
Scalable Coordination of Distributed
In-memory Transactions

Ryan Emerson
School of Computing Science

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

Computing Science 2015

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Dr Paul Ezhilchelvan,

who not only gave me the opportunity to undertake a PhD, but also provided invaluable support,

guidance and insight throughout the last four years. Additionally, I would like to thank Red Hat

for sponsoring my research. Finally, I wish to thank my friends and family, without your support

this thesis would not have been possible.

Abstract

Coordinating transactions involves ensuring serializability in the presence of concurrent data

accesses. Accomplishing it in an scalable manner for distributed in-memory transactions is the

aim of this thesis work. To this end, the work makes three contributions. It first experimentally

demonstrates that transaction latency and throughput scale considerably well when an atomic

multicast service is offered to transaction nodes by a crash-tolerant ensemble of dedicated nodes

and that using such a service is the most scalable approach compared to practices advocated in

the literature. Secondly, we design, implement and evaluate a crash-tolerant and non-blocking

atomic broadcast protocol, called ABcast, which is then used as the foundation for building the

aforementioned multicast service.

ABcast is a hybrid protocol, which consists of a pair of primary and backup protocols exe-

cuting in parallel. The primary protocol is a deterministic atomic broadcast protocol that pro-

vides high performance when node crashes are absent, but blocks in their presence until a group

membership service detects such failures. The backup protocol, Aramis, is a probabilistic pro-

tocol that does not block in the event of node crashes and allows message delivery to continue

post-crash until the primary protocol is able to resume. Aramis design avoids blocking by as-

suming that message delays remain within a known bound with a high probability that can be

estimated in advance, provided that recent delay estimates are used to (i) continually adjust

that bound and (ii) regulate flow control. Aramis delivery of broadcasts preserve total order

with a probability that can be tuned to be close to 1. Comprehensive evaluations show that this

probability can be 99.99% or more.

Finally, we assess the effect of low-probability order violations on implementing various

isolation levels commonly considered in transaction systems. These three contributions to-

gether advance the state-of-art in two major ways: (i) identifying a service based approach

to transactional scalability and (ii) establishing a practical alternative to the complex PAXOS-

iii

style approach to building such a service, by using novel but simple protocols and open-source

software frameworks.

