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Abstract 
 

Animal models are an integral component of modern science.  Non-human primates 

(NHPs) are effective models for many human diseases and conditions due to their close 

phylogenetic relationship.  In particular, their specific cortical organisation and neural 

specialisations makes them invaluable for neuroscience research, both basic and 

applied.  The advanced cognitive abilities of NHPs and their fine motor dexterity means 

that they can be trained to perform complex tasks in the laboratory whilst cortical 

activity is measured.  Many of these tasks require hundreds or thousands of iterations 

in order to achieve statistical power to adequately test hypotheses, and consequently, 

the monkeys need to be sufficiently motivated to perform.  One way in which 

researchers motivate their monkeys is through the use of fluid restriction protocols.  By 

limiting the free intake of fluids, fluid rewards can be used as a primary motivator for 

the monkeys to continue to perform the tasks.  These restriction protocols, although 

widely used, remain controversial due to their potential negative impacts on animal 

welfare.  The aim of my thesis was to explore the impacts of fluid restriction protocols 

on rhesus macaque (Macaca mulatta) behaviour and physiology and to investigate 

possible refinements to their use.  

My experiments found no evidence of negative physiological impacts of fluid 

restriction protocols and only limited impact on behaviours, alleviating some of the 

concerns surrounding these procedures.  I also assessed the use of preferred fluids and 

social stimuli (photographs and video clips of conspecifics) as rewards.  Mixed results 

were gained when assessing fluid preferences and again when implementing the 

preferences into laboratory tasks.  Preferences for social stimuli were established for all 

animals tested, but these did not translate into motivating rewards on a trial-by-trial 

basis. 

These studies have tackled important scientific and ethical issues surrounding the 

use of rhesus macaques in behavioural neuroscience.  The outcomes are discussed in a 

wider context and the potential applications to laboratory practice are evaluated. 
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Chapter 1: General Introduction to the Use of Non-Human Primates in 

Research 

1.1 Non-Human Primates as Model Species in Research 

Animal models are a crucial, and currently irreplaceable, facet of science.  Although 

extensive efforts are being made to reduce the numbers of animals used in research, 

this process is likely to take many years.  In addition, a limited number of in vitro and in 

silico solutions exist, and for some areas of study, alternatives are not easy to develop, 

leaving in vivo research as an indispensable tool for our understanding of human and 

animal disease and development.  Willner (1984) proposed that animals must satisfy 

three main criteria to be effective as models and although these criteria were created 

with psychological disorders in mind, they are often applied more widely.  Firstly, a 

model must have face validity; the ability to exhibit the symptoms and behavioural signs 

of the disease or condition being modelled.  Secondly, it must have etiological or 

construct validity; meaning that the underlying cause of a condition is similar in the 

model to in the human.  Finally, predictive validity is required to demonstrate that 

treatments or interventions known to cause effective reversal or alleviation in humans 

are mirrored in the model.  For many diseases and conditions, genetically modified 

rodents, with specific genes knocked out or silenced, can provide useful models for 

translation into humans (Proetzel and Wiles, 2010).  However, in certain circumstances, 

the phylogenetic distance between humans and rodents may be too great for the animal 

to effectively simulate the human condition. 

One group of animals which, in many situations, fulfil the criteria of effective models 

is the non-human primates (NHPs).  NHPs comprise a wide range of species, broadly 

categorised into Prosimians (including the lemurs, lorises and tarsiers), New World 

monkeys from South and Central America, Old World monkeys from Africa and Southern 

Asia, and apes (including our nearest relatives, chimpanzees (Pan spp.) and gorillas 

(Gorilla spp.)).  Of these, only species of New and Old world monkeys are used for 

scientific research in the United Kingdom (UK), with macaques (Macaca spp.) and 

common marmosets (Callithrix jacchus) being the most commonly used models 

(Weatherall et al., 2006).  Prosimians have not been used since 1991 in the UK and great 
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apes since 1986, with a complete UK ban on great ape research in 1997 (Weatherall et 

al., 2006).   

NHPs are of particular importance to science as their phylogenetic relatedness to 

humans improves their efficacy as animal models in a range of circumstances 

(VandeBerg and Williams-Blangero, 1997).  For example, the baboon (Papio spp.) 

provides an excellent model for osteoporosis, as characteristics of the disease 

spontaneously develop in older females, as they would in humans, satisfying the 

criterion of face validity (reviewed by VandeBerg and Williams-Blangero, 1997).  Due to 

their wide behavioural repertoire, NHPs also provide excellent opportunities for the 

study of certain manipulations or treatments at the behavioural level (etiological 

validity), with rhesus macaques (Macaca mulatta) and cynomologous macaques 

(Macaca fascicularis) being the most used NHP species for this purpose (Carlsson et al., 

2004).  Finally, a range of NHP species and their related behaviours have been used to 

tackle important scientific questions such as addiction, depression, drug treatments, 

adoption, ageing and abnormal development, proving their predictive validity as a 

model (as reviewed by Hau and Schapiro, 2006). 

1.2 Non-Human Primate Usage 

NHP research occurs worldwide and although specific figures are not available from 

all countries, the following statistics give an impression of the numbers of NHPs used, 

the most common species employed and the fields to which NHPs contribute the most.  

Globally, in 2001, approximately 100,000 to 200,000 NHPs were estimated to have 

been used in scientific study, following an extensive retrospective literature review by 

Carlsson et al. (2004).  The majority of these studies were microbiological (26%) and 

neuroscience studies (19%), with 37% of all studies using either rhesus macaques or 

vervet monkeys (Chlorocebus aethiops) (Carlsson et al., 2004).  However, in 

microbiology, the use of C. aethiops usually refers to the study of “primate biological 

material” and often involves the use of cell lines from culture or museum specimen 

samples rather than a conscious animal (Carlsson et al., 2004).  This effectively leaves 

neuroscience as the largest field, worldwide, which uses awake and behaving NHPs for 

data collection.   
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In the USA, approximately 62,000 NHPs were used in 2015 (United States 

Department of Agriculture - Animal and Health Inspection Services, 2016) and a review 

of 26 academic and private research facilities by Lankau et al. (2014) reported that 89% 

of the facilities conducted pharmaceutical research and studies relating to neuroscience, 

neurology or neuromuscular disease.  Facilities also reported high levels of investigation 

into vaccine development and testing (62% of facilities), pharmaceutical preclinical 

safety research (50% of facilities), and immunology or autoimmune disease research 

(42% of facilities).  In line with global species use, 81% of the facilities used rhesus 

macaques and 73% used cynomologous macaques.  These figures highlight the 

particular importance of macaque species in research and the wide variety of contexts 

in which they can be utilised.   

Approximately 2.08 million experimental procedures were carried out on animals in 

the UK in 2015 (excluding breeding and creating), however only 3612 (0.09%) of these 

used NHPs (marmosets and macaques) (UK Home Office, 2016).  Similarly, of 2.01 million 

individual animals used for the first time, 1.26 million were mice (74.6%) but only 2234 

were NHPs (0.05%).  These figures include all types of scientific procedure and when 

further subdivided by study type, only 94 NHPs were used for basic science of the 

nervous system and 8 for the applied study of human mental disorders.  The lower 

numbers of NHPs used compared with other species is due, in part, to strict European 

Union (EU) regulations which state that research cannot be carried out with primates if 

the equivalent results can be gained in a lower species (European Union, 2010).  

Additionally, conducting research with NHPs in the UK imposes not only the required 

regulation compliance, but also high financial costs.  A rhesus macaque costs 

approximately £20,000 + VAT to buy and around £300 per week for housing costs 

(Personal communication with Named Animal Care and Welfare Officer (NACWO)), 

compared with $US 1000 dollars per animal in China (approximately £700) and 

significantly lower housing costs of $5 per day (Cyranoski, 2006).  In comparison, a 

mouse in the UK costs from approximately £2–£200 per individual (dependent on strain 

and rearing; prices from Charles Rivers, Research Models and Services, UK) and colony 

costs are roughly £1.50/mouse/week.  Taken together, these factors help to explain why 

the numbers of NHPs used in research are lower than the numbers of other model 
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species.   Despite this, NHPs remain an indispensable asset to research, continuing to 

contribute to numerous scientific findings of global importance.   

The aforementioned phylogenetic similarities between humans and NHPs have 

aided in the success of many recent medical discoveries.  NHPs have contributed 

extensively to numerous branches of science, helping to develop life-saving vaccines for 

diseases such as Hepatitis B (Prince and Brotman, 2001) and Polio (Bayley, 1956) and 

facilitating the development of safe organ transplantation (Knechtle, 2000; Haanstra 

and Jonker, 2008).  More recently, NHPs  have contributed towards research to combat  

the Ebola (e.g. Jones et al., 2005) and Zika crises  (e.g. Osuna et al., 2016).  However, this 

thesis is specifically concerned with the use of NHPs in neuroscience research, for which 

they are a widely used and a highly effective model, particularly for understanding 

cognitive functions, brain disease, and to aid potential therapies in humans (Roelfsema 

and Treue, 2014).   

1.3 The Impact of Brain Disorders 

It can be argued that the importance of neuroscience research, both basic and 

applied, is more important now than ever, due to the increasing economic and social 

impacts of brain disorders.  In a systematic review, Gustavsson et al. (2011) calculated 

that common brain disorders (including mood disorders, dementia, psychotic disorders 

and anxiety disorders) cost the EU €798 billion in 2010.  Not only is this a financial 

burden, but with an estimated 38.2% of the European population suffering from a form 

of brain disorder at some point during their lifetime (Wittchen et al., 2011), these 

illnesses are also a source of social and emotional difficulties for the millions of people 

that they afflict.  These problems are also consistent across the EU; with the exceptions 

of mental retardation and substance abuse disorders, mental illnesses and their 

associated economic impacts do not differ across the member states, emphasising their 

widespread prevalence  (Wittchen et al., 2011).   

On a global scale, the World Health Organisation (WHO) estimated that in 2001, 

approximately 450 million people were known to suffer from neurological and brain 

disorders (World Health Organisation, 2001).  In 2010 mental disorders and substance 

abuse resulted in 7.4% of all disability-adjusted life years (DALYs - a measure of disease 

burden, the sum of the years of lost life due to premature mortality; and years lost to 



5 
 

disability (YLD)) (Whiteford et al., 2013) and in 2013, major depression was revealed to 

be the second greatest cause of YLD out of all illnesses and conditions (Vos et al., 2015).  

Unfortunately, the dominance of these illnesses is   proliferating. From 1990 to 2013 the 

occurrence of neurological disorders increased by 59.6% and mental and substance 

abuse disorders by 45%, largely a product of ageing and population growth (Whiteford 

et al., 2013).  Reflecting this, Alzheimer’s disease and Parkinson’s disease were 

calculated to affect 53 million and 5.9 million people, respectively, in 2013 (Vos et al., 

2015).  The economic impacts mirror the social burdens, as neurological disorders cost 

$2.5 trillion globally in 2010, and a report from Harvard School of Public Health and the 

World Economic Forum calculate this to increase to $6 trillion by 2030 (Bloom et al., 

2011).  These figures highlight that the scale of the problem is vast, and that extensive 

research into brain disorders is required to help to understand and effectively treat 

these conditions.  

1.4 Non-Human Primates in Neuroscience 

In order for neuroscience studies to be more effectively translatable to humans, it is 

beneficial for the animal models to possess certain characteristics; NHPs exhibit many 

of these vital characteristics, the majority of which are lacking in rodent models.  For 

example, like humans, NHPs have forward-facing eyes, a fovea, and similar visual cortical 

organization (Zeki and Shipp, 1988).  NHPs also exhibit smooth pursuit eye movements, 

necessary for some cognitive function studies (Kettner et al., 2008) and possess a 

prefrontal cortex homologous to humans, the presence of which is debated in rats 

(Preuss, 1995).  Certain neuropharmacological specialisations are also comparable 

between macaques and humans, but differ profoundly from rodents (Disney et al., 

2006).  Recent research has also uncovered that primate brains are unique in their 

neuronal density structure; as the number of neurons increases, the density remains the 

same (Herculano-Houzel et al., 2014).   

1.4.1 The Contribution of NHPs to Neuroscience 

The importance of NHPs in contributing to neurological research has been well-

established for a number of years.  Notably, Hubel and Wiesel conducted ground-

breaking work into visual processing in the spider monkey and the macaque which led 

to their Nobel Prize for Physiology and Medicine in 1981 (Nobel Foundation).  Since then, 
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NHPs have contributed profoundly to advancements and achievements in neuroscience 

(see Capitanio and Emborg, 2008; Kettner et al., 2008; Camus et al., 2015 for reviews).  

Recently, Roelfsema and Treue (2014) stressed the importance of the need for NHPs in 

basic neuroscience research; this uncovers the fundamentals of mechanisms or 

pathways in the brain which can then be studied in a more applied manner to focus on 

specific disorders or treatments.  By conducting basic neuroscience in NHPs, a number 

of significant discoveries have been made, including increased knowledge of intra-

cortical connectivity, as well as uncovering mechanisms of object recognition and 

decision making (Roelfsema and Treue, 2014).   

In addition to basic neuroscience, NHPs are also central to the study of particular 

medical conditions.  For example, using NHPs in autism research provides a bridge 

between well-established mouse models and studies of human patients, allowing for 

the assessment of behavioural outcomes of specific manipulations and interventions 

(Watson and Platt, 2012).  The study of multiple sclerosis (MS) has also benefitted from 

an NHP model of the condition.  MS is a disease affecting the brain and spinal cord, 

where invasive studies in human patients cannot be undertaken.  Although rodent 

models do exist, it is through the development of a specific marmoset model that more 

accurate  investigation of the condition can be achieved ('T Hart et al., 2004).  NHPs also 

provide excellent opportunities for the study of ischaemic stroke in humans, not only 

due to their similar brain structures, but due, also, to the parallels in vasculature (Fukuda 

and del Zoppo, 2003).  Finally, in the last decade, NHP neuroscience research has been 

further advanced by the development of transgenic models. For example, Yang et al. 

(2008) established a transgenic macaque model of Huntington’s disease (HD) and 

successfully induced the physiological features of HD, as well as the clinical symptoms, 

providing a platform for more comprehensive study of the condition.  Although many 

more examples exist, it is clear from this brief synopsis that the use of NHPs in 

neuroscience has brought a great deal of benefit and understanding to the scientific 

community, which can be translated into benefits for society.  

1.4.2 Task Performance in Neuroscience 

In addition to the similarities in brain structure, a further key advantage of using 

NHPs in neuroscience is that they possess advanced cognitive and motor abilities 

conducive to training them to perform a number of complex tasks in the laboratory.  This 
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allows tasks originally designed for human participants to be successfully adapted for 

NHPs, facilitating more in-depth analysis of the development of certain conditions or 

pathways.  For example, Diamond and Goldman-Rakic (1989) modified Piaget’s A-not-B 

task (a task used to investigate stage four object permanence) for use with macaques.  

This allowed comparisons to be made with data from human infants, and helped to 

identify the probable brain area underlying the development of A-not-B task 

performance.  Furthermore, studies have used tests based upon the CANTAB battery 

(CAmbridge Neuropsychological Test Automated Batteries; CeNeS, Cambridge, UK), 

designed for human use, to test neuropsychological functions in NHPs (e.g. Weed et al., 

1999).  Multiple aspects of cognition can be assessed by using this battery of tasks, such 

as memory, decision-making, and attention.  By employing these tests in conjunction 

with careful manipulation of the NHP central nervous system (CNS), specific areas or 

pathways associated with certain disorders can be identified in a way that is not feasible 

in humans. 

To understand brain processes whilst a specific task is being performed, many 

neuroscience studies implement electrophysiology or neural imaging.  Electrophysiology 

involves recording activity from single or multiple neurons using electrodes placed into 

the relevant area of the cortex.  Imaging techniques, such as magnetic resonance 

imaging (MRI), require a monkey to engage in a task whilst situated in a brain scanner.  

The nature of these methods normally necessitates an animal to have its head fixed in a 

set position in order to minimise movement whilst recordings are taking place.  In these 

types of studies, good quality data collection and adequate statistical power requires 

the need for a high number of consecutively performed trials from the monkey.  This is 

especially true in electrophysiology, where a single cell recording session cannot be 

replicated on another day.  For this reason, a training, imaging or recording session can 

last for several hours (Kettner et al., 2008).  Low numbers of daily trials can render 

recordings unusable, wasting time and money, and keeping an animal’s head fixed in a 

primate chair for little reason.  Therefore, laboratories must use reliable techniques to 

motivate their monkeys in order to acquire data from a sufficient number of trials per 

day.  One way of successfully achieving high motivation is through the implementation 

of fluid or food restriction protocols. 
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1.5 Restriction Protocols  

1.5.1 The Use of Restriction Protocols 

Restriction protocols involve limiting the amount of fluid or food that an individual 

animal consumes daily.  These protocols should not be confused with food or fluid 

deprivation, which completely deny access to food or fluid for a set period of time.  

Restriction protocols are usually implemented in one of two ways: 1) food or fluid gained 

through work is accessible for a pre-defined time per day (e.g. 3 h access); or 2) animals 

are allowed to work for as much food or fluid as they desire.  This thesis is focussed on 

fluid restriction relating to option 2), specifically. When animals are subject to fluid 

restriction, correct trials performed by the animal are rewarded with a droplet of liquid, 

allowing the researcher to use motivation to drink as a primary motivator to work (Toth 

and Gardiner, 2000; Rowland, 2007).  For more complex tasks, or those requiring high 

levels of repetition, stricter restriction protocols may have to be used in order to 

maintain engagement in the task and promote effective learning and a reliable 

performance of trials (Toth and Gardiner, 2000).  For an example from the rodent 

literature, Hughes et al. (1994) conducted a study in which rats subject to differing levels 

of fluid restriction had to press a lever to gain access to water.  Those rats on a more 

restrictive regime (21 h restriction/day) learnt the task well.  However, rats restricted 

less harshly (7 h or 14 h/day) failed to perform the task.  In this example, a high level of 

restriction was required to gain a reliable response from the rats, in what was only a 

mildly challenging task.  It would be expected that a more complex task would require 

an even higher level of restriction. 

For certain behavioural neuroscience studies using NHPs, it may be more practical 

and effective to use fluid, rather than food, rewards.  Although there are instances in 

which food rewards can be successfully implemented, this is not always possible when 

performing studies requiring the monkey’s head to be fixed in a set position.  The manual 

presentation of food rewards, and the subsequent chewing of food items can disrupt 

both stimulus presentation and data collection.  For these reasons, along with the fact 

that fluid restriction is easy to measure and to control for both researchers and 

husbandry staff, fluid rewards are widely used. 
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1.5.2 Welfare Measures Concerning Fluid Restriction 

Despite the widespread use of fluid restriction protocols, and the justification for 

their implementation, their use, especially with NHPs,  has been an issue of increasing 

contention for over 20 years (Orlans, 1991; Desimone et al., 1992; Evans, 1993).  The 

major concerns voiced include potential dehydration (Rowland, 2007), weight loss 

(Prescott et al., 2010), and pain or distress (Willems, 2009).  Potential dehydration 

reflects a concern directly resulting from fluid restriction; that limiting water access will 

cause physiological harm to the animal.  Weight loss as a result of fluid restriction 

normally refers to a voluntary decline of food consumption as a consequence of a 

decreased fluid intake (described in more detail in Chapter 3, sections 3.1 and 3.5.2).  

Willems (2009) claims that the types of pain or distress inflicted upon an animal via fluid 

restriction may include: agitation, altered aggression and lethargy.  Other concerns 

include the potential for the animals to binge eat and drink when given access to larger 

volumes of food and water, with the potential to cause bloat and discomfort (Prescott 

et al., 2010).  All of these concerns relate directly to infringements of The Five Freedoms, 

a framework originally developed for farm animals by the Farm Animal Welfare Council 

(FAWC), which is now widely applied to captive animals (Farm Animal Welfare Council, 

1992).  The Five Freedoms comprise of the following: 1) Freedom from hunger and thirst; 

2) Freedom from discomfort; 3) Freedom from pain, injury or disease; 4) Freedom to 

express normal behaviour; and, 5) Freedom from fear and distress.  However, despite 

the potential violation of the five freedoms, the long-standing controversies, and the 

possible animal welfare issues associated with fluid restriction, there exists a paucity in 

data investigating the impacts of the protocols. 

Only by addressing the scarcity in data and understanding the impact of fluid 

restriction on NHPs, can we estimate how much stress, physiological or psychological, 

these protocols may cause.  It is of great importance to understand the implications of 

any technique used in animal research so that refinements to the protocols may be 

attempted, in order to minimise any potential welfare issues.  Refinement constitutes 

one of the 3Rs of animal research; a concept introduced by Russell and Burch in their 

seminal paper in the 1950s (Russell and Burch, 1959).  The 3Rs consist of the 

replacement, reduction and the refinement of the use of animals in scientific research 

and they have been adopted as key aims for the progression and development of in vivo 
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research.  Assessing and refining fluid restriction techniques used in behavioural 

neuroscience is particularly important for two main reasons.  Firstly, if fluid restrictions 

were to cause physiological or behavioural distress or harm to the animal, welfare would 

be compromised, creating an ethical concern with the procedure.  Secondly, the 

scientific validity of the research for which the animals are primarily being used could 

be impacted upon if fluid restriction protocols result in increased levels of stress.  For 

example, animals that exhibit stereotypic behaviours (explained in more detail in 

Chapter 3, sections 3.1 and 3.5.3), a marker generally used as an indicator of poor 

welfare, may not produce valid, reliable or replicable results in scientific study (as 

reviewed by Garner, 2005). 

The importance of investigating the impact of procedures on laboratory NHP welfare 

is not only important for the NHPs and the scientific community, but for the public’s 

understanding of primate research.  Primate use is an emotive subject and in the last 

two decades many NHP researchers have found themselves subject to increasing 

pressure from animal rights activists and the general public, campaigning for them to 

justify or end their work (e.g. Cyranoski, 2006; Abbott, 2014).  In addition to targeting 

scientists, protests of animal rights groups such as PETA (People for the Ethical 

Treatment of Animals) have also focused their efforts on the source of the monkeys, 

causing airlines to cease the transportation of NHPs and making the supply to research 

facilities increasingly difficult (Wadman, 2012).  The somewhat turbulent public 

perception of primate studies has resulted in many reviews and commentaries in 

defence of NHP use in neuroscience research.  For example, Camus et al. (2015)  defend 

the use of NHP models for cognitive neuroscience, citing the major advancements made 

in methodologies and technologies for neuroscience research, as well as the need for 

NHPs for the study of debilitating conditions such as Alzheimer’s and Parkinson’s 

disease.  However, by publishing in scientific journals, the authors fail to reach many of 

those who oppose the research.  Only by clarifying the use of NHPs in scientific study 

and by making every effort to assess and, where necessary, improve their welfare, can 

we begin to create a useful dialogue between researchers and those who oppose their 

work.  It is for these reasons, both scientific and ethical, that this thesis will investigate 

the use of fluid restriction protocols to motivate rhesus macaques in behavioural 

neuroscience. 



11 
 

1.6 Aims 

There are important gaps in knowledge surrounding fluid restriction protocols and 

there exists the need for clear and applicable research regarding the welfare of 

laboratory NHPs and the protocols imposed on them.  Due to the widespread use of 

fluid restriction protocols, the controversy of their practise and their potential impact 

on animal welfare, it is the aim of this thesis to expand the current understanding of 

fluid restriction and to investigate potential refinements to the technique. 

Specifically, the three main areas that will be addressed in this thesis are: 

1.  To explore the impact of fluid restriction protocols on the behaviour, physiology 

and welfare of rhesus macaques used in behavioural neuroscience and to assess the 

scientific output of monkeys undergoing different fluid restriction protocols. 

2.  To test for fluid preferences in the macaques and investigate the potential 

motivational value of preferred fluid rewards and to assess whether these can be 

used to refine fluid restriction protocols. 

3.  To assess whether non-nutritive rewards, in the form of social stimuli (images and 

video clips of conspecifics), can be utilised alongside, or instead of, current fluid 

restriction protocols.   

These studies were conducted in a laboratory where rhesus macaques were used to 

understand higher cognitive functions and the neuropharmacology of cognitive 

functions in the context of visual processing.  Consequently, whilst the experiments 

described in the following chapters were designed with the principle aims of the thesis 

in mind, studies were incorporated into existing neuroscience studies, where possible, 

in order to reduce the use of the animals undergoing experimentation. 
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Chapter 2: General Methods 

2.1 Ethical Statement 

All experimental animal procedures complied with European Union Directive 

2010 (2010 63 EU), the National Institutes of Health (Guidelines for the Care and Use of 

Laboratory Animals), the Society for Neurosciences Policies on the Use of Animals and 

Humans in Neuroscience Research, and the Animals (Scientific Procedures) Act 

1986.  All reporting abides by the ARRIVE guidelines and work was carried out under a 

UK Home Office approved and regulated project license. 

