽 value is an indication that desorption becomes 

relevant at a much earlier stage due to faster attainment of equilibrium. Therefore, 

it implies that due to higher 𝛽 value, the coal based ACs will be exhausted faster 

than the coconut based ACs. Consequently, in order to benefit from the faster 

kinetics of the coal based AC, higher dosage has to be used to compensate for 

the deficit of sorption capacity, particularly compared to the coconut based ACs. 

The intraparticle model next to the Elovich model, has good error function 

values and as such conforms to the experimental data. This indicates that part of 

the kinetics is controlled also by intraparticle diffusion. The sorbents can be 

arranged in terms of their 𝑘𝑖𝑑 values as; MBio-1 < Bio-1 < MCoAC < MCoalAC < 

CoAC < CoalAC. This supports the suggestion that phenol sorption progresses 

according to the micropore filling mechanism, since it can be seen that the ACs 

have higher 𝑘𝑖𝑑 values due to their amplified pore structure compared to the BCs. 
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Also the presence of magnetite could be the reason why the magnetic sorbents 

have lower 𝑘𝑖𝑑 value compared to their corresponding pair of pristine sorbent. 

4.3.9  INFLUENCE OF CaCl2 ON SORPTION OF PHENOL 

The essence of using CaCl2 as background solution it to maintain constant 

ionic strength to the system. This is because in real scenario, phenol exist 

together with dissolved metals, therefore the CaCl2 solution represents possible 

metals that could exist in real refinery wastewater. The result for the influence of 

background ionic solution is shown in Figure 4.18 

 

Figure 4.18: Effect of background ionic solution on sorption of phenol on ACs 
and BCs 

It can be seen that the residual phenol concentration for each sorbent and 

control remained the same irrespective of the concentration of CaCl2 background 

solution. These results show that the presence of CaCl2 does not affect the 

sorption of phenol on the sorbents. The residual concentrations of samples with 

0.01 and 0.05M CaCl2 background solution are statistically similar (p-values 

0.896 and 0.842 respectively) to those of the deionised water. Therefore the 

presence of similar salts in refinery wastewater are not expected to exert a 

significant effect on the sorption of phenol on the sorbents. Similar findings have 

been reported in literature (Chen et al., 2008; Zhang et al., 2010b) 
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4.3.10  SORPTION IN SYNTHETIC WASTEWATER 

  

  

Figure 4.19: Effect of fouling on the sorption of phenol on (a) CoAC, (b) 
MCoAC, (c) Bio-1 and (d) MBio-1 

The effect of fouling due to competition with compounds in synthetic 

wastewater (SWW); at 16 mg/L DOC, is shown in Figure 4.19. Among the 

sorbents, the highest impact, a decrease of 29.29 % was recorded when phenol 

was contacted to CoAC after the SWW had a 24 hr sorption head start. This 

means that some of the sites were inaccessible to the phenol molecules after the 

sorption of the SWW. There is an average general decrease of about 21.19 and 

13 % phenol sorption on CoAC, and MBio-1 respectively, irrespective of the order 

of contact (see Figure 4.19(a & d)).  

The decrease observed due to competition from compounds in the SWW in 

phenol sorption on MCoAC and Bio-1 is generally insignificant (highest 6.4 %) as 

can be seen in Figure 4.19(b & c). Generally, the decrease in the uptake of phenol 

on all sorbents due to the presence of competing organics depends on the order 

of contact between the sorbents, phenol and the SWW. The least impact, an 

average of 7 % decrease for all sorbents was recorded when phenol was given 

24 hr sorption head start. The most impact, an average of 20.55 % for all sorbents 

was recorded when the SWW was contacted with the sorbents before the addition 
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of phenol. Finally, when both phenol and SWW were simultaneously contacted 

with the sorbents, a decrease of 14.97 % was recorded. This suggests that the 

phenol and the competing compounds share some common sites and not all 

available sites. This is due to variation in sorption mechanisms as a result of 

differences in their properties which determines the possible form of interaction 

that results in the removal of each of species from the solution. The sorption of 

SWW in the presence of phenol could not be measured due to its complex 

composition. According to the partition coefficient for sorption of pure SWW on 

the sorbents, it can be seen in Figure 4.20(a), that the ACs have high affinity for 

SWW, while it sorbs poorly on the BCs (Figure 4.20(b)).  

  

Figure 4.20: Sorption of pure SWW on a) ACs and b) BCs. [Note; figures have 
different scales] 

4.4  SUMMARY 

The sorption of phenol on magnetic activated carbon and biochar has been 

investigated. In terms of sorption capacities, it was observed that the ACs have 

about 87 % higher phenol uptake than the BCs. This is due to the ACs having 

larger surface area (𝐴𝑆)and micropore volume (𝑉𝑀𝑃) as a result of activation. 

There is also a difference in phenol uptake capacity between the composites and 

pristine sorbents of about 36.87 %. This is proportional to their difference in 

carbon content and accordingly, the composites have lesser 𝐴𝑆 and 𝑉𝑀𝑃 . 

Therefore, it can be concluded that the sorption capacities of the sorbents are 

being influenced by their 𝐴𝑆 and 𝑉𝑀𝑃. Hence, to achieve equal sorption 

capacities as obtains for the pristine sorbents, higher dosages of the composites 

must be used. Likewise, higher BCs dosages are required to achieve the same 

level of phenol removal that is obtained using the ACs. The influence of 
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temperature was not noticeable. Sorption isotherm data obtained at both 295.15 

and 10oC were statistically similar (p-value = 0.697). According to isotherm 

models, phenol sorption is more favourable over heterogeneous surfaces and it 

progresses according to the micropore filling mechanism, especially the ACs.  

The rate of phenol uptake differs between the ACs and the BCs as well as 

between composites and pristine sorbents. Judgements derived using the 

parameters of the Elovich model is in good agreement with deductions obtained 

from analysis of plots of experimental data. The presence of iron oxide deposits 

on the surface of the carbon hinders the smooth access of phenol molecules to 

sorption sites. As a result, slower kinetics were recorded in all composites but 

MCoalAC, whose kinetics seem to be better (p-value = 0.02) than CoalAC. The 

reason behind this increase need to be investigated further so as to take 

advantage of possible sorption enhancement. With faster kinetics and lesser 

concentration of sorption sites compared to the coconut based AC, the coal 

based AC is most likely to be exhausted faster. Therefore, higher dosage of the 

coal ACs are required to compensate for the deficit to make it a better alternative 

to the coconut AC.  

Nonlinear fitting method can be used to optimise model parameters. In 

majority of cases for both sorption isotherm and kinetics, the nonlinear method 

generates lower error distribution between experimental and simulated data. The 

use of nonlinear methods is therefore recommended for the analysis of phenol 

sorption isotherms at high concentrations. At low concentrations, the linear 

isotherm model is most appropriate. 

The ACs and the BCs behave differently under the influence of pH. For the 

ACs, phenol uptake is highest at pH within the vicinity of the pKa value and is 

lower at both ends of the pH scale. Therefore, the sorption is favoured by 

electrostatic interactions between positively charged surface and negatively 

charged phenolate anion. At lower pH sorption is hindered due to competition 

with H+ and the localisation of sorbent π electrons due to increased oxidation. For 

all sorbents, sorption of phenol is lowest at high end of the pH due to electrostatic 

repulsion between negatively charged surface and phenolate carboxylate anion. 

This could also be due to increased solubility of the dissociated phenol specie. 

The adsorption edge model could not simulate the influence of pH on phenol 
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sorption, likely because it was mostly applicable where homoionic or non-

functionalised, extremely low variable-charge surface sorbents are involved. In 

practical applications, pH adjustment to around pH 9 would facilitate phenol 

removal by these sorbents. 

The attenuation of phenol sorption due to competition from synthetic 

wastewater was observed. Highest reduction in phenol uptake of about 20.55 % 

on average for all sorbents was recorded when the sorbents were contacted with 

the SWW for 24 hr before phenol was introduced. Therefore, both phenol and 

SWW share some common sorption sites and not all available sites. 

Nevertheless, the results clearly show that activated carbon in pure and 

magnetised form can be used in the removal of phenol from solutions even in the 

presence of other, dissimilar DOC  

In this chapter competition was appraised using single concentration of 

target pollutant. The proceeding chapter presents investigations into the effect of 

competition using real wastewaters and varied concentration of target pollutants. 

This will provide more insights into effect of competing compounds on the 

sorption of target pollutants’ at different concentration levels. Additionally, it will 

help in the selection of appropriate models that can be used in describing the 

sorption of pollutants from such realistic conditions.  
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CHAPTER 5.  SORPTION OF PHARMACEUTICALS 

5.1  INTRODUCTION 

 This chapter is a consolidation of the findings of the previous chapters. 

Experiments were conducted using CoAC, MCoAC, Bio-1 and MBio-1, because 

they have exhibited better sorption characteristics among each category of the 

sorbents. Two additional variations were tested as follows; 

i) It has been observed from chapter 4, that the magnetic sorbents have 

lesser sorption capacity due to their lower carbon content compared to 

their nonmagnetic pairs. Hence the amount of the magnetic sorbents 

used in this chapter was increased by about 36% (more than what is used 

for the nonmagnetic pairs) to make up for the deficit in the carbon content. 

The magnetic sorbents are therefore expected to have similar sorption 

capacities than their pristine pairs, especially when solid phase 

concentrations are computed based on the carbon content used. 

ii) In chapter 4, fouling effect was evaluated using 1-point concentration of 

phenol in the presence of SWW. To have a broader appraisal of fouling 

effect, 5-point sorption isotherm experiments were conducted for the 

pharmaceuticals using CaCl2 and real wastewater sample separately as 

background solutions. This will give an insight of the effect of competitors 

to the sorption of micropollutants in quasi real scenario.  

5.2  EXPERIMENTAL SECTION 

5.2.1  DETERMINATION OF SORPTION ISOTHERMS IN CaCl2 SOLUTION  

Batch experiment tests were conducted to evaluate the sorption 

characteristics of sorbents. The materials to be used were autoclaved before the 

commencement of experiments, to minimise the effect of microbial degradation 

of pollutants. 

Equilibrium experiment was conducted using CaCl2 solution and wastewater 

treatment plant effluent (WWTPE) separately as background solutions. Stock 
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solution was prepared using UHQ water (Ultra High Quality, 18.2 MΩ purity) 

containing 75 % (v/v) of methanol to increase the solubility of the compounds. 

5.2.1.1   Determination of Sorption Isotherms 

Approximately, 4.0 mg of CoAC or 6.0 mg of MCoAC (ca. 3.8 mg carbon 

material) were contacted with 90 mL of autoclaved 0.01 M CaCl2 solution in a 250 

mL glass bottles. In the same manner, 40.0 and 60.0 mg of Bio-1 and MBio-1 

were contacted with 29 mL of autoclaved 0.01 M CaCl2 solution in 40 mL glass 

vials. The mixture was shaken overnight at 155 rpm on a shaker at room 

temperature and thereafter, an aliquot (10 and 1 mL for ACs and BCs resp.) of 

stock ibuprofen or diclofenac solution was added to the CaCl2 conditioned 

sorbent such as to achieve a predetermined desired initial concentration of 5, 10, 

15, 20 and 30 mg/L. It is ensured that the fraction of methanol in each sample at 

the commencement of the experiment is not more than 2.5% to avoid co-solvent 

effects (Durán-Álvarez et al., 2012; Murillo-Torres et al., 2012; Guedidi et al., 

2013). The samples were set to shake for 24 hours under the conditions 

mentioned earlier, but this time in total darkness to avoid photodegradation 

effects. Similar samples with varied initial concentrations containing no sorbent 

(to serve as control) were run in parallel to determine the possible degradation of 

the sorbate or its adsorption to the walls of the glass vials. At the end of the 

shaking sequence, the samples were removed from the shaker and separated by 

centrifugation at 5000 rpm for 5 mins. The supernatant was carefully transferred 

with a pipette into a vial for the measurement of residual ibuprofen or diclofenac 

concentration. Duplicate samples were used throughout the experiment and 

average values were reported. Equilibrium concentrations were measured using 

a Waters-UPLC Acquity equipped with TQ-S Mass Spec, with a negative 

ionization in ESI source, a BEH C18 column, 100x2.1 mm, 1.7um, operated at a 

flow rate of 0.3 mL/min and temperature 30 oC. Gradient operation mode was 

used with an injection volume of 5-20 uL and the mobile phases were A (water + 

0.025% NH3) and B (acetonitrile+0.025% NH3). 
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5.2.1.2  Determination of Sorption Kinetics 

To evaluate the sorption kinetics, samples having an initial concentration of 

10 mg/L were processed as in 5.1.1.1 and the residual concentration was 

measured at the following time intervals, 15, 30 and 60 min, 3, 6, 12 and 24 hr. 

5.2.1.3  Determination of pH Influence on Sorption 

To evaluate the influence of pH on the sorption system, 4.0 mg of CoAC or 

6.0 mg of MCoAC (ca. 3.8 mg carbon material) were contacted with 90 mL of 

autoclaved 0.01 M CaCl2 solution in a 250 mL glass bottles. In the same manner, 

40.0 and 60.0 mg of Bio-1 and MBio-1 were contacted with 29 mL of autoclaved 

0.01 M CaCl2 solution in 40 mL glass vials. The mixture was shaken overnight at 

155 rpm on a shaker at room temperature and thereafter, the pH of the CaCl2 

conditioned samples were then adjusted to 3, 5, 7, 9 and 11 using aliquot 

amounts of 0.1 M of HNO3 or 0.1 M of KOH. The mixture was shaken overnight 

at 155 rpm on a shaker at room temperature and necessary adjustments were 

made to maintain target values. All pH measurements were done using a Jenway 

3310 pH meter. Thereafter, an aliquot (10 and 1 mL for ACs and BCs resp.) of 

stock ibuprofen or diclofenac solution was added to the pH preconditioned 

sorbent such as to achieve a predetermined desired initial concentration of 10 

mg/L. It is ensured that the fraction of methanol in each sample at the 

commencement of the experiment is not more than 2.5% to avoid co-solvent 

effects. The samples were set to shake for 24 hours under the conditions 

mentioned earlier. Control samples containing no sorbent and treated in similar 

manner to determine the possible degradation of the sorbate or its adsorption to 

the walls of the glass vials. At the end of the shaking sequence, the samples were 

removed from the shaker and separated by centrifugation at 5000 rpm for 5 mins. 

The supernatant was carefully transferred with a pipette into a vial and the 

residual ibuprofen or diclofenac concentration was determined using the UPLC. 

Duplicate samples were used throughout the experiment and average values 

were reported. 

5.2.2  EQUILIBRIUM IN SPIKED WWTPE:  

Samples from the WWTPE described in 3.4.1, were spiked with aliquot 

amount of stock ibuprofen or diclofenac stock solution such as to achieve a 
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predetermined desired initial concentration of 5, 10, 15, 20 and 30 mg/L of the 

pharmaceuticals. The spiked effluent was added to 4.0 mg of CoAC or 6.0 mg of 

MCoAC (ca. to 4.0 mg carbon material) in a 250 mL glass bottles and the samples 

were processed as explained in 5.2.1.1. 

5.3  RESULT AND DISCUSSION 

5.3.1  EVALUATION OF IBUPROFEN SORPTION ISOTHERMS FROM CaCl2 

SOLUTION 

The sorption isotherm of ibuprofen on magnetic and nonmagnetic activated 

carbon and biochar is shown in Figure 5.1. Sorption pattern depicts nonlinear 

isotherms in all samples suggesting that the amount sorbed is related to the 

interaction of sorbent and sorbate properties in addition to the equilibrium 

concentration. Isotherm curves are characterised by steep rise at the lower end 

of the plot with data points within the vicinity of the ordinate axis, suggesting a 

higher relative sorbate uptake at lower concentrations. This is due to the relative 

abundance of free limited sorption sites to be occupied by a less number of 

sorbate molecules (Roop and Meenakshi, 2005; Çeçen and Aktas, 2011). 

Consequently, more sorbate molecules bind to the surface of the sorbents and 

are thus removed from the solution.  

  

Figure 5.1: Isotherm plot for sorption of ibuprofen on (a) ACs and (b) BCs. 
[Note; figures have different scales] 

The steepness of the plots progressively decreases because the number of 

the available sorption sites remain constant, hence, increase in the initial sorbate 

concentration is not met with a corresponding increase in the number of available 

sorption site (Baccar et al., 2012). As such, only a limited number of free sorbate 
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molecules will be removed from the solution at equilibrium (Limousin et al., 2007). 

Therefore, the concentration of residual sorbate molecules increases as the initial 

concentration increases. 

The activated carbons present about 2 order of magnitude of higher uptake 

of ibuprofen as compared to the biochars due to their superior surface area (𝐴𝑆) 

and better developed pores. This clearly shows the benefit of activation. CoAC 

exhibits highest uptake of ibuprofen and unlike MCoAC, its isotherm does not 

assume a plateau within the range of concentration studied. In other words, it 

does not portray a Langmuir type of isotherm where sorption is restricted to 

monolayer coverage on homogenous surface, sorbate molecules do not interact 

and sorption sites have equal activation energy (Ho and McKay, 2002). In the 

case of the biochars, the isotherm of MBio-1 did not assume a plateau within the 

range studied. This is typical of sorption on heterogeneous surface as postulated 

by the Freundlich type of isotherm.  

The solid phase concentrations were computed with respect to the total 

mass of sorbents used; 4.0 mg for CoAC and 6.0 mg for MCoAC (ca. 3.8 mg 

activated carbon content); 40 mg for Bio-1 and 60 mg for MBio-1 (ca. 40 mg 

biochar content). It has been shown (Jiang et al., 2015) that the uptake of 

pollutants on magnetic carbon composites decreases as the amount of carbon 

content decreases. Then in theory, it is expected that the sorption capacity of the 

pristine sorbent will be similar to that obtained if the sorption on composite is 

normalised with respect to its carbon content (Han et al., 2015b). When the 

sorption of ibuprofen on the magnetic sorbents is normalised (MCoAC_norm & 

MBio-1_norm) with respect to the mass of carbon in the matrices, the isotherms of 

the CoAC and MCoAC overlap, while the isotherms of the MBio-1 shoots above 

that of Bio-1. On one hand, it is apparent that CoAC has a larger SA than MCoAC 

(975 vs 643 m2/g) and therefore may be an indication of the reason for a higher 

sorption capacity. On the other hand, however, the difference in 𝐴𝑆 between the 

BCs is much less in proportion to that between the ACs. Therefore, in addition to 

the 𝐴𝑆, other parameters –perhaps pore related- are also influencing the 

ibuprofen sorption capacities of the sorbents.  
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Of the pore related parameters, only the micropore volume (𝑉𝑀𝑃) and pore 

volume (𝑉𝑃) show strong correlation with the 𝐴𝑆 (Pearson correlation 𝑅 = 0.9962 

and 0.9528 respectively), and are likely the important factors. The 𝑉𝑃 of the ACs 

are about the same, while MBio-1 has a larger 𝑉𝑃 as compared to Bio-1. During 

the production of the magnetic biochar, the acidity of the initial solution dissolves 

carbonate deposits in the pores of biochar, thus creating new accessible pore-

space. Also, Nguyen et al. (2011), observed that the deposition of magnetic 

particles on the surface of AC resulted in the formation of new pores. This could 

improve the sorption capacity of such modified sorbents. Also, sorbent pairs will 

have about the 𝐴𝑆 when normalised with respect to the mass of their carbon 

contents (some magnetic biochar sorbent samples have shown carbon content 

up to 80% carbon content). It is therefore plausible that the ibuprofen sorption 

capacities of the BCs are being influenced by their 𝑉𝑃 in addition to their 𝐴𝑆 and 

𝑉𝑀𝑃. Furthermore, with relatively small 𝐴𝑆 ca. 66 – 96 m2g-1 (Sun et al., 1998; 

Oliveira et al., 2002) compared to that of the sorbents, it can be inferred that the 

iron oxide in the MCoAC does not contribute to the sorption of ibuprofen, which 

is similar to the finding of (Han et al., 2015b). 

5.3.1.1  Modelling of Sorption Isotherms Data:  

A. Ibuprofen sorption: Linear isotherm model  

This model is applicable to lower concentration of the isotherm data. 

Comparing sorption of the sorbents can be done using the partition coefficient 

(𝐾𝑑). Figure 5.2 shows two order of magnitude higher ibuprofen uptake for the 

ACs compared to the BCs due to amplified 𝐴𝑆 and pore structure in the case of 

the ACs. The higher 𝐾𝑑 value of the CoAC against the MCoAC (has 38 % less) 

also suggest that in the ACs sorption is influenced mostly by the 𝐴𝑆. Accordingly, 

the higher 𝐾𝑑 value of MBio-1 (78 % more) against Bio-1 indicates the 

significance of pore volume in the sorption of ibuprofen on the biochars. 
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Figure 5.2: Partitioning coefficient for sorption of ibuprofen on (a) ACs and 
(b) BCs. [Note; figures have different scales] 

B. Ibuprofen sorption: Nonlinear models 

The isotherm data was fitted using both linear and nonlinear regression 

methods for the nonlinear models. For each sorption system and a given isotherm 

model, parameters were determined using all six error functions mentioned in 

3.7.3, in addition to the methods of least square. Since each method generated 

unique sets of parameters, the error function that produced the least coefficient 

of non-determination was chosen as the best in representing that model (Kumar 

et al., 2008b). In general, both methods fit the data reasonably well, although, for 

all error functions considered, the nonlinear methods exhibit less error distribution 

than the LTFM method.  

Table 5.1: Results of optimised error functions for the sorption of ibuprofen 
on CoAC 

Err. Fxn LANG_L FR_L RP_L LANG FREU RED-PET DA PDM 

CoD 0.9301 0.9622 0.9907 0.9557 0.9639 0.9912 0.9854 0.9854 

HYBRID 424.30 99.20 28.84 100.97 95.84 27.58 49.59 0.24 

MPSD 17.70 7.02 3.50 6.37 6.99 3.47 4.62 4.62 

ARE 9.02 4.11 1.66 3.99 3.62 1.64 2.02 2.34 

EABS 74.71 41.85 19.63 62.02 38.48 19.47 25.37 0.16 

ERSSQ 1819.20 630.13 136.71 734.45 533.64 125.07 218.05 0.01 

ASE* 390.84 130.39 31.73 151.31 113.10 29.54 49.94 1.23 

* ASE = [(1-CoD) + HYBRID + MPSD + ARE + EABS + ERSSQ]/6 
Key: Err. Fxn (Error function), Lang_L (LTFM Langmuir), FR_L (LTFM Freundlich), RP_L (LTFM 

Redlich-Peterson), LANG (Langmuir), FREU (Freundlich), RED-PET (Redlich-Peterson), DA 
(Dubinin-Ashtakov) and PDM (Polanyi-Dubinin-Manes) 

The data for the optimised error functions for the sorption of ibuprofen on 

CoAC is shown in Table 5.1 and the summary of the average sum of errors (ASE) 

for all the sorbents is shown in Table 5.2. From these Tables, it can be seen that 
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the ASE for the nonlinear models is less than that for the corresponding LTFMs. 

This is not unexpected because in their nonlinear forms, the models are in 

harmony with the assumptions upon which they have originally been derived and 

so their error structure is unaltered (Porter et al., 1999; Ho, 2004).  

Table 5.2: Summary of ASE for the sorption of ibuprofen on ACs and BCs 

Sorbent LANG_L FR_L RP_L LANG FREU RED-PET DA PDM 

CoAC 390.84 130.39 31.73 151.31 113.10 29.54 49.94 1.23 

MCoAC 54.21 94.15 12.01 35.70 80.48 11.69 6.06 0.51 

Bio-1 1.54 2.52 1.17 0.97 2.35 1.11 0.60 0.55 

MBio-1 11.30 1.23 1.42 81.66 16.95 18.64 1.03 1.91 

Nonetheless, the LTFMs serve as a good approximation of the nonlinear 

models (Boulinguiez et al., 2008; Worch, 2012). As recorded in the work of Allen 

et al. (2004), in some instances, the LTFMs resulted in better data fitting than 

their corresponding nonlinear models. Type 1 linear Langmuir model (Equation 

2.5) is a better approximation of the nonlinear model than the type 2 (Equation 

2.6) in all instances; as has been observed by others (Ho, 2004; Kumar and 

Sivanesan, 2005; Kumar, 2007; Boulinguiez et al., 2008) and is therefore chosen 

to represent the LTFM Langmuir. 

Table 5.3: Summary of MSC for isotherm prediction using optimised model 
parameters for sorption of ibuprofen on ACs and BCs 

Model CoAC MCoAC Bio-1 MBio-1 

LANG 1.3 2.38 1.5 0.15 

FREU 2.52 1.93 0.34 3.27 

RED-PET 3.57 3.62 1.67 2.86 

DA 2.82 4.12 2.62 3.65 

PDM 2.82 4.12 2.62 3.64 

For all sorbents, the 3-parameter models have the least values of the ASE 

and therefore exhibit higher degree of data fitting compared to the 2-parameter 

models. This means that they have better conformity to the experimental data, 

which is similar to the observation of others (Ho et al., 2002; Allen et al., 2004; 

Wong et al., 2004). In particular, the Polanyi-Dubinin-Manes model has the least 

ASE and highest coefficient of determination. Similar observations were 

previously made by others (Yang et al., 2006a; Xu et al., 2008; Yang and Xing, 

2010). Yan et al. (2008) proposed that this is because the model does not assume 
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a homogeneous surface with respect to adsorption energies as is the case in 

Langmuir.  

