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Preface 

This thesis describes research that was undertaken as part of an Engineering Doctorate 

in Biopharmaceutical Process Development which was carried out in collaboration with 

Perceptive Engineering Limited and sponsored by the Engineering and Physical 

Sciences Research Council (EPSRC).  

The thesis initially aimed to take the format of a ‘thesis by portfolio’ which details a 

number of projects that are linked by the theme of advanced process control used/or 

with the potential to be used on industrial bioprocesses. The first project aimed to 

improve anaerobic digestion processes with an advanced control such as model 

predictive control. Due to the complex nature of the project, delays with industrial 

partners and early termination of the project by the industrial sponsor Perceptive 

Engineering Limited led to this project spanning the four year duration of the 

Engineering Doctorate programme. 

Being an industrially focussed Engineering Doctorate, the projects reflect the 

requirements of industry, and various case studies were conducted as the aims of the 

project changed over the period of study to meet new research challenges within the 

company.
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Abstract 

Anaerobic digestion with biogas production has both economic and environmental 

benefits. 25 % of all bioenergy in the future could potentially be sourced from biogas 

(Holm-Nielsen et al., 2009). Although anaerobic digesters have seen wide applicability, 

they typically perform below their optimum as a consequence of the complexity of the 

underlying process. This work involves the development of a generic advanced process 

control system for the optimisation of the performance of anaerobic digesters. There is a 

requirement for a configurable monitoring and optimisation system with associated 

sensors to optimise the production of biogas, combined with a degree of flexibility for 

quality and content of the digestate. 

Several analyses are conducted to establish the baseline performance of the four 

benchmarked sites. Significant findings are revealed which include lack of superior 

technology between the four varying processes, differing performance due to 

optimisation activities through increased monitoring and whole plant optimisation such 

as energy usage and production. Potential improvements are presented including 

increased monitoring and a reduction in the variability of key parameters such as thicker 

percentage dry solids (% DS), steady feed rate, and temperature.  

The lack of instrumentation in anaerobic digestion processes is a key bottleneck as 

sensors and analysers are necessary to reduce the uncertainty related to the initial 

conditions, kinetics and the input concentrations of the process. Without knowledge of 

the process conditions, the process is inevitably difficult to control. Financial gains that 

can be achieved through increased instrumentation were calculated to justify the 

business case for the need for process improvement. An instrumentation review is 

presented with the minimum and ideal instrumentation requirements for the AD process.  

Improved monitoring is achieved through soft sensor development for volatile solids 

(VS), an important variable that is currently only monitored offline. The inferential 

sensor is developed using data from an industrial process and compared with the results 

from a simulation study where feed flow and biogas production rate are used for 

modelling VS. 

This theme of improving monitoring with inferential sensors is continued with 

development of soft sensors with microbial data and data from different reactor designs.
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1 Introduction 

1.1 Thesis motivation 

There is a growing awareness that waste is an underutilised resource, with the emphasis 

shifting to process based solutions for recycling and recovery from disposal based 

solutions such as landfill. Combined with this, there is a new sense of direction and 

focus on utilising organic waste for the production of energy. One of the leading 

technologies to support this drive is Anaerobic Digestion (AD).  The first anaerobic 

digester was built in 1859 in India (Marsh, 2008) and the technology has evolved and 

developed since this time, and resulted in making AD with biogas production gain both 

economic and environmental benefits. 25 % of all future bioenergy production can 

potentially be sourced from biogas and thus AD has a significant role to play in terms of  

contributing to the EU target of increasing the level of energy derived from renewable 

energy sources to a minimum of 20 % by 2020 (Holm-Nielsen et al., 2009). However, 

limitation on the AD process such as partial decomposition of the organic fraction and 

slow reaction rates hinder the economic and environmental benefits. Due to the dynamic 

nature, the non-linearity and lack of knowledge of the AD process, there remains 

significant opportunities for improvements in operational efficiency (Appels et al., 

2008). 

A number of reviews have concluded that to achieve optimal performance for AD, 

advanced control systems are required (Pind et al., 2003; Jean-Philippe Steyer et al., 

2006; Ward et al., 2008; Mendez-Acosta et al., 2010). Advanced control strategies can 

offer an opportunity for the optimisation of processes such as anaerobic digestion that 

operate under strict regulatory constraints. The complex nature of the process dynamics 

provides sufficient motivation for the use of a model based control strategy. Through 

the use of mathematical simulation models, the application of model based control for 

the AD process can be investigated. 

In 2009 a consortium was formed between Perceptive Engineering Ltd (PEL), 

Yorkshire Water (YW), Northumbrian Water (NWL) and United Utilities (UU). The 

objective was to optimise the AD processes of YW, NWL and UU through the 

implementation of multivariate advanced control. The final deliverable was a generic 

advanced control system that could be applied to a single phase or traditional 

Mesophilic Anaerobic Digestion (MAD) system and or a multiphase Advanced 

Anaerobic Digestion system (AAD). More specifically this would consist of a 
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configurable, monitoring and optimisation unit coupled to instrumentation to optimise 

digestate quality and increase biogas yield quality. The end product named the 

‘Perceptive AD-master’ is designed to openly communicate with existing automation 

instrumentation to enable good communication between instruments and control 

systems throughout the site and therefore provide an opportunity for plant wide 

optimisation. The AD-master would be integrated into existing PEL products and would 

aim to address the requirements of the AD processes as articulated by the consortium. 

The three water companies in the consortium cover Yorkshire, the North-West and the 

North-East of England and are currently operating 50 digester plants. They provide the 

industrial AD processes and the technical expertise in terms of the operation of the ADs. 

PEL bring experience in the successful application of control solutions to various 

industrial processes, especially on bioprocesses and wastewater treatment processes 

(O'Brien et al., 2011). 

Being an industrially focussed Engineering Doctorate based within a consortium, the 

projects reflect the research requirements of industry, and changed over the period of 

study to meet new research challenges within the consortium. The User Requirement 

Specifications (URS) of the three water companies are very different, as the 

characteristic of the AD process differs within technologies, size, methods, site 

limitations and instrumentation. The overall outcomes of the project need to align with 

the individual aims of the water companies, and issues to be considered include 

sustainability, energy usage reduction and increased renewable energy production.  

1.2 Aims and objectives 

The ultimate goal of this project was to develop a multivariable control system for 

optimising the performance of anaerobic digester systems. The primary deliverable was 

a configurable monitoring and optimisation system that comprises appropriate sensors 

to enable the optimisation of biogas production. The system takes into account the 

requirement to accommodate a level of flexibility relating to the quality and content of 

the biogas and digestate. The approach adopted was a data based approach using 

multivariate statistical analysis for the development of a monitoring system and 

empirical time series modelling to capture the dynamic behaviour of the process, in 

preparation for the development of a Model Predictive Controller (MPC). Core 

challenges included the identification of appropriate sensors that are industrially robust, 

the modelling of an inherently non-linear biological process and the development of a 
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robust anaerobic digestion controller with an optimiser that has widespread applicability 

for various AD technologies.  

The first step was to assess whether there was a need for the application of advanced 

control on industrial AD processes and thus the first question that was addressed was 

“Can an advanced control system improve the efficiency, stability and robustness of an 

AD process?”. This was undertaken through a literature survey, an analysis of current 

plant operations through process benchmarking of three industrial AD operations, an 

instrumentation review and a vendor review and questionnaire. The second question 

was “What is the minimum instrumentation requirement to achieve the aims identified 

in the feasibility assessment?” The instrumentation review and inventory simulation 

formed the basis of the approach in addressing this question. The final question was 

“What is the level of improvement to be gained from advanced control?” The control 

and monitoring approaches developed were tested on an inventory simulation system to 

calculate the level of improvement achievable from traditional control designs through 

to advanced control. The results generated from the inventory simulation were 

compared with simulation results using the Anaerobic Digestion Model No. 1 (ADM1) 

(Batstone et al., 2002a) and this consequently led to the identification of further 

instrumentation requirements. A volatile solids (VS) inferential sensor model was 

developed to improve the level of digestate quality attribute instrumentation and 

advanced control capability.  

A series of case studies were conducted using laboratory, pilot and industrial data to 

assess the effects of different process parameters on controlling and optimising the AD 

process. These aforementioned questions are introduced throughout the thesis and 

provide the knowledge and understanding to addresses the overarching aims of the 

project.  

1.3 Thesis contribution 

The work conducted in this thesis focuses on monitoring, modelling, control and 

optimisation of the AD process. Major research contributions include the benchmark 

analysis undertaken on four industrial AD processes in wastewater treatment plants in 

the United Kingdom and the development of an AD inventory simulation tool; that 

included a platform for testing and comparing various conditions on the system, thereby 

enabling the testing of control strategies and the understanding of optimisation studies. 

Furthermore a VS inferential sensor model was developed utilising data from an 
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industrial process and simulated data that yielded a robust model for accurately 

predicting VS from easy to measure process parameters on the AD process. Finally two 

multivariate techniques of Principal Component Analysis (PCA) and Partial Least 

Squares (PLS) were applied to obtain additional process knowledge and also for the 

development of process models from laboratory data containing biological data 

including the population of methanogenic bacteria. 

1.4 Thesis structure 

The project was divided into four key phases (Figure 1.1): feasibility; design; 

implementation; and evaluation. Phase I; the feasibility study spanned years one and 

two of the Engineering Doctorate program, and included a literature review and the 

benchmark study of the four industrial sites that details the current state of 

instrumentation and control methodologies. This phase also contained an 

instrumentation review and vendor review and questionnaire. These tasks in phase I 

were necessary to establish the business case for phase II of the project.  

Phase II; prototype development took place in year three and the URS was identified for 

the different members of the consortium which initiated the functional design 

specification. A complete prototype satisfying the URS could not be developed without 

improving the level of instrumentation on the process. This led to the development of 

the inventory simulation model which continued to year four where phase III activity of 

soft sensor development and case studies were conducted to increase the knowledge of 

the AD system as well as improve the level of instrumentation through soft sensors. The 

remainder of phase III activities; installation and testing prototypes and Phase IV 

activities; evaluation and market assessment, are not included in this thesis. Due to 

delays and difficulties within the project; the implementation and evaluation activities in 

phase III and IV were not conducted as part of this thesis.  

 

Figure 1.1 Project phases 

Phase I Phase II Phase III Phase IV

Feasibility Study
 Literature Review
 Vendor Review and 

Questionnaire
 Benchmark Study
 Simulation Studies

Prototype Development 
 Offline Simulation
 User Requirement 

Specification
 Functional Design 
Specification

Installation and 
Testing Prototypes
 DOE

 Soft Sensor  
Development
 MPC Commissioning

Evaluation and 
Market Assessment
 Product risk 

assessment
 Beta trials with 
industrial partners
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Chapter 2 summarises the first part of phase I activities, the literature survey and 

instrumentation review in Chapter 3. The second part of phase I activities; the 

benchmark study are discussed in Chapter 5.  

The various methodologies and approaches utilised in the thesis to fulfil the aims of the 

project are summarised in Chapter 4. Multivariate statistical analysis and inferential 

sensor development techniques are discussed in detail as well as advanced control 

methods with emphasis on model predictive control (MPC).  

Chapter 6 discusses the inventory simulation which provided the platform for activities 

relating to the use of the control schemes and various scenario testing activities to be 

conducted on the AD process. The hybrid simulation model was developed using both 

established relationships for the AD system as well as process data from the benchmark 

study.  

The inferential sensor development for the VS, which forms part of the phase III 

activities is discussed in Chapter 7, with a comparison of the inferential sensor 

developed with process data and with simulation data from the ADM1.  

Finally Chapter 8 provides conclusions, summary and future work for the thesis. 
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2 Literature survey 

2.1 Introduction 

Traditionally the purpose of AD in Wastewater Treatment Plants (WwTPs) was for 

sludge stabilisation and odour reduction. Biogas production, solids destruction and 

pathogen reduction are now the key focus areas of research. This is particularly the case 

as the AD process is becoming more important as the world changes from disposal 

based solutions for biodegradable organic wastes such as wastewater sludge and food 

waste to production of renewable energy and high quality biosolids from these wastes. 

This drive has led to increased focus on AD and the technology is attracting industrial 

and academic interests worldwide.  

There is currently active research being undertaken in this area by academics on every 

topic area of the process, such as co-digestion, microbial population dynamics, 

biorefinery, energy recovery, modelling and control and biodegradation. Leading 

themes of research can be categorised as modelling (with respect to the microbial 

community (Supaphol et al., 2011; Guo et al., 2015; Li et al., 2015); co-digestion 

(Astals et al., 2014; Jensen et al., 2014; Astals et al., 2015); pre-treatment methods 

(Ruffino et al., 2014; Karray et al., 2015); instrumentation (Ward et al., 2011; Cadena-

Pereda et al., 2012); and temperature effects on AD systems (Bowen et al., 2014; 

Vanwonterghem et al., 2015). 

These areas of research are linked to various AD characterisation or classification 

groups, however for the purpose of this literature survey, these will be limited to the 

classification groups of temperature, technology and the digestion process. Section 2.5 

discusses AD classification by temperature and Section 2.4 discusses the technologies 

available. Modelling forms a central theme to this thesis and as such Section 2.3 

discuses AD modelling approaches.  The digestion process is at the core of all these 

classification groups and details of the process are summarised in Section 2.2. 

2.2 The digestion process 

Biochemical and physicochemical are the two general conversion processes for the AD 

process. The biochemical conversion process involves biomass growth and decay where 

bacterial cells excrete enzymes to disintegrate available organic materials. The 

physiochemical pathway involves association or dissociation and gas-liquid transfers. 

The main products of anaerobic digestion processes are biogas (comprised mainly of 
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methane (CH4) and carbon dioxide (CO2)) for producing energy, digestate that is used 

as liquid fertiliser and fibre for compost.  

 

Figure 2.1The degradation pathways (Batstone et al., 2002b) 

Hydrolysis, acidogenesis, acetogenesis and methanogenesis are the four main steps in 

the process as depicted in Figure 2.1. The process of breaking down the organic 

polymers such as proteins, fats and carbohydrates into smaller monomers such as 

monosaccharides, long chain fatty acids and amino acids is characterised as hydrolysis. 

The hydrolysis process is achieved by the availability of extracellular enzymes 

produced by micro-organisms. In most models, this is the second step with 

disintegration being the first step. Disintegration may be an additional step in modelling 

to represent composite organic materials, which is important for waste activated and 

primary sludge digestion. In cases such as this, disintegration can represent the lysis of 

whole cells and separation of composites (Batstone et al., 2002a). Acidogenesis 

ferments the sugars, amino acids and fatty acids produced during hydrolysis into VFA’s, 

with the acetogenesis step consuming VFA’s to produce CO2, H2 and CH3COOH 

(acetic acid) molecules, which are then used by methanogenic organisms to produce 

CO2 and CH4 (Cioabla et al., 2012).  

The degradation pathway and study of the micro-organisms involved in the AD 

processes are major areas of research. The AD process consists of complex 

microbiology comprising over 140 microorganisms (Batstone et al., 2002a), and these 

microorganisms (bacteria) convert organic materials into biogas. The growth and 

balance of the different types of these micro-organisms are essential to the biogas 

production and can be inhibited by process parameters such as pH, alkalinity, 

monomers 
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concentration of free ammonia and volatile fatty acids (VFA) and light and heavy 

metals.  

The AD system requires the acidogenesis and the methanogenesis stages to be balanced 

to avoid inhibition of methanogenic bacteria. A key task in the control of the anaerobic 

digestion (AD) process (automatic or otherwise), is the avoidance of inhibitory 

conditions.  Inhibition is any situation which prevents a specific microbial growth and 

reproduction of the biomass that stabilises the sludge and forms biomethane.  This is 

usually caused by the presence of inhibitory chemicals (high acids) or biologicals 

(hydrogen scavengers).   

Inhibitors can be present in the AD process in the form of end products of feedstocks of 

inorganic, organic substances or microbial reactions introduced into the anaerobic 

digester. Anaerobic instability is the cause of the availability of various inhibitory 

substances. Examples of inhibitory substances include CO2, ammonia and nitrogenous 

matter such as proteins and urea.  The degradation of nitrogenous organic matter leads 

to ammonia production within the digester (Chen et al., 2008):  

CaHbOcNd +  
4a − b − 2c + 3d

4
H2O

→  
4a + b − 2c − 3d

8
CH4 + 

4a − b + 2c + 3d

8
CO2

+ dNH3 

Equation 

2.1 

Inhibition has been shown to be difficult to quantify, due to the complex nature of the 

digestion process mechanisms. These mechanism can be significantly affected by 

antagonism (the suppression of some species of micro-organisms by others), 

acclimation (adaptation to a new environment or a change to the old environment) and 

or synergisms (micro-organisms acting together for mutual benefit e.g. syntrophy) 

(Chen et al., 2008). An example of an antagonistic and or synergistic effects in ADs is 

the impact of dual cations, where research has shown the effect of antagonism on 

combining potassium and calcium increased significantly when compared to effect of 

potassium alone (Kugelman and McCarty, 1965) . 

The presence of inhibitory substances may cause shifts in the microbial population or 

bacterial growth, with shifts in the microbial population indicated by a decrease in the 

CH4 gas production rate, or by an accumulation of organic acids. Therefore by 
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measuring the gas production rate, the concentration of organic acids (VFAs), and or the 

presence of chemicals known to cause inhibition, the AD process can be stabilised and 

controlled. 

The AD process is further exacerbated by complexities on a macroscopic level; the 

three-phase (solid-liquid-gas) AD process involves both sequential and parallel reaction 

pathways. The complexity and uncertainty in the dynamics of the micro-organisms 

involved in the process make the process difficult to model.  When considering a single 

organism system, it is the case that no single kinetic model can describe the 

complexities of that single organism. It is therefore a major task for scientists and 

engineers to attempt to model multi-organism systems (Heinzle et al., 1993). 

2.3 Modelling  

The need for continuous improvement on existing AD process operations and 

development of new processes with time, cost constraints and increase pressure on high 

product quality and availability of sustainable products, have driven the technology 

towards the use of model based process applications. Model building approaches still 

require simple methods with ease of application, ‘the simpler the better’ (Foss et al., 

1998).  

Mathematical models can serve as useful tools to deepen the understanding of complex 

systems, and to facilitate operation and design of the process. If the behaviour of a 

system can be predicted, the production of outputs can be optimised and process failure 

can be prevented. However there is limited application of modelling approaches to AD 

processes. This is due to the complexity of the process which requires extensive input 

data, increased knowledge about the process dynamics and uncertainties within the 

model. Therefore the AD process has traditionally been considered as a black box 

system (Lidholm and Ossiansson, 2008).  

There are various modelling approaches with differing ranges of accuracy and 

complexity dependent on the purpose of the model. For control purposes a possible 

complex, non-linear model with focus on the biochemical reactions with adequate 

monitoring can aid in developing an understanding of the process. The control and 

optimisation of AD systems requires an accurate dynamic model of the process. 

However modelling of AD systems often results in high order nonlinear models with 

several unknown parameters. This makes it difficult to control the process and therefore 

various system identification techniques need to be applied to the AD process. 
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Modelling AD processes is an active research area with various review articles, 

journals, thesis and book publications (Andrews and Graef, 1971; Lyberatos and 

Skiadas, 1999; Dochain and Vanrolleghem, 2001; Batstone et al., 2002b; Zaher, 2005; 

Saravanan and Sreekrishnan, 2006; Donoso-Bravo et al., 2011) which have been 

conducted studies into modelling the anaerobic digestion process and thus only a 

summary is given here.  

Although extensive research into the microbiology of the process has been conducted, 

there is still a lot of uncertainty surrounding this area. For example, there are knowledge 

gaps such as the spatial distribution of individual organisms in flocs, granules and 

biofilms (Jean-Philippe Steyer et al., 2006).  This has a large effect on microbiological 

reaction rates, and for this reason 'first principles' modelling is not currently suitable for 

robust control.  Given the importance of achieving a stable operating process, 

robustness is the key objective of any control system, with performance being 

important, but secondary for the improvement of ADs. 

Andrews and his co-workers in 1974 worked on developing dynamic models for the 

purpose of process control for AD (Andrews, 1974; Graef and Andrews, 1974a). To 

date their models form the basis of most AD system models, and there has been little 

development of newer models. Most attempts to identify the biological treatment 

systems such as AD for the purpose of control, focus on the macroscopic fringes of the 

process dynamics without much impact on the microscopic level (Beck, 1986). 

In depth research into conversion mechanisms including cell decay, lysis and hydrolysis 

indicated that hydrolysis of the dead particulate biomass is the rate limiting step and this 

kinetically controls the overall process (Pavlostathis and Gossett, 1986), whilst more 

recently methanogenesis has been shown to be the rate limiting step (Bowen et al., 

2014). However, it is evident that the rate limiting step varies for different conditions 

(Appels et al., 2008). There are numerous models presented in the literature, from 

simple Monod kinetics (Siegrist et al., 2002); first order models (Smith et al., 1988); 

Andrews models (Graef and Andrews, 1974b); mass balance models (Bernard and 

Bastin, 2005b); through to more advanced models (Polit et al., 2002; Ramirez et al., 

2009). However most of these models fail to accurately describe the digester dynamics, 

as they do not assess both random and deterministic factors affecting the microbial 

communities.  
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Various modelling complexities exist for AD system modelling; consideration of only 

the acidogenesis and methanogenesis steps is the lowest level of modelling complexity. 

Examples of these are given in Section 2.3.1. The highest level of complexity is 

considering the disintegration and hydrolysis steps, the anaerobic digestion model no.1 

(ADM1) model in Section 2.3.2 details this and middle model complexities include the 

Siegrist model in Section 2.3.3. 

2.3.1 Rate limiting step models 

The rate limiting step is the slowest step which limits the overall process. Due to the 

multistep characteristic of the process, initial mathematical modelling approaches 

focused on the rate limiting step as this controlled the overall rate of the process. 

Volatile fatty acids (VFA’s) were considered as the key parameter (Donoso-Bravo et 

al., 2011) for modelling the rate limiting step. However as the rate limiting step changes 

under different operating conditions, this resulted in different models as the rate limiting 

step varies for different wastewater characteristics, loading rates, temperature and at 

different stages of the process. Examples of the various modelling approaches focusing 

on different rate limiting steps are summarised in Table 2.1. The table gives examples of 

models that assume substrate inhibited Monod kinetics of the methanogens (Graef and 

Andrews, 1974a); the Monod equation is commonly expressed as: 

−
𝑑𝑆

𝑑𝑡
=

𝑘. 𝑋. 𝑆

(𝐾 + 𝑆)
        

Equation 2.2 

where the rate of uptake of substrate is given by dS/dt (mg L.t
-1

), k is the rate constant 

(𝑡−1), S is the concentration of the substrate (𝑚𝑔 𝐿−1), X is the concentration of the 

microorganism  (𝑚𝑔 𝐿−1) and the saturation constant is given by K. 

Table 2.1 also show models that consider total VFA concentration as a key parameter 

(Hill, 1982) and Models using H2 as the control parameter (Pullammanapallil et al., 

1991). 
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Table 2.1 Examples of Rate limiting step modelling 

Model Bacteria group Rate limiting step 

(Process) 

Kinetic 

Function 

Graef and Andrews (Graef 

and Andrews, 1974b) 

Acetoclastic 

methanogens 

Methanogenesis Andrews 

Hill (Hill, 1982) Acidogenic 

bacteria 

Acidogenesis Monod 

based 

Smith (Smith et al., 1988) Rapidly 

degradable 

biomass 

Hydrolysis First order 

Pullammanappallil 

(Pullammanapallil et al., 

1991) 

H2 utilising CH4 

bacteria 

Methanogenesis Monod 

(pH) 

 

2.3.2 The anaerobic digestion model no.1 (ADM1) 

There are several AD models developed in recent years, however these mainly consider 

a specific AD process or for a specific substrate; resulting in models that cannot be 

compared or transferred to solve other problems. The ADM1 is the commonly used AD 

model and consists of a complex multistep anaerobic process transformation model. 

This first generalised AD model was created by the International Water Association 

(IWA) task group for mathematical modelling of AD processes in 2002 (Batstone et 

al.). The model provides a common basis for AD model development and validation 

studies for ensuring more comparable results, and has been widely applied for 

predictions of real AD system behaviour with a sufficient level of accuracy to be useful 

in process development, optimisation, and control (Derbal et al., 2009; Mairet et al., 

2011). It is a standard benchmark for developing operational strategies and evaluating 

process controllers for AD. 

Although models have evolved to consider more process detail including more detailed 

kinetics such as the ADM1 (Batstone et al., 2002b) model, they still fail to fully 

represent the complex nature of the AD system. Thus the best-fit of a model from a set 

of experimental data requires the optimum solution of the model parameter vector.  
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The first step to modelling is characterisation and fractionation of the influent as per the 

model input variables. This is followed by model calibration by estimating the most 

sensitive parameters of the model. Characterising the influent; this can be carried out in 

ADM1 by various means including physical-chemical analyses, physical-chemical plus 

online calibration, elemental analyses and input from another model. The ADM1 model 

includes: 

 kinetics for disintegration of homogenous particles to carbohydrates, proteins 

and lipids, followed by hydrolysis of these particles to sugars, amino acids and 

fatty acids; 

 Inhibition functions of metabolic activity by ammonia, pH, acetate and H2, and 

nitrogen limitation; 

 Description of gas-liquid transfer and ion association and dissociation; 

 32 dynamic concentration state variables, 26 state variables and 8 implicit 

algebraic equations; 

  Exclusion of lactate formation, sulphate reduction, nitrate reduction, long chain 

fatty acid inhibition, competitive uptake of H2 and CO2 and chemical and 

biological precipitation. 

As the model however does not include reduction of nitrate, precipitation, sulphur, 

intermediate components of lactic acid and ethanol; there are also several modifications 

and extensions of the ADM1 model which makes the model easier to implement for use 

in process control. Such modifications models include the ADM1xp which incorporates 

nitrogen (Wett et al., 2006), this model can be modified further depending on the 

characteristics of the wastewater. Other common extensions of ADM1 include sulphate 

reduction (Batstone et al., 2006) required for systems with high (greater than 0.002 mol 

SO4 L
-1

 or 192 mg SO4 L
-1

) sulphate levels in the effluent (Hinken et al., 2013). 

Implementation of winery wastewater in ADM1 has been implemented by various 

authors (Batstone et al., 2004; García-Diéguez et al., 2013), with ethanol as the main 

Chemical Oxygen Demand (COD) of the winery wastewater and microbial diversity 

modelling (Ramirez et al., 2009).  

2.3.3 The Siegrist model 

In 2002 Siegrist (Siegrist et al., 2002) published a slightly more simplified modelling 

approach in comparison to ADM1. The exclusion of valerate and butyrate as state 
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variables was a key difference in this new model, with the hydrolysis rate modelled as a 

single step process with first order kinetics with respect to the concentration of 

particulate matter. The Siegrist model parameters are based on experiments, whereas the 

ADM1 uses review consensus. The Siegrist model was calibrated with lab scale 

experiments and validated with full-scale experiments. However the simplification in 

Siegrist model came with ignoring several processes and including several assumptions. 

The complex nature of the AD process means it cannot be modelled without several 

simplifications, assumptions and disregarding various processes. Examples of these 

include (1) the reactor is assumed to be completely mixed; (2) the liquid phase is 

considered to be dilute and the volume is assumed to be constant; (3) the sludge 

retention time (SRT) is equal to the hydraulic retention time (HRT); (4) fixed 

stoichiometry in the microbial processes and (5) kla (volumetric mass-transfer 

coefficient) value is only dependent on temperature (Lidholm and Ossiansson, 2008). 

These various assumptions result in limitations in the model.  

2.3.4 TELEMAC Anaerobic Model no. 2 (AM2) 

The TELEMAC (TELEMonitoring and Advanced teleControl of high yield wastewater 

treatment plants) Anaerobic Model no. 2 (AM2) focuses on Acidogenic and 

Methanogenic reactions and models the methanogenesis of volatile fatty acids (Bernard 

et al., 2001). AM2 accounts for the likely inhibitory effects of accumulated VFAs which 

would result in reduced pH and accounts for this inhibition using Haldane kinetics:  

𝑑𝑆

𝑑𝑡
=

𝜇𝑚𝑎𝑥

𝑌

𝑆𝐵

𝐾𝑆 + 𝑆 + 𝑆 (𝑆
𝐾1

⁄ )
𝑛 

Equation 2.3 (Lokshina et al., 2001) 

Where µmax is the maximum specific growth rate (ℎ−1); 𝑆𝐵 is growth limiting substance 

concentrations (𝑚𝑔 𝐿−1); 𝑛 is the Haldane index; 𝑌 is the growth yield (𝑚𝑔 𝐿−1); 𝐾𝑆 is 

the half saturation coefficient and 𝐾1 is the inhibition constant. The AM2 is a mass 

balance cascade structure model based on 70 day dynamical experiments covering a 

wide operating range. The purpose of the model is to aid with the monitoring and 

control of AD systems. This is achieved by ensuring the experiments cover a range of 

experimental conditions and the validation step is performed with a wide set of transient 

conditions. 
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2.3.5 Further model extensions 

 

Table 2.2 Model Reduction Approaches 

Model reduction approach Method Reduction 

Bernard and Basin (Bernard and 

Bastin, 2005b; Bernard and 

Bastin, 2005a) 

AMH1 Uses principal component analysis 

(PCA) for reduction in the 

biochemical complexity 

Hassam (Hassam et al., 2012) Homotopy eigenvalue-state association to neglect 

the slow dynamic aspect of the model 

Gracia-Dieguez (García-Diéguez 

et al., 2013) 

PCA Extended PCA which can be used to 

capture minimum of 2 reactions  

Rodriguez (Rodriguez et al., 

2008) 

PCA Uses PCA to determine the minimum 

number of reactions of 3 reactions 

 

Due to the underlying complexity and model assumptions in ADM1, there have been 

several model modification and reduction approaches to aid with calibration and 

increased use in control approaches. Model reduction methodologies include projection 

methods and non-projection based methods. Projection based methods include Singular 

Value Decomposition or orthogonal decomposition methods. These model reduction 

methods aim to decrease simulation time, parameter estimation requirements, and 

implementation workload. The Siegrist model can be deemed as a simplification of 

ADM1 model as the model excludes butyrate and valerate components. Table 2.2 

depicts examples of model reduction approaches for AD. The most detailed approach of 

these is represented by Rodriguez and co-workers (Rodriguez et al., 2008), in this a 

PCA technique is applied to experimental data from pilot scale AD, treating diluted 

wine and compared with simulation data from the ADM1 model. The PCA technique is 

used to determine the minimum number of reactions to be included in the model 

structure to describe different percentage of data variability. 

Since there are a large number of measured quality variables that are highly correlated 

approaches use PCA to examine the relationships between different reaction pathways 

as variables within the AD process data.  
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The general mass balance equation for describing the dynamic behaviour of a 

completely mixed stirred tank reactor in the liquid phase is given by Equation 2.4.  

𝑑𝑥

𝑑𝑡
= 𝐷 ∙ (𝑥𝑖𝑛 − 𝑥) − 𝑄(𝑥) + 𝐾 ∙ 𝑟(𝑥) 

Equation 2.4  

The 𝑛 × 1 vector of 𝑥 describes the measurable concentrations of the species in the 

liquid such as ethanol, butyrate, propionate and acetate (𝑚𝑔 𝐿−1). 𝑄 describes the loss 

of mass each species to transfer to the gas phase, 𝑟 is the 𝑝 × 1 vector of conversion 

rates and 𝐾 is the 𝑛 × 𝑝 matrix containing the pseudo stoichiometry associated with the 

macroscopic network. Equation 2.4 is then integrated between the time constants of 𝑡0 

and 𝑡 and expressed by Equation 2.5. Equation 2.6a is obtained by applying moving 

average window of size T to the equation (1) between 0 and 𝑡 for 𝑡 < 𝑇 and Equation 

2.6b obtained by integrating between 𝑡 − 𝑇 and 𝑡 for 𝑡 ≥ 𝑇. 

The data was then normalised to remove the magnitude of the effects and rewriting the 

equation in the form of 𝑢(𝑡) = 𝐾 ∙ 𝑤(𝑡); for a set of 𝑁 data of 𝑢(𝑡) the 𝑛 × 𝑁 matrix 

𝑈 = [𝑢(𝑡1)  𝑢(𝑡2) … 𝑢(𝑡𝑁)] is considered (Rodriguez et al., 2008).  

𝑥(𝑡) − 𝑥(𝑡0) − ∫ [𝐷 ∙ (𝑥𝑖𝑛 − 𝑥) − 𝑄(𝑥)]
𝑡

𝑡0

𝑑𝑡 = 𝐾 ∙ ∫ 𝑟(∙)𝑑𝑡
𝑡

𝑡0

 
Equation 2.5  

𝑢(𝑡) = 𝑥(𝑡) − 𝑥(0) − ∫ [𝐷 ∙ (𝑥𝑖𝑛 − 𝑥) − 𝑄(𝑥)]𝑑𝑡
𝑡

0

 

𝑤(𝑡) = ∫ 𝑟(∙)
𝑡

0

𝑑𝑡   

𝑢(𝑡) = 𝑥(𝑡) − 𝑥(𝑡−𝑇) − ∫ [𝐷 ∙ (𝑥𝑖𝑛 − 𝑥) − 𝑄(𝑥)]𝑑𝑡
𝑡

𝑡−𝑇

 

𝑤(𝑡) = ∫ 𝑟(∙)
𝑡

𝑡−𝑇

𝑑𝑡  

Equation 2.6a 

 

 

 

Equation 2.6b 

Table 2.3 illustrates the various stoichiometric equations for ethanol digestion. The 

results obtained from the PCA show that over 70 % of the variability can be described 

by reactions 1, 2 and 7 alone (highlighted in the table) and these 3 reactions model can 

be adequate an adequate model of the system. 
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Table 2.3 Stoichiometries of 9 considered reactions for digestion of ethanol (Rodriguez 

et al., 2008) 

Reaction EtOH BuH ProH AcH H2 CH4 CO2 H2O 

R1. EtOH + H2O → 

BuH + ProH + AcH + 

H2 

-1 0.100 0.042 0.737 1.758   -

0.758 

R2. BuH + ProH + H2O 

→ AcH + H2 + CO2  

 -1 -

0.419 

2.419 3.257  0.419 -

2.838 

R3. AcH → CH4 + CO2    -1  1 1  

R4. H2 + CO2 → CH4 + 

H2O 

    -1 0.25 -0.25 0.5 

R5. BuH + H2O → AcH 

+ H2 

 -1  2 2   -2 

R6. ProH + H2O → 

AcH + H2 + CO2 

  -1 1 3  1 -2 

R7. H2 + AcH → CH4 + 

CO2 + H2O 

   -1 -2 1.5 0.5 1 

R8. EtOH + H2O →

AcH + H2 

-1   1 2   -1 

R9. EtOH + CO2 → 

BuH + ProH + H2 + 

H2O 

-1 0.413 0.173  0.653  -

0.173 

0.173 

 

To summarise the current state of modelling approaches of AD process, the SWOT 

analysis in Table 2.4 highlights the strengths, weaknesses, opportunities and threats. In 

general the threats and weaknesses outweight the opportunities and strengths. These 

have been the main reasons for limited modelling success with the AD process. 

However with increasing focus, interest and funding of AD systems, from households to 



 

13 

 

businesses and governments it should enable the strengths and opportunities to 

outweigh the weaknesses and threats due to knowledge and improved models. 

 

Table 2.4 SWOT analysis of AD process modelling 

Strengths 

 BBSRC ADNet scientific network 

(Anaerobicdigestionnet.com, 2015) 

 Active research area with various publications; 

with a range of simple models to advanced models 

with benchmark models to compare new modelling 

approaches 

 Established AD modelling community from 

reputable institutions with models such as ADM1 

Opportunities 

 Requirement for robust 

models to understand the 

underlying complexity of 

the process  

 Opportunity for soft sensor 

development for VFA and 

H2 

Threats  

 Lack of adequate instrumentation and monitoring 

to generate process data that fully describes the 

process 

 Lack of collaborations requiring expertise from 

different subject areas including biologist, process 

engineers, civil engineers 

Weaknesses 

 Lack of robust models 

explaining the complex 

behaviour of the AD 

process 

 Current models too large 

and complex and difficult 

to calibrate 

 

2.4 AD technologies 

AD systems can be configured in a number of ways: 

1. Batch or continuous; 

2. Plug flow or fully mixed; 

3. Wet or dry;  

4. Psychrophilic or Mesophilic or thermophilic; 
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5. Single stage or multi stage. 

As an industrially focussed Engineering Doctorate, this literature survey reflects the 

research requirements of the industry and as such there is greater emphasis on AD 

technology in the wastewater treatment sector; which are generally configured as 

continuous, fully mixed, wet systems. Key differences in these technologies are 

variations of mesophilic or thermophilic (covered in detail in Section 2.5) and single 

stage or multi stage.   

Traditional AD systems are single stage operation where the sludge is fed into a single 

digester for a period of time and through appropriate mixing and heating, biogas is 

produced. These systems are generally mesophilic AD (MAD) systems and a series of 

drivers have increased the complexities of AD technologies and resulted in increasing 

need for a more robust system through the separation of the key stage of the process. 

Process development for MAD systems began in the 1960’s where further 

understanding of the need for heating, mixing and feeding systems became apparent 

(Noone, 2006). At this stage the main driver was reduction of odour. The 70’s and 80’s 

focused on separate processing inputs and their interactions and the drive during this 

period was the EU directive on improving pathogen quality and bacteriological of 

digestate sludge for land application (Noone, 2006). Current regulations and policies, 

such as the climate change act (Climate Change Act, 2011), EU and UK targets for 

energy from renewable sources and the Renewable Obligation Certificates (ROCs) 

(ofgem, 2011b) system is driving the technology towards higher efficiencies, improved 

yields and tighter regulations to make the technology more attractive from both a 

technical and financial perspective. 