2.2 Animals 

All animals used in this thesis were rhesus macaques, aged between 4 and 9 years 

old and weighing between approximately 4 and 15 Kg.  Animals were used in behavioural 

neuroscience studies, and were all experienced in the experimental set-ups and 

behavioural tasks.  The animals were pair-housed and the cages in the facility located 

such that the individuals could obtain visual and auditory contact with other monkeys.  

The monkeys were provided with toys on a rotated basis as environmental enrichment, 

and dry food mix was placed in the floor covering to allow them forage. This has been 

shown to be stimulating and rewarding (Chamove and Anderson, 1989) and has been 

recommended by primate welfare guidelines (NC3Rs, 2006).  The home cages were one 

of two sizes: 2.1 x 3.0 x 2.4 m or 2.3 x 2.45 x 2.4 m and the facility was lit on a 12 h 

light/dark cycle with additional light from ceiling windows.  The temperature and 

humidity were approximately 20 °C and 24%, respectively. 

Animals in the facility undergo daily checks by a technician or veterinarian even in 

the absence of any health or welfare concerns.  Fur condition, faeces, eyes, food intake 

and activity levels are all visually assessed.  Any time there is a health or welfare concern, 

or if the animal is in a post-operative period, technicians and the veterinarian check the 

animal several times per day. In these circumstances, wound healing is also assessed.  In 

addition to daily checks, all primates are blood sampled annually to test for tuberculosis.  

Blood samples are also assessed for levels of the following: white blood cells, red blood 

cells, potassium, calcium, urea, cholesterol and proteins.  All animals were tested for 
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viral and bacterial zoonoses, including Salmonella spp., Campylobacter spp. and Shigella 

spp., at their breeding facility. 

Throughout this thesis the monkeys in each chapter are referred to as Monkey 1, 

Monkey 2 etc.  Each chapter treats the naming of monkeys separately, and thus, Monkey 

1 in Chapter 3 is not necessarily the same individual as Monkey 1 in Chapter 4. 

2.3 Fluid Restriction Protocols 

Fluid restriction protocols need to be tailored to each individual animal, to ensure 

maximum motivation with minimum restriction severity. For each animal, the volume 

of water consumed under free access conditions (free access intake [FAI]) was 

determined over a period of at least five (not necessarily consecutive) days.  Following 

this, starting at a minimum of 70% FAI, the animal’s performance in the experimental 

setup was determined over at least 3 days.  The minimum was then decreased as 

necessary (in steps of 10-15% of FAI) until the animal was sufficiently motivated to work 

for fluid rewards in order to obtain scientifically useful data (approximately 1000-1200 

correct trials in a daily session).  After each reduction, the animal’s work rate was 

assessed for at least 3 working days to determine current levels of motivation and 

performance. Only if the current minimum was insufficient to achieve the required 

number of daily trials, were further decreases implemented. In cases where motivation 

required a drop to 30% or below of the free access intake, the named veterinary surgeon 

was contacted to assess the impact that this reduction would have on the animal’s 

welfare.   

Animals worked 5 days per week (Monday – Friday) throughout the experiments. 

Within a daily experimental session, the monkey was allowed to work for as much fluid 

as he wanted, but in situations where the minimum daily allowance was not earned 

during the task, the monkey was supplemented (to its established minimum) with water 

in the laboratory after the session had finished.  Therefore, monkeys received at least 

their minimum fluid allowance every working day.  The monkeys received their 

minimum allowance amount either in the laboratory (Monday to Thursday) or in the 

home cage (Sunday).  On Friday evenings and Saturdays, they were given free access to 

water in the home cage.  This changed only for the experiments in Chapter 2, which 
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were designed specifically to investigate different fluid restriction protocols.  These 

additional protocols are described in detail in Chapter 3. 

2.4 Apparatus 

All testing was carried out in the laboratory whilst the monkeys were seated in 

a custom made primate chair with their heads fixed by a post set in dental acrylic.  

Headpost surgery was carried out with 1 – 3% sevoflurane general anaesthesia and 

under aseptic conditions, previously described by Thiele et al. (2006).  Testing was 

carried out in a dimly lit room with ambient light level at ~ 3-5 cd/m2, to ensure 

adequate contrast detection during tasks.  The stimuli were presented on a Iiyama 

HM204DTA computer monitor, with an 85 Hz refresh rate and 1280 x 1024 pixel 

resolution.  Stimulus presentation, reward delivery and experimental timing were 

controlled on IBM-compatible personal computers, using the Cortex programme (DOS-

Version 5.95; IMH, http://dally.nimh.nih.gov/).  Monkeys were weighed daily prior to 

each experimental session (Mon-Fri), and then transferred between the housing unit 

and the laboratory using a custom-made trolley, onto which the primate chair was 

fitted.   
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Chapter 3: The Impact of Fluid Restriction Protocols on the 

Physiology, Behaviour and Scientific Output of Rhesus Macaques 

3.1 Introduction 

As discussed in Chapter 1 (section 1.5), fluid restriction protocols are a widely used 

motivational technique used in primate behavioural neuroscience, although their 

impact on animal welfare is poorly understood and contentious.  In an NC3Rs Working 

Group report of 2010, Prescott et al. (2010) identified gaps in knowledge concerning the 

use of fluid restriction with NHPs, highlighting the paucity of data regarding how these 

protocols might impact on NHP welfare.  There are several concerns surrounding fluid 

restriction protocols, including dehydration, weight changes and impacts on behaviours 

in the home cage.   

The first concern to address is the potential to cause dehydration(Prescott et al., 

2010).  Measures of dehydration and mechanisms of thirst are well-studied in the rhesus 

macaque (Wood et al., 1982).  The physiological mechanism of thirst in the macaque is 

caused mostly by cellular dehydration, with reduction in plasma volume contributing a 

smaller effect (Wood et al., 1982)  but the two processes are linked, so although cellular 

dehydration cannot be measured directly in task-performing laboratory animals, 

clinically validated proxies are available.  For example, the concentrations of ions in the 

bloodstream are highly correlated with cellular dehydration but are much simpler to 

measure (Wood et al., 1977).  The levels of sodium, haematocrit, urea and creatinine in 

the blood increase as fluid intake is decreased, due to a lowered volume of water in the 

bloodstream.  To then maintain homeostasis of the blood, compensatory changes in 

urine concentration are expected.  This occurs when decreases in fluid intake are 

detected by osmoreceptors in the anterior hypothalamus, which in turn cause the 

posterior pituitary to secrete antidiuretic hormone (ADH).  ADH causes kidney cells to 

reabsorb water in to the blood, resulting in more concentrated urine.  If fluid restriction 

protocols impact upon macaque physiology and result in adaptive responses to conserve 

fluids, urine osmolality, creatinine and specific gravity should increase.   
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Further concerns with fluid restriction protocols include possible loss of body mass 

(highlighted in Prescott et al., 2010).  Fluid restriction could negatively impact on body 

condition, as consumption (especially of dry foods) may decrease if the monkeys 

experience increasing thirst.  This voluntary decrease in food intake as a consequence 

of reduced fluid intake has been previously described in rodents and humans (Cizek and 

Nocenti, 1965; Collier and Levitsky, 1967; Engell, 1988). 

In addition to the physiological and morphological impacts of fluid restriction, it is 

important to assess the effects on the monkeys’ behaviour.  Some behaviours change in 

predictable ways in relation to welfare.  For example, as welfare declines, stereotypies 

increase (Lutz et al., 2003; Honess et al., 2004).  Stereotypies are broadly defined as 

repetitive and seemingly functionless behaviours, such as pacing and rocking, and are 

often used as markers of compromised welfare (Mason, 2006).  Inactivity and reduced 

energy are additional welfare indicators and increases in these behaviours can signal 

low mood; they are symptoms of depression in humans (Diagnostic and Statistical 

Manual for Mental Disorder, 2013).  In addition, pharmacological trials have aided in 

identification of other behaviours associated with poor welfare. These include: 

displacement activities such as self-grooming, self-scratching, yawning, body shaking 

and eye rubbing, which all increase with drug-induced anxiety and which decrease with 

anxiolytic treatment (Schino et al., 1996; Palit et al., 1998).  These so-called self-directed 

behaviours are also mirrored in the human stress phenotype (see Troisi (2002) for a 

review in NHPs and humans). Furthermore, a decrease in food consumption or foraging 

behaviours (as described above) may reflect a state of thirst.  Many of the described 

behavioural measures have been previously used to assess substantial changes in an 

NHP’s routine, such as air transportation and re-homing (Honess et al., 2004), effects of 

different social housing options ( Schapiro et al., 1996; Baker et al., 2014) and the long 

term impacts of differential rearing conditions (Corcoran et al., 2012). In this study, I 

plan to test if the same measures can be used to detect behavioural changes in 

individuals undergoing common fluid restriction protocols. 

There have been previous attempts to evaluate the use of fluid restriction on some 

aspects of animal welfare using physiological or behavioural measures. Yamada et al. 

(2010) found that increases in macaque blood osmolality caused by fluid restriction 
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quickly returned to normal levels during a rewarded behavioural task, and that 

osmolality remained mostly stable across a 5-day working week. More recently, Hage et 

al. (2014) failed to detect changes in home cage behaviour across a 12-day period of 

fluid restriction, although they were not able to compare these measures to behaviour 

during periods of free access to water. While both of these studies help to alleviate some 

concerns of fluid restriction protocols, it could be argued that they are too focused on 

one particular type of measure or too short-term to address concerns about longer-term 

impacts on welfare.  There is a clear need to assess welfare over a longer period of time 

using a combination of measures to gain a more complete picture of the potential 

effects of fluid restriction.  In order to shed light on this issue, physiological and 

behavioural measures sensitive enough to capture any changes in physiology or welfare 

must be used. 

The experiment conducted in this chapter was designed to investigate the validity of 

the current concerns surrounding fluid restriction.  The study implemented a controlled 

within-subject design in four macaques used in electrophysiological studies over a 16-

week period. During this period, all four animals experienced two different fluid 

restriction protocols which are commonly used in primate research (Prescott et al., 

2010). The physiological and behavioural outcomes of these fluid restrictions were 

compared with baseline data taken when the monkeys had free access to water. In 

addition, some physiological measures were compared to two ‘control’ groups. The first 

was a non-restricted, age- and sex-matched control group at the Centre for Macaques 

(CfM) UK breeding facility to ensure that the macaques’ data fell within a ‘normal range’.  

The other was a sub-sample of monkeys at Newcastle University that were naïve to fluid 

restriction protocols to explore possible changes following long-term exposure to 

periods of fluid restriction. This chapter, therefore, describes a suite of physiological and 

behavioural measures to assess the impact of longer-term use of different fluid 

restriction protocols on rhesus macaque welfare, and how these protocols translate to 

performance in behavioural tasks and subsequent scientific data quality.  
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3.2 Materials and Methods 

3.2.1 Fluid Restriction Protocols 

Three different conditions were assessed: a control period of free access to water 

(hereafter “free access”), and both a 5-day and a 7-day fluid restriction protocol 

(hereafter “5-day protocol” and “7-day protocol”). The 5-day protocol consisted of 5 

days of fluid restriction with free access to water on days 6 and 7.  This is the standard 

protocol implemented in the laboratory of Prof. Thiele (and many other laboratories 

world-wide). The second protocol consisted of 7 days of fluid restriction, where animals 

had access  to at least  their individually established minimum every day (as described 

in Chapter 2, section 2.3), which they could exceed by means of their work-rate during 

experimental weekdays, but not on days 6 and 7.  The 7-day protocol was tested to 

investigate potential costs and benefits in relation to welfare and scientific output.  On 

a 5-day protocol, work rates following the two days of free access are normally too low 

to allow for electrophysiology recordings, leaving at least one day per week where the 

animal is fluid restricted and performs the cognitive task in the laboratory without 

usable data being collected.  If a 7-day protocol was more effective at motivating animals 

to perform the task on a Monday, data collection could be quicker and periods of fluid 

restriction could be reduced.  Given these potential benefits, it was important to be able 

to compare welfare measures between protocols, as well as to a control period of free-

access. 

On the 5-day protocol, subjects received their minimum fluid allowance either in the 

laboratory (Monday to Thursday) or in the home cage (Sunday).  On Friday evenings and 

Saturdays, they were given free access to water in the home cage.  On the 7-day 

protocol, the monkeys received their minimum fluid allowance every day (Monday to 

Friday in the laboratory and Saturday and Sunday in the home cage), but were never 

given free access to water. Protocols lasted for four weeks at a time and were repeated 

twice (total of 16 weeks of study, two x 4 weeks for each protocol).  The protocols were 

given either in a 5-7-5-7 day order (two monkeys) or a 7-5-7-5 day order (two monkeys).  

The monkeys were sampled for blood and urine on the last Friday morning of each 

protocol (detailed below).  After sampling (occurring every 4 weeks), they were given 

free access to water from Friday morning (after sampling) until Friday afternoon before 



19 
 

the next protocol began on Saturday.  Free access was given for that period to aid 

recovery from ketamine sedation. 

Animals worked 5 days per week (Monday – Friday) in the neurophysiological 

experiments.  Within a daily experimental session, a monkey was allowed to work for as 

much fluid as he wanted, but in situations where the minimum daily allowance was not 

earned during the task, he was supplemented (to his established minimum) with water 

in the laboratory after the session had finished.  Therefore, monkeys received at least 

their minimum fluid allowance every working day.  For the 16 weeks of fluid restriction, 

monkeys were separated from their cage mates from Friday evening until Sunday 

afternoon.  This was done to obtain accurate recordings of fluid intake for the monkey 

of interest and to ensure that the cage mate had adequate (unrestricted) access to water 

for that period. 

Prior to the fluid restriction protocols, the monkeys experienced a control period of 

12 days during which they had free access to water, and behavioural and physiological 

measures were taken.  A second control period of 12 days was implemented six months 

after the completion of the fluid restriction protocols, and physiological measures were 

taken again, and used with those from the first control period for analysis. 

3.2.2 Tasks Performed by the Primates 

For the duration of this study, each monkey was involved in ongoing neuroscience 

experiments, in which they were performing tasks in relation to visually presented 

stimuli to obtain fluid rewards.  Monkeys 1 and 3 were rewarded with Ribena (Lucozade 

Ribena Suntory Ltd), Monkey 2 with water and Monkey 4 with diluted coca-cola (The 

Coca-Cola Company).  Three subjects were engaged in covert top-down attentional tasks 

with individual trial times of 2000-4000 ms.  The other monkey (Monkey 1) was 

performing a memory guided saccade task, with individual trials taking up to 5000 ms.  

Experiments were carried out in a dimly lit room.  Performance in the laboratory was 

monitored via computer control; task performance, i.e. the number of correct trials 

performed by the monkey in their task, was recorded for each session.  The criteria for 

determining when the monkey had stopped working (for example no consistent task 

engagement for > 15 min) differed slightly for each animal between experimenters, but 
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they remained consistent for individual monkeys over the course of the study. 

Experimenters were blind to which fluid restriction protocol their animal was currently 

subjected to and I provided the monkeys’ water at weekends so that husbandry staff 

also remained blind. 

3.2.3 Physiological Measures 

Physiological measures of hydration state were collected at the end of the free-

access periods (i.e. two data points per animal, one prior to implementing the fluid 

restriction protocols, the other 6 months after) and on the last day of each 4-week block 

of the 5-day and 7-day protocols (i.e. two data points/animal/protocol).  To do this, 

animals were sedated with ketamine (10mg/Kg) intra muscular (IM) and blood was 

collected from the saphenous vein for haematological and biochemical analysis.  During 

the sedation following the free access period, the bladder was located using ultrasound 

and urine was extracted via cystocentesis.  During the fluid restriction protocols this was 

not possible due to the small size of the bladder and instead urine was collected from 

the cage on the morning of sedation, when possible.  Urine was collected at least once 

per fluid restriction protocol for each monkey. 

To compare results to a relevant baseline of non-restricted individuals, blood 

samples were also obtained from the Centre for Macaques (CfM), the UK rhesus 

macaque breeding facility.  14 male monkeys from 4-15 years old, weighing between 9-

16 Kg were sedated as above and blood was collected from the femoral vein.  The CfM 

monkeys received free access to water at all times and were group housed.  Due to 

sampling and housing procedures, it was not possible to obtain urine samples from the 

monkeys at CfM.  

Blood was also taken from two newly-restricted monkeys, i.e. monkeys previously 

naïve to fluid restriction, to ascertain whether impacts of fluid restriction were different 

when experienced for the first time.  In these individuals, samples were taken (as 

described above) at 1 week from when the monkeys were first subject to fluid restriction 

and again at approximately 3 months and 6 months, dependent on scheduling this 

around the monkeys’ progress in his cognitive task training, so as to not negatively 

impact on his development.  These monkeys were 3 and 5 years old. 
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In order to assess any damage that fluid restriction may have caused to the kidneys, 

I obtained qualitative post mortem reports from two male rhesus macaques previously 

housed at Newcastle’s facility and not included in this study.  One monkey was of a 

similar age to those used in this study (8 years old) and the second was 16 years old; 

both had been fluid restricted intermittently on a 5-day protocol for 5 years and 11 

years, respectively. 

3.2.4 Weight Data 

Animals were weighed on each weekday before being taken to the laboratory to 

evaluate weight change over the course of a working week as well as a longer-term 

assessment over the duration of a fluid restriction block (four weeks). The dataset was 

incomplete (due to occasional researcher absence or faults with the weighing scales) 

and the following number of weights were collected for each animal out of a possible 

76 days (38 days per protocol, as animals were not taken to the laboratory, and thus not 

weighed, on physiological sampling days): Monkey 1: 65; Monkey 2: 75; Monkey 3: 67; 

Monkey 4: 74. 

3.2.5 Behavioural Measures 

In order to assess the potential psychological impact of different fluid restriction 

protocols, behavioural measures were collected while monkeys were in their home 

cages.  Behaviour was recorded using cameras (Cube HD 1080, Y-cam) attached to the 

corridors of the primate housing facility, outside of each cage of interest.  Data were 

collected three times per week: early week (Monday evenings and Tuesday mornings, 

to allow for husbandry procedures on Monday mornings), late week (Thursday morning 

and evening) and weekend (Saturday morning and evening).  Using a range of days 

permitted assessment of changes in behaviour throughout the week.  Morning 

recordings lasted from 07:00 – 09:00, and evening recordings from 17:00 – 18:40 (to 

coincide with lighting times).  These times reduced the amount of personnel present in 

the primate facility, which, on its own could, affect animal behaviour. 

An ethogram was designed to capture behaviours potentially associated with 

changes in welfare state (listed in Table 1) and behaviours were recorded using the 

Observer XT software (v 11, Noldus Information Technology).  Behaviours were sampled 
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in one of two different ways.  They were scored either every time they occurred in a 

video observation (hereafter called “continuous sampling”) or they were scored at a 30 

second sample point (“scan sampling”).  Continuous sampling was used for short or rare 

behaviours in order for them to be captured by the observation duration.  Continuously 

sampled behaviours could be recorded either as ‘frequency’ data or as ‘duration’ data.  

Frequency data consisted of counts of behaviours, whereas duration data also included 

the length of time for which a behaviour was performed. A pilot set of behavioural 

observations (approximately 100 h of observations spread across all animals) was 

analysed to assess whether the full length of the recordings was needed to accurately 

capture potential behavioural changes induced by different protocols, or whether 

sampling the middle hour from the video collected was sufficient.  Using paired t tests 

for each monkey (separately for both mornings and evenings of each fluid restriction 

protocol), no significant difference was found between analysing the middle hour (07:30 

– 08:30, 17:20 – 18:20) and the full recording (all t < 0.906, p > 0.378; see Appendix A, 

Table 1).  Therefore, observations and analyses were carried out using data from the 

middle hour only.  In total, 410 h of video were observed and analysed with the following 

distribution across animals: Monkey 1: 108 h; Monkey 2: 112 h; Monkey 3: 90 h; and 

Monkey 4: 100 h.  These numbers differ slightly due to some monkeys occasionally being 

brought back to the cage later than others which meant that they were not always 

present for the full video recording times.  On rare occasions cameras also failed, 

resulting in lost footage.  All videos were scored with the observer blind to the fluid 

restriction and all inter- and intra-rater reliability values were above 0.8 kappa score. 



23 
 

 

Category Behaviours Description Sampling 
Frequency 

/Duration 

Inactive 

Alert  
Sitting/lying /standing stationary on any surface and looking at objects 
or individuals inside or outside of the cage. 

Scan 

Frequency 

Not alert 
Sitting/lying/standing stationary on any surface, eyes may be open or 
closed, not looking at objects or individuals inside or outside of the cage. 

Frequency 

Hunched As for not alert, but sitting with head lower than the shoulders  Frequency 

Foraging 

Eating Ingestion of items  Scan Frequency 

Foraging 
Searching for food or manipulation of food items or sources, without 
ingestion of food 

Scan  Frequency 

Chewing  
Chewing without any insertion of food into the mouth in the preceding 
30 s 

Scan Frequency 

Abnormal 

Locomotor stereotypy 
One or more completions of a repeated locomotor pattern, including 
any embedded behaviours 

Scan Frequency 

Other abnormal 
Digit sucking, hair pulling, nail biting, rocking, head flicking, hand shake, 
any self-injurious behaviour 

Continuous Duration 

Self-groom Stroking, picking, or otherwise manipulating own body surface  Scan Frequency 

Table 1. Ethogram of behavioural measures of welfare for the rhesus macaque.  Scan sampling occurred every 30 s and continuous sampling scored 

behaviours every time they were seen. 
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Non-social 
behaviours 

Self-scratching Scratching the skin vigorously with nails Continuous Duration 

Yawn 
Opening the mouth widely, teeth exposed, lips retracted without 
vocalisation 

Continuous Frequency 

Body shake Dog-like body shake of whole body Continuous Frequency 

Eye rub Rubbing the eye with a hand Continuous Duration 

Interact with physical 
environment – hands/feet 

Swinging, pushing, manipulating any part of the cage or an enrichment 
with hands or feet without using mouth 

Scan Frequency 

Interact with physical 
environment - oral 

Manipulating any part of the cage or an enrichment with mouth 
involved. Chewing/licking/biting any aspect of the cage or inanimate 
object in it.   

Scan Frequency 

Social 
behaviours 

Allogroom - donor Stroking, picking, or otherwise manipulating a cage mate's body surface  Scan Frequency 

Allogroom - recipient Being groomed by cage mate, following above descriptors Scan Frequency 

Aggression to cage mate Open mouth threat, chase, attack Continuous Duration 

Submissive to cage mate Fear grimace, present, displacement of position in the cage Continuous Duration 

Aggression directed 
outside cage 

Open mouth threat, attack or threat postures directed outside of the 
cage (e.g. at the glass) 

Continuous Duration 

Play with cage mate 
Non-aggressive high intensity interaction (chase, wrestle, tumble) with 
cage mate 

Scan Frequency 

Mounting Mounting cage mate Continuous Duration 

Being mounted Being mounted by cage mate Continuous Duration 
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Locomotion 
Agitated locomotion Moving between locations, often rapidly, with a stiff un-relaxed gait Scan Frequency 

Relaxed locomotion Moving between locations with a relaxed gait Scan Frequency 

Other Other Any behaviour not listed above and noteworthy. Describe form. Continuous  Duration 
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3.2.6 Water Bottle Approach and Consumption 

In order to gauge motivational drive to drink under the different fluid restriction 

protocols, ‘latency to drink’ was measured on Saturday and Sunday mornings during the 

16 weeks. If motivation to drink was increased on a stricter fluid restriction protocol, it 

would be expected that latency to approach the bottle would be shorter on the 7-day 

protocol than on the 5-day protocol, and that volumes consumed would be larger.  A 

water bottle containing either the minimum allowance or 1 L of water (depending on 

the fluid restriction protocol) was attached to the home cage and the latency to start 

drinking was recorded.  In circumstances where the monkey began to drink before the 

bottle was fully attached to the cage, the latency was scored as <1 s and given a value 

of 0.5 s for analysis.  Since the volumes of water offered on Saturdays differed between 

the two protocols, an additional test was carried out, whereby the amount of fluid 

consumed in the first five min was also measured.  

3.3 Statistical Methods 

All analyses were carried out using IBM Corp. SPSS (v21, SPSS Inc, Chicago, USA) and 

R (R Foundation for Statistical Computing, 2015).  R software was used when a suitable 

model was not available in SPSS, and the R packages used were as follows:  glmmADMB, 

pscl, stringr, plyr, coda and lme4.   

3.3.1 Physiological Data 

All data from the physiological measures were normally distributed and analysed 

using a linear mixed model (LMM), with fluid restriction protocol (free access, 5-day 

protocol and 7-day protocol) as a fixed factor, and monkey as a random factor.  For blood 

urea the variance of the random effect was <0.001 and so the test was performed with 

the random effect omitted.  To compare blood results from this study to those obtained 

at the breeding facility, a LMM was used, with monkey colony as a fixed factor and 

monkey as a random factor.  Finally, to compare blood results from the study to newly-

restricted monkeys, a LMM was used, with fluid restriction experience (naïve or 

experienced) as a fixed factor and monkey as a random factor. 
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3.3.2 Weight Data 

Weight change was assessed in three ways: over a working week, over each 4-week 

fluid restriction block and over a weekend. Weight change over the working week 

(Monday to Friday) was calculated in the following way: (Weight in kilograms 

Friday/Weight in kilograms Monday-1* 100).  The weekly weight changes for the 5-day 

and 7-day protocols were normally distributed and were compared using a linear mixed 

model with percentage weight change as the fixed effect and monkey as the random 

effect.  This allowed short-term weight change to be assessed.  Additionally, for each 

fluid restriction, weekly weight changes were compared to zero (no change in weight) 

using a one sample t test.  Overall weight change for a fluid restriction block (four weeks) 

was evaluated by taking the start and end weights of the animals and calculating 

percentage weight change, to evaluate longer-term effects of fluid restriction on weight.  

