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Abstract 

This thesis presents work seeking to elucidate the active site and the mechanism of ozone 

generation at nickel and antimony-doped tin oxide (NATO) electrodes. To this end, tin oxide 

(TO, SnO2), antimony-doped tin oxide (ATO, Sb-SnO2) and nickel-antimony doped tin oxide 

(NATO, Ni/Sb-SnO2) nanopowders were prepared via a hydrothermal (HT) method and either 

left uncalcined or calcined at 300, 400 and 700 oC. The nanopowders were characterised using 

X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray 

spectroscopy (EDX), measurement of surface area by the Brunauer Emmett Teller (BET) 

technique, thermogravimetric analysis (TGA), diffuse reflectance Fourier Transform Infra-Red 

spectroscopy (DRIFTS) and X-ray Photoelectron Spectroscopy (XPS). The electrochemical 

ozone activity and selectivity of the powders were also determined in 0.5M H2SO4 and 

compared to those of ceramic anodes prepared via conventional methods.  

All the nanopowders showed a single cassiterite phase with crystallite sizes that varied with 

composition and calcination temperature. The BET surface areas of the nanopowders decreased 

with increasing calcination temperature and also on doping with Sb and Ni. The BET surface 

areas in general were smaller than those calculated from XRD, suggesting the agglomeration 

of crystallites to form larger grains. Addition of Sb to undoped SnO2 resulted in a significant 

increase in the number of crystallites per grain. Co-doping with Ni initially caused a large 

reduction in the number of crystallite per grain, but not back to the undoped value, with 

additional Ni having little or no effect. 

The ozone activities and selectivity of the nanopowders were studied by UV-Vis spectroscopy 

in 0.5M H2SO4 by deposition onto Ti foil substrates and using a UV-Vis cuvette as the 

electrochemical cell. The data so obtained were compared to results using a ceramic Ni/Sb-

SnO2 anode prepared via the conventional method. All the Ni/Sb-SnO2 nanopowders calcined 

at 400 oC were inactive with respect to ozone, whilst the Ni/Sb-SnO2 nanopowders calcined at 

700 oC were all active, showing comparable current densities and ozone current efficiencies to 

those observed using the ceramic anodes. This was the first work to show ozone generated with 

high selectivity and activity at Ni/Sb-SnO2 nanopowders. Durability studies on a ceramic anode 

showed no change in ozone activity or selectivity over a 10 day period, supporting the results 

of earlier such studies in Newcastle and strongly suggesting that the Ni species responsible for 

ozone evolution at Ni/Sb-SnO2 is not located at the surface.
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A key aspect of the research programme was the study of undoped SnO2 calcined at 400 oC and 

700 oC using BET, XRD, TGA-MS and in-situ variable temperature DRIFTS. BET showed the 

relatively high surface area and nanometer scale of the SnO2 particles, whilst XRD confirmed 

the nano dimension of the crystallites and showed only the cassiterite phase. TGA analysis 

indicated four temperature regions over which mass loss was observed. These and the in-situ 

DRIFTS studies revealed the existence of various forms of water associated with specific 

crystal facets of the SnO2, as well as existence of isolated O-H groups and adsorbed oxygen 

species. For the (100) facets, hydrogen bonding does not occur, and water absorption is less 

strong than for the (111) and (110) facets where hydrogen bonding does occur. On the (100) 

facets, the hydrogen atoms of the OH groups are located in cavities in the plane of the O atoms, 

and hence are unavailable for hydrogen bonding. In contrast, the H atoms on the (111) and 

(110) facets are available. The samples calcined at 700 oC showed significantly less adsorbed 

water than those calcined at 400 oC, and this could be attributed to lower coverage by OH on 

the former. The reversible uptake of oxygen was observed in the TGA studies, and this seeded 

the development of the final model. Electronic absorptions were also observed and the data 

rationalised in terms of the existence of both free electron absorptions, and absorptions from 

oxygen vacancy states. 

XPS of the Sb-containing nanopowders (i.e. Sb-SnO2 and Ni/Sb-SnO2) showed Sn in the +4 

oxidation state, whilst Sb was present as both Sb(III) and Sb(V), and Ni as Ni(II) and Ni(III). 

Combining these studies with TGA-MS, it was shown that Sb(V) ions substitute for Sn(IV) in 

the lattice, with a preference for centrosymmetric coordination sites whilst the Sb(III) ions occur 

at the grain boundaries or surface. The Sb(V) ions confer electronic conductivity on the SnO2 

whilst both Sb(III) and Ni are essential for O3 generation. The Ni occupies Sn(IV) sites in the 

subsurface region at concentrations below the detection limit of XPS. A model was postulated 

on the basis of the data, as well as a mechanism for ozone generation. 

The remediation of the Reactive Blue dye (RB50) in 0.5M H2SO4 was studies using both 

powder and ceramic anodes. Decolourization of RB50 solution was achieved within minutes of 

electrolysis, with COD and TOC removal of more than 80%.  

In addition to identifying a possible mechanism for ozone formation, the work reported in this 

thesis resulted in the production of active nanopowders which will allow the fabrication of high 

surface-area anodes with the potential to exceed the space-time yield of β-PbO2 anodes, 

permitting the application the Ni/Sb-SnO2 anodes in the treatment of real waters.   
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Chapter 1 Introduction 

Ozone was first discovered by Christian Friedrich Schönbein in 1840 when he observed that 

the electrolysis of water produced an odour at the anode[1].  He proposed that this was due to 

a new gaseous chemical compound[2]. Due to the distinctive smell, the name “ozone” was 

given to the gas, from the Greek word “ozein” meaning “to smell”[3]. The formula of ozone 

was determined by Andrews and Tait[4] in 1860.   

1.1 The properties of ozone  

Ozone (O3) is an allotrope of oxygen, and is a triatomic molecule, consisting of three atoms of 

oxygen. It is a pale blue gas at room temperature and becomes dark blue when condensed to 

liquid at 161 K [5][6]. It has a pungent odour detectable down to concentrations of c.a. 0.01 

ppm [5]. Table 1.1 summarizes the physical properties of ozone. 

The structure of ozone molecule is triangular with a bond angle of 116.8° and a bond length of 

0.1278 nm at room temperature [7]. The ozone molecule may be considered to four canonical 

forms in resonance as shown in fig. 1.1 [8]. 

Property Unit Value 

Molecular weight g 48.0 

Boiling point at 1 atm oC -111.9 

Melting point at 1 atm oC -192.5 

Vapor density at 20 oC and 1 atm g dm-3 1.996 

Specific heat of gas at 0 oC and 1atm kJ kg-1 oC-1 0.767 

Solubility in water at 20.0 oC and 1 atm mg dm-3 12.07 

Weight of liquid at boiling point g dm-3 1352 

Weight of gas at 0 oC and 1 atm g dm-3 2.142 

Critical temperature oC -12.1 

Critical pressure MPa 5.53 

 

Table 1.1 The physical properties of ozone [6][9]. 

http://en.wikipedia.org/wiki/Allotropy
http://en.wikipedia.org/wiki/Atom
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Figure 1.1 The structure of the ozone molecule[7]. 

 

Ozone is well known as a strong oxidizing reagent, with a redox potential of 2.07 V vs the 

Normal Hydrogen Electrode (NHE) in acidic media, i.e. just below those of fluorine and 

hydroxyl radicals, as shown in table 1.2 [10]. The solubility of ozone in water is approximately 

13 times higher than oxygen under normal conditions of temperature and pressure[8]. Ozone 

has very low stability in alkaline media due to reaction with hydroxide ions [6][8][11]:  

    O3 + OH-       O3
- + OH•                                    (1) 

 

Species Half Reaction E0 /V vs NHE 

Fluorine (F2)  F2 + 2e− → 2F− 2.87 

Hydroxyl radical (OH•)  OH• + H+ + e− → H2O  2.38 

Ozone (O3)  O3 + 2H+  + 2e− → O2 + H2O 2.07 

Molecular oxygen (O2) O2 + 4H+ + 4e− → 2H2O  1.23 

Hydrogen peroxide (H2O2)  H2O2 + 2H+  + 2e− → 2H2O 1.78 

Chlorine dioxide (ClO2) ClO2 (aq)+  e− → ClO2
−  0.95 

Chlorite ion (ClO2
−) ClO2

− +  2H2O  + 4e− → Cl− + 4OH− 0.76 

Chlorate ion (ClO3
−) ClO3

− +  6H+  + 6e− → Cl− + 3H2O 1.45 

Perchlorate ion(ClO4
−) ClO4

− +  8H+  + 8e− → Cl− + 4H2O 1.39 

Chlorine (Cl2)  Cl2(aq) + 2e− → 2Cl−  1.40 

Bromine (Br2)  Br2(aq) + 2e− → 2Br−  1.09 

Iodine (I2)  I2 + 2e− → 2I− 0.54 

Table 1.2 Standard reduction potentials of oxidants used in water treatment [10]. 

 

The initial decomposition of ozone is the reaction of O3 with OH− to form the radicals: 

superoxide (O2
−), per-hydroxy (HO2

•) and ozonide (O3
−), see equations (2) to (8) [11].  

 

O3 + OH− → HO2
• + O2

• −      (2) 
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H2O
• ↔ H+ + OH−       (3) 

O3 + HO2
• − → OH• + O2

• − + O2     (4) 

H2O2 ↔ HO2
• − + H+       (5) 

HO2
• ↔ O2

• − + H+       (6) 

O3 + O2
• − → O3

• − + O2      (7) 

HO3
• ↔ O3

• − + H+       (8) 

 

It can be seen from the above reactions that many radicals can be produced by the 

decomposition of ozone in aqueous solution which have high standard reduction potentials [10]. 

Thus, these radicals are believed to play an important role in eliminating organic and inorganic 

contaminants in water when it is treated with ozone [12].  

1.2 The Applications of ozone  

Ozone is regarded as a “chemical-free” cleaning and sterilization agent as it reacts to produce 

only oxygen [13][14].  It thus has potential application in a wide range of industrial, domestic 

and health environments including water treatment[15-18], white goods[19], the chemical 

combustion of resistant organics[8], and the sterilization of floors and surfaces in hospitals and 

fertility clinics [20][21]. As an example of the latter, there is increasing evidence that 

conventional chemical cleaning agents can give rise to Volatile Organic Compounds (VOCs) 

and that these can be harmful to embryos and have a detrimental effect upon pregnancy rates 

[21]. In addition, ozone has been used in hospital laundry systems (e.g. Gaston memorial 

hospital, North Carolina, US[20]). Ozone-washed linens are cleaner and brighter, leading to a 

reduction in the rewashing rate of c.a. 1.5-2.5%. Hence, the benefits of employing ozone in 

laundries are a reduction in water consumption and savings in cost and wastewater discharge 

fees [20].    

Ozone has been employed as the primary disinfection process for wastewater prior to discharge 

since its first use in France in the early 1900s [12]. Ozone is employed due to its bactericidal 

qualities, does not leave harmful residuals or “taste” and requires relatively short contact times 

[9]. As a result of these advantages, ozone is used as a disinfectant in water purification 

processes for the pharmaceutical, brewery, bio-technology and electronic industries, where high 

standards of water are required in the manufacturing process [22][23]. In these cases, a low 

concentration of ozone is employed i.e. ca. 0.01-0.06 gm-3 in the pure water stream [22]. The 
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use of ozone for  the purification of water has added benefit to over the use of chlorine [23] as 

the latter leaves harmful residuals in water such as trihalomethanes (THMs) which are a health 

risk[24]. Using ozone instead of chlorine allows the development of totally chlorine free water 

[25] i.e. there is evidence that the by-products from chlorination processes such as THMs and 

halogenated acetic acid (HAA) are degraded by ozone [26]. With respect to pathogens, ozone 

is capable of the inactivation of a range of micro-organisms including Cryptosporidium parvum, 

G.lambia and E.coli [16][27]; the former two being resistant to chlorine.  

Another ozone application is the degradation of refractory organic and inorganic compounds 

[13]. In advanced water treatment, ozone can be used for the removal of organic and inorganic 

compounds due to its high oxidation potential[16][28][29]. Organic compounds found in 

wastewater such as phenols [28], biphenol [30], amines and pesticides are typically highly 

coloured [9], present in relatively high concentrations and are difficult to treat by conventional 

processes [9][31]. Inorganic compounds such as iron, manganese, arsenic and  bromide ions 

can also be removed by ozonation [5][9].   

Ozonation can be used together with e.g. UV-irradiation (O3/UV) and H2O2 (O3/H2O2, 

peroxone) in advanced oxidation processes (AOP) in order to treat heavily chemically 

contaminated effluents such as landfill leachate[32-34]. AOPs involve the production of 

hydroxyl radicals (OH•) [32]:  

3O3 + H2O→2OH• + 4O2     (9) 

With respect to peroxone (O3/H2O2), hydroxyl radicals (OH•) are produced from the 

decomposition of H2O2 to hydroperoxide (HO2
−), see equation in (10), after which HO2

− reacts 

with ozone to yield OH•[32]:  

H2O2→HO2
− + H+      (10) 

HO2
− + O3→OH• + O2

− + O2    (11) 

In the O3/UV oxidation process, H2O2 is produced by ozone photolysis[32]:  

O3 + H2O + hv → H2O2 + O2      (12) 
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Following reaction (12), hydroxyl radicals can be produced via reaction (9) to (11) above, and 

further photolysis of H2O2 [32]. 

H2O2 + hv → 2OH•       (13) 

The UV lamps employed are thus generally UVC sources, emitting around 254 nm, the 

wavelength required to photolyze H2O2 to •OH [35]. 

In term of optimum operating cost and operation efficiency, it is generally accepted that 

ozonation alone is more effective than combined with UV or other oxidants [33]. 

1.3 Electrochemical ozone generation 

Ozone can be generated at an anode by the electrolysis of water via a 6-electron process. The 

standard reduction potential for the oxidation of water to oxygen is 1.23V vs the Normal 

Hydrogen Electrode (NHE), whilst that for O3 is 1.51V, hence oxygen evolution is generally 

more thermodynamically favoured than ozone [10][13][36][37]: 

2H2O    O2 + 4H+ + 4e-   Eo = 1.23 V                      (14) 

            3H2O               O3 + 6H+ + 6e-             Eo = 1.51 V            (15) 

From the equations above it is clear that oxygen would always be expected to be generated 

simultaneously with ozone [37] and the current efficiency for ozone generation is the 

percentage of the observed current that is generating ozone compared to the total current for O2 

and O3. 

Ozone is not always observed as soon as Faradaic current flows, i.e. electrons crossing the 

electrode / electrolyte interface. For example, Kotz and Stucki [38] reported that ozone was 

observed at current densities greater than 50 mA cm-2 at PbO2 anodes; in contrast, Feng et 

al.[39] found that the ozone was observed at a β-PbO2  anode as soon as Faradaic current was 

passed. 

Ozone current efficiency can be influenced by many factors including: cell configuration, anode 

material, electrode morphology, current density, electrolyte composition & concentration and 

temperature [22][39][40]. 
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1.4 The electrochemical cell  

The most basic electrochemical cell is a single compartment cell [41], see fig. 1.2 where the 

anode (where oxidation occurs) and the cathode (where reduction takes place) are directly 

immersed in the electrolyte (i.e. the solvent and a compound, usually a salt, added to render the 

solvent ionically conducting). Any products from reactions at the anode and the cathode are 

then allowed to mix.  

 

Later, separated cells were developed using an inert separator, see fig. 1.3,  e.g. glass 

[13][41][42] wetted Teflon[42][43], or a Solid Polymer Electrolyte (SPE) such as Nafion [44-

47] which was inserted between the anode and cathode compartments. As a result, any products 

generated at the two electrodes were kept separate.  

 

 

 

 

Figure 1.2 A single compartment electrochemical cell[41]. 
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(a) 

 

(b) 

Figure 1.3. Separated electrochemical cells: (a) the diaphragm laboratory cell employed by 

Putnam et al. [41]; the anolyte and catholyte are separated by a glass cloth diaphragm and (b) 

the glass cell employed by Christensen et al.[46-48], a solid Nafion membrane is inserted 

between two hemispherical glass sections to separate the anolyte and catholyte. The cells were 

clamped to either side of the membrane with silicone seals. (1) Ti wire, (2) rubber seal, (3) 24 

cm2 Pt/Ti mesh as a cathode (4) catholyte inlet (5) catholyte outlet, (6) 24 cm2 Ni/Sb-SnO2 

coated Ti mesh anode (7) rubber seal (8) anolyte inlet (9) anolyte outlet (10) Nafion membrane 

and (11) silicone rubber O ring seals. 
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Solid polymer electrolyte membranes are employed as the electrolyte in Membrane Electrode 

Assemblies (MEAs), where the SPE is sandwiched between the anode and cathode which are 

pressed tightly [49] or hot pressed [50] either side of the SPE to facilitate the movement of ions 

between anode and cathode via pores in the membrane. These are termed “zero gap cells”. 

MEA cells with solid polymer electrolytes (SPEs) were proposed by Stucki et al.[19][22] 

instead of cells based on liquid electrolytes. They used a Nafion® 120 membrane as the solid 

electrolyte and PbO2 and Pt were employed as anode and cathode, respectively. The authors 

found that a maximum current efficiency of c.a. 20% could be obtained at a current density of 

1.0 - 1.3 A cm-2 and cell voltage of 3.5 V at 25 oC - 30 oC. Later, a number of studies of SPE-

based cells for ozone generation were published: i.e. Nafion®117 [51][52], PTFE [53] and 

perfluorosulphonated membrane (MF-4SK) [54] and the current efficiencies observed were 

generally less than 20%.   

In the case of the simplest ozone cell, water is fed to the anode and cathode, with O3 and O2 

produced at the anode and H2 at the cathode[22][36][49][52-58]: 

 

2H+ + 2e-                H2  Eo = 0 V vs NHE [10]   (16) 

 

An air breathing cathode may be employed instead of a hydrogen-evolving cathode and oxygen 

reduction takes place instead of hydrogen evolution [50][59] see fig. 1.4: 

 

   4H+ + O2 + 4e-                  2H2O Eo = +1.23 V vs NHE   (17) 

 

The latter configuration is clearly preferred over the former for use in enclosed spaces or near 

ignition sources. If a H2 evolving cathode is employed, O3 evolution would be expected at cell 

voltage > 1.51 V; in contrast, using an air breathing cathode reduces this to > 0.28 V. In practice, 

kinetic and Ohmic losses increase both of these values significantly[8][36]. Thus, Katoh et 

al.[51] employed a β-PbO2 anode an air breathing cathode in a zero gap cell at a current density 

of 1 A cm-2. The cell voltage was ~ 2.2 V using an air cathode, 0.85 V lower than that observed 

using a hydrogen-evolving cathode.  
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Figure 1.4 Schematic of MEA (air breathing cathode) cell or zero gap cell [50]. 

 

There are several studies on variations of the zero gap cell. For example, Foller and Kelsall [43] 

were the first to use an air breathing cathode with a glassy carbon anode and Pt-black 

nanoparticles cathode in a half MEA cell at -5 oC using 62 wt% HBF4 as electrolyte due to its 

non-oxidizing and non-dehydrating. The authors reported a maximum current efficiency of 

45% at a current density of 1 kA m-2. However the drawback of this cell is that the HBF4 

solutions had to be prepared by vacuum evaporation at   -100 kPa and 45 oC. Moreover, such 

highly concentrated HBF4 is highly corrosive, resulting in erosion of the glassy carbon anode 

and restricting its lifetime to 210 days. Another disadvantage was the high power consumption 

due to the low temperature operation.  

Wang et al.[50] employed a 6 cm x 4 cm Ni/Sb-SnO2 anode, Pt/carbon air breathing cathode 

and Nafion 117 membrane with an MEA-based cell to generate ozone in deionized water, see 

fig. 1.4. The deionized water was introduced in the anodic chamber and oxidized to ozone and 

oxygen releasing protons see equation (14)&(15). The protons pass through the membrane to 

react with oxygen, essentially the reverse of equation (14). The maximum current efficiency of 

15% was observed at a cell voltage of 2.0 V and current density of 17 mA cm-2. 

O3 + 6e- + 6H+ 3H2O 3/2O2 + 6e- + 6H+ 3H2O 

V 

O2 O3 + O2 

Gas diffusion air cathode 

Nafion polymer electrolyte 

Catalysed anode 

Water 

O2 + 4e- + 4H+ 2H2O 
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Tatapudi and Fenton [58] employed a cell using an air-breathing cathode with a PbO2 anode: 

the PbO2 powder was mixed with activated carbon, gold or graphite powder and pressed onto 

carbon fibre paper. Pure, humidified oxygen was fed to the cathode where it was reduced to 

H2O2. The authors obtained a current efficiency of 4.5% at a current density of 2 A cm-2 and a 

cell voltage of 4.5 V. Okada and Naya [60] employed Pt particles at both the anode and cathode, 

either side of a Nafion membrane in a zero gap cell. A polyethylene terephthalate (PET) 

separator was employed between the cathode and Nafion to prevent damage to the membrane 

from Pt particles transported from the cathode. The catholyte was 0.01-1M NaCl and/or 0.01-

1M Na2SO4 to compensate for the low conductivity of the separator. The authors observed a 

surprisingly high current efficiency of 20% (which has not been observed by any other group) 

at a current density of 6 A cm-2 and cell voltage of 7.74 V using 0.5M NaCl catholyte at room 

temperature. In general, the ozone current efficiencies obtained using particulate PbO2 anodes 

are 5-10% [13][37][61], albeit at very high current densities of 1 A cm-2, whilst those observed 

using Pt anodes are very much lower[42][61].  

Whilst the use of a zero gap cell employing, e.g. Nafion, as the SPE has advantages e.g. in 

principle, no electrolyte needs to be added to the water  to be treated, and an air-breathing 

cathode can be employed to eliminate the risks associated with hydrogen, there are some serious 

disadvantages. The first and the most serious, disadvantage is associated with the use of a SPE. 

Real waters generally contain  Ca2+ and Mg2+ ions and these essentially block the SPE [62] 

[63], as their mobility is significantly lower than protons, hence significantly increasing the 

resistance of the membrane. Hence all the papers in the literature reporting studies on ozone 

cells with SPEs use highly de-ionised water[64][65]. A second disadvantage is that water has a 

pH between 5 and 6, and the solubility of ozone in water decreases with increasing pH 

[6][66][67]. The formation of ozone bubbles will thus block the water channels in electrolysis 

cells and access to active sites on the catalyst as well as impeding proton transfer to the SPE 

[59]. 

In general, zero gap cells can be operated  either in single pass or flow mode [59] or in batch 

recycle mode, in which ozonated anolyte is passed back into the cell [19]. In flow mode, ozone 

is generated in both the gas and liquid phases continuously; in batch recycle mode, ozone is 

released into the gas phase after saturation of the anolyte has taken place. With respect to batch 

recycle mode, Stucki et al.[19] reported that using a MEA-based cell with a PbO2 anode and 

inlet ozone concentration of 5-25 ppm in de-ionised water, the ozone had no effect on the 



11 

 

current efficiency. In contrast, Christensen and co-workers [46] employed a Ni/Sb-SnO2 anode 

in a glass cell, see fig. 1.3(b), with aqueous HClO4 as the electrolyte in both the anode and 

cathode compartments, operating in both flow and recycle modes. They found high current 

efficiencies of up to 30% were observed using flow mode, whereas current efficiencies of only 

3-8% at 2.7 V were observed using batch recycle mode.  The authors postulated that high 

concentrations of ozone in acidic solution inhibited the ozone evolution process, possibly due 

to the replacing of key adsorbed intermediates by adsorbed ozone[48].  

1.5 The effect of electrolyte 

The most commonly employed electrolytes in electrochemical ozone cells are acids such as 

HClO4, H2SO4, H3PO4, HBF6 and HBF4, as stated above, ozone current efficiency typically 

increases with decreasing pH [13, 68] and the solubility of ozone in acidic solutions is generally 

higher[6][66][67] and ozone is unstable in alkaline solution[8][39][66][69]. Where electrolyte-

free water is employed an acidic, Solid Polymer Electrolyte (SPE) membrane such as Nafion is 

employed between anode and cathode [36]. 

There have been few studies concerning the effect of anions on ozone current efficiency. Foller 

and Tobias[61] reported a linear relationship between ozone current efficiency and the 

composite electronegativity of the anions when using β-PbO2 anodes in 2M H2SO4 at 0 oC. 

Composite electronegativity is the sum of the electronegativities of the individual atoms of the 

anion involved. Da Silva et al.[13] postulated that anion adsorption alters the double layer 

structure and dielectric permittivity; later they established a linear dependency between the 

double layer capacitance and anion electronegativity, confirming the work of Foller and 

Tobias[61]. Further, in the generally-accepted mechanism of O3 evolution (see section 1.8 ) one 

of the key intermediates for Electrochemical Ozone production(EOP) is the adsorbed oxygen 

atom, and there is competition between anion adsorption and the oxygen coverage that is 

determined by the electronegativity[13][36]. Thus the more electronegative the anion, the less 

adsorption of the anion will occur. High anion coverage inhibits O• adsorption and hence 

lowers the activation energy for O• + O•      O2 which prevents the formation of O3 [36]. On 

the other hand, little anion adsorption results in tightly bonded O atoms which are then less 

available for reaction to O3 [36]. It has also been found that adding F- can improve ozone 

evolution and this is discussed in section 1.6.1 below. 
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There have been a number of studies on the effect of the chemical composition of acid 

electrolytes on ozone current efficiency, which generally show that this also depends upon the 

anode material. Thus, Franco et al.[68] reported that the current efficiencies of ozone generation 

at 50 mm2 β-PbO2 anodes in 6.0 M HClO4 and 3.0 M H2SO4 using a Pt cathode was 3.5% and 

2.9%, respectively, at a current density of 0.9 A cm-2 using a three-compartment glass cell. 

Similarly Chernik et al.[70] reported an ozone current efficiency of 8% using β-PbO2 anodes in 

2.0M HClO4 solutions at a current density of 0.25 A cm-2, higher than the 4% observed using 

in 2.0 M H2SO4 at ~0.19 A cm-2. Putnam et al.[41] observed ozone current efficiencies of 20% 

and 6% using 30% HClO4 and 28% H2SO4, respectively and a Pt anode at a cell voltage of 5 V 

and temperature of -50 oC. In contrast, Wang et al.[71]  obtained current efficiencies of 35% in 

0.1 M H2SO4 and 32% in 0.1 M HClO4 using a 0.64 cm2 Ni-Sb/SnO2 (NATO) anode and 0.64 

cm2 Pt/Ti cathode in a UV-Vis cuvette cell at a cell voltage of 2.2 V 

There have been few papers reporting electrochemical ozone generation at neutral or near- 

neutral pH [39][58][59][65][72], with ozone current efficiencies of 3-12% being typically 

observed. Thus Feng et al. [39] observed current efficiencies of 6% and 14% using 10 cm2 β-

PbO2 and Fe-β-PbO2 anodes, respectively, in pH 7.5 phosphate buffer (0.52M K2HPO4 / 0.22M 

KH2PO4) at 10 0C at a current density of 200 mA cm-2. Kaneda et al.[65] employed 16 cm2 

tantalum oxide anodes and a Pt cathode in imitation tap water (de-ionised water with added 

Na+, Ca+ and Mg+ salts to give a conductivity of 160 s cm-1), and observed a maximum current 

efficiency of ~ 6% at a current of 150 mA after 1 minute electrolysis. 

In recent years, a variety of different anode materials have been investigated with respect to 

electrochemical ozone generation: such materials must have a high overpotential for oxygen 

evolution and be stable in strong acidic electrolyte[40][61]. 

1.6 Electrode materials 

Prior to 1982, the only materials that had been investigated with respect to electrochemical 

ozone generation were Pt[42] and PbO2 [61] and these were employed only in acidic solution 

[61]; after 1982, Pt ceased to be of interest, presumably due to the requirement for temperatures 

< 0 oC, and poor current efficiencies[60]. PbO2 is still investigated due to the achievement of 

current efficiencies of up to ca. 12% at room temperature and with high current densities 

[55][64].  
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To date,  many anode materials for electrochemical generation of ozone have been investigated, 

including: lead dioxide (PbO2)[55], boron doped diamond (BDD) [45][49][62][72-74], nickel 

and antimony co-doped tin oxide (NATO)[28][46-48][71][75][76], glassy carbon[43], IrO2-

Nb2O5 [77][78], tantalum oxide [65] and TiO2 [79][80]. For a comprehensive review of 

electrochemical ozone generation see: [8][36][40]. The next section will review the use of PbO2 

anodes, due to the fact that this is the most commonly employed anode because of the high 

current densities (~1 A cm-2) that can be employed and the reasonable current efficiencies that 

are generally observed (≤10%), and BDD anodes due to some reports of very high current 

efficiencies. 

1.6.1 Lead dioxide anode (PbO2) 

In the early 1980s, the use of PbO2 for electrochemical generation of ozone was investigated 

by Foller and Tobias [61]; and there have been many papers published since on this material, 

see for example [19][22][51][53][55][56][64][81][82]. In general, it is accepted that PbO2 in 

the β form is more effective with respect to ozone than the α form [25], with current efficiencies 

of ca. 3-10%, at current densities ca. 1 A cm-2 being typically observed in acidic electrolytes 

(H2SO4 or HClO4) [8][37][61]. 

To improve the current efficiency, Foller and Tobias [61] added fluoride into electrolyte, e.g. 

as NaF, HPF6 and NaBF4. They reported that the current efficiency increased up to 50 % in 7.3 

M HPF6 at -65 oC and suggested that the increase in current efficiency was due to the effect of 

the anion adsorption (e.g. F-) at the surface of the electrode[83]. Recently, Rufino and co-

workers[84] have reported that a ozone current efficiency of 15% was obtained using a β-PbO2 

anode in 1M H2SO4 containing 0.03M KPF6 in a glass cell. It is generally believed that F- 

stabilizes the coverage of adsorbed oxygen atoms and inhibits O2 evolution[13][61]. 

The use of F- - containing electrolytes has the disadvantage that PbO2 dissolution is facilitated. 

Thus, Wen and Chang [85] observed changes in the structure of a PbO2 anode during the 

electrochemical generation of ozone in the presence of varying concentrations of KF, and found 

that increasing the KF concentration resulted in the corrosion of the PbO2 anodes. To overcome 

the problem of corrosive electrolytes, as mentioned above, MEA cells with solid polymer 

electrolytes (SPEs) were proposed by Stucki et al.[19][22].  
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1.6.2 Boron doped diamond (BDD) anode  

Boron doped diamond anodes have been studied with respect to their use as anodes in several 

potential applications e.g.: organic degradation[86-90], electrochemical sensors[91] and 

electrochemical ozone generation [45][49][62][72-74][92][93]. In general, boron doped 

diamonds are deposited on an appropriate substrate, e.g. Ti, Si or glassy carbon, by chemical 

vapour deposition. Adding boron enhances the conductivity of the semiconductor diamond, 

with a high doping of 1020 -1021 B atoms cm-1 giving a resistivity of 10-3 Ω cm[90]. Michaud et 

al.[45] reported that the electrolysis of 1 M H2SO4 and 1 M HClO4 at 1500 A cm-2 for 30 min 

using a BDD anode and Pt cathode were H2S2O4, and O2 and 800 ppm O3; i.e. no ozone was 

produced in the sulfuric acid electrolyte. In contrast, Katsuki et al. [74] employed a BDD anode 

and obtained an ozone concentration of c.a. 5000 ppm at a current density of 1 A cm-2 in 10 

vol%H2SO4. 

Kraft et al.[73] reported a study using 13.05 cm2 BDD electrodes as both anode and cathode, 

with a Nafion membrane. The electrodes and Nafion were assembled by sandwiching the 

Nafion between both BDD electrodes in the zero gap configuration. A high ozone current 

efficiency of 24% was obtained at a water flow rate of 40 dm3 hour-1, current density of ~100 

mA cm-2 and a cell voltage of 8 V. 

 

Arihara et al. [49][72] employed a 50 mm x 15 mm x 0.94 mm freestanding, perforated BDD 

plate anode and 7.5 cm2 Pt mesh cathode pressed on either side of a Nafion membrane in a zero 

gap cell. Deionised water was employed as the anolyte and catholyte. Electrolysis was carried 

out at an anolyte flow rate of 2 dm3 min-1 at 12 oC, a cell voltage of c.a. 20 V and a current 

density of 530 mA cm-2. Under these conditions, a current efficiency of 47% was observed, 

albeit at an energy consumption of 175 kWh per kg O3.  

 

Although high current efficiencies for ozone been reported using BDD anodes, this has been at 

the expense of high energy consumption. In addition, such reports are extremely rare in the 

literature, with BDD anodes more generally associated with the direct oxidation of organics 

[88][94][95] and not for ozone evolution[36][92][96]. Further, BDD anodes are expensive[72].   

According to the literature, there are two anode materials able to produce ozone at current 

efficiencies > 20% in water without added fluoride and at temperatures > 0 oC; the first is BDD 
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as mentioned above, and the second is nickel-antimony doped tin oxide (NATO), and this 

described in the next section. 

1.7 Ni/Sb-SnO2 anode materials 

The use of nickel-antimony doped tin dioxide (NATO) as an anode for electrochemical ozone 

generation was first reported by Chan and co-worker[97] in 2004. The authors reported that 

0.64 cm2 Sb-SnO2 (ATO) anodes coated on Ti foil generated ozone in a UV-Vis cuvette cell, 

see fig. 1.5, with a current efficiency of c.a.15% at a cell voltage < 3V and current density of 

0.06 A cm-2 in 0.1 M HClO4 at room temperature. Whilst Foller and Tobias [61] reported Sb-

SnO2 as having a low current efficiency for ozone (4% in 5M H2SO4 at 0 oC) the anode 

dissolved quickly, and Sb-SnO2 is generally accepted as being inactive. In a second paper Chan 

and co-workers [71] stated that the ozone activity of their ATO anodes was due to the presence 

of adventitious nickel taken up by the Sb-SnO2 during the synthesis. In the latter paper, the 

authors reported current efficiencies of up to ca. 35% in 0.1 M H2SO4 at a cell voltage of 2.2 V 

in the UV-Vis cuvette cell at room temperature, a remarkably high value. The authors postulated 

that the nanoparticulate morphology of the NATO was critical to its ozone activity and 

selectivity. The exact composition of the NATO catalyst could not be determined, due to the 

very small amount of Ni present, but the optimum ratio (in at: %) of Sn, Sb and Ni in the 

precursor solution was reported to be 500:8:1. This remains a problem, hence when quoting 

catalyst compositions in the thesis, these refer to precursor solutions, unless otherwise stated. 

 

 

 

 

 

 

 

Figure 1.5. A Schematic drawing of the cuvette cell employed by Chan et al.[71]. 
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Wang et al.[50] investigated ozone generation in deionized water using an MEA-based cell, see 

fig. 1.4, with a Pt/carbon air breathing cathode. The NATO anode was coated on a 24 cm2 Ti 

mesh and the cathode was operated in passive mode, e.g. without a flow of air. The authors 

observed a maximum current efficiency of 15% at a cell voltage of 2.0 V and current density 

of 17 mA cm-2, whilst the low energy consumption was 48 kWh kg-1. This energy consumption 

was lower than that of 65 kWh kg-1 reported by Stucki et al.[22] using a PbO2 anode. 

Cui and co-workers [59] studied ozone generation using  a stack of four MEA-based cells, see 

fig. 1.6. Each cell consisted of 104 cm2 NATO coated Ti mesh anodes with Pt/C air breathing 

cathodes, supplied by pumped air at flow rate of 10 dm3 min-1. The authors obtained a current 

efficiency of c.a. 22% at a stack voltage of 3.3 V with current density of ~30 mA cm-2 and a 

de-ionised water flow rate of 5.9 dm3 min-1. The lowest energy consumption of 42 kWh kg-1 

was observed at current density of 24.3 mA cm-2 and a water flow rate of 5.4 dm3 min-1. 

However, typical UV-Vis spectra obtained during the operation of the MEA flow cell are shown 

in fig.1.7. As can be seen, the peak at 258 nm attributed by the authors to ozone did not exhibit 

the shape typical of dissolved ozone[46][71][75] , and was superimposed upon a significant 

baseline offset which may have been due to underlying absorption from, for example, H2O2 

[48]. The authors attributed the baseline offset to gas bubbles scattering the incident light.  

 

Figure 1.6 Schematic representation of the MEA with 4 cell stack employed by Cui et al.[59] 
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Figure 1.7 Typical UV-Vis spectra observed by Cui et al.[59] 

Christensen and co-workers [46] employed 6.3 cm2 Ni/Sb-SnO2 coated Ti mesh anodes and 

Pt/Ti cathodes in 0.5M H2SO4 in a glass electrochemical cell with a Nafion membrane separator 

(see fig. 1.3(b)) at room temperature, and observed current efficiencies up to 50% at anolyte 

flow rates up to 100 cm3 min-1 and a cell voltage of 2.7 V. The optimum ratio of Sn:Sb:Ni in 

the precursor solution was 500:8:3. Subsequently, the same group obtained current efficiencies 

up to 38% at current densities of 100 mA cm-2 and lifetimes in excess of 250 hours[36][98].   

The lifetimes observed by Christensen and colleagues [36][98] are remarkable, given that Ni is 

unstable with respect to Ni2+ in acidic solutions, particularly at anodic potentials[99].  This 

strongly suggests that the Ni responsible for the ozone activity is not exposed to electrolyte, as 

it would be expected to dissolve under such acidic and highly oxidising conditions. This also 

highlights another problem with this material: despite its discovery over 10 years ago, the 

mechanism of ozone generation at Ni/Sb-SnO2 remains unclear. Various authors have 

speculated on this issue[28][100][101]. For example, it has been suggested that the active site 

involves Ni(III) [28][101], but this hypothesis is not supported by any experimental evidence 

[28][101], and other workers have found evidence only for Ni(II)[100]. 