Advanced anaerobic digestion (AAD) may be loosely defined as a treatment process 

which improves the conversion of the organic material into biogas. AAD techniques are 

typically multi-stage and require additional techniques to separate the different stages of 

the process with pre-digestion techniques of thermal hydrolysis or enzymic hydrolysis 

and improve substrate composition contact between the microorganisms and the organic 

material. The two key steps in the digestion process are the acid forming stage 

(acidogenesis), and the methane forming stage (methanogenesis). Different conditions 

such as temperature and pH are required for the optimisation of these stages (Appels et 

al., 2008). For example, there is a requirement for different optimum pH values for the 

various phases of the digestion process.  The hydrolysis and acidification phases require 
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lower pH values between 4.6 and 6.3, whereas the optimal pH range for the methane 

formation stage is between 7.0 and 7.7.  Separation of these stages enable optimisation 

of each stage without hindrance on the other and therefore multi-stage AAD 

technologies generally yield more biogas, higher digestate and biogas quality with 

greater stability and robustness of the overall process than traditional single stage 

processes.  

The two leading AAD approaches are enzyme hydrolysis technology and thermal 

hydrolysis. Other approaches include Ultrasound, Microsludge, OpenCEL, and Cell 

Rupture. Thermal Hydrolysis Processes (THP) are typically large scale AD plants, with 

15 plants in the UK, 14 in the rest of Europe and four in the rest of the world (CAMBI, 

2011). There are over 200 AD systems in the UK using the enzymic hydrolysis 

(Monsal, 2011). These are thus established and proven technologies with new plants 

currently under construction for both technologies.   

2.5 Temperature 

AD generally operates in three temperature ranges of psychrophilic 4-20 °C, mesophilic 

20-40°C and thermophilic 40-70°C (Batstone et al., 2002b). Mesophilic and 

thermophilic systems are the normal operating temperature ranges with mesophilic 

system being the most common and stable. The stability of mesophilic anaerobic 

digestion (MAD) systems is a result of the wider diversity and robustness of bacteria to  

grow at mesophilic temperatures and also that they are more adaptable to changes in 

environmental conditions (Angelonidi and Smith, 2014). 

Different optimum temperature values exist for different phases of the digestion 

process, as methanogenic bacteria especially are very sensitive to temperature 

fluctuations therefore temperature should be kept to within ±1˚C (Appels et al., 2008). 

Local temperature variations may well indicate the presence of poor mixing, or dead 

spots in the digester. Optimisation of the heat balance is important in improving the 

digester operation and efficiency as a whole. 

Temperature has a significant effect on biogas production. Budiyono and co-workers 

(Budiyono et al., 2010) conducted experiments in a 400 ml digester using cattle manure. 

The experiment was run at 38.5˚C and room temperature. Comparison of the average 

gas production gave 5.8 ml gVS
-1

 per 1˚C increase in temperature. This value is 

however based on the specific experimental set up and cannot be used generally as the 

size of the digester and the feed affects conversion rates. Research has shown that in 
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general biogas production follows a sigmoid function as in a batch growth curve. Biogas 

production is very slow at the beginning and end period of observation. A second report 

by Alverez and Liden (Alvarez and Lidén, 2008) stated that by reducing the temperature 

from 35˚ to 25˚C caused a 30 % reduction in volumetric biogas production rate was 

observed for a Llama-cow-sheep manure bench top digestion process (Alvarez and 

Lidén, 2008). However a 7˚C reduction from 25˚C to 18˚C caused a 51 % reduction in 

the biogas volumetric production rate. This is expected as an increase in temperature 

improves the kinetics in the system and hence increases the degradation rate. However 

the results also showed high CH4 content which increased at low temperatures. The CH4 

content in the biogas increased from 49.9 % to 61.1 % between 35˚C and 18˚C. This 

counteracts with the fundamentals of a decrease in volumetric gas production rate. The 

volumetric CH4 production rate was reduced from 2094 ml at 35˚C to 1676 ml CH4 per 

day at 25 ˚C representing a reduction of 20 % (Alvarez and Lidén, 2008). A further 

reduction of 47 % from 1676 to 894 ml CH4 d
-1

 was seen when the temperature was 

reduced from 25 to 18˚C. Thus biogas production rate increases with decreasing CH4 

composition for temperatures within the mesophilic digestion region of 30˚C to 35˚C. 

An optimum temperature must be established at which high CH4 composition and 

biogas yield are simultaneously optimised. The profitability of the anaerobic digestion 

process is strongly affected by the percentage of CH4 present in the resulting biogas. 

Any advanced control scheme must therefore optimise both CH4 and biogas yields.   

2.6 Conclusions 

AD technologies continue to be an attractive topic for scientists, engineers, industries 

and governments, as they struggle to learn and understand the complexities of the 

process and drive scientific and engineering development. They also align with 

government drivers to reduce fossil fuels, find alternative energy sources and reduce 

waste to landfills. The technology is experiencing major transitions through increased 

focus on AD for combating climate change and biorefinery developments. The 

dynamics of the process continue to increase with high uncertainties and increasing 

complexities; the technology continues to develop with increase new industrial 

processes.  

Through conducting the literature survey it was found that instrumentation with respect 

to sensors is a key limitation of industrial scale ADs. Various online sensors for key 

variables exist at laboratory or experimental scale but are mainly offline analysis 
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methods and are not currently available on industrial scale application. The possible 

reason for this may be due to cost, reliability, or market demand for example the need 

for monitoring of the hydrolysis and fermentation stages which may require the 

integration of spectroscopic sensors or soft sensors to efficiently predict important 

parameters such as alkalinity and VFA. Efficient monitoring of these parameters is 

deemed important for future research development (Ward et al., 2008). This issue has 

led to the need for a detailed instrumentation review (summarised in Chapter 3) to 

establish the gaps and opportunities in this area. 

Following on from the instrumentation review, a vendor review was conducted to 

identify the key technology players in the field with two questionnaires aiming to: (1) 

gain input from the AD technology providing vendors and (2) understand the reasons 

for the variation in the application of the various technologies to support the project. 

The vendors included AD original equipment manufacturers (OEMs), pre-treatment 

technology providers and various other suppliers for the process specifically for the 

WWT market. This task was carried out to obtain input from the technology providers 

on how their technologies could be integrated into the Perceptive AD master and the 

AD process overall to meet the aims of the project. The key targeted technology 

providers were Monsal and CAMBI. These two companies provide leading advanced 

anaerobic digestion (AAD) technologies. Examples of their technologies are covered in 

the benchmark study in Chapter 4. Involving the process designers was paramount to 

the project as it allowed the opportunity to improve the process from the design level.  

Response from the questionnaires through emailing and cold calling the vendors was 

low and as a result, vendors were then targeted at several AD events and conferences. 

The limited response received was inadequate to obtain insights from the vendors to 

support the research and these are not presented in this thesis. 
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3 Instrumentation review 

3.1 Introduction 

This instrumentation review discusses the minimum and ideal instrumentation 

requirements for an AD process. The economic and environmental benefits of biogas 

production from an AD process are well understood and in recent years significant 

technological developments for increasing the efficiency, yield, stability and robustness 

of the system has increased the need for better monitoring of the process (Olsson et al., 

2005).  

Current regulations and policies such as the climate change act (Climate Change Act, 

2011), EU and UK targets for energy from renewable sources and the Renewable 

Obligation Certificates (ROCs) (ofgem, 2011b) system are driving the need for higher 

efficiencies, and improved biogas yields. These requirements make the investment in 

control and monitoring technologies more attractive. This is supported by various 

studies both in industry and academia. Due to the low energy efficiency for converting 

biomass to electricity of only 13 % (Warthmann and Baier, 2013), there is an 

opportunity to improve the efficiency and yield; monitoring and control will play a 

crucial role. 

The lack of process control handles, instrumentation, and developed control algorithms 

have been addressed to some extent in the past 10 years (Boe et al., 2010; Palacio-Barco 

et al., 2010; García-Diéguez et al., 2011; Cadena-Pereda et al., 2012; Vanwonterghem 

et al., 2015). The current gap in instrumentation technology was the lack of availability 

of rapid intermediate sensors to detect overloading conditions. To date there are a 

limited number of sensors that can measure total or individual organic acids; with some 

available on commercial production sites and others under development (Pind et al., 

2003). 

There are on-going research projects in this area in both academia and industry, with 

new types of instruments being commercialised frequently due to regulatory and 

process improvement demands. There are wide varieties of instruments available at the 

laboratory scale which is not yet applicable at an industrial scale. The gap between 

laboratory and industrial scale instrumentation, control and automation is more 

significant for AD than for most fields, as digestion at laboratory scale is much more 

stable and easy to control than at an industrial scale (Horan, 2009).  
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An additional challenge has been dealing with the lack of reliability of existing sensors, 

and the potential effect that they may have on a closed-loop control system and fault 

detection algorithms have proven not to be satisfactorily reliable to detect faulty on-line 

sensors. Robust control strategies based on on-line sensors include algorithms for 

automated detection of faulty sensors. Sensor faults typically include drift, offset shift, 

scaling shift, fixed value, complete failure, and calibration errors  

Stability of the AD process may be indicated by biogas production rate, and effluent 

VFA or effluent COD or TOC concentrations. When attempting to control parameters, 

typically limited manipulated variables are available, with feed flow being the most 

commonly used. Other manipulated variables include temperature, stripped gas, 

agitation and mixing.   

Plant wide optimisation needs to be taken into account for the implementation of any 

control scheme. It is evident that energy balance is an important plant performance 

indicator, particularly where CHP operation is utilised for the downstream process 

(Horan, 2009). For this reason, the monitoring of the energy used and produced by the 

various heat and power units is necessary.  Flow and temperature probes are reliable and 

well established within the industry and in such situations where instrumentation is 

unavailable; it should be implemented to enhance energy utilisation. 

3.2 Instrumentation technology providers 

A common aphorism in the field of control instrumentation is “To measure is to know”.  

In the past, the availability of sensors was a key obstacle for control and automation of 

WwTPs. Measurements for treatment systems were mainly limited to pH, flows and 

dissolved oxygen (DO). This situation has improved over the last 10 years, and 

currently sensors for biochemical oxygen demand (BOD), COD, ammonia, nitrate, 

nitrite and phosphate are now available for on-line monitoring of wastewater treatment. 

The book entitled “Instrumentation, Control and Automation in Wastewater Systems” 

gives a good account of developments in this area up to 2005 (Olsson et al., 2005). Key 

conclusions with respect to the state of instrumentation, control and optimisation up to 

2005 were: 

 Limited usage of sensors for closed loop control approaches 

 Improved ease of data collection and visualisation through the adoption of 

supervisory control and data acquisition (SCADA) systems 
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 Process or plant wide control and optimisation approaches are new areas for 

development 

 50 % of control loops surveyed were found to be in manual mode  

 Lack of on-line sensors no longer deemed as the main limitation for on-line 

control, process flexibility recognised as a greater limitation.  

Table 3.1 Examples of technology providers for AD systems 

Company Instrument Details  

Bioprocess 

Control Ltd 

Biogas OptimizerTM (Products 

| Bioprocess Control, 2016) 

A SCADA solution which allows 

process diagnosis, decision support 

and optimisation; and Automated 

Methane Potential Test System 

(AMPTS) system  

SCAN  Spectrolyser, pHlyser, 

ammolyser, chlorilyser, and 

turbilyser (SCAN, 2011) 

Spectral probes, ion selective probes, 

electrochemical sensors, optical 

sensors  

Geotech GA3000 and GA4000 (Products 

Archive - Geotechnical 

Instruments (UK) Ltd, 2016) 

Simple fixed position biogas analyser 

and laser diode analyser for highly 

accurate CH4 analysis 

Endress 

Hauser 

Flow, level, pressure (Level, 

flow, pressure, temperature 

measurement | 

Endress+Hauser, 2016) 

Data logging and digital 

communications 

Hitech 

Instruments 

GIR5000 ('GIR5000 series - 

Biogas & Landfill analysers - 

Multiparameter analysers for 

biogas applications,' 2016) 

Designed specifically for biogas 

applications and measures CH4, CO2, 

and O2 or H2S 

AppliTek Anasense (AppliTek, 2009) Monitors VFA, bicarbonate and 

alkalinity 
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Various companies have portfolios of instrumentation specifically to address the needs 

of the water industry. Although the state of instrumentation for process units such as 

activated sludge plants (ASPs) has improved considerably, there is still a lack of 

suitable instrumentation for ADs. Table 3.1 depicts different technology providers for 

AD systems; such as the spectrolyserTM which is specifically designed for WwTP 

(SCAN, 2011). This SCAN spectrometer probe has proven to be reliable for the online 

monitoring of BOD, COD, Total Soluble Solids (TSS), pH, nitrate and temperature 

(O'Brien et al., 2011) for the treated effluent stream of an ASPs.  The multi parameter 

probe uses UV-Vis spectrometry over the range 220-720 nm or 220-390 nm and can be 

mounted in the media or in a flow cell with automatic cleaning using compressed air 

(SCAN, 2011). Instrumentation such as this has made some ASP control solution 

implementations possible yielding, improved process efficiency.  

Another example of on-line instrumentation developed specifically for monitoring AD 

systems is the Anasense® from AppliTek.  An example of the Anasense Control Unit is 

shown in Table 3.2. This system is used in the TELEMAC supervision system to 

monitor VFA, bicarbonate and alkalinity. The TELEMAC project is aimed at bringing 

new methodologies from the IT and science sectors to water treatment, and compares a 

group composed of leading scientist and engineers offering an advanced remote 

management system for anaerobic WwTPs which do not benefit from a local expert in 

wastewater treatment. The TELEMAC system involved new sensors for improved 

monitoring of the process dynamics and with automatic controllers that stabilise the 

treatment plant (Bernard et al., 2004). 
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Table 3.2 Example of instrumentation control units 

 

 

 

CH4 analyser from Nova 

Analytical Systems Inc. (Nova 

analytical systems, 2010). 

Anasense from 

AppliTek NV 

(AppliTek, 2009) 

pH or Redox (ORP) & 

Conductivity analyser from ABB 

(pH / ORP transmitters - 

Analytical Measurement | ABB, 

2016)  

 

The HK microwave dry solids measurement system shown in Figure 3.2 is 

manufactured in Germany by Harrer and Kassen and distributed by Process 

Instrumentation UK Ltd. This analyser is typically commissioned for a cost < £10,000 

and the instrument is capable of measuring % DS within the range 0 % to 40 % DS. A 

low power oscillator in the microwave measuring instrument is used to generate an 

electromagnetic wave which is then transmitted into the sludge via an antenna. The 

wave is transmitted through the dielectric properties of the sludge. This is received by a 

second antenna and the phase delay and power level of the wave received are 

proportional to the concentration of the product (density) or the dry solids (UK, 2011). 

 

Figure 3.1 The HK microwave dry solids measurement system (UK, 2011) 
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The ISO 15839:2003 standard is the most complete protocol for sensor characterisation 

in water quality for on-line sensors and analyser equipment for water specifications as 

well as performance tests (Iso.org, 2015). Most of the instruments detailed in the survey 

conformed to this standard. Sensor characteristics covered by the standard include 

performance metrics of range, linearity, accuracy, drift and speed of response.   

The provision of more standard measurements such as temperature, pressure, liquid 

level, and flowrates are not considered in this survey, as such instruments are readily 

available, with state of the art technology found on many plants. Physico-chemical 

measurements such as pH, conductivity, redox, CH4, H2S, H2, CO2 and bio-chemical 

measurements of BOD and TOC are readily available with state of art technologies.  

Measurements of suspended solids, bicarbonate alkalinity, digester gas and UV 

absorption have application only in certain areas. Measurements systems which require 

further development work include sludge morphology, calorimetry, COD and VFA. 

An important precursor step in the development of robust control solutions to ensure 

enhanced AD operation is the development of robust sensors and analysers. Challenges 

limiting the success of control strategies in AD typically include uncertainty in the 

process kinetics and uncertainty in the input and output flows and concentrations. The 

availability of reliable sensors can help overcome these limitations. Sensors can be 

categorised into two groups (1) reliable simple sensors for operator support and 

regulatory control of the process and (2) advanced sensors tools for auditing, 

optimisation, modelling activities (Vanrolleghem and Lee, 2003). 

3.3 Sensors and instruments 

This section provides a discussion on instrumentation in the solid, liquid and gas phases 

of the AD process.  Variables can be measured in the gas or liquid phase. Liquid phase 

measurements include VFAs, pH, COD, dissolved H2 and alkalinity, whilst gas phase 

measurements consist of flowrates, and composition of species such as CH4, H2S, H2, 

CO2 and siloxanes (Ward et al., 2008). Sensors for physical parameters such as flowrate 

are of importance in the process. Gas flowrate measurements are provided using 

differential pressure techniques, turbine sensors or magnetic flow sensors.   

Figure 3.1 illustrates the various parameters measured in the solids phase as well as 

liquid and gas phases. 
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Figure 3.2 Digester gas, liquid and solid phase measurements (Switzenbaum et al., 

1990) 

3.3.1 Gas phase sensors 

Gas measurements are usually much easier in comparison to analytical measurements in 

water and other liquids. Gas production is one of the fastest acting and most commonly 

applied parameters for monitoring and controlling AD processes. Gas flow on-line 

parameters are used is in various studies. As fluctuations and measurement noise in gas 

flow measurements are common, low pass filtering is often necessary in order to 

provide a smooth gas flow measurement necessary for controlling the process.  

Due to the explosive nature of biogas; many gas analyser instruments are ATEX 

(Explosive Atmospheres Directive) certified. This is a European Union Directive which 

requires employers to protect workers from the risk of explosive atmospheres 

(Hse.gov.uk, 2015). Table 3.3 depicts gas phase measurement, with their level of 

accuracy, example instruments and whether these instruments are readily available 

online or not. The easiest of these measurements is gas flow; the digester off-gas stream 

is a slightly more benign environment for online sensors. Many different industrial gas 

measuring instruments are readily available and most of these instruments require a gas 

flow of about 5 L min
-1

 or more for analysis. The most common laboratory instruments 
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are volumetric displacement and can measure gas flow at very low concentrations.  The 

measured gas flow signal can be affected by noise, usually due to the effects of 

foaming.  This noise typically requires online filtering to provide a useable signal (Pind 

et al., 2003). 

Biogas flow monitoring systems are readily available and widely applied in industry and 

the accuracy of these instruments is affected by temperature values due to dilution of 

water vapour in the gas with increased temperature which can increase from 8 % at 

35
o
C to 17 % at 55

o
C. Prices range considerably between portable devices and fixed 

point or wall mounted modular devices and continuous process monitoring; with the 

Gas Data GFM416 biogas analyser costing around £3200.  
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Table 3.3 Gas phase measurements 

 Technology Types or 

Method 

Ranges or Level of  

Accuracy 

Reliability 

and Cost 

On-line or Process 

Dynamics 

Examples 

Gas 

flow 

Volumetric displacement 

instruments, thermal 

dispersion devices, orifices 

plates, pilot tubes and turbine 

meters  

Range: 0-500 Nl min
-1

. and 

± 0.5 %  repeatability, 5 

L·min–1-0.1mL·min–

1(Guwy et al., 1995) 

  £3000-

5000  

Speed of response 

typically 30 seconds 

Geotech-GA3000, HiTech-

GIR5000, Gas Data-GFM416 

(Products Archive - 

Geotechnical Instruments 

(UK) Ltd, 2016) 

CH4 

and 

CO2 

Volumetric displacement 

measurement, GC, IR 

adsorption analysis methods  

CH4 0-60 % and CO2 10-

50 % of total gas.  

£800-1500 Readily available 

both lab and 

industrial scale  

LI-COR, CEA CH4, 

Servomex Ir1520  

H2 Mercury-mercuric oxide 

detector cell (0.01ppm), 

thermistor metal conductivity 

0-4 % range typically by 

volume 

£350-500  None found 

H2S Measure H levels using 

electronic sensors or gas 

measurements, 

electrochemical sensors  

In concentrations between 

0-50 ppm in gas produced 

£200-500 GC and FT-IR 

analysis, applied to 

6 sites (Arnold and 

Kajolinna, 2010) 

None found 
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The removal of CO2 can be controlled by manipulating the pH and alkalinity.  Therefore 

control of gaseous CH4 composition can be maintained to some degree. The use of CH4 

production is commonly employed as the output parameter for control. The CO2 and 

CH4 composition can be measured using gas chromatography (GC) - mass spectrometry 

(MS) or GC- flame ionisation detector (FID) methods and infrared measurements. 

Measurement of CH4 composition in AD biogas may be achieved by passing the biogas 

through a column or bed of soda lime to scrub off the CO2. A simple volumetric 

measurement of the CH4 can then be conducted. The profitability of the AD process is 

strongly affected by the percentage of CH4 present in the resulting biogas.  An advanced 

control scheme should look to optimise the relative biogas CH4 compositions.  These 

instruments are also relatively reliable provided they do not suffer from foam infiltration 

(Horan, 2009). 

Carbon Monoxide (CO) is another unwanted by-product in the gas phase, and low 

concentrations of CO may be detected. CO however has low solubility and is easily 

measured. Control of CO variable was not investigated as yields are typically deemed 

negligible (Horan, 2009). 

Much of the research into new sensors has concentrated on the analysis of intermediate 

compounds. These compounds, for example VFA and H2 can contribute to or cause 

inhibition, which significantly reduces sludge stabilisation and biogas yields.  

Measurement of the intermediate compounds in the liquid phase and the final gases (H2, 

CH4, CO2, and H2S) is important for characterising the state of the process.  H2 is 

produced as an intermediate component, which is immediately consumed by another 

phase of the digestion process.  H2 rapidly dissociates from the liquid phase to form H2 

gas.  This liquid-to-gas transfer occurs in a highly non-linear manner, meaning that the 

H2 responds to a disturbance in a highly dynamic manner, both in the liquid phase and 

in the gas phase.  Because of this, H2 in the gas phase is not indicative of a stable or 

unstable process. By monitoring (and possibly controlling) the H2 content, it is possible 

to monitor or control the various phases in the process. Conversely dissolved H2 is not 

as dynamic, and studies of dissolved H2 have been shown to correlate to the organic 

loading rate (OLR).  Dissolved H2 concentration can be predicted by calculating the 

biogas composition under the assumption of the equilibrium between gas and liquid 

phase using Henry's law (Vanrolleghem and Lee, 2003), as a crude estimation. 
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3.3.2 Liquid phase sensors 

Monitoring of the intermediate chemical species that are created within the digester 

vessel and then immediately consumed within the same vessel (or an immediate 

downstream vessel) can provide key information on microbial activity. The 

intermediates produced are degraded from soluble and insoluble proteins, carbohydrates 

and lipids. Monitoring of these intermediates is carried out in the liquid phase, within 

the digester vessel itself. Instrumentation for the monitoring of the biological 

intermediates such as VFA and bicarbonate alkalinity is an active research area. Soft 

sensors for VFA and alkalinity have been developed to enable better monitoring of the 

process. Finally the analysis of the fermentation stage of the digestion process is 

achieved through techniques such as photometric cuvette tests, ion chromatography, or 

titration methods.   

VFAs are fatty acids with a carbon chain of less than six. These are deemed to be the 

most important intermediates in the process. The conversion of VFAs to CH4 and CO2 

is conducted through the acetogenesis and methanogens stages.  The monitoring of the 

VFA composition gives important information about the state of these stages.  As the 

composition of the feedstock entering the digester can vary greatly, the general 

interpretation of the VFA concentration can become highly problematic.  For example, 

an increasing VFA content may be due to a change in the feedstock, or alternatively it 

may be due to a change in the microbial balance between the different stages.  These 

two different causes require diametrically opposite control actions, therefore VFA 

monitoring at multiple points in the process is important for optimal control of the AD 

process.  The most important drawback to fulfil automatic control of VFAs is the lack of 

on-line measurement devices, and the potentially high cost of those instruments that are 

available. 

Current methods for VFA measurement include distillation, calorimetry, GC and 

various titration techniques. Of these approaches the titrimetric methods are considered 

to be more rapid, simplest and most cost effective. Most of these assume that VFAs are 

mainly composed of acetic acid (Bouvier et al., 2002). In the literature several 

publications have reported the on-line monitoring of VFA’s through titrimetric methods 

(Bouvier et al., 2002; Feitkenhauer et al., 2002). 
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Table 3.4 Liquid phase measurements 

 

 Technology Types or 

Method 

Ranges or Level of  

Accuracy 

Reliability or 

Cost 

On-line or Process Dynamics Examples 

VFA Distillation, calorimetry, 

chromatography and 

titration techniques; GC, 

HPLC, GCMS, MS 

technologies.  

VFA accumulation 

reflects a kinetic 

uncoupling between 

acid producers and 

consumers 

£12000-20000 HSGC (Kanokwan et al., 2007), 

FT-IR spectrometer as an on-line 

sensor (J. P Steyer et al., 2002), 

Multi-syringe and multi-pumping 

combined system; 

spectroflourimeter (Palacio-Barco 

et al., 2010) 

Anasense® 

(AppliTek, 

2009) Ammonia Ion selective, and 

electrochemical based 

sensors such as ion 

selective electrode (ISE) 

, colorimetric 

100–1100 mg-N · L–

1; Colorimetric range: 

0-10 mg/l, ISE range: 

0-20000 mg/l, 

Accuracy: 2 % or 

0.015mg/l 

£12000-20000  Anasense® 

(AppliTek, 

2009), SCAN: 

Ammolyser 

(SCAN, 2011) 

H2  Amperometric probe (50 

nM), H2 or air fuel cell 

(80 nM), mass 

spectrometry, coiled 

silicone tubing in the 

reactor. 

 Typically an 

estimate from 

H2 gas. Not 

readily 

available yet 

Available on lab scale and 

estimation mechanism for 

industrial application based on H2 

gas 

None found 

BOD Spectrometer: measure 

optical spectra from 200 

to 750 nm directly in 

liquid  

Not an usual 

parameter for AD 

None found Lab scale in-house developed 

biosensor (Liu et al., 2004) 

Carbolyser 

(SCAN, 2011) 

COD or 

TOC 

Spectrometer measure 

optical spectra from 200 

to 750 nm directly in 

liquid 

COD: 0-1500 mg L
-1

 

O2 and 2 % accuracy. 

TOC: 0-10000 ppm 

and accuracy: 2-3% 

£25000-£30000 FT-IR spectrometer as an on-line 

sensor 

Carbolyser 

(SCAN, 2011) 

Alkalinity, 

PA, TA 

Total buffer capacity 1000-3000 mg L
-1

 

typically 

None found FT-IR spectrometer as an on-line 

sensor 

Anasense® 

(AppliTek, 

2009)  
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Off-line measurements of VFAs for verifying the state of the biomass within the AD has 

been applied in control studies.  In these studies, the control algorithm has been based 

on other measured on-line parameters of inorganic chemical components, such as redox 

potential, ammonia, pH, and alkalinity. Another approach has been VFA estimation 

using a modified nitrate sensor for measuring nitrate reduction through a denitrifying 

organism immersed in partially digested feedstock’s in an excess of nitrates. Measuring 

nitrate reduction through titration is proportional to the organic carbon (Ward et al., 

2008).  Titrimetric methods can also be applied for the analysis of total and partial 

alkalinity. 

VFAs are formed during the acidogenesis and acetogenesis stage. A stable efficient 

fermentation process yields VFA component (acetic, propionic, butyrate etc.) values 

between 500 to 3000 mg L
-1

 as the equivalent amount of acetic acid. There is 

equilibrium between the production of acid by hydrolysis and acid degradation by 

methanation. An acid concentration above 10000 mg L 
-1

 results in pH drop usually 

below 7 and results in a reduction in CH4 concentration. This parameter could 

potentially be monitored and controlled using the Anasense instrument. 

The pH level in the digester is a particularly important parameter for monitoring and 

control.  In general the ideal range of pH is between 6.6 and 7.6.  If the pH is 

particularly low, then the methanogenic bacteria essential to the final stage of CH4 

production will be inhibited. Currently there are a wide range of sensors available for 

the measurement of pH, however many pH probe electrodes are prone to electrode 

poisoning due to the harsh environments in the digestion process.  The hydrogen 

sulphide (H2S) concentration present in the sludge causes electrode poisoning to most 

pH monitoring instrumentation. The Hach Lange pHD sc digital differential electrode 

for pH and redox measurement is designed to overcome this problem. The reference 

system of the pHD sc electrode does not come into contact with the fluid that is being 

measured and avoids the problem of electrode poisoning.  

The measurement of carbohydrate levels in the digester vessel is also considered.  

Substrate carbohydrates may be in either soluble or insoluble form.  The measurement 

of soluble carbohydrate is comparatively much easier, using methods such as high 

performance liquid chromatography (HPLC) which may be applied on-line. In 

comparison insoluble carbohydrates require complicated pre-treatment methods, after 

which they can be measured using HPLC, colorimetric methods or GCMS.  Because of 
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the pre-treatment requirements, on-line measurements are not possible.  Even for offline 

lab measurements, the costs for these measurements are sufficiently high and hence 

these measurements are only conducted on a small scale. Currently there is no direct on-

line measurement of the composition of either H2S or CH4 in the liquid phase 

(Vanrolleghem and Lee, 2003).  Any future developments in the measurements of these 

parameters may yield new potential control strategies. 

Temperature sensing probes are relatively cheap and reliable, and the digester vessel 

can be instrumented with a number of these at various positions both radially and 

axially around the circumference of the vessel.  Local temperature variations may well 

indicate the presence of poor mixing, or dead spots in the digester. Temperature probes 

should also be mounted in the hot water circuit entering the digester, and possibly on the 

biogas streams leaving the digester.  This would allow the online calculation of the 

digester heat balance.  Optimising the heat balance is essential to optimising the digester 

operation as a whole. 

The use of gas flow measurement as an on-line parameter is found in numerous studies.  

This is regarded as a key monitoring parameter (in conjunction with the sludge feed 

rate), as it is a relatively fast indicator of changes in the microbial population. 

Soluble H2 is an intermediate species which is both produced and immediately 

consumed in the AD process. Gaseous H2 concentration may be measured using a 

mercury-mercuric oxide detector cell; an exhale H2 monitor; or palladium metal oxide 

semiconductors (Pind et al., 2003). H2 has a very short relaxation time as shown in 

Table 3.5 and the content in the gas phase could be between 20-30 ppm to 400-600 ppm 

which makes measurements much easier in the gas phase.  

Table 3.5 Theoretical relaxation times for some AD parameters (Switzenbaum et al., 

1990) 

Substrate H2 Glucose CO2 Acetate Propionate CH4 

Relaxation time 15 seconds 3 minutes 1 hour 2 hours 4 hours 2 days 
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H2S is produced as a result of the degradation of sulphide containing compounds such 

as proteins in small quantities.  H2S forms a small proportion of the overall biogas 

composition.  

3.3.3 Solid phase sensors 

For the AD process, the 'solid phase' refers to solids carried in liquid suspension, either 

in the feedstock, digestate, or in the main body of the digester vessels. Solid 

measurements are usually conducted on feedstock prior to entering the digester and then 

post digestion, so as to ensure that the instruments can be accessed for maintenance 

purposes. The main purpose of measuring the solids before and after digestion is to 

evaluate the percentage solids reduction, which indicates the level of microbial activity 

in the digester. Accurate measurement of the solid component properties is more 

difficult compared to gas or liquid measurements. Solid phase parameters for 

measurements include percentage dry solids (% DS), cell enumeration, 

deoxyribonucleic acid (DNA) sequencing, protein content, bacterial lipids, adenosine 

tri-phosphate (ATP), enzyme activities, methanogenic activity measurement, micro-

calorimetry, co-enzymes, C1-carriers of methanogens and immunology of methanogens. 

In general these parameters are not often used for automatic control as these are usually 

measured off-line with long analysis periods and complex systems for measurement 

(Moletta, 1998). Laboratory analyses for the characterisation of bacteria or the organic 

compounds are mostly carried out for research purposes and typically not an actively 

monitored process parameter. 

One of the newer sensor types is near-infrared spectroscopy (NIRS), which is used in a 

variety of industries for classifying or predicting the characteristics of complex media 

and bulk solid materials. NIRS is a non-destructive optical technique, which produces a 

spectrum as its output, as such NIRS requires a multivariate technique such as partial 

least squares (PLS) regression to map the spectral output to one or more measured 

physical parameters. NIRS has the advantage of being able to measure several 

parameters simultaneously providing a calibration model is prepared for the parameters 

of interest. The need for a calibration model is a drawback for the NIRS technique, as 

each type of waste may require its own calibration model and a biochemical methane 

potential (BMP) test may still be required to obtain the reference value.  NIRS has been 

used to monitor ADs mostly for determining VFA content and BMP. 
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Table 3.6 Solid phase measurements 

 Technology Types or 

Method 

Ranges or Level of  

Accuracy 

Reliability 

and Cost 

On-line or Process 

Dynamics 

Examples 

Total organic 

carbon (TOC) 

Spectrometer: measure 

optical spectra from 200 to 

750 nm directly in liquid  

Range: 0-10000 ppm; 

Accuracy: 2-3 % 

Average 

price £25000 

FT-IR spectrometer as an 

on-line sensor 

SCAN: 

Carbolyser 

VOC Spectrometer: measure 

optical spectra from 200 to 

750 nm directly in liquid  

Not an usual parameter for 

AD 

None found GC and FT-IR analysis, 

applied to 6 sites (Arnold 

and Kajolinna, 2010) 

None found 

Indirect 

measurement of 

organic matter 

Assessment of VS and total 

solids (TS) 

Not a usual parameter for 

AD, calculation on the inlet 

feed to digester, varies 

dependent on feed. 

None found None found None found 
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One key variable for the digestion process is the % DS fed into the digester. Typically 

this parameter is measured off-line, and these spot sample results are then used to adjust 

the sludge dewatering process accordingly. The optimum solid content obtained for 

biogas production is in the range of 7 to 9 percentage dry solids (% DS) (Balsam, 2002). 

This is the amount of solids in sludge, which contain organic matter of proteins, 

carbohydrates, fats, nutrients. Due to the function of water in the digester, the total 

solids (TS) content will directly correspond to water content. Water content is an 

important parameter as it enables the movement and growth of bacteria, facilitating the 

dissolution and transport of nutrients and contributes to the metabolic reactions as most 

of these are dependent on the hydrophobicity of the organic material. Water can also 

reduce the limitation on mass transfer of non-homogenous or particulate substrate 

(Budiyono et al., 2010). % DS information may be used to estimate the organic loading 

to the digester. The organic loading rate (OLR) is a key parameter for the operation of 

the digester. An OLR greater than 3 kg VS (m
3
.d

-1
) may lead to overloading of the 

digester which will in turn require a reduction in the sludge feed rate to allow the 

digester to recover. 

Online DS meters for the sludge feed stream are available, and are relatively reliable.  

These sensors are designed to work with sludge dry solids contents in the range 0 % to 

10 %.  This sensor information may be used to estimate the organic loading of the 

digester which is a key parameter for operating the digester; a loading rate above 3 kg 

VS (m
3
.d

-1
) may lead to overloading of the digester which will in-turn require a 

reduction in the sludge feed rate in order to allow the digester to recover. 

In the UK, the use of treated digestate sludge as an agricultural fertiliser is governed by 

the 'Safe Sludge Matrix' (SSM).  This is a set of rules governing what type of crops that 

different sludge can be applied to.  A 'conventionally treated sludge' is one in which at 

least 99 % of pathogens have been removed.  An 'enhanced treated sludge' is one in 

which at least 99.9999 % of pathogens have been removed.  Table 3.7 shows the UK 

Safe Sludge Matrix (Chambers et al., 2001). The matrix sets out the types of crop 

groups which may be treated with conventional, enhanced or untreated sludge. 

The main driver for determining how a digester is operating is ensuring that the digested 

sludge is compliant with sludge stabilisation requirements. Beyond the requirements for 

pathogen reduction there is no other direct specification for digestate quality in general 

use. As it is deemed to be a waste product, digestate is excluded from the main farm 

quality assurance scheme and this is the main obstacle for applying digestate use on 
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agricultural land (Booth, 2009). This will inevitably change due to increased regulations 

and the move towards selling digestate as a product.    

Table 3.7 The safe sludge matrix (Chambers et al., 2001) 

Crop group Untreated 

sludges 

Conventionally treated sludges Enhanced 

treated sludges 

Fruit 
× 

× √ 

 

 

√ 

 

√ 

 

 

√ 

10 month 

harvest 

interval 

applies 

Salads 
× 

× (30 month harvest interval 

applies) 

Vegetables 
× 

× (12 month harvest interval 

applies) 

Horticulture 
× 

× 

Combinables 

and animal feed 

crops 

× 
√ √ 

Grass and forage 

(grazed) 

× 
× (deep injected 

or ploughed 

down only) 

 

3 week no 

grazing and 

harvest 

interval 

applies 

√ 3 week no 

grazing and 

harvest 

interval 

applies 
Grass and forage 

(harvested) 

× 
√ (no grazing in 

season of 

application)  

√  

Regulations such as these articulated in the Code of Good Practices (CoGP) and SSM 

are used for sludge stabilisation in the UK. Treatment processes for sludge are managed 

by the principles of hazard analysis and critical control point (HACCP) management. 

HACCP applies risk based management and control procedures to manage and reduce 

potential risks to human health and the environment.  The HACCP approach is adopted 

and applied to sludge treatment, to ensure that the microbiological requirements set out 

in the SSM are achieved and that the appropriate quality assurance and risk 
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management and reduction procedures are in place.  This ensures that if the digestate is 

being spread on agricultural land, it complies with the relevant microbiological 

standards (Davis et al., 2010). 

The SSM however does not include specific sludge quality indices. In an attempt to 

remedy this, the waste resources action program (WRAP) created an industry 

specification, the Publicly Available Specification (PAS 110) (WRAP, 2010) which 

producers use to verify that digestate produced is of consistent quality and fit for 

purpose. Some of the parameters from the PAS 110 guidelines include limits for toxic 

elements such as copper, zinc and lead; limits for digestate stability characteristics such 

as VFA and residual biomass potential as well as declaration of nutrient characteristics 

of total nitrogen, phosphorus and potassium (NPK) values (WRAP, 2010). In March 

2011, the Andigestion plant in Devon became the first AD plant to achieve digestate 

certification and the site is approved under the Biofertiliser Certification Scheme (BCS). 