Finally, to assess the changes in weights over the weekend, percentage weight change 

from Friday to Monday was calculated and results from the two fluid restriction 

protocols were compared using a t test. 

3.3.3 Behavioural Data 

To increase the power of analyses and to detect potentially subtle changes between 

fluid restriction protocols, behaviours with similar functions (such as foraging, chewing 

and eating) were grouped together and analysed in categories (Table 2).  Behaviours 

were assessed for differences across the three conditions (free access, 5-day protocol 

and 7-day protocol).  Where there were differences between the three conditions, 

further analyses were performed to check for differences between the 5-day and 7-day 

protocols and whether either of these differed from free access.  Certain behaviours 

were never seen and could not be analysed: rocking, head flicking, hand shake, self-

injurious behaviour, attack and ‘other’ behaviours (noteworthy behaviours not defined 

in the ethogram; see Table 1). 

Continuously-sampled behaviours occurred infrequently in the 30s scan samples, 

due to their rare or short nature and were therefore omitted from the scan sample data 

and analysed separately.  As described above (section 3.2.6), drinking behaviour was 

captured separately as latency to approach the bottle and volume consumed in five min 

at weekend time points.  Since animals were separated from their cage mate on 
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Saturdays, behavioural repertoires were not directly comparable between weekdays 

and weekends.  Therefore, separate analyses were carried out for weekday data and 

Saturday data. 

Behaviours were analysed by creating two models in R.  The first was a LMM with an 

underlying gamma distribution, with monkey identity as a random effect and fluid 

restriction as a fixed effect.  A second model omitting the effect of fluid restriction was 

created and an ANOVA was applied to compare the two models, to assess the overall 

main effect of fluid restriction (Crawley, 2005). Scan-sampled behaviours (excluding 

Inactivity and Pacing), all continuously sampled frequency behaviours, and self-directed 

behaviour were analysed in this way. Inactivity was also fitted to the above models but 

using an underlying Poisson distribution. 

Some behaviours occurred at low frequency or were not performed by all animals 

and so were analysed separately.  Pacing was only performed by two individuals and did 

not follow a normal distribution.  It was therefore analysed separately for each animal 

using a Kruskal-Wallis test for weekdays and Mann-Whitney U test for Saturdays.  Due 

to the low occurrence of Social behaviour and Aggression and the high prevalence of 

zeros in the data, these two categories were analysed using a binary logistic regression, 

with a random effect of monkey identity and fluid restriction as a fixed effect. 
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Category                                                Included Behaviours 

Scan Sampled (every 30s) 

Inactivity Alert, Not Alert, Hunched 

Consumption Eating, Chewing, Foraging 

Interact Interact with physical environment – hands/feet, 

Interact with physical environment - oral 

Locomotion Relaxed Locomotion, Agitated Locomotion 

Allogroom Allogroom - donor, Allogroom - recipient 

Self-groom Self-groom 

Pacing Locomotor stereotypy 

Continuously Sampled (Duration) 

Aggression Aggression to cage mate, Aggression directed outside 

cage 

Social Affiliative, Being mounted, Dominance, Mounting, Play 

with cage mate, Submissive to cage mate 

Self-directed Self-scratching, eye rub 

Continuously Sampled (Frequency) 

Body Shake Body Shake 

Yawn Yawn 

Abnormal Abnormal 

 

 

 

 

 

 

 

 

Table 2. Categories of behaviours used for statistical analysis. 
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3.3.4 Water Bottle Approach and Consumption  

Latencies to approach the bottles were not normally distributed and were analysed 

using a Mann-Whitney U test.  In order to make Saturday consumption data comparable 

across the monkeys, volumes drunk were converted to a percentage of each animal’s 

minimum daily allowance.  These data were not normally distributed and were analysed 

using a Mann-Whitney U test. 

3.3.5 Task Performance 

Monkey 1 was excluded from the task performance analysis (i.e. the number of trials 

performed on work days as a function of fluid restriction protocol).  This was due to the 

difficulty of his task increasing across the study, as was necessary for the 

electrophysiological data collection, and the varied setting in which he worked 

(electrophysiology laboratory and MRI scanner).  Trial data for the remaining three 

monkeys were not normally distributed and differences in the number of trials 

performed when on the 5- and 7-day fluid restriction protocols were assessed using a 

Mann-Whitney test for each monkey individually.  To assess the effect of weekend water 

intake on Mondays work performance, a Pearson correlation was calculated using 

percentage weight change from Friday to Monday and the number of trials performed 

on a Monday.  In addition, trials performed on Monday were compared to 1000 (an 

about acceptable laboratory performance) using a one-sample Wilcoxon sign rank test. 

3.4 Results 

3.4.1 Fluid Intake of Individual Animals  

The four animals differed in their free access intakes (FAI) and in the daily minimum 

fluid allowance established to ensure adequate work-rates (Table 3; see Chapter 2, 

section 2.3 for details on fluid allowance calculations).   
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3.4.2 Physiological Measures 

There were no significant effects of restriction protocol type on physiological blood 

measures for the four monkeys.  Concentrations of sodium (Na), haematocrit (HCT), 

urea and creatinine (Cr) in the blood did not differ across the 5-day and 7-day protocols 

and the free access period (LMM: Na, HCT, Cr: F(2,18) < 2.98, p > 0.076; Urea: F(2,21) = 0.89, 

p = 0.42; Figure 1). However, urine measures of osmolality (Osm), creatinine (Cr) and 

specific gravity (SG) significantly differed across conditions (Osm: F(2,11) = 16.91, p < 

0.001; Cr: F(2, 9.98) = 7.31, p = 0.0011; SG: F(2, 9.98) = 24.30, p < 0.001; Figure 2). All three 

urine measures were lower when monkeys had free access to water than during either 

the 5-day or 7-day protocols (Bonferonni post hoc comparisons all p < 0.05; Table 4), but 

there was no difference between the two restriction protocols (Bonferonni post hoc 

comparisons all p > 0.54; Table 4).  

 

 

 

 

 

Table 3. The free access intake (FAI) of each monkey and his daily minimum fluid 

allowance in total ml, %FAI and in ml/kg/day. 

Monkey Free Access Intake (ml) Fluid Allowance (ml) % FAI ml/kg/day 

1 645 200 31 15 

2 880 150 17 14 

3 910 355 39 26 

4 305 150 49 17 
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There were some differences in the physiological measures taken from blood 

samples between the experimental monkeys and those at the breeding centre (Figure 

1).  Levels of urea were higher at the CfM breeding centre (Mean difference: 1.08 

mmol/L, F(1,40) = 8.36, p = 0.006), whilst creatinine levels were lower (Mean difference: 

15.75 μmol/L, F(1,11.08) = 5.79, p = 0.035).  The remaining blood measures did not differ 

between males in the two colonies (Na: F(1,12.99) = 0.004, p = 0.95; HCT: F(1,8.78) = 4.60; p 

= 0.06).  Taken together, the physiological data suggest that fluid restriction protocols 

as used here have no negative impact on blood physiology in male macaques. 

To assess the initial effects of fluid restriction, the four monkeys involved in this 

study were compared with two other monkeys in the Newcastle colony who were newly 

subjected to fluid restriction.  Since there was no difference in blood measures between 

the free access, 5-day and 7-day protocols, these data were pooled and compared to all 

blood taken from the newly restricted monkeys.  There were no differences in any of 

the blood measures (LMM: Na mean difference = -0.88 mmol/L, F(1,4.9) = 0.27, p = 0.63; 

HCT mean difference = -1.69%, F(1,4.9) = 0.77, p = 0.42; Cr mean difference = -19.34 

μmol/L, F(1,4.9) = 3.38, p = 0.14 and Urea mean difference = 0.48, F(1,4.9) = 0.78., p = 0.41; 

Figure 1).   

 Finally, the post mortem reports from the kidneys of two deceased monkeys from 

Newcastle stated that: “(The kidneys) exhibit minimal chronic interstitial multifocal 

Measure 
(I)  Fluid 
restriction 

(J)  Fluid 
restriction 

Mean 
Difference 
(I-J) 

SEM df 
p -
value 

Osmolality 
(mOsmol/kg) 

Free Access 5-day -1006.81 143.46 10.88 <0.001 

Free Access 7-day -869.63 151.66 10.62 <0.001 

5-day 7-day 137.19 154.82 12.31 1.00 

Creatinine 
(mmol/L) 

Free Access 5-day -28.14 8.11 12.44 0.01 

Free Access 7-day -30.60 8.06 11.70 0.008 

5-day 7-day -2.46 8.11 12.44 1.00 

Specific 
Gravity 

Free Access 5-day -0.03 .004 11.88 <0.001 
Free Access 7-day -0.03 .004 11.36 <0.001 
5-day 7-day 0.006 .004 11.88 0.54 

Table 4. Bonferonni post hoc pairwise comparisons of the effect of fluid restrictions 

(free access, 5-day, 7-day) on urine measures of hydration. 
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nephritis, a non-specific finding, which likely represents an incidental finding in this 

case” and for the second monkey: “Both kidneys appear well organised. There is no 

evidence of extensive mineralisation within the kidney and no material suggestive of 

uroliths is observed within the renal pelvis.  There are rare small foci of inflammation 

and interstitial fibrosis which would not have been of clinical significance.”  Although the 

monkeys were not included in the data collection for this study, these reports suggest a 

5-day fluid restriction experienced by the monkeys did not negatively impact on their 

kidney organisation or function.   
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Figure 1. The effect of fluid restriction protocols on blood measures of hydration 
(mean ± Standard Error of Mean, SEM) in monkeys recruited for this study (free 
access, 5-day, 7-day: N = 4), monkeys with ad libitum access to water at the 
breeding facility (CfM: N = 13) and newly restricted monkeys (Naïve monkeys: N 
= 2) for: (a) sodium; (b) urea; (c) creatinine; and (d) haematocrit. 
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Figure 2. The effect of fluid restriction protocols on urine measures of hydration 

(mean ± SEM) during free access, the 5-day protocol and the 7-day protocol for: 

(a) osmolality; (b) creatinine and; (c) specific gravity 
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3.4.3 Weight  

To investigate possible weight loss associated with fluid restriction, daily changes in 

body weight were measured throughout the working week, across the 16 weeks of fluid 

restriction protocols. From Monday to Friday, weight loss occurred on the 5-day 

protocol but not on the 7-day protocol (LMM: F(1,57.20) = 9.48, p = 0.003; Figure 3). On 

average, monkeys lost body mass (mean weight change = -0.95% body mass) during the 

week on the 5-day protocol (one sample t test, test value = 0, t(29) = 3.39 p = 0.002), 

whilst their body mass remained relatively constant (mean weight change = + 0.10%) on 

the 7-day protocol (t(31) = 0.45, p > 0.66).  However, across a fluid restriction block (4 

weeks), there were hints of an opposite trend, with animals maintaining weight on the 

5-day protocol (mean weight change = -0.16%), but losing weight on the 7-day protocol 

(mean weight change = -1.66%); Appendix A, Figure 1. However, neither change across 

a four-week block was significantly different from zero (one sample t test, test value = 

0, 5-day: t(7) = 0.21, p = 0.81; 7-day:  t(7) = 2.18, p = 0.066), nor were they different from 

one another (LMM: F(1,11) = 2.12, p = 0.17).  Therefore, weight change was not consistent 

across the two fluid restriction protocols, with shorter-term weekly changes in weight 

on the 5-day protocol, but no significant longer term (4-week) changes in either of the 

two protocols.  This suggests that weight loss is not a major concern for animals on fluid 

restriction protocols, at least over a 16-week period. 
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Figure 3. The weekly percentage weight change calculated from the 
beginning of each fluid restriction block (weight in kilograms Friday/Weight 
in kilograms Monday) -1*100): (a) Monkey 1; (b) Monkey 2; (c) Monkey 3; 
(d) Monkey 4. Dashed lines indicate no change in weight. 
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3.4.4 Behavioural Measures 

In addition to physiological and morphological measures, the monkeys were also 

filmed in their home cages to assess whether the fluid restriction protocols caused 

changes in behaviour.  On weekdays, significant differences were found in the frequency 

of nine behaviours occurring across the free access versus fluid restriction protocols 

(Figure 4 a-e). These were: Interaction (χ2 (2) = 42.27, p < 0.001), Locomotion (χ2 (2) = 

11.77, p = 0.0027), Self-groom (χ2 (2) = 37.35, p < 0.001), Body shake (χ2 (2) = 30.86, p < 

0.001), Yawn (χ2 (2) = 101.32, p < 0.001), Self-directed (χ2 (2) = 17.09, p < 0.001), 

Abnormal (χ2 (2) = 10.07, p = 0.0065), Social (χ2 (2) = 8.72, p = 0.013), and Inactivity (χ2 

(2) = 6.51, p = 0.039) (Figure 4a-e). For six of these behaviours (Interaction, Locomotion, 

Self-groom, Body shake, Yawn and Self-directed), the frequency was lower in the 5-day 

and 7-day protocols compared to free access (5-day: all t(184) < 7.06, p < 0.006; 7-day: all 

t(194) < 7.69, p < 0.001), with no difference in frequency between the two fluid control 

protocols (all t(198) < 1.07, p > 0.28). 

Three out of 13 behavioural categories differed between the two fluid control 

protocols. Abnormal behaviour was lower in frequency in the 5-day protocol compared 

to free access (t(184) = 2.68, p < 0.001) and the 7-day protocol (t(198) = 2.79, p = 0.005), 

but there was no difference between free access and the 7-day protocol (t(194) = 0.08, p 

= 0.94). However, inactivity was lower on the 7-day protocol compared with free 

access (t(194) = 2.55, p = 0.01), but not different to the 5-day protocol (t(198) = 1.39, p = 

0.166). There was also no difference between free access and the 5-day protocol (t(184) 

= 1.18, p = 0.24).  Social behaviour was lower on the 7-day protocol than on the 5-day 

protocol (t(198) = 2.13, p = 0.033) and the free access protocol (t(194) = 0.28, p = 0.005), 

but there was no difference between free access and the 5-day protocol (t(184) = 0.76, p 

= 0.45). 

No other behaviours were affected by fluid restriction (Allogroom, Consumption 

[foraging, eating and chewing] χ2 (2) < 2.99; Aggression χ2 (1) = 1.08; Pacing, H2 < 3.36; 

all p > 0.16; Figure 4 a, b, e).  Overall, results showed no consistent pattern of fluid 

restriction changing behaviour in line with impoverished welfare. 

On Saturdays, monkeys were separated from their cage mates, and their behaviours 

were not comparable to behaviours performed during the free access periods or other 
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weekdays when cage mates had been present.  Therefore, behavioural data collected 

on Saturdays were only compared with that from other Saturdays.  On Saturdays, there 

was a significant effect of fluid restriction on two behaviours. The first was consumption 

(foraging, chewing and eating), which was lower when animals were on the 7-day 

protocol compared to the 5-day protocol (χ2 (1) = 8.68, p = 0.003).  The second behaviour 

was pacing, which was only sufficiently frequent to allow for quantitative analysis in two 

of the four animals.  Pacing increased for one monkey on the 7-day protocol compared 

to the 5-day protocol (U = 110, z = 2.43, p = 0.026; Figure 5b), whilst the second monkey 

showed no change in pacing behaviour (U = 107, z = 1.58, p = 0.123; Figure 5b).  All 

remaining behaviours showed no difference in frequency between 5-day and 7-day 

protocols (Interaction, Locomotion, Self-Groom, Inactivity, Body Shake, Yawn, 

Abnormal, Self-Directed, Aggression and Social, χ2 (1) < 3.23, p > 0.07 for all; Figure 5a, 

c, d, e).  In summary, only two behaviours differed over the weekend between the two 

fluid restriction protocols. 
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Figure 4. The effect of free access to water, 5-day and 7-day fluid restriction protocols on behaviours performed on weekdays. 
Behaviours are grouped by the sampling methods used: (a) scan sampled behaviours; (b) scan sampled pacing frequency for Monkeys 
3 and 4; (c) continuously sampled, frequency-only behaviours; (d) continuously sampled duration of scratching behaviour; (e) 
continuously sampled behaviours (binary data) with a high prevalence of zero. The means for individual monkeys are denoted by 
overlaid symbols. 
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 Figure 5. The effect of 5-day and 7-day fluid restriction on behaviours performed on Saturdays.  Behaviours are grouped by 
the sampling methods used: (a) scan sampled behaviours; (b) scan sampled pacing frequency for Monkeys 3 and 4;(c) 
continuously sampled, frequency-only behaviours; (d) continuously sampled duration of scratching behaviour; (e) 
continuously sampled behaviours (binary data) with a high prevalence of zeros. The means for individual monkeys are denoted 
by overlaid symbols. 
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3.4.5 Water Bottle Approach and Consumption  

On Saturdays, the monkeys approached the water bottles attached to their home 

cages significantly quicker on the 7-day protocol (Median = 2 s), than on the 5-day 

protocol (Median = 4 s) (Mann Whitney, U = 2.24, p = 0.03; Appendix A, Figure 2a). The 

monkeys also drank more in five min on Saturdays on the 7-day protocol (Median 

percentage of fluid allowance consumed = 100%), compared to the 5-day protocol 

(Median percentage of fluid allowance consumed = 50%), (Mann Whitney, U = 3.28, p = 

0.001; Appendix A, Figure 2c).  There was no effect of fluid restriction protocol on the 

latency to approach the water bottle on Sundays (Mann Whitney, U = 0.46, p = 0.647; 

Appendix A, Figure 2b). Thus motivation to drink was increased on Saturdays on the 7-

day protocol. 

3.4.6 Task performance 

Only three monkeys were included in the analysis of task performance (one monkey 

had regularly changing task demands, required by the experimental design, which 

precluded this specific analysis).  There was no overall increase in the daily numbers of 

trials performed in their respective cognitive tasks when they were subjected to the 7-

day protocol, rather than the 5-day protocol (Mann Whitney, U < 1.44, p > 0.15 for all; 

Figure 6).  The performance on Monday is of particular importance, since animals often 

do not perform enough trials for scientific data to be collected on the 5-day protocol.  

On Mondays, there was a significant correlation between the percentage weight change 

over the weekend (from Friday to Monday) and the number of trials performed: when 

weight decreased over the weekend, more trials were performed on the Monday 

(Pearson correlation, R2 = - 0.49, p < 0.01; Figure 7).  Weight change over the weekend 

differed between the two fluid restrictions (t test, t(28) = 3.58, p = 0.001). On average, 

monkeys gained 0.83% weight over the weekend on the 5-day fluid restriction and 

performed fewer than 1000 trials on Mondays (Median = 686, test value = 1000, W = 

3.64, p < 0.001).  Conversely, on the 7-day fluid restriction, monkeys lost 0.76% body 

mass and completed an average of 981 trials on Mondays (test value = 1000, W = 0.065, 

p = 0.95).  Slight weight loss over the weekend on the 5-day protocol resulted in poor 

performance on a Monday, whereas monkeys were more motivated to work on a 

Monday on the 7-day protocol without free access to water over the weekend. 
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Figure 6. Median number of trials performed daily, averaged across all 
monkeys (N = 3). Filled circles represent 5th and 95th percentiles. 
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Figure 7. The effect of Friday to Monday percentage weight change 
on the number of trials performed on a Monday 
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3.5 Discussion  

This study provides the first objective and quantitative data on the effects of fluid 

restriction protocols on the physiology, behaviour and performance of laboratory 

macaques used in behavioural neuroscience. Given the range of data analysed, each of 

the different measures is discussed in turn. 

3.5.1 Physiological Changes 

One primary concern with fluid restriction protocols is that they dehydrate the 

animals, leading to reduced welfare and poor animal condition (Prescott et al., 2010). 

However, I found that blood measures of hydration were the same across all three 

conditions (5-day protocol, 7-day protocol and free access), and were within ranges 

observed across other rhesus macaque facilities where animals are on constant ad 

libitum fluid access (Table 5). However, since the values obtained in other facilities 

include animals of differing ages compared to our males, the blood measures were also 

compared with samples acquired from a sample of similarly aged male monkeys at CfM, 

which had never experienced any fluid restriction protocol.  Two blood measures did 

differ slightly between our monkeys and those at CfM: CfM’s macaques had higher levels 

of urea and lower levels of creatinine.  However, these do not immediately point to long-

term effects of fluid protocol use in our animals: the higher levels of urea were the 

opposite of what would be expected for animals with ad libitum access to water, and 

values for both colonies still lie within normal ranges (Table 5).  Furthermore, when 

compared with two monkeys experiencing fluid restriction for the first time (previously 

naïve), there was no difference in blood measures between them and the experimental 

animals.  

In addition, I found that urine was more concentrated for both fluid restriction 

protocols compared to the free access periods, and there were no differences between 

the two fluid restriction protocols.  Taken together, these results suggest that macaques 

can cope with a reduced fluid intake from when they first experience fluid restriction 

protocols, that there appears to be no long term damage of fluid restriction: overall, the 

monkeys’ kidneys were well functioning and efficiently retained fluids when access to 

water was limited. Their ability to efficiently retain fluids may be an adaptation to 

seasonal rainfall and periods of restricted water access in their natural environment 
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(Lindburg, 1977).  It is important to highlight that all four macaques used in this study 

had been previously water restricted on the 5-day protocol for over four years, and yet 

their physiological responses to fluid restriction remained normal. In addition, the post 

mortem examination of two deceased monkeys from Newcastle reported good kidney 

organisation.  These monkeys had been fluid restricted on the 5-day protocol for 5 and 

11 years and experienced no damage to their kidney structure.  This suggests that a 5-

day protocol has no negative physiological effects on a long-term basis, arguing against 

the concern that keeping animals on fluid restriction protocols for long periods may 

cause physiological harm (Prescott et al., 2010).   

Overall, the physiological measures suggest that there is no short-term welfare 

impact on being on either protocol over a four-week period, and no significant 

difference between the two. Whilst the data also suggest that no long-term harm is 

caused by monkeys being repeatedly subject to periods of 5-day fluid restriction, it is 

not certain whether this is the case for the 7-day fluid restriction protocol, as the 7-day 

fluid restriction protocol has not been implemented for extended periods of time. 

Further long-term studies would be required to investigate this. 

3.5.2 Weight Change 

Potential weight loss is a key welfare issue surrounding fluid restriction, with 

concerns that fluid restriction and the potential associated reduction in food intake 

(Cizek and Nocenti 1965; Collier and Levitsky 1967; Engell 1988) could lead to a 

substantial loss in body mass (Prescott et al., 2010).  Within a working week (Monday-

Friday), weight loss occurred on the 5-day protocol but not on the 7-day protocol. 

However, across a fluid restriction block, the opposite effect was found, with animals 

maintaining weight over the 5-day protocol, but not on the 7-day fluid restriction 

protocol, where there was a small degree of weight loss (around 2% over a four-week 

period).  Although these results initially appear contradictory, they can be explained by 

weight changes over the weekend.  When on the 5-day protocol, monkeys tended to 

gain weight on free access to water, thus starting the week at a higher mass (mean 

weight change = +0.83%). In contrast, without the opportunity to work beyond their 

minimum on weekend days, monkeys on the 7-day protocol tended to lose weight over 

a weekend (mean weight change = -0.76%), resulting in a slight weight loss over the 4-
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week block. Whether weight loss would continue on an extended 7-day protocol is 

impossible to say from my data; it requires further longer-term research. However, the 

data are conclusive in showing that a 5-day protocol does not lead to excessive weight 

loss, or indeed any weight loss, and a 7-day restriction regime over the course of 4 weeks 

induces no statistically significant weight loss, nor any rapid or sustained weight loss that 

would raise any immediate welfare concern.  

3.5.3 Behaviour 

There were some behavioural changes in the monkeys between the free access and 

fluid restriction conditions. Whilst some behavioural changes may be indicative of 

reduced welfare during the two fluid restriction protocols, for example, increased 

stereotypic pacing in one animal (Gottlieb et al., 2015), others suggest the opposite; that 

the monkeys’ welfare was compromised more during the control period.  Body shaking, 

self-grooming and yawning are considered to be indicative of anxiety in macaques 

(Ninan et al., 1982; Deputte, 1994; Schino et al., 1996; Major et al., 2009), making it 

surprising that these behaviours were more prevalent in the free access period 

compared to during either fluid protocol.  One possible reason for this observation was 

that the free access data were collected over the Christmas break, when animals were 

not working in experiments and had free-access to water.  Collecting free access data 

during breaks was necessary because fluid restriction and working routines are 

intrinsically linked. Fluid restriction is only permitted when the monkeys have the 

opportunity to earn fluid in the laboratory, and running animals in experiments on free 

access is not possible.  However, this meant there were also changes to laboratory and 

husbandry routines: monkeys did not take part in experimental procedures, had 

reduced social contact with humans (research and animal care staff), and husbandry 

routines were different to those experienced during a typical experimental week. 

