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Abstract 

The UK government has a target of achieving an 80% reduction in CO2 emissions with 

respect to the values from 1990 by 2050. Therefore, renewables based distributed generations 

(DGs) coupled with substantial electrification of the transport and heat sectors though low 

carbon technologies (LCTs), will be essential to achieve this target. The anticipated 

proliferation of these technologies will necessitate major opportunities and challenges to the 

operation and planning of future distribution networks. 

Smartgrid technologies and techniques, such as energy storage systems (ESSs), demand side 

response (DSR) and real time thermal ratings (RTTRs), provide flexible, economic and 

expandable solutions to these challenges without resorting to network reinforcement. This 

research investigates the use of ESS and DSR in future distribution networks to facilitate 

LCTs with a focus on the management and resolution of thermal constraints and steady state 

voltage limit violation problems. Firstly, two control schemes based on sensitivity factors and 

cost sensitivity factors are proposed. Next, the impacts of a range of sources of uncertainties, 

arising from existing and future elements of the electrical energy system, are studied. The 

impacts of electric vehicle charging are investigated with Monte Carlo simulation (MCS). 

Furthermore, to deal with uncertainties efficiently, a scheduling scheme based on robust 

optimization (RO) is developed. Two approaches have been introduced to estimate the trade-

off between the cost and the probability of constraint violations. Finally, the performance of 

this scheme is evaluated. 

The results of this research show the importance of dealing with uncertainties appropriately. 

Simulation results demonstrate the capability and effectiveness of the proposed RO based 

scheduling scheme to facilitate DG and LCTs, in the presence of a range of source of 

uncertainties. The findings from this research provide valuable solution and guidance to 

facilitate DG and LCTs using ESS, DSR and RTTR in future distribution networks. 
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Acronym Definition 

ANN Artificial neural network  

AC Alternating current 

ARMA Autoregressive moving average 
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CB Capacitor bank 
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ELM Extreme learning machine  
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Nomenclature 

Symbol Definition Unit 

∆𝑉  voltage change pu 

𝑉𝑆  nominal voltage Pu 

𝑃𝐸𝑆𝑆  real power import/export from ESS kW/MW 

𝑄𝐸𝑆𝑆  reactive power import/export from ESS kVAr 

𝑅  resistance 

𝑋  inductive reactance  

𝑉𝑆𝐹𝑖,𝑘  

voltage sensitivity factor from bus 𝑘 to bus 𝑖 which 

represents the voltage change at bus 𝑖 due to the power 

injection at bus 𝑘 

pu/kW 

∆𝑉𝑖  voltage change at bus 𝑖 pu 

∆𝑃𝑘  real power injection change at bus 𝑘 kW/MW 

∆𝑄𝑘  reactive power injection change at bus 𝑘 kVAr 

∆𝑆𝑘  apparent power injection change at bus 𝑘 kVA 

𝜽  vector of angle difference between busbars Radian 

𝑽  vector of voltage of busbars N/A 

𝑱  Jacobian matrix N/A 

𝑱−𝟏  inverse Jacobian matrix N/A 

𝑷  vector of net real power injection N/A 

𝑸  vector of net reactive power injection N/A 

𝜕∆𝜽
𝜕𝑷⁄   matrix for the partial derivatives of 𝜽 to ∆𝑷 N/A 

𝜕∆𝜽
𝜕𝑸⁄   matrix for the partial derivatives of 𝜽 to ∆𝑸 N/A 

𝜕∆𝑽
𝜕𝑷⁄  matrix for the partial derivatives of ∆𝑽 to 𝑷 N/A 

𝜕∆𝑽
𝜕𝑸⁄   matrix for the partial derivatives of ∆𝑽 to 𝑸 N/A 

𝑃𝐹𝑆𝐹𝑖𝑗,𝑘  Power flow sensitivity factor from bus 𝑘 to branch 𝑖𝑗 MVA 

∆𝑆𝑖𝑗  apparent power flow change of branch 𝑖𝑗 kVA 

𝑉𝐶𝑆𝐹𝑖,𝑘  voltage cost sensitivity factor from bus 𝑘 to bus 𝑖 pu/£ 

𝐶𝑘  the cost of real power injection at bus 𝑘  MW/£ 

𝑃𝐹𝐶𝑆𝐹𝑖,𝑘  power flow cost sensitivity factor from bus 𝑘 to bus 𝑖 MVA/£ 

𝐶𝐸𝑆𝑆,𝐶ℎ𝑎𝑟𝑔𝑒 cost for charging ESS  £/kW 
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𝐶𝐸𝑆𝑆,𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 cost for discharging ESS  £/kW 

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝐸𝑆𝑆 capital cost of ESS £ 

𝑁𝐶𝑦𝑐𝑙𝑒,𝐸𝑆𝑆 
total charge and discharge cycle over the lifetime of the 

selected ESS 

N/A 

𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔 rated real power output of the ESS  kW 

𝑆𝑜𝐶 State-of-Charge % 

𝑆𝑜𝐶𝑈𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡 the upper limit for SoC % 

𝑘𝐸𝑆𝑆 

is a factor represents the impact of SoC on the cost of 

operating the ESS. This reflects a disincentive to 

discharging the ESS at a low state of charge and a 

disincentive to charging the ESS at a high SoC 

N/A 

𝐶𝑅𝐷𝑆𝑅 is the cost of RDSR service per kW  £/kW 

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝑅𝐷𝑆𝑅 is the cost of RDSR service per year  £ 

𝑁𝑅𝐷𝑆𝑅 
is the maximum number of service requests of RDSR in a 

year 

N/A 

𝑃𝑅𝐷𝑆𝑅 is the reduction of RDSR customer consumption  kW 

𝐶𝐼&𝐶 is the cost of I&C service per kW £/kW 

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝐼&𝐶 is the total cost of I&C DSR service per year £ 

𝑁𝐼&𝐶 
is the maximum number of service requests of I&C DSR in 

a year 

N/A 

𝑃𝐼&𝐶 
is the estimated real power reduction delivered by the I&C 

DSR customer 

kW 

𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔  real power rating of ESS kW 

𝑄𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔  reactive power rating of ESS kVAr 

𝑆𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔  apparent power rating of ESS kVA 

𝑉𝑆𝐹𝑃𝑖,𝐸𝑆𝑆  real power voltage sensitivity factor from ESS to busbar 𝑖 pu/kW 

𝑉𝑆𝐹𝑄𝑖,𝐸𝑆𝑆  
reactive power voltage sensitivity factor from ESS to 

busbar 𝑖 

pu/kVAr 

𝐸  Expectation N/A 

𝑅𝑒𝑎𝑙𝑡 the real value N/A 

𝑃𝑟𝑒𝑡 the predicted value N/A 

𝑝𝑟 probability N/A 

𝑀𝐴𝑃𝐸 mean absolute percentage error N/A 
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𝜀 normalised prediction error N/A 

μ mean N/A 

σ standard deviation N/A 

𝜅 kurtosis N/A 

𝑅𝑀𝑆𝐸  root mean square error N/A 

𝑞𝑐  convective heat exchange J 

𝑞𝑠  impact of solar radiation J 

𝑞𝑟  radiative heat exchange J 

𝐶𝑞𝑟
  a coefficient to account for factors such as emission effect N/A 

𝒙  input vector N/A 

𝒚  output vector N/A 

𝑔()  general nonlinear function N/A 

ℎ()  general nonlinear function for inequality constraints N/A 

𝒃  the constraints vector N/A 

𝒄  vector of coefficients for the cost function N/A 

𝒄′  inverse vector of coefficients for the cost function N/A 

𝑨  matrix of constants for constraints N/A 

𝑎𝑖𝑗  
the nominal value of the elements of 𝑨 in the 𝑖𝑡ℎ row and 

the 𝑗𝑡ℎ column 

N/A 

�̂�𝑖𝑗  maximum variation of 𝑎𝑖𝑗 N/A 

�̃�𝑖𝑗  real value of 𝑎𝑖𝑗 N/A 

𝑫  matrix of coefficients for equality constraints N/A 

𝒆  right hand side vector of equality constraints N/A 

𝒍  lower limit of decision variables N/A 

𝒖  upper limit of decision variables N/A 

𝒘  maximum of the cost function N/A 

𝑇  total number of timesteps N/A 

𝑡  number of timestep, integer between 0 to 𝑇 N/A 

𝑁𝐸𝑆𝑆  total number of ESS N/A 

𝐶𝐸𝑆𝑆𝑚
  cost of charging or discharging ESS 𝑚 £/kW 

𝑃𝐸𝑆𝑆𝑚

𝑡   power import/export of ESS 𝑚 at time 𝑡 kW 

𝑘1  positive coefficient N/A 

𝑘2  negative coefficient for the state of health N/A 
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𝐶𝐸𝑆𝑆𝑚,𝐶𝑎𝑝𝑖𝑡𝑎𝑙  capital cost of ESS 𝑚 £ 

𝑆𝑜𝐻𝐸𝑆𝑆𝑚
  State-of-Health of ESS 𝑚 N/A 

𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡   

forecasted load flow through branch 𝑖𝑗 at time 𝑡, based on 

powerflow calculations at the forecast stage 

MVA 

𝑃𝐹𝑆𝐹𝑖𝑗,𝐸𝑆𝑆𝑚

𝑡   PFSF of ESS 𝑚 to branch 𝑖𝑗 at time 𝑡 MVA/MW 

𝑃𝐹𝑆𝐹𝑖𝑗,𝑅𝐸𝑆𝑛

𝑡   PFSF of RES 𝑛 to branch 𝑖𝑗 at time 𝑡 MVA/MW 

𝑃𝐹𝑆𝐹𝑖𝑗,𝐵𝑢𝑠𝑝

𝑡   PFSF of busbar 𝑝 to branch 𝑖𝑗 at time 𝑡 MVA/MW 

𝑁𝐸𝑆𝑆  total number of ESS N/A 

𝑁𝑅𝐸𝑆  total number of renewable energy sources N/A 

𝑁𝐵𝑢𝑠  total number of buses N/A 

∆𝑃𝑅𝐸𝑆𝑛

𝑡   error of RES power output at time 𝑡 MW 

∆𝑃𝐵𝑢𝑠𝑝

𝑡   error of RES power output at time 𝑡 MW 

𝑃𝑅𝐸𝑆𝑛,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡   the forecasted output of RES 𝑛 at time 𝑡 MW 

𝑃𝐵𝑢𝑠𝑝,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡   the forecasted load of busbar 𝑝 at time 𝑡 MW 

𝑉𝑀𝑖𝑛,𝑖  lower voltage limits of busbar 𝑖 pu 

𝑉𝑀𝑎𝑥,𝑖  upper voltage limits of busbar 𝑖 pu 

𝑉𝑖,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡   

forecasted voltage of busbar 𝑖 at time 𝑡 based on load flow 

calculations at the forecast stage 

pu 

𝑉𝑆𝐹𝑖,𝐸𝐸𝑆𝑚

𝑡   voltage sensitivity factor from ESS 𝑚 to busbar 𝑖 at time 𝑡 pu 

𝑉𝑆𝐹𝑖,𝑅𝐸𝑆𝑛

𝑡   voltage sensitivity factor from RES 𝑛 to busbar 𝑖 at time 𝑡 pu 

𝑉𝑆𝐹𝑖,𝐵𝑢𝑠𝑝
𝑡   voltage sensitivity factor from busbar 𝑝 to busbar 𝑖 at time 

𝑡 

pu 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡   SoC of ESS at time 𝑡 % 

∆𝑡  duration of each timestep N/A 

𝜂𝐸𝑆𝑆𝑚,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  discharge efficiency of ESS 𝑚 % 

𝜂𝐸𝑆𝑆𝑚,𝑐ℎ𝑎𝑟𝑔𝑒  charge efficiency of ESS 𝑚 % 

𝑑𝐸𝑆𝑆𝑚

𝑡   binary variable, 𝑑 = 1 if discharge and 𝑑 = 0 if charge N/A 

𝐸𝐸𝑆𝑆𝑚
  energy capacity of the ESS 𝑚 kWh 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡   lower limit of SoC for ESS 𝑚 at time 𝑡 % 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑎𝑥
𝑡   upper limit of SoC for ESS 𝑚 at time 𝑡 % 

𝑷𝐸𝑆𝑆
𝑡   real power import or export of ESS 𝑚 at time 𝑡 kW 
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�̃�𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡   uncertainty value of predicted RTTR of branch 𝑖𝑗 at time 𝑡 kVA 

∆�̃�𝑅𝐸𝑆𝑛

𝑡   uncertainty value of predicted power output of RES 𝑛 at 

time 𝑡 

kW 

∆�̃�𝐵𝑢𝑠𝑝

𝑡   uncertainty value of load forecast of busbar 𝑝 at time 𝑡 kW 

𝑁𝑢  maximum number of uncertainty N/A 

𝑁𝑇𝑜𝑡𝑎𝑙  total number of Monte Carlo samples N/A 

𝑁𝑉𝑖𝑜  number of violations recorded. N/A 

𝑁𝐷𝑆𝑅  total number of DSR N/A 

𝑃𝐹𝑆𝐹𝑖𝑗,𝐷𝑆𝑅𝑞

𝑡   power flow sensitivity factor of DSR 𝑞 to branch 𝑖𝑗  MVA/MW 

𝑉𝑆𝐹𝑖,𝐷𝑆𝑅𝑞

𝑡   voltage sensitivity factor of DSR 𝑞 to bus 𝑖  MVA/MW 

𝑃𝐷𝑆𝑅𝑞

𝑡   power decrease or increase due to DSR 𝑞 kW 

�̃�𝐷𝑆𝑅𝑞

𝑡   uncertain power decrease of increase due to DSR 𝑞 kW 
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Chapter 1. Introduction 

1.1 Background 

Governmental policy around the world is incentivising the decarbonisation of energy 

infrastructure. The UK government, for example, has a target of achieving an 80% reduction 

in CO2 emissions with respect to the values from 1990 by 2050 [1]. In the UK, CO2 accounted 

for 74% of the UK’s greenhouse gas emissions in 1990 and increased to over 80% in 2013 [2]. 

Figure 1.1 shows a breakdown of CO2 emissions by sector, in percentage of UK total. Energy 

supply, transport, business and residential sectors account for 78% of total UK CO2 emissions 

in 2013. Energy supply was responsible for 32% of total CO2 emissions in the UK, 180.8 

million tonnes of carbon dioxide equivalent, in 2013. Transport and residential sectors 

contribute 20% and 13% respectively of total CO2 emissions. Road transport and residential 

heating and cooking are large consumers of fossil fuels and are the most significant sources of 

emissions in the transport and residential sectors, respectively.  

 

Figure 1.1 UK CO2 Emissions by Sector in Percentage of Total UK Emissions [2] 

Therefore, renewables based electricity generation, from windfarms and photovoltaics 

coupled with substantial electrification of the transport and heat sectors though low carbon 

technologies (LCTs) such as electric vehicles (EVs) and air source heat pumps (ASHPs), will 

be essential to achieve the required reductions in carbon emissions. The anticipated 

proliferation of these technologies in future energy systems will necessitate major changes to 

the operation and planning of future distribution networks. 
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1.1.1 Distributed Generation 

Distributed generation (DG), especially renewable energy source (RES), are playing an 

important role in decarbonising the energy supply. For example, wind generation and solar 

photovoltaics (PV) convert wind and solar energy into electrical energy. Installed capacities 

of wind and PV have increased dramatically since 2010. As indicated in Figure 1.2, the 

installed capacity of PV increased from 0.1 GW to 5.4 GW. For onshore and offshore wind, 

the installed capacities increased from 4.1 GW and 1.3GW to 8.5 GW and 4.5 GW, 

respectively. 

 

Figure 1.2 Installed Capacity of PV and Wind Generation in the UK from 2010 to 2014 [3] 

1.1.2 Air Source Heat Pumps 

ASHPs are seen as key technology in the decarbonisation of domestic heating. In comparison 

with conventional boilers, which burn natural gas, ASHPs transfer heat from the outside to the 

inside of buildings using electrical energy. This allows an ASHP to generate far more heat 

than a conventional electrical heating system. The efficiency of ASHP is measured by 

coefficient of performance (CoP). CoP is the ratio between the amount of thermal energy 

transferred for heating and the electrical energy consumed by ASHP. CoP can be influenced 

by many factors including the temperature difference between the inside and outside of the 

building. Experimental results from ASHPs in residential buildings in Italy show that the CoP 
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is typically above 2.5 [4]. Other studies have determined that the power consumption of 

ASHPs varies between 1.5kW to 4.5kW [5]. 

1.1.3 Electric Vehicles 

Electric vehicles (EVs) include a range of technologies including plug-in EVs (PEVs), battery 

EVs and extended-range EVs. EVs use electrical motors instead of, or in conjunction with, 

internal combustion engines. When driven from the battery energy storage on board, EVs 

produce no pollution or CO2 during driving. If the batteries are charged from renewable 

sources, EVs do not produce any emissions. Even when EV batteries are charged from non-

renewable based generation, they still provide opportunities to deal with emissions centrally. 

Plug-in EVs are charged from three categories of chargers [6, 7], which are summarized in 

Table 1.1. 

 Connection Power (kW) 

Level 1 Single phase 1.5 – 3 

Level 2 Single phase 10 - 20 

Level 3 Three phase > 40 

Table 1.1 EV Charing Connection Type and Power Range  

Level 1 and Level 2 chargers are suitable for home charging. Compared to normal household 

peak demand, the power consumption of Level 1 and Level 2 chargers are relatively large. 

Level 3 refers to fast chargers and these high power chargers require appropriate 

infrastructures. The impacts of EV charging on existing electrical infrastructures have been 

extensively studied [8-10]. It has been found that if not well managed, even a low penetration 

of EVs can still cause network constraints violations. 

1.2 Challenges Faced by Conventional Distribution Networks 

Traditionally, power systems have been considered in terms of three areas: power generation, 

power transmission and power distribution. In the UK, distribution network operators (DNOs) 

manage electrical networks from 132kV to 0.4kV. The connection of DGs and LCTs to 

distribution networks brings new opportunities and challenges to DNOs. 

Power systems were previously designed to deliver power from large-scale generators to 

where the demand was required, via the transmission networks and distribution networks, 

from high voltage (HV) to the low voltage (LV) system. However, with more DG and LCTs 
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connected within distribution networks, this model is becoming outdated as power can be 

supplied locally and even be exported back to the transmission networks in some cases.  

Moreover, due to the connection of large quantities of renewables based intermittent 

generation such as wind and PV panels the availability and location of generation is becoming 

less predictable. Moreover, with the proliferation of new technologies such as EVs and 

ASHPs, the prediction of load profiles are becoming less predictable and unified. 

1.2.1 Voltage Control 

DG can lead to voltage rise problems. In the UK, steady state voltage limits for networks 

above 1kV and below 132kV are ±6% of the nominal voltage and -6%/+10% for LV 

networks [11]. In distribution networks, especially in LV networks where on-load tap 

changers (OLTCs) are not used, the tap positions of transformers are normally set so that 

secondary voltages at the LV busbars are close to the high voltage limits to maximise the 

capability of the network to accommodate load. Thus, during periods of low load and high 

DG real power export, it is likely that high voltage limits are violated. 

The connection of distributed PV, ASHPs and EVs are less likely to be planned by DNOs and 

therefore can increase unbalance between different phases and different feeders. The 

increased unbalance between feeders in radial networks is challenging for OLTCs. OLTCs 

change the voltages of all the feeders downstream uniformly. As a result, in a substation 

where one feeder has low voltage problems due to load while another feeder has high voltage 

problems due to DG, an OLTC cannot solve both sets of problems if they occur 

simultaneously. Similarly, as unplanned generation and additional load will be distributed 

across the phases of an LV feeder voltage phase unbalance is likely to be more severe than 

before. 

DGs and LCTs can pose challenges for voltage control devices controlling individual feeders. 

Conventionally, capacitor banks (CB) and in-line regulators are used for feeder voltage 

control. However, at the remote ends of medium voltage (MV) feeders and LV networks, 

normally there are no measurements. Without measurements and accurate state estimation 

information, controlling voltages at the remote ends of MV and LV feeders is difficult. 

1.2.2 Power Flow 

The ratings of transformers and cables indicate their capabilities for transferring power. High 

penetrations of DG can cause power flow problems including reverse power flow and 

overload. 
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Traditionally, distribution networks are designed to transmit power in the same direction 

moving from HV to LV or from substations to the remote ends of feeders. Bidirectional 

power flows can be challenging to network control and protection as existing systems and 

technology has been designed to cope with the traditional model of power flow. RESs, 

especially wind energy, may not be at the same location as load, thus in weak networks with 

high penetrations of DG, during low demand period, reverse power flow is likely to occur. 

For cables and transformers without OLTCs, the reverse power ratings are equal to their 

normal ratings. However, the reverse ratings of primary transformers equipped with certain 

types of OLTC can be constrained. For example, it is found that the reverse rating of some 

33/11.5kV, 7.5MVA primary transformer is reduced to 66.3% of the forward rating [11]. 

Both large penetrations of DG and load increase due to LCTs can cause overloads in 

transformers, overhead lines and underground cables. Overloads or thermal constraint 

violations are conventionally alleviated by network reinforcement which is expensive and 

requires considerable planning [12, 13]. The ratings of transformers and branches used in 

system planning and design are to meet peak demand or generation and are therefore typically 

not fully utilised. Enhanced DG control can also be used to alleviate thermal constraints. This 

includes curtailment of real power and management of reactive power of DG. DG curtailment 

is the most common method to deal with generation driven overloads. However, DG 

curtailment reduces environmental and economic benefits of RESs. Some DG, depending on 

the type and technology, has the capability to inject or absorb reactive power. In addition, the 

use of reactive power can be effective for voltage control in networks particularly in networks 

with higher X/R ratios. In MV and LV distribution networks, where the X/R ratio is relatively 

lower, reactive power is less effective for voltage control. It should be noted that the injection 

or absorption of reactive power changes the power factor and can increase the losses across 

the system. 

1.2.3 Uncertainties 

Conventionally, distribution networks are operated and planned using predictable load 

profiles with the majority of the real power supplied from large generators via the 

transmission system. The generation dispatch schedules are developed, at the transmission 

system operator level, based on day-ahead load forecasts coupled with sufficient reserve. 

However, this simple model is no longer valid as the level and types of uncertainty in power 

systems are increasing with the increasing penetration of RESs and LCTs connecting to 

distribution networks [14-17]. The result of these changes is that the load and generation 
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profiles used for planning systems are becoming more unpredictable and thus forecast errors 

will increase. The electrification of the transport and heating not only increase the demand but 

also make load forecast a more difficult task. For instance, due to the spatial and temporal 

uncertainty of EV charging, it is difficult to predict the charging profiles. The usage of 

domestic ASHP is decided by heat demand which can be influenced by many factors such as 

ambient temperature and the use of hot water. As a result, the electricity demand of LCTs is 

difficult to predict as well. Besides, renewable based generation is less or even not 

controllable. 

With the presence of these increasing uncertainties in the power system conventional 

technologies and techniques are therefore not adequate. The increasing number and level of 

uncertainties will greatly increase operation costs and trigger network reinforcement unless 

these uncertainties are understood, managed and planned for appropriately. 

1.3 Energy storage 

Electrical energy cannot be stored easily therefore the existing operational model within 

power systems is to maintain the balance between load and generation as accurately as 

possible. Due to the uncertainties in predicting load and generation some mismatch is 

unavoidable. These mismatches are conventionally managed using controllable generation, 

controllable load (if available) and energy storage systems (ESSs). ESSs store electrical 

energy in other forms such as chemical, thermal or gravitational potential energy and 

decouple load and generation. Battery energy storage systems (BESSs), for instance, convert 

electrical energy into chemical energy during charging and convert chemical energy into 

electrical energy during discharge. 

The characteristics of BESSs such as high energy density and fast response rate make it 

suitable for various power system applications [18-20]. Pumped hydroelectric storage (PHS) 

has been used for meeting peak demand, absorb excess generation and frequency control. 

However, in comparison with BESS, PHS is slower to respond and is also restricted by 

location. BESSs, on the other hand, have faster response times and are less restricted in terms 

of location. BESSs have no moving parts and therefore, in comparison to technologies such as 

compressed air energy storage and flywheel energy storage, are suitable to be installed in 

residential area or at a smaller scale. 

Furthermore, in distribution networks, real power flow is much higher than reactive power. 

This means that the same change in the magnitude of real power has a much higher impact on 

the magnitude of apparent power than that using reactive power. Therefore, compared with 
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other technologies which use reactive power, such as static synchronous compensator, real 

power from ESS is more effective. 

However, a number of limitations of BESSs still exist. Currently the cost of BESSs is still 

very high and the number of charge and discharge cycles of BESSs can result in relatively 

short operational lifetimes. Moreover, over-charging or over-discharging of BESSs can result 

in irreversible damage to the battery cells. To protect fragile and expensive BESSs, 

conservative approaches are normally taken to the design and management of BESSs. For 

instance, tighter SoC limits than their technical limits are often used to protect BESSs from 

over-charge and over-discharge. 

The difficulty of observing the complex chemical reactions within the cells makes measuring 

state-of-charge (SoC) and the state-of-health (SoH) of batteries extremely challenging. 

Inaccuracies in SoC measurements have additional impacts on the operational regimes of the 

available energy resource in order to protect the battery. 

Understanding and measuring battery degradation and SoH is very important to maximising 

the value of BESSs, due to their high capital costs and limited numbers of charge-discharge 

cycles. SoH can be indicated by internal resistance, available capacity, voltage and remaining 

charge and discharge cycles [21]. Aggressive use of BESS such as deep depth of discharge 

(DoD) and fast charge and discharge have serious effects on the SoH of BESSs. 

1.4 Demand Side Response 

Power systems used to be designed to meet peak demands by scheduling and controlling 

centralized large-scale fossil fuel based plant based on predictable load forecasts. The 

generators used to supply the peak demand usually have higher costs and are typically less 

efficient, more carbon intensive generating plants. Therefore, exploiting the customers’ 

flexibility through DSR and reducing reliance on this generating plant is crucial to reducing 

the carbon emissions of the electrical energy system. It has been estimated that a 5% shift of 

peak demand can deliver an annual network investment saving of £14m and a daily carbon 

emission saving of up to 1,250 tCO2 [22]. 

Demand side response (DSR) is able to reduce peak demand but also can be used to facilitate 

RESs. During periods when generation is in excess of demand, for example during periods of 

large wind generation export, bringing load forward, which results in generation and demand 

mismatches being minimised, can avoid RES curtailment. DSR has also been shown to have 

the capability to reduce the requirement for network reinforcement [23]. 
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There are still a number of barriers to the implementation of DSR. How much demand can be 

reduced or increased is difficult to determine and uncertain. The recuperation of energy after 

DSR services have been delivered is known as pay back. The magnitude, duration and effects 

of the pay back of DSR need to be further investigated. The uncertainties associated with 

DSR need to be understood and managed. Furthermore, there is a lack of a regulatory 

framework and incentive mechanism for DSR which is currently limiting the adoption of 

DSR in the UK. Finally, customers’ awareness of the potential benefits of DSR needs to be 

improved. 

1.5 Real Time Thermal Rating 

The ratings of conductors are conventionally defined by a set of predefined and conservative 

weather conditions. For instance, according to the UK standard, the rating for overhead lines 

(OHL) are calculated based on assumptions of the weather conditions of 0.5m/s wind speed 

and an ambient temperature of 2°C in winter and 20°C in summer [24]. 

Real time thermal rating (RTTR) considers the real time temperature of conductors as the 

constraint of the conductors’ capacity. The impacts of environmental conditions on RTTR 

have been explored in [25]. The cooling of conductors is influenced by environmental factors 

including ambient and soil temperature, wind speed, wind direction and solar irradiance. For 

OHLs, the most significant factors are wind speed and ambient temperature [26]. For electric 

cables (underground), their ratings are mostly influenced by thermal resistance of the 

insulation and the soil. The ratings of power transformers are limited by the hot spot 

temperature of the windings. For distribution transformers, which are normally naturally 

cooled by air externally, the most significant environmental factor is air temperature [25, 27, 

28]. 

Deploying RTTR in collaboration with other technologies has been shown to be able increase 

the capability of distribution networks’ to accommodate RESs and LCTs [29]. In comparison 

with static rating, RTTR can increase the current carrying capability of conductors [27]. In 

previous studies, it is found that the implementation of RTTR can reduce loss of load 

expectation of up to 67% [30]. 

1.6 Research objectives 

The research detailed in this thesis focussed on the management and resolution of thermal 

constraints and steady state voltage limit violation problems in distribution networks. The aim 

of the research is to provide an alternative solution to network reinforcement, which has high 

cost and requires extensive planning and construction work. 
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This research aims to investigate the use of ESS and DSR in future distribution networks to 

facilitate LCTs as an alternative to network reinforcement. In summary, the research question 

of this thesis is: if and when ESS and DSR can be alternative to network reinforcement? The 

main research objectives are detailed below: 

- To investigate the impacts of high penetrations of DG and LCTs on future smart 

distribution networks in terms of voltage and power flow; 

- To understand the limitations of current control strategies for ESS and DSR in future 

distribution network scenarios where high penetrations of DG and LCTs exist; 

- To understand the impacts of a range of sources of uncertainties, arising from existing 

and future elements of the electrical energy system, on the performance of 

conventional control algorithms; 

- To develop and evaluate control strategies for ESS and DSR to facilitate DG and LCTs 

in the presence of a range of source of uncertainties. 

1.7 Thesis outline 

The rest of this thesis is organised as follows: Chapter 2 provides a literature review on ESS 

and DSR. The technologies and benefits of ESS are introduced first. The state of the art of 

control and scheduling strategies for grid scale ESS is provided. This is followed by a 

description of the benefits and challenges for DSR. Current approaches for DSR control and 

scheduling are also examined. In the following section, coordinated control methods for ESS 

and DSR are reviewed. Finally, conclusions are drawn on the use of EES and DSR in future 

distribution networks. 

In Chapter 3, the calculation of SFs is described and control schemes based on SFs are 

proposed. The use of sensitivity factors (SFs), namely voltage sensitivity factors (VSF) and 

power flow sensitivity factors (PFSFs) in this thesis, is an important method to linearize the 

quadratic power flow equation. Initially, two methods to calculate SFs are introduced. Next, 

based on SFs, cost sensitivity factors (CSFs) are introduced. Finally, A SF and a CSF based 

control schemes which use ESS and DSR collaboratively are presented. 

Chapter 4 describes uncertainties that exist in power system scheduling problems and 

methods to deal with uncertainties. The sources of uncertainty, including load forecast, wind 

forecast, RTTR, SoC and DSR, are introduced first. Methods to deal with uncertainty are 

presented. To illustrate the impact of uncertainty on a distribution network an example of 

using Monte Carlo simulation (MCS) to explore the impacts of EV charging on distribution 

networks is given. 
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In Chapter 5, tackling uncertainty with robust optimization (RO) is detailed. The formulation 

and solution of an uncertainty linear optimization problem is introduced. The three stages of 

RO formulations are presented. This is followed by a description of the implementation and 

validation of RO in Python. 

Chapter 6 applies RO to solve a power flow management (PFM) problem which integrates 

ESS and DSR. The concept of budget of uncertainty (BoU) and optimal budget of uncertainty 

(OBoU) is proposed to realise the trade-off between the probability of success (PoS) and the 

cost. Two methods to calculate OBoU are proposed. 

In Chapter 7, case studies based on IEEE 14 and 118 busbar networks are given to illustrate 

the advantages of the proposed method. Simulation results show that the proposed scheduling 

scheme is able to reduce the requirement for ESS, compared to conventional techniques. 

In Chapter 8 and Chapter 9, a discussion of the findings and the implications of this research 

is presented and key findings are summarised. 
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Chapter 2. Literature Review 

2.1 Introduction 

In the previous chapter, the challenges to future distribution networks due to the anticipated 

widespread proliferation of LCTs that are required to enable the decarbonisation of the energy 

sector are presented. ESS and DSR are key technologies in enabling a smart approach to 

economically managing these changes to the supply, transmission, distribution and 

consumption of electrical energy. 

In this chapter, a review of the roles and capabilities of ESS and DSR, under the supervision 

of supervisory smart control systems in future distribution networks is presented. In section 

2.4, previous work on the coordinated, collaborative operation and scheduling of ESS and 

DSR in distribution networks is evaluated. Finally, a summary of the current capabilities and 

limitations of advanced network management systems which integrate ESS and DSR to 

manage voltage and thermal constraints in future distribution network is discussed. The 

limitations of current research are summarised. 

2.2 Energy Storage 

2.2.1 Benefits of Energy Storage in Electrical Energy Systems 

Due to differences in the operation and management of today’s electrical energy systems 

throughout the world and the flexibility of energy storage the benefits of energy storage vary. 

In the following section, the key benefits provided by energy storage to distribution and 

transmission networks worldwide is presented. The benefits of ESS include: 

1. Voltage control and power flow management 

The use of energy storage to provide voltage control and power flow management has 

been demonstrated in [31, 32]. In [31], a battery energy storage system (BESS) was 

deployed in an area of 11kV distribution network in the UK to control voltage and 

alleviate thermal constraints. It was found that the 0.4MW, 0.2MWh BESS deployed 

in an 11kV distribution network was capable of reducing the number of thermal 

excursions. 

2. Energy Arbitrage 

Generating profit by selling energy when the cost of energy is high and buying energy 

when the cost is low is known as arbitrage. To do this effectively requires accurate 

prediction of future energy prices which is influenced by factors such as generation 

availability and load. A robust bidding strategy for a windfarm and an ESS, which 
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considers the uncertainty in electrical energy price and wind power export forecasting, 

has been developed previously [33]. In [34], the economic viability of arbitrage with 

cryogenic ESS considering day-ahead and week-ahead electricity prices is evaluated. 

3. Ancillary Services 

Energy storage has been previously shown to be able to provide ancillary services 

including frequency response/operating reserves [35]. Energy storage can be used to 

support black starts [36, 37]. ESS can be used to improve power quality and stability, 

especially in LV networks and microgrids [38-40]. 

4. Facilitate renewables 

Previous work has demonstrated, using a validated Great Britain (GB) power system 

model, it has been shown that with 8GW, 800GWh energy storage, the maximum 

capacity of wind based generation can be increased from 35GW to 42GW and the 

critical excess electricity production can be reduced from 8.21GWh to 4.35GWh [41].  

5. Regulatory 

Energy storage has the capability to reduce customer minutes lost, and can also assist 

in compliance with ER P2/6 [42], the UK energy security standard. In addition, energy 

storage has also been shown to reduce generator curtailment [31, 43]. 

2.2.2 Grid Scale Energy Storage Technologies and Services 

The capabilities of a wide range of grid scale energy storage technologies to provide energy 

system services have been investigated previously [18, 44-48]. 

In [47], the characteristics, current development state and potential usage of grid scale energy 

storage technologies are summarised and evaluated. Key characteristics that were identified 

include the current rated (energy) capacities and the discharge time duration at rated power of 

the energy storage systems under evaluation. These key characteristics were mapped to the 

key challenges and services that are required in the energy market. This mapping is expressed 

diagrammatically in Figure 2.1. It can be seen that the characteristics of BESSs currently map 

to the requirements of smartgrid and distribution network applications.  
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Figure 2.1 Characteristics, State and Potential Application of Electrical Energy Storage 

Technologies [47] 

2.2.3 Energy Storage Control and Scheduling 

In [49], an introduction to the use of BESS to enable the integration of PV based generation, 

is given. Three control modes for BESS were defined, namely ramp rate control, frequency 

response and reactive support. In reactive support mode, BESS is used to import/export 

reactive power for power factor correction and distribution network loss reduction. To support 

the development of the control for BESS a Hardware in the Loop (HIL) test bed was 

developed. The final control strategy presented in this paper is based on ramp rate control, 

with the ramp rate of the BESS export change limited to 50kW/min. However; the control 

strategy developed is not optimised. 

A multi-objective control strategy for BESS to defer network reinforcement due to the 

increasing penetration of PV has previously been developed [50]. A detailed BESS model is 

proposed and this model is able to simulate the round trip efficiency, SOC, single and three-

phase real, reactive and apparent power rating of BESS. The objectives of the optimisation 

algorithm are voltage control, power flow management and minimisation of annual cost. The 

trade-off between voltage control and power flow management is realized by using a 

weighting factor. The third objective, annual cost minimisation is modelled as a constraint. 

The annual cost calculation includes asset depreciation cost, fixed capital cost and 

maintenance costs and average energy cost per unit of time. 
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An optimal operation strategy for an ESS, connected to a wind generator, in a day-ahead 

market is proposed in [51]. The ESS is used to store renewable energy from the wind 

generator in order to maximize the revenue generated for selling energy to the market. A 

discrete time battery model, which models the battery dynamics including SOC, temperature 

and current, has been built and adopted. The overall optimization problem is solved with a 

forward dynamic programming algorithm. 

Several studies focus on the real and reactive power import/export ratio of ESS to control 

voltage and manage power flows. The effectiveness of reactive power to control voltage is 

dependent on the X/R ratio of the network. In [52], six control strategies with different real 

and reactive power priorities and ratios have been used for voltage control and reducing 

reverse power flow. The strengths and weaknesses have been evaluated through simulations 

with an 11kV network model. In [53] an operation strategy for BESS, is proposed for 

distribution network voltage support. The real and reactive power ratio is determined by the 

conductance and the susceptance of the Thevenin equivalent of the upstream network. This 

method is introduced in [54]. Eight dispersed Zn/Br flow batteries are deployed in a rural 

distribution network at different locations for voltage control [55]. In this work three voltage 

control strategies have been developed and comparatively evaluated. However, it was found 

that reactive power had minimal effect on the voltages in the case study network under 

investigation. 

Optimal power flow (OPF) techniques have also been used to develop control algorithms for 

the control and scheduling of ESS [56-58]. However, direct integration of ESS into 

conventional OPF techniques is not usually possible. The main challenges to integrating ESS 

into OPF based control algorithms are: 

 Finite discharge/charge capability of ESS; 

 Accurate determination of available discharge and charge capability of ESS; 

 The quadratic relationship between real, reactive and apparent power rating. 

In [56], an ESS is instructed to charge during off-peak periods and discharge during peak 

periods. Maximum real power import and export is decided by the maximum mismatch 

between generation and load. In this paper, the charge and discharge operation periods are 

fixed. In [57], an optimised flexible charge and discharge scheduler for ESS is proposed. 

However, this scheduler only allows one charge and discharge cycle per day and is not able to 

deal with the uncertainty of forecast. In [58], the authors proposed a dynamic programming 

approach based solver for OPF problems with ESS, with a focus on microgrid application. 
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The proposed formulation minimises the cost of importing electricity from the main grid. In 

[59], OPF equation has been modified to solve an ESS scheduling problem. In this work, the 

cost function minimizes the cost of generation. The cost of using ESS is not considered. 

Rule based control techniques have been used for ESS control [60, 61]. In [60], a rule based 

control strategy is proposed to dispatch intermittent renewable based generation. The 

objective of this control strategy is to maintain the combined export power from renewables 

and BESS to a predefined setpoint. In [61], ESS is used in collaboration with OLTC for 

voltage control. The concepts of cost sensitivity factors are proposed. The proposed 

methodology uses the most effective intervention. 

Paper [62] presents a coordinated control of distributed ESS with tap changer transformers for 

voltage rise mitigation due to high PV penetration. In this proposed system, distributed ESSs 

are located next to PV and are coordinated by the central controller. When a voltage excursion 

occurs, the transformer responds initially and ensures that the bus voltage is within limits. 

Real power import/export signals will be sent to the ESSs to absorb the reverse power flow or 

shave the peak load. Real power import/export signals will not be sent until the tap operation 

is over. The maximum DoD of the BESS is limited to 20% (over 80% SOC) to prolong the 

cycle lifetime of the ESSs. 

2.2.4 Use of Real and Reactive Power Ratio for Voltage Control and Power Flow 

Management 

As energy storage can provide multiple services with both real and reactive power, it is 

important to understand the relationships between voltages and power flows of the system and 

the real and reactive power import/export from ESS units.  

The voltage change due to real and reactive power injection from ESS can be estimated by  

 ∆𝑉 =
(𝑃𝐸𝑆𝑆𝑅 + 𝑄𝐸𝑆𝑆𝑋)

𝑉𝑆
 (2.1) 

where 

∆𝑉   the voltage change 

𝑉𝑆   the nominal voltage 

𝑃𝐸𝑆𝑆   the real power import/export from ESS 

𝑄𝐸𝑆𝑆   the reactive power import/export from ESS 

𝑅   line resistance 

𝑋   line inductive reactance 
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In transmission networks where the 𝑋/𝑅 ratio is high, reactive power is more effective for 

voltage control. On the contrary, in distribution networks, where the 𝑋/𝑅 ratio is relatively 

lower, real power is more effective to control voltage. However, the available real power 

resource is finite and is limited by the capacity of the ESS. Reactive power is less effective for 

voltage control but is unlimited in time. 

Similarly, when using energy storage for power flow management problems, real power has a 

higher sensitivity factor but the effective cost of real power is higher as well. Reactive power 

is less effective but costs less. 

The trade-off between using real and reactive power is illustrated by Figure 2.2 below. 

Reactive power of ESS is not time limited therefore using reactive power only is purely a cost 

prioritized approach. However, injecting too much reactive power will cause large voltage 

change and also increase network losses. When voltage constraints and losses are considered, 

more real power should be used. Exporting real power only is a technically driven approach. 

Real power is an effective solution for power flow management, however, when the energy 

capacity of the ESS unit is approaching its limits as well as the duration of the violation of 

limits or constraints are considered, more reactive power should be used. 

Increase cost, energy capacity 

requirement of ESS

Increase losses and

voltage change

Reactive power only

Real power only

 

Figure 2.2 Illustration of the Trade-off Between Real and Reactive Power 

2.3 Demand side response 

Demand side management (DSM) is defined as any activity carried out on the demand side of 

energy systems [63]. DSM, therefore, encompasses activities such as energy efficiency, time 

of use (ToU) tariffs, DSR and spinning reserve (SR). DSR increases or decreases the load in 
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the system by changing the behaviour of customers. The term DSM is often used as an 

alternative to DSR and two words could be considered to be interchangeable. In this thesis, 

the term DSR is used for this activity and is used to emphasise that the behaviour of real 

customers is far less controllable in comparison with other elements of the energy system 

such as large-scale generation plant, ESS and interconnectors. 

There are two principal approaches to DSR. The first approach is direct load control (DLC) 

[64-69]. In this approach, the operation of appliances is controlled or scheduled by utilities, 

aggregators or controllers such as home automation devices. The other approach influences 

how customers use energy by changing the price of electricity. Most popular methods of this 

approach include ToU tariffs [70, 71] and dynamic or real time pricing [72, 73]. 

As DSR has the impact of bringing forward and/or delaying electrical energy consumption, it 

can therefore, be seen as another form of energy storage. For instance, performing DSR 

through the use of refrigerators [74], electric water heaters (EWH) [68, 75], heat pumps [76] 

and other thermal energy storage techniques [77] can also be viewed as an exchange between 

electrical energy and thermal energy systems with energy stored thermally. An example of 

this process would be a request for a demand reduction from a group of domestic heat pump 

equipped households for an hour. During this period energy is effectively taken from the 

thermal store (the households) and made available to the electrical energy system. Following 

the completion of the DSR request the thermal store needs to be recharged and thus the heat 

pumps are switched back on recuperating the energy back to the households from the 

electrical system. This recuperation of energy from the electrical system is known as payback 

[78]. More intuitionally, DSR with EVs, such as optimal charging control [79] and vehicle to 

grid (V2G) [80] is realized by controlling the ESS on board of EVs. 

2.3.1 Benefits and Challenges of Demand Side Response 

The classification, benefits, future opportunities and challenges for DSR have been reported 

in various studies [22, 23, 81-83]. The benefits of DSR include but are not limited to: 

- Reducing the generation margin; 

- Deferring network infrastructure reinforcement; 

- Improving the efficiency of network operation; 

- Reducing carbon emissions; 

- Reducing energy costs for customers; 

- Reducing or avoiding RES curtailment. 