BCS was built on from PAS 110 and offers a tool for classifying digestate (Organic-

farmers-and-Growers, 2011).  

To comply with these guidelines, adequate instrumentation for the measurement and 

monitoring specified parameters may be required in the near future, with a key 

challenge being the ability to reliably and accurately measure these parameters. 

Currently composition can be analysed within the laboratory as opposed to online in the 

digester and hence soft sensors may be developed to as surrogate measurements. 

3.3.4 Software sensors 

There are limitations in the availability of reliable on-line sensor instruments for those 

parameters discussed previously.   It is possible that these limitations may be overcome 

through the development and deployment of software-based sensors (also known as 

'inferential sensors' or 'soft sensors'). 

A software sensor associates a hardware sensor and an estimation algorithm (software) 

to provide on-line estimate of an un-measurable variable (Chéruy, 1997) and this will be 

discussed in detail in Chapter 7.  The key to a successful software sensor is to make use 

of multiple instances of cheap, reliable, and easy to maintain sensors (such as flows, 

temperatures and pressures) together with an appropriate multivariate model or 

algorithm, in order to estimate some hard-to-measure parameter in real-time.  

Development of software sensors for AD is an active research area, with new models 
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and techniques being published frequently. There are many common models used in 

developing soft or inferential sensors.  

The phenomenological or model driven approach, which is commonly based on first 

principle models, describes the underlying physical and chemical background of the 

process. As these models are usually based on the ideal steady-state of the process 

(which for AD is largely unknown), this makes their use as the basis for soft sensors in 

AD problematic. 

The data driven approach employs a range of data analysis techniques including 

univariate or multivariate statistical analysis, artificial neural network and fuzzy models, 

and rely on a historical record of past behaviour of a particular process to estimate 

future behaviour. These are more popular as they are perceived to describe the real 

process condition as the data used is measured within the processing plant. 

There is an increasing need for model based estimators to reliably predict costly or 

unavailable measurements on the basis of related but less expensive on-line sensor 

values (Theilliol et al., 2003). An example of such a system is a model which calculates 

the risk of foaming due to microbiological causes.  As causes of foaming in AD are not 

in complete agreement; this model has encapsulated invaluable empirical knowledge of 

key factors, with organic loading rate (OLR) and filamentous microorganisms present in 

the activated sludge system, as the inputs to the model. This case study was used to 

evaluate the performance of the model used in the IWA Benchmark Simulation Model 

No. 2 as a framework (Alex et al., 2008a). Simulation results for one open loop 

configuration and two close loop control strategies proved the usefulness of this 

approach for the estimation of the risk of foaming in AD’s (Dalmau et al.). 

Currently the use of soft sensors on industrial scale processes is limited, mainly due to 

the difficulty in developing robust models and in validating cause sensor information. It 

is common practice to analyse samples off-line to compare results to the soft sensor 

value to ensure that the reliability of the soft sensor.  

The development of a software sensor typically requires an intensive laboratory 

sampling campaign to develop the sensor, as well as periodic lab samples to validate the 

software sensor values, and to provide 'bias correction' for unmeasured drifts in values.  
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As such, the software sensor approach would be more suitable for parameters which are 

frequently measured, such as VFA or pathogen levels in digestate. 

3.3.5 Sensor requirements for advanced control 

As a result of this instrumentation review and the benchmark study in Chapter 5, 

‘minimum’, ‘essential’ and ‘nice to have’ instrumentation requirements for considering 

the implementation of any advanced control scheme are summarised in Table 3.8.  

Table 3.8 Summary of instrumentation 

 Minimum  Essential  ‘nice to have’ 

 

Input 

Pressure or level 

measurements 

% DS Chemical 

composition 

Feed flowrate TOC COD 

 

Process 

state 

Temperature VFA Redox potential 

pH Bicarbonate alkalinity, 

alkalinity, total alkalinity 

Ammonia 

 Intermediate gases 

of H2 and CO 

Output Biogas composition 

(CO2, CH4 and H2S) 

Heating and cooling 

elements 

 

Biogas flowrate VS 

 

The minimum instrumentation requirements are readily available easy to measure 

instruments which provide basic monitoring of the input, process state and output 

parameters of the system. In addition to the minimum level of instrumentation, essential 

instrumentation requirement includes sensors that characterise the digester environment 

and give some indication of the microorganism activity, such as VFA, or bicarbonate 

alkalinity. Additionally, sensors mounted prior to the AD to give the characteristic of 

the quality of incoming sludge (such as % DS, bicarbonate alkalinity) would enable a 
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reduction in the uncertainty in the process. Within the context of an advanced control 

scheme, manipulated variables could be adjusted in response to these measured 

disturbances, in order to meet control strategies. As these new sensor types become 

readily available, there is still a barrier of reliability, accuracy, and cost to overcome and 

gain widespread usage in monitoring, control and optimisation of AD systems. This is 

considered as the main hurdle for new instruments developed for bicarbonate alkalinity 

and VFA. Sensors that are non-essential or ‘nice to have’ for control include ammonium 

which exists in a pH dependent equilibrium with ammonia. An increase in the pH shifts 

the equilibrium to favour ammonia. Ammonia is toxic to bacteria and acts as an 

inhibitor when present in the process. However ammonia inhibition is only more 

evident in protein rich feedstocks (Wiese and Ralf, 2007).  Online monitoring of 

ammonia content ensures a trouble free operation and ammonia probes are relatively 

commonplace in activated sludge plant operation, with the same probes being applied to 

digester sludge streams. 

As biogas production requires anaerobic environment better yields, redox potential is 

recommended to be below 330 mV.  Feedstocks containing oxygen, nitrate groups and 

sulphate extensively affect the redox potential and thus the pH, as such redox potential 

is also recommended as ‘nice to have’ measurement. 

Choosing an ideal sensor for application on existing or new plants need to be conducted 

with great care. The recommendation for minimum, 'essential' instruments listed in table 

3.8 are provided at any site considered for a pilot study. 

Conclusions 

AD is not a new technology, however due to the biological nature of the process, the 

relatively harsh environment and the lack of robust validation methods for new 

instruments, there is a general lack of available instrumentation for measuring the 

biological and chemical state in the digester vessel. In addition, gaps in the core 

knowledge of the underlying mechanisms involved make it difficult to quantify the need 

for a specific instrument. Continuous developments are ongoing with respect to more 

robust, sophisticated sensors in order to provide insight into the major uncertainties and 

disturbances in the AD process. However there is a requirement for further development 

by both academics and industrialists to improve the reliability of new instruments and 

also the applicability of the information provided by these instruments for automated 
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monitoring and control systems. Clearly the benefit of applying new instrumentation is 

improved monitoring and better operator understanding with more flexibility with 

respect to the operation of the process. Additionally, new sensor data provides 

information to further understand and improve the process.  In most cases, biological 

and chemical laboratory data such as alkalinity and VFA concentrations is used as 

'backup information' to better inform daily operation, rather than for closed loop 

optimisation. Use of such data for developing soft sensor models may provide frequent 

prediction of VFA to improve the daily operation and control of the process. Hence, 

information from such a sensor should be collected, interpreted, and acted upon in real-

time, within the framework of an advanced control system to optimise the process. 

Recent developments from Bioprocess Control (with the Automatic Methane Potential 

Test System), AppliTek (with the Anasense instrument) and others are paving the way 

for online monitoring and control of AD systems. As these instruments have not 

achieved widespread industrial usage, it is difficult to assess the reliability and accuracy 

of them.  For example, the Anasense® instrument has been validated on both pilot scale 

and industrial scale by its developers.  Their conclusion was that the system requires 

further developments in order to improve its robustness, especially in the presence of 

highly charged cations (Molina et al., 2004).  This demonstrates that robustness is a 

significant hurdle for some newly developed sensors.   

The recommended essential sensors for AD control shown in Table 3.8; beyond this, the 

minimum level of instrumentation for attempting advanced control in AD should 

include (1) some means of measuring the disturbances being applied to the process; the 

most significant disturbances being the rate, concentration, and nature of the feedstock.  

Whilst the flow is commonly measured, the concentration and the composition often are 

not measured.  Installation of online dry solids meters for this purpose is recommended.  

Additionally it may be possible to characterise the composition of the feed by accurately 

tracking the relative proportions of primary, secondary and co-digestion feedstocks 

being applied to the digester.  In addition to this, measuring the ammonia content of the 

feedstock with an ammonia probe may yield considerable benefits. (2) Some means of 

measuring and or characterising the biological or chemical conditions within the 

digester itself. By monitoring and controlling such measurements, the stability of the 

digester can be maintained. Of the available sensors, pH and ammonia probes appear to 

offer the best chance of producing repeatable and reliable information. The Anasense® 
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probe for measuring VFA's is an exciting development, but it may not be sufficiently 

robust to allow for industrial process control. Furthermore if such an instrument is 

trialed, then there should be a parallel development of a software based sensor, which 

may prove to be considerably more reliable. Chapter 7 volatile solids soft sensor 

development aims to increase the level of monitoring on the process and further 

development of soft sensors can help improve the level of monitoring significantly.  

Additional improvements can be gained by closely working with instrumentation 

providers such as Geotech to develop more robust reliable instruments. As part of this 

research, Perceptive Engineering Ltd engaged with Geotech to trial the Capilex VFA 

instrument. Trials with the instrument were not conducted during the period of this 

thesis; however increase collaborations between AD processers, Universities, 

instrumentation and technology providers can improve the development of increase 

robust instruments and the level of monitoring on the AD system. 
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4 Methodology 

4.1 Introduction 

Traditionally AD systems have been constructed as large civil engineering projects and 

the need for monitoring, control and optimisation has been a low priority and as such 

retrofitting new instrumentation can be difficult. New AD systems currently being built 

are however more automated and involve input from cross disciplinary fields. Although 

some of the systems involved in this study are fairly new, there is still a limited degree 

of instrumentation and monitoring. Therefore, there is a need to use techniques to 

extract as much information from the process as possible to improve the monitoring and 

control of these complex systems. There are a considerable number of approaches 

available and the information extraction techniques applied here include principal 

component analysis (PCA), partial least squares (PLS), recursive least squares (RLS) 

neural networks (NN), model predictive control (MPC), quadratic programming (QP) 

and various data pre-processing strategies. 

Bioprocesses in general are inherently difficult to control, but there has been a range of 

successful approaches reported in the pharmaceutical and food industries. In common 

with other bioprocesses, the characteristic of the AD bioprocess, which exhibits varying 

dynamics and complexity, makes it difficult to monitor and control.  

Data driven methods for developing soft sensors and process models for process 

monitoring and control through multivariate statistical analysis are widely applied and 

well established techniques. Within the AD community however, soft sensor application 

on industrial processes are limited. The industries perception of the AD process is 

changing and moving away from the AD process being a waste reduction process to a 

manufacturing process with high value output products, for which there is increasing 

need to improve the process through enhanced instrumentation and control. 

The overall aim of the research presented in this thesis is to design an integrated 

monitoring and optimal control system for the supervisory operation of anaerobic 

digesters (AD). There are several sub-objectives required to achieve this aim: 

1. Quantification of the baseline performance of existing plants; 

2. Review of existing instrumentation; 

3. Modelling of the AD plant behaviour, with the emphasis on biogas production, 

digester stability and quality attributes of digestate and biogas; 
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4. Soft sensor development to improve monitoring and measurement systems as 

required; 

5. Assessment of the challenges of a generic AD controller and or optimiser; 

6. Optimal integration of AD systems within wastewater treatment works (WwTW 

s); 

7. Assessing the opportunities for an advanced controller on AD systems;  

8. Prototype development of controller or optimiser system fulfilling the aims of 

the user requirement specification (URS); 

9. Controller performance evaluation and system improvement. 

This will form a complete engineering cycle of specification, design, modelling, 

implementation and testing as depicted in Figure 4.1. The specification stage involves 

quantification of the baseline performance, review of existing instrumentation and 

assessment of the challenges of a generic controller. The design phase will involve 

using the results of the specification stage to formulate the URS developed through the 

benchmark analysis (Chapter 5). Modelling for the controller and soft sensors constitute 

the modelling step. Prototype development of the advanced controller will form the 

development stage which will then be tested and evaluated through integration of the 

system on WwTW and controller performance evaluation.  

Quantification of baseline performance of existing plants has enabled key strengths, 

weaknesses, opportunities and threats affecting the project aim to be identified. 

Example of strengths include: (1) identification of several commonalities within the 

results from the four main WwTWs such as variability in certain measurements makes it 

easier to transfer models from one plant to the next, (2) significant bottlenecks identified 

for each site and (3) quick fix money saving solutions identified, giving greater value to 

the overall project. Several opportunities were also identified along with various 

weaknesses and threats and these are summarised in Table 5.6. One of the key 

weaknesses found was lack of instrumentation which resulted in the benchmarked 

systems not being fully evaluated on a physiochemical and biological scale. This also 

posed a greater threat as without adequate instrumentation on the process to monitor key 

parameters; the aims of control cannot be achieved. This led to the need to fully review 

instrumentation on the AD process. Soft sensor application on the AD process was 

identified as a key means of overcoming the instrumentation limitation on the process, 

while at the same time recognising that soft sensors are also reliant on instrumentation. 
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As a consequence a number of studies were carried out to develop soft sensors for 

volatile solids and volatile fatty acids (VFA).  

 

Figure 4.1 The engineering life cycle 

Several methods were required to achieve the aims of the nine objectives, which 

included quantitative and experimental mixed techniques with various methods to 

evaluate, compare and contrast behaviour. The approaches can be classified into three 

main groups comprising of (1) system identification (2) modelling and (3) controller 

design methods. These will be covered in detail in Section 4.2. 

4.1.1 Research questions 

Advanced control such as model predictive controller (MPC) has had much industrial 

success. The feasibility study carried out as part of this research revealed that due to the 

nonlinearity, complex dynamic and highly constrained characteristic of the AD process, 

an advanced controller may be able to optimise and improve the process significantly. 

MPC can be the route to implement advanced control and Perceptive Engineering Ltd, 

the industrial sponsor for this project has the capabilities in MPC applications to support 

the project. Therefore the question here was; is MPC the best controller regime for AD, 

and if so, to what degree can MPC improve the process by? 

In addition, the feasibility study revealed that due to a lack of instrumentation, the AD 

process is difficult to control. Therefore can a conventional controller optimise the 

process through improved instrumentation and better monitoring? From the 

instrumentation review, the minimum level of instrumentation required for the efficient 

monitoring of the AD systems was discussed. Once these sensors are applied, how 

useful is the data generated and how can the information from the data be used to 

improve the control of the process?  

Specification 

Design 

Development 

Testing 

Modelling 
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There are questions associated with the overall aim of the project, concerning the 

different technologies and complexities of AD systems. How transferrable are the 

findings from the benchmark, inventory control and soft sensor studies applied to 

different AD systems so far? Is the same level of instrumentation required for the 

different AD technologies? What are the similarities between AD systems and what are 

the significant differences? If there was a different population of microorganisms would 

the same parameters need to be monitored and controlled?  

The process of developing the research started with the conceptual phase of formulating 

the ideas into a realistic research design. Following successful application of advanced 

control solutions on wastewater treatment processes (WwTP) (activated sludge 

processes in particular) by Perceptive Engineering Ltd (O'Brien et al., 2011); market 

research analysis was conducted considering the opportunities for advanced control on 

ADs. The consortium was formed and the aims of the feasibility studies were then set. 

Through the initial literature review, the scope and significance of the problem was 

understood and the gaps in the current state of art were identified.  

4.1.2 Research design 

 

Figure 4.2 Knowledge extraction from data pyramid (Xue Zhang Wang, 1999) 

The overall research aim of this project is to evaluate whether an advanced controller 

such as MPC can improve the AD process. Determining whether the aims have been 

achieved will require three fold technical justifications of assessing the improvements 

observed through MPC; the financial case to ensure that the payback period for 
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installing the controller is within the time frame set by the consortium and the 

application is ethical, sustainable and transferrable to other AD systems. Critical to the 

success of this is instrumentation, access to industrial AD processes and knowledgeable 

engineers.    

Figure 4.2 demonstrates the stages of data mining from which information and 

knowledge are extracted from raw data. This is the underlying theme throughout the 

various studies undertaken within this project. Data can exist in any form with no 

significance, knowledge or information beyond its existence. Thus raw data may exist in 

large volumes whilst yielding little known value or useful transparent information that 

can easily be understood. Selection of raw data and pre-processing provides data that 

can be transformed into information. Rules and decision making tasks can then be 

performed from interpretation of the information into knowledge, enabling data to be 

transformed from a data rich source into information rich output moving up the 

pyramid.  

From the lower levels of the pyramid upwards; the value in knowledge increases whilst 

the volume of data decreases. On industrial AD processes hundreds of parameters may 

be measured, of these only a limited number may be of interest for operating the 

process. Managers and high level decision makers may monitor or require knowledge 

from only a couple of key performance indicators (KPI’s) to make decisions about the 

process. Thus the knowledge of the process increases whilst the volume of data 

decreases. Within this project, large volumes of data were collected during the 

feasibility stage to gather information about the various processes. This was used as 

knowledge for building models from which rules such as controller settings, ranges for 

operating parameters and measures of performance indicators could be set to evaluate 

the system behaviour. In terms of the modelling aspects of this project, at one site data 

from approximately 800 signals were obtained and of these only 50 signals were 

deemed useful for assessing the status of the process. For the soft sensor study only 8 

process data signals were selected from which the final model only used two signals 

which related to the output parameter. Thus the use of low volume data to obtain 

knowledge from an initial high volume of data is a common theme within this research. 
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4.1.3 Overview of applied methods in thesis 

A range of techniques are applied to fulfil the needs of the studies within the project. 

These will be covered in detail within the different sections of the thesis and a summary 

is given here. The various methods include: system identification; methodology for soft 

sensor development; benchmarking of industrial processes; controller design; and 

optimiser design. The five steps to be followed for building models, making use of the 

methods and achieving the aims of this project are: 

1. Selection of raw data (raw process data for benchmark, DoE and perturbed or 

excited plant data); 

2. Data pre-processing; 

3. Knowledge interpretation (model building); 

4. Information transformation (soft sensor development); 

5. Decision making from established rules (advanced controller application). 

Selection of raw data is a critical point in the overall research to avoid the concept of 

‘rubbish in, rubbish out’ outcome of process data modelling. The nature of the results 

generated from the various modelling techniques will depend heavily on the quality of 

data used for the modelling. Following selection of useful data, inadequate data pre-

processing can result in unreliable models. Knowledge interpretation from these models 

is also essential and requires deep understanding of the AD system.  

 

Figure 4.3 Levels of methods 

In moving towards improved operational objectives it is necessary to consider data 

generation, system identification, modelling and control and optimisation methods. 
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These are shown in Figure 4.3. Data generation methods applied here include the use of 

historical process data, simulated and excited or DoE generated process data. Due to the 

large operational difference in laboratory scale AD and industrial ADs, laboratory 

assessments are not considered for this research. Historical process data is first used, as 

years of data are freely available. Simulations are also used to generate data, as these are 

cost effective ways of obtaining data; however they are not as accurate representation of 

industrial ADs due to modelling difficulties arising with bioprocesses.  

System identification is the approach of building mathematical models of dynamic 

systems based on observed data from the system (Lennart, 1999). System identification 

forms a major part of this research. Once data has been generated, a series of system 

identification methods can be applied to gain knowledge about the process. This broad 

area covers many methods including linear, nonlinear, parametric, nonparametric, 

hybrid structures. The simplest approach to system identification is impulse response 

identification, where the impulse needs to be large enough to enable the response to be 

greater than the noise within the system (Dimitry, 2005). 

4.2 Modelling 

Science is generally based on inference of models from observations and studies on 

their properties. The models become the paradigms, hypothesis, laws of nature and 

interpretation of the true system. The model thus is the concept of how variables relate 

to each other when they interact with the system. As true representation of the system 

cannot be achieved through models; models are evaluated on their usefulness rather than 

truth (Appels et al., 2008). The system characteristics that model approximates can be 

defined by: 

 Linearity - obeying the principles of superposition with additive and scaling 

properties; 

 Causality - if output depends only on the present and or past values), stability (if 

the system does not diverge; 

 Memory - whether the system depends on the present value alone or can it 

depend on the past and future values too; 

 Time invariant - lack of time dependency on the system, such that the system’s 

response to a given input does not depend on the time the input is applied.  
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These system properties must be considered when building the model. The model 

building has three basic entities; these include (1) the data set, (2) the model structure 

and (3) model identification methods. This can consist of many steps and thus within 

this research the model building approaches cover the stages of problem statement, 

defining the modelling environment, conceptual modelling, model representation, 

implementation, verification, initialisation, validation, documentation and model 

application.  

4.2.1 Model identification techniques 

The control and optimisation of AD systems require an accurate dynamic model of the 

process. However modelling of AD systems often result in high order nonlinear models 

with several unknown parameters.  

Least squares (LS) is the most popular cost function for parameter identification in AD 

models. LS generally describe the approach of solving an overdetermined system of 

equations through an approximation. The aim of the method is to minimise the sum of 

the squares of the residuals rather than solve the inexactly specified system (Cleve, 

2004). The LS estimation can be constructed in the simple form of  

                                                                    𝒚 =  𝐀𝐱 + 𝒗                                       Equation 4.1 

Where y constitutes sensor measurement, x is the estimator, v is the unknown noise or 

measurement error and the 𝒾th row of A characterises 𝒾th sensor. The estimation is 

conducted by choosing �̂� that can minimise ∥ 𝐴�̂�  − 𝑦 ∥. This is the deviation between 

what is actually observed by (y) and what can be observed if = �̂� , with no noise where 

𝑣 = 0. The LS estimation is thus �̂�  =  (𝐴𝑇𝐴)−1𝐴𝑇𝑦. This gives the maximum 

likelihood estimation of the parameters (Stephen, 2008). 

With regards to a control solution for the AD process, it is useful to have a model of the 

AD system available online that updates as the process changes. Methods for solving 

such problems are usually called adaptive methods. Identification techniques for such 

systems are termed recursive identification methods (Lennart, 1999). Recursive least 

squares (RLS) is a recursive variant which improves the efficiency of LS algorithm. The 

RLS algorithm works by moving through a time history dataset and continually 

updating model coefficients as it passes through the dataset. The algorithm uses the 

covariance matrix weight factor, which determines how quickly the model coefficients 
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are changed. Recursive identification tools are common for handling systems with 

varying dynamics as in the case of the AD process. A new parameter set can be 

estimated for each observation. While the update of parameters may be attractive, there 

are a number of shortcomings including: 

 Numerical instability and sensitivity to outliers; 

 Sensitivity of RLS to the initial conditions of the algorithm; 

 Slow tracking capability for time varying parameters (Jiang and Zhang, 2004). 

However RLS is still a popular approach for online parameter estimation applications 

and as such the method is used widely in this research.  

4.2.2 Soft sensor based methods 

The behaviour of a process is indicated by the state of the process and the process inputs 

that impact on it. The states of many secondary ‘explanatory’ variables reflect the states 

of the primary variables. Secondary variables are variables whose values can be 

explained by changes in other variables such as primary variables. With the abundance 

of computer aided tools available, the concept of inferential or software measurement is 

well defined and inferential model building techniques are commonly applied. However 

while the concepts are common, there are still key design factors to consider. These 

include the characteristic of the data, the need for robust pre-processing techniques to 

carefully remove noise and outliers within the data. The selection of the correct 

secondary outputs and inputs for model building, in combination with process 

knowledge is essential in generating a model that is both mathematically applicable and 

sound from an engineering perspective. The model must then be tested for reliability 

based on how the estimator deals with measurement problems, delays, infrequent 

sampling and the irregular return of information. 

Process stability is a measure of the consistency of the process with respect to process 

characteristics; a stable process behaves consistently over time. In the digestion process 

the different environmental condition requirement for the acid and methane forming 

bacteria is the major cause of instability in the process, this is followed by inhibition and 

foaming. Due to the large instability in AD processes, it is common in practice to 

construct digesters larger than the optimal size to reduce the impact of instability. This 

is expensive with respect to construction, operation and maintenance. By monitoring 
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key variables in the process, instability can be reduced, but to do so requires knowledge 

of the causes of instability. 

Digester instability can be a result of hydraulic, organic and toxic overloading (Graef 

and Andrews, 1974a). Hydraulic overloading is a result of an organisms inability to 

reproduce before being washed out due to the reduction in the residence time. The 

residence time is defined as the reactor volume divided by the influent sludge flowrate. 

Organic overloading is a result of build-up of volatile acids which can cause inhibition 

to methanogenic organisms. Toxic overloading is generally caused by feeding the 

digester with materials which can kill methanogenic organisms.  These may include 

heavy metals, ammonia, detergents, organic chemicals and cations. Thus monitoring of 

key parameters that can provide indication of instability in the digester can improve the 

monitoring to avoid digester failures. 

Table 4.1 Examples of modelling techniques on AD systems 

Measurements  Estimation methods Uncertainty  Reference 

CH4 Non-linear regression 

with the Marquardt-

Levenberg algorithm 

Covariance matrix-

FIM 

Lokshina et 

al. (2001) 

TSS, VSS, Biogas, 

COD, VFA and gas 

composition 

Least squares criterion Confidence region 

and linear 

confidence interval 

Kalfas et al. 

(2006) 

Biogas  Gradient search 

technique 

Confidence region Batstone et 

al. (2009) 

 

Various methods have been used for software or inferential sensor developments. Table 

4.1 lists examples of AD system modelling techniques for estimating some useful AD 

parameters, and some of these techniques will be explored in detail in Chapter 7. 

4.2.3 Control approaches on AD processes 

The term advanced control can be misleading in its meaning. In its early days it was 

taken to mean any alternative control to the traditional three term (proportional, integral, 
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derivative) controller. However it can describe the practice of using elements from 

various disciplines that include control engineering, decision theory, artificial 

intelligence, statistics, signal processing, hardware and software engineering.  

The three phase AD process involves sequential and parallel reaction pathways. The 

complexity and uncertainty in the dynamics of the microorganisms involved in the 

process make it difficult to model. In comparing multi-organism systems to single 

organism systems, it is widely accepted that no single kinetic model can describe all the 

complexities of the single organism system; it is therefore a major task for scientists and 

engineers to model multi organism systems. Initial attempts to model the AD process 

concentrated on the rate limiting step, but this varies for different conditions. In general 

hydrolysis is the rate limiting step. Most of these models in literature (Appels et al., 

2008) are very specific and steady state in nature. These are simple models, and most 

tend to fail to accurately describe the digester dynamics. The aims of these models are 

generally to achieve the following: 

 Estimation of process states such as reactor volume, biogas production, its 

compositions and retention time etc. for determining the performance of a 

specific system; 

 Allow sensitivity analysis to be conducted for various process parameters; 

 Allow assessment of model differences and knowledge of where the process can 

be improved; 

 Whole plant optimisation capability providing understanding of how the 

digestion process can affect the downstream processes (Appels et al., 2008). 

Within the AD process, the acid and methane forming microorganisms differ in 

physiology, nutritional needs, growth kinetics and sensitivity to environmental 

conditions. Maintaining the balance between these microorganisms is crucial to gain 

stability of the whole process and this is generally the primary cause of digester 

instability (Jean-Philippe Steyer et al., 2006). The complexities of the AD process 

increases the number of control objectives, thus from the feasibility results undertaken 

so far, an ideal control scheme for the process should aim to have the following 

objectives: 

1. Pathogen reduction to meet compliance; 
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2. Optimise biogas production; 

3. Optimise CH4 composition; 

4. Optimise the multiple attributes of digestate quality; 

5. Improve the energy balance of the AD process and with other processes on the 

site to optimise efficient use energy; 

6. Align gas production with ‘triad’ periods to gain maximum revenue; 

7. Align combine heat and power (CHP) unit with AD for optimum energy 

production; 

8. Limit inventory disturbance to the upstream and downstream process (several 

hierarchal control objectives); 

9. Control of temperature to a minimum variation; 

10. Control of % DS to enable optimum organic loading rate (OLR) feed without 

overloading digester; 

11. Control of retention time to meet compliance and optimise throughput; 

12. Control of feed flow with minimum variability to improve stability; 

13. Odour reduction control; 

14. Foam reduction control. 

Some of these objectives conflict with each another and require sophisticated control 

systems to achieve the best balance of the objectives. There is thus a requirement for a 

complex multi objective controller. An ideal controller will therefore need to meet or 

balance all these objectives or as many as possible. Most industrial AD control 

applications mainly include simple PI and PID controllers to control temperature and 

levels, however there are examples of pilot and laboratory scale artificial neural 

networks (ANN), fuzzy logic, linear and nonlinear model based control (Pind et al., 

2003) on industrial AD systems and these tend to be single objective in nature. This 
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limitation of a single input, single output control strategy, often linear in form is 

insufficient to handle a complex process such as AD. 

The AD process has large unknown number of microorganisms in a population from 

various sources and different processing units. The lack of complete knowledge of the 

system environment and direct cause and effect relationships of the various parameters 

make the task of achieving the goals of the project complicated. Varying AD 

configurations, system characteristics, structures (due to physical, geographical and 

legislative factors) and input characteristics limit the use of  generic models to achieve 

the aims of control for AD systems (Wahab et al., 2007). These have resulted in varying 

range of control strategies and structures applied.  

4.3 Advanced control 

Process control in bioprocesses aims to influence the individual behaviour of the 

different living cells in the digester by controlling their extracellular environment 

(Boudreau and McMillan, 2007). The extracellular environmental state condition can be 

determined by process variables. These process variables must be measured or inferred 

from other measurements to enable them to be controlled. Process control aims to 

transfer variability from process output to the process inputs subject to measurement 

resolution, noise, loop dead time, repeatability and controller tuning (Boudreau and 

McMillan, 2007).  

4.3.1 Model predictive control 

MPC also known as receding horizon control (RHC), dynamic matrix control (DMC) 

and generalised predictive control (GPC) consists of control algorithms which 

numerically solve an optimisation problem at each step (Dimitry, 2005). The algorithm 

used in this research is based on the minimisation of the cost function: 

𝐽 =  ∑ [𝑒𝑖+1𝑃𝑒𝑖+1
𝑇 + ∆𝑢𝑖𝑄∆𝑢𝑖

𝑇]𝑁
𝑖 = 1              Equation 4.2 

Where the weighting matrices are given by 𝑃 and 𝑄 over the horizon, N. ∆𝑢 is the 

vector of the current and future control moves subject to constraints, 𝑒 is the vector of 

the setpoint tracking errors, 𝑖 is the sample point.  

MPC models provide the exponential and ramping time response for deviations about 

operating points. MPC involves the operation of multivariable controllers under process 

constraints (Sandoz et al., 2000). These constraints may be ‘hard’ constraints of 
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manipulated variable (MV) minimum and maximum limits, incremental move limits, as 

well as ‘soft’ constraints such as the controlled variable (CV) minimum and maximum 

limits. This makes the MPC controller ideal for constraint optimisation problems found 

in the AD process. There are several methods available to manage such constraints, 

such as long range (LR), quadratic programming (QP) and a combination of these two; 

long range QP (LRQP).  

The PerceptiveAPC (Perceptive Engineering Ltd, 2012) MPC solution uses the QP 

constraint management method. The QP solver aims to optimise by minimising or 

maximising a quadratic function of multivariable form, subject to linear equality and 

inequality constraints.  

QP can be incorporated into MPC for constraint linear control, which is the general, 

conventional approach. General objectives of an MPC includes (i) input, output 

constraints violation prevention (ii) driving CVs and MVs to steady state optimal 

values, (iii) prevention of excessive moves of MVs and controlling the plant when 

signals and actuators fail. There are therefore trade-offs and approximations to translate 

these objectives into a mathematical problem statement for defining the character of the 

controller. Different possible solutions exist for defining this and therefore naturally 

there are several MPC control formulations. Perceptive Engineering Ltd has several 

model forms incorporated into PerceptiveAPC which include finite impulse response 

(FIR), autoregressive with exogenous inputs (ARX), linear and nonlinear modelling 

with NN. The steady state and dynamic optimisation objective is achieved with QP and 

output horizon through finite horizon. Most MPC products are based on linear empirical 

models, however nonlinear processes such as the AD can be represented by a discrete 

time nonlinear model such that:  

  𝒙𝒌+𝟏 = 𝒇(𝒙𝒌, 𝒖𝒌), 𝒙𝒌 ∈ 𝕩, 𝒖𝒌 ∈ 𝕌,   Equation 4.3 

Where 𝑥𝑘 ∈  ℝ𝑛𝑥  𝑎𝑛𝑑 𝑢𝑘 ∈ ℝ𝑛𝑢 are the plant states and control action at time 𝑘.  

𝐦𝐢𝐧        ∑ 𝒍(𝒛𝒊, 𝒗𝒊)

𝑵−𝟏

𝒊=𝟎

             
                                           Equation 4.4 
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𝒔. 𝒕     𝒛𝒊+𝟏 = �̅�(𝒛𝒊, 𝒗𝒊),     𝒊

= 𝟎, … , 𝑵 − 𝟏          

Equation 4.5 

𝒛𝟎 = 𝒙𝒌,                   

𝑧𝑖   ∈   𝕏,  𝑣𝑖  ∈ 𝕌    

Equation 4.6 

Where 𝑁 is the horizon length, 𝑥𝑘 is the initial condition which is the plant state at time 

step 𝑘. 𝑧 and 𝑣 are used as the predicted state and control in the formulation of the 

MPC, to differentiate between the actual plant state 𝑥 and control 𝑢. The plant model 

equation and the objective function is represented by 𝑓(̅. , . ). This function is commonly 

linear (𝐴𝑧𝐼 + 𝐵𝑣𝑖) for most industrial applications (Rui, 2010). 

 

 

Figure 4.4 Moving horizon strategy of MPC 

Figure 4.4 demonstrates the moving horizon approach for MPC. The prediction horizon 

predicts future variation of the controlled variables to a finite time. A series of control 

moves are calculated for the manipulated variable, and predict incremental changes in 

process outputs from incremental changes in process inputs. It is incremental in the 

sense that manipulated variables at each sampling time are updated by the optimisation 

algorithm, where the cost function of minimisation is the difference between predicted 

outputs and the set points. Each consecutive optimisation therefore differs as the 

prediction horizon recedes in time. In general MPC control may use incremental models 

y 

Prediction Horizon, N 

Control Move, 𝑢𝑘 

Control Horizon, M 

Past        Future 

𝑥𝑘                    Set Point (Target, 𝑥𝑠) 
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of FIR and ARX. These models use current and previous values of process cause signals 

to predict process effect signals.  

There are a series of calculations involved in MPC control execution; this is depicted in 

Figure 4.5. Step one requires knowledge of the current state of the process such as the 

state of the inputs of disturbance, manipulated and output control variables. The steps 

that follow generally aim to ensure the status and direction of the process is moving 

towards steady state and dynamic optimisation (Qin and Badgwell, 2003).   

 

Figure 4.5 Series of flow of calculations conducted for MPC control (Qin and Badgwell, 

2003) 

State estimation aims to estimate the dynamic state of the system. Failure to include this 

concept into the MPC may result in the need for further instrumentation to estimate 

additional process measurements. Other effects may include (1) for integrating or 

unstable processes, the use of ad hoc fixes to remove offsets and (2) limitations on 

unmeasured disturbance models. Thus most industrial MPC control calculation design 

incorporates some feedback mechanism.  

The determination of the controlled process subset requires the controller to determine 

which MV’s to be moved and which CVs to be controlled. This will include the 

selection of high and low level control outputs.  

Ill-conditioning occurs where a small error in the calculation can result in larger errors. 

In the case of MPC, small changes in the controller error can lead to large MV moves 

(1) Reading MV, DV and CV 

values from the process 

(2) Output feedback state 

estimation 

(7) Output MV’s sent to 
the process 

(6) Dynamic optimisation 

(5) Optimisation of 
local steady state 

(4) Ill-conditioning removal 

(3) Determination of 
controlled process subset 
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with a high condition number in the process gain. Such situations require examination 

of the condition number at each control execution in order to exclude the ill-

conditioning impact.  

The majority of industrial MPC controllers execute local steady state optimisation at 

each control cycle. This enables the steady state inputs and outputs to be close to their 

targets. The controller may use a linear program (LP), QP or both to conduct the 

optimisation and this dependent on the provider and or the nature of the problem. 

In terms of dynamic optimisation, changes are made to the MVs to drive the process to 

the set steady state by the MPC controller without violating constraints.  The constraints 

can be hard (should never be violated), soft (some violations are allowed) or set point 

approximations where there is penalisation on deviations above or below the setpoint 

(Qin and Badgwell, 2003).   

Common reasons for failures in industrial applications of MPC include; constraints, 

unique performance criteria, process nonlinearities, model uncertainties and cultural 

reasons with regards to education, people or financial reasons (Qin and Badgwell, 

2003). The cultural reasons such as education, the people or financial reasons are very 

critical to the success of the controller in the long term. This is because with a good 

understanding of the process from the control engineers, a reasonable MPC with little 

model uncertainties can be designed and implemented. The controller is then left with 

operators, who will manage and make use of the controller dependent on their training 

and the level of time available to maintain the controller which may be financially 

constrained. As per the simulation activities conducted so far, some of these are 

eliminated; however the nonlinearities and model uncertainties present in AD systems 

may make it difficult to achieve a successful application of MPC. 

4.3.2 Dynamic model structures 

FIR and ARX are popular linear model structures. Process models are central to MPC 

and FIR is a popular model structure of choice for MPCs, due to the ease of fitting 

complex dynamic systems without the selection of a model structure. FIR uses lagged 

inputs for capturing the system dynamics of the process and therefore is commonly non-

parsimonious and a large amount of model parameters are needed. These follow a more 

complex modelling approach and includes large data sets whereas parsimonious models 

like ARX aim for simplicity (Nounou and Nounou, 2007).  ARX uses both lagged 
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inputs and outputs to represent the output and offers greater simplicity. Parsimonious 

models also offer models with few degrees of freedom, which can avoid over-fitting a 

situation where the model works well in a given range but breaks down in predictability 

outside that range. The FIR model can be described as: 

𝒚(𝒌) =  ∑ 𝑩𝒋𝒖(𝒌 − 𝒋)𝑵
𝒋=𝟏 + 𝒗(𝒌)                                                                           Equation 4.7 

Where N corresponds to the settling time and 𝑢(𝑘), 𝑦(𝑘) and 𝑣(𝑘) are the process 

input, output and noise vectors respectively. 𝐵𝑗 is the matrix of the coefficients to be 

identified models of the FIR can only be applied to stable processes (Qin, 1998; Nounou 

and Nounou, 2007).  