Although animals may experience similar periods throughout the year (e.g. holiday 

weekends, and festive breaks), these changes in routine could potentially increase 

anxiety related behaviours in the free access period (reviewed by Bassett and Buchanan-

Smith, 2007). Therefore, it is difficult to know if behavioural differences between free 

access and fluid restriction protocols were due to fluid access, changes in routine, or a 

combination of the two. When husbandry and daily routine return to normal, the 

corresponding decrease in anxiety could theoretically mask an increase in anxiety from 
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fluid restriction. Despite this potential confound, it can be safely concluded that fluid 

restriction does not increase anxiety more than a change in husbandry regime, if any.  

There were also very few behavioural differences observed between the two fluid 

restriction protocols, and again, the results were not consistent. For example, on 

weekdays, abnormal behaviours were higher on the 7-day fluid restriction, potentially 

indicating increased stress levels (Lutz et al., 2003).  However, inactivity was lower on 

the 7-day fluid restriction, which is generally indicative of improved welfare (Lutz and 

Novak 2005; Baker et al. 2014). It is surprising that inactivity decreased in monkeys 

subjected to a stricter fluid restriction, since studies on humans have documented an 

increase in fatigue when subjects are fluid-deprived, with participants anecdotally 

reporting decreased activity levels (Pross et al., 2014).  Decreasing inactivity levels 

(sometimes indicative of improved welfare) occurred alongside increases in abnormal 

activity, making it impossible to identify any clear impacts on welfare from the 7-day 

protocol. 

Small behavioural differences between protocols were also observed on Saturdays. 

Consumption (foraging, eating and chewing) was lower on the 7-day protocol compared 

to the 5-day protocol. There are two possible explanations for this.  One possible 

explanation is that because water is required to absorb and digest food, animals cannot 

eat as much on the 7-day protocol compared to the 5-day protocol. This voluntary 

reduction in consumption has been previously documented in rats and humans (Cizek 

and Nocenti, 1965; Collier and Levitsky, 1967; Engell, 1988), and is one of the concerns 

surrounding fluid restriction (Prescott et al., 2010). Alternatively, it may not be that the 

animals are under-eating on the 7-day protocol, but rather that they are over-eating on 

the 5-day protocol: “bingeing” can occur when monkeys are given free access to water 

on the 5-day regime (Toth and Gardiner, 2000).  Both of these explanations are 

supported by changes in weight over the weekend, with increases on the 5-day but 

decreases on the 7-day protocols, making it difficult to tease apart the two. Overall, 

regardless of what causes the difference in consumption behaviour at weekends, it 

should be noted that these changes were not of a magnitude to cause weight loss of 

concern in our monkeys. 
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The second change was in pacing behaviour.  Two of the animals in our group 

performed pacing behaviour during all protocols. In one of the two, higher levels of 

pacing occurred over the weekend on the 7-day compared with the 5-day protocol.  

Stereotypies in captive macaques are often used as indicators of suboptimal welfare and 

may indicate higher levels of stress in this individual (Novak et al., 2006).  However, their 

prevalence alone should not be relied upon as a single measure of wellbeing (Mason 

and Latham, 2004), and data from one animal remain too limited to enable a firm 

conclusion.  In addition, stereotypies can be interpreted as a coping behaviour (Mason 

and Latham, 2004; Novak et al., 2006) and as such, animals performing these behaviours 

may experience a more positive state of wellbeing than is often assumed.  It is therefore 

difficult to draw definite conclusions from these data. 

3.5.4 Water Bottle Approach and Consumption  

When given access to water on Saturdays, monkeys appeared more motivated to 

drink on the 7-day protocol than on the 5-day protocol: they approached the bottle 

more quickly and consumed a larger volume of water.  This may be due to many reasons, 

including a dryness or unpleasant taste in the mouth, as shown in humans (Rolls et al., 

1980).  However, it is impossible to infer the subjective experience (e.g. thirst) of the 

animals from our data. Therefore, being on a 7-day protocol increased the animals’ 

motivation to drink, but it is uncertain what state caused this change in motivation. 

3.5.5 Task Performance  

An important aspect of this study was to assess the scientific outcomes associated 

with the use of different fluid restriction protocols. Typically, on a 5-day fluid restriction 

protocol, animals do not participate in a sufficient number of trials to collect a robust 

data set (around 1000 trials are required per day for these particular tasks). 

Consequently, data collection is not usually attempted on a Monday.  The number of 

trials performed on a Monday in this study were too low on the 5-day fluid restriction 

regime to attempt electrophysiological recordings, given the scientific requirements of 

the studies involved.  The most likely reason for this is that monkeys were not motivated 

to drink after increased access to water over the weekend. However, when the monkeys 

were restricted over the weekend on the 7-day protocol, performance on Mondays 

increased to levels that would generally allow electrophysiology to be performed. This 
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suggests that a 7-day fluid restriction protocol might enable scientific studies to be 

conducted five days per week (or seven days, if recording continued over the weekend), 

which could significantly reduce the duration of a study by at least 20%. This would mean 

that the time individual monkeys spend on a fluid restriction regime would be similarly 

reduced.  

3.6 Conclusions 

This study addressed the need for scientific data on the impact of different fluid 

restriction protocols on the welfare and performance of laboratory primates used in 

neuroscience research (Prescott et al., 2010). The use of fluid restriction protocols are 

contentious (Orlans, 1991; Willems, 2009; Westlund, 2012) and it is crucial that we 

better understand how they affect experimental animals in order to make more 

informed decisions about their use. The main conclusions are that: 

1. Male macaques physiologically cope with periods of fluid restriction, 

maintaining blood parameters within normal ranges by concentrating their urine 

in response to both protocols. There were no detectable short-term effects of 

either the 5-day or 7-day protocol, or any long-term (> 4 years) effect of a 5-day 

protocol, on kidney function.  Further work is required to establish whether the 

same results would be seen in female macaques. 

2. There were relatively small changes in behaviour detected by in-depth 

analysis, with some behaviours indicative of poor welfare being associated with 

fluid restriction protocols, and others with free access to water.  

3. 5-day and 7-day fluid restriction protocols do not lead to rapid and 

sustained weight loss that would be of immediate welfare concern. More data 

are required to assess the long-term impact of 7-day fluid restriction on weight 

changes. 

4. Animals are more motivated to drink in their home cage when on a 7-day 

protocol compared to 5-day, but the subjective experiences of the animals are 

unknown. 

5. Improved task performance on a 7-day protocol compared to a 5-day 

protocol could allow more rapid collection of sufficient scientific data, and 

reduced time spent on fluid restriction protocols for experimental animals. 
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These data mostly fail to show the significant detrimental effects on the welfare of 

laboratory macaques, which often have been predicted to arise from the use of fluid 

restriction protocols. This study counters  and alleviates many of the widely-held welfare 

concerns surrounding these methods.
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Table 5.  Values of published rhesus macaque blood parameters 

Source Age N Na   Urea  Creatinine  HCT 

   mmol/L  mmol/L  µmol/L  %  

   Mean SD  Mean SD  Mean SD  Mean SD  

Lee et al., 2012 2-5 29 145.68 3.68  5.91 1.59  66.3 15.91  34.87  4.49  

Hassimoto et al., 2004 3.5 6 139  5  9.28 1.43  41.55 6.19  43.4  4.7  

Chen et al., 2009 3-5 18 149.71  3.07  8.47 1.21  69.73  11.51  43  0.02  

Ribeiro Andrade et al., 2004 3.5-16 21  - -  11.13 3.71   - -  37.55  3.23  

Primate Ageing Database (Indoor housing) 4-15 57- 157 148.88  11.48  6.40 2.98   111.65 71.07  41.04 10.35  

Primate Ageing Database (Indoor housing) 8-9 3 - 44 150.33 1.7  6.14 2.01   122.35 18.39  40.42 3.58  

Primate Ageing Database (All housing) 4-15 62 - 192 146.382 9.00  6.81 3.38   109.09 67.80  41.04 9.88  

Primate Ageing Database (All housing) 8-9 15 - 53 145.5 8.55  6.86 2.59   112.62 20.69  40.62 3.42  

Buchl and Howard, 1997 3-4 30 148 3  6.43 1.07  79.46 8.84   - -  

Levine, 1995 3-7  - 145 1.5  7.14 1.07  83.98 11.05   - -  
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Chapter 4: The Use of Preferred Fluid Rewards to Refine Fluid 

Restriction Protocols 

4.1 Introduction 

The first chapter of this thesis focused on the impact of fluid restriction protocols, 

assessing to what extent the protocols physiologically and behaviourally affect rhesus 

macaques.  However, in addition to exploring the impacts of scientific protocols, it is 

important, where possible, to refine their use.  Indeed, this was a key point made by 

Prescott et al. (2010), who emphasised the need for researchers to choose their reward 

schedules and reward types carefully in order to optimally motivate macaques to work 

adequately under less restrictive regimes.  A variety of motivational techniques are used 

in the literature and, to the best of my knowledge, there are currently no data that 

compare the effectiveness of different reward schedules.   

There are three aspects of reward that seem likely to be effective at increasing 

motivation for animals to perform in tasks, allowing restriction protocols to be relaxed. 

The first is the use of preferred rewards. The expectancy of receiving a preferred reward 

is evident in increased activity at a neuronal level in macaques and is coded separately 

from the physical or taste properties of a reward (Cromwell et al., 2005; Tremblay and 

Schultz, 1999; Watanabe, 1996).  In addition, damage to the cortical areas encoding the 

information results in impaired reward valuation (Baylis and Gaffan, 1991).  Preference can also 

be demonstrated behaviourally, with macaques reaching more quickly for a favoured 

food reward over a less preferred reward (Watanabe et al., 2001) and performing longer 

anticipatory licks for preferred fluids (Hassani et al., 2001; Watanabe et al., 2001).  

Furthermore, preferred items function more effectively as rewards (Fisher et al., 1997; 

DeLeon et al., 2001) and can result in more successful training of behaviour (Clay et al., 

2009).  

The second potential motivator is variability, which can be introduced in two forms.  

Firstly, when researchers choose not to reward every correct trial or every nth correct trial 

that a monkey performs, but instead introduce variability into the schedule by 

rewarding monkeys on a random or pseudorandom basis.  The efficacy of using such 
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variable ratio (VR) schedules has been encouraged as a possible tool to refine or replace fluid 

restriction protocols (Westlund, 2012).  Secondly, researchers can introduce variability or variety 

in the types of rewards they use.  In early work following on from Skinner (1953), 

Wunderlich (1961) demonstrated that using varied rewards (food or fluid) helped to 

strengthen the resistance to extinction of task learning, compared to when using each 

reward alone or simultaneously. .  Further work has also demonstrated that rats will perform 

at a better rate when their rewards are varied throughout a task ( Melville et al., 1997; Bouton 

et al., 2014) 

Finally, giving monkeys a choice of reward may also enhance motivation.  At the 

neuronal level, it has been demonstrated that the act of choosing a reward, rather than 

simply receiving one, may have intrinsic motivational value, separate from the hedonic 

or nutritional value provided by the fluid reward (Tremblay and Schultz, 1999).  

Moreover, presenting both animals and humans with free choice is also known to be 

preferred over a forced choice alternative (Brigham and Sherman, 1973; Catania and 

Sagvolden, 1980; Fisher et al., 1997).  Finally, in addition to the potential motivational 

and reinforcing value of choice, choice has also been advocated in the promotion of 

improved animal wellbeing (Catania and Sagvolden, 1980; Rumbaugh and Washburn, 

2008) 

4.2 Aims 

Taking into consideration the importance of selecting rewards, I first aimed to assess 

the types of foods and fluids used to motivate macaques in scientific study by conducting 

a literature search.  Given the potential efficacy of using preferred rewards and the 

possible motivational value of VR schedules and choice reward schedules, this chapter 

then had two main experimental aims.  Firstly, I aimed to find a way to efficiently 

quantify fluid reward preference in rhesus macaques, and secondly, to use these 

preferences to compare the motivational capacities of different reward schedules: the 

monkeys’ previous reward, their new preferred reward, a VR of previous and preferred 

rewards, and a choice of the previous and preferred rewards.  I measured whether fluid 

preference could be established in the laboratory or home cage, whether the use of 

different reward schedules could maintain sufficient motivation and finally, if the level 
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of motivation was high enough to sustain adequate task performance when their fluid 

restriction was lessened.   

4.3 Literature Search 

4.3.1 Methods 

I conducted a literature search to assess how rewards and restrictions are reported 

in studies utilising macaques.  Three searches were carried out on The Web of 

KnowledgeSM database (v. 5.10) using the following combinations of keywords: 

‘macaque and neuroscience’, ‘macaque and learning and behaviour’ and ‘macaque and 

electrophysiology and behaviour’ to examine papers from 2010 - 2016.  Searches were 

refined by selecting for articles and by excluding reviews.  Relevance of an abstract was 

assessed on the study being laboratory based (i.e. not a field study) with the use of a 

monkey and the possibility of a task being performed.  Studies were excluded at this 

stage if they did not utilise a species of macaque, if the study was not carried out in a 

laboratory or home cage environment, or if the animal was not used in a rewarded 

protocol.  Information was extracted from suitable papers for the following parameters: 

species used, reward type, reward amount, access to fluid and access to food. 

4.3.2 Results 

In total, 124 of the returned results were suitable for inclusion in the dataset (see 

full table in Appendix B).  Initially, I had hoped to gain insight into the types of rewards 

given to macaques, but instead uncovered a lack of reporting within the literature 

(results are summarised in Table 6).  Of 124 papers reviewed, 72 reported using some 

type of fluid reward, 41 used food rewards, 5 studies utilised both food and fluid rewards 

and the 6 remaining studies failed to specify what the monkey was rewarded with 

(Figure 8).  However, the majority of studies reported only vague categories of food or 

fluid, such as “juice”, “liquid”, “fruit” or “pellet”, leaving me unable to identify the 

specific rewards used. 

Fluid Rewards  

Exact rewards, including the type of fluid and the volumes given, were reported for 

15 out of 77 studies using fluid motivators; the remaining 62 studies reported only 
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categories of reward.  When detailing the provision of fluids (i.e. whether monkeys were 

given free access to water or whether restriction was required), 21 studies used some 

form of fluid restriction, with the remaining 56 studies failing to report specifics on the 

duration or frequency of fluid provision for the monkeys. 

Food Rewards 

 Of the 44 studies using food rewards, 24 reported an exact reward and 20 gave a 

category of reward.  When describing the monkeys’ food provision schedules, 13 papers 

failed to state the frequency or duration of food access.  There were some studies (6/44) 

which specifically made reference to food restriction and several (12/44) which explicitly 

stated that an animal was given ad libitum access or was not food restricted for the 

experiment.  In contrast to evaluating fluid access, it was more difficult with the 

remaining 13 papers to determine whether food restriction was employed.  Phrases 

such as, “they were maintained on a diet of fresh fruit, vegetables, and monkey chow” 

were unclear in conveying the amount of food being provided.   

This analysis highlights a lack of reliable and informative reporting in the literature.  

The inconsistency of reporting as well as the variety of reward schedules employed are 

two of the reasons why monkeys’ preferences need to be established.  The results and 

implications of this literature search are discussed further in Section 4.6.1.  
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Figure 8. The reporting of rewards in 124 studies using macaques. 58% use fluid rewards, 
33% use food rewards, 4% use both and 5% failed to report the reward used. 

 

 

Table 6. The reporting of fluid and food provision in 77 studies using fluid rewards and 
44 studies using food rewards. 

Reward Type Parameter Level of Reporting % of Papers Reporting 

Fluid  Fluid Restriction No restriction 0 

  Restriction 27 

  Not reported 73 

  Ambiguous 0 

 Reward type Exact rewarda 19 

  Categoryb 81 

Food  Food Restriction No restriction 27 

  Restriction 14 

  Not reported 29.5 

  Ambiguous 29.5 

 Reward type Exact rewarda 56 
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  Categoryc 44 

a An exact reward is defined as a reward that reports both a specific type of fluid or food 
as well as the amount given per presentation, using a description that would allow for 
replication of the reward schedule. 

b Categories of fluids reported included: fluid (6%), liquid (25%), juice (44%), isotonic 
water with no defined volume (3%) and water with no defined volume (5%). 

c Categories of foods reported included: food (9%), fruit (7%), pellet (14%), candy (7%), 
yoghurt (5%) and raisins and peanuts with no defined quantity (2%).  

 

 

 

 

 

4.4 Experiment 1  

4.4.1 Methods 

Four monkeys were used in this study, weighing between 8 – 14.5 Kg at the start of 

the preference assessments.  Minimum fluid intakes (Chapter 2, section 2.3) were as 

follows: Monkey 1: 250ml; Monkey 2: 200 ml; Monkey 3: 200 ml; Monkey 4: 385ml.  

Establishing fluid preferences 

Fluid preferences for each monkey were established by one of two methods.  The 

first was to use the experimental set-up, where animals had already been trained to 

saccade to stimuli in order to access fluid rewards.  A simple saccade choice task was 

devised, where looking at visually distinct stimuli presented on a screen resulted in 

different fluid rewards being delivered, allowing animals to choose which reward to 

receive.  Fluid preference in the first two monkeys (Monkey 1 and Monkey 2) was 

assessed in this way.  In each trial, they were initially required to fixate on a fixation spot 

(0.1 x 0.1 dva; 3 x 3 dva eye window allowance) for 3000 ms, after which three reward 

targets appeared. The monkey then had to saccade to any one of the three reward 

targets and fixate for 250 ms to complete a trial correctly and receive an associated fluid 
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reward (~0.1 – 0.2 ml fluid).  Failure to fixate on a stimulus for long enough meant that 

the trial was terminated, and the animal was not rewarded. The three reward targets 

(each 2 dva; 3 x 3 dva eye window allowance) were equidistant from the fixation spot 

(0, 0) and were located at positions (x = -6.0, y = 6.0), (x = 0.0, y = -8.5) and (x = 6.0, y = 

6.0).  The location of the targets was randomised on each trial to control for any location 

bias and pseudo-randomisation was programmed such that targets occupied the 

locations for equal amounts of trials.  Each reward target was distinguishable by colour 

for Monkey 1 (pink, red or blue) and by shape for Monkey 2 (annulus, triangle and 

diamond), each occupied the same area and was associated with a different fluid 

reward.   

To investigate fluid preferences, the two monkeys had the choice between water 

(which they had previously received as a reward), and two fruit drinks, one nutritive and 

the other non-nutritive. The nutritive fruit drink was Ribena (40 ml of undiluted squash 

was added to 210 ml of water), which had been successfully used by other researchers 

in the primate facility to motivate their animals.  Fruit tea (a cranberry and raspberry tea 

bag placed in 250 ml of hot water for 5 min, before being allowed to cool) had the taste 

of fruit without any high sugar content.  The three fluids (water, Ribena and fruit tea) 

were delivered through a specially designed mouthpiece, which allowed three separate 

bottles to be connected via three plastic tubes so that there was no residue that could 

influence the taste of the next fluid.  The bottles were calibrated prior to the 

experiments to ensure that the same amount of reward was delivered from each bottle. 

The fluid preference task was run for eight days and the fluid chosen on more than 50% 

of the days was taken as the monkey’s preference. These preferences were then used 

to inform the design of the next part of the experiment which investigated the reward 

value of different motivational schedules. 

The establishment of fluid preferences using the laboratory set-up was time-

consuming, required additional apparatus (reward bottles and their associated control 

panels and a customised mouthpiece) and only allowed for three fluids to be tested.  

Using saccades to targets also has the potential to result in biases from the monkeys, for 

example, animals could always choose a particular type of stimulus or locations.  Given 

that I wanted to find refinements to fluid restriction protocols that are easy to 

implement in a behavioural neuroscience setting, I decided to test fluid preferences for 
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Monkeys 3 and 4 using a second methodology in the home cage in an attempt to screen 

more fluids in a simpler and quicker task. 

The home cage preference assessment was conducted with Monkeys 3 and 4.  As 

they would not be “earning” their fluids, they could not be fluid restricted and so had 

free access to water during the days on which they were tested.  Initial assessments 

consisted of a range of different juices (apple, pineapple, mixed fruits and orange) being 

presented in a choice paradigm to narrow down the options into two main preferences.  

The monkey was separated from his cage mate and juices were offered in syringes in 

pairs.  Each juice was presented to the monkey to try before both juices were offered 

simultaneously.  The juice preferred by the monkey (simply noted by which syringe he 

chose to drink from) was then refilled and presented alongside a new juice.  The two 

most preferred fluids (chosen the most often) were then carried forward to the next 

experimental stage, along with the fluid with which the monkey had been previously 

rewarded in cognitive tasks. The fruit tea was not used here as it is not as viscous as the 

fruit juices and the bottles used in the cage, unlike the bottles in the experimental set 

up, cannot be calibrated to dispense equally. Therefore, by using juices of similar 

viscosity, I hoped to control for the amount that could be drank from the bottle in the 

next stage of the experiment.   

The two most preferred fluids and the monkey’s previous fluid reward were 

presented in 1L bottles attached to the cage in left, middle and right hand positions.  

Upon presentation, the monkey had 5 min of access to the bottles, after which time the 

volumes consumed were recorded.  Five min allowed enough time for the monkey to 

drink, without potential post-ingestive effects biasing the data (Pritchard et al., 1994).  

The 5-min test was carried out at the same time each day (between 9:00 – 10:00) for six 

d. Each day, the bottles were spatially arranged in a unique way that allowed every 

combination of fluids and positions to be presented once, which controlled for place 

preferences.  The fluid chosen consistently over the 6 d (on 50% or more of the days) 

was then used as the preferred reward when testing the reward schedules in the 

laboratory. 
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Assessing the motivational value of different fluid reward schedules 

After fluid preference had been established by either method, each monkey 

performed a laboratory task with which they were familiar whilst fluid restricted at their 

normal level (as established and implemented in past studies and as calculated in 

Chapter 2, Section 2.3).  Monkey 1 conducted a passive fixation task (ignoring a 

presented stimulus and keeping fixation on a central cue), Monkey 3 performed a bar 

release task (releasing a touch bar after a change in a stimulus cue) and Monkey 4 carried 

out a fixation task (fixating on a central cue). Although the tasks differed between 

monkeys, the nature of the task was irrelevant; it was only important that a monkey was 

familiar with a task and could consistently perform it in order to measure the 

effectiveness of the different reward schedules. 

The monkeys performed their task and received one of four different reward 

schedules on different days.  For the completion of a correct trial, the monkeys received 

either the reward given to them in previous studies (previous reward), their preferred 

reward as established in the preference assessment (preferred reward), a combination 

of the two (50% chance of receiving either previous or preferred: named the variable 

schedule) or were given a choice between previous and preferred rewards (choice 

schedule).  In the choice schedule, the monkeys were required to choose between their 

previous reward and preferred reward by making a saccade upon completion of a 

correct trial.  A cross-shaped stimulus represented the previous reward and a circle 

represented their preferred reward.  The stimuli were presented at (x = -6.0, y = 0) or (x 

= 6, y = 0) dva and the monkeys were required to fixate for 250 ms to gain the reward.  

The reward schedules were carried out in four blocks of four days, with schedules 

randomised within blocks.  The number of correct trials performed was recorded on 

each day. 

To assess whether the monkeys’ performances on their respective tasks could be 

maintained under less restrictive fluid restriction conditions, the daily fluid intake of the 

monkeys was increased by 100 ml.  Raising the fluid allowances allowed me to assess 

whether any of the reward schedules would be effective at a less restrictive fluid 

restriction protocol, i.e. equal (or similar) performance in terms of trial numbers. 
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4.4.2 Statistical Methods 

All data were checked for normality and equal variances, and analysed using 

appropriate parametric or non-parametric tests in IBM Corp. SPSS (v21, SPSS Inc, 

Chicago, USA).  Fluid preferences were tested using one-way ANOVAs or Kruskal Wallis 

tests.  The effectiveness of the reward schedules was tested using Kruskal Wallis tests, 

mixed models and t tests.  Finally, I compared the performance levels to 1000 trials (an 

adequate performance in the laboratory) using one-sample t tests for each monkey, 

with a test value of 1000.  

All pairwise tests were corrected for multiple comparisons using false discovery rate 

(FDR) post-hoc tests (Benjamini and Hochberg, 1995).  To do this, the p-values were 

taken from the pairwise comparisons and ranked from lowest to highest.  The standard 

alpha significance value of 0.05 was then divided by the number of comparisons made 

and all numbers below this to 1. It was then determined whether the smallest p-value 

was smaller than the corrected alpha level (p/number of comparisons, which is termed 

the q-value in FDR statistics). If so, the correction factor (number of comparisons) was 

adjusted, whereby it was reduced by 1, yielding a new accepted alpha level (q-value). I 

then determined whether the second smallest p-value was smaller than the new alpha 

level (q-value). If so the procedure was repeated until the respective ordered p-value 

exceeded the currently relevant q-value. The adjustments were stopped whenever the 

ranked p-value exceeded the corresponding q-value. 