  

Figure 5.3: Comparison of simulated and experimental isotherm plot for 
sorption of ibuprofen on (a) Bio-1 and (b) MBio-1 

Table 5.4: Optimised model parameters for isotherm of ibuprofen sorption 
on ACs and BCs 

Model Parameters CoAC MCoAC Bio-1 MBio-1 

Linear 𝐾𝑑* 251.36 155.03 2.49 4.43 

LANG 

𝑄𝑚 294.85 287.96 4.58 5.43 

𝐾𝐿 0.86 1.22 2.82 0.56 

𝑅2 0.9690 0.9813 0.9482 0.8859 

ASE 151.31 35.70 0.97 81.66 

FREU 

1 𝑛⁄  0.19 0.19 0.08 0.22 

𝐾𝐹 162.99 165.53 3.49 2.64 

𝑅2 0.9663 0.9357 0.7418 0.9836 

ASE 113.10 80.48 2.35 16.95 

RED-PET 

𝐾𝑅 784.13 607.70 9.89 7284.62 

𝐴𝑅 3.86 2.64 2.13 2760.56 

𝛾 0.89 0.92 1.00 0.78 

𝑅2 0.9915 0.9921 0.9441 0.9837 

ASE 29.54 11.69 1.11 18.64 

DA 

𝑄𝑜 293.72 167.16 4.48 7.97 

𝐸 20.48 18.43 12.68 32.44 

𝑏 1.75 2.19 5.99 0.63 

𝑅2 0.9853 0.9961 0.9784 0.9912 

ASE 49.94 6.06 0.60 1.03 

PDM 

𝑄𝑜 293.73 167.16 4.48 7.97 

𝑎 12.80 30.36 76669.05 1.88 

𝑏 1.75 2.19 5.84 0.63 

𝑅2 0.9853 0.9961 0.9784 0.9912 

ASE 1.23 0.51 0.55 1.91 
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This superiority in data fitting by the 3-parameter models could be due to 

their having more degrees of freedom, perhaps as a result of having redundant 

fitting parameters. Test for redundancy of model parameters was conducted 

using the MSC method. The result for the MSC is summarised in Table 5.3 and 

it shows that the 3-parameter models actually contain higher information about 

the system (Koeppenkastrop and De Carlo, 1993; Saiers and Hornberger, 1996) 

and thus have higher MSC values compared to the 2-parameter models. 

The result of optimised model parameters is shown in Table 5.4, and a plot 

of the optimised simulated isotherms are compared to the experimental curve for 

the BCs is shown in Figure 5.3. It can be seen that except for Freundlich for Bio-

1 and Langmuir for MBio-1, the isotherms predicted by these chosen parameters 

are significantly similar to the experimental isotherms. This suggests that their 

parameters can help in describing the sorption system within the examined range 

of concentration. 

For the 2-parameter models, assessments of the 𝑅2 and ASE values 

suggest that the sorption of ibuprofen on MCoAC and Bio-1 is best described by 

the Langmuir model, while MBio-1 is best described by Freundlich model and 

CoAC was almost equally described by the two models. The 3-parameter 

Redlich-Peterson model is useful in distinguishing between the types of isotherm 

i.e. as being either of Langmuir or Freundlich type (Ho, 2004; Kumar and 

Sivanesan, 2005). Close observation of the Redlich Peterson homogeneity factor 

‘𝛾’ shows good correlation with the pattern suggested earlier. In the case of Bio-

1, 𝛾 is equal to unity and in such situation, the Redlich-Peterson model becomes 

a special case of the Langmuir model (Ng et al., 2002). In MCoAC, 𝛾 is also close 

to unity, indicating conformity to Langmuir, while in MBio-1 it is low suggesting 

Freundlich type of sorption (Ho et al., 2005b) and finally, 𝛾 is just at the border 

between Langmuir and Freundlich in the case of CoAC.  

5.3.1.2  Ibuprofen Sorption Capacities 

As has been shown in the linear model, the sorption capacities of the ACs 

is 2 order magnitude higher than the BCs with respect to the capacity factors of 

the two and 3-parameter models. This further proves the applicability of the linear 

model in obtaining an estimate of sorption capacities. In the case of the 2-
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parameter models, comparing sorption capacities based on their capacity 

parameters is not straight forward due to difference in the goodness of fitting. 

According to Langmuir’s 𝑄𝑚, the capacities of the sorbents are in the order Bio-

1 < MBio-1 < MCoAC < CoAC, while according to the Freundlich’s 𝐾𝐹, the order 

is MBio-1 < Bio-1 < CoAC ≈ MCoAC. Nonetheless, in this instance, the sorption 

capacities can rather be more conveniently compared based on 𝑄𝑚 according to 

the following two considerations. Firstly, 𝑄𝑚 is quite similar to the highest 

observed solid phase concentration for all sorbents (see Table 5.4 and Figure 

5.1). This is usually the advantage the Langmuir model has over the Freundlich 

model whose capacity factor has an implicit unit making it difficult to compare 

directly with the experimental solid phase concentration (Worch, 2012). 

Secondly, the order depicted by 𝑄𝑚 is the same as compared to the capacity 

factors 𝑄𝑜 of the 3-parameter Polanyi based models; according to the two 

models, the order of sorption capacities of the sorbents is Bio-1 < MBio-1 < 

MCoAC < CoAC. It should be noted that although the two Polanyi related models 

have different expressions, they produce very identical parameters and in this 

instance, their 𝑄𝑜 is much similar to that obtained in the 𝑄𝑚 especially for the 

pristine sorbents. 

Table 5.5: Sorption of ibuprofen on ACs and BCs; Pearson correlation 
coefficients between model parameters and sorbent properties. 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.9965 0.9747 0.9881 0.1983 

Langmuir 
𝑄𝑚 0.9296 0.9733 0.9136 0.0997 

𝐾𝐿 0.3542 0.5425 0.2868 0.1438 

Freundlich 
1 𝑛⁄  0.2932 0.5209 0.2210 0.3179 

𝐾𝐹 0.9192 0.9675 0.9030 0.1251 

Redlich-Peterson 

𝐾𝑅 0.4932 0.3304 0.5458 0.1501 

𝐴𝑅 0.5720 0.4197 0.6203 0.1475 

𝛾 0.0636 0.1108 0.1273 0.0789 

Dubinin-Ashtakov 

𝑄𝑜 0.9982 0.9663 0.9909 0.2452 

𝐸 0.2078 0.0257 0.2705 0.1336 

𝑏 0.2903 0.4964 0.2202 0.2121 

Polanyi-Dubinin-Manes 

𝑄𝑜 0.9982 0.9663 0.9909 0.2453 

𝑎 0.4936 0.7000 0.4266 0.2808 

𝑏 0.2836 0.4894 0.2136 0.2095 
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Table 5.6: Sorption of ibuprofen on ACs and BCs; Pearson correlation 
coefficients between normalised model capacity factors and 
sorbent properties 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.9056 0.9643 0.8873 0.1597 

Langmuir 𝑄𝑚 0.7375 0.8548 0.7139 0.4375 

Freundlich 𝐾𝐹 0.7221 0.8424 0.6984 0.4559 

Dubinin-Ashtakov 𝑄𝑜 0.9287 0.9768 0.9112 0.1042 

The model parameters from Table 5.4, were correlated with sorbent 

properties from Table 3.1 to evaluate the influence of the latter over the former. 

The result is presented in Table 5.5, where it can be observed that while there is 

poor correlation between sorbents properties and the sorption intensity 

parameters, the correlation with capacity determining parameters i.e. ‘𝐴𝑆’, ‘𝑉𝑃 ’ 

and ‘𝑉𝑀𝑃 ’, is fairly strong (generally Pearson correlation coefficient 𝑅 =

0.9030 to 0.9982). Yang et al. (2006b), also had similar observation and thus 

suggested mesopore filling to be considered as component of sorption capacity. 

Furthermore, when the capacity factors are normalised according to the actual 

carbon content as shown in Table 5.6, 𝑉𝑃 showed stronger correlation with 𝐾𝑑 

and 𝑄𝑜. This observation is limited due to differences in model parameters and 

degree of goodness of fitting, yet it agrees well with the previous observation (i.e. 

in the discussion of Figure 5.1), that the sorption of ibuprofen is influenced by the 

volume of pores of the sorbents. Therefore, it can be concluded that in the 

sorption of ibuprofen, the sorbent’s sorption capacity is dependent upon these 

parameters and magnetisation does not detrimentally affect the ibuprofen 

sorption capacities of the AC and BC studied, especially when assessed with 

respect to the actual carbon content applied. 

5.3.1.3  Ibuprofen Sorption Affinity 

Almost identical variation of the heterogeneity factors in Freundlich and 

Redlich-Peterson models can be observed among the sorbents. The order for 𝛾 

is MBio-1 < CoAC ≈ MCoAC < Bio-1. In terms of 𝑛, MBio-1 < MCoAC ≈ CoAC 

<Bio-1, suggesting an increasing order of heterogeneity among the sorbents (Li 

et al., 2002). The Langmuir 𝐾𝐿 also compares among the sorbents according to 

this observed pattern, MBio-1 < CoAC < MCoAC < Bio-1. Considering these 
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parameters, it can therefore be stated that the sorption of ibuprofen within the 

studied concentration range is more favourable on heterogeneous surfaced 

sorbents as can be observed in Figure 5.4. 

 

Figure 5.4: Plot of Langmuir separation factor for sorption of ibuprofen on 
ACs and BCs 

It can be observed that the sorption of ibuprofen is more favourable at higher 

initial concentration than lower ones. This result is similar to what has been 

observed in the sorption of dyes on biosorbents (Ho et al., 2005a). The separation 

factors of the magnetic sorbents are significantly different (p-value <0.02; α = 

0.05, in both MAC and MBC) from those recorded for their corresponding pristine 

pairs. Accordingly, with reference to the pristine sorbents, significant alteration of 

energetic heterogeneity was not observed due the presence of iron oxide in 

MCoAC as was observed in the MBio-1. The variation in 𝑆𝐿 between 

corresponding pairs of sorbents is likely to be influenced by the sorbent’s capacity 

determining properties. For instance, for the same dosage of magnetite per gram 

of pristine sorbent (as used in the production of magnetic sorbent), there is 

excess surface area and pore system in the pristine AC, to accommodate the iron 

oxide. This causes marginal variation of 𝑆𝐿 on the MAC as compared to limited 

surface area and pore system of the pristine BC whence the variation was 

profound on the MBC 

5.3.2  EVALUATION OF DICLOFENAC SORPTION ISOTHERMS FROM CaCl2 

SOLUTION. 

The isotherm plot for the sorption of diclofenac is shown in Figure 5.5 and 

all curves shows nonlinear lines. In this instance however, none of the isotherms 

exhibits a clear plateau feature within the concentration range studied, unlike in 
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the sorption of ibuprofen. This could mean that the sorption sites are not 

completely exhausted or perhaps sorption takes the form of multilayer surface 

coverage, although the steepness of the curves is not prominent either. The ACs 

outperformed the BCs in the uptake of diclofenac up to by about two order of 

magnitude. Here also, the isotherms for the CoAC and MCoAC_norm overlap when 

the uptake of diclofenac on MCoAC is normalised with respect to the actual 

carbon content. In the case of the BCs however, the isotherm for MBio-1_norm 

overshoots that for Bio-1. Similar deductions as discussed in the sorption of 

ibuprofen on these sorbents can be proposed here as well, bearing in mind that, 

it has been earlier show that the influence of 𝑉𝑀𝑃 has been superimposed on that 

of the 𝐴𝑆, (Pearson correlation 𝑅 = 0.9962). Although the 𝐴𝑆 dictates the 

diclofenac sorption capacities (as can distinctively be seen between the ACs with 

superior 𝐴𝑆 and BCs with lesser 𝐴𝑆), 𝑉𝑀𝑃 also influences the overall sorption 

capacities of the BC system, although to a lesser degree when compared to the 

ibuprofen sorption. 

  

Figure 5.5: Isotherm plot for sorption of diclofenac on (a) ACs and (b) BCs. 
[Note; figures have different scales] 

5.3.2.1  Modelling of Sorption Isotherm Data 

A. Diclofenac sorption: Linear isotherm model  

The Kd for CoAC is 48% more than MCoAC while the 𝐾𝑑 for Bio-1 is just 

about 19% more than that of MBio-1. The composite materials show lesser 

sorption capacity due to the presence of less carbon material per mass as 

compared to the pristine carbon. This is in agreement with the findings of Castro 

et al. (2009), where it was shown that decrease in sorption capabilities of 

composites is due to the presence of magnetic material which causes a reduction 
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in the total amount of carbon sorbent available for sorption. The ACs present 

almost two order of magnitude higher diclofenac uptake compared to the BCs. 

  

Figure 5.6: Partitioning coefficient for sorption of diclofenac on (a) ACs and 
(b) BCs 

B. Diclofenac sorption: Nonlinear models 

Data fits reasonably well to all models using both linear and nonlinear 

regression methods, except for Langmuir models. As expected, the nonlinear 

method has superior data fitting ability due to conservation of models’ original 

error structure, which is not strongly so in the case of the LTFM method (Goldberg 

et al., 2005). Hence, the ASE for the nonlinear models is less than that for the 

corresponding LTFMs (see Table 5.7). 

Table 5.7: Summary of ASE for the sorption of diclofenac on ACs and BCs 

Sorbent LANG_L FR_L RP_L LANG FREU RED-PET DA PDM 

CoAC 298.60 17.72 19.67 81.66 16.95 18.64 13.04 0.88 

MCoAC 54.61 7.42 6.68 14.97 7.24 6.35 6.99 0.92 

Bio-1 11.21 1.23 0.81 5.39 1.18 0.80 0.53 0.44 

MBio-1 13.44 2.28 2.69 8.83 2.24 2.65 2.58 1.91 

Table 5.8: Summary of MSC for isotherm prediction using optimised model 
parameters for sorption of diclofenac on ACs and BCs 

Sorbent CoAC MCoAC Bio-1 MBio-1 

LANG -0.71 0.28 0.8 0.74 

FREU 2.23 2.48 3.82 2.82 

RED-PET 1.82 2.3 4.42 2.48 

DA 2.22 2.19 5.1 2.51 

PDM 2.22 2.19 5.1 2.5 

From Table 5.8, to select a representative model, it can be observed that 

except for Bio-1, the Freundlich model has the highest MSC value for all the 
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models tested. In contrast, Langmuir model has the least MSC value in all cases. 

Accordingly, the Freundlich is the best model (having higher information about 

the system) that can describe the sorption of diclofenac on CoAC, MCoAC and 

MBio-1. In the case of Bio-1, the 3-parameter models have higher MSC value 

than Freundlich; the DA model has the highest value. 

Table 5.9: Optimised model parameters for isotherm of diclofenac sorption 
on ACs and BCs 

Model Parameters CoAC MCoAC Bio-1 MBio-1 

Linear 𝐾𝑑* 102.71 53.20 10.92 8.83 

LANG 

𝑄𝑚 164.19 97.09 9.76 8.072 

𝐾𝐿 0.81 0.92 0.74 0.45 

𝑅2 0.8071 0.9270 0.9600 0.9427 

ASE 81.66 14.97 5.39 8.83 

FREU 

1 𝑛⁄  0.13 0.13 0.22 0.27 

𝐾𝐹 105.74 63.10 5.20 3.36 

𝑅2 0.9546 0.9624 0.9903 0.9754 

ASE 16.95 7.24 1.18 2.24 

RED-PET 

𝐾𝑅 1.73E+05 505.63 58.19 1584.99 

𝐴𝑅 1633.20 7.25 10.05 480.17 

𝛾 0.87 0.91 0.82 0.72 

𝑅2 0.9545 0.9699 0.9964 0.9754 

ASE 18.64 6.35 0.80 2.65 

DA 

𝑄𝑜 204.82 98.72 10.67 9.81 

𝐸 94.77 33.46 22.36 21.24 

𝑏 0.56 1.29 1.38 0.97 

𝑅2 0.9684 0.9664 0.9982 0.9754 

ASE 13.04 6.99 0.53 2.58 

PDM 

𝑄𝑜 204.94 98.72 10.67 9.817 

𝑎 2.57 33.47 74.44 21.243 

𝑏 0.56 1.29 1.38 0.964 

𝑅2 0.9684 0.9664 0.9982 0.9754 

ASE 0.88 0.92 0.44 1.91 

*x103 

As compared to the Langmuir, the Freundlich model offers better values for 

both 𝑅2 and ASE (see Table 5.9), suggesting better description of the sorption of 

diclofenac on the ACs and BCs. Therefore according to the Freundlich theory, 

the interaction between diclofenac and sorbents’ surface would result in 

multilayer diclofenac coverage over an energetically non homogenous surface 
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(Çeçen and Aktas, 2011; Worch, 2012). The simulated and experimental 

isotherms are almost identical as shown in Figure 5.7. This suggests that their 

parameters can help in describing the sorption system within the examined range 

of concentration. 

  

Figure 5.7: Comparison of simulated and experimental isotherm plot for 
sorption of diclofenac on (a) Bio-1 and (b) MBio-1 

5.3.2.2  Diclofenac Sorption Affinity 

The Freundlich and the other three 3-parameter models align almost 

perfectly with the experimental isotherm. The Redlich-Peterson model in such 

instance is a special case of the Freundlich model. Close assessment of the 

heterogeneity and intensity parameters in Langmuir, Freundlich, and Redlich-

Peterson models in Table 5.9, reveals a very similar order [𝐾𝐿: MBio-1 < Bio-1 

<CoAC < MCoAC; 𝑛: MBio-1 < Bio-1 < CoAC ≈ MCoAC; and 𝛾: MBio-1 < Bio-1 

< CoAC ≈ MCoAC respectively]. Accordingly, it can be deduced from the 

Langmuir’s 𝑆𝐿 plot in Figure 5.8, that the sorption of diclofenac is more favourable 

over heterogeneous surfaced sorbents. 

 

Figure 5.8: Plot of Langmuir separation factor for sorption of diclofenac ACs 
and BCs 
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Here once again, the separation factors of the magnetic sorbents are 

significantly different (p-value < 0.02; α = 0.05, in both MAC and MBC) from those 

recorded for their corresponding pristine pairs. The difference can be attributed 

to the presence of iron oxide in the magnetic pairs and is most visible in the MBio-

1 whose 𝑆𝐿 curve is distinctly separate from the rest. The sorption on both ACs 

and BCs is favourable according to Freundlich theory because 𝑛 > 1 in all cases 

(Mc Kay et al., 1983; Worch, 2012). 

5.3.2.3  Diclofenac Sorption Capacities 

Assessment of the capacity parameters in Table 5.9, shows that the 

sorption capacity of the ACs is 1 to 2 order of magnitude higher than that of the 

BCs. According to the capacity parameters of all models, the sorption capacities 

of the sorbents are in the order; MBio-1 < Bio-1 < MCoAC < CoAC. Xu et al. 

(2008) have shown the contribution of both micropore and mesopore volumes as 

key components that determine the sorption capacity of sorbents in the sorption 

of organic compounds. Hence, these capacity determining sorbent properties 

from Table 3.1, were correlated with model capacity parameters from Table 5.9. 

The result obtained in Table 5.10, shows that there is a strong correlation 

(generally, Pearson correlation coefficient 𝑅 = 0.9367 to 0.9990) between these 

factors.  

Table 5.10: Sorption of diclofenac on ACs and BCs; Pearson correlation 
coefficients between model parameters and sorbent properties. 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.9962 0.9374 0.9938 0.3404 

Langmuir 
𝑄𝑚 0.9990 0.9646 0.9929 0.2427 

𝐾𝐿 0.6555 0.6064 0.6801 0.1439 

Freundlich 
1 𝑛⁄  0.8913 0.8628 0.8990 0.0177 

𝐾𝐹 0.9990 0.9657 0.9929 0.2333 

Redlich-Peterson 

𝐾𝑅 0.8428 0.7002 0.8517 0.7148 

𝐴𝑅 0.7177 0.6116 0.7128 0.7138 

𝛾 0.7431 0.7035 0.7619 0.1156 

Dubinin-Ashtakov 

𝑄𝑜 0.9944 0.9368 0.9910 0.3477 

𝐸 0.9181 0.7980 0.9240 0.6084 

𝑏 0.6368 0.5875 0.6165 0.6036 

Polanyi-Dubinin-Manes 

𝑄𝑜 0.9944 0.9367 0.9910 0.3480 

𝑎 0.6455 0.7419 0.5955 0.1444 

𝑏 0.6346 0.5855 0.6142 0.6036 
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When normalised with respect to carbon content, sorption of diclofenac 

within the studied concentration is shown to be mostly dependent upon the pore 

volume, then by surface area and/or micropore volume as shown in Table 5.11. 

Therefore, magnetite impregnation does not have a significant detrimental effect 

on the diclofenac sorption capacities of CoAC and Bio-1, especially when 

assessed with respect to the actual content of carbon used in the experiment. 

Table 5.11: Sorption of diclofenac on ACs and BCs; Pearson correlation 
coefficients between normalised model capacity factors and 
sorbent properties 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.9537 0.9870 0.9375 0.0311 

Langmuir 𝑄𝑚 0.9183 0.9714 0.9004 0.1303 

Freundlich 𝐾𝐹 0.9165 0.9678 0.8996 0.1327 

Dubinin-Ashtakov 𝑄𝑜 0.9670 0.9887 0.9525 0.0169 

5.3.3  POLANYI CHARACTERISTIC CURVE 

According to the Polanyi theory, a plot of volume of sorbed sorbate ‘𝑄𝑉 ’ 

against the adsorption potential ‘ε’ for a given pair of sorbent and sorbate will yield 

a characteristic curve that is temperature invariant and is determined by the 

structure of the sorbent (Yang and Xing, 2010). Another way of expressing the 

relationship between the amount adsorbed and the adsorption potential is the 

correlation curve, which is the modified version of the characteristic curve. The 

correlation curve is a plot of 𝑄𝑉 against adsorption potential density (ε/Vs), such 

that Polanyi theory mechanistically captures the sorption process if a single curve 

is obtained for the sorption of a given sorbate on different sorbents.  

The Figures 5.9 & 5.10 shows the correlation curves for the sorption of 

ibuprofen and diclofenac on ACs and BCs. It can be seen that for both pairs of 

sorbents and a given sorbate, the correlation curves do not collapse to a single 

curve, to show conformity to Polanyi theory. This has been reported to be usual 

in sorption systems involving polymeric and activated carbon type of sorbents 

(Yang et al., 2006b). This separation of correlation curves is usually due to 

difference in sorbents’ pore structure (Long et al., 2008) and the curves can be 

made to collapse when their respective amount adsorbed is normalised with 

respect to their micropore volume. Thus, if sorption is according to Polanyi theory, 
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the normalised correlation curve should be a single curve for a given sorbate on 

different sorbents. 

  

Figure 5.9: Polanyi correlation curve for the sorption of (a) ibuprofen and (b) 
diclofenac on CoAC and MCoAC 

  

Figure 5.10: Polanyi correlation curve for the sorption of (a) ibuprofen and (b) 
diclofenac on Bio-1 and MBio-1 

  

Figure 5.11: Normalised Polanyi correlation curve for the sorption of (a) 
ibuprofen and (b) diclofenac on CoAC and MCoAC 

The ACs correlation curves (Figure 5.11) have collapsed to a single line 

when normalised with respect to their VMP, while such was not achieved in the 

case of the BCs (Figure 5.12). Assessment of their respective microporosity 

shows that, while the ACs are mainly microporous with higher 𝑉𝑀𝑃 𝑉𝑃⁄  ratio, the 
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BCs are not as microporous and thus have a lower 𝑉𝑀𝑃 𝑉𝑃⁄  ratio, especially the 

MBio-1. According to the Polanyi theory, sorption takes place by pore filling 

mechanism. This is relatively satisfied in the case of the ACs with respect to both 

the isotherm fitting and characteristic curve. Therefore, van der Waals force and 

pore-filling play significant roles in the sorption of ibuprofen and diclofenac on 

these sorbents (Xu et al., 2008).  

  

Figure 5.12: Normalised Polanyi correlation curve for the sorption of (a) 
ibuprofen and (b) diclofenac on Bio-1 and MBio-1 

In the case of the BCs however, the Polanyi theory was satisfied with 

respect to the isotherm fitting and not the characteristic curve. Dąbrowski (1999), 

has reported that although sorption in micropores is essentially due to pore filling 

process which is influenced by their volume, the layer-by-layer sorption 

mechanism in macropores and mesopores is plausible. This suggest that Polanyi 

theory may still be applied to sorption due to open surface as has been observed 

in the sorption of organic sorbent on carbon nanotubes and nanosized particles 

with poor microporosity (Yang and Xing, 2010). Cross comparison of the sorption 

capacities of the sorbents for a corresponding sorbate pair also supports the 

aforementioned nonconformity to the Polanyi theory by the BCs when strictly 

evaluated based on the correlation curve. For both pharmaceuticals, the sorption 

capacities of the ACs are by far superior to those of the BCs, essentially due to 

amplified surface area and better developed pores. 

5.3.4  COMPARISON OF SORPTION CAPACITIES 

Comparing the uptake of the pharmaceuticals according to 𝑄𝑚 reveals that, 

ibuprofen sorbs about 1.8 and 3 times more on CoAC and MCoAC respectively 
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than diclofenac. While in the case of the BCs, the uptake is reversed, whence 

diclofenac sorbs about 2.13 and 1.49 times more on Bio-1 and MBio-1 

respectively than ibuprofen. This is similar to the findings of (Baccar et al., 2012) 

where according to 𝑄𝑚, diclofenac was reported to sorb about 5 times more than 

ibuprofen on mesoporous activated carbon. In a study by Margot et al. (2013) 

covering the treatment of about 70 different pharmaceuticals from wastewater on 

a pilot scale, diclofenac and ibuprofen were categorised among those with 

medium affinity for powdered activated carbon. It was further reported that; better 

removal of ibuprofen was observed over diclofenac due to different 

characteristics of the PACs applied. Another explanation for the varied uptake is 

in terms of differences in additional sorbents’ surface characteristics such as 

pHPZC, types and concentration of functional groups and affinity for individual 

sorbate. 

Differences of sorbate properties such as; pKa, LogKOW, molecular structure 

and size can cause the preferential uptake of one sorbate on a given sorbent over 

the other (Rakić et al., 2015). For instance, diclofenac has slightly higher LogKOW 

value (4.51) than ibuprofen (LogKOW =3.97), so it is less soluble. Therefore, as 

compared to diclofenac, removal of ibuprofen molecules from solution takes 

place only after sorption forces are able to overcome relatively higher hydrophilic 

forces (Li et al., 2002; Çeçen and Aktas, 2011; Worch, 2012). In this study, the 

concept of hydrophobic dependence of sorption did not hold for the sorption of 

the two pharmaceuticals on the ACs, whence, ibuprofen sorbs more than 

diclofenac. This higher affinity for ibuprofen as compared to diclofenac could likely 

be due to the nature and concentration of the surface groups present.  