Contents

Contents iv

List of Figures viii

List of Tables x

Nomenclature x

1 Introduction 1

1.1 Problem Statement . 4

1.2 Our Approach . 4

1.3 Thesis Contribution . 5

1.4 Thesis Structure . 6

2 Background 8

2.1 Network Communication Paradigms . 8

2.1.1 Synchronous . 8

2.1.2 Asynchronous . 9

2.1.3 Probabilistically Synchronous . 9

2.2 Atomic Broadcast and Multicast Protocols . 10

2.2.1 Atomic Broadcast vs Atomic Multicast 11

2.2.2 Broadcast . 11

2.2.3 Multicast . 12

2.2.4 Group Membership based approaches 12

2.2.5 Quorum Based approach . 16

2.3 Coordination Services . 18

Contents v

2.3.1 Chubby . 19

2.3.2 Zookeeper . 20

2.4 In-Memory Databases . 22

2.4.1 Replication Schemes . 22

2.5 Infinispan . 23

2.5.1 Key Distribution . 24

2.5.2 Key/Value Operations . 25

2.5.3 Transactions . 26

2.5.3.1 Transaction Topology . 27

2.5.3.2 Relaxed ACID . 27

2.5.3.3 Two-phase Commit Protocol 29

2.5.3.4 Total Order Commit Protocol 32

2.5.3.5 Total Order Anycast - Atomic Multicast Protocol 35

2.6 JGroups . 37

3 AmaaS - Atomic Multicast as a Service 40

3.1 Rationale . 40

3.2 System Model . 41

3.3 AmaaS Requirements . 42

3.4 SCast: Atomic Multicast Protocol for AmaaS 43

3.4.1 Protocol Overview . 44

3.4.2 Atomic Multicast Guarantees . 46

3.4.3 Protocol Details . 46

3.4.4 Fault-Tolerance: Node Crashes . 55

3.4.5 Fault Tolerance: Split Brain . 58

3.5 Message Bundling . 60

3.6 A New Atomic Broadcast Solution is Required 61

3.7 Summary . 62

4 ABcast 63

4.1 Rationale . 63

Contents vi

4.1.1 Existing Atomic Broadcast Solutions 64

4.1.2 Existing Hybrid Solution . 65

4.1.3 Our Approach . 67

4.1.4 ABcast Guarantees . 69

4.2 Assumptions . 70

4.3 ABcast Components . 71

4.3.1 Clock Synchronisation . 72

4.3.2 Group Membership . 72

4.3.3 Reliable UDP . 72

4.3.4 Reliable Broadcast . 73

4.3.5 Delay Measurement Component (DMC) 76

4.4 Atomic Broadcast Protocol . 88

4.4.1 Base . 88

4.4.2 Aramis . 90

4.4.3 Aramis and Base - ABcast . 91

4.4.4 Initialisation Period . 93

4.4.5 Initialising a Newly Joined Node . 94

4.5 Flow Control . 94

4.5.1 AFC Design . 97

4.5.2 AFC Protocol . 99

4.5.3 Limitations . 104

4.6 Summary . 105

5 Probabilistic SCast 106

5.1 PSCast Guarantees . 106

5.2 G4-PSCast Implications . 107

5.2.1 An Abstraction Based Explanation . 108

5.3 Service Node - Coping with ABcast Order Violations 110

5.4 Client Nodes - Detecting SCast Order Violations 111

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 113

5.5.1 Transaction Manager Assumptions . 113

Contents vii

5.5.2 Repeatable Read and Read Committed 115

5.5.3 Repeatable Read with WSC . 118

5.6 Summary . 125

6 Performance Evaluation 126

6.1 AmaaS . 127

6.1.1 Experimentation . 128

6.1.2 Results . 130

6.1.3 Evaluation . 134

6.1.4 Summary . 138

6.2 ABcast - Infinite Clients for Extreme Load Conditions 138

6.2.1 Experimentation . 139

6.2.2 Results . 140

6.2.3 Evaluation . 140

6.2.4 Summary . 142

6.3 ABcast - Fault Tolerance . 142

6.3.1 Experimentation . 143

6.3.2 Results . 144

6.3.3 Evaluation . 145

6.3.4 Summary . 149

6.4 Summary . 149

7 Conclusions 150

7.1 Thesis Summary . 151

7.2 Limitations . 152

7.3 Future Work . 153

7.3.1 Multiple AmaaS Services . 153

7.3.2 Utilising ABcast for State Replication in Zookeeper 153

7.3.3 Extending Infinispan to Support AmaaS with ABcast 154

References 155

List of Figures

2.1 Newtop Atomic Multicast Protocol . 14

2.2 Newtop Timestamp Blocking . 15

2.3 Chubby Write Request at Master Node . 19

2.4 Chubby Write Request at Replica Node . 20

2.5 Zookeeper Read and Write Requests . 21

2.6 Infinispan Get Operation . 25

2.7 Infinispan Update Operation . 26

2.8 Two-phase Commit Protocol . 31

2.9 Total Order One-phase Commit Protocol . 34

2.10 Total Order Commit with Write Skew Check 35

2.11 Total Order Anycast Protocol . 36

3.1 SCast Client Interactions . 45

3.2 SCast Service Interactions . 46

3.3 Message History Array . 52

3.4 Order History Array . 52

3.5 Amcast Wait Queue . 53

4.1 ABcast Protocol Components Overview . 71

4.2 Reliable Broadcast Interactions . 75

4.3 RB1 (RB-Validity) Calculations . 81

4.4 RB2 Calculations - Worse Case . 84

4.5 RB2 Calculations - Simplified Scenario . 85

4.6 Base Atomic Broadcast protocol . 89

List of Figures ix

4.7 ABcast Protocol Components with AFC . 99

4.8 AFC: The effect of z̄ decreasing on ez̄ . 102

5.1 Order History with Correct ABcast Ordering (G4) 109

5.2 Order History with ABcast Order Failure (G4 Violation) 109

5.3 PSCast: TM tx_queue and tx_history . 117

5.4 PSCast: TM tx_queue and tx_history Executing a Roll-back 117

5.5 PSCast: Roll-back Scenario with WSC . 123

5.6 PSCast: Deadlock Scenario with WSC . 125

6.1 AmaaS Latency Comparison . 132

6.2 AmaaS Throughput Comparison . 133

List of Tables

6.1 Average Node Statistics for Emulated Transaction Experiments 131

6.2 Average ABcast Statistics per Node . 132

6.3 Aramis deliveries for Infinite Clients - ρmin = 1 141

6.4 Average ABcast Latencies and Calculated ∆m - ρmin = 1 141

6.5 Summary of ρmin and R when node crashes occur 145

6.6 Aramis deliveries before GMS detects node crash (R = 0.9999, ρmin = 1) 146

6.7 Aramis deliveries before GMS detects node crash (R = 0.9999, ρmin = 2) 146

6.8 Aramis deliveries before GMS detects node crash (R = 0.9999, ρmin = 3) 147

6.9 Aramis deliveries before GMS detects node crash (R = 0.99999, ρmin = 1) . . . 147

Chapter 1

Introduction

The emergence and proliferation of mainstream cloud computing has facilitated the creation of