The ARX model structure predicts the process and the future trajectory of the effect 

signals using current and past process cause signals. For a multivariable system such as 

the AD, ARX can be represented by:                                                                                                          

𝒚(𝒌) = ∑ 𝑨𝒊 ∗ 𝒚(𝒌 − 𝒊) + ∑ 𝑩𝒋 ∗ 𝒖(𝒌 − 𝒋)𝒏𝒖
𝒋=𝟏

𝒏𝒚

𝒊=𝟏
+ 𝒗(𝒌)                                Equation 4.8 

Where 𝑢(𝑘) and 𝑦(𝑘) are the inputs and outputs of the process data vectors. 𝑣(𝑘) is 

vector representing the noise and 𝐴𝑖 and 𝐵𝑗represent matrices for the model coefficients 

and 𝑛𝑦 and 𝑛𝑢 are the time lags for the inputs and output variables. This method allows 

use of steady-state regression techniques for modelling dynamic processes (Qin, 1998; 

Su et al., 2009). Modelling in this form has been applied to AD processes (Premier et 

al., 1999). 

4.3.3 The quadratic programming algorithm 

The aim of the quadratic program optimiser is to move the process to a steady state 

optimum operating point. The constraint controller key objective is to hold process 

variables at specified setpoint values or within their constraint limits subject to the 

actuation variable constraint limits (Perceptive Engineering Ltd, 2012). 

𝑱 = ∑ 𝒂𝒊𝒊 ∗ 𝑴𝒊 + ∑ 𝒃𝒋𝒋 ∗ 𝑨𝒋                                                                                      Equation 4.9 

Where 𝑀𝑖 represents the process variables, 𝐴𝑖 as the actuation variables and the cost 

assigned to the process and actuation variables as 𝑎𝑖 and 𝑏𝑖. The optimum is maximised 

subject to process and actuation constraints. The algorithm is available in most 

industrial MPC frameworks where the dynamic model associated with the constraint 
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controller is used to generate the steady state model for use in the optimiser directly. 

The QP algorithm is used in the inventory simulation study Chapter 6; to optimise the 

system and compare an MPC with and without an optimiser.  

4.4 Multivariate statistical analysis 

Decision making activities in terms of the monitoring and control of AD processes 

require chemical measurements that are reliable and that can be used to enhance the 

process control understanding. Rapid technological advancements have resulted in large 

volumes of data being stored and retrieved easily, enabling an increase in the 

application of data based modelling. 

The growing use of data based modelling over the past forty years has resulted in the 

advancement of mathematical and logic based methods. The success of data based 

technologies is however a result of how accurately and successfully a system is defined 

and measured. There has been considerable success in multivariate calibration, 

multivariate process modelling & monitoring & pattern recognition, calibration & 

discriminant analysis as well as structured modelling (Wold and Sjostrom, 1998). 

Pioneers such as Svante Wold and Bruce Kowalski combined mathematical modelling, 

multivariate statistics and chemical measurements to develop the field of chemometrics. 

These achievements were only possible due to the use of established methods such as 

principal component analysis (PCA) and partial least squares (PLS). 

The basis of identifying a good quality model relies on the quantity and quality of the 

data used for the modelling. It has been suggested that the input data must have a 

minimum of 5 measured changes that are of the order of 5 times larger than the noise 

associated with the input (Boudreau and McMillan, 2007). The historical data generated 

for the feasibility studies lacked this quality attribute and therefore a DoE was required 

to improve the quality of the data. This can be carried out by conducting step or pseudo 

random binary sequence (PRBS) tests. The generation of such data can take months to 

years for a system such as the AD.  

A further challenge is that some critical parameters such as those affecting the safe 

sludge matrix requirement cannot be changed as it will yield non complying product. 

These impose constraints and set the boundaries on the process. Thus processes models 

such as those for AD are bounded and limited by the degree to which the process can be 

excited.    
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4.4.1 Principal component analysis 

PCA was developed in 1901 by Pearson (Pearson, 1901) with the geometric 

optimisation explanation and later Hotelling’s in 1933 (Hotelling, 1933) reported the 

algebraic derivation of PCA. Given a set of data consisting of a large number of 

interrelated variables, PCA aims to reduce the dimensionality of the problem whilst 

retaining the major sources of variation in the data set (Jolliffe, 2005). For a vector of x 

with p random variables, if the variance of p random variables, the structure of the 

covariances or the correlations between the p variables are of interest, then for a large 

complex p variables, it is best to look for some of the p derived variables that preserve 

most of the information given by variances and correlations or covariances (Jolliffe, 

2002). PCA concentrates on variances and places less emphasis on covariance and 

correlations (Jolliffe, 2002). However although PCA focuses on variance, it does not 

ignore correlations and covariance (Jolliffe, 2005). 

The inferential sensor study uses PCA to examine the relationships between variables 

within the AD process data, since there are a large number of measured quality 

variables which are highly correlated. Through the approach of PCA, dimensionality of 

the multivariate data is reduced whilst still retaining the original variables as each 

principal component is a linear combination of the original variables. This enables the 

representation of the original data set containing correlated variables, in a new ordinate 

system that is characterised by uncorrelated variables called principal components 

(PCs). 

𝑿 =  𝑻𝑷𝑻 +  𝑬                                                                                                           Equation 4.10 

Where X is the process variables, T is the score matrix, P is the loadings matrix and E is 

the errors. X may be decomposed through singular value decomposition (SVD) or 

nonlinear iterative partial least squares (NIPALS). The procedure was carried out using 

Matlab software with the PLS toolbox (Wise et al., 2010). The data was first autoscaled 

before applying PCA since the variables have different units. As PCA aims to capture 

variation, autoscaling enables all variables to be treated on an equal basis in the analysis 

and therefore variables that have greater variation due to the magnitude of the variable 

do not dominate variables with a smaller order of magnitude of variation. 

PCA has various assumptions, which include linearity, large variances having important 

structure and PCs are orthogonal. There are methods available for modelling nonlinear 
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systems with nonlinear PCA approaches (Martin, 2010). Process knowledge is required 

to determine whether PCs with low variance are noise. 

PCA is a common and flexible approach used for data compression, information 

extraction and preliminary visualisation of samples (Wold et al., 1987; Jolliffe, 2005). 

The application of PCA may reduce the dimensionality of the multivariate data into a 

smaller number of PCs than original variables. It enables the representation of the 

original data set containing correlated variables, in a new reference system that is 

characterised by uncorrelated variables of PCs. The PCs are linear combinations of the 

original variables calculated hierarchically and are mutually orthogonal. The greatest 

amount of variation contained in the original data set is captured by the first PC. 

Subsequent PCs captures the next greatest possible amount of variance.  Once obtained, 

the loadings and scores can be graphically represented to observe any trends or 

groupings in the data set, in form of variables and sample respectively.  

4.4.2 Partial least squares 

Although PCA may be a popular approach in chemometrics for treating sets of data 

subject to high dimensionality; it does not offer prediction of a response variable. Partial 

least squares or projection to latent structure (PLS) models predict a process output 

from linear combinations of a reduced set of independent variables, namely latent 

variables. These are typically steady state methods, which eliminate correlations 

between inputs (Boudreau and McMillan, 2007). Predictive models can be constructed 

for highly collinear systems and involve many factors. PLS is therefore less use for 

understanding underlying relationships within a set of data but rather has a general 

purpose for response prediction (Tobias, 1995). PLS was pioneered in the econometrics 

field by Herman Wold in the late 1960s and later found application in the chemical field 

by his son S. Wold and others such as  H. Martins and B. Kowalski (Wold, 1966; Wold 

et al., 1973; Kowalski et al., 1982; Wold, 2004).  

The method of PLS aims to relate two data matrices of X and Y by means of a linear 

multivariate model. This method is applied in this research for building predictive 

models because of its usefulness in  dealing with noisy and collinear data (Ericksson et 

al., 2006). As discussed previously MLS has the tendency for over-fitting, where there 

may be too many observations. In such cases, there may be a low number of factors 

(latent variables) that account for most of the variation in the response. PLS extracts the 
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latent factors which account for most of factor variation and thus avoids the overfitting 

issues if the model structure is selected appropriately.  

For processes with large a number of factors where collinearity may exist and process 

relationships are not well understood such as the AD process, PLS is a useful tool for 

constructing predictive models of such systems (Tobias, 1995). Principal component 

regression (PCR) aims to find factors that capture the greatest amount of variance in the 

predictor (X) variables, whilst multi linear regression (MLR) attempts to find a single 

factor which best correlates the predictor and the predicted variables. PLS relates to 

both PCR and MLR and attempts to maximise covariance (Wise et al., 2006). Selection 

of latent variables (LV) in PLS models is very important as selection of too few or too 

many can result in under or over fitting of the model, resulting in a model that fits the 

sampled data perfectly but fails to predict new data well. Over fitting violates parsimony 

and may lead to poor future performance. 

If all the variables in the block are measured in the same units, then no scaling is 

required. When the variables in a block are measured in different units, then variance 

scaling may be used. This is conducted by dividing all the values in the variable by the 

standard deviation of that variable to enable the variance of each variable to be a unity. 

Furthermore variables can be given different weights depending on their influence on 

the model. 

4.4.3 Inferential measurements 

Information is used for operating the plants through monitoring and control as well 

evaluating the performance of the plant. Predictive models, namely soft sensor, virtual 

online analysers or inferential sensor can also be built from this information. Modelling 

of these sensors can follow the data driven approach or model driven. Model driven soft 

sensors generally are of the form of first principle modelling, which describe the 

physical and chemical characteristics of the process. The highly dynamic and complex 

characteristic of industrial processes makes use of such model types difficult for 

practical use. Data driven soft sensors are therefore more common on industrial 

processes and generally use PCA and regression techniques. 

The general approach for soft sensor development is depicted in Figure 4.6 A robust 

soft sensor must aim to predict with accuracy, precision and reliability but also cope 

with measurement noise, data outliers, drifts, missing values and data colinearity 
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(Kadlec, 2009). Inferential measurements improve reliability and reduce process 

composition noise but drift and unknowns are inevitable. Data pre-processing 

techniques used included visual inspection, removal of bad data, outlier detection and 

treatment, data cleaning including filtering and data alignment to reflect process 

operation. This process was applied to the simulated and industrial process data selected 

for the inferential sensor modelling. Once the simulation and process data was available, 

the model development commenced with initial data inspection.  

As the offline process data used for the inferential sensor development was measured 

infrequently with large variability in when the measurements were conducted, this made 

modelling with PLS difficult and therefore less likely to be used in basic process 

control. 

                            

Figure 4.6 Schematic of inferential sensor development process 

4.5 Conclusions 

This chapter presented a brief summary of key methods used in this thesis. Multivariate 

statistical analysis techniques are used in Chapters 5 and 7 with soft sensor development 

in Chapter 7. Multivariate statistical analysis methods are used in this thesis due to the 

limitations of increased uncertainty in parameter values and variability imposed by 

Initial data inspection 

Data selection 

Data pre-processing 

Model selection and design 

Model training and Validation 

Soft sensor maintenance 
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models designed with widespread applicability such as ADM1. The virtual plant model 

ADM1 has many advantages as described in section 2.3.2. 
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5 Benchmark study 

5.1 Introduction 

The benchmark study, discussed in this chapter formed the backbone of the feasibility 

study. Between the three water companies, four sites were selected (1) Blackburn 

wastewater treatment works (WwTW) (2) Mitchell Laithes WwTW (3) Bran Sands 

WwTW and (4) Lancaster WwTW. An initial benchmark analysis was undertaken on 

the Lancaster mesophilic anaerobic digestion system, but it was later upgraded to the 

Monsal Enhanced Enzymic Hydrolysis (EEH) and a further benchmark analysis was 

conducted. However due to this change the site excluded from the analysis undertaken 

in this chapter but the data from this site is included in Chapter 6, with respect to the 

soft sensor development activities. The general findings from the site contribute to the 

overall business case and together these four sites provide a good representation of the 

various AD technologies available to the water industry.  

The aim of the benchmark study is to establish baseline performance using process data 

for the existing plants generalised delay steady state behaviour and in the presence of 

controlled disturbances. Benchmarking allows the assessment of best practice and the 

identification of any bottlenecks inherent to the process as well as providing insight into 

the culture with respect to the daily operation of the process. The benchmark study 

addresses the following goals: 

 Comparison of the operational objectives, review current process operational 

performance and defining, quantifying, and qualifying the performance metrics; 

 Investigate the performance of the existing regulatory control system and 

identify areas for improvements in terms of advanced control monitoring; 

 Determine the level of accuracy and precision for current instrumentation and 

sampling methods for determining systematic and random errors; 

 Calculate process capability and performance indices for key process variables. 

A crucial part of the benchmarking exercise is focus on monitoring and measurement 

systems with respect to control as identified in Chapter 3; this is addressed through the 

assessment of (i) process performance (outputs of the process); (ii) the inputs required 

to achieve the outputs and (iii) other parameters to ensure that performance is delivered 

(Ahmad and Benson, 1999). The robustness of these measurements depends on a 

number of factors including the availability of data that provide relevant information, 

and the ability to trust the data. Online measurements form the basis of control systems 
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and thus obtaining data from reliable and correctly appropriately operated measurement 

systems is crucial. There is a requirement to avoid systematic measurement errors. 

Calculating the uncertainties in the instruments allows the controller to be parameterised 

and hence operate close to the constraints. 

The use of historical process data to benchmark a site enables the determination of the 

behaviour of the plant and allows the modelling of its performance through the data 

generated from the various processes. There are several challenges with this approach: 

 The availability of the necessary sensors for monitoring key performance 

indicators (KPIs); 

 Accuracy and validity  of the measurement systems for the evaluation of 

systematic errors; 

 Precision and reliability of the measurement systems to account for random 

errors. 

Without testing the various measurement systems against these challenges, an 

assessment of the accuracy and reliability of the data generated cannot be undertaken. 

The data used for the analysis is thus assumed be a good representation of the process, 

prior to the analysis.  

For the identification of relevant KPIs to satisfy the project aims, a hierarchy of KPIs 

were identified Figure 5.1. Every organisation will have a set of KPIs to measure their 

performance and progression. These may include lost time, employee motivation, 

customer written complaints and net energy usage etc. Within the water industry these 

may be sewage treatment works breach of consents, water quality, sewer flooding 

incidents and pollution incidents. With respect to the AD project, corporate KPIs for the 

water companies include a reduction in net energy usage and reduction in CO2 

emissions. Electricity consumption generally accounts for over 70 % of the water 

companies CO2 emissions and hence reducing the reliance on imported electricity is 

important for the companies involved, and this can be achieved through the utilisation 

of the biogas produced from the AD process. The energy generated is mainly used on 

site with excess exported to the national grid. The objective for the 3 water companies is 

then to optimise the AD and combined heat and power (CHP) processes to reduce their 

reliance on imported energy. This also satisfies government incentives with respect to 

increasing renewable energy resources (ofgem, 2011b). Exported electricity from AD 
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processes is of greater value compared to electricity generated from conventional fossil 

derived sources, as per the renewable obligation certificate (ROCs), feed in tariffs 

(FITs) and renewable heat incentives (ofgem, 2011a). Maximum energy production and 

minimum energy usage thus form the basis of the corporate KPIs. Business unit KPIs 

differ between the 3 companies. United Utilities (UU’s) aim is to improve digestate 

quality, whilst the exploration of co-digestion opportunities of other waste streams with 

sewage sludge is a priority for Northumbrian Water Ltd (NWL). Yorkshire Water’s 

(YW) objectives are the overall optimisation of the AD process with CHP operation. 

From these business KPIs, various control KPIs are formed and setpoints to be 

investigated are generated.  

 

Figure 5.1 The hierarchy of KPI 

The benchmark analysis is conducted using Perceptive’s Advanced Process Control 

(APC) software systems (Perceptive Engineering Ltd, 2012). Various statistical process 

control (SPC) techniques were implemented to analyse the process audit data, process 

capability (PC) form the core of the analyses. Pc describes the minimum variability that 

occurs when the process is in a state of statistical process control. This is true for 

processes where process variability is only due to random and common causes intrinsic 

to the process. Combining the capability standard deviation with customer specification, 

setpoint or the objective function gives an index which illustrates the best quality 

control possible for the process. This enables the identification of any risk in using the 

current quality control to achieve the specification.  

Process performance indices (Pp and Ppk) and process capability indices (Cp and CpK) 

are two metrics that relate specification and variability (Shunta, 1997). These two 

Corporate KPIs  

Business Unit KPIs  

Throughput Yield …….Outages   Consent Limits  

Production   Maintenance   Quality   Environment  

Temperature CH4%   OLR   VFA   pH  ………% DS  Set Points 

Control KPIs 
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metrics together provide information that can be used to guide quality control 

improvements through (i) reviewing the current performance of the process, (ii) 

estimating any potential improvement in quality and (iii) providing a guide on how 

improvements can be achieved. Cp describes the minimum variability occurring while 

the process is in a state of statistical process control. This is defined by equation 5.1 as 

the difference between the upper and lower specification limits (USL-LSL) divided by 

six sigma (6σ). Cp considers only the spread of the data in relation to the specification 

limits. This is the state where variability is caused by random or common causes 

inherent within the process, thereby giving an index for the best possible control. A high 

value of Cp corresponds to a process capable of meeting the specification. Generally, 

the rule of thumb is if Cp<1 then the process is unsatisfactory and Cp>1.6 indicates a 

process with high capability with Cp between 1 and 1.6 in the medium range of 

capability.   

𝐶𝑝 =  
(𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒)

6𝜎
=  

(𝑈𝑆𝐿 −  𝐿𝑆𝐿)

6𝜎
 

Equation 5.1 

Nevertheless, Pp measures all sources of variability in describing the average operation 

by the current control system. Ppk gives an indication of how well the controls maintain 

the variability within the desired range. These metrics combined can be used to assess 

whether the performance of the process meets its capability. Table 5.1 can be used as a 

guide to assess the capability and performance of the process (Shunta, 1997) by 

evaluating several KPIs from the process data. 

Table 5.1 Process capability analysis 

 Does performance meet capability? 

No (Ppk<<Cp) Yes (Ppk~Cp) 

Does capability 

meet 

specification? 

No (Cp<1) Change process  

Improve control 

Change process 

Yes (CP>>1) Improve control Little incentive for 

improvement 
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5.2 The benchmark sites 

5.2.1 Blackburn WwTW 

The Blackburn anaerobic digestion (AD) process was commissioned in 2006 following 

an upgrade from a traditional single phase MAD system to the Monsal EEH MAD 

technology. The site in Lancashire handles around 13,500 tDS of sludge per year, for 

approximately half a million people in the Blackburn and South Lancashire area. Figure 

5.2 illustrates a simplified process flow for the advanced digestion process where the 

red lines indicate flows of the pre-digested sludge, purple lines indicate the flows of 

digestate, green lines indicate flows of biogas, and blue lines indicate heating water 

flows. The site utilises its own primary and secondary sludge, plus imported sludge and 

cake from other sites, as well food waste. All the feed streams pass into the balancing 

tank and are then thickened by the gravity belt thickeners. The impact of the different 

waste streams on the digestion process cannot be evaluated as the quantity and quality 

of the different streams being mixed are not recorded. 

The dataset was extracted from United Utilities’s OSIsoft
1
 PI (Process Information) 

historian which records data from various AD process control systems of the Blackburn 

WwTW SCADA system, programmable logic controller (PLC) and the laboratory 

information management system (LIMS) as well as from calculated KPIs. 

Approximately 396 signals were collected from 14 January 2010 13:00 to 14 July 2010 

12:00, totalling 188 days of data used for the benchmark study. 

5.2.2 Mitchell Laithes WwTW 

The digestion process at Mitchell Laithes WwTW is a traditional MAD. A simplified 

diagram of the process is shown in Figure 5.3. The site located in Dewsbury treats 

imported sludge from nearby WwTW and the sites own generated sludge. The data set 

used for the analysis was extracted from Mitchell Laithes SCADA system with 110 

signals collected over a period of 150 days from 29
th

 October 2010 at 00:00 to 1
st
 June 

2011. The level of instrumentation at this site is limited and consequently, the KPIs of 

volatile solids destruction, digestate chemistry, gas composition and the level of 

foaming within the digester could not be investigated. This made it challenging to 

evaluate the performance of the digestion process and hence most of the analysis mainly 

identified bottlenecks in instrumentation and inventory.  

                                                
1
 OSIsoft is a software company manufacturing the PI system of real-time data infrastructure solutions  
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Figure 5.2 Schematic of blackburn anaerobic digestion process 
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Figure 5.3 Schematic of Mitchell Laithes AD process  
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5.2.3 Bran Sands WwTW 

The Bran Sands WwTW is one of Northumbrian Water’s regional sludge treatment 

centres (RSTC). The 50 acre site was previously partly used for sludge drying. The 

company made a strategic decision to invest in a thermal hydrolysis process (THP). Part 

of the remit was to utilise as much of the equipment from the old drying plant as 

possible which included instrumentation used for the thickening processes. The dryers 

are still available on standby should the thermal hydrolysis AD breakdown. The site is 

manned 24 hour and treats both domestic and industrial waste. A simplified outline of 

the process is given in Figure 5.4.  

 

Figure 5.4 Schematic of Bran Sands AD process 

Northumbrian Water identified a number of issues they were working to address prior to 

the benchmark study taking place. These included the following: 

 High operator variation leading to increased variation in the process; 

 Uncertainty in how to reduce faults and daily breakdown in the operation of the 

pumps and belt thickeners; 

 Uncontrollable high levels of foaming and uncertainty to the causes of foaming; 

 Variability in terms of quantity and quality of the imported cake potentially 

resulting in blockages through an increase in ‘rags’ (accumulation of sticks, 

plastics and other materials typically larger than 6mm) in the system and 

increased process downtime caused by ‘rags’ in the strain tank; 

 

Adiabatic 

Coolers 3x 

Digesters 
3x 

Digested 

Sludge Tanks   

Digested 

RSTC 

Phase 2 

Biogas 
Holders 

Boilers 2x 

Flare Stack 

Gas 
Engines 4x 

Key  

 

Biogas storage and upgrading 

RSTC phase 1 and 2 and holding areas 

2 Stream CAMBI Thermal hydrolysis 

 

 

 
ETW      

Primary Sludge 

Raw Sludge 

Storage Tanks 

Imported 

Liquid Sludge 

Tanker 

Discharge Tank 

Cake 

Reception 

Sludge Mixing 

Tanks 

Sludge 

Straining 

Sludge 

Dewatering 

Cake 

Reception 
Silo 

Blending 
Pump 

Pulper Reactors Reactors Reactors Reactors 
Flash 

Tanks 
Cambi 

Buffer Silo 

Pulper Feed 

Pump 



 

75 

 

 Design limitation of the AD plant. Insulation for boilers and pipes required; 

 Combined Heat and Power (CHP) units: Performance affected by boiler demand 

for biogas supply and heat balance, moisture in the biogas affects performance 

significantly and operators need to drain moisture traps continuously to reduce 

this affects. 

Four operators from the site were tasked with resolving some of these issues and their 

findings although excluded from the results of the benchmark study help to build the 

business case for the site for sludge inventory control which aided the inventory 

simulation study in Chapter 6.  

The data set used for the analyses was extracted from the site’s data historian. The site 

uses three different systems for monitoring, control and data storage. These are the 

XCS5 which is located in the wastewater treatment area, Intouch which was previously 

utilised in the old drying plant and which is now used for the belts and dewatering units 

for the AD process and finally XCS6 (Oracle) which has been implemented on the 

advanced digestion process. 392 signals were extracted during a period of 89 days 

between 5
th

 January 2011 to 5
th

 April 2011 and these were imported into the 

PerceptiveAPC software for analysis. Laboratory data from the operators was also 

included with 113 signals between 7
th

 September 2009 to 24
th

 April 2011. The data 

obtained both from the laboratory and the data historian was subject to significant 

amount of missing data, variation in sampling time and hence required pre-processing 

prior to analysis. 

5.3 Benchmark data analysis methodology 

The benchmark analysis was conducted in PerceptiveAPC (Perceptive Engineering Ltd, 

2012), Minitab 16 Statistical Software (Microsoft-cooporation, 2006) and Matlab 

(Mathsworks, 2012). PerceptiveAPC suite of products consists of real time and off-line 

development tools for different industrial sectors and process types (Perceptiveapc.com, 

2015) including: 

1. PharmaMV for the pharmaceutical sector; 

2. WaterMV for the water industry; 

3. BatchMV for batch production; 

4. ADvisorMV for optimisation of AD systems. 
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PercepticeAPC offers modelling, visualisation and analysis tools which combine 

multivariate statistical analysis and model predictive control (Perceptiveapc.com, 2015). 

Featuring: 

 Process analysis: use of univariate and multivariate statistical methods for 

detecting outliers, conducting correlation analysis and statistical normality etc.; 

 Process monitoring: single and multivariable alarm thresholds, fault detection 

and diagnoses; 

 Process modelling: empirical linear and non-linear regression techniques which 

include sensitivity analysis and cross validation metrics; 

 Process control: a range of industrial control algorithms ranging from PID to 

model predictive control; 

 Process optimisation: calculation of optimum solutions for improved control 

(Perceptiveapc.com, 2015).   

The data from each site was loaded into PerceptiveAPC separately at 5 minutes 

sampling interval for the online data which in intervals of seconds. It was decided that 

due to the slow dynamics of the Ad system, 5 minute sampling interval was adequate. 

Several key steps were followed to pre-process the data to enable analysis on the data as 

the process data generated is generally very noisy and contains errors, missing data and 

outliers; it therefore required various pre-processing techniques to refine the data. The 

systematic pre-processing procedures followed were: 

1. Visual inspection; 

2. Handling missing data; 

3. Outlier detection; 

4. Data alignment; 

5. Offline data pre-processing to reflect the online data. 

The first step for data pre-processing was visual inspection to inspect the full dataset 

and identify the signals which required further data pre-processing. The inspection 

required use of knowledge of the process so far, the specification ranges for different 

parameters and discussion with operators to discuss the data. The visual inspection 

revealed long periods of missing data; high ‘spikes’ in the data such retention values 
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and measurements at zero which related to instruments which were out of service. There 

are large sections of data missing in the signals due to a possible power or operational 

failure or site shut down as shown in pink on Figure 5.5. Due to the large level of 

missing data, the data selector was used to remove the data completely from the 

analysis. On visual inspection of time series plot of the missing data, it was evident that 

some of the samples were outliers or errors.  

 

Figure 5.5 Use of data selector to pre-process process data 

In Figure 5.5; plot of retention time for primary digester 1 is shown as 570D.ME. On 

the plot there is a signal peaking at 867.47 days for retention time. This is a clear error 

as normal operating range for retention time is between 20 to 25 days or less for EEH 

digesters. Removal of the missing data and extreme outliers resulted in selection of 88.2 

% of the data for analysis (these are signals that equal 1 on the data selector signal) with 

11.8 % of the data removed. 

Data alignment of the process data was required to align cause and effect signals. This is 

shown in Figure 5.6 for temperature where the original data 570A.ME has been shifted 

to yield 570P.ME to reflect temperature effects on biogas production. 

Outlier detection is one of the initial steps in data analysis for obtaining a coherent data 

set. It is common that what may be seen through visual inspection as noise or error may 

not be necessarily bad data and that these outliers can carry important information about 
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the process. As such removal of what may be deemed to be as outliers can lead to a 

model giving incorrect results, misspecification and biased parameter estimation (Ben-

Gal, 2005). The univariate hampel filter (Hampel, 1971; Hampel, 1974) addresses the 

issue outliers have on the robustness of an estimator. The hampel filter approach was 

then used to remove further outliers such as the spikes in feed and gas data. Figure 5.6 

depicts various signals along with their pre-processed signal. 

 

Figure 5.6 Data pre-processing analysis 

The offline samples are collected 2-3 times a week and the last sampled value is held 

until the next sample point. This results in process parameters remaining constant until 

the next sample is taken hence to enable better modelling with the online process data, a 

ramp function was used in PerceptiveAPC. The pre-processed data in Figure 5.6 (red 

plot) for volatile solids is ramped to the next sample point and therefore only holds the 

peak positions. Figure 5.6 shows examples of the signals from the industrial process: 

biogas production (blue), digester feed flowrate (green), retention time (purple) and 

digester temperature (dark green). There are missing values (pink) for some of the 

online data due to plant shutdowns. Additionally there are spikes in the data and outliers 
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including a large spike in the retention time at 857 days, which is not a feasible value. 

The periods covering the missing data and the spikes were excluded from the analysis. 

Table 5.2 List of Key Performance Indicators (Horan, 2009) 

Parameter Range Units 

Biogas yield 0.1-1 m
3
 kg VS

-1
 

Energy produced per kg vs
-1

 Various KW KG VS
-1

 

Energy generated  0-4x10
4
 KW hr

-1
 

H2S <1000 ppm For some CHP units 

H2 and CO2 1-5 % and 0-50 % % in biogas 

Methane yield 50-80 % in biogas 

0.2-0.8 m
3
 kg

-1
 VSapp 

100-286 m
3
.CH4.VS.CODfed 

% gas flared 0-100 Varies 

Gas Holder level Process dependent Varies 

HRT 14-25 days 

Alkalinity 1000-3000 Mg L
-1

 

Temperature 30-40 for MAD systems 
o
C 

Polyelectrolyte usage 0-300 Kg day
-1

 

Optimum feed rate 0-500  m
3
 day

-1
 

Feed TS (%) 4-8 % % of total volume 

VS removal 50-65 % % 

VS destruction 30-90 % % 

Digestate quality Various means to satisfy PAS 110 Varies 
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Using the process design specification settings and list of typical key performance 

indicators in Table 5.2, time series analysis was conducted on the datasets to determine 

the internal structure of the data. The results for these are discussed in Section 5.4. 

5.4 Benchmark results 

5.4.1 Blackburn enhanced enzymic hydrolysis MAD 

Time series plots were conducted for each of the samples to investigate the data. Several 

key findings were identified and a summary of these key findings are discussed in this 

section. 

Currently the % DS is controlled manually by the process operators through adjusting 

the amount of polymer in the gravity belt thickeners (GBTs), which reduce the sludge 

volume through removal of water and thickening of the sludge. For this process the % 

DS has a specification range of 5 to 7 %. The process capability chart Figure 5.7, 

illustrates the offline % DS for the Blackburn site Figure 5.7a and the online % DS for 

Mitchell Laithes Figure 5.7b.  The red lines indicate the lower and upper specification 

limits and the black distribution curve indicates the normal distribution for the data 

whilst the blue curve identifies the theoretical minimum distribution that can be 

achieved as per minimum variance control. 40 % of the time, the % DS is outside of 

specification for the Blackburn site when the offline measurement is recorded. A 

consequence of the sampling periods; samples extracted at 3-5 days intervals; the 

variability is of the same order as the standard deviation cannot be reduced due to the 

low sampling frequency. By sampling at a higher frequency, random process or 

measurement variations in the % DS could be observed and mechanisms put in place to 

reduce the level. 

On examining the quality metrics of the % DS data from Blackburn, Cp is less than 1 

which indicates that there is excessive random variability inherent in the process and 

Ppk~Cp confirms that this random variability may be reduced by changes to the process 

such as through improved measurement procedures thereby ensuring % DS is closer to 

specification. This can be achieved by online % DS analysis as observed for the 

Mitchell Laithes site, in Figure 5.7b. Montgomery (2005) defines quality as being 

inversely proportional to variability. The reduction of variability in the process and its 

outputs enables quality improvement. These are the reasons why a reduction in 

variability is important for maintaining consistent quality. 
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Figure 5.7 Process capability chart for online and offline % DS 

The sludge feed % DS to the digester usually does not exceed 10-12 % due to 

limitations in pumping. High % DS may result in high yields of gas and may give an 

indication of the contents of nutrients and organics available for the microorganisms to 

feed on depending on the particular waste. A high % DS is shown to correlate with high 

yields of biogas (Barber, 2005b). % DS composition is maintained through the addition 

 

a) Blackburn offline 

% DS distibution 

b) Mitchell Laithes 

% DS distribution 
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of polymer, thus justification of the use of polyelectrolyte to increase the % DS content 

requires an acceptable cost benefit analysis. The benefits include increase gas 

production, greater quality of solids destroyed and higher capacity within the digester 

whilst the disadvantages include increased polymer consumption, pumping cost and 

digester mixing requirements. A study by Baber (2005b) shows that the disadvantages 

of processing thicker sludge outweigh the advantages of processing at 6 % DS. Polymer 

addition for increasing sewage sludge % DS is an inefficient route for optimisation and 

improving cost effectiveness. This study does not take into account the effect of sludge 

preconditioning systems such as the enzymic hydrolysis or thermal hydrolysis. Previous 

work by Barber (2005a) has shown that sludge preconditioning systems can reduce 

sludge viscosity to allow digestion of 9 % DS effectively. 

Within the Blackburn AD process, no additional heating is applied to the digesters. 

Maintaining adequate temperature in the blast cooler is crucial to sustaining the setpoint 

temperature in the digester. Temperature is measured online and is a key parameter that 

affects the yield and stability of the process. The four digesters at Blackburn are fed at 

the same feed rate generally. However there are instances where the feed rate varies for 

different digesters. This results in slight variations of temperature for the different 

digesters aside environmental effects on temperature. Figure 5.8a shows a time series 

plot for the four digesters and Figure 5.8b provides the process capability chart for the 

temperature for Blackburn digester 1 temperature. The plot shows that a potential 

improvement of 8.55 % can be achieved. This requires controlling the temperature in 

the blast cooler to ensure that the digester temperature remains at setpoint or by using 

supplementary heating and cooling systems on the digesters. The process capability 

chart gives a value of 1.35 Cp which shows that the process is operating at medium 

capability and it is evident from Figure 5.8b that there is an opportunity to improve 

temperature control as the process is operating below specification which is at most 

times at 35˚C to 30˚C. This is critical as small changes in temperature in the range 35˚C 

to 30˚C have been shown to reduce the biogas production rate significantly as well 

methane yield (Chae et al., 2008). Closed loop temperature control could be 

implemented to reduce the variability and keep the process close to specification as 

shown in Figure 5.8b, where the standard deviation is reduced by 50 %. 
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Figure 5.8 Temperature distributions for Blackburn WwTW 
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temperature 
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Figure 5.9 Digester flow and retention time 

The minimum allowable retention time in the primary digesters is 10 days.  This 

retention time, combined with the 2 day retention time in the EEH process, ensures that 

the digestate sludge is HACCUP compliant.  Therefore in theory if the process had no 

bottlenecks or pH or alkalinity inhibition issues, then the feed rate could be increased by 

a factor of 1.4 whilst still providing a class A biosolids product.  

In the last 10 % of the analysis range, the time to the right hand side of the cursor 

position in Figure 5.9, the digester feed rate is significantly less with an average feed 

rate of 620.99 m
3
 day

-1
 for the 23 day period, which is a 12 % decrease. Over the same 

time period, the average retention time was 16.36 days, and the average gas production 

dropped to 15100 m
3
 day

-1
. 
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Figure 5.10 Gas holder level, volume of gas flared and energy generated 

Figure 5.10 shows trend for gas holder level in the uppermost pane, the middle pane 

shows the flow to the flare stack, and the lower pane shows the combined electricity 

generation of the two CHP engines. It was found that for 1.8 % of the time, the gas 

holder level is full and all engines are working to full power and therefore excess gas at 

these times require flaring. Therefore the current gas holder and CHPs are unable to 

efficiently utilise the gas being generated. There is a need for larger engines, which will 

consume more of the biogas. This will reduce the volume in the gas holder and therefore 

reduce the instances of gas flaring. CHP2 engine is off when energy generation is below 

4000 kWh day
-1

 and this equates to 19.2 % of the time. If the gas holder level is above 

13 meters during this time, then is can be assumed that the outage is due to maintenance 

or an unavoidable incident, rather than simply switching the CHP engine off due to a 

lack of available biogas. This happens 9.9 % of the time. The remainder of the CHP 

downtime 9.3 % of the total time of the analysis range considered can be regarded as 

lost opportunity.  In other words, 9.3 % of the time the CHP engines are switched off 

due to a lack of available biogas, whilst 1.8 % of the time, gas is being flared due to an 

excess of biogas. This equates to 8885.51 kWh
 
day

-1
 lost on average during these times. 

The maximum constant level of energy generation for CHP 2 is about 11300kWh day
-1

 

and therefore the potential to be gained by having the CHP working at these lost times is 
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11300 – 8885.51 which gives 2414.49 kWh d
-1

. Assuming that the average cost of 

electricity is 6.5p kWh
-1

, this gives a monetary estimate of the lost opportunity through 

better gas holder inventory management of about £57283.77 per annum. This clearly 

shows that the most efficient operation is achieved by maintaining the gas holder level 

in the range from 13 m to 13.6 m.  If the holder level is in this range, then no gas is 

being wasted through flaring, and the CHP engines are running at their maximum rate. 

Over the whole analysis range, the gas holder only spends 26.8 % of the time in this 

ideal range.  Figure 5.11 shows a process capability chart of the gas holder level, with 

the ideal range being entered as high and low specification limits.  This chart clearly 

shows that most of the operating data lies outside of the ideal range and as the flare 

stack opens on high gas holder levels, the data is clearly not normally distributed, so the 

process capability analysis can only be considered to be a rough approximation. Even if 

theoretically 'perfect' minimum variance control were to be achieved, much of the 

distribution will still exceed the specification limits, so the complete elimination of 

flaring with the current hardware configuration may be impossible. 