The challenges for rolling out DSR in large scale include: 
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- Customers’ awareness of the possibilities (financial and otherwise) that DSR provides 

needs to be improved; 

- The load reduction or increase and payback of DSR is difficult to predict; 

- Essential infrastructures such as smart meters and information and communications 

technology (ICT) are required; 

- A Market structure is required to develop business cases. 

2.3.2 DSR Control and Scheduling 

In this section, the state of the art of DSR control and scheduling strategies is reviewed. 

In paper [84], a DC-Optimal Power Flow (DCOPF) based algorithm is used to improve the 

utilisation of the existing network capacity. This framework is applied to on an11kV radial 

distribution network to evaluate the benefits of collaborative deployment of energy storage 

and DSM. In this work, it is assumed that 10% of peak load can be shifted. 

An interdisciplinary method to evaluate the reinforcement deferring effect of DSR has been 

previously proposed [85]. Power flow sensitivity factors, thermal vulnerability factors and 

social index factors are used to identify the best location for DSM and evaluate the social 

acceptance within the network area. A load control strategy to enable LV network voltage 

control is presented in [86]. The control scheme increases the real power consumption in an 

LV network to mitigate voltage rise problems due to a wind farm connection. 

In [87], thermal loads with high thermal inertia are used for short-term voltage support. 

During a low voltage event, thermal loads are disconnected to mitigate the impacts of 

induction motors. Thermal loads are reconnected when the voltage is recovers. It was shown 

that this control strategy can thus improve voltage stability. 

A pricing method based on Vickery-Clarke-Groves (VCG) mechanism is proposed in [88]. 

VCG mechanism is a pricing method which aims to encourage efficient energy consumption 

and at the same time maximizes the benefits of the customers. The VCG mechanism makes 

decisions based on the consumption of customers. It is found that this method can encourage 

customers to reduce consumption; however, the formulation introduced in this paper is 

computationally intensive and also requires two-way communication. 

When the on and off state and the duration of operation of DSR enabled appliances are 

considered, the controlling and scheduling problem for these services become a mixed-integer 

problem. Solving mixed-integer problems (MIP) by deterministic techniques can pose a 

number of challenges. For instance, MIPs are no-convex, difficult to solve and computational 
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intensive. Heuristic optimisation techniques have been used to overcome these challenge [66, 

89-91]. For instance, in [89], a day-ahead load scheduling problem is formulated as a 

minimization problem. The proposed formulation takes planned load profiles as input. The 

planned load profile is provided by a smart grid manager and aims to maximize the use of 

RES and the economic benefits. The operation of the appliances is scheduled so that the 

difference between the scheduled total consumption and the planned load profile is minimised. 

Game theory based methods have also been proposed for DSR scheduling [92, 93]. Most 

scheduling methods require the knowledge of the energy consumption of customers while 

game theory based methods can protect the privacy of customers [92]. In this paper, the 

proposed energy consumption scheduling scheme is able to achieve the Nash equilibrium 

among the participating users. 

In [94], a multi-objective decision making (MODM) method for DSR in LV residential 

distribution networks is developed to resolve transformer thermal contraints. The MODM 

process decides which load is disconnected or delayed. The proposed process is based on a 

decision making matrix. The decision making matrix has five criteria, including user priority, 

flexibility, satisfaction, power similarity and high power consumption. However, this 

proposed method may not be suitable for large scale applications due to the heavy 

communication requirements. 

2.4 Coordinated ESS and DSR control 

In this section, coordinated ESS and DSR control methods are reviewed. Normally, ESS and 

DSR are treated in isolation or even competitively. 

In [95], a distributed on-line algorithm is proposed for energy utilization among multiple 

households. In this paper, it is assumed that each household is equipped with an ESS. ESS is 

used to store excess DG real power export and supply local demand when the DG real power 

export is low. 

ESS and DSR are used cooperatively for microgrid frequency control during islanding [96, 

97]. ESS units with short response times, such as flywheels, are used for primary frequency 

control. Controllable micro-sources, which are relatively slower to respond to control signals, 

are used for secondary frequency control. Load curtailment is implemented if there is 

insufficient generation reserve in the microgrid or if the SoC of ESS is low. 

In [75] and [76], BESS and DSR have been used for distribution system voltage and 

frequency control. DSR is used for frequency control only while BESS is used for both 
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voltage and frequency control. Real power from BESS is used for frequency control while 

reactive power is used for voltage control. In this application, heat pumps [76] and EWH [75] 

are used for frequency control as DSR appliances. 

2.5 Discussion and Conclusion 

ESS has the capability to provide a number of services which assist in the operation of 

distribution networks. This will be particularly important in future networks with large 

penetrations of LCTs such as wind generation, PV, EVs and heat pumps which are likely to 

increase demands on distribution networks and make it increasingly difficult to predict load 

and generation. However, the greatest challenge to the widespread adoption of this technology 

is the high cost of ESS in distribution networks, therefore it is crucial that the control and 

scheduling of these units maximises their impacts on the energy system. 

The limitations of previous research are summarized below: 

 The majority of previous research has focused on DSM rather than DSR 

The assumption that demand is fully controllable has been previously shown to be not always 

true as customers are not always going to accept requests for demand response. Thus the 

response in terms of magnitude and duration is uncertain. Therefore, designing a control or 

scheduling system that assumes that response is fully or highly controllable is likely to result 

in relatively poor performance. 

 Static rating is used rather than RTTR 

Similarly, for power flow management problems, much of the previous work assumes a static 

asset rating rather than using RTTR. Compared to static rating, RTTR can enhance the 

utilization of cables and transformer and thus reduce the requirement for ESS and DSR. 

 Uncertainty is ignored in many works 

Furthermore, the majority of previous research ignores the stochasticity of load, DG, RTTR 

and DSR. In a scheduling problem in a future smartgrid, with the increasing penetration of 

LCTs, it is likely that forecast values will have limited accuracy, particularly as the time 

horizon extends beyond a few hours. Without careful consideration of the uncertainty of all 

these factors, the decisions made by any control system or scheduling strategy are likely to be 

either excessively conservative or risky. 

 Lack of coordinated operation of ESS and DSR 

Finally, little previous work has considered the coordinated operation of ESS and DSR and 

has usually considered the control of these devices in isolation. ESS is fully controllable and 
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fast response device with higher cost and limited resource. Compared to ESS, DSR is 

normally less or even not controllable, slow to response however has a relatively lower cost. 

At the same time, DSR resource or capacity is less constrained compared to ESS. For 

example, if backup generators are used to provide DSR, the DSR resource is only limited by 

the fuel. The next chapter will illustrate the complementary features of ESS and DSR which 

make the combination of ESS and DSR an attractive solution. 
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Chapter 3. Sensitivity Factors and Sensitivity Factors Based Control 

Schemes 

3.1 Introduction 

In this chapter, sensitivity factor (SF), namely voltage sensitivity factor (VSF) and power 

flow sensitivity factors (PFSF), based control schemes are introduced. Load flow calculation 

is a non-linear process and optimization techniques, such as interior-point methods (IPM) and 

least sequential square methods, are well established for non-linear functions. However, most 

analytical methods dealing with uncertain problems can only be applied to linear problems. 

The use of VSF and PFSF is a linearization of the full quadratic alternating current (AC) 

loadflow calculation. In this chapter, how to derive VSF and PFSF from loadflow equations is 

detailed first. The SFs can be derived from the full AC loadflow equation or direct current 

(DC) load flow. Next, an incremental method to calculate VSF and PFSF is introduced. 

A control scheme with ESS and DSR based on SFs is detailed in section 3.4. Fast response 

ESS, such as BESS, can provide fast response upon receiving request however it has a limited 

energy resource. On the contrary, DSR is more likely to provide longer service but is slower 

to respond. This control scheme uses ESS to deal with the magnitude and delay uncertainty of 

DSR. However, SFs dao not consider the cost of using ESS and DSR. 

In section 3.5, cost sensitivity factors (CSFs) are introduced to quantify the effectiveness of 

the per unit cost for changing voltage and power flow by using ESS and DSR. A control 

scheme based on CSFs is proposed in section 3.6. CSF enables the evaluation of an 

intervention using both technical and commercial considerations. The proposed control 

schemes are tested with real trial network and device models used in the CLNR project. The 

case study shows that, by using ESS and DSR collaboratively, the control schemes are able to 

reduce the size requirements for ESS and enable the use of DSR without resorting to network 

reinforcement. 

In section 3.7 the limitation of using sensitivity factors is discussed based on a practical 

example using IEEE 14 bus network.  

3.2 Deriving Voltage Sensitivity Factor and Power Flow Sensitivity Factor from 

Jacobian Matrix 

Jacobian matrix is the matrix of first order partial derivatives of voltage angle and voltage to 

real and reactive power mismatch. In this section, calculating voltage sensitivity factors and 

power flow sensitivity factors based on Jacobian Matrix is introduced. 



24 

 

3.2.1 VSF 

VSF is the voltage change at busbar 𝑖 due to the real or reactive power injection or extraction 

at busbar 𝑘 

 

𝑉𝑆𝐹𝑖,𝑘
𝑃 =

∆𝑉𝑖

∆𝑃𝑘
 

or 

𝑉𝑆𝐹𝑖,𝑘
𝑄 =

∆𝑉𝑖

∆𝑄𝑘
 

or 

𝑉𝑆𝐹𝑖,𝑘
𝑆 =

∆𝑉𝑖

∆𝑆𝑘
 

(3.1) 

where 

𝑉𝑆𝐹𝑖,𝑘
𝑃  the voltage sensitivity factor from bus 𝑘 to bus 𝑖 which represents the 

voltage change at bus 𝑖 due to real power injection at bus 𝑘 

𝑉𝑆𝐹𝑖,𝑘
𝑄

 the voltage sensitivity factor from bus 𝑘 to bus 𝑖 which represents the 

voltage change at bus 𝑖 due to reactive power injection at bus 𝑘 

𝑉𝑆𝐹𝑖,𝑘
𝑆  the voltage sensitivity factor from bus 𝑘 to bus 𝑖 which represents the 

voltage change at bus 𝑖 due to apparent power injection at bus 𝑘 

∆𝑉𝑖   the voltage change at bus 𝑖 

∆𝑃𝑘   the real power injection change at bus 𝑘 

∆𝑄𝑘   the reactive power injection change at bus 𝑘 

∆𝑆𝑘   the apparent power injection change at bus 𝑘 

VSF can be derived from the inverse Jacobian matrix. The inverse Jacobian matrix is given 

below. Detailed explanation is given in Appendix A. 

 [
∆𝜽

∆𝑽/𝑽
] = −𝑱−1 [

∆𝑷
∆𝑸

] = −

[
 
 
 
∂𝜽

∂𝑷

∂𝜽

∂𝑸
∂∆𝑽

∂𝑷

∂∆𝑽

∂𝑸 ]
 
 
 

[
∆𝑷
∆𝑸

] (3.2) 

where 

𝜽   the vector of angle difference between busbars  

𝑽   the vector of voltage of busbars 
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𝑱   the Jacobian matrix 

𝑱−𝟏   the inverse Jacobian matrix 

𝑷   the vector of net real power injection  

𝑸   the vector of net reactive power injection  

𝜕∆𝜽
𝜕𝑷⁄   the matrix for the partial derivatives of 𝜽 to ∆𝑷 

𝜕∆𝜽
𝜕𝑸⁄   the matrix for the partial derivatives of 𝜽 to ∆𝑸 

𝜕∆𝑽
𝜕𝑷⁄   the matrix for the partial derivatives of ∆𝑽 to 𝑷 

𝜕∆𝑽
𝜕𝑸⁄   the matrix for the partial derivatives of ∆𝑽 to 𝑸 

Thus, for a small ∆𝑃𝑘 and ∆𝑄𝑘 VSF can be represented by the elements in the inverse 

Jacobian matrix 𝑱−1 

 

𝑉𝑆𝐹𝑖,𝑘
𝑃 =

∆𝑉𝑖

∆𝑃𝑘
≈

∂∆𝑉𝑖

∂𝑃𝑘
 

or 

𝑉𝑆𝐹𝑖,𝑘
𝑄 =

∆𝑉𝑖

∆𝑄𝑘
≈

∂∆𝑉𝑖

∂𝑄𝑘
 

(3.3) 

3.2.2 PFSF 

PFSF in this research is defined as the change of powerflow through a branch from bus 𝑖 to 

bus 𝑗, or branch 𝑖𝑗, due to the real or reactive power injection or extraction from busbar 𝑘. 

 

𝑃𝐹𝑆𝐹𝑖𝑗,𝑘
𝑃 =

∆𝑆𝑖𝑗

∆𝑃𝑘
 

or 

𝑷𝑭𝑺𝑭𝒊𝒋,𝒌
𝑸 =

∆𝑺𝒊𝒋

∆𝑸𝒌
 

or 

𝑃𝐹𝑆𝐹𝑖𝑗,𝑘
𝑆 =

∆𝑆𝑖𝑗

∆𝑆𝑘
 

(3.4) 

where 

𝑃𝐹𝑆𝐹𝑖𝑗,𝑘
𝑃   Power flow sensitivity factor from bus 𝑘 to branch 𝑖𝑗 due to real power 
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𝑃𝐹𝑆𝐹𝑖𝑗,𝑘
𝑄

 Power flow sensitivity factor from bus 𝑘 to branch 𝑖𝑗 due to reactive 

power 

𝑃𝐹𝑆𝐹𝑖𝑗,𝑘
𝑆  Power flow sensitivity factor from bus 𝑘 to branch 𝑖𝑗 due to apparent 

power 

∆𝑆𝑖𝑗   apparent power flow change of branch 𝑖𝑗 

Deriving PFSF from full AC loadflow can be complicated due to the fact that the Jacobian 

matrix only reflects the relationship between the angle of bus 𝑖, 𝑗 and the net power injection 

from busbar 𝑘. In some applications, DC loadflow is applied to calculate PFSF [98-100]. In 

DC loadflow, the resistance on the branches and reactive power is ignored. All voltage 

magnitudes are assumed to be 1.0 p.u.. DC loadflow only calculates the real power and the 

voltage angle. The assumptions for DC loadflow include: 

i. Reactive power is neglected 

ii. The relationship between the real power and the voltage magnitude is neglected 

iii. All voltage magnitudes are assumed to be 1.0 

iv. Resistance on branches is neglected 

In transmission networks, where the X/R ratio is high and sufficient voltage support exist, the 

above assumptions are valid and DC loadflow is a reasonable simplification. DC loadflow is 

extensively applied in transmission network unit dispatch and control. However, in 

distribution networks, the X/R ratio is lower than that of transmission networks and 

neglecting the resistance can cause calculation errors. Besides, in distribution networks, 

especially for distribution networks with long feeders or with large penetrations of DG or 

LCTs, the voltage profiles will be more volatile. It may not be reasonable to assume that the 

magnitude of voltage is 1.0. Thus, using DC loadflow derived PFSF for distribution network 

control and optimization is likely to lead to large errors. 

3.3 VSF and PFSF Calculation Based on Incremental Method  

In this section, an incremental method for calculating sensitivity factors is introduced. This 

method calculates sensitivity factors by comparing two loadflow results. The first loadflow is 

used as the baseline. A small power injection change to one of the busbars in this network is 

then applied. By calculating the difference between voltage and power flow in two load flow 

results, the voltage and power flow sensitivity factors can be calculated. The process of the 
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incremental method is illustrated in the flow chart below. Figure 3.1 shows the process to 

calculate the 𝑉𝑆𝐹𝑖,𝑘 and 𝑃𝐹𝑆𝐹𝑖𝑗,𝑘 due to the real power injection from bus 𝑘. 

Start

Setup network model

Loadflow calculation

Record Vi and Si,j

Update network model:

Pk = Pk + DPk

Loadflow calculation

Record V’i and S’i,j

Calculate VSFi,k and 

PFSFij,k 

End

 

Figure 3.1 Incremental Method for Calculating VSF and PFSF 

First, the network model is setup to enable a loadflow calculation. Real and reactive load or 

generation for each busbar is defined at this stage. Second, a normal full AC loadflow 

calculation is carried out, the voltage of bus 𝑖, 𝑉𝑖 and the power flow through branch 𝑖𝑗, 𝑆𝑖𝑗 is 

recorded. Next, the net injection of bus 𝑘, 𝑃𝑘 = 𝑃𝑘,𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑘,𝑙𝑜𝑎𝑑 is replaced by 

𝑃𝑘 + ∆𝑃𝑘, ∆𝑃𝑘 is a small increment in real, reactive or apparent power. Loadflow is carried 

out again with the updated network model to calculate the new voltage of bus 𝑖, 𝑉′𝑖 and the 

power flow through branch 𝑖𝑗, 𝑆′𝑖𝑗. Finally, the sensitivity factors can be calculated as 

 𝑉𝑆𝐹𝑖,𝑘 =
∆𝑉𝑖

∆𝑃𝑘
=

𝑉′𝑖 − 𝑉𝑖

∆𝑃𝑘
 (3.5) 

 𝑃𝐹𝑆𝐹𝑖𝑗,𝑘 =
∆𝑆𝑖𝑗

∆𝑃𝑘
=

𝑆′𝑖𝑗 − 𝑆𝑖𝑗

∆𝑃𝑘
 (3.6) 

3.4 Sensitivity Factor Based Control Scheme 

In this section, a new application of ESS and DSR operating collaboratively to enable voltage 

control within distribution networks is introduced. This work has been published in paper 

[101]. The author’s contributions in this work include design, implementation and evaluation 

of this control scheme. In this scheme, industrial and commercial (I&C) DSR and ESS have 

been used collaboratively to mitigate voltage violations in a rural distribution network under a 

future scenario. 



28 

 

Voltage and power flow sensitivity factors have been used for voltage control and power flow 

management in [102] and [103]. In [102], VSF and PFSF are used in a coordinated control 

scheme for solving voltage and thermal limit violations with DGs. It is found in this work that 

sensitivity factor based control scheme is fast-to-deploy and flexible. 

3.4.1 Proposed control scheme 

High penetrations of LCTs are likely to cause voltage drop problems in distribution networks. 

In order to mitigate the violation of steady-state voltage limits caused by the increasing 

penetration of LCTs, the proposed control system uses industrial and commercial (I&C) DSR 

and ESS collaboratively to mitigate voltage violations in a rural distribution network. ESS has 

is able to provide fast response however has a finite resource. The capability of ESS to 

provide real power support is limited by the SoC. On the contrary, I&C DSR is normally slow 

to response but is less constrained by resource. To reduce the requirement for the resource of 

ESS and achieve a high response rate for voltage excursions, the proposed collaborative 

control system will instruct the ESS to operate first and export real power to increase the 

voltage in the network. The real power export from ESS increases or decreases at a step size 

of 10kW. If the excursion is sustained, the scheme will call DSR. There is no reactive power 

output from ESS because a typical distribution network has a low X/R ratio and the impact of 

reactive power on voltage control is limited.  

Since the ESS has a finite resource, a possible scenario arises such that if the voltage problem 

cannot be solved with the available capacity of the ESS, the under voltage problem would 

remain. The availability of DSR services will be checked at the occurrence of the under 

voltage events. The available DSR services will be checked against power flow constraints so 

that they will not cause thermal violations. The collaborative control scheme will therefore 

call this response in order to provide security to the operation of the ESS. When operation of 

the DSR is confirmed and the steady-state voltage is within limits, the collaborative voltage 

control system will instruct the ESS to reduce real power export and thus conserve its limited 

resource. The flowchart of this control scheme is illustrated in Figure 3.2. 
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Figure 3.2 Flow Chart for Sensitivity Factor Based Control Scheme 

The control scheme can be applied to solve over voltage problems by charging ESS and 

increasing demand. By replacing VSFs with PFSFs and checking voltage constraints, this 

control scheme is also able to deal with power flow management (PFM) problems. 
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3.4.2 Case Study Network 

A typical rural network in Northumberland, England, owned by Northern Powergrid has been 

selected as the case study network. Figure 3.3 shows the schematic diagram and the smart grid 

technologies which have been installed. Two 20kV feeders and an LV network have been 

modelled in detail. As can be seen in this figure, two 66/20kV transformers are used for 

voltage control at the primary substation. A mechanically switched capacitor bank and two in-

line regulators are already deployed on this system for voltage control purposes for the 

feeders and at present, are operated according to the standard DNO voltage control practice. 

A future smartgrid scenario is presented. DSR customers A and B, and an LCT cluster with 

associated ESS system are located towards the remote end of one of the 20kV feeders. The 

power consumption of DSR customer A is 0.8 MW and backup generators are used by DSR 

customer A to provide demand reduction. When the backup generators are used, the power 

consumption of this customer reduces to less than 10kW. DSR customer B provides response 

service by reducing its consumption and the power reduction is not constant. DSR customers 

A and B are not located at the end of the MV feeder due to the rating of the cable. An LCT 

cluster is a LV network with high penetrations of LCTs. The LCT cluster in this case study 

has 230 customers and a higher penetration of EV and ASHP ownership than the remaining 

network. The apparent power rating and the capacity of the energy storage system, are 

100kVA and 200kWh, respectively. 

To enable evaluation of the voltage control scheme SCADA data from the case study network 

and the LCT models have been used to develop realistic future scenarios and associated 

consumer load profiles. These load profiles exceed the capabilities of the existing network 

infrastructure and conventional infrastructural upgrade would be the most likely option to 

resolve this. The capability of the proposed control strategy to address the limitations of the 

existing network is evaluated by solving an MV and an LV voltage excursion, respectively. 
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Figure 3.3 Schematic Diagram of the 20kV Case-Study Network. 

The demand profile of this distribution network, measured by the present SCADA system, is 

illustrated in Figure 3.4. The resolution of the original SCADA measurements is half-hour. 

This data has been linear interpolated into 1 minute resolution. The blue trace indicates the 

typical load profile during a winter day, when the highest load was recorded, in the period 

from December 2010 to January 2012. The peak demand which occurs between 02:00 and 

03:00 is due to electrical storage heating and a high uptake of the economy seven tariff. The 

additional peak between 14:00 and 16:00 is the result of a Super Tariff in this area which 

gives a lower electricity price for six hours overnight and two hours in the afternoon. 
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Figure 3.4 Current Load Profile in the case-Study Network 

The proposed decentralised control strategy is applied to mitigate voltage limit violations at 

the remote end of an MV feeder, over 25 miles in length, and the remote end of an LV feeder. 

Unlike a centralised control system, which coordinates other network interventions such as 

the capacitor bank, the local decentralized control system minimizes the requirement of 

communication. 

Modelling methodology 

A network model has been developed using IPSA2. The LV section of the distribution 

network with ESS is illustrated in Figure 3.5. The model is based on detailed network data 

supplied by Northern Powergrid. The longest branch of the longest LV feeder has been 

modelled in detail, due to the likelihood of voltage problems occurring. Loading on Branch 2 

of this feeder and the remaining LV feeders are represented by lumped loads. 
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Figure 3.5 Model of LV Distribution Network 

ESS has been modelled in this system such that it can import/export real and/or reactive 

power in any combination within its rating. DSR is modelled as a controllable load. The ESS 

model and DSR model capabilities are extended using Python 2.7, which has been adopted as 

a scripting language in IPSA2, to automate control of the network model and the load flow 

engine. 

Model validation 

The network model has been validated against load flow results from an existing model 

within Northern Powergrid. The busbar voltages and feeder currents calculated in both models 

have been found to be in good agreement. 

The network model has also been validated using measured data from both the HV/LV and 

primary substation sites. Real load data have been used in the IPSA2 network model.  Load 

flow calculations have been carried out and the results were compared to the measured data. 

The model was found to be able to reproduce LV voltages to within 1% accuracy. 

Low carbon technologies 

Experiments have been carried out to analyse the charging profile of an EV (Mitsubishi, i-

MiEV) [101]. Results indicate that, during charging, the power consumed by the EV is 

initially constant, followed by a period where the charge current reduces as the EV reaches 

full charge. Profiles were derived from a range of initial states-of-charge. These results have 

been used within the EV modelling methodology in this thesis. 

Previous work has characterised EV users and analysed the daily usage patterns of vehicles 

[104]. According to this report, roughly 25% of trip purposes are for commuting. The blue 



34 

 

trace detailed in Figure 3.6 shows the probability of commuting vehicles being at home. It can 

be seen that from 21:00 until 06:00 the next day, the probability of commuting vehicles being 

at home is over 90%. During the hours from 09:00 until 16:00, the probability of commuting 

vehicles being at home is lower than 30%. Similarly, for all other purposes, such as food 

shopping and business, the probability of vehicles being at home from 21:00 until 06:00 next 

day and from 09:00 until 16:00 are over 90% and below 80% respectively.  

 

Figure 3.6 Probability of Vehicles Being at Home [104]. 

Under the tariffs described earlier, customers have a lower electricity price for six hours in the 

night and two hours in the afternoon. Considering the higher probability of vehicles being at 

home at night, it could be assumed that most EV users would tend to charge EVs during this 

period, instead of in the afternoon. It is also reported that, without a fast charging 

infrastructure, most EVs have an initial state of charge of 60% to 70% prior to charging [104]. 

Due to the high cost of a fast charging infrastructure and the rurality of the area under 

consideration, it is reasonable to make the assumption that there would be minimal fast 

charging units available. Therefore, at the start of a charge, the EVs’ SOC is assumed to be 

between 60% and 70%. An aggregated charging curve based on the assumptions above; with 

a 15% penetration of EVs in the cluster is given in Figure 3.7. 
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Figure 3.7 Aggregated EV charging curve in the LCT cluster during night time. 

Work has been previously carried out in order to derive thermal profiles for typical UK 

building stock. Generic building data was used as an input to the models in combination with 

temperature data from a site in the UK. Multiple occupancy scenarios for each considered 

building type (detached, semi-detached, flat, mid-terrace) are derived and aggregated in order 

to generate the final thermal profile [105]. The results were found to agree favourably with 

UK national statistics. In order to generate the electrical profile of the air-source heat pump 

(ASHP), the thermal profiles for the required building types have been scaled according to the  

methodology outlined in [106]. The methodology requires that the thermal profile be scaled 

down by the coefficient of performance (COP) of the ASHP. A value of 3 has been chosen for 

the ASHP system under consideration in line with previous work [106]. The derived electrical 

demand profiles of detached and semi-detached properties are given in Figure 3.8. 

 

Figure 3.8 Derived electrical demand for detached and semi-detached properties. 
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To derive the ASHP electrical demand profiles for this work, detached and semi-detached 

properties have been used, in a ratio of 9:1 respectively. This is in accordance with previous 

simulations of rural networks [106]. Figure 3.9 shows the total demand curve due to the 

ASHP load, with an assumed penetration of 45%. 

 

Figure 3.9 Aggregated ASHP electrical demand curve in the LCT cluster. 

The EV and ASHP demand profiles have been added to the LCT cluster and the remaining 

network. The number of LCTs added is calculated based on the number of customers and the 

penetration of the LCTs. 

Voltage Profile 

Based on the validated network model and the load profile illustrated in Figure 3.4, the 

voltage profile of the remote end of the feeder in the future scenario can be calculated. The 

simulated voltage profile is plotted in Figure 3.10. The red curve is the load profile in this 

network with LCTs. The scattered blue line is the voltage profile due to the load change. 

Three voltage excursions can be observed on this graph. The first excursion between 00:00 

and 03:00 is due to EV charging and the existing tariff. The second and third excursion is due 

to the use of ASHP in the morning. It should be noted that currently existing voltage control 

interventions, including OLTCs, in-line regulators and capacitor banks are still in use in this 

case study. 
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Figure 3.10 Voltage Profile in 24 Hours 

Simulation results indicate that, with the higher penetrations of LCTs, detailed earlier, in the 

modelled LV network, and a 10% penetration of both EVs and ASHPs across the whole 

network, the voltage at the remote end of the longest LV feeder will drop below the statutory 

limit (0.94pu in the UK). This will occur during the night-time peak period, early morning 

and afternoon peak time. The voltage is lower than 0.94pu from 00:00 to 03:00 due to EV 

charging. The large power consumption of ASHPs in the early morning will result in a 

voltage drop between 04:00 and 07:00. From 14:00 to 16:00, another peak can be observed 

due to the additional ASHP consumption in combination with the present network peak. 

The locations of the smartgrid interventions, ESS and DSR customers, are located at nodes 

with high VSFs to locations where low voltage limit violations are observed. 

3.4.3 Simulation results 

The proposed control scheme has been applied to this network with the derived load profile 

with LCTs. In this section, voltage profiles with the implementation of the proposed control 

scheme are reported. It is assumed that, the ESS is fully charged at the beginning of the 

simulation. 

Under voltage due to night peak 

In this case, collaborative voltage control is carried out using ESS and DSR customer B. 

Customer B is called due to its 24 hour operation. The simulation results illustrating the 

operation of the ESS and DSR customer B to control voltage during the mid-night peak 

period are shown below in Figure 3.11 and Figure 3.12. In Figure 3.11, the voltage profile 

between 23:30 to 04:00 is plotted. It can be seen that the voltage dropped below the 0.94pu 

limit, at approximately 00:15 in the morning. The ESS then injected 10kW of real power into 
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the grid to bring the voltage back above the limit and, at the same time, the DSR command 

was issued. After 20 minutes, the consumption of DSR customer B started to reduce but did 

not reach a stable level until 01:00. At this time, installed monitoring equipment showed that 

the voltage of the network was close to the statutory limit therefore the collaborative voltage 

control scheme decided to maintain the output of the ESS, in order to prevent a further voltage 

problem. However, around 45 minutes later, when the voltage again went below the limit, the 

ESS started to inject more power into the network to maintain the voltage above limit. 

 

Figure 3.11 Voltage Profile with DSR Customer B and ESS During the Night Peak Period 

 

Figure 3.12 DSR Customer B Demand and Real Power Output of ESS. 
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Under voltage due to morning peak 

During the early morning peak period, a voltage problem was fixed purely by the ESS. A 

DSR operation was not called in consideration from Customer B as the number of DSR 

operations available in a day is limited for this customer. Customer A was unavailable as the 

voltage problem occurred in the early morning. This customer is assumed to operate a typical 

09:00 to 17:00 working day and is not preferred to provide a DSR outside these hours. This 

case also helps to illustrate the potential unavailability of DSR as well as customer flexibility. 

The voltage profile between 04:00 and 07:00 is plotted in Figure 3.13. Real power output of 

the ESS will increase in steps when an under voltage problem occurs and will decrease in 

steps when the voltage goes up to 0.96pu to reserve available capacity. 

 

Figure 3.13. Voltage profile at the end of the feeder with ESS control only during the morning 

peak period. 

The real power export from ESS is plotted in Figure 3.14. As can be observed, the ESS 

increases and decreases its power output in a step of 10 kW so that the voltage at the end of 

the feeder is maintained within the range of 0.94p.u. and 0.96p.u..  
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Figure 3.14. ESS real power output during the morning peak period. 

Under voltage due to afternoon peak 

A similar simulation was carried out to investigate the collaborative operation of ESS and 

DSR customer A, as illustrated in Figure 3.15 and Figure 3.16. In order to cope with the 

voltage problem during the afternoon peak, at approximately 14:25, voltage dropped below 

0.94pu and continued to decrease. ESS reacted first to bring the voltage back to 0.96pu.  A 

DSR command was issued at the same time to customer A. After 20 minutes, at 14:45, the 

demand of customer A decreased to 0 in a very short period of time. Despite the magnitude of 

customer A’s response, at 15:30, the voltage violated the limit again due to the increasing load. 

As a result, the ESS started to inject real power into the network again. 
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Figure 3.15. Voltage Profile with ESS and DSR Customer A During the Afternoon Peak Period. 

 

 

Figure 3.16. DSR customer a consumption and ESS real power output during the afternoon 

peak period. 

The energy outputs of ESS in the simulation are 35.8 kWh, 45.1 kWh and 11.0 kWh, 

respectively. It is estimated that this presents a percentage change of SOC of 17.9%, 22.6% 

and 5.5% based on the 200kWh capacity ESS. The total depth-of-discharge (DoD) therefore is 

46.0%. Based on this estimation, if the initial state of charge of the ESS is greater than 46% 
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(and the Lithium-Ion battery is capable of a maximum DOD of 100%) the ESS will not 

require re-charging during one day. 

Additional simulations showed that if the battery bank of the ESS were to have been 

optimally re-charged throughout the day using a methodology not considered as part of this 

scheme, the ESS would have not be required to achieve a deep discharge which could 

potentially damage the battery. 

3.5 Cost Sensitivity Factors 

In this section, the concept of cost sensitivity factors (CSF) is introduced. Sensitivity factors 

indicate the technical effectiveness of the controllable devices such as ESS and OLTC. By 

considering the cost of using the controllable devices, CSF is able to represent both the 

technical and economical effectiveness. The use of VCSF and PFCSF has been proposed in 

[61]. VCSF and PFCSF are proposed in order to represent the cost of a change in the voltage 

at node 𝑖 or powerflow through branch 𝑖𝑗  with respect to the cost of injecting or retracting 

real or reactive power from bus 𝑘. The VSF from bus 𝑘 to bus 𝑖 has been introduced in 

section 3.2. Assuming the cost of 1 MW injection of real power at bus 𝑘 is 𝐶𝑘, VCSF is 

defined as 

 𝑉𝐶𝑆𝐹𝑖,𝑘 =
∆𝑉𝑖

∆𝑃𝑘 ∙ 𝐶𝑘
=

𝑉𝑆𝐹𝑖,𝑘

𝐶𝑘
 (3.7) 

where 

𝑉𝐶𝑆𝐹𝑖,𝑘  voltage cost sensitivity factor from bus 𝑘 to bus 𝑖 

𝐶𝑘   the cost of real power injection at bus 𝑘 (MW/£) 

Based on this definition, PFCSF can be defined as 

 𝑃𝐹𝐶𝑆𝐹𝑖,𝑘 =
∆𝑆𝑖𝑗

∆𝑃𝑘 ∙ 𝐶𝑘
=

𝑃𝐹𝑆𝐹𝑖𝑗,𝑘

𝐶𝑘
 (3.8) 

where 

𝑃𝐹𝐶𝑆𝐹𝑖,𝑘  power flow cost sensitivity factor from bus 𝑘 to branch 𝑖𝑗 

VCSF and PFCSF quantify the effectiveness of the per unit cost for changing voltage and 

power flow. Thus, VCSF and PFCSF enable a control strategy to evaluate an intervention 

using both technical and commercial considerations. 
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3.6 CSF Based Control Scheme 

This section presents a decentralized voltage control strategy which utilises DSR from ESS, 

I&C DSR and residential DSR (RDSR). The control strategy is designed to be cognisant of 

the DSR characteristics demonstrated in real DSR trials, and of the actual ESS systems. In 

this section, DSR is regarded as a participatory action which relies on the consent and 

involvement of network users, both commercial and residential, to achieve a demand increase 

or reduction. The participatory view of DSR recognises the need to consider the social 

implications of altering when and how load is consumed. This approach to DSR introduces a 

degree of uncertainty to the level and duration of response to DSR calls. The control strategy 

described in this section uses ESS as a technical solution to manage the uncertainty linked 

with the participatory nature of the other DSR options by using ESS in a buffer mode, in 

which the fast and flexible response provided by ESS is used to mitigate the slower and less 

certain DSR responses. The concept of VCSFs is used within the control strategy to enable 

selection of the most cost effective deployments of DSR. Although the control scheme 

presented in this section is for voltage control, by replacing VCSF with PFCSF, this control 

scheme is also adequate to perform PFM. 

Compared to the control scheme proposed in section 3.4, the following improvements have 

been made: 

1. Both real and reactive power of ESS has been used. An algorithm has been devised to 

optimize the capability of ESS 

2. Cost functions for DSR and ESS have been developed and considered. The use of 

CSFs considers both the technical and economical effectiveness of ESS and DSR 

In this work, it is the author’s contribution of developing the cost functions of DSR services, 

designing the control strategy, calculating SFs and CSFs, implementing the control strategy 

on the case study network and analysing the results. 

3.6.1 Cost functions of DSR 

In order to quantify the cost of each DSR service, cost functions for ESS, RDSR and I&C 

DSR are proposed. The cost function considers the capital costs, power ratings and the 

number of cycles available of DSR services. Based on the values above, the cost function for 

each DSR in the unit of £/kW can be derived. The cost functions enable comparison between 

different DSR in different forms in terms of cost of real power. 

ESS cost function 

The cost function of ESS exporting and importing real power is defined as 
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Charge: 

 𝐶𝐸𝑆𝑆,𝐶ℎ𝑎𝑟𝑔𝑒 =
𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝐸𝑆𝑆 

𝑁𝐶𝑦𝑐𝑙𝑒,𝐸𝑆𝑆 ∙ 𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔
− (𝑆𝑜𝐶𝑈𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡 − 𝑆𝑜𝐶) ∙ 𝑘𝐸𝑆𝑆 (3.9) 

Discharging: 

 𝐶𝐸𝑆𝑆,𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 =
𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝐸𝑆𝑆 

𝑁𝐶𝑦𝑐𝑙𝑒,𝐸𝑆𝑆 ∙ 𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔
− (𝑆𝑜𝐶 − 𝑆𝑜𝐶𝐿𝑜𝑤𝑙𝑖𝑚𝑖𝑡) ∙ 𝑘𝐸𝑆𝑆 (3.10) 

where 

𝐶𝐸𝑆𝑆,𝐶ℎ𝑎𝑟𝑔𝑒  the cost for charging ESS (£/kW) 

𝐶𝐸𝑆𝑆,𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  the cost for discharging ESS (£/kW) 

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝐸𝑆𝑆  the capital cost of ESS (£) 

𝑁𝐶𝑦𝑐𝑙𝑒,𝐸𝑆𝑆  the total charge and discharge cycle over the lifetime of the selected 

ESS 

𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔  the rated real power output of the ESS (kW) 

𝑆𝑜𝐶   State-of-Charge 

𝑆𝑜𝐶𝑈𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡  the upper limit for SoC 

𝑆𝑜𝐶𝐿𝑜𝑤𝑙𝑖𝑚𝑖𝑡  the lower limit for SoC 

𝑘𝐸𝑆𝑆 a factor represents the impact of SoC on the cost of operating the ESS. 

This reflects a disincentive to discharging the ESS at a low SoC and a 

disincentive to charging the ESS at a high SoC 

The cost functions for import and export of real power for the ESS given in equation (3.9) and 

(3.10) are not the actual costs of using the ESS. For real power, the cost function is a 

combination of capital investment and an offset to account for a changing SoC. 𝑘𝐸𝑆𝑆 is a 

positive number and according to the cost function, the cost of charging the ESS at a high 

SOC will be higher than charging at a lower SOC to prevent over-charge. Similarly, the cost 

of discharging the ESS at a lower SOC will be more expensive than at a higher SOC. 

RDSR cost function 

The cost of RDSR 𝐶𝑅𝐷𝑆𝑅 (£/kW) is estimated based on the total cost of calling RDSR in a 

year 𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝑅𝐷𝑆𝑅 (£), maximum number of service requests of RDSR in a year 𝑁𝑅𝐷𝑆𝑅 and 
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reduction in customer consumption 𝑃𝑅𝐷𝑆𝑅 (kW). The total cost of calling RDSR 

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝑅𝐷𝑆𝑅 per year is based on the value of reducing demand at peak periods and the 

associated conventional network reinforcement costs. The cost of RDSR is given by: 

 𝐶𝑅𝐷𝑆𝑅 =
𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝑅𝐷𝑆𝑅

𝑁𝑅𝐷𝑆𝑅 ∙ 𝑃𝑅𝐷𝑆𝑅
 (3.11) 

Where 

𝐶𝑅𝐷𝑆𝑅   the cost of RDSR service per kW (£/kW) 

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝑅𝐷𝑆𝑅  the cost of RDSR service per year (£) 

𝑁𝑅𝐷𝑆𝑅   the maximum number of service requests of RDSR in a year 

𝑃𝑅𝐷𝑆𝑅   the reduction of RDSR customer consumption (kW) 

I&C DSR cost function 

Similar to the cost of RDSR service, the cost of I&C DSR𝐶𝐼&𝐶 is defined by: 

 𝐶𝐼&𝐶 =
𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝐼&𝐶

𝑁𝐼&𝐶 ∙ 𝑃𝐼&𝐶
 (3.12) 

Where 

𝐶𝐼&𝐶   the cost of I&C service per kW (£) 

𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙,𝐼&𝐶  the total cost of I&C DSR service per year (£) 

𝑁𝐼&𝐶   the maximum number of service requests of I&C DSR in a year 

𝑃𝐼&𝐶 the estimated real power reduction delivered by the I&C DSR customer 

3.6.2 Proposed Control Strategy 

CSF based decentralized control scheme 

The proposed control strategy consists of two stages, an initial routine and the main control 

routine which runs the CSF algorithm. The initial stage detects a sustained under or over 

voltage condition at the key locations or critical nodes on the network and initiates the ESS 

Buffer Mode. The ESS Buffer Mode provides fast acting response ensures corrective action 

before other DSR services can be switched in. In addition, this control routine mitigates 

against the uncertainty in DSR response and voltage excursion severity. These critical nodes 

are identified by offline analysis utilizing the network model and data. By analysing the 

results of large numbers of load flow calculations, using annualised load data, the nodes that 
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are likely to experience sustained highest and lowest voltage can be determined. The nodes 

with the highest number of voltage limit violations recorded in the period will be designated 

as the critical nodes. 

The proposed control strategy is illustrated in Figure 3.17. When the voltage at one of the pre-

defined critical nodes violates the statutory limits of 0.94 pu and 1.1 pu, the ESS Buffer Mode 

is initiated and increases the ESS system real and reactive power export or import. An 

algorithm has been devised which seeks to optimize the capability of an ESS system to 

mitigate voltage problems. If the excursion persists, then the ESS is instructed to increase the 

real and reactive power import or export. The ESS is disengaged if the voltage returns within 

the ESS disengage voltage thresholds. This disengage thresholds are chosen so that the act of 

disengaging the ESS does not result in voltages moving outside the statutory limits. 

The main control routine, which runs the VCSF algorithm and calls conventional DSR as well 

as ESS, will be initiated when the control system detects that the ESS has operated longer 

than the threshold of 10 minutes in the ESS Buffer Mode. The VCSF control algorithm will 

check the availability of all the DSR services first. The available DSR with the highest VCSF 

will be selected. Next, the selected DSR will be checked against branch thermal limits. The 

selected DSR will be excluded if it causes a thermal violation. The DSR with the second 

highest VCSF will then be selected and checked for thermal violation. 

Following initiation of the VCSF routine, the ESS Buffer Mode routine adjusts the ESS 

outputs to minimise the use of the system while maintaining the voltages within the statutory 

limits. Moreover, in the case of an unsuccessful DSR service request or if the DSR is unable 

to correct the voltage excursion, the ESS real and reactive power setpoints will be adjusted 

such that the voltage is maintained within statutory limits. 

The SOC of the ESS is managed by comparing the SOC with an SOC threshold. If 𝑆𝑜𝐶 >

𝑆𝑜𝐶𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 or 𝑆𝑜𝐶 < 𝑆𝑜𝐶𝐶ℎ𝑎𝑟𝑔𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and the voltage is less than or greater than 

the respective discharge or charge thresholds, the ESS starts to discharge or charge as 

necessary. 
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Figure 3.17 Flow Chart of VCSF Voltage Control Strategy 
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Real/reactive power setpoint algorithm 

The real and reactive power import/export 𝑃𝐸𝑆𝑆 and 𝑄𝐸𝑆𝑆 from the ESS is limited by the rated 

real power 𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔, the rated reactive power 𝑄𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔and the apparent power rating 

𝑆𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔 of the ESS. 

 |𝑃𝐸𝑆𝑆| ≤ 𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔 (3.13) 

 |𝑄𝐸𝑆𝑆| ≤ 𝑄𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔 (3.14) 

 𝑆𝐸𝑆𝑆 = √𝑃𝐸𝑆𝑆
2 + 𝑄𝐸𝑆𝑆

2 ≤ 𝑆𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔 (3.15) 

where 

𝑃𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔  the real power rating of ESS 

𝑄𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔  the reactive power rating of ESS 

𝑆𝐸𝑆𝑆,𝑅𝑎𝑡𝑖𝑛𝑔  the apparent power rating of ESS 

The real and reactive power import/export of the ESS will ramp up in the ratios specified by 

equation (3.16). This ratio minimises the apparent power import and export 𝑆𝐸𝑆𝑆. It has been 

proved that, the ratio of real and reactive power will vary depending on the location of voltage 

excursion. 

