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Abstract 

In 2004, the FDA launched the Process Analytical Technology (PAT) initiative to support 

product and process development. Even before this, the biologics manufacturing industry 

was working to implement PAT. While a strong focus of PAT is the implementation of 

new monitoring technologies, there is also a strong emphasis on the use of multivariate 

data analysis (MVDA). Effective implementation and integration of MVDA is of 

particular interest as it can be applied retroactively to historical datasets in addition to 

current datasets. However translation of academic research into industrial ways of 

working can be slowed or prevented by many obstacles, from proposed solutions being 

workable only by the original academic to a need to prove that time invested in developing 

MVDA models and methodologies will result in positive business impacts (e.g. reduction 

of costs or man hours). 

The presented research applied MVDA techniques to datasets from three scales typically 

encountered during investigations of biologics manufacturing processes: a single product, 

dataset; a single product, multi-scale dataset; a multi-product, multi-scale, single platform 

dataset. These datasets were interrogated in multiple approaches and multiple objectives 

(e.g. indictors/causes of productivity variation, comparison of pH measurement 

technologies). Individual project outcomes culminated in the creation of a robust 

statistical toolbox. 

The toolbox captures an array of MVDA techniques from PCA and PLS to decision trees 

employing k-NN. These are supported by frameworks and guidance for implementation 

based on interrogation aims encountered in a contract manufacturing environment. The 

presented frameworks ranged from extraction of indirectly captured information 

(Chapter 4) to meta-analytical strategies (Chapter 6). Software-based tools generated 

during research ranged from translation of high frequency online monitoring data as 

robust summary statistics with intuitive meaning (Appendix A) to tools enabling potential 

reduction in confounding underlying variation in dataset structures through the use of 

alternative progression variables (Chapter 5). Each tool was designed to fit into current 

and future planned ways of working at the sponsor company. 

The presented research demonstrates a range of investigation aims and challenges 

encountered in a contract manufacturing organisation with demonstrated benefits from 

ease of integration into normal work process flows and savings in time and human 

resources.  
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 Introduction 

The only useful function of a statistician is to make predictions 

and thus provide a basis for action. — William Edwards Deming 

In a 1994 press release, Andrew J. Guarriello, then chief operating officer of AT&T 

Power Systems, stated that “the roots of today's Total Quality Management can be traced 

to the work of three AT&T scientists and quality pioneers--Walter Shewhart, W. Edwards 

Deming, and Joseph Juran.” [1] In 1924, Shewhart presented a single page document at 

a meeting at Western Electric, CA, USA. One-third of the page was given over to what 

would now be called a Shewhart control chart. This document is often seen as the start 

of statistical process control (SPC) as a separate field of study blending engineering, 

quality control, and statistics. Further developments by Shewhart created the basis for his 

1931 book Economic Control of Quality of Manufactured Product. Deming and Juran 

became interested in Shewhart’s work and promoted the use of SPC, in particular 

Shewhart’s Plan-Do-Check-Act cycle. 

SPC initially focussed on univariate analysis. However univariate analyses do not allow 

interactions between variables to be easily identified or tested, as observed in Figure 1 

where readings for a sample appear normal when considered in a univariate manner but 

is clearly unusual when considered in a multivariate manner. Identification of such 

multivariable interactions and evaluation of the impact of those interactions can be used 

to improve process robustness [2], efficiency [3], and safety [4]. The tools of SPC have 

expanded to include a wide array of multivariate techniques, including decision trees [5], 

principal component analysis (PCA) [6,7], partial least squares (PLS) [6,7], artificial 

neural networks [8,9], self-organising maps [10,11], structural equation modelling [12], 

and even multivariate adaptations of Shewhart’s original control charts among others. 

Multivariate data analysis (MVDA) techniques had been suggested before Shewhart’s 

work, however the computational power necessary to complete the associated equations 

limited their use when relying on manual computation. As greater computational power 

became available through the development of computers, ever more intensive 

multivariate techniques could be applied to ever larger datasets. In recent years, the speed 

at which analyses can be completed has started to become less of an obstacle than the 

volume, quality, and diversity of data able to be brought together from analysis. 

The variety of data sources and MVDA techniques available for process understanding is 

matched by the range of industries they have been used in and aims achieved. A multiple 
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case study review by Miletic et al. [13] captured four adaptations of PCA and PLS 

algorithms in various degrees of complexity in execution.  The simplest was the use of 

PCA-based control charts to identify when a specific type of fault was about to occur for 

a continuous slab caster, resulting in a 50% reduction of faults over a 6 year period for 

one caster, a reduction of 4 faults for a second caster, and increased operator confidence 

at higher levels of production. This methodology was adapted for a second area of 

operation to track batch evolution of a sulphite pulp digester in real-time. 

More complex methodologies were required in two further examples. An adaptive 

PLS-based automatic control system for the control of chemical reagents in a 

desulphurisation process for a liquid metal required extensive supervision during tuning 

and initial operating period. Investment into this more sophisticated control system 

yielded a 50% reduction in the root mean square error of sulphur content of the final 

output. Additional benefits were reductions in reagent use, most notably a 70% reduction 

in the addition rate for a second reagent and a 25.5% reduction in purchased reagent 

quantities. 

 
Figure 1. Variable 1 and Variable 2 recorded for 25 samples. The highlighted sample appears to 

show normal behaviour when Variable 1 and Variable 2 were viewed separately (A and B), 

however multivariate analysis (C) shows there is an unusual interaction for the highlighted 

sample. 
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The final example concerned a paperboard manufacturing process. The original aim was 

to identify process faults through the application of PCA, similar to the case studies 

detecting faults in continuous caster machines and desulphurisation processes. However, 

multiple grades of paperboard were manufactured using the same machinery, which 

caused severe confounding in the dataset. Due to the large number of paper grades 

produced, it was not economically feasible to create and maintain models for each grade 

of paperboard. Furthermore, this view would be strongly focussed on the final product 

and not the underlying process or machinery. Instead, a partial least squares-discriminant 

analysis (PLS-DA) model was used to identify differences in paper grades. The PLS-DA 

model residuals were then used to create a PCA model for fault detection, as was 

originally intended. The final result was a 60% reduction in processing variability. 

Beyond the academic novelty of re-purposing one model’s residual to create a second 

model, the final case study demonstrated a more holistic approach to process data analysis 

than is typically observed in more academically driven papers. Specifically, the cost of 

maintained use and appropriateness for the intended area of application (here, a flexible, 

multi-product manufacturing platform) is in direct contrast to the more traditional 

academic emphasis on a single, fixed analysis workflow developed for a specific use with 

at best a limited view towards adoption by industries. 

In each of Miletic et al.’s case studies [13], MVDA was applied retroactively to datasets 

and incorporated into pre-existing data flows. Ideally, multivariate statistics can be 

employed from the very start of development to plan a deliberate experimental design 

space. A commonly employed technique is Design of Experiments (DOE), outlined in 

Ronald A. Fisher’s 1935 book of the same name [14] or a derivative thereof. In DOE, a 

scientist selects multiple variables of interest to be tested multiple levels as a series of 

experiments designed to test multivariate interactions. This methodology can be used to 

create a Design Space for a process, e.g. a multidimensional/multivariate combination of 

input variables and process parameters for which quality is assured through product and 

process understanding [15]. 

SPC and MVDA grew to become fundamental tools in a variety of manufacturing 

industries during the 20th century, at the time they were relatively unused by the 

bioprocessing industries, in particular the biopharmaceutical and biologics industries. 

Biologics are a category of medical treatments and therapies derived from living 

organisms. The US Food and Drug Administration (FDA) uses the term biological 
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product, which is defined as “a virus, therapeutic serum, toxin, antitoxin, vaccine, blood, 

blood component or derivative, allergenic product, or analogous product, or 

arsphenamine or derivative of arsphenamine (or any other trivalent organic arsenic 

compound), applicable to the prevention, treatment, or cure of a disease or condition of 

human beings.” [16] The European Medicines Agency (EMA) uses the term biological 

medicinal product, defined as “a medicinal product whose active substance is made by 

or derived from a living organism.” [17] 

According to a market survey published in 2014, there were 230 approved biologics on 

the market in 2012 with global sales of US$124.9 billion [18]. While a wide variety of 

products are allowed under the term “biologic”, the majority of biologics are recombinant 

proteins and monoclonal antibodies (Figure 2) with approximately 50% of sales 

attributable to 10 block buster drugs (Figure 3). 

The use of established cell lines allows biologics production processes to benefit from the 

use of platform processes and platform technologies. A platform can be defined as “a set 

of stable components that supports variety and evolvability in a system by constraining 

the linkages among the other components.” [19]. A definition more specific to 

biopharmaceutical manufacturing platforms is “[t]he approach of developing a 

production strategy for a new drug starting from manufacturing processes similar to 

those used by the same applicant to manufacture other drugs of the same type (e.g., as in 

the production of monoclonal antibodies using predefined host cell, cell culture, and 

purification processes, for which there already exists considerable experience)” [15]. 

The use of process platforms allow a contract manufacturing organisation (CMO) to 

benefit from a wide variety of savings both within the company itself and through 

interactions with other companies, e.g. reductions in development times or improved 

resource use efficiencies [20]. Within the company, the use of platform process allow for 

improved efficiency in scale-up of projects and site-transfer/technology transfer of 

projects. These improved efficiencies can also be achieved when transferring a 

technology or product with other, external companies. 

In biologics, two commonly encountered platforms are expression platforms (host cell 

line and expression system) and process platforms (including culture operating conditions 

and feed strategies). 
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Figure 2. Distribution of 230 approved biologics by compound class [18]. Monoclonal antibodies 

make up 21% with other recombinant products making up a further 13% of approvals. 

 

 

Figure 3. Top ten biologics which represent approximately 50% of all global sales of biologics in 

2012 [18]. Six were produced using a CHO cell line, three using an E. coli cell line, and one using 

a hybrid/murine cell line. 
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In a typical protein or monoclonal antibody (mAb) production process, the genetic code 

for the product of interest is inserted into the DNA of a host cell. The cell then produces 

the protein as part of its normal metabolism. Although mammalian cell lines have been a 

part of biopharmaceutical development since the 1900s [21], wide spread usage of 

mammalian cell lines in protein or mAb production was limited by numerous obstacles 

and perceived obstacles, from shear sensitivity of mammalian cells in suspensions [22] 

or complex media requirements [23,24]. Instead, large scale processes for much of the 

20th century were reliant on non-mammalian cell lines [25]. 

The first human recombinant protein licensed was the recombinant insulin Humulin 

(Genentech) in 1982, produced using the bacteria Escherica coli. E. coli was and 

continues to be widely used as E. coli typically grows quickly and robustly in large-scale 

manufacture [26,27]. However despite greater robustness and lower costs when compared 

to mammalian cell lines, fundamental drawbacks regarding product safety and efficacy 

can exist when using bacterial hosts. 

Host cell lines perform post-translational modifications to the expressed protein or mAb, 

and this affects which host cell line can be safely used. A key example is glycosylation, 

the process by which oligosaccharides are attached to asparagine (N-linked), serine (O-

linked), and threonine (O-linked) side chains [28]. Oligosaccharides are often essential 

for recognition of the protein by the patient’s immune system. Post-translational 

modifications or lack thereof can cause a variety of undesired outcomes from decreased 

efficacy [28–30] to side effects caused by patient immune systems attacking a drug as an 

infection [31–35]. For these reasons, the ability to glycosylate proteins in a manner similar 

to glycosylation by human cells can lead a manufacturer to select a mammalian cell line, 

which do glycosylate proteins, over a bacterial cell line, which do not glycosylate 

proteins. 

Two commonly used mammalian cell lines are Chinese hamster ovary (CHO) and murine 

myeloma. Of the top ten biologics in 2012, representing approximately 50% of all global 

sales of biologics for that year, six were produced using a CHO cell line and one was 

produced using a hybrid/murine cell line. [18]. In terms of new drug approvals, CHO and 

murine myeloma accounted for 31% and 11% of approved biologics in 2012 respectively 

[18]. Additional mammalian cells used include human, hybridomas, and baby hamster 

kidney (BHK) (Figure 4). Research continues be conducted to identify, isolate, and 

evaluate mammalian cell lines able to express protein and mAb products with 
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economically viable titres and with appropriate post-translational modifications as 

differences in glycoforms produced by a mammalian host cell and those produced by 

human cells can still lead to undesirable side effects. The murine-derived cetiumab 

(Erbitux®) was shown to trigger anaphylaxis in a subset of patients with pre-existing 

antibodies that attacked a sugar residue seen on products derived from CHO and murine 

hosts which is absent from post-translational modifications by human cells [36].  

Of note are studies that demonstrated that several of the issues which had prevented 

wide-spread use of mammalian cell lines were simply perceived issues. In particular 

several studies stating that mammalian cell lines can survive the shear forces encountered 

in suspension cultures [37–39] stand in stark contrast to older studies [40,41] that 

indicated mammalian cells were not suited to suspension cultures. 

When the genetic information for a mAb is introduced to the host cell, the vector typically 

contains additional genetic information. This additional information may serve to 

promote growth of transfected cells or to improve stable integration of the new genetic 

information into the host cell genome. 

 

 

Figure 4. Distribution of host cells used in industrial biologics based on number of licensed 

biologics using cell line until 2012 [18].  
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A common addition to transfected vectors are genes that add some new metabolic activity, 

such as the ability to synthesise some metabolite A which is crucial to cell survival but 

would normally need to be made available in culture media. These genes allow for 

selective survival of cells based on whether the gene vector was successful transfected 

and integrated into the cell’s DNA. Continuing the previous example, only successfully 

transfected cells would be able to survive in media deficient in metabolite A, assuming 

the cells were provided with the necessary precursors. 

This complexity of interactions from the very beginning of the biologics manufacturing 

system, from drug discovery to cell line and selection system choice to expression, 

isolation, formulation, and storage through to the interaction of final drug with the patient 

makes biologics manufacturing an ideal industry for improvements through MVDA. 

Decision trees have been used to select local optimum operating conditions for cultures 

from tested conditions [42] and combined with the PLS algorithm for use in control 

decisions for cultures [43]. PCA has been used to monitor batch performances, to “finger 

print” media using spectral datasets, and identify genes of interest [44–46]. The field of 

chemometrics in particular has readily adopted MVDA to develop “electronic noses” for 

the detection, classification, and measurement of multiple chemicals by sensors [47]. 

Drivers for manufacturers to adopt MVDA range from improved safety of the end 

product, reductions in manufacturing costs, and reduced time to market. Reduced time to 

market may be achieved through techniques such as DOE decreasing development times. 

However following the release of the Process Analytical Technology (PAT) Initiative by 

the US Food and Drug Administration (FDA) in 2004 [48], time to market may also be 

reduced by using PAT to support submissions to regulators. Two PAT-supported 

biologics approved through the FDA’s expedited process for breakthrough therapies were 

Genentech’s Gazyva™ (obinutuzumab) [49] and Genentech’s Perjeta™ (pertuzamab) 

[50]. 

The FDA’s PAT Initiative guidelines were intended as a way for industry to meet three 

aims [48]: 

1. Improve the scientific basis for establishing regulatory specifications. 

2. Promote continuous improvement. 

3. Improve manufacturing while maintaining or improving current product quality. 
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The main concept behind PAT was that “quality cannot be tested into products; it should 

be built-in or should be by design.” [48] Three key areas are covered by the PAT 

framework: process understanding, analytical principles and tools, and strategies for 

implementation. As a flexible framework, PAT permits the use of many different tools 

and technologies to be used, from the introduction of brand new equipment such as 

spectral readers to the re-examination of existing historical databases with multivariate 

data analysis to knowledge management systems. 

While the PAT Initiative is often spoken in terms of FDA documentation, the PAT 

Initiative is supported by many regulatory bodies around the world, including the 

European Medical Authority (EMA) and the Japanese Pharmaceuticals and Medical 

Devices Agency (PDMA). As part of global harmonisation efforts, the FDA, the EMA, 

and the PDMA co-operated as the International Conference on Harmonization of 

Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) to 

create joint guidance with the aim "[t]o promote a mutual understanding of regional 

harmonisation initiatives in order to facilitate the harmonisation process related to ICH 

Guidelines regionally and globally, and to facilitate the capacity of drug regulatory 

authorities and industry to utilise them" [51]. Three ICH documents particularly relevant 

to the presented work are ICH Q8 “Pharmaceutical Development”, ICH Q9 “Quality Risk 

Management”, and ICH Q10 “Pharmaceutical Quality System” [52]. 

In addition to PAT usage guidelines, these documents include guidance on the use of 

Quality by Design (QbD), a systematic approach to product/process development, 

including life-cycle management [53], and the use of Design Spaces to support regulatory 

decisions. Variation within the Design Space and related effects on the product quality 

are considered to be understood, whereas variation outwith the Design Space is 

considered a change requiring additional regulatory approval and could lead to 

destruction of the product. As an example, a process design space is created and tested 

for a pH range of 6.5 to 7.5 and temperature range 30°C to 35°C with the desired process 

conditions pH 7.0 and 32.5°C as the centre point. The process conditions pH 6.8 and 31°C 

are within that design space and the effects of this change considered understood with 

appropriate actions for based on these effects. However the process conditions pH 6.4 and 

29°C are outwith the design and effects of this change on the product are untested and not 

considered understood. 
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Guidance from regulatory bodies can also be seen as an attempt to avoid repeating the 

failures to introduce MVDA and SPC experienced by other industries. When techniques 

such as Kaizan and Lean Design were first introduced to American manufacturing 

industries, in particular American automotive manufacturing, they were rarely as 

successful as hoped [54]. The poor results were often attributed to poor implementation 

due lack of understanding and appreciation for the tools. When the biopharmaceutical 

industry as a whole began implementing PAT tools and technologies in the 1990s and 

early 2000s, it was with awareness of known obstacles. Several such obstacles highlighted 

by Miletic et al. [13] are: 

 Poor acceptance by shop-floor personnel 

 Lack of know-how in model implementation, maintenance, or interpretation 

 Difficulties developing and tuning monitoring systems for full operating range 

 Handling process drifts and changes to processes over time 

 Lack of provision for on-going operation and system maintenance 

 

In addition to these obstacles, the biopharmaceutical industry faces challenges from the 

complexity of the data generated by the biologics manufacturing process [55,56]. 

However the continuing development of data collection equipment such as the electronic 

noses and the MVDA techniques required to interrogate these datasets continue to provide 

new opportunities to enhance process understanding. It was with these barriers in mind 

that the contents for the statistical toolbox representing a core outcome of the presented 

work were selected and developed for use by the mammalian cell culture research and 

development department of the biopharmaceutical contract manufacturer, Lonza.1 It is 

intended that the toolbox be directly utilised, adapted for use, or act as a foundation for 

the development of a new toolbox by other departments, sites, and industries. 

The toolbox included outcomes from several sub-projects that focussed on different 

questions posed by the host company and explore different aspects of MVDA highlighted 

in this introduction. Each chapter is prefaced with more detailed information on the 

relevant areas of investigation to better contextualise the research and conclusions. 

                                                 
1 An outline of the final toolbox and contained tools and guidelines can be found in §7.5. 
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 Materials and Methods 

Three datasets form the foundation of the research discussed within the thesis. Each 

dataset was formed from a different combination of host cell lines and expression systems 

to produce a variety of protein products (Table 1). This chapter is broken down into four 

sections detailing the materials and methods used to generate the data: 

1. Development and selection of mAb-producing cell lines 

2. Overview of platform processes at Lonza 

3. Description of data collected 

4. Description of data collection methods 

Dataset Host Cell and 

Expression System 

Number of 

Cultures 

Note Identifier 

1 DHFR-CHO 48 Single product Culture ID 

2 GS-NS0 99 Single product AXXX 

3 GS-CHO 185 Multiple products Pro_XXX_XXX 

Table 1. Summary of three datasets used in the course of EngD research. DHFR – dihydrofolate 

reductase deficient. GS – glutamaine synthetase. CHO – Chinese hamster ovary. NS0 – 

non-secreting murine myeloma. 

2.1 mAb-Producing Cell Lines 

Three different cell types were used in the work presented in this thesis: DHFR-CHO, 

GS-CHO, and GS-NS0. These were developed using two selection systems 

(dihydrofolate reductase (DHFR) and glutamine synthetase (GS))and two base host cell 

lines (Chinese hamster ovary (CHO) and non-secreting murine myeloma (NS0)). 

2.1.1 Selection Systems 

Glutamine synthetase (GS) is an enzyme required for the synthesis of the amino acid 

glutamine from glutamate and ammonia [57,58]. If the host cell lacks endogenous GS 

activity, successful transfection with a vector containing the GS enzyme allows the host 

cell to survive through exogenous GS activity in a glutamine-deficient media where 

glutamate and ammonia are available [59]. Culturing in glutamine-deficient media allows 

successfully transfected cells to be isolated because cells not successfully transfected 

would not survive. For cells possessing endogenous GS metabolism, selection pressure 

can be applied through the addition of methionine sulphoxine (MSX) which inhibits GS 

metabolism [60,61]. The GS cell lines in the presented research used Lonza’s GS gene 

expression system, which includes the genetic sequences for the selectable marker (Patent 

W087/04462) and the associated hCMV promoter (Patent W089/011036). 
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A second commonly used selection expression system is based on the enzyme 

dihydrofolate reductase (DHFR). DHFR catalyses the conversion of folic acid to 

tetrahydrofolate, which is required to produce glycine, purines, and thymidylic acid for 

cell growth and proliferation [62]. According to Racher and Birch [59], the main role of 

the DHFR gene is to improve vector amplification when culturing cells in a folic 

acid-deficient media. Selection pressure can be applied during amplification by inhibiting 

endogenous DHFR activity through the addition of the folate analogue methotrexate 

(MTX) [63]. 

2.1.2 Host Cell Lines 

Mammalian cell lines are generally the preferred host cell for monoclonal antibody 

production. This is due to a variety of post-translational modifications mammalian cells 

perform, in particular the glycosylation of proteins. The glycosylation profile of a protein 

plays a role in protein recognition by a patient’s immune system, which in turn can affect 

drug efficacy and the likelihood of side effects [28,64–69]. 

Two industrially important mammalian cell lines are non-secreting murine myeloma 

(NS0) and Chinese hamster ovary (CHO) [70,71]. The NS0 cell line is a non-glutamine 

secreting subclone of the murine myeloma cell line, NS-1, which was isolated and 

identified in 1976 [72,73]. In industry, CHO typically refers to one of several cell lines 

derived from a single clone isolated in 1957 by Dr. Theodore T. Puck [74]. Three 

derivatives frequently encountered in industry are: DUXB11, DG44, CHOK1SV [75]. 

The DUXB11 and DG44 cell lines are DHFR-deficient cell lines developed by Columbia 

University [76]. The CHOK1SV cell line was developed by Lonza [59]. 

DHFR deficiency in CHO cell lines occurs due to either mutation or deletion of the dhfr 

alleles. Unlike the GS expression system, the competitive inhibitor MTX is required 

during cell line selection to isolate successfully transfected cells. 

Both CHOK1SV and NS0 cell lines can be cultured using the GS system [77–79]. In the 

case of CHOK1SV, this is due to the natural GS activity of the CHO cells being greatly 

reduced through gene silencing and the use of the GS inhibitor MSX to improve selection 

[80,81]. The NS0 cell line lacks endogenous GS activity and therefore does not require 

MSX selection [82,83]. However MSX may be used during GS-NS0 cell line selection as 

increased levels of MSX have been associated with increased GS gene copy number in 

GS-NS0 [77]. A 1985 study by Bebbington and Hentschel found that “[t]he amount of 

protein product of transfected genes is often found to be roughly proportional to the 
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number of functional copies of the gene present” [84]. There is some debate as to whether 

this is true only in specific cases as studies have been published both supporting [85] and 

discrediting [80] this theory. MSX is not used in GS-NS0 selection at Lonza unless 

specified by the client. 

2.2 Platform Processes and Technologies 

Three GS-CHO platform processes were offered by Lonza. In each platform process, 

operating conditions for temperature control, pH control, dissolved oxygen tension 

(DOT) control, gassing strategies, feed strategies, and medium compositions are specific 

to the platform version. When comparing GS platform versions 6, 7, and 8 (Table 2), it 

can be seen with increasing version number that platform developments have led to 

nutrient feeds and operating conditions more tailored to culture performance. Key 

developments are the increasing use of variable feed rates (rates based on some measure 

of biological performance, e.g. cell mass) and the use of a planned change in pH setpoint 

at a defined point during a culture in Version 8. If no platform process meets evaluation 

requirements (e.g. low return on investment), a bespoke process may be developed. 

 

Parameter Version 6 Version 7 Version 8 

pH Setpoint Constant Constant Planned change 

pH Control Boundary Wide Narrow Narrow 

DOT 15% 40% 40% 

Medium CM42 

CD-CHO* 

CM54 

CD-CHO* 

CM76 

Proprietary 

Nutrient Feeds SF40 

FCR, FV 

(4 to 5 days) 

SF50 

CF, VR 

FCD 

SF76 

CF, VR 

FCD 

SF41 

CF, VR 

Glucose 

CF, VR 

FCD 

Glucose 

CF, VR 

FCD 

Nutrient Feed Bolus 

Additions 

N/A SF52, SF53, SF54 

Days 5, 8, 11 

SF71, SF72, SF54 

Days 3, 5, 8, 10 

Table 2. Lonza platform processes for GS expression system [86]. *Invitrogen owned. CF – 

Continuous Feed. VR – Variable Rate. FCR – Fixed Continuous Rate. FCD – Full culture 

duration. CR –Continuous Rate. FV – Fixed Volume. BA – Bolus addition  
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Bioreactor design and scales must also be selected in addition to operating conditions. 

The two bioreactors designs offered at Lonza were continuous stirred tank reactors 

(CSTR) and airlift reactors (ALR). Both CSTR and ALR designs have established use in 

biopharmaceutical manufacturing. The primary difference between CSTR and ALR 

designs is how the bioreactor culture is agitated and gassing introduced. In an ALR, a 

vertical baffle divides the interior space with space at the top and bottom to allow 

continuous circulation of the culture. Gases are introduced on one side of the baffle and 

drive both culture circulation and the distribution of gases and nutrients throughout the 

culture. An important point in ALR operation is ensuring the culture volume adequately 

clears the baffle top and bottom to allow thorough mixing. A second important point in 

ALR operation is ensuring the gassing strategy provides an appropriate physical force for 

circulation throughout the culture duration. In a CSTR, agitation is driven by an impeller 

in the bioreactor. The impeller is driven by an external motor and hence agitation strategy 

can be designed independent of gassing strategy. 

The bioreactor scales offered at Lonza considered in the presented research are 10L, 

130L, 2000L, and 5000L. The scale used for a culture reflects the development stage of 

a project. The 10L scale bioreactors were used for research and development activities 

following Good Laboratory Practice (GLP), such as evaluating adaptation of a cell line 

to process platforms or experiments to test the effects of potential deviations. The 130L 

scale bioreactor, also referred to as “pilot scale”, was used to evaluate non-experimental 

culture performance at a larger scale using Good Manufacturing Practice (GMP). The 

2000L and 5000L scale bioreactors were used for full scale production using GMP 

procedures. 

During research and development activities, a cell line might be cultured in both CSTR 

and ALR to determine which provided a more suitable environment for growth or to 

evaluate the effects of using a different design from what had been previously used, e.g. 

Client A wishes to transfer from a CSTR process to an ALR process. Above the 10L 

scale, all higher scales used the design selected at the 10L scale.  
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2.3 Data Collected 

The development of new process platforms is dependent on identifying areas for 

improvement, such as favouring a particular metabolism pathway through altering culture 

temperature. As it is not feasible to monitor all possible variables, online monitoring and 

offline daily monitoring of cultures centred on a core set of variables (briefly outlined in 

Figure 5). The biological relevancy of the core set of variables are described here. Due to 

the variety of methods in which these variables were monitored, variable monitoring 

methods are described in §2.4. 

 

 

Figure 5. A simplified view of the variables monitored through online and offline measurements. 

The sequence of Radiometer PHM220 to Additional Assays shows the typical process a culture 

sample underwent. The biological significance of these variables are described in §2.3. Variable 

measurement methods are described in §2.4.  
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2.3.1 Temperature 

For mammalian cells, the effects of deviation from normal physiological temperature of 

36.5°C are dependent on the magnitude and direction of the deviation, in addition to other 

environmental conditions. For a DHFR-CHO cell-line producing a humanised mAb, a 

temperature shift from 37°C to 31°C at pH 6.8 during the stationary phase of the culture 

gave a 2.3-fold increase in mAb concentration [87]. Similarly, a shift from 37°C to 32°C 

during the stationary phase resulted in a 3-fold increase in the production of a recombinant 

IgG4 mAb by a GS-CHO cell line [88]. 

It is important to note that these effects do not hold true for all cell lines or products as 

shown through two studies by one research group. In the first study, CHO-DHFR- 

producing erythropoietin (EPO) cultured at 33°C showed a 4-fold increase in productivity 

when compared to a 37°C culture [89]. When the same cell line and CMV promoter were 

used to produce anti-4-1BB antibody, low culture temperatures did not result in enhanced 

productivity [90]. Through these two studies, the research group demonstrated that the 

degree of enhanced productivity from lower temperatures (if any) was affected by the 

product itself or the integration site of the vector. 

2.3.2 pH 

Culture pH affects cell growth [91–94], metabolism [95], product quality [96], and 

production rates [97]. Due to the ability of pH to affect biochemical characteristics [87], 

deliberate changes in the pH operating setpoint may be made as part of an experimental 

study or as part of the standard operating platform [98]. 

The behaviour of the cell culture itself can affect pH levels as accumulation of metabolites 

such as lactate can alter culture pH. Furthermore, effects from changes in pH can interfere 

with effects from other variables [87]. As noted above, in one study changing the setpoint 

of a bioreactor from 37°C to 31°C during the stationary phase of the culture resulted in a 

2.3-fold increase in mAb concentration for a CHO-DHFR- cell line [87]. This increase 

was observed at a pH of 6.8 but did not occur at a pH of 7.0. 

2.3.3 Dissolved Oxygen Tension 

Mammalian cell lines, such as CHO and NS0, are aerobic and require oxygen to survive 

[25,41]. While the exact effects of dissolved oxygen tension (DOT) depends on the cell 

line in question [64], it is known that hypoxia can affect growth rate [99–101], 

metabolism [102], and glycosylation of the mAb product [64,99]. Additionally, there is 

evidence that oscillating DOT levels can also affect product glycosylation without 



30 

 

obviously affecting growth [103]. By affecting glycosylation patterns, particularly 

without notably affecting growth, control of DOT can pose a major concern to 

biopharmaceutical producers. 

Studies suggest that hyperoxia is better tolerated than hypoxia in certain aspects of 

metabolism [99,104]. However DOT setpoints used at Lonza are typically in the range of 

15% to 40%. These levels are low enough that hyperoxia conditions would likely only 

occur in the event of equipment failure, e.g. a DOT probe giving a false reading. 

2.3.4 Glucose 

Glucose is an important nutrient for mammalian cell metabolism [105–107]. Insufficient 

glucose levels can result in decreased rate of growth [107–109], decreased specific rate 

of productivity [108], and incorrect glycosylation of products [110]. Glucose depletion 

may also cause cell metabolism to shift from lactate production to lactate consumption 

[102]. 

2.3.5 Lactate 

Mammalian cells are known to produce lactate as a part of normal metabolism and in 

response to stress conditions [107,111–113]. Accumulation of lactate may in turn affect 

culture performance, e.g. growth [114] or expression levels [109]. Normal lactate 

metabolism may also be affected when expressing the product of interest. Effects 

including altered lactate consumption [115–117] or increased lactate expression 

[118,119]. 

2.3.6 Glutamine, Glutamate, and NH4
+ 

Glutamine is an amino acid which serves a wide variety of functions in cells [77]. These 

include, among others, roles in the synthesis of proteins, pyrimidines, and purines, 

degradation of amino acids, acting as a nitrogen source, and the ability to function as a 

source of carbon and energy [77]. In the absence of glutamine, glutamine can be 

synthesised by the enzyme glutamine synthetase (GS) using glutamate and NH4
+ present 

in the culture medium. 

As stated previously, NS0 cells exhibit very low levels of endogenous GS activity, hence 

exogenous GS activity can be used to identify successfully transfected cells in a 

glutamine-free medium during cell line construction [58,61,85]. As CHO cells exhibit a 

degree of endogenous GS activity, MSX or a similarly competitive inhibitor is used to 

apply selection pressure during cell line construction and isolation [61,120,121]. 
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In addition to acting as substrates for GS, glutamate and NH4
+ serve other functions in 

cell metabolism. Glutamate can be consumed in the synthesis of the Kreb’s cycle 

intermediary compound α-ketoglutarate [122]. NH4
+ has been shown to effect protein 

glycosylation patterns [123]. 

2.3.7 Na+ and K+ 

Cell metabolism produces acid equivalents as a by-product, accumulation of which leads 

to acidification of the cytosol [124]. To maintain an appropriate physiological 

intracellular pH, these acid equivalents are transported through the cell membrane by the 

transmembrane enzyme sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) in 

exchange for Na+ ions. 

Na+ and K+ uptake and release by cells is also driven by the activity of Na+/K+-ATPase 

during regulation of intracellular osmotic pressure, cell volume, and signal transduction. 

Na+/K+-ATPase activity is related to cell life cycle stages, in particular the transition 

between the G1 growth phase and the S senescence phase [125]. 

2.3.8 pO2 

Oxygen is an essential input for aerobic metabolism. The partial pressure of oxygen in in 

solution in the culture medium (pO2) is a measure of oxygen in the culture medium 

available for use by cells. It is monitored for the same reasons given for monitoring of 

DOT. 

2.3.9 pCO2 

CO2 is a by-product of several cell metabolism pathways for the production of compounds 

such as pyrimidines, purines, and fatty acids [96,126,127]. pCO2 is the partial pressure of 

dissolved CO2 gas in culture medium. Accumulation of CO2 gas in the culture medium 

causes increased pCO2 levels which can have a range of effects on protein-producing 

mammalian cell cultures depending on product and cell type. These include inhibition of 

cell growth [114], decreased rates of glucose consumption [126], decreased rates of 

lactate production [126], and altered glycosylation [96,128,129]. 

Increased accumulation of CO2 in culture medium is often observed during scale-up of 

bioreactors and may be caused by insufficient stripping of CO2 from the culture (e.g. by 

nitrogen), poor culture mixing, or as a side-effect of controller action if sparging with 

CO2 gas is used as part of pH control [126]. In particular, build-up of CO2 at a constant 
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pH is associated with increased osmolality and subsequent knock-on effects such as 

increased intracellular pH and increased Na+/K+-ATPase activity [127]. 

2.3.10 Culture Osmolality 

Osmolality is the concentration of solutes in a sample measured in osmoles of solute per 

kilogram (Osm/kg) of solvent [130]. This provides information on how much material is 

in a sample, however it does not identify or specify quantities of individual components 

present in the sample. The indiscriminate nature of osmolality, its impact on statistical 

analyses, and a proposed solution are further addressed in Chapter 4. 

The osmolality of a culture can effect a culture in many way including effects on cell 

growth rate [114,131], specific productivity [131], product quality, e.g. affecting product 

glycoform [128] or polysialylisation [96], and cell mechanical properties such as bursting 

force and cell diameter [132]. The extent of these effects vary with cell type and product, 

e.g. greater inhibition of cell growth from elevated osmolality has been observed in 

hybridomas than in CHO cells grown in the same medium [91,113,126,127] and product 

glycoforms may be robust to changes in osmolality, as in the case of CHO-derived tissue 

plasminogen activator [133]. 

Culture osmolality can be altered by a wide range of causes. For example, increased pCO2 

levels can result in increased osmolality [134] as can accumulation of products or 

by-products in the culture medium. 
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2.4 Data Collection Methods 

A wide variety of data are collected when a bioreactor culture is performed. Data can be 

subdivided into three general classes based on origin and data type: meta-data, online 

monitoring data, and daily monitoring data. Four types of probe were used during the 

online monitoring and daily monitoring data collection: resistance temperature detector, 

potentiometric, amperometric, enzyme-immobilised amperometric. 

A resistance temperature detector (RTD) is based on the resistance of a metal element as 

a function of temperature for a given operating range [135]. The metal element is held by 

a glass or ceramic core, and the full assembly is sheathed in a protective housing that 

allows it to be safely inserted into a reactor or bioreactor. Platinum is the most commonly 

used metal due to its high accuracy and resistance to corrosion with the platinum-coiled 

Pt100 probe design found across many industries [136]. 

Potentiometric probes are ion selective probes, where the ion of interest (typically 

hydrogen) is sensed by a probe membrane [137]. This results in a change in the membrane 

potential from which the ion concentration can be determined using the Nernst Equation 

(Eq. 2.1). 

𝐸 = 𝐸𝑜 + 2.303 (
𝑅𝑇

𝑛𝐹
) log 𝑎𝑜 Eq. 2.1 

where 𝐸 is the total potential developed between sensing and reference electrodes (mV), 

𝐸𝑜 is the standard potential of the electrode (mV), 𝑅 is the Universal Gas Constant, 

(8.314 J K−1 mol−1), 𝑇 is the temperature (K), 𝑛 is the moles of ion in the sample, 𝐹 is the 

Faraday constant, and 𝑎𝑜 is the activity of the ion in solution. 

In an amperometric probe, a permeable membrane covers the electrode, allowing the ion 

of interest to pass through the membrane. The ions initiate some reaction that produces 

an electrical current from which the ion concentration can be determined. For example, 

oxygen ions initiate an oxidation-reduction reaction [138]. 

For an amperometric probe with an enzyme immobilised membrane, the immobilised 

enzymes produce measureable by-products in the presence of the substrate of interest and 

any other necessary reagents. For example, conversion of the substrate in the presence of 

oxygen may produce hydrogen peroxide (H2O2) [138]. H2O2 is then oxidised at the anode 

resulting in a change in current charge proportional to the concentration of the substrate 

of interest in the sample. 
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2.4.1 Meta-Data Collection 

Meta-data is a term capturing a wide variety of data and data sources, such as project 

name, culture identifier, media batch numbers, bioreactor station identifier, 

operator/scientist, and version numbers for spreadsheet calculators for feedrates. 

Effective utilisation of meta-data is a challenge due to both the scale of the meta-data 

available in biopharmaceutical process and the manner in which it is captured, i.e. 

predominantly written records or print outs [139]. Even if preserved electronically by 

scanning, the resulting files are often difficult to search as an information databased. 