The technological challenges with respect to Ni/Sb-SnO2 anodes are irreproducible syntheses 

and low current densities. With respect to the latter, using ozone anodes in real waters without 
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high proton fluxes (i.e. high current densities: as stated above zero gap cells employing PbO2 

anodes typically achieve current densities around 1 A cm-2)[36] the resistance of polymer 

electrolyte membranes increases due to the much lower mobility of the cations found in water 

(i.e. Na+, Ca2+ and Mg2+) compared to protons. Thus, NATO anodes demand the use of de-

ionised water, which is not a viable option. If highly active and selective nanoparticulate NATO 

anodes can be fabricated, this should allow operation at high geometric current densities and 

hence overcome the problem of cations in “real” waters.  Further, the methodology employed 

to synthesize the particulate catalysts should prove easier to control and employ in a 

reproducible fashion compared to that generally used to produce the ceramic anodes, which 

consists of dip-coating Ti substrates into catalyst precursor solution followed by calcining[36].   

To date, the very high ozone efficiencies observed with NATO anodes are remarkable and could 

not have been predicted: ATO is essentially inactive for ozone yet adding a tiny amount of 

nickel produces highly active material. This then raises the question of the nature of the active 

site and the mechanism of ozone generation at NATO anodes. Neither of these critical issues 

have been addressed to date.  

1.8 The mechanism of electrochemical ozone generation 

In the literature, there are essentially three electrochemical routes to ozone: O2+OH; O+H2O2 

and O+O2, as follows: 

1.8.1 O2+OH  

Electrochemical ozone generation at lead dioxide and platinum anodes was studied by Wabner 

and Grambow [102]. During the electrolysis at pH 7 in phosphate buffer, the authors detected 

hydroxyl radicals (OH•), singlet oxygen (1O2) and peroxo species (H2O2 and HOO•) as 

intermediates and observed that the Pt anode did not produce ozone at low current densities (5 

mA cm−2). The only products were peroxo species and traces of OH radicals. According to their 

results Pt and PbO2 generate only OH radicals; on this basis, the authors postulated the 

formation of ozone via OH radicals as the primary intermediate see equation (13). 

Subsequently, OH• radical reacts with adsorbed oxygen molecule to form another intermediate 

hydrogen ozonide (HO3
•) (14), which, in turn, leads to ozone after releasing a proton (16): 

H2O    OH•
ads + H+ + e-             (13) 
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OH•
ads + OH2ads               HO3

•
ads               (14) 

HO3
•
ads               HO3

+ + e-                                                   (15) 

                                    HO3
+                  O3 + H+                         (16) 

 

OH radicals have also been detected by Kim and Korshin [44] during the electrolysis of aqueous 

0.001M Na2SO4 at PbO2 anodes and current densities > 30 mA cm-2, the authors also postulated 

that also that these species were intermediates in electrochemical ozone generation. Thus, it is 

commonly accepted that the primary water discharge step to form OHads (13) is the rate 

determining step (rds) of ozone generation in aqueous solutions [13][37][39][68][103]  

1.8.2 O+H2O2  

Chernik and co-workers[81][104] have reported ozone generation at PbO2 anodes in H2SO4 

electrolytes, proposing the following mechanism on the basic of the partial polarization curve 

analysis for ozone generation at various concentration of 0.5, 2, 5 and 10M H2SO4 solution. 

Although it was almost impossible to distinguish any linearity in their data, two potential ranges 

could be discerned, suggesting a change in the ozone generation mechanism. Thus, the first step 

in the formation of O2 and O3 occurs via a single electron transfer, eq.(17), to form an adsorbed 

radical; two radicals can react to produce an oxygen atom and water (18) and they can also react 

to form H2O2 (19). Finally, the reaction between the intermediates O and H2O2 produce ozone 

and water, see the mechanism below: 

H2O        OH•
ads + H+ + e-      (17) 

2OH•
ads          O•

ads + H2O      (18) 

2OHads       H2O2      (19) 

     2H2O2 + O         2H2O + O3      (20) 

1.8.3 O+O2   

The gas phase generation of ozone was studied by Elaisson and Kogelschartz [105], using a 

dielectric barrier discharge generator. On the basis of their results, the authors postulated that 

O• atoms, produced in the discharge, were the key intermediate in the formation of O3, 

according to: 
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O•(g) + O2        O3      (21) 

 

The role of molecular oxygen in O3 generation was investigated by Stucki et al.[22] who 

employed a pressurized Membrel electrolyzer (ie. a commercial unit using Nafion as SPE). The 

authors noticed that the O2 pressure had no effect on current efficiency and they postulated that 

this was due to the balanced formation and loss of ozone via:  

              k1 

O•
ads + O2(g)        O3(g)       (22) 

 k2  

O•
ads + O3(g)         O2(g)       (23) 

         

Increasing the pressure, the concentrations of O3 and O2 were increased, however (O)ads 

decreased and the ratio of both reaction ratios (eq.22 and 23) remained constant.  O2  is generally 

accepted as an active intermediate along with (OH•)ads and (O•)ads [39][52][54]. 

The mechanism proposed by Da Silva and co-workers[13][25], derived from the model of Kotz 

and Stucki[38], is now regarded as the generic mechanism for electrochemical ozone 

generation:  

Electrochemical steps: 

(H2O)ads       (OH•)ads + H+ + e– (rds)     (24)  

(OH•)ads       (O•)ads + H+ + e–      (25)  

 

Chemical steps: 

   (O•)ads               [1-θ](O•)ads + θ(O•)* ads (0 < θ < 1)    (26)  

[1-θ](2O•)ads             [1-θ](O2)ads      (27)  

[1-θ](O2)ads          [1-β].[1-θ](O2)ads + β[1-θ](O2)*ads (0 < β < 1)    (28)  

 

Oxygen evolution: 

[1-β].[1-θ](O2)ads           O2↑      (29)  
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Ozone formation: 

θ(O•)*ads + β[1-θ](O2)*ads             [θ + β(1-θ)](O3)ads    (30)  

[θ + β(1-θ)](O3)ads    O3↑      (31)    

 

Where “θ” and “β” are the surface coverage by oxygen species, and “*” represents the 

fractional surface coverage of intermediates leading to O3. 

The mechanism proposed by Da Silva and co-workers[13][25] involved concomitant oxygen 

and ozone evolution. The authors postulate that ozone generation commences with the 

“electrochemical step”, see equations.(24) and (25), where water is oxidized adsorbed radicals 

(OH•)ads which, in turn, are further oxidized to (O•)ads. On the other hand, the chemical steps 

determine the efficiency of the system and are influenced by several factors such as the 

electrode surface inhomogeneity, roughness, porosity, the nature of the electrode materials and 

most importantly the electrode/electrolyte interface. Clearly, the two oxygen atom 

intermediates produced by reaction (26), (O•)ads and (O•)* are responsible, ultimately, for the 

production of O2 and O3, respectively. 

The mechanism represented by eq.(24)-(31) remains speculative, as there is no hard evidence 

for, for example, the various adsorption sites.  

1.9 The physical properties of SnO2 and doped SnO2  

Tin oxide (SnO2, TO) has been widely used as a catalyst for the oxidation of organic 

compounds, in optical electronic devices and in electrochemical devices such as gas sensors 

[106-108]. The physical properties of tin oxide depend upon the synthesis method employed 

[107][109-113].     

1.9.1 Structure of undoped SnO2 and, Sb and Ni co-doped SnO2 

Tin dioxide (SnO2) crystallises in the tetragonal cassiterite structure where the coordination 

geometry of Sn(IV) is octahedral and the O2- ions are in trigonal planar sites[113][114] with a 

space-group symmetry of P42/mnm. The lattice parameters of the cassiterite unit cell are a = b 

= 0.473 nm and c = 0.319 nm.  In the tin oxide matrix, the tin ions are six coordinate and the 
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oxygen ions three coordinate [115], see fig. 1.8. SnO2 has a molecular mass of 150.7 g mol-1 

and a density of 6.95 g cm-3. The properties of tin dioxide are summarized in table 1.3.  

 

 

 

 

 

 

Figure 1.8 Schematic of the cassiterite crystal structure; grey represents the tin atoms and red 

the oxygen atoms[116]. 

According to the literature SnO2, Sb-SnO2 and Ni/Sb-SnO2, are isostructural. Doping SnO2 

with, for example, 10% Sb [117] has no effect upon the unit cell dimensions: for example, 

Rockenberger et al.[118] studied the effect of Sb doping on SnO2 using near edge X-ray 

absorption fine structure measurements (XANES), extended X-ray absorption fine structure 

measurements (EXAFS) and X-Ray diffraction (XRD) and found no effect up to at least 16% 

Sb. In addition, it has been reported that Sb doping up to 35% does not affect the structure of 

SnO2, with doping above this resulting in an amorphous structure[119]. The effect of Sb doping 

on SnO2 is dealt with in detail in section 1.9.2 and 1.9.3. As may be expected, the addition of 

small amount of Ni to Sb-SnO2 has little effect upon the unit cell dimensions; thus, 

Shekarchizade and Amini [120] employed XRD to study the structure of Ni/Sb-SnO2 with the 

ratio of Sn:Sb:Ni of 100:12:0.2 in the precursor solution and found no effect, as did Li and co-

workers[121], Yang and co-workers[122], Yang et al.[123], Sun et al.[124] and Chen et al. 

[125]. The latter authors studied the structure of Ni/Sb-SnO2 with a maximum concentration of 

Ni of c.a. 12.5% and observed that no effect on the structure of the Sb-SnO2, suggesting that Ni 

replaced the Sn(IV) ions in the lattice. It is generally accepted that Sb replaces Sn in SnO2 

[114][125-128]. Sb(V) has a similar ionic radius to Sn(IV) (62 pm cff 69 pm[118, 129, 130]) 

and hence can replace Sn(IV) in the lattice with little or no distortion [118][129-132]. 

Sn 

O 

a 

c 

b 
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aDecomposition into SnO and O2 at 1500 oC 

Table 1.3 The physical properties of the SnO2[112]. 

1.9.2 The colours of SnO2, Sb-SnO2 and Ni/Sb-SnO2 

In general, pure SnO2 is a white powder that is insoluble in water[112]. By controlling the size 

of SnO2, via e.g. different synthesis methods, different colours have been reported, ranging 

from white to yellow [133-135] due to plasmon effects [136][137]; e.g. 50 µm bulk SnO2 is 

white whereas 24.6 nm SnO2 nanocrystallites are yellow[138]. Chhatre and co-workers [137] 

studied the theory of colour in silver nanoparticles. The authors reported that the colour of 

nanoparticles was linked to their size; i.e. the colour of the silver nanoparticles changed from 

yellow to dark brown when the particle size increased from 5.5 nm to 10.8 nm. The authors did 

not attempt to explain their findings. Hall et al.[135] produced SnO2 nanoparticles by a 

combustion method and reported that their colour changed with increasing temperature from 

white at 1410 K to yellow at 2160 K.  

Doping SnO2 with Sb (Sb-SnO2) results in a change of colour to brown on calcining at low 

temperature (300 oC) and blue at high temperature (700 oC) [118][139][140]; thus, Nütz et al. 

[139][140] employed X-ray Absorption Near Edge Structure (XANES) and showed that the 

brown colour of Sb-SnO2 was due to the simultaneous presence of Sb (III) and Sb (V). The 

authors also showed that a colloid containing Sb(V) and Sb(III) in the ratio of 75:25 had a bluish 

colour after heat treatment when Sb(V) replaces Sn(IV) in the lattice, this produces an electron 

which is injected into the conduction band of the SnO2, rendering the SnO2 electronically 

conduction and producing the characteristic blue colour. This is described in detail in section 

5.2. 

Property Unit SnO2 

Mineral name 

Crystal structure 

Space group 

Lattice constants 

 

Density 

Melting point 

Heat of formation 

Band gap 

Colour 

- 

- 

- 

nm 

 

g cm-3 
oC 

eV 

eV 

Cassiterite 

Tetragonal, Rutile 

P42mnm 

a = 0.474 

c = 0.319 

6.99 

>1900a 

6.0 

3.6 

White 
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1.9.3 Electrical properties of SnO2, Sb-SnO2 and Ni/Sb-SnO2 

In solid state chemistry, band theory is used to explain many physical properties of solids such 

as electrical resistivity[141], optical absorption etc.[130][142]. This theory describes the range 

of energies that an electron within the solid may have. Based on this theory, materials in the 

solid state are classified into three: conductors (i.e. pure metals), semiconductors (i.e. TiO2 and 

SnO2) and insulators (i.e. Teflon, Polystyrene etc.) as shown in figs. 1.9(a), (b) and (c), 

respectively. 

As can be seen in figs. 1.9(a)-(c) the valence band (VB) is the highest occupied band and the 

highest unoccupied band is the conduction band (CB). The energy gap between the valence and 

conduction band is called the band (or forbidden) gap, (Eg). 

 

 

 

 

 

 

 

Figure 1.9 Band theory descriptions of: (a) a conductor, (b) a semiconductor and (c) an 

insulator.  

The Fermi level is the total electrochemical potential of the electrons in the solid and is usually 

denoted by µ or EF. The location of EF is important in determining the electrical behaviour of 

the material.   

In a crystalline solid, the valence atomic orbitals overlap to form bands of very closely spaced 

electronic energy levels, essentially a continuum. In a metal, the highest occupied band is half 

full, see fig. 1.9(a): at absolute zero, all the electrons occupy the lower half of the band, 

http://en.wikipedia.org/wiki/Electrochemical_potential
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however, if the temperature is increased above 0 K, then electrons are promoted into the empty 

half of the band and are free to move. EF lies at the midpoint of the band. 

An insulator has a large band gap (Eg) between the valence and conduction bands. The valence 

band is full and the conduction band is empty. Electrons cannot move in the valence band unless 

vacancies (holes) are created. An example of this is diamond which is an insulator with Eg = 

5.5 eV [111][112]  

If an electron is promoted into the conduction band or out of the valence band, it is free to move 

and electrical conduction can take place. Similarly, if an electron is promoted out of the valence 

band it leaves behind a positively-charged hole which is also free to move. In an insulator, 

electrical conductivity can only (in principle) take place by promotion of electrons from valence 

band to conduction band by heating to very high temperature or via excitation with very low 

wavelength light. In an insulator, EF again lies midway between valence and conduction bands. 

An intrinsic semiconductor, see fig 1.10(a) is a pure material, with the Fermi level lying midway 

between valence and conduction bands. The band gap is small enough that electrons can be 

promoted from valence band to conduction band by irradiation with light and/or thermally.  

 

 

 

 

 

 

 

Figure 1.10 (a) an intrinsic semiconductor; (b) n-type semiconductor and (c) p-type 

semiconductor.  

http://en.wikipedia.org/wiki/Insulator_(electricity)
http://en.wikipedia.org/wiki/Band_gap
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/sili.html#c5
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Extrinsic semiconductors are intrinsic semiconductors that have been doped either deliberately 

or inadvertently in order to alter their properties see figs. 1.10(b)-(c). Thus, stoichiometrically, 

SnO2 is an insulator at T = 0 K, but in its oxygen-deficient form, it behaves as an intrinsic 

semiconductor with a band gap of 3.6 eV[108][118][133][143][144]. When doped, extrinsic 

semiconductors can exhibit two different types of behaviour. For instance, addition of 

pentavalent dopants such as antimony, arsenic or phosphorous to SnO2 contributes free 

electrons into the conduction band that greatly increase the conductivity of the semiconductor 

see fig. 1.11(a). SnO2 doped in such a way is an example of an n-type semiconductor, see fig. 

1.10(b). Addition of trivalent dopants such as B, Al, In or Ga into SnO2 results in p-type SnO2, 

due to the production of positively charged “hole” in the valence band of the SnO2 [145][146], 

see figs. 1.10(c) and 1.11(b).  

 

 

Figure 1.11  Schematic representation of (a) n-type SnO2 and (b) p-type SnO2[147]. 

 

Undoped SnO2 is a semiconductor with a resistivity close to ca. 10-3 Ω cm[111][148][149]. The 

conductivity of SnO2 can be improved by doping with various metals, e.g. Sb, In, B, F, Ar, Pd, 

Ru, Ni, Cl, and P [100][114][148]. Among these dopants, Sb is the most generally employed to 

enhance the conductivity of SnO2, with the resistivity of Sb-SnO2 (ATO) typically c.a. 10-6 - 

10-4 Ω cm[36][117][150]. As mentioned above in section 1.8.1, the substitution of Sn(IV) by 

Sb(V) [118][129-131] can give resistivities of typically 10-5-10-4 Ω cm[151][152]. Doping with 

Sb(III) increases resistivity as these ions act as trap sites for the electrons injected into the 

(a) (b) 

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/dope.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/intrin.html#c1
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conduction band by Sb(V) [36]. Hence, resistivity initially decreases with Sb doping before 

increasing at higher levels due to the incorporation of Sb(III) as well as Sb(V) [114][125-128]. 

To form n-conducting Sb-SnO2, the material has to be heated to a sufficient temperature 

(calcined) to allow the Sb to move into the lattice, replace Sn(IV) and, in the case of Sb(V), to 

inject electrons into the conduction band at room temperature, which is sufficient to promote 

electrons from the dopant (Sb) levels, see fig. 1.12. 

Figure 1.12 a n-type semiconductor: (a) at 0 K and (b) at temperature higher than 0 K 

 

Recently, attention has turned to the co-doping of SnO2 with Ni and Sb as a means of enhancing 

(none-ozone) electroactivity. Thus, there is interest in the effect of Ni on the electronic 

conductivity of Sb-SnO2[28][100][120]; for example, Yang and co-workers[100] found that ca. 

1-2% Ni increased the conductivity of  Sb-SnO2, whereas Wang et al.[28] suggested an optimal 

Ni doping level of 0.2%.  

1.10 The synthesis of the nanopowders 

A number of synthesis methods have been proposed for the production of nanoparticulate oxide 

including: hydrothermal (HT) [109][140][153-156], solvothermal [145][157][158], sol-gel 

[131][159], precipitation[146], the use of surfactants[160], combustion[135] and surfactant-

assisted hydrothermal synthesis[109][157][161]. The size of the metal oxide particles so formed 
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depends on the synthesis method and the calcination temperature. In this work, hydrothermal 

synthesis was chosen to produce nanoparticulate and monodisperse nanoparticles [162-164].  

The hydrothermal method consists of using high pressure vessel at high temperature to grow 

crystal from appropriate precipitate or metal salt solution[163]. Fujihara et al.[154] employed 

a hydrothermal method to produced nanocrystalline mesoporous SnO2. SnO2 was precipitated 

by the slow hydrolysis of SnCl4 with de-ionised water. The precipitate was then treated 

hydrothermally at 200 oC for 24 hours followed by calcining at 500 oC. They obtained 

nanocrystal powders with an average sizes of 7.3 nm and a surface area of 115 m2 g-1. Zhang et 

al. [165][166] also used de-ionised water, SnCl4, and Sb2O3 in a hydrothermal process by 

heating at 170 oC for 10 hours to produce ATO nanopowders. They obtained monodisperse 

ATO nanoparticles with a particle size of ~ 4 nm, spherical morphology and a surface area of 

ca. 190 m2 g-1. 

Other workers employing the hydrothermal approach to produce nanopowders of SnO2 include 

Sakai and co-workers[153] and Lim et al.[138]. 

It is generally found that the solutions employed in hydrothermal synthesis, e.g. alcohol[167-

169], hydrazine (N2H4)[170][171], sodium citrate dehydrate and surfactants[109] can have a 

significant effect upon the morphologies of the powder so produced. Thus, Chiu and co-workers 

employed a mixture of SnCl4 and isopropanol at 150 oC for 24 hours. They obtained particles 

with a spherical morphology, size of 3 ± 0.5 nm and a BET surface area of 92 m2 g-1. In contrast, 

Cheng et al.[168] obtained particles with a nanorod morphology having lengths of 17 ± 4 nm 

and diameters of 3.4 ± 0.6 nm using an alcohol/water mixture as solvent. Sun et al.[169] also 

employed a water/alcohol mixture, however, they obtained flower-like nanostructures with a 

diameter of 2 µm. Patil and co-workers[170] and Hongliang et al.[171] prepared Sb-SnO2 

powders by the hydrothermal method using hydrazine (N2H4). The former performed the HT 

synthesis at 100 oC for 12 hours; they obtained ATO samples with a cubic morphology and 

particle sizes of 22.4 nm whereas the latter observed uniform and monodispersed SnO2 quantum 

dots with a size of c.a. 2.3-3.1 nm following heat treatment at 150 oC for 24 hours. 

1.11 Remediation of dyes 

The wastewater from the textile, dye, paper and printing industries contains organic 

compounds, inorganic salts and reactive dyes [88][172]. Dye wastewater is characterized by 
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strong colour, high concentrations of suspended solids (SS) and salts, high chemical oxygen 

demand (COD) and high total organic carbon (TOC)[94][173]. Thus, releasing such wastewater 

into the environment can pose a risk to human health and have negative effects on aquatic life 

[15][57][94][172][173][174]. Hence, dye wastewaters must be treated to meet discharge 

standards[27].  

Modern organic dyes all contain one or more colour-delivering (chromophore) groups which 

include: azo, phthalocyanine, antraquinone, indigoid and xanthene[175]. Most common dyes 

also contain polyaromatic structures along with nitrogen, sulphur and metals [176]. Strongly 

coloured organic substances such as anthraquinones are classified as reactive dyes due to their 

functional groups that attach themselves to substrate via the formation of covalent bonds.  As 

an example, the structure of the dye employed in the work reported in this thesis, Reactive dye 

Blue (RB50), is shown in table 1.4. The dye was selected for study due to its complex chemical 

structure, high solubility in water[177] and its extensive use in dyeing industry[15]. 

Conventional wastewater treatment such as activated sludge, chemical coagulation and 

activated carbon adsorption[9][178] are either ineffective or expensively time-consuming due 

the high stability of dye molecules, for example in sunlight, and resistance to microbial attack 

[15][88][94][179]. Hence, alternative treatment technologies are being sought, and some 

potential approaches are summarized in the following sections.   

 

 

 

 

 

 

 

Table 1.4. Molecular formula, molecular weight and structure of the RB50 dye[98]. 

Dye RB50 

Molecular formula C26H23Br2N3O9S2Na2 

Molecular weight /gmol-1 791.18 

Structure 
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1.11.1 Electrochemical oxidation 

The electrochemical treatment of water/wastewater can be divided into two types: direct and 

indirect oxidation.  

Direct oxidation 

A number of electrochemical approaches, primarily involving direct oxidation, have been 

investigated with respect to dye degradation using a variety of anodes, including:   graphite 

[180], PbO2 [174][181], Sb-SnO2[181][182], Ni/Sb-SnO2[15][172], TiO2-RuO2-IrO2[178], Ni 

mesh [183] and BDD[88][94][95].  

According to Comninellis [184], direct oxidation of an organic molecule at an anode relies on 

the production of “active oxygen” species which are physically adsorbed (such as •OH radicals) 

or chemisorbed (as oxygen in the lattice, MOx+1). Comninellis postulated that electrochemical 

oxidation comprised three important aspects, see fig. 1.13: (1) generation of active oxygen, (2) 

the properties of the anode material and (3) the competition with oxygen evolution. 

The properties of an anode material strongly affect the selectivity and efficiency of the 

electrochemical oxidation process. Comninellis[184] interpreted the different behaviour of 

anodes with respect to  electrochemical oxidation by dividing anodes into two types: active and 

non-active. Active anodes i.e. Pt, IrO2 and RuO2 [96][185][186], provide active sites that 

strongly interact with •OH, leading to organic oxidation which takes place directly at the anode 

surface.  In contrast, the non-active anodes, i.e. PbO2, Sb-SnO2 and BDD, act simply as an 

electron sink that remove electrons from the organic molecules[15][186]. Marselli et al. [92] 

reported that electrochemical activity (which is related to the overpotential for O2 evolution) 

and the chemical reactivity (which is the rate of organic oxidation by •OH) of adsorbed OH 

radicals are associated with the strength of the interaction between the anode and •OH. It is 

generally accepted that BDD anodes have a weak interation with •OH (non-active anode) due 

to the high stability and inert surface of diamond[186].  
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Figure 1.13 A schematic diagram of the direct electrochemical oxidation of an organic by a 

metal oxide anode: (1) formation of hydroxyl radicals,•OH; (2) formation of the higher metal 

oxide, MO; (3) oxygen evolution by electrochemical oxidation of•OH; (4) oxygen evolution 

by chemical decomposition of MOx+1; (5) electrochemical combustion via •OH. and (6) the 

electrochemical conversion of the organic compound, R [184][186]. 

Indirect oxidation 

Unlike direct  oxidation, indirect oxidation involves the production of strong oxidants such as: 

chlorine, hypochlorite, peroxide, Fenton’s reagent, peroxodisulfate and ozone[186]. The 

oxidant then reacts with the organic substrate to produce CO2, H2O and inorganic compounds. 

The oxidant most commonly employed in indirect oxidation is chlorine via the addition of the 

chloride ion[186][187].  

The addition of chloride ion into an electrolyte results in the enhancement of removal efficiency 

and the degradation of pollutants due to the production of chlorine in various forms: chlorine 

(Cl2, E˚ = 1.38 V), hypochlorous acid (HOCl, E˚ = 1.63 V) and hypochlorite (ClO-, E˚ = 0.9 

V), see fig. 1.14. 
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Figure 1.14. Chlorine-mediated electrochemical oxidation[184][186][188]. 

The drawbacks of indirect oxidation are: (1) the formation of chlorinated organic intermediates,  

(2) large amounts of salt have to be added to increase the efficiency if the chloride content is 

low in the raw wastewater and (3) undesirable by-products such as Trihalomethanes (THMs) 

can be produced which may cause cancer[189]. Hence, alternative oxidants have been 

investigated including hydrogen peroxide and ozone[57][179][180]. 

1.11.2 Decolourisation by ozone 

 Ozonation is well known as an effective oxidation process that has been applied in treating 

water and wastewater due to its high standard reduction potential of 2.07V [15][16][57][175] 

[179] and ability to produce a plethora of secondary radicals[15][32]. Ozone has been employed 

to degrade phenol, chlorinated hydrocarbons, dyes and aromatic hydrocarbons[179]. Ozone 

reacts with pollutants either by direct (chemical) oxidation as O3 (at low pH) or by indirect 

reaction through the formation of secondary oxidants such as •OH (at high pH) [179]. 

O3 can degrade dye molecules by breaking down the conjugated carbon double bonds of their 

chromophoric and other functional groups (complex aromatic rings, etc), hence reducing the 

colour of dye[29][172][176]. The main factors that affect decolourisation by ozone are: dye 

concentration (increased dye concentration causes more ozone consumption in the liquid phase 
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or more intermediates that react with ozone), temperature (the colour removal efficiency 

increases with increasing temperature up to 50 oC) and pH (the decomposition of O3 to •OH 

takes place at high pH)[15][179]. 

The main advantages of using O3 for decolourization are: (1) colour and the organic matter can 

be removed in one step without residue and/or sludge formation; (2) it does not increase the 

volume of wastewater as O3 can be applied as a gas; (3) ozone is less harmful compared to other 

oxidizing agents and (4) it is a green oxidant as it reacts to produce oxygen. However, ozone 

decomposes quickly, depending upon the pH of the solution, the temperature and ozone 

concentration. [172][175][179][180] 

1.12 Aim and objectives 

The aim of the work reported in this thesis was to elucidate the active site and the mechanism 

of ozone generation at nickel and antimony-doped tin oxide (NATO) electrodes. In order to 

achieve this, a step-by-step approach will be implemented whereby SnO2, Sb-SnO2 and Ni/Sb-

SnO2 nanopowders will be prepared using a hydrothermal method and full structural 

characterization carried out using surface area determination by gas adsorption, powder X-ray 

diffraction (XRD), Scanning Electron Microscope and Energy Dispersive X-ray spectroscopy 

(SEM/EDX), Fourier Transform InfraRed (FTIR) spectroscopy, X-ray Photoelectron 

Spectroscopy (XPS) and thermogravimetric analysis coupled with evolved gas analysis by mass 

spectrometry (TGA) to investigate the structural and other changes induced by doping SnO2 

first with Sb then with varying amounts of nickel, and to correlate the latter with ozone activity 

and selectivity. The most active catalyst identified by the research would then be employed to 

investigate the remediation of aqueous RB50 dye solution. 
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Chapter 2. Experimental 

This chapter describes the syntheses of the various SnO2-containing materials, electrode 

fabrication, the equipment employed and the analytical techniques used to characterize the 

materials. The measurement of ozone using UV-Vis spectroscopy is also described.  

2.1 Chemicals and materials  

The chemicals and materials employed throughout this work are shown in table 2.1, and a list 

of the equipment used is presented in table 2.2.  

 

Chemicals / Materials Formula Analysis Supplier 

Tin (IV) chloride 

pentahydrate 
SnCl4.5H2O 

Puriss min 

98% 
Sigma-Aldrich 

Antimony (III) chloride SbCl3 99% Sigma-Aldrich 

Antimony (III) oxide Sb2O3 Puriss 99% Aldrich 

Nickel(II) chloride 

hexahydrate 

NiCl2.6H2O 99% Sigma-Aldrich 

Nickel(II) oxide NiO 99% Sigma-Aldrich 

Silver Nitrate AgNO3 99% Riedel-de Haen 

Acetone CH3COOCH3 Puriss 99% Fluka 

Ethanol C2H5OH 98% Fluka 

Millipore water 

(deionised water, DI) 
H2O 18 MΩ cm Milli-Q system 

Sulfuric acid H2SO4 Puriss 95-98% Sigma-Aldrich 

Oxalic acid (COOH)2 98.0% Sigma-Aldrich 

Platinum/titanium mesh, 

0.25mm, 20 x20 mm 

Pt/Ti 99.9% Goodfellow 

Titanium mesh Ti 20% Dexmet, USA 

Titanium foil, 0.5mm,           

50 x 50 mm 

Ti 99.6 Goodfellow 

Titanium wire( 1 mm) Ti 99.6 Advent 

Table 2.1 The chemicals and materials employed in the work reported in this thesis. 
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Table 2.2. The equipment used in the work reported in this thesis. 

 

2.2 Synthesis method 

The synthesis method employed for the preparation of tin oxide (TO), antimony-doped tin oxide 

(ATO), and nickel/antimony-doped tin oxide (NATO) powders was as follows: Prior to the 

hydrothermal synthesis, the appropriate salts (see table 2.3) were dissolved in DI water and 

refluxed as shown in fig. 2.1 in order to obtain a precipitate which was centrifuged to separate 

the precipitate from the solvent. The precipitates were then transferred into the hydrothermal 

vessel. 

Tin oxide (TO), antimony-doped SnO2 (ATO) and nickel/ antimony-doped tin oxide (NATO) 

nanopowders were prepared via 3 steps in a hydrothermal synthesis adapted from Fujihara and 

co-workers[1]. The amounts of the precursors employed are shown in table 2.3. 

Equipment Supplier 

Barnstead  heating and stirring electromantle MG Scientific 

Harrier 15/80 centrifuge MSE 

Hydrothermal vessel In house fabrication 

MH-124  analytical balance Fisherbrand 

CB 162  hotplate and stirrer Stuart 

Spot-welding machine HIRST Electric Industries 

Limited 

2510E-MT  ultrasonic bath Bransonic 

Ceramic boat Shenzhen Jinghui Electronics 

Company Limited 

Thermometer  Fisherbrand 

N6C oven Genlab Limited Thermal 

Engineers 

Carbolite type 301 furnace (MC16-GB-C-1) Barlword Scientific 

HM 7044 power supply Hameg Instruments 

1240 UV-VIS Spectrometer Shimadzu 
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Sample 

Concentration 

of SnCl4 in 

final precursor 

solution/ M 

% Mole ratio 

Sn:Sb:Ni 

Mass  

of 

SnCl4.5H2O 

/ g 

Mass 

of  

SbCl3 

/ g 

Mass 

 of 

NiCl2.6H2O 

/ g 

Volume 

of  

H2O 

/ cm3 

TO 0.1 100 : 0 : 0 7.01 - - 200 

ATO 0.1 94 : 6 : 0 6.59 0.274 - 200 

0.5NATO 0.1 93.5 : 6 : 0.5 6.55 0.274 0.024 200 

1NATO 0.1 93.0 : 6 : 1.0 6.52 0.274 0.047 200 

1.5NATO 0.1 92.5 : 6 : 1.5 6.48 0.274 0.070 200 

2NATO 0.1 92.0 : 6 : 2.0 6.45 0.274 0.095 200 

Table 2.3. The composition of the solutions employed in the reflux step to produce 

nanoparticulate TO, ATO and NATO with varying amounts of nickel.  

 

Taking 0.1M tin oxide as an example, 7.01 g of SnCl4 was dissolved in 200 cm3 deionised water. 

The solution, magnetic bar and anti-bumping granules were transferred into round bottomed 

flask and refluxed at 95 oC for 3 hours (see fig. 2.1) in order to promote hydrolysis and the 

formation of a white precipitate of SnO2. Following refluxing, the nanoparticulate precipitate 

was recovered by centrifuging and washed several times with de-ionised (DI) water until 

chloride ceased to appear (as determined via the addition of aqueous 0.1M AgNO3). The 

precipitate was then placed in the Teflon vessel in the autoclave and heated at 180 oC (equivalent 

to 10 bar) for 24 hours (see fig. 2.2). The wet precipitate was then washed again with DI water 

until no chloride appeared (as above), after which it was dried in an oven at 60 oC overnight, 

and then ground with a pestle and mortar. Finally, the powder was split into four samples, three 

of which were calcined at 300, 400 and 700 oC for 1 hour. The synthesis is summarized in figs. 

2.3 and 2.4. The samples so obtained are designated TO/HT, TO/HT/300, TO/HT/400 and 

TO/HT/700, respectively, and this notation will be used in the discussions below. 

The ATO and NATO samples were synthesized by the same method as that employed for 

samples ATO/HT, see fig. 2.3 and NATO/HT in fig. 2.4.  
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Figure 2.1. The reflux apparatus 

 

The hydrothermal equipment included an autoclave, cooling system and pressure system which 

were designed and constructed in-house, as shown in fig. 2.2. As can be seen from the figure, 

the autoclave comprised two primary parts: the container was made of Teflon as this has a high 

melting point (327 oC) and is unreactive. The Teflon container (with lid, 80 cm3), see fig. 2.2(a) 

was fitted into the stainless steel autoclave see fig. 2.2(b). Stainless steel was chosen for its 

robustness and heat transfer capacity.  
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Figure 2.2. The hydrothermal synthesis apparatus: (a) PTFE container; (b) stainless steel 

autoclave and (c) hydrothermal reactor. 

 

Figure 2.2(c) shows the autoclave mounted in the oven. In order to measure the pressure in the 

autoclave, the lid was designed with a valve which was connected to a pressure gauge and a 

water cooling system. The temperature of the reactor was determined by a thermocouple placed 

on the stainless steel lid.  
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ATO/HT 

6.59 g SnCl4.5H2O and 

0.274 g SbCl3 were 

dissolved in 200 cm3 DI 

water.                             

Refluxing at 95 oC          

for 3 hours 

Placed sample into 

hydrothermal vessel at 

180 oC for 24 hours 

Removal Cl- by water in 

centrifuge and test with 

0.1M AgNO3 

Drying and grinding. 

Uncalcined and calcined at 

300, 400 and 700 oC for 1 

hour. Samples were 

denoted as ATO/HT, 

ATO/HT/300, AO/HT/400 

and ATO/HT/700, 

respectively 

Removal Cl- by water in 

centrifuge and test with 

0.1M AgNO3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The procedure for preparing tin oxide and antimony doped tin oxide powders via 

the hydrothermal method. 

 

TO/HT  

 

7.01 g SnCl4.5H2O was 

dissolved in 200 cm3 DI 

water. 

Refluxing at 95 oC                   

for 3 hours 

Placed sample on 

hydrothermal process at 

180 oC for 24 hours 

Removal Cl- by water in 

centrifuge and test with 

0.1M AgNO3 

Drying and grinding. 

Uncalcined and calcined 

at 300, 400 and 700 oC for 

1 hour. Samples were 

denoted as TO/HT, 

TO/HT/300, TO/HT/400 

and TO/HT/700, 

respectively. 

Removal Cl- by water in 

centrifuge and test with 

0.1M AgNO3 
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Figure 2.4 The procedure for preparing NATO powders with varying amounts of nickel via 

the hydrothermal method. 

1NATO/HT  

6.52 g SnCl4.5H2O, 

0.27 g SbCl3 and    

0.047 g NiCl2.6H2O 

was dissolved in 200 

cm3 DI water. 

Refluxing at 95 oC      

for 3 hours 

Placed sample on 

hydrothermal process 

at 180 oC for 24 hrs. 

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 

Drying and grinding. 

Uncalcined and 

calcined at 300, 400 

and 700 oC for 1 

hour. Samples were 

denoted as 

1NATO/HT, 

1NATO/HT/300, 

1NATO/HT/400 and 

1NATO/HT/700, 

respectively. 

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 

1.5NATO/HT  

6.48 g SnCl4.5H2O 

0.27 g SbCl3 and      

0.07 g NiCl2.6H2O 

was dissolved in 200 

cm3 DI water. 

Refluxing at 95 oC      

for 3 hours 

Placed sample on 

hydrothermal process 

at 180 oC for 24 hrs.  

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 

Drying and grinding. 

Uncalcined and 

calcined at 300, 400 

and 700 oC for 1 

hour. Samples were 

denoted as 

1.5NATO/HT, 

1.5NATO/HT/300,  

1.5NATO/HT/400 

and 1.5NATO/HT/ 

700, respectively. 