 
𝑃𝐸𝑆𝑆

𝑄𝐸𝑆𝑆
=

𝑉𝑆𝐹𝑃𝑖,𝐸𝑆𝑆

𝑉𝑆𝐹𝑄𝑖,𝐸𝑆𝑆
 (3.16) 

where 

𝑉𝑆𝐹𝑃𝑖,𝐸𝑆𝑆  is the real power voltage sensitivity factor from ESS to busbar 𝑖 

𝑉𝑆𝐹𝑄𝑖,𝐸𝑆𝑆  is the reactive power voltage sensitivity factor from ESS to busbar 𝑖 

The proof of this conclusion is presented below. The voltage change ∆𝑉𝑖 at location 𝑖 due to 

𝑃𝐸𝑆𝑆 and 𝑄𝐸𝑆𝑆 ∙can be expressed as: 

 ∆𝑉𝑖 = 𝑃𝐸𝑆𝑆 ∙ 𝑉𝑆𝐹𝑃𝑖,𝐸𝑆𝑆 + 𝑄𝐸𝑆𝑆 ∙ 𝑉𝑆𝐹𝑄𝑖,𝐸𝑆𝑆 
(3.17) 

This can be re-written as: 

 
𝑄𝐸𝑆𝑆 =

∆𝑉𝑖

𝑉𝑆𝐹𝑄𝑖,𝐸𝑆𝑆
−

𝑉𝑆𝐹𝑃𝑖,𝐸𝑆𝑆

𝑉𝑆𝐹𝑄𝑖,𝐸𝑆𝑆
∙ 𝑃𝐸𝑆𝑆 (3.18) 
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The line expressed by this equation is shown in Figure 3.18. 𝑆𝐸𝑆𝑆 is the distance between the 

origin and the point (𝑃𝐸𝑆𝑆, 𝑄𝐸𝑆𝑆) along the line.  

 

Figure 3.18 ESS Real/Reactive Power Setpoint Algorithm 

It can be seen from Figure 3.18 that the minimum apparent power EESS  to provide the voltage 

change iVD  is expressed graphically by a line perpendicular to the original line which passes 

through the origin. The slope m of the line is given by 

 
𝑚 =

𝑉𝑆𝐹𝑄𝑖,𝐸𝑆𝑆

𝑉𝑆𝐹𝑃𝑖,𝐸𝑆𝑆
 (3.19) 

3.6.3 Case Study Network 

As illustrated in Figure 3.20, a representative rural network in the North East of England, 

owned by Northern Powergrid has been selected as the case study network. A detailed MV 

and LV network model has been built and validated by MV and LV measurements. A 

mechanically switched capacitor bank is already deployed on this system for voltage control 

purposes. The LV network schematic is given in Figure 3.19. 



50 

 

 

Figure 3.19 LV Network Diagram showing location of the EES device and connected loads. 

Compared to the case study network presented in section 3.4.2, the location of smartgrid 

interventions and the size of ESS have been modified for the purpose of this study. I&C DSR 

customer A, an MV/LV substation and I&C DSR customer B locate toward the end of the 

MV feeder. As part of the CLNR project an ESS system has been installed on the LV side 

(0.4kV) of the MV/LV transformer. The system is located at the LV busbar to maximize its 

capability to mitigate voltage limit violations on the MV and LV systems. All residential 

customers in the LV network are assumed to be RDSR enabled. 

The location of DSR B has been revised to facilitate the evaluation of this CSF based control 

scheme. In the case study scenario used in section 3.4, DSR A and DSR B are located next to 

each other and both upstream of the LCT cluster. As a result, the VSFs from DSR A and DSR 

B to the end of the MV and the LV feeder are identical. In this case study, DSR B is relocated 

downstream the LCT cluster. As shown in Table 3.1, this relocation increased the VSF of 

DSR B to the end of the MV and the LV feeder. With the same per MW cost, this 

arrangement makes DSR B a more effective solution to solve voltage limit violations. 

Critical nodes have been defined by using the methodology introduced in section 3.6.2 and 

illustrated in Figure 3.20. SCADA data for a period of 18 months has been used as an input to 

the network model. Critical nodes were identified from running the network model for two 

scenarios 

i. present SCADA data 

ii. present SCADA data with post inclusion of the LCT devices. 
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In the second scenario investigated, the penetrations of LCTs are formulated on the 

assumption that there is a 30% domestic penetration rate of ASHPs and EVs evenly 

distributed across the LV LCT cluster of 230 residential customers. Alignment was found 

between the critical nodes for both cases. 

The proposed decentralised control strategy is applied to mitigate voltage limit violations at 

the remote end of an MV feeder, over 25 miles in length, and the remote end of an LV feeder. 

Unlike a centralised control system, which coordinates other network interventions such as 

the capacitor bank, the local decentralized control system minimizes the requirement of 

communication. 
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Figure 3.20 Schematic diagram of the case-study network with future scenario industrial and 

commercial customers 

Average domestic load data from [107] has been applied to the residential customers in the 

LV network. [107] contains historical data from over 5000 domestic smart meter customers, 

covering the period from May 2011 to April 2012. This data set can be sub-divided into a 

number of individual categories, which contain details such as rurality, income, thermal 

building performance and age of the occupants. The original dataset was filtered by social 

variables in order to match the demographic of the case study network area. The domestic 

load profile based on the smart meter data is aligned with the actual customers in the case 

study area. 
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Previous work, has shown that LCT distributions tend to be clustered, for example a high 

penetration of new technologies along a particular LV feeder [108]. The ASHP consumer 

modelling method and approach is detailed in [101]. EV consumer modelling is based on real 

trial data from 19,872 charging events of 340 vehicles (electric, pure hybrid and fuel cell 

vehicles) from December 2009 to June 2011 [108]. 

DSR modelling 

A high resolution energy demand model, the CREST demand model [109-111], was used to 

simulate detailed residential load data and assess when DSR appliances, wet appliances 

(washing machines, tumble driers and dishwashers as identified in [112]) were being used 

throughout a typical day. The CREST demand model was modified to reflect the location and 

the demographics of the consumers connected on the LV feeder, by calibrating the average 

household energy consumption to that of the regional average of 5,235 kWh annual electricity 

consumption [113] and the regional household size. The DSR resource profile, shown in 

Figure 3.21, was generated by averaging the simulation model over a run of 1000 for a typical 

January weekend. The synthesized data was validated against the real smart meter data to 

ensure that the simulated data was representative of the feeder. 

 

Figure 3.21 Rurality filtered aggregated smart meter, simulated and simulated wet goods load 

profiles of non-gas connected customers 
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In order to validate the RDSR simulation results, the total simulated domestic profile was 

compared against the derived smart meter load curve and was found to have a correlation 

coefficient of 0.90, it was therefore assumed that a degree of confidence could be taken that 

the DSR resource profile is also representative of the LV feeder This confirms that the 

simulated DSR resource profile was representative of the customers along the LV feeder. 

RDSR is achieved with a broadcast call for demand reduction by delaying the start of RDSR 

wet appliances, and a reduction in HP demand and EV charging. In line with the participatory 

DSR approach taken, the time at which the displaced loads are redeployed is determined by 

the network user or residential consumer rather than the DNO. The EES system deployed in 

the CLNR project uses lithium ion iron nano-phosphate technology. The size of EES used in 

this case study has a real power and energy rating of 300 kW and 600 kWh, respectively. 

I&C DSR customer models are based on the real half-hourly consumption figures recorded 

during the CLNR project DSR trials [101]. The delay time of I&C DSR was 10 minutes. I&C 

DSR services are provided in the forms of backup diesel generators (I&C DSR A) and 

reducing power consumption (I&C DSR B). The durations of the I&C DSR service are two 

hours. 

VSFs, DSR costs and VCSFs 

The VSFs for the case-study network critical nodes with respect to the nodes where DSR 

service was available were derived by running offline power flow calculations. These are 

given in Table 3.1. In the case where the DSR service is delivered by multiple consumers at 

multiple locations, as in the case of RDSR, the change in load is distributed evenly across all 

the consumers in the model. The resultant voltage change at the critical node and the total 

load change is used to calculate the VSF. All loads in the case study area are assumed to be 

constant power loads. 

 LV critical node MV critical node 

RDSR 18.9x10
-3 

3.55 x10
-3

 

ESS 7.73 x10
-3

 3.52 x10
-3

 

I&C DSR A 3.65 x10
-3

 3.27 x10
-3

 

I&C DSR B 4.00 x10
-3

 3.60 x10
-3

 

Table 3.1 Voltage Sensitivity Factors for Critical Nodes (pu/100kW) 

The numbers in Table 3.1 represent the technical effectiveness of the smartgrid interventions 

for voltage control for the critical nodes. For instance, for the LV critical node, RDSR has the 
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highest sensitivity factor, therefore is the most effective intervention for dealing with voltage 

problem at the LV critical node. I&C DSR B has the highest VSF to the MV critical node and 

as a result is the most effective intervention. I&C DSR customer B is more effective than I&C 

DSR customer A for voltage control at the MV critical node because the electrical distance of 

I&C DSR customer B is closer than that of I&C DSR customer A. 

The costs of the DSR services used in this study are summarised in Table 3.2. The costs are 

derived based on the cost functions defined in section 3.6.1. For RDSR it is assumed that an 

average of 15 service requests per year will be called with an overall value of £50/kW. The 

I&C DSR costs are example costs of the contractual arrangements that have been used as part 

of the CLNR project. The capital cost of ESS from the CLNR project has been used to 

estimate the cost of using ESS. 

DSR RDSR ESS (𝑆𝑜𝐶 = 𝑆𝑜𝐶𝑈𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡) I&C DSR A I&C DSR B 

Cost (£/kW) 3.33 15.00 0.90 0.90 

Table 3.2 DSR Costs 

The VSFs given in Table 3.1 can be seen as ∆𝑉𝑖(pu/kW) and the costs listed in Table 3.2 can 

be expressed as £/kW. These VSFs and costs result in the VCSFs of DSR busbars to the 

critical nodes as shown in Table 3.3. The VCSFs are calculated based on equation (3.7). 

VCSF LV critical node MV critical node 

RDSR 56.6x10
-6

 10.7x10
-6

 

ESS(𝑆𝑜𝐶 = 𝑆𝑜𝐶𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
) 5.20x10

-6
 2.3x10

-6
 

I&C DSR A 40.6x10
-6

 36.4x10
-6

 

I&C DSR B 44.4x10
-6

 40.0x10
-6

 

Table 3.3 Voltage-Cost Sensitivity Factors for Critical Nodes (pu/£) 

Comparing Table 3.3 to Table 3.1, it can be observed that, for LV critical node, RDSR has the 

highest VCSFs due to the high VSF and low cost, therefore, in order to achieve the same 

voltage change at the LV critical node, RDSR results in the lowest cost. On the contrary, 

although the VSF from ESS to the LV critical node is higher than I&C DSR customers, the 

VCSF is lower due to its high cost. This indicates that the cost of using I&C DSR customers 

for voltage control of the LV critical node will be lower than using ESS. 
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For the MV critical node, as can be seen in Table 3.1 the VSFs of RDSR and I&C DSR 

customers are similar, however, due to the low costs of the I&C DSR customers, the I&C 

DSR customers would have lower cost for controlling voltage at the MV critical node. 

Control System Architecture 

Figure 3.22 illustrates the proposed decentralized control system architecture that has been 

modelled with the case study network. The network monitoring detects a sustained voltage 

excursion and the supervisory controller selects the DSR service with the highest VCSF, 

shown along the bottom of the figure, in order to resolve the network voltage violation. The 

supervisory controller has two functions. The first, shown by the equation on the left, 

calculates the optimum real power set point for the ESS to relieve the voltage excursion. The 

second control routine is initiated if the voltage excursion persists longer than 10 minutes. 

This routine evaluates the VCSFs to select the cost minimized DSR service to take. 

As can be seen, I&C and RDSR service request is issued via a one way communication. It is 

assumed that there is a direct link between the controller and the I&C DSR customers. On the 

other hand, a broadcast command will be issued to all the RDSR customers when RDSR is 

requested. Communication between the ESS system and the controller is more detailed with 

the ESS returning data regarding its charge/discharge capability in real time. With knowledge 

of the ESS’s state of charge (SOC), the supervisory controller can update the ESS cost 

function which indicates its capability to supply the desired response. 

 

Figure 3.22 Supervisory DSR control system architecture 
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3.6.4 Results 

To enable evaluation of the voltage control scheme SCADA data from the case study network, 

smart meter data and the LCT models have been used to develop realistic future scenarios and 

associated consumer load profiles. These load profiles exceed the capabilities of the existing 

network infrastructure and conventional infrastructural upgrade would be the most likely 

option to resolve this. The capability of the proposed control strategy to address the 

limitations of the existing network is evaluated by solving an MV and an LV voltage 

excursion, respectively. 

MV voltage excursions on existing network infrastructure 

The MV voltage excursion occurs during a spring weekday morning between 08:00 to 13:30. 

The MV and LV voltage profiles under the future scenario are illustrated in Figure 3.23. Four 

MV voltage excursions and an LV voltage excursion can be observed in this figure. 

 

Figure 3.23 Voltage Profiles under Future Scenario Using Existing Network Infrastructure with 

No Control Actions 

MV voltage excursion mitigation 

DSR profiles during this excursion are plotted in Figure 3.24 and the voltage profiles with 

control action taken are given in Figure 3.25. When the first MV voltage excursion happens, 

the controller instructs the ESS to discharge. After 10 minutes, the under voltage excursion 

still exists and a DSR request is sent to I&C DSR customer B as it provides the cheapest DSR 

service at this time. The ESS reduces its export power when DSR B operation is confirmed 

and the MV voltage is above the reduce ESS export threshold. In this case study, the threshold 
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is 0.945p.u. The DSR B service comes to its end after two hours. ESS is used again in the 

buffer mode and DSR A is called to solve the continuing under voltage excursion. 

It should be noted that the ratio of the real and reactive power output from the ESS system is 

0.995 and as a result the real and reactive power curves cannot be clearly seen in Figure 3.24. 

 

Figure 3.24 DSR profiles during MV voltage excursion control under future scenario with 

decentralised voltage control strategy 

 

Figure 3.25 Voltage profiles with control actions under future scenario with decentralised 

voltage control strategy 
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LV voltage excursions on existing network infrastructure 

The voltage profiles of an LV under voltage event during a winter weekend afternoon are 

illustrated in Figure 3.26. The LV voltage excursion occurs first and this is followed by an 

MV voltage violation. 

 

Figure 3.26 Voltage Profiles with No Control Actions 

It can be seen in Figure 3.27, that RDSR service is called at the end of the ESS buffer mode as 

it has the highest VCSF with respect to the LV critical node even though the I&C DSR have 

larger potential reduction and lower costs (£/kW). In this simulation, it is assumed that a 

random percentage of customers between 60% and 80% respond to the DSR request and the 

percentage of customer responding at each LV node is equal.  

At 17:20, a sustained MV voltage limit violation is detected and I&C DSR B service is 

requested. When the consumption of DSR customer B is reduced, the LV voltage is above the 

call-off RDSR threshold and RDSR is called off. 



59 

 

 

Figure 3.27 DSR profiles during LV voltage excursion 

 

Figure 3.28 Voltage profiles with control actions during LV voltage excursion 

3.6.5 Extension and Application of VCSF Based Control Scheme 

The use of VCSF is extended by Want in [61]. In this paper, a coordinated voltage control 

scheme utilizing ESS is presented, for future distribution networks with large, clustered 

distributions of low carbon technologies (LCTs) in terms of both feeder and phase location. In 

this paper, ESS is used collaboratively with OLTC at the primary substation. OLTC changes 

the voltage of downstream feeders evenly. Therefore, in scenarios where one feeder has over 

voltage problem due to DG while another feeder has low voltage problem due to load and 

LCTs, OLTC is not able to solve the problem. In [61], VCSF is used to select the most 
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effective control intervention from a range of ESS which is then used reduce the voltage 

divergence between two feeders. Once the feeder voltage divergence factor is reduced within 

a threshold, OLTC can be applied to solve the voltage problem. 

The benefits of the ESS integrated scheme over conventional voltage control schemes are 

demonstrated by realizing a set of network scenarios on a case study network both in 

simulation and in network-in-the-loop (NIL) emulation at a smart grid laboratory facility. The 

case study uses a rigorously validated model of an actual GB distribution network with 

multiple EES installations. It was found that the EES integrated voltage control scheme is 

able to provide increased capability over conventional voltage control schemes and increase 

the value of EES to network operation. 

3.7 The Limitation of VSF and PFSF 

VSF and PFSF linearize the non-linear power flow equations therefore it is important to 

understand their accuracy. VSF and PFSF are accurate estimations when the state of the 

network only changes slightly. The inaccuracy of sensitivity factors only has a small impact 

on the performance of the control schemes proposed in this chapter. The sensitivity factor and 

cost sensitivity factor based control schemes only use sensitivity factors to select the most 

effective control intervention. Besides, fast response ESS is used in buffer mode so that 

potential future excursions can be dealt with. 

The derivative 𝜕𝑉𝑖
𝜕𝑃𝑘

⁄  from the inverse Jacobian matrix is used to approximate VSF. However, 

as shown below 

 
𝜕𝑃𝑖

𝜕𝑉𝑗
= −𝑉𝑖(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗), 𝑖 ≠ 𝑗 (3.20) 

 
𝜕∆𝑃𝑖

𝜕𝑉𝑖
𝑉𝑖 = −𝑉𝑖

2𝐺𝑖𝑖 − 𝑃𝑖 
(3.21) 

𝜕𝑉𝑖
𝜕𝑃𝑘

⁄  is a function of 𝐺𝑖𝑗, 𝐵𝑖𝑗, 𝑉𝑖, 𝑃𝑖 and 𝜃𝑖𝑗. 𝐺𝑖𝑗 and 𝐵𝑖𝑗 are network parameters depending on 

the topology of the network. 𝑉𝑖, 𝑃𝑖 and 𝜃𝑖𝑗 are decided by the operating point of the system. This 

means the derivative 𝜕𝑉𝑖
𝜕𝑃𝑘

⁄  is not constant. Thus, for a fixed network, VSF is dependent on 

the operating point of the system. VSF and PFSF will change when the operating point of the 

system changes. The reasons for operation point change include but not limited to: 

 Load increase and decrease 

 Generation increase and decrease 

 Generator connection or disconnection 
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 Line connection or disconnection 

 Energy storage charge and discharge 

 Capacitor bank operation 

 On load tap changer (OLTC) operation 

Due to the uncertainty of load and generation, the exact operating point of the system is 

unknown. Thus, it is very difficult to calculate accurate sensitivity factors in advance. 

Furthermore, when VSFs and PFSFs are used for ESS control, the operating point of the 

system after ESS is engaged is unknown before the control decision is made. Next, an 

example using the IEEE 14 busbar network is given to show the errors in VSF and PFSF. 

There are two reasons to use the standard IEEE network rather than a real distribution 

network. Firstly, in radial distribution networks, the sensitivity factors, especially PFSFs, are 

relatively constant due to the radial topology of the network. Secondly, tests carried out on a 

standard network can be more easily repeated. Therefore it is more appropriate to use the 

IEEE standard meshed network for the purpose of this study. The sketch diagram of the 

network is given below. 
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Figure 3.29 IEEE 14 Busbar Network 

Firstly, VSFs are calculated based on Jacobian matrix. PFSFs, on the other hand, are derived 

from with DC loadflow. Next, both VSFs and PFSFs are calculated with the incremental 
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method. The VSF from bus 12 to bus 6 and the PFSF from bus 12 to branch from bus 9 to bus 

14 are used for comparison. 

3.7.1 VSF 

As illustrated in Figure 3.30, the red dot is the VSF derived from the inversed Jacobian matrix 

𝑱−1 while the blue trace is the VSF calculated with the incremental method. For the 

incremental method, the VSF is calculated as 

 𝑉𝑆𝐹6,12 =
∆𝑉6

∆𝑃12
 (3.22) 

Where 

𝑉𝑆𝐹6,12   is the VSF from busbar 12 to busbar 6 

∆𝑉6   is the voltage change at busbar 6 

∆𝑃12   is the power injection change at busbar 12 

A series of ∆𝑃12 values from 0.5MW to 10MW at a step size of 0.5MW have been used. The 

VSF is given in the unit of pu/MW. As can be observed, the VSF calculated by the Jacobian 

matrix method is larger than that of the incremental method. For the incremental method, the 

calculated VSFs reduce when ∆𝑃12 increases. 

 

Figure 3.30 VSF based on Jacobian Matrix Method and Incremental Method 
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The VSFs calculated based on different methods are given in Table 3.4. 

 𝑉𝑆𝐹Jacobian 𝑉𝑆𝐹∆𝑃12=0.5𝑀𝑊 𝑉𝑆𝐹∆𝑃12=10𝑊 

Calculation method Jacobian Matrix ∆𝑃12 = 0.5MW ∆𝑃12 = 10MW 

Value (1e-4pu/MW) 9.64 9.60 8.82 

Table 3.4 VSF Results from Jacobian Matrix and Incremental Method based on ∆𝑷𝟏𝟐 = 𝟎. 𝟓𝐌𝐖 

and ∆𝑷𝟏𝟐 = 𝟏𝟎𝐌𝐖 

The voltage change at bus 6 due to a 10MW real power injection from bus 12, based on 

loadflow calculation, is 8.82 × 10−3pu. To achieve the same voltage change, the power 

injection estimated by 𝑉𝑆𝐹Jocobian and 𝑉𝑆𝐹∆𝑃12=0.5𝑀𝑊 is 

 𝑃Jocobian =
∆𝑉

𝑉𝑆𝐹Jocobian
=

8.82 × 10−3𝑝𝑢

9.64 × 10−4𝑝𝑢/𝑀𝑊
≈ 9.15𝑀𝑊 (3.23) 

 𝑃∆𝑃12=0.5𝑀𝑊 =
∆𝑉

𝑉𝑆𝐹∆𝑃12=0.5𝑀𝑊
=

8.82 × 10−3𝑝𝑢

9.60 × 10−4𝑝𝑢/𝑀𝑊
≈ 9.19𝑀𝑊 (3.24) 

As can be observed using VSFs for voltage control without feedback can be inaccurate. The 

variation of VSF is not a linear process and is influenced by many factors. The nonlinear 

change of VSF is shown below in Figure 3.31. In this graph, VSFs are calculated under the 

same condition as the example given above. The power injection has been extended to 

50MW. In this graph, the blue plain curve is the voltage of bus 6. The red plain curve is the 

VSF calculated based on the incremental method. The dotted straight lines indicate the 

corresponding trends of the plain curves. As can be observed, both the voltage and VSF 

change is not linear. 
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Figure 3.31 Voltage and Voltage Sensitivity Factor Change due to Power Injection 

3.7.2 PFSF 

PFSF calculated from DC loadflow and the incremental method is illustrated in Figure 3.32. 

The PFSF calculated by DC loadflow method is 0.19MVA/MW while the PFSFs calculated 

by the incremental method are 0.14MVA/MW approximately. 

 

Figure 3.32 PFSF based on Jacobian Matrix Method and Incremental Method 



65 

 

3.8 Discussion and Conclusion 

In this chapter, VSFs and PFSFs are introduced. VSFs and PFSFs represent the busbar voltage 

or branch powerflow change due to a change of busbar net power injection. Two methods to 

derive VSFs and PFSFs are detailed in section 3.2 and section 3.3. VSFs and PFSFs can be 

derived from power flow calculation process or calculated by the incremental method. The 

partial derivatives of the voltage magnitude or angle to the net real or reactive power injection 

can be used to calculate VSFs and PFSFs. DC loadflow is also used to calculate PFSFs due to 

its simplicity, compared to full AC Jacobian matrix. On the other hand, the incremental 

method calculates the sensitivity factors by comparing two loadflow results. When the real 

power injection change ∆𝑃𝑘 or the reactive power injection change ∆𝑄𝑘 is small, loadflow 

based sensitivity factor calculation methods are more accurate. DC loadflow based method 

can be inaccurate when applied to distribution networks due to its assumptions. The 

incremental method is relatively easier to implement and more flexible. The incremental 

method can be configured to calculate apparent power related sensitivity factors such as 

∆𝑉𝑖
∆𝑆𝑘

⁄  and 
∆𝑆𝑖𝑗

∆𝑆𝑘
⁄ . This characteristic is important for smartgrid technologies such as ESS and 

DG, which have four-quadrant operation capability. For ESS, the use of a combination of real 

and reactive power can reduce the power and energy requirements [31]. Furthermore, as 

shown in section 3.6.3, the incremental method is also suitable to calculate the SFs from a 

cluster of RDSR customers. However, as shown in section 3.7, one challenge for the 

incremental method is the selection of an appropriate power change ∆𝑆𝑘/∆𝑃𝑘/∆𝑄𝑘. 

In section 3.6, VCSFs and PFCSFs are proposed to enable a control strategy to evaluate an 

intervention using both technical and commercial considerations. The value of using DSR for 

voltage control in comparison with conventional techniques has been investigated. Multiple 

forms of DSR (three in case study) with varying magnitudes, locations and characteristics 

have been considered in this chapter. Cost functions for ESS, I&C DSR and RDSR have been 

developed, based on the cost of real ESS systems, real I&C DSR trial contracts and the value 

of RDSR to DNOs respectively. Electrical distance between the smart grid interventions and 

the location of the voltage excursions have been taken into account by utilizing VSF. The 

concept of VCSF is derived based on the cost functions and VSFs to quantify the 

effectiveness of voltage control with operating various DSR at a unit cost. 

The strategies have been evaluated using a validated real network model and a realistic future 

scenario extrapolated from a large smart meter data set, which considers social, technical and 

commercial aspects, SCADA data and EV charging and ASHP loading profiles based on 



66 

 

literature and previous work. In this scenario the present voltage control system is no longer 

able to function successfully. The RDSR models developed in this work utilise an improved 

CREST demand model. The I&C DSR models are based on real trial results and the ESS 

model based on real device have been adopted. 

The evaluation illustrates how the control strategy can be used as an attractive alternative to 

network reinforcement to solve the uncertain voltage problems due to the unpredictable rate 

and distribution of LCT installations. The proposed methods require no knowledge of the 

probability density functions (PDFs) of DSR uncertainty. However, the limitations of the 

proposed control schemes include: 

 The proposed schemes are passive control schemes which respond to measurements. 

Without forecast and planning, such schemes may be inadequate to deal with 

predictable future excursions. An example is given below. In Table 3.5, two available 

DSR services are given for illustration purposes. 

  PFSF(MVA/MW) Cost (£/MW) PFCSF (MVA/£) Magnitude (MW) Total cost (£) 

DSR A 0.5 5 0.1 10 50 

DSR B 0.5 10 0.05 2.5 25 

Table 3.5 An Example of Two Available DSR Services to Solve an Thermal Violation 

As can be seen in Table 3.5, it is assumed DSR A and DSR B have the same PFSF to a 

branch. Due to DSR A’s lower per MW cost, it has a higher PFCSF. However, the 

total cost of using DSR A, which is the product of cost and magnitude, is higher than 

that of DSR B. Both DSR are capable to solve the 1MW thermal violation of the 

branch. Thus, the DSR service with higher PFCSF, DSR A in this case, will be chosen 

despite the fact that DSR B is able to solve the thermal violation with a lower total 

cost. 

 Compared to optimization based techniques, such as OPF, the proposed schemes may 

not able to provide a solution with minimum cost. 

 The proposed control schemes do not take into consideration the timescale of ESS and 

DSR. ESS SoC management is critical to maximize its value. Due to the current high 

cost, under-utilised ESS is unlikely to be cost beneficial while over charge or 

discharge ESS can damage its state-of-health (SoH). 
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 In the presence of a range of source of uncertainties, conventional methods which fail 

to understood, manage and plan for uncertainties appropriately can result in expensive 

use of ESS and DSR. 
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Chapter 4. Uncertainties in the Power System 

4.1 Introduction  

Uncertainty exists in the process of power system analysis, control, scheduling and planning. 

As shown in Chapter 2, most techniques assume that the input data is certain and accurate and 

the output or decisions can be implemented with little or no error. However, this is not always 

the case. This chapter examines sources of uncertainty involved in a power system scheduling 

problem. The uncertainties reviewed in this research include load, wind speed and wind 

power, real time thermal rating, state-of-charge estimation error and I&C DSR. 

To deal with uncertainty, two main types of methods can be used. The first type is to use 

conventional methods with extra margins, such as extra generation reserve or increased 

reserved capacity. The second type is probabilistic methods. The state of the art of 

probabilistic methods to deal with uncertainty in power system analysis and control is 

reviewed in section 4.3. Probabilistic methods reviewed in this chapter include point 

estimation methods (PEM), cumulant based method, chance constrained programing (CCP) 

method and Monte Carlo simulation (MCS). As part of this thesis, MCS is used to investigate 

the impacts of electric vehicle (EV) charging. This example shows how MCS can be used for 

complex systems. In section 4.5, a literature review of using robust optimization (RO) 

techniques to deal with uncertainty is given. In the conclusion, a comparison between 

probabilistic methods and RO techniques are included. 

4.2 Source of uncertainty 

4.2.1 Load Forecast Uncertainty 

With the adoption of low carbon technologies (LCTs), electricity demand becomes potentially 

more volatile and non-linear. Accurate very short term (VST) and short term (ST) load 

forecasting, therefore plays an important role in DN control and scheduling. Very short term 

load forecast (VSTLF) refers to predictions ranging from minutes to hours. Short term load 

forecast (STLF) covers the range from one hour to up to a week [114]. 

The time range covered by these two categories of predictions techniques is suitable for the 

scheduling of ESS and DSR in hours-ahead or day-ahead application. Therefore, in this section, the 

performance of state-of-art VST load forecast and ST load forecast techniques are reviewed and 

compared. The performance of the algorithms is compared using mean absolute percentage error 

(MAPE) as a common metric. 

MAPE is defined as, 
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 𝑀𝐴𝑃𝐸 =
100

𝑁
∑|

𝑅𝑒𝑎𝑙𝑡 − 𝑃𝑟𝑒𝑡

𝑅𝑒𝑎𝑙𝑡
|

𝑁

𝑡=1

 (4.1) 

Where  

𝑀𝐴𝑃𝐸   is mean absolute percentage error 

𝑅𝑒𝑎𝑙𝑡   is the real value 

𝑃𝑟𝑒𝑡   is the predicted value 

𝑁   is the number of samples 

𝑡   is the index for the sample 

The review provided in this section focuses on the performance of ST and VST load forecast 

techniques, which has a direct impact on the performance of scheduling algorithms. However, it is 

difficult to have a fair comparison between different techniques because they are tested on different 

networks with different voltage levels, number and type of customers. 

Paper [114] proposes a methodology for VST load forecast. The case study network has a peak load 

of 35.96MW. Tests are carried out for normal weekday and special days such as Thanksgiving Day. 

For normal days, the proposed multi-objective forecasting method has a minimum MAPE of 0.987% 

and a maximum of 2.040%. For special days, the corresponding number is 1.034% and 1.642%. 

The computing time of the proposed method is within 1 minute for the case study network. 

Autoregressive moving average (ARMA) has a worse performance and the minimum MAPE for 

normal day and special day is 2.453% and 1.673%, respectively. 

Zhang proposed an ensemble model of extreme learning machine (ELM) in [115]. ELM features 

fast learning speed however suffers from stability problems. By taking an ensemble learning 

scheme, ELM can be used for high quality load forecasting. The proposed model is tested with 

historical data and compared with a back-propagation neural network (BPNN) and radial basis 

function neural network (RBFNN). Simulation results show that the proposed method has a better 

performance than single ELM, BPNN and RBFNN method. The MAPE of the ensemble ELM 

model is 1.82% and that of single ELM, BPNN and RBFNN is 2.89%, 2.93% and 2.86%, 

respectively. 

A modified general regression neutral network (M-GRNN) is proposed in [116] for higher 

forecasting speed and a procedure to automatically reduce the number of inputs. Tests are 

carried out for load at HV and MV substations. Simulation results show that for global load, 

the MAPE is between 2.76% to 3.46% and the calculation time is less than 0.01 second. For 
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MV substation, the MAPE is between 2.58% to 8.60% approximately. The relationship 

between the voltage level and capacity of substations and the MAPE is not obvious. However, 

the MAPE for MV substation is greater than that of HV substation due to smaller number of 

customers. 

In paper [117] Fan developed a semi-parametric additive model to estimate the nonlinear 

relationship between the demand and the driver variables. The forecasting result is compared 

with an artificial neural network (ANN) based model and a hybrid model proposed in [118]. 

The average MAPE of the proposed additive model, ANN and the hybrid model is 1.88%, 

2.81% and 2.14%, respectively. The maximum and minimum MAPE of the additive model is 

2.38% and 1.41%. The peak load of the case study network is 10 approximately GW. 

A semi-parametric additive model is developed in [119] for local short and middle term load 

forecasting. 10 minute measurement data from 2260 substations have been used. Both middle 

term and ST forecast have been carried out in this paper. For ST load forecast, forecast results 

have MAPE values of 1.4% and 1.9%, depending on the temperature input. It is also found 

that a three-day ahead forecast temperature data with a MAPE of 30% will introduce an extra 

0.5% error in the result. 

The results achieved by the methods examined in this section are summarised below in table 

4.1 

Method MAPE Comments 

GP Ensemble [114] 0.99 - 2.04% Normal days 

ARMA [114] 2.45 – 7.85% Normal days 

GP Ensemble [114] 1.03 – 1.64% Special days 

ARMA [114] 1.67 – 15.40% Special days 

Single ELM [115] 2.89% Generalised performance 

ELM ensemble [115] 1.82% Generalised performance 

BPNN [115] 2.93% Generalised performance 

RBFNN [115] 2.86% Generalised performance 

M-GRNN [116] 2.76 – 3.46% Global load: HV substations 

M-GRNN [116] 2.58 – 8.60% Local load: MV substations 

Additive model [117] 1.41 – 2.38% Approximately 10 GW of load 

ANN [117] 2.81% Approximately 10 GW of load, averaged results 

Hybrid model [118] 2.14% Approximately 10 GW of load, averaged results 

Additive model [119] 1.4 – 1.9%  

Table 4.1 Summary of Very Short Term and Short Term Load Forecast Results  



72 

 

The performance of VST and ST load forecast depends on the methodology adopted, the 

accuracy of input data, normal or special day, number of customers in the network etc. As a 

result, it is difficult to draw a simple conclusion of the uncertainty level or distribution of 

VSTLF and STLF. The case study networks in [114], [116] and [119] are high voltage and 

medium voltage distribution networks and at the same time, the computational time of the 

proposed methods is suitable for real time application. As a result, based on the test results 

presented, it is reasonable to assume that the uncertainty of VST load forecast and ST load 

forecast for distribution network is 1% to 10%. 

Some load forecast procedures only give a estimation point but not the distribution of error 

[120]. Most sources drawn from literature only give an average MAPE value, such as [114], 

[116] and [119]. Paper [117] listed the results for 48 steps in a day but the sample size may 

not be large enough for statistical analysis. 

4.2.2 Wind Forecast and Windfarm Output Forecast 

This section reviews the errors in wind and windfarm output forecast. It should be noted that, 

the distribution of wind speeds is different to the distribution of wind speed forecast errors. As 

illustrated in Figure 4.1, the distribution of wind speed demonstrates the variability of wind 

speed over a period of time. On the other hand, the distribution of wind speed forecast error 

shows the likelihood of wind speed forecasting being inaccurate. Similarly, the distribution of 

wind power and wind power forecast errors are different concepts. The error of wind speed 

forecast and wind power forecast has more impact on the performance on the controllers and 

schedulers; therefore this section investigate the error of wind speed forecast and wind power 

forecast. 

 

Figure 4.1 Illustration of the Difference between the Distribution of Wind Speed (Left) and the 

Distribution of Wind Speed Error (Right) 
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There is limited work on the error of wind speed forecast and wind power forecast. Wind 

speed and wind power forecast errors for six wind farms have been studied in [121]. Wind 

speed is predicted for 6, 12, 18, 24, 36 and 48 hours ahead. Real wind speed is measured 

every 5 minutes. The predicted wind speed is compared to hourly-averaged real wind speed. 

The forecast value 𝑝𝑟𝑒𝑡 and the measured value 𝑟𝑒𝑎𝑙𝑡 is compared in root mean square error 

(RMSE). RMSE is given as 

 𝑅𝑀𝑆𝐸 = √𝜀2̅̅ ̅ = √(𝑝𝑟𝑒𝑡 − 𝑟𝑒𝑎𝑙𝑡)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4.2) 

Normalized RMSE is given as 

 
𝑁𝑅𝑀𝑆𝐸 =

√𝜀2̅̅ ̅

𝑝𝑟𝑒𝑡̅̅ ̅̅ ̅̅
=

√(𝑝𝑟𝑒𝑡 − 𝑟𝑒𝑎𝑙𝑡)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑝𝑟𝑒𝑡̅̅ ̅̅ ̅̅
 

(4.3) 

It is found in this paper the RMSE for wind speed forecast generally increases over the 

prediction horizon. For one of the test wind farms, the normalized RMSE at 6 hours is 38% 

and that of 48 hours is 55%. 

An example of forecast errors for one of the test sites are illustrated in Figure 4.2. The 

predicted values are for one of the windfarms for 12 hours ahead at 10 meters height. The 

errors between predicted values and the measurements are plotted as shaded histogram. The 

solid line shows a normal distribution with the same mean and SD. It can be seen that the 

distribution of the errors reasonably follow a normal distribution. 

 

Figure 4.2 Probability density of Wind Speed Forecast Errors (12hours ahead) for One of the 

test wind farms [121] 
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However, the error in wind power does not follow normal distribution. An example of wind 

power forecast error is given in [121]. 

 

Figure 4.3 Probability density of Wind Power Forecast Errors (12hours ahead) for One of the 

test wind farms [121] 

Due to the non-linear relationship between wind speed and wind power, wind power forecast 

error is difficult to be obtained. Different conclusions have been given regarding the 

distribution of wind power forecast error. In [122], wind power forecast error is divided into 

50 bins and it is found that the error follows a Beta distribution. In [123] it is found that the 

distribution of wind power forecast error is fat tailed so that it cannot be modelled as a normal 

distribution. Kurtosis is used to check the tail of the distribution. The kurtosis κ of a 

distribution whose mean μ = 0 is defined as 

 𝜅 =
𝐸(𝜀4)

𝜎4
 (4.4) 

In which, ε is normalised prediction error, σ is the standard deviation and 𝐸 is the expectation 

operator, 

 𝐸(𝑥) = 𝑥1 ∙ 𝑝𝑟1 + 𝑥2 ∙ 𝑝𝑟2 + ⋯+ 𝑥𝑘 ∙ 𝑝𝑟𝑘 (4.5) 

Where 𝑝𝑟 denotes the probability. When κ > 3, the distribution is a fat-tailed distribution. A 

histogram of 24-h forecast error data with κ = 4.8 is plotted with a Gaussian and a Laplace 

PDF. It can be seen that the distribution of error fits better with a Laplace distribution. 
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Figure 4.4 Comparison of a histogram of 24-h forecast error data (kurtosis 4.8) with Gaussian 

and Laplace pdf having the same standard deviation as the forecast error [123] 

A Beta PDF is used to describe the error and good alignment was found. The studies of [121-

123] are carried out with wind power data of a least 6 hours intervals. In [124], the 

distribution of wind power forecast error is examined at various and smaller intervals. The 

study in this work shows that Cauchy distribution outperforms other types of distributions. 

In conclusion, it can be seen that the distribution of wind power forecast error is difficult to be 

represented by distribution functions accurately. Most wind forecast models or techniques 

gives a single-value point forecast [123, 125]. However, techniques which can provide wind 

power forecast with intervals are available. In [126], two neural network based methods have 

been used for short term wind power generation forecast. The proposed methods construct 

prediction intervals with 90% confidence level. ELM method has been used in [127] and 

simulation results show a good performance. A hybrid intelligent algorithm combining ELM 

and particle swarm optimization (PSO) is proposed in [128] and proved effective. 

4.2.3 Real Time Thermal Rating 

The accuracy of RTTR calculation can be influenced by component thermal model input error 

[129, 130] and environmental conditions [25, 131, 132]. Michiorri carried out sensitivity 

analyse on how environmental conditions effect real time rating. In this paper, RTTR models 

of overhead lines, electric cables and power transformers are introduced. 
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The maximum current capacities of OHL, electric cables and transformers are non-linear 

functions of the environmental factors such as air temperature and wind speed. For instance, 

to calculate the maximum current for a given operating temperature of OHL, the energy 

balance, as described below, needs to be maintained 

 𝑞𝑐 + 𝑞𝑟 = 𝑞𝑠 + 𝐼2𝑟 (4.6) 

Where 

𝑞𝑐   the convective heat exchange 

𝑞𝑠   the impact of solar radiation 

𝑞𝑟   the radiative heat exchange 

𝐼   the current on the OHL 

𝑟   the resistance of the OHL 

The radiative heat exchange is function of conductor temperature 𝑇𝑐 and air temperature 𝑇𝑎 

 𝑞𝑟 = 𝐶𝑞𝑟
(𝑇𝑐

4 − 𝑇𝑎
4) (4.7) 

Where 

𝐶𝑞𝑟
   a coefficient to account for factors such as emission effect 

As can be observed from equation (4.6) and (4.7), the maximum current capability of OHL is 

dependent on air temperature based on a non-linear relationship. Thus, if the uncertainties in 

the environmental conditions are considered, the RTTR of the conductors will become 

uncertain and the uncertainty is unlikely to be described by PDF. 

In Table 4.2, the sensitivities of RTTRs to some environmental conditions are given. As can 

be observed, wind speed has the largest impact on the real time rating of overhead lines. The 

ratings of electric cables are mainly influenced by thermal resistance of the insulation and the 

soil. For a transformer uses oil and air and internal and external coolant and there is forced 

cooling, its rating is influenced mostly by air temperature. 
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Table 4.2 Environmental condition sensitivity analysis (parameter variation versus rating 

variation) [25] 

4.2.4 State-of-Charge 

A number of techniques have been developed to estimate the SoC of BESS [133-138]. Due to 

the difficulty of observing complex electrochemical reactions and measuring electrical and 

chemical parameters within the batteries, it is a challenging task to measure the SoC 

accurately. 

SoC can be measured by open circuit voltage or current integration method. However, both 

methods have their drawbacks. Open circuit voltage is not available until the battery is 

disconnected and therefore this technique cannot be applied online. Besides, most open circuit 

voltage based methods do not consider the parameter variations and therefore are not accurate 

enough. On the other hand, current integration techniques are subject to the errors in current 

measurement. The errors also accumulate over time. In previous works, 5-15% errors in SoC 

estimation have been reported [138, 139]. 

The SoC measurements are reported for a 2.5MVA, 5MWh Li-Ion ESS during a field trial are 

reported. This ESS is installed as part of the CLNR project [101, 140]. Figure 4.5 compares 

the measured SoC from the battery management system and the calculated SoC based on the 

power import and export recorded at one minute resolution. 

As can be observed, during the charge period between 00:00 to 07:00, the measured SoC is 

higher than the calculated SoC. During the discharge period between 09:00 to 18:00, the 

measured SoC is lower than that of the calculated. The error between the measured and 

calculated SoC reduces when the BESS is idle. The correlation coefficient between the SoC 

error and power export is 0.77, which indicates a relatively high correlation between the two 

values. 
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Figure 4.5 ESS Measured and Calculated SoC 

In summary, it can be observed that, with in short period of time, the error of SoC estimation 

varies with real power. However, the error of SoC is not a linear function of the real power 

import/export of the BESS. Therefore it is difficult to provide an accurate mathematical 

description of this error such as PDF. 