2.4.2 Online Monitoring Control and Data Collection 

At the 10L scale, online monitoring was achieved by the use of probes inserted into the 

bioreactor and flowrate meters on gas lines into the bioreactor. These probes were 

connected to an Applikon i-Control unit (Applikon Biotechnology, UK). The unit 

recorded values at a five minute intervals. Nutrient feeds were not controlled using this 

system. Instead nutrient feeds were controlled manually using peristaltic pumps and 

electronic balances. Hence nutrient feeds were treated as part of daily monitoring 

activities. 

At larger scales, one probe was used for control with two additional probes connected for 

monitoring. This allowed two-against-one arguments to be used to identify faulty probes, 

in addition to providing redundancy in the event of the control probe failing. Multi-probe 

arrangements could also be used to monitor and identify gradients within the bioreactor 

as replicate probes were located in different positions in the bioreactor, e.g. top, middle, 

and base levels. 

During a bioreactor culture, the signals and readings informing the controller are sampled 

at a set interval, e.g. 5 minutes. The bioreactor’s online monitoring record can be exported 

to .csv files whenever desired, e.g. during a culture or after harvesting. 

2.4.2.1 pH 

Online monitoring and control of pH was achieved through the use of a Mettler-Toledo 

405-DPAS-SC-K8S/425 potentiometric pH probe (Mettler-Toledo, UK). If the recorded 

value was outside an operating deadband (e.g. ±0.02), automatic corrective action was 

taken by the control system through CO2 addition or base addition. 

pH measurements of samples collected during offline monitoring were compared to 

control system readings to identify and correct probe drift. If the discrepancy was > 0.02, 
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an offset was made to the online probe to bring online readings into agreement with the 

offline reading. If the discrepancy was ≤ 0.02, no adjustment was made. 

2.4.2.2 Temperature 

Culture temperature was measured using a Pt100 temperature probe with Lemo connector 

(Electrolab Biotech, UK). At the 10L scale, passive cooling was used with additional heat 

supplied by a thermal/heating pad jacket. At larger scales, heating and cooling 

requirements were met by circulating water through vessel jackets. 

Temperature measurements were made on daily offline samples, however these were not 

used to make external adjustments as part of daily monitoring. If bioreactor temperature 

or temperature control was question, an Almeno temperature probe was used to verify 

culture temperature and determine if corrective action was required. 

2.4.2.3 Dissolved Oxygen Tension 

Culture DOT was monitored using a P52201015 DOT probe (Mettler-Toledo, UK). DOT 

levels were controlled by increasing and decreasing air and oxygen gas flowrates. 

2.4.2.4 Carbon Dioxide, Air, and Oxygen Flowrates 

Carbon dioxide (CO2) gas is an acidic gas that was used to correct pH in cultures when 

pH measured > pH setpoint. 

CO2, air, and oxygen gas flowrates into bioreactors were controlled and monitored using 

flowrate meters. Gas flowrate and composition when exiting the bioreactor were not 

recorded. 

2.4.2.5 Level 

At the 10 L scale, bioreactor fill levels were monitored visually. Above the 10 L scale, 

bioreactor fill levels were monitored using level probes within the bioreactor. 

2.4.3 Daily Monitoring Data Collection 

As part of normal operation, cultures were sampled approximately every 24 hours. At the 

10L scale, samples underwent the sequence described below. At scales larger than 10L, 

a similar sequence was followed with some differences. This differences are noted as 

required. 

2.4.3.1 Bioreactor Conditions 

Bioreactor temperature, bioreactor pH, and bioreactor dissolved oxygen tension (DOT) 

at the time of daily sampling were recorded from the online control unit.  
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2.4.3.2 Radiometer PHM 220 

A Radiometer Analytical PHM220 meter with a Mettler-Toledo potentiometric pH probe 

was used to measure sample temperature and sample pH. The sample pH measurement 

would be compared to the bioreactor pH measurement to determine if the online probe 

required adjustment due to drift. 

2.4.3.3 NOVA Bioprofile 400 

A NOVA Bioprofile 400 was used to measure multiple variables, ranges and accuracies 

for which are presented in Table 3. A second offline pH measurement, referred to as the 

NOVA pH, was made with a potentiometric probe. Enzyme-immobilised membrane 

amperometric probes were used to measure sample concentrations of glucose, lactate, 

glutamine, and glutamate. Ion selective electrodes were used to measure sample 

concentrations of ammonium ions (NH4
+), potassium ions (K+), and sodium ions (Na+). 

Membrane amperometric electrodes were used to measure sample partial pressure of 

oxygen (pO2) and partial pressure of carbon dioxide (pCO2). 

 

 

 

Component Range Accuracy Probe Type 

pH 5.00 to 8.00 ± 0.01% Potentiometric 

Glucose 0.2 to 15.0 g/L ± 5.0% 

Enzyme-immobilised membrane 

amperometric 

Lactate 0.2 to 15.0 g/L ± 5.0% 

Glutamine 0.2 to 6.0 mmol/L ± 5.0% 

Glutamate 0.2 to 6.0 mmol/L ± 5.0% 

NH4
+ 0.2 to 25.0 mmol/L ± 5.0% 

Ion selective electrode K+ 1.0 to 25.0 mmol/L ± 3.0% 

Na+ 40 to 220 mmol/L ± 1.5% 

pO2 0 to 800 mmHg ± 5.0% 
Membrane amperometric 

pCO2 3 to 200 mmHg ± 5.0% 

Table 3. Summary of daily monitoring offline sample pH, chemical concentrations, and partial 

pressures measured using a NOVA Bioprofile 400, including ranges, accuracies, and probe 

types [140].  
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2.4.3.4 Vi-CELL™ XR  

Trypan Blue permeates the membranes of non-viable cells but is excluded by the 

membranes of viable cells. When added to a sample, the dye stained only non-viable cells 

[141]. A Vi-CELL™ XR (Beckman Coulter) was used to count viable cell numbers and 

total cell numbers. From this, viable cell concentration (VCC, 106 cells/mL) and total cell 

concentration (TCC, 106 cells/mL) were determined. Viability was then calculated as the 

percentage ratio of viable and total cell counts. 

𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  
𝑉𝑖𝑎𝑏𝑙𝑒 𝐶𝑒𝑙𝑙 𝐶𝑜𝑢𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝐶𝑒𝑙𝑙 𝐶𝑜𝑢𝑛𝑡
 Eq. 2.2 

The integral of viable cell concentration of the sample was calculated as the area beneath 

the viable cell concentration profile with the units 106 cells.h/mL as shown in Figure 6). 

 

 

Figure 6. Viable cell concentration (VCC) for the culture Dataset α ProA_001. The pink 

rectangles and blue triangles indicate the areas used to calculate the integral of viable cell 

concentration (IVC) for a sample.  
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2.4.3.5 NOVA Bioprofile 400 and Osmomat Auto 

Two different methods were used to measure sample osmolality. Each osmolality 

measurement method was treated as producing a different variable. This allowed for 

greater traceability regarding data origin and identification of potential equipment biases 

or errors. 

The first measurement was made using a NOVA Bioprofile 400 using a component 

calculator. A component calculator is an equation estimating a sample’s osmolality based 

on known concentrations of sample components and those compounds’ effects on 

osmolality. The benefit of this method is that it does not typically require additional 

equipment, and it is technically possible to use a component calculator to generate 

osmolality values for an historical dataset. However it is important to note that component 

calculator values are not true osmolality measurements as the calculations can only take 

into account the effect of components that are directly monitored and does not take into 

account unmonitored components. 

The second osmolality measurement was based on freezing point osmometry (FPO) using 

an Osmomat Auto (Gonotec Gmbh, Germany). In FPO, the osmolality of a sample is 

determined by comparing the difference between the freezing point of the sample and the 

freezing point of water as the freezing point of a liquid is depressed when another 

compound is added. FPO is a rapid, inexpensive method appropriate for small sample 

sizes of low viscosity, non-colloidal solutions. For this reason, it is the preferred method 

for most biological applications [142], however an FPO osmolality measurement was not 

part of routine daily monitoring at scales larger than 10 L. 

2.4.3.6 Additional Assays 

Following the above sequence, daily monitoring samples were also submitted for more 

detailed protein assays and metabolite tests, which were not treated as part of the daily 

monitoring data set for the purposes of the presented research.  
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 Statistical Methods 

Multiple statistical tools are employed throughout this thesis. The techniques relevant to 

multiple chapters are presented here. Additional statistical background is presented where 

appropriate for the presented work. 

3.1 Multiple Linear Regression 

A simple form of regression is multivariate linear regression (MLR). Given the inputs 

(𝑥1, 𝑥2, …, 𝑥𝑘), a response (𝑦) can be modelled as: 

�̂� = �̂�0 + �̂�1𝑥1 + �̂�2𝑥2 + ⋯+ �̂�𝑛𝑥𝑘 Eq. 3.1 

where ŷ is the predicted response, �̂�0 is a constant, 𝑘 is the number of independent 

variables, and �̂�1 to �̂�𝑘 are coefficients for the inputs 𝑥1 to 𝑥𝑘 respectively. The difference 

between a response predicted by a model (�̂�) and the actual measured response (𝑦) is 

termed a model error or residual (𝜀), e.g. for a sample 𝑖 

𝜀𝑖 = 𝑦𝑖 − �̂�𝑖 Eq. 3.2 

The coefficients are calculated assuming that model residuals are normally distributed 

and the sum of errors minimised. Distribution of residuals can indicate if the model is 

being distorted by outliers or that behaviours in the response data are not captured in the 

developed model, .e.g. heteroscedasticity (skew) in the modelled dataset. 

Residuals can also be used to evaluate the extent to which a model can be generalised by 

using the predictive error sum of squares (PRESS) statistic. The model is fitted against 

every subset of observations excluding a sample 𝑖. Residuals for each subset are 

calculated (𝜀−𝑖), then squared (𝜀−𝑖
2 ). The PRESS statistic is then calculated as: 

𝑃𝑅𝐸𝑆𝑆 = 1 −
∑ 𝜀−𝑖

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 Eq. 3.3 

where �̅� is the mean average of all responses. The PRESS statistic is analogous to the 

coefficient of determination of a model with a range of 0 to 1 with 1 indicating perfect 

predictive accuracy for the tested observations. 

3.2 Significance Testing 

The predictive ability of a MLR model may be negatively affected by over-

parameterisation, the inclusion of too many factors in a model. When a model is 

over-parameterised, highly correlated variables compete to convey similar information 
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and noisy variables can reduce model efficiency. Significance testing can be used to 

manage these issues by identifying statistically insignificant variables that can then be 

removed. A two-sided 𝑡 ratio (Eq. 3.4) is used to evaluate the variables in a MLR and is 

the ratio of the variable parameter estimate to the standard deviation of the variable: 

𝑡 = √
𝑅𝑎𝑑𝑗

2 (𝑛 − 𝑘 − 1)

1 − 𝑅𝑎𝑑𝑗
2  Eq. 3.4 

where 𝑛 is the number of samples, 𝑘 is the number of independent terms in the model, 

and 𝑅𝑎𝑑𝑗
2  is the adjusted Pearson’s coefficient of determination. From the 𝑡 score and a 

selected threshold value α (historically 0.05), a two-tailed p value for 𝑡 is calculated as: 

𝑝 = 2 ∗ P (𝑡 > 𝑡
(
𝛼
2
,𝑛−𝑘−1)

) Eq. 3.5 

If p<α, then the variable is said to be statistically significant. If p>α, the variable is said 

to be statistically insignificant. The variable with the highest 𝑝 value above the chosen 

threshold, i.e. the least significant variable, is removed and a new model created. This is 

repeated until only statistically significant variables remain. 

Significance testing in this manner is a form of stepwise backward elimination (Table 4) 

as the procedure begins with the full set of variables and with each step, the least 

informative variable is removed [143]. An alternative approach is stepwise forward 

selection (Table 4), where the most informative variable is determined and with each step, 

the next most informative variable is added to the set [143]. Each technique can be time 

consuming, however stepwise backwards elimination is generally both easier to 

implement and inspires greater personal confidence in the resulting model. 

Stepwise Forward Selection Stepwise Backward Elimination 

Initial variable set: 

{} 

 {A1 } 

 {A1, A4} 

 {A1, A4, A6} 

Reduced variable set 

Initial variable set: 

{A1, A2, A3, A4, A5, A6} 

 {A1, A3, A4, A5, A6} 

 {A1, A4, A5, A6} 

 {A1, A4, A6} 

Reduced variable set 

Table 4. Comparison of stepwise forward selection and stepwise backward elimination for 

reduction of a variable set [143]. 
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3.3 Principal Component Analysis 

Principal component analysis (PCA) is a statistical dimensionality reduction tool suitable 

for use on a large dataset 𝑋 composed of n samples and p factors, which may contain 

highly correlated factors. PCA captures variation in the dataset by creating new variables 

termed principal components (PC); these are eigenvectors calculated from the covariance 

matrix of 𝑋 so that for a PCA model using k PCs: 

𝑋 = 𝑇PT + 𝐸 Eq. 3.6 

where 𝑋 is the original nxp data matrix, T the nxp scores matrix, PT the kxp loadings 

matrix, and E an nxp model residuals matrix [144]. 

Each PC is a new multilinear combination of the original variables and orthogonal, i.e. 

uncorrelated with other PCs. PCs capture variance in a cumulative manner, where the first 

PC captures the most variance in a single PC, the second PC the next most variance, and 

so on. Up to n or p PCs can be computed (whichever is smaller), however in practice the 

number of PCs retained in a model will usually be less than this. The number of PCs to 

be retained can be selected from a variety of ways. This may be a simple calculated 

threshold, e.g. a minimum cumulative variance is reached or the number of PCs giving 

the lowest root mean square error (RMSE) for a cross-validation set: 

RMSE = √
1

𝑛
∑ 𝜀𝑖

2
𝑛

𝑖=1
 Eq. 3.7 

When the loadings for PCs are plotted in two-dimensional space, correlated variables will 

cluster together. Negatively correlated variables will be at opposite points across the 

origin; variables with little or no correlation will be orthogonal. Similarly, when scores 

for samples are plotted in two-dimensional space, samples with similar behaviour will 

cluster together while samples with dissimilar behaviour will separate. 

PCA can be performed on both covariance and correlation matrices. Both matrix types 

are essentially the same, in that relationships between variables are evaluated for 

independence, however different models will be returned depending on which matrix is 

used. Covariance is an unbounded, unlimited value. When the covariance matrix of a 

dataset is used, variables with high covariance values are be prioritised over variables 

with low covariance during model creation due to differences in value magnitude. 

Correlation is standardised to the limits [-1.0, 1.0] and so the magnitude of the original 
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values is eliminated as a potential bias. For this reason, correlation matrices were used in 

the presented work. 

An extension of PCA is principal component regression (PCR). Here the scores generated 

in PCA are then regressed against a response Y. A weakness of PCR is that PCA is a 

technique for describing variance in the input dataset, which may have very little to do 

with variance in the response of interest. 

3.4 Partial Least Squares/Projection to Latent Structures 

In PCA, the purpose of the model was to capture variance in an X dataset without linking 

that behaviour to a response Y. While PCA is a valuable tool for dataset exploration, it is 

of limited use when a response of interest exists as the related technique, principal 

component regression (PCR), emphasises capture of the X dataset. 

Partial least squares or projection to latent structures (PLS) are the same iterative 

algorithm whereby variance in an X dataset is captured based on the ability to describe 

variance in a response dataset Y [145,146]. The Non-Linear Iterative Partial Least Squares 

(NIPALS) algorithm uses an outer regression between X and Y (Eq. 3.8) and inner 

regressions for the input dataset X (Eq. 3.9) and the response dataset Y (Eq. 3.10). 

𝑌 = 𝑋𝛽 + 𝜀 Eq. 3.8 

𝑋 = 𝑇 ∗ 𝑃′ + 𝐸 Eq. 3.9 

𝑌 = 𝑈 ∗ 𝑄′ + 𝐹 Eq. 3.10 

where 𝑇 and 𝑈 are score matrices, 𝑃′ and 𝑄′ are loadings matrices, and 𝐸 and 𝐹 are 

error/residuals matrices. This is shown in Figure 8 and the NIPALS algorithm is shown 

in Table 5. 
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Figure 7. Visual representation of PCA architecture. New variables termed principal components 

(PC) are created. These are multivariate linear combinations capturing variance in the original 

dataset. In the PCA model, each sample is now represented by a single score for each PC retained 

plus a multivariate residual, which captures variance not captured in the PCA model. Here two 

PC are retained, therefore each sample has a score for PC 1, a score for PC 2, and a residual. 
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Figure 8. Visual representation of PLSR architecture. For input dataset 𝑋 and response dataset 𝑌 

respectively, 𝑇 and 𝑈 are scores matrices, 𝑃′ and 𝑄′are loadings matrices, and 𝐸 and 𝐹 are 

error/residuals matrices.
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 𝑋 Regression   𝑌 Regression   Single Algorithm for Improved Inner Relationship 

1. Let 𝑡 = some 𝑥𝑗 1. Let 𝑢 = some 𝑦𝑗 1. Let 𝑢 = some 𝑦𝑗  

2. 
𝑝′ =

𝑡′𝑋

𝑡′𝑡
 

2. 
𝑞′ =

𝑢′𝑌

𝑢′𝑢
 

2. 
𝑝′ =

𝑢′𝑋

𝑢′𝑢
 𝑤′ =

𝑢′𝑋

𝑢′𝑢
 

3. Scale 

𝑝′ =
𝑝′

‖𝑝′‖
 

3. Scale 

𝑞′ =
𝑞′

‖𝑞′‖
 

3. Scale 

𝑝′ =
𝑝′

‖𝑝′‖
 

Scale 

𝑤′ =
𝑤′

‖𝑤′‖
 

4. 
𝑡 =

𝑋𝑝

𝑝′𝑝
 

4. 
𝑢 =

𝑌𝑞

𝑞′𝑞
 

4. 
𝑡 =

𝑋𝑝

𝑝′𝑝
 𝑡 =

𝑋𝑤

𝑤′𝑤
 

5. If Step 2 𝑝′ ≠ Step 4 𝑝′, return to Step 2. 

If Step 2 𝑝′ = Step 4 𝑝′, go to Step 6. 

5. If Step 2 𝑞′ ≠ Step 4 𝑞′, return to Step 2. 

If Step 2 𝑞′ = Step 4 𝑞′, go to Step 6. 

5. 
𝑞′ =

𝑡′𝑌

𝑡′𝑡
 

If 𝑌 has only one 

variable, then 

𝑞 = 1 in 

Step 5 to 7. 

6. Repeat Step 1 to 5 on residuals matrix 𝐸. 6. Repeat Step 1 to 5 on residuals matrix 𝐹∗. 6. Scale to unit length 

𝑞′ =
𝑞′

‖𝑞′‖
 

 

7. 
𝑢 =

𝑌𝑞

𝑞′𝑞
 

8. If Step 4 𝑡 ≠ previous Step 4 𝑡, return to Step 2. 

If Step 4 𝑡 = previous Step 4 𝑡, go to Step 9. 

9. Repeat Step 1 to 8 on residuals 𝐸 and 𝐹∗. 

Table 5. Non-Linear Iterative Partial Least Squares (NIPALS) algorithms for outer regressions and combined algorithm for improved capture of the inner relationship 

[146]. In the Single Algorithm, both 𝑡 (some 𝑥𝑗)  and 𝑢 (some 𝑦𝑗) are used to determine individual latent variable loadings(𝑝′ and 𝑞′) in both the 𝑋 regression and 𝑌 

regression. All three algorithms use convergence as stopping criteria for proceeding to calculate the next latent variable from the residuals matrices 𝐸 and 𝐹∗. 
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Table 6 and Table 7 are presented as a theoretical comparison of regressions using PCR 

and PLS for a dataset X and a response Y. In Table 6, PCA has been applied to the dataset 

X. Considering the X variance captured, it is seen that the 1st PC captures the greatest 

percentage variance (60%), the 2nd PC a smaller percentage (20%), and the 3rd PC smaller 

still (10%). Only three PCs are retained as these captured 90% of X variance which, in 

this example, has been deemed sufficient for proceeding to regression. The scores for this 

model are then regressed on the response Y. Considering then the Y variance captured, it 

is seen that only a 55% of Y variance is captured total, despite 90% of X variance being 

captured. Furthermore, the percentage of Y variance captured does not decrease with PC 

number as occurs for the percentage of X variance captured. 

In Table 7 where PLSR has been employed, the situation is reversed. The 1st LV captures 

on 20% of the X variance but 60% of the Y variance, the 2nd LV 5% of X variance and 

20% of Y variance, and the 3rd LV 30% of X variance and 10% of Y variance. Here a 

total 55% of X variance explains 90% of the Y variance. 

The purpose of this comparison is to clearly demonstrate the difference between 

PCA-based and PLS-based techniques. PCA focuses on X variance regardless of any 

response, whereas PLS focuses on X variance only so far as it explains Y variance. 

 

 X Variance Captured (%) Y Variance Captured (%) 

PC This PC Total This PC Total 

1 60 60 20 20 

2 20 80 5 25 

3 10 90 30 55 

Table 6. Captured X and Y Variance Using PCR. A total of 90% X variance is captured but only 

55% Y variance can be ascribed to this behaviour. 

 

 X Variance Captured (%) Y Variance Captured (%) 

PC This PC Total This PC Total 

1 20 20 60 60 

2 5 25 20 80 

3 30 55 10 90 

Table 7. Captured X and Y Variance Using PLSR. 90% of Y variance can be ascribed to only 

55% of X variance. 
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The PLS algorithm is not restricted to regressions to predict a response dataset response 

dataset Y. If the response dataset is categorical classifications, e.g. pass/fail, 

positive/neutral/negative, the PLS algorithm is used perform discriminant analysis 

(PLS-DA). In PLS-DA, latent variables and variable weightings are calculated to provide 

the greatest level of separation between the response classes. Hence, as in PLSR, a 

structure is imposed on the dataset to capture variance differentiating classes. 

As with PCA, the use of cross-validation analysis is recommended to prevent over-fitting 

of the model. In ‘Leave One Out’ cross-validation, the number of latent variables used is 

based on the PRESS statistic. This is repeated until each sample has been left out and a 

total PRESS is calculated. The ‘best’ model is selected based on the number of latent 

variables that gives the lowest total PRESS. The number of latent variables retained can 

also be based on alternative model performance criteria, e.g. correct classification of 

specific samples in PLS-DA, instead of overall classification accuracy of the dataset. 

A benefit of PLS is that input variables identified by the algorithm as statistically 

significant for the response of interest are given greater weighting than those identified 

as statistically insignificant. This ability can improve signal-to-noise ratios in large 

datasets as statistically insignificant variables can be given effectively zero impact in 

prediction or analyses. 

It is important to question the identified behaviours as the PLS algorithm imposes a 

structure which, in a suitably large dataset, can potentially create spurious models with 

high predictive accuracy. While cross-validation can help reduce the likelihood of such 

model being selected, it is also possible for more nuanced behaviours to be buried beneath 

“obvious” behaviours. PLS is generally recommended as a tool for extracting information 

from highly correlated multivariate dataset where there is a high signal-to-noise ratio 

whether noise is defined as true noise or unnecessary data [147]. 

3.5 Lack-of-Fit Statistics and Outliers 

Lack-of-fit statistics are used to evaluate models produced through modelling algorithms 

such as PCA and PLS. Two key lack of fit statistics used in the presented work were 

Hotelling T2 residual and Q Residuals. 

Hotelling T2 can be thought of as a multivariate version of univariate standardisation as 

it compares the cumulative variance of a sample’s data to the model mean (Eq. 3.11). 

𝑇𝑖
2 = 𝑥𝑖

𝑇𝐏𝚲−1𝐏T𝑥𝑖 Eq. 3.11 
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where 𝑇𝑖
2 is the Hotelling T2 for a sample, 𝑥𝑖 is the sample data, 𝑥𝑖

𝑇is the transpose of 

the sample data, 𝐏 is the loading matrix for input data, 𝐏T is the transpose of the loading 

matrix for input data, and 𝚲 is the diagonal matrix of eigenvalues 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑘) for 

the selected number of components or latent variables [148]. An upper control limit 𝑇𝑈𝐶𝐿
2  

is calculated as shown: 

𝑇𝑈𝐶𝐿
2 =

𝑘(𝑛 − 1)

𝑛 − 𝑘
𝐹𝑘,𝑛−𝑘;𝛼 Eq. 3.12 

where 𝑇𝑈𝐶𝐿
2  is the upper control limit value, 𝑘 is the number of variables, 𝑛  is the number 

of observations, 𝐹𝑘,𝑛−𝑘;𝛼 is the Fvalue for the limit [148]. Values above the calculated 

limit represent samples with statistically unusual values when compared to other samples 

in a dataset, however as the limit is calculated using a threshold (𝛼), a percentage of 

samples should always lie on or above the limit. 

As each individual variable’s contribution to a sample’s Hotelling T2 residual is 

calculated, it is possible to identify variables contributing to high Hotelling T2 values. 

Three causes for high Hotelling T2 values encountered during the course of the presented 

research were: 

 Simple decimal error, e.g. a dataset has a mean pH of 6.91 and standard deviation 

0.02. A pH reading of 6.91 (σ = 0) is recorded as 69.1 (σ = 3109.5). 

 A statistically ‘unusual’ but biologically irrelevant outlier, e.g. a dataset has 49 

readings of 36.5°C and one reading of 36.6°C. When mean centred and 

normalised, the single 36.6°C reading has a standardised value of 7 σ.  

 Samples with experimental operating conditions in a dataset comprising 

predominantly samples with ordinary operating conditions. 

 

In the case of decimal error, technically all that is required is dataset cleaning. In the case 

of variables such as pH in a well-controlled process, decimal errors can be confidently 

identified and rectified. Ideally they are anticipated as part of data capture and the error 

can be flagged at the point of data entry (e.g. an error box appears when entered into the 

data monitoring spreadsheet). However decimal errors may not be caught during data 

cleaning and may have a detrimental effect on subsequent models. This is a particular risk 

for variables with a greater range of values or potential range of values such a pCO2 which 

may range from close to 0 mmHg to over 300 mmHg during the course of a culture. 
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The statistically unusual but biologically irrelevant outlier is an issue that can be caused 

by over-cleaned datasets, differences in rounding used between data entries, and biased 

or unrepresentative sampling (e.g. ‘blocking’ effects). The following example is a 

simplification of an issue concerning differences in bioreactor scale (10 L v. 5000 L) and 

temperature control. 

At the 10 L scale, temperature is more quickly and tightly controlled relative to 

temperature control at the 5000 L scale, where there is longer lag attributed to increased 

volume. Essentially, when a scientist records reactor temperatures, it is likely that greater 

variation in temperature will be observed at the 5000 L scale due to the greater lag in 

control. This statistical difference in control response is not necessarily biologically 

relevant. However, once this difference between scales is identified, it must be 

demonstrated that the difference does not impact on, for example, the efficacy of the 

product. Once this is done, there are several options: 

1. If the variable has low significance in the model, remove the variable. 

2. Replace the variable with a more robust measure, e.g. replace offline sampling/ 

daily monitoring temperature measurements with median temperatures calculated 

from online monitoring records. 

3. Introduce more samples of this type to the dataset. In the example, the dataset is 

heavily biased towards capture of 10 L scale control. Reducing the number of 

10 L samples or increasing the number of 5000 L samples would improve the 

balance between the two control schemes. 

4. Rectify identifiable errors in input data if possible. Rounding errors, inconsistency 

in how many significant figures to record, different units used for measurements 

(mmol/L v. mg/L), and decimal points errors can affect the calculated Hotelling 

T2 contributions. 

 

A high Hotelling T2 residual does not necessarily mean a sample is an outlier. A sample 

with a high Hotelling T2 may represent more extreme values, however this does not 

necessarily make the sample an outlier if the correlations identified by the model are 

conserved. Conversely, a low Hotelling T2 does not necessarily preclude a sample from 

being an outlier or non-representative sample. 
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These behavioural outliers can be identified through the use of Q Residuals2 (Eq. 3.13) 

also called the squared prediction error (SPE), where the residuals matrix is used to 

calculate the agreement between a sample’s n-dimensional location and the location 

according to the model. 

𝑄𝑖 = 𝑒𝑖𝑒𝑖
𝑇 Eq. 3.13 

where 𝑄𝑖 is the calculated Q Residual of sample 𝑖, 𝑒𝑖 is the 𝑖th row vector from the error 

matrix E, and 𝑒𝑖
𝑇 is the transpose of 𝑒𝑖. An upper limit for Q Residuals can be 

approximated using the Jackson-Mudholkar formula (Eq. 3.14). 

𝑄𝑖 = 𝜃1 [1 −
𝜃2ℎ0(1 − ℎ0)

𝜃1
2 +

𝑧𝛼√2𝜃2ℎ0
2

𝜃1
]

1
ℎ0

⁄

 Eq. 3.14 

with 

𝜃𝑖 = ∑ 𝑥𝑗
𝑖 , 𝑖

𝑛

𝑗=𝑘+1

 
Eq. 3.15 

and 

ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2  

Eq. 3.16 

where 𝑘 is the number of PCs retained, 𝛼 is the significance level, 𝑥𝑗
𝑖 the value of variable 

𝑗 for sample 𝑖, and 𝑧𝛼 is the standard normal value corresponding to the upper 1-α 

percentile [148]. Q Residual contributions are simply the row vector 𝑒𝑖.When comparing 

Q Residual contributions for two or more samples, one observation (A) can be set as a 

baseline. Relative Q Residual contributions are calculated for the remaining samples by 

subtracting 𝑒𝐴.from the error matrix E. 

High ‘Normal’ values 

Behaviour does not fit model 

Ex. Culture with behaviour not captured 

by model but measurements are within 

univariate limits. 

‘Unusual’ values 

‘Behaviour does not fit model 

Ex. Experimental conditions which affect 

culture in manner that does not obey 

model. 

Q
 R

es
id

u
al

s 

‘Normal’ values 

Behaviour fits model 

Ex. Control cultures and “Golden 

Batches” 

Unusual’ values 

Behaviour fits the model 

Ex. Experimental conditions affecting 

culture in a manner that obeys model. 

Low 

 Low Hotelling T2 Residual High 

Table 8. A simple demonstration of interpreting lack-of-fit statistics for a multivariate model. 

Ideally, Hotelling T2 and Q Residuals for samples lie within or near the lower left quadrant. 

Otherwise this indicates a sample’s data, behaviour, or both are statistically different.  

                                                 
2 This value is also known as DModX. The related limit is referred to as DModXCrit. 
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3.6 Decision Trees 

A decision tree is a classification technique which uses induction to determine key 

variables for partitioning observations into individual classes [143]. There are three key 

items in the structure of a decision tree: 

1. Internal Node—A decision point using a predictor variable value as the decision 

criteria, e.g. “pH>7.0”  

2. Leaf Node—During tree construction, this is the majority sample class. For 

cross-validation and testing dataset, this is the predicted class for a sample. 

3. Branch—Pathway between internal nodes and leaf nodes based on attribute value. 

 

A notable feature of decision trees is that they can be constructed from heterogeneous 

datasets, e.g. continuous, discrete, and categorical data can be analysed as a single dataset. 

An example from industry is the use of decision trees to identify most optimal growth 

conditions for E. coli from parameters including inoculum volume, substrate source, and 

culture conditions [42]. 

 

 

Figure 9. Decision tree to determine growth conditions leading to separation of 85 E. coli cultures 

as “High” or “Low” based on fluorescence using gain ratio [42]. Nodes are number sequential by 

layer and from left to right, e.g. node numbers in third layer would be 4, 5, 6, and 7 for fermentor 

numbers #1, #2, #3, and #4 respectively. In this visualisation, the distribution of the two classes 

can be seen at each internal node and each leaf node. The number of samples at each node is also 

displayed. It can be seen that the first decision criteria (% 𝐴𝑟𝑎𝑏𝑖𝑛𝑜𝑠𝑒 ≤ 0.16) resulted in 

approximately 75% of samples (cultures) being grouped on a single node. This group is of high 

enough purity that further splitting of the sample subset is halted and the node is a leaf node.  
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Multiple algorithms exist for decision tree construction. Information Gain is one of the 

simplest decision tree criteria selection algorithms. The Information Gain algorithm 

calculates the information gained when choosing a decision criteria by comparing the 

expected information (entropy) needed to classify a sample (Eq. 3.17) to the information 

still needed to arrive at exact classification following the split (Eq. 3.18). This is shown 

in Eq. 3.19 to identify the decision criteria partition value of an attribute 𝑥 that yields the 

greatest information gain. 

𝐼𝑛𝑓𝑜(𝑋) = −∑𝑝𝑖 log2 𝑝𝑖

𝑤

𝑖=1

 

 

Eq. 3.17 

𝐼𝑛𝑓𝑜𝑥(𝑋) = ∑
|𝑋𝑗|

|𝑋|

𝑣

𝑗=1

× 𝐼𝑛𝑓𝑜(𝑋𝑗) 

 

Eq. 3.18 

𝐺𝑎𝑖𝑛𝑥(𝑋) =  𝐼𝑛𝑓𝑜(𝑋) − 𝐼𝑛𝑓𝑜𝑥(𝑋) Eq. 3.19 

where 𝑝𝑖 is the non-zero probability that a sample in dataset 𝑋 belongs to a class, 𝑤 is the 

number of distinct classes available, 𝑣 is the decision criteria value, 𝑋𝑗 is the subset of 𝑋 

with samples with attribute value 𝑥𝑖 ≥ 𝑥𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 , |𝑋| is the purity of 𝑋, and |𝑋𝑗| is 

the purity of 𝑋𝑗 [143]. 

Information Gain is biased towards attributes with many values. Gain Ratio is a variation 

of the Information Gain algorithm modified to reduce this bias through use of a 

normalisation term 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑥(𝑋) (Eq. 3.21). While bias towards many valued attributes 

is reduced, the Information Gain algorithm is itself biased towards unbalanced splits, i.e. 

selecting decision criteria which isolate a small proportion of the samples to be classified.  

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑥(𝑋) =
𝐺𝑎𝑖𝑛(𝑋)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑥(𝑋)
 Eq. 3.20 

where 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑥(𝑋) = −∑
|𝑋𝑗|

|𝑋|
log2

|𝑋𝑗|

|𝑋|

𝑣

𝑗=1

 
Eq. 3.21 

A third common algorithm is the Gini Index which selects decision criteria based on the 

impurity of dataset 𝑋 at the decision node: 

𝐺𝑖𝑛𝑖(𝑋) = 1 − ∑𝑝𝑗
2

𝑤

𝑗=1

 Eq. 3.22 
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For a partition based on attribute 𝑥, dataset 𝑋 is split into 𝑋1 and 𝑋2 for which Gini Index 

can be weighted to the Gini Index for the split: 

𝐺𝑖𝑛𝑖𝑥(𝑋) =
|𝑋1|

|𝑋|
𝐺𝑖𝑛𝑖(𝑋1) +

|𝑋2|

|𝑋|
𝐺𝑖𝑛𝑖(𝑋2) Eq. 3.23 

A weakness of decision trees is that classes are determined by judging individual variables 

in a hierarchical manner. This is unlike other multivariate methods, such as PCA and PLS, 

where all variable dimensions are considered simultaneously. When using decision trees, 

a high degree of contextual information can be lost when cherry picking variables based 

on pure partitioning power. A number of related algorithms have been suggested to better 

cope with the lack of attribute independence when selecting decision criteria [149]. In the 

Relief algorithm, which is limited to two classes, 𝑊[𝑥], the quality estimation for all 

attributes 𝑥, is initially set equal to zero. A sample 𝑖 is then selected from a total of 𝑚 

samples. The nearest neighbour of the same class (nearest hit, 𝐻) and the nearest 

neighbour of the different class (nearest miss, 𝑀) are identified using the cumulative 

Manhattan distance across all variables. 𝑊[𝑥] is then updated to take into account the 

difference in values for a variable (𝑥) using the following iterative formula: 

𝑊[𝑥]:= 𝑊[𝑥] −
|𝑥𝑖 − 𝑥𝐻|

max(𝑥1,𝑚) − min(𝑥1,𝑚)
+

|𝑥𝑖 − 𝑥𝑀|

max(𝑥1,𝑚) − min(𝑥1,𝑚)
 Eq. 3.24 

where 𝑥𝑖, 𝑥𝑀, and 𝑥𝐻 are values for variable 𝑥 for sample 𝑖, nearest miss 𝑀, and nearest 

hit 𝐻, and 𝑥1,𝑚 is the full range of values observed for variable𝑥. A new sample is then 

selected and 𝑊[𝑥] is updated again. The number of samples 𝑊[𝑥] is updated against is 

userdefined parameter up to 𝑚. 

The ReliefF algorithm (Eq. 3.25) is an adaptation allowing for more than two classes to 

be considered by taking a proportional average of the differences between the sample 𝑖 

and the nearest miss for each class. This is done using the prior probabilities of classes 

estimated from the training dataset, 𝑃(𝐶). ReliefF also allows an increase in the number 

of nearest neighbours compared to sample 𝑖 to be increased to 𝑘. 

𝑊[𝑥]:= 𝑊[𝑥] + 𝐺 + 𝑍 Eq. 3.25 

Where  

𝐺 = ∑

|𝑥𝑖 − 𝑥𝐻,𝑗|

max(𝑥1,𝑚) − min(𝑥1,𝑚)

𝑚 ∗ 𝑘

𝑘

𝑗=1

 
Eq. 3.26 

and  
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𝑍 = ∑

[
 
 
 
 

𝑃(𝐶)

1 − 𝑃(𝐶𝑙𝑎𝑠𝑠(𝑖))
∗ ∑

|𝑥𝑖 − 𝑥𝑀,𝑗(𝐶)|

max(𝑥1,𝑚) − min(𝑥1,𝑚)

𝑚 ∗ 𝑘

𝑘

𝑗=1

]
 
 
 
 

𝐶≠𝐶𝑙𝑎𝑠𝑠(𝑖)

 Eq. 3.27 

A second expansion of the Relief algorithm called RReliefF allows use of the algorithm 

with regression trees through the incorporation of Bayes probabilities [149]. 

A further method for addressing to the univariate action of decision trees is to transform 

the dataset in question using MVDA techniques prior to applying a decision tree 

algorithm. For example, iterative PLS-decision trees calculate a latent variable to describe 

the differences between classes [150]. The latent variable becomes the first node attribute 

and the samples partitioned accordingly. The error matrix from the first latent variable is 

used to calculate a new latent variable to classify the samples on that node. 