a large number of Internet-scale web services and applications. Such services serve millions of

users across the globe simultaneously and are required to cater for increasingly large numbers

of read and write operations on data. Furthermore, these data operations need to occur in the

range of milliseconds in order to provide the low-latency experience expected by the user’s of

these services. Cloud computing is ideal for such workloads, as it enables the web service to

scale horizontally by dynamically acquiring resources as the rate or size of requests increases.

Traditionally, applications would utilise a Relational Database Management System (RDBMS)

for storing and retrieving data. However, as Internet scale services such as Facebook, Twit-

ter and Google continued to receive increasing numbers of user requests, it became clear that

RDBMS systems were unable to provide the low-latency responses required by these ser-

vices when operating at such scale [56]. Therefore it became necessary to seek alternatives

to RDBMS which can maintain small response times when operating under such conditions.

The traditional approach to scaling RDBMS, was to scale vertically, by utilising increas-

ingly powerful and expensive servers to handle application requests. Such an approach is not

truly scalable as the maximum levels of performance will always be limited by the capabilities

of the latest technology, the cost of hardware and the associated running costs. Alternatively,

it is possible to horizontally scale RDBMS solutions by partitioning data across several nodes

in order to increase the number of machines that can handle requests. However, as RDBMS

systems depend on a rigid data-schema to structure data, horizontal partitioning is difficult in

practice and often requires input from system administrators to maximise its effectiveness [32].

2

The emergence of cloud computing as a cost effective model, combined with RDBMS’s

inability to scale elastically 1, has led to the emergence of NoSQL databases as an alternative

storage solution. These databases typically offer simpler data models and more relaxed consis-

tency criteria than traditional RDBMS systems, in order to: (i) avoid the need for predefined

data schemas that hinder elasticity and (ii) reduce the overhead of maintaining data replicas

across multiple nodes [12]. Consequently, NoSQL stores are highly elastic and are also suited

to improving availability through replication, as we explain below.

NoSQL databases can effectively utilise horizontal scaling in order to service an increasing

number of application requests, whilst also providing increased fault-tolerance, via data replicas

that are distributed throughout the cluster. Utilising multiple data replicas allows for increased

levels of throughput as application read requests can be serviced by multiple nodes simulta-

neously. However, a consequence of utilising distributed replicas is that each write operation

requires several Remote Procedure Calls (RPC) in order to maintain a consistent state between

all of the data replicas; with consensus being required between data replicas for each write oper-

ation, as all replica hosts must perform write operations on a given value in the same order. The

cost of obtaining consensus between replicas, coupled with the additional latency cost associ-

ated with RPCs, is the primary reason for many NoSQL databases choosing to provide weaker

consistency guarantees than the traditional 1-copy serialisability provided by ACID transactions

in RDBMS.

Infinispan [35, 54] is an open source NoSQL database developed by Red Hat, Inc [62] that

utilises the RAM of its host machines to store data, which is exposed to applications using a

key/value model. When Infinispan is horizontally scaled over multiple nodes it provides two

options for distributing key/value pairs: full and partial replication. Full replication stores a

replica of every key/value on each Infinispan node in the cluster, and consequently is not scal-

able beyond a small number of nodes. Conversely, partial replication only stores each key/value

pair on a small subset of nodes contained in the cluster and as a result is very scalable when

the specified replication factor is small; where the replication factor is the number of distinct

nodes at which each key/value pair is replicated [66].

Unlike many NoSQL databases, Infinispan provides support for ACID transactions, how-

1Where elasticity is defined as the ability to add or remove nodes from a system without requiring manual
intervention or a large performance overhead.

3

ever it utilises reduced levels of isolation compared with the traditional 1-copy serialisability in

order to improve performance and scalability. Infinispan’s distributed transactions are coordi-

nated between nodes in a peer-to-peer (P2P) manner, using either the classical 2-Phase commit

protocol or a lock free total order commit protocol that relies on an atomic multicast protocol.