4.2.5 Industrial and Commercial DSR 

This section introduces I&C DSR trial results from the CLNR projects. The results have been 

reported and published in conference paper [101] and reports [141, 142]. In the CLNR project, 

residential, small and medium enterprise (SME) and I&C customers have participated in 

demand response programmes. I&C DSR trials have been carried out in 2012 and 2014 to 

investigate DSR customers’ flexibility and response characteristics. Three I&C customers 

have participated in the initial series of thirteen DSR trials in 2012. Nine out of the thirteen 

requests for demand response were successful. The author’s contribution is analysing the trial 

results regarding the uncertainty in response success rates, reduction magnitude and delay. 

Figure 4.6 illustrates the half hourly energy consumption and average power consumption of 

customer A, during DSR trial A.1. The blue bar represents the half hourly consumption of 

customer A, obtained from meter readings, and the red trace represents the average real power 

consumption. 
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In this trial, the DSR command was issued from a control room at 14:50. On receiving the 

signal, a diesel generator was engaged, to supply power to meet the customer demand. The 

customer load was thus reduced by over 800kW for four hours. It should be noted, however, 

that there was a delay of approximately 20 minutes before customer consumption was actually 

reduced. 

 

Figure 4.6 I&C Customer A DSR profile in DSR trial A.1 

In trial A.2, the DSR instruction was confirmed before 11:00 and DSR commenced at 15:00. 

The half hourly meter readings and average power are shown below Figure 4.7. 

 

Figure 4.7 I&C Customer A DSR profile in DSR trial A.2 
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Comparing Figure 4.6 and Figure 4.7, it can be seen that the response of A.1 is much slower 

than that in A.2. Due to the use of the diesel generator to supply the local load, power 

consumption was reduced to 2kW within 2 minutes and remained constant. Similarly, when 

the invoked DSR came to an end, load was restored within a 2 minute period. 

The load of Customer B consists primarily of refrigeration. In contrast to customer A, the load 

was varied by reducing consumption as opposed to engaging on site backup generation. A 

DSR profile, for this customer, (DSR trial B.1) is illustrated in Figure 4.8. DSR commenced 

at 15:00 and lasted until 19:00. During this period, the half hourly energy consumption of 

customer B was reduced from 1200kWh to approximately 600 kWh.  

 

Figure 4.8 I&C Customer B DSR profile in DSR trial B.1 

As mentioned previously, not all trials resulted in a successful response from the customers. 

Reasons for unsuccessful DSR include; failure to respond, or an inability to reduce enough 

load to meet the target half hourly energy consumption. For example, in one trial, the diesel 

generator used on the site of customer A experienced failure and therefore the site was unable 

to respond. 

The half hourly energy consumption and average power curves from trial B.2 are given in 

Figure 4.9. The DSR command was confirmed before 11:00 and DSR started at 15:00. It can 

be seen that the half hourly energy consumption started to decrease and dropped from 

1195.9kWh at 15:00 to 950.2kWh at 15:30. However the reduction was smaller than the 

agreed target and therefore the DSR was deemed to be unsuccessful. The load on the site did 

not drop below the target until 17:30, at which point the DSR was considered to be successful. 
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Figure 4.9 I&C Customer B DSR profile in DSR trial B.2 

In summary, with I&C DSR, there is uncertainty regarding: 

 If there will be a response; 

 If there is a response, how long is the delay; 

 How much reduction/increase can be provided. 

4.3 Probabilistic Methods to Deal with Uncertainty 

4.3.1 Introduction 

In this section, methods for dealing with uncertainty are reviewed. Consider a non-linear 

system which can be described as 

 𝒚 = 𝑔(𝒙) (4.8) 

Where 

𝒙   the input vector 

𝒚   the output vector 

𝑔   a general nonlinear function  

When 𝒙 is uncertain, 𝒚 becomes uncertain as well. In this thesis, uncertain values, vectors and 

matrices are marked with an accent as shown below. Equation (4.8) then becomes, 

 �̃� = 𝑔(�̃�) (4.9) 
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The goal of probabilistic methods is to study the PDF of 𝒚 if the PDF of 𝒙 is known. In this 

section, methods to deal with uncertainty are introduced. Stochastic problems can be solved 

by simulation based methods, analytical methods and a combination of both [143]. Mont 

Carlo simulation (MCS) is a simulation based method. This method is detailed in section 

4.3.4 and applied to explore the impacts of EV charging on distribution networks in section 

4.4. Analytical methods reviewed in this chapter include point estimate method and cumulant 

based method. Chance constraint programming method can be a mix of PEM and cumulant 

methods. 

Methods have also been developed to solve uncertain optimization problems. The general 

form of a constrained optimization problem can be described as 

 

min𝑓(𝒙) 

Subject to  

𝑔(𝒙) = 0 

ℎ(𝒙) ≤ 𝒃 

(4.10) 

Where  

𝒙   the input vector 

𝒚   the output vector 

𝑔   a general nonlinear function for equality constraints 

ℎ   a general nonlinear function for inequality constraints 

𝒃   the constraints vector 

If uncertainties are considered, the problem described by equation (4.10) becomes 

 

min𝑓(�̃�) 

𝑠. 𝑡. �̃�(�̃�) = 0 

ℎ̃(�̃�) ≤ �̃� 

(4.11) 

In equation (4.11), the uncertainties in 𝑔 and ℎ are also considered. 

4.3.2 Point Estimate Method 

The goal of PEM methods is to calculate the PDF of the output 𝒚 in equation (4.9) based on 

the uncertainty of 𝒙. The PEM method calculates the PDF of 𝒚 based on the deterministic 

analysis of the selected points, or scenarios. The number of scenarios selected is based on the 

number of uncertain values in 𝒙. For each uncertain entry in 𝒙, two values, or concentrations, 

are selected on each side of the nominal value. The corresponding value of 𝒚 is calculated for 
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each concentration. In the end, the PDF of 𝒚 can be calculated. The procedure for PEM is 

detailed below: 

1. Determine the number of uncertain values in 𝒙, denoted as 𝑁𝑢 

2. Determine the locations of concentrations for each uncertain variable 𝑥𝑘(1 ≤ 𝑘 ≤

𝑁𝑢), 𝜉𝑘,1 and 𝜉𝑘,2. The concentrations are two points on each side of the nominal value 

𝑥𝑘 

3. Replace 𝑥𝑘 in 𝒙 with one of its concentration 𝑥𝑘,𝑖 = 𝑥𝑘 + 𝜉𝑘,𝑖, 𝑖 = 1,2. The updated 𝒙 

is denoted as 𝒙𝑘,𝑖 

4. Use 𝑥𝑘,𝑖 to calculate 𝒚𝑘,𝑖 = 𝑔(𝒙𝑘,𝑖) deterministically 

5. When all 𝒚𝑘,𝑖 have been calculated, calculate the moments of 𝒚 by 

 

𝐸(𝒚) ≅ ∑ ∑𝑃𝑘,𝑖𝒚𝑘,𝑖

2

𝑖=1

𝑛

𝑘=1

 

𝐸(𝒚2) ≅ ∑ ∑𝑃𝑘,𝑖𝒚𝑘,𝑖
2

2

𝑖=1

𝑛

𝑘=1

 

(4.12) 

where 𝑃𝑘,𝑖 is the probability of the 𝒚𝑘,𝑖. The concept and calculation of moments is 

introduced in Appendix C.  

6. Based on the calculated moments of 𝒚, the mean and standard deviation of 𝒚 can be 

calculated 

 

𝜇𝒚 = 𝐸(𝒚) 

𝜎𝒚 = √𝐸(𝒚2) − 𝜇𝒚
2 

(4.13) 

PEM technique has been adopted to solve probabilistic power flow (PPF) problems in [143]. 

A power flow problem is a non-linear formulation which can be described by equation (4.8). 

The proposed PPF algorithm considers uncertain nodal power injections and calculates the 

PDF of branch loadflows. 

PEM method can be used to solve optimal power flow (OPF) problems with uncertainty. An 

OPF problem is an optimization problem which can be generalized as equation equation 

(4.10). OPF problems, unlike a power flow problem, need to be transformed into equality 

problems as stated in equation (4.8). OPF problems can be transformed into the form of (4.8) 

by applying interior point method (IPM) [144, 145]. In [146], PEM is used to calculate the 

mean and standard deviations of locational marginal prices (LMPs) under the uncertainty of 

load. Later works introduce the correlation between uncertain values into PPF and 

probabilistic OPF (POPF) problems [147-149]. Most POPF approaches assume all uncertain 



84 

 

values follow normal distributions or have identical first three order moments i.e. the same 

mean, variance and skewness. Meanwhile, most POPF approaches are highly dependent on 

the techniques which transform OPF into an equality equation. A POPF approach is proposed 

in [150] to avoid these assumptions. In this work, correlated uncertain inputs following 

different distributions are transformed into uncorrelated normal distributed values so that the 

POPF problem can be solved. 

PEM based PPF and POPF techniques require relatively low computing burden, only 2𝑛 + 1  

times of PF or OPF calculations are required. This process does not require linearization of 

the non-linear equation. However, the accuracy of PEM based POPF methods is reduced 

when the number of uncertainties increases or when the smoothness of the OPF output 

reduces [146]. 

4.3.3 Cumulant-based method 

Cumulant base method (CBM) for probabilistic power flow analysis has been introduced in 

[151]. The cumulant is one of the numerical characteristics for a series of random values. The 

cumulant and the process to calculate cumulant are introduced in Appendix C. Unlike mean 

and standard deviation (SD), cumulants can be operated directly. The process of a Cumulant-

based method to solve (4.9) is given below 

1. Linearize ℎ(𝒙) 

2. Prepare the density function of 𝒙  

3. Calculate the cumulants of 𝒙 

4. Calculate the cumulants of 𝒚 

5. Based on the cumulants of 𝒚, calculate the probability distribution of 𝒚 

Cumulant based power flow has been used in [152] to calculate the distribution of busbar 

voltages due to the uncertainty of wind power and load. Cumulant based PPF is used in [153] 

to study the impacts of PV generation on transmission networks. 

In [154], a cumulant based POPF methodology is proposed. In this work, Gaussian and 

Gamma distributions are decomposed into a series of normal distributions using Gram-

Charlier A series. An OPF formulation is transformed into an equality equation using 

logarithmic barrier IPM. This work is extended in [155] so that the correlations between 

uncertain values can be dealt with. An POPF based on cumulant method for dispatching 

purposes, which takes into account the uncertainty of PV and load, is proposed in [156]. In 
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[157], two methods to construct the PDF for the output, Maximum Entropy method and 

Gram-Charlier method, are compared. 

Similar to most PEM methods, the process to solve a POPF problem with cumulant based 

method is highly dependent on the specific solver for the OPF problem. Furthermore, 

cumulant based method only applies to linear problems. The linearization of PF or OPF 

problems may lead to large errors, especially in distribution network where the X/R ratio is 

low. 

4.3.4 Monte Carlo Simulation 

Monte Carlo Simulation (MCS) is an approach to study the behaviour of complex systems by 

analysing a large number of random samples. For the problem introduced in (4.9), by 

sampling a large number of input values 𝒙, the probability density function (PDF) or 

expectation of 𝒚 can be calculated. An introduction to this technique can be found in [158]. 

The application of MCS to solve power system stochastic problems has been introduced in 

[145, 151, 159]. The flowchart of applying MCS for a loadflow calculation is presented below 

in Figure 4.10. 

𝒙𝑖 is a sample of the input value. Depending on the purpose of the study, 𝒙𝑖 may consist of 

the load at each bus, the output of RES and on and off state of components. 𝒚𝑖 is the loadflow 

results based on the input 𝒙𝑖. 𝒚𝑖 consists of loadflow results such as busbar voltage and 

loadflow through branches. 

In this process, firstly, the initial sample size N is set to 0. A random sample of input 𝑥𝑖 is 

generated and its corresponding output 𝑦𝑖 can be calculated. Next, the expectation of 𝑦𝑖 can 

be calculated as 

 𝐸(𝒚) =
1

𝑁
∑𝒚𝑖

𝑁

𝑖=1

 (4.14) 

At the end of each iteration, the convergence should be checked. The convergence can be checked 

by the variance of 𝐸(𝒚). The variance of 𝐸(𝒚) is given as 

 𝑉(𝐸(𝒚)) =
𝑉(𝒚)

𝑁
 (4.15) 

Where 

𝑉(𝐸(𝒚))  is the variance of the expectation of 𝒚 

𝑉(𝒚)   is the variance of 𝑌 and 𝑉(𝒚) is given as 
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 𝑉(𝒚) =
1

𝑁 − 1
∑(𝒚𝑖 − 𝐸(𝒚))

2
𝑁

𝑖=1

 (4.16) 
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Figure 4.10 Flowchart of Monte Carlo Study 

The condition of a converged MCS can be defined as the variance of 𝐸(𝒚) is smaller than a 

desired tolerance 

 𝑉(𝐸(𝒚)) ≤∝ (4.17) 

MCS can be easily adopted to complex systems and doesn’t require simplification of the 

system under study, which means the result of MCS is able to capture the nonlinear 
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characteristic of ℎ(𝒙). However, MCS requires heavy computation burden due to the need for 

generating and evaluating a large number of samples. 

4.3.5 Chance Constrained Programming Method 

The chance constrained programing (CCP) method has been used to solve OPF or planning 

problems under uncertainty [160-163]. A general optimization problem is given in (4.10). 

When 𝒙 is uncertain, the objective function and constraints become uncertain as well. The 

goal of CCP is to find a solution 𝒙′ that minimises the expectation of the cost function, 

meanwhile, ensuring the constraints are satisfied to a predefined probability. This can be 

expressed as 

 

min𝐸(𝑓(𝒙′)) 

𝑠. 𝑡. 𝑃𝑟 (
𝑔(𝒙′) = 0

ℎ(𝒙′) ≤ 𝒃
) ≥∝ 

(4.18) 

Where 

𝐸(𝑓(𝒙′))  the expectation of the cost function 

Pr (
𝑔(𝒙′) = 0

ℎ(𝒙′) ≤ 𝒃
)  the probability of the constraints being satisfied 

∝ a predefined probability which is acceptable for constraints being 

satisfied 

One of the challenges for CCP formulated problem is the difficulty of calculating the 

probability of constraints violation, i.e. to calculate 𝑃𝑟 (
𝑔(𝒖) = 0

ℎ(𝒖) ≤ 𝑏
). In [160] an OPF problem 

is formulated as a CCP problem and solved by Monte Carlo simulation (MCS). The sparse-

grid method is used to solve CCP based OPF problem in [161]. However, the sparse-grid 

method only applies for uncertainties following Gaussian distribution and requires high 

computation time. In [162], a CCP based uncertain OPF problem is linearized first and then 

solved by a back-mapping approach. This approach requires the linearization of OPF problem 

and also only applied for Gaussian distribution. Paper [163] proposes a multi-objective OPF 

formulation for renewable energy integration. This problem is formulated as a CCP problem 

and solved by a heuristic algorithm, group search optimization method. This method has been 

adopted to find the optimal solution 𝒖 and the probability of constraints violation is estimated 

by PEM method. 
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The other limitation of CCP based method is the difficulty of providing a solution with 100% 

reliability of probability of success (PoS). CCP based problem is normally solved by finding a 

solution that satisfies 

 

min𝐸(𝑓(𝒖)) 

𝑠. 𝑡. 1 − 𝑃𝑟 (
𝑔(𝒖) = 0

ℎ(𝒖) ≤ 𝑏
) ≤ 1−∝ 

(4.19) 

If high PoS is required, 1−∝ is a very small number. Dealing with a very small number is 

challenging in such a process. Therefore, it is challenging for CCP based approaches to 

provide a highly reliable solution. 

4.4 Investigating the Impact of EV Charging Using MCS 

As introduced in section 4.3.4, a MCS study can be applied to complex systems which are 

difficult to describe mathematically. In future DNs, where the customers’ behaviours become 

more stochastic and less predictable, load forecast will be more challenging. The correlation 

between the household electricity usage and EV charging events is difficult to describe 

mathematically. As a result, MCS is employed to investigate the impact of EV charging on 

DNs. 

In this section, a case study is presented using MCS to study the impact of EV charging on 

distribution networks. This work has been published in [164] and [165]. In this case study real 

world EV charging profiles data and smart meter data measurements are combined using 

MCS technique. Next, the combined load profiles are applied on three distribution networks 

to investigate the impact of EV uptake. The impacts under study include steady state voltage 

drop, power flow on the MV/LV transformer and unbalance. Modelling of the case study 

networks, applying the combined load profiles upon case study networks and accessing the 

impacts on voltage drop and power flow is carried out as part of the research in this thesis. 

The code for this work is given in Appendix B. 

4.4.1 Data 

In this work load profiles applied in the case study networks are composed of smart meter 

load profiles and EV charging profiles. 

The EV data is collected from the SwitchEV project which trialled 44 EVs in the North East 

of England between 2010 and 2013. The cars were fitted with data loggers that captured more 

than 85,000 EV journeys recorded second by second and over 19,000 recharging events 

recorded minute by minute at more than 650 public and 260 private charging points [166, 
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167]. High resolution spatial and temporal data of EV driving and charging events were 

collected, processed and analysed during the SwitchEV project. The dataset gave insight and 

illustrated the stochastic nature of real world behaviour of EV users. The project recruited 

different types of users- private and fleet drivers. They had access to an extensive charging 

infrastructure (home, work, public). The majority of vehicles used in the trial are production 

vehicles available on the market and were provided by Nissan (LEAF) and Peugeot (iOn). A 

total of 125 different users were recruited for the duration of the project [167]. As a result, the 

data collected from the SwitchEV trial captured how people would use an electric car in a 

real-world context. 

The smart meter data was collected via the CLNR project. This is the UK’s largest trial of 

smart grids and it provided domestic load profiles of half-hourly power consumption data 

collected from nearly 9000 smart meters. In addition, the CLNR smart meter data set [168] is 

parameterised by socio-economic variables which allow the selection of representative load 

profiles appropriate to the network customer population under study. The four-year CLNR 

project also provided network data and extensively validated network models based on 

existing local distribution networks operated by the regional DNO, Northern Powergrid. 

In order to understand present and emerging load and distributed generation patterns, the 

CLNR project is conducting monitoring trials using data from over 9000 smart meters placed 

in residential locations in the UK. The smart meter dataset is classified by household income, 

presence of under 5 s or over 65 s, tenure, household thermal efficiency and area classification 

(urban/rural). UK Office for National Statistics (ONS) data was used to determine the 

characteristics of the study areas of this work, which are summarised in Table 4.3 along with 

the electricity network characteristics. Using the parameters in Table 4.3, a representative 

population of residential load profiles was extracted from the CLNR dataset representing the 

study areas. Properties in the two regions are mostly mid-20
th

 century semi-detached houses 

with adjoining off-street parking. Some communal parking facilities are also evident. Vehicle 

ownership is high and many households own more than one car. Given these observations, 

these populations are used as model populations of potential future EV owners on their 

respective networks. 
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 Urban Rural 

Substation 6.6kV/400V, 500 kVA 20kV/400V, 315 kVA 

Feeders 4 2 

Total LV customers 288 189 

Number of customers per 

LV feeder 
A – 59, B – 66, C – 84, D - 79 A – 123, B – 66 

Vehicle ownership 86% 74.6% 

No. of vehicles in vehicle-

owning households 
1.7 1.5 

ONS morphology code 1 (Urban) 3 (Rural) 

House thermal efficiency Medium Medium 

Percentage households with 

under 5s or over 65s 
44% 40% 

Equivalent annual income 

(gross) 

60%: > £30 k 

35%: £15-£30 k 

5%: < £15k 

18%: > £30 k 

62%: £15 - £30 k 

20%: <£15 k 

Tenure Effective 100% home ownership 
37% Renting 

63% Owned 

Household occupancy 97% 97% 

Table 4.3 Summary of LV Network and Population Parameters 

4.4.2 Case Study Networks 

Three case study networks have been used for this study. The case study networks include 

two networks from the CLNR project and the UK generic network (UKGDS). 

One rural and one urban network within Northern Powergrid’s licence area have been used to 

enable the evaluation of questions of load growth and active network management. Models of 

the trial networks have been developed in IPSA2, a steady-state power system simulation 

application, and these have been extensively validated with two years of detailed network data 

and against existing DNO network models (using data provided by Northern Powergrid). This 

study uses this set of models and data as a foundation for the examination of EV load impacts. 

The urban network under study, Figure 4.11, is a 6.6 kV network supplying approximately 

6000 customers, with a mixed load curve and an early-evening peak. One particular HV/LV 

substation supplying 288 customers via a 500 kVA transformer and 4 LV feeders is studied in 

detail as a test case for EV penetration. 
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Figure 4.11 Diagram of the 6.6 kV case-study urban network used in steady-state IPSA2 study 

Figure 4.12 shows the rural network under investigation. This network has previously used in 

Chapter 3 to evaluate the sensitivity factor and CSF based control scheme. This network 

consists of a 20 kV feeder, approximately 25 miles long, supplying a number of towns in 

Northumberland in northern England. Three HV/LV substations supply one of these towns; 

and this paper focuses on one of these substations which supplies 189 residential properties 

through two multiply-branched LV feeders. The LV network sections under study are 

exclusively residential with no industrial or commercial facilities or public EV charging 

infrastructure supplied by the HV/LV transformer. 

 

Figure 4.12 Diagram of the 20 kV case-study rural network used in steady-state IPSA2 study 
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In addition, a generic network as shown in Figure 4.13, based on [169], has been studied. This 

network has been deemed to be a representative of a heavily loaded UK distribution network 

by UK DNOs who were involved in specifying and creating it. It consists of a 33 kV source 

feeding two 15 MVA 33/11 kV transformers. There are six 11 kV feeders, each of which have 

eight 500 kVA 11/0.4 kV transformers equally spaced along 3 km of underground cable. 

Downstream of each 500 kVA transformer are 4 LV feeders of 300 m in length with 96 

customers spaced equally along each feeder. The population parameters for the 386 customers 

under study on the generic network were assumed to be the same as the urban network 

described previously in Table 4.3. The rural and urban networks give an indication as to the 

problems that could be encountered in different types of networks. However, all networks are 

different and therefore the modelling of a specific system is required to establish if localised 

problems exist. The generic network has been used in this study in order to draw broad and 

generalizable conclusions across the UK distribution networks as a whole. 

 

Figure 4.13 UK generic network used in steady-state IPSA2 study 

4.4.3 MCS Study 

Monte Carlo Simulation (MCS) was used to build up a distribution of possible demands on 

the trial networks. Data for the simulation was produced by sampling the domestic load 

profile and EV charging profile populations. Households on the LV networks were randomly 

assigned load profiles in proportion to the local demographic makeup. A defined percentage 

of these users, corresponding to a level of EV penetration, were further assigned an EV load 

profile which was added to their base domestic profile. EV penetration is defined as the ratio 

of EVs to the number of vehicle- owning households. For the case of the urban network with 
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288 customers and a vehicle ownership of 86%, 60% penetration (149 EVs) represents an 

approximate nominal upper bound on the test networks whereupon all households owning 

more than one vehicle have an EV as the second vehicle. 1000 simulated peak days (i.e. 1000 

simulation runs) were generated to ensure adequate variation of customer behaviour, EV 

charging profiles and customer location on the network. The generation of multiple random 

configurations naturally captures any spatial concentration of households with EVs (e.g. at the 

remote end of the longest feeder) which could cause additional voltage drops. Figure 4.14 

shows some illustrative examples from the urban profiles population assigned to customers. A 

configuration of the urban network with 60% EV penetration at 18.00 on the peak demand 

day was examined to ensure that stable results had been obtained with 1000 MCS trials. With 

1000 trials, the mean transformer demand had converged to a stable 385.8 kVA (standard 

error 0.29 kVA). The standard deviation of the distribution of transformer demands had also 

stabilised to 9.1 kVA. Thus the distributions produced by the simulated trials are stable and 

provide reliable estimators of the simulated demand. 

 

Figure 4.14 Example of peak day load profiles for 2 customers (#1 and #73) on the network for 2 

different MCS runs (run #1 and 1000). Each MCS run generates a population of customers as 

defined by the network topology 
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4.4.4 Results 

Transformer loading 

The power demand profiles for the urban and rural LV networks on the test day for EV 

penetration values that produce loading exceeding the transformer thermal limit are plotted in 

Figure 4.15 and Figure 4.16. As can be observed in Figure 4.15, using the 97.5th upper 

demand bound, the urban network is not compromised even at 60% EV penetration, although 

at this point the load is approaching the transformer rating (500 kVA). 

Time (hh:mm)  

Figure 4.15 Test Day Critical Demand for Urban Network 

However, as can be seen in Figure 4.16, during the afternoon peak, the power flow on the 

transformer exceeded its rating at 15% EV penetration using 97.5th upper demand bound. 
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Time (hh:mm)  

Figure 4.16 Test Day Critical Demand for Rural Network. 

The demand profiles with 15% to 60% penetration of EVs are plotted in Figure 4.17. As can 

be observed, using the 97.5th upper demand bound, in the generic network the rating of the 

transformer is violated at 40% EV penetration (Max@ 40%). 

 

Figure 4.17 Test Day Critical Demand for the Generic Network. 
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Voltage drop 

Table 4.4 shows the maximum voltage changes occurring at times of 97.5% of the load for the 

rural and urban networks. The voltage change is calculated by comparing the voltages at the 

secondary side of the MV/LV transformer to the end of the feeders. As can be seen in Table 

4.4, the maximum voltage change in rural network is 5.39% and 2.90% in urban network. The 

voltage magnitude in LV networks is required to be within the statutory limits +10%/-6% 

[170]. According to this standard, such voltage change does not cause voltage excursions. 

 Average Load 0% EVs Average Load 

15% EVs Rural 

60% EVs Urban 

97.5% Load 

15% EVs Rural 

60% EV Urban 

DV – Rural 2.33% 2.52% 5.39% 

DV – Urban 1.4% 1.72% 2.90% 

Table 4.4 Maximum Voltage Changes on the Test Networks (negative sign indicates a voltage 

drop) 

Similarly in Table 4.5 and 60% EV penetration with 97.5% of the load did not cause voltage 

problems in the generic LV distribution network. 

Lowest Voltage 15% EVs 30% EVs 60% EVs 

DV – Mean (%) 1.58 1.64 1.73 

DV – Max (%) 2.67 2.79 3.02 

Table 4.5 Maximum Voltage Changes in the Generic LV Network (negative sign indicates a 

voltage drop) 

4.4.5 Conclusion 

This study uses real world datasets to study the impacts of the uptake of EV on distribution 

networks. Case studies on three types of distribution networks show that the spatial, temporal 

and behavioural diversity of EV charging demand can alleviate the impacts on distribution 

networks. In other words, if these uncertainties are not well understood or managed, the 

voltage drop and power flow through the transformers will be overestimated. 

MCS technique presents a few advantages to other analytical methods, when applied to the 

problem investigated in this section. In this problem, some factors such as EV charging and 
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home appliances usage behaviours are difficult to be described mathematically. Therefore, 

analytical methods are unlikely to be able to tackle such a complex system. However, MCS 

technique makes full use of the real world datasets by deriving samples based on the EV 

charging and smart meter profiles. Besides, no assumptions and linearization are made during 

this process. 

The disadvantages of MCS also exist. First of all, MCS poses heavy computational burden. In 

this case, hourly profiles have been used and a total number of 1,000 numbers of samples are 

tested. For each case study network, 24,000 load flow calculations are needed. Therefore, it is 

unlikely to use MCS in real time decision making process. Secondly, similar to analytical 

methods, MCS requires detailed information about the uncertainty input, although this does 

not need to be described mathematically. When there is only partial or inaccurate information 

of the uncertainty, MCS may fail as well. Finally, the limit for variance of the expectation 

needs to be decided carefully. If this convergence limit is set too high, the results may not be 

accurate enough. On the other hand, if the limit is too low, extra and unnecessary tests will be 

carried out. 

4.5 Robust optimisation 

Robust optimisation (RO) is an approach to transform uncertain linear optimisation (ULO) 

problems to another form so that they can be solved deterministically. RO has been applied to 

solve unit commitment (UC) problems, DSR and planning. This section exams the state of the 

art of the application of RO in power systems. 

The general form of an optimization problem has been introduced in section 4.3.1. Equation 

(4.11) describes a constrained uncertain optimization problem. To solve this problem by RO, 

equation (4.11) need to be linearized. A standard linear optimization problem can be 

represented as 

 𝑚𝑖𝑛 𝒄′𝒙 

𝑠. 𝑡. 𝑨𝒙 ≤ 𝒃 

(4.20) 

where 

𝒄   the vector of coefficients for the cost function 

𝒄′   the inverse vector of coefficients for the cost function 

𝒙   the decision variables or control variables 

𝑨   the matrix of constants for constraints 
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𝒃   the right hand side vector of constraints  

Considering the uncertainties in 𝒄, 𝒙, 𝑨 and 𝒃, equation (4.20) becomes 

 𝑚𝑖𝑛 �̃�′�̃� 

𝑠. 𝑡. �̃��̃� ≤ �̃� 

(4.21) 

Unlike other methods, RO does not require the PDF of all the uncertainty values. It is 

assumed that all the uncertain values vary in a given range, or uncertainty interval. For 

instance, if one of the elements of  𝑎𝑖𝑗, in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column, is uncertain, then 

the real value of �̃�𝑖𝑗 follows 

 𝑎𝑖𝑗 − �̂�𝑖𝑗 ≤ �̃�𝑖𝑗 ≤ 𝑎𝑖𝑗 + �̂�𝑖𝑗 
(4.22) 

Where  

𝑎𝑖𝑗 the nominal value of the elements of 𝑨 in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ 

column 

�̂�𝑖𝑗 the maximum variation of 𝑎𝑖𝑗 

�̃�𝑖𝑗 the real value of 𝑎𝑖𝑗 

RO has been applied to solve uncertain UC problems [171-182]. A two-stage adaptive RO 

formulation to security constrained UC problems is proposed in [182] to deal with the 

uncertainty of DG and load. A practical method to solve the adaptive model is developed and 

numerical experiments with real data are carried out. The conclusion shows that RO reduces 

the total dispatch costs significantly and this advantage is amplified when the level of load 

variation is higher. In [175], UC problem considering the uncertainty of wind power output is 

solved by RO. Simulation results indicate that the RO approach is able to tackle the worst 

case scenario and pumped hydro storage can act as substitutes of thermal generators on 

increasing the system robustness. A RO based UC formulation to deal with the uncertainty of 

DSR and wind energy is introduced in [174]. 

A real time demand response model for scheduling household appliances responding to real 

time price (RTP) is proposed in [183] to deal with the uncertainty of electricity price. It is 

found that RO based scheduling scheme is able to reduce the electricity bill of customers. 

Paper [184] evaluates the real-time price-based demand side management (DSM) for 

residential appliances via stochastic optimisation (SO) and robust optimisation approaches. 

The algorithm is designed to schedule the operation of plugin electric vehicle, dishwasher, 
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cloth dryer, electric water heater, air conditioner and oven. The conclusion shows that both 

SO and RO approach is able to reduce electricity bill cost. SO based method can achieve a 

higher cost reduction however introduces higher computational burden. RO is used for load 

scheduling in [185] considering the uncertainty of electricity price and renewable generation. 

The price of electricity is modelled as a piecewise linear function of demand. 

A RO algorithm is applied for the scheduling of combined heat and power (CHP), boiler and 

BESS [186]. This formulation minimise the cost of import/export electricity to the grid and 

the fuel (gas) cost of CHP and boiler. Uncertainties considered in this paper are solar 

irradiance and electric and heat load. 

A reactive power optimization approach for intermittent windfarm integration based on RO is 

proposed in [187]. Voltage change due to reactive power injection is estimated by voltage 

sensitivity factor, derived from Jacobian matrix. Simulation results on a 30-busbar IEEE 

network show that the proposed method is able to reduce system loss by 10.2%. 

RO algorithm is used to forecast the maximum plug-in hybrid electric vehicles (PHEVs) 

penetration [188]. The objective function minimises the cost and emission of generation due 

to the increasing penetration of PHEVs. The constraints in this paper include zonal power 

balance, transmission line rating, power generation capacity, generation emission constraints 

and the penetration constraints of PHEV. 

Compared with techniques such as MCS, the limitation of RO is that linearization of the 

nonlinear formulation is required. The linearization process may introduce calculation errors. 

Furthermore, the output of RO is a solution 𝒙 which satisfies the constraints and minimizes 

the cost function in the presence of the uncertainties. On the other hand, methods such as 

PEM and CBM can provide the PDF of the output 𝒚, which gives an better indication of the 

impacts of the uncertainty of input 𝒙. 

However, compared with most methods for dealing with uncertainty there are many benefits 

of RO. First of all, RO only requires uncertainty intervals, which are easier to access than 

detailed information of PDF. This is a useful strength as the accurate PDFs of uncertain 

values can be difficult to access. If the PDF inputs are not available or inaccurate, most 

methods will fail to perform. Meanwhile, compared to MCS, RO poses a much lower 

computing burden. The computation required by RO is to solve the optimization formulation. 

Finally, within RO, the level of conservatism can be easily adjusted. CCP formulation can be 

used to adjust the probability of constraint violation as well, however, cannot guarantee 100% 



100 

 

probability of success (PoS). RO can provide a feasible solution and guarantees the PoS of up 

to 100%. 

4.6 Conclusion and discussion 

In this chapter, the sources of uncertainties are reviewed first. It has been found that, 

uncertainty exists in load, wind and wind power, RTTR, SoC and I&C DSR. It can also be 

seen that the PDFs of uncertainty is often difficult to access and unlikely to be normally 

distributed. 

Methods to deal with uncertainties are compared below in Table 4.6. Conventional in the first 

row stands for conventional techniques with extra margins. In this table, input type refers to 

the type of input for uncertainty values. 

 Input type 
Computational 

burden 
Linearization 

Compute the 

PDF of output 

Conventional  Interval Low N/A No 

PEM PDF Low Yes Yes 

CBM PDF Low Yes Yes 

MCS PDF High No Yes 

CCP PDF Can be high N/A No 

RO Uncertainty interval Low Yes No 

Table 4.6 Comparison of Different Techniques to Deal with Uncertainty 

MCS, CCP and analytical probabilistic methods, such as PEM and CBM, require the PDFs of 

the uncertainty values. However, conventional techniques with extra margins and RO only 

need the interval for the uncertainty values. PEM, CBM, MCS and CCP methods are not 

adequate to solve problems when the PDFs of uncertain values are not available or not 

accurate. 

MCS requires high computational time compared to other methods. If MCS is used by CCP 

methods to evaluate the distribution of output, also requires high computational burden. If the 

system under study is non-linear, PEM, CBM and RO based method need to linearize the 

system and/or assume a linear superstation of probabilities. MCS does not require 

linearization of the non-linear system. Depending on the methods adopted, conventional 

techniques with extra margins and CCP may not require linearization. 
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PEM, CBM and MCS methods are able to compute the PDF of the output values, if the PDF 

of uncertain input values are provided. Conventional techniques with extra margins can be 

conservative. For CCP based methods, it is difficult to compute a solution with high 

reliabilities. 

The focus of the reminder of this thesis is RO, which appears to be the most suitable solution 

a scheduling problem for ESS and DSR. Thus, RO will be investigated throughout the rest of 

this thesis. The mathematical principle of RO is investigated in the next chapter. Three 

development stages of RO are introduced. The key parameter in RO, budget of uncertainty 

(BoU), which is used to enable the trade-off between cost and the PoS, is introduced. In 

Chapter 6, RO is applied to a scheduling problem for ESS and DSR with the presence of a 

range of source of uncertainties including load, DG and DSR. 
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Chapter 5. Introduction to Robust Optimisation 

5.1 Introduction 

As shown in Chapter 2 and Chapter 4, little previous work has considered the uncertainty of 

load, generation, DSR and RTTR. Most methods, which are able to deal with uncertainty, 

require the PDF of uncertainty. Robust optimisation (RO) has been found to be the most 

suitable solution for solving a scheduling problem for ESS and DSR with only partial 

information on their uncertainties. RO is an approach to transform an uncertain linear 

optimisation (ULO) problem into an optimization problem with certain parameters, so that it 

can be solved deterministically. In this chapter, RO is introduced and the implementation of 

RO in Python is detailed. 

The importance of dealing with uncertainty is described in section 5.2. This is followed by a 

general formulation of ULO problems in section 5.3. Three key stages of the development of 

the RO algorithm are detailed. Compared with other probabilistic methods, RO presents a few 

advantages. First of all, RO can protect all the constraints against uncertainty. Secondly, RO 

only requires the uncertainty intervals of the uncertain values. This is a very valuable feature, 

since, as shown in the previous chapter, PDFs of the uncertainties considered in this thesis are 

difficult to access. Last but not least, the use of RO enables a trade-off between the cost and 

the risk. In an ULO problem, the risk is the probability of constraint violations. The trade-off 

is realized by tuning a coefficient defined in the algorithm named budget of uncertainty (BoU). 

BoU and probability bounds of constraint violations are introduced in Section 5.4. Finally, the 

implementation of RO in Python is detailed. 

5.2 Linear optimisation problem with uncertainty 

Most optimisation techniques are based on the assumption that all the data is certain and 

accurate. In reality, this is seldom the case. The need for dealing with uncertainty has been 

previously demonstrated [189]. In [189], a linear programming problem with 1000 variables 

and 410 constraints is used to demonstrate the impacts of uncertainty. A 0.1% error is applied 

to one of the entries in this problem. It is found that the solution to the new linear 

programming problem does not always satisfy the original constraints. The violation of 

constraints can be as large as 450%. 

5.2.1 Types of uncertainty 

In [190], data uncertainty is categorised into three types as follows: 

I. Prediction uncertainty 
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Scheduling or planning problems can be formulated as linear or non-linear 

optimization problems. When they are solved, some of the data entries, such as 

future demand and electricity price for the next few hours, do not exist. It is 

unlikely for the predictions to be entirely accurate. The error in load forecasting or 

future demand [172, 191], wind generation forecasting [175], annual growth rate 

of EVs [188] and electricity price [184] can be represented by this type of 

uncertainty. 

II. Measurement uncertainty 

Some of the data cannot be measured exactly or their values are varying. For 

example, in power systems, voltage and current measurements can be inaccurate. 

Furthermore, voltage and power flow sensitivity factors, as shown in Chapter 3, 

would vary depending on the network conditions. Such uncertainties can be 

classified as measurement uncertainties. 

III. Implementation uncertainty 

Some of the decision variables cannot be implemented exactly as computed. For 

instance, in a scheduling problem, when a demand side response decision is made 

and requested, the delay, magnitude and duration of load reduction or increase that 

will be provided by the customers, is not likely to be exactly the same as that 

scheduled. 

5.2.2 General formulation of a ULO problem 

This section introduces the generalized formulation for an LO problem with uncertainty. An 

LO problem can be expressed as: 

 

𝑚𝑎𝑥 𝒄′𝒙 

subject to 

𝑨𝒙 ≤ 𝒃 

𝑫𝒙 = 𝒆 

𝒍 ≤ 𝒙 ≤ 𝒖 

(5.1) 

Where 

𝒄   the vector of coefficients for the cost function 

𝒄′   the inverse of 𝒄 

𝒙   the array of decision variables or control variables 

𝑨   the matrix of constants for constraints 



105 

 

𝒃   the right hand side vector of constraints  

𝑫   the matrix of coefficients for equality constraints 

𝒆   the right hand side vector of equality constraints  

𝒍   the lower limit of decision variables 

𝒖   the upper limit of decision variables 

Uncertainty can exist in all parts of the LO problem. Type I prediction uncertainty and type II 

measurement uncertainty can exist in the constant vectors (𝒄, 𝒃, 𝒍 and 𝒖 ) and matrix 𝑨. The 

uncertainty of decision variable 𝒙 can be categorised as type III implementation uncertainty. 

In the following section, it is shown how the uncertainties can be handled by only considering 

the uncertainty of the elements in 𝑨. This enables the simplification of the ULO problem. 

Uncertainty in inequality constants 

By introducing an auxiliary control variable 𝒚 = 1, the constraints can be reformulated as 

 

𝑚𝑎𝑥 𝒄′𝒙 

𝑠. 𝑡. 𝑨𝒙 − 𝒃𝒚 ≤ 𝟎 

𝒙 − 𝒖𝒚 ≤ 𝟎 

−𝒙 + 𝒍𝒚 ≤ 𝟎 

(5.2) 

Thus, the uncertainties in 𝒃, 𝒍 and 𝒖 can be represented by the uncertainty in a new constraints 

coefficient matrix  

 𝑨′ = [
𝑨 −𝒃
𝑫𝒏 −𝒖

−𝑫𝒏 𝒍
] (5.3) 

where 

𝑫𝒏   is a diagonal matrix and for 𝑖 = 1,2, … , 𝑛, 𝑫𝒊𝒊 = 1, 𝑫𝒊𝒋,𝒊≠𝒋 = 0 

 𝐷𝑛 = [

1
1

⋱
1

] (5.4) 

Thus, equation (5.2) becomes 

 

𝑚𝑎𝑥 𝒄′𝒙 

𝑠. 𝑡. [

𝑨 −𝒃
𝑫𝒏 −𝒖

−𝑫𝒏 𝒍
] [

𝒙
𝒚] ≤ 𝟎 

(5.5) 
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Uncertainty in equality constraints 

Equality constraints 

 𝑫𝒙 = 𝒆 (5.6) 

can be reformulated as two inequality constraints 

 −𝒆 ≤ 𝑫𝒙 ≤ 𝒆 (5.7) 

Uncertainty in the cost function 

A cost function with uncertainty can be modelled by introducing an extra constraint [192] 

 𝒘 − 𝒄′𝒙 ≤ 𝟎 (5.8) 

where 

𝒘    the maximum of the cost function 

Uncertainty in the control variables 

The uncertainties in control variables 𝒙, or the implementation uncertainties, can be modelled 

as the product of multiplying an uncertainty coefficient 𝑎𝑖𝑗 and a certain control variable 𝑥𝑗. 

In the end, a ULO problem can be generalised as 

 
𝑚𝑎𝑥 𝒄′𝒙 

𝑠. 𝑡. �̃�𝒙 ≤ 𝒃 

(5.9) 

The accent character ~ stands for uncertainty. This formulation is able to represent the three 

types of uncertainties introduced earlier. 

5.2.3 Uncertainty model  

In 5.2.2, it has been shown that uncertainties in an LO problem can be modelled as the 

uncertainties in the coefficient matrix 𝑨. Next, the uncertainty model of each entry 𝑎𝑖𝑗 ∈ 𝑨 is 

introduced. In RO, unlike other approaches, such as analytical probabilistic methods or Monte 

Carlo simulation, only the interval of an uncertainty value is required. It is assumed that the 

real value of 𝑎𝑖𝑗 takes a value symmetrically in the range of [𝑎𝑖𝑗 − �̂�𝑖𝑗, 𝑎𝑖𝑗 + �̂�𝑖𝑗]. The range, 

in this research, is called the uncertainty interval (UI). 
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 𝑎𝑖𝑗 − �̂�𝑖𝑗 ≤ �̃�𝑖𝑗 ≤ 𝑎𝑖𝑗 + �̂�𝑖𝑗 (5.10) 

where 

𝑎𝑖𝑗    the nominal value  

�̃�𝑖𝑗    the real value of 𝑎𝑖𝑗 

�̂�𝑖𝑗   the maximum variation of 𝑎𝑖𝑗 

Next a variable 𝜂 is defined to measure the level of uncertainty: 

 𝜂𝑖𝑗 =
�̃�𝑖𝑗 − 𝑎𝑖𝑗

�̂�𝑖𝑗
 (5.11) 

thus  

 −1 ≤ 𝜂𝑖𝑗 ≤ 1 (5.12) 

It is assumed that 𝜂𝑖𝑗 is symmetrically distributed and each uncertainty value is independent. 