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 

0.5NATO/HT  

6.55 g SnCl4.5H2O 

0.27 g SbCl3 and    

0.024 g NiCl2.6H2O 

was dissolved in 200 

cm3 DI water. 

Refluxing at 95 oC      

for 3 hours 

Placed sample on 

hydrothermal process 

at 180 oC for 24 hrs.  

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 

Drying and grinding. 

Uncalcined and 

calcined at 300, 400 

and 700 oC for 1 

hour. Samples were 

denoted as 

0.5NATO/HT, 

0.5NATO/HT/300,  

0.5NATO/HT/400 

and 0.5NATO/HT/ 

700, respectively. 

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 

2NATO/HT  

6.45 g SnCl4.5H2O, 

0.27 g SbCl3 and    

0.095 g NiCl2.6H2O 

was dissolved in 200 

cm3 DI water. 

Refluxing at 95 oC     

for 3 hours 

Placed sample on 

hydrothermal process 

at 180 oC for 24 hrs. 

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 

Drying and grinding. 

Uncalcined and 

calcined at 300, 400 

and 700 oC for 1 

hour. Samples were 

denoted as 

2NATO/HT, 

2NATO/HT/300, 

2NATO/HT/400 and 

2NATO/HT/700, 

respectively. 

Removal Cl- by water 

in centrifuge and test 

with 0.1M AgNO3 
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The conditions of the hydrothermal preparation were that the temperature and pressure must 

not exceed 200 oC and 20 bar, respectively. As a safety check, during HT experiments the 

pressure and temperature were monitored and compared to those expected on the basic of the 

plot of water boiling point versus pressure[2], as shown in fig. 2.5 (when using water as 

solvent); if any deviation was observed the experiment was to be stopped immediately. 

Deviations may indicate: (1) overheating that can lead to explosion or (2) a leak leading to 

insufficient pressure. 

Figure 2.5. The variation of the boiling point of water vs. pressure [2]. 

 

2.3 Electrode preparation 

In this work, the electrodes fabricated for electrochemical ozone generation were produced via 

2 methods; by dip-coating and painting. The ceramic anodes prepared via dip-coating were 

fabricated following a similar methodology to that employed by Chang et al.[3][4] and 

Christensen et al.[5-7]. With respect to powder catalysts, the paint coating method will be 

described in Chapter 3. 

2.3.1 Substrate preparation 

Titanium was employed as a support for the anodes because it is stable and its use well 

documented in the literature[5-10]. Ti mesh or foil substrates of dimensions 0.8 cm x 0.8 cm 
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were used. The mesh substrates were pressed in a Chauffante Elcometer press at room 

temperature and 1000 N for 5 minutes to flatten them. 0.5 mm diameter Ti wires were cut ca. 

10 cm, one end hammered flat and then spot-welded to the titanium mesh or foil (%weld = 40, 

weld = 1 and scale = low) along the middle of Ti foil or mesh to the edge in order to ensure 

contact with the entire length of the substrate.  

The Ti substrates were degreased by washing with acetone, immersed in beaker containing 

acetone, and then washed thoroughly with DI water; this procedure was repeated twice. The 

substrates were then etched by boiling in 10 wt.% oxalic acid (10g in 100 cm3 DI water)  for at 

least 30 minutes until the solution acquired a brownish tinge. The solution was allowed to cool 

to room temperature after which the substrates were washed with DI water. They were then 

placed in fresh DI water in a beaker and sonicated for 15 minutes, repeating the procedure twice 

with fresh water until no grease was observed on the surface of the water. The meshes or foils were 

then dried in air for 1 hour by placing in a beaker with the substrates uppermost. Each Ti 

substrate was weighed and the mass recorded. 

2.3.2. Catalyst preparation and procedure for the ceramic anodes 

The ceramic anodes were prepared by a conventional dip-coating method. The anodes were 

coated with their appropriate precursor solution, heated and then calcined. The precursor 

solutions employed thorough the work in this thesis were adapted from Wang et al.[3] and 

Christensen et al.[5][6].  

The chloride precursor solutions contained SnCl4.5H2O, SbCl3 and NiCl2.6H2O, in the mole ratio 

Sn:Sb:Ni of  500: 8: x, where x was 0.5, 1, 1.5, 2, 2.5 and 3 according to the composition 

employed by Christensen[6][11], see table 2.4. Thus, 35g SnCl4.5H2O was dissolved in 80 cm3 

ethanol in a beaker using a magnetic stirrer, and 0.365g SbCl3 and NiCl2.6H2O were added. 

After the salts had dissolved, the solution was transferred to a 100 cm3 volumetric flask and 

ethanol added to the mark. The flask was then shaken thoroughly, see fig. 2.6. 
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Salt 

solution 

The mole 

ratio of 

Sn:Sb:Ni 

Sn:Sb:Ni 

/ % 

SnCl4.5H2O  

/ g 

SbCl3  

 / g 

NiCl2 

/ g 

Ethanol / 

cm3 

0.1NATO 500:8:0.5 98.4:1.5:0.1 35 0.365 0.024 100 

0.2NATO 500:8:1 98.3:1.5:0.2 35 0.365 0.047 100 

0.3NATO 500:8:1.5 98.2:1.5:0.3 35 0.365 0.071 100 

0.4NATO 500:8:2 98.1:1.5:0.4 35 0.365 0.095 100 

0.5NATO 500:8:3 98.0:1.5:0.5 35 0.365 0.118 100 

3NATO 500:8:15.7 95.5:1.5:3.0 35 0.365 0.746 100 

Table 2.4. The composition of the precursor solutions employed in the chloride synthesis of the 

ceramic NATO anodes employed by Christensen and co-workers [6][11].  

 

The precursor solution was placed in a beaker and the Ti substrates dip-coated with the catalyst 

solution for 40 seconds and allowed to dry in air for 2 minutes. The electrodes were then laid 

horizontally in a crucible boat (foil uppermost) and transferred to the oven where they were 

heated at 110 oC for 5 minutes, after which they were calcined in a furnace at 460 oC for 10 

minutes. The boat and electrodes were removed and allowed to cool for 1 minute, and then the 

coating process repeated. The coating, preheating and calcinations steps were repeated typically 

7 times; during the final coating, the electrodes were calcined at 460 oC for 1 hour. The 

electrodes were allowed to cool in air after which they were weighed and the masses recorded, 

see fig. 2.6. 

 

In the oxide synthesis, the preparation of the Ti foil followed the same procedure as in section 

2.3.1. The difference between the chloride and oxide syntheses were the chemicals employed 

and the relative composition of the coating solutions. Thus, Sb2O3 and NiO were used instead 

of the chlorides, and the ratio of Sn:Sb:Ni was 67: 4.3: x where x was varied between 0.5 and 

2, see table 2.5 [12]. In addition, the calcination temperature of the furnace was increased to 

550 oC, see fig. 2.7. 
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Figure 2.6 The dip-coating method for electrode preparation using chloride precursor 

solutions. 

 

Ti foil preparation 

Cutting Ti foils to 0.8 x 0.8 cm and 

press them at 1000N for 5 min  

Degreasing by etching the foil 

with 10% boiling oxalic acid for 

30 min 

Drying and weighing the foils 

Coating process 

 

Dip the foil in a catalyst 

solution for 40s 

 

Place the foil in the oven at 

110oC for 5min. 

Remove from the oven and 

then place into a furnace at 

460oC for 10 min 
 

Sonicating for 30min in DI water 

Cool the foil at room 

temperature and weigh 

Catalyst precursor 

preparation 

 

Dissolve 35g SnCl4.5H2O, 

0.365g SbCl3 and 0.024g 

NiCl2 in ca. 80 cm3 ethanol 

Mixing the solution and 

supplementing with ethanol 

up to 100 cm3 in a 

volumetric flask 
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Figure 2.7 The dip-coating procedure employed to make electrodes using oxide precursor 

solutions. 

Ti foil preparation 

 

Cutting Ti foils to 0.8 x 0.8 cm and 

press them at 1000N for 5 min  

Degreasing by etching the foil with 

10% boiling oxalic acid for 30 min 

Drying and weighing the foils 

Coating process 

Dip the foil in a catalyst solution for 

1-2 min 

 

Place the foil in the oven at 110 oC 

for 10 min. 

Remove from the oven and then place 

into a furnace at 550 oC for 15 min 

Sonicating for 30min in DI water 

Cool the foil at room temperature and 

weigh 

Oxide precursor preparation           

(Sn:Sb:Ni =93.5: 6: 0.5) 

Dissolve 30 g SnCl4.5H2O, in ca.  

80 cm3 ethanol 

Mixing the solution and 

supplementing with ethanol up to 

100 cm3 in a volumetric flask 

Dissolve 0.8 g Sb2O3 and 0.048 

NiO in 2.5 ml of HCl 
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Oxide 

solution 

The mole 

ratio of 

Sn:Sb:Ni 

Sn:Sb:Ni 

/ % 

SnCl4.5H2O  

/ g 

Sb2O3  

 / g 

NiO 

/ g 

Ethanol 

/ cm3 

0.5NATO 67:4.3:0.5 93.5:6:0.5 30 0.8 0.048 100 

1NATO 67:4.3:1.0 93.0:6:1.0   30 0.8 0.096 100 

1.5NATO 67:4.3:1.5 92.5:6:1.5 30 0.8 0.144 100 

2NATO 67:4.3:2.0 92:6:2 30 0.8 0.192 100 

Table 2.5 The composition of the precursor solutions employed in the oxide synthesis. 

2.3.3 Catalyst preparation and the procedures employed for the powder anodes 

Taking ATO/HT/700 as an example: 100 mg of the ATO/HT/700 nanocrystalline powder was 

mixed with 10 cm3 of ethanol solution containing NiCl2 at 0.01wt%Ni, 0.1wt% Ni and 1wt%Ni, 

see fig. 2.8. The wet powders were stirred for ca. 4 hours until a homogeneous slurry was 

obtained. The slurry so formed was coated on the Ti foil, and allowed to dry in air. The 

electrodes were then placed in the oven at 110 oC for 5 min, removed and calcined at 700oC for 

1 hour in the furnace. The procedure for making the NATO/HT/700 anodes was the same as 

described above, except that the NATO powder was mixed with 10 cm3 ethanol until it assumed 

a mud-like consistency, after which the electrodes were heated and calcined at the same 

temperature as the ATO/HT/700 anode.  

The thickness of the catalyst coatings on both ceramic and powder anodes were calculated from 

the density of SnO2 (6.95 g cm-3 [13][14]) and the loading in g cm-2. 

2.3.4 Anode Nomenclature  

The details of the powders and the anodes discussed in this thesis are presented in tables 2.6 

and 2.7. Table 2.6 summarizes the nanocrystalline powders produced via the hydrothermal 

method and the various analytical techniques employed to characterize them. The list of 

electrodes employed in the work are shown in table 2.7. As can be seen from the tables, 10 

electrode series were investigated. The anode series were prepared via different synthesis 

methods, precursor solutions and compositions. The syntheses involved dip-coating for ceramic 

anodes and painting for powder anodes. In addition, the electrodes of some series were calcined 

at different temperatures.  
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Figure 2.8 The procedure employed to make powder electrodes by the painting method. 

 

2.4 Electrochemical ozone generation 

2.4.1 The electrochemical cell 

The electrochemical cells employed in this work were 1 cm pathlength quartz cuvettes. The 

cuvette cell could contain up to 3 cm3 electrolyte (0.5M H2SO4). A 0.64 cm2 Pt-Ti mesh cathode 

was held vertically against one of the opaque sides of the cuvette. The anode was held flat on 

the bottom of the cuvette see fig 2.9. The cuvette cell was sealed with a polytetrafluoroethylene 

(PTFE) cover and then placed in the cuvette holder in Shimadzu 1240 mini spectrophotometer, 

see fig 2.10.  
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      Table 2.6 Summary of the nanocrystalline powders discussed in this thesis 

Sample Synthesis Mole Ratio 

of 

Sn:Sb:Ni(%) 

Calcination 

temperature/ 
oC 

Characterisation 

XRD SEM EDX FTIR TGA/DSC XPS BET O3 

SnO2 HT 100:0:0 Uncalcined 

300oC 

400oC 

700oC 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

X 

X 

 

 

X 

X 

 

 

 

 

 

 

X 

X 

 

ATO HT 94:6:0 Uncalcined 

300oC 

400oC 

700oC 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

X 

X 

 

 

X 

X 

X 

X 

X 

X 

 

 

X 

X 

 

0.5NATO HT 93.5:6:0.5 Uncalcined 

300oC 

400oC 

700oC 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

X 

X 

 

 

X 

X 

 

 

 

X 

 

 

X 

X 

 

 

X 

X 

1NATO HT 93:6:1 Uncalcined 

300oC 

400oC 

700oC 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

X 

X 

    

 

X 

X 

1.5NATO HT 92.5:6:1.5 Uncalcined 

300oC 

400oC 

700oC 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

X 

X 

    

 

 

X 

2NATO HT 92:6:2 Uncalcined 

300oC 

400oC 

700oC  

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

 

 

X 

X 

 

 

X 

X 

 

 

 

X 

 

 

X 

X 

 

 

 

X 

ATO700Ni0.1 HT  700oC X X X   X X  
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Series 

name 

Anode name Synthesis Calcination 

temperature 

( oC) 

No. of 

Coating 

Sn:Sb:Ni Electrode: 

Mesh(M)/ 

Foil(F) 

Catalyst 

loading 

(mg) 

CSP1 CSP1-TO Dip-coating with Cl  

precursor 

460 

 

8 100 M 1.4 

 

CSP2 CSP2-ATO Dip-coating with Cl  

precursor 

460 8 94 : 6 M 1.1 

 

CSP3 CSP3-0.5NATO 

CSP3-1NATO 

CSP3-1.5NATO 

CSP3-2NATO 

Dip-coating with oxide  

precursor 

550 8 93.5 : 6 : 0.5 

93.0 : 6 : 1 

92.0 : 6 : 1.5 

91.5 : 6 : 2 

M 1.3 

1.4 

1.3 

1.3 

CSP4 CSP4-0.1NATO 

CSP4-0.2NATO 

CSP4-0.3NATO 

CSP4-0.4NATO 

CSP4-0.5NATO 

CSP4-3NATO 

Dip-coating with Cl  

precursor 

 

460 

8 98.4 : 1.5 : 0.1 

98.3 : 1.5 : 0.2 

98.2 : 1.5 : 0.3 

98.1 : 1.5 : 0.4  

98.0 : 1.5 : 0.5 

95.5 : 1.5 : 3 

M 

 

 

 

 

F 

2.4 

2.5 

2.5 

2.3 

2.5   

1.3   

CSP5 

 

 

CSP5A No  solution 460 -  F - 

CSP5B Ethanol  460 8  F - 

CSP5C 
Dip-coating with Cl  

precursor 

460 8 98.0 : 1.5 : 0.5 

 

F 3.2 

CSP5D 
Cold pressing with 

NATO powder Ethanol 

460 8 98.0 : 1.5 : 0.5 

 

F 15.8 

CSP6 CSP6-1NATO/A 

CSP6-1NATO/B 

CSP6-1NATO/C 

CSP6-1NATO/D 

CSP6-1NATO/E 

Dip-coating with Cl  

precursor 

460 8 

10 

20 

30 

30 

 93 : 6 : 1 F 0.6 

0.9 

1.6 

2.7       

2.8 
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Series 

name 

Anode name Synthesis Calcination 

temperature 

( oC) 

No. of 

Coating 

Sn:Sb:Ni Electrode: 

Mesh(M)/ 

Foil(F) 

Catalyst 

loading 

(mg) 

CSP7 CSP7-0.5NATO/A 

CSP7-1NATO/C 

CSP7-1.5NATO/A 

CSP7-2NATO/A 

Dip-coating with Cl  

precursor 

460 8 93.5:6:0.5 

93:6:1 

92.5:6:1.5 

92:6:2 

F 2.8 

2.5 

2.2 

2.4 

PSP8 PSP8-ATO300Ni0.01  

PSP8-ATO300Ni0.1  

PSP8-ATO300Ni1 

Painting-ATO/HT  

powder mixed with 

NiCl2 solution 

300   F 7.9 

7.9 

7.3 

 PSP8-ATO400Ni0.01  

PSP8-ATO400Ni0.1  

PSP8-ATO400Ni1 

400   F 5.0 

4.5 

5.0 

 PSP8-ATO700Ni0.01  

PSP8-ATO700Ni0.1  

PSP8-ATO700Ni1 

700   F 

 

8.9 

4.7 

5.3 

 PSP8-ATO700Ni0.01  

PSP8-ATO700Ni0.1  

PSP8-ATO700Ni1 

460   F 8.1 

4.2 

5.4 

PSP9 PSP9-0.5NATO/700 

PSP9-1NATO/700 

PSP9-1.5NATO/700 

PSP9-2NATO/700 

Painting 700  93.5:6:0.5 

93:6:1 

92.5:6:1.5 

92:6:2 

F 50 

49 

      48 

49 

PSP10 PSP10-0.5NATO/400 

PSP10-0.5NATO/700 

Painting 700 

460 

 93.5:6:0.5 

 

F 49 

48 

           Table 2.7 Summary of the anode series discussed in this thesis 
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In the experiments in chapter 3, the anode was connected to the + (red) terminal of a Thandar - 

TS30228 power supply, see fig. 2.11, and the cathode to the - (black) terminal. The reference 

spectrum was collected at open circuit after which the cell voltage was stepped to the working 

value (typical 2.7V) for 30s, after which the cell was switched to open circuit and further spectra 

collected for 300s (to avoid interference from gas bubbles). The steady state absorbance at 258 

nm[4][6] was taken and employed to calculate the ozone current efficiency. In the dye 

decolourization experiments in chapter 6, the cell voltage was maintained for 5 minutes as the 

presence of the dye ameliorated the problem of bubbles scattering the UV-Vis beam. 

 

 

 

 

 

 

 

Figure 2.9 The electrochemical cuvette cell. 

 

 

 

 

 

 

 

                                

                                         

Figure 2.10. Photograph of the Shimadzu 1240 mini UV-Vis spectrophotometer. 
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Figure 2.11. Photograph of the Thandar powder supply. 

 

2.4.2 Calculation of ozone generation current efficiency 

The current efficiency of electrochemical ozone generation in the sealed cuvette cell was 

determined by measuring the absorbance of the ozone in the liquid phase.  

According to Faraday’s law, the theoretical number of moles of ozone generated (nO3, 100%) 

can be calculated from equation (1)  

n (O3, 100%) = Q/zF                                       (1) 

 

Where: Q is the charge passed (C), z the number of moles of electrons needed to produce       

1 mole of O3 (z = 6), and F is Faraday’s constant (96500 C mol-1).  

The number of moles of ozone actually produced (nO3, ac) is:  

                                                     n (O3, ac) = CO3.V                                                               (2) 

 

Where CO3 is the concentration of the ozone in solution, expressed in mol dm-3, V is the 

volume of the solution, which is 3x10-3 dm3. 
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According to the Beer – Lambert Law: 

     A = ɛCƖ                                                      (3) 

Where A is absorbance, isthe extinction coefficient (3000 dm3 mol-1 cm-1) [6], C is the 

concentration of ozone (mol dm-3) and 𝑙  is the path length of the cell = 1 cm. 

Thus, from equation 2.3 the ozone concentration is 

     C = A/ɛƖ                                                                  (4) 

Combining equations (2.2) and (2.4), nO3 is: 

                     n (O3, ac) = (AO3.V) / ɛƖ     

         = AO3.3.10-3 / 3000.1  

         = AO3/106                        (5) 

Therefore, the current efficiency of ozone (%) is: 

       = n (O3, ac).100 / n (O3, 100%)                              (6) 

       = AO3.z.F.10-6.100 / Q                                    (7) 

       = AO3.6.96480.10-6.100 / Q                                           (8) 

                   = 58.AO3 / Q                                                         (9) 

 

2.5 Material characterisation techniques 

The crystal structure, morphology, particle size, elemental composition, specific surface area 

and oxidation state of all the samples were characterised using a range of analytical techniques, 

as discussed below.  
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2.5.1 X-ray Diffraction 

Crystal structure determination was carried out by X-ray diffraction (XRD) using a PANalytical 

X'Pert Pro MPD, powered by a Philips PW3040/60 X-ray generator, fitted with an X'Celerator 

detector see fig 2.12. Diffraction data were acquired by exposing powder samples to Cu-Kα X-

ray radiation, which has a characteristic wavelength () of 1.5418 Å.  X-rays were generated 

from a Cu anode supplied with 40 kV and a current of 40 mA.  The X’Celerator is an ultra-fast 

X-ray detector that uses RTMS (Real Time Multiple Strip) technology.  It operates as an array 

of a hundred channels which can simultaneously detect X-rays diffracted from a sample over 

the range of 2θ angles during a scan.  The X’Celerator is therefore able to produce quality 

diffraction data in a significantly shorter time period than an older style diffractometer would 

require.  

The data were collected in reflection mode over the range 2-100o2θ with a step size of 0.0334o2θ 

and nominal time per step of 400 s, using the scanning X’Celerator detector (hence the longer 

effective counting time) and a nickel filter on the incident beam. Fixed anti-scatter and 

divergence slits of 1/4o were used together with a beam mask of 10 mm and all scans were 

carried out in ‘continuous’ mode.   

Phase identification was carried out by means of the X'Pert accompanying software program 

PANalytical High Score Plus in conjunction with the ICDD Powder Diffraction File 2 Database 

(1999), ICDD Powder Diffraction File 4 - Minerals (2012), the American Mineralogist Crystal 

Structure Database (March 2010) and the Crystallography Open Database.  

XRD is used to determine crystalline phases, particle size, the interplanar spacing (d-spacing) 

and the lattice parameters. The d-spacing can be obtained from Bragg’s Law (equation 10) see 

fig 2.13.  

2dhklsinθ = nλ                                                               (10) 

Where θ is the angle of incidence of the X-ray radiation, dhkl is the distance between atomic 

layers in the crystal, λ is the wavelength of the incident X-ray beam and n is an integer. 
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Figure 2.12 Photograph of the PANalytical X'Pert Pro MPD X-Ray diffractometer. 

 

 

 

 

 

 

 

Figure 2.13 The incident and reflected X-rays at crystal planes.  
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Average particle size was determined by using the Full Width at Half Maximum (FWHM) 

intensity of selected peaks via Scherrer’s equation[15]:                                    

t = 0.9λ / B.cosθ                                                             (11) 

Where t is the particle size (Å), λ is the wavelength of the Cu Kα radiation (1.5406 Å), B is the 

FWHM in radians and θ is the Bragg angle. 

All XRD measurements were carried out by Miss Maggie White of the Materials Analysis 

Group (ACMA), the School of Chemical Engineering and Advanced Materials, Newcastle 

University. 

2.5.2 Scanning Electron Microscope and Energy Dispersive X-ray spectroscopy  

A scanning electron microscope (SEM) produces images of a solid sample by scanning the 

surface with a focused beam of electrons. Thus, the incident electron beam is scanned in a raster 

pattern across the sample's surface; this causes secondary electrons to be ejected which are 

detected as a function of the position of the beam at an electron detector, see fig. 2.14. Thus, 

SEM is useful to determine the morphology and the particle size of the sample.   

 

Figure 2.14 Schematic of a Scanning Electron Microscope (SEM)[16]. 

http://en.wikipedia.org/wiki/Full_width_at_half_maximum
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The SEM employed was a XL30 ESEM-FEG instrument with high resolution secondary 

electron see fig. 2.15. The SEM was operated at 20 kV. The machine was fitted with a Rontec 

‘Quantax’ EDX (Energy Dispersive Analysis by X-rays) system, enabling elements with mass 

greater than carbon to be detected and quantitative analysis of elements of mass > oxygen is 

possible. The elemental analysis of the powder was obtained using a Si (Li) Energy Dispersive 

X-Ray detector cooled by liquid nitrogen. The resolution limit was 127eV. The results were 

analysed by the ImageJ program which was also used to measure the particle size. The 

SEM/EDX measurements were carried out by the Advanced Chemicals and Materials Analysis 

Service of Newcastle University. 

 

 

Figure 2.15 The XL30 ESEM-FEG SEM/EDX equipment. 
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2.5.3 Thermogravimetric analysis 

The thermogravimetric analysis (TGA) was performed by ramping the temperature of the 

sample at a constant rate in air, and measuring the mass. The TGA measurements was carried 

out using a Netzsch Jupiter STA 449C (see fig. 2.16).  Ca. 30-75 mg of the sample was weighed 

into an alumina crucible. The experimental conditions were as follows: a heating rate of 5 oC 

min-1 from 25 oC to 900 oC with a hold time of 10 min at 900 oC, followed by cooling at 5 oC 

min-1 to 25 oC. The data was processed using Netzsch Proteus software. The TGA 

measurements were carried out by Mr. Bernard Bowler, School of Civil Engineering, Newcastle 

University. 

 

Figure 2.16 The Netzsch Jupiter STA 449C TGA equipment. 

2.5.4 Brunauer-Emmett-Teller surface area measurement 

The specific surface areas of the nanocrystalline powders were measured using a Thermo 

Scientific Surfer analyser employing multipoint Brunauer Emmett and Teller (BET) adsorption. 

The instrument included two units: a degasser unit and an analyser unit, see fig. 2.17. The Surfer 

degasser was equipped with a Gefran 800P temperature controller, using the GF_eXpress 

software for the parameter control for instant operating time, temperature and ramping rate. The 

sample burette was connected to the degassing system prior to transfer to the analyser unit. The 
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burette was immersed in a liquid nitrogen bath (Dewar vessel) to maintain an appropriate 

temperature in the system, during N2 adsorption. Sample masses of 75-90 mg were employed 

and prepared by degassing at 250oC for 3 hours with a ramp rate of 5 oC/min prior to N2 

adsorption.           

 

Figure 2.17 Photograph of the Thermo Scientific Surfer analyser. 

2.5.5 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) was carried out using a Thermo K-alpha spectrometer. 

The instrument used a 72 W monochromated Al Kalpha X-ray source (photon energy of 1486.6 

eV) and a dual beam flood gun, using both electrons and argon cations, which was used to 

compensate for sample charging. The X-rays were microfocused at source to give a spot size 

on the sample of 400 microns. The analysis chamber had a base pressure of 10-9 mbar. 

Photoelectrons were measured using a 125 mm radius concentric hemispherical analyser and 

spectra were recorded in constant analyser energy mode. Pass energies of 50 eV and a binding 

energy step size of 0.1 eV were used to record high resolution spectra, whilst pass energy of 

200 eV and a binding energy step size of 1.0 eV were used to record survey spectra. 
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Photoelectrons were detected using a 128 channel position sensitive detector. The binding 

energy scale of the spectrometer was regularly calibrated using a three point calibration (Au, 

Ag and Cu). The XPS measurements were carried out by Dr. Robert Palgrave, Department of 

Chemistry, University College London. 

XPS is a surface sensitive spectroscopic technique generally employed to qualitatively and 

quantitatively evaluate the elemental composition and hence the chemical oxidation state of 

elements within a sample.  XPS analysis was conducted on ATO and NATO nanopowders, and 

NATO ceramic anodes and all the data were processed using XPSPEAK4.1 software. The 

binding energy of the C1s peak at 284.6 eV was used as a reference to correct the peak shift 

[17][18]. Shirley background was used in all peak fitting as well as the peak shape[19]. The 

results obtained from XPS analysis can be interpreted qualitatively and quantitatively. In this 

work, the former was used to analyse the XPS data to assign the photoelectron peak, binding 

energy (BE) and  the elements present with their oxidation state whilst the latter was employed 

to determine the atomic concentration for quantitative analysis[19]. 

 

The atomic concentration of the elements was calculated by dividing the relevant peak area by 

the element sensitivity factor[20] and expressing it as a fraction of the summation of all 

normalized intensities [19-21]:   

[A], Atomic (%) = [(IA/FA) / Ʃ(I/F)] x 100%       (12) 

Where [A] is the atomic percentage of A, IA is the XPS peak area and FA is the sensitivity 

factor. 

2.5.6 Fourier Transform Infrared Spectroscopy 

In-situ FTIR experiments were carried out using a Varian 670-IR spectrometer equipped with 

a ceramic, air-cooled infrared source and cooled DLaTGS detector see fig 2.18. The Specac 

reflectance accessory, with an environmental cell and ZnSe window, was located in the FTIR 

sample compartment see fig 2.19. Prior to each experiment, the powder was ground and mixed 

with IR transparent KBr in the ratio (by mass) of KBr to sample 5:1. N2 gas was admitted into 

the sample compartment of FTIR via a tube network and environmental chamber was sealed 

containing air see fig. 2.18. The IR spectra were collected from the powder sample under a 
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controlled atmosphere from room temperature to 600 oC at a ramp rate of 5oC/min, and 

corresponding to a pressure from ambient. 

 

 

  

 

 

 

 

 

 

 

Figure 2.18 Photograph of the Varian 670-IR FTIR spectrometer.  
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(b) 

Figure 2.19 Photograph of (a) the Specac accessory without cover and (b) the cover with its 

ZnSe window.  

 

Kubelka – Munk theory is employed to obtain quantitative information from diffuse reflectance 

spectra. This theory concerns the intensity of the scattered radiation R which is used to calculate 

the Kubelka – Munk function at each infrared frequency (which can be thought of as similar to 

absorbance) according to [22]: 

            KM = (1 – R)2 / 2R                                              (13) 

Or                                                 KM = k / s   

Where KM is the Kubelka – Munk function, R is the reflectance of a sample at infinite depth, 

k is absorption coefficient and s is a scattering coefficient.      

The R factor is difficult to determine absolutely, and is generally calculated by measuring the 

reflected intensity of the sample with respect to that of a standard reference powder such as 

KBr or KCl:  
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R = SS (sample) / SR (standard powder)                                 (14) 

For the purposes of the work in this thesis, SS (sample) is the single beam spectra of the powder 

and SR (standard powder) is the single beam of the standard reference powder. Usually, the 

sample powder must be diluted and this was done using the reference powder. 

In this work, spectra were recorded in reflectance mode and then converted to an effective 

absorption using the Kubelka-Munk equation.  Thus a reference spectrum (SS, 100 co-added 

scans and averaged scans at 8 cm-1 resolution, c.a. 2 minutes per scanset) was collected from 

pure KBr at room temperature.  The KBr was then replaced with the SnO2/KBr sample and a 

spectrum collected at 25 C.  The temperature of the sample was then increased at 5 °C min-1 

and a further spectrum collected at 50 ºC, after which spectra SR were collected every 50 ºC up 

to 600 ºC. These were then converted into Kubelka-Munk spectra. The data manipulation results 

in difference spectra in which peaks with positive amplitude arise from the gain of absorbing 

species in SS with respect to SR, and peaks with negative amplitude to the loss of absorbing 

species. Difference spectra were simply subtracted from each other (e.g. KM600C – KM300C); ie. 

no subtraction factor was employed.  

 

2.6 Dye colourization 

Decolourisation experiments were carried out using Reactive Blue (RB50) dye. The dye was 

used to investigate the efficacy of electrochemical ozone with respect to colour removal and 

the elimination of organic contaminants.  

The structure of RB50 was shown in table 1.4. It can be seen from the table that RB50 has 

several functional groups including: amino, bromine and sulphonate. A UV-Vis spectrum of 

the RB50 dye is shown in fig. 2.20. The UV – Vis spectrum of the dye shows a peak in the 

visible region with a maximum at 625 nm which is associated with colour and attributed to the 

anthraquinone moiety of the dye[23-25].   
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Figure 2.20 UV-Vis spectrum of 150 mg dm3 of RB50 in 0.5M H2SO4. 

2.6.1 Electrochemical Decolourisation of Dye Solutions  

Decolourization experiments were carried out using the ceramic and powder anodes as a 

function of dye concentration, cell voltage and electrolysis time. The 0.8 cm × 0.8 cm NATO 

CSP7-0.5NATO (ceramic anode) and PSP9-0.5NATO700/700 (powder anode) were employed 

with a 0.8 cm × 0.8 cm Pt/Ti mesh as a cathode. Both anodes employed precursor solutions 

containing the metals in the mole ratio Sn:Sb:Ni = 93.5:6:0.5, see tables 2.7 for details. The 

quartz cuvette cell was placed in the cuvette holder in the Shimadzu 1240 mini 

spectrophotometer.  

The decolourization and degradation of RB50 was investigated as a function of cell voltage, 

chemical oxygen demand (COD) removal, total organic carbon (TOC) and decolourisation 

current efficiency. During the experiment, the current and absorbance were recorded and then 

decolourization was determined from the absorbance of the 625 nm band in term of the ratio 

A/A0, see section 2.6.4. 

Three different dye concentrations were used: 15 mg dm-3, 75 mg dm-3 and 150 mg dm-3 of dye 

were prepared from an aqueous stock solution of 1000 mg dm-3 RB50 in 0.5M H2SO4.  
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15 mg dm-3, 75 mg dm-3 and 150 mg dm-3
 RB50 in 0.5M H2SO4 solutions were electrolyzed in 

the UV-Vis cuvette cell at 2.7 V, 2.8 V and 2.9V. As was stated above, the RB50 solutions were 

electrolyzed for 5 min at different cell voltages. During the electrolyses the current and 

absorbance were monitored. All of the experiments were conducted separately and the cuvette 

cell was washed and dried after each experiment. 

Following the electrolyses, the RB50 solutions were subjected to Chemical Oxygen Demand 

(COD) and Total Organic Carbon (TOC) analyses. COD and TOC were carried out in 

accordance with the Standard Methods for the Examination of Water and Wastewater[26]. 

2.6.2 Chemical Oxygen Demand (COD)  

The decolourised RB50 solutions were analysed for COD using the Closed Reflux, Titrimetric 

Method (5220 C), as follows [26]: 2 cm3 of sample was pipetted into a COD digestion vial. 2 

cm3 of the digestion solution (0.075N potassium dichromate containing 33.3g mercuric 

sulphate) and 3.5 cm3 of sulphuric acid/silver sulphate reagent (5.5 g Ag2SO4/kg H2SO4) were 

then added to the vial which was then capped tightly and inverted gently several times to mix 

completely. DI water was used to rinse the outside of the tube which was then wiped with a 

paper towel. DI water was used as the sample blank. Thus DI water was pipetted in the vial and 

then the digestion solution and sulphuric acid/silver sulphate added as described above. The 

sample and blank vials were placed in the preheated COD block (150 oC) for 2 hours. The vials 

were then removed and placed into a rack, and left to cool at room temperature. The contents 

were transferred to 100 cm3
 conical flasks for titration and 2 drops of ferroin indicator added. 

The contents were then titrated with 0.025N ferrous ammonium sulphate (FAS) until the colour 

changed from blue-green to reddish-brown (the end point). The COD was then calculated as 

follows:  

COD (mg dm-3) = (a - b) × c × 8000/v      (15)  

   = 100 × (a - b)       (16)  

Where: a is the volume of FAS used for the blank (cm3), b is the volume of FAS used for the 

sample (cm3), c is the normality of FAS (0.025 N) and v is the sample volume (cm3) 
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2.6.3 Total organic carbon (TOC) 

The high-temperature combustion method (5310B) was used to measure TOC. TOC analyses 

were carried out using a 5050A Shimadzu Dissolved Carbon Analyser equipped with a non-

dispersive infrared detector (NDIR) and ASI-5000A auto sampler, see fig. 2.21.  Prior to the 

experiments, 10 - 500 mg dm-3 of TOC standard solution (2.125 g of potassium hydrogen 

phthalate (KHP) in 1 dm3 of DI water)[26] were used to calibrate the system. Total Carbon 

(TC) and Inorganic Carbon (IC) was measured, and the TOC was calculated as (TC-IC). 

Approximately 8 cm3 of sample was transferred into a TOC tube and the tube placed into the 

auto sampler; 2.5 cm3 of the sample was then injected automatically into the sample port. The 

port was connected directly to a combustion tube which was heated to 680 °C in a furnace. All 

the carbon was converted to carbon dioxide and carried, using high purity air at 150 cm3 min-1. 

The signal so produced was proportional to the concentration of CO2. With respect to inorganic 

carbon the sample was acidified using H3PO4 which converted all the IC to CO2. The carbon 

dioxide was again passed to the NDIR.  

 

 

  

Figure 2.21 Photograph of the Shimadzu 5050A TOC analyser. 
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2.6.4 Ozone measurement 

The dissolved ozone concentration in the UV-Vis cuvette cells was measured according to: 

A = ɛCƖ                          (17) 

     C = A/ɛƖ       (18) 

The cells were all of 1 cm pathlength (Ɩ) and ɛ of ozone in solution phase  is 3000 mol−1 dm3 

cm−1 [27] and A is absorbance at 258 nm. The ozone concentration in units of mg dm−3, is: 

C = A.48.1000/ ɛƖ  

    = 16.A       (19) 

 

2.6.5 Decolourisation removal efficiency 

Decolourisation was defined as the ratio of absorbance at 625 nm to its initial value prior to 

treatment determine the reduction in the characteristic peak as described above. The 

decolourisation removal efficiency was calculated as follows:  

 

Reff = (1- (A/A0)) ×100%       (20) 

 

Where A0 is initial absorbance, A is absorbance at the specific time of treatment and Reff is 

removal efficiency (%). 

 

2.6.6 COD and TOC removal efficiency 

The dye remediation was evaluated from the measurements of COD and TOC as follows: 

COD or TOC removal  = (100 × (Ci – Ct))/ Ci  /%  (21) 

Where Ci is the concentration of COD or TOC before treatment and  Ct the COD or TOC after 

a time t [28]. 
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Chapter 3 Electrochemical ozone generation of nickel and antimony doped 

tin oxide anode 

3.1 Introduction 

This chapter presents a study of the electrochemical generation of ozone at both ceramic and 

nanopowder Ni/Sb-SnO2 anodes in 0.5 M H2SO4 at 2.7V in the quartz cuvette cell. The ceramic 

anodes were prepared via the dip-coating method while the powder anodes were fabricated via 

the hydrothermal synthesis approach followed by painting onto the Ti substrates. The effect of 

Ni content in the precursor solution, the catalyst loading and the calcination temperature on 

ozone activity were investigated.  