The surface chemistry of ACs influences the wettability and as a result the 

sorption of a relatively more hydrophilic compound can be favoured over a less 

hydrophilic one under favourable conditions (Cho et al., 2011). Spatial 

interactions could be responsible for this varied uptake of the pharmaceutical. In 

the BCs system, molecular sieving could hinder the uptake of ibuprofen due to its 

larger longitudinal size compared to diclofenac. Yet, this mechanism does not 

explain the higher uptake of larger ibuprofen over diclofenac in the ACs system. 

It is therefore most likely that the ACs have active sites that could specifically bind 

more ibuprofen than diclofenac. 
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The dependence of sorption on pH could be another reason behind the 

more uptake of ibuprofen on the ACs compared to diclofenac. It can be observed 

from Figure 5.13(a) that in the ACs, system, the sorption of ibuprofen takes place 

at low pH i.e. within the vicinity of its pKa value. In this pH range, ibuprofen exists 

majorly in the neutral form. This was not the case for the BC system. It can be 

seen from Figure 5.13(b), that, although the pH of the control samples also 

assumed a steady decline, the treatment samples remained more or less steady. 

For the diclofenac system, the pH of both the treatment and control samples for 

the ACs and BCs remained somewhat unchanged. To further understand this 

varied uptake, the influence of pH on the sorption of both pharmaceuticals was 

investigated and the result is discussed in 5.3.6.  

5.3.5  MECHANISM OF SORPTION 

The mechanism of sorption of both sorbates is proposed to be possible due 

to van der Waals forces that include hydrogen bonding, dispersion forces, 

aromatic stacking, π - π interactions and electrostatic attractions (Rivera-Utrilla 

et al., 2013). Molecules of both sorbents consist of aromatic rings which could 

coordinate with the fused hexagonal carbon rings on the surface of the sorbent, 

hence propagating their sorption due to aromatic stacking induced by dipole-

dipole attractions (Mohan et al., 2011). It can as well be due to π - π electron 

donor-acceptor interactions, with the polar aromatic rings of the sorbates acting 

as acceptors and the delocalised electrons at the edges and basal planes of the 

sorbents acting as donors. Another donor-acceptor interaction could be between 

the carbonyl and hydroxyl type functional groups on the carbon surface as donors 

and the aromatic ring of the sorbates acting as acceptors (Guedidi et al., 2013; 

Kyzas et al., 2013). 

Electrostatic interactions can as well be another sorption mechanism by 

which these pharmaceuticals sorb to the ACs and BCs. The sorbents have high 

pHPZC values (all in excess of 9 except for MCoAC with a value of 6.3). 

Experiments were conducted within the pH ranges 4.5 to 6.0 and 6.3 to 6.9 for 

the ibuprofen and diclofenac systems respectively as shown in Figures 5.13 & 

5.14. Both have low pKa values; 4.91 and 4.15 for ibuprofen and diclofenac 

respectively. Being organic acids, they exist in their neutral undissociated form at 
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pH < pKa and in form of dissociated carboxylate anion at pH > pKa (Iovino et al., 

2015). With reference to sorption of charged species of sorbates, sorption of both 

pharmaceuticals on the sorbents may be due to coordination between the 

positively charged sorbent surfaces and the negatively charged carboxylate 

anion specie of the sorbates (Dubey et al., 2010). In the case of sorption of 

diclofenac on MCoAC, it can be assumed that the surface is not completely 

deprotonated so sorption by electrostatic attraction is still possible (Cho et al., 

2011). 

  

Figure 5.13: Final solution pH for the sorption isotherm of ibuprofen on (a) 
ACs and (b) BCs 

 

  

Figure 5.14: Final solution pH for the sorption isotherm of diclofenac on (a) 
ACs and (b) BCs 

5.3.6  EFFECT OF SOLUTION PH ON SORPTION  

The net surface charge of the sorbents, the type and concentration of 

surface functional groups and speciation of sorbents are influenced by the pH of 

the solution (Worch, 2012; Iovino et al., 2015). At pH < pHPZC, there will be excess 

protonation of the sorbent’s surface and it will have a net positive charge, while 
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at high pH > pHPZC, the surface will have a net negative charge due to excess 

deprotonation (i.e. as a result of the ionisation of acid surface groups). In between 

these two is the pHPZC, when the surface will have a neutral or net zero charge 

(Roop and Meenakshi, 2005). For acidic organic sorbates, they can exist in 

neutral form as conjugate acids when the pH is less than their dissociation 

constant (pH < pKa) or in ionised dissociated form as carboxylate ibuprofen anion 

at pH > pKa (Essandoh et al., 2015). The sorption of ibuprofen and diclofenac on 

the ACs and BCs is therefore expected to be influenced by the pH of the system. 

The sorption of pharmaceuticals and some micropollutants on activated 

carbons has been shown to be influenced by the system’s pH. Salman and 

Hameed (2010), studied the sorption of 2,4-dichlorophenoxyacetic acid (2,4-D) 

and carbofuran on granular activated carbon. Sorption of both compounds 

decrease with an increase in pH, but it is more pronounced in the (2,4-D) than 

the carbofuran system. Highest sorption for both compounds was recorded at pH 

2 and the authors suggested that it was as a result of interactions involving 

variations in both sorbent surface conditions and sorbate speciation. Nam et al. 

(2014), observed that pH has a significant influence in the sorption of especially 

hydrophilic micropollutants due to electrostatic interactions between ionised 

pollutant’s species and charged sorbents’ surface. Kyzas et al. (2013), reported 

that the sorption of pramipexole dihydrochloride on oxidised and non-oxidised 

activated carbon was the highest at pH 3, even though the oxidised sorbent has 

the higher concentration of oxygen based functional groups thus making it more 

polar and more hydrophilic. 

5.3.6.1  Effect of pH on Sorption of Ibuprofen 

From Figure 5.15, it can be seen that the sorption of ibuprofen on both ACs 

and BCs is remarkably affected by the initial pH. In fact, the pH has a negative 

influence on the system, such that an increase in pH results in a corresponding 

decrease in the sorption of ibuprofen. It has been reported that the sorption of 

ibuprofen on activated carbons, biochar and carbon nanotubes is influenced by 

pH in a similar way (Dubey et al., 2010; Cho et al., 2011; Baccar et al., 2012; 

Guedidi et al., 2013; Essandoh et al., 2015). As an organic acid, ibuprofen will 

exist in neutral form and anionic form at pH below and above its pKa value (4.91) 

respectively. At pH 3, (pH < pKa < pHPZC), in theory, it is assumed that the surface 
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of the sorbents will have a net positive charge and ibuprofen will be in its neutral 

form and generally, the sorption of neutral species is relatively favoured (Limousin 

et al., 2007), so this resulted in the highest uptake of ibuprofen. Sorption under 

this condition is most likely due to van der Waals interaction and/or hydrogen 

bonding (Baccar et al., 2012). Guedidi et al. (2013), also reported higher sorption 

of ibuprofen at low pH, they attributed this to the influence of dispersive interaction 

as the dominant mechanism of sorption of neutral form of ibuprofen moieties on 

activated carbon. 

  

Figure 5.15: Effect of initial pH on sorption of ibuprofen on (a) ACs and (b) 
BCs. [Note; figures have different scales] 

As the pH is increased beyond pKa, (pKa < pH < pHPZC), the concentration 

of the charged anionic form of ibuprofen gradually increases and sorption due to 

electrostatic attraction between positively charged surface and negatively 

charged carboxylate anionic specie of ibuprofen becomes active. Finally, at pH 

11, (pH > pHPZC > pKa), both the sorbents’ surface and ibuprofen anionic specie 

have negative charge, resulting in electrostatic repulsion and a decrease in 

sorption, which is the lowest observed within the pH range studied. Furthermore, 

charged species have higher polarity and are therefore more soluble, hence as 

the pH increases, the solubility of ibuprofen increases causing a reduction in 

sorption capacities due to higher solute-solvent interaction (Snoeyink and 

Summers, 1999).  

It has been shown by Iovino et al. (2015), that the pH dependence of 

ibuprofen sorption is strictly related to its % of ionisation. At pH = 2, it exists almost 

entirely in non-ionised form (0.4% ionised), at pH = pKa it is about 50% ionised 

and at pH > 8 it is almost entirely (99.9%) ionised. This explains why the sorption 

of ibuprofen does not decrease when the pH of the system is lowered due to 
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oxidation of the surface of the sorbents. It has been reported (Snoeyink and 

Summers, 1999; Li et al., 2002), that lowering the pH of the system makes the 

surface of a sorbent more oxidised by increasing the concentration of oxygen 

related functional groups, such as carboxylic and phenolic hydroxyl groups. This 

causes the localisation of the π electron of the aromatic rings on the surface of 

the sorbent and in theory, this should cause a decrease in the sorption of organic 

compounds due to impaired interaction with the sorbent’s π electrons. Sorption 

of ibuprofen could then probably be due to hydrogen bonding or dispersive 

interaction, which have been reported to be possible on oxidised surfaces (Li et 

al., 2002; Guedidi et al., 2013).  

Dispersive forces have also been reported to be the main interactions that 

facilitate the sorption of similar micropollutants (Cabrita et al., 2010). At low pH, 

the surface of the sorbents is expected to have a net positive charge and sorption 

of ibuprofen is still possible due to hydrogen bonds between carbon and ibuprofen 

molecules. Also, ibuprofen can be sorbed by means of donor-acceptor 

interactions with the surface carbonyl groups or electron rich regions of the 

sorbents (as electron donors) and aromatic ring of ibuprofen (as electron 

acceptors) (Iovino et al., 2015; Rakić et al., 2015). Finally, the presence of 

impregnated iron oxide on the surface of sorption of MCoAC and MBio-1 due to 

magnetisation did not detrimentally affect the sorption of ibuprofen since the 

sorption capacities (Kd) of the pristine sorbent and that of normalised composite 

are statistically similar (p-value = 0.297 and 0.177; α = 0.05, in both MAC and 

MBC) for all pH values. 

It is obvious that over the pH range considered, both neutral and dissociated 

species of ibuprofen are sorbed on the sorbents. To estimate the ratio of these 

sorbed species, the data is fitted to the speciation model (Schwarzenbach et al., 

2005; Yang et al., 2008; Werner et al., 2013). 

𝐾𝑑,Ibu = 𝐴
1

1+10(pH−pKa) + 𝐵 (1 −
1

1+10(pH−pKa))  - - - (5.1) 

The terms A and B are the fitting constants and they represent the partition 

coefficients of neutral and dissociated species respectively. The data fits very well 

to the model (see Figure 5.16(a)) and generally for all the sorbents, very high 
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correlation was recorded, resulting in a straight line passing through the origin as 

can be observed in Figure 5.16(b). 

 

 

Figure 5.16: Modelling of pH data for sorption of ibuprofen on (a) CoAC and 
(b)Bio-1, (c) correlation for pH fitting. Asterisk (*) represents fitted 
data 

The result for the fitting constants is presented in Table 5.12. It can be seen 

that the neutral specie constitutes the much larger fraction of the sorbed 

ibuprofen. At pH > pKa > pHPZC, sorption impairment due to electrostatic repulsion 

becomes prominent. Therefore, the sorption of ibuprofen in this condition is likely 

due to the presence of 0.01 M CaCl background solution that could aid in 

neutralising the repulsive forces resulting from increased pairing of calcium ion 

with the anionic specie (Snoeyink et al., 1969). 

Table 5.12: Partition coefficients for neutral and dissociated ibuprofen 
species 

Sorbent A B 

CoAC* 133.64 29.49 

MCoAC* 82.07 18.71 

Bio-1* 8.61 0.47 

MBio-1* 7.56 0.34 
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5.3.6.2  Effect of pH on Sorption of Diclofenac 

  

Figure 5.17: Effect of initial pH on sorption of diclofenac on (a) ACs and (b) 
BCs 

It should be noted that the attempt to lower the pH to 3 for the diclofenac 

solution resulted in the formation of precipitates that settled out of the solution. 

This could be the reason why pH below 5 was not considered also by other 

authors (Bajpai and Bhowmik, 2010; Wei et al., 2013; Nam et al., 2014). 

Therefore, as can be observed especially in Figure 5.17(a), the pH has less 

influence over the ACs’ sorption system, in this instance, pH range is above the 

pKa, such that the diclofenac molecules exist majorly in the carboxylate anionic 

form. Hence, the sorption of diclofenac takes place mainly in its deprotonated 

species. The uptake of diclofenac increased from pH 5 to reach maximum at pH 

7 and then it dropped back to the initial sorption level. Hence over the entire 

range, a nearly horizontal trend was presented. This could be due to electrostatic 

attraction between the positively charged surface of the AC and the negatively 

charged carboxylate form of the dissociated diclofenac molecules. Sorption of 

diclofenac on polymer and activated carbon has been reported not to be 

significantly affected by changes in pH (Bajpai and Bhowmik, 2010; Nam et al., 

2014) and both related this to the hydrophobic nature of diclofenac molecule. 

Although (Suriyanon et al., 2013) observed that pH had influence on the sorption 

of diclofenac on silicate material, they also found that pH does not have much 

influence the sorption of diclofenac on AC. They related this non pH dependence 

sorption to the nature and concentration of functional groups present on the AC’s 

surface that causes variations in both electrostatic interaction and other sorption 

driving forces.  
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Figure 5.18: Modelling of pH data for sorption of diclofenac on (a) CoAC and 
(b)Bio-1, (c) correlation for pH fitting. Asterisk (*) represents fitted 
data 

Diclofenac has a relatively low pKa, hence in the range of pH tested, it exists 

substantially in ionised form, ca. 48.28% even at pH 4.12 (Baccar et al., 2012). 

In theory, dissociated species are more soluble and therefore can be removed 

from solution after the hydrophilic forces are overcome by the sorption forces. For 

instance, in the case of the BCs’, it can be seen from Figure 5.18(b) that pH 

influences the uptake of diclofenac, especially on MBio-1, sorption decreases as 

the pH increases. So it is likely, that electrostatic repulsion is more pronounced 

at high pH due to the presence of diclofenac mainly in carboxylate anionic form 

which is repelled by the negatively charged surface of the sorbents. This is similar 

to the finding of Wei et al. (2013), they reported that, the sorption of diclofenac on 

granular carbon nanotubes/alumina hybrid adsorbents was the lowest at high pH 

due to increased electrostatic repulsion between negatively charged sorbent 

surface and the anionic diclofenac specie. 

The data for the pH for the BCs fitted very well to Equation 5.1, while poor 

fitting resulted for the ACs data, as can be seen in Figure 5.18. This is a further 

proof that on the one hand, the sorption of diclofenac on the ACs is less sensitive 
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to pH variations, while on the other hand its sorption on the BCs is influenced by 

pH variation. Accordingly, the sorption of the neutral specie is most favoured on 

the BCs as presented in Table 5.13. 

As we have seen, the speciation model fits reasonably well to the adsorption 

edge curve for the BC, while poor fitting was observed for the AC. The varied 

success in the fitting of the model is not unusual since it was mostly applied in 

sorption on homoionic or non-functionalised, extremely low variable-charge 

surface sorbents (Haderlein and Schwarzenbach, 1993; Xiao and Pignatello, 

2014). In essence, only the variation in the speciation of the sorbate and not the 

variation in the charge density of the sorbent is considered. 

Table 5.13: Partition coefficients for neutral and dissociated diclofenac 
species 

Sorbent A B 

CoAC* 2.33 46.08 

MCoAC* 33.95 13.65 

Bio-1* 25.07 1.84 

MBio-1* 68.11 2.53 

Nevertheless, in their normalised form, the sorption capacities of the 

composites are quite similar to those of the pristine carbon (p-value = 0.773 and 

0.141; α = 0.05, in both MAC and MBC). Therefore, pH will influence the sorption 

of diclofenac on both the composites and the pristine carbons in quite similar 

ways. 

The results presented herein are in agreement with the findings of previous 

works which reported that the sorption of various compound on magnetised 

sorbents is being influenced by the pH of the system. The influence has been 

shown to be due to the effect of pH on the chemistry of the sorbents’ surface, the 

speciation of the sorbates and electrostatic interactions. For instance, Mohan et 

al. (2014) studied the sorption of fluoride on magnetic biochar and found it to be 

influenced by the solution pH, such that sorption was highest at low pH and it 

decreased with increases in pH. They related this variation to the protonation of 

surface functional groups; from highly protonated surface at low pH which favours 

the sorption of hydrated fluoride ions to a less protonated surface at higher pH. 

In another study, Rai et al. (2015) reported that the sorption of crystal violet (a 

cationic dye) on SnFe2O4@activated carbon magnetic nanocomposite is 
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favoured at higher pH due to electrostatic attractions between negatively charged 

magnetic nanocomposite and positively charged cationic dye. The sorption of 

methyl orange dye was shown (Jiang et al., 2015) to be higher at low pH due to 

hydrogen bonding with oxygen and hydroxyl groups on the surface of 

AC/NiFe2O4 composite surface. 

5.3.7  IBUPROFEN SORPTION KINETICS 

  

Figure 5.19: Plot of sorption kinetics for ibuprofen on (a) ACs and (b) BCs. 
[Note; figures have different scales] 

The kinetics for sorption of ibuprofen on magnetic and nonmagnetic 

activated carbon and biochar is shown in Figure 5.19. Once again, due to the 

benefits of activation, the ACs display superior uptake of ibuprofen over the BCs 

for the entire duration of the experiment. Kinetic plots exhibit nonlinear curves 

characterised by steep slope at the lower end of the plot with data points within 

the vicinity of the ordinate axis, suggesting a relatively faster uptake of ibuprofen 

molecules as sorption commences. At this stage, there is abundance of free 

potential sorption sites and the concentration gradient due to difference in the 

concentration of ibuprofen molecules in the bulk solution and that on the solid 

particles is at its highest (Chowdhury et al., 2013).  

The formation of sorption bond between the molecules of solutes and the 

surface of the sorbents occurs very fast (Snoeyink and Summers, 1999; Çeçen 

and Aktas, 2011). This attachment commences with the most accessible sites 

around the exterior and shallow pores of the particle, hence sorption commences 

almost instantaneously (Chowdhury et al., 2011; Wang et al., 2015b). Also, the 

pores are highly accessible at this stage, hence, sorption is expected to progress 

at its fastest rate. At each point on the curve, the slope gives the instantaneous 
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rate of sorption 𝑑𝑄 𝑑𝑡⁄  (Yang and Al-Duri, 2005). With time, the sorption sites and 

pores become progressively occupied by the sorbate molecules such that the 

sorption driving force gets progressively diminished due to decrease in both free 

sorption sites and bulk concentration of the sorbate in solution (Chen et al., 2010). 

At this stage, the slopes of the plots progressively decrease until equilibrium is 

attained, i.e. when the concentration gradient between the bulk solution and the 

solid is expected to become zero. 

It can be observed that the curves for the magnetic sorbents are distinctively 

different from those of their corresponding pristine pairs. Also, the slopes of the 

pristine sorbents at the early stages are steeper than those of their corresponding 

magnetic pairs, which is perhaps due to a higher concentration of sorption sites 

per mass of sorbent. Nonetheless, for the magnetic carbon, kinetics is still a bit 

slower when normalized with respect to the carbon content. This is probably due 

to the magnetite deposits on the AC surface hindering the immediate adsorption 

from the aqueous solution, and extending diffusion pathways to the micropores 

of the AC 

5.3.7.1  Attainment to Equilibrium 

 

Figure 5.20: Ibuprofen sorption kinetics fractional uptake 

A plot of fractional uptake with time is shown in Figure 5.20, it provides a 

means of assessing how close the sorption system is towards its equilibrium state 

(Yang and Al-Duri, 2005). From the 𝑓 − 𝑡 plot, it can be observed that the curves 

for magnetic sorbents lag behind those of the nonmagnetic pairs, which means 

they have slower kinetics. In fact, there is no strong statistical evidence 

(generally, p-value ≤ 0.01) to suggest the curves for corresponding pairs of 

sorbents are similar. 
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Within the first 1 hr, the BCs have attained at least 74% of equilibrium 

sorption, while the AC have only attained at most 44%. This indicates therefore, 

that the BCs have better kinetics than the ACs. Although in reality, the ACs are 

expected to have higher number of sorption sites than the BCs, as was seen on 

Figure 5.19; so in essence, the BCs are exhausted much faster for the same 

ibuprofen concentration. In both cases, the magnetite impregnated sorbent has 

slightly slower kinetics, which can be explained by the magnetite deposits 

blocking part of the surface area and pores. 

The above proposed kinetic behaviours could further be evaluated using 

sorption kinetics models. 

5.3.7.2  Modelling of Kinetics Data 

In the evaluation of ibuprofen sorption kinetics data, both reaction based 

and mass transfer based models are being used. The most commonly reported 

among these models are the pseudo first order, pseudo second order and Elovich 

reaction based kinetics models and the intra-particle diffusion which is a mass 

transfer based kinetics model (Dubey et al., 2010; Guedidi et al., 2013; Mestre et 

al., 2014) 

A. Linear sorption kinetics models, 

This has been the most widely applied methods in the evaluation of sorption 

kinetics data. Methods of linear regression is applied to linear forms of both 

reactions based and diffusion based models. The parameters of the models are 

obtained from the slope and intercept of a linear fit of experimental data using the 

kinetics models, an example is shown in Figures 5.21(a) & (b) for the sorption of 

ibuprofen on magnetic and nonmagnetic activated carbon. Usually, the model 

that gives the highest 𝑅2 value with respect to the fitted experimental data is 

chosen as the best to describe the sorption kinetics of the system under 

consideration. The conformity of models to experimental data was assessed 

using the correlation method. An example of the correlation plot for the linear 

fitted systems is shown in Figures 5.22 (a) & (b). 
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Figure 5.21: Sorption kinetics of ibuprofen on ACs: (a) linear pseudo 1st order 
kinetics model plot, (b) linear Elovich kinetics model plot. 

  

Figure 5.22: Sorption kinetics of ibuprofen on ACs: correlation between 
experimental data and data simulated using: (a) linear pseudo 
1st order model and (b) linear Elovich kinetics model. 

The result for the linear data fitting is summarised in Table 5.14. Of all the 

models analysed in this study, the pseudo first order model has the least 𝑅2 value 

and the 𝑄𝑒 predicted by this model is not similar to the experimental 𝑄𝑒. This is 

in agreement with reports from literature that shows the sorption kinetics of 

ibuprofen on carbon sorbents does not follow the pseudo first order model, in 

most cases (Baccar et al., 2012; Guedidi et al., 2013; Essandoh et al., 2015). 

Although the pseudo second order model has been shown in these previous 

works to best represent ibuprofen kinetics data, in this study according to both 

linear fitting and correlation plots, the Elovich kinetic model describes the 

experimental kinetic data better than the other three models. This is similar to the 

findings of (Tseng et al., 2003) This suggests that the sorption kinetics is 

influenced by the rate of chemisorption of ibuprofen molecules to heterogeneous 

surfaced sorbents (Baccar et al., 2012; Belaid et al., 2013; Mestre et al., 2014). 

This is compatible with the results of the sorption isotherm modelling, whence the 
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Freundlich model was observed to have better fitting with experimental data than 

what obtains with the Langmuir model. 

Table 5.14: Model parameters for kinetics of sorption of ibuprofen on ACs 
and BCs; (obtained using linear regression) 

Model Parameter CoAC MCoAC Bio-1 MBio-1 

1st 

𝑄𝑒 140.67 89.00 1.02 1.02 

𝑘1 2.07E-03 1.78E-03 1.83E-03 1.59E-03 

𝑅2 0.9293 0.9585 0.8634 0.8802 

2nd 

𝑄𝑒 230.82 126.38 4.59 3.70 

𝑘2 5.27E-05 7.18E-05 1.31E-02 1.26E-02 

𝑅2 0.9876 0.9772 0.9352 0.9232 

Elovich 

𝛼 8.51 3.69 1969.97 162.39 

𝛽 0.03 0.05 3.49 3.68 

𝑅2 0.9926 0.9963 0.9834 0.9931 

Intra-P 

𝑘𝑖𝑑  22.56 10.49 2.73 1.96 

𝑧 0.34 0.35 0.07 0.09 

𝑅2 0.9364 0.9758 0.9726 0.9849 

Experimental 𝑄𝑒 229.00 127.50 4.65 3.80 

 

From Table 5.14, it can be seen that the Elovich constant 𝛼 (the initial 

chemisorption rate) due to the BCs is higher compared to the ACs, which is in 

agreement with the observation proposed earlier from the fractional uptake plot, 

Figure 5.20, that the BCs have faster kinetics. Although in this work, the pseudo 

order models are not the best in describing the ibuprofen sorption kinetics, the 

principle behind their derivation supports the sites exhaustion theory, which can 

be used to explain the kinetics data. According these models, the driving force 

behind the sorption kinetics is the relative concentration of potential sorption sites 

with time (𝑄𝑒 − 𝑄𝑡) as the sorption progresses (Chiou and Li, 2002; Yang and 

Al-Duri, 2005). From the analysis of isotherm data presented in 5.3.1.2, the ACs 

have about 2 order of magnitude higher 𝑄𝑒 values, therefore, the BCs have less 

concentration of potential sorption sites as compared to the ACs, and as a result, 

the driving force of the BCs gets depleted rapidly for the same concentration of 

ibuprofen as the sorption commences. This result in a steeper initial 𝑓 plot or 

larger Elovich 𝛼 value. Among sorbent pairs, 𝛼 values for the nonmagnetic 

sorbents are larger than those of their corresponding magnetic pairs. This could 

be due to the presence of more sorption sites as a result of higher carbon content 
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per mass of sorbent used for the experiment in the nonmagnetic sorbents. This 

is in agreement with the findings of (Ho and McKay, 2002), that increasing the 

sorbent dosage usually resulted in an increase in the α value. Furthermore, this 

conforms to our initial analysis of the sorption kinetics plot, i.e. Figure 5.19, 

whence the kinetics curves for the pristine sorbents have a steeper slope at the 

commencement of the sorption process. 

The Elovich constant 𝛽 – the desorption constant - due to the BCs is higher 

compared to the ACs system. It is hence an evidence that the ACs have higher 

number of sites (assessed as 1/𝛽) available for sorption of ibuprofen (Tseng et 

al., 2003; Baccar et al., 2012; Guedidi et al., 2013). This also explains the 

exhaustion of the BCs, because unlike the ACs, desorption is relevant almost 

over the entire duration under consideration. From the f data, it was observed that 

within the first 1 hr, the BCs have attained at least 74% of equilibrium sorption, 

while the AC have only attained at most 44%. Consequently, the 𝛽 value for the 

magnetic sorbents are similar to those of their corresponding pairs of 

nonmagnetic sorbents.  