4.4.3 Results   

Establishing fluid preferences 

To establish fluid preferences from the three fluids given to each monkey, either a 

one-way ANOVA (Monkeys 1, 2 and 4) or Kruskal Wallis test (Monkey 3) was used, to 

compare the number of choices for each fluid in the laboratory (Monkeys 1 and 2), or 

the amount of each fluid consumed in the home cage (Monkeys 3 and 4).  When using 

the laboratory set-up, a clear fluid preference could only be established for Monkey 1.  

Monkey 1 differentially chose the three different fluids (ANOVA, F(2,15) = 48.62, p <0.001; 

Figure 9), preferring Ribena to both cranberry tea (t(10) = 6.78, q < 0.05) and water (t(10) 

= 9.64, q < 0.05) and preferring cranberry over water (t(10) = 3, q < 0.05).  Whilst Monkey 



63 
 

2 also showed a significant difference in the amount of each fluid he chose (ANOVA, 

F(2,21) = 3.89, p = 0.037; Figure 9b), this was not consistent across days (occurred < 50% 

of test days) and was biased by a high intake of cranberry tea in the first three days of 

testing (Figure 9c).  Due to this lack of consistent preference, Monkey 2 was not 

continued in the experiment, and did not experience the different reward schedules. 

By using the cage method, fluid preferences were established for both Monkey 3 

(Kruskal-Wallis, H2 = 11.43, p = 0.003; Figure 9d) and Monkey 4 (ANOVA, F(2,15) = 5.83, p 

= 0.013; Figure 9e).  Monkey 3 preferred tropical juice to both his previous reward of 

Ribena (t(10) = 2.89, q < 0.033) and to orange juice (t(10) = 3.42, q < 0.033), with no 

difference between the orange juice and Ribena (t(10) = 0.091, q > 0.033).  Monkey 4 

preferred both new juices over his previous reward of water (Apple: U = 2.93 q < 0.033; 

Pineapple: U =2.93, q < 0.033) with no difference between apple and pineapple juice (U 

= 0, q > 0.033).  Apple juice was chosen to be carried forward as his preference as there 

was a slightly more pronounced choice of this on the tested days (Median consumption: 

Apple 255ml, Pineapple 245ml). 
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Figure 9. Fluid preference assessment for Monkeys 1 and 2 in the laboratory and 
Monkeys 3 and 4 in the home cage.  The overall average number of choices (±SEM) 
made for the three possible rewards in the preference test for (a) Monkey 1 and (b) 
Monkey 2.  Monkey 2 was not continued in the experiment as his fluid preference 
was not stable across the 8 testing days (c).  The average consumption of the fluid 
rewards in 5 min over 6 days for (d) Monkey 3 and (e) Monkey 4. 
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Assessing the motivational value of different fluid reward schedules 

Data from the reward schedule trials were not normally distributed and were 

analysed in multiple ways.  Motivation was assessed individually at each fluid restriction 

level, by applying a Kruskal Wallis test with a fixed factor of reward schedule and a 

dependent variable of the number of trials completed.  Monkey 1 received Ribena as his 

new preferred reward alongside water, which he had previously been rewarded with.  

At normal fluid intake levels, Monkey 1’s performance varied across the four reward 

schedules (Kruskal Wallis, H3 = 12.40, p = 0.006; Figure 10a).  His highest performances 

were for Ribena or a variable reward schedule, which he performed equally well for 

(Mann Whitney, U = 0.15, q > 0.017). His motivation was lower for water compared to 

both of these schedules (Ribena: U = 2.82, q < 0.017; Variable: U = 2.97, q < 0.017). 

Although there was a trend suggestive of a decrease in performance when he was given 

a choice of reward, the number of trials was not significantly different from Ribena (U = 

1.78, q > 0.017), the variable schedule (U = 1.93, q > 0.017) or water (U = 0.30, q > 0.017).  

Unlike Monkey 1, Monkeys 3 and 4 did not differ in their task performance for different 

fluid reward schedules (Monkey 3: Kruskal Wallis, H3 = 7.22; Monkey 4: ANOVA, F(3,12) = 

1.61; p > 0.05 for both; Figure 10b and c), demonstrating that, for these two monkeys, 

the schedules had equal motivational value at a normal restriction level.     

Approximately 1000 trials is considered an adequate level of task performance for 

behavioural neuroscience conducted in the laboratory.  When rewarded with water, 

Monkey 1’s performance did not differ from 1000 trials (one sample t test, test value = 

1000; t(3) = 0.57, q > 0.0375), and all other reward schedules elicited performance of 

over 1000 trials (t(3) < 6.89, q < 0.0375 for all); showing all reward schedules to be 

adequately, or more than adequately, motivating.  Taken together, these results 

suggests that the inclusion of Ribena within a schedule increased motivation to beyond 

that of water.  Monkey 3’s performance was no different from 1000 trials when 

rewarded with his previous reward (Ribena), preferred reward (tropical juice) or a 

variable schedule (t(3) < 2.41, q > 0.0125 for all) but performance dropped lower than 

1000 when he was given a choice of reward (t(3) = 19.84 q < 0.0125).  Monkey 4’s 

performance did not differ from 1000 trials for any schedule (t(3) < 2.49, q > 0.0125 for 

all), suggesting that all schedules were adequately motivating at the normal fluid 

restriction level. 



66 
 

The monkeys’ fluid intake was increased by 100 ml for the next stage of the 

experiment to assess whether the reward schedules remained motivating when the 

monkeys were less restricted.  At this relaxed fluid restriction, Monkey 1 and Monkey 3 

performed different numbers of trials on the different reward schedules (Monkey 1: H3 

= 8.70, p = 0.034; Monkey 3, F(3,12) = 3.72, p = 0.042; Figure 10a and b).  However, Monkey 

4 continued to perform a similar number of trials for each reward schedule (ANOVA, 

F(3,12) = 0.17 , p > 0.05; Figure 10c).  For Monkey 1, the use of water alone produced 

similar performance to the variable schedule (U = 1.93, q > 0.0083) and the choice 

schedule (U = 2.08, q > 0.0083) but water resulted in a lower level of work than that 

achieved with Ribena (U = 2.82, q < 0.0083).  There was no difference in performance 

between the variable, choice and Ribena schedules (Table 7).  Monkey 3’s performance 

when given a choice of reward was lower than when he was rewarded either with 

tropical juice (t(6) = 4.28, q < 0.017) or variably rewarded (t(6) = 7.53, q < 0.017), but there 

was no difference between any of the other reward schedules (Table 8).     
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Table 7. Monkey 1. Pairwise comparisons between the numbers of trials performed when rewarded with the previous or preferred rewards, the 
variable schedule and the choice schedule when the daily fluid allowance had been increased by 100 ml.  The results are controlled for multiple 
comparisons using False Discovery Rate (FDR) tests.  “NS” indicates a non-significant result.  

 

 

 

Reward Schedule Reward Schedule  Median Difference U-value Original p-value 
FDR corrected q-
value 

Significance 

(p < q) 

Previous Preferred 1076 2.82 0.005 0.0083 Significant 

 Variable 660 1.93 0.054 0.0083 NS 

 Choice 864 2.08 0.038 0.0083 NS 

Preferred Variable 416 0.89 0.37 0.0083 NS 

 Choice 212 0.74 0.46 0.0083 NS 

Variable Choice 204 0.15 0.88 0.0083 NS 
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Table 8. Monkey 3. Pairwise comparisons between the numbers of trials performed when rewarded with the previous or preferred rewards, the 
variable schedule and the choice schedule when the daily fluid allowance had been increased by 100 ml.  The results are controlled for multiple 
comparisons using False Discovery Rate (FDR) tests.   “NS” indicates a non-significant result. 

 

 

 

Reward 
Schedule 

Reward 
Schedule  

Mean 

Difference 

Std Error of 
Difference 

t-value df 
Original p-
value 

FDR corrected 
q-value 

Significance 

(p < q) 

Previous Preferred 83.25 236.79 0.35 6 0.74 0.017 NS 

 Variable 61.25 215.30 0.28 6 0.79 0.017 NS 

 Choice 419.75 211.61 1.98 6 0.095 0.017 NS 

Preferred Variable 22 123.98 0.18 6 0.87 0.017 NS 

 Choice 503 117.46 4.28 6 0.005 0.017 Significant 

Variable Choice 481 63.88 7.53 6 <0.001 0.017 Significant 
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Figure 10. The average number of correct trials (±SEM) performed by (a) Monkey 1; (b) 
Monkey 3 and (c) Monkey 4 when rewarded with their previous reward, preferred reward, a 
variable schedule or a choice schedule at both their normal and increased fluid intakes. In (b) 
“Norm.” refers to the normal fluid intake and “Inc.” to an increased fluid intake. 

Monkey 1 Monkey 2 

Monkey 3 
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Again, I compared the monkeys’ performances to 1000 trials to ascertain if any 

schedule resulted in an adequate laboratory performance.  Monkey 1’s daily performance 

remained around 1000 trials when rewarded with the choice and the variable schedules (t3 

< 2.47, q > 0.025), and he performed over 1000 trials when rewarded with Ribena (t3 = 6.67, 

q < 0.025).  However his performance was below adequate (<1000) when rewarded with 

just water (t3 = 5.36, q < 0.025); suggesting that his previous reward had now decreased in 

motivational value whilst the preferred reward continued to be motivating.  In contrast, 

Monkey 3’s performance with his previous reward of Ribena remained at around 1000 

trials (t3 = 2.51, q > 0.0375) whereas the trials dropped below 1000 when he was rewarded 

with his preferred reward, the variable schedule or with a choice of rewards (t3 < 26.67, q 

< 0.0375 for all), indicating that Ribena was the only motivating fluid at this restriction level.  

For Monkey 4, trials completed for his previous reward, preferred reward and variable 

schedule did not differ from 1000 (t3 < 3.19, q > 0.0125 for all) but did fall below 1000 for 

the choice schedule (t3 = 5.52, q < 0.0125), demonstrating the lack of value this had as a 

reward schedule at an increased fluid intake.       

When assessing all elements of the study as a whole, I looked for overall effects as well 

as an interaction between the reward schedule and fluid restriction level using a fully 

factorial ANOVA with reward schedule and fluid restriction level as fixed factors.  Monkey 

1 and Monkey 3’s performances showed an overall effect of fluid intake level (Monkey 1: 

F(1,24) = 15.70, p = 0.001; Monkey 3: F(1,24) = 7.80, p = 0.01) and reward schedule (Monkey 1: 

F(3,24) = 17.93, p < 0.001; Monkey 3: F(3,24) = 8.50, p = 0.001), but no interaction between the 

two (Monkey 1: F(3,24) = 2.73, p > 0.05; Monkey 3: (F(3,24) = 1.31, p > 0.05). However, Monkey 

4 did not show any significant differences for fluid intake level (F(1,24) = 4.23, p > 0.05), 

reward schedule (F(3,24) = 1.14, p > 0.05) or for the interaction of the two (F(3,24) = 0.74, p > 

0.05). 

Finally, I assessed changes in performance for each of the different reward schedules 

from when fluid restriction was changed from the normal level to the increased level, and 

carried out t tests for each schedule to establish any change in the number of trials 

performed.  Monkeys 1 and 4 showed no differences between their performances at the 

different fluid intakes for any of the reward schedules.  Monkey 3, however, had a 

significant decrease in trials performed in the choice reward schedule when daily fluid 
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intake was increased (Mean Difference = 196.25, t(6) = 3.80, q < 0.0125), but no change for 

any other schedule (Table 9).   
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Table 9. The difference in performance for each monkey at each reward schedule when the fluid allowance was increased.  The results are controlled 
for multiple comparisons used False Discovery Rate (FDR) tests.   “NS” indicates a non-significant result. 

 

 Reward Schedule Mean Difference Std Error of Difference t-value df 
Original 

p-value 

FDR 

corrected q-

value 

Significance 

after FDR 

corrections  

Monkey 1 Old 503.25 164.79 3.054 6 0.022 0.0125 NS 

 New 416.75 163.48 2.549 4.48 0.057 0.0125 NS 

 Variable 799 322.67 2.476 4.51 0.062 0.0125 NS 

 Choice 44.25 143.41 0.309 6 0.77 0.0125 NS 

Monkey 3 Old 708.5 359.18 1.97 6 0.096 0.0125 NS 

 New 53.5 196.08 0.273 6 0.79 0.0125 NS 

 Variable 240.50 222.33 1.082 6 0.32 0.0125 NS 

 Choice 196.25 51.70 3.796 6 0.009 0.0125 Significant 

Monkey 4 Old 451.25 179.28 2.517 6 0.045 0.0125 NS 

 New 268 229.30 1.169 6 0.29 0.0125 NS 

 Variable 210.25 207.81 1.012 6 0.35 0.0125 NS 

 Choice 11.75 144.40 0.081 6 0.94 0.0125 NS 
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4.5 Experiment 2 

Within the primate facility some of the female macaques are exposed to an 

automated testing system at their home cage.  This device is part of a separate project, 

investigating whether training in the home cage can translate into improved 

performance of a motor task in the laboratory.  The monkeys are cued to press specific 

buttons to receive a fluid reward.  In collaboration with this project, I tested the fluid 

preferences of each of the females using the system and the researcher heading the 

study then used these preferred fluids to assess whether performance could be 

enhanced on the automated system.   

4.5.1 Methods 

Six female monkeys aged between 3 and 6 years old and weighing between 4.8 – 6 

Kg were tested.  All were pair-housed with another female, but testing with the 

automated system was carried out when the animals were separated from one another.  

The amount of training sessions differed for each monkey depending on husbandry 

procedures and laboratory schedules. For full details of the automated training system 

see Tulip (2015). 

Fluid preference testing had to be brief and fairly informal so as not to encroach on 

the studies for which these macaques were primarily being used.  As previously 

described in this section, juices were presented to the monkeys in syringes in their home 

cages and the preferred from each pair was refilled and presented with a new juice.  

Using this method, a preference was established for each monkey. Although not as 

stringent as other preference tests, this method allowed me to quickly assess a juice 

preference without potentially impairing the monkeys’ laboratory training sessions.  

Each monkey’s performance was recorded for three weeks on their previous reward 

(Ribena in all cases) before the new preferences were then implemented.  New 

preferences were given for between 2 – 11 sessions, dependent on the monkey, and the 

number of correct trials performed was recorded for each session.   

4.5.2 Results 

For the females using the automated system, the data were not normally 

distributed, and were transformed to normality using a square root transformation.  A 



74 
 

mixed model was used to assess whether the change in reward fluid had impacted on 

the number of trials performed by the monkeys.  The reward fluid (previous or 

preferred) was used as a fixed factor and a random effect of monkey was added.  

Changing the reward fluid in the automated reward system did not have an effect on 

the average number of trials performed by the monkeys (F(5,93.12) = 0.86, p = 0.36; Figure 

11), indicating that the new, preferred rewards were no more motivating than the 

previous reward. 
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Figure 11. The number of correct trials performed by six female macaques using an 
automated training system.  The monkeys are cued to press certain buttons to gain 
fluid rewards.  Filled circles represent reinforcement with the previous reward (Ribena 
in all cases) and open circles represent training sessions using their new, preferred 
rewards 
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4.6 Discussion 

This study investigated the effects of using preferred fluids in different reward 

schedules and the resulting impact on macaque motivation, as well as the potential to 

use the schedules in refining current fluid restriction practices.  In addition, I explored 

the practicality of assessing fluid preference in rhesus macaques in both the 

experimental set-up in the laboratory and using bottles placed in the home cage.  There 

were advantages and disadvantages to both methodologies and the potential 

explanations and modifications are discussed below.    

4.6.1 Literature Search 

The first aim of this study was to explore the types of foods and fluids used to reward 

macaques in scientific study.  However, instead of fulfilling this aim, the analysis of 124 

studies inadvertently uncovered a lack of reporting of reward and restriction in the 

literature.  To fully appreciate how results are gained in a study and to be able to 

replicate methodologies, there needs to be clear reporting.  The type of reward given, 

the amount of reward provided per correct trial and whether the monkeys needed to 

be in any way restricted  to be able to perform the task (either by time of access to 

food/fluid or by amount of food/fluid), should be clearly stated in a publication.  The 

scientific community working with primates is fairly small and techniques and 

motivational methods should be easily accessible in the literature in order to allow for 

successful protocols to be adopted by others. 

4.6.2 Preference Testing 

Initially establishing fluid preferences in macaques is important in order to be able 

to attempt refinement to commonly used fluid restriction protocols (Prescott et al., 

2010).  It was hoped that by identifying preferences, adequate levels of task 

performance could be maintained from the monkeys under less restrictive conditions.  

However, I failed to establish a stable preference for one of the monkeys in this study, 

as his choice for different fluids fluctuated throughout testing.  For the remaining three 

monkeys, preferences were successfully established, though these were not always 

translatable into effective rewards (see Section 4.6.3). 
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I attempted to establish fluid reward preference using two methodologies; 

assessments made in the laboratory and in the home cage.  As previously discussed, 

assessments made using the laboratory set-up brought with it related issues, such as 

potential biases, the need for additional equipment and longer training times.  In 

contrast, assessing fluid preference in the home cage was much quicker and simpler; the 

protocol took five min a day for six days with only 3 bottles needed as equipment.  

However, this method was not without its drawbacks, with the main being that fluid 

restriction was not in place as restriction is not permitted unless the monkey has the 

opportunity to ‘earn’ as much fluid as he likes.  The home cage assessment did not meet 

these requirements as the monkeys did not have to work for the juices and were only 

given five min access a day to the fluids of interest.  This meant that the testing had to 

be conducted whilst the monkeys had free access to water in their home cages which 

may have confounded their fluid choices.   

4.6.3 Reward Schedule Testing 

The monkeys’ individual fluid preferences were used in different reward schedules 

to assess their effectiveness as motivators.  The preferred rewards and previous rewards 

were presented alone, as well as in a variable schedule (with 50% chance of receiving 

either) and finally, a choice between the two.  Importantly, it was uncovered that each 

monkey responded differently to the reward schedules and that there were no uniform 

results, highlighting the significance of treating macaques as individuals when assessing 

effective rewards. 

All four schedules were rewarding when the monkeys were subject to their normal 

level of fluid restriction when they could be reliably assumed to be motivated to drink.  

Performance rates were adequate or above adequate for all schedules, with the 

exception of the choice schedule for Monkey 3 (in which performance dropped below 

1000 trials).  I expected that the inclusion of a preferred reward in a schedule would 

increase the monkeys’ motivation, which was the case for Monkey 1; his best 

performances were when rewarded with his preferred reward or a variable schedule.  

Surprisingly, though, this pattern was not seen in Monkeys 3 and 4, which could be a 

result of assessing their reward preference when they were not fluid restricted.  Being 

satiated by water before and after preference assessments may have confounded their 
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fluid choices, rendering these preferences less effective as rewards when the monkeys 

were fluid restricted later in the study.  In addition, the female monkeys using the 

automated reward system were also no more motivated by their new preferred reward 

when compared with their previous juice reward of Ribena.  The females were not fluid 

restricted at any point during the assessments and their performances were very 

variable from session to session, whether rewarded with previous or preferred rewards.  

The relatively low numbers of sessions and trials per day for the females may have 

meant that changes in motivation might not have been detectable, or it may be that the 

lack of increase in motivation was a true result; it is not possible from the data to 

disentangle this.  

To assess whether the reward schedules continued to elicit high levels of motivation 

during a more relaxed fluid restriction protocol, the monkeys’ daily fluid intake was 

increased by 100 ml.  Again, it was expected that the preferred fluid, the variable 

schedule and the choice schedule would be motivating to the monkeys.  In line with 

these predictions, I found poorer levels of work for the previous reward of water for 

Monkey 1 and, to a certain extent, Monkey 4.  In contrast, Monkey 3 continued to 

perform adequately (approximately 1000 trials) when receiving his previous reward.  

This is perhaps because Monkeys 1 and 4 had previously been rewarded with water, and 

Monkey 3 with Ribena.  The monkeys are supplemented with water if they have not 

reached their daily intake allowance via task performance and thus for Monkey 3, it may 

be that Ribena remained motivating when he had learned he would receive only water 

afterwards.  Conversely, for Monkeys 1 and 3, it was probably less motivating to be 

rewarded with water, as it could be received for “free” after work, especially when their 

motivation to drink was lower and they could afford to wait for their water. 

Unlike the preferred reward alone, the choice protocol and variable protocol yielded 

lower performances than anticipated, bringing into question their efficacy as 

motivators.  For the choice schedule, this was likely due to the additional effort that was 

required.  The monkeys first had to perform the initial task correctly, before being 

offered choice, i.e. a trial took longer, and it required additional cognitive operations. 

While choice is often seen as potentially rewarding (Brigham and Sherman, 1973; 

Catania and Sagvolden, 1980; Fisher et al., 1997), these findings suggest that the costs 
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and benefits in a laboratory setting can balance out.  Although the variable schedule 

produced some promising results at the normal fluid intake level, performance dropped 

for two of the monkeys when the fluid restriction was relaxed.  The inconsistency seen 

in performance when the fluid intake was increased could have been a result of the 

animal being less motivated to drink.  On some days receiving a preferred juice 

intermittently may have been motivating enough to continue working, whereas on 

other days, especially for those monkeys receiving water as their previous reward, this 

may not have been adequately motivating to keep performance levels high.  Variability 

in reward size, and the consequential unpredictability, has been demonstrated to result 

in dopamine release in macaques, particularly when the chance of receiving a reward is 

at 50% (Fiorillo et al., 2003).  It is maybe a little surprising then, that variability in the 

reward fluid received at a level of 50% is not more motivating at the increased fluid 

intake.  However, some evidence does suggest that variable schedules are less 

motivating to primates than they are to other species (Bowman et al., 1996).   

4.7 Conclusions 

This chapter demonstrates that obtaining a fluid preference improved performance 

in a cognitive task in some monkey, even when fluid restriction was relaxed, although 

there was variation in preference and performance between monkeys.  Interestingly, 

choice and variable schedules were not as rewarding as I had anticipated.  It is important 

to note that each monkey had an individual response to both the preference testing and 

the reward schedules and that ‘blanket’ protocols should not be applied to all macaques. 

I also highlight the potential benefits and flaws of fluid preference testing for rhesus 

macaques.  From these findings, I believe that fluid preference should ideally be 

assessed when the animal is in the home cage but fluid restricted.  This would allow for 

quick and simple testing whilst keeping the monkey’s motivation to drink equal to that 

experienced when performing a task in the laboratory, thereby reducing the 

confounding factor of water satiation. 
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Chapter 5: The Efficacy of Social Stimuli as a Refinement to Fluid 

Restriction Protocols 

5.1 Introduction 

So far, my thesis has focussed on the impact of fluid rewards on macaques (Chapter 

3) and the potential refinements to their application in experimental procedures 

(Chapter 4).  However, there is a need to explore alternative options to fluid 

reinforcement.  One of the possibilities suggested by Prescott et al. (2010) is the use of 

social stimuli, using images or videos of conspecifics as a means of reward. 

There is reason to believe that macaques could be motivated by social rewards, as 

they live in groups and form strong social bonds.  In the wild, macaques live in large 

mixed-sex and mixed-age groups of varying sizes, dependent on habitat type and 

resource availability (Seth and Seth, 1986; Lu et al., 2007).  Macaques engage together 

in play, social contact and foraging (Southwick et al., 1965; Lindburg, 1977) and a large 

proportion of their time is dedicated to social activities, which remain integral to their 

daily routines even throughout the summer when more time is required to locate food 

and water (Malik, 1986). 

Although rhesus macaques are a highly social species and adapted to group living, 

extensive grouping is not always possible in UK scientific holding facilities, and more 

typically, animals are housed in smaller social groups or in pairs.  In exceptional 

circumstances, such as when a monkey is in a pre- or post-operative state or following 

bouts of aggression with a cage mate, animals may have to be housed alone.  Given that 

in these holding conditions animals have less social contact than their conspecifics in the 

wild, it is worth speculating that macaques’ natural sociality could be capitalised upon 

when exploring alternative rewards.  Indeed, some early studies of social reward 

demonstrated that rhesus macaques would open a window in order to gain visual access 

to a conspecific (Butler 1954). Since then, numerous studies have shown that NHPs will 

perform a wide range of tasks to gain social rewards, including: lever pressing (Sackett, 

1965; Swartz and Rosenblum, 1980), pushing on a panel (Fujita and Matsuzawa, 1986) 

and manipulating a joystick (Andrews et al., 1995; for full review see Anderson, 1998).  
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In addition to this, preferences for viewing specific types of social rewards have also 

been reported.  For example, both male and female rhesus macaques prefer viewing 

photographs of unfamiliar, rather than familiar, conspecifics (Haude and Detwiler, 1976; 

Platt and Novak, 1997); female stump-tailed macaques (Macaca arctoides) show more 

interest in photographs of infant stump-tailed macaques and females carrying infants 

compared with pictures of lone adult females (Demaria and Thierry, 1988); and female 

rhesus macaques choose to view faces of dominant male macaques but are less 

interested by low-status males (Watson et al., 2012). This suggests that the social 

structure of macaques determines specific preferences in social stimuli and that images 

are viewed to gain social information. 