The work reported in this chapter was carried out using 0.8 cm x 0.8 cm NATO anodes of the 

series CSP1 – PSP10. As summarized in table 2.7, the CSP1 - CSP4 ceramic anodes were 0.8 

cm x 0.8 cm Ti meshes coated with the electrocatalyst by dip-coating from precursor solutions 

containing the chloride salts as described in section 2.3.2. The powder anodes were fabricated 

using 0.64 cm2 Ti foil painted with the metal oxide nanopowders as the NATO powder, and the 

ATO powder mixed with NiCl2 solution, using the coating methods described in section 2.3.3.  

3.2 X-ray diffraction of ceramic and powder anode 

The NATO anodes were investigated using X-ray diffraction. Figure 3.1 shows the XRD 

patterns of the Ti foil and the CSP4-0.5NATO and CSP4-3NATO anodes. The CSP4-0.5NATO 

anode was prepared using the chloride precursor solution with a ratio of Sn:Sb:Ni = 98:1.5:0.5, 

whilst the CSP4-3NATO anode precursor solution contained the metals in the ratio Sn:Sb:Ni = 

95.5:1.5:3. 

It can be seen from fig. 3.1 that the XRD patterns of CSP4-0.5NATO and CSP4-3NATO anodes 

agreed with the reflections of the cassiterite phase, tetragonal crystal structure of SnO2 as 

obtained from JCPDS card no.41-1445 [1][2]. The peaks of the cassiterite phase corresponded 

to the (110), (101) and (121) reflections. No peaks attributable to other phases were observed, 

e.g. Sb or Ni oxides. This suggests that the Sb and Ni ions were incorporated into the lattice, 

substituting for the Sn ions, in agreement with the literature, e.g. the work of Kong and co-

workers [3], Montilla et al. [2], and Shekarchizade and Amini[4]. The sharp peaks on the XRD 

patterns of both anodes were due to the titanium substrate, as was determined by comparison 



 

84 

 

with the XRD pattern of Ti obtained from the JCPDS card no. 44-1294 [5], as well as with other 

papers in the literature [2-4][6-9].  

 

 

 

 

 

 

 

 

 

Figure 3.1 The XRD patterns of Ti foil and the NATO ceramic anodes prepared via the dip-

coating method and calcined at 460 oC: (i) Ti foil, (ii) CSP4-0.5NATO anode with 0.5% Ni 

and (iii) CSP4-3NATO anode with 3% Ni, the symbol (   ) shows the peaks due to the 

cassiterite phase and (   ) shows the peaks attributable to Ti.  

 

Figure 3.2 shows typical XRD patterns of the powder anodes as represented by PSP8-

ATO400Ni 0.1/460oC and PSP8-ATO700Ni0.1/700oC. These anodes were prepared by mixing 

ATO nanopowders (mole ratio Sn:Sb = 94:6) calcined at 400 oC or 700 oC with 0.1wt% NiCl2 

solution, coating the slurry onto Ti foil and then calcining at 460 oC (PSP8-ATO400Ni 

0.1/460oC anode) and at 700 oC (PSP8-ATO700Ni0.1/700oC anode). It can be seen from the 

figure that all peaks in both patterns may be attributed to the rutile phase of the tetragonal 

structure of SnO2. No other phase was detected. Furthermore, peaks due to Ti were not 

observed, suggesting the Ti foil was fully covered by the NATO powders. The high intensities 

and sharp peaks of the PSP8-ATO700Ni0.1/700oC anode indicate the high crystallinity of the 

SnO2 and small particle size [3][10][11].  
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Figure 3.2 The XRD patterns of the ATO nanopowder anodes prepared by the coating method 

and calcined at (i) 460 oC, PSP8-ATO400Ni0.1 anode and (ii) 700 oC, PSP8-ATO700Ni0.1 

anode. The Ni was added to the as-prepared ATO anodes, see text for details. 

3.3 SEM and EDX 

Typical SEM images of the ceramic and powder anodes as represented by images of the      

CSP4-0.5NATO and PSP8-ATO700Ni0.1/700oC anodes are shown in figs. 3.3 (a) and (b), 

respectively. It can be seen from the figures that the morphology of the CSP4-0.5NATO anode 

is markedly different to that of the PSP8- ATO700Ni0.1/700oC anode. Thus, the surface of the 

ceramic anode showed the smooth cracked mud structure which is generally believed to result 

from mechanical tension and stress inside the coating. These are caused by the plasticity of the 

coating, the dopant metals, and the difference between the thermal expansion coefficients of 

the Ti substrate and the coating [1][3][4][9][12]. In contrast, the surface of the powder anode 

was very rough. This may be due to the calcination temperature being insufficient to facilitate 

sintering of the powder; e.g. zirconia or zirconia stabilized yttria require temperatures as high 

as 1500 oC [13-15].  

It has been reported that the Sb and Ni content can affect morphology: thus Wang et al.[16] 

have reported that NATO coatings with a high nickel content and/or low concentration of  

antimony seemed to exhibit a smooth surface. Similarly, Kong et al.[3] studied the effect of Sb 
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on the morphology of Sb-SnO2 coatings on Ti and observed smoother electrodes at lower Sb 

doping levels. They also suggested that the smooth anodes were more effective in terms of the 

electrochemical oxidation of 4-chlorophenol: thus a COD removal efficiency of 50% was 

observed with 5%Sb compared to ca. 27% at 15%Sb. 

Figures 3.4 (a) and (b) show EDX spectra of the CSP4-0.5NATO and PSP8-ATO700Ni0.1/ 

700oC anodes, analysed in the same regions as the SEM images in fig. 3.3. It can be seen from 

the figures that Sn, Sb and O were detected but not Ni due to the limitations of the instrument. 

Moreover, the peak at 4.5 keV in fig. 3.4(a) may assigned to the Ti substrate due to the thinner 

coating of the CSP4-0.5NATO anode (5.6 µm) compared to the PSP8-ATO700Ni 0.1/700oC 

anode (10.5 µm).  

 
(a) 

 

 

 

 

 

(b) 

Figure 3.3 Typical SEM images of ceramic and powder anodes as represented by: (a) the CSP4-

0.5NATO anode and (b) the PSP8-ATO700Ni0.1/700oC anode. Magnification x 5000; scale bar 

= 5 µm. 
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(a) 

 

(b) 

Figure 3.4 EDX spectra of the same regions of (a) the CSP4-0.5NATO anode and (b)   the 

PSP8-ATO700Ni0.1/700oC anode as in fig. 3.3.   
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3.4 Typical UV-vis spectra and currents observed during ozone evolution  

The ozone activities of the ceramic and powder anodes were determined in the quartz cuvette 

cell using 0.8 cm × 0.8 cm electrodes as the anode and a 0.8 cm × 0.8 cm Pt/Ti mesh as the 

cathode, see section 2.4.       

As was described in section 2.4. The current efficiency of ozone production was calculated 

from the ozone absorbance at 258 nm[17][18] after 30 s electrolysis at 2.7 V by collecting 

spectra in the subsequent 30 s to 300 s period with an interval of 30 s; typical UV-Vis spectra 

of the CSP4-0.5NATO and PSP9-0.5NATO anodes are shown in fig. 3.5, and typical plots of 

the current vs time for both anodes are shown in fig. 3.6.  

In general, as can be seen from fig. 3.5, both anodes types were active with respect to ozone 

generation. Nanopowder electrodes gave a lower amount of ozone (The synthesis of the 

nanoparticle anodes was not optimized and it is possible, for example, that some particle were 

not in electrical conduct), but also a lower current and, in fact, the current efficiencies were 

similar, as discussed in section 3.6. Figure 3.6 shows that the currents observed with both 

anodes declined steadily over the 30 second electrolysis period, probably due to bubbles 

blocking active sites on the electrodes[19]. A comparison of the activities of the ceramic and 

powder anodes is presented in section 3.7.  

 

 

 

 

 

 

Figure 3.5 Typical UV-Vis spectra collected at (i) 30 s, (ii) 150 s and (iii) 300 s for the CSP4-

0.5NATO ceramic anode, and (iv) 30 s, (v) 150 s and (vi) 300 s for the PSP9-0.5NATO powder 

anode after electrolysis in 0.5M H2SO4 at a cell voltage at 2.7 V. 
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Figure 3.6 Typical plots of current vs. time observed during the experiments in fig. 3.5: (i) the 

0.64 cm2 CSP4-0.5NATO ceramic anode and (ii) the 0.64 cm2 PSP9-0.5NATO powder anode 

after electrolysis in 0.5M H2SO4 at a cell voltage at 2.7 V.  

3.5. Electrochemical ozone generation at the ceramic anodes  

The ceramic anodes employed in this work were prepared using the chloride precursor solution 

for the CSP1-TO, CSP2-ATO and PSP4-NATO anodes, and the oxide precursor solution for 

CSP3-NATO, see section 2.3.2. The mole ratio of Sn:Sb:Ni in the dipcoating solutions, catalyst 

loading, current and current efficiency of the ceramic anodes are summarised in table 3.1.  

From table 3.1, it can be seen that the CSP1-TO anode did not pass current. This is as expected 

as undoped SnO2 should be an insulator, although it generally shows a resistivity of ca. 7x10-3 

Ω cm, which is taken as evidence for a defect structure incorporating oxygen vacancies [20]. 

As discussed above, doping with Sb and increasing the calcination temperature induces 

conductivity as shown by the appearance of a blue colour[21], and hence the CSP2-ATO anode 

passed a reasonable current of 54 mA (84 mA cm-2). No ozone was detected but appreciable 

gas evolution was observed due to the production of oxygen [3][12][22-24]. As discussed in 

section 1.3, the redox potential for O2 is 1.23 V whilst that for O3 is 1.51 V [4][19], hence 

oxygen evolution is thermodynamically favoured over O3.  
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Anode  % mole ratio of 

Sn:Sb:Ni 

Catalyst loading 

/mg cm-2 

I /A ɳ /% 

CSP1-TO 100 2.2 0 0 

CSP2-ATO 94 : 6 1.7 0.054 0 

CSP3-0.5NATO 

CSP3-1NATO 

CSP3-1.5NATO 

CSP3-2NATO 

93.5 : 6 : 0.5 

93.0 : 6 : 1 

92.0 : 6 : 1.5 

91.5 : 6 : 2 

2.0 

2.2 

2.0 

2.0 

0.100 

0.070 

0.064 

0.041 

13 

13 

13 

13 

CSP4-0.1NATO 

CSP4-0.2NATO 

CSP4-0.3NATO 

CSP4-0.4NATO 

CSP4-0.5NATO 

CSP4-3NATO 

98.4 : 1.5 : 0.1 

98.3 : 1.5 : 0.2 

98.2 : 1.5 : 0.3 

98.1 : 1.5 : 0.4  

98.0 : 1.5 : 0.5 

95.5 : 1.5 : 3 

3.8 

3.9 

3.9 

3.6 

3.9 

3.1 

0.076 

0.074 

0.080 

0.082 

0.078 

0.008 

13 

14 

12 

11 

20 

5 

 

Table 3.1. Characteristics of the ceramic anodes and their ozone activities and selectivities. 

See text for details. 

3.5.1 The NATO ceramic anodes prepared using oxide precursors 

The main aim of this aspect of the research was to produce ceramic anodes using a method 

previously developed in Newcastle, in order to provide benchmark data on ozone activity, the 

effect of nickel content and the effect of catalyst loading. 

The CSP3-NATO series of ceramic anodes were prepared by dip coating into the oxide 

precursor solutions containing various Ni concentrations, see table 3.1. Figure 3.7 shows the 

current efficiencies and current densities of the CSP3-NATO series anodes vs the nickel 

concentration in the precursor solutions. The current was that observed immediately prior to 

switching the cuvette cell to open circuit after 30 s electrolysis. As can be seen in table 3.1, the 

catalyst loadings of the CSP3-NATO series anodes were identical at ca. 2.0 ± 0.1 mg cm-2.  

As can be seen from fig. 3.7, whilst the current efficiency appeared to be independent of Ni 

content between 0.5% and 2.0% at ca. 13%, the current density decreased steadily, suggesting 

that the increased Ni content increased the resistivity of the coating. This result is in agreement 

with the work of Wang et al.[25] and Chen et al.[7]; the former reported that the resistivities of 

Ni/Sb-SnO2 electrodes effectively increased by a factor of ca.100 on doping with 1.0 at%Ni 

(from 0.2 Ω cm-1 for undoped Ni to 20 Ω cm-1 for 1 at.%Ni). The latter postulated that the Fermi 

energy level decreased, whilst the work function and resistivity increased, with increasing Ni 
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content. The fact that the current efficiency was unchanged suggests that the ratio of O3 and O2 

active sites remained constant with increasing Ni content. The data in fig. 3.7 is in broad 

agreement with results observed by Christensen et al.[26] who found that, at Ni concentrations 

≥1 at.%, the current efficiency remained constant whereas the current density decreased 

linearly. In contrast, Wang et al. [25] and Shekarchizade and Amini[4] found that ozone current 

efficiency decreased with Ni doping, with the optimum Ni concentration being ca. 0.2 at.%. 

 

 

 

 

 

 

 

 

 

Figure 3.7. Plots of current efficiencies and current densities vs the nickel concentration in the 

precursor solutions of the CSP3-NATO series anodes. The 0.8 cm2 anodes were used to 

electrolyze 0.5 M H2SO4 at 2.7 V in the cuvette cell for 30 s. 

 

As stated in the Introduction, there is little if any, literature on the physicochemical properties 

of NATO. Thus, it does not seem unreasonable to use information on Ni-doped SnO2 (NTO) to 

interpret the effect of Ni on the properties of TO. Thus, Aragόn et al.[27] found that the 

conductivity of NTO increased up to 3 mol% Ni and Azam et al.[28] also found conductivity 

increased, this time up to 7%. Both groups postulated that this increase could be interpreted in 

terms of the fact that NTO is a p-type semiconductor with Ni(II) acting as an electron acceptor. 

The Ni(II) replaces the Sn(IV) ions in the SnO2 lattice due to their similar radii (69 pm vs 71 

pm, [28]) generating oxygen vacancies, in order to maintain charge balance, with these 

vacancies most likely situated in the subsurface region[27]. Hence, increasing the Ni 

concentration increases the number of oxygen vacancies which, in turn, results in an increase 
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of electronic conductivity up to the solid-solution limit. Above the solid-solution limit the 

conductivity decreased due to segregation of Ni to the surface; this inhibited the transport of 

electrons, oxygen vacancies and other defects and leads to a decrease in conductivity. Clearly 

the above principles can only be used in a very broad sense as the samples also contained 

antimony.  

3.5.2 The NATO ceramic anodes prepared using chloride precursors 

The CSP4-NATO series of ceramic anodes were made as representative of the ceramic anodes 

prepared using the chloride precursor solutions which were the first type of NATO anodes to 

be prepared[17], see table 3.1. Figure 3.8 shows the current efficiencies and the current densities 

of the CSP4-NATO series anodes as a function of the nickel content in the precursor solutions. 

As can be seen in table 3.1, the catalyst loading of the CSP4-NATO series anode were very 

similar at c.a. 3.8 ± 0.2 mg cm-2 and the current density and ozone current efficiency obtained 

using these anodes were enhanced compared to CSP2-ATO.  

As may be seen from fig. 3.8, the current density remained approximately constant at c.a. 0.13 

A cm-2 on increasing the nickel content from 0.1% to 0.5%, before declining by a factor of 10 

at 3% Ni. Thus, it does not seen unreasonable to postulate that increasing the Ni content at least 

from 0.5% to 3.0% increases the resistivity, in agreement with the discussion above. The current 

efficiency remained roughly constant at c.a. 13% up to 0.3%Ni, then jumped to 20% at 0.5%Ni, 

before decreasing dramatically to 5% at 3.0%Ni. It is possible that the data obtained using 

0.5%Ni was atypical.  

From fig. 3.8 it appears that (if the current efficiency of the 0.5%Ni anode is taken as an outlier) 

the number of O3 and O2 active site remains constant up to 0.5%Ni (constant current density) 

as does the ratio of O3 to O2 sites (constant current efficiency). However, addition of 3%Ni 

drastically decreases both. These observations are in line with the literature: thus, Wang et 

al.[25] and Christensen et al.[29] observed that the ozone current efficiency increased with 

increasing nickel content in the precursor solutions up to ca. 0.5%. Moreover Yang et al.[30] 

found that high Ni doping levels of around 5-7% in Sb-SnO2 resulted in decreasing 

electrocatalytic activity and electrical conductivity; however ~1.0 at.% Ni doped Sb-SnO2 was 

effective with respect to phenol degradation. Recently, Chen et al.[7] studied the effect of nickel 

in Ti/Sb-SnO2 anodes and they found that the current densities of the NATO electrodes 
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decreased from 4 mA cm-2 for undoped Sb-SnO2 to 0.2 mA cm-2 for anodes containing 11.3 

at% Ni, postulating that Ni doping increased the resistivity compared to Sb-SnO2.  

 

 

 

 

 

 

 

 

 

Figure 3.8. Plots of current efficiency and current density vs the nickel concentration in the 

precursor solution for the CSP4-NATO series anodes. The 0.8 cm2 anodes were used to 

electrolyze 0.5 M H2SO4 at 2.7 V in the cuvette cell for 30 s. 

 

Comparing the ceramic anodes prepared using the oxide and chloride precursor solutions, it can 

be seen from figs. 3.7 and 3.8, at 0.5%Ni, the current densities of both anodes were comparable 

at 0.15 A cm-2 for the oxide anodes (CSP3-0.5NATO) and at 0.13 A cm-2 for the chloride anodes 

(CSP4-0.5NATO) whilst the former showed lower ozone current efficiencies 13%, cff at 20% 

for the latter. In addition, the current densities of both anodes decreased with increasing Ni 

content as described above. Overall the resistance of both anodes increased with Ni 

concentration and this may be related to the decreased ozone efficiency.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5

C
u

rr
en

t 
ef

fi
ci

en
cy

  
/%

Ni content /%

C
u

rr
en

t 
d

en
si

ty
 /

A
cm

-2



 

94 

 

3.5.3 The effect of catalyst loading 

Figure 3.9 shows a plot of catalyst loading vs number of dipcoats for the CSP6-NATO series 

of anodes. These anodes were made for comparison with the powder anodes and to explore the 

effect of catalyst layer thickness on activity. The ratio of Sn:Sb:Ni was 93:6:1 in the dipcoating 

chloride solution. Table 3.2 summarizes the number of coats, loading, current and current 

efficiency of the anodes. Plots of current density and current efficiency as a function of catalyst 

loading are shown in fig. 3.10. As can be seen from fig 3.9, the loading increases approximately 

linearly with the number of coating cycles, from 0.9 mg cm-2 for 8 coats to ca. 4.2 mg cm-2 for 

30 coats. From the EDX data, see fig. 3.4, it is clear that, after 10 coats, the ceramic anodes 

were completely covered by catalyst, as the Ti substrates were not detected. 

From fig. 3.10 it can be seen that both the current density and current efficiency increased 

significantly on increasing the catalyst loading from 0.9 mg cm-2 to 1.4 mg cm-2. The current 

density then remained fairly constant at a ca. 0.12 A cm-2; the current efficiency increased 

slightly on increasing the loading to 2.5 mg cm-2 before remaining constant at ca. 16%. These 

observations suggest a very significant increase in the O3 and O2 active sites between 1.4 and 

2.5 mg cm-2 of catalyst loading, after which the ozone activity and selectivity remained fairly 

constant; this may be explained by the fact that electrochemical processes occur at the electrode 

surface which, in the case of the ceramic anodes, is not porous. The data in fig. 3.10 agree with 

the work of Christensen et al.[31], Wang at al.[17] and Parsa et al.[9], who found that the ozone 

current efficiency increased with increasing catalyst loading. Christensen et al.[31] postulated 

that increasing the catalyst layer thickness resulted in an increase in the number of ozone active 

sites due to surface enrichment by Ni.  

Anode name The % mole 

ratio of Sn:Sb:Ni 

No. of 

Coating 

Catalyst loading 

/mg cm-2 

I /A η  

/% 

CSP6-1NATO/A 

CSP6-1NATO/B 

CSP6-1NATO/C 

CSP6-1NATO/D 

CSP6-1NATO/E 

93 : 6 : 1 

 

8 

10 

20 

30 

30 

0.9 

1.4 

2.5 

4.2 

4.3 

0.009 

0.082 

0.084 

0.071 

0.075 

3 

13 

16 

15 

18 

Table 3.2. Summary of the data obtained using the 0.8 cm x 0.8 cm CSP6 anodes during the 

electrolysis of 0.5 M H2SO4 at the potential of a cell voltage of 2.7 V for 30 s.  
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Figure 3.9 Plot of catalyst loading vs number of dipcoats for the CSP6-NATO series of 

ceramic anodes: mole ratio of Sn:Sb:Ni=93:6:1 in the precursor solution. 

 

 

 

 

 

 

 

 

 

Figure 3.10 Plots of current efficiency and current density vs catalyst loading for the anodes 

in fig. 3.9. The anodes were used to electrolyze 0.5M H2SO4 at 2.7 V in a cuvette cell for 30 s. 
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3.5.4 Anode durability 

The Ni/Sb-SnO2 ceramic anodes (CSP6-1NATO/G) calcined at 460 oC were prepared using the 

same method in section 3.5.3. The electrodes were electrolyzed 0.5M H2SO4 at a cell voltage 

of 2.7V for 30 seconds in 3 separate experiments at 9 am and 5 pm each day for 11 days. In 

addition, the electrode was immersed in acid electrolyte between experiments. The data are 

presented in figure 5.33. In brief, the current efficiencies and current densities remained 

constant during these experiment, indicating that the anodes remained active. Thus it does not 

seem unreasonable to postulate that Ni does not dissolve during the experiment due to the Ni 

being located in sites below the surface. 

 

3.6 The electrochemical ozone generation of the powder anodes  

In brief, the powder anodes employed in this work were prepared by coating with the NATO 

slurries via two methods: the first involved the production of Sb-SnO2 nanopowders calcined 

at temperature T1, which were then doped with Ni by forming a slurry of x wt% in NiCl2 

solution and calcining at temperature T2. The second method involved mixing all the precursor 

solutions together prior to refluxing and hydrothermal synthesis. The two forms of Ni and Sb 

co-doped SnO2 are referred to as PSP8- ATOT1Ni x%/T2 and PSP9- xNATOT1/T2 where x is 

the Ni content. The mole ratio of Sn:Sb:Ni in the NATO slurries, catalyst loadings, current and 

current efficiencies of the powder anodes are summarised in table 3.3. 

Series 

name 

Anode  1st  

Calcin. T, 

T1 / oC 

2nd 

Calcin.T,  

T2 / oC 

Sn:Sb:Ni Catalyst 

loading 

/mg cm-2 

I 

/A 



/% 

PSP8 PSP8-ATO300Ni0.01  

PSP8-ATO300Ni0.1  

PSP8-ATO300Ni1 

300 300 94:6:0 7.9 

7.9 

7.3 

0 

0 

0 

0 

0 

0 

PSP8-ATO400Ni0.01  

PSP8-ATO400Ni0.1  

PSP8-ATO400Ni1 

400 400  5.0 

4.5 

5.0 

0 

0 

0 

0 

0 

0 

PSP8-ATO700Ni0.01  

PSP8-ATO700Ni0.1  

PSP8-ATO700Ni1 

700 700  8.9 

4.7 

5.3 

0.074 

0.082 

0.076 

11 

11 

3 

PSP8-ATO700Ni0.01  

PSP8-ATO700Ni0.1  

PSP8-ATO700Ni1 

700 460  8.1 

4.2 

5.4 

0.024 

0.044 

0.025 

7 

10 

4 

PSP9 PSP9-0.5NATO/700 

PSP9-1NATO/700 

PSP9-1.5NATO/700 

PSP9-2NATO/700 

700 700 93.5:6:0.5 

93.0:6:1.0 

92.5:6:1.5 

92.0:6:2.0 

50 

49 

48 

49 

0.041 

0.043 

0.044 

0.045 

15 

12 

14 

10 
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Series 

name 

Anode  1st  

Calcin. T, 

T1 / oC 

2nd 

Calcin.T,  

T2 / oC 

Sn:Sb:Ni Catalyst 

loading 

/mg cm-2 

I 

/A 



/% 

PSP10 PSP10-0.5NATO/400 

PSP10-0.5NATO/700 

400 

700 

700 

460 

93.5:6:0.5 49 

48 

0.018 

0.039 

8 

9 

 

Table 3.3. Summary of the data obtained using the 0.8 cm x 0.8 cm PSP8, PSP9 and PSP10 

nanopowder anodes to electrolyze 0.5 M H2SO4 at 2.7 V for 30 s.  

 

3.6.1 Anodes from the addition of Ni to ATO nanopowders (PSP8) 

Figure 3.11 shows plots of the current efficiencies of the PSP8-ATO700Nix/460 and PSP8-

ATO700/Nix/700 anodes as a function of nickel content from 0.01 wt% to 1wt% and figure 

3.12 shows the current densities measured during the experiment in fig. 3.11. It can be seen 

from table 3.3 that the anodes calcined at 300 oC and 400 oC were electrochemically inactive. 

The anodes produced by calcining ATO at 700 oC, adding Ni then calcining again at 460 oC or 

700 oC were active for ozone, see fig. 3.11, which shows the current efficiencies observed as a 

function of Ni content and fig. 3.12 the corresponding plots of current density. From fig. 3.11 

and table 3.3, it appears the second calcination temperature T2 has little effect on current 

efficiency so long as T1 = 700 oC. In contrast, T2 has a marked effect upon the current density 

observed. This suggests that T2 determines the number of active sites but T1 determines the 

ratio of O3 to O2 active sites [32][33]. Thus, it is clear that the calcination temperature is a 

critical parameter in terms of ozone selectivity and activity. There is a more subtle point to be 

drawn from fig. 3.11 and table 3.3, in that higher current densities yield higher current 

efficiencies, at least up to 0.1%Ni, a link that has been generally postulated in the literature, see 

for example, [34][35].  

In terms of the effect of Ni content, it appears from figs. 3.11 and fig. 3.12 that 0.1%Ni was the 

optimum for both ozone activity and selectivity. This suggests that the Ni concentration affects 

the conductivity of the anode as stated above, increasing the Ni concentration above an 

optimum level increases the resistivity [7], resulting in low current density and low ozone 

current efficiency.  
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Figure 3.11 Plots of the current efficiencies of the PSP8-ATO700Nix/y anodes vs Ni content 

where x is the nickel content and y is the second calcination temperature of 460 oC or 700 oC. 

The anodes were used to electrolyze 0.5 H2SO4 at the cell voltage of 2.7 V in a cuvette cell for 

30 s. 

 

 

Figure 3.12 Plots of the current densities of the anodes in fig. 3.11. 
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3.6.2 Anodes from the nanopowder prepared via hydrothermal synthesis (PSP9&10) 

The current densities and ozone current efficiencies observed using the NATO nanopowders 

produced via the HT method and calcined at 400 oC and 700 oC are shown in table 3.3. Figure 

3.13 shows plots of the current efficiencies and current densities observed using the NATO 

nanopowder anodes. From table 3.3, it can be seen that the anodes had a constant catalyst 

loading of ca. 49±1 mg cm-2. From fig. 3.13, it can be seen that the current densities increased 

slightly from 0.065 to 0.07 A cm-2 on increasing the concentration of Ni in the precursor 

solutions from 0.5 to 2.0%, whilst the current efficiencies decreased from 15% to 10%. Thus, 

the number of O3 + O2 active sites increased by ~8% on increasing the Ni concentration from 

0.5 to 2.0%, whilst the ratio of O3/O2 sites declined by 33% i.e. O3 sites switched over to 

producing O2. Similar data have been reported by Chistensen and co-workers[26] and Wang et. 

al [25].The former reported that the current density remained unchanged on adding Ni up to ca. 

1.0 at.%, whereas the current efficiency decreased slightly. The latter also reported the current 

efficiency decreased with increasing Ni content from 0.2 at% to 1.0 at%. However, Christensen 

et al.[29] investigated the ozone activities of 6.25 cm-2 Ni/Sb-SnO2 anodes in 0.5M H2SO4 at 

2.7V using a glass cell in flow mode and reported that the current efficiency  increased with 

increasing Ni content in the precursor solution from 7% at 0.02%Ni to 30% at 0.3%Ni. 

 

 

 

  

 

 

 

Figure 3.13 Plots of current efficiency and current density vs the nickel concentration in the 

precursor solution for the PSP9-NATO series anodes. The 0.8 cm2 anodes were used to 

electrolyse 0.5 M H2SO4 at a ell voltage of 2.7 V in the cuvette cell for 30 s. 
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3.7 A comparison of the electrochemical ozone generation at ceramic anodes and 

powder anodes. 

The data obtained using the ceramic anodes is summarised in table 3.4 and those using the 

powder anodes in table 3.3. The data from the tables were used to plot figs. 3.14 and 3.15.  

 

Series 

name 

Anode name Calcination 

temperature 

/ oC 

Sn:Sb:Ni Catalyst 

loading 

/ mg cm-2 

I 

/A 

η  

/% 

CSP7 CSP7-0.5NATO/A 

CSP7-1NATO/A 

CSP7-1.5NATO/A 

CSP7-2NATO/A 

460 93.5:6:0.5 

93:6:1 

92.5:6:1.5 

92:6:2 

2.8 

2.5 

2.2 

2.4 

0.088 

0.084 

0.079 

0.078 

13 

16 

14 

16 

Table 3.4 Summary of the data obtained using the 0.8 cm x 0.8 cm ceramic anodes (series 

CSP7) to electrolyze 0.5 M H2SO4 at the cell voltage of 2.7 V for 30 s. 

 

Figure 3.14 Plots of current efficiency as a function of Ni concentration in the precursor 

solutions used to prepare the ceramic anodes (CSP7) and the powder anodes (PSP9). The 0.8 

cm2 anodes were used to electrolyze 0.5 M H2SO4 at a cell voltage of 2.7 V in the cuvette cell 

for 30 s. 
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From table 3.4 it can be seen that the mean catalyst loadings of CSP7 and PSP9 were 2.5±0.3 

mg cm-2 and 49±1 mg cm-2, respectively. Despite the marked difference in loading, it is 

interesting to note that their current efficiencies were comparable. As may be seen in fig. 3.14, 

the current efficiencies of the ceramic and powder anodes were in the range 13% - 16% and 

10% -15% for Ni content between 0.5% and 2%, respectively. In contrast, whilst the current 

densities of the anodes (fig. 3.15), were approximately constant with increasing Ni content. The 

current densities obtained using the ceramic anodes were around twice those of the powder 

anodes. This may reflect upon the markedly thicker and hence more resistive powder anodes 

[36]. Overall, it is clear that current density, catalyst loading, calcination temperature and anode 

preparation are key factors governing current efficiency [19][26][34].  

 

Figure 3.15 Plots of the current densities of the anodes in fig 3.14. 

 

3.8 Conclusions 

Both the ceramic and nanopowder Ni/Sb-SnO2 anodes show only a single phase rutile structure 

with Ni and Sb ions replacing Sn(IV) ions in the lattice. However, the two types of anode show 

markedly different morphologies, reflecting the different preparations employed. 
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The maximum current density and ozone current efficiency observed using the NATO 

nanopowder anodes were c.a. 0.07 A cm-2 and 15%, respectively, which compared well with 

the corresponding values for the conventional, ceramic anodes of 0.12 A cm-2 and 20%, given 

the fabrication of the nanopowder anodes was not optimised. This is the first report of ozone 

activity of NATO powder anodes. 

The durability of the ceramic anodes strongly suggests that the Ni ions responsible for 

electrochemical ozone activity are not exposed to the electrolyte but are located in the 

subsurface region. 

Only Ni/Sb-SnO2 powders calcined at 700 oC were active for ozone. Where Ni was added to 

as-prepared Sb-SnO2 powder, the temperature at which the Sb-SnO2 was calcined determined 

ozone current efficiency whereas the temperature at which the Sb-SnO2/Ni powder was calcined 

had a significant influence on the current density. The Sb-SnO2/Ni powder anodes exhibited 

the highest current densities reported to date for Ni and Sb co-doped SnO2 electrodes. 
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Chapter 4 The characterization of tin oxide nanopowders prepared by a 

hydrothermal method   

4.1 Introduction 

In order to try and elucidate the active site for ozone at NATO anodes, it was decided to adopt 

a step-by-step approach. Thus, SnO2 nanopowders would be prepared and fully characterized, 

then Sb-SnO2 and finally Ni/Sb-SnO2. Thus, this chapter describes the characterization of tin 

oxide nanoparticles prepared using the hydrothermal method. The powders were produced by 

refluxing a SnCl4.5H2O precursor solution, the white precipitates obtained were then collected 

and hydrothermally treated at 180 oC for 24 hrs, after which they were split into four batches, 

one of which was left uncalcined and the others calcined at 300 oC, 400 oC and 700 oC. The 

powders were characterised by XRD, SEM/EDX, BET, TGA and FTIR.  

4.2 The physical properties of the nanopowders 

In general, SnO2 powders are white in colour and insoluble in water [1-6]. However when the 

synthesis conditions are altered, nanocrystalline powders may have different colours depending 

on the temperature at which they were calcined [2][7][8]. Figure 4.1 shows photographs of the 

hydrothermally prepared, uncalcined SnO2 nanopowder and the samples calcined at 300 oC, 400 

oC and 700 oC. As can be seen from the figure, the uncalcined sample and that calcined at 300 

oC were white, the sample calcined at 400 oC pale yellow and the nanopowder calcined at 700 

oC yellow. It has been reported in the literature that SnO2 is white [1][2][9-11]; however there 

is some evidence to suggest that the colour of tin oxide powders changes to yellow with ageing 

time [4] or sintering at high temperature [2]. Masuda [4] studied the crystal growth of tin dioxide 

precipitated in aqueous solution at 90 oC and observed that the SnO2 powder changed from 

white to light yellow when the precipitates were kept for between 30 min and 3 days. Hall et al. 

[2] also found that the colour of SnO2 powder changed from white to yellow with increasing 

calcination temperature and particle size.  
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Figure 4.1 The SnO2 powders prepared using the hydrothermal process at 180 oC: (a) as 

prepared (TO/HT) and calcined at (b) 300 oC (TO/HT/300); (c) 400 oC (TO/HT/400) and (d) 

700 oC (TO/HT/700). 

 

4.3 X-ray diffraction 

X-ray diffraction patterns of the various SnO2 nanocrystalline powders are shown in fig. 4.2. 

As can be seen from the figure, the XRD patterns of all the samples agreed with the reflections 

of the single phase, tetragonal crystal structure of “SnO2; Tin Oxide; Cassiterite, syn; Q: S; 00-

041-1445” which was obtained from the ICSD crystallographic data base. They also agree with 

the more general literature [1][9][11-15]. No secondary phases or impurities were observed.  

(a) 

(d) 

(b) 

(c) 
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The crystal structures were refined in the space group (SG): P42/mnm [16][17]. The lattice 

parameters used in modelling were a = b = 0.4738 nm and c = 0.3187 nm [18]. The major peaks 

at 2ϴ = 26.6, 33.8, 37.9 and 51.8 were assigned to the (110), (101), (020) and (121) planes of 

cassiterite SnO2, respectively, see fig. 4.2. The (200) or (020) reflections are the allowed second 

order reflections from the (100) or (010) oriented crystallites. The variation of the lattice 

parameters a and c with  temperature is shown in fig. 4.3 and table 4.1 shows the lattice 

parameters of the SnO2 powders and the particle sizes calculated from Scherrer’s equation [19].  

As can be seen from the figure, the lattice parameters a and c varied from 0.4738 to 0.4737 nm 

and 0.31838 to 0.31830 nm, respectively, on moving from uncalcined to calcined samples. The 

lattice parameter c from the sample calcined at 300 oC decreased slightly with respect to the 

uncalcined sample, after which it increased in a linear fashion with increasing temperature up 

to 700 oC. As can be seen from the fig. 4.3, a decreased steadily as a function of temperature.  

Table 4.1 The crystallite sizes and unit cell dimensions of the SnO2 nanocrystalline powders 

prepared using the hydrothermal synthesis method.  

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The XRD patterns of the SnO2 nanocrystalline powders prepared by hydrothermal 

synthesis: (i) uncalcined, and calcined at (ii) 300 oC, (iii) 400 oC and (iv)700 oC. 
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Figure 4.3 The variation of the lattice parameters a and c of the SnO2 powders: uncalcined and 

calcined at 300 oC, 400 oC and 700 oC. 

 

Figure 4.4 shows the variation in average crystallite size for the samples calculated using 

Scherrer’s equation and the (110), (101) and (121) peaks. It is clear that nanoscale particles 

were obtained, with crystallite sizes from 11 nm for the uncalcined sample to 22.2 nm for the 

sample calcined at 700 °C. As expected, sintering was observed with increasing temperature, 

and crystallinity improved [1][20], as seen from the decrease in the Full Width at Half 

Maximum (FWHM) of the peaks observed at 2Ɵ = 26.6, 33.8, 37.9 and 51.8, see fig. 4.2 

[15][21].  This behaviour is in agreement with the literature on tin oxide powders produced by 

hydrothermal methods [1][11][12][14][20][22][23]; thus, Sakai and co-workers [12] found that 

the particle size of SnO2 increased from 5 nm to 14 nm on increasing the calcination temperature 

from 100 oC to 900 oC. Fujihara and co-workers [1] observed a similar increase. Ayeshamariam 

et al. [24] observed an increase in particle size from 15.5 nm  for uncalcined samples to 21.9 

nm for the samples calcined at 700 oC which are comparable to the data in table 4.1. They also 

observed decreases in a and c with increasing calcination temperature; a decreased from 0.4758 

nm for the sample calcined at 100 oC to 0.4752 nm for those calcined at 800 oC, with c 

decreasing from 0.3202 to 0.3171 nm.  
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Figure 4.4 Variation of the SnO2 crystallite size as a function of calcination temperature 

calculated from Scherrer’s equation [19].  