B. Nonlinear sorption kinetics models, 

  

Figure 5.23: Sorption kinetics of ibuprofen on ACs: Fitting of experimental 
data using (a) linear models and (b) nonlinear models. 

A plot of experimental and fitted kinetics curves is shown in Figure 5.23. The 

superiority of the nonlinear fitting can be appreciated by comparing the curves 

due to the pseudo first and second order models. Using the linear fitting, the 

simulated and experimental curves are not as identical especially for the pseudo 

first order model. While using the nonlinear fittings, the simulated and 

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Q
t 

(m
g
/g

)

Time (min)

a)

CoAC 1st 2nd

Elovich Intra-P

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Q
t 

(m
g
/g

)

Time (min)

b)

CoAC 1st 2nd

Elovich Intra-P



Chapter 5: SORPTION OF PHARMACEUTICALS 

 

 

Badruddeen Saulawa SANI  138 January, 2017 

experimental curves are almost identical. As a result, their respective predicted 

values of the equilibrium ‘𝑄𝑒 ’ are quite similar with those obtained experimentally.  

Comparison between optimised error functions is shown in Table 5.15 for 

CoAC as an example and the summary of ASE values for all the sorbents is 

shown in Table 5.16. As expected, the nonlinear models generally have the least 

values of ASE and are therefore anticipated to produce more accurate model 

parameters. It is interesting to note that unlike the other models, the same value 

of ASE was obtained from the Elovich using both linear and nonlinear methods. 

This is a further validation of its conformity to the experimental data. 

Table 5.15: Results of optimised error functions for the sorption kinetics of 
ibuprofen on CoAC 

Err. Fxn 1st_L 2nd_L Elovich_L Intra-P_L 1st 2nd Elovich Intra-P 

CoD 0.5557 0.9826 0.9924 0.9361 0.9449 0.9837 0.9925 0.9484 

HYBRID 7510.33 132.63 22.83 261.65 342.54 89.45 22.79 223.56 

MPSD 83.74 13.94 3.68 14.05 16.65 8.72 3.66 13.84 

ARE 68.18 8.17 2.73 10.07 11.63 5.90 2.20 9.51 

EABS 578.27 49.80 29.91 94.53 113.43 48.11 27.48 78.88 

ERSSQ 50820.74 568.34 206.64 2290.57 2050.06 497.25 206.64 1368.07 

ASE 9843.62 128.82 44.30 445.15 422.39 108.24 43.80 282.32 

As mentioned previously, in 2.11.2.1, the intra-particle model is only an 

approximation of the real intraparticle diffusion differential equation. It is only 

reasonably valid at the initial stage of the kinetics and has been reported to have 

varying outcome of conformity to sorption kinetics data. For instance, while 

(Guedidi et al., 2013) have reported it not to agree well with experimental kinetics, 

(Dubey et al., 2010) found it applicable and even suggested that intra-particle 

diffusion as a major rate determining step in the sorption of ibuprofen on 

honeycomb shaped AC.  

Table 5.16: Summary of ASE for optimised error functions for the sorption 
kinetics of ibuprofen on ACs and BCs 

Sorbent 1st_L 2nd_L Elovich_L Intra-P_L 1st 2nd Elovich Intra-P 

CoAC 9843.62 128.82 44.30 445.15 422.39 108.24 43.80 282.32 

MCoAC 2271.55 95.76 15.53 61.58 199.65 74.49 14.41 38.85 

Bio-1 129.05 6.38 0.58 0.76 8.23 1.60 0.57 0.74 

MBio-1 102.10 6.93 0.42 0.62 4.21 2.21 0.40 0.60 
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In this study, the intra-particle diffusion model exhibits good fitting with the 

experimental data. According to this model, the ACs have higher intra-particle 

diffusion rate constant than the BCs. Intra-particle diffusion is a pore dependent 

phenomenon, so it is expected that the ACs will have higher 𝑘𝑖𝑑 due to their 

amplified pore structure compared to the BCs. The ACs are microporous and the 

larger portion of sorption takes place in accordance to the pore filling mechanism. 

This conforms to the earlier observation of the isotherm data when analysed 

according to the Polanyi’s theory of potential adsorption in 5.3.3. It can also be 

observed that magnetic sorbents have lower values of kid against their 

corresponding pair of nonmagnetic sorbent, because of lower micropore volume 

per gross mass of sorbent used in the experiment.  

Table 5.17: Optimised model parameters for kinetics of sorption of ibuprofen 
on ACs and BCs. 

Model Parameters CoAC MCoAC Bio-1 MBio-1 

1st 

𝑄𝑒 205.90 111.93 4.34 3.49 

𝑘1 0.01 0.01 0.06 0.05 

𝑅2 0.9820 0.9521 0.7149 0.7132 

ASE 402.78 199.65 8.23 4.21 

2nd 

𝑄𝑒 227.48 122.34 4.59 3.70 

𝑘2 0.00 0.00 0.01 0.01 

𝑅2 0.9879 0.9785 0.9352 0.9232 

ASE 101.19 74.49 1.60 2.21 

Elovich 

𝛼 8.53 3.65 2535.16 151.16 

𝛽 0.03 0.05 3.54 3.66 

𝑅2 0.9924 0.9943 0.9834 0.9931 

ASE 43.80 14.41 0.57 0.40 

Intra-P 

𝑘𝑖𝑑 31.28 13.33 2.77 1.98 

𝑧 0.28 0.31 0.07 0.09 

𝑅2 0.9515 0.9827 0.9729 0.9851 

ASE 289.15 38.85 0.74 0.60 

Experimental Qe 229.00 127.50 4.65 3.80 

From Table 5.17, it can be seen that the Elovich kinetics model has the best 

optimised error function values suggesting that chemisorption is rate determining 

in the sorption of ibuprofen on the ACs and BCs for the given concentration. This 

confirms earlier proposed sorption mechanism of ibuprofen as being due to 

hydrogen bonding and dispersive interactions as is the case with similar 

micropollutants (Cabrita et al., 2010). Also, ibuprofen can be sorbed by means of 



Chapter 5: SORPTION OF PHARMACEUTICALS 

 

 

Badruddeen Saulawa SANI  140 January, 2017 

donor-acceptor interactions with the surface carbonyl groups of the sorbents (as 

electron donors) and aromatic ring of ibuprofen (as electron acceptors) (Iovino et 

al., 2015). Considering the Elovich model, the magnetic composites have slightly 

larger desorption constant 𝛽 than their corresponding pristine pair. This indicates 

that they have lesser sorption sites and as a result slower kinetics due to 

magnetite impregnation. 

5.3.8 DICLOFENAC SORPTION KINETICS. 

The plot for kinetics curves for sorption of diclofenac on ACs and BCs is 

shown in Figure 5.24. It shows sorption kinetics exhibits a nonlinear character, 

with steep slopes at the initial stage of the system. The steepness gradually 

decreases with time as the driving force gets diminished due to exhaustion of 

sorption sites and decrease in bulk concentration (Yang and Al-Duri, 2005). 

  

Figure 5.24: Plot of sorption kinetics for diclofenac on (a) ACs and (b) BCs. 
[Note; figures have different scales] 

The curve for the normalised MCoAC is quite similar to that of CoAC while 

that of normalised MBio-1 overshoots that of Bio-1 due to the influence of pore 

volume on the sorption capacity of the BCs system as earlier explained. The plot 

for the BCs assumes a steady near horizontal plateau within the first 4 hours, 

suggesting attainment of equilibrium.  

5.3.8.1  Attainment to Equilibrium 

The fractional uptake plot, Figure 5.25, shows that while the ACs attained 

at most 42% equilibrium within the first hour, the BCs have at least 83% 

equilibrium. This suggests that the BCs system is more rapidly exhausted due to 

limited potential sorption sites compared to the ACs system. Here also, it can be 
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seen that the BCs have faster kinetics than the ACs and are more likely to get 

exhausted earlier due to their limited sorption capacities. 

 

Figure 5.25: Diclofenac sorption kinetics fractional uptake 

Corresponding pairs of magnetic and nonmagnetic sorbents have quite 

similar kinetics. Unlike in sorption capacity, the difference of pore volume does 

not influence the sorption kinetics of the BC system. Although it is apparent that 

they have slower kinetics than the pristine pairs. Mathematical modelling was 

used to have a quantitative comparison of the kinetics data. 

5.3.8.2  Modelling of Kinetics Data 

A. Linear sorption kinetics models 

  

Figure 5.26: Sorption kinetics of diclofenac on BCs: (a) linear pseudo second 
order kinetics model plot, (b) linear intra-particle diffusion model 
plot 

An example of the linear fitting method is shown in Figure 5.26. Care should 

be taken when choosing models based on linear model fit of experimental data. 

It can be observed, that the pseudo second order linear kinetics model shows 

better fitting (𝑅2 > 0.9994) with experimental data compared to the linear intra-
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particle kinetics model (𝑅2 ≤ 0.9896). However, Figure 5.27 reveals that the 

kinetics data simulated by the intra-particle kinetics model is closer in 

resemblance (𝑅2 > 0.9531) to the experimental data compared to that obtained 

using the pseudo second order kinetics model (𝑅2 ≤ 0.9444). 

  

Figure 5.27: Sorption kinetics of diclofenac on BCs: correlation between 
experimental data and data simulated using: (a) linear pseudo 
second order kinetics model and (b) linear intra-particle kinetics 
model. 

The summary of parameters obtained from the linear method is shown in 

Table 5.18.  

Table 5.18: Model parameters for kinetics of diclofenac sorption on ACs and 
BCs; (obtained using linear regression). 

Model Parameters CoAC MCoAC Bio-1 MBio-1 

1st 

𝑄𝑒 93.91 58.36 1.25 0.89 

𝑘1 1.46E-03 7.23E-04 1.86E-03 1.48E-03 

𝑅2 0.9310 0.9068 0.9671 0.7965 

2nd 

𝑄𝑒 149.60 97.46 5.96 4.54 

𝑘2 8.56E-05 5.68E-05 9.71E-03 1.74E-02 

𝑅2 0.9359 0.9710 0.8183 0.9444 

Elovich 

𝛼 8.88E+00 2.15E+00 1.12E+05 5.30E+03 

𝛽 0.04 0.07 3.42 3.71 

𝑅2 0.9753 0.9860 0.9837 0.9677 

Intra-P 

𝑘𝑖𝑑 22.44 7.04 3.93 2.83 

𝑧 0.27 0.34 0.06 0.07 

𝑅2 0.9696 0.9700 0.9890 0.9531 

Experimental 𝑄𝑒 157.70 94.72 6.03 4.66 

B. Nonlinear sorption kinetics models 

The kinetics data was subjected to thorough error analysis and the summary 

of the ASE results is shown in Table 5.19. In general, the nonlinear models had 
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better values of optimised error functions and thus presented the least ASE value. 

Overall, the Elovich and intra-particle models had the least error distribution with 

respect to the experimental data and are therefore the ones that are most likely 

to give the best description of the kinetics of the system.  

Table 5.19: Summary of ASE for optimised error functions for the sorption 
kinetics of diclofenac on ACs and BCs 

Sorbent 1st_L 2nd_L Elovich_L Intra-P_L 1st 2nd Elovich Intra-P 

CoAC 5676.34 273.91 53.91 68.91 448.46 206.06 53.45 62.10 

MCoAC 1286.77 60.97 24.91 36.75 108.42 54.97 23.22 27.48 

Bio-1 167.20 10.00 0.45 0.36 3.32 2.11 0.43 0.35 

MBio-1 135.15 4.43 0.78 0.96 2.90 1.31 0.77 0.93 

Accordingly, the rate of sorption of diclofenac on both the ACs and BCs is 

controlled by chemisorption and diffusion kinetics. It has also been reported in 

previous studies, that the sorption of diclofenac is controlled by chemisorption 

and diffusion processes (Antunes et al., 2012; Suriyanon et al., 2013). Generally, 

the pseudo second order sorption mechanism is the dominant followed by the 

Elovich (Baccar et al., 2012). 

Table 5.20: Optimised model parameters for kinetics of diclofenac sorption 
on ACs and BCs. 

Model Parameters CoAC MCoAC Bio-1 MBio-1 

1st 

𝑄𝑒 143.75 86.27 5.79 4.37 

𝑘1 5.03E-03 3.89E-03 5.49E-02 5.81E-02 

𝑅2 0.9451 0.9451 0.5495 0.7257 

ASE 448.46 108.42 3.32 2.90 

2nd 

𝑄𝑒 160.50 91.59 6.05 4.67 

𝑘2 5.87E-05 5.95E-05 7.50E-03 1.01E-02 

𝑅2 0.9510 0.9718 0.8282 0.9460 

ASE 206.06 54.97 2.11 1.31 

Elovich 

𝛼 9.34E+00 2.08E+00 1.75E+05 7.06E+03 

𝛽 0.04 0.07 3.52 3.81 

𝑅2 0.9822 0.9860 0.9867 0.9671 

ASE 53.45 23.22 0.43 0.77 

Intra-P 

𝑘𝑖𝑑 28.23 9.39 3.96 2.96 

𝑧 0.22 0.30 0.05 0.06 

𝑅2 0.9647 0.9788 0.9874 0.9523 

ASE 62.10 27.48 0.35 0.93 

Experimental 𝑄𝑒 157.70 94.72 6.03 4.66 



Chapter 5: SORPTION OF PHARMACEUTICALS 

 

 

Badruddeen Saulawa SANI  144 January, 2017 

The summary of optimised model parameters is shown in Table 5.20. The 

nonlinear pseudo first and second order models were able to predict ‘𝑄𝑒 ’ values 

that are quite similar to those obtained experimentally and the estimate is 

significantly better than that obtained by the linear pseudo first order model (see 

Table 5.18). Figure 5.28 shows the fitted kinetic curves obtained using linear and 

nonlinear methods. It can be observed that the curves simulated using the 

nonlinear method have the closest resemblance with the experimental data. This 

agrees well with the earlier comparison based on the results of error analysis and 

thus, the optimisation is indeed capable of producing more accurate model 

parameters. 

  

Figure 5.28: Sorption kinetics of diclofenac on Bio-1: Fitting of experimental 
data using (a) linear models and (b) nonlinear models. 

To describe the sorption kinetics based on the Elovich model, from Table 

5.20, it can be observed that 𝛼 values for the BCs are much higher than those 

for the ACs. This correlates well with the 𝑓 plot and it suggests faster uptake of 

diclofenac by the BCs at the onset of the sorption compared to the ACs. This 

leads to the quick exhaustion of the BCs compared to the ACs because the 

former have less concentration of potential sorption sites over the latter. 

Therefore, the BCs have a larger value of the Elovich 𝛽, since desorption 

becomes relevant at a much earlier stage of the sorption due to faster attainment 

of equilibrium. Among corresponding pairs of sorbents, the 𝛼 values of the 

magnetic sorbents are lower than those of the nonmagnetic sorbents due to lower 

carbon dosage as used in the experiment. This is in agreement with the findings 

of (Ho and McKay, 2002), that increasing the sorbent dosage usually resulted in 

an increase in the α value. 
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Comparison of kinetics properties of the ibuprofen and diclofenac systems 

was done using Tables 5.17 and 5.20. The sorption kinetics of ibuprofen and 

diclofenac on the magnetic and nonmagnetic sorbents follows the same pattern 

as observed in their respective sorption capacities. For instance, according to 𝑄𝑒, 

ibuprofen sorbs better on the ACs as compared to diclofenac, while the BC 

system sorbs diclofenac better than ibuprofen. In the same vein, Elovich α values 

are larger for the BC-diclofenac system compared to the BC–ibuprofen system 

and accordingly, the former system has better kinetics. This can also be deduced 

from the intra-particle kinetics model, whence the 𝑘𝑖𝑑. for the BC–ibuprofen 

system is lower than that for the diclofenac system. In the case of the ACs, the 

ibuprofen system presents better kinetics over the diclofenac system, according 

to both Elovich 𝛼 and intra-particle 𝑘𝑖𝑑. The reversed kinetics of the ibuprofen 

and diclofenac with respect to the ACs and BCs systems is likely the outcome of 

all possible forms of interaction as a result of varied sorbates’ and sorbents’ 

properties as reported by (Rakić et al., 2015).  

5.3.9  EVALUATION OF SORPTION ISOTHERMS FROM SPIKED WWTPE 

  

Figure 5.29: Isotherm plot for sorption of (a) ibuprofen and (b) diclofenac on 
CoAC* and MCoAC* (in spiked WWTPE) 
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carbon nanotubes (Yang and Xing, 2010). The measured solid phase 

concentrations are much less than what obtains from the sorption of the 

pharmaceuticals in CaCl2 solutions. The sorption capacities are compared using 

models capacity parameters later in 5.3.9.2. 

Isotherms of MCoAC_norm are quite similar to those of CoAC for both 

ibuprofen and diclofenac; p-value = 0.174 and α = 0.05. Once again this confirms 

that the difference in sorption capacities among the AC pairs is basically due to 

unequal masses of carbon material between the two. 

5.3.9.1  Attenuation of Sorption Capacities 

The WWTPE is characterised by 11 mg/L, dissolved organic compounds. 

Such an amount is high enough to significantly compete with the target 

pharmaceuticals for available sorption site, thereby attenuating the sorption 

capacities of the sorbents (Weber, 1974). Figure 5.30 shows the relative 

attenuation of sorption capacities for CoAC and MCoAC. Quite similar curves for 

each pharmaceutical can be observed.  

  

Figure 5.30: Attenuation (ΔQe) of sorption of ibuprofen and diclofenac on (a) 
CoAC* and (b) MCoAC* (in spiked WWTPE). 

Where:  ∆𝑄𝑒𝑖 = 100
(𝑄𝑒𝑖−𝑄𝑒𝑖

∗)

𝑄𝑒𝑖
  - - - -- (5.2) 

𝑄𝑒 and 𝑄𝑒
∗ are the solid phase concentration from CaCl2 solution and 

WWTPE respectively. 

Pore blockage mechanism could be another way by which such dissolved 

organic matter (DOM) could reduce the uptake of target pollutants. Through 

spatial interference, larger molecules from the DOM could seal the pores of the 

ACs thus denying access to target pollutants (Chowdhury et al., 2013), resulting 
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in a loss of potential sorption capacity (Pelekani and Snoeyink, 1999). Substantial 

decrease in sorption performance due to the presence of competing DOM has 

also been observed in the treatment of various organic pollutants from aqueous 

medium (Shih et al., 2003; Jasper et al., 2010; Nam et al., 2014).  

  

Figure 5.31: Final solution pH for the sorption isotherm of (a) ibuprofen and 
(b) diclofenac on CoAC* and MCoAC* (in spiked WWTPE) 

The reduction in sorption capacity may also be as a result of solution pH. 

This has earlier been shown (refer to 5.3.6.1) to have a negative influence on the 

uptake of these pharmaceuticals on CoAC and MCoAC. The pH of the system is 

within the alkaline region (about pH 9; see Figure 5.31) and the sorption of such 

pharmaceutical compounds under similar condition has been shown to be 

unfavourable (Dubey et al., 2010; Cho et al., 2011; Baccar et al., 2012; Guedidi 

et al., 2013; Wei et al., 2013; Essandoh et al., 2015). Furthermore, the decrease 

could be as a result of direct competition for existing sorption sites. This could be 

possible if the background DOM has the same specific sorption mechanism as 

does the target pharmaceuticals (Newcombe et al., 1997). This will result in the 

decimation of the concentration of available sites that could otherwise be 

occupied by the target compounds. 
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than that of diclofenac as was observed in their sorption from CaCl2 solution. On 
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especially in the alkaline region. It has earlier been shown (refer to 5.3.6.2), that 

the sorption of diclofenac is less influenced by the pH of the medium, which is 

similar to the findings of (Bajpai and Bhowmik, 2010; Suriyanon et al., 2013; Nam 

et al., 2014).  

Also in terms of spatial interference, the competing DOM could sorb on the 

walls of pores, thereby constricting the pores without necessarily blocking them 

(Pelekani and Snoeyink, 2001). Under such conditions, size exclusion effect 

becomes activated and only molecules small enough to pass through such 

narrowed pores could have access to vacant sorption sites in the interior of the 

sorbent (Newcombe et al., 1997). Therefore, it is likely that molecular sieve effect 

will further impair the uptake of ibuprofen molecule due to its relatively larger 

longitudinal dimension compared to diclofenac. 

5.3.9.2  Modelling of Isotherm Data 

A. Linear Isotherm Model 

According to the linear model, there is about 92 and 96 % less uptake of 

diclofenac and ibuprofen respectively than what was recorded for their sorption 

from CaCl2 solution. Also, ibuprofen sorbs about 1.2 more than diclofenac on both 

CoAC and MCoAC. This is about 1.49 less than the difference in sorption 

between the two compounds from CaCl2 solution. The linear model has captured 

the higher decrease in the sorption of ibuprofen from the spiked WWTPE than is 

recorded for diclofenac. 

  

Figure 5.32: Partitioning coefficient for sorption of (a) ibuprofen and (b) 
diclofenac on CoAC* and MCoAC* (in spiked WWTPE) 
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B. Nonlinear Isotherm Models 

The nonlinear models were fitted to the experimental data using both linear 

and nonlinear regression methods. The error functions were optimised and the 

result of the ASE is summarised in Table 5.21. 

Table 5.21: Summary of ASE for the sorption of ibuprofen and diclofenac on 
CoAC* and MCoAC* (in spiked WWTPE) 

Sorbate Sorbent LANG_L FR_L RP_L LANG FREU RED-PET DA PDM 

Ibuprofen 
CoAC* 67.62 29.86 33.55 64.50 27.19 30.91 15.92 1.89 

MCoAC* 10.64 8.50 11.36 10.19 8.01 8.22 9.03 1.87 

Diclofenac 
CoAC* 39.29 18.92 24.31 37.14 17.63 20.53 13.07 1.96 

MCoAC* 6.99 7.94 8.28 6.69 7.26 6.83 7.38 1.91 

 

Table 5.22: Optimised model parameters for sorption isotherm of ibuprofen 
and diclofenac on CoAC* and MCoAC* (in spiked WWTPE) 

  Ibuprofen Diclofenac 

Model Parameters CoAC* MCoAC* CoAC* MCoAC* 

Linear 𝐾𝑑 ** 9.96 4.02 7.26 3.38 

LANG 

𝑄𝑚 198.84 97.12 173.87 84.84 

𝐾𝐿 0.035 0.044 0.036 0.045 

𝑅2 0.9490 0.9774 0.9564 0.9801 

FREU 

1 𝑛⁄  0.60 0.56 0.63 0.60 

𝐾𝐹 13.30 8.48 10.76 6.52 

𝑅2 0.9715 0.9848 0.9743 0.9830 

RED-PET 

𝐾𝑅 354.27 12.80 3407.58 7.20 

𝐴𝑅 25.95 0.96 315.68 0.45 

𝛾 0.41 0.54 0.37 0.59 

𝑅2 0.9713 0.9852 0.9743 0.9844 

DA 

𝑄𝑜 264.36 73.62 340.58 63.35 

𝐸 9.36 9.79 5.86 9.26 

𝑏 0.45 1.05 0.41 1.13 

𝑅2 0.9875 0.9845 0.9861 0.9835 

PDM 

𝑄𝑜 264.63 73.64 278.61 62.79 

𝑎 4.15 23.33 7.30 97.20 

𝑏 0.46 1.05 0.46 1.16 

𝑅2 0.9874 0.9846 0.9859 0.9838 

 **x103 

The ASE values of the linear models are quite similar to those of the 

nonlinear models. However, the nonlinear fitting method has lower error 

distribution between experimental and simulated isotherms. Consequently, they 
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have lower ASE value than what obtains for the LTFM method and thus are more 

appropriate to describe the data. In the overall, the 3-parameter PDM model has 

the least ASE values. While in the sorption of ibuprofen, the Freundlich model 

has the lesser ASE value among the 2-parameter model. The ASE values for the 

2-parameter models are lower than what was recorded in the sorption of the 

pharmaceuticals from CaCl2 solutions.  

Table 5.23: Summary of MSC for isotherm prediction using optimised model 
parameters for sorption of ibuprofen and diclofenac on CoAC* 
and MCoAC* (in spiked WWTPE) 

Sorbate Sorbent LANG FREU RED-PET DA PDM 

Ibuprofen 
CoAC* 1.80 2.67 2.26 2.65 2.92 

MCoAC* 2.87 3.14 3.01 2.84 2.80 

Diclofenac 
CoAC* 2.03 2.79 2.39 2.52 2.56 

MCoAC* 3.05 3.22 2.96 2.90 2.49 

The result of the optimised model parameters is summarised in Table 5.22 

and in terms of MSC values, the Freundlich model has the highest values in all 

except in the sorption of ibuprofen on CoAC* where the PDM has a higher value 

(as recorded in Table 5.23). The decision to have a particular model to describe 

the sorption of the two pharmaceuticals is not straight forward. The simulated and 

experimental isotherms are quite similar and hence, their curves are overlapping 

especially for the sorption on MCoAC* as can be seen in Figure 5.33. However, 

the Freundlich model seem to have better fitting than the Langmuir as suggested 

by the low 𝛾 values recorded in the Redlich-Peterson model (Ho et al., 2005b). 

  

Figure 5.33: Comparison of simulated and experimental isotherm plot for 
sorption of (a) ibuprofen and (b) diclofenac on MCoAC* (in spiked 
WWTPE) 
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5.3.9.3  Sorption Capacities 

Assessment of the sorption capacity parameters shows that, ibuprofen 

sorbs at least about 1.14 more than diclofenac, according to 𝐾𝑑, 𝑄𝑚 and 𝐾𝐹 

values. This is less than the difference recorded for their sorption in CaCl2 

solution. As explained earlier, the sorption of ibuprofen is more sensitive to 

changes in solution chemistry than that of diclofenac. Although the Polanyi based 

models have as usual exhibited very good fitting, they do not appear to represent 

the pattern of the isotherm plot observed in Figure 5.33. For instance, the 

assessment of the 𝑄𝑜 in Table 5.22 shows that diclofenac sorbs more than 

ibuprofen on CoAC (significantly more according to the DA model). Furthermore, 

the sorption of diclofenac on CoAC from WWTPE is estimated by this model to 

be much more than that from CaCl2 solution. The overestimation of the sorption 

capacity by these models is due to the fact that the solubility of compounds is 

considered in their computations. It is obvious that the solubility of these 

compounds in the WWTPE is different from that in CaCl2 solution. It is not 

surprising therefore that in this instance, the Freundlich model has higher MSC 

value than the Polanyi models as recorded in Table 5.23. Hence, the solubility of 

the pharmaceuticals in the medium they are to be removed from should be 

evaluated first before these models can be used, otherwise, conclusions drawn 

from their results could be misleading. 