 

Figure 5.11 Process capability chart of the gas holder level 

The majority of the analyses conducted for the Blackburn WwTW site were univariate 

to fully understand the relationship between the different variables as well as 

relationships between the observations and variables, principal component analysis 

(PCA) was conducted using the PLS toolbox in Matlab (Wise et al., 2010). Based on 
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the data available, and KPIs identified in for the Blackburn AD, a total of 13 variables 

were selected for the PCA. Figure 5.12 provide the loadings plot for the first 4 principal 

components (PCs). As can be observed, a number of variables are closely related 

including foam depth and foam level, i.e. as foam level increases, foam depth will 

increase. pH measurements are sensitive to temperature, and thus pH measurements are 

temperature dependent.  

These analyses allow the confirmation of the theory behind the process and where this is 

aligned with practice increases the reliability of the data set. Volatile matter (VM) 

appears to be unrelated to the other variables. VM gives an indication of the quality of 

the sewage sludge and consequently is expected to correlate with biogas yield. This is 

not evident from the results. Providing there is a stable digestion process at constant 

retention time, % DS prior digestion and post digestion will also correlate. This may 

give an indication of the variability in feed composition. Thus % DS of the digestate 

may not necessary be controlled by the % DS of the feed. Volatile matter, volatile acids 

and sewage sludge chemistries may perhaps have greater effect on the digestate quality 

than % DS. 

 
 

a) Loadings Plot PC1/PC2 b)Loadings Plot PC3/PC4 

Figure 5.12 Loadings plot for PC1-PC4 

Investigation of these variables affect the output parameters of biogas yield, post 

digestion % DS and foam levels, the data generated from Blackburn was undertaken 

through a DoE analysis in Minitab 16 Statistical Software (Microsoft-cooporation, 

2006). It was assumed that the variables are linearly related. Table 5.3 shows the 
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estimated effects and coefficients when gas production is the output parameter. 

Temperature, feed rate, retention time, feed % DS and their interactions effects on gas 

production was analysed.  

A standard method of assessing the goodness of fit for a statistical model is the 

coefficient of determination R
2
. R

2
 is the quotient of the variances of the fitted values 

and observed values of the independent variable, given by:  

𝑟2 =
∑(�̂�𝑖 − �̅�)2

∑(𝑦𝑖 − �̅�)2
 

Equation 5.2 (Yau, 2015) 

where  𝑦 is the observed values of the independent variable,  �̂�𝑖 is the fitted value and �̅� 

is the mean. R
2
 lies between 0 and 1 and if R

2
 is equal to 1, the model is a perfect fit to 

the data whereas if R
2
 is 0, the model is unsatisfactory or the mean is the best fit. For 

these reasons the R
2
 values observed are very low for the Blackburn analysis crucial 

variables which affect gas production in a digestion process are not included as the data 

is unavailable. For example, although the % DS is included, an increase in % DS does 

not directly correlate to an increase in gas production as it depends more on the quality 

of the sludge. Measurement of feed sludge composition and quality is thus required with 

information of sludge age, amount of primary and second sludge, level of biodegradable 

substrate, and the types of organic material. Other external factors include mixing, 

volatile fatty acid (VFA) accumulation and pH effects which are also not included.  

The final results for estimated effects and coefficients for biogas yield are shown in 

Table 5.3. These provides that all four factors, temperature, feed flowrate, retention time 

and % DS have a significant effect on biogas yield. Although this is well understood 

and the reasons are clear, it provides additional credibility to the data generated from the 

site in that it captures the linearity theory. The effect of retention time is an interesting 

finding as it is monitored to generally ensure compliance.  
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Table 5.3 Final estimated effects and coefficients for gas produced 

Term Effect Coef SE Coef T P 

Constant  -81.4 60.48 -1.35 0.181 

Temperature 576.0 288.0 79.58 3.62 0.000 

Feed flow 485.6 242.8 79.58 3.92 0.000 

Retention time -600.2 -300.1 96.97 -3.09 0.002 

Feed % DS 857.6 428.8 117.80 3.64 0.000 

Temperature x Feed flow -644.2 -322.1 104.91 -3.07 0.003 

Temperature x Retention time 1337.5 668.7 165.28 4.05 0.000 

Temperature x Feed % DS -634.6 -317.3 99.45 -3.19 0.002 

Feed flow x Retention time 548.1 274.0 106.58 2.57 0.011 

Feed flow x Feed % DS -1169.9 -584.9 157.85 -3.71 0.000 

Retention time x Feed % DS 1165.0 582.5 115.12 3.76 0.000 

Temperature x Feed flow x Retention 

time 

-1356.7 -678.3 223.73 -3.03 0.003 

Temperature x Retention time x Feed % 

DS 

-959.7 -479.8 124.73 -3.85 0.000 

Feed flow x Retention time x Feed % DS -1506.6 -753.3 201.86 -3.73 0.000 

S = 41.1282, PRESS = 248518, R
2
 = 38.70 %, R

2
 (pred) = 32.79%, R

2
 (adj) = 32.75 % 

 

Figure 5.13 shows four plots demonstrating the effect of various factors on biogas 

production. The normal plot Figure 5.13a identifies the factors or combination of factors 

which have the greatest effect on biogas production. The plot shows that the 

combinations of temperature and retention time have the highest percentage effect on 

gas production.  

Contour plots are used to explore the potential relationship between three variables. The 

two contour plots in Figure 5.13c and 5.13d explore the 3-dimensional relationship in 

two dimension of (c) Feed % DS vs gas production and temperature and (d) retention 
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time vs gas production and temperature; where the darker the colour, the higher the feed 

% DS and retention time (Microsoft-cooporation, 2006). As such high feed % DS is 

given by temperatures below 32°C and gas production rates between 130 and 200 m
3
 d

-

1
. The contour plot in Figure 5.13d for retention time vs gas production and temperature 

was more scattered as there are two optimums for retention time as such it is difficult to 

draw conclusions from this. However a positive correlation is expected and the results 

are inconclusive, as there is a requirement for further validation of this analysis with 

new robust data. Economical aims for processes such as AD systems aim to produce 

high yields of products at low energy consumption usage as quickly as possible, thus by 

improving the efficiency of the process, lower temperature with short retention times 

resulting in high levels of biogas produced is the ideal economic benefit.  The contour 

plots show that this had not been achieved; there is therefore a strong requirement for 

monitoring the incoming sludge to better estimate which condition can yield an efficient 

optimum gas production.  

  

  

Figure 5.13 Factor effect analyses 
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Key findings from Blackburn can be summarised as: 

1. Significant level of variability in the % DS; 

2. Opportunity for digester temperature control; 

3. Low gas yield with performance below design specification; 

4. Foam level build-up and effects on biogas production on the whole process; 

5. Low volatile solids destruction; 

6. Digester feed rate limitation due to inventory;  

7. CHP engine capacity limitation; 

8. Sludge inventory scheduling, cause of large instability within the process; 

9. An optimum identified for gas holder level efficiency range; 

10. Opportunities for online instrumentation. 

These results can be classified into two groups (i) bottlenecks inherent in the process (1-

5) and (ii) bottlenecks associated with inventory and instrumentation (6-10). Through 

discussing with the operators and from the conclusions drawn from the initial findings, 

it was clear that before optimisation of the actual process can be achieved, in terms of 

optimising biogas production, and stabilising the process, the bottlenecks in inventory 

and limitations associated with scheduling and instrumentation capacity need to be 

reduced or removed.  

It was calculated that by increasing the CHP unit capacity for the site to avoid gas 

flaring, about £45,800 per annum could be generated. A further £57,200 per annum 

could be generated by aligning the energy production with CHP unit. Furthermore a 

considerable amount of money could be generated from scheduling of biogas 

production to align with the CHP capacity. This depends on a constant feed rate to 

stabilise the digestion process. However operators have little control over imported 

sludge with respect to frequency, quantity, quality and limited capacity for storage; the 

feed rate is mainly determined by the buffer tank level. Reducing the variability in these 

factors could massively reduce the overall variability and instability in the process. 

The analyses performed for this site identifies significant bottlenecks which may be 

improved with increased in instrumentation and robust monitoring to enable control of 

the process. A summary of the key bottlenecks are: 

 Infrequent feed % DS monitoring; 
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 Inefficient heating and recirculation of the enhanced enzymic hydrolysis stage; 

 lack of cooler optimisation for ensuring the temperature specification is 

maintained; 

 Feed flow is the only manipulated variable; 

 There is very little online measurement of chemical properties inside the digester 

including VFA, alkalinity and H2 in the liquid phase; 

 Hindrance of inventory control on gas production efficiency. 

Hence improved process performance can be achieved through reducing the hindrance 

of uncontrolled scheduling and inventory impact on the overall process and through 

improved monitoring. Thus through model development of the process, the model can 

be used to predict the future state of the process to help reduce the impact of inventory 

and scheduling and optimise control. However as the complex AD process has large 

time delays, several control variables (CVs), limited manipulated variables (MV’s), 

nonlinear, oscillatory multistage reactions, and typically large scale in nature with 

complex dynamics; some quality variables such as H2 reacts faster and thus has a 

different time to reach study state in comparison to CH4 makes the process difficult to 

model as discussed in Section 2.3. 

5.4.2 Mitchell Laithes MAD 

At Mitchell Laithes temperature is maintained through heat exchangers and sludge 

mixers mounted on the digesters. This gives some level of automated control for the 

operators as they can vary the hot water temperature through the heat exchangers. The 

variability in the temperature profile for this site is significantly high, deviating 

considerably from specification and best practice (Horan, 2009) for digestion processes 

for which low variability of temperature is required; see Section 2.5. Figure 5.14a shows 

the time series plots for digester 1 (purple) and digester 2 (blue) temperatures. Digester 

1 lies between 17 and 44˚C and this is outside the range for mesophilic digestion 

systems temperature range between 30 to 40˚C. Low temperatures can effect biogas 

production and quality as temperatures and overheating the digester affects the energy 

requirement as energy reduction is a key business KPI for the consortium; a simple 

closed loop temperature control would potentially reduce the variability in it. This is 

illustrated in the process capability chart plot Figure 5.14b. The Cp is 1.02 with 65 % of 

the data falling within the temperature specification and hence the process performs 

close to its specification level. However with Ppk value of 0.4186 results in Ppk << Cp 
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and thus there is an opportunity for improved control of the process to enable plant 

performance to meet its capability.  

 

 

Figure 5.14 Temperature profile for Mitchell Laithes WwTW 

a) Time series plot for 

digester 1 shown in 

purple and digester 2 in 

blue temperature. 

b) Process capability 

chart of digester 1 

temperature with USL 

of 38 and LSL of 33 
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Figure 5.15 Mitchell Laithes digester retention time profiles 

Retention time is the length of time required to achieve complete degradation. This is 

affected by process parameters such as sludge composition and temperature. For MAD 

systems this generally is at least 20 days (Song et al., 2004). Retention time affects 

 

 

a) Time series plot for 

digester 1 (blue) and 

digester 2 (purple) profiles 

b) Process capability 

chart for digester 1 

retention time profile 

with LSL and USL of 

20 to 25 respectively 
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digestate quality and therefore compliance. The sludge is expected to remain in the 

digester for a minimum time dependent on the temperature of operation and HACCP 

ensure that the digestate being spread on agricultural land complies with the relevant 

microbiological standards such as the safe sludge matrix (Davis et al., 2010) as HACCP 

manage and reduce potential risks to human health and the environment.  

Figure 5.15a shows the retention time profiles for the two digesters and Figure 5.15b 

gives the distribution of retention time for digester 1. The average retention time for 

digesters 1 and 2 were 23.89 and 23.95 days respectively. The minimum allowable 

retention time in the primary digesters is 12 days.  This retention time, ensures that the 

digestate sludge meets the requirements for acceptable digestate quality.  However, for 

single stage MAD, the optimum digestate quality and biogas production typically 

requires over 20 days of retention time. As shown there is significant variability within 

the data due to changes in the feed and digestate removal rate, with the retention time 

ranging over 42 days. The specification limits for Mitchell Laithes is set between 20 and 

25 days shown in Figure 5.15b and digester 1 (blue plot), the process performs within 

this specification range for only 27 % of the time. 35.3 % the retention time below 20 

days and 37.3 % it is above 25 days offers an opportunity to increase throughput for the 

process. Hence for a possible 70 % of the time, the sludge produced does not meet 

specification. By reducing the variability in feed flow into the digester, the variability of 

retention time may be reduced and the system could be better controlled to 

specification. There is scope here for optimisation, by balancing the inventory 

management requirements with the aim to minimise the variability in retention time. 

 

Figure 5.16 Primary and imported % DS 
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The Mitchell Laithes AD process had a number of Hach Lange online dry solids 

analysers located at various points in the process.  Figure 5.16 shows the signal for the 

primary  imported sludge dry solids and Figure 5.7 showed the process capability chart. 

The blue 'theoretical' minimum variance distribution is considerably smaller than the 

black 'actual' variance distribution.  In other words, it is theoretically possible to control 

the % DS much more tightly than it is controlled at the moment. The Figure also shows 

that 9.9 % of the data is outside the low specification limit of 4 %, and 32.2 % of the 

data is outside the high specification limit of 8 % with an average % DS was 6.83 %. 

 

Figure 5.17 Sludge buffered stock level and digester feedflow 

Figure 5.17 trends show the buffered tank stock level and the digester 1 and 2 feedflow 

and 12 hour average. Once the buffered stock level drops below approximately 35 %, 

both the level signal, and the feed to the digesters tends to stop and over the whole 

analysis range, the stock level was below 35 % for 26.8 % of the time, and was above 

80 % for 11.8 % of the time. For all of the observed cases when the buffered stock level 

was above 80 %, the digester feed rate was running at a reasonably high level. 

Therefore for smooth disturbance-free operation of the digester, the buffered stock level 

should be maintained above 35 %. 

The effect of the feed rate upon the digester temperature is shown in Figure 5.18.  In 

this figure, before the cursor position, both digester vessels receive almost exactly the 

same amount of feed, and the two digester temperatures are correlated accordingly.  

After the cursor marker, almost all of the feed is diverted to digester 2, whilst digester 1 
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receives very little feed.  This immediately causes the digester 2 temperature to drop, 

whilst the digester 1 temperature increases rapidly. When the feed proportion is 

swapped later on, the opposite effect happens to the temperature.  

 

Figure 5.18 Digester feedflow effect on digester temperature 

The effect of digester feed rate on the gas production is demonstrated in Figure 5.19.  

Raw sludge feed rate signals for digester 1 and digester 2 in the uppermost pane of the 

plot.  Twelve-hour averaged versions of the same signals are shown in the middle pane 

of the trend.  The bottom trend shows the gas flows from the digesters 1 and 2, and 

combined gas flow, and a 12 hour averaged combined flow shown as the black trace. 

The averaged gas flow is relatively constant whilst the average feed rate is constant, 

however after the first cursor, the feed is shut off for long periods, and consequently the 

gas flow drops significantly, ultimately reaching a value of less than half of the original 

gas flow before the feed is restored.  
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Figure 5.19 Digester feed flow effect on gas production 

 

Figure 5.20 Site power consumed, generated and exported 

The average total site power consumed is 1117.47 kW, whilst the average site generated 

power is 505 kW, and the average imported power is 665.85 kW. Figure 5.20 shows 
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plots for the power consumed, generated and imported. The site generated power tends 

to be either a high, medium or low value depending on the capacity of the CHP’s. As 

the site is almost always importing power, the value of the site generated power can be 

calculated based on the import tariff price.  This tariff price varies from site to site, and 

on a temporal basis. For the purposes of demonstration we have used the following 

illustrative figures: 

 00:00 to 07:00: 4.6 p kWh
-1

 

 07:00 to 16:00: 6.7 p kWh
-1

 

 16:00 to 19:00: 13.3 p kWh
-1

 

 19:00 to 24:00: 6.7 p kWh
-1

 

The average value is £813.82 per day equivalent to £297,000 per annum.  This value 

does not include the value of renewables obligation certificates.  Clearly the value of the 

electricity produced is highly temporal, depending on the current tariff, and the number 

of CHP's running. Assuming that the biogas storage capacity can be adequately 

managed, it is theoretically possible to increase the value of the power generated to 

£974.44 per day equivalent to £355,670 per annum simply by aligning the peak tariff 

with the peak CHP generation. This represents a value increase of £58,626 per annum, 

or a 19.7 % value improvement.   

Key findings from the Mitchell Laithes site are: 

 Significantly high variability in the retention time of the process; 

 The site produces very little electricity of approximately 0.49 MWh tDS
-1

, which 

is below what is observed for similar AD systems 0.8-0.9 MWh tDS
-1

; 

 Feedflow limitations imposed by upstream and downstream sludge thickening 

and dewatering instrumentations (GBTs, Centrifuges, belt thickeners), which 

affects the availability of thickened sludge; 

 Online % DS data analysis showed significant variability in the data and that the 

process was operating outside specification for a large period; 

 The site compares well with generalised MAD systems, producing 297 Nm
3
 

tDS
-1

 of biogas which fits into the upper range observed for typical MAD’s of 

200-300 Nm
3
 tDS

-1
;  
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 There is a significant bottleneck with respect to controlling the temperature close 

to specification as there is large variability observed. 

General conclusions from this site are similar to those of Blackburn WwTW. The effect 

of inventory and scheduling effects on the digestion process were more evident on this 

site.  The opportunity for a predictive controller to reduce the variability in the feed 

through better prediction of inventory is essential. The efficiencies of systems such as 

the centrifuges can be greatly improved. There are various sludge thickening devices 

available such as centrifuges, belt thickeners, thickening drums and other dewatering 

units. Analysis can be conducted to evaluate the efficiencies of these systems to better 

inform the water companies on ways to reduce the bottlenecks these instruments impact 

on the downstream processes of the overall digestion process. 

5.4.3 Bran Sands CAMBI MAD 

Measurements of temperature within the digester are obtained from three probes. These 

are placed in the upper, middle and lower levels of the digester. Figure 5.21a shows a 

plot of the temperature for digester 3, and it can be observed that the average 

temperature for all three levels is about 41˚C thus considering the 2500m
3
 size; digester 

there appears to be good temperature distribution throughout. This is achieved by a 

closed loop temperature control system. The variability is further greatly reduced in 

comparison to Blackburn and Mitchell Laithes; thereby highlighting the potential for 

reducing variability in temperature through a closed loop control system. 

Water content of the sludge is one of the most important factors with regards to the total 

energy demand of the thermal hydrolysis. The hydrolysis temperature plays a key role 

in the energy balance. CAMBI recommends 165˚C as the optimised temperature based 

on experience. Temperatures for the reactors are not available however temperature of 

the sludge coming out of the flashtank is on average 111˚C. CAMBI states that this 

temperature (out of the flash tank) should be about 102˚C and ‘practically kept 

constant’. Figure 5.21b shows the actual temperatures from the flash tanks which 

fluctuate considerably. By deviating from the design on key parameters such as this, 

Bran Sands digestion operates below the designed energy balance for the system.  
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Figure 5.21 Temperature profiles for digester 3 and the flash tanks 

a) Digester 3 

Temperature 

Distribution 

b) Temperature 

out of Flash 

Tanks 
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The process design states that 12.3 % DS in the reactor as the optimum. The viscosity at 

12.3 % DS is low enough to ensure good homogeneity of the sludge and steam mixture. 

Figure 5.22a gives the offline results for % DS for the two pulpers. The energy balance 

is based on the sludge feed into the pulper at 15.9 % DS. The injection of recycle steam 

from the flash tank and the reactor leads to approximately 14 % DS of sludge out of the 

pulpers. There is considerable variation in the pulper output % DS in Figure 10a. The 

variation in sludge input to CAMBI is ±1.0 % DS about the hourly average that was set 

for the design. The % DS from the digester recirculation units is given in Figure 5.22b. 

The range is between 5 and 7 % DS. This is low for a CAMBI process as one of the key 

design benefits of the CAMBI technology is that it can handle % DS at a level of 14 %. 

Thus the process is performing below its capabilities. 

 

 

Offline analysis of % DS from the pulpers Offline analysis of % DS from digester 

recirculation 

Figure 5.22 Analysis of % DS from the pulpers and digester recirculation 

For mesophilic digestion, CH4 is generally in the range between 65-68 % of the gas 

concentration and 32-35 % for CO2. Figure 5.23a gives the signal for the whole analysis 

range and not all of the 94 day analysis range is shown in this trend, additionally, the 

CO2 composition measurement only appears to be available from the 24th of February 

onwards.  Figure 5.14b show trend for both signals in the range where there is data for 

both signals from 01 January 2011 to 05 April 2011 with CH4 composition between the 

range 58-64 % and CO2 between 44-51 %. CH4 composition is at the low end of the 

specification resulting in high CO2 levels in the gas phase. Analysis of the CH4 signal 

reveals that the gas component swings through a range of 10 %. Sensitivity analysis 
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conducted using the AD spreadsheet (Redman, 2010) showed that a 1 % increase in 

CH4 composition results in an approximately 1.7 % increase in the energy content of the 

biogas. For this reason, maintaining high CH4 composition in the gas may have a greater 

effect on the energy produced than increasing biogas yield. 

  

Plot of actual CH4 (green) and CO2 (blue) 

composition in biogas for the analysis range 

Zoomed-in plot of actual CH4 (green) 

and CO2 (blue) composition in biogas 

for a section of the analysis range 

Figure 5.23 CH4 and CO2 composition analysis 

CH4 content may be increased through: 

 Co-digestion: improving the substrate composition improves CH4 content 

(Callaghan et al., 1999; Sosnowski et al., 2003; Lehtomäki et al., 2007; Astals et 

al., 2011; Zhang et al., 2011). This is however difficult to assess as the different 

feed streams need to be investigated to assess the CH4 yield potential; 

 Temperature: temperatures between 32-35˚C are deemed to be the most efficient 

for stable continuous production of CH4 for mesophilic digestion (Song et al., 

2004; Chae et al., 2008; Ward et al., 2008). At low temperatures CH4 content 

tends to be higher while biogas yield as a whole is lower; 

 CH4 production may increase with increasing organic loading rate (OLR) (Ince 

et al., 1995) prior to overloading. As there is significant variability in the CH4 

content for the Bran Sands data, monitoring and control of parameters such as 

the feed rate may be used to control the CH4 composition.  A study showed that 

OLR affects the CH4 composition (Babaee and Shayegan, 2011) and by 

 



 

104 

 

modelling the effect of feed rate and CH4 into the potential controller can help 

with obtaining highest possible yields for CH4. 

A second interesting observation was seen for CH4 composition and digester feed rate. 

Figure 5.24 shows a 12 hour filtered signal for the digester feed rate in blue and a 12 

hour filtered signal for CH4 composition in the gas phase. The data suggests that as the 

feed rate increases, CH4 composition decreases. The opposite effect is observed within 

the benchmark simulation model 2 (BSM2) (Alex et al., 2008a), where an increase in 

feed rate causes an increase in CH4 yield. It is possible that a different variable is 

causing the decrease in CH4 yield. This may be due to the feed sludge stoichiometry 

such as sludge age, low % DS and variation in the organic matter which might cause the 

methanogens reaction step to shift towards the production of increased CO2 yield 

instead of CH4. NWL is keen on exploring co-digestion regimes with wastewater 

sludge. Analysis of the digestion system with cause effect analysis on changes to sludge 

composition and effects on KPIs such as CH4 yield need to be undertaken. This is more 

important for this site as there is considerable evidence that the digestion process is 

highly unstable due to foaming issues that affect both upstream and downstream 

processes.  

 

Figure 5.24 Digester feed flow versus CH4 composition 
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The Bran Sands AD digesters are fed non-continuously to guarantee a minimum 

retention time for all of the material entering the digester vessels over 15 minute 

recording interval of individual data points which is not of a sufficiently high resolution 

to allow an analysis of the individual hourly 'feeds' to the digesters.  A 12-hour moving 

average filtered version of the sludge feed flow was produced for each digester as 

shown in Figure 5.25. The filtered signals give a much clearer indication of the actual 

feed rate behaviour.  The relative proportions of the sludge feed to the three digesters 

are constantly changing, along with the total overall feed rate and the mean flow to 

digester 1 is 12.29m
3
 hr

-1
, the mean flow rate to digester 2 is 10.46 m

3
 hr

-1
 and the mean 

flow rate to digester 3 is 14.28 m
3 

hr
-1

. 

 

Figure 5.25 Digester feed rates 

Figure 5.26 shows that the differences in feed rates are significant, and strongly affect 

the retention times, along with the likely gas production levels. Given that each digester 

has a working volume of 6700 m
3
, then the retention time in the digester may be 

calculated from the digester influent flows.  The calculated Retention Time was 

produced using this filtered flow information. Given the flow rate from the coolers (and 

thus into the digesters) was an average of 294m
3
 day

-1
 for Digester 1, 251m

3
 day

-1
 for 
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Digester 2 and 342m
3
 day

-1
 for Digester 3, the retention times in these digesters was 

calculated as an average of 25.5, 27.5 and 20.5 days respectively. 

 

 

Figure 5.26 Digester retention time 

Further inspection of the data leads to an interesting relationship between the retention 

time in the digesters, and the total energy generated by the gas engines. In this case, the 

average digester retention time has a correlation coefficient of -0.8 with the energy 

generated from gas indicating a high level of correlation between these variables. This 

can be demonstrated visually by comparing the retention time with the inverse of the 

energy metric, in Figure 5.27a. This implies that in this instance a reduction in the 

average retention time would provide an increase in the energy produced. This can be 

further confirmed by inspecting the cumulative sum of the retention time, and of the 

energy usage in Figure 5.27b. 
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Figure 5.27 Average digester retention time and cumulative sum – retention time vs 

energy produced 

At the time of analysis Bran Sands was undergoing several initiatives to address some 

of the problems. There are several opportunities which were not revealed from the data 

generated. Some of these however need to be resolved to improve the overall efficiency 

at the site. The issue of foaming currently means the digestion process is operating 

 

 

a)  

b)  
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below its capability. Further work and analysis is required to remove or reduce this 

bottleneck from the process to enable the digestion to reach maximum capability. 

The Bran Sands digestion process is fairly new and, as such the level of instrumentation 

was expected to be quite high in comparison to sites like Mitchell Laithes. The data 

generated from the site did not allow an efficient evaluation of the site’s digestion 

process. Key signals such as biogas flowrate and % DS feed to digester were 

unavailable making it difficult to compare results from this site with others. 

Key findings from Bran Sands are as follows: 

 Gas flow measurements unavailable; 

 Inventory and scheduling bottlenecks affecting sludge availability; 

 CHP engine capacity limitation; 

 The average energy produced is about 0.34MWh tDS
-1

 which is well below 

typical ranges of 0.8-0.9MWh tDS
-1

; 

 Maintaining efficient heat balance and heat availability; 

 High % DS variability. 

5.4.4 Sensitivity analysis 

The data generated from Bran Sands especially had a number of KPI signals missing. 

To help with the business case, sensitivity analyses were conducted using the AD 

spreadsheet (Redman, 2010). This is a free publicly available spreadsheet, part of a 

biogas toolbox designed to assist the AD developer in assessing the viability and 

optimisation of different options. There are various feed streams available in the toolbox 

however; wastewater sludge characteristics are not modelled as the project is more 

aligned with the energy from crops sector. 

100 % efficiency is fictional and cannot be achieved as maintenance and repairs are 

inevitable. Additional limitations of capital, management ability, labour, communication 

and or instrumentation may cause inefficiencies. A 1 % increase in CHP efficiency may 

increase income by up to 3 % as indicated by the AD spreadsheet. Various factors may 

improve efficiency of the whole site such as optimising feedstock throughput, electricity 

and heat production (utilisation of all energy produced through efficient energy balance 

for the site), improving the operational efficiency, reducing the feedstock costs and 

feedstock capacity could potentially significantly improve efficiency.  
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Figure 5.28 Biogas yield efficiency 

Figure 5.28 shows a plot of increasing the efficiency of biogas yield against an increase 

in income generated from the process. This is achieved by means of energy production 

through CHP units as per the model in the spreadsheet with the value of renewable 

obligation certificates (ROCs) (ofgem, 2011b) which doubles the unit value of 

electricity. As expected, there is a strong linear correlation between yield increase and 

income. The biogas yields from Mitchell Laithes and Blackburn are shown on the plot; 

however data for Bran Sands site is unavailable to be indicated on the plot. This analysis 

gives a basis for improving the biogas yield efficiency per tDS fed to the digester. A 

second analysis was conducted to study the effects of the digester output on the co-

digestion of different waste streams. Wastewater sludge characteristics are not included 

in the model and as such are not used in the analysis. As expected there is a positive 

increase in value in pig slurry by mixing it with vegetable waste. By knowing the 

economics of obtaining certain feedstocks, a cost benefit analysis can be conducted with 

the help of analysis such as this to determine the capability of certain co-digestion 

regimes. 

5.5 Discussions 

Due to the level of instrumentation at the three benchmark sites, a comparison between 

them is limited. Table 5.4 provides a summary of the KPIs available at all three sites. In 

general, there two stage AD processes at Blackburn and Bran Sands outperforms the 

single stage MAD at Mitchell Laithes. However, although Bran Sands site is relatively 

new the Blackburn site outperforms Bran Sands. This is shown by the level of gas 
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production per tonne of dry solids fed into the digester, which is more than 4 times the 

level gas produced at Mitchell Laithes. This may be due to the quality of the sludge 

used at this site, thus without significant analysis of the sludge composition at these 

sites, it is difficult to conclude on the reason for the differing performances apart from 

the difference in technologies and practices.  

Table 5.4 Site comparison of KPI 

KPI Blackburn Bran Sands Mitchell 

Laithes 

Gas produced pet tDS of feed (Nm
3
 tDS

-1
) 453 297 106 

Electricity produced per tDS of feed 

(MW/tDS) 

0.53 0.49 0.209 

Organic loading rate (mean in kgVS m
3
 d

-1
) 3.50 1.84 1.68 

Digester temperature range (˚C) 27 to 35 38 to 43 27 to 44 

Retention number average (days) 14 (+2) 24 23 

Digester feed rate (m
3
 h

-1
) 29.34 37.04 19.61 

 

The spread of the data from the three sites varies considerable as shown in Table 5.5. 

Although Mitchell Laithes site has a temperature control, the site has the largest 

temperature variance.  

Table 5.5 Analysis of the spread of temperature data for the benchmark sites 

             Mean   StDev  Variance   Median   Range  

Blackburn          31 2.739 7.5 31 8 

Bran Sands       40.5 1.871 3.5 40.5 5 

Mitchell Laithes    35.5 5.34 28.5 35.5 17 

 

The feasibility study revealed several opportunities in the process; potential savings can 

be made by increasing the CHP capacity and aligning energy production with unit 

electricity cost price. Long term solutions based around this AD project, include 

enhanced monitoring of the process through soft sensor development and the 

development of a multi-objective advanced controller to meet the aims of the various 

control objectives. The aim of the study was firstly to provide a business case for the 

application of an advanced control system to the AD processes.  

The benchmark study was carried out with the aim of applying advanced control such as 

MPC to improve the process. Significant findings were (1) Inventory and scheduling 
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have an impact on both downstream and upstream processes and form the main 

bottleneck in the process; (2) There exist lack of online instrumentations; (3) There is 

limited monitoring of the process in general; (4) Offline analyses results in long 

sampling intervals; (5) There are quality variables which are not performing at their 

specification setpoints and (6) Foaming issues with unknown specific cause. 

These formed strong evidence for the project to progress to the development phase to 

develop solutions to improve these AD systems. Being an industrially focussed 

Engineering Doctorate, the benchmark study is used to evaluate the improvements that 

can be gained from using MPC on the AD systems. MPC may be beneficial (i) 

continuous process: the availability of feed and the effects of inventory and scheduling 

is of high importance. MPC can enable modelling the past feed to allow better 

prediction of the future inventory. Controlling the inventory both upstream and 

downstream of the digestion process is crucial to optimising the whole process, 

advanced control scheme can help with this; (ii) lack of instrumentation: MPC can 

harness soft sensor capabilities into the control system and make it possible to reduce 

the need for new instrumentations for measurement. However although these form a 

strong case for implementation of advanced control system, these cannot be quantified 

at this stage due to a lack of relevant data for direct cause effect analysis to establish a 

definitive business case. (iii) MPC offers advantage of repeated online optimisation 

(feedback) and solving multivariable and constrained with varying objectives and limits 

of varying uniformity. 

Results generated so far successfully demonstrate an opportunity for advanced control 

structures such as MPC and the SWOT analysis in Table 5.6 demonstrates this. The 

strengths of the benchmark study lies within the commonalities of the results and the 

identification of quick fix money saving solutions. There is opportunity to improve 

inventory and scheduling impacts on the AD process thus phase II activities start with 

Chapter 6 the inventory simulation which aims to reduce inventory and scheduling 

bottlenecks. There is also opportunity to improve monitoring on the process and 

Chapter 7 volatile solids soft sensor development aims to achieve this. Weaknesses 

identified in the benchmark study results have the potential risks of (i) the necessary 

minimum and ideal instrumentation may prove to be unreliable or inadequate to provide 

reliable information; (ii) current AD systems may prove to be uncontrollable, large 

disturbances or too few adjustable parameters. Difficulty in meeting all or most of the 
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control objectives may increase the complexity of the operation and (iii) real time 

experimental testing needed to obtain a rich dataset for modelling may be difficult to 

undertake. 

5.6 Conclusions 

The benchmark study was successful in highlighting significant opportunities for 

control and optimisation, implementation of a multi-objective robust advanced 

controller that satisfies the aims of the project will be challenging. This is due to the 

high level of uncertainty and unknowns within the system. A lack of robust online or 

offline instrumentation results in unknown feed composition, uncertainty in the state of 

the degradation process and quality of the system outputs. As a result, modelling of the 

process has proven to be difficult.  Additional studies are required to investigate feed 

composition for the various sites, determine potential causes of foaming and digester 

degradation pathways to better predict the process outputs.  

It can be concluded that no single technology outperforms the other and there are 

several commonalities in the performance of the different systems. Increased 

monitoring of key parameters and studies into whole plant optimisation such as focus on 

the energy balance is essential to improving the performance of the plants. 
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Table 5.6 SWOT analysis summary of key findings from the benchmark study 

Strengths 

 Benchmark of three industrial sites with bottlenecks identified for 

each  

 There are several commonalities within the results from the three 

main sites such as variability in certain measurements  

 Calculated KPIs compared to other known KPIs for similar digestion 

processes 

 Quick fix money saving solutions identified, such as alignment of 

electricity production or usage with tariff prices  

Weaknesses 

 Unusual observations observed for some KPIs, 

illustrating inaccuracies in data or unknown 

observations differ from literature and experience  

 Lack of data or information to enable cost benefit 

analysis to be conducted to yield a definitive 

business case 

 Inventory and lack of instrumentation hinders 

evaluation of the chemistries within the AD process 

Opportunities 

 There is a significant need for improved instrumentation to enable 

better monitoring and control of the process  

 For certain parameters such VFA and H2 in the liquid phase there is 

an opportunity for soft sensor development 

 Energy balance at each site requires optimisation; heating and 

cooling  and digester temperature control 

 Scheduling and inventory improvement through predictive 

controllers 

Threats 

 The benchmark sites are unique in nature, a generic 

controller may not be possible 

 Typical opportunities for advanced control 

requirements are identified, however further studies 

required to test out the capability of advanced 

controller for AD systems 

 Accuracy and reliability of data, can models built 

from such data be reliably used in model based 

control? 
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6 Inventory simulation 

6.1 Introduction 

The benchmark study in Chapter 4 identified a number of issues including: 

1. Inventory and scheduling have an impact on both downstream and upstream 

operations and form the main bottleneck in optimising AD processes; 

2. There is a significant lack of online instrumentation; 

3. There is limited monitoring of the process in general, resulting in a lack of 

detailed understanding of the process. 

The key bottleneck for optimising industrial AD processes is thus related to the sludge 

scheduling and inventory levels. AD processes are typically downstream processes at 

wastewater treatment works (WwTW), and therefore the availability of sludge depends 

on the upstream processes including activated sludge processes (ASPs), aeration and 

settling tanks. Most AD process sites also import sludge from other WwTW sites and 

the deliveries are irregular and unpredictable in volume and quality. This was the case 

for all the benchmark sites and the operators try to reduce the uncertainty in the 

imported sludge volume, quality and frequency to improve the stability of the AD 

process. The inventory at any particular site varies considerably and is further impacted 

by amounts of storage and or buffer tank availability.  

Close control of feed is essential for the stability of the process. This is because feed 

flow rate to the digester which is generally the only manipulated variable is dependent 

on the level of scheduling and inventory. Constant feed flow is desirable for the stability 

of the process as large changes in feed affects the process drastically. More specifically, 

large changes in inventory levels results in large fluctuations in feed rate causing 

instability in the process. Inventory and feed rate variations act as the main disturbance 

in the system. It is therefore desirable to feed the digester with as constant a feed as 

possible. 

This issue was explored further by designing a simulation to evaluate the capability of a 

model predictive controller to control the inventory levels and reduce their disturbance 

on downstream processes. It is hypothesised that by removing this disturbance, the true 

capability of implementing an advanced controller for the optimisation of the overall 

AD system can be identified. A simulation model reflecting the characteristics of the 

industrial process and the effect of inventory on its operation was designed. A study was 
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then conducted to test the capability of model predictive control to regulate inventory 

levels and to remove or reduce the effect of inventory on process performance. 

6.2 The simulation model 

The design and details of the simulation can be found in standard Perceptive functional 

design specification document titled “Anaerobic Digester Inventory Simulation” giving 

a detailed overview of the simulation model. The codes are written in the basic 

programming language within the Perceptive Engineering Ltd (PEL) software solution 

and this is provided in the disc attached. Perceptive Engineering Ltd has proprietary 

rights to the simulation model, therefore only a summary of the model is given here. 

The schematic of the simulation process in Figure 6.1 provides the human machine 

interface (HMI) using DAQfactory provided by AzeoTech (AzeoTech, 2012). Figure 

6.1 provides a schematic of the simulation process. The simulation model begins with 

the Gravity Belt Thickener (GBT) where an unknown composition of sludge is 

thickened. Thickened sludge from the GBT flows into the thickened sludge silo or 

buffer tank. Sludge flowrate and percentage dry solids (% DS) are the two variables 

available to the GBT. Dynamic data from Blackburn WwTW is streamed into the GBT. 