 

4.4 Scanning Electron Microscope and Energy Dispersive X-ray Spectroscopy 

The surface morphology of SnO2 nanopowders was studied using Scanning Electron 

Microscopy (SEM). Figure 4.5 shows SEM micrographs of the SnO2 powders at a 

magnification of x20000. As can be seen from the figure, the morphology of all the powders 

exhibited uniform spherical particles, in agreement with the literature [11][13][20-22][25]; 

however, it proved very difficult to determine particle sizes due to agglomeration. The average 

particle sizes were estimated by choosing 300 particles on each SEM image and using ImageJ 

software to determine the size distribution.  

Figures 4.6(a)-(d) show histograms of the particle size distributions of the powders obtained 

from the SEM micrographs. As observed from the figures, the particle size of the majority of 

the particles increases from 13 nm for the uncalcined sample to 15 nm (300 oC), 19 nm (400 

oC) and 25 nm for the sample calcined at 700 oC with a frequency of 38, 42, 40 and 39%, 

respectively. From this result, it can be seen that the average particle size increased with 

increasing calcination temperature [12]. Table 4.2 compares the crystallite sizes calculated from 
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the XRD data with particles sizes from the SEM micrographs. As may be seen, the XRD 

crystallite sizes were slightly smaller compared to those evaluated by SEM using Image J. Aziz 

et al. [21] studied SnO2 powders prepared by a sol-gel method and determined their particle 

size using Field Emission Scanning Electron Microscopy (FESEM); the particles increased 

from 29 nm to 32 nm on increasing the calcination temperature from 450 oC to 900 oC. They 

also compared the particle sizes obtained from XRD and FESEM, and observed good agreement 

between the techniques.   

Samples Calcination 

temperature /oC 

Particle sizes 

/ nm 

Crystallite sizes 

/ nm 

SEM XRD 

TO/HT Uncalcined 13 11  

TO/HT/300 300 15 12 

TO/HT/400 400 19 14.3 

TO/HT/700 700 25 21.2 

Table 4.2 A comparison of the crystallite sizes obtained using XRD and calculated from 

Scherrer’s equation and particle size determined from SEM images. 
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(d) 

 

Figure 4.5 SEM images of the SnO2 nanopowders prepared by hydrothermal synthesis at 180 

oC:  (a) as prepared (TO/HT); and calcined at (b) 300 oC (TO/HT/300); (c) 400 oC (TO/HT/400) 

and (d) 700 oC (TO/HT/700). Magnification= x20000; the bars = 1µm. 
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(d) 

Figure 4.6. Histograms of particle size distributions of the SnO2(TO) nanopowders determined 

from the images in fig. 4.5: (a) prior to calcining; calcined at (b) 300 oC; (c) 400 oC and (d) 

700 oC. 

 

The chemical compositions of the SnO2 nanocrystalline powders were characterized by Energy 

Dispersive X-Ray Spectroscopy (EDX). Figure 4.7 shows a typical EDX spectrum of the SnO2 

powder calcined at 700 oC. A summary of the relative intensities of the various peaks in the 

EDX spectra of the SnO2 nanopowders is presented in table 4.3. As can be seen from fig. 4.7, 

tin and oxygen were both observed in the SnO2 powder; the peaks at 3.42 keV, 3.67 keV, 3.88 

keV and 4.12 keV may be attributed to Sn and the peak at 0.5 keV to O [24][26]. No peaks 

attributable to chloride contamination were observed.  

 

The EDX analyses of the SnO2 nanopowders are presented in tables 4.3 and 4.4. From table 

4.4, it can be seen that the percentages of Sn and O in all the samples were in the range 72-74% 

and 22-28%, respectively; thus these values are close to those of  stoichiometric SnO2 (Sn = 

c.a. 76 wt% [24]).  
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Figure 4.7 Typical EDX spectrum of SnO2 prepared via hydrothermal synthesis: the sample 

calcined at 700 oC (TO/HT/700). 

 

Peak /keV Relative intensity  Assignment 

Uncalcined 300 oC 400 oC 700 oC 

3.42 1 1 1 1  

Sn 3.67 0.5 0.54 0.5 0.54 

3.88 0.15 0.15 0.15 0.17 

4.12 0.05 0.07 0.06 0.09 

Table 4.3 Assignment and relative peak intensities of the various features in the EDX Spectra 

of the SnO2 samples.  

Table 4.4 Summary of the chemical composition of the SnO2 powders prepared via the 

hydrothermal method at various calcination temperatures from EDX spectra. 

 

Sample Calcination temperature/ oC 
Element  /weight% 

Sn O 

TO/HT 

TO/HT300 

TO/HT/400 

TO/HT/700 

Uncalcined 

300 oC 

400 oC 

700 oC 

72.0 

73.5 

77.4 

73.1 

28.0 

26.5 

22.6 

26.9 
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4.5 Specific surface area  

The specific surface areas were measured using N2 adsorption, and employing the Brunauer-

Emmett-Teller (BET) isotherm. Table 4.5 summarizes the surface areas of the SnO2 

nanopowders calcined at 400 oC and 700 oC measured by BET and compared to the surface 

areas calculated from the Scherrer equation and assuming spherical particles with the density 

of SnO2 as 6.95 g cm-3 [27], see appendix 1. It can be seen from the table that the surface areas 

obtained from the BET were 50 m2 g-1 for SnO2 calcined at 400 oC and 39 m2 g-1 for 700 oC. 

The analogous surface areas calculated from XRD data were 60 m2 g-1 and 39 m2 g-1, 

respectively. At 400 oC, the surface area obtained using Scherrer equation was 20% greater than 

that of BET; it does not seem unreasonable to conclude that the surface area from XRD and 

BET was ca. 55±5 m2 g-1. Both approaches gave a surface area of 39 m2 g-1 for the sample 

calcined at 700 oC. 

As stated above, the surface area reduced from 55±5 m2 g-1 for the SnO2 sample calcined at 400 

oC to 39 m2 g-1 for that calcined at 700 oC, as would be expected on the basic of sintering. These 

results agree with the work reported by Fujihara et al. [1]  and Chiu et al. [20]; the former found 

that the BET surface area of SnO2 decreased from 209 m2 g-1 to 115 m2 g-1 on increasing the 

calcination temperature from uncalcined to 500 oC. Chiu et al. observed a decrease of the BET 

surface area of the uncalcined SnO2 powder from 130 m2g-1 to 92 m2g-1 for the powder calcined 

at 220 oC.  

 

Sample Calcination 

Temperature / oC 

BET  

/ m2.g-1 

Surface area from 

Scherrer  / m2.g-1 

TO/HT/400 400 50 60 

TO/HT/700 700 39 39 

Table 4.5 A comparison of the surface areas of SnO2 nanocrystalline powders calcined at 400 

oC and 700 oC calculated using BET and from the crystalline size calculated using Scherrer’s 

equation. 

In order to provide some comparison with the work on ceramic anodes, which were calcined at 

460 oC, and have a reasonable range of calcination temperature, the nanopowders were calcined 

at 300 oC, 400 oC and 700 oC. In general, the nanopowders calcined at 300 oC were very similar 

to those calcined at 400 oC, and hence are not discussed in any detail in this thesis. 
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4.6 Thermogravimetric analysis 

Figure 4.8(a) shows the TGA response obtained using 45.7 mg of SnO2, and fig. 4.8(b) the 

differential of the plot. Figure 4.9 shows the m/z = 18 response, the only mass spectrometer 

response observed during the heating process, suggesting that water is the only species evolved 

during the heating of the SnO2 sample. As can be seen, the maxima in the m/z = 18 ion current 

occur at the same temperatures as the minima in the differential plots.  From the figures it is 

possible to distinguish regions with limits at 25 °C - 63 °C, 63 °C - 150 °C, 150 °C - 450 °C 

and 450 °C - 900 °C delineated by the minima in the differential mass loss.  The mass loss up 

to 150 °C is due to the loss of adsorbed molecular water [28][29], which is complete by 150 

°C.  The mass loss at higher temperatures is also highly likely to be due to the loss of water, 

given the absence of any other species in the mass spectra: the most probable process taking 

place is the dehydration of SnOH groups [27-29]: 

Sn-OH + SnOH  Sn-O-Sn + H2O      (1) 
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(b) 
 

Figure 4.8 (a) The thermogravimetric response of 45.7 mg of SnO2, heated in 40 cm3 min-1 

flowing air 5°C min-1 from room temperature to 900 °C.  The sample was held at 900°C for 10 

minutes and then cooled at 5°C min-1 to room temperature.(b) Differential of the curve in (a).  

 

On the basis of the mass loss up to 150 °C, and employing an area of ca. 15 x 10-20 m2 for the 

water molecule [28] (derived from BET studies on TiO2 rutile which has the same structure as 

SnO2 [30]) the coverage of the SnO2 particles by water at 25 °C is ca. 0.39 of a monolayer, 

suggesting that the form of the water is not that of the bulk liquid.  This is in agreement with 

the work of Morishige et al.[31] and Morimoto et al. [32][33] who have suggested that fully 

hydroxylated SnO2 surfaces can be thought of as essentially hydrophobic as they adsorb water 

only sparsely, i.e. one water molecule to 3 or 4 OH groups.  There is an inflexion in the fig. 

4.8(a) around 300 ºC, which appears as a shoulder on the 450 ºC peak in fig. 4.8(b).  Higgins 

and co-workers attributed such an inflexion in the TGA of yttrium-doped barium zirconate to 

the uptake of oxygen [34]. 
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Figure 4.9 The variation of the m/z = 18 peak during the heating of the sample in fig. 4.8. 

 

Wang and co-workers [17] employed TGA to study fully hydrated SnO2 nanoparticles produced 

by precipitation at 100 °C.  Their TGA and differential TGA curves were qualitatively similar 

to those shown in figs. 4.8(a) and (b), except that the mass loss up to 150 °C was 7% compared 

to 0.4% found here. It was decided to study the processes taking place in the absence of 

significant hydration, and this led to the experiment depicted in figs. 4.10(a) and (b) where a 

SnO2 sample was subjected to four successive heating and cooling cycles to remove the 

adsorbed water and reveal any underlying processes.  Figure 4.10(a) shows runs 1, 2 and 4 (3 

omitted for clarity); run 1 closely resembles the TGA response in fig. 4.8(a), as expected.  

However, runs 2 – 4 show markedly different behaviour, as may be seen from fig. 4.10(b) which 

shows only the response obtained during run 4.  Figure 4.10(b) shows an initial increase in mass 

with a pronounced maximum (region (I)), followed by a sharp decrease to c.a. 450 ºC (region 

(II)) and then a slower decrease in mass to 900 ºC, region (III).  On cooling, region (IV), there 

is a steady increase in mass.  The % mass loss in each region is ca. 0.1%. 
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(a) 

 

(b) 

Figure 4.10 (a) The thermogravimetric response of 56.0 mg of SnO2, heated in 40 cm3 min-1 

flowing air °C min-1 from room temperature to 900 °C.  The sample was held at 900°C for 10 

minutes and then cooled at 5°C min-1 to room temperature.  The process was repeated a further 

three times.  (i) Run 1, (ii) Run 2 and (iii) Run 3.  (b) The 4th heating/cooling cycle from (a). 
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In all four runs in fig. 4.10(a), the mass gain on cooling was 0.12 ± 0.02% and the mass returned 

to its original value (100% = 56 mg) suggesting that, once water is removed, the process(es) 

responsible for the temperature-dependent mass change is/are reversible. As was observed in 

fig. 4.8(a), there is an inflexion in the response observed during heating in run 1 around 300 ºC; 

this corresponds to the maximum in fig. 4.10(b).  Thus, it does not seem unreasonable to 

attribute the behaviour in fig. 4.10(b) to the reversible uptake of oxygen[34]: it is generally 

accepted that oxygen adsorbs on the surface of SnO2, and can then diffuse into the inner grain 

boundary surfaces of porous SnO2 [35][36] where it adsorbs and modifies the potential barriers 

between the grains.  There is considerable hysteresis in the TGA responses during runs 2 - 4, 

and it appears that the O2 uptake in region (I) is lost again in region (II). This is followed by 

further O2 loss in region (III), which probably extends back into region (II), with a lower 

temperature coefficient. The O2 lost in region (III) is then restored in region (IV), with 

approximately the same temperature coefficient as region (III).   As was stated above, the mass 

of the sample returns to its starting value on cooling, suggesting the changes are reversible.  A 

0.1% change in mass corresponds to a coverage of Sn by oxygen atoms of 0.04, using the BET 

surface area of 50 m2 g-1 and assuming 9.1 x 1014 Sn atoms cm-2 [36].    

The adsorption of molecular oxygen has direct relevance to the electrochemical production of 

ozone at Ni/Sb-SnO2 anodes, with most ozone mechanisms involving the reaction of oxygen 

atoms with adsorbed molecular oxygen as the final step leading to ozone [37]. Doping SnO2 

with Sb significantly improves the reactivity of the former with respect to, for example, the 

chemical combustion of CO [38], with 50% of the oxygen being supplied from adsorbed 

molecular oxygen and 50% from the SnO2 lattice.  Further, adsorbed molecular oxygen adsorbs 

on oxygen vacancies associated with Sb(III) ions [39].  

With respect to the process taking place at temperatures above 150 °C, assuming the same 

surface area of 50 m2 g-1 and 9.1 x 1014 Sn atoms cm-2 were employed to calculate the mass loss 

of Sn-OH coverage (see Appendix 2), a further mass loss of 0.8% at 150 °C in fig. 4.8(a), and 

0.7% of that at the same temperature in fig. 4.10(a). These mass losses would be expected if all 

the surface Sn-OH groups underwent condensation according to equation (1). The observed 

losses are 1.4% and 1.3%, respectively which, given the crude nature of the calculation, does 

not seem unreasonable agreement. 
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In order to further elucidate the processes taking place during the heating of SnO2, a in-situ 

DRIFTS experiment was carried out. In this experiment, the SnO2 calcined at 400 oC was 

employed to investigate the various form of adsorbed suggested by the TGA experiments. Due 

to the limitations of the cell employed, the in-situ FTIR experiment were limited to a maximum 

temperature of 600 oC. 

 

4.7 Fourier Transform Infrared Spectroscopy 

Figure 4.11 shows spectra collected during the heating of 20 mg of tin oxide diluted with 80 

mg spectroscopic KBr up to 600 ºC.  As can be seen from the figure, there are a number of 

bands superimposed upon a curving baseline.  With respect to the latter, fig. 4.12 shows plots 

of the Kubelka function at 2000 cm-1, normalised to its values at 25 ºC. This is discussed in 

more detail below; first, the loss of adsorbed water is considered.    

4.7.1 Adsorbed water 

From fig. 4.11, it can be seen that, up to 150 ºC,  there is a clear decrease intensity in Kubelka 

- Munk function in the band at 1633 cm-1 and the broad absorptions between 2500 cm-1 and 

3800 cm-1 corresponding to the loss of some form of water [40].  The 1633 cm-1 due to the       

H-O-H deformation is lost at T ≥ 150 ºC, suggesting the loss of adsorbed water that is complete 

by this temperature, in agreement with the literature [28][41].  There is also a clear gain feature 

at 3479 cm-1, and gain features at 3523 and 3552 cm-1 that become more clearly resolved as the 

temperature is increased and the overlying, broad O-H absorption of water is lost.  In order to 

highlight the changes in the spectra in fig. 4.11 up to 150 ºC more clearly, the spectrum collected 

at 25 ºC was subtracted from those taken at higher temperatures, and the results are presented 

in fig.4.12.  
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Figure 4.11 FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 2 minutes per 

scanset) as a function of temperature during the heating of 20 mg SnO2+80 mg KBr powder.  

The reference spectrum was collected from pure KBr powder at 25ºC.  Other spectra collected 

at the temperatures shown.  

 

An important point to note about fig. 4.13 is that, in agreement with the TGA, see fig. 4.8(b), 

the spectrum collected at 50 °C (just on the differential TGA minimum) is different to those 

taken at 100 °C and 150 °C, suggesting that transitions in the behaviour of the SnO2 are 

signalled by the minima 63 °C and 450 °C in fig. 4.8(b). As can be seen from fig. 4.13, the 

bands at 3444 cm-1, 2250 cm-1 and 1633 cm-1 are at approximately the same frequencies as 

those of the absorptions of liquid or bulk water [40];  however, the width and shape of the broad 

feature at 3444 cm-1 strongly suggests that the absorptions are not due to this form, as may be 

expected from the low coverage. Al-Abadleh and Grassian [42] have reported infrared data on 

water adsorbed at Al2O3.  These authors observed similar features to those in fig. 4.13, at 3420 

cm-1, 2136 cm-1 and 1642 cm-1 and, by comparison with the spectra of various forms of ice, 

they attributed the absorptions to adsorbed, ordered water. Devlin and co-workers [43] attribute 

the 2250 cm-1 band in ice to the 2nd overtone of the vibrational mode; they also postulate that 

the intensity of the O-H deformation decreases with depth into the ice and hence the 1630         
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cm-1 band in fig. 4.13 may be attributed to water molecules having  dangling O-H bonds at the 

surface [44][45].  

 

 

Figure 4.12 Plot of the Kubelka-Munk function at (i) 2000 cm-1 and (ii) 4000 cm-1 from the 

spectra in fig. 4.11. 

 

A comparison of the spectra collected at 50 ºC, 100 ºC and 150 ºC in fig 4.13 shows that the 

latter two have additional, broad loss features near 3000 cm-1, 2750 cm-1 and 1900 cm-1; these 

have been observed by other groups and have been attributed to the O-H stretches of hydrogen-

bonded Sn-OH groups [29]. From figs. 4.11 and 4.13, it is clear that there are sharp gain features 

at 3658 cm-1 and 3552 cm-1, and these may be attributed to the O-H stretches of isolated Sn-O-

H groups: such features have been observed at 3610 cm-1 – 3640 cm-1 [29], 3647 cm-1 [46], 

3620 cm-1, 3595 cm-1 and 3560 cm-1 [47].  A summary of the literature assignments of the 

various features is presented in table 4.6 
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Figure 4.13 The spectra in fig. 4.11 collected up to 150ºC.  (i) 50 °C, (ii) 100 °C and (iii) 150 

°C.    

Band / cm-1 Assignment Ref. 

770 Sn-O-Sn [28] 

950 O-H [28] 

1245 O-H [28] 

1640 H-O-H deformation [28, 42, 43] 

2250 H-O-H deformation [43] 

2500 O-H  [28] 

2750 O-H stretch Sn-OH [29] 

3552 O-H stretch Sn-O-H  [29] 

3658 O-H stretch Sn-O-H  [29] 

3647 O-H [46] 

3620 O-H [47] 

Table 4.6 A summary of the assignments in the literature of various features in the IR spectra 

in fig 4.11 and 4.13.  
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The data in fig. 4.13 can be interpreted on the basis of models suggested by Morishige and co-

workers[31] and Morimoto et al.[32][33]. These authors interpret the spectral data with 

reference to the three main low index surfaces of SnO2, namely (100), (110) and (111). The 

fully hydroxylated (100) surface contains OH groups in which the H atoms are sunk somewhat 

into the hollow sites between the oxygen atoms.  Hence, the OH groups on this surface do not 

form hydrogen bonds to any significant extent with physisorbed water molecules, thus allowing 

the latter to form 2-dimensionally condensed layers on top of the “inert” OH monolayer.  In 

contrast, the OH groups of the (110) plane point outwards perpendicularly from the surface and 

hence form hydrogen bonds with adsorbed water. The (111) surface is slightly more 

complicated, but the OH groups again point outwards and hence also form hydrogen bonds with 

physisorbed water.  As a consequence of these interactions, water adsorbs more strongly on the 

(111) and (110) facets than the (100) facets.  It does not seem unreasonable, therefore, to 

postulate that the water lost at 50 ºC showing the ice-like structure in fig. 4.13 is that on the 

(100) facets of the nanoparticles. The water lost between 50 and 150 ºC is that which was 

hydrogen-bonded to the OH groups on the (111) and (110) facets.   Loss of water from the (100) 

facets does not “release” OH groups from hydrogen bonding, hence there is no gain of 

absorption due to isolated OH, whereas loss of water from the (111) and (110) facets results in 

the gain in intensity of the bands at 3658 cm-1 and 3552 cm-1 due to appearance of isolated OH 

groups. The above analysis is in general agreement with the literature, where loss of 

physisorbed water is complete by 150 ºC [28][29], and two forms of adsorbed water may be 

identified, one more strongly bound than the other. In order to test this hypothesis, an 

experiment was carried out in which a reference spectrum was collected from SnO2 in dry air, 

after which air at 40% relative humidity was admitted, and a sample spectrum taken once 

equilibrium had been attained (c.a. 1 hour). The result is presented in fig. 4.14, and it can be 

seen that the spectrum strongly resembles the inverses of the spectra in fig. 4.13 collected at 

100 ºC and 150 ºC, supporting the postulated loss of water hydrogen-bonded to Sn-O-H groups 

on the surface, although there is an additional isolated OH feature at 3479 cm-1.  This feature is 

present in the spectra in fig. 4.11, but its intensity does not change until temperatures above 150 

°C.   
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Figure 4.14 A spectrum (8 cm-1 resolution, 100 co-added and averaged scans, 2 minutes per 

scanset) collected 1 hour after admitting air at 40% Relative Humidity into the environmental 

chamber.  The sample was 20 mg SnO2+80 mg KBr and the reference spectrum was collected 

under dry N2. 

4.7.2 The electronic absorption 

Oxygen vacancies are generally accepted to be the dominant intrinsic defects in SnO2 powders 

[48] and are associated with shallow donor levels lying about 0.14 eV – 0.15 eV below the 

conduction band minimum at low doping levels [49]. An even shallower donor at about 0.03 

eV has been identified [49] and is probably associated with Sb impurities. Promotion of 

electrons from either of these levels into the conduction band would result in a free electron 

absorption with zero energy onset [50] following a 1/n power law [51][52]. In SnO2, n is 

generally accepted as lying between 2 and 3 [52].   Clear examples of this type of absorption 

are given in the work of Panayotov et al.[51] on TiO2 nanoparticles and the diverging shape of 

the spectra in fig. 4.11 is very similar to the spectra in Panayotov’s work, suggesting that the 

spectra in fig. 4.11 show free electron absorption that is unaffected by heating the sample. This 

observation is somewhat puzzling and suggests that the electrons responsible for the long 
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wavelength structure arise from donors that are fully ionised so that the exhaustion region has 

been reached. This in turn suggests that the dominant free electron absorption is associated with 

very shallow ionised impurity levels: in general shallow donor levels move toward the 

conduction band with increasing donor concentration [53] so that levels even closer to the 

conduction band edge than the value of 0.03 eV alluded to above cannot be ruled out. 

 

In addition to the observations above, it is clear from figs. 4.11 and 4.12 there are broad 

absorption features that decrease in intensity at temperatures greater than 150 °C and which 

underlie the vibrational bands and free electron absorption. Up to this temperature, this structure 

does not appear to change, as shown in fig. 4.12 by the Kubelka Munk function at 4000 cm-1.  

In order to remove the free electron absorption, and bearing in mind the temperature regions 

identified from the TGA data in fig. 4.8(a), the spectrum collected at 150 °C was subtracted 

from those taken up to 450 °C, and that taken at 450 °C subtracted from those collected up to 

600 °C. The resultant difference spectra are presented in figs. 4.15 and 4.16 respectively; for 

direct comparison the spectrum collected at 450 °C in fig. 4.15 and that at 600 °C in fig. 4.16 

are shown in fig. 4.17.  As can be seen from fig. 4.17, there are two broad absorptions overlying 

each other: one with a tail out to the near IR, and an absorption with a maximum between 4000 

cm-1 and 1000 cm-1 which decrease in intensity between 150 C and 600 °C. In an extensive 

series of papers, Ghiotti and co-workers [46][47][54][55] studied SnO2 powders exposed to 

various atmospheres using FTIR spectroscopy and observed spectra similar to those in fig. 4.11. 

They assigned the broad absorption features to electronic transitions from donor states into the 

conduction band: a band with a maximum at ca. 1600 cm-1 was attributed to oxygen vacancies 

and a band at 3600 cm-1 to oxygen divacancies. If this interpretation is accepted the temperature 

variations discussed above must correspond to thermal excitation of electrons out of donor 

states, with a corresponding decrease in absorption intensity. 
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Figure 4.15 The spectrum collected at 150 °C in fig. 4.11 subtracted from those taken up to 

450 °C.  

Figure 4.16 The spectrum collected at 450 °C in fig. 4.11 subtracted from those taken up to 

600 °C. 
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Figure 4.17 The spectrum collected at 150 °C in fig. 4.11 subtracted from that taken at 450 

°C, and the spectrum collected at 450 °C subtracted from that at 600 °C.   

 

Pursuing this analysis further it is instructive to plot the logarithm of the apparent absorbance 

derived from the Kubleka –Munk function against 1/T. Such a plot is shown in fig. 4.18 for the 

absorbance at 2000 cm-1. The plot is linear, with a slope corresponding to a value of 0.15 eV 

for the thermal excitation energy for exhaustion of donor states. This value is the same as the 

energy difference between the oxygen vacancies and conduction band. Superficially it is 

surprising that large changes in the population of doubly occupied donor states can occur over 

the temperature range studied as the Boltzmann factor B = exp-(E/kBT) for an excitation with 

E = 0.15 eV changes from 0.003 to only 0.136 as the temperature T increases from 298 K to 

873 K (25 C to 600 C). However it must be remembered that the extent of exhaustion of donor 

states is critically dependent on the concentration of donor states ND as compared to the number 

of thermally accessible conduction band states NC. For low donor levels almost complete 

exhaustion may be found even when the Boltzmann factor is quite small. The thermal 

equilibrium between free carriers with concentration n and the number of unionised donor states 

(ND – n) may be expressed in terms of an equilibrium constant K expressed [56] as:  
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  K = n2/(ND – n) = NC exp-(E/kBT)               (2) 

 

where kB is the Boltzmann constant and Nc is itself given by: 

 

  NC = 2(2kBTme*/h2)3/2     (3) 

 

me* is the electron effective mass at the bottom of the conduction band.  The expression for K 

omits the factor of 2 in the denominator which accounts for spin degeneracy of a singly 

occupied donor level, since we are dealing with non-degenerate, doubly occupied oxygen 

vacancies. The quadratic equation for n may be solved as a function of T and ND to obtain values 

for the degree of exhaustion n/ND. Some typical results are shown in fig. 4.19. In all cases the 

ratio increases with increasing temperature and approaches 1 at sufficiently high temperatures. 

For low donor levels (i.e. ND =1014 cm-3) exhaustion is essentially complete even at room 

temperature, whilst for ND = 1020 cm-3 the ratio reaches only 0.1 at 1000 K. For intermediate 

values around 1017 cm-3 the ratio increases significantly over the temperature range between 

300 K and 900 K.   

0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022
-3.2

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

L
o

g
e(A

b
s 2

0
0
0
)

1/T /K
-1

 

 

Figure 4.18 Plot of the natural log of the absorbance at 2000 cm-1 in fig. 4.11 vs the inverse 

of temperature.  
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Figure 4.19 Plot of the number of unionised donor states (ND – n) vs temperature. 

 

4.7.3 The vibrational bands  

Figure 4.14 clearly shows that the O-H deformations associated with the bands at 3479 cm-1, 

3658 cm-1 and 3552 cm-1 in figs. 4.11 and 4.17 are too weak to be detected. In figs. 4.15, 4.16 

and 4.17, the 3552 cm-1 and 3479 cm-1 features appear as losses as the Sn-OH species condense 

to release water: in fig. 4.15, gain features around 1520 cm-1 and 1420 cm-1 may be discerned 

that appear clearly as loss features in fig. 4.16 and we tentatively attribute these to overtones of 

asymmetric Sn-O-Sn vibrations [57].   

There is a clear loss of a broad feature with a maximum around 3000 cm-1 in the spectra in figs. 

4.15, 4.16 and 4.17, which appears to be associated with the 1250 cm-1 loss; the latter may be 

attributed to an Sn-O-H deformation[57] and the former to the associated O-H stretch of 

strongly bound OH groups.  We tentatively attribute these bands to the Sn-OH groups on the 

(100) facets.  The breadth of the O-H stretch suggests some hydrogen bonding between Sn-O-

H groups, but not as extensive as that associated with the hydrogen bonding between the Sn-

OH and H2O on the more “open” structures on the (111) and (110) facets. 
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From figs. 4.15 and 4.17, it can be seen that, between 150 °C and 450 °C, loss features at 1106 

cm-1 and 1187 cm-1 increase in intensity.  McAleer et al.[58] postulate that the desorption of 

O2
.- from SnO2 takes place around 150 ºC and its conversion to O- around 160 ºC, whilst 

Gundrizer and Davydov[59] attribute peaks at 1045, 1100 and 1190 cm-1 to O2
.- adsorbed at 

various Sn sites on particulate SnO2 (their sample having a similar surface area to the sample 

employed in this work).  Thus, the 1106 and 1187 cm-1 bands in fig. 4.13 may be due to the loss 

of O2
.- adsorbed at various sites and its conversion to O-. The broad gain feature near 930 cm-1 

may be due to lattice vibrations[57].   

 

In order to confirm the assignments of the various features in the IR spectra, the experiment 

depicted in fig. 4.11 was repeated using an atmosphere created by bubbling 80%N2 + 20%O2 

through D2O, and the spectra so obtained are shown in fig. 4.20. As can be seen, the spectra are 

qualitatively the same allowing for the expected shift in the H2O and isolated Sn-OH 

absorptions, thus there is clearly a loss of physisorbed D2O, the loss of two electronic bands 

with maxima in the mid-IR and one with a tail out to 6000 cm-1 that stops being lost at 450 °C 

and the free electron absorption that does not change with temperature. Figure 4.21 shows the 

spectrum collected at 25 °C subtracted from those taken up to 150 °C, i.e. analogous to fig. 

4.13. The O-H stretch and deformation of the physisorbed water are shifted to lower frequencies 

by a factor of 1.35 when using D2O, as would be expected. The 1260 cm-1 feature is absent 

from both figs. 4.20 and 4.21, suggesting the vibration responsible involves hydrogen, as 

expected from the discussion above.   

Figure 4.22 shows the spectrum collected at 150 °C in fig. 4.20 subtracted from those taken at 

temperatures between 200 and 450 °C and fig. 4.23 shows the spectrum collected at 450 °C in 

fig. 4.22 and that collected at the same temperature in fig. 4.15, the latter scaled (increased) by 

a factor of 1.27 for comparison. The peak attributed to the SnO-H loss feature due to species 

on the (100) facets has shifted by a factor of 1.35 to lower frequency, suggesting the assignment 

is valid; again, the 1250 cm-1 band is absent, presumably shifted below the cut-off of the 

spectrometer.  The frequencies of the isolated SnO-H loss features at 3552 and 3479 cm-1 are 

also shifted to lower values by a factor of 1.35. The sharp bands around 3500 cm-1 on both 

spectra are most likely due to the plastic coating on the beamsplitter of the FTIR. 
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Figure 4.20 FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 2 minutes per 

scanset) as a function of temperature during the heating of 20 mg SnO2+80 mg KBr powder.  

The reference spectrum was collected from pure KBr powder at 25ºC in dry N2.  Other spectra 

collected at the temperatures shown.  The atmosphere was 80%N2+20%O2 passed through 

D2O. 

 
Figure 4.21 FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 2 minutes per 

scanset) as a function of temperature during the heating of 20 mg SnO2+80 mg KBr powder.  

The reference spectrum was collected from pure KBr powder at 25ºC in dry N2.  Other spectra 

collected at the temperatures shown.  The atmosphere was 80%N2+20%O2 passed through 

D2O. 
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Figure 4.22 FTIR spectra (8 cm-1 resolution, 100 co-added and averaged scans, 2 minutes per 

scanset) collected during the experiment depicted in fig. 4.20.  The spectrum collected at 150 

°C was subtracted from the spectra taken from 200 °C to 450 °C.    
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Figure 4.23 (i) The spectrum collected at 150 °C in fig. 4.20 subtracted from that taken at 450 

°C.  (ii) The corresponding spectrum (i) in fig. 4.15.  The latter has been enhanced by a factor 

of 1.27 for clarity. 
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The 1179 cm-1 loss feature is present in both spectra in fig. 4.23, supporting its assignment to 

Sn-O-O, whilst the 1106 cm-1 band is absent from the D2O spectrum, and hence may be due to 

Sn-O-O-H.  The 930 cm-1 band does not move and hence may be due to lattice vibrations, as 

postulated.   

4.8 Conclusions  

The hydrothermal synthesis employed to produce the SnO2 nanopowders yields spherical 

particles with a BET surface area of c.a. 55±5 m2g-1, exhibiting only the cassiterite structure 

with a single phase. As expected, calcining the powders at increasing temperature resulted in 

larger particle sizes due to sintering, and a concomitant decrease in surface area. 

The work in this chapter provided benchmark data on the undoped SnO2 nanopowders. Thus, 

at room temperature, water adsorbs in essentially two forms according to the facets of the 

underlying SnO2.  Thus, water on the (100) facets cannot hydrogen bond with the Sn-OH 

moieties as the hydrogen atoms of the latter are concealed below the surface, and hence form 

two-dimensional ice-like structures.  Water is more strongly adsorbed on the (111) and (110) 

facets due to hydrogen bonding.  Two types of electronic absorption are observed: free electron 

absorptions associated with exhausted very shallow ionised impurity levels and absorptions 

from oxygen vacancies below the conduction band.  Surprisingly, the former appear not to be 

temperature-dependent.  The behaviour of the absorptions arising from the oxygen vacancies 

may be interpreted in terms of a model involving the thermal equilibrium between free carriers 

and unionised donor states, wherein exhaustion of the donor states is complete at low carrier 

concentrations and room temperature, whilst the ratio reaches only 0.1 at high concentrations 

and 1000K.  Finally, and importantly, oxygen adsorbs onto SnO2, even when adsorbed water is 

present, and this is of direct relevance to the mechanism of ozone formation at NATO anodes. 
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Chapter 5 The characterization of nickel and antimony co-doped tin oxide 

nanopowders prepared by a hydrothermal method  

5.1 Introduction 

Briefly, antimony doped tin oxide (Sb-SnO2, ATO) and, nickel, antimony co-doped tin oxide 

(Ni/Sb-SnO2, NATO) nanoparticles were prepared using the hydrothermal method. The 

powders were produced by refluxing SnCl4.5H2O and SbCl3 precursor solutions, with or 

without NiCl2, as described in section 2.2. The yellow precipitates so obtained were then 

collected and hydrothermally treated at 180 oC for 24 hrs, after which they were split into four 

batches, one of which was left uncalcined and the others calcined at 300 oC, 400 oC and 700 oC. 

In order to investigate the mechanism of ozone generation, only ATO and NATO powders 

calcined at 400 oC and 700 oC were employed in order to compare with the previous work.  

5.2 The physical properties of the Sb-SnO2 and Ni/Sb-SnO2 nanopowders. 

As stated in section 1.9, SnO2 is an n-type, wide band gap semiconductor with a band gap of Eg 

= 3.6 eV with low conductivity resulting from adventitious oxygen vacancies [1-3]. A number 

of dopants have been employed to improve the electrical conductivity of SnO2 including Sb, F, 

B, Ar and P [4-6], the most commonly employed of these being Sb [7][8]. Antimony-doped tin 

oxide has been studied for many years because of its optical properties [3][9-13], electrical 

conductivity[12-19] and its extensive applications, i.e. in electrochemical oxygen evolution 

[20-22] and the electrochemical oxidation of wastewater[21][23-27]. More recently, Chan and 

co-workers have highlighted the ozone activity and selectivity of NATO anodes[28][29], 

followed by other works [4][30-40], as discussed in section 1.6. 

It is generally accepted that doping SnO2 with Sb confers n-type conductivity [3][10][41-43] 

with an associated blue colour [3][10][42][44-46]. Figure 5.1 shows photographs of the 

hydrothermally prepared ATO nanopowders uncalcined, and calcined at 300 oC, 400 oC and 

700 oC. Figure 5.2 shows photographs of NATO nanopowders prepared from precursor 

solutions containing 0.5wt%Ni (0.5NATO). Figure 5.3 shows the ATO nanopowders calcined 

at 700 oC in fig. 5.1 with and without the addition of NiCl2 solution (0.1 wt%) followed by 

calcination at 700 oC (see section 2.2. for details).  As can be seen from the figures, the colours 

of the nanopowders deepen with increasing calcination temperature. In general, the uncalcined 

ATO and NATO powders, and the samples calcined at 300 °C, were brown, those calcined at 
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400 °C grey and the samples calcined at 700 °C were blue. This suggests that the Ni doping 

does not affect the colour of ATO. The change in colour [2] is due to the incorporation of Sb(V), 

which donates an electron into the conduction band of the SnO2. Carrier densities of ca. 1020 

cm-3 give rise to a plasmon in the near infrared region, typically around 0.5 eV[47]. The 

reflectivity drops from a high value below this energy to a very low value just above the 

plasmon energy. The reflectivity then recovers across the visible region and is higher at the blue 

end of the spectrum than at the red end. The blue colour produced in this way is similar to that 

found for sodium tungsten bronzes (NaxWO3) at low sodium doping levels.  Doping with Sb(III) 

does not confer conductivity on SnO2[47].  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 The Sb-SnO2 powders prepared using the hydrothermal process at 180 oC: (a) as 

prepared (ATO/HT) and calcined at (b) 300 oC (ATO/HT/300); (c) 400 oC (ATO/HT/400) and 

(d) 700 oC (ATO/HT/700). 