5.3.9.4  Sorption Affinity 

The sorption affinity constants for all the models are lower than what was 

observed in the sorption of the pharmaceuticals from CaCl2 solutions. This is due 

to effect of competition or the existence of unfavourable solution chemistry due 

to higher pH. Consequently, the plot of 𝑆𝐿 Figure 5.34 shows elevated curves 

compared to those recorded for the sorption from CaCl2 solution.  
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Figure 5.34: Plot of Langmuir separation factor. Sorption of (a) ibuprofen and 
(b) diclofenac on CoAC and MCoAC in CaCl2 solution and in 
spiked WWTPE. 

This indicates that the sorption of both pharmaceuticals from CaCl2 solution 

is more favourable than from the spiked WWTPE (Ofomaja and Ho, 2007; He et 

al., 2010), suggesting that their molecules are held rather loosely by sorption 

bonds. They may even be attached to the adsorbed DOM and not directly to the 

surface of the sorbents which usually result in isotherm linearity (Yang and Xing, 

2010). Or they may have to attach to sorption sites with lesser affinity, because 

the strong affinity sites have been occupied by competing DOM. Also the higher 

the curves, the closer the sorption get to becoming of the linear form; because, 

when 𝑆𝐿 = 1 the sorption becomes linear. This condition is also satisfied when 

conclusion is drawn considering the Freundlich ‘n’ (Worch, 2012). 

 

Figure 5.35: Change in Gibbs free energy for the sorption of ibuprofen and 
diclofenac on ACs and BCs from CaCl2 solution and spiked 
WWTPE.(*asterisked) 
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thermodynamic equilibrium constant ‘𝐾𝑒𝑞 ’ to estimate the change in free Gibbs 

energy (Liu, 2009). The result presented in Figure 5.35 shows that the sorption 

of both pharmaceuticals is spontaneous. Higher values of negative ∆𝐺𝑜 is an 

indication of a more favourable sorption (Dubey et al., 2010). Accordingly, the 

sorption of ibuprofen and diclofenac is more favourable in CaCl2 solutions than in 

the presence of competitors. It can also be observed that the BCs exhibit about 

the same ∆𝐺𝑜 as the ACs for both sorbates; the ibuprofen/Bio-1 system has the 

highest. Probably the biochar has specific sorption sites that have higher affinity 

for ibuprofen more than the other sorbents. 

5.4  SUMMARY 

Results from sorption equilibrium experiments for CaCl2 solutions and 

spiked wastewater treatment plant effluent were analysed to ascertain how 

magnetisation has affected the sorption properties of the sorbents. Six error 

functions were used to fit experimental result to isotherm and kinetics models. In 

some instances, use of linear models fitted the data reasonably well. However, in 

general, analysis of data by nonlinear methods resulted in better data fit and as 

such returned more accurate model parameters. Likewise, 3-parameter models 

especially the Polanyi based, have the best approximation of the isotherm data. 

This suggests that the pore filling mechanism is valid for the sorption of both 

pharmaceuticals on the magnetic and nonmagnetic sorbents, especially the ACs. 

The BCs are not as microporous as the ACs, hence a single characteristic curve 

could not be obtained for them. 

The difference in sorption capacities between the magnetic and 

nonmagnetic ACs and BCs was found to be due to the lesser content (ca 36%) 

of carbon material in the composites. The magnitude of the uptake of both 

pharmaceuticals recorded among corresponding pairs of magnetic and 

nonmagnetic ACs and BCs was almost the same when the data was normalised 

with respect to the approximate content of carbon material. So in practice, more 

magnetic composite is required to achieve the same level of pharmaceutical 

removal from the treatment medium as obtained using the pristine material. The 

MBC however has better uptake of ibuprofen than the BC due to higher pore 

volume. In general, the sorption capacities of the sorbents are strongly influenced 
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by the surface area and especially the pore volume in the case of MBC. The 

models’ capacity parameters show strong correlation (generally, Pearson 

correlation coefficient 𝑅 > 0.9990) with the sorbents’ capacity influencing 

properties especially pore volume when normalised according to the carbon 

content used in each experiment. This suggest that enhanced removal of 

ibuprofen could be achieved if the system is optimised by focusing on the 

sorbents’ pore structure.  

The relative removal of both pharmaceuticals differs between the AC and 

BC system. Diclofenac sorbs more than ibuprofen on the BCs, while the reverse 

is the case on the ACs. In this instance, hydrophobic interactions alone could not 

explain why the relatively more hydrophobic diclofenac sorbs less than ibuprofen. 

Differences in sorbate, sorbent and solution properties can influence a sorption 

system for better or for worse. For example, ibuprofen sorption on the ACs and 

BCs is sensitive to pH variation whereas, the diclofenac AC system is much less 

so. Sorption of both is proposed to be due to interaction of van der Waals, 

dispersive and electrostatic forces between sorbent surface and their molecules 

as well as solute-solvent interactions. This is the reason why their sorption at 

lower pH is relatively higher than it is at higher pH, due to the influence of pH on 

both surface charge and the speciation of the molecule. In the presence of 

competing DOM, the isotherms of both pharmaceuticals became significantly 

diminished and somewhat linear. This is quite different from the nonlinear form 

recorded for their sorption from CaCl2 solutions. Compared to diclofenac, 

ibuprofen is more sensitive to competing DOM. The ibuprofen sorption capacity 

of the ACs for CaCl2 solution was attenuated in the WWTPE by up to 19% more 

than what was recorded for diclofenac. This was proposed to be due to the higher 

sensitivity of ibuprofen to solution pH and its higher vulnerability to molecular 

sieving effects compered to diclofenac. Nonetheless, their sorption intensity was 

affected to an almost equal degree, such that their sorption was substantially less 

favourable and almost linear according to isotherm model intensity parameters. 

This suggest weaker bonding to the surface of the sorbents. It is evident then, 

that the sorbent, sorbate and solution properties could be manipulated to achieve 

specific sorption outcomes. Furthermore, due to changes in the solubility of the 

pharmaceuticals in the WWTPE, the sorption capacities of the sorbents were 

overestimated the Polanyi based models. 
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The data for the rate of utilisation of sorption capacities shows once again 

the superiority of the ACs over the BCs. Due to limitation of sorption sites, the 

BCs are exhausted much faster than the ACs. Of the kinetic models tested, the 

reaction based Elovich model had the best fitting to experimental data. The 

diffusion based fractional power intra-particle model also exhibited very good 

fitting. The outcome of mathematical modelling is in good agreement with 

deductions obtained from the observation of the plots of the experimental data. 

For instance, according to both model results and data plots, the BCs have faster 

kinetics than the AC. The Elovich model parameters showed that the ACs have 

higher concentration of sorption sites, while the BCs have higher initial sorption 

rate. Unlike the sorption capacity, there was no indication of the influence of the 

pore volume on the kinetics of ibuprofen on the MBC. The intra-particle model 

showed that the ACs have higher diffusion constant as compared to the BCs. 

This correlates with the difference in microporosity between the two systems and 

a proof of the propagation of sorption according to the pore filling mechanism in 

the AC system. Once again, the sorption of the two pharmaceuticals is varied 

among the ACs and BCs in a similar way as observed in their respective sorption 

capacities. In the overall, the magnetised sorbents behaved in very similar 

manner with their corresponding pristine pair under all tested conditions. 

Therefore, the presence of magnetic iron oxide in the composites did not cause 

a detrimental change in their sorption properties. In all sense, the results obtained 

have proven that under right conditions, magnetic activated carbon and biochar 

can be used in the removal of ibuprofen and diclofenac from the environment, 

especially when used in adequate quantities. 

In this and the previous chapters, the sorption of organic compounds from 

aqueous and real wastewaters have been investigated. However, both 

compounds share common sorption mechanisms and as such responds in a 

similar way to variations in the sorption system properties. Heavy metals have 

other sorption mechanisms that are different from those of organic compounds. 

Therefore, to they are likely to respond in different ways to what was observed 

for the organic compounds. The next chapter presents investigations into the 

sorption of heavy metals on magnetic and nonmagnetic sorbents and the nature 

of competition that exists among metals in pure solutions and in the presence of 

background organic compounds 
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CHAPTER 6.  SORPTION OF HEAVY METALS 

6.1  INTRODUCTION 

This chapter investigates the sorption characteristics of heavy metals in 

single and equimolar mixed solutions onto magnetic and nonmagnetic activated 

carbons (ACs) and biochars (BCs). Sorption capacities were determined through 

isotherm experiments. Effect of pH variation and competition from other 

compounds were assessed to understand the influence of solution chemistry on 

the uptake of metals on the sorbents.  

A part of the work in this chapter on the evaluation of sorption isotherms has 

been published as a paper in the following peer reviewed academic journal; 
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6.2  EXPERIMENTAL SECTION 

6.2.1  DETERMINATION OF SORPTION ISOTHERMS: 

In this experiment, mixed metal salts solution was tested on all sorbents 

including magnetite, while single metal salt solutions were tested only on OrgBio, 

MOrgBio and magnetite. Mixed (or single) metal salts stock solution having the 

same molar concentrations of each metal was prepared from Pb(NO3)2, 

CuCl2·2H2O, and ZnCl2. 

The sorption isotherm were determined according to the method used by 

(Han et al., 2015b). Briefly, 50 mg of the sorbent was weighed into 50 mL 

polyethylene plastic vials with screw caps, obtained from VWR (Lutterworth, UK). 

The sorbents were contacted with 39 mL of deionised water with the vials closed 

using the screw cap. The sample was then placed on a platform shaker (STUART 

SCIENTIFIC STR6) set to shake at 70 rpm overnight at 22 oC. Afterwards, 1 mL 

of appropriate mixed (or single) metal salts stock solution was added such as to 

have 40 mL of the desired initial concentration of 0.01, 0.04, 0.08, 0.16 or 0.30 

mM. The vials were immediately closed again and returned to shake for 7 days 

on the shaker using the previous settings. After shaking, the samples were filtered 

using a 0.45 mm PTFE membrane syringe filter and the filtrate was analysed for 

residual individual metal concentration using a Varian Vista MPX axial ICP-OES 

with CCD, operated according to standard methods for examination of water and 

wastewater. Metals were detected at several wavelengths and the readings 

averaged for each: Cu2+ (213.598, 324.745 and 327.395 nm); Pb2+ (182.143, 

217.000 and 220.353 nm); and Zn2+ (202.548, 206.200 and 213.857 nm). Control 

samples containing only metal(s) solution without sorbent were processed in a 

similar manner. All samples are in duplicate and average values were reported. 

The amount of metal species adsorbed per unit weight of adsorbent was 

computed using the difference between concentrations measured in batches with 

sorbents and batches without sorbents, using a mass balance approach. 
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6.2.2  DETERMINATION OF PH INFLUENCE ON SORPTION OF METALS 

In this experiment mixed metal salts solution was tested on CoAC, MCoAC, 

OrgBio and MOrgBio, while single metal salt solutions were tested only on OrgBio 

and MOrgBio. 

To evaluate the influence of pH on the sorption of heavy metals, 50 mg of 

the sorbent was weighed into 50 mL polyethylene plastic vials with screw cap, 

obtained from VWR (Lutterworth, UK). The sorbents were contacted with 39 mL 

of deionised water with the vials closed using the screw cap and were then placed 

on a platform shaker (STUART SCIENTIFIC STR6) set to shake at 70 rpm 

overnight at 22 oC. The pH of the conditioned samples was then adjusted to 3, 5, 

7 and 9 using aliquot of 0.01 M of HNO3 or KOH. The pH was monitored over 72 

hours and necessary adjustments were made to maintain target values. 

Thereafter, 1 mL of appropriate mixed (or single) metal salts stock solution was 

then added to the preconditioned sorbents to have a predetermined volume of 40 

mL and initial concentration of 0.16 mM. The vials were immediately closed again 

and returned to shake for 7 days on the shaker using the previous settings. 

Control samples containing only metal(s) solution without sorbent were 

processed in a similar manner. All samples were then handled as explained in 

6.2.1.  

6.2.3  DETERMINATION OF EFFECT OF FOULING ON SORPTION 

In this experiment mixed metal salts solution was tested on CoAC, MCoAC, 

OrgBio and MOrgBio, while single metal salt solutions were tested only on OrgBio 

and MOrgBio. 

In order to evaluate the effect of fouling on the sorption of heavy metals, 

synthetic wastewater (SWW) prepared according to the OECD test guidelines 

209 protocols (OECD, 2010) as described in 3.4.2, was introduced into the 

sorption system. As a factor of safety, all materials for the experiment were 

autoclaved. The experiment was planned in such a way as to allow for the 

appraisal of how the sorption of heavy metals is impacted by the order in which 

the heavy metal(s) at 0.16 mM (in single or mixed salt solution) and the SWW at 

16 mg/L (measured as DOC) were contacted with the sorbents at 1.25 mg/mL. 

The following order of contact was adopted; 
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6.2.3.1  Heavy metal(s) Sorbed before SWW Addition 

In this order, the metal(s) was given a 24-hour head start for adsorption 

before the SWW was introduced. The sorbents (50 mg) were contacted with 39 

mL of deionised water in a 50 mL polyethylene plastic vials with screw cap, 

supplied by VWR (Lutterworth, UK). The set up was allowed to shake overnight 

on a platform shaker (STUART SCIENTIFIC STR6) set to shake at 70 rpm 

overnight at 22 oC. Thereafter, 1 mL of appropriate metal(s) salt stock solution 

was then added to the preconditioned sorbents to have a predetermined initial 

metal(s) concentration of 0.16 mM. The samples were returned to shake for 24 

hours and then 1 mL of appropriate SWW stock solution was added such as to 

have a concentration of 16 mg/L. The vials were shaken for a further 6 days using 

the same shaker settings, after which they were filtered using a 25 mm syringe 

filter with a 0.45 µm PTFE membrane supplied by VWR International 

(Lutterworth, UK). Control samples containing only metal(s) solution without 

sorbent were processed in a similar manner. All samples were then handled as 

explained in 6.2.1. 

6.2.3.2  Synthetic Wastewater Sorbed Before Metals(s) Addition 

In this order, SWW was given a 24-hour head start for adsorption before the 

metal(s) was introduced. The same procedure as in 6.2.3.1 was adopted, it 

should be noted that 7 days shaking was maintained after the metal(s) was 

added.  

6.2.3.3  Simultaneous Contact of Metal(s) and SWW 

In this order, both the metal(s) and SWW were added at the same time. The 

same procedure as in 6.2.3.1 was adopted, with slight modification. Sorbents 

were conditioned with 38 mL of deionised water overnight before the addition of 

1 mL each of the metal(s) and SWW stock solutions. The rest is the same as in 

6.2.3.1. 
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6.3  RESULT AND DISCUSSION 

6.3.1  EVALUATION OF SORPTION ISOTHERMS FOR SORPTION OF Cu2+ IN 

THE PRESENCE OF Pb2+ AND Zn2+ IN AN EQUIMOLAR MIXED 

SOLUTION. 

The sorption isotherm for Cu2+ in the presence of Pb2+ and Zn2+ on ACs, 

BCs and magnetite in an equimolar mixed metal salts solution is presented in 

Figure 6.1. Different patterns of isotherms can be seen, with most data points 

overlaying the ordinate axis, especially CoAC, Bio-1 and MOrgBio. These 

sorbents exhibit high affinity for Cu2+ at lower concentrations. Almost all sorbents 

appear to reach saturation from about an initial concentration of 0.08 mM and as 

a result the isotherms assumes a plateau due to exhaustion of sorption sites. 

Compared to their sorption capacities for organic compounds, very low uptake of 

Cu2+ is recorded on all sorbents. This shows that they have limited metal sorption 

capacities.  

  

  

Figure 6.1: Sorption of Cu2+ in the presence of Pb2+ and Zn2+ on; (a) CoAC 
& MCoAC, (b) CoalAC & MCoalAC, (c) Bio-1 & MBio-1 and (d) 
OrgBio & MOrgBio 
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Additionally, the activated carbons in spite of their amplified surface areas 

and pore system have similar or in some instances even lower Cu2+ sorption than 

the biochars. Therefore, the availability of surface area (𝐴𝑆) is not the main factor 

that govern the sorption of Cu2+ (Pyrzyńska and Bystrzejewski, 2010). This clearly 

shows that the sorption of the metal on the basal plane of the sorbent’s 

microcrystallite contributes little to its overall uptake. Rather, more Cu2+ uptake 

occurs through binding with specific active sorption sites (Leyva Ramos et al., 

2002) along the edges and points of dislocations of the carbon planes (Coughlin 

and Ezra, 1968; Mattson et al., 1969; Li et al., 2002; Dąbrowski et al., 2005; Roop 

and Meenakshi, 2005). This could then be the reason why magnetite has the 

least uptake of the metal since it lacks these types of specific active sorption sites. 

Another interesting observation is that, while all the other magnetised sorbents 

have lower Cu2+ uptake than their corresponding pristine pairs, MOrgBio has 

higher uptake than OrgBio. This means that the process of magnetisation might 

have caused the production of more active sites that could bind to even more 

Cu2+ for this sorbent. The evidence is that MOrgBio contains magnetite which 

does not contribute to the Cu2+ uptake, yet despite having about 36 % lesser 

carbon content, it performs better than OrgBio. As for the other magnetic carbon 

composites, even their mass normalised isotherms are still lower than the 

isotherms of their corresponding pristine pair, indicating that magnetite 

impregnation inhibited metal uptake. 

6.3.1.1  Modelling of Sorption Isotherms Data:  

A. Linear Isotherm Model 

 

Figure 6.2: Partitioning coefficient for sorption of Cu2+ in the presence of Pb2+ 
and Zn2+ on ACs, BCs and magnetite 
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As can be seen in Figure 6.2, the linear model shows that magnetisation 

has impacted the sorbents’ Cu2+ uptake differently. While the uptake of Cu2+ on 

CoalAC was reduced by 98.18 % (i.e. difference between sorption of Cu2+ on 

CoalAC and MCoalAC), there is an increase of about 37.90 % uptake on CoAC 

due to magnetisation. By the same judgement, there is a remarkable increase of 

527.97 and 904.89 % uptake on Bio-1 and OrgBio respectively following 

magnetization. Furthermore, the MBCs have the same level of Cu2+ uptake than 

MCoAC (the best of the ACs). This clearly show that magnetisation is beneficial 

to the removal of Cu2+ at low concentration solutions by some of the magnetic 

sorbents. It is obvious that magnetisation did not enhance the uptake through the 

magnetic attraction of the metal since magnetite has the least uptake. Rather the 

process of magnetisation is likely to have produced additional edges and points 

of dislocation on the surface of the biochars. Puziy et al. (2002), have reported 

the existence of carboxylic and phenolic monoprotic sorption sites that are formed 

due to chemical activation of carbon. They found that the sorption of Cu2+ is 

through the formation of complexes with these sites. It is likely then that such 

sites were formed on the magnetic-carbon composites during the process of 

magnetisation when the sorbents were subjected to very high acidic conditions. 

Hence the performance of the magnetic-carbon composites was enhanced at low 

concentration. Another observation is that a decrease in pHPZC for the sorbents 

was recorded especially MCoAC and MOrgBio. This could make it possible for 

sorption of to progress due to electrostatic interaction when the pH is above the 

pHPZC of these sorbents. 

B. Nonlinear Isotherm Models  

Table 6.1: Summary of ASE for the sorption of Cu2+ in the presence of Pb2+ 
and Zn2+ on ACs, BCs and magnetite. 

SORBENT CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio Magnetite 

LANG_L 19.53 2.40 14.06 5.96 4.53 14.61 13.99 28.72 8.96 

FR_L 20.64 13.99 4.22 1.47 28.15 9.18 4.84 36.47 2.27 

RP_L 3.16 1.54 2.17 0.92 4.95 0.72 0.91 38.39 2.58 

LANG 7.72 2.35 8.68 4.59 3.82 1.99 7.51 12.40 3.37 

FREU 16.15 11.64 3.75 1.35 22.15 8.02 4.48 28.60 2.17 

RED-PET 2.97 1.52 2.11 0.90 3.61 0.67 0.87 18.29 2.50 

Methods of linear and nonlinear data fitting were applied in the evaluation 

of the experimental results. In general, the nonlinear regression method 
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generated more accurate parameters and the isotherm simulated hence 

produced lower residuals about the experimental isotherm. Consequently, better 

error function values were obtained as can be seen in Table 6.1. 

The optimised parameters for the isotherm model are summarised in Table 

6.2. Except in the case of MOrgBio, the Redlich-Peterson model generally has 

the best ASE values. Of the two 2-parameter models, the Langmuir model has 

better fitting than the Freundlich models for most of the sorbents. This is also 

confirmed by the Redlich-Peterson model exponent ‘𝛾’, which in most instances 

is closer to 1.  

Table 6.2: Optimised isotherm model parameters for sorption of Cu2+ in the 
presence of Pb2+ and Zn2+ on ACs, BCs and magnetite. 

Model Parameter CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio Magnetite 

LANG 

𝑄𝑚 4.75 2.51 2.68 0.89 5.48 2.11 2.62 3.95 0.27 

𝐾𝐿 27.49 178.17 1.49 0.48 13.57 291.08 2.82 369.84 0.69 

𝑅2 0.9874 0.9775 0.9804 0.9689 0.9746 0.9724 0.9801 0.9139 0.7458 

FREU 

1 𝑛⁄  0.150 0.102 0.192 0.348 0.159 0.148 0.151 0.088 0.180 

𝐾𝐹 3.70 2.13 1.55 0.31 3.68 1.74 1.79 3.31 0.15 

𝑅2 0.8893 0.7798 0.9679 0.9872 0.8839 0.7812 0.9699 0.5753 0.8873 

RED-PET 

𝐾𝑅 198.98 528.41 56.23 2.34 113.98 729.65 89.53 1460.11 1557.04 

𝐴𝑅 45.40 216.25 33.00 6.20 23.03 357.59 47.99 369.83 10590.12 

𝛾 0.951 0.974 0.839 0.719 0.943 0.968 0.874 1.000 0.820 

𝑅2 0.9979 0.9873 0.9841 0.9951 0.9885 0.9968 0.9951 0.9139 0.8872 

Examples of optimised simulated isotherms in which the Langmuir model 

has closer resemblance to the experimental curve are presented in Figure 6.3. 

Hence, the sorption is likely to be due to homogenous surface interaction that 

could result in the formation of monolayer coverage. Both linear and nonlinear 

models have shown that magnetisation resulted in the enhancement of the Cu2+ 

sorption potentials of OrgBio at both low and high concentrations. This agrees 

with the pattern exhibited by the isotherm plots in Figure 6.1. In the case of CoAC 

and Bio-1, magnetisation increased Cu2+ sorption at low aqueous concentrations 

(see Figure 6.2), but not high concentrations. 
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Figure 6.3: Comparison of simulated and experimental isotherm plot for 
sorption of Cu2+ in the presence of Pb2+ and Zn2+ on; (a) CoAC, 
(b) MCoAC, (c) Bio-1 and (d) MBio-1 
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what was observed in the linear model, the sorption capacity of its magnetised 
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OrgBio according to the isotherm models, showing the benefits of magnetisation 
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According to both models, magnetite has negligible capacity, while the sorption 

capacities of the three best sorbents; MOrgBio, Bio-1 and CoAC are not far apart.  

Unlike what was observed in the case of organic compounds (as discussed 

in 4.3.2.3, 5.3.1.2 and 5.3.2.3), it can be observed from Tables 6.3 and 6.4 that 
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(generally, Pearson correlation coefficient 𝑅 ≤ 0.3685). This clearly indicates that 

neither the surface area nor the pore volumes are the main properties that 

influences the sorption of Cu2+ on these sorbents. 

Table 6.3: Sorption of Cu2+ in the presence of Pb2+ and Zn2+ on ACs and 
BCs; Pearson correlation coefficients between model 
parameters and sorbent properties. 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.1837 0.1588 0.1916 0.2513 

Langmuir 
𝑄𝑚 0.0668 0.2726 0.0048 0.2121 

𝐾𝐿 0.4557 0.3165 0.4923 0.1355 

Freundlich 
1 𝑛⁄  0.3330 0.4590 0.2798 0.1416 

𝐾𝐹 0.1208 0.3132 0.0518 0.2050 

Redlich-Peterson 

𝐾𝑅 0.4658 0.3546 0.4877 0.0973 

𝐴𝑅 0.4614 0.3297 0.4976 0.0840 

𝛾 0.3191 0.4187 0.2800 0.0941 

Table 6.4: Sorption of Cu2+ in the presence of Pb2+ and Zn2+ on ACs and 
BCs; Pearson correlation coefficients between normalised model 
capacity factors and sorbent properties. 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.2763 0.2017 0.2978 0.2087 

Langmuir 𝑄𝑚 0.2641 0.3602 0.2209 0.2625 

Freundlich 𝐾𝐹 0.2900 0.3685 0.2521 0.2158 

6.3.1.3  Sorption Affinity 

According to the models’ sorption intensity and heterogeneity factors, the 

sorbents can be ranked as follows; [𝐾𝐿: MCoalAC < magnetite < CoalAC < OrgBio 

< Bio-1 < CoAC < MCoAC < MBio-1 < MOrgBio], [𝑛: MCoalAC < CoalAC < 

magnetite < Bio-1 < OrgBio < CoAC < MBio-1 < MCoAC < MOrgBio] and [𝛾: 

MCoalAC < magnetite < CoalAC < OrgBio < Bio-1 < CoAC < MBio-1 < MCoAC 

< MOrgBio]. This patter resembles what was obtained from ranking according to 

capacity parameters. Therefore from the forgone observation, and the deduction 

that most isotherms happens to be of the Langmuir type, it can stated that 

sorption of Cu2+ is favoured as the binding intensity and surface homogeneity 

increases (Chen et al., 2011b). According to all models, MOrgBio is the best 

sorbent that can be used to remove Cu2+ in the presence of Pb2+ and Zn2+ in an 

equimolar solution. 
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6.3.2  EVALUATION OF SORPTION ISOTHERMS FOR SORPTION OF Pb2+ IN 

THE PRESENCE OF Cu2+ AND Zn2+ IN AN EQUIMOLAR MIXED 

SOLUTION. 