However, whilst these kinds of social stimuli are clearly of interest to macaques, the 

question remains as to whether they are sufficiently motivating to function as a reward 

for adequate task performance. Some studies suggest that this may be the case, and 

argue that social stimuli provide a viable alternative or supplement to fluid or food 

rewards.  In a task where male rhesus macaques chose between a smaller fluid reward 

coupled with a social image or a larger fluid reward with no image, males would sacrifice 

fluid to view images of dominant males and female perinea, but required an 

‘overpayment’ of fluid to view subordinate males (Deaner et al., 2005; Klein et al., 2008).  

Other studies suggest that interest in viewing videos and photographs can be 

maintained by changing stimuli sets (Platt and Novak, 1997; Andrews and Rosenblum, 

2001; Ogura and Matsuzawa, 2012), indicating that novelty may be an important factor 

in prolonging interest.  Although these examples demonstrate that social stimuli can be 

rewarding, some of the studies (Andrews and Rosenblum, 2001; Ogura, 2011; Ogura and 

Matsuzawa, 2012) were carried out with macaques that were individually housed, a 

factor which could increase the reward value of the stimuli. 

Taking into account the evidence surrounding the potential motivational value of 

social stimuli, this chapter aims to test to what extent social stimuli can be used to 

motivate macaques in a behavioural neuroscience setting for adequate task 

performance, with the aims to reduce the need for fluid rewards, and refine protocols 

associated with fluid restriction.  Both greyscale and colour images were assessed to 

explore whether they had different motivational values, as well as greyscale video clips.   
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5.2 Methods 

Four monkeys were used in this study, weighing between 8 – 14.5 Kg at the start of 

the preference assessments.  Monkey 1 and Monkey 2 were shown greyscale images 

and videos, whereas Monkeys 3 and 4 were used in evaluating colour images.  Minimum 

fluid intakes (Chapter 2, section 2.3) were as follows: Monkey 1: 200 ml; Monkey 2: 250 

ml; Monkey 3: 415 ml; Monkey 4: 190 ml.  Monkeys 1 and 2 were dominant and 

Monkeys 3 and 4 were subordinate. 

5.2.1 Stimuli Collection and Editing 

Photographs and videos (3072 x 4608 pixels, 24 bit colour depth) of adult rhesus 

macaques were collected from the German Primate Centre (Deutsches 

Primatenzentrum, DPZ) in Göttingen, Germany, in October 2013 using a Nikon 1 V2 

camera.  Photographs were taken of macaques in large, outdoor enclosures, in which 

they were socially housed.  Of the images taken, a subset of neutral faces from dominant 

males (either face forward view or profiled view) and of female perinea were selected 

to be edited in both greyscale and colour to produce the below image sets.  The 

backgrounds of the photographs were removed to avoid any elements of interest 

detracting from the focal image.  Backgrounds could not be removed from the videos.  

Due to the difficulty in obtaining videos of lone adult females at the DPZ (females were 

mostly situated in groups with their infants), further videos were recorded using female 

rhesus macaques in the Comparative Biology Centre, Newcastle (the facility in which the 

males in this study were housed) in March 2014.  

5.2.2 Greyscale Stimuli 

70 greyscale images were used in total (35 male and 35 female).  Seven males were 

photographed, with 5 images used from each individual.  Due to the difficulty in 

obtaining good quality images of female perinea, seven females were photographed, 

with 2-7 usable images for each individual.   

The original photographs were converted to greyscale and were edited to normalise 

contrast and luminance across all photographs.  Control images were produced by 

scrambling the facial and perineal images such that the distributions of contrast, 
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luminance and spatial frequency were identical to the original image (Figure 12a).  This 

was achieved by performing a Fourier transformation and calculating the amplitude and 

phase spectrum of this transform.  A random phase structure was then generated and 

added to the phase spectrum of the Fourier transform.  The amplitude spectrum was 

then combined with the phase spectrum and an inverse Fourier transformation was 

performed.  Scrambled images were chosen over other types of control images, such as 

landscapes, because they retained the second order statistics of the original images, 

allowing me to test the efficacy of the social stimuli, without the complication of 

containing other potentially motivating/rewarding features in the control image.  The 

control images were therefore sufficiently neutral to test whether social rewards can be 

used as supplements or replacements of fluid control, whilst ensuring that other 

differences (e.g. second order image statistics) between social and control stimuli did 

not confound the interpretation of the results.  All social images and control images 

were resized to 326 x 326 pixels.   

Greyscale videos (28 male videos and 28 female videos) were created by editing 

videos into 2000 ms lengths and then splitting these clips into their component 

individual frames.  Individual frames could then be treated as photographs and 

converted into greyscale and normalised for contrast and luminance as above.  The 

frames were then spliced back together into a video format suitable for presentation in 

the laboratory (.ctx file extension).  Controls were not created for the video stimuli due 

to experimental design (see section 5.2.6). 

5.2.3 Colour Images 

The same set of photographs used for the greyscale images was used for testing 

colour images.  However, the contrast in one male’s images made it impossible to enable 

colour normalisation, and this individual was omitted from the colour image set, leaving 

30 male images.  Five images (the poorest in quality, e.g. more blurred) were removed 

from the female stimulus set to leave 30 images (six females with 2-7 images for each).  

In total, 60 colour images were tested. 

To normalise the colour images, chromaticity values of the images were converted 

to CIE colour space values.  The colour space values were then converted to red, green, 



84 
 

blue (RGB) values using the pre-defined matrix.  Desired RGB values on the CRT screen 

were obtained by gamma correction of the monitor (Dobkins et al., 2000).  This ensured 

that images were presented in device independent Yxy chromaticity coordinates.  The 

image backgrounds were removed and replaced by a homogenous grey with a 

luminance matching the mean luminance of the image pixels.  The mean image 

luminance (CIE 1931 Y, 2 degrees observer) of each image was calculated as if it were 

displayed on the monitor.  The mean luminance of each image was then taken away 

from that image, so that its mean luminance was 0, with the standard deviation being 

the mean luminance contrast.   The mean luminance of the complete set of images was 

added to each image, such that each image had the same mean luminance.  Finally, CIE 

Yxy values were converted back to RGB using the inverse of the transform created when 

calibrating the screen. If pixel values fell outside of a displayable range, they were 

returned to their original values, which allowed for complete images whilst only slightly 

altering the mean luminance.  The final mean luminance was calculated and the images 

were converted to Microsoft Indexed 255 Colour Bitmaps with dimensions of 326 x 326 

pixels.  Control images were scrambled images that were created in the same way as the 

greyscale images (described in section 5.2.2; Figure 12b). 

 

 

 

a. b. 

Figure 12. Examples of (a) greyscale and (b) colour social images and their matching 
control images (not to scale) which were 326 x 326 pixels and presented at 8.85 x 
8.85 degrees of visual angle (dva). 
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5.2.4 Image Preference Test 

Monkeys 1 and 2 were presented with greyscale images and Monkeys 3 and 4 with 

colour images to assess whether one type of image was more motivating than the other.  

Each monkey had to fixate on a central spot (0.5 x 0.5 dva; 5 x 5 dva eye window 

allowance) for 2000 ms, after which a juice reward of Ribena was given (~0.1 – 0.2 ml, 

dependent on the monkey).  Following the initial 2000 ms of fixation, two images (8.85 

x 8.85 dva) were presented for 5000 ms (Figure 13), during which the monkey was free 

to look wherever he chose on, or off, the screen. The monkey’s right eye was tracked 

throughout these 5000 ms to ascertain which image he spent more time looking at (if 

any).  Trials were conducted in blocks; once an image had been used, it would not be 

shown again until all other images had been presented.  Once all images had been used, 

a new block began.  This ensured that each image was shown an equal number of times 

per session.  The images were shown in three different pairings, as follows: male vs 

scrambled control, female vs scrambled control, and male vs female.  The control images 

were shown alongside their matching original monkey image, whereas male-female 

image presentations were paired at random.  Reward was given after successful fixation, 

instead of at the end of a trial (following the 5000 ms image presentation), to ensure 

that no association could be made between the monkey’s choice of which image to view 

and the fluid reinforcement. 

This protocol was carried out for 4 days for each monkey.  Following this, the eye 

tracking data were analysed and the image type (male face, female perinea or scrambled 

control) with the longest-associated average viewing time was taken as the monkey’s 

preference. The preferred image type was specific to each animal, and animals received 

their own preferred image type in the fluid + image reward task (section 5.2.5). 
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5.2.5 Image Rewards 

Two slightly different tasks were used to test if preferred images were rewarding in 

cognitive tasks, depending on each monkey’s previous training.  These are referred to 

as the fluid + image reward tasks. Monkeys 1 and 2 were required to hold a touch bar 

whilst fixating on a central square (0.5 x 0.5 dva; 5 x 5 dva eye window allowance) on 

the screen for 1650-2000 ms and release the bar within 1000 ms when the square 

dimmed (reduced in contrast).  Monkeys 3 and 4 were required to fixate on a central 

square for 1000 ms with no bar release required.  On completion of a correct bar release 

or fixation, the monkeys were confronted with one of three possible conditions (Figure 

14).  Either a single cross (condition 1) or a single annulus (condition 2) were presented 

randomly at either (x = -6, y = 6 dva) or (x = 6, y = 6 dva), or both stimuli were presented 

simultaneously (condition 3), whereby the location of the cross/annulus was assigned 

randomly to the two possible stimulus locations. To obtain a fluid reward (Ribena, ~0.1 

ml) and the presentation of a non-preferred image stimulus (8.85 x 8.85 dva) for 2000 

ms, the monkey had to make a saccade to the cross and fixate on it for 500 ms.  To view 

an image from his preferred stimulus set (8.85 x 8.85 dva) for 2000 ms with no fluid 

reward, the monkey had to saccade to the annulus and fixate for 500 ms.  If no saccade 

was made, a 2000 ms delay occurred before the next trial, without any reward (fluid or 

image) being given.  Conditions 1 and 2 served as ‘learning trials’ to help the monkeys 

to establish the outcome of a saccade to each target.  The choice trials (condition 3) 

established which the monkeys’ preferred reward (fluid or image) was.  Monkeys 1 and 

2 had some prior training on the meaning of the saccade targets and so 20% of their 

Figure 13. Social reward preference test (images not to scale).  The monkey fixated on a 
central dot for 2 s before a pair of images was presented.  The pairs could be either: (a) 
male face vs female perinea; (b) female perinea vs a matched control image; (c) or a male 
face vs a matched control image.  Image pairs were presented for 5000 ms and the monkey 
could look wherever he chose for this duration. 
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daily trials were learning trials and 80% were choice trials.  Monkeys 3 and 4 were not 

trained beforehand on the meaning of the targets (due to time constraints) and so had 

an equal proportion of all three trial conditions daily (33% each), to ensure that they 

learnt what the targets represented.   

To measure the number of trials performed solely for fluid, monkeys performed a 

control task (hereafter referred to as the fluid only task).  This consisted of the annulus 

saccade target and a resulting fluid reward with no image presentation, as well as a 2000 

ms delay between trials to mimic the timings of the fluid + image reward task timings.  

The two tasks (the fluid + image reward task and the fluid only task) were carried out in 

an ABBABAAB order over 8 days, at the monkeys’ normal fluid allowance levels, to 

establish a baseline interest in the images.  

After the task had been performed at the normal fluid allowance, the minimum daily 

fluid allowance of the monkeys was increased by 100 ml to decrease motivation for fluid 

reward.  This allowed an assessment of whether the social stimuli had any motivational 

value when the animals were potentially less motivated by fluids.  The fluid + image 

reward task and the fluid only task were then carried out for a further 8 days in the same 

order (ABBABAAB).
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Figure 14. Fluid + Image Reward Task. After either a correct bar release (Monkeys 1 and 2) or fixation (Monkeys 3 and 4), the monkeys 
were confronted with one of three possible conditions: (a) a single cross (condition 1); (b) a single annulus (condition 2) or; (c) both 
a cross and an annulus were presented simultaneously (condition 3).  Stimuli were presented randomly at either (x = -6, y = 6 dva) 
or (x = 6, y = 6 dva).  To obtain a fluid reward and the presentation of a non-preferred image stimulus for 2000 ms, the monkey had 
to make a saccade to the cross and fixate on it for 500 ms.  To view an image from his preferred stimulus set for 2000ms with no 
fluid reward, the monkey had to saccade to the annulus.  If no saccade was made, a 2000 ms delay occurred before the next trial, 
without any reward (fluid or image) being given.   

 

  

+ + 

+ 

+ 

a. b. c. 
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5.2.6 Video Rewards 

Video reward assessments were made after the completion of the image reward 

assessments, when monkeys were still subject to an increased fluid allowance.  The 

video reward task was designed to explore whether videos provided additional 

motivation for the monkeys already subject to an increased fluid allowance, and not to 

compare them directly to fluid-only rewards.  It was not possible to normalise colour 

video, and therefore greyscale videos were presented to Monkeys 1 and 2 only.  The 

monkey was required to hold a bar for 1650 - 2000 ms and release within 1000 ms when 

a central square dimmed in contrast, to gain a fluid reward.  After completion of a 

correct bar release, he could then make an additional saccade to a cross saccade target 

to view a 2000 ms movie of a male or female conspecific (dependent upon his pre-

established preference).  The location of the cross was randomised to one of two 

positions (x = 6, y = 6 dva) or (x = -6, y = 6 dva). If no saccade was made, a 2000 ms delay 

occurred before the next trial.  This was conducted for 5 days whilst the animal remained 

on the increased fluid allowance.  The monkey’s fluid allowance was then increased 

again to the average amount he would drink when given free access to water (Free 

Access Intake [FAI], as defined in Chapter 2, section 2.3), and the same task was carried 

out for a further 5 days.    

5.3 Statistical Methods 

All analyses were carried out using IBM Corp. SPSS (v21, SPSS Inc, Chicago, USA).  

Image preference was established by analysing the number of ms the monkey spent 

looking at each of the two presented stimuli per trial.  These data were not normally 

distributed for any of the monkeys, could also not be transformed to normality and so 

were analysed using Wilcoxon Signed Rank tests.   

The rewarding value of the social stimuli was investigated using t tests to compare 

the mean number of correct trials performed in the fluid + image reward task and the 

fluid-only task (the data were normally distributed and in cases where assumptions of 

equal variances were violated, p-values were adjusted as necessary). I also assessed 

preferences within the fluid + image reward task by calculating the percentage of times 

either fluid or social rewards were chosen in trials where the monkeys had a choice 
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(omitting the ‘learning trials’).  This allowed me to establish, in conditions when the 

monkeys were given a choice, whether they were motivated to work for fluid or image 

rewards. 

To establish whether decreases in motivation to work for fluid rewards had occurred 

by increasing the daily fluid allowance by 100 ml, data from the fluid-only task were 

analysed.  Data were normally distributed and t tests were used to determine 

differences in task performance between the normal and increased fluid allowances; I 

expected lower task performance once the fluid allowance was increased. 

Video reward data were normally distributed and were analysed separately for each 

monkey at each fluid allowance level, by performing paired t tests to test for differences 

between choices for fluid rewards versus fluid rewards with an additional video 

presentation.  

5.4 Results 

5.4.1 Image Preference 

All four monkeys significantly preferred one type of image more than the other two, 

however, they varied in their preferences (Figure 15) and there was no pattern relating 

to dominance rank. Monkeys 1 and 4 spent longer looking at the female perinea than 

the male faces (Monkey 1: W = 14.29; Monkey 4: W = 13.19, both p < 0.001) or the 

scrambled control images (Monkey 1: W = 18.03; Monkey 4: W = 15.76, both p < 0.001). 

In addition they viewed male faces for longer than scrambled controls (Monkey 1: W = 

13.86; Monkey 4: W= 11.43, both p < 0.001).  Monkey 2 preferred the male faces to the 

female perinea (W = 15.28, p < 0.001) and to the controls (W = 17.70, p < 0.001), 

moreover, he looked for longer at the female perinea than their scrambled controls (W 

= 8.70, p < 0.001).  Surprisingly, Monkey 3 did not show a preference for either type of 

social stimulus, and instead looked at the scrambled control images for longer than the 

female perinea (W = 2.83, p = 0.005) and the male faces (W = 2.45, p = 0.014), and he 

had no preference between the male and female images (W = 0.04, p > 0.05). Therefore, 

in the fluid + image reward tasks, Monkeys 1 and 4 were shown images of female 

perinea, Monkey 2 was shown images of male faces, and Monkey 3 was shown images 

of scrambled control images. 
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Figure 15. Median viewing times for pairs of images presented in the image 
preference test: (a) Monkey 1; (b) Monkey 2; (c) Monkey 3 and (d) Monkey 4.  
Closed circles represent the 5th and 95th percentiles. Numbers on the x-axis refer to 
the total number of each type of image pairing the monkey was presented with 
during the preference testing. 
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5.4.2 Using the Preferred Images as Rewards  

At the normal fluid allowance, the average number of trials completed in the fluid + 

image reward task vs the fluid only task did not differ for three of the monkeys (Monkey 

1: t(6) = 1.49; Monkey 2: t(4.8) = 0.02; Monkey 3: t(6) = 1.99, all p > 0.05; Figure 16a-c).  

However, Monkey 4 (rewarded with colour images) performed more trials for the fluid 

+ image reward task than for the fluid only task (Mean difference = 428, t(6) = 3.05, p = 

0.022; Figure 16d), suggesting that the inclusion of his preferred social stimuli increased 

his motivation to work.  However, when assessing only the trials in which the monkeys 

had a choice between accessing a fluid or a preferred image reward, fluids were the 

favoured reward for all four monkeys, with all individuals choosing fluid rewards in over 

98% of trials (Monkey 1 = 99.17% fluid choices, Monkeys 2 and 3 = 100%, Monkey 4 = 

98.34%; Figure 16).  These data show a strong preference for fluid rewards over 

preferred image rewards. 

Given the strong preferences that all monkeys showed for fluid rewards at their 

normal fluid allowance, the daily fluid allowance was increased by 100 ml in an attempt 

to decrease motivation for fluids and assess whether this increased the motivational 

value of the preferred image rewards.  Despite the increased fluid allowance and 

apparent reductions in fluid intake during the study, motivation in the fluid-only task 

was only significantly decreased for Monkey 2 when assessed individually (Table 10). 

During the increased fluid allowance, the average number of trials performed in the fluid 

only and the fluid + image reward tasks did not differ for any of the monkeys (Monkey 

1: t(6) = 2.07; Monkey 2: t(6) = 1.11; Monkey 3: t(6) = 1.64; Monkey 4: t(6); all p > 0.05; 

Figure 16), suggesting that working performance was still driven by fluids, and not by the 

image rewards (regardless of whether they were greyscale or colour).  This finding is 

further strengthened by the fact that the increase in daily fluid allowance did not change 

the preference for fluid rewards, with all monkeys choosing fluid 100% of the time in 

choice trials. 
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Table 10. Difference in the number of trials performed for the fluid-only task at the 

normal fluid allowance and after fluid allowance had been raised by 100 ml and the 

associated t test values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean 

Difference 

Standard 

Error of 

Difference 

t-value df p-value 

Monkey 1 -204.75 136.33 1.50 6 0.184 

Monkey 2 -517.00 93.77 5.51 6 0.001 

Monkey 3 -114.50 119.35 0.96 6 0.38 

Monkey 4 -56.25 98.38 0.57 6 0.59 



94 
 

 

 

 

 

Figure 16. Average numbers of trials (±SEM) completed for the fluid only task 
(white bars), the image + fluid reward task including learning trials (all trials; 
all grey bars), and for the image + fluid reward task excluding the learning 
trials (choice trials only; dark grey portion of grey bars). Striped patterns 
represent choices for image rewards and solid fills represent fluid rewards.  
(a) Monkey 1; (b) Monkey 2; (c) Monkey 3 and (d) Monkey 4. 
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5.4.3 Video Rewards 

Monkeys 1 and 2 remained on their increased fluid allowance whilst the efficacy of 

video rewards was assessed.  The monkeys first received a fluid reward before having 

the option to make an additional saccade to view a video clip.  The monkeys had the 

option to drink their initial fluid reward or to leave it.  No fluid was ever observed under 

the drinking spout after testing and so the juice was assumed to have always been 

consumed.  Both animals performed more trials for receipt of only fluids than for the 

fluid reward plus additional video reward (paired t test, Monkey 1: t(4) = 3.89, p = 0.018; 

Monkey 2: t(4) = -5.41, p = 0.006; Figure 17).  However, both Monkey 1 and Monkey 2 

both chose to view additional videos 26% and 31% of the time, respectively; indicating 

that they had some interest in the videos.   

The daily fluid allowance was then raised to the monkeys’ average consumption 

when given free access to water.  The total number of trials performed per day 

decreased to an average 15.6 for Monkey 1 (13.6 for fluid only and 2 for additional video) 

and 17.2 for Monkey 2 (10.8 for fluid only and 6.4 for additional video).  Monkey 2 

continued to perform more trials for fluid only rewards than for the additional social 

reward (t(4) = 2.81, p = 0.048; Figure 17). However, there was no difference in 

performance between the two reward conditions for Monkey 1 (t(4) = 0.80, p > 0.05; 

Figure 17 ) These data suggest that although the videos were of interest to the monkeys, 

motivation still remained driven by fluid rewards. 
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Figure 17. Average numbers of trials (± SEM) completed by Monkey 1 

and Monkey 2 for fluid rewards and fluid rewards plus an additional 

video reward.  Solid bars indicate fluid only rewards (no additional 

saccade for video reward).  Striped bars indicate fluid rewards with 

additional video chosen. 



97 
 

5.5 Discussion  

This study explored the social preferences of four laboratory rhesus macaques and 

the efficacy of using their preferred greyscale and colour stimuli as rewards for the 

successful completion of a single trial in a cognitive task.  Despite earlier suggestions in 

the literature, I was unable to find evidence that social rewards could be used as an 

alternative (or supplement) to fluid rewards to motivate male macaques to participate 

for extended daily periods in a behavioural neuroscience task. These results have 

implications for refining current fluid restriction protocols for experimental animals. 

Interestingly, the monkeys showed a wide range of preferences for the images 

shown to them. Whilst all four monkeys showed a strong preference for looking at one 

type of image, only three showed a preference for one of the social stimuli: two monkeys 

preferred to look at male faces, and one monkey favoured female perinea, as found in 

previous studies (Deaner et al., 2005; Klein et al., 2008). Surprisingly, one monkey 

preferred the scrambled control images over both female perinea and male faces.  

Speculatively, this could be because the control images were a novel stimuli, the type of 

which he had not been previously exposed to.  Taken together, the data clearly show 

that it cannot be assumed that all monkeys will be interested in looking at social stimuli, 

and when they do, individuals may not prefer the same type of social stimulus (see also 

Ogura and Matsuzawa, 2012). This emphasises the need to ensure that if social stimuli 

are to be used as motivators in tasks, they need to be tailored to each individual prior 

to the experiment. 

Given the clear and strong preferences to view one type of image that all the 

monkeys showed, it was also surprising not to see strong effects on animals’ motivation 

to access the images through performance in the tasks. At their normal fluid allowances, 

only one of the monkeys (Monkey 4) performed more trials for the fluid + image reward 

task than for the fluid-only task.  The remaining three monkeys did not differ in 

performance between the two tasks.  Although these data suggest that the use of 

images could be rewarding for some animals, and increase their task performance, it 

was evident that when given a choice between social and fluid rewards, fluids were 

favoured and chosen over images in more than 98% of the trials for each monkey. 

Therefore, even for Monkey 4, where the number of trials performed had increased with 
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the inclusion of images, this was not driven by a motivation to voluntarily access social 

rewards, since they were rarely chosen. Consequently, there is no evidence that an 

animal’s motivation to work was driven for the desire to access social (or preferred) 

stimuli. 

When the daily fluid allowance of the monkeys was increased in an attempt to 

decrease motivation for fluid rewards, the monkeys continued to show a strong 

preference for fluids over images when given the choice.  This could be because the 

increase in daily fluid allowance was not sufficient to reduce motivation for fluid 

rewards.  Consistent with this idea, a reduction in daily performance in the fluid-only 

task occurred for only one of the animals; however, even for this animal, there was no 

increase in viewing of social rewards with the increased daily allowance. The allowance 

could have been further increased for the three other animals, however, this would have 

unnecessarily increased the study length.  This risked the monkeys becoming more 

familiar with the images, making the data difficult to interpret as changes in the 

monkeys’ motivation could have been confounded by habituation to the images.  

Greyscale and colour images were not treated differently by the animals: individuals 

showed the same strong (individual) preferences for both types of social images. It was 

expected that the colour images would be more rewarding than the greyscale due the 

social salience of the red colouration However, Waitt et al. (2003) and Higham et al. 