3.7 Summary 

Research focussed on the application of multiple MVDA techniques detailed in this 

chapter. For each case study, technique choice was re-evaluated for suitability for the data 

to be analysed and for study aims. As data originated from an industrial research and 

development environment and analysis outcomes were to feed back into this environment, 

techniques were also selected based on interpretability and communication of results, in 

addition to flexibility and ease of implementation for future use.  
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 Comparison of pH Measurement Technologies and 

Extraction of Indirectly Captured Information 

4.1 Introduction 

The global biopharmaceutical industry’s $90 billion worth [151] is dependent on the 

ability of cells to grow and produce the correct product. A fundamental parameter in cell 

cultures is pH as it affects cell growth [95] and production rates [97], which in turn affects 

culture product yield. pH can also affect product quality [96], potentially leading to 

rejection of the final product due to failure to meet release criteria. These issues could be 

addressed by improved pH understanding and control [152]. However to effectively apply 

a pH strategy, measurement technologies must give reliable and accurate readings. 

The most commonly used sensor for pH measurement is the potentiometric pH electrode 

probe, comprising two electrodes: an indicator electrode with a glass membrane and a 

reference electrode [153]. pH is measured by immersing the probes into a sample to create 

a Galvanic cell with the difference between the electrode voltages denoting the potential. 

Using a modified form of the Nernst Equation, the sample’s pH is then calculated [154]. 

All pH measurement technologies at Lonza for 10L and larger bioreactors used 

potentiometric pH electrode probes for online and offline monitoring. 

An aspect of pH measurement frequently taken for granted is consistency between 

technologies. One possible scenario in industry is that different sites may use different 

technologies when manufacturing the same product. A similar situation may arise in a 

single laboratory when individual scientists prefer one of two available technologies over 

the other. 

In Lonza’s operating procedures, two offline pH measurements were made during daily 

offline monitoring of cultures. The first measurement was made with a Radiometer 

Analytical PHM220 pH meter (Radiometer Analytical, France) connected to a Mettler-

Toledo pH probe (Mettler-Toledo, UK). The second measurement was made using a 

NOVA Biomedical Bioprofile 400 (NOVA Biomedical, MA, USA). It was assumed that 

each available pH measurement technology had an accuracy of ± 0.01 pH units [155] and 

that samples were sufficiently mixed to be considered homogenous at this measurement 

resolution. From this, the maximum allowable difference in readings between the two pH 

measurement technologies on the same sample due to pure instrument error was 

± 0.02 pH units. However in the cell culture robustness study forming the basis of the 
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research presented in this chapter, nearly 60% of differences in pH reading by the two 

offline technologies fell outside the allowable error band (Figure 1). Multivariate data 

analysis (MVDA) was to be used to investigate this undesired area of variation. A notable 

constraint on study was to restrict analysis to a pre-existing dataset generated as part of 

standard cell culture robustness study and thus demonstrate if MVDA could be used to 

extract new information. 

Analysis focussed specifically on potential effects from component concentrations in 

samples or sample temperatures. Effects from sample handling [156], sterilisation 

techniques [157], or variations specific to probe age or individual probes could not be 

considered as these are not captured in standard operation data collection. Offline probes 

were replaced as necessary during the robustness study; hence this study investigates 

differences between multiple random pairings of offline pH probes. 

 

 

 

Figure 10. Histogram of Differences in Offline pH Readings by Two Offline Technologies. 

Dotted lines indicate boundaries for differences due to instrument error (±0.02 pH units). 
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4.2 pH and Temperature 

The pH of a sample is not constant with respect to temperature. Without compensation, 

this temperature-pH relationship results in incorrect readings with the potential for the pH 

controller to force a change on a system which is at the pH setpoint in an extreme situation 

(e.g. technical error with temperature control feedback). This is further complicated as 

the pH-temperature relationship varies based on component concentrations [158]. Thus 

in 1947, when Rosenthal presented equations to be used by medical persons to determine 

the pH of human blood and plasma samples at physiological temperatures after samples 

had cooled to ambient conditions, three equations were required to describe the different 

pH-temperature relationships for whole blood, plasma, and derived plasma [159]. In 

contrast to this, an earlier study by Yoshimura and Fujimoto in 1937 found that blood and 

plasma samples from rabbits were found to have pH-temperature relationships similar 

enough to be addressed with a single equation, where they also note that the loss of CO2 

from the samples would also effect the measured pH [160]. Both studies assumed simple 

linear relationships, e.g. the mean change in plasma pH was calculated to be -0.118 per 

+1°C. While these simple linear relationships were deemed appropriate for the 

temperature range across which compensation was to be applied, pH-temperature 

relationships are not truly linear [161]. 

pH-temperature compensation could be performed manually, however it is more for pH 

measurement technologies have a built-in pH-temperature compensation function. In the 

presented study, a Mettler-Toledo pH probe (Mettler-Toledo, UK) physically paired with 

a temperature probe was connected to a Radiometer Analytical PHM220 pH meter 

(Radiometer Analytical, France). The system was calibrated daily using standards of 

known pH; the temperature of those standards was used to create a pH-temperature 

compensation. When an offline measurement was made, the sample’s temperature was 

also taken and the compensation applied by the pH meter. 

A different method was used by the NOVA Bioprofile 400 [162]. The sample’s 

temperature (T) was entered at the user interface. The sample was then heated to 37 °C. 

The pH of the heated sample was measured then pH-temperature compensation was 

applied using the following equation: 

𝑝𝐻𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑝𝐻 + [−0.0147 + 0.0065 ∗ (7.400 − 𝑝𝐻)] ∗ (𝑇 − 37) Eq. 4.1 

The concern with such compensation is the assumption all samples have the same 

pH/temperature relationship. In reality, different chemicals have different pH/temperature 
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relationships [159]. Variation in relative concentrations in a chemical mixture (e.g. 

supernatant) could affect the required pH/temperature compensation for a pH 

measurement technology. This has a long established concern which prompted Rosenthal 

to use his 1947 paper “to call attention to a misconception on the part of some who use 

commercial pH that are equipped with “temperature correction” controls” and that 

“Simply setting the pointer at 38° does not solve the problem of finding pH38 while the 

sample is at room temperature” [159]. Furthermore if two technologies assume different 

pH-temperature compensations, they are likely to give different readings for the same 

sample regardless of additional possible effects. 

4.3 Data 

The data forming the basis of this study were generated from the development of a 

bespoke fed-batch process for DHFR-CHO cell line. As part of the development process, 

a series of control and experimental conditions were tested to evaluate process limits, 

hence the study was termed a process limits evaluation (PLE) study. Data were taken 

from 10 L bioreactor cultures with 25 control cultures operating under normal process 

conditions and 23 experimental cultures operating with deviations introduced to normal 

process conditions.  

The key feature of the process was a deliberate alteration in the setpoint for temperature 

control once a minimum viable cell concentration was reached. The control bioreactor 

cultures were initially maintained at pH 7.0 and 36°C. When a minimum viable cell 

concentration (determined by daily offline sampling) was reached, the pH and 

temperature setpoints were moved to pH 6.91 and 30°C respectively. Three different 

bolus additions were made to each bioreactor culture. Bolus A was added when the pH 

and temperature setpoints were adjusted, bolus B was added on Day 4 of the culture, and 

bolus C was added on Day 7 of the culture. 

For the experimental bioreactor cultures, deliberate deviations from standard operation 

were introduced (summarised in Table 9 and Table 10). These included changes directly 

captured in daily monitoring data, e.g. increased operating temperature, decreased 

operating temperature, omission of the shifts in pH and temperature setpoints. Other 

changes not directly captured in the routine daily monitoring data outlined in Chapter 2 

were collected as meta-data, e.g. use of expired medium, alterations to feedrates, or 

alterations to days on which media bolus feeds were added. 



 

58 
 

The cultures were monitored through daily offline samples as outlined in Chapter 2. In 

addition to cell concentrations and concentrations of key metabolites, measurements for 

pH are made using two offline pH measurement technologies: 

 A Radiometer Analytical PHM220 with a Mettler-Toledo probe 

 A NOVA Bioprofile 400 

A total of 48 fed-batch cultures were cultured for an average of 15 days under the 

aforementioned range of conditions with several cultures reaching harvest criteria 

(severely declined viability and viable cell concentrations) earlier than others due to 

effects from experimental conditions. A total of 785 daily monitoring samples were 

collected and analysed during this time. For each sample, 12 daily sampling 

measurements were recorded. The data were collated into a single 785x12 matrix in Excel 

(Microsoft) and analysed using Minitab 15.  

4.4 Removing Daily Adjustments to Online pH Reading 

Offline pH technologies were calibrated daily. The online pH technology was calibrated 

before use. Daily adjustments to the online pH technology were made by comparing the 

online pH reading to the bench offline reading of a sample. If the difference in pH 

readings was equal to or greater than ± 0.02 pH units, i.e. outside instrument error, then 

the bench offline reading was used to adjust the online probe to give the same reading. If 

the difference in readings was less than ± 0.02 pH units, no adjustment was made. 

It was necessary to know what the online reading would have been if no adjustments had 

been made. This ‘true’ reading could be calculated due to the capture of daily adjustments 

in paper records and then using Eq. 4.4 and Eq. 4.5. 

𝑃𝑖 = 𝑃𝑖−1 + 𝐷𝑝𝐻 Eq. 4.4 

𝐷𝑝𝐻 = 𝑅𝑖 − (𝑅𝑖−1 + 𝐴𝑖−1) Eq. 4.5 

where  

𝑃𝑖 ‘True’ online pH reading for sample i 

𝑅𝑖 Online reading for sample i 

𝐷𝑝𝐻 ‘True’ change in pH 

𝐴𝑖−1 pH adjustment from previous sample i-1 

𝑇𝑖 Day sample taken – rounded down to nearest whole number 

Note: If 𝑇𝑖 = 0, then 𝑃𝑖 = 𝑅𝑖 
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Table 9. Summary of cultures and culture conditions. Control culture initial operating conditions 

36 ˚C and 7.0 pH units. When the viable cell concentration met a designated minimum, the 

temperature was reduced and the pH level lowered. Note on Culture ID: First value refers to round 

number, second value refers to culture number e.g. 3.1 is culture 1 of round 3.  

Culture ID Culture Conditions Comments 

3.1 Control 

 

3.2 Control 

3.3 Control 

3.4 Control 

4.1 Control 

4.2 Control 

5.1 Control 

5.2 Control 

5.3 Low Temp 

5.4 Low Temp 

5.5 Low pH Removed for AS2 dataset – see §4.6 

5.6 Low pH Removed for AS2 dataset –  see §4.6 

5.7 High Temp 

 

5.8 High Temp 

6.1 Control 

6.2 Control 

6.3 Control 

6.4 Control Contaminated – removed from all datasets 

6.5 Control Strong drift by online probe – removed from datasets 

6.6 Control  
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Table 10. Summary of cultures and culture conditions (continued). Control culture initial 

operating conditions 36 ˚C and 7.0 pH units. When the viable cell concentration met a designated 

minimum, the temperature was reduced and the pH level was lowered. Note on Culture ID: First 

value refers to round number, second value refers to culture number e.g. 7.1 is culture 1 of round 

7.  

Culture ID Culture Conditions Comments 

7.1 Control  

7.2 Control 

7.3 Control 

7.4 Control 

7.5 High pH Removed for AS2 dataset –  see §4.6 

7.6 High pH Removed for AS2 dataset –  see §4.6 

7.7 High pH Removed for AS2 dataset –  see §4.6 

7.8 Low pH Removed for AS2 dataset –  see §4.6 

7.9 High Seeding  

7.10 High Seeding 

8.1 Control (T=32) 

8.2 Constant pH 7.0 Removed for AS2 dataset –  see §4.6 

8.3 Low DOT  

8.4 Low DOT 

8.5 High DOT 

8.6 High DOT 

9.1 Control 

9.2 Increased Feed 

9.3 Increased Feed 

9.4 Modified Feed Strategy I Removed for AS2 dataset –  see §4.6 

9.5 Modified Feed Strategy II Removed for AS2 dataset –  see §4.6 

9.6 Modified Feed Strategy III Removed for AS2 dataset –  see §4.6 

C1 Low Generation Number  

C2 Low Generation Number 

C3 Low Generation Number 

A1 High Generation Number 

A2 High Generation Number 

A3 High Generation Number 
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4.5 Missing Data 

Approximately 4% of data were missing (560 points out of a raw data total of 14130). 

The majority of missing data were due to issues with sensors used for variable 

measurement. Missing data could also be attributed to Lonza re-sampling policies, where 

a daily sampling may be repeated but only a subset of the variables monitored via daily 

monitoring are recorded. 

The software used (Minitab 15) automatically excluded samples where variables were 

missing. This meant that as variables were removed through significance testing the 

number of samples used could potentially increase (Table 11). This variation was allowed 

as the maximum number of samples would be used with each iteration of statistical 

significance testing, potentially increasing the strength of the tests. 

4.6 Division of Dataset 

The change in temperature and pH set points provided a natural splitting point in the data. 

The data taken from before the shift and the data taken from after the shift reflect two 

different biochemical states. These different states are referred to here as ‘operating 

conditions’: ‘All,’ ‘Before Shift’ (BS), and ‘After Shift’ (AS). 

A variety of changes were made to bioreactor operating conditions, referred to here as 

‘culture conditions’. Culture conditions included changes in temperature shift, pH shift, 

and other parameters, e.g. not undergoing the step change in temperature or operating a 

higher DOT setpoint as seen in Table 9 and Table 10. 

The dataset AS was further subdivided into ‘After Shift 1’ (AS1) and ‘After Shift 2’ 

(AS2). AS1 contained AS data from all cultures. AS2 contained AS data from cultures 

where reactor conditions were directly captured in the inputs used only. As pH was 

excluded as an input due to concerns over bias, cultures not operating at the control pH 

set point were removed. Cultures using modified feed strategies were also removed. 

In summary, the dataset ‘All’ contained all data from all samples, BS contained data from 

all samples taken before the change in operating conditions, AS1 contained data from all 

samples taken after the change in operating conditions, and AS2 contained data from all 

samples taken after the change in operating conditions but excludes samples where 

experimental conditions were not directly captured in the dataset.  
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Table 11. Effect of Missing Data on Samples Used to Model Response. Shading indicates 

exclusion from model creation. ● indicates a missing value. For I, model creation includes all 

variables A to H, causing the software (Minitab) to exclude samples 1 to 3. F is identified as the 

least statistically significant variable and removed from the model inputs. Sample 3 can now be 

included in the creation of the new model. This is repeated until only variables of the desired 

statistical significance remain in the model. 

  

I Variable A B C D E F G H 

S
am

p
le

 1   ●     ● 

2 ●     ●   

3      ●   

4         

 

Variable F removed as least significant. 

Samples 1 and 2 excluded from new model creation. 

II Variable A B C D E F G H 

S
am

p
le

 1   ●     ● 

2 ●     ●   

3      ●   

4         

 

Variable H removed as least significant. 

Samples 1 and 2 excluded from new model creation. 

III Variable A B C D E F G H 

S
am

p
le

 1   ●     ● 

2 ●     ●   

3      ●   

4         

 

Variable C removed as least significant. 

Sample 2 excluded from new model creation. 

IV Variable A B C D E F G H 

S
am

p
le

 1   ●     ● 

2 ●     ●   

3      ●   

4         

 

Variable A removed as least significant. 

All samples included in new model creation. 

V Variable A B C D E F G H 

S
am

p
le

 1   ●     ● 

2 ●     ●   

3      ●   

4         
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4.7 Development of New Variable: Osmolality Residuals 

During the initial analysis to determine potential causes of differences in pH readings by 

offline pH measurement technologies, it was found that, for the four datasets tested, 

inclusion of osmolality resulted in an increase in the R2 for a testing dataset by between 

0.01 to 0.07 depending on data subset used (Table 12). A similar result was note when 

considering PLSR models to predict the difference between pH readings by the two 

offline technologies, with the R2 for testing datasets improved by between 0.01 to 0.04 

when osmolality was included as a variable (Table 13). This suggested that osmolality 

played a part in the difference in pH readings by different offline pH measurement 

technologies, even though the impact of that part varied. However, further interpretation 

of these results was problematic due to the indiscriminate nature of osmolality. 

Osmolality is the concentration of solutes in a sample measured in osmoles of solute per 

kilogram of solvent [130]. It is an indiscriminate measurement as it does not specify how 

much of any specific component is present, i.e. an osmolality reading of 100 mOsm/kg 

does not specify whether there are 100 mOsm/kg of component A, B, D, or a mixture of 

all three. Due to the comprehensive nature of osmolality, the value contains information 

already captured (e.g. glucose concentration) as well as data not captured (e.g. 

background media components). 

Dataset  Osmolality Model R2 No Osmolality Model R2 ΔR2 

All  0.36 0.29 0.07 

Before Shift  0.35 0.32 0.03 

After Shift 1  0.40 0.39 0.01 

After Shift 2  0.42 0.39 0.03 

Table 12 Effects of excluding osmolality in MLR on cross-validation R2 during initial analysis. 

For each dataset, a MLR model was created using all available variables to predict the difference 

between pH readings by a Mettler-Toledo probe with Radiometer Analytics PHM220 and a 

NOVA Bioprofile 400 (B-N). Another MLR model was created to predict B-N with osmolality 

excluded from the dataset. 

Dataset  Osmolality Model R2 No Osmolality Model R2 ΔR2 

All  0.24 0.22 0.02 

Before Shift  0.24 0.23 0.01 

After Shift 1  0.42 0.38 0.04 

After Shift 2  0.44 0.40 0.04 

Table 13 Effects of excluding osmolality in PLSR on cross-validation R2 during initial analysis. 

For each dataset, a PLSR model was created using all available variables to predict the difference 

between pH readings by a Mettler-Toledo probe with Radiometer Analytics PHM220 and a 

NOVA Bioprofile 400 (B-N). Another PLSR model was created to predict B-N with osmolality 

excluded from the dataset. 
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It was theorised that contributions to osmolality by variables not directly monitored via 

standard daily sampling practices could be extracted if contributions to osmolality by 

those variables that were directly monitored were removed from the osmolality 

measurement. The extracted information could then be used to evaluate the impact of 

indirectly monitored variables in subsequent analyses, specifically the impact on 

differences in pH measurements by offline pH measurement technologies. 

There are multiple ways of measuring osmolality. The two most suited to biological 

samples are freezing point osmometry (FPO) and vapour pressure osmometry (VPO) with 

FPO the industry preferred method [130]. The NOVA Bioprofile 400 is designed to 

measure glucose (Gluc), lactate (Lac), ammonia (NH4
+), sodium (Na+), and potassium 

(K+) concentrations in addition to pH levels. This allows a component calculator to be 

included. The unit performs a simple linear combination using these measurements as 

seen in Eq. 4.2 [140]. 

𝑂𝑠𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦 = 1.86([𝑁𝑎+] + [𝐾+] + [𝑁𝐻4
+]) +

[𝐺𝑙𝑢𝑐]

0.18
+

[𝐿𝑎𝑐]

0.09
+ 𝑐 Eq. 4.2 

where 

𝑂𝑠𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦 Osmolality calculated (mOsm/kg H2O) 

𝐿𝑎𝑐 Lactate concentration (g/L) 

𝐺𝑙𝑢𝑐 Glucose concentration (g/L) 

𝑁𝐻4
+ Ammonium concentration (g/L) 

𝑁𝑎+ Sodium concentration (mmol/L) 

𝐾+ Potassium concentration (mmol/L) 

𝑐 Calculated constant (mOsm/kg H2O) 

 

There are many components which may be present in a sample which are not measured 

by the NOVA Bioprofile 400. There are also components known to affect osmolality 

which are measured by the unit but not included. For these reasons, the component 

calculator is an unreliable measure of osmolality for a biological system and can only be 

counted as a general estimate. 

4.7.1 Osmolality Model Residuals 

Data collected from daily monitoring included freezing point osmolality (FPO) readings 

where an Osmomat (Gonotec) was used to directly measure sample osmolality. It was 

decided to create a component calculator to model the FPO measurement from the 

remaining daily monitoring data in an attempt to extract information concerning variables 
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not directly measured as part of daily monitoring procedure, e.g. bolus feed shot 

concentrations, metabolites, and media composition. 

Multiple linear regression (MLR) was employed with all known component 

concentrations as input variables and the FPO reading as the response variable. The MLR 

model was refined through the use of statistical significance testing so that only variables 

with a p-value less than 0.05 were included. This was performed in an iterative manner 

removing one variable at a time (Figure 11). The final model (Eq. 4.3) accounted for 

83.6% of variation in osmolality in the dataset. 

 

Figure 11. Component Calculator Creation using MLR and Iterative Statistical Significance 

Testing 

 

𝑂𝑠𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦𝑀 = 236 − 0.298𝑝𝑂2 + 0.243𝑝𝐶𝑂2 + 74.4𝐺𝑙𝑛 − 14.6𝐺𝑙𝑢𝑐

+ 254𝑁𝐻4
+ + 0.263𝑁𝑎+ + 4.27𝐾+ + 7.95𝑇𝐶𝐶 

Eq. 4.3 

where 

𝑂𝑠𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦𝑀 Osmolality calculated by model (mOsm/kg H2O) 

𝑝𝑂2 Oxygen partial pressure (mmHg) 

𝑝𝐶𝑂2 Carbon dioxide partial pressure (mmHg) 

𝐺𝑙𝑛 Glutamine concentration (g/L) 

𝐺𝑙𝑢𝑐 Glucose concentration (g/L) 

𝑁𝐻4
+ Ammonium concentration (g/L) 

𝑁𝑎+ Sodium concentration (mmol/L) 

𝐾+ Potassium concentration (mmol/L) 

𝑇𝐶𝐶 Total Cell Concentration (106 cells/mL) 

 

The purpose of the developed model was to explain osmolality values based on all 

available variables and therefore not a true a priori model. Several variables were 

included when creating the model for osmolality that would not typically appear in a 
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component calculator, for example viable and total cell concentrations. These were 

included as measurements related to cell growth and condition may act as a suitable 

substitute variable for unmonitored products of cell metabolism affecting sample 

osmolality. Temperature was rejected as a possible variable as FPO readings are made at 

freezing point, not sample temperature. Iterative significance testing with a p < 0.05 led 

to the removal of variables for one of two reasons: 

1. The variable was statistically insignificant in the model. 

2.  Strong correlations between variables caused the variable in question to be rejected 

as statistically insignificant, i.e. multiple variables were competing to provide similar 

information to the model. 

 

Competition between correlated variables is the likely reason for the rejection of lactate 

as statistically significant in the model despite lactate being known to affect osmolality 

as seen in Eq. 4.2. Specifically, in the datasets analysed lactate concentration was 

generally closely correlated with glucose concentration. 

There is a notable difference between the presented model and established osmolality 

theory that requires further explanation. According to theory, the glucose coefficient 

should be positive as an increase in glucose concentration is an increase in the solute 

concentration and hence an increase in osmolality. In Eq. 4.3, the glucose coefficient is 

negative. This difference was due to the model capturing the behaviours observed in the 

dataset, e.g. as a typical culture progressed, osmolality increased while glucose 

concentration decreased. Furthermore, in MLR the sign of a variable does not necessarily 

indicate the direction of the relationship between the variable and the response. 

Coefficient direction can be altered depending on correlation with other variables. 

The differences between the predicted osmolality and the recorded osmolality are the 

residuals (errors) for the model. The use of the osmolality model residuals as a variable 

in place of osmolality is an attempt to allow variation in uncaptured data to be evaluated. 

This could not be done with osmolality due to its high degree of correlation with other 

variables. 

Two forms of evidence are presented to justify the inclusion of the osmolality residuals 

as a new variable. The first is based on a mathematical approach that uses principal 

component analysis (PCA). The second is a more heuristic, logical argument based on 

anticipated behaviour and knowledge of cell culture behaviours. 
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4.7.1.1 Validation of Osmolality Model Residuals using PCA 

Principal component analysis (PCA) is a multivariate data analysis technique where 

dimensionality reduction is achieved through the creation of orthogonal linear 

combinations of variables termed principal components (PC)3. When PC variable 

loadings are plotted in two dimensional space, correlated variables will cluster together. 

Negatively correlated variables will be at opposite points across the origin; variables with 

little or no correlation will be at approximately right angles. 

PCA was performed using daily monitoring data. Figure 12 and Figure 13 display loading 

for PC1 and PC2 when osmolality and osmolality residuals were included as inputs 

respectively. In both Figure 12 and Figure 13 the oxygen-based variables DOT and pO2 

were shown to be negatively correlated with respect to lactate concentration. This 

indicated that the PCA model created provided information that was correct from an 

understanding of the physical system. In Figure 12 it was seen that osmolality’s location 

in the loading plot was in the centre between a loose cluster (Day, pCO2, NH4
+, K+) and 

a second, more tightly defined cluster (Gln, Gluc, TCC, VCC, Na+). This was due to the 

correlation with variables in both clusters in keeping with the relationships shown in Eq. 

4.3. Osmolality also had a strong influence on scores due to high loading values. 

In Figure 13, relative positions between variabes remained largely unchanged from those 

in Figure 12 apart for an inversion of the Y-axis. This inversion is a theoretical issue of 

negligble significance whereby principal components which are not unique can change 

signs. It can be seen that “osmolality residuals” (“Osmo Res”) was located in a position 

of less correlation with the two clusters with reduced influence on score positions through 

reduction in loading values. This is in keeping with the theory that the variable osmolality 

residuals contains information not available in (i.e. uncorrelated with) other variables. 

                                                 
3 See Chapter 3. Statistical Methods for a more detailed description. 
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Figure 12. PCA loading plot for PC1 and PC2 when osmolality is used as a variable. Clustering of variables indicates positive correlations between those variables. 

The position of osmolality indicates positive correlations with multiple variables, however not all those variables are positively correlated with each other.  
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Figure 13. PCA loading plot for PC1 and PC2 when osmolality residuals (“Osmo Res”) is used as variable in place of osmolality. The relative positions of the other 

variables are similar to the relative positions in Figure 12, save for a negligible inversion of the Y axis. 
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4.7.1.2 Validation of Osmolality Model Residuals Through Time Series 

Analysis 

In the feed strategy employed, three chemically distinct bolus feed additions were added 

to the culture following a change in the reactor temperature and pH operating conditions. 

All reactors received bolus A on the day of the change in operating condition, bolus B on 

day 4, and bolus C on day 7. This pattern was identified when osmolality model residuals 

were plotted against elapsed time. Figure 14 and Figure 15 show the osmolality residuals 

against elapsed time for the cultures undergoing the setpoint change in operating 

conditions on day 3 and on day 4 respectively. Bolus additions are indicated with the 

following arrow colours: orange (bolus A), blue (bolus B), green (bolus C). Note that in 

Figure 14 and Figure 15 elapsed time is displayed as the day of the sample and not the 

precise elapsed time in hours. This is to allow a clearer comparison of general trends. 

In the first days of culturing, osmolality residual values decreased in a manner thought to 

indicate consumption of medium by the culture during the exponential growth phase. As 

medium composition was not directly measured, the impact of medium composition on 

osmolality measurements could not be accounted for by the model. Therefore information 

on medium composition information would lie in the model’s residuals. 

The decrease in residuals was seen in all cultures in all days until the addition of bolus A. 

For the reactors shifted on day 3, there is a continued decrease after the addition of bolus 

A with a sharp increase following the addition of bolus B. For cultures shifted on day 4, 

both the continued decrease after bolus A and the sharp increase after bolus B were 

absent. This indicated that the effects of the boluses in the osmolality model cancelled to 

some extent. 

For both sets of cultures, the osmolality residuals decreased following the addition of 

bolus B until day 7 when bolus C was added to cultures. A sharp increase in residual 

values occurred following the addition of bolus C, which is followed by a gradual 

reduction in the osmolality residuals over the remaining days of culture.  
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Figure 14. Osmolality model residuals for 15 cultures with setpoint changes on Day 3. Three 

chemically distinct bolus additions made after daily sampling are indicated with labelled arrows. 

A general decrease in residual values follows the addition of Bolus A. Increases in residual values 

follow the additions of Bolus B and Bolus C. 

 

 

Figure 15. Osmolality model residuals for 24 cultures with setpoint changes on Day 4. Three 

chemically distinct bolus additions made after daily sampling are indicated with arrows. The 

decrease in residual values following the addition of Bolus A (seen in Figure 14) is absent, as is 

the increase that followed Bolus B, indicating the effects of Bolus A and Bolus B on osmolality 

residual have cancelled out. The increase in residual values following Bolus C remains present.  
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4.7.2 Limitations of Osmolality Residuals as a Variable 

Osmolality measurements lack discrimination, i.e. it is not possible to identify which 

components contributed to the measurement nor to what extent. The calculated variable 

osmolality residuals is similarly indiscriminate. 

Osmolality residual values capture a variety of components including Bolus A, bolus B, 

bolus C, culture medium components, and by-products of cell metabolism. The relative 

concentrations of these components contributing to the osmolality residuals are not 

constant. Due to this variation, it may be that osmolality residuals do not have a consistent 

impact, e.g. on the discrepancies in pH readings seen in 7.1. For example, a 40 

mOsm/kg H2O residual caused by bolus A may not affect readings to the same extent as 

a 40 mOsm/kg H2O residual caused by bolus B. Extracting this information was not 

possible. 

Furthermore, the osmolality model presented in Eq. 4.3 was specific to the dataset 

analysed. Due to the number of variable which might influence which are not directly 

captured, e.g. media composition or metabolism by-products, two projects cannot be 

assumed to have the same indirectly captured information. Hence, an osmolality model 

created using one project’s data cannot be assumed transferable to another project. 

It may be possible to create a more generalised model from a dataset with a suitably varied 

background, e.g. a single host cell line expressing different products using a common 

process platform would have variation in the indirectly captured osmolality contributions 

due to product-specific effects on metabolism by-products. While a suitably varied 

dataset was encountered during a process platform investigation using historical data, 

osmolality was not typically included during daily monitoring records at that time. Hence 

it was not possible to test whether a generalised osmolality model could be produced 

during the research period presented in this thesis. 

Finally, osmolality residuals could be a more effective variable if the time between the 

NOVA measurements and the osmometer measurement could be taken into account. For 

example, two samples have the same composition when the NOVA measurements are 

taken. One sample is immediately measured using FPO; the other sample is measured 1 

hour later. The osmolality for the second sample may not be the same as the osmolality 

of the first sample due to changes (e.g. degassing, metabolism) in that hour. In such a 

scenario, variation in time between sampling and osmolality reading may affect the 

consistency of statistical significance of a variable in an osmolality model. 
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4.7.3 Osmolality Model Residuals Conclusions 

Additional knowledge concerning indirectly monitored variables was extracted from the 

pre-existing dataset. This was achieved through the comparison of recorded FPO 

measurements with osmolality values estimated through the use of a component 

calculator constructed from daily monitoring data. The extraction of known contributions 

to osmolality from unknown contributions allows the effects of those unknown 

contribution to be considered in the overall aim of determining possible causes of 

differences in readings by different pH measurement technologies. 

4.8 Modelling Differences in pH Readings by Different Technologies 

For each dataset, All, BS, AS1, and AS2, MLR was used to create a model to predict B-N, 

the difference in pH reading by the two offline pH measurement technologies. The first 

iteration of the model included Elapsed Time (h), temperature, DOT, pO2, pCO2, 

glutamine concentration, glutamate concentration, glucose concentration, lactate 

concentration, NH4
+ concentration, Na+ concentration, K+ concentration, viable cell 

concentration, total cell concentration, and osmolality residuals as model inputs. The 

MLR model was then refined through the use of statistical significance testing so that 

only variables with a p-value less than 0.05 were included. This was performed in an 

iterative manner removing one variable at a time. 

In the same method, models were created to the difference between the Radiometer 

PHM220 offline pH measurement technology reading and the true online pH reading (B-

P) and difference between the NOVA Bioprofile 400 offline pH measurement technology 

reading and the true online pH reading (N-P). 

4.8.1 Results and Discussion 

Variables identified as statistically significant in the final reduced models are indicated 

by shading in Table 14. These models do not explain 100% of the differences between 

the two pH technologies; however they do indicate that sample composition and condition 

can affect agreement in pH readings by two pH measurement technologies. 

A number of variables appear to be statistically significant only for specific combinations 

of dataset and response modelled. For example DOT was only significant for the response 

B-P when the ‘All’ dataset was used. Likewise ammonia was significant for the response 

B-P when either the ‘Before Shift’ (BS) or ‘After Shift 2’ (AS2) sets were used but not 

the ‘All’ set. 
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It is possible to rationalise several of these inconsistencies. First gas-based measurements 

have a tendency to be noisy due to degassing of the sample during handling. The value 

listed when the sample was analysed by the NOVA Bioprofile 400 may not be the same 

as when each pH reading was taken with the bench offline technology or the online 

technology. This could affect the variable’s calculated statistical significance. 

Second, some compounds were not present or were only present in low concentrations in 

the BS dataset. This could affect their statistical significance compared to the later AS2 

or full All datasets. 

Third, when iterative statistical significance testing is used for MLR model reduction, 

correlation between variables can cause variables to be rejected as statistically 

insignificant. As correlated variables provide similar information to the model, it can be 

advantageous to retain only one variable from a group of correlated variables. This 

variable may have an impact on the difference in pH measurement or simply be correlated 

with another variable which does have an impact. 

The following conclusions were drawn from the analysis. The consistent significance of 

“osmolality residuals” indicates that certain components not directly monitored have a 

statistically significant impact on the difference in pH measurements. It is thought that 

osmolality residuals behaviour in the pre-bolus BS data were primarily caused by culture 

medium and that osmolality residuals behaviour in the AS data were primarily due to the 

bolus additions. 

An unanticipated benefit of the calculated variable ‘osmolality residuals’ was a reduction 

in variation in usable sample numbers during iterative model generation. The inclusion 

of ‘osmolality residuals’ effectively acted as a filter, whereby a sample needed to have all 

variables used in the calculation of ‘osmolality residuals’, regardless of whether those 

contributing variables were retained in the subsequent model for predicting differences in 

pH reading. This benefit would only be active so long as ‘osmolality residuals’ is retained 

as statistically significant, the consistent significance of ‘osmolality residuals’ allowed 

greater user confidence in statistical results as sample size variation was reduced. 

A second key variable identified as statistically significant was temperature. Before the 

change in temperature and pH operating setpoint, temperature did not have a statistically 

significant impact on differences in pH readings. After the reactor operating temperature 

was reduced, the effect of temperature was statistically significant. One possible 

explanation for this result is a difference in pH-temperature compensation methods used 
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by the technologies. As the degree of compensation required increases, any difference in 

compensated values will similarly increase. 

Temperature was identified as statistically significant when the bench technology or the 

online technology were compared to the NOVA and the AS2 data is used. This was when 

the effects of different temperature compensations would be most emphasised as the shift 

in operation conditions includes a drop in temperature. Hence the gap between the 

temperature when the online reading (at culture conditions) or bench reading is taken (at 

or below reactor conditions) and the NOVA (37 °C) increases. 

Finally it must be noted that the discrepancies in pH readings between the bench and 

NOVA technologies were more accurately modelled than the discrepancies between the 

online technology and either offline technology. The models comparing offline 

technologies tended to significantly outperform those comparing either offline 

technology to the online technology. 
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Model Set 

Variable 

 ALL   BS   AS2  

B-P B-N N-P B-P B-N N-P B-P B-N N-P 

Constant          

Time          

Temp          

DOT (%)          

pO2          

pCO2          

Gln          

Glu          

Gluc          

Lac          

NH4
+          

Na+          

K+          

TCC          

Osmo Res          

Model R2 13.8% 38.9% 15.1% 19.6% 45.8% 39.1% 7.9% 46.5% 13.1% 

Table 14. Variables identified as statistically significant (p < 0.05) when using iterative MLR and significance testing method (indicated by shading). Results are given 

for three dataset (ALL, BS, AS2) and three responses (B-P, B-N, N-P). It was observed that temperature was a significant variable when modelling data taken from 

after a change in operation temperature was introduced. The new variable Osmo Res was significant in all models comparing two  readings by technologies using 

different compensation methodologies (B-N, N-P).
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4.9 Conclusions 

While much of what causes the discrepancies between the competing pH measurement 

technologies is still not understood, it has been shown that pH technologies are not 

necessarily interchangeable. If two different technologies are to be used in conjunction, 

e.g. the NOVA is used for offline measurements and a different pH technology is used 

for online measurements, differences in pH measurement could be caused by pure 

instrument error, drift by the online technology, sample composition and condition, or a 

mixture of all three. Eliminating sample composition and condition as possible causes of 

differences  

It was possible to attribute part of the differences in pH measurement technologies to 

differing sensitivities to sample components. The pH technologies were considered as 

whole units, therefore it is not known if these differing sensitivities are caused by different 

probe designs or some other aspect of the technologies. However as both technologies 

operate on the same principles of potentiometrics, it is thought that the issue lies mainly 

with the built-in compensation methods. 

Based on the project work and results, there are several recommendations to be made with 

regards to pH strategy. 

1. Offline and online monitoring technologies should be as similar as possible, e.g. if a 

NOVA is used for online monitoring, then a NOVA should be used as the primary 

offline monitor and used to make adjustments. 

2. Comparability of pH measurement technologies should be demonstrated across a 

variety of conditions within the culture design space including temperature. 

3. The type of online and offline equipment used in a project should be recorded to 

ensure the same equipment is used at all scales of reactor. 

4. Monitoring the unadjusted or ‘true’ online pH reading and comparing this value to 

the offline technologies may prove useful in identifying faulty or drift-prone probes. 

5. Improved capture and analysis of individual pH probe performance over probe 

lifespan. This applies to both online and offline pH probes. 

6. Using the same technologies for online and offline control throughout a project (i.e. 

initial lab testing to full production) will prevent the introduction of avoidable error. 

This will also aid consistency in corrective actions made by the scientist and the 

control systems. 

.   
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 Productivity Investigation 

5.1 Introduction 

One of the most common hurdles to the introduction and implementation of statistical 

techniques is “Where do I begin?” In highly regulated environments, such as 

biopharmaceutical production, this is closely followed with “What is the correct 

technique?” The issue here is the presumption that there is a single best technique. The 

aim of the presented productivity investigation was to attempt to answer these two 

questions when identifying causes and indicators of poor productivity for a 

mAb-producing cell line (Project A). An additional aim was to design a more general 

approach for using historical data to identify weaknesses specific to the customer project 

and weaknesses general to the process. 