The advantage of using a UI instead of a probabilistic distribution function (PDF) is that, a UI 

can be easily derived from historical data. In contrast, PDFs may not be derived easily or 

cannot be derived at all. 

5.3 Robust optimization 

Robust optimisation transforms an ULO problem to an optimization problem without 

uncertain inputs so that it can be solved deterministically. Three key approaches are selected 

and introduced in this section to illustrate how this technique is developed and enhanced. 

Further details and mathematical derivations of the technique can be found in [189, 190, 192-

194]. 

The concept of RO was first proposed by Soyster  in 1973 [193]. Ben-Tal and Nemirovski 

extended Soyster’s research in [189] to reduce the level of conservatism. However, in Ben-Tal 

and Nemirovski’s work, a ULO formulation is transformed into a non-linear optimization 

formulation. Based on previous work of Soyster and Ben-Tal, Bertsimas and Sim proposed a 

new formulation in [192], which enables a ULO problem to be solved as a new LO problem. 

5.3.1 Soyster’s formulation 

Soyster’s formulation is a very conservative approach as it protects the constraints against the 

worst case scenario [193]. Considering the general formulation given in (5.9) if the 



108 

 

probability of constraints violations is required to be 0, Soyster proposed that, a feasible 

solution of this problem 𝒙∗ must obey 

 𝑚𝑎𝑥 �̃�𝒙∗ = 𝑚𝑎𝑥 [∑(𝑎𝑖𝑗 + �̂�𝑖𝑗)𝑥𝑗
∗

𝑗

] = ∑𝑎𝑖𝑗𝑥𝑗
∗

𝑗

+ 𝑚𝑎𝑥 [∑ �̂�𝑖𝑗𝑥𝑗
∗

𝑗∈𝐽𝑖

] ≤ 𝒃 (5.13) 

where 

𝒙∗   a feasible solution which satisfies (5.9) 

𝐽𝑖   is the set of all uncertain coefficients in constraint 𝑖 

In this formulation, the second term 𝑚𝑎𝑥[∑ �̂�𝑖𝑗𝑦𝑗𝑗∈𝐽𝑖
] stands for the maximum change due to 

the uncertainty of 𝑎𝑖𝑗 and clearly 

 𝑚𝑎𝑥 [∑ �̂�𝑖𝑗𝑥𝑗
∗

𝑗∈𝐽𝑖

] = ∑|�̂�𝑖𝑗𝑥𝑗
∗|

𝑗∈𝐽𝑖

 (5.14) 

Thus, the ULO problem given in (5.9) becomes 

 

𝑚𝑎𝑥 𝒄′𝒙 

𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗

𝑗

+ ∑|�̂�𝑖𝑗𝑥𝑗
∗|

𝑗∈𝐽𝑖

≤ 𝑏𝑖 
(5.15) 

However, the formulation is a non-linear problem due to the absolute value calculations. The 

control variable 𝒙 is extended to (𝒙, 𝒚) so that (5.15) can be solved as an LO problem 

 

𝑚𝑎𝑥 𝒄′𝒙 

𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗

𝑗

+ ∑ �̂�𝑖𝑗𝑦𝑗

𝑗∈𝐽𝑖

≤ 𝒃 

−𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 

𝒚 ≥ 𝟎 

(5.16) 

Thus, by solving the problem stated in (5.16) the ULO problem can be solved 

deterministically. 

5.3.2 Ben-Tal and Nemirovski’s formulation 

The robust formulation (RF) proposed by Soyster is for the worst case scenario. Ben-Tal and 

Nemirovski proposed a less conservative approach compared to Soyster’s formulation [189]. 

Instead of adopting the deterministic assumption, the worst case scenario as given by (5.16), 

by taking a probabilistic approach, Ben-Tal and Nemirovski proved that a ULO problem can 

be reformed as 
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𝑚𝑎𝑥 𝒄′𝒙 

𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗

𝑗

+ ∑�̂�𝑖𝑗𝑦𝑖𝑗

𝑗∈𝐽

+ Ω√∑ �̂�𝑖𝑗
2 𝑧𝑖𝑗

2

𝑗∈𝐽𝑖

≤ 𝑏𝒊 + 𝜎 max[1, |𝑏𝑖|] 

−𝑦𝑗 ≤ 𝑥𝑗 − 𝑧𝑖𝑗 ≤ 𝑦𝑗 

𝒚 ≥ 𝟎 

(5.17) 

where 

𝜎    the infeasibility tolerance  

Ω    a positive parameter which adjusts the level of conservatism 

A detailed proof and explanation can be found in paper [189]. In this approach, if 𝒙∗ is a 

feasible solution to the nominal ULO problem in (5.9), the probability of  𝒙∗ satisfying the 

constraints 𝜅 is given by 

 𝜅 ≤ exp(−Ω2/2) (5.18) 

5.3.3 Bertsimas and Sim’s formulation 

The formulation proposed by Ben-Tal and Nemirovski is a non-linear approach. Bertsimas 

and Sim examined the previous approaches and proposed the concept of budget of uncertainty 

(BoU) 𝛤. BoU is defined so that a feasible solution 𝒙∗ at the BoU of 𝛤𝑖 protects the 𝑖th 

constraint against the uncertainties within this constraint, when the uncertainties are given by 

 Up to ⌊𝛤𝑖⌋ number of 𝑎𝑖𝑗  are uncertain and −1 ≤ 𝜂𝑖𝑗 ≤ 1,  ⌊𝛤𝑖⌋  is the floor of 𝛤𝑖 which 

means ⌊𝛤𝑖⌋  is the largest integer not greater than 𝛤𝑖. This set of uncertainties is denoted by 

𝑆 and |𝑆| = ⌊𝛤𝑖⌋, 𝑆𝑖 ⊆ 𝐽𝑖,  

 One coefficient changes by (𝛤𝑖 − ⌊𝛤𝑖⌋)�̂�𝑖𝑡, this uncertainty is recorded as 𝑡𝑖 and 𝑡𝑖 ∈ 𝐽𝑖\𝑆𝑖 

Based on this definition, the ULO problem becomes 

 

𝑚𝑎𝑥 𝒄′𝒙 

𝑠. 𝑡. ∑𝑎𝑖𝑗𝑥𝑗 +

𝑗

max
{𝑆𝑖∪{𝑡𝑖}|𝑆𝑖⊆𝐽𝑖,|𝑆𝑖|=⌊Γ𝑖⌋,𝑡𝑖∈𝐽𝑖\𝑆𝑖}

{∑ �̂�𝑖𝑗𝑦𝑗 + (Γ𝑖 − ⌊Γ𝑖⌋)

𝑗𝜖𝑆𝑖

�̂�𝑖𝑡𝑖
𝑦𝑡} ≤ 𝑏𝑖 

−𝑦𝑖𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑖𝑗     ∀𝑖, 𝑗 ∈ 𝐽𝑖   

𝒚 ≥ 𝟎 

(5.19) 

BoU can be understood as the number of uncertain coefficients that the constraints are being 

protected against. When BoU is 0, (5.19) becomes a normal LO problem. In this work normal 
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LO problems refers to LO problems without uncertainty. When BoU equals the number of 

uncertain coefficients 𝑛, (5.19) becomes the conservative formulation of Soyster as given in 

(5.13). However, BoU does not necessarily need to be an integral. 

When 𝛤𝑖 is smaller than 𝑛 by a small margin, which means the number of uncertain 

coefficients is greater than the number of uncertain coefficients that constraints are protected 

against, the solution still guarantees a high probability of zero constraints violations or a high 

probability of success (PoS). This is due to the fact that, for a constraint with multiple 

uncertainties, it is not likely all uncertainty coefficients �̃�𝑖𝑗 take values near their maximum or 

minimum. 

BoU enables the trade-off between the level of conservatism and the cost. For the rest of the 

thesis, a normalised BoU 𝛤/𝑛 is applied to measure the level of conservatism. Compared to 𝛤, 

this normalised value in percentage terms is more intuitive. 

The formulation of (5.19) is non-linear. Bertsimas and Sim proved that (5.19) can be further 

transformed to 

 𝑚𝑎𝑥 𝒄′𝒙 (5.20) 

 𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗 +

𝑗

𝑧𝑖𝛤𝑖 + ∑ 𝑝𝑖𝑗  

𝑗∈𝐽𝑖

≤ 𝑏𝑖 (5.21) 

 𝑧𝑖 + 𝑝𝑖𝑗 ≥ �̂�𝑖𝑗𝑦𝑗 
(5.22) 

 −𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑦𝑗 
(5.23) 

 𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 
(5.24) 

 𝑝𝑖𝑗 ≥ 0 
(5.25) 

 𝑦𝑗 ≥ 0 
(5.26) 

 𝑧𝑗 ≥ 0 (5.27) 

Unlike equation (5.19), equation (5.20) to (5.27) is a standard linear optimisation problem. 

The detailed proof is provided in [192]. By introducing extra control variables 𝒛, 𝒑 and 𝒚, the 

ULO problem given in (5.9) can be solved deterministically. At the same time, by adjusting 

the BoU, the level of conservatism can be adjusted as well. 

This research adopts the formulation of Bertsimas and Sim as it is a linearized and adjustable 

approach to solve ULO problems. 
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5.4 Probability bounds of constraint violation 

BoU enables the trade-off between the probability of constraint violation and cost. This 

section shows how the probability of constraint violation changes with BoU. Based on the 

uncertainty model introduced in section 5.2.3 and the formulation in (5.20) to (5.27) three 

probability bounds have been proposed and compared in [192]. 

In section 4.3, methods to deal with uncertainty have been introduced. For the problem 

defined in (5.1), if a solution for this problem 𝒙∗ is given, the methods introduced in section 

4.3 can be used to calculate the probability of constraint violation for 𝒙∗. The bounds 

introduced in this section provide an estimation of the probability of constraint violation 

without using these methods. The bounds are given as follows. 

Bound 1 

 𝑃𝑟 (∑�̃�𝑖𝑗𝑥𝑗
∗

𝑗

> 𝑏𝑖) ≤ 𝑒𝑥𝑝 (−
𝛤𝑖

2

2𝑛
) (5.28) 

BoU controls the conservatism of the solution. At low BoU, 𝛤𝑖 ≈ 0 and thus −𝛤𝑖
2 2𝑛⁄ ≈ 0. 

The probability of success (PoS), which is the opposite of probability of constraint violation 

given in (5.28) becomes 

 𝑃𝑜𝑆 = 1 − 𝑃𝑟 (∑�̃�𝑖𝑗𝑥𝑗
∗

𝑗

> 𝑏𝑖) = 1 − 𝑒𝑥𝑝 (−
𝛤𝑖

2

2𝑛
) ≈ 1 − 𝑒𝑥𝑝(0) ≈ 0 (5.29) 

A low PoS means that the solution at this BoU still has a high probability of constraints 

violation. On the contrary, at high BoU, 𝛤𝑖 = 𝑛 and thus −𝛤𝑖
2 2𝑛⁄ = −𝑛/2. When 𝑛 is a large 

number and −𝑛/2 is large enough so that 

 𝑃𝑜𝑆 = 1 − 𝑃𝑟 (∑�̃�𝑖𝑗𝑥𝑗
∗

𝑗

> 𝑏𝑖) = 1 − 𝑒𝑥𝑝 (−
𝛤𝑖

2

2𝑛
) ≈ 1 − 𝑒𝑥𝑝(−∞) ≈ 1 (5.30) 

𝑃𝑜𝑆 = 1 indicates that the solution at high BoU is a robust solution and thus the solution is 

immune to uncertainty. 

Bound 2 

 Pr(∑ 𝛾𝑖𝑗𝜂𝑖𝑗

𝑗∈𝐽𝑖

≥ 𝛤𝑖) ≤ 𝐵(𝑛, 𝛤𝑖) (5.31) 

 𝐵(𝑛, 𝛤𝑖) =
1

2𝑛 {(1 − 𝜇) (
𝑛
⌊𝑣⌋) + ∑ (

𝑛
𝑙
)

𝑛

𝑙=⌊𝑣⌋+1

} (5.32) 

where 𝑛 = |𝐽𝑖|, 𝑣 = (𝛤𝑖 + 𝑛)/2, 𝜇 = 𝑣 − ⌊𝑣⌋ and 𝑙 ∈ 𝐽𝑖\𝑆𝑖 such that �̂�𝑖𝑙|𝑥𝑙| > �̂�𝑖𝑟|𝑥𝑟| 
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In comparison with bound 1, bound 2 does not involve the feasible solution 𝒙∗ however 

solving this presents computational difficulty. Bound 3 is proposed as an approximation of 

bound 2 to reduce computational difficulty. 

Bound 3 

 

Pr(∑ 𝛾𝑖𝑗𝜂𝑖𝑗

𝑗∈𝐽𝑖

≥ 𝛤𝑖) ≤ 𝐵(𝑛, 𝛤𝑖) 

𝐵(𝑛, 𝛤𝑖) ≈ 1 − Φ(
𝛤𝑖 − 1

√𝑛
) 

(5.33) 

Where Φ is the cumulative distribution function of a standard normal distribution and is given 

by 

 Φ(𝜃) =
1

√2𝜋
∫ 𝑒𝑥𝑝(−

𝑦2

2
)

∞

−∞

𝑑𝑦 (5.34) 

where 𝜃 = Γ𝑖/ √𝑛, 𝑦 is the value or position on the standard normal distribution 

Comparison 

In [192], bound 1 and bound 2 have been compared with a ULO problem with 10 uncertain 

coefficients (𝑛 = 10). The comparison results are shown in this section. Results from this 

comparison are given in Figure 5.1. It can be observed that, the probability of constraints 

violation estimated by bound 1 is higher than that of bound 2. This means that for a ULO 

problem with a small number of uncertainties, bound 1 overestimates the probability of 

constraints being violated in comparison with bound 2. 

Further tests with 𝑛 = 100 and 𝑛 = 2,000 show that, the probabilities estimated by bound 2 

and bound 3 are very similar while that of bound 1 is always higher. This is consistent with 

the results obtained with 𝑛 = 10. 

In conclusion, bound 2 and 3 are normally more accurate than bound 1, especially for 

problems with large numbers of uncertainties, but are more difficult to calculate. Bound 1 has 

low computational difficulty and a more flexible structure. As a result, for the rest of this 

research, bound 1 will be used to calculate the probability of constraint violation. 
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Figure 5.1 Probability of constraint violation with BoU of bound 1 and 2 for a ULO problem 

with 𝒏 = 𝟏𝟎 [192] 

5.5 Probability of Success 

In previous section, three methods for estimating probability of constraint violation are 

introduced. These methods ignore the distribution of uncertainty within the uncertainty 

interval therefore are only conservative estimation of the probability of constraint violation. In 

order to access more accurate probability of constraint violation, probabilistic methods such 

as Monte Carlo simulations (MCS) can be used. 

Increasing the BoU will reduce the probability of constraints violation or increase the 

probability of success (PoS) of the solution. If MCS is applied, PoS can be defined as 

 𝑃𝑜𝑆 = (1 −
𝑁𝑉𝑖𝑜

𝑁𝑇𝑜𝑡𝑎𝑙
) × 100% (5.35) 

where 

𝑁𝑇𝑜𝑡𝑎𝑙    the total number of Monte Carlo samples  

𝑁𝑉𝑖𝑜    the number of violations recorded. 

The selection of BoU is critical to the performance of the algorithm. A high BoU ensures high 

PoS however can be over-conservative. A low BoU reduces the cost but also lowers the PoS.  
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5.6 Algorithm Implementation  

5.6.1 Python Implementation 

There was no commercial software available to solve ULO problems with Bertsimas and 

Sim’s formulation when this research was carried out. Therefore a solver based on Bertsimas 

and Sim’s formulation was developed in Python by the author. This solver: 

 Transforms ULO problems, as given in (5.1) to the formulation given from (5.20) to 

(5.27); 

 Solves the problem in the form or (5.20) to (5.27) for a given BoU 

The flow chart of the solver is given in Figure 5.2. 

Start

Read ULO 

input file

Read UI input file

Define new 

variables p, y, z

Define new LO problem 

described in equation (5.20) to 

(5.27)

Solve new LO 

problem

Define new constraints

described in equation 

(5.21) to (5.27)

End
 

Figure 5.2 Flow Chart for the RO Solver in Python 

Initially, the ULO problem definition and the uncertainty input files are read. The uncertainty 

input file contains the uncertainty intervals of uncertainty values and BoU for constraints if 

applicable. Next, extra parameters 𝒑, 𝒚, 𝒛 and constraints are defined. The cost function 

remains the same. Once the new LO problem is defined, it can be solved with normal LO 
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solvers. In this script, Sequential Least SQuare Programming (SLSQP) method in SciPy has 

been used [195]. SLSQP method has been implemented previously in Python by Kraft [196]. 

5.6.2 Evaluation with a 30 Variable Problem 

The Python script is tested with a 30 variable and 50 constraint problem. This problem is 

created and solved in Matlab. The parameters are detailed in Appendix D. It is assumed that, 

all coefficients of the 6
th

 constraint 𝑎𝑖𝑗, 𝑖 = 1,2, … ,30, 𝑗 = 6 are uncertain. All the uncertain 

values have a UI of 10%. Thus, it becomes a ULO problem and 𝑛 =  𝛤𝑚𝑎𝑥 = 30. This 

problem is used to evaluate the solver. The evaluation process is illustrated below in Figure 

5.3. 

Start

Update uncertainty 

input file

YES

Robust formulation

Monte Carlo 

simulation

Store test results

NO

End

 

Figure 5.3 Testing for a 30 Variable Problem 

The initial BoU is set to 0, as introduced in section 5.3.3, the RO formulation is equivalent to 

a normal LO problem. Thus, this solution only guarantees a low PoS. In each loop, the BoU 𝛤 

is increased by a step of ∆𝛤 = 0.5, until 𝛤 = 𝛤𝑚𝑎𝑥. For each updated 𝛤, an RO based ULO 

solver is executed to calculate a corresponding solution 𝑥. When the solution is available for 

the new BoU, Monte Carlo simulations (MCS) are carried out to test the probability of 
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constraint violation. In these MCS, each solution is evaluated with 10,000 samples. The 

uncertainty model has been introduced in (5.10) and (5.11). The error between the real value 

�̃�𝑖𝑗 and the nominal or the estimation of the value 𝑎𝑖𝑗 is given as 

 �̃�𝑖𝑗 − 𝑎𝑖𝑗 (5.36) 

In this test, it is assumed that this error follows a uniform distribution. The choice of 10,000 

samples for this problem guarantees a converged set of results. The results are depicted in 

Figure 5.4. 

 

Figure 5.4 Test result of a 30 variable 50 constraints problem 

Cost and PoS change with BoU 

How the overall cost and PoS change with the increase of BoU can be observed from this 

figure. In this figure, the blue trace is the probability of success (PoS) and the red trace is the 

cost 𝒄′𝒙. The PoS represents the reliability of the solution and is opposite to the probability of 

constraints violation. As can be observed, the PoS and the cost increase with BoU. When 

𝛤 = 0, the PoS is 50% approximately. The PoS increases to 100% when 𝛤/𝛤𝑀𝑎𝑥 = 20%. 

Worst case scenario 

The result when 𝛤 = 𝛤𝑀𝑎𝑥 is tested with the worst case scenario. The worst case is considered 

as all uncertain values �̃�𝑖𝑗 takes their values of either �̃�𝑖𝑗 = 𝑎𝑖𝑗 ∓ �̂�𝑖𝑗 so that ∑ �̃�𝑖𝑗𝑥𝑗𝑗  has its 

maximum. In other words, the solution at 𝛤 = 𝛤𝑀𝑎𝑥, 𝒙Γ=Γ𝑀𝑎𝑥
 must satisfy  



117 

 

 max(∑𝑎𝑖𝑗𝑥𝑗,𝛤=𝛤𝑀𝑎𝑥 

𝑗

+ ∑�̂�𝑖𝑗𝑥𝑗,𝛤=𝛤𝑀𝑎𝑥 

𝑗

) ≤ 𝑏𝑗 (5.37) 

It has been found that the solution for the worst case 𝒙Γ=Γ𝑀𝑎𝑥
 does not cause constraint 

violation. 

Estimated PoS and Real PoS 

The PoS from MCS is compared to the probability bound given in (5.28). In equation (5.28), 

the probability is given as the probability of constraint violation. This probability bound is 

based on Markov’s inequality. Markov’s inequality only provides an upper bound for the 

probability of violation 𝑃𝑟(∑ 𝛾𝑖𝑗𝜂𝑖𝑗𝑗∈𝐽𝑖
≥ 𝛤𝑖), regardless of the distribution of the error 

�̃�𝑖𝑗 − 𝑎𝑖𝑗 or 𝜂𝑖𝑗. Therefore, the probability bound can be seen as the most conservative 

estimation. On the other hand, due to the large number of samples, the results from MCS 

study can be seen as the “real” reliability. PoS derived from (5.28) and PoS from MCS study 

are compared in Figure 5.5. The red trace is the MCS result and the blue trace is the derived 

probability bound. Compared to the derived probability bound, the MCS result follow the 

trend of the derived bound but has a higher PoS at the same BoU. 

 

Figure 5.5 Comparison of derived PoS based on equation (5.28) and MCS results 

The reasons why the real PoS is higher than the derived PoS are explained. Firstly, the 

derived PoS is based on the estimation given in equation (5.28) and is a very conservative 

bound for PoS. Secondly, this estimation has larger error when the number of uncertainties is 

small. 
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5.7 Discussion and conclusion 

In this chapter, the importance of dealing with uncertainty and the concept of RO are 

introduced. This is followed by the presentation of the general form of the ULO problem. 

Three different formulations to solve the ULO problem are given. To enable the trade-off 

between probability of constraint violation and the cost, the bounds for the probability of 

constraint violation is discussed. The development of a Python based solver to RO problems 

was described. Finally, the operation of the Python solver is validated with a 30 variable, 50 

constraint ULO problem. 
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Chapter 6. A Robust Optimisation Based Scheduling Scheme 

6.1 Introduction 

Solving uncertain linear optimization (ULO) problems with RO was introduced in the 

previous chapter. In this chapter, the RO technique is applied to solve a power system 

scheduling problem, which can be formulated as a ULO. The robust scheduling scheme is 

applied for energy storage systems (ESS) deployed in distribution networks to facilitate high 

penetrations of renewable energy sources (RES). This scheme schedules the charging and 

discharging of ESSs subject to State-of-Charge (SoC) limits, transmission line real-time 

thermal ratings (RTTRs) and voltage constraints. 

Firstly, a scheduling scheme is proposed. This scheduling scheme consists of three stages, 

forecast stage, scheduling stage and post-event analysis stage. Next, the problem formulation 

in the scheduling stage is detailed. In section 6.3, the formulation without uncertainty is 

introduced first. This is followed by the formulation and solution with uncertainty in section 

6.4. In this thesis, Budget of uncertainty (BoU) is used when solving an ULO problem. BoU 

controls the level of conservatism of the solution. The selection of UI, therefore, is critical to 

the performance of this RO based scheduling scheme. In section 6.5, two approaches of 

calculating BoU so that a required probability of success (PoS) can be achieved, are 

introduced. The first approach estimate the BoU with the probability bound introduced in 

section 5.4. The second approach, which uses a moderate number of MCS coupled with the 

Levenberg–Marquardt (LMA) curve fitting technique, has been proposed to estimate the 

optimal BoU, to ensure a desired level of PoS. Finally extensions of this scheme to take into 

consideration the uncertainty of DSR and reactive power are introduced. 

6.2 Proposed Scheduling Scheme 

In this section, the proposed scheduling scheme is introduced. The proposed scheduling 

scheme is illustrated in Figure 6.1. This scheme can be divided into three stages: Forecast, 

Scheduling and Post-event analysis stages. 
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Figure 6.1 Proposed Scheduling Scheme 

6.2.1 Forecast stage 

Weather forecast data can be used to predict the RTTR of transformers and overhead lines, 

load and RES generation. The predicted RES generation output and load forecast (LF) data 

are used as input data to power flow calculations. Generating forecast values is beyond the 

scope of this research. It is assumed that forecast values, such as weather and load forecast, 

are already available. Both weather forecast and historical load profile from the post event 

analysis stage can be used as the input for load forecast. 

The RO based approach adopted requires the UI of uncertainty associated with these input 

variables to be quantified. Therefore, the forecast values consist of forecast values and their 

UIs. However, depending on the forecast technique used and the variables of interest, UIs for 

each variable may not be always available. At the post-event analysis stage, historical data 

can be used to derive an estimation of this forecast error and can be used to derive the UI 

associated with this variable. This will be further explained in the description of the Post-

event analysis stage.  

6.2.2 Scheduling stage 

At the scheduling stage, if a predicted line RTTR violation is found, based on the results from 

the forecast stage, RO based scheduling will be carried out. At this stage only nominal values 
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are used to check for excursions. Overhead line RTTR violation is based on the nominal 

forecast values. During the scheduling stage, state-of-charge (SoC) information from ESS will 

be used to inform the scheduler of the energy available. Based on this information, the RO 

based controller can decide the import or export from ESS. On the other hand, if there is no 

predicted line RTTR violation, the ESS unit(s) could be made available to provide other 

services such as arbitrage. 

6.2.3 Post-event analysis 

Finally, at the post-event stage, the real measurements of weather, generation, load and RTTR 

are compared to their forecast values. The selection of UIs is important for the performance of 

RO. If the UIs are too conservative, the decisions made by RO based approach will be 

conservative as well. On the contrary, if the uncertainty is underestimated, which means 

narrow UIs are adopted, the risk of constraints violations will increase. By comparing the 

predicted values to the real values, the quality of UIs can be improved. Therefore this 

feedback process can increase the robustness and reduce the conservatism of the scheme. 

6.3 Problem Formulation without uncertainty 

The scheduling scheme has been outlined in section 6.2 and uncertainties that involved in this 

scheme has been detailed in section 4.2. This section introduces the formulation of the RO 

based scheduling scheme. The formulation without uncertainty is introduced first. This is 

followed by an explanation of how the formulation is extended so that the aforementioned 

uncertainties can be managed. 

The scheduling algorithm plans the import and export of ESS from time 𝑡 = 0 to time 𝑡 = 𝑇 

so that line RTTR overloads and voltage violations can be avoided. This formulation uses 

power flow sensitivity factors (PFSFs) and voltage sensitivity factors (VSFs) to estimate the 

power flow and voltage change due to ESS and RES. In Chapter 3, two methods to calculate 

VSFs and PFSFs have been introduced. In this scheme, the incremental method is used. 

PFSFs and VSFs are calculated for each timestep. The network models for each timestep will 

be updated based on load and generation forecast. 

6.3.1 Objective function 

The objective function minimizes the cost of charging or discharging ESS during the 

scheduling period. 

 𝑚𝑖𝑛 ∑ ∑ 𝐶𝐸𝑆𝑆𝑚
∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

𝑇

𝑡=0

 (6.1) 
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where 

𝑇   the total number of timesteps 

𝑡   number of timestep, integer between 0 to 𝑇 

𝑁𝐸𝑆𝑆   the total number of ESS 

𝑚   an integer indicating ESS 

𝐶𝐸𝑆𝑆𝑚
   the cost of charging or discharging ESS 𝑚 

𝑃𝐸𝑆𝑆𝑚

𝑡    the power import/export of ESS 𝑚 at time 𝑡 

𝐶𝐸𝑆𝑆𝑚
  is determined by the capital cost per kW and the state-of-health (SoH) of ESS 𝑚 and is 

not the actual cost of using ESS 

 𝐶𝐸𝑆𝑆𝑚
= 𝑘1 ∙ 𝐶𝐸𝑆𝑆𝑚,𝐶𝑎𝑝𝑖𝑡𝑎𝑙 + 𝑘2 ∙ 𝑆𝑜𝐻𝐸𝑆𝑆𝑚

 (6.2) 

where 

𝑘1   positive coefficient for the capital cost 

𝑘2   negative coefficient for the state of health 

𝐶𝐸𝑆𝑆𝑚,𝐶𝑎𝑝𝑖𝑡𝑎𝑙  the capital cost of ESS 𝑚 

𝑆𝑜𝐻𝐸𝑆𝑆𝑚
  the State-of-Health of ESS 𝑚 

In this cost function, two weight factors 𝑘1 and 𝑘2 are introduced. 𝑘1 is a positive coefficient 

so that ESSs with lower capital costs will result in a lower cost. On the other hand 𝑘2 is a 

negative coefficient therefore ESSs with more useful lifetime are more likely to be chosen. By 

varying the weight factors 𝑘1 and 𝑘2, this cost function enables a trade-off between the capital 

cost and the SoH of ESS. SoH can be quantified by the number of cycles left before the 

remaining capacity of the system deteriorates to 80% [134]. 

6.3.2 Constraints 

Constraints in this research include power flow constraints, voltage constraints and ESS SoC 

constraints. 
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Power flow constraint 

The power flow constraint estimates the apparent power flow on each branch and ensures no 

RTTR of OHLs and transformers are violated. This constraint is detailed below. 

 −𝑆𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡 ≤ 𝑆𝑖𝑗,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑡 ≤ 𝑆𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡  (6.3) 

where 

𝑆𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡   the RTTR of branch from bus 𝑖 to bus 𝑗 (branch 𝑖𝑗) at time 𝑡 

𝑆𝑖𝑗,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑡   the estimated load flow through branch 𝑖𝑗  

𝑆𝑖𝑗,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑡  is an estimation of the load flow through branch 𝑖𝑗 considering the impacts of ESS, 

RES output uncertainty and busbar load uncertainty using PFSFs, according to: 

 

𝑆𝑖𝑗,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑡 = 𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡 + ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆𝑃𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐵𝑢𝑠𝑝

𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆𝑃𝐵𝑢𝑠𝑝

𝑡  

(6.4) 

where 

𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡  the forecasted load flow through branch 𝑖𝑗 at time 𝑡, based on power 

flow calculations at the forecast stage 

𝑃𝐹𝑆𝐹𝑖𝑗,𝐸𝑆𝑆𝑚

𝑡   the PFSF of ESS 𝑚 to branch 𝑖𝑗 at time 𝑡 

𝑃𝐹𝑆𝐹𝑖𝑗,𝑅𝐸𝑆𝑛

𝑡   the PFSF of RES 𝑛 to branch 𝑖𝑗 at time 𝑡 

𝑃𝐹𝑆𝐹𝑖𝑗,𝐵𝑢𝑠𝑝

𝑡    the PFSF of load at busbar 𝑝 to branch 𝑖𝑗 at time 𝑡 

𝑁𝐸𝑆𝑆   the total number of ESS 

𝑁𝑅𝐸𝑆   the total number of renewable energy sources 

𝑁𝐵𝑢𝑠   the total number of buses 

∆𝑃𝑅𝐸𝑆𝑛

𝑡    the forecast error of RES power output at time 𝑡 

∆𝑃𝐵𝑢𝑠𝑝

𝑡    the forecast error of load at time 𝑡 
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The forecast load flow through branch 𝑖𝑗 is based on predicted load and generation values and 

is calculated by running a full AC loadflow. Only nominal values of load and generation 

forecast are used. Based on this forecast, the load flow through this branch with the inclusion 

of ESS and the uncertainty of RES output and load can be calculated. In equation (6.4), 

PFSFs are used. PFSFs represent the apparent power change (in MVA) on branch 𝑖𝑗 due to 

per MW real power change from ESS 𝑚, RES  𝑛 and load 𝑝. 

In this formulation, only the power output and busbar load forecast error is used. The reason 

is explained below. If the actual power output of RES and the busbar load at time 𝑡 is given 

by 

 𝑃𝑅𝐸𝑆𝑛

𝑡 = 𝑃𝑅𝐸𝑆𝑛,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡 + ∆𝑃𝑅𝐸𝑆𝑛

𝑡  (6.5) 

 𝑃𝐵𝑢𝑠𝑝

𝑡 = 𝑃𝐵𝑢𝑠𝑝,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡 + ∆𝑃𝐵𝑢𝑠𝑝

𝑡  (6.6) 

where 

𝑃𝑅𝐸𝑆𝑛,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡   is the forecasted output of RES 𝑛 at time 𝑡 

𝑃𝐵𝑢𝑠𝑝,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡   is the forecasted load of busbar 𝑝 at time 𝑡 

At the forecast stage, 𝑃𝑅𝐸𝑆𝑛,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡  and 𝑃𝐵𝑢𝑠𝑝,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡  are used to calculate 𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡  and as 

a result, to estimate the power flow on branch 𝑖𝑗 at time 𝑡, only the forecast error ∆𝑃𝑅𝐸𝑆𝑛

𝑡  and 

∆𝑃𝐵𝑢𝑠𝑝

𝑡  is needed. 

The use of sensitivity factors is a linearization of the non-linear load flow equations. In this 

work, instead of constant values, PFSFs that vary depending on network conditions are used. 

It is found in [197] that, PFSFs are only insensitive to the operating point in networks with 

sufficient voltage support. With the increasing penetrations of RES and future load, voltage 

profiles of distribution networks will be more volatile. In this work, the PFSFs are calculated 

based on loadflow equations with updated load and generation values for each timestep to 

enhance the accuracy. 

Constraint (6.3) is only applied to branches with high PFSF with respect to ESS unit(s) or 

renewables to reduce the size of the problem. 
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Voltage constraint 

Similar to power flow constraints, voltage constraints estimate the voltage of busbar 𝑖 and 

ensure that the estimated voltage 𝑉𝑖,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑡  does not exceed its limits 

 𝑉𝑀𝑖𝑛,𝑖 ≤ 𝑉𝑖,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑡 ≤ 𝑉𝑀𝑎𝑥,𝑖 (6.7) 

𝑉𝑖,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑡  is defined as follows 

 

𝑉𝑖,𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
𝑡 = 𝑉𝑖,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡 + ∑ 𝑉𝑆𝐹𝑖,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

+ ∑ 𝑉𝑆𝐹𝑖,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆𝑃𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

+ ∑ 𝑉𝑆𝐹𝑖,𝐵𝑢𝑠𝑝

𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆𝑃𝐵𝑢𝑠𝑝

𝑡  

(6.8) 

where 

𝑉𝑀𝑖𝑛,𝑖   the lower voltage limits of busbar 𝑖 

𝑉𝑀𝑎𝑥,𝑖    the upper voltage limits of busbar 𝑖 

𝑉𝑖,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡   the forecasted voltage of busbar 𝑖 at time 𝑡 based on load flow 

calculations at the forecast stage 

𝑉𝑆𝐹𝑖,𝐸𝐸𝑆𝑚

𝑡  the voltage sensitivity factor from ESS 𝑚 to busbar 𝑖 at time 𝑡 

𝑉𝑆𝐹𝑖,𝑅𝐸𝑆𝑛

𝑡  the voltage sensitivity factor from RES 𝑛 to busbar 𝑖 at time 𝑡 

𝑉𝑆𝐹𝑖,𝐵𝑢𝑠𝑝

𝑡  the voltage sensitivity factor from load at busbar 𝑝 to busbar 𝑖 at time 𝑡 

This constraint guarantees all busbar voltage within limits. Similar to power flow constraints, 

only critical busbars with high VSFs with respect to ESSs will be added to this constraint. 

ESS SoC constraint 

The ESS SoC constraints include equality and inequality constraints. The equality constraints, 

given in equation (6.9), calculate the SoC of all ESSs for all timesteps. The inequality 

constraints are the SoC limits. 

The SoC of ESS is calculated by 

 
𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡+1 = 𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡 + 𝑑𝐸𝑆𝑆𝑚

𝑡 ∙

∆𝑡 ∙
𝑃𝐸𝑆𝑆𝑚

𝑡

𝜂𝐸𝑆𝑆𝑚,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

 
(6.9) 
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+(1 − 𝑑𝐸𝑆𝑆𝑚

𝑡 ) ∙
∆𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡 ∙ 𝜂𝐸𝑆𝑆𝑚,𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

 

where 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡    the SoC of ESS at time 𝑡 

∆𝑡    the duration of each timestep 

𝜂𝐸𝑆𝑆𝑚,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 the discharge efficiency of ESS 𝑚 

𝜂𝐸𝑆𝑆𝑚,𝑐ℎ𝑎𝑟𝑔𝑒   the charge efficiency of ESS 𝑚 

𝑑𝐸𝑆𝑆𝑚

𝑡    a binary variable, 𝑑 = 1 if discharge and 𝑑 = 0 if charge 

𝐸𝐸𝑆𝑆𝑚
    the energy capacity of the ESS 𝑚 

This equation calculates the SoC of ESS 𝑚 for each timestep. The efficiencies for charging 

and discharging have been taken into consideration. The next constraint prevents the ESS 

from over charging or over discharging 

 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡 ≤ 𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡 ≤ 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑎𝑥
𝑡  (6.10) 

where 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡    the lower limit of SoC for ESS 𝑚 at time 𝑡 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑎𝑥
𝑡    the upper limit of SoC for ESS 𝑚 at time 𝑡 

It should be noted that the SoC limits in this constraint 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡  and 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑎𝑥

𝑡  can be 

defined by the DNO or the operator of the ESS. ESSs will be used for other purposes, such as 

frequency control and harmonics elimination, which are not included in this scheme, the ESSs 

may therefore be given lower SoC limits that are higher than the technical lower limits. For 

instance, although some Li-ion batteries are able to be discharged to 0% SoC [198], the lower 

limits 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡  can be set to 40% so that the ESSs can still be used for frequency control 

during the peak periods. 

6.3.3 Generalization of the Proposed Formulation  

The objective function and constraints introduced in this section are summarised below 
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𝑚𝑖𝑛 ∑ ∑ 𝐶𝐸𝑆𝑆𝑚
∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

𝑇

𝑡=0

 

Subject to  

−𝑆𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡 ≤ 𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡 + ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆𝑃𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

 

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐵𝑢𝑠𝑝

𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆𝑃𝐵𝑢𝑠𝑝

𝑡 ≤ 𝑆𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡  

𝑉𝑀𝑖𝑛,𝑖 ≤ 𝑉𝑖,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡 + ∑ 𝑉𝑆𝐹𝑖,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

+ ∑ 𝑉𝑆𝐹𝑖,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆𝑃𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

 

+ ∑ 𝑉𝑆𝐹𝑖,𝐵𝑢𝑠𝑝
𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆𝑃𝐵𝑢𝑠𝑝

𝑡 ≤ 𝑉𝑀𝑎𝑥,𝑖 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡 ≤ 𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡 ≤ 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑎𝑥
𝑡  

𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡+1 = 𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡  

+𝑑𝐸𝑆𝑆𝑚

𝑡 ∙

∆𝑡 ∙
𝑃𝐸𝑆𝑆𝑚

𝑡

𝜂𝐸𝑆𝑆𝑚,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

+ (1 − 𝑑𝐸𝑆𝑆𝑚

𝑡 ) ∙
∆𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡 ∙ 𝜂𝐸𝑆𝑆𝑚,𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

 

(6.11) 

The meaning of this formulation is summarised. The cost function minimises the use of ESS. 

The first constraint estimates the power flow on the branches due to the import/export of ESS 

and the change of RES output and load. Similarly, the second constraint estimates the voltage 

of each busbar due to the import/export of ESS and the change of RES output and load. The 

last two constraints ensures ESS will not be over-charge or over-discharged. 

The general form of a linear optimization problem has been introduced in section 4.3. This 

ESS scheduling problem given in (6.11) can be generalized as a LO problem as given in 

equation (4.10). 

 𝑚𝑖𝑛 𝑓(𝑷𝐸𝑆𝑆
𝑡 ) (6.12) 

Subject to 

 
𝒍 ≤ 𝒉(𝑷𝐸𝑆𝑆

𝑡 , ∆𝑷𝑅𝐸𝑆
𝑡 , ∆𝑷𝐵𝑢𝑠

𝑡 , 𝑺𝐵𝑟𝑎𝑛𝑐ℎ,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡 , 𝑽𝐵𝑢𝑠

𝑡 , 𝑺𝒐𝑪𝐸𝑆𝑆
𝑡=0) ≤ 𝒖 

𝒈(𝑷𝐸𝑆𝑆
𝑡 , 𝑺𝒐𝑪𝐸𝑆𝑆

𝑡=0) = 𝟎 

(6.13) 

where  
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𝑷𝐸𝑆𝑆
𝑡    the real power import or export of ESS 𝑚 at time 𝑡 

𝑓()   the cost function 

ℎ()   the function for inequality linear constraints 

𝒍   the lower limit of inequality linear constraints 

𝒖   the upper limit of inequality linear constraints 

𝑔()   the function for equality linear constraints 

∆𝑷𝑅𝐸𝑆
𝑡    the error of RES power output at time 𝑡 

∆𝑷𝐵𝑢𝑠
𝑡    the error of busbar load at time 𝑡 

 𝑺𝐵𝑟𝑎𝑛𝑐ℎ,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡  the forecasted load flow of branch 𝑖𝑗 at time 𝑡 

𝑺𝒐𝑪𝐸𝑆𝑆
𝑡=0  the SoC of ESS at time 𝑡 = 0 

𝑽𝑩𝒖𝒔
𝒕  the forecasted voltage of busbar 𝑖 at time 𝑡 based on power flow 

calculations 

By finding a feasible solution 𝑷𝐸𝑆𝑆
𝑡 , this formulation minimizes the cost of charging and 

discharging ESS and at the same time eliminates the risk of line RTTR overload, voltage limit 

violations and over use of ESSs. The equality constraints calculate the SoC of ESS from 

𝑡 = 0 to time 𝑡 = 𝑇. The inequality constraints include power flow constraints, voltage 

constraints and SoC constraints. 

6.4 Problem Formulation with Uncertainty 

Considering the aforementioned uncertain inputs, the objective function remains the same. 

The constraints given in (6.13) become 

 𝒍 ≤ 𝒉(𝑷𝐸𝑆𝑆
𝑡 , ∆�̃�𝑅𝐸𝑆

𝑡 , ∆�̃�𝐵𝑢𝑠
𝑡 , �̃�𝐵𝑟𝑎𝑛𝑐ℎ,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡 , 𝑽𝐵𝑢𝑠
𝑡 , 𝑺�̃�𝑪𝐸𝑆𝑆

𝑡=0) ≤ 𝒖 (6.14) 

 𝒈(𝑷𝐸𝑆𝑆
𝑡 , 𝑺�̃�𝑪𝐸𝑆𝑆

𝑡=0) = 𝟎 (6.15) 

The objective function in (6.12) and constraints given in (6.14) and (6.15) form an uncertain 

linear optimization problem. It is assumed that all uncertain values are independent and each 

uncertain variable 𝑎 is bounded by an interval given as 
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 �̃� ∈ [𝑎 − �̂�, 𝑎 + �̂�] (6.16) 

The uncertainty model has been introduced in section 5.2.3. The new formulation is 

summarised as: 

 

𝑚𝑖𝑛 𝑓(𝑷𝐸𝑆𝑆
𝑡 ) 

Subject to 

𝒍 ≤ 𝒉(𝑷𝐸𝑆𝑆
𝑡 , ∆�̃�𝑅𝐸𝑆

𝑡 , ∆�̃�𝐵𝑢𝑠
𝑡 , �̃�𝐵𝑟𝑎𝑛𝑐ℎ,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡 , 𝑽𝐵𝑢𝑠
𝑡 , 𝑺�̃�𝑪𝐸𝑆𝑆

𝑡=0) ≤ 𝒖 

𝒈(𝑷𝐸𝑆𝑆
𝑡 , 𝑺�̃�𝑪𝐸𝑆𝑆

𝑡=0) = 𝟎 

And all uncertain values 𝑎 follow 

�̃� ∈ [𝑎 − �̂�, 𝑎 + �̂�] 

(6.17) 

The scheduling problem for ESS, formulated as (6.17), can be generalised as the problem 

given in equation (5.9). In Chapter 5, how to solve (5.9) with Bertsimas and Sim’s 

formulation has been introduced. Bertsimas and Sim’s formulation solves this problem by 

transforming (6.17) into another linear but certain formulation as given from (5.20) to (5.27). 