(2010) suggest that the signals may be more valuable to female macaques and in this 

study at least, there was no evidence that red coloration produced a stronger preference 

or was more rewarding for the animals (see also Deaner et al., 2005). 

Video rewards were investigated at the increased fluid allowance and when 

monkeys were given their average free access intake.  The monkeys were rewarded with 

fluids and then had the option to view a short video clip of their preferred social 

stimulus.  The videos proved to be of interest to the two monkeys to which they were 

shown, with both monkeys choosing to view the optional videos after they had received 

fluid rewards (Monkey 1: 26% of the time and Monkey 2: 31% of the time). This was the 

case even though the male monkeys were unfamiliar and the female monkeys were 

housed in the same colony.  These results are in line with other studies which have 

demonstrated the efficacy of video rewards (Andrews and Rosenblum, 1993; Brannon 
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et al., 2004; Ogura and Matsuzawa, 2012).  However, the monkeys were not as 

motivated to view the videos when given their free access intake.  At both restriction 

levels (increased allowance and free access intake) monkeys could choose not to 

consume any fluid if they wished, and to still make the saccade to view the video.  This 

was not observed to occur in either situation, perhaps indicating that the key driver in 

performance remained as fluids throughout this study. 

Although there was some indication of motivation to view the images and videos, 

the majority of the findings presented here are not in line with previous studies which 

have successfully reinforced monkeys with social rewards (Andrews and Rosenblum, 

2001, 2002; Deaner et al., 2005; Klein et al., 2008).  This could be due to the monkeys’ 

individual preferences for nutritive rewards instead of social rewards.  This type of 

individual preference has been demonstrated previously in both rhesus macaques 

(Washburn and Hopkins, 1994; Washburn et al., 1997) and bonnet macaques (Andrews 

and Rosenblum, 1993; 2001), with some animals having been shown to favour video 

rewards of conspecifics, others preferring to receive a food pellet reward, and some 

showing no definite preference for either.  Therefore, although the monkeys in this 

study show preference for nutritive fluid rewards over social rewards, I cannot be certain 

that social rewards would not be rewarding in a different population of laboratory 

animals, but the consistency of the four animals in this study in their choices for fluid 

would argue against that. 

One possible reason for why a preference for a certain stimulus did not translate 

into motivating animals to perform a task is that the animals were socially housed. Every 

monkey was pair-housed, and had visual, auditory and olfactory contact with 

approximately 40 other rhesus macaques (both male and female) housed in the primate 

unit.  Although some studies have successfully implemented social rewards with pair- 

and group-housed macaques (e.g Deaner et al., 2005; Klein et al., 2008), it may be that 

the level of social enrichment experienced on a daily basis by the monkeys in the study 

was too high for the images to be adequately valued as reward.  It could be that images 

presented in cognitive tasks may be more rewarding to macaques that are socially 

restricted or deprived, such as those that are singly housed.   
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In this study, free-viewing image preferences established after the receipt of a 

valuable reward (fluid), did not translate into motivating rewards when paired against 

the choice of fluid rewards. This was potentially influenced by the many hundreds of 

times the images were presented in the preference testing stage of the experiment.  This 

initial exposure to the images may have been sufficient for the monkeys to become 

habituated to, and uninterested by the stimuli; although previous studies have found 

evidence of prolonged exposure without habituation (Andrews and Rosenblum, 1993).   

Finally, it is perhaps most likely that both the greyscale and colour stimuli are not 

sufficiently motivating on a trial-by-trial basis when many iterations of a task must be 

performed.  Perhaps, instead of using the images trial-by-trial, the stimuli would be 

more useful as a “jackpot” reward (Westlund, 2012), occurring every 50 to 100 trials in 

addition to the fluid rewards, in order to enhance motivation, without risking an overuse 

the images.  Alternatively, the stimuli could be used alongside smaller fluid rewards, as 

described by Deaner et al (2005) in order to lessen the fluid restriction.  A larger stimulus 

set containing more individuals may evoke a maintained interest in the images and 

changing the stimulus set has also been shown as an effective way to increase interest 

in social rewards (Andrews and Rosenblum, 2001).  However, the time and resources 

required to build a stimulus set such as that used in this study are not trivial. Moreover, 

implementing preferred stimuli presentation as rewards in an experimental setting 

where neuroscientific data are obtained is equally non trivial, as reward choices 

(preferred image vs. fluid) at the end of a trial increases the effort and trial time, which 

may thus offset the added motivation.   

5.6 Conclusions 

In conclusion, I found that preferred social stimuli, whether still images or videos, 

greyscale or colour, were not sufficient for motivating rhesus macaques to perform trials 

in cognitive tasks that are regularly used in behavioural neuroscience.  Based on these 

data, social rewards cannot be recommended or discouraged as a viable strategy to 

refine of fluid restriction protocols, although future studies that build on these findings 

may find alternative reward schedules that could theoretically overcome the currently 

encountered limitations. 
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Chapter 6: Discussion and Conclusions 

The aims of this thesis were to determine the impacts of fluid restriction protocols 

on rhesus macaques used in behavioural neuroscience and to attempt to refine these 

protocols through the use of preferred fluid rewards and social rewards. The studies 

have contributed much-needed data to fill gaps in the knowledge surrounding fluid 

restriction and clarify their effects on physiology, behaviour and scientific output.  

Providing data on the impact of techniques used in animal research helps both 

academics and the public to develop informed opinions on the suitability of their use. 

6.1 The Controversy of NHP Research 

Over recent years, details on how animals are used in science has become more 

accessible through agreements such as the Basel declaration (http://www.basel-

declaration.org/), the Concordat on Openness on Animal Research 

(http://www.understandinganimalresearch.org.uk/policy/concordat-openness-animal-

research/) and through organisations such as Understanding Animal Research 

(http://www.understandinganimalresearch.org.uk/).  However, in vivo studies remain a 

highly debated topic and the general public’s perception of animal research can be 

negative, with the research often seen as somewhat unnecessary (Leaman et al., 2014).  

There is a heightened sensitivity towards primate work in particular (Goodman and 

Check, 2002), most likely due to the phylogenetic and morphological closeness of NHPs 

to humans, as well as the fact that NHPs are often seen as more sentient than other 

commonly used laboratory animals, such as rats (see Broom (2014) for a comprehensive 

overview of sentience and animal welfare).  To promote a greater understanding and 

acceptance of in vivo studies, the public need to be advised of the relevant legalities, 

current practices and animal welfare standards, and additionally about the real, not 

purported, implications on animal welfare.  In line with this, the Weatherall Working 

Group Report on the Use of Non-Human Primate Research dedicated two of its 16 

recommendations to the advancement of public engagement in NHP research.  The 

report called for more frequent meetings between the media and scientists involved in 

primate studies, in order that accurate and up-to-date information is reported to the 

public (Weatherall et al., 2006).   

http://www.basel-declaration.org/
http://www.basel-declaration.org/
http://www.understandinganimalresearch.org.uk/policy/concordat-openness-animal-research/
http://www.understandinganimalresearch.org.uk/policy/concordat-openness-animal-research/
http://www.understandinganimalresearch.org.uk/


102 
 

As well as the need to be open about primate research, it is important that the 

methods required for effective NHP study are fully evaluated for both ethical and 

scientific reasons, to ensure that the protocols minimise harm, and that they do not 

result in unreliable data.  The first part of this thesis made such an evaluation for two 

commonly used fluid restriction protocols. 

6.2 The Impacts of Fluid Control 

Past research has assessed singular consequences of fluid restriction such as 

behaviour (Hage et al., 2014) and blood physiology (Yamada et al., 2010), but the data 

presented here are the first to be collected using a suite of measures to evaluate the 

overall effect of fluid restriction protocols on macaque welfare and scientific output.  

Despite the widely held concerns that fluid restriction protocols impact negatively on 

NHPs (e.g. Orlans, 1991; Willems, 2009; Westlund, 2012), the experiments in Chapter 3 

failed to detect any physiological harm or weight loss of any significance following two 

commonly-implemented protocols.  Macaques are limited in their fluid intake in the 

wild, due to factors such as predation risk, intra- and inter-specific competition at 

watering sites (Lindburg, 1977) and seasonal rainfall variation (Lindburg, 1977; Malik, 

1986).  For example, during the winter, macaques in certain parts of Northern India 

obtain the majority of their water requirements from the abundance of fruit and 

vegetation in their environment.  However, in the dry, summer season, when succulent 

vegetation is not as readily available, the monkeys must increase their daily time spent 

locating water from 2% to 4.7%  (Malik, 1986). Given that macaques are exposed to a 

fluctuating availability of water in their natural habitats, it is perhaps not surprising that 

their bodies can cope with a reduced volume of fluid in a captive setting.  Even so, it is 

an encouraging result of this thesis to find that 5-day and 7-day fluid restriction 

protocols are not physiologically harmful to macaques, easing concerns about their 

widespread implementation. 

6.3 Refinement of Fluid Restriction Protocols 

In addition to investigating the impacts of protocols used in in vivo research, it is 

similarly important to refine them.  Refinement was a concept first brought to light by 

Russell and Burch (1959) who defined it as: “any decrease in the incidence or severity of 

inhumane procedures applied to those animals which still have to be used”.  Despite the 
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fact that fluid restriction did not impact negatively on the macaques’ physiology in 

Chapter 3, this does not mean that efforts to improve the technique should be lessened.  

One important improvement would be to accurately measure and define what an 

individual animal requires in terms of water provision and to reliably record their free 

access intake without the confounds of being split from a cage mate or drinking due to 

“boredom”; aspects which may inflate a free access volume.  Refinement efforts may be 

more effective when all aspects of the fluid restriction protocols are understood, 

including the data on which restriction levels are based. .   

The two refinements explored in this thesis aimed to keep scientific data quality high 

whilst reducing the severity of the fluid restriction.  The first refinement was the use of 

preferred fluids combined with different rewards schedules, previously highlighted as 

an area for research by the NC3Rs Working Group Report (Prescott et al., 2010).  Mixed 

results were achieved for both the fluid preference assessments and for motivating the 

monkeys with different reward schedules.  A factor largely contributing to this was the 

individuality of the monkeys; fluids and schedules that evoked enhanced motivation in 

one monkey would not necessarily translate to success in another.   

Individual differences were also found when testing the second refinement of social 

rewards.  Social stimuli have been successfully used as rewards and enrichments in 

several previous studies (Andrews and Rosenblum, 2002; Deaner et al., 2005; Klein et 

al., 2008; Ogura and Matsuzawa, 2012).  For this reason, in Chapter 5, I attempted to 

motivate the monkeys using photographs and videos of conspecifics.  I first established 

preferences for subsets of these social stimuli and then allowed the monkeys to choose 

between their preferred stimuli and fluids as rewards.  Although the monkeys showed 

interest in, and displayed different preferences for, male, female and control stimuli, 

none of the preferred stimuli was successful at motivating the monkeys to perform in a 

cognitive task when compared with fluid rewards.  Despite the lack of success of the 

experiments in Chapter 5, possible alternative uses of the social stimuli are discussed 

below (Section 6.4.3). 

6.4 Recommendations for Practice 

Conducting studies such as those presented here is important not only for our basic 

understanding of motivation in macaques, but also as a way of informing best practice 
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for behavioural neuroscience.  Below, I highlight some recommendations for the use of 

fluid restriction protocols, as well as comments on the use of preferred fluids and 

different reward schedules and the potential uses of social rewards. 

6.4.1 Implementing Fluid Restriction Protocols 

Arguably the most important finding of this thesis is that fluid restriction protocols 

can be implemented safely for male rhesus macaques.  Nevertheless, there are still 

points to consider before using these protocols.  For example, the behavioural 

observations in Chapter 3 uncovered decreases in food consumption behaviours 

(foraging, eating and chewing) when macaques were subject to a stricter fluid 

restriction.  For this reason, behaviours in the home cage should be observed regularly, 

to establish whether patterns of foraging and eating are altered during periods of fluid 

restriction.  In addition, small amounts of weight loss occurred as a result of fluid 

restriction (though not to the detriment of the animals).  However, as each monkey had 

an individualised fluid allowance, the weight loss reported in Chapter 3 is specific to the 

individuals used for the study and should not be assumed to be a universal reaction to 

fluid restriction.  It is imperative that body mass is monitored on each working day for a 

fluid restricted NHP, as recommended by both the NC3Rs Working Group Report 

(Prescott et al., 2010) and the primate care guidelines (NC3Rs, 2006).  Weighing the 

monkeys frequently is particularly important for a 7-day fluid restriction protocol, for 

which this thesis cannot provide longer-term results of body mass changes. 

6.4.2 Preferred Rewards and Different Reward Schedules 

Chapter 4 demonstrated that macaques vary in their individual fluid reward 

preferences and in their response to varying reward schedules.  The data showed that it 

can be beneficial to establish reward preference, in order that high levels of motivation 

can be maintained whilst the severity of fluid restriction is relaxed.  At the normal fluid 

intake allowance, one of the monkeys was motivated by a variable reward schedule and, 

to a certain extent, a choice schedule.  It is possible that these schedules could also prove 

motivating for monkeys in other facilities, but before implementing these reward 

schedules, they should be assessed for their practicality of use (e.g. whether additional 

equipment is required).  The time required to implement potentially minor 
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improvements in animal welfare, should also be taken into account.  Some of these 

assessments can be time consuming, thus keeping animals for longer and reducing 

scientific output for possibly minimal welfare gains.  Additionally, the trade-off should 

be assessed between the potential benefits of a choice schedule (Catania and Sagvolden, 

1980) and whether the additional time taken per trial could impact on the overall 

scientific output.  It is also important to note that the use of high sugar fluids (e.g. fresh 

fruit juices) as preferred rewards could impact on the monkeys’ dental health and that 

these potential concerns should be discussed with a veterinary team. 

6.4.3 Social Rewards 

The macaques showed interest in the images in the initial stages of the social stimuli 

study.  However, the stimuli were not subsequently effective as rewards on a trial-by-

trial basis for tasks requiring many hundreds of iterations.  Therefore, it may be worth 

attempting to use these types of rewards in studies which require relatively low 

numbers of trials from the animals, or when an animal’s housing situation requires them 

to be socially deprived.  In these situations, the stimuli may prove to be more motivating, 

with the potential for lower rates of habituation.  Furthermore, it may be possible to 

implement social stimuli as jackpot rewards, in which the monkey has access to photos 

or videos after completing, for example, 50 or 100 trials.  Jackpots, in the form of fluid 

rewards, have been advocated as potentially rewarding for animals with the possibility 

of the jackpot serving to enhance motivation (Westlund, 2012), but there is currently no 

evidence they prove motivating in macaques performing cognitive tasks during 

electrophysiological or brain imaging studies. 

6.5 Limitations of the Studies 

I acknowledge that there are certain limitations to the studies in this thesis, caused 

by time constraints or by the nature of the experimental design, and I describe and 

explain these below. 

 It was not logical, nor ethical, to acquire NHPs to use specifically for the experiments 

in this thesis, and much of the work was carried out using animals undergoing breaks 

from neuroscience research.  This presented two main problems.  Firstly, it is time 

consuming and labour intensive to train a monkey to perform a certain task, but this is 
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somewhat worsened if the monkey is familiar with working with a different researcher.  

This can present barriers such as increased training times.  Secondly, opportunistically 

using other researchers’ animals results in small sample sizes, which is a main limitation 

with many NHP studies.  However, I feel these limitations are acceptable for the ethical 

benefits they provide by decreasing the numbers of animals used in experiments and 

fulfilling another of the 3Rs, reduction (Russell and Burch, 1959). 

Secondly, in Chapter 3, it was not possible to assess the subjective experiences of 

the monkeys undergoing fluid restriction; an element which would have been beneficial 

to be able to make inferences about states of thirst.  Although there are protocols 

available to assess anxiety and cognitive state in NHPs, these were unsuitable for use in 

the study.  For example, I attempted to implement a Human Intruder Test (Kalin and 

Shelton, 1989) to evaluate anxiety, but this led to harmful levels of aggression in the 

primate housing unit.  Additionally, to conduct cognitive bias tests to detect underlying 

affective states (e.g. Harding et al., 2004) requires a great deal of control of potentially 

confounding variables.  Had I measured cognitive bias whilst the monkeys were subject 

to different fluid restrictions, it would have been impossible, given the experimental 

design, to determine whether results were a direct consequence of the fluid restriction.  

They could equally have been attributable to the multitude of other variables impacting 

the monkeys’ daily lives, such as social interactions, experience in the laboratory and 

hunger. 

The third limitation relates to the social stimuli study.  In Chapter 5, I discussed the 

possibility that a lack of motivation elicited by the social stimuli may have been because 

the stimulus set was too small and that using a larger number of photographs may have 

improved the study.  However, both the greyscale and the colour photographs were 

subject to multiple, time consuming processes before they could be presented to the 

monkeys.  This allowed for a controlled presentation of normalised images, allowing me 

to pinpoint any changes in motivation to the images themselves, rather than differences 

in luminance or hue intensity, for example.  Although this resulted in a smaller stimulus 

set, I felt this was more beneficial than presenting a higher number of non-normalised 

images, which would potentially confound the results. 
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Despite the limitations of this thesis, the data presented contribute uniquely and 

meaningfully to the understanding of motivational techniques used for macaques in 

behavioural neuroscience.  

6.6 Future Work 

This project aimed to begin to understand the impact of fluid restriction on rhesus 

macaques and to explore possible refinements.  Although the thesis provides a range of 

data, this area is still heavily understudied and much remains unknown.  Areas for future 

research are given below: 

 There are currently no published data pertaining to the long term effects of 

7-day fluid restriction protocols.  Since the monkeys at Newcastle were only 

subject to the 7-day restriction for the purpose of the experiments in Chapter 

3, longer-term consequences (in the range of years) could not be drawn.  As 

this protocol is used in other laboratories, it would be beneficial for others 

to explore long term effects and to establish the outcomes of the protocol. 

Given the data presented here, it would be useful if they simply performed a 

few blood sampling sessions in restricted animals, which will yield normative 

data to compare against existing data sets presented in this thesis. 

 

 The psychological impacts of fluid restriction are not currently known.  From 

the experiments in this thesis, it was not possible to infer the subjective 

experience of the animals; so although there was no physiological impact, I 

cannot be sure whether the monkeys experienced negative states as a result 

of thirst. One way to tackle this would be to use carefully designed cognitive 

bias and choice tasks to assess subjective states when the animals have free 

access to water versus when they are fluid restricted.    

 

 As highlighted in Chapter 4, it would be beneficial to establish fluid 

preferences in a quick but accurate way.  One way to achieve this would be 

to use a simple in-cage choice test when the monkeys are fluid restricted to 

the same extent as when working in the laboratory.  However, this presents 

a trade-off between the monkeys being fluid restricted with no experimental 
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data collection for approximately a week, versus potentially gaining better 

quality data in the long term, with the possibility of less severe fluid 

restriction. 

 

 As an alternative to fluid restriction, food restriction is also widely used (See 

Toth and Gardiner, 2000; Rowland, 2007) and equipment is available which 

allows for puréed foods to be delivered in much the same way as liquids 

(through a tube and into a mouthpiece).  It would be interesting to assess 

whether monkeys could be given ad libitum access to water and rewarded 

with favoured puréed foods instead.  These foods would supplement their 

daily diet of dried pellets and allow for free intake of water in the home cage. 

 

6.7 Conclusions 

The studies described in this thesis help to alleviate some of the concerns regarding 

fluid restricting NHPs in behavioural neuroscience, and offer potential refinements to 

fluid restriction protocols.  Firstly, I show that two commonly used fluid restriction 

protocols caused no physiological harm to rhesus macaques, although further work is 

needed to determine long term effects of a 7-day protocol.  Behaviour can be affected 

by both fluid restriction and by free access to water, and it is imperative that normal 

patterns of behaviour are established for monkeys, to be able to detect any changes 

resulting from imposed fluid restrictions.  Secondly, when refining fluid restriction 

protocols, this thesis shows that each monkey should be treated as an individual and 

that preferred rewards, whether nutritive or non-nutritive, should be tailored to each 

animal. Continuing to evaluate and improve the protocols used in NHP research is 

beneficial not only to the reliability of the resulting science, but to creating a situation 

in which in vivo research is discussed in an open and progressive manner. 
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Appendix A 

Supporting material relating to Chapter 3 

 

Table 1. Paired t tests to assess whether the full length of the behavioural video 
recordings was needed or whether the middle hour of recording was sufficient. t tests 
were run analysing behavioural results from 07:00 – 09:00 versus 07:30 – 08:30 and 
17:00 – 18:40 versus 17:20 – 18:20.  Results are for each monkey, on each protocol for 
both morning and afternoon observations.  

Monkey Protocol Time of Day Mean SEM t-value df p-value 

1 5-day AM .0000111 .0013876 -.008 17 .994 
 7-day AM .0003399 .0019779 .172 21 .865 
 5-day PM .0000024 .0026681 .001 16 .999 
 7-day PM .0001331 .0040806 .033 15 .974 

2 5-day AM .0000106 .0044411 .002 16 .998 
 7-day AM .0000065 .0045833 .001 19 .999 
 5-day PM .0000109 .0042730 .003 19 .998 
 7-day PM .0000065 .0045833 .001 19 .999 

3 5-day AM .0000040 .0036300 .001 14 .999 
 7-day AM .0000024 .0050706 .000 16 1.000 
 5-day PM .0000133 .0048236 -.003 14 .998 
 7-day PM .0007253 .0040449 .179 14 .860 

4 5-day AM .0003217 .0026259 .122 17 .904 
 7-day AM .0013429 .0014821 .906 16 .378 
 5-day PM .0000418 .0027072 -.015 16 .988 
 7-day PM .0000088 .0037275 .002 15 .998 
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Figure 1. Average weight loss percentage for each four-week restriction block, 
averaged over all blocks for all monkeys (N = 4). 
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Figure 2. Median approach time to a bottle of water when attached to the cage on 
(a) Saturday morning and (b) Sunday morning. Note that y-axes have different scales. 
Filled circles represent outliers outside of the 10th and 90th percentiles.  Water 
consumption after 5 min on Saturday (c), as a percentage of daily minimum 
allowances.  Note, that more than 100% cannot be consumed on the 7-day regime. 
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Appendix B 
 

Supporting material relating to Chapter 4.
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Author Species Reward Amount Fluid Restriction Food Restriction 

Adachi and 
Hampton, 
2011 

Macaca 
mulatta 

Food - - - 

Arsenault et 
al., 2014 

M. mulatta Juice 
Experiment 1 & 2: 0.07 ml 
Experiment 2: 0.03 ml 
Experiment 3: 0.2 ml 

- - 

Astrand et 
al., 2014 

M. mulatta Reward - - 
Monkeys had free access to 
food pellets. They were also 
given fresh fruits and nuts. 

Báez-
Mendoza et 
al., 2016 

M. mulatta 

Blackcurrant juice, made 
from concentrate, 
diluted at a ratio of 1:11 
by water (Ribena; 
GlaxoSmithKline, 
Middlesex, United 
Kingdom). 

The number of cue circles 
(1–5) indicated the 
number of juice drops that 
the specific animal 
received; each circle 
predicted 0.2 ml of 
blackcurrant juice, 
delivered at 0.15s intervals 

- - 

Ballesta and 
Duhamel, 
2015 

M. 
fascicularis 
and M. 
mulatta 

Juice Drop 

M. fasciularis: water 
restriction with 1 day of 
free access to water each 
week. 
M. mulatta: To motivate 
the animals to perform the 
social decision task, and 
notably because of the 
presence of mildly aversive 
stimuli, access to water in 

Animals were fed with 
monkey chow, fresh fruits, 
and vegetables 
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the home cage was 
controlled. The animals 
normally earned between 
50 and 200 ml juice during 
an experimental session. If 
the criterion of 25 ml/kg 
was not reached during a 
given session, extra fluid 
and fruits were given as 
needed at the end of each 
day to maintain proper 
fluid balance. Because the 
experiments were 
conducted over a period of 
several months, daily fluid 
intake was adjusted as 
needed to maintain an 
optimal motivation level 
corresponding to the 
monkey performing at 
least 100 correct trials per 
experimental session. No 
animal was let to reach a 
dehydration criterion (i.e., 
a loss of more than 10% of 
its weight) 

Baumann et 
al., 2015 

M. mulatta Juice Reward - - - 
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Beran and 
Smith, 2011 

M. mulatta Fruit flavoured pellets 94 mg Ad libitum water. 

Daily diet of fruits and 
vegetables independent of the 
amount of work they 
completed on the task. 

Bethell et 
al., 2012 
 

M. mulatta Primate pellet 190 mg Ad libitum water. 

‘20% protein, 5% fat, 10% 
fibre commercial dry primate 
diet (Diet 8773, Teklad NIB 
primate diet modified, Harlan 
Teklad, Madison, WI, USA) 
supplemented with fruit 
during morning and afternoon 
feeding rounds’ 

Blazquez 
and 
Yakusheva, 
2015 

Do not 
state -
‘macaque’ 

Water Every 1 - 1.5s 
Standard water restriction 
protocols. 