Existing research [64] shows that utilising the latter improves performance compared to the

2-Phase commit protocol with respect to transaction abort rates, latency and throughput. This

increase in performance is due to the latter’s reliance on a total order of messages, as opposed

to lock acquisition, which ensures that all data replicas perform write operations in the same

order, thereby avoiding deadlocks as no locks are used.

The total order commit protocol provided by Infinispan consistently outperforms 2-Phase

commit. However, our performance evaluation (§ 6) shows that the performance of the un-

derlying atomic multicast protocol currently used for coordinating these transactions does not

scale as the number of nodes involved in a transaction becomes greater than 3; with the average

transaction latency and throughput, increasing and decreasing respectively. The atomic multi-

cast protocol’s inability to scale is acceptable when both the replication factor and the number

of write operations in a transaction is low, however when the replication factor is greater than 2

or the number of write operations in a transaction is greater than 1, performance will deteriorate.

For example, if a transaction consists of 3 write operations that are to be performed on distinct

key/value pairs, and Infinisipan utilises the default replication factor of 2, then the total number

of nodes involved in that transaction can be anywhere between 2 and 6 nodes depending on

how the keys are distributed across the Infinispan cluster. Hence, it is probable that the total

number of destination nodes involved in the atomic multicast that is required to coordinate the

transaction will be greater than 3 and therefore transaction performance will be poor.

The scalability problem stated above is not unique to Infinispan’s atomic multicast protocol,

rather the same limitations apply to any distributed system that utilises P2P protocols to coor-

dinate transactions containing partially replicated data. With these observations in mind, the

problem statement for this thesis is formulated below.

1.1 Problem Statement 4

1.1 Problem Statement

To design alternative protocols for totally ordered multicasts between subsets of cluster nodes,

in order to improve throughput and latency when coordinating transactions in partially repli-

cated environments.

1.2 Our Approach

In this thesis we advocate an alternative approach to coordinating distributed transactions, which

unlike P2P protocols does not require ordering consensus to be reached between peers. Our

approach consists of building two key components:

i An external ordering service that enables atomic multicasts between Infinispan nodes

(SCast).

ii A non-blocking atomic broadcast protocol for state machine replication within the order-

ing service (ABcast).

The external ordering service is an alternative to the P2P approach currently utilised by

Infinispan. This service consists of a dedicated set of nodes acting as a replicated state machine

which provides a total order value for any multicasts required by Infinispan nodes. The rationale

behind this approach is that the number of nodes required to reach a consensus on a message’s

total order is limited to the number of nodes in the ordering service. Therefore, as the number

of nodes participating in a transaction increases, the time required to reach a consensus remains

constant, hence the problems associated with P2P protocols in partially replicated environments

are circumvented.

Prior to this research, the throughput capabilities of such a service were limited by the pro-

tocols available for replicating state between the nodes providing the ordering service. Existing

coordination services, such as Zookeeper [34] and Chubby [11], utilise Quorum based proto-

cols for state machine replication. Such protocols are advantageous as they do not block in the

event of node crashes, however they are dependent on a ’leader’ node for coordinating replica-

tion which becomes a performance bottleneck as the number of required replications increases.

Such protocols are less attractive for our ordering service, as the service requires a node’s state

1.3 Thesis Contribution 5

to be replicated each time an ordering request is received and requests are expected to occur

frequently.

An alternative approach to the Quorum based protocols, are group membership dependent

atomic broadcast protocols. Such protocols do not utilise a leader node and provide the best

possible throughput and latency when no node crashes occur. However, when node crashes

do occur, message delivery to the application is blocked until the group membership service

informs the participating nodes that a failure has occurred. This blocking makes these protocols

equally less attractive for use within an ordering service as a single service node crash will

prevent the ordering service from providing a total order on Infinispan’s multicast messages,

which in turn prevents any transaction in the Infinispan cluster progressing.

Motivated by the limitations of these existing protocols, the second aspect of our research is

the development of a hybrid atomic broadcast protocol that can be utilised for fault-tolerant state

machine replication. This protocol combines a deterministic atomic broadcast, which provides

low-latency message delivery in the absence of node failures, and a probabilistic protocol for

non-blocking message delivery in their presence; the latter guarantees atomicity with a proba-

bility close to 1.

As this hybrid possible allows for probabilistic message delivery, it is possible for messages

to be miss-ordered, therefore in the context of an ordering service it is possible for clients relying

on this service to also suffer order violations. Therefore, a key aspect of our work is exploring

in detail various strategies that can be adopted by an ordering service to mitigate such ordering

violations as well as the additional logic required by client nodes consuming a probabilistic

service.