 

 

(a) (b) 

(c) (d) 



 

144 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 A typical of the Ni/Sb- SnO2 powders with 0.5% of Ni content prepared using the 

hydrothermal process at 180 oC:(a) as prepared (0.5NATO/HT) and calcined at (b) 300 oC 

(0.5NATO/HT/300); (c) 400 oC (0.5NATO/HT/400) and (d) 700 oC (0.5NATO/HT/700). 

 

 

 

 

 

 

 

Figure 5.3 The Ni/ Sb- SnO2 nanopowders prepared from (a) the ATO nanopowders calcined 

at 700 oC in fig. 5.1 and (b) following addition of Ni (as 0.1 wt.% in NiCl2 solution) and 

calcined at 700 oC.  

(a) (b) 

(c) (d) 
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Elangovan and co-workers[10] studied the optical properties of ATO thin films produced by 

spray pyrolysis and observed that the ATO films changed colour from greyish-white, for 

undoped SnO2, to pale blue for low concentrations of Sb (e.g. 0.5 wt%), and blackish-blue for 

concentrations of Sb above 3 wt%. Nütz et al.[3][44] studied ATO nanoparticles prepared 

hydrothermally at 270 oC for 16 hours using X-ray Absorption Near Edge Structure (XANES) 

and postulated that the brownish coloured solution observed during refluxing was due to the 

simultaneous presence of antimony(III) and antimony(V). The authors showed that autoclaving 

the brownish colloid containing Sb(V) and Sb(III) in the ratio 75:25 resulted in a bluish product, 

indicating the blue colloids corresponding to a broad absorption peak in the red and infrared 

regions. Moreover the change in colour e.g. from yellow to blue, may be due to increasing 

temperature rendering the sample more electrically conductive [2]. The blue colour arises from 

the conversion of Sb(III) to Sb(V) generating e- that are injected into the conduction band. 

Rockenberger and co-workers [2] observed the valence state of Sb in SnO2 powder calcined at 

100 oC and 500 oC. They found that the ATO colour changed from brown to the blue after 

heating from 100 oC to 500 oC, due to the appearance of the plasmon absorption from free 

electrons in the conduction band. The brown colour was attributed to the presence of both 

Sb(III)  and Sb(V), with the colour changing to blue when the ratio of Sb(III) / Sb(V) reach ca. 

3:1, in agreement with the work of Nütz et al.[3][44]. Babar et al.[48] and Dusastre and 

Williams [49] also found that the calcination temperature had a significant effect upon the 

colour (and hence doping) of ATO samples. 

5.3 X-Ray diffraction 

The X-ray diffraction patterns of various ATO and 0.5NATO nanocrystalline powders as 

prepared and calcined at 300 oC, 400 oC and 700 oC are shown in figs. 5.4 and 5.5, respectively. 

Figure 5.6 shows the XRD pattern of the NATO nanopowders calcined at 700 oC with varying 

amounts of Ni, i.e. 0.5% to 2.0 wt% in the precursor solution. For comparison, the XRD spectra 

of TO, ATO, 700ATO0.1%Ni and 0.5NATO nanopowders calcined at 700 oC, are shown in 

fig. 5.7. As can be seen from the figures, the XRD patterns showed all the samples to be 

tetragonal cassiterite which has the rutile structure (Cassiterite, syn; Q: S; 00-041-1445, as 

obtained from the ICSD crystallographic database [11][48][50-54]). Moreover, no secondary 

phases or impurities and no phase transitions were observed up to 700 oC. This suggests that 

the Sb and Ni ions substitute for the Sn ions in the crystal lattice of bulk SnO2, which was 

consistent with the literature [3][19][25][40][54][55]. 
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The crystal structures belongs to the space group (SG): P42/mnm [11][19][42][44][56] and the 

unit cell parameter of all samples were refined using an initial estimate for the values of: a = b 

= 0.4738 nm and c = 0.3187 nm [19][57].  The major peaks of all samples at 2ϴ = 26.6, 33.8, 

37.9 and 51.8 were assigned to the lattice plane, Miller indices (h, k, l) = (110), (101), (020) 

and (121) of cassiterite SnO2, respectively, see fig. 5.7. For more clarification, the (200) or 

(020) reflections are the allowed second order reflections from the (100) or (010) oriented 

crystallites. Table 5.1 summarises the lattice parameters, unit cell volumes and the crystallites 

sizes calculated from Scherrer’s equation[58] of the ATO, 700ATO0.1%Ni and NATO 

nanopowders.  

 

 

 
 

Figure 5.4 The XRD patterns of the ATO nanocrystalline powders prepared by hydrothermal 

synthesis: (i) uncalcined, and calcined at (ii) 300 oC, (iii) 400 oC and (iv) 700 oC. 
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Figure 5.5 The XRD patterns of the 0.5NATO nanocrystalline powders with the ratio of 

Sn:Sb:Ni, Ni in the precursor solutions of 93.5:6:0.5 prepared by hydrothermal synthesis: (i) 

uncalcined, and calcined at (ii) 300 oC, (iii) 400 oC and (iv) 700 oC. 

 

Figure 5.6 The XRD patterns of the NATO nanocrystalline powders prepared by 

hydrothermal synthesis calcined at 700 oC with various Ni content; (i) 0.5%, (ii) 1.0%, (iii) 

1.5% and (iv) 2.0% Ni in the precursor solutions. 
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Figure 5.7 The XRD patterns of the (i) ATO, (ii) 0.5NATO, (iii) 700ATO0.1%Ni and (iv) TO 

nanopowders prepared by hydrothermal synthesis calcined at 700 oC. 

 

5.3.1 Effect of calcination temperature on cell parameters 

Figure 5.8 (a) and (b) show the evolution of the cell parameters a and c, respectively as function 

of temperature. As may be seen from the figure and table 5.1, it appears that the unit cell 

dimensions were not affected by calcination temperature, or by doping with Sb and Ni; the unit 

cell volume remaining at ca. 0.0710 ± 0.0005 nm3. Elangovan and co-workers[59] studied the 

structure of Sb-SnO2 thin films prepared via spay pyrolysis at 350 oC and 400 oC, and they 

found that the lattice parameters a and c were in the range of 0.476-0.481 nm and 0.315-0.319 

nm, respectively, suggesting that temperature had no effect. In addition, Kulaszewicz [60]  

reported that a and c of Sb-SnO2 were 0.476 nm and 0.320 nm, respectively, at both 773 and 

998 K, again showing that temperature did not influence the lattice parameters. 
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Sample 

Calcination 

Temperature / 
oC 

Unit Cell Dimension 

/ nm 

 

Volume / 

nm3 

Crystallite 

size / nm 
a c 

ATO 

ATO/300 

ATO/400 

ATO/700 

As prepared 

300  

400  

700  

0.47362 

0.47381 

0.47398 

0.47420 

0.31864 

0.31842 

0.31841 

0.31853 

0.0715 

0.0715 

0.0715 

0.0716 

4.3 

4.3 

4.6 

9.5 

0.5NATO 

0.5NATO/300 

0.5NATO/400 

0.5NATO/700 

As prepared 

300  

400  

700  

0.47350 

0.47277 

0.47040 

0.46959 

0.31755 

0.31711 

0.31779 

0.31810 

0.0712 

0.0709 

0.0703 

0.0701 

5.9 

6.4 

7.6 

10.7 

1NATO 

1NATO/300 

1NATO/400 

1NATO/700 

As prepared 

300  

400  

700  

0.47370 

0.47277 

0.47253 

0.47200 

0.31950 

0.31811 

0.31875 

0.31880 

0.0716 

0.0711 

0.0712 

0.0710 

6.4 

6.3 

7.3 

10.3 

1.5NATO 

1.5NATO/300 

1.5NATO/400 

1.5NATO/700 

As prepared 

300  

400  

700  

0.47250 

0.47205 

0.47153 

0.47130 

0.31886 

0.31745 

0.31758 

0.31808 

0.0712 

0.0707 

0.0706 

0.0706 

6.0 

6.2 

6.7 

10.1 

2NATO 

2NATO/300 

2NATO/400 

2NATO/700 

As prepared 

300  

400  

700  

0.47120 

0.47095 

0.47039 

0.47155 

0.31756 

0.31690 

0.31725 

0.31810 

0.0705 

0.0703 

0.0702 

0.0707 

6.1 

6.0 

6.5 

11.0 

700ATO700Ni0.1 700 0.47417 0.31860 0.0716 10.4 

Table 5.1 The crystallites sizes and unit cell dimensions of the ATO, NATO with various the Ni 

content, and ATO calcined at 700 oC mixed with 0.1% Ni nanocrystalline powders prepared 

using the hydrothermal method.  
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(b) 

Figure 5.8 The variation of the lattice parameters (a) a and (b) c of the ATO and NATO 

nanopowders. The data for the uncalcined samples are not shown, for clarity, see table 5.1. 

 

5.3.2 Effect of doping on cell parameters 

To elucidate the effect of Sb and Ni doped in TO, ATO was investigated first then NATO. A 

nominal composition of ATO was chosen of Sn:Sb = 94:6. As stated above, the addition of 

antimony to TO did not change the crystal structure, suggesting that Sb replaced Sn in the SnO2 

[2]. Figure. 5.9 shows the effect of Sb doping on the lattice parameters a and c at 400 ºC and 

700 ºC; as can be seen from the figure, there was no significant change in the lattice parameters 

on incorporating. In contrast, Müller et al.[61] have reported that a solid solution of ATO is 

formed on doping TO with Sb up to 30 mole%Sb. Using Rietveld refinement, they found that 

a decreased whereas c increased. Peters et al. [62] and Gupta et al.[11] also reported a decrease 

in cell parameters with increased Sb concentration. Thus, the lattice parameters a and c were 

observed to decrease from 0.4738 nm to 0.4729 nm, and 0.3189 nm to 0.3180 nm, respectively, 

on increasing the Sb from 0 to 1.5 wt.%. 
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Figure 5.9 The lattice parameter a and c of undoped tin oxide and antimony doped tin oxide 

calcined at 400 oC (red dashed line) and 700 oC (blue solid line). 

 

NATO nanopowders were investigated of composition Sn:Sb:Ni =  x:y:z where x was 93.5, 93, 

92.5 and 92, y was fixed at 6 and z was 0.5, 1, 1.5 and 2. The variation of the lattice parameters 

a and c of ATO (0%Ni) and NATO samples calcined at 400 oC and 700 oC as a function of Ni 

content is shown in figs. 5.10 (a) and (b), respectively. Once again, as can be seen from the 

figures, no significant change was observed in the lattice parameters a and c.  

 

The ratio c/a is shown in fig.5.11 for the samples calcined at 400 oC and 700 oC respectively. 

As shown in this figure, the ratio c/a up to 2% Ni content remained almost constant of ~ 0.675 

at both temperatures. This suggests that Sb content and Ni content had little or no effect upon 
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of cations of different radii may be considered to explain the variation of c/a and thus the lattice 

parameter. Sb exists in two oxidation states, Sb(III) and Sb(V); the ionic radius of Sb(III) is 
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ͦ
 which is greater than Sb(V) (0.60 A

ͦ
), whilst the ionic radius of Sn(IV) is 0.69 A
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 [2] 54]. 
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surface in agreement with the literature[14][49][63-69], see section 5.6. In this way, any 

distortion or expansion of the lattice parameter is prevented. 

 

With respect to NATO samples, the Ni ions also replace the Sn ions in the SnO2 lattice. Ni ions 

exist in two oxidation states, Ni(II) and Ni(III); Ni(II)  ionic is smaller (c.a. 0.69 A
ͦ
 [70]) than 

Ni(III)  (c.a. 0.72 A
ͦ
 [40]). The radii of the dopants cations are: rSb3+ > rNi3+ > rSn4+ > rSn4+ = rNi2+ 

> rSb5+. Similarly, Ni(II) should occupy Sn(IV) site in the lattice whilst Ni(III) should be located 

at surface or subsurface sites. This postulate is discussed further in section 5.6  

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

Figure 5.10 The lattice parameter a and c of the NATO nanopowders as a function of Ni 

content calcined at (a) 400 oC and (b) 700 oC 
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Figure 5.11 Plot c/a for the NATO nanopowders as a function of Ni content calcined at 400 oC 

and 700 oC. 

5.3.3 Effect of temperature on crystallite size 

Figure 5.12 shows the variation in the average crystallite sizes of the TO, ATO and NATO 

powders as a function of calcination temperature, determined using Scherrer’s equation as 

described in section 2.5.1. The sharper and higher intensity (110), (101) and (121) peaks were 

employed to calculate the crystallite size. As can be seen from the figure, it is clear that 

nanoscale crystallites were obtained for all samples, and the crystallite sizes of TO, ATO and 

NATO increased linearly as function of temperature for all samples. The essentially linear 

increase of crystallite size with temperature indicates crystal growth due to sintering [52]. For 

example, as-prepared SnO2 showed a crystallite size of 11 nm increasing to 22 nm after 

calcining at 700 °C whereas the crystallite sizes of ATO powders increased from c.a. 4 nm for 

the uncalcined sample to c.a.10 nm for the sample calcined at 700 °C. Similar trends were 

observed for the NATO powders, the average crystallite size of the uncalcined NATO samples 

increased from ca. 6 nm to ca. 10 nm for the samples calcined at 700 oC. Furthermore, as can 

be seen in figs. 5.4 and 5.5, the Full Width at Half Maximum (FWHM) of the most intense 

(110), (101) and (121) peaks decreased with increasing temperature and the peaks became 

sharper. This suggests that the crystallinity improved [71] with increasing temperature, in 

agreement with the literature[72][73]. 
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5.3.4 Effect of dopant content on the crystallite size 

As may be seen in fig. 5.12, the crystallite sizes of the samples decreased significantly on doping 

with Sb, in agreement with the work of Rockenberger et al. [2], Peter et al.[62], Ahmed et 

al.[74] and  Zhang and Gao[75]. Thus, Zhang and Gao[75] reported an decrease from a 

crystallite size from17 nm to 5.8 nm on adding Sb up to 9%. The authors interpreted this effect 

to the depression of surface free energy by Sb, increasing the activation barrier to surface 

diffusion. Gupta et al.[11] have attributed the decrease in crystallite size to the creation of a Sb 

monolayer with Sn atoms replaced by Sb atoms at the surface of SnO2 that limits surface 

diffusion and suppresses crystal growth[75]. Other workers have termed the effect of Sb on 

crystallite growth ‘‘solute drag inhibiting grain growth’’[76]. 

Figure 5.13 shows the effect of Ni on crystallite size for the samples calcined at 300, 400 and 

700 oC. It is clear that the addition of 0.5wt%Ni causes an increase in crystallite size, e.g. from 

4.3 nm for ATO calcined at 300 oC to 6.4 nm for 0.5%NATO calcined at the same temperature. 

The corresponding values for the samples calcined at 400 oC and 700 oC are 4.6 nm to 7.6 nm 

and 9.5 nm to 10.7 nm, respectively. With respect to the samples calcined at 300 oC, Further 

addition of Ni has little effect, whereas the crystallite sizes of the samples calcined at 400 oC 

and 700 oC decrease from 7.6 nm and 10.7 nm with 0.5%Ni to 6.5 nm and 11 nm, respectively, 

with 2%Ni. In principle, Ni(II) is the same size as Sn(IV) [70] and hence can replace it in the 

lattice without distortion. Ni(III) is somewhat larger (0.72 A
ͦ
 [40]) and may be able to replace 

Sn(IV): however, it is more likely that the Ni is present in the +2 oxidation state in the SnO2 

lattice. Ni inclusion in SnO2 has been reported to affect particle size and crystallinity. 

As these results, it can be postulated that all Ni are incorporated in the lattice of ATO and the 

ratio of Ni(II) to Ni(III) would determine the expansion or the shrinkage of the size of crystallite.  

However, addition of Ni at high concentration yields more Ni(III) at the surface and Ni(II) in 

the lattice due to the Ni(II) ionic radius is smaller ca. 0.69 A
ͦ
 than Ni(III) ca. and this can 

impact the crystallinity[74].  
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Figure 5.12 Variation of the crystallite sizes of the TO, ATO and NATO samples with Ni as a 

function of calcination temperature, calculated from Scherrer’s equation (see section 2.5.1 for 

details) [58]. 

 

Figure 5.13  Variation of crystallite sizes calculated from Scherrer’s equation [58] with Ni 

content at 0%, 0.5%, 1%, 1.5% and 2% doped in ATO and calcined at 300oC, 400oC and 

700oC. 
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5.4 Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy 

The surface morphologies of ATO and NATO nanopowders were studied using Scanning 

Electron Microscopy (SEM). Figures 5.14 and 5.15 show SEM micrographs of the ATO and 

0.5NATO nanopowders at a magnification of x20000. The SEM micrographs of the NATO 

nanopowders calcined at 700 oC as a function of Ni content at a magnification of x50000 is 

shown in fig. 5.16. As can be seen from figs 5.15 and 5.16, it is clear that the morphology of 

the NATO powders exhibited uniform spherical particles that were comparable to those 

observed in the ATO powders prior to Ni doping, see fig. 5.14. The morphology of all the 

powders were in agreement with the literature [2][3][44][52][77-79]; however, it proved very 

difficult to determine particle sizes due to agglomeration. The average particle sizes were 

estimated by choosing 300 particles on each SEM image and using ImageJ software to 

determine the size distribution.  

 

 

 

 

 

 

 

 

 

 

Figure 5.14 SEM images of the ATO nanopowders prepared by hydrothermal synthesis at 180 
oC: (a) as prepared (ATO/HT); and calcined at (b) 300 oC (ATO/HT/300), (c) 400 oC 

(ATO/HT/400) and (d) 700 oC (ATO/HT/700). Magnification= x20000; the bars = 1µm.  

(a) (b) 

(c) (d) 
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Figure 5.15 SEM images of the 0.5NATO nanopowders prepared by hydrothermal synthesis at 

180 oC: (a) as prepared (0.5NATO/HT); and calcined at (b) 300 oC (0.5NATO/HT/300), (c) 400 

oC (0.5NATO/HT/400) and (d) 700 oC (0.5NATO/HT/700). Magnification= x20000; the bars = 

1µm. 

 

Figures 5.17 (a)-(d) and 5.18 (a)-(d) show histograms of the particle size distributions of the 

ATO and NATO powders obtained from the SEM micrographs in figs 5.14 and 5.15, 

respectively. As may be seen in fig. 5.17, the majority of the ATO particles increased in size 

from c.a. 7.5 nm for the uncalcined sample to c.a. 10 nm (300 oC), 11 nm (400 oC) and 12 nm 

for the sample calcined at 700 oC, with a frequency of 40, 37, 36 and 37%, respectively. Jeon 

and co-workers[52] have reported similar results. In their study, the ATO powders were 

prepared by a sol-gel method and the particle sizes observed using Field Emission Scanning 

Electron Microscopy (FESEM) increased from 5 nm to 10 nm on increasing the calcination 

temperature from 400 oC to 800 oC. 

(a) (b) 

(c) (d) 
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Figure 5.16 SEM images of the NATO nanopowders calcined at 700 oC prepared by 

hydrothermal synthesis at 180 oC with varying Ni content: (a) 0.5%Ni (0.5NATO/HT/700); and 

calcined at (b) 1%Ni (1NATO/HT/700), (c) 1.5%Ni (1NATO/HT/700) and (d) 2%Ni 

(2NATO/HT/700). Magnification= x50000; the bars = 500 nm. 

With respect to the 0.5NATO powders, the particle sizes also increased from 8 nm for the 

uncalcined sample to 12 nm for the sample calcined at 700 oC.  From the results, it can be seen 

that the average particle sizes increased with increasing calcination temperature [52]. The 

crystallite sizes calculated from the XRD data and those obtained from the SEM micrographs 

were compared in Table 5.2. As may be seen, the crystallite sizes of all samples observed from 

XRD were slightly smaller than those evaluated by SEM using Image J. The discrepancy may 

arise from agglomeration of particles observed in the SEM image. 

 

 

(a) (b) 

(c) (d) 
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Figure 5.17 Histograms of the particle size distributions of the ATO nanopowders determined 

from the images in fig 5.14: (a) prior to calcining; calcined at (b) 300 oC; (c) 400 oC and (d) 

700 oC. 

 

 

 

 

 

 

 

 

Figure 5.18 Histograms of the particle size distributions of the 0.5NATO nanopowders 

determined from the images in fig. 5.15: (a) prior to calcining; calcined at (b) 300 oC; (c) 400 
oC and (d) 700 oC.  
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Table 5.2 A comparison of the crystallite sizes of the ATO and NATO powders obtained from 

XRD and particle sizes obtained from SEM measurements. 

 

The chemical compositions of the SnO2 nanocrystalline powders were characterized by Energy 

Dispersive X-Ray (EDX) Spectroscopy. Figures 5.19(a) and (b) show typical EDX spectra of 

the ATO and 0.5NATO powders calcined at 700 oC. A summary of the relative intensities of 

the various peaks in the EDX spectra of the nanopowders is presented in table 5.3. As can be 

seen from fig. 5.19, strong peaks attributable to tin, antimony and oxygen were observed in the 

spectra of samples; however, Ni could not be detected as the lower limit for the detection of Ni 

by the SEM/EDX instrument was 2%. From figs. 5.19 (a) and (b), the peaks at 3.44 keV may 

be attributed to Sn; the peak at 3.69 keV, 3.94 keV and 4.15 keV to both Sn and Sb, and the 

peak at 0.5 keV to O, similar results have been reported in the literature [35][80][81]. No peaks 

attributable to chloride contamination were observed.  

 

 

Sample Calcination Temperature / oC 

Particle size  

/ nm 

Crystallite size 

/nm 

SEM XRD 

ATO 

ATO/300 

ATO/400 

ATO/700 

As prepared 

300  

400  

700  

7.5 

10 

11 

12 

4.3 

4.3 

4.6 

9.5 

0.5NATO 

0.5NATO/300 

0.5NATO/400 

0.5NATO/700 

As prepared 

300  

400  

700  

8 

11 

10 

12 

5.9 

6.4 

7.6 

10.7 

1NATO 

1NATO/300 

1NATO/400 

1NATO/700 

As prepared 

300  

400  

700  

8 

10 

10 

12 

6.4 

7.1 

7.3 

10.3 

1.5NATO 

1.5NATO/300 

1.5NATO/400 

1.5NATO/700 

As prepared 

300  

400  

700  

8 

9 

10 

12 

6.0 

6.2 

6.7 

10.1 

2NATO 

2NATO/300 

2NATO/400 

2NATO/700 

As prepared 

300  

400  

700  

9 

10 

12 

14 

6.1 

7.1 

8.3 

11.0 
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Sample 

Calcination 

temperature/ 
oC 

Relative intensity (keV) / Assignment 

3.44/Sn 3.7/Sn+Sb 3.94/Sn+Sb 4.15/Sn+Sb 

ATO 

ATO/300 

ATO/400 

ATO/700 

Uncalcined 

300 oC 

400 oC 

700 oC 

1 

1 

1 

1 

0.52 

0.51 

0.51 

0.54 

0.18 

0.2 

0.2 

0.2 

0.07 

0.07 

0.07 

0.07 
0.5NATO 

0.5NATO/300 

0.5NATO/400 

0.5NATO/700 

Uncalcined 

300 oC 

400 oC 

700 oC 

1 

1 

1 

1 

0.54 

0.54 

0.55 

0.52 

0.2 

0.18 

0.2 

0.19 

0.07 

0.08 

0.07 

0.09 
1NATO 

1NATO/300 

1NATO/400 

1NATO/700 

Uncalcined 

300 oC 

400 oC 

700 oC 

1 

1 

1 

1 

0.56 

0.53 

0.51 

0.55 

0.19 

0.2 

0.19 

0.18 

0.07 

0.08 

0.07 

0.07 
1.5NATO 

1.5NATO/300 

1.5NATO/400 

1.5NATO/700 

Uncalcined 

300 oC 

400 oC 

700 oC 

1 

1 

1 

1 

0.54 

0.51 

0.54 

0.54 

0.19 

0.18 

0.19 

0.18 

0.07 

0.07 

0.08 

0.09 
2NATO 

2NATO/300 

2NATO/400 

2NATO/700 

Uncalcined 

300 oC 

400 oC 

700 oC 

1 

1 

1 

1 

0.56 

0.54 

0.54 

0.54 

0.19 

0.19 

0.18 

0.19 

0.08 

0.07 

0.08 

0.07 

Table 5.3 Assignment and relative peak intensities of the various features in the EDX spectra 

of the ATO and NATO nanopowders. 

 

(a) 
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(b) 

Figure 5.19 Typical EDX spectra of the (a) ATO and (b) 0.5NATO nanopowders prepared via 

hydrothermal synthesis; both sample calcined at 700 oC. 

 

The EDX analysis of the ATO and NATO nanopowders are presented in table 5.4. It can be 

seen that the percentages of Sn, Sb and O in the ATO samples were in the range 59-64%, 7-9% 

and 28-32 %, respectively. With respect to the NATO samples, the percentage in weight of Sn 

in all NATO powders increased, compare with ATO samples, whilst, Sb and O decreased.  

However, the percentage of Sb in the final NATO samples were the same as in the precursor 

solutions, ca.6%. 

Sample Calcination temperature /oC 
Element /at. % 

Sn Sb O 

ATO/HT 

ATO/HT/B 

ATO/HT/C 

ATO/HT/D 

Uncalcined 

300 oC 

400 oC 

700 oC 

20.98 

21.50 

19.89 

22.06 

3.33 

3.24 

2.31 

2.59 

75.69 

75.26 

77.81 

75.34 

0.5NATO/HT 

0.5NATO/HT/B 

0.5NATO/HT/C 

0.5NATO/HT/D 

Uncalcined 

300 oC 

400 oC 

700 oC 

30.3 

26.83 

33.38 

22.04 

2.54 

2.06 

3.01 

1.80 

67.16 

71.12 

63.60 

76.16 
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Sample Calcination temperature /oC 
Element /at. % 

Sn Sb O 

1NATO/HT 

1NATO/HT/B 

1NATO/HT/C 

1NATO/HT/D 

Uncalcined 

300 oC 

400 oC 

700 oC 

33.29 

25.9 

23.81 

32.33 

2.97 

2.31 

2.13 

3.27 

63.74 

71.79 

74.06 

64.40 

1.5NATO/HT 

1.5NATO/HT/B 

1.5NATO/HT/C 

1.5NATO/HT/D 

Uncalcined 

300 oC 

400 oC 

700 oC 

29.43 

26.75 

31.21 

27.36 

2.5 

2.32 

2.72 

2.65 

68.07 

70.93 

66.07 

69.99 

2NATO/HT 

2NATO/HT/B 

2NATO/HT/C 

2NATO/HT/D 

Uncalcined 

300 oC 

400 oC 

700 oC 

25.59 

32.39 

26.51 

28.01 

2.12 

2.98 

2.26 

2.59 

72.28 

64.63 

71.23 

69.40 

Table 5.4 Summary of the chemical composition of the ATO and NATO nanopowders with 

vary the Ni content, prepared via the hydrothermal method and using various calcination 

temperatures. 

5.5 Specific surface area 

The specific surface areas of the various nanopowders were measured using N2 adsorption 

employing the Brunauer-Emmett-Teller (BET) isotherm. Table 5.5 summarizes the BET and 

XRD surface areas of the TO, ATO and NATO as a function of Ni content for the samples 

calcined at 400 oC and 700 oC. The surface area were calculated from the XRD crystallite sizes 

using the method in Appendix 1. It can be seen from the table that the surface areas obtained 

from BET were lower than those obtained from XRD because BET does not access the internal 

crystallite surfaces. As will be seen below from the discussion below, the surface area calculated 

from XRD gave more reasonable data than those obtained from the BET measurements.  

All Sb-containing samples show lower BET and XRD surface areas, in agreement with the 

discussion in section 5.3.4. As can be seen in table 5.5, for example, at 400 oC the BET surface 

area of TO was reduced by ca. 14% from 50 m2g-1 to 43 m2g-1 for ATO.  

Increasing the calcination temperature from 400 oC to 700 oC, caused a pronounced reduction 

in the surface area, i.e. the BET surface area of ATO decreased by ~37% (39 m2g-1 at 400 oC to 

27 m2g-1 at to 700 oC). Thus, the surface area decreases with increasing calcination temperature 

due to agglomeration, in agreement with the literature[71][82].  
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Figure 5.20 shows the variation of surface area with Ni composition for the samples calcined 

at 400 oC and 700 oC. For the powders calcined at 400 oC, the surface area obtained from BET 

did not vary with Ni content. The average surface area was ca. 43 ± 4 m2g-1. Similarly, the 

average surface area of the samples calcined at 700 oC was ca. 32 ± 5 m2g-1.  

 

Sample Calcinn. T 

/ºC 

Surface area 

/m2 g-1 

Calcinn. T 

/ºC 

Surface area 

/m2 g-1 

BET XRD BET XRD 

SnO2  400 50 60 700 39 41 

Sb–SnO2  400 43 188 700 27 91 

0.5%Ni/Sb-SnO2  400 41 114 700 30 81 

1.0% Ni/Sb-SnO2 400 42 118 700 32 84 

1.5% Ni/Sb-SnO2 400 45 129 700 35 86 

2.0%Ni/Sb-SnO2 400 47 104 700 33 79 

 

Table 5.5 The BET and XRD surface areas of the TO, ATO and NATO nanocrystalline 

powders calcined at 400 oC and 700 oC. 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 The variation of the surface areas obtained from BET measurements of the ATO 

and NATO samples as a function of Ni content for the nanopowders calcined at 400 oC and 700 

oC 
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Figure 5.21 shows plots of the ratio of the grain volumes (calculated from the BET data) and 

the crystallite volumes (calculated from the XRD-derived crystallinity data and assuming 

spherical crystallites; cassiterite commonly has a bipyramidal habit, which is roughly 

equidimensional). In other words, it was postulated that XRD measurements concerned 

crystallites, one or more of which combined to form a grain, see fig. 5.22. The method of 

calculating the grain volumes from the BET-derived surface areas is given in Appendix 3. The 

XRD volumes were calculated as VXRD = a2c from the unit cell dimensions given in table 5.1 

As may be seen from fig. 5.21, the addition of Sb to SnO2 causes a significant increase in the 

number of crystallites per particle.  The first addition of Ni also has a significant, but lesser and 

negative, effect, whilst further addition of Ni has little or no effect. These data (and those in 

figs. 5.12 and 5.14) suggest that both Sb and Ni occupy the crystallite surface, or near surface, 

regions and are thus able to influence the agglomeration of crystallites.  It is generally accepted 

in the literature (see below) that the doping of SnO2 by Sb results in Sb(V) ions on bulk Sn(IV) 

lattice sites with  Sb(III) ions confined to surface grain boundary interfaces [14][49][63-69].  

 

Figure 5.21. Plots of ratio of grain volume (calculated from the BET surface areas) to 

crystallite volume (calculated from the XRD data using Scherrer’s equation), for the SnO2, Sb-

SnO2 and Ni/Sb-SnO2 nanopowders calcined at (i) 400 ºC and (ii) 700 ºC, see text for details. 

“0.5%Ni” is 0.5%Ni/Sb-SnO2, fabricated from a precursor solution containing 0.5 wt.% Ni. 
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Figure 5.22 Schematic representation of the relationship between crystallites and grains. 

 

5.6. X-ray photoelectron spectroscopy 

The results obtained from XPS analysis can be interpreted qualitatively and quantitatively. In 

this work, the former was used to analyse the XPS data to assign the photoelectron peaks, 

binding energies (BE) and  the elements present with their oxidation states whilst the latter was 

used to determine  the atomic concentration for quantitative analysis[83]. 

Figure 5.23 shows the typical XPS spectra survey scans of the ATO and 0.5NATO 

nanopowders calcined at 700 oC. The different resonance peaks that are characteristic of the 

binding energies of the electrons of the elements at the surface of the material can be seen in 

the figure. XPS spectra survey scans of ATO and 0.5NATO nanopowders calcined at 700 oC 

clearly show photoelectric peaks that correspond to Sn, Sb and O; however, no Ni peak was 

observed at the surface of any of the NATO nanopowders and this may be due to the limitation 

of the machine. The binding energy of the peaks related to Sn3d, Sb3d, O1s and Ni2p were 

employed for peak fitting in the analysis of the XPS spectra of the various samples.  
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Figure 5.23 Typical XPS survey scans of the ATO and 0.5NATO samples calcined at 700 oC. 

5.6.1 The oxidation state of Sn  

Figures 5.24 (a) and (b) show the spectra of the Sn3d region for the ATO and 0.5NATO 

nanopowders calcined at 700 oC, respectively. As can be seen from the figures, the spin orbital 

coupling of the Sn3d peaks of all the samples splits into the Sn3d3/2 peak and into Sn3d5/2 

features, with symmetric components that were fitted at binding energies of 495.9 and 487.5 

eV, respectively. A good fit was obtained between the experimental and calculated data, and 

supported the assignment to Sn(IV) within the ATO, in agreement with the literature [4][84]. 

Similarly, the peaks at 496 eV and 487.6 eV of the 0.5NATO powders calcined 700 oC in fig 

5.24(b), corresponding to Sn3d3/2 and Sn3d5/2, respectively, were attributed to the Sn(IV) state. 

Hence, the chemical oxidation state of Sn in both samples was +4 [4][41][53][69][84-86]. No 

shift in the Sn3d state was observed after doping with Sb and Ni, and the separation between 

the Sn3d3/2 and Sn3d5/2 peaks of both samples was 8.4 eV, agreed with that observed by 

Mazloom et al. [85] and Babar et al. [41].   
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(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 5.24 Typical fitted XPS spectra of the Sn3d region of the (a) ATO and (b) 0.5 NATO 

nanopowders calcined at 700 oC: the dotted line is the raw data and the solid line is the 

synthesised curve and components. 
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5.6.2 The oxidation state of Sb 

The widescan XPS spectrum in fig. 5.23 was typical of all the Sb-containing samples, in that it 

shows core peaks due to Sn, Sb, O and adventitious C contamination. Further, spin-orbital 

coupling splits the Sb3d core line into Sb3d5/2 and Sb3d3/2 [52][87]. The latter feature was 

employed via peak fitting to obtain quantitative information on the amounts of Sb(III) and 

Sb(V) in the samples, see fig. 5.25: the peak was generally found to be asymmetric and two 

peaks, at 540.6 eV and 541.5 eV, could be fitted to the peak shape of the Sb3d3/2 feature, 

corresponding to Sb(III) and Sb(V), respectively. The Sb3d3/2 peak was employed because the 

Sb3d5/2 feature overlaps with the O1S peak [87]. As can be seen from fig. 5.25, the ratio of the 

intensities of the Sb3d3/2 to Sn3d3/2 peak (after correction for sensitivity factors[88]) is 0.14 

compared with a nominal bulk doping ratio of 0.06 based on the composition of the precursor 

solution suggesting possible surface enrichment by Sb.   

 

 

 

Figure 5.25 Typical XPS data from Sb-SnO2 –containing electrodes represented by the c-

1.0% Ni/Sb-SnO2 ceramic electrode. Inset shows the curve fitting procedure employed, see 

text for details. 
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Figures 5.26(a) and (b) show typical fitting curves of the Sb3d3/2 peaks of the 0.5NATO 

nanopowders calcined at  400 oC and 700 oC, respectively, and table 5.6 summarizes the binding 

energies of Sn, Sb, O and Ni of the ATO and NATO nanopowders calcined at 400 oC and 700 

oC. As may be seen in table 5.26 (a), the biding energies of the Sb 3d3/2 peaks corresponding 

to Sb(III) and Sb(V) of the Ni-containing samples all vary compared to the Sb-SnO2 samples, 

suggesting that Ni has some influence on these. Further, the binding energies of the Sb peaks 

of the ceramic anodes fall within the ranges observed for the powder samples, suggesting no 

radical differences between the two types of anode. 

 

From table 5.6, and the typical spectra shown in fig 5.26(a) and (b), it can be seen that, in 

general, increased calcination temperature resulted in the binding energies of the Sb3d3/2 and 

Sb3d5/2 peaks increasing. Thus, for example, the Sb3d3/2 feature due to Sb(V) shifts from 541.3 

eV to 541.65 eV on increasing the calcination temperature of the 0.5NATO/HT powder sample 

from 400 oC to 700 oC. The corresponding shift for the Sb(III)3d3/2 peak is from 540.5 eV to 

540.65 eV. These results are in good agreement with the work of Boudeville et al.[89] and Jeon 

et al.[52]; for example, Boudeville et al. studied Sb-SnO2 produced via a co-precipitation 

method and found that increasing the calcination temperature from 500 to 950 oC, caused 0.6 

eV shifts in both the Sb(V) and Sb(III)3d3/2 features. 
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(b) 

Figure 5.26 The fitting of the XPS spectra of the Sb 3d3/2 peak of 0.5NATO/HT calcined at (a) 

400 oC and (b) 700 oC: the dotted line is the raw data and the solid line is the synthesised curve 

and components. 