The rate of the streamed data is scaled depending on the time of the week. The streamed 

flow is multiplied by 1.2 for weekdays and 0.5 for weekends. This is because on 

observing the inventory levels of sludge at benchmarked sites; inventory levels at the 

beginning of the week were very high and at weekends there were no deliveries apart 

from Bran Sands WwTW for which there are considerably low deliveries on weekends. 

Therefore, the inventory available on these sites reduces considerably on weekends.  

This is crucial knowledge to add into the simulation as it enables an opportunity for 

maintaining constant feed to the digester and depicting the important disturbances into 

the system.  

The simulation also contains a heating circuit as depicted in Figure 6.2. Waste heat 

energy from the CHP is used to heat a hot water circuit with additional heat provided by 

a backup boiler. Heat is lost from the system either from the main digester vessel 

through convection, conduction, or from adiabatic coolers. The thermal inertia of the 

adiabatic cooler is simulated as a first order response with time delay and the setpoint 

value for the adiabatic coolers is negative, to denote heat flow out of the system; whilst 

the thermal inertia of the backup boiler is simulated as a first order response with time 
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delay and the setpoint value for the backup boiler is positive, to denote heat flow into 

the system. The adiabatic coolers and backup boilers are controllable elements in the 

simulation. This enables an analysis for optimising the energy production and the 

overall heat balance for the system to address one of the project aims of the overall 

project for reducing carbon footprint. Cost elements for heating and cooling the system 

are implemented into the model to enable best operation to be maintained. 
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Figure 6.1 Schematic of AD inventory simulation 
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Figure 6.2 AD simulator heating circuit 
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Figure 6.3 Programming signals specification page 
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6.2.1 Simulator structure model 

The model consists of seven auto regressive with exogenous inputs (ARX) model 

blocks which form the basis of the simulation. These block models relate to: 

1. Thickened sludge tank; 

2. Heating water temperature after combined heat and power (CHP); 

3. Digestate tank; 

4. Heating water temperature after coolers; 

5. AD gas production; 

6. Heating water temperature after backup boilers and; 

7. Gas holder level simulation. 

The underlying structures of the blocks are recursive least squares (RLS) models. The 

block models describe the tank levels, gas production, heating and energy usage in the 

system. The simulator enables models identified within the PerceptiveAPC design 

system to simulate the AD plant behaviour. The models can be read or fed into the 

online system to generate simulated data after model development in the design system. 

In configuring a simulator block several properties are required to be specified. These 

are: 

1. Group level – determines whether the simulator is active or not during online. 

Default group signal for simulators is 999.GR operations; 

2. Level – determines the conditions under which the block can become active, the 

level of the group signal must be higher than or equal to this level; 

3. Update interval – defines the interval of the simulator; 

4. Sample interval – interval at which new data samples are read into the simulator 

algorithm, setting the sample interval smaller than the update interval helps 

reduce noise. 

For a nonlinear system such as the AD process, linear modelling techniques may be 

ineffective at characterising the cause-effect relationships. However, as the simulator 

model is simplified to account mainly for heat balance and level control, these factors 

are easily modelled and therefore linear models are adequate for this system. The use of 

linear model approach is driven by the use of PerceptiveAPC system. Model extensions 

of physiochemical and biochemical characteristics of the sludge may require nonlinear 

modelling techniques such as neural networks which are available in the 

PerceptiveAPC.  
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6.2.2 Simulator design 

For the understanding of the behaviour of the AD system over time, it is important to 

understand the time response of the system to be able to predict the systems response 

and hence, how the ability to implement process control. By understanding the system 

dynamics, it is possible to determine the speed of response, the level of overshoot before 

settling, oscillations in the system, process instabilities and how rapidly a step change in 

a process parameter takes to reach steady state and the rate of change of output 

parameters. For an AD process, the dynamics differ for each stage of the digestion 

process and also for parameters within a particular process. Therefore understanding the 

dynamics at each of the digestion stages and how these affect process parameters is 

essential for control.  

Current data generated from the benchmark sites fails to provide a complete profile of 

the system dynamics of the AD process, with respect to the effect of inventory on the 

process. The benchmark data and process understanding resulted in the development of 

a simulation model for the optimisation of the inventory. The complex characteristic of 

the AD system results in limitations in the developed models of the process and, 

consequently, there are inconsistencies between the process model and industrial AD 

systems. These issues are due to a lack of in depth process knowledge such as: 

 Limited number of process interactions being modelled – these are summarised 

in Figure 6.3 and focus on parameters that directly or indirectly effect inventory 

of the system; 

 Assumptions on the scale of some unmeasured parameters; 

 Assumptions on the rate of change of some process effects – the scaling factors 

for temperature and feed flow effect on biogas production in Tables 6.1 to 6.3 

are assumptions based on theoretical understanding; 

 Models which do not take into account full indirect effects – for example the 

biogas production is based upon a univariate simulation model using the dry 

solids signal to the digester as the cause signal for the model with 16 days as 

time taken to reach steady state and scale factors for temperature and feed flow 

rate applied as summarised in Table 6.1, 6.2 and 6.3 showing temperature 

correction, feed rate standard deviation correction and digester temperature 
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standard deviation correction for biogas production respectively. This model 

fails to account for the effect of digester environmental conditions and the 

biochemical composition of the feed. 

The feed rate is scaled according to the temperature in the digester.  This reflects the 

fact that gas is produced at different digester temperatures, based on the same amount of 

material feed to the digester. The temperature correction scaling factor (varies linearly 

between the different temperature ranges) implying that for the maximum gas 

production, the digester temperature should be maintained at a value of between 35 and 

40°C. The digester operation is the most stable with maximum gas production when the 

feed rate to the digester is maintained at a stable value, thus the feed rate standard 

deviation correction is intended to replicate this effect. The digester temperature 

standard deviation correction aims to replicate the effect of improved gas production 

due to reduction in temperature variation. 

Table 6.1 Temperature correction for biogas production 

Temperature 

range (°C) 

<15 15-20 20-

25 

25-

30 

30-

32 

32-35 35-40 40-42 >42 

Scaling 

factor 

0.2625 0.2625-

0.42 

0.42- 

0.6 

0.6 - 

0.84 

0.84-

1 

1- 

1.167 

1.167- 

1.167 

1.167- 

0.2625 

0.05 

 

Table 6.2 Feed rate standard deviation correction for biogas production  

Feed rate <50 50-100 100-250 >250 

Correction 

factor 

1 0.98 0.95 0.9 

 

Table 6.3 Digester temperature standard deviation correction for biogas production 

Standard 

deviation 

<0.4 0.4-0.8 0.8-1.2 >1.2 

Scaling factor 1 0.98 0.95 0.9 
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The simulation model was validated and verified to compare the model and its 

behaviour to the benchmark sites. This included an iterative calibration process to make 

adjustments to the revised model. The objective of the model was to reduce the 

disturbances in the process as a result of variation in sludge inventory levels through the 

application of a model predictive advanced controller. The hypothesis was therefore; the 

model predictive controller can effectively control the sludge inventory levels, thus 

improving the stability of the process and maximising biogas and energy production. 

This will be illustrated through a reduction in the level of tank level ‘trips’ (i.e. the tank 

level violating the upper and lower limits of tank alarm settings), increasing the energy 

production and overall site efficiency. The aim of using the simulation in this manner is 

to gain further understanding from the process and to utilise this during the plant testing 

or design of experiments on the industrial site. Changes made on the plant will thus be a 

combination of the results from the simulation results and improved process 

understanding. This dynamic model provides a platform for testing control and 

optimisation strategies primarily for assessing the capability of a model predictive 

control (MPC) controller for removing or reducing the scheduling and inventory 

bottleneck.  

The benchmark data showed that the industrial systems are subject to several level trips 

from the buffer tanks, gas holders, buffer tanks, digestate tanks and centrifuges. Level 

trips are incorporated on the buffer tank, thickened sludge silo, digester, digestate silo 

and gas holder tanks to trip. This is typical of digestion plant operation and there is a 

cost element associated with overflowing the tanks or starting and restarting instrument. 

Flow to the buffer tank stops above 99 % full, until the level drops to 90 % full and if 

the buffer tank level falls below 1 % full, feed to the digester is tripped to stop until the 

level reaches 10 % full.  

 

 

 

 

 



 

125 

 

Table 6.4 Simulation level trip signals 

Signal ID Description Values 

100.ME GBT trip on high thickened sludge tank 0=ok 1=tripped 

102.ME AD feed flow trip on low thickened sludge tank 0=ok 1=tripped 

104.ME AD feed flow trip on high digestate tank 0=ok 1=tripped 

106.ME Centrifuge trip on low digestate tank 0=ok 1=tripped 

108.ME Flare on high gas holder level 0=ok 1=tripped 

110.ME Trip CHP on low gas holder level 0=ok 1=tripped 

112.ME AD feed flow trip on hi-hi gas holder level 0=ok 1=tripped 

 

Table 6.4 and Figure 6.4 provide the level trips occurring for the simulation prior to 

controller implementation. As can be seen the level trips occur on a frequent basis and 

the thickened sludge tank level overshadows all other trips. The model objective is 

therefore to ascertain a way to reduce trips occurring. A base line analysis was initially 

conducted from the simulation to establish input or output, data availability, model 

structure, parameter estimation and evaluation of model accuracy.  

 

Figure 6.4 Level trips 
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6.2.3 System understanding 

 

Figure 6.5 Step tests for feed flowrate and % DS and their effect on biogas production 

Following the completion of the simulator design, step changes were performed on the 

manipulated inputs including feed flowrate and % dry solids to observe the changes in 

measured outputs such as biogas production. These process excitations or step tests 

were conducted to generate data which captured the dynamics necessary for the 

modelling. An example of this is shown in Figure 6.5, with step changes of feed flow 

rate in blue, % dry solids in green and the result of the step changes shown in the gas 

production plot in purple. As can be seen, the peaks and troughs of the gas produced 

plot coincide with the step changes of the feed flow rate and % dry solids. The data 

generated from the step tests were used to establish relationships within the system and 

comparisons were made to ensure the simulation results fitted with what had been 

observed or expected to at the industrial sites. This evaluation of system performance 

led to an iterative method where the model was continuously updated to make it reflect 

more closely to the performance of the industrial process. Some significant findings 

from initial simulated outputs were: 

 The main bottleneck in the process was identified to be the thickened sludge 

tank level. The feed to the thickened sludge tank is depicted in Figure 6.6 in blue 

over a period of four weeks of simulation time shown in the black division lines. 

The figure shows considerable variation over the 4 week period as a direct result 
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of variation in imported sludge. The tank level has the highest number of level 

trips and this is shown in Figure 6.4. Knowledge of the scheduling of imported 

sludge from other AD is crucial to the control and optimisation of the process; 

 The simulation also revealed insight into the best initial set points for the system 

which limits the amounts of level trips. For example the feed to thickened sludge 

tank peaks at about 2393 m
3
day

-1
 with an average or mean flow of about 620m

3
 

day
-1

. These flowrates mean that the tank can fill and empty quite quickly. Feed 

flow-rate to the digester can therefore be set to the average flow of the thickened 

sludge tank feed to 620 m
3
 day

-1
; 

 The digestate feed rate to digestate tank level is dependent on digester feed. The 

feed flow to digester drastically reduces the digestate tank level; this operates in 

an on or off batch mode process (at zero or 2200 m
3
 day

-1
). Knowledge of the 

AD feed rate, digestate flow or digestate tank level is required to manipulate the 

centrifuge in order not to trip the digestate tank level as this had a great impact 

on the tank level. 

 

Figure 6.6 Feed to Thickened sludge tank 

The MPC controller enables disturbance profile modelling of expected sludge levels 

over the week and therefore a degree of the disturbance can be predicted. Although the 

profile varies greatly there is a general drop in the feed to the thickened sludge tank 

level over the weekend, this increases generally from Monday, and by Wednesday 
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inventory levels are in the high range through to Friday. Figure 6.6 shows the various 

profiles over four days. Modelling of the disturbance profile into the system will help 

with reducing disturbances in the system as a whole as the sludge inventory level had a 

knock on effect for almost every process in the system. 

6.3 Modelling 

The PerceptiveAPC model development software uses data driven algorithms to 

develop empirical models instead of using first principle models which require 

theoretical knowledge of the systems components. The full AD process is too complex 

for first principle modelling, for the purposes described here, and therefore the use of 

statistical process models to describe the system is followed. Step tests were conducted 

to generate an appropriate dataset for the modelling. The training data needed to satisfy 

various features to include richness, variability and consistency. This ensured that the 

process moves around throughout the data range; the data included all the operating 

ranges of the process; to avoid the controller struggling if the process moves to a 

different region and the dataset is together in sequence. The MPC models are used to 

test the capability of an advanced controller for controlling the process as a whole, 

specifically to address the findings from the benchmark study. Two main models were 

developed: 

1. MPC1: a ‘basic’ structure as the standard MPC control structure depicted in 

Figure 6.7; 

2. MPC2: a ‘split dynamic’ model structure depicted in Figure 6.8 where the 

system dynamics are split into slow and fast characteristics with the aim of 

improving total control of the system.  

MPC1 in Figure 6.7 shows cause signals on the left hand side in brown (measured 

signals), light and dark blue colours as the actuators with effect signals on the right in 

light and dark green consisting of set points, state targets and output parameters. The 

cause signals are linked to their effect signals by the black arrows. For example, the 

measured signal 491.ME feed rate is linked to the actuator signal 1000.AC AD feed rate 

which is linked to the effect signals of 332Q.ME Thickened sludge Tank Level (SC), 

1000.CT Feed Rate Steady State Target, 478P.ME Biogas Produced By AD (set point), 

569P.ME Digestate Tank Level (SC) and 585P.ME Primary Digester Temperature (Set 

point).  
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MPC1 and MPC2 both use the same cause and effect signals. MPC2 aims to investigate 

the potential improvement for MPC control through separation of the different levels of 

system dynamic. Fast dynamic parameters are for example biogas flow, heating and 

cooling aspect of the process and slow dynamics are typical parameters contributing to 

the production of biogas.  

Following the selection of model cause and effect signals, the next step was to set the 

model objectives. The main model objective is to avoid tripping the various levels. The 

hierarchy of the objectives is summarised in Table 6.5. The lists 9 control objectives and 

constraints in order of importance, with 10 being the most important and 2 the least 

important. Brief description of the reasons for the objectives and the order of ranking 

are also provided in the table. For example, prevention of AD feed stream tripping as a 

result of high gas holder level is given the highest level of importance of 10. This is 

caused by low levels of sludge in the buffer tank. Avoidance of this is the main aim of 

the simulation and ensures constant feed to the system. 
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Figure 6.7 MPC1 basic model structure 
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Figure 6.8 MPC2 split dynamic model structure 
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Table 6.5 Hierarchy of control objectives and constraints 

Control objective or constraints Hierarchy 

of  

importance  

Reason 

Prevention of AD feed tripping as a 

result of high gas holder level 

10 Causes feed rate instability. Results in flaring of gas and hence affect CHP 

efficiency and energy production per tDS processed 

Prevention of AD feed tripping On 

high digestate tank level 

9 Cause feed rate instability. Increase retention time in the system and hence reduces 

throughput in the system 

Prevention of AD feed flow tripping 

on low thickened sludge tank level 

8 Affects all downstream processes. Cause feed rate instability, limits gas production 

and results in waste of resources  

Prevention of CHP unit tripping on 

low gas holder level 

7 Affects energy production. Scheduling to improve revenue generation through 

aligning energy produced with triad periods 

Prevention of GBT instrument 

tripping due to high thickened sludge 

tank level 

6 Affects the upstream processes 

Prevention of gas flaring due to high 

gas holder level 

5 Waste and environmental issue. Currently regulations permit flaring of gas into the 

atmosphere. This may change over time with tougher regulations and therefore 

there is a greater need to prevent this 

Reduction of AD feed rate variability 4 This causes instability in the digestion process and may cause foaming  

Increasing the average value of CHP 

energy savings 

3 Through alignment of energy production with peak electricity selling price 

Prevention of centrifuge instrument 

tripping on low digestate tank level 

2 This affects downstream processes (post digestion)  
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6.3.1 MPC model building in PerceptiveAPC 

The modelling page in PerceptiveAPC consists of tabs for specification, coefficients and 

evaluation. The specification tab is where the MPC model attributes or details are 

specified and this is depicted in Figure 6.9. The coefficients page allows evaluation of 

model coefficients followed by model evaluation. The steps followed on the modelling 

page are selection of the model details: 

1. Model cause and effect signals: the model details begin with the selection of the 

model cause and effect signals. These are selected as per Figure 6.7 and 6.8; 

2. Block mode: MPC was selected for the block model as a controller model was 

required instead of an estimator or simulator model; 

3. Model type: Within the PerceptiveAPC framework both linear and nonlinear model 

types can be derived.  

4. Model structure: the model structure selection enables the user to select absolute or 

incremental model structure. The basic finite impulse response (FIR) model format 

is modified to enable the history of incremental changes in the cause signals to be 

used rather than history of the absolute changes. If a model is nonlinear then the 

model is also absolute and incremental nonlinear models are not permitted. As a 

linear model type was constructed, the incremental model is selected to improve the 

robustness of the model in the presence of unmeasured process drift. 

5. Model format: There are three options available in PerceptiveAPC including 

principal component analysis (PCA), partial least squares (PLS) and recursive least 

squares (RLS). As the linear incremental model type was selected, RLS is the most 

appropriate computation algorithm as it enables different paths in the model to be 

identified separately using different sets of data, as all coefficients in the model are 

changed when the model is identified in PCA and PLS models (Jiang and Zhang, 

2004; Perceptive Engineering Ltd, 2012). Therefore, linear RLS models allow ‘path 

by path’ modelling, which is achieved by masking out other paths, which is required 

as per Figure 6.7 and 6.8. Modelling each path separately allows different 

coefficients to be selected and the effectiveness of each path on the overall model 

can be identified. 

 Figure 6.10 illustrates example of four variables affecting temperature prediction. 

The diagram shows the fastest approach of making changes to temperature is 

through the changes to the feed rate (A). The cold sludge coming into the digester 

cools the digester down faster than changes in ambient temperature, cooler or boiler 
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settings and gas flow to the CHP units. Within the simulation, the incoming sludge 

is of lower temperature, which means the heating of the digester is more difficult or 

happens slower than the cooling of the digester when cooler sludge is continuously 

fed into the digester.  

The next fastest effect on the digester temperature is the cooler or boiler settings 

(D), where there is an initial delay to bring the temperature to the set point. This is 

followed by a faster response, provided that the disturbances are kept to a minimum. 

Ambient temperature (B) affects is the third effective cause signal, but unlike the 

other factors, this is an environmental disturbance which cannot be controlled. The 

CHP speed (C) had the lowest effect. Understanding of the model coefficients 

enables further understanding on how to control the overall process;  

6. Model response structure: The choice of multiple or single effect structure model 

depends on the type of model required. For multiple effect structures, the effect on 

the prediction of any effect signal involves all other effect signals from the 

multivariate structure. This allows effect signals to be cross-coupled in the resulting 

structure. Single effect eliminates the cross-coupling, which is ideal for model based 

controllers as it can reduce poor effects (through bad data) in the effect signals and, 

therefore, making the model more robust. 

7. Order of dynamics and Delays: The order of dynamics specifies how many of the 

previous samples of the effect signal are used in conjunction with the cause terms to 

predict the effect signals trajectory. A higher order of dynamics may provide better 

prediction during unmeasured disturbances and may also yield a model less 

sensitive to process noise. In this case the order of dynamics was set to one to enable 

ARX modelling type. For control applications, an order of dynamics of 1-3 is 

typical. The number of auto regressive nodes is determined by the order of dynamics 

assigned to the model; for FIR models, the order of dynamics is set to zero and the 

difference between the min and max delay should be longer than the longest 

transient time to steady-state of any of the effect signals. 
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Figure 6.9 PerceptiveAPC V4.1 modelling page 
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Figure 6.10 Temperature prediction coefficients 

A B 

D C 
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6.3.2 PID model 

A PID controller was designed in PerceptiveAPC using basic code. The code is included 

in the disc attached. The PID model was designed to control temperature by 

manipulating the feed rate. Detail analysis of the model has not been conducted due to 

software licence expiration of the PerceptiveAPC, however the PID model was 

evaluated at 33°C setpoint and the results is compared with MPC1, MPC2, split 

dynamic model and the optimiser model. 

6.4 Controller testing 

Following the development of the MPC controller in Section 6.3, the next step was to 

evaluate the controller performance through a series of scenario evaluation tests. There 

were: 

 Evaluating the MPC1 controller structure in Figure 6.7, this forms the standard 

controller for the inventory simulation; 

 Evaluation of the MPC2 ‘dynamic’ two level structure in Figure 6.8 to test the 

impact of splitting the system dynamics into 2 models of fast and slow dynamics 

on controller performance; 

 Alternative controller comparison with a conventional controller such a PID. A 

PID controller is developed and simulated to compare results with MPC1 and 

MPC2 and evaluate the performance between traditional and advance 

controllers;  

 In addition, an optimiser was developed to test and evaluate the performance of 

MPC1, MPC2 and the PID controller scenarios with an optimiser to test for 

controller performance with the optimiser. 

These four evaluation scenarios helped to assess the need for an advanced controller, 

and were compared to the design benchmark system where there is ‘no control’. This 

forms the general status of the benchmarked sites in Chapter 5. 

6.4.1 MPC1: the benchmark structure system evaluation 

The benchmark structure MPC1 was evaluated to understand the capabilities of MPC. 

MPC1 model was loaded into PharmaMV Real-Time environment as depicted in Figure 

6.11. The Real-Time environment allows models developed in the development 

environment to be deployed in real time. The figure shows the specification page for the 
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response signals (the top section of the figure) and cause or predictor signals at the 

bottom of the figure.  

The Real-Time environment has a controller monitor management framework where the 

model specification can be set. The specification for MPC1 can be set to include the 

order of priority, hard and soft constraints, and high or low set point settings for the 

different signals. A series of overnight runs of the simulation was conducted to 

iteratively change the settings to tune the controller to yield optimum performance.  

Five examples are provided in this section which includes obtaining the optimum 

setpoint for feed rate, adiabatic cooler, back-up boiler setting, digestate tank level, CHP 

feed rate and ambient temperature effect on digester temperature. 
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Figure 6.11 PharmaMV 4.1 Controller Monitor management screen 
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Digester feed rate: to gain an understanding of the best setpoint for the feed rate, it was 

necessary to generate the average flow to the thickened sludge tank as shown in Figure 

6.13; the feed to the thickened sludge tank is shown in black and the feed rate to the 

digester in red. In this case the mean flow to the thickened sludge tank is of the order of 

611 m
3
 day

-1
. The feed rate to the digester must have a maximum flow of 860 m

3
 day

-1
, 

to enable sufficient organic loading rate (OLR). Therefore the median value of 611 m
3 

day
-1

 was set as the setpoint to ensure constant flow to the digester. The distribution is 

skewed and therefore the median (625 m
3
 day

-1
) may be more appropriate estimate for 

the setpoint and, therefore, the setpoint for the feed rate within this simulation was set to 

625 m
3
 day

-1
. The feed rate had a more dominant effect on the digester temperature. In 

order to control the setpoint effectively, the constraints on digester feed must be tighter. 

 

Figure 6.12 Feed to Thickened sludge tank and feed flowrate plot 

Adiabatic cooler and backup boiler split: the settings for the adiabatic cooler and 

backup boiler split (1050.AC) signals are crucial to maintaining not just the digester 

temperature but also the feed rate setting. Figure 6.13 shows the MPC controller 

overview page. The first half of the plot (left hand side) shows the past profile of the 

plots and the right hand side shows the future prediction of the MPC. This is split by the 

black line in the middle which shows the current status of the plots. The plots show 

(from top-down) the MPC block status in black, which is in ‘auto’ mode which means 

the controller is active. This is followed by the actual digester temperature in green and 
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the MPC prediction of digester temperature in brown. The 1050.AC is shown in blue, 

with its target setpoint in pink with the red lines showing the high and low constraint 

levels. AD feed rate is given in light purple and CHP feed rate, sludge dry solids, flow 

to gas flare and ambient temperature are given in purple. The rate at which heating or 

cooling is available to the digester is essential for establishing the rate at which the 

digester heats and cools. At low 1050.AC splitting, the digester takes a long time to cool 

and heat and the 1050.AC signal almost acts in an on or off mode, violating the low and 

high constraint setpoints. The -100:100 kW split appears to be too low for heating and 

cooling the system, looking at the process data obtained; a setting of -1000:1000 kW for 

1050.AC was used. This enables faster heating or cooling and also appears to behave in 

a similar way to observations in the process data. 

Digestate tank: Figure 6.14 illustrates the digestate tank level in red, the centrifuge 

demand multiplier in green, centrifuge feed rate in black, digestate flow from the 

digesters in blue and AD feed rate in Pink. There was an initial difficulty in controlling 

the digestate tank level by centrifuge run time alone as the major influence on the tank 

level is the digestate feed rate from the digesters which determines the flow of sludge 

from the digesters to digestate tank. By modelling the tank with feedforward 

information of the digestate feed rate, the model was greatly improved. 
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Figure 6.13 Signal 1050.AC controller setting 

Future Past 
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Figure 6.14 Digestate tank cause and effect analysis 
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Figure 6.15 CHP feed rate cause and effect analysis 

Change in 696P.ME 
before change in 
observed in other 

signals 

Change is observed 
in other signals 

with delay 



 

145 

 

 

Figure 6.16 Ambient temperature effect on digester temperature 
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CHP feed rate: Figure 6.15 shows plots of CHP feed rate speed in blue top plot, 

followed by the gas holder level in green, digester temperature in purple and the heating 

water circuit temperatures (before the AD, after CHP and after the coolers) in black. 

The plot shows that changes in CHP feed rate do not correspond well with setpoint 

changes. Due to the high priority set for the controller objective and constraints to avoid 

flaring biogas (shown in Table 6.5), as the gas holder level rises to its high constraint 

level, the setpoint of the CHP feed rate is override to increase the flow to reduce the 

level in the gas holder. Comparison with other related signals shows it corresponds to a 

drop in the heating water circuit temperatures affecting the CHP feed rate. 

Understanding of these cause and effect relationships has enabled better control 

implementation to be achieved. 

Ambient temperature: ambient temperature effect on digester temperature is 

considerable as illustrated in Figure 6.16, with digester temperature in blue, ambient 

temperature in red and digester feed rate in black. An increase of one degree in ambient 

temperature increases the digester temperature by 0.089˚C. Ambient temperature is set 

as a disturbance in the controller specification due to it being an environmental effect 

which cannot be controlled or predicted. However by understanding an increase or 

decrease change in ambient temperature effect the digester temperature, the digester 

temperature can be controlled better by factoring in the effects of ambient temperature 

with manipulated variables effecting temperature. 

6.4.2 Bottleneck shift 

Bottlenecks are defined in the simulation as processing steps which hinder optimum 

digestion of sludge to high yields of biogas. Depending on what the hierarchy of control 

objectives are, the bottle neck in the process shifts to different processing steps. 

However the main bottleneck in the process is the thickened sludge tank. The level of 

thickened sludge available for digestion determines the variability in AD feed rate and, 

therefore, affects the downstream processes. This is a result of the main controller 

objective set to prevent the AD feed flow tripping as a result of high gas holder level, 

which means the AD feed flow is more dependent on the biogas level than the thickened 

sludge level. By setting the main controller objective to avoid tripping the thickened 

sludge flow to the AD, the bottleneck shift to the gas holder level. This is a typical 

situation observed on all of the benchmarked sites as sludge inventory are generally 

high which result in optimum digester feed flows yielding high levels of biogas. Due to 

finite levels of CHP units, this result in biogas being flared when CHP units run at 
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optimum levels. This issue may be only resolved through increasing the capacity of 

tanks as this is the approach taken at Blackburn to increase CHP capacity through an 

additional an CHP unit. Nevertheless the optimisation question remains as to whether it 

is possible to process the high sludge inventory without flaring gas or tripping the CHP 

units at this capacity. At present, this does not appear to be possible due to the high 

inventory levels and constraint on tank volumes, still there is a considerable reduction in 

gas flaring for which the cost will be beneficial to operate in this manner and flare little 

gas, rather than invest in increased tank capacity to the site such as additional CHP 

units. This is of course subject to environmental regulations, as tighter control on gas 

flaring will inevitably occur and increase the importance of avoiding gas flaring 

objective in the system. 

6.5 Controller results  

Following an iterative approach to tuning and tightening the MPC controller, a series of 

seven hour simulation runs were conducted to evaluate the system. Seven hours of 

simulation time equates to about twelve weeks of ‘real-time’. The seven hour runs were 

conducted for the series of scenario evaluation tests outlined in Section 6.5 which 

includes: 

 Evaluating the MPC1 controller structure, results for this is given in sections 

6.5.1 and 6.5.2; 

 Evaluation of the MPC2, results for this is given in Section 6.5.3 ; 

 Evaluating the optimiser on MPC1 controller, results for this given in Section 

6.5.4; 

 PID controller evaluation and ‘uncontrolled’ scenario analysis is provided in 

Section 6.5.5. 

6.5.1 MPC1 

The simulation process is bottlenecked in capacity just like the industrial processes 

benchmarked in the feasibility study. Therefore for a given design and capacity 

availability, optimum setpoints can be identified and only then can the process be fully 

optimised. Due to the process continuing to be inhibited by capacity, the level of feed 

into thickened sludge tank has to be reduced or the tank sizes increased to enable the 

process to be optimised. Therefore the simulation can serve as a test bed for designing 

new plants.  
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Through setting and tightening constraints on the thickened sludge tank level, the tank 

level is maintained without tripping. The tanks increase AD feed rate to keep the tank at 

the low level resulting in increased biogas production and led to the bottleneck moving 

to the gas holder. As CHP units are run at maximum speed, increase of gas flaring 

occurs.  

The mean of the thickened sludge tank and the digester feed rate plot shown in Figure 

6.12 are close to each other; 606 and 611 for the sludge tank feed and the digester feed 

respectively considering the large ranges as indicated by the standard deviation which, 

is 581.16 and 181.19 for 288Q.ME and 491P.ME respectively. The digester feed rate for 

the purpose of stability and control needs to have minimum standard deviation. To limit 

this gas holder level setpoint is kept to a minimum of 9 to avoid hitting the low 

constraint setpoint of 8 which is required for maximum efficiency of the CHP operation. 

Tighter control is required on the thickened sludge tank level due to the large 

disturbance of incoming sludge to the site. Giving the tank lots of head room enables it 

to accommodate variation when sludge availability increases and reduces as the changes 

are very rapid over a large range. For this reason the tank level 332Q.ME is set as a soft 

constraint with high and low constraint limits as 60 and 40 %, respectively. The tight 

constraint limits enable the tank to adjust without hitting the levels where trips occur. 

These tight constraint limits are required for ideal control of the industrial process.  

The digestate tank level and centrifuge operation can be controlled fairly easily due to 

the feed forward information from AD feed rate. Temperature is controlled very well 

and this was expected as most industrial sites have reliable temperature control. 

The key findings from the simulation assessment can be summarised as follows: 

 The feed to thickened sludge tank level i.e. the sludge inventory on site changes 

quickly and is unpredictable, therefore prediction of incoming feed is not 

possible. The aim was to implement disturbance profile modelling into the 

controller design to help the controller better predict changes; 

 Temperature is best controlled by the feed rate for cooling with cold sludge feed 

making heating more difficult as cold sludge is continuously added. The next 

factor affecting temperature is the cooler or boiler settings followed by ambient 

temperature and CHP speed respectively; 
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 The best setpoints are identified to best control the process with constraints 

settings based on system dynamics and process understanding. 

With respect to the aims of this study, it is evident that an advanced controller such as 

MPC can reduce the limitations of inventory for a constraint optimisation problem such 

as this. This can be carried out through measurement accuracy, speed of response, 

stability and relative stability and sensitivity. Process prediction is only as good as the 

underlying model, then knowledge and account of eventualities and variability is 

essential to maintaining effective control. Disturbances can be a result of change in 

process dynamics, measurement noise or external factors. 

In summary, the model predictive controller has been shown to significantly improve 

the process.  Best temperature settings for various scenarios are identified. An advanced 

controller such as MPC can be used to effectively control the multi-constraint, nonlinear 

characteristic of the process. The MPC calculates a future set of moves to avoid the 

constraint violation. This has been shown to improve the process in a simulation 

environment as shown in Figure 6.17; where about 40 % increase in biogas production 

can be achieved at 13 % lower average temperatures. 
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Figure 6.17 Inventory improvement results 
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6.5.2 Cost benefit analysis of MPC1 

The MPC1 model is further evaluated on cost benefit basis to quantify the financial 

gain from the controller. There are costs benefit elements associated with several 

parameters which are calculated by the simulation. These cost and benefit elements 

were modelled into the simulation as shown in Figure 6.18 to yield the total 

simulation cost benefit signal shown at the bottom of the plot in black. The cost and 

benefit elements are: 

1. Savings associated with CHP electricity generation, the benefit is calculated 

based on the following energy tariffs, shown in the blue (top) in Figure 6.18. 4.6 

p kWh
-1

 - before 07:00, 13.3 p kWh
-1

 - between 16:00 and 19:00 and 6.7 p kWh
-

1
 - any other time. 

2. Cost associated with the thickened sludge silo tripping on a high level, resulting 

in no sludge being imported onto site until the 'backlog' is cleared, therefore a 

cost penalty of £1000 day
-1

 for 24 hours is applied. This is shown in green in 

Figure 6.18. 

3. Cost associated with the thickened sludge silo tripping on a low level is shown 

purple in Figure 6.18. This requires the operator to do some work to clear the 

trip and reset the plant, therefore a cost penalty is applied with the penalty of 

£600 day
-1

 for four hours.  

4. Cost of the digestate silo tripping on a high level leading to the operator having 

to clear the trip and reset the plant, therefore a cost penalty of £600 day
-1

 for 

eight hours is applied. This is shown in dark yellow in Figure 6.18. 

5. £600 day
-1

 for six hours is applied to the gas holder tripping on a high level, 

resulting in the operator doing some work to clear the trip and reset the plant. 

This is shown in light purple in Figure 6.18.  

6. £600 day
-1

 for six hours is applied the digestate silo trips on a low level. This is 

shown in orange in Figure 6.18, with all the cost penalty elements tripping the 

tanks acting in on or off mode. 

7. Electrical energy cost associated with running the adiabatic coolers is shown red 

in Figure 6.18. The conversion efficiency between electrical energy and thermal 

energy is assumed to be 50 % and  the benefit is calculated based on the energy 

tariffs of 4.6 p kWh
-1

 - before 07:00, 13.3 p kWh
-1

 - between 16:00 and 19:00 

and 6.7 p kWh
-1

 - any other time. 
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8. There is a fuel energy cost associated with running the backup boiler is shown in 

blue (bottom) of Figure 6.18.  The boiler running on distillate fuel oil. 
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Figure 6.18 Signals associated with ‘real time’ cost calculations 

 



 

  154 

The cost and benefit elements of the system are evaluated through changes in the 

temperature setpoint. This is because temperature crucially effects the benefits of the 

system, namely biogas production as this is modelled with the biogas correction factors 

shown in Table 6.1, 6.2 and 6.3 in Section 6.2.2 and also the cost elements associated 

with cooling and controlling the system.  

Mesophilic digesters generally operate around 35˚C with a range between 25-45˚C. The 

optimum temperature varies depending on the feedstock composition (Monnet, 2003). 

Overnight runs (7 hours of simulation time, equivalent to about 3 months of ‘real life’ 

time) of the simulation were conducted at temperatures between 25-40˚C. The aim was 

to evaluate best temperature condition for the operation of the simulation at set 

conditions with the hypothesis that the optimum is around 35˚C.  

Table 6.6 shows a summary of results from 14 overnight runs showing the effect of 

temperature variation on the number of trips as previously listed in Table 6.4, CHP 

energy savings and total simulation cost benefit analysis.  The analysis of the trips 

included: 

1. The number of trips occurring – calculated from number of times any of the 

level trips occur; 

2. % of time trips occur – this is calculated as the % time taken to reset the level 

trips; 

3. GBT trip on high thickened sludge tank level (H TsT);  

4. AD trip on low thickened sludge tank level (L TsT); 

5. AD trip on high digestate tank level (H DigestT);  

6. Centrifuge trip on low digestate tank level (L DigestT); 

7. Flare on high gas holder level (H GHL); 

8. CHP trip on low gas holder level (L GHL); 

9. AD feed trip on high gas holder level (H GHL). 

Together these 9 analyses of the trips together with the savings achieved by the CHP 

unit yield the total simulation cost benefit analysis on the basis of the hierarchy of 

control objectives and constraints set in Table 6.5.   