The sorption isotherm for Pb2+ in the presence of Cu2+ and Zn2+ on ACs, 

BCs and magnetite in an equimolar mixed metal salts solution is presented in 

Figure 6.4. With the exception of the coal based AC, all sorbents exhibit high 

affinity of Pb2+ within the lower concentration region. Compared to their sorption 

of Cu2+, the sorbents did not show the same pattern of exhaustion. The isotherms 

of the BCs are quite comparable to those of the ACs, or even better especially 

when compared to the coal based AC.  

  

  

Figure 6.4: Sorption of Pb2+ in the presence of Cu2+ and Zn2+ on; (a) CoAC 
& MCoAC, (b) CoalAC & MCoalAC, (c) Bio-1 & MBio-1 and (d) 
OrgBio & MOrgBio 

Thus, as in the case of the Cu2+ sorption, the sorbents’ Pb2+ sorption 

capacities are not mainly dependent upon the availability of 𝐴𝑆. This suggests 

also that their uptake of Pb2+ is due to its binding with specific sorption sites, 

through the formation surface complexation with carboxyl and hydroxyl functional 

groups and coulombic interactions (Lu et al., 2012). It can be observed that this 

time around, the magnetic iron oxide has shown some affinity for the metal, and 
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as a result, the composites MCoaAC and MCoalAC have about the same level of 

Pb2+ uptake with their pristine pairs, while MOrgBio again has better uptake than 

OrgBio. This observation confirms the suggestion that the process of 

magnetisation has altered the metal sorption property of the OrgBio for the better.  

6.3.2.1  Modelling of Sorption Isotherms Data 

A Linear Isotherm Model 

 

Figure 6.5: Partitioning coefficient for sorption of Pb2+ in the presence of Cu2+ 
and Zn2+ on ACs, BCs and magnetite 

It can be observed in Figure 6.5, that the BCs have higher uptake than the 

ACs, indicating once again that the total surface area is not the most important 
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was recorded, it can be inferred that magnetisation is beneficial to the removal of 
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model. 
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isotherms obtained from model simulation using linear and nonlinear fitting is 

presented in Table 6.5. 

Table 6.5: Summary of ASE for the sorption of Pb2+ in the presence of Cu2+ 
and Zn2+ on ACs, BCs and magnetite. 

Sorbent CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio Magnetite 

LANG_L 32.65 58.03 20.01 19.81 56.50 54.88 14.34 110.66 28.09 

FR_L 57.66 49.70 2.95 3.22 74.03 34.38 42.82 117.00 5.01 

RP_L 26.49 61.30 3.20 1.50 71.79 42.82 0.39 148.88 0.44 

LANG 17.76 33.40 15.26 16.31 35.52 20.73 2.79 66.36 19.54 

FREU 34.13 38.19 2.77 2.81 38.78 27.77 31.54 89.68 4.04 

RED-PET 7.66 27.12 3.10 1.47 15.34 19.48 0.34 87.30 0.43 

Table 6.6: Optimised isotherm model parameters for sorption of Pb2+ in the 
presence of Cu2+ and Zn2+ on ACs, BCs and magnetite. 

Model Parameter CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio Magnetite 

LANG 

𝑄𝑚 25.48 23.23 11.50 11.91 35.45 14.85 13.47 28.06 12.57 

𝐾𝐿  0.85 1.62 0.18 0.35 1.38 9.60 4.57 14.47 0.50 

𝑅2 0.9680 0.9445 0.9924 0.9704 0.9467 0.8994 0.9937 0.9110 0.9556 

FREU 

1 𝑛⁄  0.234 0.284 0.296 0.313 0.250 0.262 0.162 0.209 0.210 

𝐾𝐹  10.90 9.93 3.41 3.68 16.41 7.60 8.47 16.83 5.52 

𝑅2 0.9666 0.9248 0.9882 0.9869 0.9856 0.9207 0.8714 0.8932 0.9949 

RED-PET 

𝐾𝑅  113.57 3104.72 60.07 55.72 565.12 3278.75 79.34 538.52 204.69 

𝐴𝑅 7.96 306.88 16.43 12.39 31.76 426.01 6.60 23.73 35.74 

𝛾 0.841 0.723 0.724 0.753 0.776 0.742 0.961 0.904 0.801 

𝑅2 0.9975 0.9292 0.9900 0.9970 0.9965 0.9237 1.0000 0.9342 0.9996 

  

  

Figure 6.6: Comparison of simulated and experimental isotherm plot for 
sorption of Pb2+ in the presence of Cu2+ and Zn2+ on; (a) CoAC, 
(b) MCoAC, (c) OrgBio and (d) MOrgBio 
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Except for CoalAC, the Redlich-Peterson model produces the best ASE 

values for all the sorbents. In a like manner, the Langmuir model appears to have 

closer resemblance to the experimental isotherms compared to the Freundlich 

model. Similar findings have also been reported in literature (Liu and Zhang, 

2009; Chen et al., 2011b). The summary of optimised model parameters is shown 

in Table 6.6, and the isotherms obtained from them for CoAC MCoAC, OrgBio 

and MOrgBio are shown in Figure 6.6 as examples. 

6.3.2.2  Sorption Capacities  

The sorption capacities of the sorbents over the range of the isotherm data 

can be arranged according to the models’ capacity parameters in the order; [𝑄𝑚; 

CoalAC < MCoalAC < magnetite < OrgBio < MBio-1 < MCoAC < CoAC < 

MOrgBio < Bio-1], [𝐾𝐹; CoalAC < MCoalAC < magnetite < MBio-1 < OrgBio < 

MCoAC < CoAC < Bio-1< MOrgBio]. The orders are similar and they affirm the 

superiority of the Pb2+ sorption capacity of MOrgBio over OrgBio, which once 

again clearly shows the benefit of magnetisation. With a value of Langmuir’s 𝑄𝑚 

of 28.06 mg/g, MOrgBio has the second highest sorption capacity, next to Bio-1 

which has a value of 35.45 mg/g. Despite competition from Cu2+ and Zn2+, the 

sorption capacities recoded for the sorbents in this study are similar or even 

higher than those reported in previous works (Liu and Zhang, 2009; Lu et al., 

2012). Since Pb2+ has a higher density than Cu2+, it is more accurate to compare 

their uptake on the various sorbents according to the molar solid phase 

concentration. The metals’ uptake on the sorbents according to Langmuir 𝑄𝑚 (in 

mmoles/kg) was computed on molar bases and the result is presented in Table 

6.7. It can be observed that Pb2+ is sorbed more than Cu2+ on all the sorbents by 

about 31.76 to 1352 %. 

Table 6.7: Summarised molar based sorption capacities according to 
Langmuir Qm (mmoles/kg). 

Metal CoAC MCoAC CoalAC MCoalAC Bio-1 MBio-1 OrgBio MOrgBio Magnetite 

Cu2+ 74.71 39.53 42.11 14.02 86.31 33.24 41.30 62.13 4.18 

Pb2+ 122.96 112.11 55.49 57.46 171.11 71.67 65.00 135.41 60.66 

Once again it can be observed from Tables 6.8 and 6.9, that there is poor 

correlation (generally, Pearson correlation coefficient 𝑅 ≤ 0.6934) between 

models’ capacity parameters (from Table 6.6) and the sorbents’ surface area, 
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pore volumes and sizes (from Table 3.1). This means that unlike in the sorption 

of organic compounds, activation is not beneficial in the sorption of these metals. 

Table 6.8: Sorption of Pb2+ in the presence of Cu2+ and Zn2+ on ACs and 
BCs; Pearson correlation coefficients between model 
parameters and sorbent properties. 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.6261 0.6934 0.5867 0.1385 

Langmuir 
𝑄𝑚 0.1932 0.2980 0.1484 0.3100 

𝐾𝐿 0.6991 0.5943 0.7190 0.1540 

Freundlich 
1 𝑛⁄  0.6490 0.8190 0.5739 0.7168 

𝐾𝐹 0.4963 0.5824 0.4499 0.0494 

Redlich-Peterson 

𝐾𝑅 0.1600 0.0688 0.1961 0.1515 

𝐴𝑅 0.1403 0.0415 0.1834 0.1499 

𝛾 0.5627 0.6928 0.4982 0.7066 

Table 6.9: Sorption of Pb2+ in the presence of Cu2+ and Zn2+ on ACs and 
BCs; Pearson correlation coefficients between normalised model 
capacity factors and sorbent properties. 

Model Parameters 𝐴𝑆 𝑉𝑃 𝑉𝑀𝑃 𝑃𝑆 

Linear 𝐾𝑑 0.5764 0.5358 0.5728 0.0274 

Langmuir 𝑄𝑚 0.3108 0.2781 0.3055 0.3136 

Freundlich 𝐾𝐹 0.5353 0.5092 0.5230 0.0903 

6.3.2.3  Sorption Affinity 

With reference to Table 6.6, the sorbents can be ranked according to the 

models’ sorption intensity and sorbents’ surface heterogeneity parameters as 

follows; [𝐾𝐿: CoalAC < MCoalAC < magnetite < CoAC < Bio-1 < MCoAC < OrgBio 

< MBio-1 < MOrgBio], [𝑛: MCoalAC < CoalAC < MCoAC < MBio-1 < Bio-1 < 

CoAC < magnetite < MOrgBio < OrgBio] and [𝛾: MCoAC < CoalAC < MBio-1 < 

MCoalAC < Bio-1 < magnetite < CoAC < MOrgBio < OrgBio]. It is obvious that 

these orders differ substantially. However, it can be observed that while the coal 

based ACs mostly ranked lower, MOrgBio is almost always positioned at the 

upper end of the scale. This pattern is similar to what was obtained when the 

sorbents’ were ranked according to the models’ capacity parameters in 6.3.2.2. 

Already it has been shown that the isotherms are mostly of the Langmuir type. 

Therefore, it can be deduced that the sorption of Pb2+ is favoured as the binding 

intensity and surface homogeneity increases. This clearly implies that MOrgBio 
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is the preferable sorbent that can be used to remove Pb2+ in the presence of Cu2+ 

and Zn2+ in an equimolar solution. 

6.3.3  SORPTION OF Zn2+ IN THE PRESENCE OF Pb2+ AND Cu2+ IN AN 

EQUIMOLAR MIXED SOLUTION. 

The results presented here are for the linear model only, because the Zn2+ 

was outcompeted by the other two metals at higher concentration and as such, 

its isotherms were undefined. A similar trend was also reported by (Han et al., 

2013b), where in an equimolar binary solution, the sorption of Cu2+ was found to 

be greater than that of Zn2+ biochars and activated carbons. Chen et al. (2011b), 

also observed this trend of competition in the sorption of Zn2+ from a binary 

solution containing Cu2+. They found that while the presence of Zn2+ at higher 

concentration did not have much impact on the sorption of Cu2+, the sorption of 

Zn2+ was dramatically reduced in the presence of higher Cu2+ concentration. 

However, at low concentration they observed that the sorption of either metals 

was minimally affected by the presence of the other metal.  

6.3.3.1  Linear Isotherm Model 

 

Figure 6.7: Partitioning coefficient for sorption of Zn2+ in the presence of Cu2+ 
and Pb2+ on ACs, BCs and magnetite 

From Figure 6.7, it can be observed that Zn2+ sorbs satisfactorily on CoAC, 

MCoAC and Bio-1. Interestingly, while magnetisation caused about 90 % 

decrease in Zn2+ sorption on Bio-1, MOrgBio displayed an outstanding uptake of 
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poor affinity of Zn2+. It can be deduced then that magnetisation is beneficial to 

some but not all of the sorbents. 

The fact that these metals can be simultaneously sorbed at low 

concentration indicates that they either have affinity to different sites or there is 

an excess of the sorption sites which minimises the impact of competition (Chen 

et al., 2011b). 

6.3.4  MECHANISM OF SORPTION 

The fact that the performance of the BCs is similar or even better that the 

ACs in the uptake of these metals, implies that neither surface area nor pore 

volumes are significant in determining their sorption capacities. This agrees with 

the findings of (Cao et al., 2009; Pyrzyńska and Bystrzejewski, 2010; Tong et al., 

2011). This is unlike what has been observed in the sorption of organic 

compounds, where the sorption capacities are mainly dependent upon the 

surface area and pore volumes. Furthermore, the sorbents’ basal plane and the 

pore walls that constitute a substantial fraction of the total 𝐴𝑆  have affinity for 

organic compounds (Worch, 2012). Sorption of organic compounds in these 

surfaces are mainly due to the interaction of van der Waals forces (Snoeyink and 

Weber, 1967; Roop and Meenakshi, 2005; Çeçen and Aktas, 2011). In contrast 

therefore, the metals appear not to have affinity for these sites. Instead, they are 

then most likely to bind to specific active sorption sites on the edges, points of 

fractures and dislocations of the microcrystallite planes and pore walls of the 

sorbents (Leyva Ramos et al., 2002). Surface area will only be of advantage if it 

is associated with high concentration of the specific sorption sites.  

The metals can react with surface functional groups such as –COOH and 

–OH that exists on the specific sites through electron sharing and electrostatic 

attraction to form surface complexes (Tong et al., 2011; Paradelo and Barral, 

2012). Therefore, metals with higher electronegativity are preferentially sorbed 

over others with lesser such potentials (Faur-Brasquet et al., 2002). The solubility 

of the metal salt also plays a significant role in the uptake of the dissolved metal 

specie from solution. In this regard, the sorption of metals with higher solubility is 

disfavoured over those with lower values. The force of attraction between active 

sites on the sorbent and metal specie increases with increasing electronegativity 
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and ionic radius (Wiwid Pranata et al., 2014). For these reasons, the sorption of 

Cu2+ and Pb2+ with higher electronegative potential and lower solubilities was 

favoured over that of Zn2+ at higher concentrations in equimolar solutions. 

Pagnanelli et al. (2003), reported that metal uptake is related to its first hydrolysis 

constant. Consequently, heavy metal species with higher first hydrolysis constant 

are always more sorbed than those with lower ones. They went further to suggest 

that the metal acidic property has more influence on its sorption than the specific 

functional groups present on the sorbent surface. In their own words, “metal 

speciation predominates on adsorbent characteristics”. 

Another mechanism by which these metals can sorb is by precipitation 

(Inyang et al., 2012; Lu et al., 2012; Xu et al., 2013) when they interact with 

negatively charged ions such as phosphates and carbonates that are usually 

associated especially with biochars. Of these metals, Pb2+ has been reported 

(Cao et al., 2009; Xu et al., 2013) to have high affinity for these ions and it is not 

surprising therefore it recorded the highest uptake among the metals in this study. 

The sorption can also be due to ion exchange through substitution of cations on 

the sorbents by the metals in solution. Therefore, at low pH the metal specie will 

compete with H+ for sorption on the ion exchangeable sites, which causes a 

decrease in metal ion removal (Kadirvelu et al., 2001). According to this 

mechanism, ions in solution with higher valence or charge can easily substitute 

those with lower charge on the sorbents. Furthermore, for ions with the same 

charge, those with a higher atomic number and smaller radius of hydrated ion are 

preferentially sorbed (Pehlivan and Altun, 2006). Thus, Pb2+ will be preferentially 

sorbed over the other two metals and as a result, the following order was 

observed Pb2+ > Cu2+ > Zn2+. This order has also been reported for the removal 

of these metals using various sorbents (Pagnanelli et al., 2003; Perić et al., 2004; 

Zhang, 2011; Paradelo and Barral, 2012). 
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Figure 6.8: Solution pH for the sorption of Pb2+, Cu2+ and Zn2+ in mixed 
equimolar solution. (a) CoAC, (b) MCoAC, (c) OrgBio, (d) 
MOrgBio, (e) Magnetite and (f) Control 

Columbic interactions also play a role in the sorption of the metals. It can 

be observed from Figure 6.8, that the experiments were conducted within the pH 
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hence the surface of the sorbents will have a net positive charge. In this range, 

free metal specie (Me2+) is dominant (Faur-Brasquet et al., 2002; Liu and Zhang, 

2009). Consequently, the sorption of these metals by coulombic interactions 

might not be possible since there will be mutual repulsion instead of attraction 

between the both positively charged surface and metal ions. This is even more 
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could be the reason for the poor sorption of the metals on most of the sorbents 

at high concentration leading to their saturation. Such a decrease in sorption due 

5

6

7

8

9

10

0.01 0.04 0.08 0.16 0.3

p
H

Co (mM)

a)

initial

Final

3

4

5

6

0.01 0.04 0.08 0.16 0.3

p
H

Co (mM)

b)

initial

Final

3

4

5

6

7

0.01 0.04 0.08 0.16 0.3

p
H

Co (mM)

c)

initial

Final

2

3

4

5

0.01 0.04 0.08 0.16 0.3

p
H

Co (mM)

d)

initial

Final

2

3

4

5

0.01 0.04 0.08 0.16 0.3

p
H

Co (mM)

e)

initial

Final

2

3

4

5

0.01 0.04 0.08 0.16 0.3

p
H

Co (mM)

f)

initial

Final



Chapter 6: SORPTION OF HEAVY METALS  

 

 

Badruddeen Saulawa SANI  175 January, 2017 

to decrease in pH for increased initial concentration was also reported by 

(Paradelo and Barral, 2012). The result for the influence of pH on the sorption of 

the metals is presented in 6.3.6. 

6.3.5  EVALUATION OF SORPTION ISOTHERMS FOR SORPTION OF SINGLE 

METAL SOLUTION 

The isotherms for the sorption of Cu2+, Pb2+ and Zn2+ on OrgBio, MOrgBio 

and magnetite are shown in Figure 6.9. With the exception of the sorption of Pb2+, 

the isotherms of MOrgBio are comparable or higher than those of OrgBio. This 

further supports earlier observations that the magnetisation process has modified 

the surface properties of OrgBio for the better. The sorption of Pb2+ on magnetite 

and MOrgBio remained similar to what was recorded in its sorption from 

equimolar solution. There is however a slight improvement in the sorption of Cu2+ 

on the biochars and magnetite, indicating that its sorption was inhibited by the 

presence of Pb2+. It can thus be inferred that in combined solution, the metals 

compete for the same sorption sites. Therefore, Pb2+ was the dominant sorbed 

specie both in single and combined solution since it is more easily removed from 

solution because of its higher density and lower solubility.  

6.3.5.1  Modelling of Sorption Isotherms Data 

  

 

Figure 6.9: Sorption of (a) Cu2+ (b) Pb2+ and (c) Zn2+ on OrgBio, MOrgBio & 
magnetite from single metal salt solution. 
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A. Linear Isotherm Model 

The result of the linear model for the three metals as presented in Figure 

6.10 was able to clearly show that at low concentration, the sorption capacity of 

MOrgBio is remarkably higher than that of OrgBio by about 381.41, 91.22 and 

1105.17 % for Cu2+, Pb2+ and Zn2+ respectively. Interestingly, it can be observed 

that magnetite has no affinity for Cu2+ and Zn2+ at such low concentrations, yet, 

its Pb2+ sorption is outstanding. Therefore, the enhanced uptake of these metals 

recorded on MOrgBio could not have been due to the presence of the magnetite 

impregnation on its surface. Neither did the presence of magnetite on MOrgBio 

contribute to its sorption of Pb2+ from single solution. This is because an 

insignificant decrease of about 5.20 % was recorded for MOrgBio, compared to 

what was recorded it its sorption from mixed solution, even though an outstanding 

increase of 187.15 % was recorded for magnetite uptake of Pb2+, (against its 

sorption in mixed solution).  

 

Figure 6.10: Partitioning coefficient for Sorption of Cu2+, Pb2+, and Zn2+ on 
OrgBio, MOrgBio & magnetite from single metal salt solution. 

B. Nonlinear Isotherm Models  
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OrgBio and MOrgBio as examples. 

The Redlich-Peterson had the best fitting to the isotherm data. On the 

average, the Langmuir had better fitting compared to the Freundlich model. The 

sorption capacities for the sorbents are compared in Figure 6.12 and it can be 

observed that according to both models, Pb2+ was sorbed the highest on all 

sorbents, while Cu2+ and Zn2+ have about equal uptake on OrgBio and MOrgBio. 
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The magnetite did not exhibit affinity for Cu2+ and Zn2+ similar to what was 

observed at low concentration.  

Table 6.10: Optimised isotherm model parameters for sorption of phenol @ 
295.15 K on ACs and BCs. 

 Cu Pb Zn 

Model Parameter OrgBio MOrgBio Magnetite OrgBio MOrgBio Magnetite OrgBio MOrgBio Magnetite 

LANG 

𝑄𝑚 7.46 7.62 1.97 49.55 28.36 12.36 7.79 6.62 0.09 

𝐾𝐿 0.73 70.79 0.11 1.35 3.44 0.55 0.72 2.25 0.48 

𝑅2 0.9697 0.9820 0.9966 0.9654 0.8382 0.9423 0.9808 0.9475 0.9244 

FREU 

1 𝑛⁄  0.292 0.162 0.536 0.359 0.169 0.200 0.327 0.188 0.288 

𝐾𝐹 3.42 5.85 0.28 22.15 16.94 5.72 3.09 4.18 0.03 

𝑅2 0.9726 0.8421 0.9988 0.8989 0.7940 0.9935 0.9739 0.9852 0.8976 

RED-PET 

𝐾𝑅 75.76 539.54 0.85 67.71 5.33E+06 1.35E+06 18.67 635.32 0.05 

𝐴𝑅 19.74 70.78 2.20 1.35 3.11E+05 2.21E+05 4.47 145.10 0.93 

𝛾 0.761 1.000 0.549 1.000 0.833 0.821 0.770 0.832 0.894 

𝑅2 0.9825 0.9820 0.9998 0.9653 0.7943 0.9894 0.9846 0.9969 0.9308 

  

Figure 6.11: Comparison of simulated and experimental isotherm plot for 
sorption of Pb2+ from single solution on; (a) OrgBio and (b) 
MOrgBio 

6.3.5.2  Sorption Capacities  

Comparison of the sorbents’ capacities for the sorption of the metals from 

mixed and single solutions revealed the impact of competition. In the absence of 

competition, sorption of Cu2+ increased by about 3, 2 and 7 fold on OrgBio, 

MOrgBio and magnetite respectively.  
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Figure 6.12: Sorption capacities of OrgBio, MOrgBio and magnetite for 
sorption of metals from single solution according to (a) Langmuir 
constant, (b) Freundlich constant. 

The sorption of Pb2+ increased by about 3.7 fold on OrgBio, while it 

remained the same on MOrgBio and magnetite. Zn2+ was outcompeted by the 

other two metals at high concentration and as such its isotherm was undefined 

hence not presented. However, its sorption capacities on OrgBio and MOrgBio in 

the absence of competition compare favourably to those of Cu2+. This shows that 

the metals have very similar sorption mechanisms, thus compete with each other 

for the available specific sorption sites on the sorbents, with Pb2+ being the most 

and Zn2+ the least competitive metal cation.  
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or for worse depending on the prevailing nature of interaction that exist between 

the metal and the surface of the sorbent at a given pH level (Leyva Ramos et al., 

2002; Amuda et al., 2007). The variation of pH affects the sorbent and metals 

sorption influencing properties in the following ways; 
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6.3.6.1 Metal Speciation with pH 

 

Figure 6.13: Speciation of Pb2+ with pH. 1,2: Pb(OH)2; 1,3: Pb(OH)3
1-; 4,4: 

Pb4(OH)4
4+; 2,1: Pb2OH3+ (Huang and Fuerstenau, 2001) 

Metals in solution can exist as free or hydrolysed species depending on 

the pH level. At lower pH, the free specie is the dominant and the concentration 

of the hydrolysed specie increases to a peak as the pH increases. Further 

increase in pH result in the domination of uncharged or negatively charged 

species due to hydrolysis reaction, as demonstrated in the speciation diagram 

in Figure 6.13. In general, the hydrolysed metal specie are preferentially 

sorbed over free ones. Therefore, sorption increases at as the pH increases 

due to the formation of less charged and less soluble hydrolysed species which 

can easily be attached to the surface as a result of decrease of electrostatic 

repulsion (Faur-Brasquet et al., 2002). 

Thus metals removal at higher pH could be due to both sorption and 

metal hydroxide precipitation (Huang and Fuerstenau, 2001; Lu et al., 2012). 

Also at low pH the solution is rich in H+ which compete with the cations for 

active sorption sites (Pellera et al., 2012). As pH increases, solubility of metals 

decreases, at very high pH, metals precipitate and removal is due to both 

sorption and precipitation (Schiewer and Volesky, 1995). However, from the 

speciation diagram, it can be inferred that, within the acidic to neutral pH range, 

the removal of Me2+ specie is majorly by sorption. 

6.3.6.2 Surface Charge 

At pH below the pHPZC of the sorbent the surface is positively charged 

and this is unfavourable for the sorption of cations due to repulsion between 
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the positive charged surface and the cation. As the pH increases, the surface 

charge becomes negative at pH above the pHPZC for the sorbent. This can 

happen due to deprotonation of hydroxyl and carboxylic groups (Pagnanelli et 

al., 2003; Lu et al., 2012). This favours the sorption of metals as a result of 

enhanced electrostatic coordination between the negatively charged surface 

and the cations (Kula et al., 2008; Liu and Zhang, 2009). 

6.3.6.3 Surface Functional Groups 

Metal cations are denied coordination with the oxygen-containing surface 

functional groups at lower pH by the presence of linked H+ to the groups. This 

enhances electrostatic repulsion between the protonated amine and hydroxyl 

groups with the cationic adsorbates (Norouzian and Lakouraj, 2015). For 

similar reasons, metal removal by ion exchange mechanism is impaired at 

lower pH due to competition between H+ and metal ions for sorption to the ion 

exchangeable sites (Kadirvelu et al., 2001). As the pH increases, the 

deprotonation of the functional groups gradually takes place and thereby 

making it possible for them to coordinate with the cations. Thus making the 

metals removal more favourable (Kula et al., 2008; Liu and Zhang, 2009). 