Table 5.6.  Summary of the XPS data of ATO, and NATO with Ni content between 0.5% and 2% 

for the nanopowders calcined at 400 oC and 700 oC, and 700ATO0.1%Ni  calcined at 700 oC

Samples Calcination 

Temperature 

/oC 

Binding Energy /eV 

Sn  

3d3/2 

Sn 

3d5/2 

Sb  

3d3/2 

O 

1s 

Ni 

2p3/2 

Sn4+ Sn4+ Sb5+ Sb3+ Ni2++Ni3+ 

700ATO/0.1%Ni 700 495.04 486.63 540.55 539.76 530.65 856.56 

700ATO/0.01%Ni  700 494.34 485.94 540.05 539.03 530.01 856.69 

700ATO/0.1%Ni 460 494.26 485.84 539.83 539.03 530.18 856.55 

ATO 400 495.79 487.37 541.22 540.58 531.46  

0.5NATO 400 495.89 487.47 541.3 540.51 531.53  

1NATO 400 495.87 487.45 541.42 540.65 531.58  

1.5NATO 400 495.86 487.45 541.44 540.65 531.59  

2NATO 400 495.95 487.54 541.49 540.69 531.63  

ATO 700 495.92 487.51 541.51 540.59 531.56  

0.5NATO 700 496.02 487.61 541.65 540.65 531.69  

1NATO 700 496.02 487.63 541.68 540.68 531.67  

1.5NATO 700 495.95 487.54 541.7 540.65 531.62  

2NATO 700 496.01 487.6 541.73 540.66 531.64  

c-1NATOu 460 495.76 487.35 541.53 540.55 531.4 856.40 

c-1NATOt 460 495.77 487.36 541.48 540.51 531.56 856.19 

25000

28000

31000

34000

37000

40000

43000

536538540542544

In
te

n
si

ty
 /

C
o
u

n
ts

Binding Energy /eV

Sb(V)
 
3d

3 /2
 

(541.65 eV) 

Sb(III)
 
3d

3/2
 

(540.65 eV) 



 

172 

 

Figures 5.27 (a) and (b) show the Sb 3d5/2 and O 1s region (527 – 537 eV) of typical fitted XPS 

spectra of the 0.5NATO samples calcined at 400 oC and 700 oC. As can be seen, both spectra 

are dominated by the O 1s peak, which, after fitting, is broad and asymmetric, suggesting 

contributions from other oxygen species. Peaks with binding energies in the range 530-531.5 

eV in the spectra of metal oxides are generally attributed to lattice oxygen species (MOx) 

[69][90]. Further, oxygen directly bonded to metals (M-O) gives rise to peaks in the range 

530.0-532.0 eV, and metal hydroxides (M-OH) to peaks with binding energies 531-533.5 

eV[41][52][69][ 91]. Babar and co-workers [41] observed peaks with binding energies between 

530.45 and 530.57 eV in the XPS spectra of an ATO thin film which they attributed to 

chemisorbed oxygen, as well as a peak at 532 eV which they assigned to M-OH. Phani [91] 

attributed peaks at 532 eV and 533.2 eV to O2- and O2
2- species adsorbed at Pd-doped SnO2. 

However, it is not clear that such species are responsible for the asymmetry of the O 1s peak. 

In simple terms, the shape may be due to differences with respect to the lattice oxygen. A 

possible model for this is in the mechanism for oxygen evolution at metal oxides postulated by 

Wu et al.[90] who monitored the oxygen evolution potential (OEP) of ATO anodes and found 

that the amount of lattice oxygen is more than twice the amount of adsorbed hydroxyl oxygen. 

They postulated that the OEP of ATO is related to the lattice oxygen, and proposed the 

following mechanism: 

MOx + H2O   MOx(
•OH) + H+ + e-      (1) 

MOx(
•OH)    MOx+1 + H+ + e-   (2) 

MOx(
•OH)   MOx + H+ + e- + ½ O2   (3) 

MOx+1    ½ O2 + MOx     (4) 

 

As can be seen from reactions (1)-(4), adsorbed hydroxyl radicals are a key intermediate (as is 

adsorbed, molecular oxygen) hence it is not unreasonable to expect MOx(
•OH) to be necessary 

for both O2 and O3. As stated above, Yang and co-workers[4], Cui et al. [92] and Wu et al. [90] 

all postulate that the hydroxyl radical is a key intermediate in O3 and O2 evolution at metal 

oxide anodes and it does not seem unreasonable to restrict the fitting procedures to involve only 

MOx and MOx+1 species, which was the methodology adopted in this thesis. 
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(b) 

Figure 5.27 Typical XPS spectra of the O 1S and Sb 3d5/2 states of the 0.5NATO nanopowders 

calcined at (a) 400 oC and (b) 700 oC: the dotted lines are the raw data and the solid lines are 

the synthesised curve and components. 
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5.6.3 The oxidation state of Ni 

It was not possible to detect Ni in the Ni/Sb-SnO2 nanopowder samples presumably because 

the concentration of Ni in the sampling depth, of ca. 10 nm, was less than the detection limit, 

the upper bound of which was estimated to be about 0.02 at.%.  The technique is not capable 

of probing the internal crystallite surfaces within the grains.  

 

To overcome this problem, ATO powder calcined at 700 oC was mixed with 0.1% of NiCl2 

solution and calcined at 700 oC (700ATO0.1%Ni/700) and was then investigated in order to see 

if Ni could be detected. The XPS spectrum of the Ni 2p region is shown in fig. 5.28. From the 

figure it can be seen that the Ni 2p region shows 4 peaks: Ni 2p3/2, Ni 2p3/2, sat, Ni 2p1/2 and Ni 

2p1/2, sat. The binding energy of the Ni 2p3/2  peak centred at 856.5 eV and Ni 2p3/2, sat peak at 

862.4 eV may be attributed to either Ni(II) or Ni(III) , or a mixture of Ni(II) and Ni(III)[93] 

[94].  

 

 

 

 

 

 

 

 

 

Figure 5.28 The Ni2p region of the XPS spectrum of 700ATO 0.1%Ni/700 nanopowder. 
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It is difficult to distinguish between Ni(II) and Ni(III) in oxygen-containing materials as Ni can 

form a variety of species, e.g. NiO, Ni(OH)2 and NiOOH[93][94]. However, in general, the 

separation of the Ni 2p3/2 main peak and its satellite (Ni 2p3/2, sat) is 6 eV[93][94], and this is 

what was observed in this work, see for example, fig. 5.28; thus, as may be seen from fig. 5.28, 

the Ni 2p3/2 and Ni 2p3/2, sat peaks occur at 856.5 eV and 862.4 eV, respectively. In addition, 

Grosvenor and co-worker[93] observed these feature at 854.6 eV and 861.0 eV, respectively, 

and the authors postulated that the band envelope of the Ni 2p3/2 and Ni 2p3/2, sat peaks could be 

fitted to a series of peaks attributed to Ni(II) and Ni(III) species, that can simulate the main peak 

and satellite peak for Ni(OH)2 and NiOOH.  

5.6.4 Quantitative XPS analysis 

The methodology employed to obtain quantitative information from the XPS data was 

described in section 2.5.5; assuming that the various surfaces were homogeneous, the surface 

composition of Sb, Sn, Ni and O for the various samples were determined and these are 

summarised in table 5.7. As can be seen from table 5.7, there was little or no variation in the 

total Sb content between the Sb-SnO2 and the Ni/Sb-SnO2 samples, ruling out a role for Sb in 

explaining the data shown in fig.5.21.  Further, as would be expected, the Ni content also did 

not appear to influence the incorporation of Sb.  However, it is clear from the table that the 

calcination temperature had a significant effect on the concentration of Sb, and figs 5.29 and 

5.30 show that this was due to Sb(III) enrichment, in agreement with the literature, where it is 

generally accepted that[14][49][63-69]: (i) as stated in section 5.3, Sb ions replace Sn ions in 

the cassiterite lattice without strong modification of the lattice; (ii) both Sb(III) and Sb(V) ions 

are produced following calcining, irrespective of whether SbCl3 or SbCl5 is employed as the 

precursor; (iii) Sb(V) ions are accommodated in the bulk of the lattice due to their similar size 

to Sn(IV) (ionic radius = 0.60 Å, cf. 0.69 Å for Sn(IV)) and preference for centrosymmetric 

coordination sites whilst the Sb(III) ions (0.76 Å) are accommodated at the surface or at grain 

boundaries.  It has been suggested[14][64] that the Sb(III) ions replace the topmost layer of 

Sn(IV) ions, with essentially the bulk composition of SnO2 immediately below, and that the 

Sb(III) ions do not inject electrons into the conduction band. Instead Sb(III) ions trap a pair of 

electrons, giving rise to a lone pair surface state where the electron density sits in a sp hybrid 

state projecting from the surface. The lone pairs can act as two electron donors, allowing 

bonding to single oxygen atoms which are two electron acceptors. The chemisoption of oxygen 

atoms on these surface sites is analogous to the transformation between molecular P4O6 and 
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P4O10 [95], where in the latter each P atom of the P4O6 tetrahedron accommodates an extra 

oxygen atom. Increasing the calcination temperature favours this segregation of Sb(III) and (V) 

with an increasing fraction of Sb(III)[68]. Figure 5.29(b) supports the latter assertion, with more 

Sb(III) segregating to the surface and hence being detected by XPS when calcined at 700 ºC 

compared to 400 ºC.     

Sample Sn(IV) 

/% 

Sb(V) 

/% 

Sb(III) 

/% 

total 

Sb 

/% 

O 

% 

Ni(III) 

+Ni(II) 

/% 

% / 

I  mA  

rO3 / 

nm s-1 

700 ºC Sb-SnO2 /0.1%Ni 

700ºC 

26.8 1.5 2.0 3.5 69.3 0.5 11/82 16 

700 ºC Sb-SnO2/0.01%Ni 

700ºC 

25.4 1.4 2.4 3.8 70.6 0.2 12/74 15 

700 ºC Sb-SnO2/0.1%Ni 

460ºC 

22.3 1.4 1.5 3.0 74.3 0.4 10/44 7.6 

Sb-SnO2 400 ºC 29.9 1.1 1.5 2.6 67.5 - 0 0 

0.5% Ni/Sb-SnO2 400 ºC 32.1 1.3 1.1 2.4 65.5 - 0 0 

1.0% Ni/Sb-SnO2 400 ºC 30.4 1.2 1.3 2.5 67.1 - 0 0 

1.5% Ni/Sb-SnO2 400 ºC 30.2 0.9 1.4 2.3 67.5 - 0 0 

2.0% Ni/Sb-SnO2 400 ºC 31.0 0.9 1.5 2.4 66.6 - 0 0 

Sb-SnO2 700 ºC 29.2 1.5 2.2 3.7 67.1 - 0 0 

0.5% Ni/Sb-SnO2 700 ºC 30.4 1.0 2.2 3.3 66.4 - 15/41 11 

1.0% Ni/Sb-SnO2 700 ºC 30.1 1.1 2.4 3.5 66.4 - 12/43 8.9 

1.5% Ni/Sb-SnO2 700 ºC 29.2 1.2 2.4 3.6 67.2 - 14/44 11 

2.0% Ni/Sb-SnO2 700 ºC 30.0 1.0 2.6 3.5 66.5 - 10/45 7.8 

c-1.0% Ni/Sb-SnO2 460 ºCu 24.1 1.3 2.1 3.4 71.8 0.7   

c-1.0% Ni/Sb-SnO2 460 ºCt 22.8 1.1 2.0 3.0 74.0 0.1 18/75 23 

Table 5.7.  Summary of the XPS data, and the current efficiency ( /%) and current (mA) 

observed using the samples as anodes at a cell voltage of 2.7V. u = untested, t = tested, rO3 = 

rate of ozone evolution. 

 

The observation of an increase in the proportion of Sb(III) compared to Sb(V) on increasing the 

calcination temperature of ATO samples (as well as the segregation of Sb(III) to the surface of 

crystallites) has been made by others. For example, Wang et al[87] found that the surface of 

ATO particles containing 6 mol% Sb sintered at temperatures > 700 oC was predominantly 

occupied by Sb(III) ions. Sun and co-workers[68] also observed the surface segregation of 

Sb(III) at ATO nanoparticles calcined at temperatures > 600 oC, postulating that this process 

results in charge compensation of oxygen vacancies according to [68]: 

Sb5+ + Vo                 Sb3+                                                     (5)   

Where Vo is an oxygen vacancy, or the Sb(III) ions were produced by [96] 
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    Sb5+ + 2e-            Sb3+                                                    (6) 

The production of Sb(V) increases electronic conductivity as the spare electrons are injected 

into the conduction band [85], whereas Sb(III) act as an electron acceptor, hence decreasing 

conductivity [4][16][20][87][97].  

 
 (a) 

 
(b) 

Figure 5.29  Plots of (a) the total Sb content and (b) the Sb(III) content of the SnO2, Sb-SnO2 

and Ni/Sb-SnO2 nanopowders calcined at 400 ºC and 700 ºC as a function of the Ni 

concentration in the precursor solutions, obtained from the XPS data. 
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Figure 5.30.  Plots of the Sb(V) content vs the concentration of Ni in the precursor solutions 

for the Sb-SnO2 and Ni/Sb-SnO2 nanopowders. 

Figure 5.31 shows plots of the rate of ozone evolution vs the Sb(III) content of the samples: as 

may be seen from the figure and table 5.7, the Ni/Sb-SnO2 samples calcined at 400 °C were 

inactive with respect to the electrochemical generation of O3, whereas the samples calcined at 

700 °C were all active.  This, then, begs the question as to whether the content of Sb, and of 

Sb(III) in particular given its location at the surface, influences ozone activity. Further, Sun and 

co-workers[68] postulate that oxygen adsorbs at oxygen vacancies associated with Sb(III). 

Given the key steps in the generally-accepted mechanism for ozone generation [35][98-100] 

are: 

H2O → OHads + H+ + e−         (7) 

OHads + O2ads → HO3ads         (8) 

HO3ads → HO3
+ + e−         (9) 

HO3
+ → O3 + H+          (10) 

clearly the ability to adsorb molecular oxygen, and for this to compete effectively with the 

adsorption of water, is key to the production of ozone.  However formation of ozone must 

clearly compete with desorption of oxygen formed in step 8. Sun et al.[68] state that the binding 

energy of water to Sb-SnO2 is less than at SnO2 itself, and that lattice oxygen becomes more 

available.  The trend observed with the nanoparticulate samples supports the postulate that 

Sb(III) in some way enhances or facilitates ozone activity.   
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Figure 5.31 Plots of the rate of O3 evolution from 0.64 cm2 nanopowder and ceramic anodes 

vs the Sb(III) content obtained from the XPS data. The ozone evolution rate was determined 

after 30 s electrolysis of 0.5M H2SO4 in a UV Vis cuvette cell at 2.7V using a 0.64 cm2 Pt/Ti 

mesh cathode, see text for details.  

 

 

It was possible to detect Ni in the ceramic anodes (c- 1.0% Ni/Sb-SnO2 460 °C, prepared by 

dip-coating) by XPS. Typical spectra are shown in fig. 5.32 showing the Ni 2p region for an 

untested ceramic anode, and an identical anode after being employed to electrolyze 0.5M H2SO4 

for 30 seconds in three separate experiments in the cuvette cell at a cell voltage of 2.7V. In 

contrast to Grosvenor and co-workers[93], the observed peak shapes cannot be synthesised as 

a superposition of Ni(II) and Ni(III) but the prevalence of spectral weight within the data 

towards higher binding energy is suggestive of the dominance of Ni(III).  As can be seen from 

the figure, most of the Ni was lost from the surface following electrolysis (0.7% Ni in untested 

sample compared to 0.1% after testing), whilst c.a. 11.7 ± 0.5% Sb was lost, suggesting 

dissolution as well as physical loss of Ni. The possibility that Ni(III) is the active site for ozone 

evolution at Ni/Sb-SnO2 anodes has been postulated[30][101][102], but not proven as this 

species has not, hitherto, been detected at anode surfaces.  Thus, for example, Wang et al[35] 

presented XPS data on Ni/Sb-SnO2 anodes and claimed that a peak at 855.6 eV was due to the 

Ni 2p3/2 peak of Ni(III). However, no peak was apparent in the published spectrum.  Yang and 

co-workers[101] postulated that a peak at 856.3 eV was due to Ni(OH)2 or NiO.   
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Figure 5.32 XPS spectra of the Ni2p region of (i) untested and (ii) tested ceramic 1% Ni/Sb-

SnO2 anodes.  See text for details. 

 

The fact that Ni could not be detected in the Ni/Sb-SnO2 anodes, yet those calcined at 700 °C 

were all active for ozone generation, is interesting, as is the fact that the anodes are reasonably 

durable when immersed in acid electrolytes under oxidising conditions.  As an example of the 

durability of the ceramic anodes, figure 5.33 shows the results of an experiment in which a 

ceramic anode, prepared by exactly the same method as those in fig. 5.32, was employed to 

electrolyze 0.5M H2SO4 for 30 seconds in three separate experiments at 9 am and 5 pm each 

day (apart from the weekend) for 11 days.  Between each set of experiments, the electrode was 

left immersed in 0.5M H2SO4.  As can be seen from the figure, the current density remained at 

137 ± 16 mA cm-2 and the current efficiency at 10.3 ± 0.7 % over the testing period.  In fact, 

previous workers in Newcastle have previously reported that anodes prepared using an identical 

method except using NiO and Sb2O3 instead of the chloride salts[36][103] remained highly 

active for up to 600 hours during the continuous electrolysis of 1M HClO4 at 100 mA cm-2. In 

addition, when the anodes failed, they did so because of the catastrophic spallation of the Ni/Sb-

SnO2 coating from the Ti substrate.  
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Figure 5.33 The current density and ozone current efficiency observed during the durability 

testing of a ceramic 1% Ni/Sb-SnO2 anode.  The anode was employed to electrolyse 0.5M H2SO4 

twice a day for 30 s, the electrolysis repeated three times for both electrolyses.  Between 

electrolyses, the anode was left immersed in 0.5M H2SO4 at open circuit. 

It is clear from the literature on the dissolution of Ni oxides in acidic electrolytes[104][105] and 

on the basis of the potentials of the various Ni species[106-108] that Ni(III) will dissolve at 

open circuit or low potentials during extended immersion in acid electrolytes, whilst Ni(II) will 

dissolve under all conditions in such electrolyte. The fact that, during the test in fig. 5.33 and 

those reported in references[36][103], the anodes remained active strongly suggests that the 

nickel is present below the surface, with its (strong) influence on ozone activity taking place 

via the ligand effect[109]. Any nickel present on the surface simply dissolves away and is not 

responsible for ozone activity 

5.7 Thermogravimetric analysis 

Figure 5.34(a) shows the thermogravimetric response of the nanopowders produced by the 

hydrothermal method and calcined at 400 °C, and figure 5.34(b) the corresponding differential 

plots. The SnO2 data have been discussed previously in section 4.6 [110].  In brief, based on 

the differential TGA response and IR data, the differential plot for SnO2 calcined at 400 °C in 

fig. 5.34(a) can be considered in terms of five temperature regions: (I) 0 – ca. 65 °C, (II) 65 – 
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150 °C, (III) 150 – 450 °C, (IV) 450 °C – 900 °C and (V) 900 – 25 °C, and these are employed 

to interpret the Sb-SnO2 and Ni/Sb-SnO2 data. The samples calcined at 700 °C showed very 

similar behaviour (see figures 5.35(a) and (b)), except with smaller mass changes compared to 

those observed using the 400 °C samples.  

 

It is clear from figs 5.34(a) and 5.35(a) that doping with Sb has a significant effect upon the 

TGA response. Thus, whilst the general structures of the various plots in the figures are very 

similar in that all show the five regions discussed above, the total mass losses on heating to 900 

°C were higher for the Sb-containing samples than the undoped SnO2 nanopowders.  Thus, for 

the samples calcined at 400 °C, the total mass loss observed for SnO2 was ca. 1.5% compared 

to 3 – 3.8% for the Sb-containing samples; it does not appear that the Ni content had any 

significant effect on this mass loss. This is also seen clearly in the differential plots (figs. 5.34(b) 

and 5.35(b)), with a large increase in the first peak due to the loss of water and a shift of c.a. 5 

°C to higher temperatures, along with the appearance of peaks near 266 °C, 333 °C and 515 °C 

in addition to the peak near 450 °C in the response of the undoped SnO2.  Given the simplicity 

of the system and based on the literature[111] these peaks at temperatures > 150 °C must be 

associated with the dehydroxylation of the surfaces of the samples (see below), with the 

additional features due to the presence of Sb.   
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(b) 

Figure 5.34 (a) The thermogravimetric responses of the SnO2-containing nanopowders 

produced via the hydrothermal method and calcined at 400 °C. The samples were heated in 40 

cm3 min-1 flowing air at 5°C min-1 from room temperature to 900 °C.  The samples were then 

held at 900 °C for 10 minutes and then cooled at 5°C min-1 to room temperature. See Table 5.9 

for sample masses. (b) The differential plots of the curves in (a). 
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 (b) 

Figure 5.35 (a) The thermogravimetric responses of the SnO2-containing nanopowders 

produced via the hydrothermal method and calcined at 700 °C.  The samples were heated in 40 

cm3 min-1 flowing air at 5°C min-1 from room temperature to 900 °C.  The samples were then 

held at 900 °C for 10 minutes and then cooled at 5°C min-1 to room temperature. See Table 5.9 

for sample masses.  (b) The differential plots of the curves in (a). 

 

Regions (I) and (II) 

 

Mass spectroscopy showed only the evolution of water (m/z = 18) from SnO2[110] and Sb-

SnO2 samples calcined at 400 °C and 700 °C  with maxima corresponding to the minima in the 

corresponding differential plots (e.g. figs. 5.34(b) and 5.35(b)). As stated in section 4.6, based 

on the model of Morishige and co-workers[112] and Morimoto et al.[113][114], the mass loss 

in region (I) of the SnO2 response was attributed to the loss of physisorbed water from Sn(100) 

facets, having little or no hydrogen bonding to the OH groups thereon due to the H atoms of the 

latter occupying the hollows between the O atoms, and mass loss in region (II) was due to the 

loss of water hydrogen-bonded to OH groups on the (111) and (110) facets of the SnO2. Overall, 

assuming an area of ca. 15 x 10-20 m2 for the water molecule[111] the total mass loss in regions 

(I) and (II) corresponded to the loss of 0.39[110] monolayers of water. Table 5.8 summarizes 

the coverage of the nanopowders by water at 25 °C using the same method and assumptions, 

and Figure 5.36 shows a plot of the mass of H2O released from the nanopowder samples 

calcined at 400 °C as a function of their total surface areas calculated from the crystallite sizes 

obtained from the XRD measurements; the corresponding data for the samples calcined at 700 
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°C are shown in fig. 5.37. In both cases, the plots are fairly linear, supporting the postulate that 

water has access to the internal surface area of the crystallites within the SnO2 grains.  

 

Sample Calcination 

Temp. /°C 

Mass 

/mg 
H2O 

SnO2   400 56.0 0.10 

Sb-SnO2  400 45.7 0.21 

0.5%Ni/Sb-SnO2  400 45.7 0.32 

1.0%Ni/Sb-SnO2  400 88.0 0.51 

1.5%Ni/Sb-SnO2  400 88.1 0.46 

2.0%Ni/Sb-SnO2 400 45.9 0.39 

SnO2 700 57.8 0.03 

Sb-SnO2 700 45.5 0.13 

0.5%Ni/Sb-SnO2 700 45.4 0.18 

1.0%Ni/Sb-SnO2  700 93.3 0.18 

1.5%Ni/Sb-SnO2  700 92.5 0.19 

2.0%Ni/Sb-SnO2 700 45.9 0.16 

700°C Sb-SnO2/0.1%Ni 700 56.3 0.03 

 

Table 5.8. The coverage of the nanopowder samples by adsorbed water at room temperature.  

Taken from the mass loss between 150 ºC and 900 ºC in 1st heating cycle of TGA runs and using 

surface areas calculated from XRD crystallite sizes.    

 
 

 

 

 

 

 

 

 

 

Figure 5.36 Plots of the mass of water released during heating up to 150 ºC in TGA experiments 

conducted using all nanopowder samples calcined at 400 ºC vs the surface area of the particles 

calculated from the crystallite sizes using the Scherrer equation and assuming spherical 

crystallites. 
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Figure 5.37  Plots of the mass of water released during heating up to 150 ºC in TGA experiments 

conducted using all nanopowder samples calcined at 700 ºC vs the surface area of the particles 

calculated from the crystallite sizes using the Scherrer equation and assuming spherical 

crystallites. 

As expected, the total surface areas of the samples calcined at 700 °C are lower than the 400 

°C samples, and the amount of adsorbed water released is correspondingly lower.  It is clear 

from table 5.8 that the addition of Sb significantly increases the coverage by water: the undoped 

samples show a coverage of 0.1 and 0.03 for the powders calcined at 400 ºC and 700 ºC, 

respectively: addition of Sb increases these to 0.21 and 0.13, respectively. Dusastre and 

Williams[49], following on from the work of Brown and Patterson[115] postulate the surface 

enrichment of SnO2 by Sb(III), and that water preferentially adsorbs at the substituted sites; the 

marked increase in adsorbed water in table 5.8 on doping the SnO2 samples with Sb supports 

this theory. Further, the authors suggest that oxygen adsorbs on oxygen vacancies: in the 

absence of Sb, the active sites are Sn(II) ions associated with oxygen vacancies, whilst in the 

presence of Sb, the sites are Sb(III) ions associated with the vacancies; the adsorption of oxygen 

competes with that of water, with the binding energy of water on these vacancies being less on 

Sb(III) sites than Sn(II). Oxygen adsorption is discussed in further detail below. Figure 5.38 

shows a plot of the water coverage as a function of the Ni content in the precursor solutions: 

clearly, addition of Ni has little effect upon water coverage for samples calcined at 700 °C, but 

a marked effect upon those calcined at 400 °C, with the coverage rising to  a maximum at 1%.  

This suggests that one reason for the inactivity of the samples calcined at 400 ºC is that the 
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coverage of water is too high, and prevents the adsorption of molecular oxygen: from the data 

in table 5.7 this links in to the lower amount of Sb(III) on the 400 °C samples. It does not seem 

unreasonable to postulate that a minimum surface coverage by Sb(III) is required to ensure 

sufficient adsorbed molecular oxygen can compete with water for the active sites.  A plot of 

Sb(III) content vs water coverage (figure 5.39) supports the postulate that too high a water 

coverage is linked to low Sb(III) and zero ozone activity. 

 

 

Regions (III) and (IV) 

 

As mentioned in previous chapter, it was postulated[110]  that the process taking place in 

regions (III) and (IV) was the dehydration of SnOH groups on the surface according to: 

2SnOH  Sn-O-Sn +H2O                                         (11) 

 

 

Figure 5.38 Plots of water coverage at 25 ºC on the Sb-containing nanoparticles calcined at (i) 

400 °C and (ii) 700 °C calculated from TGA and XRD data vs the Sb(III) content of the samples, 

determined using XPS. 
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Figure 5.39 Plots of water coverage at 25 ºC on the Sb-containing nanoparticles as a function 

of Sb(III) content. 

 

Table 5.9 shows the ratio of the OH groups to surface Sn atoms for the SnO2, Sb-SnO2 and 

Ni/Sb-SnO2 nanopowders assuming 9.1 x 1014 Sn atoms per cm2 [116], calculated on the basis 

of equation (11) (see Appendix 4), crystallite surface areas calculated from the XRD data and 

the mass losses between 150 °C and 900 °C in the TGA experiments.  If the value for the Sb-

SnO2 calcined at 400 °C is taken as an outlier, then the data suggest that the addition of Sb and 

Ni to SnO2 has very little effect upon the hydroxylation of the surface: however, the calcination 

temperature does have a marked effect, almost halving the number of OH species per Sn atom 

when increasing the calcination temperature from 400 to 700 °C. This is interesting to note 

given that the Ni/Sb-SnO2 samples calcined at 700 °C are all active with respect to ozone 

generation and the corresponding samples calcined at 400 °C are inactive and, as reported in 

Chapter 3, the presence of OH adsorbed on the (111) and (110) facets of Sn encourages water 

adsorption due to hydrogen bonding.  Further, Sb-SnO2 anodes tend to fail, sometimes after 

fairly short electrolysis times, failure being defined as the cell voltage rising to e.g. 5V during 

constant current electrolysis.  This failure has been attributed to the passivation of the electrode 

surface[69][117-119]; for example, Montilla and co-workers[69][118][119] attribute the 

inactivation of Sb-SnO2 electrodes to the formation of a passivating SnOH layer on the surface.   
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Sample Calcination 

Temp. /°C 

Mass 

/mg 

Mass change 

/% 

XRD 

/m2 g-1 

NOH/NSn 

SnO2   400 56.0 1.28 60.4 1.57 

Sb-SnO2  400 93.0 2.16 187.7 0.85 

0.5%Ni/Sb-SnO2  400 93.0 2.27 113.6 1.47 

1.0%Ni/Sb-SnO2  400 88.0 2.58 118.3 1.61 

1.5%Ni/Sb-SnO2  400 88.1 2.38 128.9 1.36 

2.0%Ni/Sb-SnO2 400 89.0 2.36 104.0 1.67 

SnO2 700 57.8 0.45 40.7 0.81 

Sb-SnO2 700 93.0 1.00 90.9 0.81 

0.5%Ni/Sb-SnO2 700 82.0 1.03 80.7 0.94 

1.0%Ni/Sb-SnO2  700 93.1 0.93 83.8 0.82 

1.5%Ni/Sb-SnO2  700 93.3 0.93 85.5 0.80 

2.0%Ni/Sb-SnO2 700 93.3 1.01 78.5 0.95 

700°CSb-SnO2/0.1%Ni 700 56.3 0.69 83.1 0.61 

Table 5.9.  The coverage of SnO2 by OH groups.  Calculated on the basis of the data obtained 

on heating each sample for the first time using the XRD area.   

Region (V) and oxygen uptake 

 

In our previous paper[110] we attributed the mass increase in region (V), at least from 900 to 

150 °C,  to the uptake of molecular oxygen via adsorption, simply on the basis of the chemical 

simplicity of the system.  Figure 5.40 shows plots of the mass gain in region (V) for the various 

samples. It is not clear from the figure that there is any difference between the mass gain in 

region (V) that relates to electrode composition.   

 

Figure 5.40 Plots of the mass gain during the cooling down of the SnO2, Sb-SnO2  and Ni/Sb-

SnO2 nanopowder samples calcined at 400 ºC and 700 ºC from 900 ºC to room temperature 

in the TGA experiments. See table 5.9 for sample masses. 
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Previously, we attributed the inflexion in the TGA response of SnO2 in fig. 5.34(a) marked with 

*, and similarly marked on fig. 5.34(b), to the uptake of oxygen[120] which was largely masked 

due to the processes associated with the dehydration and dehydroxylation of the surface.  In 

order to explore this, we carried out sequential heating and cooling cycles, and figure 5.41(a) 

shows the typical data so obtained using the SnO2 sample calcined at 400 °C, whilst fig. 5.41(b) 

shows the 4th heating and cooling cycle for the SnO2, Sb-SnO2 and Ni/Sb-SnO2 samples 

calcined at 400 °C.  The analogous plot to those in fig. 5.41(b)) for the samples calcined at 700 

°C are shown in fig. 5.42. As can be seen, all the responses are similar, and from cycle 2 

onwards, all (eventually) return to 100% and hence the processes responsible for the behaviour 

in figs. 5.41(b) and 5.42 are reversible.  The similarity between the Sb-containing samples is 

emphasised in figs 5.43 and 5.44 which show the differential plots of the data in figs. 5.41(b) 

and 5.42.  We attribute the increase in mass to the reversible uptake of oxygen at the crystallite 

boundaries[120]: it is generally accepted that oxygen adsorbs on the surface of SnO2, and can 

then diffuse into the inner grain boundary (i.e. crystallite) surfaces of porous SnO2[116][121].  

The adsorbed O2 that was initially gained up to 350 – 500 °C is then lost on heating to 900 °C, 

with additional loss of oxygen – possibly due to oxygen desorbing from the crystallite surfaces 

within the grains. On cooling, the initial state is regained.  

 

 
 (a) 

0 100 200 300 400 500 600 700 800 900

98.6

98.8

99.0

99.2

99.4

99.6

99.8

100.0

 Run 1

 Run 2

 Run 4

98.571

99.914

98.700

98.599

M
a
ss

 /
%

 

Temperature /
o
C

SnO
2

 400C 56 mg BET 50 m
2
 g

-1
 Jan 2016

100.092



 

191 

 

 
(b) 

Figure 5.41 (a) The thermogravimetric response of 56.0 mg of the SnO2 nanopowder produced 

via the hydrothermal method and calcined at 400 °C.  The sample was heated in 40 cm3 min-1 

flowing air at 5°C min-1 from room temperature to 900 °C.  The sample was held at 900°C for 

10 minutes and then cooled at 5°C min-1 to room temperature.  This cycle was repeated a further 

three times. (i) Cycle 1, (ii) cycle 2 and (iii) cycle 4.  (b) The thermogravimetric responses of 

the SnO2-containing nanopowders produced via the hydrothermal method and calcined at 400 

°C.  The samples were heated in 40 cm3 min-1 flowing air at 5°C min-1 from room temperature 

to 900 °C. The samples were held at 900°C for 10 minutes and then cooled at 5°C min-1 to room 

temperature.  This cycle was repeated a further three times.  Only the fourth cycles are shown.  

See table 5.10 for sample masses. 

 
Figure 5.42 The thermogravimetric responses of the SnO2-containing nanopowders produced 

via the hydrothermal method and calcined at 700 °C.  The samples were heated in 40 cm3 

min-1 flowing air at 5°C min-1 from room temperature to 900 °C.  The samples were held at 

900°C for 10 minutes and then cooled at 5°C min-1 to room temperature.  This cycle was 

repeated a further three times.  Only the fourth cycles are shown. See table 5.10 for sample 

masses. 
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Figure 5.43 The differential mass plots of the heating parts of the TGA responses in fig. 

5.41(b). 

 
Figure 5.44 The differential mass plots of the heating parts of the TGA responses in fig. 5.42. 
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Table 5.10 shows the number of oxygen molecules adsorbed per Sn atom during the initial 

stages of heating in figs. 5.41(b) and 5.42, and the nett loss of O2 molecules per Sn atom on 

heating from 25 °C to 900 °C, assuming 9.1 x 1014 Sn atoms cm-2 [116] and using the XRD 

crystallite surface areas. Clearly, the addition of Sb has a very significant effect upon O2 uptake, 

which drops by a factor of ca. 6 for both the samples calcined at 400 °C and those calcined at 

700 °C. Addition of Ni then increases the uptake slightly in both cases. Considering only the 

Ni/Sb-SnO2 samples in table 5.10, the ozone-active samples calcined at 700 °C show a higher 

uptake of oxygen than those calcined at 400°C, in agreement with our postulate that molecularly 

adsorbed O2 is key to ozone activity.  Figure 5.45 shows a plot of the O2 uptake vs the Sb(III) 

content: as can be seen, it appears that there is, again, a correlation.  Interestingly, and in contrast 

to the data in figs. 5.41(b) and 5.42, the fully hydrated samples do not show an initial increase 

in mass on heating, see figs 5.34(a) and 5.35(a), suggesting that water inhibits O2 adsorption, 

in agreement with the discussion above.  

 

 

Sample Mass 

/mg 

%mass 

gaina 

XRD 

area  

/m2 g-1 

NO2/NSn 

GAINED 

%mass 

lossb 

NO2/NSn 

Nett 

LOSS 

SnO2 400C 56.0 0.092 60 0.032 0.06 0.021 

Sb-SnO2 400C 93.0 0.045 188 0.005 0.12 0.013 

0.5%Ni/Sb-SnO2 400C 93.0 0.031 114 0.006 0.12 0.023 

1.0%Ni/Sb-SnO2 400 ºC 88.0 0.049 118 0.009 0.12 0.022 

1.5%Ni/Sb-SnO2 400 ºC 88.1 0.046 129 0.007 0.12 0.019 

2.0%Ni/Sb-SnO2 400 ºC 89.0 0.040 104 0.008 0.13 0.026 

SnO2 700C 57.8 0.092 41 0.047 0.09 0.044 

Sb-SnO2 700C 93.0 0.036 91 0.008 0.12 0.028 

0.5%Ni/Sb-SnO2 700C 82.0 0.070 81 0.018 0.19 0.048 

1.0%Ni/Sb-SnO2 700 ºC 93.1 0.050 84 0.012 0.12 0.030 

1.5%Ni/Sb-SnO2 700 ºC 93.3 0.059 86 0.014 0.10 0.024 

2.0%Ni/Sb-SnO2 700 ºC 93.3 0.057 79 0.015 0.10 0.026 

700C Sb-SnO2/0.1% Ni 

700C 

56.3 0.023 83 0.006 0.15 0.038 

a = mass gain between 25 ºC and 300 – 500ºC. b = nett mass loss between 25 ºC and 900 ºC 

during heating cycle.    

 

Table 5.10. The number  of oxygen molecules per Sn atom gained on heating typical 

nanopowder samples from 25 ºC to ca. 300 - 350 ºC, and the nett number lost per Sn atom 

between 25 ºC and 900 ºC during the heating step, data from the fourth of successive 

heating/cooling cycles. 
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Figure 5.45 A plot of the number of O2 molecules gained per Sn atom for all the Sb-SnO2 and 

Ni/Sb-SnO2 nanopowders calcined at 400 ºC vs the Sb(III) content, from the TGA data on the 

heating part of the 4th cycles up to ca. 350 ºC, the BET surface areas of the samples and XPS 

data.  See table 5.10 for sample masses. 