In Bertsimas and Sim’s formulation, budget of uncertainty (BoU) is used. The meaning of 

BoU in this application is explained with an example. The right-hand side of constraint (6.3) 

at time 𝑡 is given as 

 

𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡 + ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑛=1

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆𝑃𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

+ 

∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐵𝑢𝑠𝑝

𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆𝑃𝐵𝑢𝑠𝑝

𝑡 ≤ 𝑆𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡  

(6.18) 

Considering the uncertainty of RES, load forecast and RTTR, (6.18) becomes 

 

𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡 + ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑛=1

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆�̃�𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

+ 

∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐵𝑢𝑠𝑝

𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆�̃�𝐵𝑢𝑠𝑝

𝑡 ≤ �̃�𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡  

(6.19) 

where 

�̃�𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡   the uncertainty value of predicted RTTR of branch 𝑖𝑗 at time 𝑡 

∆�̃�𝑅𝐸𝑆𝑛

𝑡    the uncertainty value of predicted power output of RES 𝑛 at time 𝑡 

∆�̃�𝐵𝑢𝑠𝑝

𝑡    the uncertainty value of load forecast of busbar 𝑝 at time 𝑡 
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Therefore the total number of uncertainties 𝑁𝑢 in constraint (6.19) is 

 𝑁𝑢 = 𝑁𝑅𝐸𝑆 + 𝑁𝐵𝑢𝑠 + 1 (6.20) 

Denoting the BoU for this constraint as 𝛤𝑖
𝑡, it follows that  

 0 ≤ 𝛤𝑖
𝑡 ≤ 𝑁𝑢 (6.21) 

For this constraint, BoU means how many of these forecast values will greatly deviate from 

their nominal values, in other words, their real values �̃�𝑖𝑗 will be close or equal to their lower 

or upper bounds. For simplicity, the rest of this thesis uses the normalized value 𝛤/𝑁𝑢 to 

represent the BoU. 

6.5 Optimal Budget of Uncertainty and Probability of Success Estimation 

Increasing the BoU will reduce the probability of constraints violation or increase the 

probability of success (PoS) of the solution. PoS is defined as 

 𝑃𝑜𝑆 = (1 −
𝑁𝑉𝑖𝑜

𝑁𝑇𝑜𝑡𝑎𝑙
) × 100% (6.22) 

where 

𝑁𝑇𝑜𝑡𝑎𝑙    the total number of Monte Carlo samples  

𝑁𝑉𝑖𝑜    the number of violations recorded. 

The selection of BoU is critical to the performance of the algorithm. A high BoU ensures high 

PoS however can be over-conservative. A low BoU reduces the cost but also lowers the PoS. 

In the following section, two approaches are introduced to estimate the PoS of a given BoU. 

The minimum BoU which guarantees the required PoS is called the optimal BoU (OBoU). In 

the UK, for single and multi-circuit supply systems, the aggregate percentage of time when 

the design temperature of conductors can be exceeded is 0% and 3%, respectively [24, 199]. 

This standard is adopted by UK DNOs for operating systems with static ratings. Consistent 

with this approach, in this work PoSs of 100% and 97% have been used. In order to calculate 

charge or discharge profiles for ESSs which are able to provide the required level of PoS for 

the system, the corresponding OBoU needs to be calculated first. 

In this section, two methods to estimate OBoU are proposed. The first approach estimates the 

relationship between the BoU and the PoS based on Bound 1 introduced in section 5.4. The 
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second approach combines this bound with moderate numbers of MCS and a curve fitting 

technique. These two approaches are introduced below. 

6.5.1 Estimation of OBoU Based on Probability Bounds of Constraint Violation (Bound 1) 

As has been shown in section 5.4, the PoS is a function of BoU 𝛤𝑖 and can bounded by 

 𝑃𝑜𝑆 ≥ 1 − exp(−
𝛤𝑖

2

2 ∙ 𝑁𝑢
) (6.23) 

where 

𝑖   the index of constraints, i.e. this is the ith constraint in the formulation 

𝛤𝑖   the budget of uncertainty for the 𝑖th constraint 

Based on (6.23), the OBoU for a required PoS is given by 

 𝛤𝑖 = √−2𝑁𝑢 ∙ ln(1 − 𝑃𝑜𝑆) (6.24) 

Once the required PoS is defined, the OBoU for this PoS can be calculated. However, as 

shown in Chapter 5, this estimation is easy to compute but can be conservative. This 

estimation is based on the assumption that the errors are symmetrically distributed regardless 

of the type of distributions. Furthermore, this estimation is less accurate when the maximum 

number of uncertainties 𝑁𝑢 is small. To address the limitations of this estimation, extra 

parameters are introduced and detailed below. 

6.5.2 Estimation of OBoU Based on MCS and Curve Fitting Technique 

In this research, a new approach to estimate the corresponding PoS of a given BoU is 

proposed. Firstly, three new parameters are introduced into equation (6.23) to enable tuning of 

the shape of this curve. Secondly, a practical method is introduced to calculate the values of 

the introduced values. This method combines MCS and curve fitting technique. To depict the 

curve between BoU and PoS, a large number of Monte Carlo simulations are required. MCS 

is accurate but also time consuming. The method proposed in this section can reduce the 

required number of Monte Carlo simulations dramatically. This method is detailed below. 

Extension of equation (6.23) 

To describe the PoS curve accurately, three extra parameters are introduced and equation 

(6.23) can be expressed with the following 

 𝑃𝑜𝑆 = 𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐) = 𝑎 − 𝑏 ∙ exp(−𝑐 ∙ 𝛤𝑖
2) (6.25) 
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where 

𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐)  the function to estimate PoS 

𝑎, 𝑏, 𝑐   parameters introduced to modify the curve 

By calculating the values of a, b and c, 𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐) is capable of describing the PoS curve. 

The flexible structure of 𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐) enables the establishment of the relationship between 

the PoS and 𝛤𝑖. The values of a, b and c can be calculated by using curve fitting techniques. 

Combining MCS with curve fitting method 

To calculate the values of the parameters, only three inputs and outputs, Γ and corresponding 

PoS, are required. The PoS of a given BoU can be achieved by running a Monte Carlo 

simulation (MCS). This method is illustrated in Figure 6.2 below. 

Update uncertainty 

input file

Robust formulation

Calculate PoS for Gi

with Monte Carlo simulation

YES

NO

Start

    Calculate 

Define

End

Curve fitting to 

calculate a, b and c

 

Figure 6.2 Estimation of OBoU Based on MCS and Curve Fitting Technique 
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First of all, the number of input values 𝑛𝑀𝑎𝑥 is decided. In this case, there are three 

parameters to be calculated and therefore the minimum number of input values is three and 

𝑛𝑀𝑎𝑥 ≥ 3. Based on the number of inputs, the range of BoUs can be decided. The BoUs 

should be chosen that the full range of the curve is covered. Next, the RO problem is solved 

for all the given BoU values with the RO solver introduced in section 5.5. The PoS of 

solutions at different BoU are tested with MCS. Once the set of data points, BoU 𝛤𝑖, 𝑖 =

1,2, … , 𝑛𝑀𝑎𝑥 and corresponding PoS, are available, the values of a, b and c can be calculated 

with curve fitting techniques. The aim is to find the suitable a, b and c values so that 

𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐) is the best description for the input data points. In the next section, the curve 

fitting technique is detailed. 

The Levenberg–Marquardt algorithm 

The input to the curve fitting algorithm is the PoS at different 𝛤. In this thesis, Levenberg–

Marquardt algorithm (LMA) has been adopted to solve the curve fitting problem. LMA is a 

technique for solving non-linear least square problems and is used widely to solve curve 

fitting problems. LMA minimizes the least square of the error between the inputs and the 

output, in this case, by finding the correct parameters a, b and c. The LMA technique 

minimises the least square between the real PoS, generated through MCS, and the estimated 

PoS by changing a, b and c. This can be expressed as 

 𝑚𝑖𝑛 𝑆(𝑎, 𝑏, 𝑐) = ∑ [𝑃𝑜𝑆𝑛 − 𝑔(𝛤𝑛, 𝑎, 𝑏, 𝑐)]2

𝑛𝑀𝑎𝑥

𝑛=1

 (6.26) 

where 

𝑃𝑜𝑆𝑛 is the PoS for the nth BoU 𝛤𝑛, this value is achieved from an MCS study 

detailed in section 6.5.2 

LMA is available in the Matlab curve fitting toolbox. 

The Effect of the Parameters 

The parameters a, b and c have different effects on the fitting results. In the following section, 

the impact of changing the values of a, b and c on the maximum, minimum and derivatives of 

𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐) is introduced. The aim of this section is to provide a guidance on how the change 

of the parameters a, b and c can affect the curve. The minimum value of the curve is decided 

by the difference between a and b. the maximum value of the curve is dependent on the value 

of a. The derivative, or the rate of the curve is a function of b, c and 𝛤𝑖. 
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 Minimum PoS (𝛤 = 0) 

When 𝛤/𝛤𝑀𝑎𝑥 = 0, exp(−𝑐 ∙ 𝛤𝑖
2) → 1 and PoS reaches its minimum, 

 min[𝑔(𝛤𝑖 , 𝑎, 𝑏, 𝑐) ] ≈ 𝑎 − 𝑏 (6.27) 

 Maximum PoS (𝛤 = 𝛤𝑀𝑎𝑥) 

When 𝛤/𝛤𝑀𝑎𝑥 = 1, if 𝑐 is a large enough number then exp(−𝑐 ∙ 𝛤𝑖
2) → 0 and PoS reaches its 

maximum, 

 max[𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐) ] ≈ 𝑎 (6.28) 

 

 Derivative 

The derivative of 𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐) is given as 

 
𝜕𝑔(𝛤𝑖, 𝑎, 𝑏, 𝑐)

𝜕𝛤𝑖
= 2𝑏 ∙ 𝑐 ∙ 𝛤𝑖 ∙ exp(−𝑐 ∙ 𝛤𝑖

2) (6.29) 

6.6 Extension of this formulation 

6.6.1 Demand Side Response 

The formulation proposed in equation (6.11) can be extended to take the uncertainty of DSR 

into consideration. 

 

𝑚𝑖𝑛 ∑( ∑ 𝐶𝐸𝑆𝑆𝑚
∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

+ ∑ 𝐶𝐷𝑆𝑅𝑞
∙ 𝑃𝐷𝑆𝑅𝑞

𝑡

𝑁𝐷𝑆𝑅

𝑞=1

)

𝑇

𝑡=0

 

Subject to  

−𝑆𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡 ≤ 𝑆𝑖𝑗,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡 + ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆�̃�𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

+ ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐵𝑢𝑠𝑝

𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆�̃�𝐵𝑢𝑠𝑝

𝑡 + ∑ 𝑃𝐹𝑆𝐹𝑖𝑗,𝐷𝑆𝑅𝑞

𝑡 ∙ �̃�𝐷𝑆𝑅𝑞

𝑡

𝑁𝐷𝑆𝑅

𝑞=1

≤ �̃�𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡  

𝑉𝑀𝑖𝑛,𝑖 ≤ 𝑉𝑖,𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑡 + ∑ 𝑉𝑆𝐹𝑖,𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

+ ∑ 𝑉𝑆𝐹𝑖,𝑅𝐸𝑆𝑛

𝑡 ∙ ∆�̃�𝑅𝐸𝑆𝑛

𝑡

𝑁𝑅𝐸𝑆

𝑛=1

+ ∑ 𝑉𝑆𝐹𝑖,𝐵𝑢𝑠𝑝
𝑡

𝑁𝐵𝑢𝑠

𝑝=1

∙ ∆�̃�𝐵𝑢𝑠𝑝

𝑡 + ∑ 𝑉𝑆𝐹𝑖,𝐷𝑆𝑅𝑞

𝑡 ∙ �̃�𝐷𝑆𝑅𝑞

𝑡

𝑁𝐷𝑆𝑅

𝑞=1

≤ 𝑉𝑀𝑎𝑥,𝑖 

𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡 ≤ 𝑆�̃�𝐶𝐸𝑆𝑆𝑚

𝑡 ≤ 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑎𝑥
𝑡  

(6.30) 
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𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡+1 = 𝑆�̃�𝐶𝐸𝑆𝑆𝑚

𝑡 + 𝑑𝐸𝑆𝑆𝑚

𝑡 ∙

∆𝑡 ∙
𝑃𝐸𝑆𝑆𝑚

𝑡

𝜂𝐸𝑆𝑆𝑚,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

+ (1 − 𝑑𝐸𝑆𝑆𝑚

𝑡 )

∙
∆𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡 ∙ 𝜂𝐸𝑆𝑆𝑚,𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

 

where 

𝑁𝐷𝑆𝑅   the total number of DSR 𝑞 

𝑃𝐹𝑆𝐹𝑖𝑗,𝐷𝑆𝑅𝑞

𝑡   the power flow sensitivity factor of DSR 𝑞 to branch 𝑖𝑗 (MVA/MW) 

𝑉𝑆𝐹𝑖,𝐷𝑆𝑅𝑞

𝑡   the voltage sensitivity factor of DSR 𝑞 to bus 𝑖 (p.u./MW) 

𝑃𝐷𝑆𝑅𝑞

𝑡    the power decrease or increase due to DSR 𝑞 

�̃�𝐷𝑆𝑅𝑞

𝑡    the uncertain power decrease of increase due to DSR 𝑞 

In this formulation, DSR is formulated the same as ESS. As discussed in section 2.3. DSR can 

be seen as one type of energy storage. The cost function consists of the cost of using ESS and 

DSR. The power flow and voltage constraints use PFSF and VSF to estimate the impact of 

DSR. 

6.6.2 Reactive Power  

In the formulation proposed in (6.11) and (6.30), only real power from ESS and DSR has 

been considered. This formulation can be modified such that the scheduling problem can be 

solved with reactive power injection. The PFSFs used in this formulation represents the 

apparent power change through branch 𝑖𝑗 in MVA due to the real power injection or 

extraction from ESS or DSR. The VSFs used in this formulation represents the per unit 

voltage change at bus 𝑖 due to real power injection or extraction from ESS or DSR. If the SFs 

are replaced by reactive power sensitivity factors, i.e. MVA/MVAr and pu/MVAr, this 

formulation can be used to solve scheduling problems with reactive power. 

6.7 Discussion and Conclusion 

In this chapter, the use of RO to solve a scheduling problem which is cognisant of the input 

data uncertainty is proposed. Firstly, the formulation without considering uncertainty is 

introduced. This is followed by a description of the robust formulation considering load, 

RTTR and RES generation uncertainty. This uncertain linear optimization problem is solved 

by the method proposed by Bertsimas and Sim. In this method, budget of uncertainty is 

introduced to control the level of conservatism. The solution at a higher BoU has a higher 
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probability of success (PoS). Based on BoU, the concept of OBoU is proposed in section 6.5 

by the author. OBoU is the minimum BoU which guarantees a desired PoS. Two methods 

have been introduced to calculate the OBoU. The first method uses the probability bounds 

introduced in section 5.4. The second method uses a moderate number of MCSs coupled with 

the LMA curve fitting technique to estimate the relationship between BoU and PoS. 

The proposed scheduling scheme presents several advantages compared to stochastic 

optimization and chance constraint techniques. In scenarios where, for uncertain values, only 

their UIs exist or their PDFs are only partially available or even inaccurate, techniques such as 

stochastic optimization or chance-constraint programming are unable to solve the problem. 

On the other hand, it has been shown that the proposed RO based scheduling scheme is still 

able to provide robust solutions to avoid branch line RTTR violation, cognizant of ESS SoC 

limits and network voltage constraints. In such scenarios, approach 1 based on equation (5.28) 

is able to provide robust solutions based on simple calculations in a very short time even for a 

large network. In scenarios where accurate PDFs are available for all the uncertain values, the 

advantages of RO based scheduling scheme still exist. Under such circumstances, both the 

estimation and the curve fitting based approaches can be used to calculate OBoU. The 

estimation approach can be applied to calculate a slightly conservative but robust solution in a 

very short time. Curve fitting based approach constructs the function between BoU and PoS 

through MCS. MCS runs a large number of load flow calculations to compute the PoS at 

different BoU. The MCS process is time consuming however it avoids any linearization of the 

network model. As a result, the curve fitting method is able to provide accurate solutions and 

ensure desired levels of PoS. The capability of adjusting the PoS is beneficial to the future 

deployment of ESS. As shown in the simulation results, by accepting a PoS requirement of 

97%, the proposed method can further reduce the power and energy requirements of ESS. 

The selection of UI is important to the performance of RO. Forecast techniques for UI 

prediction have been proposed [11, 27, 28]. Conservative UIs can compromise the benefits of 

the proposed approach. On the other hand, if the uncertainty is underestimated, the PoS of RO 

solutions will be reduced. 
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Chapter 7. Evaluation of the Robust Optimization Based Scheduling 

Scheme and Case Studies 

7.1 Introduction 

In Chapter 6, a robust scheduling scheme for energy storage systems (ESSs) deployed in 

distribution networks to facilitate high penetrations of renewable energy sources (RES) is 

presented. Two methods for calculating optimal budget of uncertainty (OBoU) have been 

introduced. In this chapter, the proposed scheduling scheme is tested with IEEE 14 busbar 

network and IEEE 118 busbar network with real load, generation and RTTR profiles. The 

curve fitting method has been used to estimate the OBoU for 97% and 100% probability of 

success (PoS) in the first case study with the IEEE 14 bus network. Both methods have been 

applied on the IEEE 118 busbar network. The scheduling scheme based on RO is compared to 

classical optimal power flow (OPF) approaches which do not consider uncertainty. OPF 

technique is introduced in section 7.2. 

In this chapter, standard IEEE networks are used. Compared to the real distribution network 

used in Chapter 3, there are a few advantages using the standard IEEE networks. Frist of all, 

IEEE networks are well known and the case studies on these networks can be repeated easily. 

Secondly, two methods to estimate OBoU have been introduced in section 6.5. The first 

method uses bound 1, introduced in section 5.4 to estimate the OBoU. However, this method 

is more accurate for problems with large number of uncertainties. The use of standard IEEE 

networks can test the scalability of proposed methods and the accuracy of the first method for 

estimating OBoU. 

7.2 Optimal power flow  

Optimal power flow (OPF) is a well-established technique for solving power system problems. 

This technique has been introduced in [145, 151, 159]. In this section, the general form of 

OPF is introduced. Next, the general form of OPF is modified to model ESS and RTTR. 

7.2.1 Standard alternate current optimal power flow 

The aim of OPF is to minimise the cost of using generators and all constraints are satisfied.  

A normal OPF is given as 

 

min ∑ 𝑓(𝑃𝐺𝑖
)

𝑖∈𝑆𝐺

 

Subject to 

(7.1) 
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𝑃𝐺𝑖
− 𝑃𝐷𝑖

− 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin𝜃𝑖𝑗)

𝑁𝐵𝑢𝑠

𝑗=1

= 0 

𝑄𝐺𝑖
− 𝑄𝐷𝑖

− 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 − 𝐵𝑖𝑗 sin𝜃𝑖𝑗)

𝑁𝐵𝑢𝑠

𝑗=1

= 0 

(7.2) 

 
𝑃𝐺𝑖,𝑀𝑖𝑛 ≤ 𝑃𝐺𝑖

≤ 𝑃𝐺𝑖,𝑀𝑎𝑥  

𝑄𝐺𝑖,𝑀𝑖𝑛 ≤ 𝑄𝐺𝑖
≤ 𝑄𝐺𝑖,𝑀𝑎𝑥  

(7.3) 

 𝑉𝑗,𝑀𝑖𝑛 ≤ 𝑉𝑗 ≤ 𝑉𝑗,𝑀𝑎𝑥 (7.4) 

 |𝑃𝑖𝑗| = |𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗) − 𝑉𝑖
2𝐺𝑖𝑗| ≤ 𝑃𝑖𝑗,𝑅𝑎𝑡𝑖𝑛𝑔 (7.5) 

where 

𝑃𝐺𝑖
   the real power export for generator at bus 𝑖 

𝑆𝐺   the set of generators 

𝑃𝐷𝑖
   the real power demand at bus 𝑖 

𝑉𝑖   voltage at bus 𝑖 

𝑁𝐵𝑢𝑠   total number of buses 

𝐺𝑖𝑗   the per unit conductance of branch from busbar 𝑖 to busbar 𝑗 

𝐵𝑖𝑗   the per unit susceptance of branch from busbar 𝑖 to busbar 𝑗 

𝜃𝑖𝑗   the angle difference between busbar 𝑖 and busbar 𝑗 

𝑄𝐺𝑖
   the reactive power export for generator at bus 𝑖 

𝑄𝐷𝑖
   the reactive power demand for generator at bus 𝑖 

𝑃𝐺𝑖,𝑀𝑖𝑛   minimum real power export of generator at bus 𝑖 

𝑃𝐺𝑖,𝑀𝑎𝑥   maximum real power export of generator at bus 𝑖 

𝑃𝑄𝑖,𝑀𝑖𝑛   minimum reactive power export of generator at bus 𝑖 

𝑃𝑄𝑖,𝑀𝑎𝑥   maximum reactive power export of generator at bus 𝑖 

𝑉𝑗,𝑀𝑖𝑛   low voltage limit for bus 𝑗 
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𝑉𝑗,𝑀𝑎𝑥   upper voltage limit for bus 𝑗 

𝑃𝑖𝑗,𝑅𝑎𝑡𝑖𝑛𝑔  real power rating of branch 𝑖𝑗 

In this formulation, the cost function equation (7.1) minimise the cost for all the generators. 

Constraints (7.2) are equality constraints for nodal real and reactive power balance. 

Constraints (7.3) are lower and upper limits for generators real and reactive power outputs. 

Constraints (7.4) ensure all bus voltage are within limits and constraints (7.5) are power flow 

constraints for branches which guarantee the real power flows on branches are below the 

ratings of branches. 

7.2.2 Modified optimal power flow 

The formulation introduced in the previous section does not include ESS and RTTR. The 

conventional OPF is modified so it includes ESS and RTTR. In the modified version of OPF, 

ESS is modelled as a generator with extra constraints to model the SoC constraints. RTTR is 

modelled with variable ratings in constraint (7.4). The modifications are detailed below. 

The cost function is modified to minimise the cost of using ESS 

 min ∑ 𝐶𝐸𝑆𝑆𝑚

𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡

𝑁𝐸𝑆𝑆

𝑚=1

 (7.6) 

The cost function is consistent with the cost function is RO. 

The following constraints are added to model ESS. 

 −𝑃𝐸𝑆𝑆𝑚,𝑅𝑎𝑡𝑖𝑛𝑔 ≤ 𝑃𝐸𝑆𝑆,𝑚
𝑡 ≤ 𝑃𝐸𝑆𝑆𝑚,𝑅𝑎𝑡𝑖𝑛𝑔 (7.7) 

 −𝑄𝐸𝑆𝑆𝑚,𝑅𝑎𝑡𝑖𝑛𝑔 ≤ 𝑄𝐸𝑆𝑆,𝑚
𝑡 ≤ 𝑄𝐸𝑆𝑆𝑚,𝑅𝑎𝑡𝑖𝑛𝑔 

(7.8) 

 𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡+1 = 𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡  

+𝑑𝐸𝑆𝑆𝑚

𝑡 ∙

∆𝑡 ∙
𝑃𝐸𝑆𝑆𝑚

𝑡

𝜂𝐸𝑆𝑆𝑚,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

+ (1 − 𝑑𝐸𝑆𝑆𝑚

𝑡 ) ∙
∆𝑡 ∙ 𝑃𝐸𝑆𝑆𝑚

𝑡 ∙ 𝜂𝐸𝑆𝑆𝑚,𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝐸𝑆𝑆𝑚

 
(7.9) 

 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑖𝑛
𝑡 ≤ 𝑆𝑜𝐶𝐸𝑆𝑆𝑚

𝑡 ≤ 𝑆𝑜𝐶𝐸𝑆𝑆𝑚,𝑀𝑎𝑥
𝑡  

where 

𝑃𝐸𝑆𝑆,𝑚
𝑡    the real power output of ESS 𝑚 

𝑄𝐸𝑆𝑆,𝑚
𝑡    the reactive power output of ESS 𝑚 
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𝑃𝐸𝑆𝑆𝑚,𝑅𝑎𝑡𝑖𝑛𝑔  the real power rating of ESS 𝑚 

𝑄𝐸𝑆𝑆𝑚,𝑅𝑎𝑡𝑖𝑛𝑔  the reactive power rating of ESS 𝑚 

Constraints (7.7) and (7.8) are real and reactive power constraints for ESS. Constraint (7.9) is 

the SoC constraint which guarantees that the ESSs are not over-charged or over-discharged. 

RTTR is modelled as varying ratings of branches at different timesteps. Constraint (7.5) is 

modified as 

 |𝑃𝑖𝑗
𝑡 | ≤ 𝑃𝑖𝑗,𝑅𝑇𝑇𝑅

𝑡  (7.10) 

The modified cost function and constraints are included in the normal OPF formulation. The 

modified OPF formulation takes ESS and RTTR into consideration. The results of this form 

of OPF is called normal OPF (NOPF). 

7.2.3 Conservative form of optimal power flow 

The formulation of NOPF considers ESS and RTTR but not uncertainty. In this section, the 

NOPF formulation is modified to account for uncertainty. As stated in equation (6.16), the 

uncertainty can be described with uncertainty intervals. Conservative OPF (COPF) is 

introduced. COPF uses maximum or minimum possible values for uncertain values so that the 

solution is able to provide solution with high PoS. 

For RTTR, the reduced values are used 

 𝑃𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡 = 𝑃𝑖𝑗,𝑅𝑇𝑇𝑅

𝑡 − �̂�𝑖𝑗,𝑅𝑇𝑇𝑅
𝑡  (7.11) 

Depending on if thermal overloads and/or voltage excursions are due to generation or load, 

different values are used for DG and load. To be specific, if predicted excursions are due to 

load, the following values will be used: 

 
𝑃𝐵𝑢𝑠𝑃

𝑡 = 𝑃𝐵𝑢𝑠𝑝

𝑡 + �̂�𝐵𝑢𝑠𝑝

𝑡  

𝑃𝑅𝐸𝑆𝑛

𝑡 = 𝑃𝑅𝐸𝑆𝑛

𝑡 − �̂�𝑅𝐸𝑆𝑛

𝑡  

(7.12) 

If predicted excursions are due to generation, maximum generation values and minimum load 

values will be used. 

 
𝑃𝐵𝑢𝑠𝑃

𝑡 = 𝑃𝐵𝑢𝑠𝑝

𝑡 − �̂�𝐵𝑢𝑠𝑝

𝑡  

𝑃𝑅𝐸𝑆𝑛

𝑡 = 𝑃𝑅𝐸𝑆𝑛

𝑡 + �̂�𝑅𝐸𝑆𝑛

𝑡  

(7.13) 
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7.3 Case Study on IEEE 14 Bus Network 

7.3.1 Case Study Network 

The RO based scheduling scheme is applied to a modified version of the IEEE 14 bus 

network as illustrated in Figure 7.1. Two windfarms have been connected to busbars 12 and 

13 of this network with capacities of 25MVA and 35MVA respectively. A 20 MVA, 40MWh 

ESS unit is located at busbar 14. Wind generation at busbar 12 and 13 causes a continuous 

overload on the branch from busbar 13 to busbar 14. It is assumed that this branch is equipped 

with RTTR. In this case study, half-hourly real windfarm generation export, RTTR and load 

profile data from the north east of England have been used [200]. 

G

1

2

3

4
5

G

6

12

13

11

10

9

7

8

14

C

C

Wind 2

(30MVA)
Wind 1

(20MVA)

ESS

(20MVA)

 

Figure 7.1 IEEE 14 Busbar network 

Half-hourly windfarm outputs from the north east of England have been used for this case 

study. The output has been scaled for the purpose of this study. It is assumed that the 

generators are generating at unity power factor. By replacing the real power injections in the 

constraints by apparent power injections and apparent power PFSF (MVA powerflow change 

per MVA injection change), this method is able to solve the scheduling problems with 

reactive power. The windfarm export profiles are depicted in Figure 7.2. 
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Figure 7.2 Windfarm Output 

Powerflow through the branch and the RTTR of the branch are given in Figure 7.3. 

 

Figure 7.3 Apparent Power and RTTR of the Modelled Branch 13- 14 
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The scheduling scheme has been applied for the first excursion between 04:00 to 13:00 at a 

half-hourly interval. The total number of timesteps is 18. 

7.3.2 Sources of Uncertainties 

The sources of uncertainty considered in this case study include load, windfarm output and 

RTTR. The levels of uncertainties are informed by the literature review in section 4.2. The 

uncertainty intervals are given in Table 7.1. It is assumed that load for all busbars have 5% 

uncertainty. The RTTR forecast of the branch from bus 13 to bus 14 has an uncertainty of 5% 

as well. The power output uncertainty of both windfarms is 10%. 

 Load  RTTR Wind 1 Wind 2 

Uncertainty interval 5% 5% 10% 10% 

Table 7.1 Sources of Uncertainty and Uncertainty Intervals 

Three test cases have been used to test the performance of the proposed scheduling scheme 

with different types of uncertainty distributions. In case 1 and 2, it is assumed that all errors 

are symmetrically distributed and follow normal and uniform distributions, respectively. In 

case 3, both left and right skewed Beta distributions have been used. The skewness of each 

error distribution is chosen so that the severity of violation is worse. For example, it is 

assumed that RTTR tends to be overestimated and wind speeds are likely to be 

underestimated. Therefore, the RTTR violation will be more severe than expected. Beta 

distributions are used for the asymmetrical test case due to its simplicity. 

The specifications of the distributions in the test cases are detailed below in Table 7.2. For 

case 1, normal distribution, the ratio of standard deviation (SD) to mean is defined. For load 

uncertainty, the SD is chosen to be 1% of its mean value. Therefore, the UI selected, which is 

5%, equals to five time the SD. This range represents a confidence interval of more than 

99.99%. For case 2, uniform distribution, the maximum variation of uniform distribution is 

given as a percentage. The maximum variations are consistent with the UI. 

 Load  RTTR Wind 1 Wind 2 

Uncertainty interval 5% 5% 10% 10% 

Case 1 (SD/Mean) 1% 1% 2% 2% 

Case 2 (Maximum variation) 5% 5% 10% 10% 

Case 3 (𝜶,𝜷) 2, 1.5 2, 4 2, 1.5 2, 1.5 
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Table 7.2 Sources of Uncertainty and Uncertainty Intervals 

For case 3, the parameters 𝛼 and 𝛽 for the Beta distributions are given. Changing the values 

of 𝛼 and 𝛽 changes the mean and skewness of the Beta distribution. Two sets of 𝛼 and 𝛽 

values are used. 

 𝜶 𝜷 

Beta Distribution Series 1 2 1.5 

Beta Distribution Series 2 2 4 

Table 7.3 Two Sets of Beta Distributions 

The PDF of two Beta distributions are plotted below in Figure 7.4. 

 

Figure 7.4 Two sets of Beta Distributions, for series 1, 𝜶 = 2 and 𝜷 = 1.5, for series 2 𝜶 = 2 and 𝜷 

= 4 

The minimum and maximum value of Beta distribution function is 0 and 1, respectively. 

Series 1 has been scaled to model the uncertainties of load and DG output error. Series 2 has 

been scaled to describe the uncertainty of RTTR. 

Considering the uncertainty defined in this section, the windfarm outputs are plotted below in 

Figure 7.5. This figure depicts the windfarm export profiles and uncertainty intervals. The 
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black traces are the nominal wind generation exports. These nominal values have been plotted 

in Figure 7.2. The blue shaded area surrounding the trace represents the forecast error bounds. 

Darker shades indicate higher probabilities. The centre of this graph is the predicted 

generation profile with nominal values. The distribution is assumed to be normal. 

 

Figure 7.5 Windfarm Outputs with Uncertainty 

Power flow through the branch and the RTTR of the branch 13-14 are given in Figure 7.6. 

The red curve with shaded area is the RTTR of the branch. The blue curve with the shaded 

area is the predicted power flow through the branch with the uncertainty of load and RES. 

Three distinct sustained branch overloads can be observed. The scheduling scheme has been 

applied for the first overload period between 04:00 to 13:00 at a half-hour interval. The total 

number of timesteps is 18. 
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Figure 7.6 Apparent Power and RTTR of the Modelled Branch 

7.3.3 Optimal Budget of Uncertainty and Probability of Success Test Results 

Two approaches to calculate OBoU have been introduced in section 6.5. The first approach 

calculates based on bound 1 introduced in equation (6.24). The second approach uses a 

moderate number of MCS studies. Due to the relatively small number of forecast values used 

in this case study, only the curve fitting based technique is used to calculate OBoU. For each 

case, four groups (𝑛𝑀𝑎𝑥 = 4) of BoU and its PoS have been used to calculate the parameters a, 

b and c in equation (6.24).  

The input PoS is achieved by MCS. The parameters used for MCS are consistent with the 

specification given in Table 7.2. For case 1, the uncertain values used in MCS have not been 

truncated even though RO uses the intervals as input. MCS is carried out for all three cases 

for all 18 timesteps and each timestep is tested with 5,000 samples. Analysis shows that 

results converges at around 2,000 samples. Techniques for reducing the sample size of MCS 

are available however this is beyond the scope of this thesis. The sample size is selected to 

guarantee the convergence of the results. The OBoU for 97% and 100% PoS can be calculated 

based on these functions. The inputs used are given below in Table 7.4. 
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Input 

value 

Case 1 Case 2 Case 3 

BoU PoS BoU PoS BoU PoS 

1 0% 93.44% 0% 12.46% 0% 1.06% 

2 10% 99.96% 15% 79.16% 15% 69.30% 

3 15% 100.0% 30% 99.82% 30% 100.0% 

4 20% 100.0% 45% 100.0% 45% 100.0% 

Table 7.4 Input values for the curve fitting algorithm 

With the input values in Table 7.4, the parameters a, b and c in equation (6.24) can be 

calculated. The calculated values of a, b and c are summarized below in Table 7.5. 

 Case 1 Case 2 Case 3 

PDF type Normal Uniform Beta 

a 1.00 1.00 1.01 

b 0.07 0.88 0.99 

c 856.40 63.71 51.25 

Table 7.5 Calculated Parameters Based on LMA Curve Fitting Technique 

Based on the parameters calculated above in Table 7.5, OBoUs for the three cases can be 

estimated by equation (6.24). The estimation results are summarized below in Table 7.6. 

OBoUs have been estimated for both 97% and 100% PoS. 

 Estimated OBoU 

Case Case 1 Case 2 Case 3 

PDF type Normal Uniform Beta 

PoS 97% 4.0% 23.0% 26.0% 

PoS 100% 9.8% 31.0% 32.0% 

Table 7.6 Estimated OBoU for 97% and 100% PoS 
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7.3.4 Verification of Estimated OBoU 

Next, tests are carried out to verify the accuracy of the OBoU estimation methods proposed in 

the previous section. PoSs for more BoUs in all three cases are tested with MCS. Initially the 

PoS of each case was tested with MCS for normalized BoU from 0% to 100% at a 5% interval. 

Next, more tests were conducted for BoU with PoS of more than 90% at 1% BoU interval. 

Test results are illustrated in Figure 7.7. As can be observed, in all cases, PoS increase with 

BoU. At the same BoU, the PoSs for the normal distribution case is higher in comparison with 

the uniform and Beta distribution cases. 

 

Figure 7.7 PoS Test Results for All Cases at different BoU 

The reason why the PoS for normal distribution is higher than uniform and Beta distribution 

is explained below. At low BoU, the solutions provided by RO are able to deal with small 

errors. Constraint violations are mostly caused by large forecast errors. Therefore, the shapes 

of distributions of the forecast errors can influence the PoS. Example PDFs for three types of 

distributions of forecast errors are plotted. The blue curve is an example PDF of a normal 

distribution. The red dotted curve illustrates an example PDF for uniform distribution. The 

green and purple scattered curves are example PDF for Beta distribution with different 

skewness. 
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Figure 7.8 Illustration of Different Types of Distributions 

If the errors between the real values and forecast values follow a normal distribution, as 

defined in Case 1, the probabilities of small errors (close to 0%) are relative higher. In other 

words, the probabilities that large errors occur are smaller. Therefore, the probability of 

constraint violation is smaller. On the contrary, for Beta and Uniform distributions, the 

probabilities that large errors occur are relatively higher. When probabilities of large errors 

occur are high and the BoU is low, the PoS is reduced. 

Curve Fitting results for Case 1 

The curve fitting results for Case 1 is plotted below in Figure 7.9. The red curve depicts the 

results from MCS. The green triangles indicate the input for curve fitting algorithm. The blue 

curve is the curve fitting result. The green triangles are selected points from the MCS results, 

depicted as the red curve. Based on these input, the values of a, b and c as shown in equation 

(6.25) can be calculated. The blue curve is depicted based on calculated a, b and c. As can be 

observed, the estimated curve follows the original curve well. The original curve and the 

fitting results have a high correlation coefficient of 0.9624.  



150 

 

 

Figure 7.9 Curve Fitting Results of Case Study 1 

Curve Fitting results for Case 2 

The curve fitting results for Case 2 is plotted below in Figure 7.10. The red curve depicts the 

results from MCS. The green triangles indicate the input for curve fitting algorithm. The blue 

curve is the curve fitting result. The original curve and the fitting results have a high 

correlation coefficient of 0.9977. 

 

Figure 7.10 Curve Fitting Results of Case Study 2 
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Curve Fitting results for Case 3 

The curve fitting results for Case 3 is plotted below in Figure 7.11. The red curve depicts the 

results from MCS. The green triangles indicate the input for curve fitting algorithm. The blue 

curve is the curve fitting result. The original curve and the fitting results have a high 

correlation coefficient of 0.9994. 

 

Figure 7.11 Curve Fitting Results of Case Study 3 

Analysis of the Curve Fitting Results 

The OBoU based on MCS study are summarised below in Table 7.7. Due to the large sample 

size of MCS, the OBoU obtained can be seen as the real OBoU. Comparing the estimated 

OBoU listed to the real OBoU in Table 7.6, it can be seen that the curve fitting based 

approach can provide a good estimation of OBoU. Moreover, this method can reduce the 

computational cost of running MCS. In case 1 and 2, 15 and 19 steps of MCS are required. By 

adopting this method, the computational cost is reduced to between 20% and 30%. 

 OBoU 

Test case Case 1 Case 2 Case 3 

PDF type Normal Uniform Beta 

PoS 97%  2% 24% 21% 

PoS 100% 15% 32% 29% 

Table 7.7 OPTIMAL BOU FOR 97% AND 100% POS 
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As can be observed in Figure 7.10 and Figure 7.11, for case 2 and 3, at low BoU, the 

difference between the real PoS and the curve fitting results is relatively larger. However, at 

high BoU, the difference reduces. PoS represents the level of risk, in this case, the risk of 

RTTR violation of OHL and transformers happening. It is unlikely that the PoS is set to a 

small number. Therefore, this curve fitting technique, combined with MCS can provide 

accurate estimation of OBoU. 

7.3.5 Comparison with Optimal Power flow 

The proposed method is compared to two forms of optimal power flow (OPF) scheduling 

schemes, nominal OPF (NOPF) and conservative OPF (COPF). NOPF uses the nominal as 

input and therefore does not consider any uncertainty. On the other hand, COPF considers the 

worst case scenario. In this case, COPF uses the maximum possible wind speed and minimum 

RTTR. The PoSs of the calculated OBoU and OPF approaches are tested with MCS. Test 

results are summarized in Table 7.8. 

 PoS 

Test Case 1 Case 2 Case 3 

PDF type Normal Uniform Beta 

NOPF 60.72% 41.52% 11.40% 

97% Estimated OBoU 98.90% 95.97% 98.0% 

100% Estimated OBoU 99.96% 99.90% 100.0% 

COPF 100% 100% 100% 

100% BoU 100% 100% 100% 

Table 7.8 PoS Test Results 

As can be observed, without considering the uncertainty, the solution of NOPF results in low 

PoS. Meanwhile, the result of the COPF method, results in 100% PoS. It can be also seen that, 

the estimated OBoU is able to provide reliable solutions. It can be observed that the proposed 

method is able to calculate the OBoU for a desired PoS. Therefore the level of conservatism 

can be adjusted. 

Charge and discharge profiles in Case 1 for COPF, NOPF, and the RO scheme with 100% and 

97% PoS are compared in Figure 7.12. As shown in this figure, compared to COPF, the 

proposed scheme can reduce the maximum discharge power from 11MW to 9MW and also 

ensuring that the constraints are fully protected against uncertainty. 
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Figure 7.12 ESS Charge and Discharge Profiles in Case 1 

The SoC change during this period is compared in Figure 7.13. During the discharge period 

between 09:00 to 13:00, compared to OPF, the ESS energy exchange requirement can be 

reduced by 9.9MWh and 5.6MWh at 97% and 100% PoS respectively. 

 

Figure 7.13 SoC Comparison in case 1 
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The maximum discharge power and the SoC change for 97% and 100% PoS in all test cases 

are listed in Table 7.9. As can be observed, instead of scheduling the system for 100% PoS, a 

reduced requirement of 97% can reduce the required rated power and energy capacity of the 

ESS unit. Furthermore, the reduced duty on the EES unit decelerates the degradation of the 

unit. 

 Maximum Discharge (MW) DSoC (MWh) 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

NOPF 10.4 10.4 10.4 19.76 19.76 19.76 

97% 7.90 9.80 9.54 14.75 22.37 21.24 

100% 9.00 10.41 10.18 19.00 25.26 24.19 

COPF 11.10 11.10 11.10 24.62 24.62 24.62 

Table 7.9 PoS of Estimated OBoU 

7.4 IEEE 118 busbar network 

The proposed scheduling scheme is applied to IEEE 118 busbar network. A diagram of the 

IEEE 118 network is given below. 
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Figure 7.14 IEEE 118 busbar network 

8 ESSs and 10 RESs have been connected to this network. The locations and ratings of ESSs 

are summarised below. 

No. Busbar P Rating (MW) Q Rating (MVAr) S Rating(MVA) Capacity (MWh) 

1 11 100 100 100 500 

2 20 100 100 100 500 

3 24 80 80 80 240 

4 37 50 50 50 200 

5 38 75 75 150 300 

6 71 100 100 100 500 

7 116 100 100 100 500 

8 117 80 100 100 500 

Table 7.10 ESS in IEEE 118 Network 
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The locations and ratings of the RESs are summarised below. 

No. Busbar P Rating (MW) Type 

1 3 75 Wind 

2 4 75 Wind 

3 11 75 Wind 

4 12 80 Wind 

5 28 80 Wind 

6 31 80 Wind 

7 35 40 Wind 

8 36 40 Wind 

9 72 50 Wind 

10 73 60 Wind 

Table 7.11 Locations and Ratings of RESs 

The profiles for RES generation are plotted below 

 

Figure 7.15 RES output plot 

The same load profile used in the IEEE 14 busbar network has been used for this study. Half-

hourly load data has been used. The load has been scaled for this case study. The ratings of 30 

branches have been added. The scheduling algorithm was applied to a four-hour period 

thermal excursion. 
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It is assumed that all busbars have uncertain load. The uncertainty intervals are consistent 

with the previous study on the 14 busbar network. In this case study, both OBoU estimation 

approaches introduced in section 6.5 have been used. Based on the first approach, the 

estimated OBoU for 100% PoS is 45.6%. The curve fitting based approach, approach 2 is 

used to calculate OBoU for all three cases as well. Based on the estimated BoU, charging and 

discharging profiles for all six ESSs can be calculated. Next, the PoS for the solutions based 

on different methods are evaluated through MCS. The test results for 100% PoS are 

summarised below in Table 7.12. 

PoS Case 1 Case 2 Case 3 

NOPF 48.96% 48.76% 13.90% 

Approach 1 – 100% 100.0% 100.0% 99.98% 

Approach 2 – 100% 100.0% 100.0% 100.0% 

COPF 100.0% 100.0% 100.0% 

Table 7.12 PoS Results for 100% PoS 

As can be observed, both OBoU estimation approaches can guarantee high PoS. Meanwhile, 

the costs for all the approaches are compared below. COPF has the highest cost. The costs for 

NOPF and RO based methods are given as the percentage of COPF cost. 