5.2 Project Summary 

Project A used a GS-NS0 cell-line to express a mAb which underwent a series of 

cultivations in 10L air lift reactors (ALR) to determine transferability of the cell-line from 

an external process to a bespoke Lonza process. After 15 cultures at the 10L scale, the 

cell-line was cultured at a 130L pilot scale. The 130L culture failed to reach an acceptable 

titre causing an intensive investigation of different parameters that could have affected 

the culture and three more 130L pilot scale cultures. In total, over 50 production-stage 

cultivations were performed at the Lonza Slough site and formed the main dataset for 

analysis. 

Project A was then transferred to Lonza’s production site in Portsmouth, New Hampshire, 

USA for four cultures at the 5000L scale. Underperformance at this scale and process 

validation requirements led to additional investigations in the US at the 10L scale, 

including a Design of Experiments study testing temperature, pH, DO, and feed 

parameters. A further four 5000L cultivations were performed. In addition to the change 

in physical location, US-sited cultures had modified seeding conditions and altered 

air/oxygen gas feed control parameters. 

In total, Project A comprises data from 99 production-stage cultivations (49 UK, 50 

US)4with  eighty-seven 10L cultures, four 130L cultures, and eight 5000L cultures (Table 

15). 

                                                 
4 Cultivations halted early due to contamination or other known issues were excluded from analysis. 
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Data for Project A were drawn from two sources. 

1. Daily monitoring records created by daily sampling 

2. Online monitoring 

The percentage of data missing cross the 99 cultures was strongly dependent on number 

of days of data considered and variables included, reaching ~25% when all possible days 

and monitored variables were considered. This was due to a variety of reasons including 

equipment such as NOVA Bioprofile 400 sensors not operating correctly during daily 

sampling, data collection for satellite/drop out cultures beginning on Day 4 of the main 

pilot, and not part of normal data collection at all scales (e.g. osmolality). 

5.3 Aims 

The overall aim of the productivity investigation was to test possible combinations of 

analytical options to identify suitable methods robust and adaptable enough to be 

transferred to other investigations. Methods were evaluated on relative ease in 

implementation and interpretability in addition to statistical power. 

Initially, the specific aim of the productivity investigation was to identify key behaviours 

and related decision criteria leading to classification of bioreactor cultures classed as 

“High Producer” and “Low Producer”, with particular focus on the UK-sited cultures 

A001 to A049. As the dataset increased through the addition of the US-sited cultures, the 

investigation was split into three key stages: 

Stage 1. Initial Method Development 

Given the UK cultures A001 to A049 and clear pass/fail criteria, to identify a core 

statistical method with additional consideration of data sources used, handling of data 

missing at random, and the use of data compression. 

Stage 2. Improvements through Manipulation of Dataset Structure 

Given the mixed UK- and US-sited cultures A001 to A099 and using key results from 

Stage 1, to develop a method for understanding causes of variation in Day 11 product 

concentration. The focus during Stage 2 was to improve model robustness through 

choice of progression variable and rigidity of the dataset sampling structure. 

Stage 3. Media Batch Analysis. 

In Stage 1 and Stage 2, media batch numbers were not included as a factor. The 

objective in the third stage was to determine whether variation in the media batches 

used were a contributing factor to variation in productivity.  
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UK-Sited Cultures  US-Sited Cultures 

ID Scale  ID Scale ID Scale  ID Scale 

A001 10 L A026 10 L A0505 5000 L A075 10 L 

A002 10 L A027 10 L A0516 5000 L A076 10 L 

A003 10 L A028 10 L A0527 5000 L A077 10 L 

A004 10 L A029 10 L A0538 5000 L A078 10 L 

A005 10 L A030 10 L A054 10 L A079 10 L 

A006 10 L A031 10 L A055 10 L A080 10 L 

A007 10 L A032 10 L A056 10 L A081 10 L 

A008 10 L A033 10 L A057 10 L A082 10 L 

A009 10 L A034 10 L A058 10 L A083 10 L 

A010 10 L A035 10 L A059 10 L A084 10 L 

A011 10 L A036 10 L A060 10 L A085 10 L 

A012 10 L A037 10 L A061 10 L A086 10 L 

A013 10 L A038 10 L A062 10 L A087 10 L 

A014 10 L A039 10 L A063 10 L A088 10 L 

A015 10 L A0402 130 L A064 10 L A089 10 L 

A0161 130 L A041 10 L A065 10 L A090 10 L 

A017 10 L A042 10 L A066 10 L A091 10 L 

A018 10 L A0433 130 L A067 10 L A092 10 L 

A019 10 L A044 10 L A068 10 L A093 10 L 

A020 10 L A045 10 L A069 10 L A094 10 L 

A021 10 L A0464 130 L A070 10 L A095 10 L 

A022 10 L A047 10 L A071 10 L A0969 5000 L 

A023 10 L A048 10 L A072 10 L A09710 5000 L 

A024 10 L A049 10 L A073 10 L A09811 5000 L 

A025 10 L  A074 10 L A09912 5000 L 

Table 15. Project A cultures analysed in the productivity investigation by location. 1 - First 130 L 

culture. 2 - Second 130 L culture. 3 - Third 130 L culture. 4 - Fourth 130 L culture. 5 - First 

5000 L culture. 6 - Second 5000 L culture. 7 - Third 5000 L culture. 8 - Fourth 5000 L culture. 

9 - Fifth 5000 L culture. 10 - Sixth 5000 L culture. 11 - Seventh 5000 L culture. 12 - Eighth 

5000 L culture. 
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5.4 Stage 1: Initial Method Development 

A variety of core statistical techniques were evaluated for ease of use, ease of 

interpretability, and suitability for data to be analysed. Black box and near black box 

techniques such as self-organising maps (SOM) and artificial neural networks were 

rejected due to difficulty of result and model interpretability. Discriminant analysis was 

rejected as the core statistical technique. This was due to the dataset containing only two 

classifications yet also containing a variety of conditions and potentially multiple paths 

to failure. 

Decision trees were selected as the core statistical technique due to relative ease of 

interpretability and the ability to be applied to heterogeneous datasets. Although decision 

trees are generally not a computationally intensive algorithm when compared to PLS or 

SOM, they are not heavily promoted in statistical software. Four decision tree algorithms 

were considered: Gain Ratio, Gini Index, Information Gain, and ReliefF (see §3.6). 

5.4.1 Stage 1: Data Selection 

Online monitoring data were recorded by dataloggers at 5 minute intervals. For cultures 

reaching 11 days, this resulted in over 3,100 readings per variable monitored per culture. 

In comparison, from inoculation to harvest, variables monitored through daily monitoring 

samples had 12 readings per variable. 

While each individual online monitoring point could be included as a variable, this would 

result in a highly unbalanced dataset when combining online and offline measurements. 

In order to reduce the volume of online monitoring data, new variables were created to 

capture online monitoring data through robust summary statistics termed “informative 

values” (these are discussed in greater detail in Appendix A). At the time of Stage 1 model 

development, Informative Values Version 1.0 was used (see Appendix A). In this version, 

data for each variable monitored online was split into “windows of activity” using offline 

sampling times. The average, standard deviation, gradient, and coefficient of 

determination was then calculated for each window of activity for each variable. 

Each combination of dataset, dataset sources, and cultures dataset displayed in Table 16 

were evaluated. At the request of the industry supervisor, the daily monitoring dataset 

was extended to included ratios and specific rates of change of biological interest. 

Detailed lists of variables in each dataset can be found in the appendices (Table 38 to 

Table 41). 
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5.4.2 Stage 1: Missing Data Handling 

Four general approaches for the handling of missing data considered for use are briefly 

compared in Table 17 and are described in further detail in §5.4.2.1 to §5.4.2.4. Of the 

four approaches, three were employed: Fill In with Average, Rate Estimation, and 

iterative PCA. Two versions of Fill In with Average and Ratio Estimation were created, 

resulting in a total of five methods to be tested. 

 

Dataset Name Dataset Source Cultures in Dataset 

Daily Monitoring Offline sampling All 

Online Monitoring Online monitoring* All 

Daily Monitoring and Online 

Monitoring 

Offline sampling 

Online monitoring* 

All 

Control Offline sampling 

Online monitoring* 

Cultures with non-control 

conditions excluded. 

Daily Monitoring (Online 

Monitoring for Estimation) 

Offline sampling 

Online monitoring** 

All 

Table 16. Summary of Dataset Combinations Tested. The primary difference between datasets 

was whether online monitoring and offline monitoring datasets were concatenated. 

 

 

 

Method Description Statistical Effects Practicality 

Cut Down Remove variables and/or 

samples with missing data. 

Can result in few variables 

and/or few samples remaining. 

Manually 

intensive. 

Fill In with 

Average 

Replace missing data with 

mean of available values. 

Assumes mean as appropriate 

estimate. Reduces data spread. 

Simple to 

implement 

Rate 

Estimation 

Ratios calculated between 

sampling points used to 

estimate values. 

Assumes behaviour 

independent of other variables. 

Extensive set-

up work 

required. 

Iterative 

PCA 

PCA models created until 

estimated values converge. 

Limit to missing data required 

to prevent spread reduction as 

seen in Fill In With Average. 

Proprietary 

software. 

Table 17. Summary of Missing Data Treatments Considered. “Cut Down” was rejected due to 

poor industrialisation potential. Two versions of Fill In with Average and Ratio Estimation were 

created, resulting in a total of five methods to be tested   
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5.4.2.1 Stage 1: Missing Data Handling: Cut Down 

One method for the handing of missing data that is often considered an ‘easy option’ is 

the exclusion of variables with missing values or samples with missing values. As seen 

in Table 18 and Table 19, both of these approaches can vastly reduce data available for 

analysis. A combined approach is used in Table 20 to give the maximum retention of 

recorded data while excluding missing data. 

Furthermore, while these approaches are seen as simple to implement, applying the final 

model to new data can become considerably more complicated if the dataset must be 

manually picked through for variable removal. Initial plans to demonstrate the negative 

effects of this approach on models produced were aborted due to the time-consuming 

manual work needed to apply the approach to datasets. 

  Variable 

  A B C D E F G H 

S
am

p
le

 

1      ● ●  

2 ●       ● 

3  ●       

4         

5    ● ●    

Table 18. Removal of samples with missing data leaves one sample. ● – missing data. Shading – 

excluded sample. 8 values out of 33 remain (25%) 

  Variable 

  A B C D E F G H 

S
am

p
le

 

1      ● ●  

2 ●       ● 

3  ●       

4         

5    ● ●    

Table 19. Removal of variables with missing data leaves one variable. ● – missing data. Shading 

– excluded variable. 5 values out of 33 remain (15.6%) 

  Variable 

  A B C D E F G H 

S
am

p
le

 

1      ● ●  

2 ●       ● 

3  ●       

4         

5    ● ●    

Table 20. Removal of samples and variables to give best exclusion of missing data. ● – missing 

data. Shading – excluded variable. 15 values out of 33 remain (46.9%)  
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5.4.2.2 Stage 1: Missing Data Handling: Fill In With Average 

While it is known that the “Fill In With Average” method of infilling missing data 

artificially reduces variance and variable distributions with potentially significant knock 

on effects on other summary statistics (Table 21), it remains a popular suggestion due 

relative ease of application to a dataset. Two versions of the method were tested to 

demonstrate the effects on a real dataset as a cautionary point of reference if suggested in 

future investigations. 

‘Mean Estimate’ refers to where the mean of a variable was calculated using all available 

values for that variable. In this version, there is no filtering of the dataset to determine 

whether or not a sample’s data is used, hence the calculated mean is influenced by all 

operating conditions represented in the dataset. 

‘Historical Mean’ refers to where the mean of a variable was calculated only from cultures 

operating under normal control conditions. Ideally, use of an average value from control 

cultures only would result in a value representative of ‘normal’ behaviour. 

 

-86 -10 11 67 -91 -22 -14 -60 -74 -7 

-8 89 68 76 -28 67 39 86 76 71 

83 56 21 37 -57 -45 -9 99 38 -31 

-93 29 -82 -52 78 92 71 0 -38 -82 

-11 -96 91 49 22 34 -87 -98 13 -64 

26 23 -70 58 -24 -39 -50 80 22 61 

6 -11 24 -36 61 88 -41 4 96 43 

-62 50 -17 31 63 79 30 90 -63 -70 

95 9 -89 -73 5 -74 -98 82 14 -35 

-30 46 78 25 -65 -78 17 12 18 -63 

Table 21. Dataset of 100 values generated using Microsoft Excel formula 

“=RandBetween(-100,100)” with mean = 4.66 and median = 11.5. 8% of the dataset (indicated 

by shading) is removed at random. The remaining dataset has mean = 3.65 and median = 12. This 

represents changes in mean and median of -22% and 4% respectively with the dataset median 

showing greater robustness to missing data than the dataset mean. If the missing values were 

replaced with the remaining dataset’s mean 3.65, the filled in dataset would have mean = 3.65 

and median = 3.83. When these statistics from the filled in dataset are compared to the original 

dataset, the changes in mean and median are -22% and -67% respectively. Hence the previously 

robust median is significantly altered.  
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5.4.2.3 Stage 1: Missing Data Handling: Rate Estimation 

Rate estimation was the term used to describe a form of interpolation whereby observed 

rates of change of a variable were used to estimate missing data. For this method, a rate 

of change was calculated for each variable for each window of activity (i.e. between two 

consecutive sampling points) for each culture using: 

𝑥𝑛,𝑛+1̇ =
𝑥𝑛+1 − 𝑥𝑛

𝑡𝑛+1 − 𝑡𝑛
 Eq. 6.1 

Where 𝑥𝑛,𝑛+1̇  is the rate of change of a variable across the window of activity defined by 

sampling points 𝑛 and 𝑛 + 1, 𝑥𝑛+1and 𝑥𝑛 the recorded values for the variable of interest 

at those sampling points, and 𝑡𝑛+1and 𝑡𝑛 the time of the samplings points as Elapsed Time 

(h). If either 𝑥𝑛+1or 𝑥𝑛  was missing, no rate was calculated. 

Two mean rates were calculated for each window of activity 𝑛, 𝑛 + 1 (Figure 16). The 

first mean rate was calculated using all available rates of change across all cultures and 

referred to as the ‘Mean Ratio’, 𝑀𝑥𝑛,𝑛+1
̇ . The second mean rate was calculated from a 

subset of control cultures and referred to as the ‘Historical Ratio’, 𝐻𝑥𝑛,𝑛+1
̇ . Missing 

values were estimated using Eq. 6.2 and Eq. 6.3 to plot the values in Figure 17. 

𝑀𝑥𝑛+1
̂ = 𝑀𝑥𝑛,𝑛+1

̇ (𝑡𝑛+1 − 𝑡𝑛) + 𝑥𝑛 Eq. 6.2 

𝐻𝑥𝑛+1
̂ = 𝐻𝑥𝑛,𝑛+1

̇ (𝑡𝑛+1 − 𝑡𝑛) + 𝑥𝑛 Eq. 6.3 

where 𝑀𝑥𝑛+1
̂  is the value predicted using the Mean Rate and 𝐻𝑥𝑛+1

̂  is the value predicted 

using the Historical Rate. If a missing value was from the point of inoculation (𝑛 = 1), 

then Eq. 6.4 and Eq. 6.5 were used. This was the only instance in which extrapolation 

was permitted. 

𝑀𝑥1
̂ = 𝑀𝑥1,2

̇ (𝑡1 − 𝑡2) + 𝑥2 Eq. 6.2 

𝐻𝑥1̂ = 𝐻𝑥1,2
̇ (𝑡1 − 𝑡2) + 𝑥2 Eq. 6.3 
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Figure 16. Rates of change in pO2 between consecutive sampling points were calculated for each 

culture (---). Note that if any of the data points needed to create the ratio was missing, no value 

could be calculated. A mean average rate for rates of change in pO2 was calculated using all 

available rates (-●-). These mean rates were used to estimate missing values such as those in 

Figure 17. 

 

 

Figure 17. Three cultures with missing values for pO2 were treated using ratio estimation. Dashed 

lines link the estimated values to the directly measured values. Note that estimated points do not 

lie in the same locations that simple linear interpolation would place them.  
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There are three main assumptions that must be made for this form of interpolation. First 

is the assumption that rates of change for a variable are independent of other variables in 

the dataset. Second is the assumption that the relationship is a simple proportionate 

relationship and not more complex, such as a quadratic relationship. A simple example 

of the importance to this assumption is a variable with a parabolic relationship with time. 

Simple linear interpolation may be adequate if (𝑡1, 𝑥1) and (𝑡2, 𝑥2) lie on the same side 

of the vertex, however it is obvious how simple linear interpolation is inappropriate if 

they lie opposite sides of the vertex.  Finally, this form of missing data estimation assumes 

that the behaviour seen in other cultures (from which 𝑀𝑥𝑛+1
̂  and 𝐻𝑥𝑛+1

̂  are calculated) 

is the same as the behaviour exhibited by the sample in question. 

5.4.2.4 Stage 1: Missing Data Handling: Iterative PCA 

The methods presented thus far have been non-iterative calculations where a single 

replacement value is calculated. Iterative PCA (iPCA) is a form of inferential estimation 

which uses algorithmic modelling to estimate values for missing data based on the 

dataset’s covariance matrix. Missing values are first replaced with the variable mean. A 

PCA model is generated to capture a set percentage of variance. Based on this model, 

new values are substituted for missing data with the new values selected based on 

consistency with the PCA model loadings. A new PCA model is generated and new values 

are substituted. This process is repeated until a suitable level of convergence is reached, 

i.e. the change when substituting new values drops below a threshold. 

According to the Eigenvector Wiki “[u]sing PCA to replace data generally works better 

than using the mean of a variable because it uses the covariance in the data to estimate 

what the missing values should be.” This method of missing data estimation was deemed 

to be of potentially high value as missing data is based on behaviour across all variables.  

This form of missing data estimation was easily implemented as it is a feature of the PLS 

Toolbox (Eigenvector) and performed automatically during model creation. However as 

a software specific method, use of iPCA is dependent on software availability or 

significant time investment for an internally useable version. 
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5.4.3 Stage 1: Decision Tree Algorithm 

Four decision tree algorithms were considered in this investigation: Information Gain, 

Gain Ratio, Gini Index, ReliefF. Detailed descriptions of how these algorithms function 

can be found in Chapter 2. To reiterate key differences according to Han et al. (2011), the 

Information Gain and Gini Index algorithms are biased towards attributes with a greater 

number of possible values when selecting decision criteria. The Gain Ratio algorithm is 

biased to unbalanced splits, e.g. one partition is much smaller than the others. The fourth 

algorithm considered was ReliefF, an adaptation of the Relief algorithm that includes a 

k-nearest neighbour function when selecting decision criteria. While ReliefF is only 

available with the data mining software Orange (University of Ljubljana), it was included 

to demonstrate whether investing in a more specialised algorithm could yield any benefit.  

5.4.4 Stage 1: Data Transformation 

Loss of context is a problem when using decision trees as single attributes are selected 

for decision criteria, particularly in the evaluation of a dataset in an unmodified state, i.e. 

values are as recorded, here referred to as “As Is”. Furthermore, the reliance on a single 

variable reading can lead to spurious decision criteria and, consequently, a lack of 

robustness. The application of PCA as a data transformation step during pre-processing 

was investigated as a means of retaining contextual information and reduce spurious 

decision criteria selection. 

 

 

Figure 18. The two analysis pathways shown differ only in whether the dataset is passed 

directly to a decision tree algorithm or whether the PCA is applied to the dataset as a pre-

processing step with the resulting PC scores then passed to the decision tree algorithm. 
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Following the process shown in Figure 18, PCA models were created for each 

combination of data source and missing data treatment using Eigenvector PLS Toolbox 

with random sampling as cross-validation (10 splits, 5 iterations). The first 10 PC scores 

for each dataset were extracted for decision tree creation. The number of PCs used was 

chosen to ensure a minimum of 90% of dataset variance was transfered to decision tree 

creation while maintaining a standardised method. 

5.5 Stage 1: Method 

The cultures were numbered as Pro_A001 to Pro_A049 and then classified as “High” or 

“Low” producers based on product concentration at harvest. The cut-off value was chosen 

to take into account a customer-defined breakeven point for economic viability (for 

confidentiality, this value cannot be stated). Of the 49 cultures analysed, 38 cultures were 

classed as “High” producers (pass) and 11 cultures were classed as “Low” producers 

(fail). 

Decision trees were created for all possible combinations of options listed in Figure 19 

using exhaustive binarisation for optimal split with leaf-splitting stopping criteria of 95% 

purity and m-estimate post-pruning (m=2). To prevent overfitting of models, 30% of 10L 

cultures were randomly selected as a validation dataset. The four 130L pilot cultures were 

excluded from calibration datasets as a final testing dataset. In total, 120 decision trees 

were evaluated for size, classification accuracy, and interpretability. 

 

 

Figure 19. Summary of method options. Three combinations of data sources (daily monitoring, 

online monitoring, and combined daily monitoring and online monitoring) were treated with five 

different processes of missing data estimation. After missing data estimation, the datasets were 

then passed to four different decision algorithms. This was performed with the data “As Is” (i.e. 

with no additional pre-processing). The analyses were repeated using PCA as a pre-processing 

with the resulting PC scores passed to the decision tree instead. 

Data Source

•Daily Monitoring

•Online 
Monitoring

•Daily Monitoring 
and Online 
Monitoring

Missing Data 
Estimation

•Mean

•Historical Mean

•Rate

•Historical Rate

•iPCA

Decision Tree 
Algorithm

•Information Gain

•Gain Ratio

•Gini Index

•ReliefF

Data 
Transformation

• 'As Is'

•Principal 
Component 
Scores
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5.6 Stage 1: Results and Discussion 

Decision tree results and options were evaluated in two ways. In the first, a main effects 

plot was created with classification accuracy of the testing dataset as the response (Figure 

20). From this it was seen that use of data from daily monitoring samples for all cultures 

generally gave higher classification accuracy. Inclusion of online monitoring data (here 

downsampled using Informative Values 1.0) had little effect on test set classification 

accuracy, however a general decrease was observed when using online monitoring data 

alone. Collating online monitoring and daily monitoring datasets for estimation of 

missing data followed by the use of only from daily monitoring had a negative effect on 

testing accuracy. 

A decrease in test set classification accuracy was seen when cultures with deliberate 

experimental conditions were excluded from the daily monitoring dataset (“Control”). 

This demonstrated the effect of over fitting a model by calibrating using only control 

behaviours, particularly when a range of behaviours are to be considered. Deliberate 

inclusion of non-control conditions allowed multiple paths to failure and success to be 

identified in addition to a decreased likelihood of spurious decision criteria selection. In 

short, robust models cannot be calibrated from “Golden Batches” alone. 

The missing data estimation method with the highest testing accuracy was the iPCA 

method included in the EigenVector PLS Toolbox. This was as expected as iPCA 

estimates values based on both the culture’s behaviour across all variables and the 

behaviour of all other cultures in the dataset across those variables, whereas the other 

methods considered behaviour at a single variable at either a single sampling point or 

between two successive sampling points. Further evidence for this conclusion was the 

minor increase in classification accuracy when online monitoring data were included 

during iPCA estimation but excluded from model creation. 

Similar conclusions to the above were made when method option results were evaluated 

on a case by case basis. In the first evaluation method, there appeared to be little benefit 

in creating a PCA model in order to use PC scores in place of the original dataset in terms 

of pure testing accuracy. However, discussion-based evaluation revealed that use of PC 

scores led to greater understanding of differences between high and low producers. This 

was due to the greater contextual information in decision criteria, i.e. values for splits 

were determined from behaviour across multiple variables and multiple days, not a single 

variable at a single time point (e.g. “Glucose (g/L) on Day 6”).
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Figure 20. Main Effects Plot for Testing Accuracy. Four options were evaluated: data type (referring to datasets used), estimation method for missing 

data, decision tree algorithm, and treatment, i.e. whether data were compressed into PCA scores for decision classification or if data that had not first 

been summarised as PC scores (‘As Is’). *Daily monitoring data from control cultures only. **Online monitoring data including during missing data 

estimation.
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It was noted in both cases that interpretation was made difficult by the mixed 

cause/response nature of some variables (e.g. lactate concentrations) as compared to pure 

cause variables (e.g. temperature). As such, using the more context/information rich PC 

scores could provide a more informed basis for action. 

Based on these results, the developed method was as follows: 

1) Online monitoring data is summarised as informative values. 

2) The informative values dataset and daily offline monitoring datasets are collated. 

3) The collated dataset is unfolded into the profile (short and wide) configuration. 

4) iPCA is used  to estimate missing values. 

5) The dataset is mean centred and scaled to unit variance. 

6) A PCA model is created using random sampling and multiple iterations. 

7) PC scores from the model are extracted as a new dataset. 

8) A decision tree is created to classify cultures based on PC scores using the Gini Index. 

The decision tree with the highest classification accuracy is shown in Figure 21. Analysis 

of loadings for PCs selected as decision criteria allowed overall trends to be analysed. 

Contribution analysis of scores allowed more specific behaviours to be further 

investigated. Applying this approach to the first failure at pilot scale (A016) indicated 

initial seeding conditions and subsequent glutamine behaviour as the main areas of 

deviant behaviour. While a specific cause for the altered glutamine behaviour could not 

be identified from the data analysed, it was suggested that batch-to-batch variation in 

media powders used could be a possible contributing factor. 
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Figure 21. Decision tree with the highest classification accuracy and matching top options 

(DMDLG, PC, iPCA, Gini Index). Pie charts indicate the distribution of high-producing (blue) 

and low-producing (red) cultures at the node. Information written within the node indicates the 

majority class, majority class probability, target class probability, and the total number of 

instances on the node. Note that the values displayed are for the calibration dataset (29 cultures) 

and not the validation dataset.  
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5.7 Stage 2: Improvements through Manipulation of the Dataset Structure 

In stage 1, a basic method for data analysis was suggested and locally optimised for 

available options. While this method met the stated objectives of classifying cultures 

A001 to A049 and identifying key indicators, there were several areas which could be 

further improved. Two areas for improvement addressed using the dataset A001 to A099 

in Stage 2 were: 

 The definition of progress measurement for a fed-batch culture. 

 Rigidity in data collection with respect to culture progress. 

PCA analysis of the mixed UK and US dataset indicated confounding caused by the 

differences in seeding. Due to this confounding and a change in investigation focus, the 

proposed alterations were not evaluated using decision trees and pass/fail criteria. Instead, 

the proposed alterations were evaluated when predicting Day 11 product concentration 

using PLSR.  

5.7.1 Stage 2: Defining Progress and Progression Variables 

Time is so heavily embedded in the concept of progress that it can be found in its 

definition: to improve or develop over a period of time [163]. However, while time must 

pass for progress to occur, should its de facto status as the yardstick for progress go 

unquestioned? When defining progress, should something other than time be plotted on 

the X axis? 

A non-biological example of questioning measures of progress is academic performance 

of students and the question of “Is my child’s intelligence developing normally?” In a 

study on intelligence development in school children [164], it was shown that, for 

intelligences evaluated using verbal and numerical tests, progress was better defined in 

terms of terms of time in education (“psycho-educational age”) than in terms of absolute 

physical age (“biological age”). However, biological age tended to be a more appropriate 

when considering intelligences evaluated using figural tests (see Figure 66 and Table 43 

in Appendix B). 

The cell culture analogy to these measures are the absolute values of viable cell 

concentration and elapsed time (analogous to biological age”) and the calculated integral 

of viable cell concentration, which measures growth since inoculation (analogous to 

psycho-educational age).  
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5.7.1.1 Stage 2: IVC as a Progression Variable 

The integral of viable cell concentration (IVC) was proposed as an alternative progression 

variable for fed-batch and batch cultures, in place of Elapsed Time (h) or Elapsed Day 

(d). Evidence supporting IVC as an alternative progression variables are as follows: 

1. From a conceptual perspective, IVC captures “culture history” in a single value. As 

IVC is calculated by summing the area beneath a viable cell concentration growth 

curve, the change in IVC between sampling points takes into account both the time 

between sampling points and the level of growth between sampling points. Hence 

while time still plays a role in measuring progress, using IVC to measure progress 

would allow for a more biology- and response-based yardstick to be employed. 

 

2. An initial evaluation of correlation between events in air and oxygen profiles against 

different progression variables was performed for cultures A001 to A049. It was 

identified that there was comparable or greater correlation between when IVC was 

used in place of Elapsed Time (Figure 22). A follow up evaluation indicated that, in 

general, these correlations were stronger once experimental, non-control cultures 

were excluded. 

 

3. PLSR models predicting product concentration were created using daily monitoring 

and online monitoring data from A001 to A049 for the following variable sets: 

a. No Progression Variable — “Obvious” progression variables VCC, TCC, 

Elapsed Time (h), and IVC excluded from dataset. 

b. Elapsed Time — VCC, TCC, and IVC excluded from dataset  

c. IVC — VCC, TCC, and Elapsed Time (h) excluded from dataset. 

PLSR were created for each subset using the SIMPLS algorithm with random sampling 

and multiple iterations (10 splits, 10 iterations). The final models were selected based on 

maximum R2 during cross validation. Full listings of the variables used and details of the 

final models can be found in Table 45, Table 46, and Table 47 in Appendix B, 

respectively. Data from US cultures A050 to A099 were then applied as a testing dataset. 

Figure 23 shows the predicted product concentration against the measured product 

concentration for the three models, in addition to the calibration R2, cross-validation R2, 

and the US testing dataset R2. 
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Considering only R2 for UK cultures and UK predictions, it was seen that the highest 

values calculated for R2 were reached in models where IVC was included as a measure 

of progress (Figure 23C) and lowest when no explicit progression variable was included. 

In addition to improved predictive power, increased linearisation of predicted value 

against measured value was noted when IVC was included in the model. 

These improvements in model predictive accuracy and linearisation of residuals were 

preserved when considering data from the US-sited cultures A050 to A099. This was of 

particular note as it indicated that use of IVC as the progression variable could convey 

greater model transferability between sites and scale than Elapsed Time (h). 

 

 

 

 

Figure 22. Correlations between Day 11 [Product] (mg/L) and specific events in air and oxygen 

feed profiles for cultures A001 to A049. It was observed that correlation between events and IVC 

was strongly affected by sample selection, with the dataset including all growth conditions having 

notably lower correlation with air and oxygen profile events than when the dataset was restricted 

to control conditions cultures only. Most notable is the strong correlation between IVC with the 

activation of the oxygen feed for control condition cultures. Also notable is correlation between 

IVC at half of air capped flowrate and the IVC at the air capped flowrate for control condition 

cultures. Note that correlations were multiplied by -1 for ease of viewing.   
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A. Progression Variable: 

“None” 

 

UK Data Prediction 

Cal R2 = 0.76 

 

UK Data Prediction 

CV R2 = 0.71 

 

US Data Prediction 

R2 = 0.77  

 

 

B. Progression Variable: 

Elapsed Time 

 

UK Data Prediction 

Cal R2 = 0.86 

 

UK Data Prediction 

CV R2 = 0.83 

 

US Data Prediction 

R2 = 0.82  

 

 

C. Progression Variable 

IVC 

 

UK Data Prediction 

Cal R2 = 0.97  

 

UK Data Prediction 

CV R2 = 0.95 

 

US Data Prediction 

R2 = 0.94  

 

 

Figure 23. US data (red triangle ▼) applied to models calibrated from UK data (grey square ■). 

The green line shows the ideal 1:1 relationship between measured and predicted product 

concentrations. The red line shows the actual line of correlation between measured and predicted 

product concentrations. Note that values have been hidden due to confidentiality requirements. 
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5.7.2 Stage 2: Dataset Rigidity 

Dataset rigidity is the adherence of sampling to a set interval size. Here, it is considered 

as a measure of a specific form of noise: random underlying temporal variation created 

by variation in sampling intervals for different cultures. In a dataset, this temporal 

variation is captured in addition to the variation of interest. Any model algorithms in 

subsequent analyses must be able to separate the undesired, underlying temporal variation 

from the variation of interest. If this cannot be done to a sufficient level, there is the risk 

of incorrect conclusions being drawn and used to justify further actions. 

5.7.2.1 Hypothetical Example 

Ten cultures grow identically. By chance a culture is always sampled slightly later than 

the other nine cultures. When metabolite and cell growth data are analysed, the culture 

will appear to be more advanced that the other nine by virtue of later sampling times. This 

could be fixed by including the sampling time as a variable in analyses, however this 

could lead to unhelpful results, e.g. time being identified a key predictor for product titre 

instead of viable cell concentration. 

5.7.3 Stage 2: Dataset Realignment 

The suggestion was made that reduction or elimination of the underlying temporal 

variation introduced by variation in sampling time could be achieved through appropriate 

manipulation of the dataset. More specifically, it was suggested that this could be 

achieved through interpolation of sampling data to user-defined values for a progression 

variable. 

For concept clarity, dataset realignment is here described in terms of time as this is easily 

accessible conceptually and forms the basis of typical sampling procedures However, the 

concept of rigidity can be applied to any variable deemed to be the progression variable, 

e.g. IVC. While it would be very difficult to implement a sampling procedure based on 

such an approach5, it may be possible to impose adherence after data are generated. 

It is key to note that imposing rigid structure based on a given variable alters the 

distributions of all other variables (Figure 24.), which may be undesirable or unacceptable 

and potentially have an overall negative effect in subsequent analyses.  

                                                 
5 A possible solution is the use of in-line probes to create alerts when a monitored progression variable 

reaches a pre-determined sampling point value. 
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Figure 24. Comparison of distributions of values for readings of elapsed time and IVC for cultures 

A001 to A049 when using three different datasets: Natural (e.g. approximately 24 h sampling 

interval), Time Aligned (e.g. rigid 24 h sampling interval), and IVC Aligned (e.g. rigid structure 

imposed using select values for IVC). 

A. Natural Data – showing variation in elapsed time for readings. Note that A016, whose data 

became offset due to both a non-standard interval and multiple data entries, can be visually 

identified as a temporal outlier. 

B. Natural Data – showing variation in IVC for readings. 

C. Time Aligned Dataset – showing lack of variation in elapsed time for readings. 

D. Time Aligned Dataset - showing variation in IVC for readings. 

E. IVC Aligned Dataset – showing variation in elapsed time for readings. 

F. IVC Aligned Dataset - showing lack of variation in IVC for readings. 
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5.7.4 Stage 2: Progression Variable Selection and Alignment Effects  

In Section 5.7.1 the potential benefits of alternative progression variables when analysing 

datasets with variation in sampling timepoints were demonstrated. The next part of the 

investigation focussed on the influence of imposing a rigid progression structure on a 

dataset by forcibly aligning data to specific progression points as outlined in Section 

5.7.2. 

Using A001 to A049 as the calibration dataset, three alignments were considered: 

1. ‘As Is’/unaligned allowing for natural variation in sampling time. 

2. Realignment to user-defined values for Elapsed Time (h). 

3. Realignment to user-defined values for IVC. 

A further hypothesis was that realignment of data to user-defined values for the 

progression variable would allow the progression variable itself to be excluded from 

analysis. Hence a comparison was made between models where the progression variable 

was included and models where the progression variable was excluded. 

As demonstrated in several publications [44,165,166], there are benefits to unfolding or 

reorientation of the dataset to treat each row as representing a single sampling of data 

during a culture (“Day by Day”) or to aggregate serial observations of a culture as a single 

observation spanning the full duration of the culture (“Profile”). A Day by Day versus 

Profile comparison was made to determine whether dataset alignment effects, if any, were 

dependent on dataset orientation. 

An area of concern was the suitability of the developed method for multiple responses of 

interest. In this study, the response of interest was Day 11 product concentration. 

However, future investigations utilising the developed methods may focus on maximising 

viable cell concentration or maintaining culture viability. For this reason, alignment and 

rigidity effects were evaluated for three responses: [Product] (mg/L), Viability (%), and 

Viable Cell Concentration (VCC) (106 cells/mL). 

A final factor investigated was the effect of using only data originating from offline 

monitoring versus using data from both online and offline monitoring. To achieve this, 

informative values for online monitoring were recalculated to match the progression 

points used for realignment. 
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5.7.5 Stage 2: Method 

Daily monitoring data were aggregated into a single dataset. Alignment points were 

selected using mean and median values across samples with numbers rounded to give 

standardised progression between interval points (Table 22 and Table 23). 

In the original dataset of up to 14 samplings per culture, the maximum mean average for 

Elapsed Time (h) and IVC were 288.50 h and 1308.61 (106 cell/mL.h) respectively. As 

can be seen in Figure 25, few cultures reach these levels of progress. Maximum values 

chosen for time and IVC alignment points were 312 h and alignment point was 

1000 x 106 cell/mL.h respectively. 

Time realignment and IVC realignment were applied using the progression values listed 

in Table 22 and Table 23. 

 

 

Figure 25. Percentage of cultures A001 to A049 reaching stated values for progression variables. 

These percentages were used to be determine the number of sampling points, the final timepoint, 

and the maximum IVC values used for realignment of datasets. Online monitoring data were 

translated to the robust statistics version of informative values. Informative values were calculated 

using natural sampling times, user-defined time points (as part of time realignment), and times at 

which user-defined IVC values were reached (as part of IVC realignment). 
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Figure 26. Distribution of values for Elapsed Time (h) at progressive sample readings. It was 

observed that resampling of a culture could notably offset recorded points, as seen in the change 

in progression in the minimum Elapsed Time before and after Day 6. 

 

Original Sampling Point 

 

User-Defined Progression Points 

# Min. Mean Median Max. # Value 

1 0.00 1.38 0.97 4.58 1 0 

2 13.83 25.03 23.42 35.42 2 24 

3 35.18 46.91 45.95 58.08 3 48 

4 59.83 70.03 70.50 79.87 4 72 

5 82.50 95.55 93.08 110.00 5 96 

6 86.92 117.84 117.50 128.58 6 120 

7 103.83 141.75 139.67 153.33 7 144 

8 129.08 165.64 166.00 177.78 8 168 

9 152.58 189.46 188.83 200.60 9 192 

10 178.17 213.90 214.92 225.60 10 216 

11 200.92 236.36 235.63 252.33 11 240 

12 221.00 260.41 260.67 273.13 12 264 

13 229.52 280.50 279.12 301.50 13 288 

14 244.25 288.50 299.83 321.42 14 312 

Table 22. Evaluation of A001 to A099 recorded Elapsed Time (h) for selection of progression 

points. User-defined progression points were selected to give a 24h interval between samples. 
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Figure 27. Distribution of values for IVC ((106 cells/mL).h) at progressive sample readings. It 

was observed that a wide range of values were recorded for each day. This was due to both 

variation in Elapsed Time for the samples and the effects from different growth conditions. 