Table 6.6 shows that lower temperature settings i.e. below 28˚C operate at a cost and 

higher temperatures produce benefit for the system and therefore the digester should be 

run 35 and 38˚C. This reflect the temperature effect on biogas production modelled with 
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a biogas correction factors shown in Table 6.1, 6.2 and 6.3 in Section 6.2.2, and follows 

a parabola distribution as shown in Figure 6.20. 
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Table 6.6 Cost benefit associated with temperature 

 

 Temperature 

(˚C) 

No. 

of 

trips 

% time 

of trips 

occurring 

CHP 

energy 

savings 

Total 

simulation 

cost 

benefit 

GBT 

Trip 

on H 

TsT 

AD 

Trip 

on L 

TsT 

AD trip 

on H 

DigestT 

Centrifuge 

Trip on L 

DigestT 

Flare 

on H 

GHL 

CHP 

trip on 

L 

GHL 

AD 

feed 

trip on 

H 

GHL Run 1 25 513 101.7 538.6 -2297.17 197 0 88 0 0 228 0 

Run 2 26 483 94.9 582.03 -2445.9 199 0 87 0 0 193 0 

Run 3 27 425 86.3 643.6 -2379.14 203 0 88 0 0 134 0 

Run 4 28 362 78.2 696.1 -2364.27 203 0 87 0 0 70 0 

Run 5 29 322 75.9 740.56 -2340.86 207 0 90 0 2 30 0 

Run 6 30 293 72.9 799.93 -2319.04 202 0 88 0 1 0 0 

Run 7 31 395 49.9 1307.9 -255.56 347 0 0 0 32 0 16 

Run 8 32 395 50.8 1413.32 -11.38 338 0 0 0 35 0 22 

Run 9 33 430 54.1 1449.15 -27 354 0 0 0 44 0 32 

Run 

10 

34 455 60.8 1441.74 -193.7 332 0 0 0 84 0 39 

Run 

11 

35 691 65.8 1440.63 -391.87 350 0 0 0 291 0 50 

Run 

12 

36 1533 77 1452.89 -483.05 383 0 0 0 1073 0 77 

Run 

13 

37 1529 75.7 1465.67 -910.59 365 0 0 0 1092 0 72 

Run 

14 

38 1101 70.9 1465.61 -2732.98 327 0 0 0 738 0 46 
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Analysis of the baseline analysis of the simulation performance without the 

controller showed an average biogas production of 13,500m
3
 day

-1
 as shown in 

Figure 6.19, a CHP energy saving of £973 day
-1

 and all the seven level trips shown 

in Table 6.4 tripping. With the controller active, CHP energy saving is increased to 

£1,465 day
-1

 and the lower levels of the baseline only show low temperatures below 

30˚C. If this average is maintained throughout the year, there is a saving of £492 

day
-1

, equating to approximately £179k a year. The cost to implement a control 

project at Perceptive Engineering Ltd had two elements, the software and the 

engineering services. The software generally cost around £12,000 for a “small” site, 

and £18,000 for a “large” site, although this varies between projects. The cost for 

engineering services varies also and generally the more manipulated variables, the 

greater the estimated cost. For a site similar in size to the simulation, this would be 

of the cost of £45k; making the total cost of the controller £63k. For this cost, the 

payback time for installing the controller would be less than 6 months. 

 

Figure 6.19 Biogas produced 

Although the controller is shown to increase CHP energy savings by up to 33 %, real-

time optimisation and multivariable control systems typically add 6-10 % value to 

process (Cutler and Perry, 1983). This is therefore a large saving on the CHP units. The 

total cost benefit monetary value achieved for the simulation gave negative cost values 

as shown in blue in Figure 6.20. The plot shows the cost benefit value achieved for 

temperatures between 25 and 30°C is constant. The shape of the plot between 30 and 
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38°C however shows a bell curve or normal distribution plot with a peak at 33°C. The 

negative values indicate that the plant cost money and made no profit with the 

controller. However the negative values were a result of high cost penalties associated 

with tripping the tank levels. The baseline simulation without the controller resulted in a 

total cost of £2,135 day
-1

. By setting the baseline as a zero cost benefit value and the 

shifting the actual cost benefit values up by £2,135; Figure 6.20 also shows the shifted 

total simulation cost benefit in red. This therefore gave highest cost benefit value for the 

system at about £2,100 day
-1

. 

 

Figure 6.20 Total simulation cost benefit 

There is constant benefit up to 30˚C before a large positive increase at 31˚C as shown in 

Figure 6.20. The plot shows the optimum cost benefit gain to be around 32 to 33˚C. 

This is again at the lower end of the mesophilic specification. The plot also shows total 

benefit in £ day
-1

 to be below zero at all temperature settings. From the industrial data, 

this is not true of AD systems as the process generates positive revenue. This is a result 

of the cost elements built into the simulation design, where the balance of energy 

produced revenue and cost associated with tank trips are not at the correct settings, 

though the shape of the curve is valid for AD systems and changes in the cost values 

will only shift the plot up. The revenue calculation does not also take into account 

ROCs (renewable obligation certificate), which doubles the value of energy produced 

on ADs.    
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Figure 6.21 illustrates the various trips occurring for the overnight runs at different 

temperatures. From the results it is clear that for the temperature range of 25 to 38°C 

studied using MPC1, the trips on the AD for the low thickened sludge tank level and the 

centrifuge trip on high digestate tank is totally eliminated by the controller. Therefore, 

the main issues for the overnight runs are the trips on high thickened sludge tank level 

and the AD trip on high digestate tank level. This means that the level of inventory 

coming into the site may be higher than what the plant is capable of processing. The 

other level trips reflect the temperature effects on gas production as at low temperatures, 

the CHP trip on low gas holder level occurs whilst at high temperatures; gas is flared 

and the AD trip on high gas holder level occurs. This is expected due to the temperature 

effect on biogas production modelled with a biogas correction factors shown in Table 

6.1, 6.2 and 6.3 in Section 6.2.2. However the level of trips is greater at high 

temperatures and should be avoided as the trips occurring at high temperatures may be 

of greater cost due to gas flaring and tripping the CHP. 

 

Figure 6.21 Number of trips 

Figure 6.22 shows a plot of CHP energy savings against temperature settings between 

25 to 38˚C. This shows a steady linear increase between 25 and 30˚C followed by a 

large increase in CHP energy savings between 30 and 31˚C of about £510.  The plot 

illustrates that the peak energy saving is at 33˚C and this temperature setpoint was 

related to the gas flaring at high temperatures and therefore increasing the temperature 

above 33°C does not significantly increase CHP energy savings. 
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Figure 6.22 CHP energy savings against temperature 

 

Figure 6.23 Number of trips occurring versus temperature 

 

Figure 6.24 % of times trips occur 
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Figure 6.23 and Figure 6.24 shows the give number of trips occurring and the % of time 

trips occur. There is high level of trips occurring around 36 to 37˚C resulting from trips 

in the gas holder leading to gas flaring. This is due to the increase in high gas 

production resulting from the high temperatures. The gas is being flared because the 

CHP units have reached their maximum capacity. Figure 6.23 also show the temperature 

settings where minimum trips occur. This is highlighted by the black circle between 31 

and 32°C setpoints. The % of time the trips occur shown in Figure 6.24 is also lowest at 

these setpoint. This is, therefore, the best setpoints for achieving lower levels of trips 

occurring at the lowest amount of time.   

The key findings from the simulation assessment can be summarised as follows: 

 Significant reduction in level trips, with total elimination of AD trip on low 

thickened sludge tank level and centrifuge trip on low digestate tank level; 

 A key setpoint in the process is around 31˚C, where the level trips are at zero, or 

stable. Total simulation cost benefit and CHP energy savings increase 

significantly above 31˚C; 

 Optimum temperature for total simulation cost benefit gain was found to be 

around 33˚C instead of the predicted optimum of 35˚C. This is specific to the 

simulation conditions, as sludge inventory is high, high temperature operations 

incur more trips and the cost element associated with these within the simulation 

makes operation at high temperatures not cost effective. The optimum is 

therefore process dependent as at different capacities and operational constraints, 

the optimum will vary. 

6.5.3 MPC2: System dynamics 

This section reviews the results for the MPC2 controller depicted in Figure 6.8. This 

controller was designed to investigate the benefits of separating the slow and fast 

dynamic parameters in the simulation as AD system has varying dynamics.  

On observing the controller in the simulation, it became evident that the slow dynamic 

structure was too slow to react to the changes in the fast dynamics structure and effected 

the rate of response in meeting the controller objectives. This can be demonstrated in 

Figure 6.25. The plot show gas holder level (purple) has fast dynamics and is affected 

by biogas production which is affected by digester temperature (blue) and feed rate 

(green). As the gas holder level increase to the point of tripping the level, the feed rate 
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and or temperature should reduce dependent on the state of those values. In this 

scenario, the temperature continues to increase, which maintains the gas holder level at 

high and therefore tripping and feed rate changes gradually. The lack of reduction in the 

feed rate at a faster rate is supported by the thickened sludge tank level, which is at its 

high levels and also tripping and therefore the high thickened sludge tank level requires 

the feed rate to increase.  This is an example of the controller struggling to meet the 

hierarchy of control objectives and constraints shown in Table 6.5. The gas holder tank 

and thickened sludge tank tripping are the top two objectives the controller is aiming to 

avoid. For this type of scenario assessment, the controller appears to struggle to meet 

the various objectives set. This may be due to inaccurate dynamics splitting. 

 

Figure 6.25 Slow and fast dynamics 

The findings from MPC2 assessment can be summarised as: 

 Reduction in the number of level trips in general and % of time trips occurring; 

 Temperature setpoint is less controlled; 

 Process more erratic and therefore further tuning may be required to smooth the 

controller; 
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 Gravity belt thicker trip on high thickened sludge tank tripped above 197 times 

for all MPC1 simulation runs, however for the MPC2 model; this is reduced to 

77. Which is over a 60 % reduction in the number of trips occurring for the GBT 

system; 

 The overall simulation cost benefit did not improved for the settings. 

Although the findings show that the MPC2 simulation system is less controlled 

smoothly in comparison to the MPC1 structure, there is a significant reduction in the 

number of level trips occurring in the system. Further assessment can be conducted on 

this model to ascertain whether any further improvements can be made. 

6.5.4 Optimisation 

A quadratic programming (QP) optimiser discussed in Section 4.3.1 and 4.3.3 is applied 

to the MPC1 structure in Figure 6.7 and evaluated. The first objective of the QP 

optimiser is to keep the process within the bounds of its constraints followed by cost 

minimisation.  

 

Figure 6.26 Controller Management page of flat structure with optimiser 

For comparison purpose; all optimum settings for the MPC1 structure were kept as 

shown in Figure 6.26, depicting the controller management page with the optimiser 
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switched on. When the QP optimiser is active, the solution is ‘relaxed’ in most cases. 

This happens when the QP cannot find a feasible solution within the defined constraint 

limits, therefore the constraint limits are allowed to be ‘relaxed’ according to the 

priority settings that have been provided (Perceptive Engineering Ltd, 2012). This 

means the solution provided is not the optimum operating point of the process but a best 

attempt was carried out to satisfy the constraints and priorities. QP ‘relaxed’ output or 

infeasible solution may be due to model errors or incorrect model set-up. 

 

Figure 6.27 Tighter control achieved with optimiser 

The result from the optimiser showed tighter control is obtained with temperature values 

deviating less than 0.5˚C. Although constraints were violated at some reduced instances, 

the optimiser appears to control the process well as shown in Figure 6.27. The figure 

shows primary digester temperature (purple), feed rate (blue), thickened sludge tank 

level (red) and gas holder level (green). As the thickened sludge tank reduces close to its 

low limit level trip, the feed to the AD gradually reduces to enable the thickened sludge 

tank level to increase. A decrease in feed rate cause the gas holder level to reduce 

further due to the low feed rate and this causes the temperature to increase to enable 

more gas production.  

6.5.5 Controller performance comparison 

This section compares MPC1, MPC2 and the MPC1 with the optimiser PID controller 

and the base model without controller. The best performing temperature setpoint for the 

simulation was at 33ºC and thus the simulated results were at 33ºC. Figure 6.28 depicts 
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the CHP energy savings and total simulation cost benefit in £ per day. The results 

favour the benchmark MPC1 controller shown in dark blue, which yields highest CHP 

energy savings for the system and high total simulation cost benefit value. This is 

followed closely by the MPC1 with the optimiser controller shown in light blue and 

then the MPC2 (purple). The performance with a ‘no controller’ shown in red performs 

better than the PID controller and although the ‘no controller’ yields £0 of total 

simulation benefit to the system, the PID controller results in £510 cost.   

 

Figure 6.28 Controller evaluation comparisons: CHP energy savings and total 

simulation cost benefit 

The benefit of the optimiser on MPC1 was evident on comparing the number of trips 

and the % time of time the trips occur. There appears to be a significant reduction in the 

number of level trips occurring with the MPC1 and optimiser as shown in Figure 6.29 in 

dark blue. The figure shows a reduction in trips with the optimiser for up to 92 % less 

from the ‘no control’ benchmark simulation system. This is a significant finding and 

may help formulate the case for implementing an optimised solution for the actual 

industrial application for the project.  

MPC2 plotted in red is shown to outperform MPC1. This is a significant finding as 

MPC2 was shown to have 60 % and 63 % reduction in level trips and % of time the 

trips occur respectively, whilst MPC1 was shown to have 38 % and 49 % reduction in 

level trips and % of time the trips occur respectively. There separating the various 

-510

-10

490

990

1490

1990

CHP energy savings Total simulation cost/benefit

£
 p

er
 d

a
y

 

MPC1+ Optimiser MPC1

No Control PID

MPC2



 

166 

 

dynamics in the simulation enables reduction in level of trips. However MPC2 yields 

lower energy savings   and total benefit than MPC1. 

 

Figure 6.29 Controller evaluation comparisons: No. of trips and % time of trips 

occurring 

Although the PID controller yields 2 % reduction in level trips than the ‘no controller’, 

the PID controller takes longer to reset itself as shown in Figure 6.29 purple with the 

longest % of time the trips occur. The 2 % in level trips can potentially increase by 

developing multiple PID controllers on the system. However the reduction in level trips 

did not reflect the CHP energy savings and the overall cost benefit of the system. This 

may be due to the values given to certain cost elements within the model. For example, 

priority settings and actuator move weights were tuned to ensure low levels of trips 

occur as the primary aim of the simulator. Therefore the simulator aims to limit the level 

of tank trips before optimising CHP energy savings and biogas production to improve 

the overall cost benefit of the simulator. 

6.6 Discussions and conclusions 

The inventory simulation was subject to several assumptions and therefore the results 

presented here have to be treated with caution. There is however significant evidence 
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that an advanced controller such as MPC can significantly reduce the number of level 

trips; as per the scenarios tested in the analysis. 

The simulation results illustrate that the multi-objective control problem of AD can be 

controlled with respect to scheduling and inventory. The simulation also highlights the 

problems associated with the system dynamics. The large variability in the system 

means variables such as temperature settings take a considerable time to heat or cool 

down with the boiler cooler settings whilst the cooling effect on increased feed is more 

instantaneous. Therefore the benefit of separating the dynamics in MPC2 has been 

shown to significantly reduce the number of level trips occurring. 

There remain significant trips still occurring in the system, especially for the MPC1, 

which were mainly due to the system capacity to cope with the high sludge inventory. 

The degree of improvement with respect to control and efficiency of the process 

controllability is subject to the design. Capacity plays a detrimental role, as findings 

from all benchmarked sites showed a bottleneck resulting from the inventory. This had 

led to AD systems being historically designed at larger scales than operational intent. In 

spite of this, these processes are still subject to capacity limitations. With respect to the 

AD consortium for this project, this was an area where better understanding is required 

for future designs. The design limitation issue cannot easily be removed and companies 

cannot continue to design larger plants than needed for operation to enable better 

flexibility for inventory and scheduling due to economic factors. The aim therefore is to 

apply better control and optimisation solutions to improve the process and reduce the 

limitation of capacity. This will be achievable not just through better monitoring but 

increased and combined understanding of the various areas of the process. Strong 

integration of microbial, bio-physiochemical and engineering for improving the 

economics of the process will yield better improvement of the control of AD processes.   

The existing control system at Blackburn WwTW is reduced to temperature and level 

controls. The benchmark study showed that this level of control was not efficient for 

controlling the process; however the data available lacked capturing of the system 

dynamics for modelling for control implementation. The simulation here is used as a 

basis to evaluate the specific dynamics, correlations and relationships needed to design 

controllers for a potential system. This would require plant testing or formally DoE to 

yield robust data for modelling.  Future activities following on from the assessment 
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conducted so far therefore includes plant testing to generate data robust enough for 

constructing models as per the simulation to evaluate the MPC1, MPC2, MPC1 plus 

optimiser and PID controllers for controlling inventory and optimising the AD system 

as a whole.  

Generating robust data for modelling requires instruments that can measure the required 

parameters capturing the dynamics, correlations and relationships within the system. In 

some such cases robust instrumentation was unavailable and as such opportunities for 

inferential measurements were investigated. Chapter 7 is an example of such 

investigation which aimed to test the capability of building volatile solids inferential 

sensor model.  
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7 Volatile solids model 

7.1 Introduction 

Lack of instrumentation is the main control bottleneck in the AD process. Sensors and 

analysers are necessary to reduce the variability related to changes in the initial 

conditions, uncertain kinetics and input concentrations of the process. Without 

knowledge of the process conditions, the process is inevitably difficult to control.  

Inferential measurement is a powerful and increasingly popular methodology that 

allows process quality and difficult to measure process parameters to be inferred from 

other easily measurable parameters such as temperature, flows and pressures. This study 

investigates the opportunities for developing inferential sensor for volatile solids (VS). 

7.2 Digestate 

Traditionally, the objective of AD in wastewater treatment plants (WwTP) has been that 

of sludge stabilisation and odour reduction. Biogas production, solids destruction and 

pathogen reduction are now key areas of interest with biogas being the main product. 

The second by-product, digestate, is the solid component that remains after digestion, 

and is typically used for agricultural purposes or sent to landfill. Digestate quality is 

thus becoming more important with industry exploiting it as a valuable end-product. 

The availability of instrumentation for the monitoring of digestate quality is limited and 

generally offline. Risk-based management and control procedures are in place to 

manage digestate quality, in particular where the intended use is agricultural land. The 

quality of the digestate must comply with appropriate microbiological standards, 

including the safe sludge matrix (SSM) (Davis et al., 2010). Digestate quality attributes 

as defined by the Publicly-Available Specification 110 (PAS110) (WRAP, 2010) and 

the SSM include the level of VS, volatile fatty acids (VFA), residual biomass potential 

(RBP), animal by-product (ABP) and hazard analysis and critical control points 

(HACCP) for compliance with declarations of pH, total nutrients (Nitrogen, 

Phosphorus, Potassium), total solids (TS), and loss on ignition (WRAP, 2010) required. 

PAS110 ensures that the AD system uses suitable input materials, which are effectively 

processed to produce digestate product in sufficient time. The process must also be 

managed and monitored to meet both market needs and for the protection of the 

environment. The specification offers digestate producers guidelines for the AD 

process, as industry accepted specifications for digestate and ADs are unavailable. 
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Process monitoring in the fermentation industry is well advanced and established. The 

similarities of such processes are aligned with AD and therefore technological 

developments in this area are interest to AD researchers. Process Analytical Technology 

(PAT) enables monitoring of complex biological processes using electrochemical and 

spectroscopic instruments. By applying PAT with chemometric multivariate data 

analysis to the AD process, it could ensure the optimum potential of the AD process to 

reach new levels of stability, robustness, reliability and effectiveness (Madsen et al., 

2011). 

Chapter 2 and 3 demonstrated the strong requirement for increased robust 

instrumentation, for the AD process, which is the main bottleneck in process control 

improvement. There is a strong interest to characterise the quality of digestate but to 

date, there is no set specification for digestate quality. SSM and PAS110 are used as 

guidelines to meet HACCP compliance. Therefore the availability of an online digestate 

quality attribute through the use of PAT and chemometric multivariate analysis would 

enhance the control of digestate quality and could potentially increase the value of the 

digestate. 

Biosolids is the term used to describe the treated solids fraction of the digestate or 

stabilised sewage sludge (Lawrence K; Wang et al., 2008). The safe sludge matrix 

(Chambers et al., 2001) governs the regulation for applying sewage sludge on 

agricultural land. This is supported with processing requirements, storage and 

application procedures to reduce the risk to human health and the environment. The 

stability of the digestate is defined by several factors such as the level of pathogens, 

odour and reduction in further decomposition of the organic materials involved (Gomez 

et al., 2005). There is no single accepted analytical method to measure this multi-

attribute stability factor. However there are several individual tests to define the degree 

of stabilisation. Digestate as a quality output measurement of the digestion process is 

dependent mainly on feed sludge composition, digestion temperature and retention time. 

The process greatly depends on influent feed composition and therefore in order to 

model digestate quality, knowledge of the feed composition is required. The quality test 

for digestate is based on test for stability, test for compliance and declaration of other 

quality variables. These are: 

 VS; 
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 VFA (0.43g COD gVS
-1

); 

 Residual biomass potential (RBP) 0.25l gVS
-1

; 

 Animal by product (ABP)  and HACCP compliance;  

 Declaration of pH, total nutrients (Nitrogen, Phosphorus, Potassium), TS, loss 

on ignition. 

The compliance element is based on the digestion conditions of temperature and 

retention time and is the main aim during digestion to meet the HACCP requirement. 

This requires digesting the sludge for a set period of time at a set temperature dependent 

on the characteristic of the feed stream.  

Total solids (TS) measure the solids in the digestate and are composed of insoluble 

suspended solids (SS) and soluble compounds. Volatile solids is the main organic 

fraction which can be burnt off from the SS (Alturkmani, 2010). The quality of digestate 

is defined by the organic and inorganic matter present, in the absence of phytotoxicity 

and weed seeds. 

The key parameters affecting digestate quality are temperature and retention time (Seadi 

and Holm-Nielsen, 2010). However due to the highly variable feed compositions in the 

feed and feed flow, these parameters may affect digestate quality immensely. The 

digestion process offers valuable nutrient source as the process generally enhances the 

availability of nutrients. Characterisation of digestate quality requires the stability 

factors and declaration of the pH and nutrients to be modelled. Analysis of the nutrient 

content is very important, as it affects the price for selling digestate. This is calculated 

from the sum of nutrients (N, P2O5 and K2O) available to plants for land application. 

Provided there are measurements for these variables, the digestate quality can be 

calculated. Chapters 2 and 3 demonstrated current methods for measuring digestate are 

limited to irregular, infrequent and offline measurements of % DS and volatile matter.  

Instrumentation for measuring digestate quality parameters as determined by pH are 

readily available and implement on industrial scale AD systems. Control of nitrogen 

removal rate and phosphate precipitation are measured (Ingildsen, 2002), where N, P 

and K nutrient values are measured offline. VFA sensors are available on pilot scale and 

information for industrial scale application is not available. Residual biomass potential 

can also be calculated offline. There are testing procedures for all these variables as part 



 

172 

 

of the PAS110 criteria (WRAP, 2010). Table 7.1 highlights the test procedures and 

requirements for digestate quality measurements. 

Table 7.1 Digestate quality test procedures 

Test Method Test 

period 

Accuracy or 

reproducibility 

RBP Measure of stability by measuring the 

total biogas production within a specified 

period of time, at 35˚C 

28 days Affected by high VFA 

concentrations 

VFA Online instrumentation available for 

AnaSense, Capilex etc. methods include 

wet chemistry methods of distillation, 

colorimetric technique, titration and gas 

chromatography such as the Shimadzu 

GC-2010 (Shimadzu, 2012). 

Minutes Weak concentrations are 

difficult to detect, 

accuracy increases with 

high concentrations. 

VS Commonly two step drying method by 

heating the sample to about 105˚C to dry 

off the water, the weighted dry cooled 

sample is then dried further at 550˚C to 

dry off the VS 

About 7 

hours 

Affected mainly by the 

temperature and drying 

time. 

 

7.2.1 Volatile solids 

Volatile solids are organic compounds found in animals and plants. The biological 

digestion process of AD breaks these solids down and converts into CH4, CO2 and H2 

etc. Volatile solids in the digestate is determined by the % DS fed into the digester, the 

sludge composition, digestion temperature and the % DS of the digestate. VS is 

analysed by drying a sample of the digestate in high temperature ovens. This is an 

important digestate quality output test for stability and the % VS remaining in the 

digestate will eventually break down post digestion and potentially pollute the 

environment (through land application as biosolids). High VS content in the digestate 

means fewer solids are converted into biogas during digestion and therefore results in a 
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waste of resources. There is therefore an economic and environmental reason for 

reducing the level of VS in digestate. Measurement of VS enables a quantitative 

measure of the organic matter but fails to account for biodegradability of the solids in 

the digestion process. Therefore high VS (low degradation) levels post digestion may 

indicate process inefficiency or the presence of organic matter like lignin which are not 

biodegradable (Schievano et al., 2011). VS destruction rate is inevitably affected by 

many factors to including level of polymer added, digester operating temperature, 

mixing efficiency, retention time, characteristic of the microorganisms available, 

composition of sludge etc. These factors make the VS measure difficult in both 

prediction and estimation.  

VS provide an indication of the stability of the digestate and hence the stability of the 

process can be inferred. Online instrumentation for VS is not available and, although 

offline analysis can be conducted, the sampling rate is typically low and irregular. VS 

may potentially provide a better indication of the sludge quality (biochemistry) than 

other measurements such as % DS (Dry Solids Percentage). It is expected that VS will 

negatively correlate with biogas production, as an increase in biogas corresponds to an 

increase in the breakdown of organic molecules and therefore lower VS. The effect of 

temperature on VS may be more complex due to the non-linear relationship between 

temperature overall process performance. In general an increase in temperature from 

mesophilic to thermophilic increases the reaction rate and efficiency at which the 

organic solids are destroyed resulting in a lower VS (Buhr and Andrews, 1977). A 

negative correlation can be expected between VS and retention time, with VS having 

been shown to decrease with increasing retention time (Moen et al., 2003). 

Measurement test procedures for VS are also simpler than those conducted offline for 

VFA or RBP, as the test for VS does not require wet chemistry techniques such as 

titration, colorimetric and chromatography techniques as required for VFA (Palacio-

Barco et al., 2010).  For these reasons, VS is an important digestate quality attribute and 

the use of VS for online monitoring and control will potentially result in a tighter 

control on digestate quality. 

7.2.2 Soft sensor use in AD systems 

The behaviour of a process is indicated by the measurements made and are related to the 

state of the process. Information contained in many secondary variables reflects the 

behaviour of the primary variables. Therefore, the aim of this study is to investigate 



 

174 

 

whether secondary variables such as VS can be inferred from primary state variables 

such as temperature and feed flow. Figure 7.1 depicts a soft sensor application model; 

where the primary output measured is also connected to the estimator parameter. The 

estimator updates the soft sensor model or estimator. This is essential for the errors 

between estimated and measured primary outputs to be used by the estimator parameter 

to drive the parameters of the soft sensor model to yield a more representative value. 

Therefore the adaptive soft sensor is typically multi-rate systems with the estimation of 

the primary outputs are produced at a faster sampling rate of the inputs and secondary 

outputs.  

 

Figure 7.1 Soft sensor implementation 

7.2.3 Volatile solids soft sensor 

Soft sensors develop a relationship between a hardware sensor for a measurable variable 

and an estimation algorithm (software) to provide an online estimate of an 

ummeasurable variable (Chéruy, 1997). Due to the difficulty and the uncertainty in the 

modelling of an AD system, a data driven approach will be used for the monitoring of 

VS for the control of process stability and to meet compliance requirements. 

Volatile solids provide an indication of the stability of the digestate and may infer the 

stability of the process. Online instrumentation for VS is not available and, although 

offline analysis can be conducted, this often has low and irregular rates of sampling. VS 

may provide a better indication of the sludge quality (biochemistry) than other 

measurements such as % DS (Dry Solids Percentage). It is, in theory, positively 
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correlated with feed rate and negatively correlated with temperature, retention time and 

gas production.  

VS are affected by a number of factors that are important to consider for modelling 

purpose: 

 A higher temperature is shown to increase the speed of degradation and hence 

higher temperatures may result in lower VS levels; 

 The digester feed rate determines the retention time, and organic loading rate 

(OLR). By increasing the feed rate, the retention time is reduced and therefore 

the sludge spends less time in the digester resulting in higher VS levels 

potentially (Ponsá et al., 2008); 

 Feed composition is the main disturbance affecting VS levels, as digester biogas 

and digestate depend on the composition of the incoming sludge. This includes 

the level of VS entering the digester and the composition of the organic 

compounds and microorganisms, and is therefore the primary source of 

variability and the main disturbance (Ashekuzzaman and Poulsen, 2011);  

 Environmental factors such as pH, mixing and microorganism population also 

affect VS. Antagonism (the suppression of some species of micro-organisms by 

others), acclimation (adaptation to a new environment or a change to the old 

environment) and synergisms (micro-organisms acting together for mutual 

benefit) together can affect the level of VS that remains after digestion (Chen et 

al., 2008).  

Assuming linear relationships exist, these factors can be captured by the Equation VS = 

Ax + By + e; where A is the OLR of the system, B is the temperature, x are the 

unmeasured disturbances entering the system, y are the environmental factors including 

pH and mixing and e is the error. Challenges faced in the development of a VS soft 

sensor are associated with the unmeasured disturbances and the other unknown 

environmental factors associated with microorganism activity. 

To date there is no evidence of the application of a VS soft sensor. The reasons for lack 

of studies into VS soft sensor development and commercial availability of robust online 

instrumentation for VS are the same for other parameters such as VFA and % DS. These 

reasons can be grouped into two (1) reasons within the industry (specifically water 
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industry where AD systems are more common) and (2) difficulty in designing of robust 

instruments for treating bio-products such as digestate. 

7.3 Blackburn AD volatile solids soft sensor development 

Data from Blackburn WwTW anaerobic digestion process is used as the industrial data 

for use in the VS soft sensor development study. The soft sensor development procedure 

is outlined in Figure 4.6. These steps are common to most data based modelling 

techniques with steps 2, 3, and 4 being the most important stages for getting a good 

model. The availability of ‘good data’ is dependent on: 

 Sensor availability: The ‘right’ parameters being measured, having the right 

instruments available to get the required data; 

 Accuracy and validity  of the measurement systems: for evaluation of systematic 

errors; 

 Precision and reliability of the measurement systems: to account for random 

errors; 

 Sensitivity and dead band of measurement systems. 

 Sampled at the right rate and or frequency to capture the dynamics within the 

process. 

These make the selection of ‘right’ data a key step to obtaining a good model. 

Furthermore ‘good data’ is about process coverage also. This needs more thought 

coming up with more science and appropriate what constitutes ‘good data’. If the initial 

data going into the modelling procedure is not robust enough, then inevitably, it will be 

difficult to obtain a robust predictive model using such data. 

7.3.1 Data selection 

The Blackburn dataset contains approximately 396 signals, collected within the time 

range of 14 January 2010 13:00 to 14 July 2010 12:00, i.e. about 188 days. The data is 

time-aligned with a sampling interval of five minutes. Screening of all 396 signals was 

conducted to select both online and offline signals which may have effect on the VS of 

the digestate. There are signals which may affect VS from the start of the process in the 

primary settlement tanks where offline measurement such as chemical oxygen demand 

(COD), ammonia and soluble solids to digestate analysis of % DS and volatile acids 

(VA). Current data from Blackburn WwTW provide offline information for digestate 

volatile matter (VS), pH, alkalinity, volatile acids (VA), and percentage dry solids (% 
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DS). These are laboratory data extracted approximately twice per week. These fail to 

meet the requirements of the PAS110 directive and general assessment of digestate 

value, which includes: digestate stability measurement for residual biomass potential 

(RBP), data for the log kill (HACCP), and nutrient levels for Nitrogen (N), Phosphorus 

(P) and Potassium (K). These are important for setting the price for the digestate, as per 

the AD calculator. 

The offline VS, VA, pH, and % DS may be used to estimate the quality of the digestate. 

Modelling of all these parameters will require a multiple-input multiple-output (MIMO) 

system that will be difficult to assess the quality of the digestate. In such cases, 

experience indicates that, multiple multiple-input single-output (MISO) models are 

preferable. The plan is therefore to develop a MISO system for modelling VS, pH or 

VA. From the data provided there are several signals available for the development of a 

possible soft-sensor. However most of these signals are only available offline. Online 

signals that may be useful in developing the soft sensor include: 

 Digester liquid and foam levels and flows; 

 Polyelectrolyte usage; 

 EH hydrolyse stage temperature in and out; 

 Pasteurisation stage temperature in and out; 

 Digester gas produced and pressure; 

 Digester temperature. 

There are different levels of measurements for the different processing units as depicted 

in Table 7.2. There are mixing and buffering tanks before or after each stage. The 

sampling time at each point therefore reflects the measure of the variable at the time and 

therefore temperature in the hydrolysis phase, is not a measure of the same sample in 

the digester at any particular point. Thus the measurements need to be time aligned. The 

sludge preparation area has few online signals but some useful offline signals regarding 

sludge composition. Data from this area will be excluded as all the feed stream is 

entered into the buffer tanks and continuous feed of the mixed sludge is fed to the 

thickening phase. Although there are good online data for the thickening stage, as a 

means of reducing variability in the system, the thickened sludge is entered into a buffer 

tank before feeding into the EEH, thus the tanks act as filters as well as delays. Without 

any details of the lag time for the thickening stage, the data cannot be time shifted to 
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reflect the digestion process. This is true for the other processing steps except the EEH 

stage which is known to take 1.5-2 days and therefore can be shifted to match VS. For 

this reason data selected for the modelling are extracted from the EEH and digestion 

phase alone. However the sludge flows from the EEH is split into the 4 digesters and 

there are irregularities as at times the total flow is directed towards one single digester. 

For these reasons, the EEH data is also excluded from the analysis. This leaves only 

variables during the digestion phase, for which due to limited instrumentation, most of 

the key parameters needed to characterise VS are unavailable, these include pH, 

alkalinity, VFA and sludge composition. 
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Table 7.2 Signal availability for different processing units 

 Sludge 

preparation  

Thickening  EEH Digestion Digestate 

Process 

function 

mixing imported 

food and sewage 

sludge with sites 

own sludge 

Removal of excess water and 

polymer addition to yield % DS 

between 6-8 % 

Separates hydrolysis and acidogenic 

stages from methanogenic stage. 

Inactivates pathogen, optimise process 

and reduce RT.  

Stabilisation of sludge, 

gas production and 

pathogen reduction 

Digestate cake 

preparation process. 

Main 

Processing 

units 

BAFF, sumps, grit 

removal, storage 

units  

Gravity belt thickener, polymer 

dosing unit, air mixing and 

thickened sludge buffer tank 

3 serial CSTR’s at 42˚C, 3 serial batch 

tanks at 55˚C and 2 water sludge or 

water HEX 

Adiabatic cooler,  4 

digesters 

Polymer dosing 

unit, centrifuge, 3 

buffer centrate 

balancing tanks 

Online 

signals 

Flows Sludge fed through thickener, poly 

usage. Unthickened sludge, buffer 

tank level, energy cost or usage and  

volume  

Thickened sludge flow in or out, tank 

level, boiler circuit temperature, 

hydrolyser or pasteurisation stage 

sludge temperature in or out, foam 

levels, energy cost and usage 

temperature, pressure, 

temperature, sludge 

flow, gas produced,  

foam depth and liquid 

level 

Levels, flow,  cake 

pile level, centrate 

speed, poly dosing 

flow or usage 

Offline 

signals 

Ammonia, BOD, 

COD, SS. 16 tank 

levels  

 

Ammonia, BOD, COD, pH, VS, % 

DS  

None None H2S, % DS, SS, 

alkalinity, pH, VA, 

VM 

Average 

process 

duration 

Continuous Continuous 2 days 14 days continuous 

Mode of 

operation 

Continuous Continuous Batch or Continuous Continuous Continuous 

Processing 

effects on 

VS 

Feed composition 

and sludge age  

Concentration of polymer, initial 

VS and % DS will have significant 

effect on final VS 

Temperature, hydraulic residence time, 

feed rate, and mixing will significantly 

affect VS 

Temperature, feed rate, 

retention time and 

mixing will significantly 

affect VS 

Not applicable 
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7.3.2 Data Pre-processing 

The process data generated is generally very noisy; as it contained a lot of errors, 

missing data and outliers it therefore required various pre-processing techniques to 

refine the data. The systematic pre-processing procedure is: 

 Handle missing data; 

 Outlier detection; 

 Data alignment; 

 VS offline data pre-processing to reflect the online data; 

 PCA. 

 

Figure 7.2 Data selector use to remove missing data 

There are large sections of data missing in the signals due to a possible power or 

operational failure as shown in pink on Figure 7.2. Due to the large level of missing 

data, the data selector was used to remove the data completely from the analysis. On 
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visual inspection of time series plot of the missing data, it was evident that some of the 

samples were outliers or errors. In Figure 7.3, plot of retention time for primary digester 

1 is shown as 570D.ME. On the plot there is a signal peaking at 867.47 days for 

retention time. This is a clear error as normal operating range for retention time is 

between 20 to 25 days or less for EEH digesters. Removal of the missing data and 

extreme outliers resulted in selection of 88.2 % of the data for analysis (these are signals 

that equal 1 on the data selector signal) with 11.8 % of the data removed. 

 

Figure 7.3 Signals post data cleaning and signal shifts 

Outlier detection is one of the initial steps in data analysis for obtaining a coherent data 

set. It is common that what may be seen through visual inspection as noise or error may 

not be necessarily bad data and that these outliers can carry important information about 

the process. As such removal of what may be deemed to be as outliers can lead to a 

model giving incorrect results, misspecification and biased parameter estimation (Ben-

Gal, 2005). The univariate hampel filter (Hampel, 1971; Hampel, 1974) addresses the 

issue outliers have on the robustness of an estimator. The hampel filter approach was 

then used to remove further outliers such as the spikes in feed and gas data.  
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Figure 7.4 Volatile solids signal from process data showing actual and pre-processed 

signals 

Figure 7.4 depicts plot of the VS signal from the process data where the top blue plot is 

the actual signal and bottom red is the pre-processed signal. The offline VS data has 50 

samples over the whole 6 months period of data collected compared to 17280 samples 

for the online signals. The offline signals are extracted 2 to 3 times per week and there 

are various factors affecting the sampling and analysis which needs to be taken into 

consideration, such as: 

 Multiple sampling points: the sample can be extracted from different points 

dependent on which pump is in use; 

 Sampled amount for analysis varies: an accurate measure of the analysis sample 

is not conducted but judged from experience. The initial weight is noted and the 

final weight is taken from it to give the loss in weight due to VS. It is evident 

that drying times effect VS values, the variation in weight can effect the drying 

time and therefore yields inaccurate measurement of VS; 

 Operator variation; 

 Data entry: the calculated VS values are entered into the PI historian system 

from which there can be errors, especially in matching the time stamped against 

the time the sample is taken; 
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 Control: there is little evidence of operator retraining or management systems to 

ensure tests are carried out correctly. 