PoS Case 1 Case 2 Case 3 

NOPF 28.8% 28.8% 28.8% 

Approach 1 – 100% 96.5% 96.5% 96.5% 

Approach 2 – 100% 81.5% 88.3% 89.1% 

COPF 1 1 1 

Table 7.13 Cost Results 

As can be observed, the RO based approach can provide solutions with high PoS and also 

reduces the cost. The reason RO can provide solutions with high PoS and reduced cost is that, 

COPF considers the worst case scenario, which means all uncertain values take values at their 

lower or upper bounds. However, it is unlikely that all uncertain values take values near their 

lower or upper bounds. On the other hand, the proposed scheme is able to realize the trade-off 

between the cost and the probability of constraint violations. Therefore the requirements for 

ESS power and energy rating can be reduced. 
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7.5 Discussion and Conclusion 

In this case study, it is assumed that the uncertainty intervals remain the same for all the 

timesteps. For instance, it is assumed that the errors for load forecasts are 5% for all the 

timesteps for the next 24 hours. However, the errors of load forecast and generation forecast 

are different, 5% and 10% respectively in this case study. As shown in [121] and [123], the 

forecast errors increase with the length of time. The assumption of unified uncertainty 

intervals for the same type of input value for different timesteps does not affect the evaluation 

of the proposed scheduling scheme. As shown in equation (5.20) to (5.27), the uncertainty 

interval �̂�𝑖,𝑗 is treated as constants in constraint equation (5.22). Therefore, the formulation 

proposed in this thesis is capable to deal with varying uncertainty intervals for the same value 

at different timesteps. 

This work describes a new application of RO for solving an ESS scheduling problem 

considering new sources of uncertainty, namely the uncertainty of RTTR and ESS SoC. The 

scheduling of ESS, compared to aforementioned RO applications, involves bidirectional 

power flow and is constrained by the available energy resource from ESS. The formulation 

proposed in this work considers the SoC constraint so that ESSs, which are currently 

expensive and fragile, can be protected from over-charging and over-discharging. 

Furthermore, the proposed cost function takes into account the capital cost and the SoH of 

different ESSs. The uncertainty of RTTR is influenced by a number of factors including 

model limitations and measurement accuracy of environmental factors such as wind speed 

and direction. Therefore, developing appropriate PDFs for RTTR in large networks is almost 

an impossible task. This poses difficulties for techniques that demand PDFs. 

The proposed RO scheduling scheme is compared to OPF techniques. Reliability test results 

through MCS with 5,000 samples for all scheduled timesteps on IEEE 14 and 118 busbar 

networks with real wind, load and RTTR data are presented. Test results show that classical 

OPF approaches which do not consider uncertainty, when coupled with RTTR and ESS, result 

in a low PoS In comparison with COPF, which also provides high PoS, the proposed RO 

scheduling scheme is able to reduce the power and energy requirement to solve a line RTTR 

violation under uncertainty. The reduced ESS requirements would reduce the power rating 

and energy capacities required for the ESS and slow the cyclic degradation of the system. 

In addition, two methods have been introduced to estimate the trade-off between the cost and 

the probability of constraint violations. The first approach results in a slightly conservative 

solution for small networks. When applied to a large network, the approach can reduce the 
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requirements for ESS power rating and energy capacity. The second approach, which uses a 

moderate number of MCSs coupled with LMA curve fitting technique, has been proposed to 

estimate the optimal BoU, to ensure a desired level of PoS. Simulation results show that, the 

proposed methodology is able to provide an ESS charge and discharge profile that ensures a 

desired level of probability of success. It has also been found that, reducing the PoS 

requirement from 100% to 97%, the proposed method can further reduce the power and 

energy requirements of ESS. The case study results show that, reducing the PoS requirement 

by 3% reduces the capacity requirement of ESS by up to 4.25 MWh. The scheme proposed in 

this paper provides a practical solution to ESS scheduling problems under uncertainty to 

facilitate high penetrations of RES.  

 

 





161 

 

Chapter 8.  Discussion 

8.1 Introduction 

In this thesis, an investigation of the use of ESS, DSR and RTTR as an alternative approach to 

network reinforcement to accommodate LCTs is presented. A discussion regarding using 

smartgrid technologies and techniques for deferring or avoiding network reinforcement is 

provided in section 8.2. Based on the review of the state of the art of control and scheduling 

systems presented in Chapter 2, it is found that most algorithms ignore the stochasticity of 

load, DG and as well as RTTR. In Chapter 3, control schemes based on sensitivity factors and 

cost sensitivity factors are presented and evaluated. The merits and drawbacks of SF and CSF 

based methods are given in section 8.3. In Chapter 4, sources of uncertainties are reviewed. 

The importance of considering and dealing with uncertainty appropriately is discussed in 

section 8.4. A study of the impact of EV charging on distribution networks is carried out. The 

implications of this study are summarised in section 8.5. In Chapter 6 and Chapter 7, a 

scheduling scheme for ESS and DSR based on RO is proposed and evaluated. RO uses 

uncertainty intervals (UIs) rather than probability distribution functions (PDFs). The relative 

strengths and weaknesses of this RO based ESS scheduling method are compared to other 

methods, such as MCS and PEM in 8.6.3. 

8.2 Network Reinforcement vs Smartgrid Technologies and Techniques 

In this section, the strengths and weaknesses of using smartgrid technologies and techniques 

compared to network reinforcement are discussed. The control and scheduling methodologies 

discussed in this thesis are shown to be alternative solutions to conventional network 

reinforcement in certain scenarios. It has been demonstrated that smartgrid enabled solutions 

with ESS, DSR and RTTR are more flexible than network reinforcement and are able to better 

utilise the current capacities of existing distribution network infrastructure. 

 The cost of DSR and RTTR can be lower than network reinforcement 

Network infrastructure reinforcement is expensive and requires construction works. 

The implementation of ESS, DSR and RTTR, on the other hand, require minimum 

construction and the cost of DSR and RTTR can be much lower than that of network 

reinforcement. In Chapter 3 and Chapter 4, real world I&C DSR trial results have been 

reported. The cost of these DSR and network reinforcement has been compared in 

[201]. It is estimated that the cost of replacing a transformer at a substation to increase 

the capacity by 6MVA is approximately £1.5million. On the other hand, I&C DSR 

customers are paid for £200 per hour for 1MW of reduction. Therefore, if the overload 
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is not persistent and frequent, DSR and RTTR can be more cost effective than network 

reinforcement. 

 Smartgrid technologies have higher flexibility 

The installation of ESS, DSR and RTTR is more flexible than network reinforcement. 

Besides, they can be installed in modules and are expandable. Smartgrid technologies 

and techniques can be installed at specific locations such as end of feeders or close to 

DGs and customers. 

 Extra control capabilities 

ESS, DSR and RTTR have more control capabilities than conventional methods. 

Conventionally, it is difficult for the DNO to deal with unbalance between feeders and 

phases with conventional technologies, such as OLTCs. ESS and DSR can be used to 

deal with feeder and phase unbalance. 

 ESS is a dependable and certain solution to deal with uncertainty 

The uncertainty in distribution networks due to the uptake of DGs and LCTs is likely 

to increase. Compared to DSR and RTTR, ESS is a dependable and certain solution to 

deal with network uncertainty. 

On the other hand, there are also some drawbacks of smartgrid interventions. 

 Requirements for the implementation of DSR 

First of all, the awareness of DSR customers needs to be improved. Secondly, the 

rollout of DSR requires the installation of smart meters and measurements. Finally, 

lack of market structure and supporting policies is also a hurdle for the widespread use 

of DSR. 

 Requirements for Information Communication Technology (ICT) 

Compared to decentralised or conventional technologies and techniques, centralised 

smartgrid technologies and techniques rely on communication infrastructures. 

Centralised smartgrid technologies and techniques are likely to fail without a reliable 

communication system. Furthermore, network components will be used closer to their 

limits after the implementation of smartgrid. Therefore, the failure of the control 

system poses a higher risk than before. 

 DSR and RTTR introduce extra uncertainty and risk 

The use of DSR and RTTR introduces new sources of uncertainty and increases the 

risk for the control and scheduling of distribution networks. Especially with RDSR 

enabled customers, it is difficult to predict the duration and magnitude of the response 
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that will be provided. The payback characteristics need to be well understood so that it 

does not cause any further network constraint violations. 

The RTTRs of conductors depend on weather conditions. The implementation of 

RTTR can also bring uncertainty due to weather measurements and model accuracy. In 

most scenarios, RTTR is higher than static ratings, which means the conductors are 

operated closer to their physical limits. Therefore, errors in RTTR can lead to 

conductor damage. 

 Limitation of ESS 

Currently, the cost of ESS is still high and the lifetime is relatively short. For instance, 

the cycling times (number of cycles) for Li-ion batteries are estimated to 1,000- 

10,000  at a cost of $600 to 2500 per kWh [202]. The deployment of ESS may not be 

cost effective if ESS is used for single application. On the other hand, considering its 

finite resource available, ESS may not have enough resource for later usage if its SoC 

is not managed well. 

 Increased losses 

In some cases, the deployment of smartgrid technologies and techniques can increase 

network losses. For instance, RTTR allows higher current to go through the conductor. 

This will increase the losses. 

8.3 Sensitivity Factors 

8.3.1 Variation of Sensitivity Factors 

In Chapter 3, two methods to calculate sensitivity factors are introduced. The first approach 

derives sensitivity factors from the Jacobian matrix or DC load flow equation. The second 

approach applies a small power injection/extraction change ∆𝑃𝑘 at bus 𝑘 and calculates 

sensitivity factors based on the voltage and power flow change due to ∆𝑃𝑘. Figure 8.1 

illustrates the difference between these approaches. This plot is extrapolated from 

experimental results shown in Figure 3.31. 
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Figure 8.1 Comparison of Different Approaches to Calculate Sensitivity Factors  

In this figure, the black curve is an example voltage trajectory of bus 𝑖 due to power injection 

from bus 𝑘. The rates of the blue lines indicate the VSFs from bus 𝑘 to bus 𝑖, calculated by 

different methods. 

The first line from the top shows the VSF calculated based on Jacobian matrix. Denoting the 

original power injection from bus 𝑘 as 𝑃𝑘, the VSF based on Jacobian matrix is given as 

 𝑉𝑆𝐹𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =
𝜕𝑉𝑖

𝜕𝑃𝑘
=

∆𝑉𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛

𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 (8.1) 

The line in the middle is the VSF calculated with the incremental method. Based on this 

method, the sensitivity factor is calculated as 

 𝑉𝑆𝐹𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 =
∆𝑉𝑖,∆𝑃𝑘

∆𝑃𝑘
=

∆𝑉𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙

𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 (8.2) 

The actual voltage change ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 due to actual power injection 𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 is also 

illustrated on the graph. Based on ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛, the real VSF is calculated. The 

real VSF is shown as the bottom line. 
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 𝑉𝑆𝐹𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =
∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛

∆𝑃𝑘
=

∆𝑉𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙

𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 (8.3) 

In a voltage control scheme, 𝑉𝑆𝐹𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 or 𝑉𝑆𝐹𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 can be used to calculate the required 

power injection 𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛. As can be observed from this graph, sensitivity factors are related to 

the state or the operating point of the system. For the incremental method, the error of 

calculated sensitivity factors will reduce if ∆𝑃𝑘 is close to 𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛. However, without 

knowing 𝑃𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛, the state of the system is unknown and thus, it is not possible to calculate the exact 

sensitivity factor 𝑉𝑆𝐹𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛. 

8.3.2 Strength and Weakness of Sensitivity Factors 

As shown in Chapter 4, most analytical methods for dealing with uncertain problems can only 

be applied to linear problems. The use of VSF and PFSF is a linearization of the full quadratic 

AC loadflow calculation. DC loadflow is another approach to linearize the full AC loadflow 

equation. Compared to DC loadflow, the advantages of SFs are: 

 Reactive power 

Reactive power is neglected in DC loadflow based on the assumption that X>> R. At 

the same time, in DC loadflow it is assumed that all voltage magnitudes are 1.0. 

However, in distribution networks, the voltage profile will be more volatile and is not 

likely to be 1.0 pu constantly. Moreover, reactive power resource from ESS is not time 

limited. Using real power only will increase the power and energy requirement from 

ESS. 

 Voltage control 

DC loadflow is not able to deal with voltage problems with either real or reactive 

power. Therefore, DC loadflow may not be suitable for the purpose of distribution 

network control. 

However, the disadvantages of using sensitivity factors are 

 Need to be updated 

The weakness of the use of sensitivity factor is that SFs are related to the state or the 

operating point of the network. This indicated that SFs need to be updated for each 

timestep based on the forecast. In this thesis, the SFs are calculated based on loadflow 

equations with updated load and generation values for each timestep to enhance 

accuracy. 

 Assumption of small state change due to uncertainty 
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Most analytical methods for dealing with uncertainty require the linearization of the 

problem. If SFs are used for the linearization process, the underpinning assumption is 

that uncertainty does not cause dramatic changes in the state of the system. For 

instance, large variation between the real values and forecast of load and/or generation 

can change voltage magnitudes and even the direction of power flow. The sensitivity 

factors calculated based on the forecast values are therefore very different compared to 

the real sensitivity factors. As a result, decisions made with these methods are likely to 

be inaccurate or even fail. 

 Superposition 

If multiple control interventions are included in the decision making process, the 

superposition of the effects due to the adopted interventions is not linear. The use of 

sensitivity factors cannot capture the interactions between the interventions. 

8.4 The Importance of Considering Uncertainty 

Without appropriate methods to deal with uncertainty, two extreme approaches can be taken 

to avoid network limit violations. These approaches can be separated into a scheduling stage 

and a control stage. Schedules can be made from hours to one day ahead. When the schedules 

are being implemented, real time control is required if an excursion occurs. 

The first approach makes schedules without considering the presence of uncertainty. All 

scheduling decisions are made based on the nominal forecast values. During control stage 

when schedule is being implemented, if an excursion happens, real time control procedures 

will be taken to ensure the network operates within its limits. However, without considering 

uncertainty, ESSs may not have enough SoC to deal with the excursion. Therefore, more 

expensive solutions, such as DG curtailment or diesel generators, may be used. Besides, if 

ESS is used for multiple purposes, it may not be available when it is needed. 

The second approach is fully conservative and makes schedules for the worst case scenario 

even though it is unlikely to happen. This approach considers the impacts of uncertainty but 

ignores the distributions of uncertainty within the uncertainty intervals. This approach 

increases the reliability and PoS but also increases unnecessary cost. Smartgrid interventions 

such as ESS and DSR are likely to be used more intensively in this approach. 

The first approach is aggressive and ignores uncertainty. The second approach is conservative 

and prepares for the worst case. In scenarios where the level of risk is very low, which mean 

the possibilities of large errors happening are low, it is possible that the first aggressive 

approach incurs lower cost than the conservative approach. 
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8.5 The Impact of LCTs on Distribution Networks 

The performance of conventional control and scheduling algorithms may not be adequate in 

the presence of a range of sources of uncertainty. In section 4.4, the impact of EV charging 

has been studied. 

In this study two unique datasets of real world EV charging and load profile from smart meter 

measurement are combined using a probabilistic method. Previous work makes various 

assumptions regarding the spatial, temporal and behavioural diversity of EV charging. For 

instance, it is assumed EVs start to charge when they return home and/or charge from a low 

SoC until fully charged. In this work, the spatial, temporal and behavioural uncertainties have 

been taken into consideration using real world data and MCS. Using real charging profiles 

avoids the assumption of when EVs start to charge and the SoC change during charging. 

Compared to results which do not consider diversity, it is shown that, the spatial, temporal 

and behavioural diversity of EV charging alleviates the impacts on distribution networks. 

Therefore, compared with conservative consumptions such as all EVs start charging at the 

same time from low SoC to full, higher penetrations of EVs can be accommodated before 

triggering network reinforcement. 

The results of this study demonstrate that: 

 Uncertainty and diversity exist in LCT demands.  

As illustrated in Figure 4.15 and Figure 4.16, for a urban network with 60% 

penetration of EV, the mean peak apparent power demand is 400kVA and the 97.5
 

percentile of the samples has a peak demand of 500kVA. 

 The diversity of LCT demand lessens its impact on distribution networks 

 Without considering the uncertainty and diversity of LCT demands, the control, 

scheduling and planning decisions made by DNOs will be conservative 

8.6 Robust Optimization 

In Chapter 5, the principle of robust optimization (RO) is introduced. In Chapter 6, RO is 

applied to solve a scheduling problem for ESS and DSR. In this section, RO is compared with 

other techniques to deal with uncertainty such as chance constraint programming and MCS. 

How to select appropriate uncertainty intervals based on different types of distributions is 

discussed. Finally, the advantages and disadvantages of the MCS based curve fitting 

technique are introduced. 
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8.6.1 RO and Other Methods to Deal with Uncertainty 

In Chapter 4, a series of methods to deal with uncertainty are introduced. It has been found 

that most of the methods require the PDF of uncertain values. In Chapter 6, RO has been 

applied for the scheduling of ESS and DSR. Two methods to calculate BoU have been 

proposed. The first approach estimates the relationship between BoU and PoS regardless of 

the distribution of uncertainty sets. The second approach combines MCS and curve fitting 

technique to provide a more accurate mathematical description of the relationship between 

BoU and PoS. 

The proposed scheduling scheme presents several advantages compared to stochastic 

optimization and chance constraint programming techniques. Firstly, in scenarios where, for 

uncertain values, only their UIs exist or their PDFs are only partially available or even 

inaccurate, techniques such as stochastic optimization or chance-constraint programming are 

unable to solve the problem. On the other hand, it has been shown that the proposed RO based 

scheduling scheme is still able to provide robust solutions to avoid branch RTTR violation, 

with respect to ESS SoC limits and network voltage constraints. In such scenarios, the first 

PoS estimation approach is able to provide robust solutions based on simple calculations in a 

very short time even for a large network. 

As shown in section 4.2, most techniques cannot provide accurate PDFs for uncertain values. 

Even in scenarios where accurate PDFs are available for all the uncertain values, the 

advantages of RO based scheduling scheme still exist. Under such circumstances, both the 

estimation and the curve fitting based approaches can be used to calculate OBoU. The 

estimation approach can be applied to calculate a slightly conservative but robust solution in a 

very short time. Once the optimization problem is solved, the OBoU can be calculated with 

the simple equation given in (6.23). 

Curve fitting based approach constructs the function between BoU and PoS through MCS. 

MCS runs a large number of load flow calculations to compute the PoS at different BoU. The 

MCS process is relatively time consuming however it avoids any linearization of the network 

model. As a result, the curve fitting method is able to provide accurate solutions and ensure 

desired levels of PoS. The capability of adjusting the PoS is beneficial to the future 

deployment of ESS. As shown in Table 7.9, by accepting a PoS requirement of 97%, the 

proposed method can further reduce the power and energy requirements of ESS. In this case, 

the power requirement can be reduced by up to 12% and the energy requirement can be 

reduced by up to 22%. 
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8.6.2 Selection of Uncertainty Interval 

The selection of UI is important to the performance of RO. Conservative UI selection 

compromises the benefits of the proposed RO based approach. On the other hand, if the UIs 

are too narrow, which means uncertainty is underestimated; the probability of success 

achieved by RO based solutions will be reduced. 

Some forecast techniques, such as [126, 203, 204], are able to provide confidence intervals. 

The confidence intervals can be used as UIs. If the confidence intervals or the uncertainty 

intervals are 100%, RO based method can successfully solve the problem and tune the BoU to 

minimise the cost. However, if the confidence level of the confidence intervals is less 100%, 

95% for instance, RO can still provide solutions with high PoS. 

If PDFs for uncertainty values are available, depending on different types of uncertainty 

distribution, different strategies for selecting UI can be adopted. Data following uniform 

distributions and Beta distributions have relatively clear bounds so there is no need to define 

UIs. The upper and lower limits of uniform and Beta distributions can be used as UIs. Normal 

distributed data does not have clear bounds or minimum or maximum values. If uncertainty 

values follow normal distributions, UIs can be defined by three approaches. The three 

approaches are compared below. 

1) Large UIs combined with MCS curve fitting technique 

In this approach, large UIs are used in combination with curve fitting technique to decide 

the OBoU. For instance, five times the standard deviation of the normal distribution can 

be used as UIs. The drawback of this approach is that it is time consuming due to the 

MCS process. However, once an accurate relationship between BoU and PoS is found, the 

BoU can be adjusted to achieve the required PoS. As has been found, the flexibility to 

adjust BoU reduces the power and energy requirement for ESS and the need for DG 

curtailment. 

2) Large UIs without MCS curve fitting technique 

Similar to previous approach, large UIs are used. However, this approach only estimates 

the relationship between BoU and PoS based on the first bound introduced in section 5.4. 

This approach can be very conservative because this estimation ignores the distribution of 

the uncertainty values. However, this approach guarantees high PoS and is also time 

saving. 

3) Small to medium intervals without MCS curve fitting technique 

This approach uses 3 to 4 times the standard deviation as UIs and does not run MCS based 
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curve fitting. If small to medium UIs, i.e. 3 to 4 times standard deviation, are used, the 

BoU can be set to 100%. This is a time-saving approach since there is no need to run 

MCS. However, depending on how the UIs are selected, this approach can be conservative 

or risky. If the UIs chosen are small, e.g. 3 times the standard deviation, the results of this 

approach will have a low PoS. If the UIs chosen are large, this approach can be 

conservative. 

8.6.3 MCS Based Curve Fitting Technique 

The second approach to estimate the relationship between BoU and PoS is based on MCS. 

MCS poses heavy computational burden and is therefore time consuming. To be specific, 

depending on the size of the network and the number of uncertainties, at least a few hundreds 

of loadflow calculations are needed for each solution at the given BoU. If there is enough time 

before the schedule needs to be implemented, the use of MCS to decide the accurate 

relationship between BoU and PoS present some advantages: 

 As introduced earlier, SFs are a linearization of the system and may not always be 

accurate. If the state of the system varies greatly from the estimation, the SFs may not 

be adequate to make accurate and reliable decisions. In the MCS process, large 

numbers of loadflow calculations are carried out. The PoS are calculated based on full 

AC loadflow results. This process avoids any assumptions, including SFs, made in the 

linear optimization formulation. 

 The establishment of the accurate relationship between BoU and PoS enables a fine 

tuning of BoU so that desired PoS can be achieved. It has been found that a reduced 

but high PoS can reduce the power and energy requirement for ESS and maintain a 

high reliability at the same time. By reducing the required PoS, the requirements for 

ESSs can be reduced. This is very important for maximizing the benefits of ESS, 

which is currently expensive and fragile. 
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Chapter 9. Conclusion 

9.1 Overview 

In this thesis, the impacts of high penetrations of DG and LCTs on future distribution 

networks in terms of voltage and power flow are studied first. The limitations of existing 

control strategies for ESS and DSR in future scenarios where high penetrations of DG and 

LCTs exist have been explored. Thirdly, the impacts of a range of sources of uncertainties on 

the performance of conventional control algorithms are discovered. Finally, control and 

scheduling strategies for ESS and DSR to facilitate DG and LCTs in the presence of a range 

of source of uncertainties based on robust optimization is developed and evaluated. In this 

chapter, conclusions are drawn and future work is suggested. 

9.2 Conclusions 

The research question of this research is posed at the beginning of this thesis: if and when 

ESS and DSR can be alternative to network reinforcement? It has been found that, the 

collaborative use of ESS and DSR can be alternative to network reinforcement in some cases. 

Furthermore, the use of smartgrid technologies and techniques can provide more benefits 

compared to conventional network reinforcement. 

Key findings are summarized and explained below. 

1) Most previous research ignores the uncertainty in DSR, DG, RTTR and load and little 

previous work has considered the coordinated operation of ESS and DSR. 

In this thesis it has been found that, ESS and DSR have the capability to provide a number of 

services in assisting in the operation of distribution networks, especially in future networks 

with large penetrations of low carbon technologies such as wind generation, solar generation, 

EVs and heat pumps. Through literature review, it has been found that the majority of 

previous research ignores the uncertainty in DSR, DG, RTTR and load. Besides, most 

previous research has focused on DSM rather than DSR and ignores the uncertainty in the 

magnitude and duration of DSR. Besides, little previous work has considered the coordinated 

operation of ESS and DSR and has usually considered the control of these devices in isolation. 

ESS is a fully controllable and fast response device with relatively high cost and a limited 

energy resource. Compared to ESS, DSR is normally less controllable, slow to respond but 

with a relatively lower cost. At the same time, DSR resource or capacity is less constrained 

compared to ESS. Finally, for power flow management problems, much of the previous work 
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assumes a static asset rating rather than using RTTR. RTTR can enhance the utilization of 

cables and transformer and thus reduce the requirement for ESS and DSR. 

2) Collaborative control algorithms for ESS and DSR based on sensitivity factors and cost 

sensitivity factors are proposed. 

In chapter 3, VSFs and PFSFs are introduced. Two methods for calculate sensitivity factors 

have been introduced. The limitations and advantages of two methods are pointed out. Based 

on voltage and power flow sensitivity factors, the concept of voltage cost sensitivity factor 

and power flow cost sensitivity factors are proposed. Cost sensitivity factors evaluate an 

intervention using both technical and commercial considerations. Two control schemes based 

on sensitivity factors and cost sensitivity factors respectively, are presented. The proposed 

control algorithms use ESS and DSR collaboratively. This work has illustrated the 

complementary features of ESS and DSR which make the combination of ESS and DSR an 

attractive solution. 

In this work, cost functions for ESS, I&C DSR and RDSR have been developed, based on the 

cost of real ESS systems, real I&C DSR trial contracts and the value of RDSR to DNOs 

respectively. Multiple forms of DSR with varying magnitudes, locations and characteristics 

have been considered in this work. The strategies have been evaluated using a validated real 

network model and a realistic future scenario extrapolated from a large smart meter data set. 

In this future scenario, the present voltage control system with on load tap changer and 

capacitor banks is no longer able to function successfully. 

The proposed control schemes have been evaluated. Simulation results illustrate how the 

control strategy can be used as an attractive alternative to network reinforcement to solve the 

uncertain voltage problems due to the unpredictable rate and distribution of LCT installations. 

The proposed methods can deal with uncertainty to an extent and require no knowledge of the 

PDF of uncertainty. However, the proposed scheme is a passive control scheme which 

responds to measurements. Without forecast and planning, such schemes may be inadequate 

to deal with predictable future excursions. Moreover the proposed schemes are not able to 

provide a solution with minimum cost. Lastly, this control scheme does not take into 

consideration the timescale of ESS and DSR. ESS SoC management is critical to maximize its 

value. Due to the current high cost, under-utilised ESS is unlikely to be cost effective while 

unnecessary use of ESS can reduce its useful lifetime. 

3) Most methods to deal with uncertain problems require the PDF of the uncertain values. 
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However, accurate PDF of uncertain values is difficult to access and unlikely to be 

normally distributed 

In chapter 4, the sources of uncertainties are reviewed first. It has been found that, uncertainty 

exists in load, wind and wind power, RTTR, SoC and DSR. It can also be seen that the PDF 

of uncertainty is often difficult to access and unlikely to be normally distributed. Next, 

methods to deal with uncertainties have been reviewed and compared. The methods to deal 

with uncertainty include Monte Carlo simulation (MCS), chance constraint programming 

(CCP) and analytical probabilistic methods, such as point estimation method (PEM) and 

cumulant based method (CBM). The limitations of these methods are: 

 These methods require the PDF of the uncertain values. If PDFs are not available or 

only partially available, these methods are not able to solve the problem; 

 Some previous methods are not able to deal with asymmetrical distributions; 

 Most of these methods are not able to adjust the probability of success (PoS) of their 

solutions; 

 The results of MCS provide accurate description of the distribution of the output but is 

very time consuming. 

4) Spatial and temporal diversities in EV charging alleviate the stress on the distribution 

networks therefore it is important to deal with uncertainty properly to avoid making 

overly conservative decisions. 

In Chapter 4, the impact of EV charging on distribution networks is studied with MCS. Two 

real world datasets have been used to sample household load profiles and EV charging 

profiles. The use of real EV charging profiles avoids assumptions of EV charging patterns. 

This study shows the importance of dealing with uncertainty. If the diversity and the 

uncertainty of LCTs are not considered, decisions made for ESS and DSR will be 

conservative and the associated cost will increase. At the same time, it is also found that, the 

uncertainty of LCTs is difficult to describe mathematically. 

5) A scheduling scheme for ESS and DSR based on robust optimisation is proposed and 

evaluated. The proposed method is shown to have advantages over conventional 

techniques. 

In previous chapters, it has been found that there is a need for an algorithm to deal with 

uncertainty which: 
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 Requires minimum information about the uncertainty.  

 Require small or moderate computation time 

 Able to deal with asymmetrical distributions of uncertainties 

Based on literature, robust optimization (RO) has proved to be able to fulfil these 

requirements. In chapter 5, the general form of an uncertainty linear optimization (ULO) 

problem is presented. Three different formulations of RO are introduced. Three types of 

bounds are discussed to enable the probability of constraint violation. An RO solver in python 

is developed and validated. 

A new application of RO for solving an ESS scheduling problem considering new sources of 

uncertainty, namely the uncertainty of RTTR and ESS SoC is described. The proposed 

formulation considers the RTTR constraints, voltage constraints and ESS state-of-charge 

constraints. Furthermore, the proposed cost function takes into account the capital cost and the 

remaining cycles of ESSs. 

The proposed RO scheduling scheme is compared to normal and conservative OPF techniques. 

Compared to OPF results without considering uncertainty, the proposed method can guarantee 

high probability of success. In comparison with conservative form of OPF, the proposed 

method is able to achieve high PoS with reduced cost. 

6) The use of budget of uncertainty (BoU) can adjust the level of conservatism and therefore 

reduce the power and energy requirement from ESS. 

In the proposed RO based approach, BoU is introduced to control the level of conservatism. A 

high BoU ensures high PoS and a low BoU reduces the cost and also the PoS. To enable the 

trade-off between the cost and the PoS, two methods have been introduced. The first approach 

estimates the OBoU ignoring the distribution of the uncertainty. This approach results in a 

slightly conservative solution for small networks. When applied to a large network, the 

approach can reduce the requirements for ESS power rating and energy capacity. The second 

approach, which uses a moderate number of MCSs coupled with LMA curve fitting technique, 

has been proposed to estimate the optimal BoU, to ensure a desired level of PoS. This 

approach is relatively time consuming but has been found to be able to estimate the 

relationship between BoU and PoS with high accuracy. Simulation results show that, the 

proposed methodology is able to provide an ESS charge and discharge profile that ensures a 

desired level of PoS.  
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The capability of adjusting the solution so that a PoS of less than 100% can be achieved has 

been found valuable. As shown in the case study in Table 7.9, by accepting a solution with 97% 

PoS, the energy requirement for ESS can be reduced by up to 22.4% and the power 

requirement can be reduced by up to 12.2%. 

7) Simulation results also show that the proposed method based on RO is able to deal with 

asymmetrical uncertainty data. 

As has been shown before in section 4.3, some analytical methods for dealing with 

uncertainty assume the distributions of uncertainty data are symmetrical. In reality, however, 

it is very unlikely that the uncertainty data is always symmetrically distributed. By testing the 

proposed approach with Beta distribution data, it is found that the proposed method is able to 

deal with both symmetrical and asymmetrical uncertainty data. 

9.3 Future work 

Future work to extend the research described in this thesis is suggested below. 

First of all, ramp rates of ESSs are not considered in the RO formulation. If fast response 

storage systems are used, it is reasonable to assume that ESSs can change their output rapidly 

from the previous timestep to the required output in the next timestep. If shorter timesteps (e.g. 

5 minutes) and slower response energy storage system such as hydro pump storage are 

considered, their ramp rates should be considered in the formulations. 

In this thesis, a scheme problem for ESS has been formulated as an uncertain linear 

optimization (ULO) problem and solved by robust optimization. This formulation deals with 

uncertain values with uncertainty intervals. An uncertainty interval is a range that uncertain 

value varies. This formulation is not able to deal with mixed integer problems such as the 

uncertainty of if a I&C DSR customer is able to provide a response and an unpredicted N-1 

condition. The formulation can be extended to deal with the uncertainty of if DSR can be 

delivered and contingency. 

The correlation between different uncertainties is not considered although the formulation of 

RO is able to deal with correlated uncertainty datasets. For instance, if wind speed is 

underestimated, compared with forecast, both the output of windfarm and the RTTRs of 

adjacent OHLs will increase. Taking this correlation into consideration is likely to further 

increase the benefits of RO based approach. 
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Appendix A.  Loadflow Calculation 

Load flow calculations have been introduced in [100, 145, 151]. In section, load flow 

equation is introduced and solve with Newton-Raphson method. Next, P-Q decoupled 

methods and DC load flow, which are simplifications of the full AC load flow equations, are 

introduced. 

Loadflow and Jacobian Matrix 

In a network with 𝑁𝑏𝑢𝑠 busbars, the standard node voltage equations can be written as 

 𝑰 = 𝒀 ∙ 𝑽 (A.1) 

Where 

𝑰   is the bus current injection vector 

𝒀   is the bus admittance matrix 

𝑽   is the bus voltage vector 

Non-diagonal elements of 𝒀 is calculated as 

 𝑌𝑖𝑗 = −
1

𝑟𝑖𝑗 + 𝑗𝑥𝑖𝑗
= 𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 , 𝑖 ≠ 𝑗 (A.2) 

Where 

𝑟𝑖𝑗   the per unit resistance of branch from busbar 𝑖 to busbar 𝑗 

𝑥𝑖𝑗   the per unit reactance of branch from busbar 𝑖 to busbar 𝑗 

𝐺𝑖𝑗   the per unit conductance of branch from busbar 𝑖 to busbar 𝑗 

𝐵𝑖𝑗   the per unit susceptance of branch from busbar 𝑖 to busbar 𝑗 

𝑌𝑖𝑗 is a complex number and can be recorded in the polar form as 

 

 𝑌𝑖𝑗 = −𝑦𝑖𝑗∠𝜙𝑖𝑗 , 𝑖 ≠ 𝑗 
(A.3) 

Where 
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𝜙𝑖𝑗   is the angle of the vector 

𝑦𝑖𝑗   is the length of the vector 

For the diagonal elements of 𝒀, as known as self-admittance of bus 𝑖 can be calculated as 

 𝑌𝑖𝑖 = ∑𝑦𝑖𝑗∠𝜙𝑖𝑗

𝑛

𝑗=1

+ ∑𝑗
𝐵𝑖𝑗

2

𝑛

𝑗=1

, 𝑖 ≠ 𝑗 (A.4) 

Where 

𝐵𝑖𝑗   is the charging capacitance of branch from busbar 𝑖 to busbar 𝑗 

The complex power injection of bus 𝑖 is defined as 

 𝑆𝑖
∗ = 𝑃𝑖 − 𝑗𝑄𝑖 = 𝑆𝐺𝑖

∗ − 𝑆𝐷𝑖
∗ = (𝑃𝐺𝑖 − 𝑃𝐷𝑖) − 𝑗(𝑄𝐺𝑖 − 𝑄𝐷𝑖) (A.5) 

Where 

𝑆𝑖   the complex power injection of busbar 𝑖 

𝑆𝑖
∗   the conjugation of 𝑆𝑖 

𝑃𝑖   the net real power injection of busbar 𝑖 

𝑄𝑖   the net reactive power injection of busbar 𝑖 

𝑆𝐺𝑖
∗    the conjugation of 𝑆𝐺𝑖 which is the apparent power generation of busbar 𝑖 

𝑆𝐷𝑖
∗    the conjugation of 𝑆𝐷𝑖  which is the apparent power demand of busbar 𝑖 

𝑃𝐺𝑖   the real power output of generators connected to busbar 𝑖 

𝑄𝐺𝑖    the reactive power output of generators connected to busbar 𝑖 

𝑃𝐷𝑖   the real power demand of busbar 𝑖 

𝑄𝐷𝑖   the reactive power demand of busbar 𝑖 

The complex power injection can be calculated by 

 𝑆𝑖
∗ = 𝑉𝑖

∗𝐼𝑖 (A.6) 

Substituting equation (A.5) into (A.6) 
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 𝑺∗ = 𝑷 − 𝑗𝑸 = 𝑽∗𝒀𝑽 (A.7) 

Where 

𝑷   is the vector of net real power injection of busbars 

𝑸   is the vector of net reactive power injection of busbars 

Separating the real and imaginary parts of (A.7) 

 

𝑃𝑖 = 𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)

𝑛

𝑗=1

 

𝑄𝑖 = 𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗 sin  𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)

𝑛

𝑗=1

 

(A.8) 

where 

𝜃𝑖𝑗   the angle difference between busbar 𝑖 and busbar 𝑗 

Equation (A.8) can be written as 

 [
𝑷
𝑸

] = 𝑔 ([
𝜽
𝑽
]) (A.9) 

The equation in (A.9) can be solved with the Newton-Raphson method. Base on the Newton-

Raphson method, for each PV and PQ busbar, the real and reactive power mismatch can be 

calculated as 

 [
∆𝑷
∆𝑸

] = [

𝜕∆𝑷

𝜕𝜽

𝜕∆𝑷

𝜕𝑽
𝜕∆𝑸

𝜕𝜽

𝜕∆𝑸

𝜕𝑽

] [
∆𝜽
∆𝑽

] = −𝑱 [
∆𝜽

∆𝑽/𝑽
] (A.10) 

Where 

 𝑱   the Jacobian matrix 

𝜕∆𝑷
𝜕𝜽⁄   the matrix for the partial derivatives of ∆𝑷 to 𝜽 

𝜕∆𝑷
𝜕𝑽⁄   the matrix for the partial derivatives of ∆𝑷 to 𝑽 

𝜕∆𝑸
𝜕𝜽⁄   the matrix for the partial derivatives of ∆𝑸 to 𝜽 
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𝜕∆𝑸
𝜕𝑽⁄   the matrix for the partial derivatives of ∆𝑸 to 𝑽 

Assuming bus 1 to bus 𝑁𝑃𝑄 are PQ buses, bus 𝑁𝑃𝑄 + 1 to bus 𝑁𝑏𝑢𝑠 − 1 are PV buses, bus 

𝑁𝑏𝑢𝑠 is slack bus 

∆𝑷 = [

∆𝑃1

∆𝑃2

⋮
∆𝑃𝑁𝑏𝑢𝑠−1

] 

∆𝑸 = [

∆𝑄1

∆𝑄2

⋮
∆𝑄𝑁𝑃𝑄

] 

∆𝜽 = [

∆𝜃1

∆𝜃2

⋮
∆𝜃𝑁𝑏𝑢𝑠−1

] 

∆𝑽 = [

∆𝑉1

∆𝑉2

⋮
∆𝑉𝑁𝑃𝑄

] 

𝑁𝑃𝑄   the number of PQ buses 

𝑁𝑃𝑉   the number of PV buses 

The elements in (A.10) are calculated as 

 
𝜕∆𝑃𝑖

𝜕𝜃𝑖
= 𝑉𝑖

2𝐵𝑖𝑖 + 𝑄𝑖 
(A.11) 

 𝜕𝑃𝑖

𝜕𝜃𝑗
= −𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗), 𝑖 ≠ 𝑗 (A.12) 

 𝜕∆𝑃𝑖

𝜕𝑉𝑖
𝑉𝑖 = −𝑉𝑖

2𝐺𝑖𝑖 − 𝑃𝑖 (A.13) 

 𝜕𝑃𝑖

𝜕𝑉𝑗
= −𝑉𝑖(𝐺𝑖𝑗 cos𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin𝜃𝑖𝑗), 𝑖 ≠ 𝑗 (A.14) 

 𝜕𝑄𝑖

𝜕𝜃𝑖
= 𝑉𝑖

2𝐺𝑖𝑖 − 𝑃𝑖 (A.15) 

 𝜕𝑄𝑖

𝜕𝜃𝑗
= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin𝜃𝑖𝑗), 𝑖 ≠ 𝑗 (A.16) 
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 𝜕𝑄𝑖

𝜕𝑉𝑖
= 𝑉𝑖

2𝐵𝑖𝑖 − 𝑄𝑖 (A.17) 

 𝜕𝑄𝑖

𝜕𝑉𝑗
= −𝑉𝑖(𝐺𝑖𝑗 sin𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗), 𝑖 ≠ 𝑗 (A.18) 

P-Q Decoupling Method 

The full AC loadflow calculation is of high accuracy but the Jacobian matrix needs to be 

calculated in each iteration. To simplify this process, P-Q decoupling method has been 

proposed [205]. P-Q decoupling method assumes that  

i. the coupling between the real power and the magnitude of voltage is weak and thus  

 
∂∆𝑃𝑖

∂𝑉𝑗
≈ 0 (A.19) 

ii. the coupling between the reactive power and the angle of voltage is weak and thus  

 
∂𝑄𝑖

∂𝜃𝑗
≈ 0 (A.20) 

Based on the assumptions (A.19) and (A.20), equation (A.10) becomes, 

 [
∆𝑷
∆𝑸

] = [

𝜕𝑷

𝜕𝜽
0

0
𝜕𝑸

𝜕𝑽

] [
∆𝜽
∆𝑽

] (A.21) 

𝜕𝑷
𝜕𝜽⁄  and

𝜕𝑸
𝜕𝑽⁄  as given in (A.11) - (A.18) can be further simplified. Assuming the angle 

between busbar 𝑖 and 𝑗 is small so that cos 𝜃𝑖𝑗 ≈ 1, (A.12) becomes  

 
𝜕𝑃𝑖

𝜕𝜃𝑗
≈ −𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin𝜃𝑖𝑗 − 𝐵𝑖𝑗) (A.22) 

Assuming sin 𝜃𝑖𝑗  is a very small number and 𝐺𝑖𝑗 sin 𝜃𝑖𝑗 ≪ 𝐵𝑖𝑗, (A.22) becomes 

 
𝜕𝑃𝑖

𝜕𝜃𝑗
≈ 𝑉𝑖𝑉𝑗𝐵𝑖𝑗 (A.23) 

Assuming 𝑉𝑖
2𝐵𝑖𝑖 ≫ 𝑄𝑖 and (A.11) becomes 

 
𝜕∆𝑃𝑖

𝜕𝜃𝑖
≈ 𝑉𝑖

2𝐵𝑖𝑖 
(A.24) 

Similarly (A.17) and (A.18) become 

 
𝜕𝑄𝑖

𝜕𝑉𝑖
≈ 𝑉𝑖

2𝐺𝑖𝑖 
(A.25) 
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𝜕𝑄𝑖

𝜕𝑉𝑗
= −𝑉𝑖𝐵𝑖𝑗 (A.26) 

Based on the above assumptions (A.21) becomes  

 [
∆𝑷
∆𝑸

] = [
𝑽𝑩′𝑽 0

0 𝑽𝑩′′𝑽
] [

∆𝜽
∆𝑽

] (A.27) 

Where 

𝑩′   is a 𝑁𝐵𝑢𝑠 − 1 by 𝑁𝐵𝑢𝑠 − 1 matrix 

𝑩′′   is a 𝑁𝑃𝑄 by 𝑁𝑃𝑄 matrix 

𝑩′ = −

[
 
 
 

𝐵11 𝐵12 ⋯ 𝐵1,𝑁𝐵𝑢𝑠−1

𝐵21 𝐵22 ⋯ 𝐵2,𝑁𝐵𝑢𝑠−1

⋮ ⋮ ⋮
𝐵𝑁𝐵𝑢𝑠−1,1 𝐵𝑁𝐵𝑢𝑠−1,2 ⋯ 𝐵𝑁𝐵𝑢𝑠−1,𝑁𝐵𝑢𝑠−1]

 
 
 

 

𝐁′′ = −

[
 
 
 
 

𝐵11 𝐵12 ⋯ 𝐵1,𝑁𝑃𝑄

𝐵21 𝐵22 ⋯ 𝐵2,𝑁𝑃𝑄

⋮ ⋮ ⋮
𝐵𝑁𝑃𝑄,1 𝐵𝑁𝑃𝑄,2 ⋯ 𝐵𝑁𝑃𝑄,𝑁𝑃𝑄]

 
 
 
 

 

(A.27) can be divided into two separate parts, given as 

 
∆𝑷 = 𝑽𝑩′𝑽∆𝜽 

∆𝑸 = 𝑽𝑩′′𝑽∆𝑽 

(A.28) 

Thus, real power P and reactive power Q are decoupled and the iteration can be carried out 

separately. The relationship between real power and voltage magnitude and the relationship 

between reactive power and reactive power and voltage angle are ignored. 