 

 The Sb-SnO2/Ni samples 

 

As can be seen from figs. 5.3(c) (i) and (ii), there is no change in the colour of the Sb-SnO2 700 

°C sample on adding the Ni and heating again to 700 °C, as may be expected.  The XRD data 

are very similar to those of the other samples, showing only cassiterite.  The VBET/VXRD of the 

700 ºC Sb-SnO2/0.1% Ni 700 ºC powder was 5.5, ca. 3x lower than those of the Ni/Sb-SnO2 

700 °C samples.  This implies that the elimination of internal grain boundaries is promoted by 

the second calcination.  As can be seen from table 5.7, all three Sb-SnO2/Ni samples were active 

for O3, with the samples calcined at 700 °C after Ni addition both giving the same rate of O3 at 

ca. 15 – 16 nanomoles s-1, whilst the sample calcined at 460 ºC after Ni addition gives a rate ca. 

half those of the other two samples.  The Ni content at the surface is ca. 2 -3 times less for 700 

°C Sb-SnO2/0.01% Ni 700 °C compared to 700 ºC Sb-SnO2/0.1% Ni 700 °C, and the latter is 

comparable to that of the 700 ºC Sb-SnO2/0.1% Ni 460 ºC sample.  This is not surprising based 

on the model developed above: addition of a Ni solution of higher concentration yields more 

surface Ni, but this is not the species responsible for O3 activity, and simply dissolves away on 

immersion in acidic electrolyte. The lower O3 activity of the 700 ºC Sb-SnO2/0.1% Ni 460 ºC 
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may be related to the lower Sb(III) content. To our knowledge, this is the first report of ozone 

generation by nanoparticulate Ni/Sb-SnO2 anodes.  

 

Figures 5.46 and 5.47 show plots of current efficiency and current density, respectively, vs Ni 

the content of the 700 °C Sb-SnO2/Ni T2 samples with T2 = 460 °C and 700 °C.  It is clear that 

the initial temperature employed to calcine the Sb-SnO2 nanopowders (T1) essentially 

determines the current efficiency, with the subsequent calcination temperature (T2) of the 700 

°C Sb-SnO2/Ni T2 having little effect.  In contrast, T2 had a marked effect upon the current 

density observed. These data suggest that, in agreement with the discussions above, Sb is not 

simply important to induce electronic conductivity, but also plays a significant role in the 

surface chemistry, and in particular, with respect to ozone generation.  In addition, it is clear 

from the figures that, despite a hundred-fold difference in the amount of Ni actually added to 

the surface, there is a much smaller difference in the observed current densities and efficiencies, 

supporting the postulate that the Ni at the surface simply dissolves away and is unimportant 

with respect to ozone generation: it is the subsurface Ni, which cannot be detected, that 

catalyses O3 evolution.  The latter is supported by the data for the Ni-Sb/SnO2 samples calcined 

at 700 °C in fig. 5.31, all of which show comparable activities for O3, despite a fivefold 

difference in Ni concentration in the precursor solutions, the Ni undetected by XPS. 

Figures 5.48 and 5.49 show that the TGA responses of the 700 ºC Sb-SnO2/0. 1% Ni 700 ºC 

closely resemble those of the Sb-SnO2 and Ni/Sb-SnO2 samples calcined at 700 ºC, differing 

only in magnitude.     

Model 

To integrate the observations reported above, we propose a model for the surface behaviour of 

Sb-SnO2, based on the concept illustrated in fig. 5.50. BET surface area measurements give 

information about the particle surface area as nitrogen is unable to access internal grain 

boundary interfaces beneath the external particle surface at 77K. By way of contrast XRD gives 

an estimate of crystallite size, limited by the internal interfaces between domains of identical 

crystallographic orientation. 
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Figure 5.46 Plots of current efficiency vs Ni content of the 700 °C Sb-SnO2/Ni T2 samples with 

T2 = 460 °C and 700 °C.   

 
Figure 5.47 Plots of current density vs Ni content for the samples in fig. 5.46. 
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Figure 5.48 A comparison of the TGA responses of the SnO2, Sb-SnO2 and Ni/Sb-SnO2 

nanopowders calcined at 700 °C with that of the 700 °C Sb-SnO2/0.1% Ni 700 °C sample.  

See table 5.9 for sample masses. 

 

 

Figure 5.49 The differential mass plots of the heating parts of the TGA responses in fig. 5.48. 
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To explain the experimental observations reported in this thesis, we propose that water (in the 

form of OH) accesses internal crystallite surfaces through diffusion of OH, and this then 

controls the formation of O3 as explained earlier in reactions (7)-(10). However, given that N2 

cannot access the internal crystallite surfaces it is unlikely that O3 can be generated on these 

and subsequently diffuse to the particle surface. Instead, we propose that O3 is generated at 

particle surfaces from OH that is able to diffuse via crystallite surfaces. 

 
Figure 5.50 Conceptual model of the grains and crystallites of the Ni/Sb-SnO2 nanopowders. 

In addition to the morphological effects, there is clearly a synergic interaction between nickel 

and antimony because Sb-doped SnO2 is inactive with respect to ozone evolution in the absence 

of Ni. On the other hand Ni doping by itself does not give the sort of conductive oxide required 

for use as an electrode. Formally Ni2+ would act as a two-hole p-type dopant, but SnO2 is not 

amenable to p-type doping. This leads to the following considerations: Ni(II) has almost exactly 

the same ionic radius as Sn(IV) but clearly has a lower charge; Ni(II) incorporation into 

subsurface region of SnO2 can be compensated by oxygen vacancies to maintain charge 

neutrality. We suggest that these vacancies may promote dissociation of O2ads appearing in step 

(8) in the scheme discussed earlier: a single O atom remains chemisorbed to donor Sb(III) sites 

and the second O atom diffuses onto a bulk oxygen vacancy site in the subsurface region where 

it can trap two electrons from the conduction band to give O2-
sub. This will inhibit desorption of 

oxygen. However we speculate that the process is reversible so that O may shuttle back to the 
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surface. Instead of concerted addition of O2 to OH we may envisage an alternative sequence of 

steps: 

 O2ads + 2e−
CB → Oads + O2−

sub   (12) 

 OHads + Oads → HO2ads    (13) 

 HO2ads + O2−
sub → HO3ads + 2e−

CB  (14) 

 HO3ads  → O3 + H+ + e−      (15) 

 

This proposal is speculative and does not involve participation by Ni(III) as has been proposed 

elsewhere; on the other hand, it does explain the obvious synergy as the mechanism requires 

both subsurface oxygen vacancies and electrons in the conduction band. 

5.8 Conclusions 

The Sn, Sb+Sn, Ni+Sb+Sn nanopowders all exhibited a single-phase, cassiterite structure with 

Sb and Ni ions replacing Sn(IV) in the crystal lattice and no effect upon the unit cell dimensions. 

In contrast, doping SnO2 with Sb had a marked effect upon crystallite size, decreasing by over 

50%, clearly indicating the presence of Sb at the surface of the crystallites and its consequent 

influence on sintering, a conclusion supported by XPS data. The subsequent addition of Ni had 

little or no effect. 

Surface areas calculated by BET measurements gave significantly lower values than those 

calculated from crystallite sizes via XRD. TGA data clearly showed the latter to be more 

relevant as the internal surfaces of the crystallites which comprise the large grains were 

accessible in term of, for example, the adsorption of water. The addition of Sb to SnO2 also had 

a very marked effect upon the adsorption of water, increasing it significant. However, whilst a 

certain, too high a coverage blocks the essential adsorption of molecular oxygen. 

In Ni and Sb co-doped SnO2, the Ni and Sb ions replace Sn(IV) ions with no effect upon the 

unit cell dimensions.  The Sb is present as Sb(V) in the crystal bulk, with segregation of Sb(III) 

to the surface, whilst Ni(II) occupies Sn(IV) sites in the subsurface region at concentrations of 

< 0.02 at.%.  Sb(V) confers electronic conductivity on SnO2 whilst both Ni(II) and Sb(III) are 

essential for ozone generation with a c.a. 1.5-2.5 at% Sb required for latter, Sb(III) providing 

active sites for O2 and H2O adsorption. Ni(II) incorporation into the subsurface region is 

compensated by oxygen vacancies which promote the dissociation of adsorbed molecular 
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oxygen to give single oxygen atoms on Sb(III) sites.  These atoms react with adsorbed hydroxyl 

molecules to produce O3. Ozone generation is controlled by the diffusion of OH radicals to the 

internal crystallite surfaces.  
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Chapter 6 Electrochemical dye decolourisation by ozone 

6.1 Introduction 

The aim of the work reported in this chapter was to investigate the decolourisation of a reactive 

dye in water using the ceramic and powder anodes. Reactive Blue 50 (RB50, as a model for 

anthraquinone dyes) was employed to investigate the activity of the anodes with respect to the 

removal of colour (decolourisation), total organic carbon (TOC) and chemical oxygen demand 

(COD). 

6.2 Ozone generation for decolourisation of the RB50 dye water 

As discussed in section 2.6.2, 0.64 cm2 NATO anodes were used in the cuvette cell with 0.64 

cm2 Pt/Ti mesh as cathode in 0.5 M H2SO4 as a function of the cell voltage between 2.7 V and 

2.9 V. From sections 3.5 and 3.6, it was found that the maximum current efficiency was 

obtained for a precursor solution composition of Sn:Sb:Ni=93.5:6:0.5, and this was chosen to 

prepare the electrodes employed in this experiment. The ceramic anode and powder anodes 

used were CSP7-0.5NATO/B and PSP9-0.5NATO/B.  

Figures 6.1(a) and (b) show typical UV-Vis spectra of CSP7-0.5NATO/B and PSP9-

0.5NATO/B anodes at 2.7 V as a function of electrolysis time, respectively. As can be seen 

from fig. 6.1, both anodes types were active with respect to ozone generation. In addition, it is 

clear that the PSP9-0.5NATO/B anode produced more bubbles than the CSP7-0.5NATO/B 

anode, as may be seen from the larger baseline offsets of the spectra in fig. 6.1(b) compared to 

fig. 6.1(a). This may be due to bubble detachment being easier at the ceramic surface. Further, 

there is an increasing absorption at λ< 230 nm which may be due to the production of, for 

example, H2O2 [1].  

Figures 6.2 and 6.3 show the ozone concentration as a function of electrolysis time observed 

using the ceramic and powder anodes, respectively, at cell voltages of 2.7 V to 2.9V. It can be 

seen from the figures that the O3 concentrations using both anodes increased with increasing 

electrolysis time up to 180 s for the ceramic anode, and 240 s for the powder anode, after which 

they decreased slightly then remained constant at all voltages. The ozone concentration at 300s 

in fig 6.2 increased by 26% at 2.8 V and 15% at 2.9 V compared to that observed at 2.7 V. 

Thus, the maximum ozone concentration of c.a. 43 mg dm-3 was obtained at a cell voltage of 
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2.8 V at 120 s. The data obtained using the powder anode were similar to those using the 

ceramic anode in that, at all three cell voltages, the ozone concentration in the cell increased up 

to ca. 120 s then changed relatively little and the optimum production of ozone was observed 

at 2.8V. However, the maximum ozone concentration obtained using the ceramic anodes was 

ca. 3x that obtained using the powder anodes. Wang et al.[2] reported that a 0.64 cm2 NATO 

anode produced 34 mg dm−3 ozone at a current density of ca. 15 mA cm2 at 2.2 V in 0.1 M 

H2SO4 with an optimum ratio of Sn:Sb:Ni = 500:8:1 in the precursor solution. Moreover the 

authors reported that the ozone concentration increased with increasing cell voltage from 1.8 V 

to 2.2 V after which it decreased at higher voltages. From this result, they postulated that the 

ozone concentration decreased at higher cell voltages due either to more oxygen produced 

compared to ozone or that the ozone decomposed to oxygen. However, Kraft and co-

workers[3], Arihara et al.[4] and Da Silva et al.[5] all have reported that ozone production 

increased with increasing current density. 
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(b) 

Figure 6.1 Typical UV-Vis spectra collected for electrolysis time of 30 s, 180 s and 300 s during 

electrolysis of 0.5H2SO4 at a cell voltage of 2.7 V using: (a) the CSP7-0.5NATO/B ceramic 

anode and (b) the PSP9-0.5NATO/B powder anode. 

 
 

Figure 6.2 Plots of the ozone concentration obtained using the CSP7-0.5NATO/B ceramic 

anode as a function of electrolysis time in 0.5M H2SO4 at a cell voltage of 2.7V, 2.8V and 2.9V 

in the cuvette cell. 
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Figure 6.3 Plots of the ozone concentration obtained using the PSP9-0.5NATO/B powder anode 

as a function of electrolysis time in 0.5M H2SO4 at a cell voltage of 2.7V, 2.8V and 2.9V in the 

cuvette cell. 

Figures 6.4 and 6.5 show the current densities and the ozone current efficiencies, respectively, 

of the ceramic and powder anodes measured as a function of electrolysis time at a cell voltages 

of 2.7 V, 2.8 V and 2.9 V for the experiments depicted in figs. 6.3 and 6.4.  As can be seen from 

fig. 6.4, the behaviour of the current densities observed using the ceramic anode fall into two 

groups: at 2.7 V, the current density falls during the first 60s electrolysis before remaining 

approximately steady at 0.11±0.01 A cm-2. In contrast, at 2.8 V and 2.9 V, the current densities 

increased during the first 120s electrolysis before remaining constant at 0.17±0.01 A cm-2 and 

0.22±0.01 A cm-2, respectively. It is worth noting that the current densities observed using the 

ceramic anodes were significantly higher than the 0.1 A cm-2 reported by Christensen et al. [6] 

[7]. Chan and co-workers [2] also observed significantly lower current densities of 15 mA cm-

2, but at a lower cell voltage (2.2 V). 

The current densities observed using the powder anode all decreased steadily with electrolysis 

time, from 0.062 A cm-2, 0.084 A cm-2 and 0.1 A cm-2 at 30 s and 2.7 V, 2.8 V and 2.9 V, 

respectively, to 0.045 A cm-2 at 300 s. The decreasing current densities at high voltage may be 

due to the physical loss of catalyst during experiment.  
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It can be seen from fig. 6.5 that both anodes showed the same behaviour in that the current 

efficiencies decreased steadily with electrolysis times at all voltages. Interestingly, as can be 

seen from the figure, the ozone current efficiencies of both anodes were comparable, even 

though the current densities were significantly different. Thus, the current efficiency of the 

ceramic anode at 2.7 V was 17% at 30 s and 4% at 300 s; similarly, for the powder anode, the 

efficiency varied from 15% at 30 s to 3% at 300 s. These results are in agreement with the works 

of Parsa and co-workers[8][9] and Wang and Kuang[10]. The former studied electrochemical 

ozone generation at 2.5 cm x 2.5 cm NATO anodes at 2.4 V for 600 s. They found that the 

current density and current efficiency decreased with increasing the time. The latter authors 

employed a 16 cm2 Ni/Sb-SnO2 anode and reported that the current efficiency of 16.7% 

decreased as a function of electrolysis time. This decrease at constant current density (6 mA 

cm-2) suggests either the switching over of O3 active sites to O2 [2][11-13] and/or the loss of O3 

via, for example, reaction with OH  [3][4][11][14]: 

OH• + O3      O2 + HO•
2     (1)  

It is interesting to note that the current efficiencies of the powder anodes were comparable to 

those obtained using the ceramic anodes, and the current densities only a factor of 2 lower. 

Figure 6.4 Plots of the current densities obtained using the ceramic anode (blue) and powder 

anode (orange) as a function of electrolysis time during the electrolysis of 0.5M H2SO4 at: 2.7V 

(), 2.8V () and 2.9V (), in the cuvette cell. 
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Figure 6.5 Plots of the current efficiencies obtained using the ceramic anode (blue) and powder 

anode (orange) as a function of electrolysis time during the electrolysis of 0.5M H2SO4 at: 2.7V 

(), 2.8V () and 2.9V ( ), in the cuvette cell. 

 

6.3 Effect of ozone and cell voltage on decolourisation of the RB50 dye 

Figure 6.6 shows UV-Vis spectra of various concentrations of RB 50 in 0.5M H2SO4 and fig. 

6.7 shows the calibration curve using the absorbance of the 625 nm peak; this peak is generally 

attributed to the anthraquinone moiety of the dye, and hence was employed to measure visible 

colour removal [7]. Three different dye concentrations were employed in the work in this 

section: 15 mg dm-3, 75 mg dm-3 and 150 mg dm-3
 RB50 in 0.5M H2SO4 solutions were 

electrolyzed in the UV-Vis cuvette cell.  
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Figure 6.6 UV-Vis spectra of various concentrations of RB 50 dye in 0.5M H2SO4.  

 

Figure 6.7 The calibration curve from the experiment depicted in fig. 6.6, using the 

absorbance of the 625 nm peak.  
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Typical UV-Vis spectra of the RB 50 dye collected during the electrolysis of 150 mg dm-3 RB 

50 at 2.7 V as a function of electrolysis time are shown in fig. 6.8.  As may be seen from the 

figure, the absorption is reduced across the whole spectral range leaving only a peak at ~220 

nm and a shoulder near 270 nm suggesting that, not only has complete decolourization taken 

place, but also that the molecule has fragmented such that there are little or no conjugated 

double bonds left [7][15]. Figures 6.9 (a) and (b) show typical photographs of the RB 50 

solutions in 0.5M H2SO4 at concentrations of 15 mg dm-3, 75 mg dm-3 and 150 mg dm-3 prior 

to electrolysis and after electrolysis using the powder anode at 2.7 V for 30s, respectively. As 

can be seen from figs 6.9(a) and (b), electrolysis of all three solutions of RB50 dye using the 

PSP9-0.5NATO/B powder anode for 30s resulted in decolourization, with the amount of 

decolourization decreasing, as may be expected, with increasing dye concentration. 

 

 

 

Figure 6.8 Typical UV-Vis spectra collected during the electrolysis of 150 mg dm-3 RB 50 in 

0.5M H2SO4 at 2.7V in the cuvette cell using the PSP9-0.5NATO/B powder anode as a 

function of electrolysis time. 
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(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 6.9. Photographs of the (a) RB50 dye at concentrations of: (i) 15 mg dm-3, (ii) 75 mg 

dm-3 and (iii) 150 mg dm-3 in 0.5 M H2SO4 before electrolysis and (b) the same solution from 

(a) after electrolysis at 2.7 V for 30 s in the UV-Vis cuvette cell.  

 

(i) (ii) (iii) 

(i) (ii) (iii) 
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Figure 6.10 shows the normalized absorbance (A/A0) of the 625 nm band as a function of time. 

As may be seen from the figures, the ceramic anode complete decolourized the 15 ppm and 75 

ppm RB50 solutions within 30 seconds, and the 150 ppm solution within 120 seconds. The 

powder anode decolourized the 15 ppm solution within 30s, the 75 ppm solution within 120 

seconds and the 150 ppm solution within 240 seconds. It thus does not seem unseasonable to 

postulate the higher activity of the ceramic anode is due to the fact it generates more ozone[16], 

although direct electron transfer and/or involvement of other reactive species cannot be ruled 

out. 

 

 

Figure 6.10 Plots of (A/A0) for the 625 nm band of various concentration of RB50:15 mg dm-3 

(), 75 mg dm-3 () and 150 mg dm-3 ( ), as a function of electrolysis time in 0.5M H2SO4 at 

2.7 V using the ceramic anode (blue) and the powder anode (orange). 

The effect of cell voltage 

The current density determines the rate of reaction of species at the electrode surface[17][18] 

hence it was decided to investigate the effect of this (via the cell voltage) on the remediation of 

150 mg dm-3 RB 50 in 0.5 H2SO4 using both the ceramic and powder anodes, and the results 

are shown in figs. 6.10 and 6.11. For comparison, the current densities observed at 2.7V- 2.9V 

and 60 s were 0.1 A cm-2 to 0.21 A cm-2 for the ceramic anode and 0.05 A cm-2 to 0.09 A cm-2 
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for the powder anode. As can be seen from fig. 6.11, complete decolourization was achieved 

within 2 min at all cell voltages using the ceramic anode, and 4 min at 2.7 V to 2 min at 2.9 V 

using the powder anode. It is clear that the colour removal efficiency increased with increasing 

cell voltage/current density.  

For both the ceramic and nanopowder anodes, the concentration of ozone decreased above 2.8 

V where the ozone production was not optimum see figs 6.2 and 6.3, suggesting that the 

remediation of the RB50 dye is taking place either via ozonation and, for example, direct 

electron transfer to the electrode and/or indirect oxidation by •OH radicals [7][17][19]. 

 

Figure 6.11  Plots of the decolourization of 150 mg dm-3 RB 50 in 0.5M H2SO4 during 

electrolysis using the ceramic anode (CSP7-0.5NATO/B, blue) and powder anode (PSP9-

0.5NATO/B, orange) at cell voltages of 2.7V (), 2.8V () and 2.9V () as a function of time. 

6.4 Effect of ozone and cell voltage on COD and TOC of the RB50 dye 

The effect of current density and ozone current efficiency on COD and TOC removal from the 

RB 50 solutions was investigated under the same conditions as in the previous section. Plots of 

COD and TOC removal during electrolysis using the ceramic and powder anodes at 2.7 V- 2.9V 

are shown in figs. 6.12 and 6.13, respectively. As may be seen from fig. 6.12, it is clear that the 

COD removal increased with increasing cell voltage and ozonation time for both anodes. The 
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efficiency of COD removal by both anodes increased linearly up to > 80% after electrolysis for 

300 s, except for the powder anode at a cell voltage of 2.7 V, where 65% COD removal was 

achieved. Increasing the current density should generate more oxidative species[7][17][19-21]; 

thus, Tang and co-workers[21] studied the degradation of humic acid (HA) using 

electrochemical oxidation with NATO anode 0.2%Ni in the precursor solution. They employed 

a 15 cm2 NATO anode and Pt cathode in 5 mg dm-1 HA using a three electrode cell at current 

densities between 10 mA cm–2 and 28 mA cm–2. The authors observed that 98% degradation of 

HA was achieved with increasing current density up to 20 mA cm–2 within 100 min, whilst for 

10 mA cm–2, 15 mA cm–2, and 28 mA cm–2 the same degradation was observed within 180 min. 

Similarly Chen et al.[20] reported that the degradation of phenol using a 4 cm2 NATO anode 

with (1%Ni) increased from 50% to 90% with increasing current density from 15 mA cm-2 to 

25 mA cm-2 during 4 hours electrolysis of 200 mg dm-3 phenol in 0.1M H2SO4 using a stainless 

steel cathode in a 100 cm3 beaker. They suggested that a higher electrochemical oxidation rate 

was observed at higher current densities due to higher production of ozone and OH radicals. 

The COD removal efficiency observed using the ceramic anode was consistently higher than 

observed using the powder anode. This may be due to the higher ozone concentrations and 

current densities obtained using the former than the latter, see figs. 6.1-6.4. To date, only a few 

studies address the decolourization of dye solutions using NATO anodes[7][22]. Thus, the 

results in figs. 6.12 and 6.13 are broadly in agreement with the literature: Zakaria and 

Christensen[7] reported that 200 cm3 of 1000 mg dm-3 of RB50 solution was degraded using 

35 cm2 NATO anode containing 1%Ni in the precursor solution at a cell voltage of  2.7 V in an 

MEA cell and they observed 35% COD removal after 60 mins electrolysis. Wang and 

Kuang[10] studied the electrochemical oxidation of oilfield wastewater using a 4 cm x 4 cm 

NATO anode with the atomic ratio of Sn:Sb:Ni = 500:8:1 and they observed 86% COD removal 

was obtained at a current density of 6 mA cm-2 after 150 min electrolysis.  

In general, it appears from the literature that NATO anodes exhibit higher removal efficiencies 

than those observed for other electrodes. Thus, Yavuz and co-workers [18] reported that 60 min 

electrolysis using 0.48 cm-2 boron doped diamond (BDD) anode at 0.88 mA cm-2 resulted in  

87% COD removal of Basic Blue 3 (BB3) dye from 40 mg dm-3 BB3 in 0.01M Na2SO4 at a 

flow rate of 109.5 cm3 min−1 at 30 oC, and Panizza and Cerisola [19] reported a COD removal 

of 97 % for Acid Blue 22 following electrolysis using a 25 cm2 BBD as an anode and stainless 

steel as a cathode at a dye concentration of 0.3 mmol, and a current density of 20 mA cm-2 for 
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12 hours at room temperature. Kong et al. [23] studied the degradation of 4-chlorophenol using 

ATO anode in 1 mmol dm-3 4-chlorophenol in 0.2M Na2SO4 at a current density of 20 mA cm-

2 and they observed a COD and 4-chlorophenol removal were c.a. 50% and 51%, respectively, 

within 180 min.   

Figures 6.12 and 6.13 show plots of COD and TOC removal, respectively, as a function of time, 

nature of the anode and cell voltage. As can be seen from the figures, there is a difference in 

timescales between decolourisation and COD removal. This suggests that the degradation of 

RB50 takes place in stages: the anthraquinone moiety is rapidly degraded (indicated by 

decolourisation), followed by the benzene ring. The side products/intermediates species 

(presumably smaller fragments) are only destroyed (indicated by COD removal) over 

significantly longer time scales [18][24]  

 

 

 

Figure 6.12 Plots of the COD removal efficiency from 150 mg dm-3 RB 50 in 0.5M H2SO4 during 

electrolysis using the ceramic anode (CSP7-0.5NATO/B, blue) and powder anode (PSP9-

0.5NATO/B, orange) at cell voltages of 2.7V (), 2.8V () and 2.9V () as a function of time 

in the cuvette cell. 
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Figure 6.13 Plots of the TOC removal efficiency from 150 mg dm-3 RB 50 in 0.5M H2SO4 during 

electrolysis using the ceramic anode (CSP7-0.5NATO/B, blue) and powder anode (PSP9-

0.5NATO/B, orange) at cell voltages 2.7V (), 2.8V () and 2.9V () as a function of time in 

cuvette cell. 

 

With respect to the total organic carbon (TOC) data in fig. 6.13, it can be seen that TOC removal 

increased with increasing cell voltage and ozonation time. Interestingly the TOC removal 

efficiency of both anodes increased to 80 % within 30 s, after which the removal increased 

slowly to c.a. 95% for the ceramic anode and 86% for the powder anode at 300 s.  

The very high TOC removal in the first 30s in fig. 6.13 may be linked to ozone generation, 

which decreased steadily for both electrodes after this time, see fig. 6.4. High TOC removal 

using NATO anodes has also been reported by other workers; thus Wang et al.[25] studied the 

oxidation of 8 mM 4-chlorophenol (4-CP) at a 0.64 cm2 NATO anode in 0.1M H2SO4 and 

observed a TOC removal of 76%, equivalent to 15 μgC-1. Chen and co-workers [26] studied the 

remediation of 200 mg dm-3 phenol in 0.1M H2SO4 at a 4 cm2 NATO anode at 25 mA cm-2, and 

observed 60% TOC removal, although this required 4 hours electrolysis. Christensen and 

Zakaria [7] observed a 13% reduction in the TOC of 200 cm3 of 1000 mg dm-3 RB50 in 1M 

HClO4 over 1 hour using a MEA cell with a 24 cm2 NATO/Ti mesh anode at a cell voltage of 

2.7V. Recently, Sun et al. [27] employed 8 cm2 NATO and Ce-doped NATO anodes in a three 
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electrode cell to electrolyze 50 mg dm-3 phenol in 0.05M Na2SO4 at 10 mA cm-2 and achieved 

a reduction in TOC of 80% after 4 hour electrolysis. Unfortunately, the authors did not test the 

Ce-free NATO electrode under the same conditions. However, the phenol was completely 

degraded (i.e. A/A0=0) within 2 hour using the Ce-NATO anode compared to 2.5 hours for the 

NATO anode. The authors did not attempt to explain the role of Ce.  

6.5 Dye ozonation mechanism  

Ozone, •OH radicals and H2O2 are all  strong oxidizing agents[28]. Among these, OH- is the 

strongest having a redox potential of 2.8 V vs NHE, i.e. sufficient to oxidize most organic 

molecules[15][29][30]. With respect to electrochemical ozone generation, it is generally 

assumed that water oxidation on NATO anodes involves the formation of OH radicals, as 

discussed in section 1.2, which then react with dye molecules [6][10][31-33]: 

H2O → OH• + H++ e−       (2) 

A more detailed mechanism has been prepared by Comninellis [31]. Firstly, the oxidation of 

water yields the adsorbed hydroxyl radical (•OH) according to equation (3). This radical 

interacts with lattice oxygen at the surface yielding “active oxygen” MOx+1, see reaction (4). 

Finally, the MOx+1 reacts with the organic pollutant (R) according to reaction (5): 

MOx + H2O → MOx(
•OH) + H++ e−      (3) 

MOx(
•OH) → MOx+1+ H++ e−      (4) 

MOx+1 + R → MOx + RO       (5) 

As can be seen from equations (2) to (5), the active species are •OH and labile oxygen. 

According to Colindres et al.[15, 34] the decolorisation of many dyes by ozone involves the 

attack by OH radicals on C=C bonds, along with hydrogen abstraction from such unsaturated 

groups[7].  

6.6 Conclusions  

The ceramic CSP7-0.5NATO/B anode decolourized aqueous anodic solution of RB50 dye at 

concentrations up to 150 ppm within 2 minutes at a cell voltage of 2.7-2.9V. The nanopowder 

PSP9-0.5NATO/B anode decolourized the same solutions within 4 minutes. Both anodes 
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effected COD and TOC removal, clearly showing both degradation and mineralization, up to 

80-90% TOC removal of the dye. The activities essentially reflect the relative amounts of 

ozone produced by the two anodes. 
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Chapter 7 Conclusions and future work 

Addition of Sb has a major effect on a range of the physicochemical properties of SnO2. The 

Sb enters the SnO2 lattice to form the single phase, cassiterite structure, with the larger (0.76 

Å) Sb(III) ions located at the surface and the smaller (0.62 Å) Sb(V) ions replacing the 0.69 Å 

Sn(IV) ions in the bulk due to the similar size of the Sb(V) ions and preference for 

centrosymmetric coordination sites. Sb(V) confers electronic conductivity on SnO2 by donating 

an electron into the conduction band from the dopant levels below. In contrast, Sb(III) ions act 

as trap sites for electron pairs and hence reduces conductivity. Interestingly, in contrast to the 

generally-held view that Sb is only necessary to render Ni/Sb-SnO2 electronically conducting, 

both Sb(V) and Sb(III) (along with Ni) are essential for ozone electroactivity. Sb(V) does 

indeed confer essential electronic conductivity, but the Sb(III) ions at the surface of the 

crystallites provide the active sites for oxygen adsorption, an essential intermediate in the 

formation of ozone. The fact that Ni/Sb-SnO2 nanopaticles produced via calcination at 400 oC 

are inactive whilst those calcined at 700 oC are active is partly explained by increasing 

segregation of Sb(III) to the surface at the higher temperature. 

Sb-SnO2 nanopaticles may be thought of in term of larger grains consisting of smaller 

crystallites. In SnO2 calcined at 400 oC or 700 oC, the ratio of crystallites to grains is ~1. On 

doping with Sb, this ratio rises to 83 (calcined at 400 oC) or 38 (calcined at 700 oC) reflecting 

the lower surface area of the latter sample due to sintering. This strongly indicates that Sb has 

a major effect upon the surface properties of SnO2. Addition of Ni reduces the ratio to ~2.0, 

with further addition having little effect, indicating also that Ni has an influence in the surface 

properties of SnO2. The addition of Sb to SnO2 also increases significantly the coverage by 

adsorbed water whilst dramatically decreasing coverage by O2 on dehydrated samples, with Ni 

having little or no further effect. 

Ozone activity is a balance between the adsorption of oxygen and water, dictated by the Sb(III) 

ions at the surface of the crystallites. Ni is also clearly essential for ozone electroactivity as Sb-

SnO2 is inactive in this regard. The marked durability of Ni/Sb-SnO2 anodes strongly suggests 

that the Ni responsible for ozone activity is in the sub-surface region of the SnO2 at levels too 

low to be detected by XPS. Ni on the surface dissolves away with no effect on activity. In 

contrast to speculation in the literature, there is no evidence that Ni(III) is the active form of Ni, 

with the data in this thesis interpretable in terms of the rôle of Ni(II). Ni(II) has almost the same 
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ionic radius as Sn(IV) and replaces Sn(IV) in the subsurface region, which produces oxygen 

vacancies to maintain charge neutrality. These vacancies promote the dissociation of adsorbed 

oxygen at Sb(III) sites resulting in O atoms on these sites, the other O atoms diffusing to bulk 

O vacancies in the subsurface region. 

In the proposed model, OH radicals are produced at the crystallite surfaces and diffuse to grain 

boundaries where they participate with Oads radicals in the formation of ozone. The diffusion of 

OH radicals essentially controls ozone formation. 

For the first time, ozone has been electrochemically generated at Ni/Sb-SnO2 powder anodes 

and with selectivities comparable to those of the conventional ceramic anodes, albeit at lower 

current densities; but the nanopowder synthesis was in no way optimised. Hence, future work 

should firstly involve identifying a method to measure, quantitatively, the Ni concentration in 

the powder samples. This information is essential if the Ni/Sb-SnO2 nanopowders synthesis is 

to be optimised in term of ozone selectivity and activity. Once an optimum and reproducible 

synthesis has been identified to produce highly active and selective Ni/Sb-SnO2 nanopowder 

anodes and MEAs, electrochemical cells and reactors should be devised to exploit these 

materials, perhaps based on these currently using β-PbO2 powders. If Ni/Sb-SnO2 anodes can 

be produced with comparable current efficiencies to the conventional ceramic Ni/Sb-SnO2 

anodes, i.e. 30-50%, but with current densities comparable to β-PbO2 particulates anodes (~1 

A cm-2), then the Ni/Sb-SnO2 reactors should far exceed the ozone space-time yields of β-PbO2 

systems and allow the treatment of real water. The low voltage operation of such systems should 

allow, for example, their application as solar driven water purification devices for off-grid 

application in Africa. Thus the average of the sum of the annual solar insolation at the surface 

of the earth varies between ca. 1 and 2 kW m-2 which is a vast, relatively untapped (at least by 

humankind) energy resource: 1.8 trillion tonnes of renewable carbon is sequestered annually 

by photosynthesis. Taking the lower solar insolation of 1 kW m-2 & the 20% current efficiencies 

achieved to date with the unoptimised Ni/Sb-SnO2 powders, and assuming a current density of 

1 A cm-2 at 5V suggests that a zero gap cell having active electrode geometric areas of 5 cm x 

5 cm will be able to treat ½ Tonne of water per hour at an ozone concentration of 3 ppm at an 

estimated anode catalyst cost of 17p and power requirement of 125W.  Taking the lower value 

of the solar insolation and the lower limit for the efficiency of photovoltaic cells (15 – 20%), 

this would require a photovoltaic array having an active area of only 1 m2. 
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Appendix 1: The calculation of the surface areas from particle sizes 

The volume of one particle: 

 V = 4r3/3  

Where r = radius  

Then, the mass of one particle (grams) = V  

where  is the density in g cm-3 

Hence the number of particles in 1 gram = 1/V. 

The surface area per gram (SA) = the number of particles per gram x the surface area per 

particle A = 4r2: 

      SA = A/V  

= 4r2/(4r3/3)  

= 3/r      cm2 per gram 

For m2 per gram convert  to g m-3 and r to m.   

 

 

 

 

 

 

 

 

 



 

230 

 

Appendix 2: The calculation of Sn-OH coverage from the mass loss above 150 °C 

Taking, as an example, the SnO2 powder: mass =  45.7 mg and the crystallite diameter of 

SnO2 calculated from Scherrer’s equation = 14.5 nm; r = 7.25 nm. 

Volume of one particle (spherical) = 4r3/3 = 1.6 x 10-18 cm3.   

Density of SnO2 = 6.95 g cm-3 

So the mass of one particle = 1.6 x 10-18 cm3 x 6.95 g cm-3  

        = 1.11 x 10-17 g. 

Thus, the number of particles in 0.0457 g: 

        = 0.0457/1.11 x 10-17  

            = 4.1 x 1015 particles. 

The total surface area is 4.1 x 1015 x 4 r2 = 27081 cm2. 

There are 9.125 x 1014 Sn atoms per cm2 [1], so total number of surface Sn atoms: 

   = 27081 cm2 x 9.125 x 1014  

= 2.47 x 1019 surface Sn atoms. 

Assuming Sn-OH+SnOH  Sn-O-Sn +H2O, i.e. 2 Sn atoms for 1 H2O molecule,  

1.235 x 1019 H2O molecules = 2.1 x 10-5 moles = 3.7 x 10-4g = 0.8% loss.   

 

Reference 
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temperature gravimetric study on nonstoichiometry and oxygen adsorption of SnO2. 
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Appendix 3: The calculation of particle volumes from (BET) surface areas 

The volume of one particle, V = 4r3/3 If  is the density in g cm-3, then the mass of one 

particle = Vgrams.   

Hence the number of particles in 1 gram = 1/V. 

The surface area per gram (SA) = the number of particles per gram x the surface area per 

particle A = 4r2: 

SA = A/V = 4r2/(4r3/3) = 3/r cm2 per gram 

Hence r = 3/SA 

Particle volume is thus = 4r3/3 

For m2 per gram convert  to g m-3 and r to m.  1 g cm-3 is 1 x 106 g m-3. 
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Appendix 4: The calculation of O2 adsorbed/lost on SnO2 samples from mass change in 

4th cycles of TGA 

Assuming 9.1 x 1014 Sn atoms per cm2  

BET surface area = SABET in m2 g-1. 

%change in mass = (%m). 

Mass of SnO2 sample = M in g.  

Avogadro’s number = NA = 6.02 x 1023. 

Number of O2 molecules adsorbed/desorbed NO2 

Mass O2 adsorbed/desorbed = (%m).M/100 

Moles of O2 adsorbed/desorbed = (%m).M/1600 

NO2 = (%m).MNA/3200 = 1.88 x 1020(%m).M 

Number of Sn atoms on surface NSn 

Surface area of SnO2 sample in cm2 = SABET.M.104 

NSn = SABET.M.9.1 x 1014.104 = SABET.M.9.1 x 1018 

 NO2/NSn 

NO2/NSn = 1.88 x 1020%m.M/SABET.M.9.1 x 1018 = 20.7(%m)/ SABET 

NO2/NSn = 20.7(%m)/SABET 

 

 

 

 

 

 