- 

Bosking and 
Maunsell, 
2011 

M. mulatta Juice - - - 

Braun et al., 
2011 

M. mulatta Liquid - - - 

Burke et al., 
2014 

M. radiata 

Fruit snacks, carrots, 
pears, gold raisins, 
grapes, or dried 
cranberries 

One item 

- 
 
 
 

- 

Canolty et 
al., 2012 

M. mulatta Liquid - - - 
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Canteloup et 
al., 2015 

M. mulatta Raisin One 
Water was available ad 
libitum in the park 

Feeding with commercial 
pellets took place in a one-
acre wooded park. Fruit and 
vegetables were distributed 
twice a week in the park, 
outside experimental sessions. 

Chang et al., 
2011 

M. mulatta Cherry-flavoured juice 0.5 – 1.0 ml - - 

Chang et al., 
2012 

M. mulatta Cherry-flavoured juice 0.5 – 1.0 ml 

At least 20 ml/kg of liquid 
daily in addition to fluid 
earned in the experiment. 
Usually earned 250 ml in 
testing (which fluctuated 
only by 50 ml across all 
sessions). Under ad libitum 
conditions, subjects drank 
approximately 500 ml 

 

Chao et al., 
2015 

M. fuscata Food items 
Given after every 100 
stimuli 

Ad libitum 

The animal was given food 
(PS-A; Oriental Yeast Co., Ltd., 
Tokyo, Japan) ad libitum and 
also daily fruit/dry treats as a 
means of enrichment and 
novelty. 

Chau et al., 
2015 

M. mulatta Blackcurrant juice Two 0.6 ml drops 

Access to water 12–16 hr 
on testing days and with 
free water access on non-
testing days 

- 
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Chen and 
Stuphorn, 
2015 

M. mulatta Water 
1, 3, 5 to 9 units of water, 
where 1 unit equalled 30 
ml 

- - 

Chen et al., 
2010 

M. mulatta Liquid - - - 

Chudasama 
et al., 2013 

M. mulatta 

Banana-flavoured pellets, 
half-peanuts, raisins, 
sweetened dried 
cranberries, “fruit 
snacks” or chocolate 
M&Ms. 

 
Water was available ad 
libitum 

All monkeys were fed a 
controlled diet of primate 
chow (catalogue number 
5038, PMI Feeds Inc., St Louis, 
MO, United States of America) 
supplemented with fresh fruit 
or vegetables. 

Cicmil et al., 
2015 

M. mulatta Fluid 

Reward size available for a 
correct choice on each 
trial depended upon the 
number of immediately 
preceding consecutive 
correct responses, 
increasing in two steps up 
to a maximum. 0.08 ml for 
one monkey on the first 
and second consecutive 
correct choices after an 
error, 0.12 ml for the third 
consecutive correct 
choice, and 0.2 ml on the 
fourth and all subsequent 
consecutive correct trials. 

Animals worked on the 
task to gain fluid rewards 
to meet their daily 
requirements 

- 
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For monkey Fle, reward 
size was 1/3 of maximum 
for the first correct choice, 
2/3 of maximum for the 
second, and reached 
maximum size (usually 
0.18 ml) for the third and 
all subsequent consecutive 
correct choices. 

Curtis et al., 
2015 

M. mulatta Grape - - - 

De Luna et 
al., 2014 

M. 
fascicularis 

45 mg purified dustless 
pellet (Banana flavor 
5TUQ tab, Test-Diet, 
1050 Progress Drive, 
Richmond IN 48384, 
USA), delivered via metal 
tube. 

1 Ad libitum 
Animals were maintained on a 
diet of fresh fruit, vegetables 
and monkey chow. 
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Deffains et 
al., 2011 

M. mulatta Liquid 0.3 ml 

The monkeys were trained 
on weekdays and obtained 
their daily amount of liquid 
on these days during the 
testing sessions. Over the 
weekend, they had free 
access to water in their 
home cage. 

- 

Desrochers 
et al., 2015 
 

M. mulatta Juice or food slush 

Reward was delivered for 
a constant duration across 
all trials: 0.2 s juice reward 
for monkey G and 0.25 s 
food slush reward for 
monkey Y 

- - 

Dettmer et 
al., 2015 

M. mulatta Marshmallow or grape 
1/2 marshmallow or 1/8 
grape 

- - 

Dunn and 
Colby, 2010 

M. mulatta Liquid - - - 

Falcone et 
al., 2013 

M. mulatta Apple, Water 

Apple: Piece 
Water: 5 drops for 
Monkey P and 3 drops for 
Monkey C 

The monkeys were on 
water restriction during 
the experiment receiving 
the water during the 
testing. 

Primate food was available ad 
libitum. Additional fruits were 
given to the monkeys after the 
experimental session. On the 
weekend the water and fruits 
were given by the animal care 
takers once a day. 

Falcone et 
al., 2012 

Do not 
specify 

Fluid 3 drops - - 
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Fernandez-
Leon et al., 
2015 

M. mulatta 
Grape (preferred) and 
cucumber (non-
preferred) 

Half a grape, quarter 
cucumber slice 

- - 

Fiorillo, 2011 M. mulatta 
Apple juice diluted to 2/3 
of original strength 

125µl or 50% chance of 
250µl or 0µl 

- - 

Fiorillo, 
Song, et al., 
2013 

M. mulatta 

Juice, saline, and bitter 
solutions, Juice was two-
thirds apple juice and 
one-third water. Saline 
was an aqueous solution 
of 8% NaCl ( Monkey O) 
and 4% for Monkey F 
Bitter solution was 1 or 
10 mM denatonium 

Juice: 180µl of juice 
delivered over a period of 
200 ms or 130 µl over 150 
ms. Saline: 60 ms (30µl) in 
Monkey O, and  30 ms 
(10µl) in Monkey F  Bitter: 
80 ms (40µl), and was only 
tested in Monkey O.  
Whereas 1 mM was 
delivered during initial 
recordings of neurons, 10 
mM was delivered during 
the latter recordings 

- - 

Fiorillo, Yun, 
et al., 2013 

M. mulatta 
Juice, saline, and bitter 
solutions 

The standard volume of 
juice delivered during 
neuronal recordings was 
130µl, and it flowed for 
150 ms. A larger volume of 
240µl was used in 
experiments with juice 
omission.  Saline and bitter 

Liquid intake was 
restricted to ensure 
motivation to participate 
in experiments. 

- 
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solutions were 10–40 µl 
delivered over 30–80 ms. 

Fitzgerald et 
al., 2011 

M. mulatta Juice - - - 

Friedman 
and 
Selemon, 
2010 

M. mulatta 
Food tailored to animal, 
unspecified 

- - - 

Fujimichi et 
al., 2010 

M. fuscata Juice - - - 

Ganguly et 
al., 2011 

M. mulatta Liquid - - - 

Ghose and 
Maunsell, 
2012 

M. mulatta Juice Drop - - 
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Glavis-
Bloom et al., 
2013 

M. mulatta 

a) plain, blue M&M 
candy, (b) unsalted 
peanut, (c) raw carrot, 
(d) raisin, (e) banana-
flavoured pellet (1 g 
size), (f) raw radish, (g) 
garlic clove, (h) dog 
chow, (i) Altoid (curiously 
strong breath mints), and 
(g) Cheerio (bland oat 
cereal). 

Seven food items selected 
from the food preference 
task for each monkey (the 
four most preferred and 
the three least preferred) 
were used to bait each of 
seven boxes 

Water was available ad 
libitum 

Maintained on a diet of 
monkey chow supplemented 
with fresh fruits and 
vegetables. 

Golub et al., 
2015 

M. mulatta Water 
120µl for monkey A,120–
130 µl for monkey C 

- - 

Gremmler et 
al., 2014 

M. 
fascicularis 

Water defined amount - - 

Gu and 
Corneil, 
2014 

M. mulatta 
and M. 
fascicularis 

Liquid - - - 

Haley et al., 
2011 

M. mulatta Preferred candy - - - 

Hanks et al., 
2014 

M. mulatta Liquid reward - - - 

Hayden et 
al., 2010 

M. mulatta Juice 67, 200 or 333µl 

Monkeys were placed on 
controlled access to fluid 
outside of experimental 
sessions. 
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Hayden et 
al., 2011 

M. mulatta Juice 67, 200 or 333µl 

Monkeys were placed on 
controlled access to fluid 
outside of Experimental 
sessions. 

- 

Heimbauer 
et al., 2012 

M. mulatta Food pellet 
One 97 mg pellet. One 
monkey given two pellets 
for motivation reasons. 

No restriction. No restriction. 

Heiney and 
Blazquez, 
2011 

M. mulatta Reward - Water restriction  

Hunt et al., 
2015 

M. mulatta Fruit Juice 
Trial type: 0.26, 0.40, 0.55, 
0.65ml,Trial Type: 0.36, 
0.56, 0.77, 0.90 ml. 

- - 

Isbaine et 
al., 2015 

M. mulatta Fruit juice Drops. 

Their liquid consumption 
and their weight were 
carefully monitored on a 
daily basis early in their 
training, and on a weekly 
basis during the steady 
phase of the experiment. 

The two monkeys were 
maintained on a dry diet for 
the duration of the study. 

Jacob and 
Duffy, 2015 

M. mulatta Liquid - - - 

Jang et al., 
2015 

M. mulatta Food - - - 
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Jedema et 
al., 2010 

M. mulatta Water 

Task 1: 0.016 ml/kg or 0.08 
ml/kg 
Task 2: 0.07 ml/kg or 0.016 
ml/kg 
Task 3: 0.07ml/kg or 0.014 
ml/kg 
Task 4: 0.075 ml/kg 
Task 5: 0.15ml/kg or 0.03 
ml/kg. 

Monday-Friday, animals 
received 25ml/kg/day of 
water, Saturday and 
Sunday: Ad libitum water. 

Animals were fed sufficient 
monkey chow biscuits (Purina) 
to maintain healthy body 
weight plus fruit treats daily. 

Jiang et al., 
2015 

M. mulatta 
and M. 
radiata 

Juice 

0.1-1 ml drop.  Correct 
choices were encouraged 
by progressively increasing 
the reward size for 
consecutive correct trials. 

- - 

Jones et al., 
2010 

M. mulatta Water 1.16 ml 

Both monkeys were kept 
on a water-restricted diet 
approved by an 
institutional animal care 
and use committee. 

 

Konoike et 
al., 2012 

M. fuscata Fruit Juice Drop - - 

Koval et al., 
2011 

M. mulatta Juice - - - 

Kralik, 2012 M. mulatta Banana flavoured pellets 
45 mg Different amounts 
of pellets were given for 
different trials. 

- - 

Kunimatsu 
et al., 2015 

M. fuscata Liquid - 
Water intake of monkeys 
was controlled on a daily 

- 



125 
 

basis so that they were 
motivated to perform the 
tasks. 

Lanz et al., 
2013 

M. 
fascicularis 

Banana-flavoured pellet One Free access to water 

When a 10% loss of weight 
was measured, experiments 
were interrupted until they 
recovered their previous 
weight. Such event did not 
occur in the course of the 
present study. They were 
never deprived of food but 
the daily intake was adjusted 
to the performance in order to 
not loose motivation. 

Lee et al., 
2015 
 

M. mulatta 

UK animal received food 
pellet rewards whereas 
the U.S. animals received 
juice reward 

- - - 

Liu et al., 
2010 

M. 
fascicularis 
and M. 
mulatta 

Reward - - - 

Livingstone 
et al., 2014 
 

M. mulatta Liquid 

0-25 drops, corresponding 
to the magnitude 
represented on whichever 
side of the screen he 
touched. 

They were allowed to work 
to satiety each day, usually 
performing > 500 trials per 
day. 

Each monkey spent 2–4 h per 
day alone, with food, in the 
training cage, 7 days per 
week. 
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Livingstone 
et al., 2010 

M. mulatta Juice or water 

Rewarded by the same 
number of drops as the 
numerosity of the chosen 
stimulus/ 

For the first 3 months of 
training, they were given 
ad lib water during non-
test periods, and juice 
rewards. After they 
stopped taking the free 
water in their cages and 
were drinking 
predominantly the juice 
provided during test 
periods, we switched the 
reward to water and 
stopped providing fluids 
before the daily testing 
period. We offered water 
in the afternoon, after 
testing, but the monkeys 
usually did not take any; 
their daily fluid intake was 
always more than 30 
ml/kg. 

They always had ad lib food 
and have been steadily gaining 
weight. 

Mandell et 
al., 2011 

M. 
nemestrina 

Fruit Small piece. - - 

Mante et al., 
2013 

M. mulatta Reward - - - 

Marciniak et 
al., 2014 

M. mulatta Juice reward - - - 



127 
 

Masse et al., 
2012 

M. mulatta Reward - - - 

Matsumoto 
et al., 2016 

M. mulatta 
Liquid, Banana-flavoured 
pellet food reward 

Task 1: 1 or 3 drops 
Task 2 and 3: 1 drop 
Task 4: one pellet. 

- - 

Matsuo et 
al., 2011 

M. mulatta 
and M. 
fuscata 

Apple juice Drop. - - 

Meyers et 
al., 2012 

M. mulatta Fruit juice - - - 

Mitchell et 
al., 2014 

M. mulatta Fluid - 

All fluid restrictions in NHP 
were performed in 
accordance with the Salk 
Institute IACUC Policies. As 
such, all procedures were 
scientifically justified and 
approved in the IACUC 
protocol. Consideration 
was given to using positive 
reinforcement instead of 
restriction whenever 
possible. When necessary, 
the lowest level of 
restriction was used to 
achieve the scientific 
objective. Even though the 
macaques typically learn to 
meet their entire daily 

- 
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fluid requirement during a 
working session, a number 
of precautions were taken 
to avoid the possibility of 
acute or chronic 
dehydration or clinical 
disease due to fluid 
restriction. To this end, the 
attending veterinarian 
performed a full physical 
examination (including 
CBC, biochemistry and 
urine analysis) prior to 
enrolment in an approved 
study involving fluid 
restriction. Clearance for 
continued participation 
was renewed at each semi-
annual physical 
examination. Sick animals 
or those on treatment 
were prohibited from 
being enrolled in fluid-
restriction studies. While 
on restriction, each 
macaque received at least 
20 ml of fluids/kg daily and 
was not fluid-restricted for 
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more than 5 d each week. 
The laboratory and animal 
care staff monitored the 
animal’s health daily and 
maintained accurate 
records on total daily food 
and fluid consumption 
(including treats in the 
laboratory).  Abnormal 
behaviour, decreased food 
consumption, weight loss, 
or urine specific gravity 
exceeding 1.040 was 
reported immediately to 
the attending veterinarian 
for evaluation. 

Monfardini 
et al., 2014 

M. mulatta Chocolate candies  
The animals had free 
access to water. 

Received normal food rations 
of fresh fruits and monkey 
chow once a day after the 
testing session. On a daily 
basis, monkey chow and fruits 
were hidden in primate 
rubber toys, and bird seeds 
were scattered in the litter 
shavings so that the animals 
spend a good part of their day 
foraging. 
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Monosov et 
al., 2015 

M. mulatta Apple juice 

Experiment 1, 2 and 5: 
0.4ml 
Experiment 3: 0.4, 0.3, 0.2, 
0.1 or 0 ml 
Experiment 4: 0.15, 0.2, 
0.1, 0.25, 0.05 or 0.3 ml 

- - 

Murray et 
al., 2015 

M. mulatta 

Rewards consisted of two 
of the following three 
foods: M&Ms, peanuts, 
and skittles 

½ peanut, 1 m&m/skittle. 
Rewards were given in 
training and reward 
devaluation stage, not 
during the scan. 

Ad libitum water in the 
home cage. 

For the duration of the study, 
the monkeys were given 
controlled access to food to 
ensure sufficient motivation 
to respond in the test 
apparatus. 

Mustafar et 
al., 2015 

M. 
fascicularis 

Pellet 

No food reward was 
provided during the 
behavioural recordings. 
However, during the 2min 
inter-block interval, fifteen 
45mg pellets were given to 
the monkeys regardless of 
their gaze behaviour. 

Water available ad libitum. 
They were maintained on a 
diet of fresh fruit, vegetables, 
and monkey chow. 

Nejime et 
al., 2015 

M. fuscata 
and M. 
mulatta 

Water Drop. 

Water was withheld before 
each daily session, and was 
given as a reward in an 
experimental room. 
Supplemental water and 
vegetables were given 
after the session. 

- 
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Nelissen and 
Vanduffel, 
2011 

M. mulatta Fruit juice - - - 

Nelson et 
al., 2011 

M. mulatta Yoghurt or apple sauce - 
Access to water 
throughout experiment. 

Access to food throughout 
experiment. 

Nielsen et 
al., 2012 

M. mulatta Juice - - - 

Nienborg 
and 
Cumming, 
2014 

M. mulatta Liquid - - - 

Noonan et 
al., 2010 

M. mulatta Noyes Sucrose Pellets 190 mg (one). 

Had 24 hour ad libitum 
access to water, apart 
from when they were 
testing. 

A large metal food box, 
situated to the left below the 
touch screen, contained each 
individual’s daily food 
allowance (given in addition to 
the reward pellets), consisting 
of proprietary monkey food, 
fruit, peanuts, and seeds, 
delivered immediately after 
testing each day. This food 
was supplemented by a forage 
mix of seeds and grains given 
6 h before testing in the home 
cage. 

Ohyama et 
al., 2014 

M. mulatta Juice Drop. - - 
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Padberg et 
al., 2010 

M. mulatta 

Primate chow-based 
flavoured pellets (Bio-
Serv) and fresh or dried 
fruit or vegetable pieces 

One item. - 

Each monkey’s feeding 
schedule was monitored and 
adjusted throughout the 
training period under the 
recommendations of the 
veterinary staff to keep the 
animal motivated to work 
diligently and to maintain 
body weight within 10% of the 
original weight. 

Parr, 2014 M. mulatta 
Food reward, Diluted 
yoghurt 

Small 9ml/min. 
Not water restricted for 
participation in these 
studies. 

Not food restricted for 
participation in these studies. 

Paxton et 
al., 2010 
 

M. mulatta 
Banana flavoured pellets 
and chocolate candy 

- Ad libitum water. 
Animals received a full ration 
of food daily. 

Pearson et 
al., 2010 

M. mulatta Juice 150 – 400µl 

Access to fluid was 
controlled outside of 
Experimental sessions; 
monkeys earned roughly 
80% of total daily ration by 
performance. 

 

Rajalingham 
et al., 2015 

M. mulatta Juice Small - - 
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Rudebeck 
and Murray, 
2011 

M. mulatta 

M&Ms (Mars), Half 
peanuts, Raisins, Craisins 
(OceanSpray), Banana-
flavoured pellets (Noyes), 
Fruit snacks (Giant 
Foods) 

- Ad libitum water. - 

Rudebeck et 
al., 2014 

M. mulatta Fluid, Peanut 

Task 1: 0.5ml 
Task 2: 0ml 
Task 3: (3 x 0.1ml) or (1 x 
0.5ml) 
Task 4:(3 x 0.1ml) 
Task 5: half peanut 

Monkeys’ access to water 
was controlled for 6 days a 
week. 

Monkeys’ access to food was 
controlled for 6 days a week. 

Sadeghi et 
al., 2010 

M. mulatta Juice - - - 

Sadtler et 
al., 2014 

M. mulatta Juice - - - 

Sayers et al., 
2015 

M. mulatta Food pellet One 
Water was continuously 
available during testing. 

The monkey was not food 
deprived for testing. 

Schmitt et 
al., 2014 

M. 
fascicularis 

Raisins and peanuts - 
Water was always 
available ad libitum. 

They were not food deprived 
for testing. The monkeys were 
fed regular monkey chow, 
fruits and vegetables twice a 
day. 
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Schmitt et 
al., 2012 

M. 
fascicularis 

Raisins, peanuts, fruit 

Between 1-8 pieces. 
Number of food reward 
pieces depended on the 
task carried out, and in 
certain cases on the choice 
of the animal (e.g. the 
subject pointed to the 
number of rewards it 
wished to receive). 

Ad libitum. No restriction. 

Schneider et 
al., 2013 

M. mulatta Sugar pellet One Ad libitum water Restricted. 

Seif and 
Reza, 2015 

Do not 
report 

- - - - 

Sirotin and 
Das, 2010 

Do not 
specify 

Juice - - - 

Smith et al., 
2013 

M. mulatta 
fruit-flavoured chow 
pellet 

Versions 1- 4: 1 x 94mg 
pellet 
Version 5-8: 2 x 94-mg 
pellet 

They had continuous 
access to water. 

The animals were neither food 
deprived nor weight reduced 
for the purposes of testing. 

Smith et al., 
2015 

M. mulatta 
Fruit-flavoured primate 
pellets 

- 
They had continuous 
access to water. 

They received a daily diet of 
fruits and vegetables 
independent of their efforts 
on the task, and thus they 
were not food deprived for 
the purposes of this 
experiment. 
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Snyder and 
Smith, 2015 

M. mulatta Liquid - - - 

Sripati and 
Olson, 2010 

M. mulatta Juice Drop - - 

Stoewer et 
al., 2010 

M. mulatta Juice Drop - - 

Sunkara et 
al., 2015 

M. mulatta Juice Drop - - 

Taffe, 2012 M. mulatta Food pellet One Ad libitum water. 

Daily chow (LabDietR 5038, 
PMI Nutrition International, 
Richmond, IN, USA; 3.22 kcal 
of metabolisable energy (ME) 
per gram) allocations were 
supplemented with fruit or 
vegetables 7 days per week. 

Taubert et 
al., 2015 

M. mulatta Fluid - - - 

Van Le et al., 
2013 

M. fuscata Juice 0.8 ml 

The monkeys were 
deprived of water in their 
home cage. Supplemental 
water and vegetables were 
given after each day’s 
session. 

Food available ad libitum. 

Voloh et al., 
2015 

Do not 
state -
‘macaque’ 

Liquid reward 

High- and low-reward 
magnitude was 0.76 and 
0.4 ml per successfully 
performed trial. 

- - 
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Walton et 
al., 2010 

M. mulatta Noyes sugar pellet 190 mg (unspecified). Ad libitum water. 

A large metal food box, 
situated to the left below the 
touch screen, contained each 
individual’s daily food 
allowance (given in addition to 
the reward pellets) consisting 
of proprietary monkey food, 
fruit, peanuts and seeds, 
delivered immediately after 
testing each day. This was 
supplemented by a forage mix 
of seeds and grains given ~6 
hours prior to testing in the 
home cage. 

Wang and 
Dragoi, 2015 

M. mulatta Juice 5 drops. - - 

Wilke et al., 
2010 

M. mulatta 
Juice for saccade tasks 
and unspecified fruit for 
reaching tasks 

Juice amount unspecified, 
1-4 pieces of fruit. 

- - 

Wright et al., 
2013 

M. mulatta 
Fruit flavoured 
nonhuman primate 
tablets 

Two 190-mg tablets. 
Water was available ad 
libitum. 

Each monkey was fed 
approximately 37 g of 
chow/kg bodyweight/d, and 
their diet was supplemented 
with fresh fruit and a multi-
vitamin tablet (Kirkland 
Signature Sugar-free 
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Children’s Chewable Vitamins, 
Seattle, WA). Monkeys were 
fed approximately 20% of 
their daily chow at least 1 
hour before the morning 
testing sessions. The balance 
of the daily food ration was 
provided after all the monkeys 
had finished working. 

Wright  Jr. et 
al., 2012 

M. mulatta Food pellet One. Ad libitum water 
Daily chow allocations were 
supplemented with fruits or 
vegetables 7 days per week. 

Yamada et 
al., 2011 

M. fuscata Water 0.032 ml ⁄ kg. - - 

Yang et al., 
2010 

Do not 
specify 

Liquid - - - 

Yanike and 
Ferrera, 
2014 

M. mulatta Liquid reward 

Safe outcome: 2 or 3 drops 
of water (0.1 ml each). 
Risky outcome: one of two 
sizes of reward, such that 
the average reward was 
the same between safe 
and risky trials. 

- - 

Yoshida et 
al., 2011 

M. fuscata Isotonic water - - - 
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Yoshida et 
al., 2012 

M. fuscata Isotonic water - - - 

Zhang et al., 
2013 

M. mulatta Liquid 

Large reward (0.2– 0.9ml 
of liquid), Aversive air puff 
toward the face, Little or 
no reward (either 0ml or 
<0.1 ml of liquid 
depending on task 
version). 

- - 

Zhou et al., 
2015 

M. 
fascicularis 

Apple Piece. 
They had free access to 
water. 

They had free access to food. 
Briefly, monkeys did not have 
access to food for 4 to 6 h. 
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Appendix C 
 

Data published from this thesis 

Gray, H., Bertrand, H., Mindus, C., Flecknell, P., Rowe, C., Thiele, A., 2016. 

Physiological, Behavioral, and Scientific Impact of Different Fluid Control Protocols in 

the Rhesus Macaque (Macaca mulatta). eneuro 3. 
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