There are two methods to calculate the elements of 𝑩′ and 𝑩′′, BX and XB versions. For the 

XB version, it is assumed that 𝑟𝑖𝑗 ≪ 𝑥𝑖𝑗 and the shunt reactance to the ground is ignored 

𝐵𝑖0 = 0, 𝑩′ and 𝑩′′ are calculated as 

 𝐵𝑖𝑗
′ = −

1

𝑥𝑖𝑗
 (A.29) 

 𝐵𝑖𝑖
′ = ∑

1

𝑥𝑖𝑗
𝑗≠𝑖

 (A.30) 

 𝐵𝑖𝑗
′′ = −

𝑥𝑖𝑗

𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2  (A.31) 
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 𝐵𝑖𝑗
′′ = −∑𝐵𝑖𝑗

′′

𝑗≠𝑖

 (A.32) 

DC Loadflow 

DC loadflow is a further simplification of XB version P-Q decoupling method. The 

relationship between reactive power and voltage is ignored. (A.27) can be rewritten as  

 ∆𝑷 =  𝑽𝑩′𝑽∆𝜽 (A.33) 

In DC loadflow, it is assumed that 𝑉𝑖 = 1.0. Therefore (A.33) will be 

 ∆𝑷 =  𝑩′∆𝜽 (A.34) 

Thus, the nonlinear relationship between real and reactive power and voltage angle and 

magnitude, as defined in (A.10) can be simplified to a linear function between real power and 

voltage angle. The power flow on each branch can be calculated as 

 𝑃𝑖𝑗 = −𝐵𝑖𝑗(𝜃𝑖 − 𝜃𝑗) =
𝜃𝑖 − 𝜃𝑗

𝑥𝑖𝑗
 (A.35) 
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Appendix B.  Code for Running Loadflows with EV and Smart Meter 

Profiles 

def backup(): 

    #get the network P and Q demand without scaling 

    P_noscale = 0.0 

    Q_noscale = 0.0 

    #Set_Load(otherloadname, 0 ,0) 

    net.DoLoadFlow() 

 

    P_noscale, Q_noscale = Total_Load_Noloss() 

 

    #back up P and Q load at each busbar 

    count = 0 ###'count' is used to count the number of load 

in the original model 

    for load in loads.itervalues(): 

        

Load_P.append(float(load.GetDValue(ipsa.IscLoad.RealMW))) 

        

Load_Q.append(float(load.GetDValue(ipsa.IscLoad.ReactiveMVAr))) 

        count = count + 1 

    return count, P_noscale, Q_noscale#'count' is the number 

of busbars,P and Q without scale 

 

def setupnetwork(gridinfeed_voltage_pu, networkP, pqratio): 

    networkQ = networkP * pqratio 

    loadP = networkP 

    loadQ = networkQ 

    #otherloadQ = otherloadP * pqratio # estimate Q on all 

other feedes based on the estimated power factor of 0.97 

    #loadP = networkP - otherloadP # active power demand on 

feeder Hecley high house and Hecley North SW 

    #loadQ = loadP * pqratio 

 

    #scale factor based on original model 
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    Pscale = float(loadP/float(P_noscale)) 

    Qscale = float(loadQ/float(Q_noscale)) 

 

    #66kV side voltage 

    for infeed in infeeds.itervalues(): 

        infeedname = infeed.GetRealName() 

        if (infeedname == Grid_Infeed_Name): 

            infeed.SetDValue(ipsa.IscGridInfeed.VoltPU, 

gridinfeed_voltage_pu) 

 

    #work out new P Q value 

    i = 1 

    for load in loads.itervalues(): 

        load.SetDValue(ipsa.IscLoad.RealMW, Load_P[i]*Pscale) 

        load.SetDValue(ipsa.IscLoad.ReactiveMVAr, 

Load_Q[i]*Qscale) 

        i += 1 

 

def loadflow(): 

 

    wrt = Write_Results() 

    wrt.write_new_titles('') 

 

    with open(SCADA_Data_File,'rb') as filereader: 

        reader = csv.reader(filereader, dialect='excel') 

 

        #skip first four row of the file (Loadline list row, 

measurement error row, RTTR row, title row) 

        skip_line_number = 1 

        skip_i = 1 

        while skip_i <= skip_line_number: 

            reader.next() 

            skip_i += 1 
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        # read data for each time step 

        for row in reader: 

            # break when the row being read gets to a Null 

statement in the CSV file 

            if (row[0]== 'null'): 

                break 

 

            elif (row[0] != 'null'): 

                readtime = row[0] 

                if float(readtime) == 24: 

                    readtime = 0 

 

                readtime = str(readtime) + ':00' 

                print readtime 

                format = "%H:%M" 

                t = time.strptime(readtime,format) 

                tnumber = int(t.tm_hour *60) + 

int(t.tm_min)#tnumber is the float format of time, for 

example,00:30 is 0.5 and 01:00 is 1 

                shorttime = str(t.tm_hour) + ':' + 

str(t.tm_min) 

 

                #print shorttime 

                Gridinfeed_Voltage_pu = 1 

 

                feed5120 = float(row[1]) * 3 

                Set_Load_kW('Busbar2', feed5120, power_factor) 

 

                feed128 = float(row[2]) * 3 

                Set_Load_kW('Busbar15', feed128, power_factor) 

                Set_Load_kW('Busbar16', feed128, power_factor) 

                Set_Load_kW('Busbar17', feed128, power_factor) 

                Set_Load_kW('Busbar18', feed128, power_factor) 

                Set_Load_kW('Busbar19', feed128, power_factor) 

                Set_Load_kW('Busbar20', feed128, power_factor) 
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                Set_Load_kW('Busbar21', feed128, power_factor) 

 

                feed384 = float(row[3]) 

                Set_Load_kW('Busbar22', feed384, power_factor) 

 

 

                net.DoLoadFlow() 

                if Add_LCT_Flag == True: 

                    PDOMtotal, PEVtotal, PHPtotal, PPVtotal = 

Add_LCT(tnumber, extra_percentage, Add_Shop_Flag, Add_DOM_Flag, 

Add_EV_Flag, Add_ASHP_Flag, Add_PV_Flag)#add LCT ,return the 

total consumption/generation of customers, EV, HP and PV 

                elif Add_LCT_Flag == False: 

                    PDOMtotal, PEVtotal, PHPtotal, PPVtotal  = 

0, 0, 0, 0 

 

                totalP, totalQ = 

Get_Grid_Infeed_Output(Grid_Infeed_Name) 

                Network_Total_Load = (totalP ** 2 + totalQ ** 

2)**0.5 

                extrastr = '' 

                wrt.write_results(shorttime, 

Network_Total_Load, totalP, totalQ, Gridinfeed_Voltage_pu, 

PDOMtotal, PEVtotal, PHPtotal, PPVtotal, extrastr) 

 

execfile('Config.py') 

execfile('lib0.10.5.py') 

#read LCT busbars and the numbers of customers 

LCTbusbars, Customer_Numbers, SHOPpercentage, DOMpercentage, 

EVpercentage, HPpercentage, PVpercentage = 

Read_LCT_Busbars(LCTBusbar_Input_File) 

#load LCT profile, this the average value for a single 

household in kW 

SHOPprofile, DOMprofile, EVprofile, HPprofile, PVprofile = 

Read_LCT_Profile(Profile_Input_File) 
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Load_P = ['Back-up for P loads'] 

Load_Q = ['Back-up for Q loads'] 

number, P_noscale, Q_noscale = backup() 

 

cmp = Components() 

cmp.filename = Components_Input_File 

""" 

Define busbars 

""" 

Output_Busbar_List, Busbar_List = cmp.Read_Output_Busbar() 

Busbar_Number = len(Busbar_List) 

 

#define transformers 

Transformer_List = cmp.Read_Transformer() 

Transformer_Number = len(Transformer_List) 

for i in range (0, Transformer_Number): 

    Transformer_List[i].Index = i 

 

""" 

define branches 

""" 

Branch_List = cmp.Read_Branch() 

Branch_Number = len(Branch_List) 

for i in range (0, Branch_Number): 

    Branch_List[i].Index = i 

 

Add_LCT_Flag = False 

Add_DOM_Flag = False 

Add_Shop_Flag = False 

Add_EV_Flag = False 

Add_ASHP_Flag = True 

Add_PV_Flag = False 

 

Debug_Flag = True 
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t0 = time.clock() 

 

study_name = 'generic-mean-384-0.4-IPSA' 

SCADA_Data_File = study_name + '.csv' 

All_Output_File = study_name + ' results.csv' 

 

loadflow() 

 

print 'Done!' 

t1 = time.clock() 

print 'Computing time taken: ', "%.2f" % float(t1 - t0), ' 

seconds' 

#execfile('all_loadflow_results.py') 

 

 



191 

 

Appendix C.  Moment, Central Moment and Cumulant 

Mathematical Explanation of Moment, Central Moment and Cumulant is detailed in this 

section. 

Moment  

If the density function of variable 𝑥 is given as 𝑔(𝑥), the 𝑣 − 𝑡ℎ moment of 𝑥 is defined as 

 ∝𝑣= ∫ 𝑥𝑣𝑔(𝑥)𝑑𝑥
∞

−∞

 (C.1) 

When 𝑣 = 0, 

 ∝0= ∫ 𝑔(𝑥)𝑑𝑥
∞

−∞

 (C.2) 

∝0 is the total probability of 𝑥 

When 𝑣 = 1,  

 𝜇 =∝1= ∫ 𝑥 ∙ 𝑔(𝑥)𝑑𝑥
∞

−∞

= 𝐸(𝑥) (C.3) 

∝1 is the expectation or mean of 𝑥 

Central moment 

Central moment of 𝑥 is defined as 

 𝑀𝑣 = ∫ (𝑥 − 𝜇)𝑣𝑔(𝑥)𝑑𝑥
∞

−∞

 (C.4) 

When 𝑣 = 2 

 𝑀2 = ∫ (𝑥 − 𝜇)2𝑔(𝑥)𝑑𝑥
∞

−∞

= 𝜎2 (C.5) 

𝑀2 is the variance of 𝑥 

Cumulant 

Cumulant of 𝑥 is defined as 

 
𝐾1 =∝1 

𝐾2 =∝2−∝1
2= 𝑀2 

(C.6) 

Unlike the moment and central moment of 𝑥, the cumulants can be summed up directly 
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 𝐾𝑣
(𝑡)

= 𝐾𝑣
(1)

+ 𝐾𝑣
(2)

(𝑣 = 1,2,… , 𝑘) (C.7) 
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Appendix D.  Test case for Python Based Robust optimization solver 

The test case used in chapter 5 for testing the Python based Robust optimization solver is 

detailed in this appendix. The standard form of linear optimization is  

 
min𝑐′𝒙 

𝑨𝒙 ≤ 𝒃 

(D.1) 

The values in equation (D.1) is given below 

Cost function: 

Symbol Value Symbol Value Symbol Value 

c1 0.303466 c11 -0.58595 c21 -0.52384 

c2 -0.37585 c12 0.232108 c22 -0.05013 

c3 -0.85944 c13 0.783697 c23 -0.88983 

c4 0.299917 c14 0.432824 c24 0.680962 

c5 0.697796 c15 0.730441 c25 0.19975 

c6 -0.79734 c16 0.676498 c26 -0.44109 

c7 -0.31528 c17 -0.96087 c27 0.930087 

c8 -0.57674 c18 -0.33751 c28 -0.82453 

c9 -0.81759 c19 -0.88749 c29 -0.9062 

c10 -0.49477 c20 0.345291 c30 0.23525 

 

Constraints 

Symbol Value Symbol Value 

b1 577.2281 b26 383.0781 

b2 502.3159 b27 569.3523 

b3 530.2045 b28 489.9169 

b4 552.9091 b29 381.1728 

b5 504.456 b30 457.5401 

b6 434.6779 b31 413.4519 

b7 503.4637 b32 512.7421 

b8 448.0199 b33 449.3519 

b9 359.998 b34 561.4997 

b10 472.1379 b35 512.9653 

b11 605.5079 b36 449.7469 

b12 486.3126 b37 419.2331 
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b13 402.6164 b38 464.0361 

b14 423.4678 b39 416.7912 

b15 420.4441 b40 539.9676 

b16 447.191 b41 431.3303 

b17 385.3514 b42 480.9181 

b18 567.582 b43 452.2597 

b19 451.514 b44 466.4683 

b20 552.2505 b45 401.3201 

b21 407.4321 b46 496.0582 

b22 461.8815 b47 471.4336 

b23 455.2449 b48 501.6898 

b24 465.3611 b49 490.8632 

b25 448.3807 b50 464.6249 

 

 

Constraints coefficients 
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 1 2 3 4 5 6 7 8 9 10 

1 -4.15937 -1.6223 -9.17984 -3.8424 -6.08298 -6.53527 -4.21985 -2.92418 -2.81498 -2.52576 

2 -7.94779 -9.20078 -0.5594 -8.56078 -5.75595 -6.65701 -6.30274 -4.05151 -7.77496 -5.99596 

3 -8.76723 -1.06895 -7.04677 -3.55627 -9.85993 -5.03434 -0.39344 -5.02758 -4.18112 -2.41295 

4 -3.53212 -1.43541 -4.97978 -8.58591 -9.86563 -0.31432 -4.45958 -7.89678 -1.08362 -3.39136 

5 -8.15069 -6.39571 -3.6581 -4.20061 -4.59389 -7.63345 -3.28194 -0.93268 -4.14292 -6.6437 

6 -1.23163 -2.6501 -9.98213 -2.304 -3.76222 -7.86841 -7.975 -2.01485 -9.12228 -0.56811 

7 -3.48026 -0.09964 -9.54996 -7.23318 -0.31795 -8.23928 -8.55603 -0.24774 -5.63897 -9.89177 

8 -4.6059 -8.5261 -5.13322 -0.93562 -7.19117 -3.82846 -9.23347 -6.81364 -7.94531 -9.03988 

9 -4.55368 -3.08223 -6.70281 -1.5323 -2.5188 -3.53607 -2.95944 -7.35351 -3.0825 -7.94057 

10 -3.86113 -9.08528 -0.0189 -9.05066 -4.06763 -3.30518 -9.02589 -1.4947 -0.95809 -0.84792 

11 -0.62243 -4.5835 -4.92954 -5.73733 -8.25746 -7.0245 -0.95264 -3.09903 -0.7924 -9.28222 

12 -4.20736 -3.28645 -5.31262 -6.82354 -5.6693 -3.83894 -3.94988 -3.31821 -5.59236 -5.56182 

13 -9.91166 -9.91286 -3.05873 -0.78246 -5.76152 -0.31135 -6.78003 -1.86597 -3.59132 -2.92185 

14 -8.0854 -8.13539 -8.59838 -3.52072 -3.04169 -4.56642 -1.5342 -6.87619 -8.05319 -0.12561 

15 -5.4967 -2.95061 -0.66211 -3.53324 -2.89527 -2.79415 -0.65262 -5.64631 -0.46511 -4.18293 

16 -8.06739 -8.75884 -5.34419 -1.15064 -2.71407 -3.36279 -1.06374 -5.44207 -6.27885 -9.99462 

17 -4.55625 -3.16912 -0.06309 -4.92438 -7.09458 -0.52184 -0.96461 -9.3355 -3.38972 -6.73541 

18 -5.87205 -9.59782 -6.62005 -4.33285 -2.40387 -5.39986 -3.95889 -0.31417 -0.0629 -5.49846 

19 -9.98786 -9.28595 -5.38829 -2.32297 -5.59984 -3.80937 -9.8517 -6.62305 -9.20627 -7.71955 

20 -7.33665 -4.9614 -4.45592 -1.99393 -3.26029 -9.9844 -5.68954 -7.75173 -1.91105 -3.19691 
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 11 12 13 14 15 16 17 18 19 20 

1 -1.23207 -6.69396 -8.84165 -6.9648 -6.39132 -6.36516 -9.31689 -3.14834 -9.17995 -3.064 

2 -1.64285 -5.56997 -9.26836 -5.26419 -7.55559 -7.47234 -3.93036 -4.09903 -9.47034 -2.02702 

3 -5.71671 -9.59815 -9.4526 -6.28979 -6.46204 -9.03188 -4.44071 -5.15374 -3.32316 -8.46972 

4 -5.67418 -8.94698 -5.17882 -6.20644 -6.68417 -9.99971 -2.1739 -2.82738 -2.5261 -6.98103 

5 -7.57666 -1.25927 -1.78178 -7.20116 -5.92287 -9.7721 -7.96887 -4.7488 -4.48691 -3.47188 

6 -1.10493 -4.53215 -8.21974 -0.45182 -7.40318 -4.75983 -8.70033 -0.28603 -7.40191 -6.60611 

7 -7.35379 -3.03367 -0.48909 -8.05834 -4.6408 -4.77735 -7.26231 -1.38782 -0.97148 -3.84381 

8 -5.33138 -1.26961 -1.29157 -3.94447 -1.43579 -0.68609 -1.2906 -1.18843 -7.81908 -5.44648 

9 -4.64071 -3.20432 -9.31925 -1.65014 -3.18717 -3.04733 -0.94574 -5.11004 -2.70679 -1.40265 

10 -5.94426 -3.69398 -2.80907 -8.97292 -8.47849 -9.23096 -0.93669 -9.38911 -1.28615 -6.63147 

11 -9.83212 -8.57049 -9.44096 -8.9234 -6.57818 -6.86173 -1.95152 -3.56678 -9.49147 -4.70088 

12 -3.65178 -1.80934 -6.84338 -8.4507 -3.88958 -2.86382 -4.42469 -9.42203 -8.18688 -4.38483 

13 -2.75456 -0.99291 -6.74147 -5.97013 -9.17013 -4.33905 -3.18537 -3.04624 -1.26506 -7.79341 

14 -3.27956 -0.17634 -3.76699 -4.17742 -5.27603 -3.67408 -6.44221 -2.24912 -7.31121 -1.09263 

15 -8.87818 -7.9786 -8.681 -5.57039 -1.58905 -5.00261 -7.41278 -1.08812 -2.39111 -6.94751 

16 -7.75767 -2.56535 -5.58541 -5.4389 -6.93014 -1.57612 -3.32797 -6.04342 -1.11631 -0.60601 

17 -2.31675 -3.59831 -3.03373 -7.18481 -7.83406 -4.47576 -8.17164 -5.55532 -2.30791 -5.8173 

18 -6.50618 -8.0853 -8.49239 -3.7279 -8.4645 -9.14742 -2.52956 -6.04739 -8.17439 -3.74173 

19 -0.3186 -5.66247 -7.84557 -2.40192 -4.57292 -0.8877 -6.13676 -7.92676 -1.96988 -3.59104 

20 -9.75115 -7.82076 -9.70628 -6.68806 -0.8896 -3.72123 -8.56544 -0.20924 -8.78282 -7.17434 
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 21 22 23 24 25 26 27 28 29 30 

1 -9.27458 -5.72857 -5.62481 -5.68297 -6.47127 -4.19896 -8.64555 -7.31976 -9.22519 -7.60016 

2 -2.00732 -5.27214 -6.17681 -3.10964 -7.25606 -6.59262 -0.78845 -9.87856 -4.36466 -0.88641 

3 -6.71622 -2.5529 -1.52082 -1.03373 -6.1478 -4.19539 -4.32604 -4.02041 -2.37317 -6.82712 

4 -4.70321 -8.09671 -9.52579 -0.53193 -9.76314 -9.35489 -8.04789 -8.84561 -2.28835 -9.09111 

5 -8.42512 -7.54944 -2.09944 -9.7007 -2.50711 -7.12397 -5.09566 -1.90363 -2.71372 -1.54181 

6 -0.25456 -7.08336 -8.76372 -0.94182 -2.81078 -9.52563 -4.04993 -6.66796 -8.10064 -9.39228 

7 -4.51386 -8.21029 -2.32427 -6.55904 -5.502 -9.15369 -4.65695 -4.89389 -4.43933 -9.41512 

8 -4.18901 -3.33056 -4.58679 -3.70817 -9.55751 -1.82677 -3.68572 -4.69883 -9.10145 -4.36477 

9 -0.46928 -4.88565 -9.04723 -5.58479 -2.51833 -6.68525 -5.62034 -3.84859 -4.45266 -2.45903 

10 -9.25967 -9.81008 -5.86465 -8.49392 -5.38198 -0.96526 -5.52353 -1.47443 -4.14109 -0.71456 

11 -9.6323 -9.44987 -0.39817 -7.96043 -5.8284 -9.84181 -1.82624 -8.17223 -5.90384 -8.53744 

12 -2.36607 -1.52519 -2.77391 -7.23252 -4.83676 -7.4369 -6.72909 -1.10309 -4.43905 -5.94739 

13 -3.7233 -9.94647 -2.51373 -5.71249 -4.81453 -2.13358 -6.42394 -8.15535 -0.73021 -5.75805 

14 -6.59505 -6.27006 -2.14859 -3.85127 -2.91564 -6.1739 -8.163 -8.20402 -4.48342 -3.51989 

15 -3.05838 -0.82083 -6.76132 -8.7719 -1.81599 -3.35598 -2.64969 -2.68209 -9.07709 -8.64627 

16 -9.31434 -4.45801 -5.53316 -7.46549 -2.32751 -6.32607 -7.99167 -0.96805 -5.0118 -0.67735 

17 -1.87917 -3.0606 -2.02787 -0.67616 -4.88348 -5.15757 -3.11439 -5.56982 -1.66128 -2.01058 

18 -7.12404 -4.48694 -9.8611 -0.41245 -6.64511 -7.86918 -7.15284 -8.31541 -1.92406 -9.08284 

19 -1.03807 -2.72363 -0.28451 -8.51654 -0.42035 -5.0261 -9.13258 -6.76971 -5.28491 -1.92611 

20 -3.12319 -2.38821 -6.50584 -5.86979 -9.50519 -1.64536 -7.03561 -2.5518 -9.14204 -1.3114 
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 1 2 3 4 5 6 7 8 9 10 

21 -4.66716 -4.9176 -7.84126 -2.57131 -2.7817 -5.2962 -2.82274 -6.47946 -5.95906 -6.89302 

22 -6.16419 -9.92205 -1.60567 -0.9397 -2.65387 -8.86439 -6.68623 -9.84728 -8.03434 -3.64838 

23 -1.29083 -3.94865 -1.54572 -2.69591 -5.02469 -8.15573 -6.19357 -9.55027 -2.27016 -0.73261 

24 -8.9675 -9.47273 -8.12342 -1.96449 -5.67901 -3.2469 -9.15463 -7.50747 -8.62346 -9.17887 

25 -1.66532 -0.91402 -9.77881 -4.17498 -1.2611 -2.66163 -2.07402 -0.96796 -8.94409 -1.02759 

26 -2.22409 -3.82747 -2.85138 -0.17978 -0.48868 -2.77812 -0.50989 -4.69069 -2.59314 -7.48447 

27 -6.2833 -7.3052 -6.57305 -1.91955 -8.13172 -7.54442 -7.03059 -1.04149 -8.0291 -7.84292 

28 -4.94231 -7.46189 -8.06738 -2.65424 -2.01446 -9.78925 -1.59723 -3.72154 -3.44282 -3.53137 

29 -4.61079 -1.73407 -8.20034 -5.96612 -7.18906 -6.4246 -6.71057 -0.69776 -1.42989 -0.21157 

30 -1.0364 -3.61959 -3.05139 -1.1649 -6.84992 -8.52242 -0.68315 -9.11742 -7.8233 -0.16422 

31 -0.88081 -6.61359 -0.74208 -1.53745 -1.63903 -8.55239 -0.29748 -5.9991 -8.81019 -3.38993 

32 -9.07459 -6.27767 -6.17595 -4.20944 -8.46761 -5.58858 -8.41617 -9.81303 -8.30308 -7.20457 

33 -3.9857 -7.24736 -1.36161 -0.44102 -4.75994 -2.53089 -7.53925 -9.1276 -3.83631 -9.01398 

34 -0.24451 -6.72603 -8.09157 -4.77712 -7.09035 -3.76631 -0.97785 -5.00368 -1.97119 -4.73656 

35 -4.66885 -0.42894 -9.77885 -9.5113 -2.97092 -5.45043 -2.08485 -0.47345 -5.122 -0.55742 

36 -8.58291 -2.99763 -9.00426 -8.91556 -2.26897 -0.44818 -0.86949 -6.94075 -2.77808 -4.07768 

37 -8.63568 -4.87373 -1.82757 -9.11167 -9.02526 -3.34692 -8.65738 -0.74033 -1.0312 -3.35756 

38 -5.05456 -3.43927 -9.22028 -2.15062 -6.20063 -8.0258 -0.24588 -5.3236 -1.8975 -3.04103 

39 -4.87883 -0.75561 -1.36559 -6.25266 -2.32256 -4.93565 -2.51565 -6.31307 -1.29547 -2.96485 

40 -2.36818 -3.36204 -0.43354 -0.14954 -6 -2.588 -6.15623 -8.46676 -2.4061 -9.71418 
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 11 12 13 14 15 16 17 18 19 20 

21 -1.14792 -4.87805 -9.78249 -0.36679 -1.35624 -0.52508 -1.79064 -9.88731 -7.60349 -6.97901 

22 -1.42389 -4.41566 -6.03268 -3.85584 -5.71318 -8.22365 -5.04528 -0.86877 -8.75324 -7.9496 

23 -7.19137 -3.37946 -0.14928 -7.8306 -6.23538 -8.05051 -7.11514 -9.00475 -0.26959 -5.84939 

24 -3.27901 -0.54782 -2.56933 -3.4348 -6.97154 -8.4305 -2.3082 -2.38097 -2.37345 -4.55038 

25 -6.77925 -6.92343 -3.10051 -5.66018 -4.15731 -6.62031 -8.07886 -8.09264 -4.1012 -1.88877 

26 -1.01735 -0.17722 -2.27289 -3.18262 -1.38734 -9.61039 -5.78898 -6.15093 -4.11547 -1.65631 

27 -5.59869 -4.21418 -7.22565 -9.93082 -3.10096 -5.97839 -9.7846 -2.79211 -2.37576 -8.77429 

28 -1.22771 -8.81376 -6.49138 -0.27324 -7.12355 -8.78388 -8.8833 -6.50908 -8.75958 -4.27953 

29 -2.50905 -0.0148 -9.29584 -2.72539 -2.12451 -0.52432 -7.63848 -8.86883 -0.89086 -4.12068 

30 -5.70175 -5.00703 -5.43996 -5.02337 -7.33805 -0.23191 -8.83261 -3.80867 -6.65838 -5.00384 

31 -0.08883 -7.54797 -4.41847 -3.69673 -3.89342 -2.05225 -3.26172 -8.68585 -2.47574 -5.54813 

32 -4.68463 -6.75507 -6.4023 -2.21938 -0.21103 -5.77727 -7.23128 -9.12902 -1.12286 -4.26188 

33 -2.94044 -1.81102 -2.20179 -3.86383 -6.5083 -7.7126 -4.6319 -9.11107 -6.02881 -7.93675 

34 -2.59341 -9.96023 -0.49502 -8.04266 -6.34358 -8.72091 -7.39967 -8.80493 -9.69136 -4.18207 

35 -5.19479 -8.91461 -2.10454 -7.84626 -7.18429 -0.80858 -5.6125 -2.15967 -7.45809 -2.19293 

36 -5.01066 -6.95988 -8.6419 -6.55413 -8.01617 -8.50041 -4.11575 -0.14207 -1.12134 -6.51012 

37 -0.64558 -1.02007 -1.10842 -3.57426 -6.80867 -9.30426 -0.60425 -0.92013 -1.75653 -9.30816 

38 -4.84831 -8.71677 -9.64972 -3.39016 -2.76987 -5.37625 -5.00383 -7.19365 -3.23499 -2.00151 

39 -8.19297 -9.08354 -4.03663 -0.527 -6.54458 -0.52655 -5.15677 -3.08382 -0.86871 -7.93945 

40 -6.59665 -9.06082 -1.82369 -8.62862 -7.6478 -8.86802 -5.17554 -2.13074 -7.65125 -3.90883 

 



200 

 

 21 22 23 24 25 26 27 28 29 30 

21 -7.89863 -9.56796 -0.97227 -6.61009 -4.45707 -5.07462 -0.8689 -2.73456 -0.35803 -7.75047 

22 -1.44471 -8.40242 -3.82759 -5.87978 -4.30396 -8.22814 -5.07838 -2.76803 -1.63792 -7.13657 

23 -3.14614 -8.82117 -3.24331 -2.57621 -7.47576 -4.28819 -7.76182 -7.26294 -1.55852 -4.69052 

24 -7.66362 -9.26713 -0.89585 -6.80488 -2.45066 -1.57685 -5.0325 -7.49991 -4.88406 -3.57224 

25 -2.99607 -9.53286 -2.70708 -8.95247 -7.42839 -6.74891 -0.58534 -3.51855 -3.8102 -1.3509 

26 -6.37472 -0.62521 -8.97833 -3.81129 -2.84623 -2.76631 -6.67996 -9.5373 -7.71004 -1.1212 

27 -7.26788 -9.0778 -6.77032 -3.14339 -0.61385 -3.74786 -4.09678 -9.51615 -1.40931 -4.82631 

28 -7.10525 -8.6857 -4.98199 -1.57746 -6.12765 -3.96795 -0.01048 -5.99929 -6.70325 -9.25901 

29 -6.64987 -0.11051 -4.60753 -6.70918 -3.78552 -1.32116 -6.7428 -7.16602 -5.75109 -2.26152 

30 -3.44483 -2.40953 -5.50776 -5.31718 -8.18756 -9.66226 -4.61382 -8.96796 -8.19015 -0.89469 

31 -7.47392 -9.29979 -3.30677 -8.10936 -0.50719 -9.61159 -9.57661 -1.14232 -6.07294 -5.07072 

32 -7.78581 -4.60176 -1.86522 -5.14935 -8.8273 -0.1401 -3.86581 -4.34841 -7.30765 -3.00966 

33 -6.77135 -4.47748 -1.15152 -1.88584 -0.81084 -5.09365 -2.60176 -8.44348 -7.43769 -7.74959 

34 -1.85073 -0.71533 -5.85895 -7.78516 -8.36279 -1.95088 -2.08079 -6.29701 -6.19258 -0.07375 

35 -3.0505 -5.02911 -3.64339 -9.04952 -6.96701 -8.5302 -6.34651 -8.20248 -2.48066 -2.51136 

36 -3.13981 -3.80775 -0.75328 -5.63703 -6.03339 -8.52883 -3.5434 -0.73181 -1.44826 -6.65212 

37 -9.98258 -3.49153 -3.30602 -5.99766 -5.13717 -5.74297 -1.3537 -9.79764 -4.85612 -1.96058 

38 -7.85791 -0.06572 -5.94124 -6.19911 -2.47802 -3.16956 -2.16727 -7.19745 -3.84776 -9.93618 

39 -7.00463 -7.69738 -5.01841 -6.50537 -7.04223 -3.86754 -6.06093 -9.66511 -0.47642 -7.56182 

40 -8.34182 -9.70747 -7.813 -1.31966 -5.46724 -7.64808 -4.43802 -3.47965 -0.33204 -3.28468 
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 1 2 3 4 5 6 7 8 9 10 

41 -9.70516 -1.22452 -6.72789 -7.83935 -1.34316 -2.84679 -4.68386 -6.23685 -5.63202 -5.75293 

42 -1.46043 -1.42741 -1.27698 -0.0847 -0.5369 -8.16923 -7.38356 -0.75724 -7.28274 -2.37375 

43 -1.21724 -3.7643 -2.19268 -7.61137 -2.05987 -5.91343 -1.95218 -2.9975 -7.56581 -9.11665 

44 -3.09361 -7.58628 -6.58854 -3.31213 -2.29544 -3.93866 -5.48258 -8.83229 -1.46859 -0.37761 

45 -8.79646 -8.64535 -3.22587 -1.04548 -6.40687 -1.1091 -4.59119 -7.33457 -1.21084 -5.57034 

46 -2.79961 -8.5662 -5.02479 -9.08801 -2.19685 -9.96487 -9.71373 -5.90627 -1.6636 -6.74468 

47 -6.01304 -1.33034 -5.34424 -7.72216 -6.69061 -0.053 -3.24202 -6.27892 -4.38433 -9.32526 

48 -2.69368 -8.63232 -4.59094 -1.24303 -6.61126 -2.51523 -2.02608 -7.59784 -2.96908 -9.88483 

49 -9.13623 -5.94296 -5.1868 -9.59683 -3.03377 -6.70354 -5.67275 -2.4736 -5.42572 -1.72388 

50 -6.05382 -5.90262 -5.72167 -3.39898 -5.66837 -6.2119 -4.83129 -2.20996 -9.24436 -0.02981 

 11 12 13 14 15 16 17 18 19 20 

41 -1.94152 -5.67137 -5.62838 -0.73851 -2.91975 -1.59849 -5.06286 -1.17141 -5.15275 -5.01841 

42 -9.5887 -4.08238 -4.12363 -6.84605 -8.18491 -7.95752 -4.22329 -3.63304 -1.67267 -9.13344 

43 -9.53934 -1.00638 -7.88408 -5.73587 -0.77722 -3.07297 -6.54975 -3.32813 -5.80673 -4.05492 

44 -9.06896 -5.43877 -0.77033 -4.30952 -9.0888 -6.52484 -7.20879 -6.08786 -2.13657 -6.39676 

45 -3.81069 -4.40186 -0.27241 -4.86191 -9.97674 -8.74288 -6.66025 -0.10912 -1.55619 -4.00631 

46 -6.41791 -6.30545 -8.41852 -6.78527 -4.18799 -1.45382 -4.93629 -0.88534 -5.99246 -1.79643 

47 -8.20315 -2.14494 -1.20679 -2.03212 -2.6591 -8.69352 -0.96119 -5.54977 -2.91514 -8.66369 

48 -4.16961 -6.3981 -9.52648 -3.68278 -2.59965 -8.62284 -8.09998 -9.68146 -4.84783 -8.89202 

49 -7.1782 -9.6842 -6.1217 -7.59893 -3.40114 -7.47525 -3.95437 -7.64444 -2.00759 -5.09091 

50 -8.32303 -6.97213 -2.63514 -1.05001 -7.88581 -6.67506 -3.72102 -3.48554 -0.99033 -2.2834 



202 

 

 21 22 23 24 25 26 27 28 29 30 

41 -3.65648 -3.65561 -8.23396 -2.51546 -8.81587 -6.80434 -4.80427 -5.97929 -6.31183 -5.41216 

42 -8.29688 -4.34835 -8.97216 -6.9087 -1.34556 -1.25304 -8.86996 -4.83224 -3.09439 -4.78347 

43 -7.66676 -8.70895 -5.69581 -3.81261 -8.68822 -6.19837 -0.12599 -8.30738 -1.87699 -2.1677 

44 -6.47249 -0.90617 -0.39997 -5.59234 -9.80886 -6.87666 -5.78491 -0.71397 -7.65854 -7.93502 

45 -0.30901 -9.5874 -9.57487 -1.9737 -3.69981 -7.60281 -0.66439 -4.64272 -6.10777 -6.38214 

46 -9.99539 -5.23866 -8.99389 -7.84785 -1.94443 -2.27134 -2.92447 -2.0843 -7.19972 -7.6457 

47 -7.76822 -3.27724 -1.52342 -6.20492 -4.83866 -2.24294 -4.8701 -6.9878 -5.94066 -7.39809 

48 -3.27458 -4.91007 -6.66174 -2.29646 -4.38065 -0.15016 -1.76221 -7.31939 -7.22799 -1.27164 

49 -0.42785 -7.09152 -0.57671 -0.89151 -1.59591 -5.8533 -4.96054 -0.80464 -9.0879 -6.84025 

50 -4.61977 -1.90939 -8.68069 -9.81866 -9.23499 -7.32774 -6.21845 -3.98793 -1.27078 -7.47283 
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Appendix E.  Robust Optimization Detailed Formulation 

The constraints given in (6.13) can be written as 

 [
−𝑺𝑹𝑻𝑻𝑹

𝑽𝑴𝒊𝒏

𝑺𝒐𝑪𝑴𝒊𝒏

] ≤ [
𝑷𝑭𝑺𝑭
𝑽𝑺𝑭
𝑫

] ∙ 𝑷 + [
𝑺𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

𝑽𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

𝑺𝒐𝑪𝒕=𝟎

] ≤ [
𝑺𝑹𝑻𝑻𝑹

𝑽𝑴𝒂𝒙

𝑺𝒐𝑪𝑴𝒂𝒙

] (E.1) 

Where  

𝑷   is the power injection from busbars and 

 𝑷 = [

𝑷𝑬𝑺𝑺

∆𝑷𝑹𝑬𝑺

∆𝑷𝑩𝒖𝒔 
] (E.2) 

𝑷𝑭𝑺𝑭   is the matrix of PFSF 

𝑽𝑺𝑭    is the matrix of VSF 

Considering the uncertainty of RTTR, load forecast, RES output forecast and SoC estimation, 

(E.1) becomes 

 [
−�̃�𝑹𝑻𝑻𝑹

𝑽𝑴𝒊𝒏

𝑺𝒐𝑪𝑴𝒊𝒏

] ≤ [
𝑷𝑭𝑺𝑭
𝑽𝑺𝑭
𝑫

] ∙ [

𝑷𝑬𝑺𝑺

∆�̃�𝑹𝑬𝑺

∆�̃�𝑩𝒖𝒔 

] + [

�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

𝑺𝒐𝑪𝒕=𝟎̃

] ≤ [
�̃�𝑹𝑻𝑻𝑹

𝑽𝑴𝒂𝒙

𝑺𝒐𝑪𝑴𝒂𝒙

] (E.3) 

Constraint (E.3) can be rewritten as the form below 

 

[
 
 
 
 
 

𝑷𝑭𝑺𝑭
𝑽𝑺𝑭
𝑫

−𝑷𝑭𝑺𝑭
−𝑽𝑺𝑭
−𝑫 ]

 
 
 
 
 

∙ [

𝑷𝑬𝑺𝑺

∆�̃�𝑹𝑬𝑺

∆�̃�𝑩𝒖𝒔 

] +

[
 
 
 
 
 
 

�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

𝑺𝒐𝑪𝒕=𝟎

−�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

−�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕

−𝑺𝒐𝑪𝒕=𝟎̃

̃

]
 
 
 
 
 
 

+

[
 
 
 
 
 
 

−�̃�𝑹𝑻𝑻𝑹

−𝑽𝑴𝒂𝒙

−𝑺𝒐𝑪𝑴𝒂𝒙

−�̃�𝑹𝑻𝑻𝑹

𝑽𝑴𝒊𝒏

𝑺𝒐𝑪𝑴𝒊𝒏 ]
 
 
 
 
 
 

≤ 𝟎 (E.4) 

In (E.4), only 𝑷𝑬𝑺𝑺 is the control variable. Uncertain values include ∆�̃�𝑹𝑬𝑺, ∆�̃�𝑩𝒖𝒔, �̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕, 

�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕, �̃�𝑹𝑻𝑻𝑹 and 𝑺𝒐𝑪𝒕=𝟎̃ . Extra control variables are introduced to reform the problem. 

 

𝒎𝒊𝒏 𝑪 ∙ 𝑷𝑬𝑺𝑺 

s.t. 

𝑨 ∙ 𝑿 ≤ 𝟎 

(E.5) 

Where  

𝑪   is the cost vector  

𝑨   is the coefficient matrix 
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𝑿   is the control variables 

 𝑨 =

[
 
 
 
 
 
 

𝑷𝑭𝑺𝑭 𝑷𝑭𝑺𝑭 ∙ ∆�̃�𝑹𝑬𝑺 𝑷𝑭𝑺𝑭 ∙ ∆�̃�𝑩𝒖𝒔 �̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕 −�̃�𝑹𝑻𝑻𝑹

𝑽𝑺𝑭 𝑽𝑺𝑭 ∙ ∆�̃�𝑹𝑬𝑺 𝑽𝑺𝑭 ∙ ∆�̃�𝑩𝒖𝒔 �̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕 −𝑽𝑴𝒂𝒙

𝑫 𝑺𝒐𝑪𝒕=𝟎̃ −𝑺𝒐𝑪𝑴𝒂𝒙

−𝑷𝑭𝑺𝑭 −𝑷𝑭𝑺𝑭 ∙ ∆�̃�𝑹𝑬𝑺 −𝑷𝑭𝑺𝑭 ∙ ∆�̃�𝑩𝒖𝒔 −�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕 −�̃�𝑹𝑻𝑻𝑹

−𝑽𝑺𝑭 −𝑽𝑺𝑭 ∙ ∆�̃�𝑹𝑬𝑺 −𝑽𝑺𝑭 ∙ ∆�̃�𝑩𝒖𝒔 −�̃�𝑭𝒐𝒓𝒆𝒄𝒂𝒔𝒕 𝑽𝑴𝒊𝒏

−𝑫 −𝑺𝒐𝑪𝒕=𝟎̃ 𝑺𝒐𝑪𝑴𝒊𝒏 ]
 
 
 
 
 
 

 (E.6) 

And  

 𝑿 = [

𝑷𝑬𝑺𝑺

1
⋮
1

]
}𝑁𝑅𝐸𝑆 + 𝑁𝐵𝑢𝑠 + 2

  (E.7) 

 

 



205 

 

Appendix F.  Curve fitting results 

Normal distribution 

BoU PoS Curve fitting results 

0% 0.9344 0.9344 

5% 0.9950 0.9817 

10% 0.9996 0.9996 

15% 1.0000 1.0000 

20% 1.0000 1.0000 

25% 1.0000 1.0000 

30% 1.0000 1.0000 

35% 1.0000 1.0000 

40% 1.0000 1.0000 

45% 1.0000 1.0000 

50% 1.0000 1.0000 

55% 1.0000 1.0000 

60% 1.0000 1.0000 

65% 1.0000 1.0000 

70% 1.0000 1.0000 

75% 1.0000 1.0000 

80% 1.0000 1.0000 

85% 1.0000 1.0000 

90% 1.0000 1.0000 

95% 1.0000 1.0000 

100% 1.0000 1.0000 

Uniform distribution 

BoU PoS Curve fitting results 

0% 0.125 0.13 

5% 0.335 0.25 

10% 0.588 0.54 

15% 0.792 0.79 

20% 0.922 0.93 

25% 0.985 0.98 

30% 0.998 1.00 

35% 1.000 1.00 

40% 1.000 1.00 
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45% 1.000 1.00 

50% 1.000 1.00 

55% 1.000 1.00 

60% 1.000 1.00 

65% 1.000 1.00 

70% 1.000 1.00 

75% 1.000 1.00 

80% 1.000 1.00 

85% 1.000 1.00 

90% 1.000 1.00 

95% 1.000 1.00 

100% 1.000 1.00 

Beta distribution 

BoU PoS Curve fitting results 

0% 1.06% 1.02% 

5% 10.66% 12.98% 

10% 39.52% 40.91% 

15% 69.30% 69.10% 

20% 90.66% 87.69% 

25% 98.28% 96.46% 

30% 100.00% 99.51% 

35% 100.00% 100.31% 

40% 100.00% 100.47% 

45% 100.00% 100.50% 

50% 100.00% 100.50% 

55% 100.00% 100.50% 

60% 100.00% 100.50% 

65% 100.00% 100.50% 

70% 100.00% 100.50% 

75% 100.00% 100.50% 

80% 100.00% 100.50% 

85% 100.00% 100.50% 

90% 100.00% 100.50% 

95% 100.00% 100.50% 

100% 100.00% 100.50% 
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