 

Original Sampling Point  User-Defined Progression Points 

# Min. Mean Median Max. # Value 

1 0.00 0.50 0.33 1.65 1 0 

2 4.05 12.01 10.50 26.25 2 10 

3 13.55 27.92 25.38 64.45 3 50 

4 27.33 56.88 56.73 132.22 4 100 

5 43.70 120.54 111.57 265.62 5 200 

6 62.65 217.28 209.29 485.60 6 300 

7 95.05 375.41 374.80 734.41 7 400 

8 181.66 590.22 568.52 958.95 8 500 

9 327.12 838.31 851.75 1144.19 9 600 

10 580.65 1068.51 1091.39 1277.62 10 700 

11 873.56 1203.21 1213.89 1474.63 11 800 

12 1039.97 1291.53 1295.17 1620.87 12 900 

13 1047.14 1311.23 1310.35 1672.92 13 1000 

14 1247.26 1308.61 1303.85 1374.72  

Table 23. Evaluation of A001 to A099 recorded IVC ((10^6 cells/mL).h) for selection of 

progression points. This was due to both variation in Elapsed Time for the samples and the effects 

from different growth conditions. The user-defined progression points were selected using the 

means and medians of the daily samples as a basic guide to appropriate intervals. 
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Daily monitoring datasets were combined with the appropriate complementary 

informative value datasets in both Profile and Day by Day arrangements. Data were 

imported to Matlab for analysis using the Eigenvector PLS Toolbox. iPCA was used to 

estimate missing values. PLSR models were created for all combinations of the options 

described below using random sampling for cross-validation. Due to differences in data 

sample numbers, Day by Day models used 10 splits with 10 iterations and Profile models 

used 7 splits with 5 iterations. Models were selected based on minimum RMSE during 

cross-validation. Tables fully detailing combinations and details of the models generated 

can be found in Table 48, Table 49, Table 50, and Table 51 in the Appendix B. 

Arrangement 

1. Profile - serial observations of a culture treated as a single sample. 

2. Day by Day - serial observations as multiple samples. 

Data Used 

1. Daily Monitoring - data collected through daily monitoring samples. 

2. Daily Monitoring and Online Monitoring - the Daily Monitoring dataset 

expanded to include data collected through online monitoring of cultures and 

summarised using a subset of Informative Values 7.0. (Table 42 in Appendix B). 

Variables Used 

1. No Obvious Indicators – Elapsed Time and IVC excluded from input dataset. 

2. Elapsed Time – IVC excluded from input dataset. 

3. IVC – Elapsed Time excluded from input dataset. 

Output (Response to be Modelled) 

1. Product Concentration (mg/L) – For models using the Day by Day arrangement, 

this refers to the product concentration recorded for each individual sample. For 

models using the Profile arrangement, this refers to the product concentration 

recorded for the Day 11 sample. 

2. Viability – For models using the Day by Day arrangement, this refers to the 

viability recorded for each individual sample. For models using the Profile 

arrangement, this refer to the viability recorded for the Day 11 sample. 

3. Viable Cell Concentration (VCC) – For models using the Day by Day 

arrangement, this refers to the VCC recorded for each individual sample. For 

models using the Profile arrangement, this refer to the VCC recorded for the Day 

11 sample. 
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During model creation, the response to be modelled was excluded from the input dataset. 

When modelling VCC, Total Cell Concentration was also excluded from the input dataset 

as it was highly correlated with VCC. Detailed results of these models can be found in 

Appendix B (Table 50 and Table 51).  

5.7.6 Stage 2: Results and Discussion 

Effects of model options were evaluated by creating figures to visualise differences 

comparing model performance criteria. Each figure shows a different way of grouping 

results to focus on method options. Evaluations were made with respect to the following 

questions. 

1. Does realignment to standardised progression values offer any real improvement 

in the ability to capture culture behaviours? 

2. Does alignment to standardised progression values eliminate the need for the 

progression variable in the model? 

5.7.6.1 Does realignment to standardised progression values offer any real 

improvement in the ability to capture culture behaviours? 

Two main performance criteria were used to compare models’ behaviour capture 

capabilities. The first was model predictive ability, which was evaluated using 

cross-validation R2 (Figure 28). The second was model robustness, which was evaluated 

using the difference between calibration R2 and cross- validation R2 (Figure 29).  

Figure 28 shows cross-validation R2 for datasets where explicit progression variables 

have been excluded and IVC, Time, or No alignment has been applied to the dataset. Here 

it was observed that models generated from Day by Day arrangements strongly 

outperformed models generated from Profile arrangements. These results were thought to 

be due to a combination of the number of unique variables to be modelled per sample (an 

order of magnitude greater than Day by Day samples) and realignment introducing more 

noise to the dataset than it removed. 

With regards to realignment effects, realignment typically results in higher 

cross-validation R2 for all response modelled using data in the Day by Day arrangement. 

Realignment had a negative impact on cross-validation R2 for all response modelled using 

data in the Profile arrangement. The extent to which alignment choice affected 

cross-validation R2 was dependent on the data used and the modelled response. 
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Similar to the results of Stage 1 analyses, interpretation of models created from Profile 

arranged data was difficult as drill down analyses were complicated by the large number 

of variables from which latent variables were composed. 

Figure 29 shows the difference between calibration R2 and cross-validation R2 for datasets 

where explicit progression variables have been excluded and IVC, Time, or No alignment 

has been applied to the dataset. The difference between calibration R2 and 

cross-validation R2 was used as an indicator of model robustness, with a lower value 

indicating greater model robustness. Similar to Figure 28 observations, it was observed 

that models generated from Day by Day arrangements had greater robustness during 

cross-validation. Again, this was believed to be due to the number of unique variables to 

be modelled. 

Effects on model robustness from realignment could not be as easily generalised as effects 

on model cross-validation R2. For models created from data in the Day by Day 

arrangement, realignment improved model robustness. For models created from data in 

the Profile arrangement, models created from IVC aligned datasets had consistently better 

robustness than time aligned datasets. Models created from un-aligned datasets had better 

robustness than IVC aligned datasets with the exception of models created from both 

Daily Monitoring and Online Monitoring datasets to predict product concentration. 

Similar to cross-validation R2, the extent to which alignment choice affected robustness 

was dependent on the data used and the modelled response. 

The introduction of more noise than was removed when data were aligned to standardised 

progression points was not entirely unexpected. Simple linear interpolation was used for 

realignment, which, as described in Section 5.4.2 on missing data estimation, is not 

typically an accurate representation of variable behaviour. Given the improvements seen 

in Day by Day models, further development of the equations used for alignment may 

yield better results. 

Finally, it was noted in all comparisons that performance and robustness were dependent 

on the response being modelled. Models predicting product concentration and VCC 

consistently outperformed models predicting viability. This was likely due to the 

distributions of the measured response values. Specifically, a typical fed-batch 

bioculture’s viability follows a distinct “hockey stick” shape – viability remains steady 

for the majority of the culture, ideally in the region of ~90% to ~100%. Viability declines 

rapidly in the last days of the culture. This gives a response dataset where the majority of 
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values lie in a limited region (~90% to ~100%) and a minority of values spanning the 

remaining range (0% to 90%). 

5.7.6.2 Does alignment to standardised progression values eliminate the 

need for the progression variable in the model? 

Figure 30 and Figure 31 compare the cross-validation R2 and the difference between 

calibration R2 and cross-validation R2 respectively for models where the dataset has been 

realigned and the progression variable either included or excluded. In both figures it can 

be observed that inclusion or exclusion of the progression variables has few appreciable 

effects on either measure of model performance. Hence as a general rule, once data were 

aligned to standardised progression points, the progression variable could be excluded 

from input data with negligible loss in predictive power. 

5.8 Stage 2: Conclusions 

In Stage 2, it was demonstrated that in general IVC was a more robust 

indicator/progression variable than Elapsed Time when establishing a baseline for culture 

progress. This applied both when progression variables were included in model input 

datasets and when realigning data to standardised progression points. 

For the datasets analysed, realignment to standardised progression points allowed for 

more robust models when considering data in the Day by Day arrangement even when 

the progression variable was excluded from the input dataset. However, realignment to 

standardised progression points led to decreased model robustness for models created 

from datasets in Profile arrangement. This was thought to be due to both the increased 

ratio of variables to samples caused by the Profile arrangement and the introduction of 

noise during the realignment process. Finally, the strength of these effects were dependent 

on the response to be modelled.  

As a general conclusion, no generic “best” method could be identified. Instead it was 

demonstrated that the accuracy and robustness of generated models could be greatly 

altered by manipulating the original dataset in seemingly simple ways. It is recommended 

that multiple perspectives of the dataset are model during initial investigations, 

particularly as applying these manipulations required comparatively little effort after 

manipulation tools were created in Excel. From these multiple models, a number can 

selected based on robustness and interpretability for more in-depth analysis. 
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Figure 28. Evaluating effects of dataset realignment on model predictive accuracy through cross-validation R2 when predicting product concentration (A), viability 

(B), and viable cell concentration (C). Overall, models created using datasets in a Day by Day arrangement had high R2 during cross-validation. Effects of realignment 

were dependent on the response tested and dataset arrangement. In the profile arrangement, no alignment tended to give higher values for R2 during cross-validation.  

  

 

 

  Arrangement Data Used 

1,1 Day by Day Daily Monitoring 

1,2 Day by Day Daily Monitoring and Online Monitoring 

2,1 Profile Daily Monitoring 

2,2 Profile Daily Monitoring and Online Monitoring 
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  Arrangement Data Used 

1,1 Day by Day Daily Monitoring 

1,2 Day by Day Daily Monitoring and Online 

Monitoring 

2,1 Profile Daily Monitoring 

2,2 Profile Daily Monitoring and Online 

Monitoring 

   

Figure 29. Evaluating effects of dataset realignment on model robustness through differences in calibration R2 and cross validation R2 when predicting product 

concentration (A), viability (B), and viable cell concentration (C). Here the lower the difference between R2, the greater the model’s robustness. Overall, models 

created from datasets in the Day by Day arrangement had good robustness.  
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Figure 30. Evaluating effects of inclusion of progression variable in a realigned dataset on model predictive accuracy through cross-validation R2 when predicting 

product concentration (A), viability (B), and viable cell concentration (C). In nearly all cases, inclusion or exclusion of the progression variable does not notably alter 

the cross-validation R2 for models where the cross-validation R2 indicates a functioning model.  

  

 

 

  Arrangement Data Used 

1,1 Day by Day Daily Monitoring 

1,2 Day by Day Daily Monitoring and Online 

Monitoring 

2,1 Profile Daily Monitoring 

2,2 Profile Daily Monitoring and Online 

Monitoring 
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  Arrangement Data Used 

1,1 Day by Day Daily Monitoring 

1,2 Day by Day Daily Monitoring and Online 

Monitoring 

2,1 Profile Daily Monitoring 

2,2 Profile Daily Monitoring and Online 

Monitoring 

   

Figure 31. Evaluating effects of inclusion of progression variable in a realigned dataset on model robustness through differences in calibration R2 and cross-validation 

R2 when predicting product concentration (A), viability (B), and viable cell concentration (C). Here the lower the difference between calibration R2 and cross-validation, 

the greater the model’s robustness. In nearly all cases, inclusion or exclusion of the progression variable does not notably alter the robustness of the model. 
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5.9 Stage 3 Media Analysis 

Due to the lack of a conclusive cause for variation in product titre during Stage 1 and 

Stage 2, the decision was made to focus on the media components used. 

A major area of research in cell culture in the 1990s was the development of 

chemically-defined media and sera, which would eliminate or reduce the issues associated 

with animal-derived sera (Table 24). Chemically defined media and feeds can often be 

considered the most valuable and guarded asset of cell culture companies. However while 

these are thought of as set recipes, variation is still possible, including inherent variation 

in at the smallest measurement scales, e.g. nanomolar concentrations of trace elements. 

This variation may be inconsequential, have negligible effects, or could notably alter 

cellular behaviour. Hence, methods of determining whether variation in the base 

materials’ composition may be a factor in an investigation of cell culture performance are 

a core factor in Quality by Design frameworks. 

 

Advantages 

— Binding and neutralisation of toxins. 

— Protease inhibition. 

— In agitated bioreactors, protection of cells from mechanical damage. 

— Buffer capacity of cell culture mixture improved. 

— Contain growth factors, hormones, and adherence factors. 

Disadvantages 

— Cost. 

— Lot-to-lot variability in composition (and potential impacts therefrom). 

— Negative impacts on both up- and down-stream processing, e.g. foaming in bioreactors or 

inference with columns, and associated increases in operating difficulties and costs. 

— Chemically undefined, e.g. unknown recipe, and undesired constituent chemicals such as 

growth and metabolism inhibitors. 

— Safety risk due to possible infection by viruses and other adventitious agents, such as those 

involved in Bovine spongiform encephalopathy [82]. 

Table 24. Summary of advantages and disadvantages of bovine foetal serum in cell culture media 

[167]. 
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An acknowledged issue in the investigations performed in Stage 1 and Stage 2 was the 

data concerning media and feed compositions were not included during analysis. This due 

to both the categorical nature of the data and simple availability. Media batch numbers 

required transcription from handwritten records, representing a notable delay, particularly 

for an investigation with a large number of cultures where accompanying paper records 

are archived off-site for various reasons. 

A total of 9 media components known to be key components in the process were chosen 

for analysis through identification of clustering. Only cultures A001 to A049 were 

considered for two reasons. First to determine if such analysis could have been used to 

identify and resolve issues before the site transfer was made. Second, media component 

batch numbers could not be accessed for the US-cited cultures A050 to A099. 

5.10 Stage 3: Method 

All available daily monitoring data for cultures A001 to A049 were arranged in the Day 

by Day orientation. As sample temperature and DOT were not recorded as part of daily 

monitoring at the 130 L scale, estimated values were created from online monitoring 

records by calculating the median between sampling timepoints. All remaining samples 

with missing data were eliminated. 

The dataset was mean-centred and scaled to unit variance. A PCA model was generated 

in PLS Toolbox using random sampling (7 splits, 5 iterations). A 6 PC model capturing 

83.54 % of variation was selected. 

Scores plots were created for each combination of scores (e.g. PC3 v. PC6). Additional 

figures were created by plotting a PC’s scores against time. Variations of these figures 

were created by plotting scores from only cultures operating with control conditions 

(Figure 32). Figures were then analysed for clustering by batch number for the 9 media 

components. 

5.11 Stage 3: Results and Discussion 

Several variations on the described method were attempted, e.g. use of PLSR in place of 

PCA, reorientation of the dataset from the Day by Day orientation to Profile orientation. 

Each method failed to improve understanding of product concentration variation for the 

same reason: Only media component batch numbers were recorded, not data pertaining 

to the actual physical differences between batches. 
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This issue was further compounded by the fact that the combinations of media component 

batches used were effectively unique to culture round6. Hence any clustering scene could 

only be attributed to the combination of media component batches used in that round and 

not to a specific component. 

5.12 Stage 3: Conclusions and Recommendations 

While recording of media component batch numbers ensures traceability, it does not 

allow for quantitative comparison of batch chemical composition. Batch number records 

can allow this data to be captured at a later date, however this assumes quantities of the 

component in question are still available and are of an identical state to when used in the 

cultures being investigated, e.g. no effects from aging or storage. 

The use of technologies such as near-infrared spectroscopy to analyse media components 

before use would greatly benefit investigation such as the one presented in this chapter. 

In addition to being a potential screening step to prevent use of media with undesirable 

concentrations, the quantitative data generated by such techniques could be integrated 

into a single dataset with daily monitoring and online monitoring data. This could allow 

direct correlations between specific chemicals within media components to be correlated 

with observed biological behaviour. 

 

Figure 32. PC1 to PC4 scores for cultures operating at control operating conditions. Cultures are 

coloured according SF66 Choline Chloride batch number: ● 019K0066 ■ 070M0192V 

♦ 119K0078 ▲ BCBD3356V. 

                                                 
6 Culture round refers to groups of cultures being performed at the same time, which allows resources such 

as media to be prepared in bulk. 
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5.13 Productivity Investigation Conclusions 

A wide number of statistical techniques and approaches were employed during the 

investigation in to variation in product concentrations at harvest for Project A. The 

productivity investigation comprised three stages. 

In Stage 1 a basic framework was developed, incorporating several MVDA tools. For the 

developed framework, two datasets were available for analysis: online monitoring and 

daily monitoring. Due to differences in sampling frequency, these datasets could not be 

integrated as a single dataset as the online monitoring dataset far outsized the daily 

monitoring dataset. The development of robust summary statistics termed Informative 

Values (see Appendix A) allowed the two dataset to be integrated as a single, balanced 

dataset. In the developed framework, this allowed multidimensional pass/fail boundaries 

to be identified from the most comprehensive dataset possible. 

Even with this reduction of the high frequency online monitoring dataset, the large 

number of total variables to be analysed posed a challenge in subsequent analysis and 

classification of cultures as high or low producing cultures by decision trees. To reduce 

the likelihood of spurious decision criteria selection and the loss of contextual information 

when a single variable is selected as a decision criteria, the integrated dataset was first 

dimensionally reduced using PCA. Scores from the resulting PCA model were then used 

in the subsequent decision tree in place of the unreduced dataset. In developing this 

framework, it was demonstrated that univariate methods for estimating missing data led 

to higher misclassification errors than when the multivariate iterative PCA was used. 

Furthermore, it was demonstrated that a “Golden Batch” approach, whereby models are 

trained using only ‘good’ samples, resulted in less robust classification models when 

applied to data including a range of behaviour. This range of behaviours included both 

deliberate changes to test the effects of potential issues, in addition to samples exhibiting 

unusual behaviours of interest (e.g. control condition cultures with low product 

concentrations at harvest). 

From this work, initial seeding conditions and subsequent glutamine behaviour were 

indicated as the main areas of deviant behaviour for the first pilot scale culture (A016). 

While a specific cause for the altered glutamine behaviour could not be identified from 

the data analysed, it was suggested that batch-to-batch variation in media powders used 

could be a possible contributing factor. 
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In Stage 2, the dataset was expanded to include data from cultures performed at Lonza’s 

US site. An initial attempt to identify variables of interest through PLSR was unsuccessful 

due to a change in seeding protocol between sites. This acted as a confounding variables 

and caused US cultures to appear more mature than UK cultures with respect to time. To 

overcome this source of confounding, the default progression variable (Elapsed Time) 

was questioned as the most appropriate measure of culture progress and maturation. 

Integral of Viable Cell Concentration (IVC) was suggested as an alternative measure of 

progress. For models predicting daily product concentration created from the UK dataset, 

it was shown that models where IVC was used in place of Elapsed Time had lower 

prediction errors and better distribution of residuals. More importantly, models created 

with IVC used as progression variable in place of Elapsed Time had greater robustness 

when UK data were applied as a test dataset. 

During Stage 2, it was shown that inclusion of an explicit progression variable yielded a 

higher cross-validation R2, better residual distribution, and improved robustness to testing 

datasets than exclusion. It was thought that this was due to variation in sampling times 

introducing variation in sample progress value, which had to be accounted for in the 

models. It was theorised that realigning datasets to set progression point values would 

eliminate this underlying variation and hence progression variables could be excluded 

during model creation with little or no effect on model performances. Testing revealed 

that any benefits of realignment were dependent on dataset orientation and the response 

of interest. 

Stage 2 had several learning points pertinent to improved future analyses of projects with 

site-transfers, simple sources of confounding (e.g. altered seeding conditions), or 

variation in sampling times. Specific results from Stage 2 models confirmed previous 

results from Stage 1, however no further understanding concerning variation in product 

concentration at harvest could be extracted. 

The aim of Stage 3 was to investigate whether variation in product concentration at 

harvest could be attributed to variation in media batch composition. Here it was 

demonstrated that batch numbers do not convey any information concerning the chemical 

composition of the batch in question. This situation lends support to on-going PAT 

activities focussed on the introduction of spectral measurement devices such as Raman 

probes as a means of generating more comprehensive understanding of culture 

behaviours.  
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 Multi-Product Platform Process Analysis 

6.1 Introduction 

A general definition of a platform process or platform technology is “a common or 

standard method, equipment, procedure or work practice that may be applied to the 

research, development or manufacture of different products” [20]. Platform 

manufacturing can be defined as the “implementation of standard technologies, systems 

and work practices within manufacturing facilities, and their use for the manufacture of 

different products OR the approach of developing a production strategy for a new drug 

starting from manufacturing process similar to those used by the same manufacturer to 

manufacture other drugs of the same type” [20]. Due to the wide range of interpretations, 

the following definitions are used here: 

Platform Process: A process where major operating parameters such as control system 

setpoints and deadbands, feed strategies, and media are pre-defined for the purpose of 

producing multiple products. 

Platform Manufacturing: “implementation of standard technologies, systems and work 

practices within manufacturing facilities, and their use for the manufacture of different 

products” [20]. 

Platform Research: “the approach of developing a production strategy for a new drug 

starting from manufacturing process similar to those used by the same manufacturer to 

manufacture other drugs of the same type” [20]. 

The use of process platforms allows for standardisation of approaches and tools. 

Consequently, savings in time and money can be made through: 

 Better utilisation of resources including equipment, materials, and personnel.  

 Improved quality and/or greater consistency in product quality (e.g. less wastage 

due to intermediate or final product failing to meet quality criteria). 

These benefits are common to any industry where platform technologies might be 

employed. In particular for pharmaceutical and biopharmaceutical process, there may also 

be time and money savings in regulatory applications if use of a platform process is 

supported by a sufficient level of evidence for platform understanding and robustness. 
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In the production of monoclonal antibodies (mAb) and other protein-based therapeutics 

by mammalian cells, successful transfer of a mAb-producing cell line to the platform 

process may require adaptation by the cell line. When comparing performances on the 

old and new process, such as the transfer of a mAb-producing cell line from one 

company’s own process to a contract manufacturer’s process platform, there may be 

differences observed such as altered harvest titre, differences in metabolism, or alterations 

to the product (e.g. glycan profile affected). These may be desired or undesired. 

In biopharmaceutical production, ideally the process is robust to a wide variety of cell 

lines. Here, any variability is a function of the transfected cell line and potentially 

addressed through minor changes to the process, e.g. inoculating with a higher VCC. If 

undesired behaviours are observed across multiple products sharing a process, it suggests 

a common cause related to the process itself. 

This occurred for a process platform utilised by Lonza. Sudden declines in culture 

viability (~80% to ~0% in 24 h) were observed in multiple projects for different products. 

All projects utilised the GS-CHO cell line with the Version 6 GS-CHO process platform. 

These crashes led to an intensive analysis in 2006 which took many man-months to 

accomplish. 

6.2 The Dataset 

The data used in this investigation originated from 17 customer projects performed using 

Lonza’s GS-CHO Version 6 platform process. The 17 projects were selected in a list 

created by Lonza. The number of cultures included from each project ranged from 1 to 

50 with an overall total of 185 cultures of multiple scale from wave bag to 5000 L. 

6.3 Aims 

The main aim was to identify indicators of sudden declines in culture viability and, if 

possible, determine potential causes. Additional aims were to build upon the strategies 

used in Chapter 6, with particular regards for result interpretability. 

6.4 Obstacles 

Six main obstacles were identified in the dataset that required resolution (Table 25). These 

obstacles are discussed in addition to the suggested resolution that was tested during the 

final presented method. 
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Obstacle Summary of Solution(s) 

1. Distribution of Crashes and 

Data Disparity 

1. Removal of wave bag cultures from dataset. 

2. Analysed data restricted to data collected through 

daily monitoring. 

2. Definition of Crash Rate 1. Standardised tool for classification of samples 

according to maximum rate of decline  

3. Definition of Crash 

According to Culture Stage 

1. Rejustification of dataset to emphasise: 

a. Behaviour since inoculation 

b. Behaviour before crash/harvest 

c. Behaviour at peak VCC 

4. Confounding by Expressed 

Product 

1. Two-step scaling process (intrascaling) applied. 

2. Pro_013 removed from dataset due to use of 

different cell line. 

5. Interpretation of Multivariate 

Serial Observations 

1. Use of purpose built models to identify either Days 

of Interest or Variables of Interest 

2. Use of model hierarchies to better manage 

“information overload”. 

6. Robustness 1. Use of a multiple model confirmatory approach. 

Table 25. Obstacles identified during platform process investigation including suggested 

solutions. 
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6.4.1 Obstacle 1: Distribution of Crashes and Data Disparity 

The distribution of cultures by project and scale is given in Figure 33 and Figure 34. It 

can be seen that there was unequal representation of both projects and scales. As seen in 

Figure 33, the 10 L scale had greatest representation, accounting for 83% of all cultures 

(154 of 185) under consideration. Within the 10 L band (Figure 34), project Pro_014 had 

the greatest representation with 32% of cultures under consideration at that scale (50 out 

of 154) and 27% of all cultures (50 out of 185). 

In addition to difference in distribution of crashes across projects, there was disparity in 

data collection across both scale and time. As noted in Chapter 5, osmolality was not 

recorded as part of daily monitoring at scales above 10L. Below the 10L scale, cultures 

were performed in roller bottles, wave bags, or shake flasks where daily monitoring 

captured only a limited subset of the variables recorded for cultures at scales of 10L and 

above. Furthermore no online monitoring data existed for cultures below the 10L scale. 

Finally, due to the time span considered, pO2 was only recorded for cultures following a 

change in daily sampling data collection. 

6.4.1.1 Resolution 

Wave bag cultures were eliminated due to the limited number of variables monitored 

when compared to scales above wave bag. Between 10 L and 5000 L, reactor design and 

monitored variables are highly conserved with limited differences in variables monitored. 

Due to issues with availability and discoverability7 of online monitoring data, only data 

from daily offline sampling were collated (Table 26). Viable cell concentration (VCC), 

IVC, and total cell concentration (TCC) were collated but excluded from analysis due to 

high correlation with viability (‘obvious indicator’). 

Finally, it was found that Pro_013 had used a GS-NS0 cell line and was hence excluded 

as use of a different host cell line meant a different platform process had been used. 

Temperature Viability Lactate NH4
+ pCO2 

pH IVC** Glucose K+ pO2* 

DOT VCC** Glutamate Na+ Osmolality* 

- TCC** Glutamine NH4
+ - 

Table 26. Variables available from daily offline sampling. *Excluded due to inconsistent 

collection (e.g. not recorded at all scales). ** Excluded as ‘obvious’ indicator. 

                                                 
7 Discoverability refers to the ease with which data can be found including navigation of file structures, 

access permissions, location maintenance, file extensions (e.g. if file requires specialist software to open), 

and file consistency (e.g. are all data exported as .csv with identical layout). 
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Figure 33. Distribution of Cultures by Scale. The majority of cultures available for analysis were 

performed at the 10L scale. 

 

 

 

Figure 34. Distribution of Cultures by Project at 10 L Scale. There is unequal representation of 

projects with Pro_014 having the greatest number of cultures available for analysis.  
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6.4.2 Obstacle 2: Definition of Crash Rate 

The definition of “crash” provided during an investigation kick-off meeting can be 

paraphrased as “culture viability quickly dropping over the course of 24 hours”. There 

are three main issues with this initial definition. 

First, there is no clear value for acceptable/unacceptable rates of decline. Second, lack of 

clear value raises questions on consistency of results including if all projects 

demonstrated the same rate of decline during a crash. Third, the definition of “crash” did 

not allow for contextual information and only uses values calculated for viability. 

6.4.2.1 Resolution  

Due to the large number of cultures to be analysed and a relatively quantifiable definition 

of pass/fail behaviour as decline in viability over twenty-four hours, it was considered 

neccessary to create a simple algorithm to assign classes in place of manually classifying 

cultures by viewing viability profiles. This had the benefit of removing subjective 

classification of pass/fail, adding an additional level of robustness to the process. 

Once created, this algorithm allowed multiple limits for pass/fail classification to be 

easily assigned by changing cut-off limit value. Hence, each culture was classified as pass 

or fail for the following maximum decline in 24 hours: 

10% 20% 30% 40% 50% 60% 

There was no clear limit for pass/fail classification of cultures based on maximum 

calculated 24h decline in viability. A spectrum of pass/fail limits existed (Figure 35). At 

the more extreme limits considered (10% and 60%), there was very low representation of 

pass or fail cultures respectively. It was decided to test all limits (10% to 60%) to identify 

if identified indicators were consistent across all limits or if identified indicators were 

dependent on the pass/fail limit. 

It was noted that in several cases, repeat cultures (i.e. two cultures of a single product 

with the same media, feeds, and stated operating conditions) did not have the same 

pass/fail profile. Closer examination revealed that this was generally due to the maximum 

decline in viability in 24 hours for the two cultures lying very near a classification limits, 

e.g. Pro_001_002 (-40.26%) and Pro_001_003 (-38.33%) at -40% or Pro_014_005 

(-19.92%) and Pro_014_006 (-21.34%) at -20%. 
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Figure 35. Percentage of cultures in dataset failing at decreasing limits for maximum calculated 

rate of viability decline in 24 h (excluding Pro_013, n = 174). Bars are coloured to show relative 

representation of projects. It can be observed that there is not equal representation of cultures at 

any of the maximum viability decline limits. 

 

6.4.3 Obstacle 3: Definition of Crash According to Culture Stage 

When data were collected, serial observations were arranged in what is considered a 

typical order: the first observation after inoculation is n=1, the second observation after 

inoculation is n=2, etc. As the number of observations for multiple cultures can be 

different due to crashes and/or meeting harvest criteria at different times, this can leave a 

‘rag’ of missing data on the harvest side of a dataset (Table 27A). 

This de facto arrangement complicates analysis in two ways. The first complication is 

how the ‘rag’ of missing data is dealt with, particularly as this data is not missing at 

random. The second complication is that this arrangement biases both model and 

interpretation to focus on behaviour since inoculation. However, behaviour before 

crash/harvest was the focus in this investigation. 

6.4.3.1 Resolution 

During the productivity investigation, efforts were made to remove variability in the 

chosen progression variable, i.e. to make the dataset sampling structure rigid. This was 

achieved by interpolation of data to set values for the progression variables. Set values 

were selected based on variable distribution to minimise the magnitude of adjustment 

made. In summary, dataset justification is a value-based manipulation of the dataset. 
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In contrast, dataset justification is a structure-based manipulation of the dataset. The 

purpose is to manipulate the behaviours identified during MVDA by altering the dataset 

structure to emphasise specific aspects. 

In this investigation two rearrangements were considered. To improve model focus on 

behaviour preceding crash/harvest, data were arranged as shown in Table 27B so that the 

observations were counted n-1, n-2, n-3, etc. 

The second rearrangement distributed the data according to maximum recorded VCC 

(Table 27C). Here, data are arranged so that the maximum VCC occurs in the same 

observation/column and the data ‘rag’ can be on either side of the dataset or distributed 

across both. Theoretically, this should bias model focus towards behaviour concerning 

this specific event. 

A) Inoculation Justified 

Culture 

Viable Cell Concentration (N= First Observation) 

N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+9 

A 2 25.4 50.7 74.6 89.9 99.7 96.5 90  

B 0.2 24.9 50.4 73.4 84.8 99.1 97.4 92.5 75.4 

C 1 25 50.1 75.7 84.3 93.2 97.1 100 78.7 

D 0.6 24.7 49.8 73.2 86.9 98.1 95.6   

E 1 25.3 50.8 72 82.9 95.4 99.9 91.4  

          

B) Harvest Justified 

Culture 

Viable Cell Concentration (N = Final Observation) 

N-8 N-7 N-6 N-5 N-4 N-3 N-2 N-1 N 

A  2 25.4 50.7 74.6 89.9 99.7 96.5 90 

B 0.2 24.9 50.4 73.4 84.8 99.1 97.4 92.5 75.4 

C 1 25 50.1 75.7 84.3 93.2 97.1 100 78.7 

D   0.6 24.7 49.8 73.2 86.9 98.1 95.6 

E  1 25.3 50.8 72 82.9 95.4 99.9 91.4 

          

C) Peak Viable Cell Concentration Centred 

Culture 

Viable Cell Concentration (N = Observation with Maximum VCC) 

N-6 N-5 N-4 N-3 N-2 N-1 N N+1 N+2 

A  2 25.4 50.7 74.6 89.9 99.7 96.5 90 

B  0.2 24.9 50.4 73.4 84.8 99.1 97.4 92.5 

C 25 50.1 75.7 84.3 93.2 97.1 100 78.7  

D  0.6 24.7 49.8 73.2 86.9 98.1 95.6  

E 1 25.3 50.8 72 82.9 95.4 99.9 91.4  

Table 27. Effects of Dataset Justification on Location of Missing Data. Darker shading indicates 

missing data. Lighter shading indicates the peak value for viable cell concentration recorded. 

Note: data artificially generated for demonstration of concept.  
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6.4.4 Obstacle 4: Confounding by Expressed Product 

Confounding is when some variable, termed a confounder, acts a source of variability that 

interferes with or masks more subtle variation in a dataset. While the analysed data were 

generated from a single platform process, the data was also generated from the production 

of several different mAbs and mAb fragments. As the product being expressed can affect 

host cell metabolism in both a variety of ways and extents, confounding posed an 

obstacle. 

Several methods for removing confounding have been suggested. One of particular note 

is the use of PLS-DA to first classify samples according to a known confounder (e.g. 

product type) to “draw out” the confounded information, giving a “deconfounded” 

residual matrix that can then be analysed [13]. 

While these techniques exist, they are dependent on the data to be analysed and may 

require significant input from an end user either in performing methods manually or in 

development and validation of software to perform such actions. Furthermore, they 

require strong understanding of the techniques to be confidently communicated with 

others. While this last point is a non-technical limitation in the purest of terms, the ability 

to confidently communicate statistical techniques employed during an analysis are 

important when discussing analyses with colleagues, clients, and regulatory authorities. 

Effective implementation of simpler tools is of more benefit to achieving Quality by 

Design than attempting complex, high-powered methods which are poorly understood.  

6.4.4.1 Solution 

The key to the implemented solution was that the statistical methods to be employed used 

the correlations between variables and not the recorded values themselves. Hence it was 

the explicit aim of any confounding reduction method applied was to allow the correlation 

structures of the product-specific subsets to be compared. 

The suggested solution was to employ a two-step scaling method (Figure 36) where the 

multiproduct dataset is first split into single product subsets. Each single product subset 

is scaled using the desired scaling method(s). The scaled single product subsets are then 

recollated into a single dataset, which can then be further treated as desired. 

A trial test of intrascaling during initial exploration of the dataset using PCA indicated 

that this approach could reduce confounding with little to no appreciable impact on 

captured variance (Figure 37). 
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Figure 36. Simple Schematic of Intrascaling Process. The multiproject dataset is split into single 

project subsets (1). The single project subsets are scaled using a desired method (2). The scaled 

subsets are recollated into a single dataset (3). The recollated dataset is scaled using a desired 

method (4). 

 

 

Figure 37. PCA scores plots generated using different scaling methods. Each point represents Day 

1 to Day 12 for one culture. Shape and colour indicate project of origin. As cultures appeared to 

be more strongly cluster by project in A than in B, clustering in A was thought to be more heavily 

influenced by project-specific differences, whereas clustering in B was thought to be more 

strongly governed by culture behaviour irrespective of project. 

A. Dataset mean-centred and scaled to unit variance. Total X variance captured: 25.33% 

(PC1 14.58%, PC2 10.75%). 

B. Intrascaled dataset. Total X-variance captured: 26.22% (PC1 17.09, PC2 9.13%). 

1 2 3 4 
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A second option based on this approach was initially considered. In the second option, 

variables that should not be affected by product types or vector integration site are 

excluded from the first scaling step. These variables are scaled only once the single 

project subsets are recollated into a single dataset. Variables excluded from the first 

scaling step include pH, DOT, and temperature. In this way, variation in behaviours 

related to hardware or control systems are preserved between projects. 

The first option where all variables undergo the two-step scaling process was referred to 

as Intrascale A. The second option where only a subset of variables undergo the two-step 

scaling process was referred to as Intrascale B. Only Intrascale A was tested in the 

presented investigation. 

6.4.5 Obstacle 5: Interpretation of Multivariate Serial Observations 

An observation during the Chapter 5 investigation into variation in product concentration 

for a single product dataset was that interpretation was complicated by the number of 

variables to be considered, particularly when data were in the Profile arrangement. 

6.4.5.1 Solution 

Multilevel or hierarchical modelling is a form of regression where regression coefficients 

are a function of submodels representing another level of the data. For example, a 

top-level model predicting a child’s academic performance may use regression 

coefficients calculated from socio-economic data. 

According to Gelman [168], hierarchical modelling is an improvement over regression 

“to varying degrees; for prediction multilevel modelling can be essential, for data 

reduction it can be useful, and for causal inference it can be helpful”. It is for these last 

two points – data reduction and improved causal inference – that hierarchical modelling 

was used as a template for the presented solution. 

The presented solution is not a true hierarchical model as top-level model regression 

coefficients are not a function of a lower level of data. Instead, the presented solution is 

a hierarchy of models, where results from intermediary models feed into a top level model 

(Figure 38 and Figure 39). 

The key similarity between hierarchical modelling and the model hierarchies developed 

was that the focus of the top-level model could be altered by altering the focus of the 

intermediary model, e.g. if the intermediary models focussed on behaviour on by 

observation number (Figure 38), then contribution analysis of the top-level model would 
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indicate days of particular interest. Similarly, if the intermediary models focussed on 

individual variable behaviour over the course of the culture (Figure 39), then contribution 

analysis of the top-level model would indicate variables of particular interest. 

6.4.6 Obstacle 6: Robustness 

Due to the breadth of behaviour to be considered including multiple products, no 

definitive pass/fail limit, and variation in “when” crashes occurred, robustness of models 

and results was a concern. 

6.4.6.1 Solution 

Instead of attempting to create a single model to capture behaviour and identify indicators 

of crashes, it was instead decided to create several simpler models and perform a 

meta-analysis from the results. By altering model focus as described in §6.4.3 

(rejustification of dataset) and §6.4.5 (model hierarchies to emphasise days or variables 

of interest), the overall aim of meta-analysis was robustness through consistency of 

results. This meta-analysis approach also included multiple limits for pass/fail 

classification (§6.4.2). 