  

Figure 6.14: The effect of pH on sorption of metals on ACs and BCs form 
mixed equimolar (0.16 mM) solution (a) Cu2+ sorption in 
presence of Pb2+ and Zn2+, (b) Pb2+ sorption in presence of Cu2+ 
and Zn2+ 
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Figure 6.15: Effect of pH on sorption of metals on OrgBio & MOrgBio from 
single equimolar (0.16 mM) solution (a) Cu2+, (b) Zn2+, (c) Pb2+ 
and (d) equilibrium concentration for Pb2+ sorption. 

From Figures 6.14 and 6.15, it can be observed that as the solution pH is 

increased, there is a general increase in the sorption of the metals on the 

sorbents from both equimolar mixed and single solution. The residual 

concentrations of the control samples in the Cu2+ and Zn2+ remained at the same 

level throughout the experiment. This suggests that there is no loss of 

concentration due to the metals precipitating out of the solution in the absence of 

a sorbent material (Chen et al., 2011b). The Pb2+ system however showed 

substantial decrease for the measurements in the controls from pH 5 and above, 

such that at pH 9 very little Pb2+ was detected (see Figure 6.15 (d)). It is likely 

then that the metal might have precipitated out of the solution which caused some 

loss of concentration. 

6.3.7  SORPTION IN SYNTHETIC WASTEWATER (16 mg/L DOC) 

6.3.7.1  Mixed Equimolar Solution 

It can be observed from Figure 6.16(a), that there is a general increase in 
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instance, when Cu2+ sorption was given 24 hr head start, highest increase of 

29.16 % and 62.64 % was recorded for CoAC and MCoAC respectively. The 

increase recorded is likely due to chelation of Cu2+ to organic compounds 

(Hochuli et al., 1987; Iwata et al., 1991) in SWW introduced into the system. This 

could be the reason why a general decrease was observed in the equilibrium 

concentration of Cu2+ in the control samples of both pure and SWW fouled 

solution as presented in Figure 6.16(b). On the other hand, the sorption of Cu2+ 

on OrgBio was decreased (up to 30.50 %) and remarkably so (up to 85.68 %) for 

MOrgBio, following the simultaneous contact of sorbents with metals and SWW. 

This implies that even though some of the Cu2+ might be removed by other 

means, the sorption of the biochars was significantly attenuated by the 

competition of SWW.  

  

Figure 6.16: Effect of fouling on the sorption of Cu2+ on ACs and BCs form 
mixed equimolar (0.16 mM) solution (a) Cu2+ sorption in 
presence of Pb2+ and Zn2+, (b) residual Cu2+ concentration in 
control samples. 

It should be noted that the experiment was conducted using high initial 

concentration (0.16 mM) of metal salt, i.e. a level that has resulted in the near 

exhaustion of the sorbents’ capacities as discussed in 6.3.1. The ACs have 

exhibited higher sorption of SWW (measured in terms of DOC) compared to the 

BCs see Figure 6.17(a). It can then be suggested that, surface area might be 

important in the sorption of Cu2+, in the presence of additional competing organic 

compounds, at higher concentrations. The sorption of the organic compounds to 

the general sorption sites on the basal planes and walls of their pores will reduce 

the pressure on the specific sites where the metal can still occupy with lesser 

competition. In the case of the BCs, the organic compounds from the SWW will 
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specific sorption sites which resulted in the attenuation of their metal sorption 

capacity. In addition, the ACs are then more likely to possess ligands from the 

sorbed organic compounds on their surface which can facilitate the removal of 

more Cu2+ through chelation with the ligands (Juang et al., 1999; Lu et al., 2012). 

Le Cloirec and Faur-Brasquet (2008), also reported an increase in Cu2+ sorption 

on activated carbon cloth preloaded with benzoic acid. They attributed this 

increase to the formation of ligand between benzonate ions (C6H5COO-) with 

Cu2+.  

  

Figure 6.17: Sorption of SWW (as DOC) on ACs and BCs in presence of (a) 
mixed equimolar (0.16 mM) solution and (b) Pb2+ in single 
solution (0.16 mM). 

For the sorption of Pb2+, in most cases a decrease in sorption capacity was 

recorded as can be seen in Figure 6.18(a). For the ACs, the highest decrease of 

about 44.16 % was recorded on CoAC, when the metals and SWW were 

contacted simultaneously. For the BCs, while a general increase was recorded 

for OrgBio (up to 143.42 %), a general decrease (up to 92.11 %) was recorded 

for MOrgBio. Also, from Figure 6.18(b) it can be observed that the equilibrium 

concentration for control samples of both pure and SWW fouled solution are 

about the same when the SWW was added first. This means that removal of Pb2+ 

by means of chelation was low and as such, the competing compounds only 

occupied the sorption sites without necessarily aiding in the removal of Pb2+ via 

chelation. On the other hand, there is a decrease in the equilibrium concentration 
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simultaneously. This suggests that the sorption of Pb2+ on CoAC and MOrgBio is 

adversely affected by the presence of SWW. 
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Figure 6.18: Effect of fouling on the sorption of metals on ACs and BCs form 
mixed equimolar (0.16 mM) solution (a) Pb2+ sorption in presence 
of Pb2+ and Zn2+, (b) residual Pb2+ concentration in control 
samples 

6.3.7.2  Single Equimolar Solution 

  

  

Figure 6.19: Effect of fouling on the sorption of metals on OrgBio & MOrgBio 
form single equimolar (0.16 mM) solution (a) Cu2+, (b) Pb2+ and 
(c) Zn2+ and (d) residual Pb2+ concentration in control samples 
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6.19(b)), metal chelation is likely to contribute to its removal, since the equilibrium 

concentration of fouled control samples are lower than that of pure control sample 

as presented in Figure 6.19 (d). However, this was not sufficient to record an 

increase in Pb2+ removal, instead, a decrease was recorded. The reduction in the 

performance of MOrgBio is due to competition by compounds in SWW to specific 

sorption sites, since it was shown to have higher SWW sorption compared to 

OrgBio (see Figure 6.17(b)). Consequently, OrgBio had more sites available for 

specific sorption of all the metals and therefore had better performance than 

MOrgBio.  

6.4  SUMMARY 

The aim of this chapter is to investigate the behaviour of magnetic carbon 

composites in the sorption of bivalent metal cations. The results suggest that 

sorption capacities are influenced by factors that includes the initial concentration 

of the metal, presence and type of competing compounds, the sorbents’ affinity 

for the metal and the pH of the solution.  

Generally, the sorption capacity was found not to be influenced by the 

sorbents’ surface areas or pore volumes. Therefore, activation is not in all cases 

advantageous, because the biochars have the same or even better sorption of 

the metals than the activated carbons. The process of magnetisation has been 

found to be beneficial to the organic biomass biochar. The result clearly showed 

that the process of magnetisation has the tendency of enhancing the biochar’s 

sorption capacity, even though, the presence of impregnated magnetic iron oxide 

on the sorbents did not -in most instances- contribute to the uptake of the metals. 

At low concentrations, almost all the metals can be sorbed. At higher 

concentrations, the sorbents appear to be exhausted due to limitation of specific 

sorption sites. Pb2+ is less sensitive to competition from Cu2+ and Zn2+, its sorption 

potential on MOrgBio was maintained irrespective of the presence of the two 

metals. Generally, the metal’s affinity for the sorbets is in the order Zn2+ < Cu2+ < 

Pb2+. Accordingly, it was deduced that the metals sorption capacity increases 

with increasing electronegativity, effective ionic radius and decrease in solubility. 

For this reason, Zn2+ was outcompeted by the other two metals at high 

concentration. 
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The presence of competitors from the addition of synthetic wastewater 

enhanced the removal of Cu2+ from mixed equimolar metal solution on the 

activated carbons by up to 62.64 %. The result indicated the possibility of Cu2+ 

removal by other means such as chelation with ligands due to the sorption of 

SWW on the sorbents. This is attributed to the benefit of sufficient surface area 

which made the simultaneous sorption of Cu2+ and SWW possible. On the other 

hand, it attenuated the sorption capacities of the biochars by at least 30.50 %. It 

can be deduced that competing compounds from the SWW occupied the already 

limited specific sorption sites on the biochars at the expense Cu2+, and they did 

not facilitate its removal by other means. This attenuation was also observed in 

the sorption of Pb2+ from mixed equimolar metal solution, especially on CoAC 

and MOrgBio by up to 44.16 and 92.11 % respectively. Similarly, the sorption of 

all the metals from their single equimolar solution on the biochars, especially 

MOrgBio, was decreased by up to 90 % due to competition from SWW.  

Sorption of the metals from both mixed and single equimolar solution was 

positively influenced by the solution pH. The result clearly shows that the sorption 

of the metals is most favourable at higher pH, but not high enough to cause the 

precipitation of the metals from the solution. In this regard, both magnetite carbon 

composites and the pristine sorbents exhibited similar response to pH changes. 

Finally, the result has shown that the magnetic sorbents can be used to 

achieve the same level of metal removal in appropriate circumstances. The 

sorbents can be selected carefully according to the conditions of the wastewater. 

In situations where there is high concentration of organic compounds, activated 

carbons are most suitable. The vast surface area of the activated carbons will be 

available for the removal of a wide range of organic compounds and heavy 

metals. However, if the wastewater is characterised such that heavy metals exist 

against a background of low organic compounds, the cost of activation can be 

save by using biochars, since the advantage of large surface area is not 

necessarily required in the removal of heavy metals. In both instances, the 

adsorption can be aided by adjusting the pH of the wastewater to values close to 

the pHPZC of the sorbents, where optimum sorption is normally possible. 

Generally, since adsorption is applied as a polishing stage in wastewater 

treatment, it is expected that the organic content must have been reduced by 

preceding secondary treatment processes and so the sorbents will be effective in 
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the removal of both the heavy metals and micropollutnts. In the case higher 

concentration of DOM, the dosage of the sorbents should be increased to provide 

enough sorption capacity for both target and competing compounds. 
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CHAPTER 7.  CONCLUSION 

7.1 SUMMARY 

Magnetic activated carbons and biochars were successfully produced and 

used in the treatment of the target pollutants from aqueous solutions, synthetic 

and real wastewaters. Sorption experimental data was effectively simulated using 

rigorous mathematical modelling. It is strongly believed that the modelling results 

are highly representative of the experimental data. The results clearly indicated 

that the sorption of organic compounds depends on the carbon content in the 

magnetic carbon composites. In general, the performances of the magnetic 

sorbents compares favourably (in some instances performs even better) with 

those of their corresponding pristine pairs, in terms of sorption isotherms, kinetics 

and response to solution chemistry and temperature. Mostly, appreciable 

sorption of phenol, diclofenac, ibuprofen and bivalent metal cations were 

recorded, in levels that compare well with what has been reported in literature.  

The results from isotherm and kinetic studies obtained from aqueous 

solutions and SWW represent near ideal scenario. It evaluates the possible 

interactions that can exist between sorbents and sorbates, i.e. when target 

compounds do not face severe competition from secondary compounds. This 

serves as a proof of concept on the feasibility of using magnetised sorbents in 

the treatment of refinery wastewaters. Notwithstanding however, since each 

refinery has unique configuration and wastewater characteristics, the results 

presented herein will only approximate performance of the sorbents under similar 

conditions provided during the experiments. In real wastewaters, there will be a 

decrease in both sorption capacity and rate of its utilisation due to the effect of 

competition. This is significant if the wastewaters under consideration have 

higher concentrations of secondary compounds. Thus, for this technology to be 

used effectively in the treatment of refinery wastewater, the preceding treatment 

stages should be capable of providing effluents with characteristics that would 

facilitate the transfer of target compounds from solution to the surface of the 

sorbents. It is essential thus that adsorption by magnetic sorbents be applied as 

a polishing stage when other compounds that could cause a significant 

infringement in the sorption of target pollutants have been removed by preceding 
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treatment processes. This is particularly true if normal dosages of these sorbents 

are to be used or practicable retention times are to be applied as feasible 

economic situations can permit. This will ensure the success of carbon adsorption 

in attending to exigencies of producing a final effluent that conforms to 

environmental requirements as recommended by regulatory agencies. 

The decrease in both surface area and micropore volume of the sorbents 

due to the process of magnetisation has been shown to be largely as a result of 

lower carbon contents (ca. 36% less) in the magnetic carbon composites. On the 

other hand however, an increase in both the surface area and micropore volume 

of the OrgBio was recorded following the magnetisation process. It has been 

speculated that the highly acidic condition to which the biochar was subjected to 

during the magnetisation process has led to dissolution of the carbonate deposits 

in the pores thereby creating additional pore spaces. This suggests that the 

magnetisation process can be manipulated such as to increase the surface areas 

and pore characteristics of the sorbents and ultimately enhance their sorption of 

target compounds. 

In the case of the sorption of bivalent heavy metals, magnetisation appears 

to be beneficial, because enhanced metal uptake was recorded on some of the 

sorbents after magnetisation. Since the sorption of metals is due to specific 

interactions, the pure magnetite did not exhibit good sorption properties. 

Therefore, the enhancement is more likely to be due to the production of 

additional active sites on the surface of the sorbent during the process of 

magnetisation and not due to the presence of magnetite in the composites.  

The concentration of certain pollutants encountered in effluents of some 

refinery units can be very high as has been presented in table 1.1. Also, in some 

instances, pollutants including phenol and heavy metals can be detected in high 

concentrations even effluents of secondary treatment units as has been reported 

in section 2.1. Notwithstanding, the concentrations of organic pollutants used in 

this study are much higher than those encountered in refinery wastewaters. 

Particularly, it is expected that the levels of dissolved compounds will be reduced 

drastically almost close to trace concentration after undergoing biological 

treatment process, s. Therefore, the results obtained in this study are more 

appropriate in comparing the behaviour of the magnetic and nonmagnetic 
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sorbents at high concentration. Hence, nonlinear models are applicable in this 

concentration range. At low concentrations, the isotherm data is best explained 

using the linear model, especially, when the impact of competition from other 

compounds in refinery wastewaters is considered. However, it is still likely that 

the relative behaviour between corresponding magnetic and nonmagnetic pairs 

of sorbents used in this study will hold even at low concentrations. For instance 

the data can be used to assess the relative sorption capacities of corresponding 

pairs of magnetic and nonmagnetic sorbents for the sorbates investigated.  

The influence of competing compounds on the sorption of the target 

compounds depends on the pollutants under consideration. For organics, even 

at such high initial concentrations used, there is a general decrease in their 

sorption due to the presence of competitors. This indicates that they share similar 

sorption mechanisms with the competing compounds or they are deprived 

binding to sorption sites due to size exclusions or conditions of solution chemistry 

that retains them in solution. In real wastewaters, Mailler et al. (2016) have 

reported that the sorption of micropollutants are impacted negatively by DOC 

competition. Another study has shown that both pore blocking and hydrophobic 

competition from NOM can impair the sorption of a number of pharmaceuticals 

(de Ridder et al., 2011). The results of this study therefore can be extended to 

lower concentrations, and it can thus be concluded that for the organic pollutants 

to be effectively removed, higher dosages of the carbon sorbents (especially the 

magnetic composites) need to be applied. In the case of magnetic sorbents, this 

could lead to higher energy consumption in sorbent separation if induced 

magnetic separators are used. Therefore to reduce the power consumption, 

permanent magnets could be used to separate the magnetised sorbents from 

wastewaters.  

For heavy metals, the presence of competing compounds did not impair the 

uptake of all metals. Although competition takes place among metal species, the 

sorption of Cu2+ on activated carbon seems to be enhanced in the presence of 

SWW, likely due to its chelation with organic compounds. Therefore, the removal 

of such metal from refinery wastewaters could be due to both sorption to AC and 

chelation to organic matter. This will then reduce the load on the AC thereby 

leaving more sorption sites for the removal of other compounds. The magnetised 

ACs have much lower sorption of Cu2+ compared to their pristine pairs, to achieve 
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similar sorption level, more amounts need to be used. The sorption of the metals 

on biochars are generally affected by the presence of competing organic 

compounds. Their sorption from synthetic wastewater is lower than that from pure 

solution. Therefore, their removal from refinery wastewater will also be impacted 

by the DOM present and less removal will be recorded. However, the uptake of 

these metals on the magnetised and non-magnetised pairs are still comparable. 

Here also the linear model is more appropriate to use in fitting the isotherm data 

since the metals exist in low concentrations. 

It should be noted that the autoclaving of WWTPE before the introduction 

of the pharmaceuticals and of course the commencement of sorption process 

would cause the oxidisation of the organic and metal compounds. This will cause 

some dissolved species to precipitate and in general have an influence on their 

sorption characteristics. The experiments were conducted without pH 

adjustments and the sorbents are expected to have net positive charges. Under 

such conditions, the sorption of oxidised organics and metals in the autoclaved 

WWTPE will be impaired due to electrostatic repulsions. This obviously is a 

deviation from what will be experienced in real refinery effluents, where these 

compounds exists in non-oxidised form. Therefore, the pharmaceuticals, and by 

extension similar micropollutants, will be faced with even more competition in 

such real scenarios.  

7.2 FUTURE WORK 

The essence of the magnetisation is to facilitate the separation of the 

sorbents from the treatment matrix. It is vital to establish how resilient the 

magnetic sorbents are in terms of retaining their magnetic properties, while being 

subjected to operational procedures necessary during any treatment process. A 

separate unpublished study presented in appendix C was conducted to have an 

insight into the versatility of the MBC in the amendment of agricultural soils at 

laboratory scale. Substantial amount of MBC was retrieved from the soil in the 

range 72.38 to 98 % of the original mass added to the soil @ 1.2 % (w/w). 

Although the result is inconclusive -as the biochar was observed to have 

commingled with other soil materials. Yet it compares favourably with the findings 

of (Han et al., 2015a), where about 77 % of the added MAC was successfully 

recovered following laboratory scale amendment of contaminated sediment. In 
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general, the results suggest that the magnetic sorbents are resilient to operational 

procedures that are adopted to mix them in and separate them from the soil and 

sediment matrices. Another study by (Hasan, 2014) also showed that the 

magnetic sorbents can be reused over several cycles to remove phenol and 

heavy metals from aqueous solutions and can withstand repeated regeneration 

using appropriate solvents. These are encouraging results which shows that in 

the long run, the use of magnetised sorbents will be an economically viable 

means that can be applied to in the successful treatments of wastewaters and 

contaminated soils and sediments.  

The mechanism of competition should be investigated further, using 

different levels of sorbate concentrations and wastewaters. This will enable a 

further understanding of impact of competition by size exclusion, solution 

chemistry and relative concentrations of target and competing compounds. This 

will also make it possible to determine whether the removal of target pollutants is 

by sorption to the surface of the sorbents or by their binding to the DOM present 

in wastewaters before the sorption. The influence of the nature and concentration 

of competing DOM on sorption kinetics and isotherms, should be investigated 

further in compliance to what is normally experienced in practical sense. To 

obtain comparable background solution chemistry, the WWTPE samples can be 

sterilised by appropriate membrane filtration procedures. 

In this study, the extended duration used in the appraisal of the effect of 

temperature on the sorption of organic pollutants is not applicable in real 

wastewater treatment plants. Due to the prolonged period adopted, no significant 

difference was observed over the temperatures considered. There is the need to 

further investigate the influence of more levels of temperature over shorter 

durations. This will enable the assessment of the dominant type of sorption i.e. 

either due to chemisorption of physisorption of target compounds on the surface 

of the sorbents. 

There is the need for additional investigations to be conducted to further 

characterise the surface chemistry of the magnetised sorbents in comparison to 

their pristine pairs. This will help in the evaluation of the presence and 

concentration of various types of surface functional groups that can influence 

sorption characteristics of the sorbents with respect to target pollutants. 
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There is the need to further investigate influence of varied sorbents’ surface 

and solution chemistries on the sorption kinetics. This will shed further lights on 

the dominant kinetics mechanism as being either due to mass transfer or reaction 

mechanisms. Also dynamic mass transfer models should be used to evaluate the 

kinetics data, since they are more representative of the inherent nature of 

adsorption kinetics that could exist especially over extended durations. 

The magnetic sorbents can be synthesised using several methods as 

outlined previously, with each resulting to a material with different properties. For 

instance, magnetisation has been found to enhance the metal sorption capacity 

of biochar. Additional studies should be conducted to optimise the magnetic 

sorbents’ sorption potentials for additional compounds. There is the need to 

further standardise the procedure so that custom made materials can be 

produced that can be applied to serve specific purposes. In the case of organic 

pollutants, the procedure should be optimised such as to have magnetised 

sorbents with improved surface areas and pore structures. In the case of heavy 

metals, the procedure should be tailored towards enhancing the concentration 

and activity of specific sorption sites.  

There is need to conduct further tests to specifically assess the potential 

environmental risk associated with the use magnetic sorbents for the purpose of 

pollution and control. Through this, best practice guidelines can be developed to 

ensure the safe and sustainable usage of these sorbents. 
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APPENDICES  

APPENDIX A: PHENOL SORPTION; RESULTS OF ISOTHERM 
MODELS FITTING 

A1 FITTING OF ISOTHERM DATA USING LINEAR TRANSFORMED MODELS 

(LTFM) 

  

  

Figure A1: Sorption of phenol on CoAC @ 22oC 

  

  

Figure A2: Sorption of phenol on MCoAC @ 22oC 
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Figure A3: Sorption of phenol on CoalAC @ 22oC 

  

  

Figure A4: Sorption of phenol on MCoalAC @ 22oC 
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Figure A5: Sorption of phenol on Bio-1 @ 22oC 

  

  

Figure A6: Sorption of phenol on MBio-1 @ 22oC 
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Figure A7: Sorption of phenol on OrgBio @ 22oC 

  

  

Figure A8: Sorption of phenol on MOrgBio @ 22oC 
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A2 ISOTHERM MODEL PARAMETERS GENERATED USING ALL ERROR 

FUNCTIONS 

Table A1: Sorption of phenol on CoAC @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 231.15 222.40 209.17 190.11 230.96 225.21 219.15 

KL 0.23 0.28 0.47 0.84 0.30 0.21 0.31 

R2 0.9854 0.9791 0.9524 0.9054 0.9766 0.9867 0.9757 

FREU 

1/n 0.28 0.23 0.26 0.29 0.27 0.21 0.22 

KF 63.71 77.80 68.80 60.96 63.72 85.03 80.29 
R2 0.9422 0.9620 0.9525 0.9404 0.9467 0.9684 0.9650 

RED-PET 

KR 433.25 206.06 286.49 381.17 408.95 433.03 209.54 

AR 4.80 1.76 2.70 4.05 4.23 4.07 1.79 

β 0.80 0.86 0.84 0.81 0.82 0.84 0.86 

R2 0.9869 0.9977 0.9959 0.9904 0.9914 0.9941 0.9976 

DA 

Qo - 272.96 278.13 288.29 278.74 272.96 272.96 

E - 32.89 32.95 32.91 33.17 32.95 32.89 

b - 3.42 3.30 3.12 3.25 3.41 3.42 

R2 - 0.9996 0.9995 0.9990 0.9995 0.9996 0.9996 

PDM 

Qo - 272.97 278.14 288.31 274.79 272.64 272.88 

a - 28.75 25.36 21.45 25.62 28.75 28.75 

b - 3.42 3.30 3.12 3.34 3.42 3.42 

R2 - 0.9996 0.9995 0.9990 0.9995 0.9996 0.9996 
 

Table A2: Sorption of phenol on MCoAC @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 145.51 141.12 133.91 127.23 137.36 144.76 138.98 

KL 0.10 0.13 0.21 0.29 0.18 0.10 0.14 
R2 0.9843 0.9770 0.9508 0.9252 0.9598 0.9863 0.9718 

FREU 

1/n 0.27 0.23 0.25 0.28 0.27 0.24 0.22 

KF 35.13 41.90 38.01 34.20 35.14 39.38 43.59 

R2 0.9533 0.9647 0.9593 0.9523 0.9557 0.9620 0.9671 

RED-PET 

KR 84.79 53.76 67.80 79.47 84.80 84.79 54.92 

AR 1.54 0.79 1.09 1.40 1.51 1.54 0.81 

β 0.82 0.86 0.84 0.83 0.82 0.82 0.86 
R2 0.9920 0.9965 0.9955 0.9932 0.9926 0.9921 0.9964 

DA 

Qo - 173.32 176.22 179.96 173.38 173.51 173.31 
E - 30.68 30.77 30.79 30.91 30.91 30.70 

b - 3.29 3.18 3.07 3.27 3.27 3.28 

R2 - 0.9989 0.9989 0.9986 0.9989 0.9989 0.9989 

PDM 

Qo - 173.34 176.25 179.98 172.69 172.80 173.20 

a - 31.80 28.07 25.00 30.77 31.80 31.80 

b - 3.29 3.18 3.07 3.28 3.30 3.29 

R2 - 0.9989 0.9989 0.9986 0.9989 0.9989 0.9989 
 

Table A3: Sorption of phenol on CoalAC @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 207.62 204.90 190.10 169.71 203.70 205.35 201.90 

KL 0.13 0.12 0.20 0.39 0.11 0.11 0.13 

R2 0.9830 0.9851 0.9538 0.8961 0.9874 0.9888 0.9819 

FREU 

1/n 0.31 0.26 0.28 0.31 0.30 0.25 0.25 

KF 46.31 56.89 50.59 45.23 46.32 58.07 58.80 

R2 0.9552 0.9696 0.9628 0.9546 0.9581 0.9711 0.9718 

RED-PET 

KR 192.62 90.11 137.00 178.39 192.63 86.64 94.18 

AR 2.89 1.02 1.78 2.61 2.85 0.98 1.07 
β 0.77 0.84 0.81 0.78 0.78 0.83 0.83 

R2 0.9867 0.9944 0.9924 0.9882 0.9880 0.9947 0.9942 

DA 

Qo - 265.10 279.21 295.70 265.31 265.09 265.21 

E - 30.50 30.59 30.44 31.04 30.52 30.54 

b - 3.11 2.86 2.67 3.01 3.11 3.10 

R2 - 0.9974 0.9970 0.9961 0.9971 0.9974 0.9974 

PDM 

Qo - 265.12 279.26 295.76 254.43 265.10 265.27 
a - 26.82 20.48 16.93 26.63 26.82 26.34 

b - 3.11 2.86 2.67 3.17 3.11 3.10 
R2 - 0.9974 0.9970 0.9961 0.9965 0.9974 0.9974 
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Table A4: Sorption of phenol on MCoalAC @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ Average 