These sampling and analysis issues suggest a poor level of accuracy in the VS data. As 

a consequence the data may not capture the dynamics or give a full of account of VS in 

the digester. 

 

Figure 7.5 Observation of effects of sludge flow on retention time and temperature 

Volatile solids are affected by temperature and the retention time. Both these parameters 

are controlled by the digester feed. This makes the digester feed the most important 

cause attribute. The feed controls the process in general; however the signal operates in 

an on or off mode and as such required averaging of the data over a 12 hour period. The 

correlation between the variables is useful to consider. Increase in temperature causes a 

reduction in VS levels yielding a negative correlation, however the observed correlation 

in Figure 7.5 is the opposite, as there is a positive correlation. This arises due to 

problems in time alignment. The data is shifted to align the observations, in order to 

capture the uncertainties in the lag times such as the time taken for an increase in 

temperature to take an effect on volatile solids. This was conducted through visual 

inspection of the data to identify patterns which may identify the cause-effect 
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characteristics of the process. Misalignment in the data also resulted in cause signals to 

act as effect signals with respect to VS and therefore data alignment was key to the 

model building. 

Table 7.3 Initial correlation analysis 

Peak correlations VS Temperature  RT Feed flow 

VS 1 -0.543 -0.557 0.547 

Temperature -0.543 1 -0.548 -0.416 

RT -0.557 -0.548 1 -0.285 

Feed flow 0.547 -0.416 -0.285 1 

 

In a theoretical sense, temperature, retention time and feed flow depicted in Figure 7.5 

should have significant effect on VS and therefore should be highly correlated with VS. 

Table 7.3 summarises initial peak correlation analysis of VS against these parameters 

conducted in PerceptiveAPC. By shifting the data sets and aligning the signals, the 

expected peak correlation is achieved. From this initial analysis, the signs (±) of the 

correlations are as expected; negative correlations for temperature and retention time as 

increase in these factors reduces the level of VS and positive correlation for feed flow as 

increases in the feed flow increases the VS levels. However the values of the correlation 

values are weak, which may be because of the dynamic impact. 

7.4 Modelling 

A good quality model relies on the quantity and quality of the data used for the 

modelling. It has been suggested that the input data must have minimum of 5 measured 

changes with 5 times larger than the noise associated with the input (Boudreau and 

McMillan, 2007). The historical data generated for the VS prediction model lacked this 

characteristic and therefore a possible DoE may be required for improvement of the 

quality of the data. Such a procedure involves conducting step or pseudo random binary 

sequence (PRBS). The generation of such data may take months to years for a 

bioreactor system such as the AD.  
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Chemometric methods of PCA and PLS are used in the modelling stage for obtaining 

predictive model for VS. Given a set of data consisting of a large number of interrelated 

variables, PCA aims reduce the dimensionality of the data set whilst retaining the 

variation in the data set as much as possible (Jolliffe, 2005). Principal component 

analysis (PCA) was developed in 1901 by Pearson (Pearson, 1901) with the geometric 

optimisation explanation and later Hotelling in 1933 (Hotelling, 1933) with the 

algebraic derivation of PCA. Principal component analysis (PCA) is popular procedure 

for reducing the dimensionality of the variable space. The inferential sensor study uses 

the PCA technique for examining the relationships within the AD process data. This has 

a large number of measured quality variables of which most are highly correlated 

therefore reducing the dimensionality of the multivariate data to a few manageable 

dimensions. Importantly the original variables are retained as each principal component 

is a linear combination of the original variables. This enables the representation of the 

original data set containing correlated variables, in a new ordinate system that is 

characterised by uncorrelated variables called principal components (PCs). 

The procedure was carried out using Matlab software with the PLS toolbox (Wise et al., 

2010). The data was first autoscaled before applying PCA since the variables have 

different units. As PCA aims to capture variation, autoscaling enables all variables to be 

treated on an equal basis in the analysis and therefore variables that have greater 

variation due to the magnitude of the variable do not dominate variables with smaller 

order of magnitude of variation. 

7.4.1 Correlation analysis 

Correlation analysis on both offline and online signals which may have an effect on VS 

was conducted, and the results shown in Figure 9. However most do not reflect the 

impact on the sludge within the digester due to the different process stages. Most of the 

signals showed have little or no correlation with VS, which could be due to time delays 

within the processes. The opportunity to have VS predicted online within a short time 

period is essential for control of the AD process. Therefore there was a need to establish 

the time delays for the various cause signals. The effects of these parameters on VS is 

not well established from first principles and as a result, the time taken for VS variable 

to settle to steady state after a step change for parameters such as temperature, feed rate, 

retention time or gas production cannot be determined theoretically. As a result an 
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iterative search was conducted to establish an appropriate min or max delays for the 

model, and therefore the data shifted to align the cause and effect variables. 

 

Figure 7.6 Signals Selected For Modelling 

Figure 7.6 lists the signals available for modelling required for the VS soft sensor. 

These are online signals that may affect digested sludge VS. This constitutes of 14 

signals which required pre-processing before analysis to remove bad data caused by 

missing values. The missing data approach is to replace bad values by the last good 

value.  

The data in general contained a lot of spikes and the measurement of the flow was 

contaminated by opening and closing the valve, resulting in a repetitive irregular 

pattern. To reduce this, spike removal analysis was conducted on the gas produced, and 

the feed flow signal was averaged over an hour to reduce the on or off pattern in the 

data. 

The development of the soft sensor was conducted in two phases. Phase 1 required 

analysis of the data to investigate which of the variables selected have a statistically 

significant effect on the digested sludge VS. This was conducted using PCA and 

response surface regression analysis in Minitab 16 Statistical Software. Phase 2 required 

the use of the PerceptiveAPC PLS modelling solution to formulate a prediction model. 
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The online signals formed a large dataset which was too large for analysis in Minitab 16 

Statistical Software. The VS offline signal holds the same data point for about 2-3 days. 

The data was therefore reduced in size to reflect the changing VS data points only. The 

46945 samples were therefore reduced to 67 samples. This considerable reduction in the 

sample size will effect the results considerably but will allow better estimation of the 

effects on VS. 

 

Figure 7.7 Correlation analysis on various signals 

The correlation analysis results in Figure 7.7 indicate overall weak correlations for all 

the cause signals. These are peak correlations and some of the cause signals selected do 

not just have little theoretical justification but also the delays and changes in the various 

stages of the process mean that these cannot be used as direct effects. There were 

several variables which were shown to correlate strongly with VS, such as foaming and 

liquid levels. These variables may be related to other variables, for which the 

relationship or correlation may be caused by another factor in the system such as the 

sludge composition. Variables deemed to have a causation relationship with VS include 

temperature and feed rate which also determines the retention time, but the correlation 

values for these are much weaker than expected. The results here are therefore 

insufficient for selecting these as cause signals for the prediction model and therefore 
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further analysis is required to select variables that can aid with building a theoretically 

and industrially robust prediction model.  

7.4.2 Parallel coordinates 

 

Figure 7.8 Parallel coordinates plot A and B 

Parallel coordinates plots conducted to explore relationships between different signals. 

This is robust method for visualising and analysing multivariate data. The results given 
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in Figure 7.8 showed that high pasteurisation temperatures in and out of the EEH stage 

correlate with low VS levels. This is a significant finding as high pasteurisation 

temperature means the initial pre-treatment stage in the EEH has significant effect on 

the level of VS. However the relationship is not a direct linear function as the pre-

treated sludge goes into a buffer unit before entering the digester. High levels of % DS 

also infer high levels of VS, which is expected. Low levels of pH post digestion is 

shown to yield low level of VS as digester pH is not available it can be assumed that by 

keeping the digestion pH low, VS destruction rate may increase resulting in the low 

levels of VS observed. However the range of pH post digestion is quite small between 

6.9 and 7.6 and although most of the lower level of pH is observed for low VS, there are 

high pH values for low VS as well. BSM2 simulation environment may give further 

insight into pH effect on VS and this is to be investigated further. 

7.4.3 Minitab 16 Statistical Software response surface regression analysis 

Hypothesis test analyses were conducted here to determine whether there is enough 

evidence to reject or accept the null hypothesis. This was conducted using Minitab 16 

Statistical Software (Microsoft-cooporation, 2006) and background to be covered in the 

methodology section of the thesis. 

Table 7.4 Estimated regression coefficients for VMPD 

Term Coef SE Coef T  P 

Constant 56.353 0.8117 69.425 0.000 

Foam Level -3.079 1.1942 -2.578 0.012 

Liquid Level -5.680 1.6086 -3.531 0.001 

Dig1Temp 2.104 1.0257 2.052 0.044 

 

The final results from this analysis showed the factors that have statistical significance 

to VS were foam level, liquid level and temperature in the digester. These factors have 

P-value <0.05 and are shown in Table 7.5. P-value is an estimate of the probability that 

the results occurred by accident. That is there is lee than 5 % chance that the results 

were by chance. Temperature is expected to have significant effect on VS as high 
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temperature may increase the VS destruction rate. Foam and liquid level significance is 

unexpected as there is no example of this scenario in literature. However foam level 

may give an indication of the characteristic of the sludge, such as level of surfactants, 

polymer usage etc. while the digester liquid level may give an indication of the amount 

of solids in the digester. This is essential as digester output flowrate signal is not 

available and % DS going into and out of the digester is measured offline. Therefore 

these findings may have some scientific backing.  

The response surface regression results for the Minitab model is shown Table 7.10. The 

P-values for liquid level has greater significance than digester temperature. There may 

be other parameters such % DS, pH, VS fed in that may have greater significance, but 

this results only reflect the characteristic of available online signals. These however 

generates very low R
2
 values = 29.20 %  R

2
(pred) = 16.35 %  R

2
(adj) = 25.83 % and 

this may be yet again a result of limited available online data. Thus the low predictive 

characteristic of the model can be inferred as although these factors have significant 

effect on VS, the models generated are not as robust. 

Table 7.5 Estimated regression coefficients 

Term Coef 

Constant 459.138 

Foam 

Level 

-5.40100 

Liquid 

Level 

-47.3333 

Dig1Temp 0.925014 

 

The standard error of regression (S) has value of 4.12750. This gives an indication of 

the level of prediction of the response value to the equation; the lower the value the 

better the prediction. The estimated regression coefficients for VS are given in Table 

7.6. This is the equation for calculating VS from the factors of foam level, liquid level 

and digester temperature. 
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A B 

Figure 7.9 Contour Plots for VS against Foam Level, Liquid Level and Digester 

Temperature 

The contour plots depicted in Figure 7.9 shows that from the design high levels of foam 

and liquid level is required to obtain low VS levels at low temperatures. High liquid 

levels may mean that the level of solids may be low in the digester and therefore lower 

VS. This may be the reason for the strong statistical significance. Correlation with foam 

level is not so strong. From the contour plots in Figure 7.9, there is not a clear best 

operating domain by which the 3 factors of temperature, foam and liquid level can be 

operated to ensure low VS and therefore high gas production etc. From Figure 7.9a, low 

VS level at most is associated with low temperatures, although temperature spread is 

quite wide and high foam levels. The rise in foam level may be due to increase VS 

destruction rate and therefore increase in reaction increase may constitute high foam 

level and therefore low VS output. From plot B, low temperature effects on VS are 

more visible and correspond with high liquid levels. In theoretical sense and therefore 

the hypothesis expect high temperatures to correspond with low VS rather than low 

temperatures. For these reasons, along with the weak predictive model generated, the 

model has little scientific and process knowledge justification and therefore deem 

unsuitable. 

PCA was used here to establish the relationships between the data and samples or 

identifying patterns within the data as shown in the 6 diagrams in Figure 7.10. The final 

zoomed in plots in figure 13E and 13F reveal that feed rate, temperature and gas 

produced show to be similar, closely grouped with VS and therefore related to the VS. 
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7.4.4 Principal component analysis  

  

PC1:PC2 plot B: zoomed in view 

  

C:PCe:PC4 plot D: Zoomed in PC3:PC4 plot 

  

E: PC1:PC2 Final  F: final PC3:PC4 plot 

Figure 7.10 PCA results of available signals 
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7.4.5 Estimator modelling in PerceptiveAPC solution 

 

Figure 7.11 Actual and pre-processed VS signal 

Figure 7.11 shows actual VS signal in blue and pre-processed signal in red. Due to low 

number of samples and the VS values being held until a new sample value is available, 

peak position filtering was conducted on the data. This gives the best approach of filling 

in the gaps in sampling. About 50 samples over the whole 6 months of data collected 

compared to over 17280 for online data. Offline samples are extracted 2-3 times per 

week from multiple points of sampling. Sample amount for analysis varies with focus 

only in the loss of weight as the difference between the initial sample weight and final 

weight after testing. Quality control of the analysis procedure is difficult to determine as 

there is no documentation of re-training, or management system in place to ensure all 

tests are carried out in similar manner. The values generated from the offline tests are 

entered into the PI historian system; there is a chance of possible errors on inserting the 

data back in the data historian. All analysis conducted are also subject to operator 

variation, for these various reasons, the accuracy, precision and significance of the 

offline VS data is difficult to determine. The data however covers a wide range of 

values; with minimum and maximum value of 42.70 and 70.30 respectively, these give 

acceptable VS and unacceptable VS results as per the PAS110. 
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Table 7.7 give the results for correlation analysis conducted in Matlab (Mathsworks, 

2012). These values are very low and fail to provide quantify significant relationship 

between the factors of feed rate, feed VS, temperature, pH and gas produced. With such 

low correlation value, a weak predictive model will inevitable be resulted from these 

value. The signs (±) of the correlation values fail to make scientific sense. Theoretically 

as the feed rate increases, digestate VS should increases and therefore yield a strong 

positive correlation as the sludge spends less time in the digester and thus lower 

degradation process generated. However a weak negative correlation is observed. High 

temperatures are expected to increase the degradation process and therefore more 

organics are broken down, thus low VS resulting. Giving a strong negative correlation 

instead of the weak positive correlation observed. This infers that as you increase the 

temperature, VS values increases. Although this confirms the results from the Minitab 

study, there is no scientific justification for it. This is also true for the gas production 

effect on VS. As VS decreases, inferring that there is high degradation rate, this should 

result in high gas production. Unexpectedly a positive correlation is observed where a 

strong negative is presumed.   

Table 7.6 Blackburn digestate VS correlation values 

Digestate VS correlation 

values 

Feed 

rate 

Feed 

VS 

Temperature pH Gas 

produced 

Blackburn process data -0.2839 0.2884 0.4096 0.3247 -0.1663 

 

Figure 7.12 shows the loading plot after shifting VS data for 1 day to correspond with 

feed rate and temperature effects. 738X.ME is VS. Feed rate (484X.ME) positively 

correlates with VS and Temperature (578X.ME) negatively correlates with VS. This 

pre-processing helps to obtain the expected signage of correlation and higher correlation 

values. Provided the dynamics in the system observed is correct and thus justification 

for shifting the online data forward one day, then this shift in data may result in a better 

predictive model which makes scientific sense to some degree. 
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Figure 7.12 Loading plot of Blackburn process model 

As the correlation analysis fail to identify factors that have significant relationship with 

VS, temperature and feed rate were selected to build a model in PerceptiveAPC 

(Perceptive Engineering Ltd, 2012). Figure 7.13 give the results for model errors 

obtained for the final VS model using Blackburn data. The lowest model prediction 

errors, within a range of about 10 % VS is shown. This is quite considerable as the 

range of VS data used is between 51-68 % of about 17 % range. There errors are too 

high to justify a robust predictive model and therefore the BSM2 simulation will be use 

further to see if a predictive model can be conducted for VS. 
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Figure 7.13 Final process model errors 

7.5 Volatile solids soft sensor development in ADMI 

Benchmark systems are popular for the assessment of process performance i.e. biogas 

yield, control system evaluation and comparison of similar purposes are common in 

defining the best possible approach to take before implementation for cost reduction. A 

wastewater treatment plant (WwTP) should be considered as a single completely 

integrated system. This would enable primary and secondary clarification units, 

activated sludge reactors, anaerobic digesters, thickeners, dewatering systems and other 

sub-processes to be combined, operated and controlled by local and supervisory control 

systems taking into account he interactions between the processes (Henze et al., 2008). 

The European cooperation in science and technology (COST) Action 682 and 624 

which ended in 2004 was set up with the aim of developing benchmark tools for 

simulation based evaluation of control strategies for activated sludge plants. This work 

is now continued under the framework of the IWA Task Group on Benchmarking of 

Control Strategies for WwTPs. Together the group have developed: 
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 Benchmark simulation model no.1 (BSM1) is based on an activated sludge 

process (Alex et al., 2008b) is based on the activated sludge model no.1 (ASM1) 

(Jeppsson, 1996); 

 ADM1 model (Batstone et al., 2002b) is deemed adequate for predictions with 

enough accuracy to be useful in process development, optimisation, and control. 

It is a standard benchmark for developing operational strategies and evaluating 

controllers; 

 Benchmark simulation model no. 2 (BSM2) combines BSM1 and ADM1 (Alex 

et al., 2008a). 

These models are used by over 50 groups worldwide with over 100 publications at 

international conferences, journals and several PhD theses relating to the benchmark 

models. The BSM1 and BSM2 simulation environments define plant layout, influent 

loads, test procedures and evaluation criteria.   

BSM2 is a detailed procedure for implementing, analysing and evaluating the impact 

and performance for existing and novel control strategies applied to wastewater 

treatment plants (WwTPs). The protocol includes a completely generalised WwTP 

model that is suitable for a benchmarking procedure and evaluation criteria. The system 

includes the IWA ADM1 with several modifications (Rosen et al., 2006). Through its 

integration biological transformations, liquid-gas transfers, and gas production are 

feasible. The model includes slow and fast dynamics; the range of time constants in 

ADM1 is large (from seconds to months) and therefore constitutes a stiff system. Stiff 

solvers are implemented for pH and the dynamic state variable characteristic for 

hydrogen (Sh2) for speed enhancement by a factor of 100. Model interfaces are 

included to combining ASM1 and ADM1. ADM1 section of the BSM2 is used to study 

the effects of VS. This is possible because the solids going into the digester can be 

controlled and more importantly their composition can be changed and effects studied.  

Mathematical models of the digestion process generally aim to achieve the following: 

 Calculate estimates of the reactor volume, biogas production and its 

compositions, and to estimate the retention time to determine the performance of 

a specific system; 

 Allow sensitivity analysis to be conducted for various process parameters; 
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 The cross-checking of simulation study results with actual plant performance 

gives added knowledge about the model, and can identify gaps in the predictive 

capability of the model; 

 Use in whole plant optimisation studies, as they can predict how the digestion 

process is affected by upstream processes, and how the digestion process can 

impact on downstream processes (Appels et al., 2008). 

The ADM1 model is used here to compare and cross-check the result of the process data 

VS model. As ADM1 is entirely theoretical, theoretical assessment of the process model 

can be achieved.   

7.5.1 Parameter evaluation in ADM1 

 

Figure 7.14 Schematic of the simulation process 

The schematic for the simulation process is shown in Figure 7.14. ADM1 is composed 

of many several key measurement parameters such as VFA’s and sludge composition. 

However there are several limitations within the model, such as: 

 Sludge characterized by proteins, carbohydrates and lipids only. This over 

simplifies actual sludge characteristics; 

 Temperature effects considered for physiochemical parameters but not for the 

biochemical reactions, temperature effects are not fully modelled; 

 Temperature cannot be varied within the simulation but able to conduct single 

runs at different temperature settings between 0-60˚C; 

Over simplification of the model and lack of temperature dependence means the model 

greatly defers from actual AD processes. The complexities and nonlinearities within AD 

processes are a mainly impacted by the feed composition and environmental factors of 

temperature. ADM1 however offer several opportunities to include: 

 The organic compounds and inerts make-up the total solids. Therefore able to 

add VS signal as a % of the organic compounds and the inert; 

Thickener 

MAD 

Indigenous 1˚ and 2˚ 

sludge: characterised by 
proteins, carbohydrates, 

lipids and inerts only 

Biogas  

Digestate 
downstream 

processes 
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 Opportunity to monitor VFA accumulation; 

 Opportunity to explore gas composition effects on changes to feed and VS. 

With these opportunities, step tests can be conducted to generate data for modelling the 

VS. although there are more key signals available in the simulation such as gas 

composition and measure of the various VFA’s these are not available in the process 

data and therefore, for model ‘like for like’ comparisons, these useful variables were 

eliminated from the model. Thus an alternative model investigating the various 

parameters available for modelling will be conducted to illustrate if with improve in 

measurement; a better model can be generated with more variables. 

𝑇𝑆𝑆 =  0.75(𝑋𝑆 + 𝑋𝐼 + 𝑋𝐵,𝐻 + 𝑋𝐵,𝐴 + 𝑋𝑃 

Where XS is the slowly biodegradable substrate, XI is particulate inert organic matter, 

XB,H as active heterotrophic biomass, XB,A as active autotrophic biomass and XP as 

particulate products arising from biomass decay. These are the components measured in 

the ASM1 domain to constitute solids going into the digester.  

Table 7.7 COD Equivalent of polymer 

Polymer Equivalent to COD 

1g carbohydrates 1.07g COD 

1g lipid 2.91g COD 

1g protein 1.5g COD 

 

The digester interface has these parameters converted to 3 main organic forms of 

proteins, carbohydrates and lipids which make up the level of volatile solids measured 

in kg COD m
3-1

. The chemical oxygen demand (COD) is the amount of oxygen required 

to oxidise the organic carbon completely to CO2 and water. COD contains both 

biodegradable and non-biodegradable solids. COD measurements were converted into 

VS through the following estimations for the simulation as shown in Table 7.8. 
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Table 7.8 Percentage of organic constituents in primary and secondary sludge (Horan, 

2009) 

 Primary secondary 

Proteins (%) 60 70 

Lipids (%) 25 20 

Carbohydrates (%) 15 10 

 

Protein comprises the largest fraction of wastewater organic material, and as such, its 

destruction is intimately linked to desirable increases in volatile solids destruction. 

Typical protein content in wastewater sludge is given in Table 7.8 along with average 

value for lipids and carbohydrates. 

Initial system evaluation of ADM1 was conducted and findings were: 

 % VS in post digestion  sludge may be higher in primary sludge than in 

secondary sludge; 

 Temperature effects gas production and pH considerably. While its effect on VS 

is less effective; 

 Temperature effects on biogas production is greatest at high temperature (above 

35˚C) than lower temperatures (below 30˚C); 

 VFA accumulation effects greatest between 25-40˚C; 

 Feed rate and biogas production have higher effect on VS_out than VS_in and 

temperature; 

 Correlation of VS_out with temperature is very low and can be deemed 

insignificant; 

 Modelling of feed rate and gas production yields good prediction of VS_out, 

however the same is not observed using Blackburn data. This is possibly due to 

the sampling regime for VS_out at Blackburn and therefore better sampling may 
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provide data that can effectively illustrate the correlation of gas production and 

feed rate on VS_out. 

Step Testing  

Step tests were carried out to test the system dynamics within BSM2. Some of these 

results are depicted in Figure 7.15. There are mainly 4 signals going into the digester of 

mainly the organic matter and inert. The total organic matter going into the digester is 

assumed to undergo full disintegration with low residues. Therefore the volatile solids 

are assumed to be the three polymers of carbohydrates, lipids and proteins. The 

polymers plus the inert give the total solids going into the digester.  

Table 7.9 Correlations analysis results for variables in ADM1 

VS_out Feed rate VS_in Temperature pH Gas produced 

1.0000 0.8945 0.7054 -0.0964 -0.4127 0.9306 

1.0000 0.9440 0.7380 -0.0829 -0.4419 0.9713 

 

Correlation coefficients of VS out against the 5 components selected and results are 

shown in Table 7.9. First row for all data and second row data shows data for when the 

process is in a stable state. As can be seen feed rate, VS_in, and gas produced all form 

strong positive correlation with VS_out, while temperature and pH form weak negative 

correlations with VS_out. The weak negative correlation with temperature is a 

significant finding, as it demonstrates that initial assumption of VS_out being mostly 

affected by the retention time and temperature mainly does not hold. And therefore VS 

may be affected greatest by the feed rate, gas produced and the characteristic of the 

incoming sludge i.e. the VS in. As feed rate and gas produced measurements are easily 

available, makes these variables ideal for soft sensor model for VS_out. Correlation 

coefficients values for gas flow and feed rate with VS_out: 

Gas flow and feed rate both yields weak negative correlation with VS_out; this is the 

opposite of what is observed in BSM2 where a strong positive correlation is observed; 



 

202 

 

This illustrates the weakness in the process data as it deviates strongly from what is 

expected; however in theory VS_out should decrease with increasing gas production 

and therefore the negative correlation is expected, but the value of the correlation is 

very weak and therefore deemed insignificant to yield and accurate or reliable model. 
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Figure 7.15 Step testing for model generation data 
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Figure 7.16 ADM1 PCA loadings plots 

The PCA loadings plot of the simulated data in Figure 7.16 shows that gas produced 

rate and feed rate are similar to digestate VS. This is because on the loadings plot, 

variables ‘sitting together’, grouped closely infer similar behaviour between variable 

and thus maybe statically related. This analysis along with the correlation results 

indicates that a good predictive model can be generated for VS with feed and biogas 

flowrate alone. The benefits of selecting these two variables include: 

 Feed flow and biogas flowrate measurements available online; 

 Instrumentation for these are robust and readily available; 

 Use off primary input (feed flow) and primary output variables; 

 Feed flow is the main disturbance into the system and biogas flowrate a good 

monitoring parameter. 

The structure of the final model is therefore depicted in Figure 7.17. However a 

successful model with feed and biogas flowrate alone will refute the understanding of 

the multivariate characteristic of the process. However the various model assumptions, 

over simplification of the process and the lack of temperature dependency inclusion in 

the model may simply linearize the model and thus the process and therefore reducing 

the multivariate characteristic of the process. 
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Figure 7.17 VS model 

The results from the final model using feed and biogas flowrate to predictive VS is 

shown in Figure 7.18. The first depict the results for the model in red and model errors 

in blue. The model errors are very small and therefore a good predictive model is 

generated.  

  

Figure 7.18 VS predictive model from ADM1 results 

7.6 Conclusions 

The correlations of the variables with digestate VS in the industrial data are all very low 

and not sufficient to yield a reliable process model. Gas flow and feed flowrate both 

display a weak negative correlation with digestate VS. This result illustrates the 

limitations of the process data as it deviates strongly from theory and the simulation 

study. The low correlations observed may be a result of disturbances in the process 

which are unmeasured and therefore not included in the model. This may include the 

feed composition for which there is no measure and the environmental conditions in the 

digester. 

Utilizing the simulation data for the modelling of feed rate and gas production yields a 

good prediction of digestate VS, however the same is not observed using the process 
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data. This is possibly due to the sampling regime at this site for digestate VS, sampled 

approximately 2-3 times per week. Better sampling may provide data that demonstrates 

a correlation between gas production and feed rate, and digestate VS. Analysis of the 

simulation data revealed that variations in concentrations of VS in the range of 30˚C and 

35˚C are very low. In the industrial data, the temperature ranged between 29˚C to 36˚C, 

indicating that the range measured may be too limited to reveal the effects of 

temperature on VS. 

There is very little studies on digestate and measure of stability with respect to VS. 

Initially analysis conducted confirms the digester environmental conditions of 

temperature, levels of liquid and foam have statistical significant effect on VS of 

digestate. The signals that may be better at characterising the digestate quality includes 

with respect to VS include online data for: 

 % DS; 

 Feed type or composition; 

 pH; 

 Retention time. 

However these signals are not available online. The model may improve significantly 

provided there is possible online analysis for % DS and pH. The data available along 

with the ADM1 simulation environment give the following findings: 

 Good prediction obtained with simulated data; 

 The relationships of process variables illustrated with PCA, VS more similar to 

feed rate and gas production than temperature; 

 Deviation of correlation in process data from theoretical expectation, possibly 

due to various unmeasured overshadowing effects; 

 The complexity of the underlying non-linearity in the system evident. 

The correlation analysis of variables with digestate VS in the industrial data are all very 

low and insufficient to yield a reliable process model. Gas flow and feed flowrate both 

display a weak negative correlation with digestate VS. This result illustrates the 

weakness in the process data available as it deviates strongly from theory and 

simulation. The low correlations observed may indicate disturbances in the process 

which are unmeasured and therefore not included in the model. This may include the 
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feed composition for which there is no measure of and the environmental conditions in 

the digester. 

Utilizing the simulation data in the modelling of feed rate and gas production yields a 

good prediction of digestate VS, however the same is not observed using the process 

data. This is possibly due to the sampling regime at this site for digestate VS, sampled 

approximately 2-3 times per week. Better sampling may provide data that demonstrates 

a correlation between gas production and feed rate, and digestate VS. Analysis of the 

simulation data revealed that variations in concentrations of VS in the range of 30˚C and 

35˚C are very low. In the industrial data, the temperature ranged between 29˚C to 36˚C, 

indicating that the range measured may be too limited to reveal the effects of 

temperature on VS. 

The process data in this case study was unable to produce a model suitable for the 

prediction of VS. The use of the BSM2 model however provided useful information on 

the dynamics of the anaerobic digestion process. The next stage of this study will use 

this knowledge to conduct a DoE study on the industrial process. The objective of this 

DoE study will be the generation of data that covers the wide-ranging dynamics of the 

system to help build an industrial VS soft sensor. 
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8 Conclusions 

8.1 Introduction 

This chapter concludes the thesis by returning to the research questions stated in 

Chapter 1:  

Can an advanced control system improve the efficiency, stability and robustness of an 

AD process?, what is the minimum instrumentation requirement to achieve the aims 

identified in the feasibility assessment? and what is the level of improvement to be 

gained from advanced control? 

Subsequently contributions and conclusions are summarised, followed by a perspective 

for future work.  

8.2 Discussions 

This thesis has encompassed a feasibility study into the use of MPC on industrial AD 

systems. This has included the benchmark study of four industrial processes, literature 

search and instrumentation review identifying minimum, essential and ‘nice to have’ 

instrumentation, which formed the completion of phase I activities as set out in Figure 

1.1. 

The phase I activities aimed to address the first question “Can an advanced control 

system improve the efficiency, stability and robustness of an AD process?” The 

literature and instrumentation reviews identified the strengths, weaknesses opportunities 

and threats for an advanced control such as MPC on industrial AD systems. These 

findings along with the benchmark study formed the basis for the hypothesis that 

“advanced control system can improve the efficiency, stability and robustness of an AD 

process”. The thesis then progressed to demonstrate how an advanced control system 

can improve the efficiency, stability and robustness of an AD process. The first step for 

demonstrating the hypothesis was to identify the minimum instrumentation required to 

for an MPC controller to fulfil the aims identified in the feasibility study.  The 

instrumentation review and the benchmark study identified key instrumentation 

requirement. Parameters with readily unavailable instrumentation to monitor them 

online were investigated further through the development of inferential sensor models to 

predict parameters.  

Chapter 7 investigated the VS soft sensor development activities respectively. This 

chapter concluded that although there were significant improvements to be made with 
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regards to online instrumentation for industrial AD systems, soft sensor models offer 

possible solutions that negate the need for expensive and potentially problematic online 

measurements.  

Following on from this the simulation study in Chapter 6 has shown the level of 

improvements that are to be made with MPC. Through the inventory simulation 

analysis, the hypothesis that significant improvements in the efficiency, stability and 

robustness of the AD process can be made with MPC was proven true. This was 

demonstrated at simulation level and not industrial scale. Therefore, it was deemed 

necessary that the findings from the simulation and soft sensor models underwent 

further investigation at industrial scale.  

The industrial data used for the models in this thesis were not intended for MPC 

modelling and the data provided have several limitations. The data used were taken 

from systems where controllability and control model development approaches were not 

considered at the design stages. Failure to adequately consider controllability and 

control at the design stage means that any proposed control scheme is restricted by the 

design. The AD system is subject to considerable uncertainties and disturbances that 

affect the operating conditions and product qualities such as biogas and sludge 

composition. To help achieve optimum dynamic performances and economic profits, 

assessment of the performance with respect to controllability is required at the design 

phase (Ekawati and Bahri, 2003). Measurements such as separation of the different 

process phases for the digestion technology help improve the stability and 

controllability. This reduces the degree of non-linearity in the system yet there still 

remains an opportunity for improved control.  

Although the inventory simulation demonstrated the level of improvements to be made 

with MPC, there still remained analysis of the potential improvements that could be 

made on real AD systems. The benchmark study data was shown to be insufficient for 

modelling the effect of MPC using industrial data and as such various data sets from 

different AD systems were analysed to test their usefulness for model development for 

soft sensors and or MPC. A case study was conducted to show the use of sludge 

composition data for VFA modelling. The case study focused on an analysis of data 

generated in the School of Civil Engineering and Geosciences, Newcastle University. 

The data relates to an experimental study of various feed compositions and includes an 

analysis of the microbial population which provided an insight into the effects of feed 

composition on the microbial and environmental conditions within a digester. The 
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objective of this case study was to combine the use of multivariate techniques with the 

process knowledge developed through phase I and II activities and develop an 

inferential sensor for predicting molecular species population changes to infer stability 

of the AD process. A second case study was also conducted for the analysis of two 

datasets obtained from (1) a laboratory for the treatment of wastewater from the starch 

industry and (2) a pilot plant set-up for the treatment of waste water from the production 

of bioethanol. The datasets were obtained from the Leibniz University of Hanover at the 

Institute for Sanitary Engineering and Waste Management. The aim of this case study 

was to compare different experimental setups of varying feedstocks and use of the data 

for potential soft sensor or MPC models. A third case study was a comparison of two 

datasets from different reactor design systems treating the same waste. The reactors 

were the same size and are fed with same feedstock over a three month period. The 

objective of this case study was to investigate the impact of different reactor systems. 

These case studies combined the aims to investigate the impact of varying feedstocks, 

reactor systems and experimental set-ups to understand how these changes effect the 

dynamics within the AD process and where possible inferential sensor development was 

conducted with case study datasets. However due to the limited results obtained from 

these three case studies, they have not been included in the thesis. 

8.3 Conclusion 

In summary the main conclusions of this thesis are as follows: 

1. MPC controller on a simulated AD system has yielded significant improvements 

for controlling inventory, yielding: 

 40 % increase in biogas production can be achieved at 13 % lower 

average temperatures; 

 £179k a year of CHP energy savings can be achieved, equating to 33 % 

increase in CHP energy savings using MPC1. This could contribute to 

the cost of installing the controller with payback period of 6 months 

maximum; 

 A significant reduction in the number of trips with the optimiser of up to 

92 % less trips in comparison with the ‘no control’ benchmark 

simulation system; 

 A reduced number in level of trips by separating the various dynamics in 

the simulation. MPC2 was shown to have 60 % and 63 % reduction in 
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level trips and % of time the trips occur respectively, whilst MPC1 was 

shown to have 38 % and 49 % reduction in level trips and % of time the 

trips occur respectively; 

2. A volatile solids inferential sensor was developed yielding good prediction with 

simulated data; 

3. A VFA inferential model is developed with pilot-scale data yielding a degree of 

prediction; 

4. Benchmark analysis of three industrial AD processes has been conducted 

highlighting the key strengths, weaknesses, opportunities and threats of 

industrial AD systems 

5. ‘Minimum’, ‘essential’ and ‘nice to have’ instrumentation requirements for the 

AD process was identified.   

The phase II activities of prototype development have yielded offline simulation 

(Chapter 6) and the development of a VS soft sensor (Chapter 7). The difference in 

results from Chapter 7 regarding the industrial and simulation data has demonstrated the 

importance of the need for better quality monitoring of the AD process. The process 

data in this case study was unable to produce a model suitable for the prediction of VS. 

The use of the BSM2 model however provided useful information on the dynamics of 

the AD process. 

The activities carried out in this thesis has supported the development of ADvisorMV 

(Perceptiveapc.com, 2015), which is now part of the Perceptive Engineering suite of 

products. 

Research activities from this thesis were conducted in 2011 and 2012 with publications 

in 2012 and 2013. There are several related publications in 2013 with projects looking 

into the use of MPC for the AD process. However these tend to focus on small scale 

systems (Lovett, 2013) and pilot-scale ADs (Haugen, 2014). This thesis is the first 

known collaborative project between three water companies, a University and a 

technology provider at industrial scale. Further collaborative research on the AD 

process should aim to include multidiscipline academics, industrialist to include 

technology and instrumentation providers.  

8.4 Future work 

The future work can be summarised as follows: 
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 Development of an initial DoE to apply step changes on key AD parameters on 

industrial scale systems to generate data which covers the dynamics present in 

the system. The objective of the DoE study would be the generation of data that 

covers the wide-ranging dynamics of the system to help build an industrial VS 

soft sensor. Increasing the data size for modelling is also essential as the process 

has long varying dynamics and therefore data that accounts for a long period of 

the process is essential. The DoE would require the minimum and essential AD 

instrumentation identified in Chapter 3 to generate the necessary data for 

modelling; 

 Completion of the vendor review and questionnaire: although this has been 

attempted as part of phase 1 activities, the approach has been unsuccessful. 

There are now various AD focused networks and groups such as the BBSRC 

NIBB Anaerobic Digestion (AD) Network (Anaerobicdigestionnet.com, 2015) 

and these networks can be used as platforms to reach out to the AD community 

more effectively; 

 Validation of the VS model and VFA models on industrial process: the DoE 

could potentially generate data robust enough to build improved VS and VFA 

models with industrial data. These models would then require validation on 

industrial process where the models can be trialled online; 

 Development of the functional design specification: validation of the VS and 

VFA models would increase further understanding of the AD system to enable 

the final development of the AD-Master’s functional design specification as part 

of the phase II activities set out in Figure 1.1; 

 Installation and testing prototypes: completion of phase III activities and this 

will consists of testing the AD-Master prototype on an industrial process and 

would include further DoE to generate further data to enable full evaluation and 

market assessment of the system as phase IV activities. 

These future activities were set out prior April 2013 during the period with industrial 

sponsor’s involvement in the thesis. As such, a number of the future activities listed in 

Section 8.4 may have already taken place as Perceptive Engineering Ltd currently has 

AD controller product as part of their suit of products (Perceptiveapc.com, 2015).  
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