 

Figure 38. Model hierarchy structure producing a top level model focusing on Observation/Days 

of Interest. 

 

 

Figure 39. Model hierarchy structure producing a top level model focusing on Variables of 

Interest.  
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6.5 Method 

A meta-analysis approach was created using the three analysis patterns described below 

and the variables listed in Table 26. The resulting models were compared for both 

consistency and discrepancy across the different data pre-treatment, statistical methods, 

and decline rate/classification limits tested. Models determined to be of particular interest 

then underwent more detailed results analysis. The time needed to complete the 

investigation would also be compared to a previous investigation undertaken by Lonza 

6.5.1 Analysis Pattern 1 

In Analysis Pattern 1 (Figure 40) data were arranged in Profile arrangement (1 row = all 

samples for 1 culture) and then Inoculation Justified, Harvest Justified, or Max VCC 

Centred. The dataset was scaled using two-step intrascaling or mean-centred and scaled 

to unit variance. Missing data were estimated using iterative PCA. A PCA model was 

created using random sampling (10 splits, 5 iterations). The number of PCs retained was 

made on minimum RMSE during cross-validation. Scores were used to classify cultures 

as pass or fail using PLS-DA and decision trees (Gini Index) for each maximum decline 

limit 10% to 60%. 

 

Figure 40. Analysis Pattern 1  
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6.5.2 Analysis Pattern 2 

Analysis Pattern 2 was designed to identify specific variables of interest and followed the 

sequence shown in Figure 41. 

Data were arranged in Profile arrangement (1 row = all samples for 1 culture) and the 

dataset then justified. The justified dataset was scaled using intrascaling or mean-centred 

and scaled to unit variance. Missing data were estimated using iterative PCA. The dataset 

was then subdivided into subsets by variable type (e.g. glucose). For each variable subset, 

a PCA model was created using random sampling (10 splits, 5 iterations). 

Scores for PC1 and PC2 were extracted for each variable model and collated into a single 

dataset. This dataset was the used to classify cultures as pass or fail using PLS-DA and 

decision trees (Gini Index) for each maximum decline limit 10% to 60%. 

 

Figure 41. Analysis Pattern 2 - This analysis pattern was intended to identify specific variables of 

interest by first summarising data by variable type.  
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6.5.3 Analysis Pattern 3 

Analysis Pattern 3 was designed to identify specific days or observations of interest and 

followed the sequence shown in Figure 42. Data were arranged in the Day by Day 

arrangement (1 row = 1 sample for 1 culture). The dataset was scaled using two-step 

intrascaling or mean-centred and scaled to unit variance. Missing data were estimated 

using iterative PCA. A PCA model was created using random sampling (10 splits, 5 

iterations). PC1 and PC2 scores were extracted and arranged into Profile arrangement, 

i.e. cultures were now described as Day 1 PC1, Day 1 PC2, Day 2 PC1, etc.  

The Profile scores dataset was then used to classify cultures as pass or fail using PLS-DA 

and decision trees (Gini Index) for each maximum decline limit 10% to 60%. 

 

 

Figure 42. Analysis Pattern 3 – This analysis pattern was intended to identify specific days and 

observations of interest by first summarising data in ~24 blocks of information.  
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6.6 Results and Discussion 

The developed method was assessed against an historical investigation of the same dataset 

conducted several years prior in keeping with soft aims related to ease of implementation 

and interpretation of results. This previous investigation had primarily relied on univariate 

or qualitative analysis and was human-resource intensive, requiring hundreds of man 

hours and department-wide involvement. 

The method and results presented in this chapter were completed in approximately 200 

man hours by a single person. Personal records allot ~50% of this time to data collation 

and cleaning (100 hours), ~30% to development of tools for dataset justification and 

intrascaling (60 hours), and ~20% to model creation and result interpretation (40 hours). 

The results of the meta-analysis were then presented to scientists involved in the previous 

investigation for comparison to previous results. Hence the final developed framework 

and supporting tools offer significant time savings in future large scale investigations. 

For the top level meta-analysis, comparisons between models were restricted to the 

criteria noted in Table 28. The following areas were then addressed in a general manner: 

 Decline limit choice 

 Scaling option 

 Statistical method used 

 Analysis pattern used 

Based on this top level evaluation was made, a select number of models were chosen for 

more in-depth analysis with particular regards to the following areas: 

 Result interpretability 

 Days of interest 

 Variables of interest 

Statistical Method Recorded Results 

Decision Tree Top node decision criteria 

Tree size (number of nodes) 

Misclassification (%) 

PLS-DA X variance captured (% 

Y variance captured (%) 

Misclassification (%) 

Table 28. Results recorded for meta-analysis. These values can be found in Table 54 to Table 57 

in Appendix B. 
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A main effects plot was generated to identify general trends associated with 

misclassification values (Figure 43). These general trends can be summarised as: 

1. Lower misclassification of cultures was more strongly associated with the use of 

decision trees for classification than with the use of PLS-DA. 

2. Models tended to have lower misclassification error rates when decline limits of 

30%/d or 40%/d were used. 

3. Models were relatively insensitive to analysis pattern choice. 

4. Models were relatively insensitive to dataset justification choice. 

Regarding scaling, further analysis showed effects from choice in scaling were dependent 

on whether PLS-DA or decision trees were used. It was seen that for PLS-DA-based 

models there was a general split in misclassification based on scaling (Figure 43). 

PLS-DA models built from intrascaled datasets had higher rates of misclassification than 

models built from datasets to which Autoscaling (mean-centred and scaled to unit 

variance) had been applied. However, this clear split based on scaling was not observed 

for decision tree-based models. As PLS-DA models retain all variables while decision 

trees retain only decision criteria, decision trees are potentially more robust when the ratio 

of cultures used for model training versus the number of variables is low. 

 

Figure 43. Main effects plot for identifying general outcomes based on misclassification. 

Regarding dataset justification, harvest justification offered minor improvements in classification 

accuracy when the maximum decline in viability used for pass/fail classification was greater than 

20%/d. 
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As seen in Figure 35, pass/fail distribution and culture numbers were not equally 

distributed across projects. Hence the lower rate of misclassification observed when 

Autoscaling was used may be in part due to identification of projects with higher failure 

rates rather than identification of fail behaviour. This possibility was further supported by 

the different effects the scaling methods had on clustering when PCA was applied during 

initial data exploration (Figure 37). 

As the meta-analysis was set out in a similar manner as Design of Experiments, Minitab 

was used for response surface analysis to identify an optimal model for minimising 

misclassification. The suggested optimal model was: 

 Viability Decline Limit: 45.3535 5/d 

 Analysis Pattern:  Analysis Pattern 3 

 Scaling:   Intrascale A 

 Statistical Method:  Decision Tree 

 Justification:   Peak VCC Centred 

This was interesting as it rejected the general correlation of Autoscaling with lower 

misclassification errors. From the Minitab optimiser results (Figure 44) was seen that 

there was in fact little difference in predicted model accuracy whether Intrascaling or 

Autoscaling was applied to the dataset. 

 

Figure 44. Minitab optimiser results using response surface model. The greater the height of an 

option, the higher the misclassification error by a model using that option with all other options 

remaining unchanged. Hence model misclassification is notably insensitive to choice of dataset 

justification, relatively insensitive to choice of Analysis Pattern or scaling applied, notably 

sensitive to decline limit, and highly sensitive to classification method used. 
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Figure 45. Four comparisons of misclassification of cultures. In A, series are coloured by analysis pattern used. In B, series are coloured by dataset justification. In C, 

series are coloured by whether PLS-DA or decision trees were used for classification. In D, series are coloured by scaling used.



 

136 
 

6.6.1 Analysis Pattern 1 Results and Conclusions 

An in-depth analysis was performed using Analysis Pattern 1 on inoculation justified, 

intrascaled data to classify cultures according to a 30%/d decline limit. Two classification 

methods were applied this dataset: PC-decision trees and PLS-DA. 

When using PLS-DA for classification, the model statistic ‘Variable Importance in 

Projection’ (VIP) to be used to identify variables of interest. A variable’s VIP scores is 

an indicator of the variable’s importance in a PLS projection. Variables with VIP 

scores > 1 are considered to be important in the model. 

Figure 46 and Figure 47 show VIP scores from an Analysis Pattern 1 PLS-DA model 

classifying inoculation justified, intrascaled data according to a 30% decline limit. It can 

be seen that even when variables are grouped by variable type (Figure 46) or reading 

number (Figure 47), it is difficult to identify specific variables or days of interest due to 

the large number of variables declared important based on VIP number. While this result 

gives a very comprehensive overview of differences correlated with pass and fail 

classification suitable for less- or un-time-constrained analysis, it is data rich but 

information poor from an operating/manufacturing standpoint. 

Similar interpretability issues were encountered when applying similar drill down 

analysis to models created using PC-decision trees, despite the observed improvement in 

classification accuracy. 

6.6.2 Analysis Pattern 1 Conclusions 

Differences in multiple monitored variables were observed between pass and fail cultures 

in the final samplings for those cultures. According to VIP plots from PLS-DA models, 

these differences typically manifested from the fourth or fifth sample onwards. However, 

further analysis would require intensive analysis by a biologist to separate variables of 

interest (e.g. glucose) from time periods of interest (e.g. activity between Days 3 and 4). 

From these results, it was concluded that use of PCA-decision trees could be used to 

efficiently classify culture behaviour, however data were not in an easily interpretable 

form for onward analysis. 

  



 

137 
 

 

Figure 46. VIP scores from an Analysis Pattern 1 PLS-DA model classifying inoculation justified, 

intrascaled data according to a 30% decline limit grouped by variable type. 

 

 

 

Figure 47. VIP scores from an Analysis Pattern 1 PLS-DA model classifying inoculation justified, 

intrascaled data according to a 30% decline limit grouped by reading. 
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6.6.3 Analysis Pattern 2 Results 

The decision criteria for the top node of decision trees created using Analysis Pattern 2 

and Analysis Pattern 3 were recorded. This information was then used to evaluate the 

most frequently selected decision criteria. Frequency evaluation was not extended to the 

lower levels of the decision trees for the results shown, however this a strong area for 

follow on investigation. 

Table 29 and Table 30 display the frequencies of top node decision criteria for decision 

trees generated using Analysis Pattern 2, which was designed to identify key variables of 

interest. These frequencies were then broken down according to justification and scaling 

applied to the dataset during analysis to give pH PC1 as the top variable of interest (top 

decision criteria for 56% of decision trees) followed by Lactate PC1 (14%) and Glutamine 

PC2 (11%).  

 
All 

Inoculation 

Justified 

Harvest 

Justified 

Peak VCC 

Centred 

Top Node Count % Count % Count % Count % 

pH PC1 20 56% 7 39% 6 33% 7 39% 

pCO2 PC2 1 3%   1 6%   

Gln PC1 2 6%     2 11% 

Gln PC2 4 11% 1 6% 3 17%   

Gluc PC1 1 3% 1 6%     

Lac PC1 5 14% 2 11% 1 6% 2 11% 

Na PC1 2 6% 1 6% 1 6%   

K PC1 1 3%     1 6% 

Table 29. Decision criteria for top node in decision trees using Analysis Pattern 2 with respect to 

dataset justification. Shading indicates that the variable was not a top node decision criteria for 

the dataset justification listed. 

 

 All Autoscale Intrascale A 

Top Node Count % Count % Count % 

pH PC1 20 56% 10 56% 10 56% 

pCO2 PC2 1 3% 1 6%   

Gln PC1 2 6% 1 6% 1 6% 

Gln PC2 4 11% 1 6% 3 17% 

Gluc PC1 1 3% 1 6%   

Lac PC1 5 14% 3 17% 2 11% 

Na PC1 2 6%   2 11% 

K PC1 1 3% 1 6%   

Table 30. Decision criteria for top node in decision trees using Analysis Pattern 2 with respect to 

scaling method applied. Shading indicates that the variable was not a top node decision criteria 

for the scaling method listed.  
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For the process analysed, lactate and glutamine were not controlled variables and were 

therefore pure indicators/symptoms of culture behaviour. pH was technically a controlled 

parameter, however due to the wide deadband used by the process, pH was also a possible 

indicator of natural cell behaviour within the deadband. 

When considering nodes below the top node, in particular for decision trees beginning 

with pH PC1 as the top node decision criteria, decision criteria on the majority pass path 

were predominantly metabolite-based (e.g. K+). Decision criteria on the majority fail path 

were predominantly control-based (e.g. pH or temperature) or closely tied to control 

strategies (e.g. pCO2). 

A detailed analysis was performed using the decision tree created from intrascaled, 

inoculation justified data using a pass/fail maximum viability decline limit of 40%/d 

(Figure 48). Culture progressions through the decision tree were determined and the PC 

scores from which decision criteria were selected were plotted. The original data from 

which the intermediary model were created were then located for the cultures at the 

decision node and classed as pass or fail, as determined by the decision rules. These data 

were then summarised as mean, mean + 2 standard deviations, and mean – 2 standard 

deviations for both pass and fail subset for each sampling point (n=1 to n=12). These 

calculated values were plotted against sampling point to visualise the general trends in 

the data. Figures presented in this chapter are limited to those immediately relevant to the 

presented results. The full set of figures can be found in Appendix B. 

From Figure 48 it was seen that two primary failure pathways existed (Table 31). It should 

be noted both pathways were primarily described by PC1 values (i.e. main behaviour for 

the variable in question) and a limited number of variables. 

Pathway 1 Pathway 2 

Node Decision Criteria Node Decision Criteria 

1 pH PC1 <= -0.408 1 pH PC1 <= -0.408 

2 pCO2 PC1 > -2.301 2 pCO2 PC1 > -2.301 

5 Na PC1 > 3.052 5 Na PC1 <= 3.052 

 9 pH PC2 > -0.755 

13 Temperature PC1 > 0.178 

19 Temperature PC1 <= 0.695 

Table 31. Main failure pathways for decision tree classifying intrascaled, inoculation justified 

dataset to a 40%/d viability decline limit. 
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Figure 48. Decision tree classifying inoculation justified, intrascaled data according to a 40%/d viability decline limit. Each node displays the majority class (pass/fail) 

for samples at the node, the percentage of samples with that class, and the total number of samples on the node on the left-side of the coloured box. Pass/fail distribution 

at the node is also indicated by a pie chart on the right-side of the coloured box (red = pass, blue = fail). If the node is a decision node, then the decision criteria variable 

is listed in the bottom of the box. If the node is a leaf node, then the final class is listed at the bottom of the box. The values used for the decision criteria are displayed 

above the subsequent child node. Nodes are coloured by the percentage of fail samples at the node, i.e. the top node is coloured darkest blue as it holds 100% of fail 

cultures whereas leaf node with only pass cultures is completely white. The thickness of lines between nodes indicates the number of samples following that path. 
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The decision criteria at Node 1 was pH PC1. Plotting pass/fail subsets as shown in Figure 

49, it was seen that two basic pH behaviours existed. In the ‘pass’ behaviour, the mean 

pH declines from ~7.00 to ~6.85 sometime between the fourth and fifth readings (i.e. 

between Day 3 and Day 4). The mean pH then gradually returns to the previous mean of 

~7.00. In the ‘fail’ behaviour, mean H behaviour is similar to pass behaviour until the 

fourth reading. The mean ‘fail’ pH also declines to 6.85, however the recovery to a mean 

of ~7.00 was not observed. Both pH behaviours were within the permitted operating 

conditions, hence the differences in behaviour have originated from the cell culture 

behaviour, interactions between cell culture behaviour and the feed strategy, or a 

combination of the two. 

 

 

Figure 49. Pass/fail pH behaviour for cultures at Node 1. Note that pass/fail refers to the class 

applied by the decision tree at this node and not the final classification according to the decision 

tree rules or the class determined using the simple profile classifier. In B, the ±2σ have been 

removed to improve identification of mean trends.  
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The decision criteria at Node 2 was pCO2 PC1. Plotting pass/fail subsets as shown in 

Figure 50, there appeared to be divergences in pCO2 behaviour beginning at Reading5 

(Day 4). At this point onwards, fail cultures had on average slightly higher pCO2 readings. 

More notably, it was observed that there was greater variance in each pCO2 reading for 

fail cultures than for pass cultures. These observations were interpreted as indicating 

pCO2 level stability as an indicator of pass/fail behaviour and possible contributor to 

undesired behaviours. 

 

 
 

 

Figure 50. Pass/fail pCO2 behaviour for cultures at Node 2. Note that pass/fail refers to the class 

applied by the decision tree at this node and not the final classification according to the decision 

tree rules or the class determined using the simple profile classifier. Also note the negative values 

plotted were due to the calculated standard deviation. In B, the ±2σ have been removed to improve 

identification of mean trends.  
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The decision criteria at Node 5 was Na PC1 Plotting pass/fail subsets as shown in Figure 

51, no immediately obvious differences in Na+ profiles could be seen. However it was 

observed that cultures classed as fail at this node typically had higher recorded values for 

Na+ than cultures classed as pass at this node. This general divergence was observed as 

beginning after Reading 4 (Day 3). 

 

 

 

 

Figure 51. Pass/fail Na+ behaviour for cultures at Node 5. Note that pass/fail refers to the class 

applied by the decision tree at this node and not the final classification according to the decision 

tree rules or the class determined using the simple profile classifier. In B, the ±2σ have been 

removed to improve identification of mean trends.  
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The decision criteria at Node 9 was pH PC2. Plotting pass/fail subsets as shown in Figure 

52, it was observed that the primary difference between mean pass behaviour and mean 

fail behaviour was the rate of pH decline. Results at this node were considered a 

refinement of the behaviours generalised at Node 1. 

 

 

 

 

Figure 52. Pass/fail pH behaviour for cultures at Node 9. Note that pass/fail refers to the class 

applied by the decision tree at this node and not the final classification according to the decision 

tree rules or the class determined using the simple profile classifier. In B, the ±2σ have been 

removed to improve identification of mean trends.  
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The decision criteria at Node 12 was Temperature PC2. No appreciable practical 

differences were observed when plotting the original data for the cultures (Figure 53) with 

one exception (Pro_016_005). It was suggested that the dataset had become so reduced 

in terms of variance that spurious decision criteria were beginning to be selected. This 

suggestion was supported by the fact that temperature data recorded in daily monitoring 

had very limited variance (~ 0). This can be seen in Figure 53 where nearly all recordings 

for all cultures were 36.5 °C. As discussed in Chapter 5 and Chapter 6, “too perfect” 

datasets heavily exaggerate the slightest differences when scaled. Hence, the selection of 

temperature as a decision criteria was taken as an indicator that all useful information had 

been extracted from the decision tree and that further interrogation could be halted. 

 

 

 

Figure 53. Original temperature measurements for cultures at decision node 12. In A, cultures 

were classed as “pass”. In B, cultures were class as “fail”. In both A and B, the majority of 

temperature readings were 36.5 °C.  
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6.6.4 Analysis Pattern 2 Conclusions 

pH behaviour was top node decision criteria in the majority of decision trees generated. 

Decision trees could then be generalised as a “pass” path described by metabolite 

concentrations and a “fail” path described by control-related measurements. 

The strongest generalised pass/fail behaviours were observed for pH. Key differences 

between pass behaviour and fail behaviour were the magnitude of the decline in pH 

readings typically observed by Days 4 and 5 and whether the pH returned to pre-decline 

values or whether pH readings remained lowered. 

Detailed analysis of the decision tree classifying the intrascaled, inoculation justified 

dataset according to a pass/fail limit of a 40%/d calculated decline in viability revealed 

several strongly interrelated variables as being of interest: pH, pCO2, Na+ concentration. 

Two main potential causes of viability crashes were identified as areas for improvement: 

 pH strategy – Adjustment of pH controller deadband to force pH readings nearer 

to the observed “pass” culture pH behaviour. 

 Gassing strategies related to pCO2 control.  
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6.6.5 Analysis Pattern 3 Results 

Table 32 displays the frequency of top node decision criteria for decision trees generated 

using Analysis Pattern 3, which was designed to identify key days of interest. As Analysis 

Pattern 3 did not use justification, comparison between top node decision criteria was 

limited to dataset scaling process applied where the most frequent variables selected for 

top node decision criteria were Day 1 PC1 and Day 2 PC1. 

From this trend, it appeared that behaviour very early in a culture’s residence was 

correlated with the final pass/fail class and that behaviour on or just prior to these readings 

could be either related to the cause or a strong indicator of the cause of failure. 

To determine the state of the cultures on Day 1 and Day 2 relative to the culture behaviour 

across all readings, contribution analysis was performed on the PCA models used to 

generate the scores summarising daily samples. The types of figures used to conduct this 

analysis are shown in a series of figures in Figure 54. 

Figure 54A was the score plot of the PCA model created using intrascaled data in the day 

by day arrangement, where each point represents the data from one daily sample from a 

single culture. When a decision tree was generated to classify samples according to a 

30%/d decline limit, the Day 2 PC1 score was selected as the top node decision criteria. 

Hence, scores in Figure 54A were limited to those related to Day 2 samplings. 

Figure 54B shows the loading plot of the PCA model from which it was seen that the 

relative positioning of metabolites appeared to be in keeping with known GS-CHO 

metabolism behaviour during a typical 12-15 culture. While there was comparatively low 

variation in DOT (%) or temperature, as was expected for cultures running according a 

set process, pH and pCO2 showed higher degree of variation. 

 All Autoscale Intrascale A 

Top Node Count % Count % Count % 

Day 1 PC1 4 33% 4 67%   

Day 2 PC1 4 33% 1 17% 3 50% 

Day 6 PC1  1 8% 1 17%   

Day 7 PC1  1 8%   1 17% 

Day 9 PC1  1 8%   1 17% 

Day 10 PC1  1 8%   1 17% 

Table 32. Decision criteria for top node in decision trees using Analysis Pattern 3. Shading 

indicates that the variable was not a top node decision criteria for the scaling method listed.
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Figure 54. Figures used for contribution analysis of Day 2 readings to compare pass and fail 

cultures according to a 30%/d decline limit. The following graphs were generated using Analysis 

Pattern 3 with intrascaled data: 

A. Score plot showing scores for Day 2 only. Point colour and shape indicated project. 

B. Loadings for model. 

C. Hotelling T2 contributions for samples classed as fail. Gaps in variable number were due 

to variables excluded from analysis (e.g. osmolality, VCC). 

D. Hotelling T2 contributions for samples classed as pass. Gaps in variable number were due 

to variables excluded from analysis (e.g. osmolality, VCC). 
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Figure 54C and Figure 54D show Hotelling’s T2 contributions for two sets of Day 2 

sample scores. Hotelling’s T2 contributions show the relative contribution by a value for 

a variable to a sample point’s position within a multidimensional model. For the dataset 

under consideration, each point shows the relative contribution compared not only to 

other cultures for that daily sample but also the point compared to sampling pints 

throughout the cultures’ span. 

In Figure 54C, the contributions describe Day 2 samples scores for cultures classed as fail 

by the top node decision criteria (N.B. this is not necessarily the final class assigned by 

the decision tree). In Figure 54D, the contributions describe Day 2 samples scores for 

cultures classed as pass by the top node decision criteria. When these figures were 

compared, it was seen that contributions from pH, DOT, pCO2, and glutamate were 

notably different, effectively opposite values in terms of negative/positive. A difference 

in the magnitudes of contributions by lactate and NH4+ was also noted. 

As stated previously, these contributions were relative to all readings for all cultures in 

the dataset. Hence differences in Hotelling’s T2 contribution were also affected by how 

measurements for Day 2 compared to culture behaviour before and after Day 2. 

Essentially, scaled readings would capture if pH readings were relatively constant 

throughout the culture span, if decline and recovery (as seen in Figure 49) occurred, etc. 

These comparisons were further emphasised by the use of intrascaling. 

6.6.6 Analysis Pattern 3 Conclusions 

pH, DOT, and pCO2 were key indicators related to control strategies. Additionally 

cultures classed as fail by the top node showed lower concentrations of lactate, glutamate, 

and NH4
+ than cultures classed as pass by the top node. These results were in keeping 

with conclusions from Analysis Pattern 2. 

6.7 Final Results and Discussion 

The lack of ease of interpretation for Analysis Pattern 1 stands in contrast to the ease of 

interpretation when separate models were used to identify and interpret variables and days 

of interest (Analysis Pattern 2 and Analysis Pattern 3 respectively). Here it was shown 

that, for the dataset in question, the development of several “simple” models focussed on 

only two dimensions of a three-dimensional dataset (culture x sample x time) was of 

greater use than the development of a single, fully comprehensive model using a more 

complex statistical method (e.g. PLS-DA). 
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The conclusions from the above analyses were presented to key figures in the original 

investigation by Lonza. The conclusions from the presented investigation were in keeping 

with conclusions from the historic investigation used to develop an improved platform 

process, primarily that adjustment of the pH control strategy to enforce behaviours similar 

to that more typical of ‘pass’ cultures. After a key turning point in pH behaviours, analysis 

became complicated by complex interactions between indicators and feed strategies. 

Therefore process development activities would need to take a minimum two-stage 

approach to first address pH behaviours and to afterwards address feed strategies. 

While the presented investigation did not reveal any significantly new information 

compared to the historic investigation, it was shown that appropriate use of multivariate 

data analysis could allow similar conclusions to drawn with both reduced time and 

personnel requirements. 

6.8 Conclusions 

It was demonstrated, that with appropriate modifications to the method developed in 

Chapter 6, a meta-analysis approach of developing many models from a core dataset 

resulted in stronger identification and understanding of captured behaviours than would 

have been achieved by relying on a single model. In doing so, it was also demonstrated 

that the major perceived obstacle to conducting a meta-analysis was time required was 

untrue. 

By developing technically simple spreadsheets, a number of analytical options for 

restructuring and pre-processing the core dataset were tested for a low cost when 

compared to the time need to develop a single model in terms of additional man hours. 

While harvest justification showed only minor improvements in classification accuracy 

for the presented investigation, it was shown that rejustification of the dataset to better 

reflect the response in question could be easily applied and tested. 

Finally, it was demonstrated that the use of intrascaling reduced project-specific 

confounding in a manner appropriate for the dataset used and the investigation conducted. 

Specifically, in this investigation ensuring platform process behaviours were captured in 

place of project-specific behaviours was prioritised over pure classification accuracy. The 

two-step scaling process can be recommended as a tool for the following purposes: 
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1) Reduction of low levels confounding as demonstrated in the presented 

investigation. 

 

2) Identification of high levels of confounding, i.e. confounding remains after 

intrascaling applied as the scaling step indicating a more powerful method is 

required, e.g. confounding reduction through the use of PLS-DA with subsequent 

analysis performed using PLS-DA residuals matrix [13]. 

 

3) Identification of whether confounding has any appreciable impact on analysis, i.e. 

confounding effects on data not appreciably related to response of interest. 

6.8.1 Recommendation 1 

Aspects of the developed meta-analysis framework can applied in a variety of ways for 

process development. For example, a “generic” model is developed for a process platform 

(e.g. CHO V8.0) from a multiproduct dataset. New projects using the host cell line and 

platform process are analysed using this model for a various reasons: 

1. To provide an initial model for performance monitoring until sufficient data is 

available to create a project-specific model. 

2. To identify past projects/products with similar behaviour and identify potential 

sensitivities or issues. 

6.8.2 Recommendation 2 

As the development time for models was shown to be minimal compared to time needed 

to collate and vet data, a meta-analysis/multiple model confirmatory approach is 

recommended as a normal action during investigations, at least during initial data 

exploration and model development.  

6.8.3 Recommendation 3 

In light of the growing adoption of electronic laboratory notebooks and recommendations 

1 and 2, it may be of benefit to develop models to evaluate data at the point of capture. A 

‘dashboard’ of models (generic process and/or product-specific) using the data could be 

displayed. With appropriate development, these models could be used to tracking culture 

progress or monitor known indicators of undesirable future behaviours. Furthermore, as 

data would be directly entered and potentially evaluated one sample at a time, this could 

reduce the time needed to vet data during a large scale analysis as common entry errors 

(e.g. decimal point errors) would be more likely to be spotted near the point of entry  
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 Conclusions 

The research presented demonstrated multiple applications of multivariate data analysis 

(MVDA) to address four main projects. The conclusions and recommendations presented 

here prioritise the methods used, statistical tools generated. Additional space was also 

given to how the works performed met soft research aims, e.g. demonstrating how to link 

multiple statistical techniques in a cradle to grave (data generation to implementable 

result) workflow, considerations for adapting workflows based on available data and 

investigation aims, etc. Key project-specific results of analysis are reiterated, however for 

greater detail of project-specific results, readers are advised to consults the relevant 

chapter. 

7.1 Comparison of pH Measurement Technologies and Extraction of Indirectly 

Captured Information 

During the comparison of pH measurement technologies (Chapter 4), it was shown that 

it was possible to extract indirectly captured information from a pre-existing dataset. 

More specifically, the indirectly captured information were contributions to osmolality 

measurements by unidentified compounds, here termed osmolality residuals. It was 

recommended that osmolality be recorded at all scales to allow the extraction of this 

information and thus improve comparisons between scales. 

Osmolality residuals were calculated through the creation of a multiple linear regression 

(MLR) model that was refined using statistical significance testing. Use of this newly 

created variable was backed by observations of data behaviour through use of time series 

analysis and principal component analysis (PCA). Use of MLR and statistical significance 

testing was then used to demonstrate a different purpose: the identification of variables 

correlated with differences in pH readings by different pH measurement technologies. 

Hence, the application of three MVDA methods was demonstrated: MLR, statistical 

significance testing, and PCA. This met soft aims by demonstrating flexibility of MVDA 

methods in both dataset preparation and final analysis. 

The hard aim of the pH measurement technology comparison was the identification of 

variables correlated with differences in pH readings between the offline pH measurement 

technologies. Results indicated that samples’ chemical compositions and physical 

condition (e.g. temperature) were correlated with differences in pH readings by different 

pH measurement technologies. 
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From this conclusion, it was recommended the company ensure consistency in pH 

measurement technology type used for activities across sites and between scales, e.g. if 

NOVA Bioprofile 400 units are used for offline pH measurement during R&D at 10L at 

one site, use NOVA Bioprofile 400 units for offline pH measurement at different scales 

and/or different sites. 

Similarly, the company should ensure consistency in pH measurement technology type 

used across activities, e.g. if possible, ensure online and offline pH measurement units 

use similar technologies, e.g. both online and offline pH measurements are made using 

Radiometer pH probes with temperature compensation methods. 

7.2 Productivity Investigation 

An investigation into variation in product concentration for a single product project was 

described in Chapter 5. The investigation was broken into three distinct stages. 

In the first stage, the dataset comprised 10L and 130L cultures performed at the Slough, 

UK site. From this dataset, a general method based on decision tree was created. During 

method creation, a variety of available options for data sources, missing data estimation, 

data pre-processing, and decision tree algorithms were tested. 

In addition to identifying the “best” options to employ in terms of lowest misclassification 

error, it was shown that a choice in one area could cause knock on effects in other areas 

and in turn effect the accuracy of the overall method. The specific example was the use 

of iterative PCA for estimation of missing data when the dataset was restricted to data 

from daily monitoring of cultures or when the dataset was extended to include data from 

both daily monitoring and online monitoring of cultures. It was suggested that this was 

due to both greater availability of information to the model and improved estimation of 

missing data when using iterative PCA to estimate missing data. 

In the second stage, the dataset was expanded to include cultures from 5000L and 10L 

cultures from a US site, which used an altered seeding criteria and altered harvest criteria. 

As these alterations prevented the use of the initially developed method of decision trees, 

it was suggested partial-least squares regression models to predict product concentration 

could be used to identify behaviours correlated with productivity instead. 

The alterations in seeding criteria introduced a source of confounding; the US-sited 

cultures appeared to be more “mature” with respect to Elapsed Time (h) due to higher cell 

concentrations for transferred inoculum and associated metabolite differences. It was 
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suggested that this confounding could be reduced by realigning data from time-based 

sampling points (e.g. every approximately every 24 hours) to sampling-based on set 

values for the integral of viable cell concentration (IVC). To test this hypothesis, new 

datasets were created based on rigid sampling points for time and IVC by simple 

interpolation recorded data. 

It was found that use of IVC in place of Elapsed Time (h) lead to improved predictive 

accuracy and better distribution of residuals for PLSR models predicting daily product 

concentration from that day’s associated data. Use of IVC in place of Elapsed Time (h) 

also provided greater robustness when data generated from US cultures with altered 

seeding criteria were applied to models generated from UK culture data. However these 

improvements did not necessarily occur when analysing the dataset in profile orientation 

(e.g. 1 sample = all data for 1 culture) or when using a different response of interest (e.g. 

viability). These findings demonstrate additional considerations that must be taken into 

account each time an interrogation is made of a dataset, in particular if multiple 

interrogations are being made of a single dataset. 

It was also shown that interpolating the dataset to realign sample to set progression values 

(e.g. 0.0 h, 24.0 h, 48.0 h, etc.) allowed the progression variable itself to be eliminated 

from the model with minimal negative effects on model accuracy and robustness. This 

was in keeping with expectations as there would be no variance between samples for these 

variables following realignment and hence no additional information to be captured by 

including the progression variable. This also demonstrated that the underlying 

temporal/progressional variation in the dataset had been effectively removed. 

In the third and final stage, it was suggested that the underlying cause of variation in 

product concentration may have been linked to the batches of media used in the course of 

the study. In collating batch numbers for all UK cultures, it was shown that combinations 

of batch numbers for media components were effectively unique to each round of cultures 

performed. Hence, it was not possible to confidently tie any individual media component 

or specific lot of media component to undesirable behaviour. Even if specific components 

or lots could have been pinpointed as the underlying causes, it would not have been 

possible to identify the differences in composition leading to undesirable behaviours as 

lot compositions were not recorded, only lot number. 

The hard aim of the productivity investigation was the identification of variables and 

factors correlated with variation in product concentration at harvest. Soft aims also existed 
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related to guidance on handling investigations and datasets of this nature, as well 

identification of areas requiring or benefiting from further attention. Additionally, a 

variety of tools were generated in the course of the work. 

In Stage 1, several different means for handling missing data were employed. In addition 

to providing reasons for or against their use from a theoretical viewpoint, the presented 

work also demonstrated the real effects of using the methods for handling missing data. 

While the results were as expected, demonstrating knock-on effects during analysis, such 

as filling in missing values with variable means artificially reducing data spread and in 

turn leading to decreased classification accuracy by PC-decision trees, was within the soft 

aims of the EngD. 

Stage 1 of the productivity investigation provided the drivers for the development of 

informative values for capturing behaviours in online monitoring and subsequently the 

development of the Excel-based tool EPIC-CAT. The work presented in Stage 1 

demonstrated that the initial Informative Values 1.0 met two of the stated criteria: 

1) Capturing behaviours in online monitoring data in a manner suitable for follow 

on use in MVDA 

2) Allowing integration with data from daily sampling. 

However Informative Values 1.0 (see Appendix A) did not meet the desired level of 

intuitive interpretability. Further development was deemed an appropriate use of time as 

informative values had been demonstrated as a useful variable set. This led to the most 

current version of informative values, Informative Values 7.0, which were used during 

Stage 2. 

In Stage 2, another Excel-based tool was created for realignment of datasets to a variable 

of choice. Use of this tool was restricted to realignment to specific values for elapsed time 

or IVC, however the tool allows realignment to any variable which changes in a roughly 

proportional manner with time. For example, it is unlikely that the current version of the 

tool would be able to realign a typical fed-batch dataset according to lactate as this can 

follow an increase-decrease relationship with time caused by a period of accumulation in 

the culture followed by a period of consumption by cells. Further development could 

allow some analogous version to be applied. 

In Stage 3 a key knowledge gap in the collected data was identified. It was shown that for 

this investigation batch numbers for raw materials were of little statistical use and 
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provided a strong example of a case where the use of spectral devices such as Raman 

probes might provide valuable information concerning raw material quality. 

The capture and use of such spectral data is of growing interest in the biopharmaceutical 

industry. While the presented work did not deal with spectral data, key learning points 

could be carried over. As an example, in spectral data analysis, wavelengths or wave 

numbers are typically treated as variables measuring emission or absorption of light, 

depending of spectroscopy type. Many thousands of wavenumbers are recorded for a 

single sample leading to situations similar to those seen in Chapter 5 with high frequency 

data from online monitoring. Two approaches demonstrated in this thesis could be 

considered: 

1. Summarising spectral data as sets of key values, analogous to informative values. 

2. Compression of the spectral dataset using PCA and using the resulting scores in 

subsequent analyses, as demonstrated with the use of PC-decision trees. 

7.3 Multi-Product Platform Process Analysis 

Chapter 6 described an investigation conducted on multiple projects using a common host 

cell and process platform (GS-CHO Version 6) to identify variables correlated with 

crashes in culture viability. In regards to this hard aim, pH control and behaviour were 

identified as the top variable of interest. pCO2 control was highlighted as an additional 

area for process improvement with Na+ concentration as an additional indicator of 

interest. 

General softer outcomes were identified concerning overall trends in the dataset and the 

way in which the analysis was perform. General trends included identifying a range for 

the ‘best’ pass/fail decline limits for the dataset, i.e. misclassification errors for models 

were lower when limits of 30%/d and 40%/d were used. Model optimisation using 

response surface methodology to minimise misclassification error indicated a local 

optimum decline limit of 45%/d. 

Outcomes concerning the method of analysis included improvements to interpretability 

by employing model hierarchies (e.g. Analysis Pattern 2 and Analysis Pattern 3) and the 

creation of a confounding reduction method appropriate for the desired use and future 

implementation. Furthermore, it was demonstrated that classification methods should not 

be selected based on perceived statistical power alone. This was shown by both the lower 

misclassification error and increased interpretability for models using decision trees 
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algorithms when compared to models using PLS-DA, which would generally be regarded 

as the more statistically powerful. 

During the platform process analysis, a variety of different tools and techniques were 

employed. The key obstacle faced was the sheer scale of the dataset to be considered as 

it stretched back several years and covered a wide variety of products with uneven 

distribution of culture numbers, scales, and instances of crash behaviour. Indeed, the first 

task undertaken was a quantitative definition of crash/non-crash behaviour to allow 

efficient classification of the cultures in an acceptable time frame.  