LANG 

Qm 131.52 128.30 119.64 113.03 124.11 131.89 125.37 124.84 

KL 0.08 0.09 0.16 0.24 0.14 0.06 0.11 0.13 

R2 0.9761 0.9707 0.9335 0.9030 0.9447 0.9862 0.9618 0.9537 

FREU 

1/n 0.27 0.24 0.26 0.28 0.26 0.25 0.24 0.26 

KF 30.37 35.19 32.49 29.91 31.40 34.21 36.19 32.82 

R2 0.9702 0.9774 0.9740 0.9698 0.9729 0.9765 0.9787 0.9742 

RED-PET 

KR 70.87 49.71 60.90 68.44 70.87 70.87 50.88 63.22 

AR 1.58 0.97 1.27 1.50 1.57 1.58 0.99 1.35 
β 0.80 0.83 0.82 0.81 0.81 0.80 0.83 0.81 

R2 0.9943 0.9962 0.9956 0.9947 0.9945 0.9943 0.9961 0.9951 

DA 

Qo - 171.91 175.15 177.37 172.40 171.93 171.91 173.44 

E - 30.19 30.25 30.24 30.36 30.22 30.21 30.25 

b - 2.78 2.70 2.65 2.72 2.77 2.78 2.73 

R2 - 0.9989 0.9988 0.9988 0.9989 0.9989 0.9989 0.9989 

PDM 

Qo - 171.93 175.20 177.37 171.92 171.16 171.96 173.26 

a - 19.55 17.74 16.89 19.55 19.55 19.43 18.78 

b - 2.78 2.70 2.65 2.78 2.79 2.78 2.75 

R2 - 0.9989 0.9988 0.9988 0.9989 0.9989 0.9989 0.9989 

 

Table A5: Sorption of phenol on Bio-1 @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 25.21 25.02 21.99 20.06 21.31 24.73 24.31 

KL 0.44 0.37 0.92 1.44 1.27 0.33 0.42 

R2 0.9717 0.9781 0.9358 0.9090 0.9172 0.9814 0.9731 

FREU 

1/n 0.35 0.29 0.32 0.36 0.33 0.28 0.28 

KF 7.36 8.57 7.73 7.07 7.52 8.77 8.67 

R2 0.9737 0.9856 0.9795 0.9719 0.9777 0.9865 0.9864 

RED-PET 

KR 61.26 49.65 55.09 59.03 61.26 53.88 50.055 
AR 5.82 4.38 5.00 5.52 5.80 4.75 4.417 

β 0.77 0.792 0.784 0.775 0.773 0.792 0.792 

R2 0.9980 0.9988 0.9986 0.9983 0.9982 0.9987 0.9988 

DA 

Qo - 39.77 37.77 35.14 37.80 39.21 39.78 

E - 32.50 32.65 32.93 32.51 32.46 32.51 

b - 2.80 2.96 3.19 2.99 2.87 2.80 

R2 - 0.9992 0.9991 0.9985 0.9991 0.9992 0.9992 

PDM 

Qo - 39.78 37.77 35.15 37.39 40.40 39.74 

a - 16.20 18.78 22.83 20.39 16.20 16.20 
b - 2.80 2.96 3.19 3.04 2.78 2.80 

R2 - 0.9992 0.9991 0.9985 0.9991 0.9992 0.9992 

 

Table A6: Sorption of phenol on MBio-1 @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 18.85 18.41 17.06 15.66 16.70 18.83 18.02 

KL 0.34 0.34 0.58 0.90 0.77 0.23 0.38 

R2 0.9773 0.9772 0.9525 0.9232 0.9349 0.9871 0.9727 

FREU 

1/n 0.33 0.28 0.31 0.34 0.31 0.28 0.28 

KF 5.31 6.14 5.61 5.17 5.57 6.18 6.23 
R2 0.9745 0.9842 0.9794 0.9735 0.9791 0.9844 0.9851 

RED-PET 

KR 40.63 24.05 32.32 38.57 41.05 40.63 24.37 

AR 5.64 2.83 4.14 5.26 5.73 5.64 2.87 

β 0.76 0.80 0.78 0.77 0.76 0.76 0.80 

R2 0.9956 0.9984 0.9976 0.9962 0.9954 0.9955 0.9983 

DA 

Qo - 27.97 28.32 28.45 28.62 28.40 27.97 

E - 32.13 32.11 32.09 32.07 32.10 32.13 
b - 2.93 2.89 2.87 2.87 2.89 2.93 

R2 - 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 

PDM 

Qo - 27.98 28.32 28.45 28.71 28.01 27.97 

a - 19.06 18.28 18.04 17.89 19.06 19.06 

b - 2.93 2.89 2.87 2.86 2.93 2.93 

R2 - 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 
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Table A7: Sorption of phenol on OrgBio @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 14.49 14.44 13.01 12.42 12.86 14.47 13.77 

KL 0.10 0.09 0.14 0.16 0.14 0.10 0.11 

R2 0.9486 0.9495 0.9339 0.9277 0.9342 0.9475 0.9433 

FREU 

1/n 0.38 0.38 0.38 0.38 0.38 0.38 0.36 

KF 2.57 2.66 2.63 2.55 2.56 2.56 2.76 

R2 0.9731 0.9736 0.9736 0.9731 0.9734 0.9733 0.9741 

RED-PET 

KR 3.82 5.02 4.75 4.43 3.83 3.83 5.69 
AR 0.82 1.31 1.17 1.05 0.80 0.80 1.50 

β 0.76 0.70 0.72 0.73 0.75 0.75 0.71 
R2 0.9756 0.9766 0.9766 0.9764 0.9756 0.9756 0.9767 

DA 

Qo - 42.76 33.26 28.13 42.76 42.74 44.39 

E - 24.74 26.17 26.93 24.71 24.71 24.66 

b - 1.90 2.18 2.45 1.91 1.91 1.81 

R2 - 0.9753 0.9751 0.9745 0.9752 0.9752 0.9754 

PDM 

Qo - 44.79 33.48 28.30 44.73 45.69 41.69 

a - 10.59 13.89 17.88 10.59 10.60 10.59 
b - 1.85 2.17 2.44 1.84 1.84 1.88 

R2 - 0.9753 0.9751 0.9745 0.9753 0.9752 0.9754 

 

Table A8: Sorption of phenol on MOrgBio @ 22oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 6.78 7.39 6.41 5.55 5.29 6.78 7.25 

KL 0.08 0.06 0.08 0.12 0.13 0.06 0.06 

R2 0.9783 0.9906 0.9755 0.9545 0.9460 0.9882 0.9896 

FREU 

1/n 0.54 0.48 0.51 0.55 0.55 0.47 0.48 

KF 0.69 0.83 0.75 0.68 0.70 0.84 0.83 
R2 0.9914 0.9958 0.9937 0.9909 0.9912 0.9963 0.9959 

RED-PET 

KR 0.85 1.30 1.16 1.00 0.87 0.76 1.31 

AR 0.35 0.92 0.76 0.56 0.38 0.35 0.93 

β 0.77 0.63 0.65 0.69 0.74 0.72 0.63 

R2 0.9937 0.9991 0.9990 0.9984 0.9966 0.9981 0.9991 

DA 

Qo - 22.38 18.39 13.79 22.53 22.38 22.47 

E - 23.05 23.96 25.22 22.89 23.05 23.03 

b - 2.15 2.39 2.80 2.23 2.15 2.14 

R2 - 0.9991 0.9989 0.9976 0.9989 0.9991 0.9991 

PDM 

Qo - 22.56 18.45 13.81 22.06 22.56 22.49 

a - 17.56 22.15 32.88 20.38 17.56 17.56 

b - 2.14 2.38 2.80 2.25 2.14 2.14 

R2 - 0.9991 0.9989 0.9976 0.9989 0.9991 0.9991 

 

Table A9: Sorption of phenol on CoAC @ 10oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 223.32 215.86 198.39 174.23 206.28 223.31 211.13 
KL 0.24 0.29 0.67 1.70 0.37 0.17 0.34 

R2 0.9791 0.9725 0.9242 0.8441 0.9621 0.9848 0.9660 

FREU 

1/n 0.25 0.21 0.23 0.25 0.24 0.19 0.20 

KF 69.29 80.71 73.49 67.74 69.29 85.64 82.37 

R2 0.9623 0.9755 0.9691 0.9616 0.9657 0.9794 0.9772 

RED-PET 

KR 1381.35 1381.37 941.36 1298.86 1381.35 1381.36 540.66 

AR 16.32 14.97 10.20 15.24 16.21 14.88 5.29 

β 0.80 0.82 0.82 0.80 0.80 0.82 0.84 

R2 0.9864 0.9908 0.9919 0.9872 0.9873 0.9909 0.9943 

DA 

Qo - 285.06 294.65 306.47 285.62 284.13 285.08 

E - 33.09 33.17 33.06 33.58 32.92 33.11 
b - 2.71 2.57 2.44 2.61 2.75 2.71 

R2 - 0.9995 0.9993 0.9988 0.9993 0.9995 0.9995 

PDM 

Qo - 285.08 294.68 306.51 290.19 288.55 285.12 

a - 14.15 12.23 10.88 12.23 14.18 14.10 

b - 2.71 2.57 2.44 2.59 2.70 2.71 

R2 - 0.9995 0.9993 0.9988 0.9993 0.9995 0.9995 
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Table A10: Sorption of phenol on MCoAC @ 10oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 143.00 140.06 131.05 120.99 137.49 143.16 136.91 

KL 0.12 0.13 0.26 0.48 0.22 0.09 0.16 

R2 0.9766 0.9717 0.9288 0.8735 0.9411 0.9866 0.9617 

FREU 

1/n 0.25 0.22 0.23 0.25 0.23 0.24 0.21 

KF 39.03 44.63 41.48 38.61 41.41 39.04 45.97 

R2 0.9649 0.9728 0.9692 0.9648 0.9688 0.9667 0.9745 

RED-PET 

KR 226.79 226.80 175.66 220.17 226.78 226.79 121.14 
AR 4.52 4.23 3.25 4.37 4.48 4.20 2.03 

β 0.80 0.82 0.82 0.81 0.81 0.82 0.84 
R2 0.9861 0.9883 0.9892 0.9865 0.9867 0.9885 0.9907 

DA 

Qo - 182.50 191.74 201.63 187.33 182.49 182.53 

E - 30.64 30.85 30.79 31.21 30.68 30.70 

b - 2.74 2.51 2.34 2.52 2.74 2.73 

R2 - 0.9972 0.9968 0.9960 0.9969 0.9972 0.9972 

PDM 

Qo - 182.52 191.75 201.66 189.68 182.43 182.56 

a - 17.88 13.87 11.69 13.75 17.88 17.60 
b - 2.74 2.51 2.34 2.53 2.74 2.73 

R2 - 0.9972 0.9968 0.9960 0.9969 0.9972 0.9972 

 

Table A11: Sorption of phenol on Bio-1 @ 10oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 25.02 24.35 21.72 19.52 21.37 24.65 23.44 

KL 0.38 0.38 0.93 1.61 0.81 0.28 0.48 

R2 0.9683 0.9682 0.9232 0.8812 0.9315 0.9777 0.9585 

FREU 

1/n 0.30 0.26 0.28 0.30 0.29 0.26 0.26 

KF 7.91 8.74 8.20 7.79 8.10 8.73 8.80 
R2 0.9864 0.9920 0.9892 0.9859 0.9887 0.9920 0.9924 

RED-PET 

KR 143.21 84.01 113.70 137.08 143.24 143.28 84.88 

AR 15.20 8.10 11.53 14.45 15.13 14.46 8.19 

β 0.76 0.78 0.77 0.76 0.76 0.77 0.78 

R2 0.9974 0.9990 0.9986 0.9977 0.9975 0.9984 0.9990 

DA 

Qo - 44.18 43.35 42.59 42.25 43.12 44.19 

E - 31.18 31.26 31.35 31.40 31.32 31.18 

b - 2.28 2.32 2.35 2.37 2.32 2.27 

R2 - 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

PDM 

Qo - 44.21 43.37 42.60 44.25 44.03 44.19 

a - 10.56 10.96 11.29 10.56 10.56 10.56 

b - 2.27 2.32 2.35 2.27 2.28 2.27 

R2 - 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

 

Table A 12: Sorption of phenol on MBio-1 @ 10oC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERRSQ 

LANG 

Qm 18.45 17.72 16.40 14.96 16.08 17.82 17.20 
KL 0.30 0.37 0.67 1.12 0.78 0.43 0.45 

R2 0.9686 0.9608 0.9276 0.8844 0.9166 0.9537 0.9517 

FREU 

1/n 0.28 0.25 0.27 0.28 0.27 0.24 0.25 

KF 5.85 6.39 6.06 5.78 6.07 6.69 6.44 

R2 0.9868 0.9911 0.9890 0.9865 0.9888 0.9925 0.9914 

RED-PET 

KR 75.26 50.18 63.66 72.85 71.67 75.28 51.04 

AR 10.70 6.62 8.74 10.30 9.96 10.50 6.74 

β 0.77 0.79 0.78 0.77 0.78 0.78 0.79 

R2 0.9972 0.9981 0.9979 0.9973 0.9976 0.9975 0.9981 

DA 

Qo - 31.13 30.71 30.34 31.11 31.03 31.14 

E - 31.26 31.32 31.38 31.22 31.24 31.28 
b - 2.29 2.32 2.35 2.30 2.30 2.29 

R2 - 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 

PDM 

Qo - 31.22 30.73 30.35 31.09 31.55 31.17 

a - 10.58 10.92 11.18 10.81 10.55 10.58 

b - 2.28 2.32 2.34 2.30 2.27 2.28 

R2 - 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 
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A3 ISOTHERM FITTING PLOTS: NONLINEAR FITTING METHOD 

  

  

Figure A1: Comparison of simulated and experimental isotherm plot for 

sorption of phenol @ 22oC 
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APPENDIX B: PHENOL SORPTION; RESULTS KINETICS 
MODELS FITTING 

B1 KINETICS MODEL PARAMETERS GENERATED USING ALL ERROR 

FUNCTIONS 

Table B1: Sorption kinetics of phenol on CoAC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERSSQ 

1st 

Qe 78.54 194.95 167.71 162.01 155.06 190.08 173.52 

k1 1.54E-03 7.49E-02 1.63E-01 1.85E-01 1.59E-01 1.02E-01 1.42E-01 

R2  0.8247 0.7059 0.5358 0.5050 0.5419 0.6418 0.5678 

2nd 

Qe 209.30 197.55 183.24 178.54 193.99 190.68 187.66 

k2 3.46E-04 7.45E-04 1.26E-03 1.46E-03 9.08E-04 9.23E-04 1.08E-03 

R2  0.9023 0.8385 0.7994 0.7892 0.8224 0.8225 0.8099 

Elovich 

α 2656.12 2356.54 2466.69 2296.89 2187.54 2191.54 2656.12 

β 0.058 0.058 0.058 0.057 0.058 0.058 0.058 

R2  0.9849 0.9849 0.9849 0.9849 0.9849 0.9849 0.9849 

Intra-P 

kid 98.16 98.85 98.93 97.83 96.29 100.58 100.07 

z 0.11 0.11 0.11 0.11 0.12 0.10 0.10 

R2  0.9709 0.9712 0.9713 0.9709 0.9694 0.9717 0.9718 

 

Table B2: Sorption kinetics of phenol on MCoAC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERSSQ 

1st 

Qe 58.64 130.14 112.10 106.66 137.93 96.08 117.73 

k1 1.74E-03 5.37E-02 1.01E-01 1.18E-01 5.62E-03 1.41E-01 8.41E-02 

R2  0.7710 0.8170 0.7135 0.6844 0.9024 0.6475 0.7450 

2nd 

Qe 139.12 133.04 125.00 121.02 132.91 133.18 128.59 

k2 4.58E-04 7.02E-04 1.00E-03 1.17E-03 8.77E-04 8.05E-04 8.58E-04 

R2  0.9394 0.9174 0.8979 0.8894 0.9029 0.9085 0.9065 

Elovich 

α 183.07 151.82 147.91 121.07 137.42 143.84 183.07 

β 0.068 0.066 0.066 0.063 0.065 0.066 0.068 

R2  0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 0.9653 

Intra-P 

kid 49.20 50.81 50.61 48.17 47.72 58.64 53.11 

z 0.16 0.15 0.15 0.16 0.17 0.12 0.14 

R2  0.9223 0.9246 0.9250 0.9216 0.9172 0.9348 0.9280 

 

 

 

Table B3: Sorption kinetics of phenol on CoalAC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERSSQ 

1st 

Qe 51.97 166.09 144.65 142.09 131.93 139.63 147.40 

k1 1.47E-03 1.04E-01 2.70E-01 2.93E-01 4.21E-01 3.54E-01 2.48E-01 

R2  0.8657 0.5588 0.3559 0.3410 0.2845 0.3087 0.3730 

2nd 

Qe 175.44 166.66 154.92 152.57 153.29 163.74 157.24 

k2 5.42E-04 1.44E-03 2.83E-03 3.18E-03 2.65E-03 1.52E-03 2.52E-03 

R2  0.8228 0.7297 0.6843 0.6781 0.6891 0.7266 0.6908 

Elovich 

α 1.21E+05 9.63E+04 1.25E+05 1.31E+05 1.18E+05 1.18E+05 1.21E+05 

β 0.095 0.093 0.095 0.096 0.095 0.095 0.095 

R2  0.9813 0.9813 0.9813 0.9813 0.9813 0.9813 0.9813 

Intra-P 

kid 103.79 103.43 103.83 103.69 103.07 103.12 103.99 

z 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

R2  0.9817 0.9817 0.9817 0.9817 0.9817 0.9817 0.9817 
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Table B4: Sorption kinetics of phenol on MCoalAC 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERSSQ 

1st 

Qe 29.42 108.03 100.36 99.26 109.60 99.40 101.50 

k1 1.30E-03 1.48E-01 2.59E-01 2.73E-01 6.63E-02 1.71E-01 2.44E-01 

R2  0.7549 0.6492 0.5196 0.5075 0.7869 0.6167 0.5329 

2nd 

Qe 115.71 110.06 106.42 105.59 98.81 110.13 107.23 

k2 1.12E-03 3.05E-03 4.32E-03 4.60E-03 7.73E-03 3.02E-03 4.04E-03 

R2  0.8948 0.8350 0.8186 0.8158 0.7972 0.8355 0.8214 

Elovich 

α 5.14E+05 3.34E+05 4.17E+05 3.35E+05 4.05E+05 3.25E+05 5.14E+05 

β 1.59E-01 1.54E-01 1.57E-01 1.54E-01 1.57E-01 1.55E-01 1.59E-01 

R2  0.9696 0.9696 0.9696 0.9696 0.9696 0.9696 0.9696 

Intra-P 

kid 73.81 73.65 74.06 73.64 71.90 75.96 74.48 

z 0.06 0.07 0.06 0.07 0.07 0.06 0.06 

R2  0.9563 0.9562 0.9566 0.9563 0.9548 0.9580 0.9568 

 

 

 

 

Table B5: Sorption kinetics of phenol on Bio-1 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERSSQ 

1st 

Qe 7.95 14.00 11.00 10.35 12.44 21.99 11.86 

k1 1.03E-03 3.57E-02 1.28E-01 1.65E-01 3.74E-02 2.32E-03 8.57E-02 

R2  0.8379 0.8127 0.5086 0.4594 0.8021 0.9086 0.6000 

2nd 

Qe 14.77 13.83 12.33 11.74 12.55 14.58 12.90 

k2 2.70E-03 5.65E-03 1.23E-02 1.62E-02 9.56E-03 3.63E-03 9.12E-03 

R2  0.9283 0.8590 0.7826 0.7583 0.8088 0.9016 0.8111 

Elovich 

α 24.57 24.44 25.08 25.44 24.92 24.97 24.57 

β 0.696 0.696 0.699 0.700 0.698 0.700 0.696 

R2  0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 0.9991 

Intra-P 

kid 5.38 5.50 5.45 5.36 5.58 5.72 5.53 

z 0.14 0.14 0.14 0.14 0.14 0.13 0.14 

R2  0.9907 0.9914 0.9911 0.9907 0.9915 0.9921 0.9915 

 

 

 

 

Table B6: Sorption kinetics of phenol on MBio-1 

Model Parameter LTFM CoD HYB MPSD ARE EABS ERSSQ 

1st 

Qe 6.68 11.27 8.85 8.22 11.91 9.87 9.67 

k1 1.08E-03 3.33E-02 1.11E-01 1.51E-01 3.78E-03 6.70E-02 7.04E-02 

R2  0.8482 0.8248 0.5363 0.4715 0.9310 0.6571 0.6448 

2nd 

Qe 11.99 11.19 9.93 9.40 10.12 11.99 10.44 

k2 2.99E-03 6.18E-03 1.34E-02 1.82E-02 1.07E-02 3.92E-03 9.74E-03 

R2  0.9324 0.8685 0.7924 0.7648 0.8166 0.9091 0.8236 

Elovich 

α 13.48 13.34 13.89 14.18 13.91 14.63 13.48 

β 0.826 0.825 0.831 0.834 0.829 0.843 0.826 

R2  0.9982 0.9982 0.9982 0.9982 0.9982 0.9982 0.9982 

Intra-P 

kid 4.07 4.18 4.13 4.05 4.07 4.41 4.20 

z 0.15 0.15 0.15 0.15 0.15 0.14 0.14 

R2  0.9905 0.9913 0.9910 0.9905 0.9906 0.9925 0.9914 
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B2 KINETICS FITTING PLOTS: NONLINEAR FITTING METHOD 

  

  

  

Figure B1: Comparison of simulated and experimental phenol sorption 

kinetics plot 
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APPENDIX C: BIOCHAR RETRIEVAL FROM AGRICULTURAL 
SOIL 

C1 DESCRIPTION OF EXPERIMENT 

A twice autoclaved soil (170 g) was mixed with 1.18% (w/w) magnetic 

biochar (2 g) in a 1 L beaker and 785 mL of autoclaved 0.01 M CaCl2 solution 

was added such that the solid to liquid ratio was 22% (w/V). The setup was stirred 

adequately to ensure uniform dispersion of all materials. Triplicate treatment 

samples and two control samples (soil without MBC) were prepared in a similar 

manner. All samples were covered with a cling film and allowed to stand 

undisturbed for 12 days, with manual mixing every 3 days.  

 

Figure C1: Retrieval of biochar from agricultural soil. 

At the end of the contact period, each sample was stirred to re-suspend all 

the solids and enable the retrieval of the MBC or other magnetic materials using 

a specially prepared magnetic rod in a plastic sleeve as shown in figure C1. The 

recovered materials were then rinsed thoroughly with distilled water to remove 

silt and other nonmagnetic materials. They were then dried in an oven for 4 hours 

at 8 oC and the weight of the dry residue was recorded before being transferred 

into a 40 mL amber glass vial with a PTFE screw cap each. Two of the residue 

materials from the treatment samples were mixed with 30 mL acetone each, the 

third sample was mixed with 35 mL acetone in a 40 mL and then two of the 
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controls were mixed with 10 mL acetone each. All samples were then loaded on 

a shaker to shake at 200 rpm overnight at room temperature. In order to test for 

the recovery of MBC due to the cleaning with acetone, a control sample having 1 

g of pristine MBC was also mixed with 20 mL acetone and run simultaneously 

with the other samples. All samples were then recovered from the vials using the 

magnetic rod and then washed three times with distilled water. The final residue 

was transferred into a 250 mL beaker and allowed to stand submerged in distilled 

water overnight. The supernatant was decanted carefully using pipettes and the 

remaining solids dried in an oven as stated previously. The final weights of the 

samples were recorded. 

C2 RESULT 

Substantial masses of magnetic materials were retrieved from all samples 

using magnetic separation. After washing with distilled water, there was about 

0.608 g of strong magnetic materials retrieved from the control samples, while 

about 2.074 g of magnetic biochar related material were retrieved from the 

treatment sample. On average, there is about 0.062 g in excess of the added 

mass of the magnetic biochar due to other soil magnetic materials. Assuming the 

presence of an equal mass of non-biochar magnetic material in all samples, then 

about 72.38% of the magnetic biochar is retrieved. This compares closely to a 

similar result by (Han et al., 2015a) where about 77% of magnetic biochar was 

recovered from amended sediments. 

After the retrieved materials were washed with acetone, their masses 

dropped by 0.555 g and 0.041 g (about 91.20% and 1.97%) respectively for the 

non-biochar magnetic material and the magnetic biochar related materials 

respectively, see table C.1. Therefore, the mass of magnetic biochar retrieved 

less the mass of non-biochar magnetic material will be 1.979 g or about 98.97 %. 

However, when the solid to liquid ratio of the magnetic biochar related material 

was decreased during cleaning with acetone, the mass reduction increases by 

0.89% and the magnetic biochar retrieved was 96.30% of the amount added to 

the soil. Consequently, a decrease in the mass of retrieved magnetic biochar 

related materials for a given volume of solvent would result in more compounds 

being released from the magnetic biochar. This suggests that the magnetic 
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biochar does not necessarily commingle with the same stuff as does the soil 

magnetic material and hence the recovery is between 72 to 98%. Furthermore, 

the process of regeneration resulted in the loss of about 14 mg per gram of 

pristine magnetic biochar material. 

Table C1: Biochar recovery 

Sample 
Mass recovered after washing 
with distilled water (g) 

Vol of acetone for 
cleaning (mL) 

 

Mass after cleaning 
with acetone (g) 

Soil only 
0.608 10 0.054 

Soil + magnetic 
biochar 2.074 30 2.033 

Soil + magnetic 
biochar* 2.038 35 1.979 

Magnetic biochar 
1.000 20 0.987 

 

Magnetised activated carbon and biochar has been studied as potential 

sorbents in the removal of micropollutants from wastewater and contaminated 

soil. Substantial retrieval (72.38%) of magnetic biochar added as 1.2% to 

agricultural soil was recorded. This is regarded as a conservative estimate since 

the actual material that was retrieved is in the range of 98%. However, we could 

not ascertain the exact nature of stuff from the soil that got commingled with the 

added MBC. Furthermore, the magnetic material that was of soil origin showed 

outstanding loss in mass after washing with acetone compared to that recorded 

in the retrieved MBC. Therefore, it is more likely that the actual amount that can 

possibly retrieved is within the upper limit. This can be confirmed if the entire 

process is optimised and the composition of the retrieved MBC is thoroughly 

characterised. 