The scale of the dataset was addressed through the use of a many models meta-analysis 

which also serves as a response to the question posed at the start of Chapter 6, “Where do 

I begin?” The use of many models allowed general trends captured in the dataset to be 

identified and thence direct more focussed analyses based on those trends. 

One example of the benefits of the meta-analysis approach was the use of multiple 

pass/fail limits for decline in viability over a 24 hour period to identify a ‘natural’ pass/fail 

division in the dataset. A second example of the benefits of the meta-analysis approach 

was the use of two different scaling approaches (Autoscale and Intrascale A) with three 

primary benefits. 

1. When Autoscale was applied to the dataset, project-specific variance was allowed 

to influence the resulting multi-project model. This provided the person 

performing the analysis an opportunity to identify projects with behaviours 

notably dissimilar to other projects in the dataset. 

2. The use of Intrascale A allowed the influence of project-specific variance in a 

multi-project dataset to be reduced. 

3. Use of both scaling methods as part of a meta-analysis approach enabled 

determination of whether any confounding by product/project observed during an 

initial exploratory PCA affected classification accuracy. 

Finally, the greatest hurdles to implementing a meta-analysis approach to test various 

options for data realignment, justification, scaling, etc. were identified as the initial 

collation of the dataset and data checking. These activities were measured in weeks, 

whereas the creation of several spreadsheet-based tools allowed many different options 

to be applied in seconds, generation of the multiple models was a matter of minutes, and 

initial conclusions were available within hours. 
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7.4 Informative Values 

The aim of the research presented in Appendix A was improved analysis of high 

frequency datasets generated through online monitoring of cell cultures. Initially this was 

specifically for the purpose of the productivity investigation described in Chapter 6. Due 

to the high potential of the high frequency online monitoring dataset, it was decided to 

further build on the initial, project-specific work to create a robust tool designed for use 

with any high frequency online monitoring data. 

Common obstacles in the use of online monitoring datasets in biopharmaceutical process 

are reliance on qualitative, univariate comparisons of monitored parameters and reliance 

on personal experiences. While techniques such as PCA and PLS-DA can be applied can 

be applied directly to online monitoring datasets, interpretation of results can become 

difficult due to both the high number of observations and the lack of similarly 

high-frequency variables of interest (e.g. product concentration). Typically these 

variables of interest or variables closely correlated with such variables of interest (e.g. 

cell growth may be closely correlated with product concentration) are included in offline 

monitoring dataset. However integration of online monitoring and offline monitoring 

dataset by simple extension of the dataset analysed is rarely possible as online monitoring 

data usually overwhelms offline monitoring data due to sampling frequency. 

From these circumstances, the hard research aim was defined as the downsampling of the 

high frequency online monitoring dataset in a manner that captured behaviours in a 

quantitative form meeting the following criteria: 

a) Appropriate for follow-on use in MVDA. 

b) Retained a high degree of intuitive interpretability by scientists. 

c) Allowed integration with offline sampling datasets. 

These three criteria were met through the creation of a set of robust summary statistics 

termed informative values. The use of informative values allowed the use of PCA to 

identify unusual behaviours in online monitoring behaviours. These ranged from one-off 

events (e.g. temporary disconnection of a temperature probe) to differences in movement 

around temperature setpoint between reactors of the same scale. 

Due to the summary statistics selected to make up informative values, these behaviours 

were communicated in a simple and efficient manner with a high degree of intuitive 

interpretability. In the case of the temperature probe disconnection, for the culture in 
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question in one 24 hour block the area below median temperature (ABMTemp) and the total 

area away from the median temperature (TAAMTemp) for temperature were notably high. 

However the area above median temperature (AAMTemp) and median absolute distance 

(MADTemp) were within expected ranges for the 24 hours in question. Informative values 

for all other 24 hour blocks appeared within expected ranges. From this, it was known 

that an event had occurred with the following conditions: 

1. The event was restricted to the 24 hours in question 

2. The event did not last long enough to affect the median temperature or the median 

absolute distance around the median temperature within that 24 hour block. 

3. The event increased area away from the median temperature in one direction only. 

From these simple conclusions, it was determined that the recorded temperature 

measurement had dropped drastically for a short time. Referring back to the original data 

for the 24 hours under consideration, it was revealed that an error had occurred with the 

temperature probe and null readings were recorded. 

The ability to integrate online monitoring and offline monitoring datasets following 

translation to informative values was demonstrated in the work presented in Chapter 5. 

There was seen that models generated from datasets integrating online monitoring data 

(as informative values) and offline monitoring data resulted in lower misclassification 

error by decision trees when classifying cultures as high producing or low producing. It 

was suggested that this was due to both greater availability of information to the model 

and improved estimation of missing data when using iterative PCA to estimate missing 

data. 

Translation of high frequency online monitoring datasets into informative values initially 

required approximately 30 minutes per culture. By the conclusion of the research 

described in Chapter 5, processing time had reduced to approximately 30 seconds per 

culture. This was achieved through the development of the first purpose-built tool created 

from presented research, the Excel-based “Efficient Process Capture - Calculation and 

Alignment Tool” (EPIC-CAT). 

7.5 Final Conclusions 

During the course of the industry placement and through attendance at both academic and 

industry conferences, a wide variety of attitudes towards MVDA were encountered. 

These ranged from dismissal of MVDA techniques as unnecessary, somehow fallacious 
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representations of systems, or unsuitable for use outside laboratory conditions to strong 

devotion to a single statistical method or framework. A third extreme encountered was 

that a model can be created but that model must be perfect, entirely accurate, and the only 

model created. 

These attitudes place a great deal of emphasis on pure predictive/classification accuracy 

and less on practical use of a model as a tool available to scientists. Furthermore, they 

centre on idealised scenarios, both that the model is appropriate for all interrogations 

being made of the dataset and that enough time is afforded to create such perfected 

models. There is also a tendency to rely on a single, inflexible process of analysis. The 

sum effect of these attitudes can lead to a general reluctance to apply MVDA until some 

form of crisis occurs. 

 

Toolbox Division Tool Type 
Main Chapter 

(Related) 

1 – Core Technique Core Technique Selection Guide D (3, 4, 5, 6) 

2 – Dataset Adjustment 

Tools 

Dataset Adjustment Tool Guide D (5, 6) 

Standardised Data Collection S 6 

Dataset Collation S 5 

Dataset Reorientation S 5 

Dataset Realignment S 5 

Dataset Re-Justification S 6 

Data Intrascaling S 6 

Data Source, Sample, and Variable 

Selection Guide 

D (3, 4, 5, 6) 

Missing Data Handling D 5 (6) 

3 – Complementary 

Tools 

EPIC-CAT S  Appendix A (5) 

EPIC-CAT Collator S  Appendix A (5) 

Osmolality Residuals Guide D 4 

Simple Profile Classifier S 6 

4 – Frameworks Result Interpretation Guide D (4, 5, 6) 

Analysis Schemas F (4, 5, 6) 

Table 33. Summary of statistical toolbox contents. The toolbox is split into four main divisions 

containing written documents (D), process flow documents (F), and spreadsheet-based tools (S). 

Where appropriate, the chapter from which the item originated is listed. Additional chapters where 

the item was used are indicated. If no specific chapter is indicated, the item was based upon the 

research body as a whole.  
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The presented research approached the application and implementation of MVDA in 

biopharmaceutical processes as the creation of a robust statistical toolbox (Table 33). This 

toolbox included not only the tools, but also guidance on how to use tools, warnings of 

how not to use tools, and flexible frameworks demonstrating how multiple statistical tools 

could be chained together based on user requirements. 

In the four projects described, a variety of ways of using pre-existing historical datasets 

and new datasets generated from current standard data monitoring has been demonstrated. 

These included: 

1. Comparison of discrepancies in readings by supposedly interchangeable 

technologies. 

2. Extraction of indirectly captured information. 

3. Translation of a high frequency dataset for improved user interpretability and 

integration with a lower frequency dataset. 

4. Demonstration of effects of options for missing data estimation on both dataset 

spread and during subsequent MVDA. 

5. Evidence for an alternative measure of culture progression in place of time 

6. A means of removing underlying variability in a dataset from variation in a chosen 

progression variable (e.g. time or IVC). 

7. Identification of a knowledge gap and how that gap may be resolved including 

integration into the presented MVDA frameworks. 

8. A means of removing a well-known, if not necessarily well-understood, source of 

confounding to allow analysis of an underlying shared process. 

9. Evidence of potential benefits in re-justifying physical structuring of samples to 

better reflect model purpose/responses. 

10. Demonstration of a meta-analytical approach to define general trends and 

improved problem definition. 

Demonstration of the benefits of employing multiple ‘simpler’ models with good user 

interpretability in place of a single, more comprehensive model with lower 

As all necessary data were generated through normal company activities, the only 

additional company resources required were a workspace and access to the scientists 

involved in data generation, who represented the intended future users of the research 

outcomes. 
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In short, it has been shown that many areas for improvement in biopharmaceutical 

processes can be addressed by allowing an appropriate investment of time and freedom 

to fail in order to explore which statistical methods do or do not work, where they work, 

and to develop supplementary tools to enable use of statistical methods as a normal action. 

It is hoped that the frameworks and tools developed and demonstrated in this thesis will 

be used to further support the implementation of the PAT Initiative and statistical process 

control in the biologics and other related industries
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Appendix A. Downsampling of Online Monitoring Data as Informative 

Values 

A.1 Introduction 

A key concern in the production of therapeutic proteins such as monoclonal antibodies 

(mAb) is whether the product has the correct critical quality attributes (CQA) [169–174]. 

For a glycosylated product such as a mAb, glycoform profiles are among the CQAs 

regulatory agencies require biopharmaceutical companies to characterise and maintain 

[175,176]. To ensure CQAs and acceptable levels of growth and productivity are met, 

critical process parameters are monitored to allow identification of potential issues [177]. 

It is easy to state that a bioreactor will operate at 36.5 °C with a pH of 6.92 and dissolved 

oxygen tension (DOT) of 40 %. However achieving and maintaining stated conditions 

can be a complex challenge with typical control systems reliant on high frequency online 

monitoring. Similarly challenging is making full use of the high frequency data generated. 

A common practice is to overlay data from different bioreactors on a single figure. This 

style of comparison is inadequate as it is potentially highly qualitative and subjective, and 

does not meaningfully tie information from online monitoring data to biological data from 

offline sampling. 

The FDA PAT initiative is often used to justify introducing newer, more comprehensive 

measurement equipment (e.g. non-analyte-specific spectra capture with Raman probes). 

However the initiative also promotes the use of new measurement techniques to 

understand the impact of process controls on performance. This includes techniques for 

improved interrogation of data from earlier technologies. One area of interest is moving 

beyond statistical process control and “In control/out of control” alarm limits to linking 

bioreactor control system behaviour to cell culture biological behaviour. 

A wide variety of statistical techniques have been applied to online monitoring data for 

this purpose, including self-organizing maps [178,179], data similarity measures 

[180,181], and ensemble methods [182]. The listed techniques focus heavily on direct 

application to high frequency data and lack easy interpretability or intuitive meaning for 

users who are not statistical experts or are not afforded the luxury of time required for an 

exhaustive drill down. While academically interesting and promising for future 

implementation, the majority of these techniques are not amenable to immediate or 

effective implementation in industry 
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Online monitoring data analysis, in particular the analysis of data from online monitoring 

of bioreactors, is highly reliant on contextual information. For many users, an analysis 

that identifies the 1000th pH reading out of several thousand (e.g. ~3 minutes out of many 

days) as a variable of interest is not informative and lacks intuitive meaning. 

It was theorised that interpretation could be improved if the data were summarised as 

intermediary statistics termed “informative values” and subsequent analyses were 

performed using these informative values. Informative values are defined as calculated 

variables that quantitatively summarise online monitoring data behaviours across 

meaning full windows of activity, such as between offline sampling points. Most 

importantly, informative values representing the original data hold intuitive meaning for 

the end-user. These informative values can then be used in subsequent analyses in place 

of the original online monitoring data. 

The aim of the presented study was to create these informative values. Furthermore, the 

informative values were also required to be robust to transfer between processes and 

scales as well as to imperfections from non-ideal, real processing data. 

Principal component analysis (PCA) [144] was used to demonstrate that the selected 

informative values effectively captured online behaviours when applied to a 

manufacturing dataset [183]. 

A.2 Materials 

The data used to develop the presented research were taken from the online monitoring 

of mAb-producing cell cultures grown in 10 L and 130 L air lift reactors at the Lonza 

Slough site. The dataset included monitoring for a wide variety of conditions. A more 

detailed description of the dataset can be found in Chapter 6. An additional, artificially 

generated dataset (cultures P001 to P100) was created for demonstration purposes. This 

was because a variety of behaviours may occur over the course of a culture; the second 

dataset was to more clearly demonstrate individual behaviours. 

Online monitoring of pH, temperature, and DOT was achieved by the use of probes 

inserted into bioreactors. Online monitoring of air flowrate, O2 flowrate, and carbon 

dioxide flowrate was achieved by flowrate meters on lines into the bioreactors. Probes 

and flowmeters were connected to control units which recorded values at a set interval. 

Variables were classed according to variable purpose. Temperature, pH, and DOT were 

classed as steady state because control systems were designed to keep these variables at 
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defined setpoints. Flowrates for air, O2, and CO2 were classed as dynamic. Values for 

these variables were dependent on biological behaviour and were used to control several 

steady state variables. The main behaviours of interest for steady state profiles are 

adherence to setpoint, magnitude of movement around setpoint, and drift. Two further 

behaviours encountered were perturbations and shifts (changes) in setpoint (Figure 55). 

Perturbations were periods of up to four hours where readings remained outside 

acceptable noise limits in a given direction. A variety of causes for perturbations exist 

from incorrect controller action to probe connection issues. However, the focus in this 

study was capture and identification of perturbations through the use of informative 

values. 

 

 

 

Figure 55. Artificially generated online monitoring data of pH for four theoretical cultures 

showing various behaviours and noise. P001: ideal, setpoint ± 0.005. P021: high perturbation, 

setpoint ± 0.005. P031: high perturbation, setpoint ± 0.010. P041: shift in setpoint, setpoint ± 

0.005.  
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DOT was controlled using air, O2, and N2 feeds. Online DOT behaviours could typically 

be split into four sections: 

1. An initial low noise period following inoculation. 

2. When the cell mass consumes more O2 than the airfeed can supply, an O2 feed is 

activated, leading to a period of increasing noise lasting until O2 demand peaks. 

3. A period of decreasing noise as O2 demand and hence O2 flowrate lessen. 

4. A final period of low noise where O2 demands are by the air feed only. 

A.3 Analysis of High Frequency Data in Native State 

Two analyses were performed to determine whether the use of summary statistics could 

provide improvements in either model performance (e.g. X variance captured by model) 

or model interpretation by a user. The first analysis was performed using data in its native, 

high frequency state. The second analysis was performed using summary statistics 

generated from the original dataset. 

A.3.1 Method 

Online monitoring data from 49 cultures performed in 10 L and 130 L bioreactors at 

Lonza’s Slough site were collated into a single, longitudinal dataset. In this orientation, 

there was a single observation per culture representing all data for all sampling points 

(Table 34). Analysed data were restricted to 1916 samplings per variable per culture 

(~160 h) and 11 cultures were removed, including all 130 L cultures, due to reach this 

criteria. Additionally, due to data loss and data validity issues related to transfer of data 

from datalogger to computer, CO2 flowrate was removed as a variable. 

Variable pH Temperature (°C) DOT (%) 

Sample  1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

A xA,1,1 … … … xA,1,5 xA,2,1 … … … xA,2,5 xA,3,1 … … … xA,3,5 

B xB,1,1 … … … xB,1,5 xB,2,1 … … … xB,2,5 xB,3,1 … … … xB,3,5 

C xC,1,1 … … … xC,1,5 xC,2,1 … … … xC,2,5 xC,3,1 … … … xC,3,5 

D xD,1,1 … … … xD,1,5 xD,2,1 … … … xD,2,5 xD,3,1 … … … xD,3,5 

E xE,1,1 … … … xE,1,5 xE,2,1 … … … xE,2,5 xE,3,1 … … … xE,3,5 

Table 34. A longitudinal arrangement of a three-dimensional dataset (culture x sample [time] x 

variable). The data have been arranged so that an observation comprises all the data for a culture 

A to E. This data is then grouped by variable pH (1), temperature (2), DOT (3). Within in the 

single variable grouping, data are ordered chronologically by sample number, 1 to 5. The 

hierarchy of the arrangement is captured in the subscripts for values, xCulture,Variable,Sample. An 

alternative arrangement could by to first group by sample numbers and then order data by 

variable, e.g. pH (1), temperature (2), DOT (3). This would be captured in subscripts as 

xCulture,Sample,Variable.  
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Data were imported to Matlab for analysis with the Eigenvector PLS-Toolbox. Data were 

mean-centred and scaled to unit variance. A PCA model was created using random 

sampling (10 splits, 5 iterations) for cross-validation. A two PC model was retained, 

which captured 36.11% of variance in the dataset. 

A.3.2 Results and Discussion 

Model analysis was performed by first understanding the systematic behaviours captured 

through model loadings and then by performing a comparative drill down analysis on two 

cultures. 

Figure 56 shows model loadings for PC1 and PC2. Loadings were coloured according to 

variable type (temperature, DOT, pH, air flowrate, O2 flowrate). Clear structures were 

observed for both PC1 and PC2 loadings for the dynamic variables air flowrate and O2 

flowrate. These structures showed that the previous discussed dynamic behaviours were 

captured by the model. 

It was also observed that PC1 and PC2 loadings for pH appeared to be sharply split into 

loadings > 0 and loadings < 0. This was interpreted as the model capturing changes in pH 

setpoint several cultures in the dataset underwent. PC1 and PC2 loadings for temperature 

and DOT variables were interpreted as the model capturing movement around the 

temperature and DOT setpoints. It is key to note that this movement could not be 

determined as random or systematic at this level of model interrogation. 

Cultures A006 and A047 were selected for the comparative drill down analysis. A006 

and A047 were selected based on their positions on the model score plot (Figure 17A) 

posed a greater analytical challenge because differences in behaviour would be more 

nuanced than statistically more obvious differences captured in PC1 behaviours (e.g. 

differences in setpoints). Furthermore while A047 was within 95% limits for Q Residual 

and Hotelling T2 (Figure 17B), A006 was outside the Q Residual limit. 

Q Residual contribution analysis (Figure 17C) indicated that the greatest difference in 

contributions was due to difference in pH behaviour. This was due to the change in pH 

setpoint for A006. This was in keeping with Q Residuals as comparison of a culture’s 

behaviour to the mean behaviour of the model as the A006 pH setpoint change was not 

typical of the dataset. 
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Figure 56. Loading plots for a PC model created from online monitoring data in its native state. 

The variables can be split into five distinct ‘variable blocks’ roughly every 2000 variable 

numbers: temperature (1 to ~2,000), pH (~2,000 to ~4,000), DOT (~4,000 to ~6,000), air (~6,000 

to ~8,000), O2 (~8,000 to ~10,000). Across the three loadings plots shown, interpretation of the 

captured model was problematic due to the high number of variables. In all three loadings plots, 

air and O2 were observed to have a strongly conserved behaviour during the course of a culture, 

whereas behaviours for the setpoint controlled variables temperature and DOT appeared to 

capture movement around the setpoint. Behaviour for the setpoint controlled variable pH captured 

that several cultures underwent a change in setpoint while the majority cultures did not. 

A) Loadings plot for PC1 (22.68%) and PC2 (13.43%). 

B) Loadings plot for PC2 (13.43%). 

C) Loadings plot for PC1 (22.68%).  
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Figure 57. Drill down analysis of cultures A006 and A047 in a PC model created from online 

monitoring data in its native state. 

A) Score plot for PC1 (22.68%) and PC2 (13.43%) with 95% Hotelling’s T2 interval (--). 

 

B) Plot of cultures Q residual (63.89%) against Hotelling T2 (36.11%). 

 

C) Comparison of Q residual contributions for A006 (blue) and A047 (red). The variables can 

be split into five distinct ‘variable blocks’ roughly every 2000 variable numbers: temperature 

(1 to ~2,000), pH (~2,000 to ~4,000), DOT (~4,000 to ~6,000), air (~6,000 to ~8,000), O2 

(~8,000 to ~10,000). A clear difference was observed for the pH block due to the change in 

pH setpoint for A006 while the greatest contributions to Q residuals for both A006 and A047 

come from the DOT block. 

 

D) The recorded values for DOT for variable numbers 4551 to 4559 indicated greater noise in 

DOT for A006 (blue) than A047 (red). However it must be stated that the range of DOT 

values compared here are 12 to 17 for A006 and 14 to 15 for A0047. While statistically 

distinctive, this result was of little practical use, in part due to lack of context.  
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Differences in contributions from air and O2 flowrate variables was also observed. An 

overlay comparison of the original air and O2 data (Figure 18) showed three primary 

differences in air and O2 behaviour. 

1. A006 and A047 had difference caps for maximum air flowrate into the bioreactor, 

~2.5 L/min and ~2.0 L/min respectively. 

2. A006 reached the air flowrate cap approximately 40 hours earlier than A047. 

3. A006 generally showed greater noise in both air and O2 flowrates than A047 

across the ~160 hours under consideration. 

It should be noted that these conclusions required a return to side-by-side analysis of 

online monitoring data. 

It was also observed that both culture A006 and A047 had high Q Residual contributions 

from captured DOT behaviours. Drill down analysis to the original values in the dataset 

(Figure 17D) showed that the cultures appeared to have greater movement around the 

DOT setpoint than the majority of cultures. Selecting several consecutive readings for 

DOT indicated a greater range of movement was experience by A006 than A047. 

While it was estimated that A006 experienced three times more movement around DOT 

setpoint than A047 based on these values, this conclusion suffered from being poorly 

defined and semi-quantitative. As with the comparison of air and O2 flowrate behaviours, 

the stated conclusion required a drill down to the original values from online monitoring, 

then re-interpreting the original values up through the model. 

Overall, it was possible to create a PCA model from online monitoring data in its native 

state. However interpretation of the resulting model was problematic due to both a 

potentially overwhelming number of variables and a lack of intuitive meaning or context 

available without resorting to a drill down analysis to the original data measurements. 

This made effective communication of results difficult. Although some differences could 

be stated quantitatively, there was a strong reliance on qualitative descriptions.  
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Figure 58. Air flowrate and O2 flowrate for cultures A006 and A047. There were three main 

differences between gas profiles for the cultures: 

1. A006 shows greater noise than A047 in both gas feeds. 

2. A006 had a high air flowrate cap (~2.5 L/min) than for A047 (~2.0 L/min). 

3. A006 reached the air flowrate cap approximately 40 hours before A047. 
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A.4 Analysis of High Frequency Data as Informative Values 

In the previous analysis, data were analysed in their native high frequency state. A second 

analysis was then performed where the data were summarised as informative values and 

models were created from the resulting informative values instead. 

Informative values were developed along two main lines based on variable behaviour 

type: Steady State and Dynamic. The ability of the selected informative values to capture 

variable behaviour in a manner with high intuitive meaning and interpretability for a 

human user was then tested using three datasets: 

A.4.1 Informative Values for ‘Steady State’ Variables 

The conversion of online monitoring data to informative values underwent several 

iterations (Table 35) to meet requirements for ease of calculation, ease of interpretation, 

robustness, and quality of information. 

Initially, the same informative values were used to describe both maintained setpoint and 

dynamic profiles. Data were split into windows of activity 𝑇𝑛,𝑘 according to offline 

sampling times 𝑇1 (inoculation) to 𝑇𝐿 (last offline sampling considered). For each window 

𝑇𝑛,𝑘, the mean and standard deviation were calculated for each variable. For daily 

calculations, 𝑇𝑛,𝑘 =  𝑇𝑛,𝑛+1. For calculations over all days, 𝑇𝑛,𝑘 = 𝑇1,𝐿. 

Two key issues were identified with these initial informative values. One, results could 

be unusable, e.g. divide by zero results. Two, calculated values were sensitive to noise, 

outliers (e.g. values resulting from disconnection of a probe), and spiking from chemical 

additions not indicative of reactor behaviour as a whole. 

For example, a window of activity contains 59 readings of pH 6.89 and a single spike to 

pH 7.38 due to a concentrated bolus addition. The mean is 6.90 and standard deviation 

0.06. If the desired setpoint is 6.90 with average movement of ±0.02, the mean does not 

reflect that the pH was consistently below setpoint and the range of noise appears to be 

three times the desired range. 

If the data were to be summarised by a human, the spike would be dismissed from 

estimation of the average. Yet the human would still retain the information that a spike 

occurred. The developed informative values needed to replicate this split into overall 

information and special detail information.  
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Iteration Values for Steady State Variables Values for Dynamic Variables 

1.0 Between Sampling Points: 

 Mean Average  

 Standard Deviation 

 Slope 

 Coefficient of Determination 

Between Sampling Points : 

 Mean Average  

 Standard Deviation 

 Slope 

 Coefficient of Determination 

2.0 Between Sampling Points: 

 Mean Average  

 Standard Deviation 

 Slope 

 Coefficient of Determination 

Key Event Times for Air 

Key Event Times for O2 

3.0 Between Sampling Points: 

 Median 

 Median Absolute Distance 

Key Event Times for Air 

Key Event Times for O2 

4.0 Between Sampling Points: 

 Median 

 Median Absolute Distance 

Key Event Times for Air 

Key Event Times for O2 

 

Between Sampling Points: 

 Volume of Air 

 Volumes of O2 

5.0 Between Sampling Points: 

 Median 

 Median Absolute Distance 

Key Event Times for Air 

Key Event Times for O2 

 

Between Sampling Points: 

 Volume of Air 

 Volumes of O2 

6.0 Between Sampling Points: 

 Median 

 Median Absolute Distance 

 Area Above Median 

 Area Below Median 

 Total Area Away from Median 

Key Event Times for Air 

Key Event Times for O2 

 

Between Sampling Points: 

 Volume of Air 

 Volumes of O2 

7.0 Between Sampling Points: 

 Median 

 Median Absolute Distance 

 Area Above Median 

 Area Below Median 

 Total Area Away from Median 

Key Event Times for Air 

Key Event Times for O2 

Key Event Times for CO2 

 

Between Sampling Points: 

 Volume of Air 

 Volumes of O2 

 Volumes of CO2 

Table 35. Development of informative values from first iteration to final seventh iteration. 
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To address the issues of sensitivity, the overall behaviours of steady state profiles were 

summarised using robust statistics [184,185]. These have been shown to handle 

asymmetric profiles, such as spiking, in a robust manner [186]. Mean was replaced with 

robust equivalent median (𝑚𝑛,𝑘), calculated: 

𝑚𝑛,𝑘 = median
𝑖=n,…,𝑘

(𝑥𝑖) Eq. 5.1 

Standard deviation was replaced by median absolute deviation (MAD), which is 

calculated: 

𝑀𝐴𝐷𝑛,𝑘 = 1.483median
𝑖=1,…,𝑗

|𝑥𝑖 − 𝑚𝑛,𝑘| Eq. 5.2 

where 𝑥𝑖 is the 𝑖th measurement in the window 𝑇𝑛,𝑘, 𝑥𝑗 is the last measurement in the 

window 𝑇𝑛,𝑘, and 1.483 is a correction factor to make MAD unbiased at normal 

distribution [185]. 

To capture special detail behaviour, the informative value set was expanded to include 

calculations for the area between the measured value and the median. It was possible to 

consider areas above and below the median, and the total area away from the median. 

These areas were calculated using a simple algorithm, whereby when using Eq. 5.3 to 

calculate the area above median (𝐴𝐴𝑀𝑛,𝑘) for a window of activity containing online 

measurements 𝑖 to 𝑗, samples with 𝑥𝑖 − 𝑚𝑛,𝑘 < 0 were replaced with 0. Similarly, when 

calculating area below median (𝐴𝐵𝑀𝑛,𝑘), all samples with 𝑥𝑖 − 𝑚𝑛,𝑘 > 0 were replaced 

with 0 when performing Eq. 5.3. 

𝐴𝐴𝑀𝑛,𝑘𝑜𝑟 𝐴𝐵𝑀𝑛,𝑘  

= ∑(1.5 ∗ (𝑥𝑖 − 𝑚𝑛,𝑘) − 0.5 ∗ (𝑥𝑖−1 − 𝑚𝑛,𝑘))

𝑗

𝑖=2

 ∗ (𝑠𝑖 − 𝑠𝑖−1) 
Eq. 5.3 

where 𝑠𝑖 is the time at which the 𝑖th sample measurement is made in hours. Note that the 

calculation is a backwards looking summation beginning at 𝑠𝑖 = 2. If the sampling 

interval is constant, 𝑠𝑖 − 𝑠𝑖−1 can be replaced with 𝑠𝑖𝑛𝑡, yielding: 

𝐴𝐴𝑀𝑛,𝑘𝑜𝑟 𝐴𝐵𝑀𝑛,𝑘  = ∑(1.5 ∗ (𝑥𝑖 − 𝑚𝑛,𝑘) − 0.5 ∗ (𝑥𝑖−1 − 𝑚𝑛,𝑘))

𝑗

𝑖=2

 ∗ 𝑠𝑖𝑛𝑡) Eq. 5.4 

The total area away from the median (𝑇𝐴𝐴𝑀𝑛,𝑘) was calculated by adding the absolute 

values for 𝐴𝐴𝑀𝑛,𝑘 and  𝐴𝐵𝑀𝑛,𝑘 as seen in Eq. 5.5. 
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𝑇𝐴𝐴𝑀𝑛,𝑘 = |𝐴𝐴𝑀𝑛,𝑘| + |𝐴𝐵𝑀𝑛,𝑘| Eq. 5.4 

When calculating the MAD, AAM, ABM, and TAAM, the calculations could be 

completed using two different median values. These were: 

 𝑚𝑛,𝑛+1: The median value of data captured between two sequential timepoints.  

 𝑚1,𝐿: The median of data captured between the first and last timepoints. 

Use of different medians allowed the identification of culture where limited periods of 

operation were notably different from overall behaviour, e.g. values for area away from 

median and MAD calculated using 𝑚𝑛,𝑛+1 are notably different when compared to the 

same values calculated using  𝑚1,𝐿. 

Excluding perturbations lasting 6 hours or more (>25% of data points in a 24 hour 

window), 𝑚𝑛,𝑛+1 and 𝑚1,𝐿 for a perturbation should not notably differ. In the event of a 

shift in setpoint, the daily median will be notably different from the overall median for 

days on the minority side of the shift, e.g. a culture spends 3 days at pH setpoint A and 

12 days at pH setpoint B, assuming no major issues the overall median is B ± noise. 

Subsequently informative values calculated for the first 3 days using the overall median 

will be notably different than when using daily medians. 

The artificially generated dataset (P001 to P100) is re-used here to demonstrate how these 

informative values can be used to analyse online monitoring of pH for four cultures. The 

cultures demonstrate a range of behaviours (described in Table 36 and shown in Figure 

55) and lasting 11 days with online monitoring of pH (5 minutes sample 

interval x 264 h = 3168 measurements per culture). 

P001 was an ideal pH profile with random noise ± 0.005 (Figure 55A). P021 had random 

noise ± 0.005 with a high perturbation from 168 h to 172 h (Figure 55B). P031 had 

random noise ± 0.010 as well a high perturbation from 43 h to 48 h (Figure 55C). P041 

had random noise ± 0.005 and underwent a change in setpoint at 39 h (Figure 55D). For 

daily calculations, 𝑇1,2= 1 h and all other 𝑇𝑛,𝑛+1= 24 h. 

The shift in setpoint for P041 was apparent when the median values for each window of 

activity (𝑚𝑛,𝑛+1) were plotted (Figure 3A). The perturbations for P021 and P031 could 

not be identified at this point. 
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Calculations for 𝑀𝐴𝐷𝑛,𝑛+1 were completed for each window of activity using daily and 

overall medians (Figure 59B and Figure 59C). In Figure 59B, it can be seen that similar 

values were calculated for P001 and P021, which showed normal noise. For P031, MAD 

were higher than that of P001 or P021. 

For P041, values 𝑀𝐴𝐷𝑛,𝑛+1 calculated when using 𝑚𝑛,𝑛+1 were of a similar magnitude 

as for P001 and P021. However the shift in P041 was clearly identifiable when 𝑀𝐴𝐷𝑛,𝑛+1 

was calculated when using 𝑚1,𝐿(Figure 59C). This was the only culture where replacing 

𝑚𝑛,𝑛+1 in the calculation with 𝑚1,𝐿caused such a change in 𝑀𝐴𝐷𝑛,𝑛+1. 

While median and MAD calculations could be used to differentiate between high and low 

noise as well as normal and shift behaviours, it was not possible to differentiate between 

normal and perturbed behaviours. 

To differentiate between normal and perturbed behaviour, 𝐴𝐴𝑀𝑛,𝑘, 𝐴𝐵𝑀𝑛,𝑘, and 

𝑇𝐴𝐴𝑀𝑛,𝑘 were used. It can be seen in Figure 3D that there was an increase in 𝑇𝐴𝐴𝑀𝑛,𝑛+1 

for P021 for 𝑇7,8  (168 h to 192 h) and P031 for 𝑇2,3 (24 h to 48 h). This increase was seen 

when both 𝑚𝑛,𝑛+1 and 𝑚1,𝐿 are used, indicating that behaviour in these windows was 

unusual.  

Shift behaviour could also be identified using 𝐴𝐴𝑀𝑛,𝑘, 𝐴𝐵𝑀𝑛,𝑘, and 𝑇𝐴𝐴𝑀𝑛,𝑘. When 

using 𝑚𝑛,𝑛+1, a higher area was seen for P041 in the window 𝑇2,3 (24 h to 48 h). This 

value captured the shift in pH setpoint which occurred at 39 h. In Figure 59E where 𝑚1,𝐿 

was used, all area values calculated prior to 48 h are increased, indicating pre-shift and 

post-shift data. 

Culture pH Behaviour Noise Noise Range Event Time 

P001 Ideal Acceptable Setpoint ± 0.005 N/A 

P021 High Perturbation Acceptable Setpoint ± 0.005 168 h to 172 h 

P031 High Perturbation High Setpoint ± 0.010 43 h to 48 h 

P041 Setpoint Shift Acceptable Setpoint ± 0.005 39h 

Table 36. Summary of pH profiles compared.  
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Figure 59. Informative values calculated from artificially generated online monitoring data of pH 

for four theoretical cultures showing various behaviours and noise. P001: ideal, setpoint ± 0.005. 

P021: high perturbation, setpoint ± 0.005. P031: high perturbation, setpoint ± 0.010. P041: shift 

in setpoint, setpoint ± 0.005. 

A) 𝑚𝑛,𝑛+1 

B) 𝑀𝐴𝐷𝑛,𝑛+1 using 𝑚𝑛,𝑛+1  

C) 𝑀𝐴𝐷𝑛,𝑛+1using 𝑚1,𝐿  

D) 𝑇𝐴𝐴𝑀𝑛,𝑛+1 using 𝑚𝑛,𝑛+1 

E) 𝑇𝐴𝐴𝑀𝑛,𝑛+1 using 𝑚1,𝐿 
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A.4.2 Informative Values for ‘Dynamic’ Variables 

Dynamic variables are variables which are strongly dependent on culture performance, 

e.g. the flowrate of O2 into the bioreactor is determined by culture oxygen demands 

whereas pH level is affected by culture behaviour but is primarily dependent on pre-set 

operating setting points. Dynamic profiles were summarised using volumes of gas 

entering the bioreactor between sampling timepoints and when key events occurred. The 

key events for air, O2, and CO2 feeds are demonstrated with references in Figure 60. When 

the fermentation begins, O2 is provided through the air feed, which is increased until a 

capped value is reached (A). Once the air feed reaches the capped value, the O2 feed is 

activated to meet any further O2 demands (B). 

The O2 flowrate increases until the viable cell concentration reaches a maximum. At this 

point the O2 feed is at a peak value (C). As the number of viable cells in the culture 

decreases, the O2 demand also decreases. The O2 feed is reduced until it becomes 

effectively zero (D). At this point, the air feed begins to decrease (E). 

In some control arrangements, O2 and air could be considered a single mixed feed. As 

stated, air is increased to meet increasing demand for O2 until a capped value is reached. 

Further demands for O2 are met by increasing the proportion of O2 in the feed. The air 

feed is decreased so that the flowrate remains at the capped value. This creates a 

distinctive ‘dip’ in the air flow (F). 

In other controllers, air and O2 could be considered separate feeds. The air feed was 

maintained at the capped flowrate while the O2 flowrate increased and declined as 

necessary. Several additional events may be noted of interest: when the air feed reaches 

half of the capped flowrate (G), the time between the air flowrate capping and the O2 feed 

activating, the time the air feed was at the capped flowrate, the time the O2 feed was 

active, and the peak O2 flowrate. 

Due to the concentrated nature of feeds and bolus used, these additions could sometimes 

be identified by analysing the profiles of the variables intended to control pH, such as the 

CO2 profile. CO2 gas is an acidic gas used to correct pH in cultures when pH 

measured > pH setpoint by sparging. In Figure 60, distinct jumps in CO2 flowrate can be 

seen at H, I, and J. 
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A.4.3 Method 

Online monitoring data from 49 cultures performed in 10 L and 130 L bioreactors at 

Lonza’s Slough site were summarised as informative values. Informative values were 

calculated from inoculation to Day 10 using sampling times recorded in daily offline 

monitoring data. 

For fairer comparability with the previous analysis of data in its native state, 11 cultures 

were removed including all 130 L cultures. Due to mixed O2 gassing strategies and 

disparity in observations of key events for dynamic variables, informative values for air 

and O2 flowrates were restricted to volumes added between sampling timepoints. All 

informative values based on CO2 flowrate were removed as variables due to data loss and 

data validity issues related to transfer of data from datalogger to computer. 

Data were imported to Matlab for analysis with the Eigenvector PLS-Toolbox. Data were 

mean-centred and scaled to unit variance. A PCA model was created using random 

sampling (10 splits, 5 iterations) for cross-validation. A one PC model was recommended 

based on lowest RMSE during cross-validation. As in the previous analysis, two PCs were 

retained. The model captured 26.24% of variance in the dataset. 

 

Figure 60. Sample profiles from process data from the online monitoring of air, O2, and CO2 

flowrates for bioreactor culture A023. Key events described in the text are annotated A—J. 
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The informative values dataset was then extended to include the elapsed time at which 

sampling occurred, which was used when calculating the informative values. This 

extended dataset was mean-centred and scaled to unit variance. A PCA model was created 

using random sampling (10 splits, 5 iterations) for cross-validation. A one PC model was 

recommended based on lowest RMSE during cross-validation. As a single PC model 

would be difficult to visualise and interpret, two PCs were retained. The model captured 

27.14% of variance in the dataset. 

A.4.4 Results and Discussion 

As there was less than a 1% difference in variance captured by the two models created, 

the second model, where offline sampling times were included in the modelled dataset, 

was excluded from further analysis. 

Figure 61 and Figure 62 show the loadings for the final model. In Figure 61, the variables 

were coloured by the original variable from which the informative values were calculated 

(pH, temperature, DOT, air flowrate, O2 flowrate). In Figure 62, the variables were 

coloured by the type of informative value calculated. 

From the loading plots, it was concluded that the greatest sources of variation between 

cultures in the modelled dataset were DOT-based informative values. Two clusters of 

DOT-based informative values were observed in the upper-left and lower-right quadrants 

of Figure 61A. The upper-left quadrant cluster was comprised predominantly of three 

types of informative values describing DOT behaviour: 

1. Area Below Median (Using Daily Median) 

2. Area Below Median (Using Overall Median) 

3. Daily Median 

The lower-right quadrant comprised of six types of informative values describing DOT 

behaviour: 

1. Area Above Median (Using Daily Median) 

2. Area Above Median (Using Overall Median 

3. Total Area Away from Median (Using Daily Median) 

4. Total Area Away from Median (Using Overall Median) 

5. MAD (Using Daily Median) 

6. MAD (Using Overall Median)  
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Figure 61. Loading plots for a PC model created from informative values calculated from online 

monitoring data. Variables were coloured by the original variable from which the new informative 

value variables were calculated. Note that Figure 61B and Figure 61C were arranged to match the 

axes of Figure 61A. 

A) Loadings for PC1 and PC2. Two clusters of informative values calculated from DOT 

measurements were seen in the upper-left and lower-right quadrants. 

B) Loadings for PC2. PC2 behaviour appeared to marginally greater defined by temperature 

behaviours. As PC2 was retained primarily for improved visualisation of PC1, the lack 

of clearly structured behaviour captured by the PC was expected. 

C) Loadings for PC1. Informative values calculated from DOT had the greatest impact on 

overall behaviour captured in PC1. Air flowrate and O2 flowrate had a greater impact of 

captured PC1 behaviour from inoculation to Day 3 and from Day 4 to Day 6, respectively, 

than on other days during cultures.  
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Figure 62. Loading plots for a PC model created from informative values calculated from online 

monitoring data. Variables were coloured by the type of informative value calculated. Note that 

Figure 62B and Figure 62C are arranged to match the axes of Figure 62A. 

A) Loadings for PC1 and PC2. In Figure 61A, two clusters of informative values calculated 

from DOT measurements were observed in the upper-left and lower-right quadrants. Here 

it was observed that the cluster in the upper-left quadrant comprised of three main 

informative values for DOT: Area Below Median (Using Daily Median), Area Below 

Median (Using Overall Median), and Daily Median. The cluster in the lower-right 

quadrant comprised of Area Above Median (Using Daily Median), Area Above Median 

(Using Overall Median), Total Area Away from Median (Using Daily Median), Total 

Area Away from Median (Using Overall Median), MAD (Using Daily Median), and 

MAD (Using Overall Median). 

B) Loadings for PC2. As PC2 was retained primarily for improved visualisation of PC1, a 

lack of clearly structured behaviour captured by the PC was expected. However, strong 

clusters for both MAD-based informative values for temperature were observed. 

C) Loadings for PC1. Informative values calculated from DOT had the greatest impact on 

overall variance captured in PC1.  
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Air flowrate and O2 flowrate had a greater impact of captured PC1 behaviour from 

inoculation to Day 3 and from Day 4 to Day 6, respectively, than on other days during 

cultures. This was in keeping with what was known about air and O2 control strategies, 

i.e. the use of air flowrate cap and a supplementary O2 feed. From this, it can be surmised 

that the activation of the O2 feed on average occurred around Day 3/Day 4. 

Overall, the loading plot analysis demonstrated that informative values had captured 

expert knowledge and process understanding in a form appropriate for MVDA in keeping 

with the stated project aims. 

Figure 63 shows the scores for the final model. It was seen in Figure 63B that the cultures 

considered in the previous analysis with data in its native state, A006 and A47, both lie 

within the Q Residual limit and Hotelling T2 limit. A006 and A47 showed a greater 

difference in Hotelling T2 residual values than Q Residual value. 

A Hotelling T2 contribution analysis (Figure 63C) indicated that the majority of the 

difference in Hotelling T2 value was due to informative values summarising DOT 

behaviour. From this contribution analysis, it appeared that A006 had greater movement 

around the DOT setpoint, approximately 5 to 6 times greater movement in terms of 

area-based informative values and MAD. As these differences were observed when using 

both daily median DOT and the median DOT across the full culture duration under 

consideration, it was known that this 5 to 6 fold increase in movement was sustained 

through the majority of culture duration. For completeness, this was confirmed by a 

further drill down to the calculated informative values (Figure 63D). 

Additional differences observed in Figure 63C were the consistently higher contributions 

from air and O2 volumes for A006 than for A047. This indicated that higher volumes of 

air and O2 entered A006 than A047 throughout the majority of the culture duration under 

consideration. 

In comparison to the analysis of online monitoring in its native state, a lower percentage 

of dataset variance was captured when the same number of variables were retained 

(36.11% v. 26.29%). However use of informative values reduced in the number of 

variables to be analysed from 9580 to 360. This in addition to the context-rich nature of 

the informative values used led to improved identification of behaviours of interest and 

quantitative communication of those differences.  



 

195 
 

 

Figure 63. Drill down analysis of cultures A006 and A047 in a PC model created from informative 

values calculated from online monitoring data. 

A) Score plot for PC1 (14.17%) and PC2 (12.07%) with 95% Hotelling T2 limit (-). 

B) Plot of values for Q residual (73.76%) against values for Hotelling T2 (26.29%). 

C) Comparison of Hotelling T2 contributions for A006 (blue) and A047 (red). The variables 

can be split into five ‘variable blocks’: pH (1 to 108), DOT (109 to 216), temperature 

(217 to 324), air (325 to 335), O2 (336 to 348). The greatest difference in contributions to 

Hotelling T2 appear to come from the DOT block. 

D) The calculated value for Area Above Daily Median for the sampling intervals Day 1 to 

Day 2, Day 2 to Day 3, Day 3 to Day 4 indicated greater degree of movement and a 

greater magnitude of movement around the daily median DOT for A006 than A047 over 

the 72 hours captured. From Day 2 to Day 4, the movement above the daily median for 

culture A006 was approximately three times that of culture A047.  

Variable Number 
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A.5 Additional Demonstration of Informative Values 

The previously created models were very comprehensive analyses of behaviour captured 

in online monitoring data, in that as they included many variables of interest (pH, 

temperature, DOT, etc.). While MVDA techniques can be used to create such 

comprehensive models, it may be desired to create simpler, more focussed models for a 

variety of reasons, e.g. variable-specific models for simpler interpretation. Such models 

and subsequent interpretation could also benefit through the use of informative values. 

Temperature-based informative values were calculated from inoculation to Day 10 using 

the sampling times recorded in daily offline monitoring data. A total of 44 cultures were 

included in the dataset, including two 130 L cultures, A043 and A046. 

Data were imported to Matlab for analysis with the Eigenvector PLS-Toolbox. Data were 

mean-centred and scaled to unit variance. A PCA model was created using random 

sampling (10 splits, 5 iterations) for cross-validation. A two PC model was retained that 

captured 60.68% of variance in the dataset. 

It was seen that two cultures were outside the 95% confidence interval for PC1. (Figure 

64A). These cultures were 130 L cultures – A043 and A046. Hotelling T2 and Q Residual 

values were also above the calculated limits for the model (Figure 64B). It was decided 

to focus on the behaviour of A043 for the purpose of this demonstration. 

Hotelling T2 contribution analysis of A043 (Figure 64C) did not indicate any particularly 

unusual values compared to other cultures in the dataset. All values were within one 

standard deviation of dataset means, hence the high Hotelling T2 calculated for A043 

appears to be due to a cumulative effect. Q Residual contribution analysis for A043 

(Figure 64D) revealed the separation was caused by unusually high contributions from 

the informative values listed in Table 37. 

Interval for Informative Value Informative Value 

Day 2 to Day 3 Area Below Median Using Daily Median 

Area Below Median Using Overall Median 

Day 3 to Day 4 Area Above Median Using Daily Median 

Area Below Median Using Daily Median 

Total Area Away from Median Using Daily Median 

Area Below Median Using Overall Median 

Total Area Away from Median Using Overall Median 

Day 5 to Day 6 MAD Using Daily Median 

Table 37. Informative values of interested identified through Q Residual contribution 

analysis.   
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Figure 64. Results for a PCA model created using temperature-based informative value and drill 

down analysis for the indicated culture A043. 

A) Score plot for PC1 (46.31%) and PC2 (14.37%). 

B) Culture values for Hotelling T2 (60.68%) and Q Residual (39.32%) with calculated limits. 

It was observed that A043 had unusual Hotelling T2 and Q Residual values above the 

displayed limits. 

C) Hotelling T2 contribution analysis for culture A043. No informative values appeared to 

be of particular note as all informative values were within 1 standard deviation of the 

dataset mean. 

D) Q Residual contribution analysis for culture A043. Eight informative values of interested 

are indicated with the numerals. 

1. MAD Using Daily Median for Day 5 to Day 6 

2. Area Above Median Using Daily Median for Day 3 to Day 4 

3. Total Area Away from Median Using Daily Median for Day 2 to Day 3 

4. Area Below Median Using Daily Median for Day 3 to Day 4 

5. Total Area Away from Median Using Daily Median for Day 3 to Day 4 

6. Area Below Median Using Overall Median for Day 2 to Day 3 

7. Area Below Median Using Overall Median for Day 3 to Day 4 

8. Total Area Away from Median Using Overall Median for Day 3 to Day 4  
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Informative values of interested identified through Q Residual contribution analysis 

described behaviour for three offline sampling intervals: Day 2 to Day 3, Day 3 to Day 4, 

and Day 5 to Day 6. 

Unusual informative values for the offline sampling interval Day 2 to Day 3 were Area 

Below Median and the Total Area Away from Median when calculations were completed 

using either the median temperature for the sampling interval or the median temperature 

from inoculation to the Day 10 offline sampling. From this, it was known that an event 

had occurred with the following conditions: 

1. The event was restricted to the ~24 hours in question. 

2. The event did not last long enough to affect the median temperature or the median 

absolute distance for temperature for the ~24 hour block. 

3. The event increased area-based informative values in one direction only. 

From these conclusions, it was suggested that the recorded temperature measurement had 

dropped drastically for a short time. Referring back to the original data (Figure 65), it was 

revealed that errors had occurred in several readings which lead to the informative value 

calculator treating the readings as zero. Repeating the contribution analysis on A046 

showed a similar issue, indicating a recurring equipment fault for the 130L bioreactor 

control system. This was confirmed through discussion with members of the UK pilot 

team. 

This form of error can be easily hidden during visual analysis of raw data. When plotting 

the variable against time, missing data could be overlooked due to the graphing program 

rules in use, e.g. hold last known value or create a straight line connection to the next 

available value, or gaps being too small to notice amongst the 1000s of points. Through 

the use of informative values, this error was quickly captured and identified. 

The second interval of interest was Day 3 to Day 4. All area-based informative values 

were unusual, except for the Area Above Median from when the median temperature 

from inoculation to the Day 10 offline sampling was used to complete the calculation. 

Referring back to the original data showed generally lower readings for temperature 

during this interval however the typical movement around the median (measured by 

MAD) was relatively unaffected. While the general decrease was relatively small, it was 

sufficient to capture that the interval was unusual compared to activity of other days and 

draw the user’s attention to the transition. 
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The third interval of interest was Day 5 to Day 6. This interval contained the end of the 

general decrease in temperature. This ‘return to normal’ behaviour was captured in the 

MAD when using Daily Median. 

 

 

Figure 65. Original temperature measurements for online monitoring of culture A043. Figure 65A 

shows all measurements and it was observed that a shift in overall temperature measurements 

occurred and lasted approximately two days. Closer examination revealed missing data points 

(indicated by red markers at the temperature setpoint 36.5°C). Figure 65B shows a magnified 

view of measurements used to calculated informative values for the interval Day 2 to Day 3. When 

calculating informative values, these missing data points were treated as zero readings by the 

Excel-based calculator. This caused the increased values for Area Below Median and Total Area 

Away from Median, both when using the Daily Median and the Overall Median for culture 

temperature. Area Above Median was effectively unaffected.  
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A.6 Conclusions 

The control systems used in bioreactors are dependent on measurements from online 

monitoring systems. These systems can create thousands of data points per variable in a 

matter of days. However the time series created are frequently analysed qualitatively and 

subjectively on an individual basis. 

While statistical methods exist that can analyse high frequency online monitoring data 

with little to no human intervention, such analyses may be of limited use when 

considering non-major deviations and may prevent batch-to-batch comparisons of the 

data in its native form. Furthermore, it may benefit research and development or 

manufacturing departments to prioritise human interpretability over pure statistical 

power. 

Online monitoring data were converted from univariate time series to informative values 

that provide a balance between both quantitative and qualitative understanding and 

possess intuitive meaning for users. The developed informative values were used to 

differentiate between common online monitoring data behaviours encountered during 

cultures of mAb-producing cells. This was achieved through the analysis of an online 

monitoring dataset, where online monitoring data were first summarised with informative 

values and then analysed using PCA. Behaviours in online monitoring data were 

adequately captured to be identifiable in the resulting PCA model. Interpretability during 

contribution analysis was increased as the informative values selected were developed to 

have intuitive and appropriate contextual meaning for human understanding. These 

conclusions were supported by an additional demonstration using a PCA model to analyse 

only temperature-based informative values. 

The informative values presented were developed specifically for online monitoring data 

originating from the production of a mAb by a mammalian cell line and influenced by the 

verbal descriptions provided by scientists familiar with the process. Informative values 

could be developed for other high frequency process variables using similar logic. 

The third aim of the presented research was to enable the interrogation of online 

monitoring and offline monitoring datasets in a single, balanced dataset. Achievement of 

this aim was tested through the productivity and culture viability investigations described 

in Chapter 5 and Chapter 6 respectively. 
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Appendix B. Additional Tables and Figures 

Unique Code [SPE] (mL/L) 

ID Vessel number 

Cell  Inoc date 

Cell line Inoc time 

Experiment ID Post- Inoc volume (L) 

Experimental Conditions Stage and Round ID 

Process Working Cell Bank 

Table 38. Routine Meta Data Collected in Project A. 

 

 

Elapsed time (h) Glu (g/L) 

Elapsed time (days) Gluc (g/L) 

Bioreactor volume(L) Lac (g/L) 

Temp(°C) NH4
+ (g/L) 

Bench pH Na+ (mmol/L) 

DOT (%) K+ (mmol/L) 

VCC (106/mL) Osmolality (mOsm/Kg) 

TCC  (106/mL) SF66 (g) 

IVC (106 cell h/mL) Gluc (g) 

Product (mg/L) SF66 (g/109 cell.hour) 

Nova pH Gluc Utilisation (g/109 cell.h) 

pO2 (mmHg) Viability (%) 

pCO2 (mmHg) Specific growth rate (h-1) 

Gln (g/L) Doubling time (h) 

Table 39. Routine Daily Monitoring Data Collected in Project A. 

 

 

d[Gluc]/d[Lac] Osmolality - Theoretical Osmo (mOsm/kg) 

d[K]/d[Na+] [K+]/[Na+] (mmol/mmol) 

[Na+] /pCO2 (mmol/mmHg) d[Gln]/d[Lac] 

[Na+]/[Lac] (mmol/g) Lac Production Rate (g/109 cell.h) 

d[Na+]/d[Lac] (mmol/g) Antibody Accumulation Rate (mg/109 cell.h) 

[Lac]/[NH4
+] (g/g) NH4

+ Accumulation Rate (g/109 cell.h) 

d[Lac]/d[NH4
+] (g/g) Glu Utilisation Rate (g/109 cell.h) 

[Gln]/[NH4
+] (g/g) K+ Utilisation (mmol/109 cell.h) 

d[Gln]/d[NH4
+] (g/g) Na+ Accumulation Rate (g/109 cell.h) 

Theoretical Osmo (mOsm/kg) Bench pH - Nova pH 

Table 40. Additional Ratios and Rates Calculated for Stage 1 Extended DM Dataset.  
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Setpoint Variables Dynamic Control Variables 

pH Gradient Air Gradient 

pH R2 Air R2 

pH Mean Average Air Mean Average 

pH StDev Air StDev 

DOT Gradient O2 Gradient 

DOT R2 O2 R2 

DOT Mean Average O2 Mean Average 

DOT StDev O2 StDev 

Temp Gradient CO2 Gradient 

Temp R2 CO2 R2 

Temp Mean Average CO2 Mean Average 

Temp StDev CO2 StDev 

N2 Gradient 

 

N2 R2 

N2 Mean Average 

Ns StDev 

Table 41. Informative Values Version 1.0 Used in Stage 1. 

 

 

 

Setpoint Variables Dynamic Control Variables 

pH Median Volume of Air Added 

pH MAD Volume of Oxygen Added 

Area Above pH Median True Volume of Oxygen Added 

Area Below pH Median Volume CO2 Added 

Total Area Away from pH Median  

Temp Median 

Temp MAD 

Area Above Temp Median 

Area Below Temp Median 

Total Area Away from Temp Median 

DO Median 

DO MAD 

Area Above DO Median 

Area Below DO Median 

Total Area Away from DO Median 

Table 42. Subset of Informative Values Version 7.0 Used in Stage 2. 
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Figure 66. Comparison of schooling and age effects on performance in different tests to evaluate 

intelligence in students in grades 4 to 6 [164]. 

 

 Estimated Net Effect of 1 Year of  

Test Number and Name Age (A) Schooling (B) B/A (C) 

Verbal Tests 

1 Verbal Classification 0.12 0.23 1.9 

3 Verbal Analogies 0.14 0.27 1.9 

6 Vocabulary 0.19 0.40 2.1 

9 Verbal Oddities 0.05 0.35 7.0 

11 Arithmetic Problems 0.16 0.50 3.1 

12 Sentence Completion 0.18 0.41 2.3 

Numerical Tests 

7 Number Series 0.15 0.26 1.7 

Figural Tests 

2 Figure Classification 0.16 0.16 1.0 

4 Figure Analogies 0.22 0.14 0.6 

5 Matrices 0.13 0.27 2.1 

8 Figure Series 0.19 0.11 0.6 

10 Figural Oddities 0.09 0.20 2.2 

Table 43. Estimated effects of age and schooling on grade 4 to grade 6 student performance in 

standardised intelligence exams [164]. 
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Table 44. Correlations between Day 11 [Product] (mg/L) and events in air and oxygen profiles 

using Elapsed Time (h) and IVC as measures of progress.  

Factor  
Correlation with Day 11 [Product] 

Measurement All Cultures Control Cultures 

Reaches Half Air Cap Elapsed Time (h) -0.25 -0.38 

Reaches Half Air Cap IVC -0.11 -0.32 

Reaches Air Cap Elapsed Time (h) -0.37 -0.50 

Reaches Air Cap IVC -0.21 -0.52 

Ratio Cap to Half Cap Elapsed Time (h) -0.17 -0.14 

Ratio Cap to Half Cap IVC -0.22 -0.64 

Oxygen Feed On Elapsed Time (h) -0.44 -0.57 

Oxygen Feed On IVC -0.25 -0.79 

Oxygen Feed Peaks Elapsed Time (h) -0.12 -0.40 

Oxygen Feed Peaks IVC 0.23 -0.16 
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No Progression Variable 

 

Developed 04-Dec-2012 

11:54:30.09  

X-block: Project A Day by 

Day 475 by 32  

Num. LVs: 6 

CV: random samples w/ 10 

splits 10 iterations 

Model Performance Cal CV 

RMSE 

Bias 

R2 

107.68 

-8.83915e-012   

0.762318 

121.185 

1.11864 

0.713459 

Variables 

Temp (C) 

Radiometer pH 

DOT % 

Nova pH 

pO2 (mmHg) 

pCO2 (mmHg) 

Gln (g/L) 

Glu (mmol/L) 

Gluc (g/L) 

Lac (g/L) 

NH4 (mM) 

Na (mM) 

K (mM) 

Volume of Air Added 

Volume of Oxygen Added 

True Volume of Oxygen 

Added 

Volume CO2 Added 

pH Median 

pH MAD 

Area Above pH Median 

Area Below pH Median 

Total Area Away from pH 

Median 

Temp Median 

Temp MAD 

Area Above Temp Median 

Area Below Temp Median 

Total Area Away from Temp 

Median 

DO Median 

DO MAD 

Area Above DO Median 

Area Below DO Median 

Total Area Away from DO 

Median 

Percent Variance Captured by Regression Model 

   ---------X-Block----------   ---------Y-Block----------  

Comp   This   Total    This   Total  

----   -------   -------    -------   -------  

1  19.18   19.18    55.48   55.48  

2  7.38   26.56    12.71   68.19  

3  5.86   32.42    4.56   72.75  

4  5.11   37.53    2.21   74.96  

5  4.12   41.65    0.99   75.95  

6  3.91  45.55   0.28  76.23  

Table 45. Details for PLSR model created using no explicit progression variable during Chapter 

5.7.1  
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Elapsed Time 

 

Developed 04-Dec-2012 

12:11:34.43  

X-block: Project A Day by 

Day 475 by 33  

Num. LVs: 8  

CV: random samples w/ 10 

splits and 10 iterations  

Model Performance Cal CV 

RMSE 

Bias 

R2 

81.6259 

-2.10036e-011 

0.863422 

90.8876 

0.030923 

0.830859 

Variables 

Time 

Temp (C) 

Radiometer pH 

DOT % 

Nova pH 

pO2 (mmHg) 

pCO2 (mmHg) 

Gln (g/L) 

Glu (mmol/L) 

Gluc (g/L) 

Lac (g/L) 

NH4 (mM) 

Na (mM) 

K (mM) 

Volume of Air Added 

Volume of Oxygen Added 

True Volume of Oxygen 

Added 

Volume CO2 Added 

pH Median 

pH MAD 

Area Above pH Median 

Area Below pH Median 

Total Area Away from pH 

Median 

Temp Median 

Temp MAD 

Area Above Temp Median 

Area Below Temp Median 

Total Area Away from Temp 

Median 

DO Median 

DO MAD 

Area Above DO Median 

Area Below DO Median 

Total Area Away from DO 

Median 

Percent Variance Captured by Regression Model 

--------X-Block-----------   ----------Y-Block--------- 

Comp   This   Total    This   Total  

----   -------   -------    -------   -------  

1   20.97   20.97    59.87   59.87  

2   7.22   28.19    13.32   73.19  

3   5.74   33.93    5.60   78.78  

4   5.01   38.95    3.09   81.87  

5   4.05   43.00    1.75   83.62  

6   3.61   46.60    1.02   84.65  

7   3.02   49.62    0.99   85.63  

8   3.15   52.77    0.71   86.34  

Table 46. Details for PLSR model created using Elapsed Time (h) as an explicit progression 

variable during Chapter 5.7.1  
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IVC 

 

Developed 04-Dec-2012 

12:19:7.25  

X-block: Project A Day by 

Day 475 by 33 

Preprocessing: Autoscale  

Num. LVs: 8  

CV: random samples w/ 10 

splits and 10 iterations  

Model Performance Cal CV 

RMSE 

Bias 

R2 

40.63 

-3.95062e-012 

0.966162 

47.18 

0.253164 

0.95457 

Variables 

IVC 

Temp (C) 

Radiometer pH 

DOT % 

Nova pH 

pO2 (mmHg) 

pCO2 (mmHg) 

Gln (g/L) 

Glu (mmol/L) 

Gluc (g/L) 

Lac (g/L) 

NH4 (mM) 

Na (mM) 

K (mM) 

Volume of Air Added 

Volume of Oxygen Added 

True Volume of Oxygen 

Added 

Volume CO2 Added 

pH Median 

pH MAD 

Area Above pH Median 

Area Below pH Median 

Total Area Away from pH 

Median 

Temp Median 

Temp MAD 

Area Above Temp Median 

Area Below Temp Median 

Total Area Away from Temp 

Median 

DO Median 

DO MAD 

Area Above DO Median 

Area Below DO Median 

Total Area Away from DO 

Median 

Percent Variance Captured by Regression Model 

  ---------X-Block----------   ---------Y-Block----------  

Comp   This   Total    This   Total  

----   -------   -------    -------   -------  

1   20.59   20.59    64.50   64.50  

2  7.33   27.92    15.36   79.86  

3   5.59   33.52    6.61   86.48  

4   5.06   38.58    3.71   90.19  

5   4.06   42.64    2.36   92.55  

6   3.53   46.17    1.74   94.29  

7   2.89   49.06    1.61   95.90  

8   3.57   52.64    0.72   96.62  

Table 47. Details for PLSR model created using IVC as an explicit progression variable during 

Chapter 5.7.1 
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Model # 

Data Used Arrangement Alignment Include Variable Response 

Daily Monitoring Informative Values DbD Profile Natural Time IVC Time IVC Viability [Product] VCC 

1-3 X  X  X   X X 1 2 3 

4-6 X  X  X   X  4 5 6 

7-9 X  X  X    X 7 8 9 

10-12 X  X   X  X  10 11 12 

13-15 X  X   X    13 14 15 

16-18 X  X    X  X 16 17 18 

19-21 X  X    X   19 20 21 

22-24 X X X  X   X X 22 23 24 

25-27 X X X  X   X  25 26 27 

28-30 X X X  X    X 28 29 30 

31-33 X X X   X  X  31 32 33 

34-36 X X X   X    34 35 36 

37-39 X X X    X  X 37 38 39 

40-42 X X X    X   40 41 42 

Table 48. Dataset combinations, dataset arrangements, and variable selections test to evaluate impact of progression variable choice and dataset rigidity in analyses.  
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Model # 

Data Used Arrangement Alignment Include Variable Response 

Daily Monitoring Informative Values DbD Profile Natural Time IVC Time IVC Viability [Product] VCC 

43-45 X   X X   X X 43 44 45 

46-48 X   X X   X  46 47 48 

49-51 X   X X    X 49 50 51 

52-54 X   X  X  X  52 53 54 

55-57 X   X  X    55 56 57 

58-60 X   X   X  X 58 59 60 

61-63 X   X   X   61 62 63 

64-66 X X  X X   X X 64 65 66 

67-69 X X  X X   X  67 68 69 

70-72 X X  X X    X 70 71 72 

73-75 X X  X  X  X  73 74 75 

76-78 X X  X  X    76 77 78 

79-81 X X  X   X  X 79 80 81 

82-84 X X  X   X   82 83 84 

Table 49. Dataset combinations, dataset arrangements, and variable selections test to evaluate impact of progression variable choice and dataset rigidity in analyses 

(con’t). 
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Model Information [Product] Viability VCC 

Arrange. Align. 
Progression 

Variable 
Cal/Val LV R2 Cal R2 CV LV R2 Cal R2 CV LV R2 Cal R2 CV 

DbD IVC IVC All 5 0.933 0.928 3 0.579 0.536 3 0.952 0.947 

DbD None IVC All 3 0.876 0.850 3 0.808 0.766 2 0.859 0.836 

DbD IVC NOI All 3 0.832 0.816 3 0.443 0.387 4 0.940 0.933 

DbD None NOI All 2 0.700 0.658 3 0.643 0.576 2 0.863 0.842 

DbD Time NOI All 3 0.816 0.796 3 0.698 0.666 3 0.901 0.891 

DbD None Time All 3 0.802 0.764 3 0.740 0.681 2 0.858 0.834 

DbD Time Time All 3 0.857 0.844 3 0.780 0.756 3 0.900 0.888 

Profile IVC IVC All 2 0.681 0.315 1 0.417 0.125 1 0.656 0.460 

Profile None IVC All 3 0.948 0.724 2 0.923 0.784 2 0.929 0.856 

Profile IVC NOI All 2 0.670 0.294 1 0.415 0.109 2 0.757 0.529 

Profile None NOI All 3 0.930 0.613 1 0.737 0.589 2 0.937 0.834 

Profile Time NOI All 4 0.967 0.390 2 0.828 0.292 2 0.877 0.554 

Profile None Time All 3 0.931 0.634 3 0.939 0.647 1 0.775 0.519 

Profile Time Time All 4 0.967 0.422 2 0.828 0.342 2 0.877 0.559 

Table 50. Summary of PLSR Models and Results when Using Only Daily Monitoring Dataset  
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Model Information [Product] Viability VCC 

Arrange. Align. 
Progression 

Variable 
Cal/Val LV R2 Cal R2 CV LV R2 Cal R2 CV LV R2 Cal R2 CV 

DbD IVC IVC All 4 0.893 0.876 6 0.634 0.550 5 0.962 0.957 

DbD None IVC All 7 0.914 0.890 7 0.873 0.831 2 0.863 0.842 

DbD IVC NOI All 7 0.867 0.838 6 0.527 0.429 5 0.950 0.943 

DbD None NOI All 6 0.778 0.709 5 0.680 0.569 3 0.876 0.851 

DbD Time NOI All 3 0.796 0.753 3 0.695 0.623 3 0.903 0.884 

DbD None Time All 7 0.838 0.795 7 0.794 0.744 2 0.861 0.840 

DbD Time Time All 3 0.903 0.883 3 0.752 0.717 3 0.903 0.886 

Profile IVC IVC All 1 0.474 0.160 4 0.888 0.227 2 0.833 0.461 

Profile None IVC All 1 0.681 0.111 5 0.984 0.339 9 0.997 0.649 

Profile IVC NOI All 1 0.472 0.192 2 0.743 0.070 4 0.944 0.525 

Profile None NOI All 5 0.979 0.097 5 0.973 0.338 5 0.984 0.714 

Profile Time NOI All 4 0.950 0.042 4 0.945 0.037 5 0.975 0.064 

Profile None Time All 5 0.977 0.983 5 0.976 0.367 10 0.998 0.675 

Profile Time Time All 4 0.950 0.065 4 0.945 0.011 5 0.975 0.152 

Table 51. Summary of PLSR Models and Results when Using Integrated Daily Monitoring and Online Monitoring Dataset. 
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Informative 

Values Set 

Values for Steady State Profiles Values for Dynamic Profiles 

1 Averages, Standard Deviations, Slope, 

Coefficient of determination (R2) 

Averages, Standard Deviations, 

Slope, Coefficient of 

determination (R2) 

2 Averages, Standard Deviations, Slope, 

Coefficient of determination (R2) 

Times of key events (air and O2) 

3 Median, Median Absolute Distance Times of key events (air and O2) 

4 Median, Median Absolute Distance Times of key events (air and O2) 

Volumes added (air and O2) 

5 Median, Median Absolute Distance Times of key events (air and O2) 

Volumes added (air and O2) 

6 Median, Median Absolute Distance, 

Areas between reading and median 

(above, below, total) 

Times of key events (air and O2) 

Volumes added (air and O2) 

7 Median, Median Absolute Distance, 

Areas between reading and median 

(above, below, total) 

 

Times of key events (air, O2, and 

CO2) 

Volumes added (air, O2, and CO2) 

Table 52. Summary of Informative Value Datasets by Version 

 

Scaling 
Justification 

Used 
Type 

PCs 

Used* 

X Variance 

Captured (%) 

Autoscale 

Harvest Justified 
Data 2 25 

Single Variable Model PCs 1 19 

Inoculation 

Justified 

Data 5 45 

Single Variable Model PCs 1 25 

Peak VCC 

Centred 

Data 1 18 

Single Variable Model PCs 1 23 

Intrascale 

A 

Harvest Justified 
Data 5 45 

Single Variable Model PCs 1 26 

Inoculation 

Justified 

Data 4 38 

Single Variable Model PCs 1 20 

Peak VCC 

Centred 

Data 5 48 

Single Variable Model PCs 2 42 

Table 53. PCA and HPCA Models. *Number of PC used based on minimum RMSE during 

cross-validation. 

 



 

213 
 

Scaling Applied Justification Used Decline Limit (%/d) Latent Variables Used 
Variance Captured (%) 

Misclassified (%) 
X Y 

Autoscale 

Harvest Justified 

10 2 20 48 24 

20 2 19 50 22 

30 2 21 53 16 

40 2 20 53 14 

50 2 18 44 10 

60 2 17 31 12 

Inoculation Justified 

10 2 25 43 31 

20 3 31 48 26 

30 2 25 45 18 

40 2 24 43 15 

50 2 23 35 20 

60 2 23 27 32 

Peak VCC Centred 

10 2 24 37 26 

20 2 22 42 31 

30 2 24 45 21 

40 2 23 49 14 

50 3 30 47 15 

60 2 19 31 20 

Table 54. PLS-DA results for CHO process platform investigation using Analysis Pattern 1 and Autoscaling (i.e. mean-centred and scaled to unit variance) applied. 
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Scaling Applied Justification Used Decline Limit (%/d) Latent Variables Used 
Variance Captured (%) 

Misclassified (%) 
X Y 

Intrascale A 

Harvest Justified 

10 2 19 21 46 

20 2 24 34 30 

30 2 23 33 32 

40 2 22 31 34 

50 2 21 32 43 

60 2 21 30 38 

Inoculation Justified 

10 2 19 25 49 

20 2 21 37 37 

30 2 21 33 19 

40 2 20 31 40 

50 2 18 28 49 

60 2 18 30 49 

Peak VCC Centred 

10 2 16 20 51 

20 3 32 44 29 

30 2 28 27 37 

40 2 27 25 32 

50 2 18 31 37 

60 2 12 37 44 

Table 55. PLS-DA results for CHO process platform investigation using Analysis Pattern 1 and Intrascale A (two-step scaling process) applied. 
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Scaling Applied Justification Used Decline Limit (%/d) Latent Variables Used 
Variance Captured (%) 

Misclassified (%) 
X Y 

Autoscale 

Harvest Justified 

10 2 26 38 24 

20 4 44 44 26 

30 2 27 38 16 

40 2 26 38 15 

50 2 24 23 18 

60 2 22 12 37 

Inoculation Justified 

10 2 35 32 29 

20 2 34 29 29 

30 2 35 35 20 

40 3 41 37 18 

50 2 33 19 29 

60 2 33 13 37 

Peak VCC Centred 

10 2 31 29 26 

20 2 31 31 32 

30 2 33 35 22 

40 2 31 39 13 

50 2 28 27 21 

60 2 27 22 28 

Table 56. HPLS-DA results for CHO process platform investigation using Analysis Pattern 2 and Autoscaling (i.e. mean-centred and scaled to unit variance) applied. 
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Scaling Applied Justification Used Decline Limit (%/d) Latent Variables Used 
Variance Captured (%) 

Misclassified (%) 
X Y 

Intrascale A 

Harvest Justified 

10 2 24 10 52 

20 2 36 30 29 

30 2 36 25 29 

40 2 34 22 36 

50 2 33 16 39 

60 2 32 14 48 

Inoculation Justified 

10 2 24 12 49 

20 2 31 24 39 

30 2 31 20 40 

40 2 28 17 40 

50 2 26 10 53 

60 2 26 9 53 

Peak VCC Centred 

10 2 18 13 47 

20 2 38 22 31 

30 2 38 19 37 

40 2 38 19 33 

50 2 35 11 41 

60 2 30 11 40 

Table 57. HPLS-DA results for CHO process platform investigation using Analysis Pattern 2 and Intrascale A (two-step scaling process) applied. 
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Scaling 

Applied 

Justification 

Used 

Decline 

Limit 

(%/d) 

Leaves 

in Tree 

Misclassified 

(%) 
Top Node 

Autoscale 

Harvest 

Justified 

10 11 2 pCO2 PC2 

20 9 10 pH PC1 

30 11 5 Lac PC1 

40 11 1 pH PC1 

50 10 1 pH PC1 

60 10 2 Gln PC2 

70 6 1 Gln PC1 

Inoculation 

Justified 

10 11 5 Lac PC1 

20 18 4 pH PC1 

30 14 2 pH PC1 

40 6 4 pH PC1 

50 11 4 pH PC1 

60 10 5 Gluc PC1 

70 8 2 Gluc PC1 

Peak VCC 

Centred 

10 9 3 K PC1 

20 17 4 Lac PC1 

30 14 4 pH PC1 

40 8 4 pH PC1 

50 7 4 pH PC1 

60 5 4 Gln PC1 

70 2. 3 Gln PC1 

Intrascale 

A 

Harvest 

Justified 

10 13 5 Na PC1 

20 13 7 pH PC1 

30 10 7 pH PC1 

40 10 2 pH PC1 

50 11 1 Gln PC2 

60 9 3 Gln PC2 

70 3 2 Gln PC1 

Inoculation 

Justified 

10 13 2 Na PC1 

20 19 6 Lac PC1 

30 13 4 pH PC1 

40 11 2 pH PC1 

50 7 4 pH PC1 

60 7 6 Gln PC2 

70 7 1 Gln PC2 

Peak VCC 

Centred 

10 14 4 pH PC1 

20 19 7 pH PC1 

30 15 5 pH PC1 

40 9 6 pH PC1 

50 10 6 Lac PC1 

60 9 4 Gln PC1 

70 4 2 Gln PC2 

Table 58. Decision tree results for CHO process platform investigation using Analysis Pattern 2 

and Intrascale A (two step scaling process) applied.
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Scaling 

Applied 

Decline Limit 

(%/d) 

Leaves in 

Tree 
Misclassified (%) Top Node 

Autoscale 

10 11 2 PC1 Reading 7 

20 15 6 PC1 Reading 2 

30 12 4 PC1 Reading 2 

40 11 4 PC1 Reading 2 

50 12 1 PC1 Reading 2 

60 7 4 PC1 Reading 3 

70 6 2 PC1 Reading 1 

Intrascale A 

10 12 7 PC1 Reading 8 

20 13 13 PC1 Reading 10 

30 13 2 PC1 Reading 3 

40 10 4 PC1 Reading 3 

50 9 3 PC1 Reading 3 

60 7 2 PC1 Reading 11 

70 6 2 PC1 Reading 3 

Table 59. Decision tree results for CHO process platform investigation using Analysis Pattern 3 

and Intrascale A (two step scaling process) applied. 

 