Throughout this thesis we have utilised Infinispan as a basis for designing and implementing

our solutions. Infinispan was utilised because it is entirely open source and already provides

support for coordinating ACID transactions via atomic multicasts. Furthermore, given that

this research was funded in its entirety by Red Hat, Inc who are responsible for developing

Infinispan, our choice was natural.

1.3 Thesis Contribution

The research presented in this thesis makes several key contributions:

1.4 Thesis Structure 6

i A new system model, Atomic Multicast as a Service (AmaaS), for coordinating dis-

tributed transactions in partially replicated environments and a new fault-tolerant atomic

multicast protocol that has been designed specifically for AmaaS.

ii A hybrid atomic broadcast protocol called ABcast, which is designed for providing state

machine replication within the AmaaS model. ABcast provides low-latency message de-

livery in the absence of node failures and non-blocking message delivery in their presence,

by utilising both a deterministic and probabilistic atomic broadcast protocol to deliver

messages up the network stack.

iii An extensive performance evaluation of both the AmaaS model and the ABcast protocol.

1.4 Thesis Structure

Chapter 2 - Background

Presents the key prerequisite information required to understand the problem domain.

Chapter 3 - AmaaS

Introduces a new system model for coordinating partially replicated transactions, that we

call Atomic Multicast as a Service - AmaaS. This new model is inherently different from

the P2P approach previously utilised by the Infinispan database, therefore we formalise

a new fault-tolerant atomic multicast protocol, SCast, for coordinating transactions that

utilises AmaaS.

Chapter 4 - ABcast

Presents the rationale, design assumptions and important implementation details for the

hybrid atomic broadcast protocol ABcast. As well as detailing AFC, a bespoke flow-

control protocol designed for ABcast.

Chapter 5 - Probabilistic SCast

Explores the consequences of utilising the ABcast protocol for state machine replication

between service nodes in the AmaaS model. More specifically, it focuses on the potential

repercussions of message miss-orderings at the service level and how they can impact

client nodes that depend on the ordering service.

1.4 Thesis Structure 7

Chapter 6 - Performance Evaluation

Provides a thorough performance evaluation of the AmaaS model compared to the exist-

ing P2P approach, as well as investigating the effect of utilising different atomic broad-

cast protocols within the AmaaS service. Furthermore, we evaluate the performance of

the ABcast protocol when node failures occur, in order to ascertain the effectiveness of

the protocols non-blocking message delivery.

Chapter 7 - Conclusions

Presents a summary of the findings presented throughout this document and speculates

on potential future research made possible by our findings.

Chapter 2

Background

2.1 Network Communication Paradigms

Solutions to distributed problems are commonly associated with one of two paradigms: Syn-

chronous and Asynchronous communication. Each paradigm has defining characteristics that

can be both beneficial and limiting depending on a system’s requirements. This section de-

fines both of the common paradigms, before introducing a third paradigm that is central to our

research.

2.1.1 Synchronous

Synchronous communication refers to a communication model, in which, a fixed upper bound

can be placed on the communication delay experienced when sending data packets between any

two nodes in the network. If a data packet exceeds this upper bound then the transmission is

deemed to have failed due to a timing failure, requiring the data packet to be retransmitted.

In order to successfully calculate the fixed upper bound on communication delays a syn-

chronous network needs to establish an upper bound on the number of faulty nodes present in

the network, the maximum load of the network and the transmission rate of data packets[15].

These requirements make the synchronous paradigm unsuitable for use in middleware and dis-

tributed database systems, as such systems are typically executed on commodity hardware.

Therefore, none of our contributions utilise the synchronous paradigm.

2.1 Network Communication Paradigms 9

2.1.2 Asynchronous

The Asynchronous communication model does not define a known upper bound on communi-

cation or processing delays, instead these delays are considered finite and arbitrary, resulting

in the performance bounds required in the synchronous model becoming redundant[15]. Plac-

ing no bounds on network load or the number of faulty nodes makes the asynchronous model

much more flexible than the synchronous approach, enabling the asynchronous model to be

implemented over various network topologies that utilise commodity hardware.

A limitation of the asynchronous model is the inability to distinguish between a slow or a

crashed node, due to the lack of an established upper bound on communication delays. Con-

sequently many applications using the asynchronous model must rely on configurable timeout

parameters, which can result in false suspicions; where a slow node is incorrectly suspected of

having crashed. Conversely, it is also possible for the time outs to be too large, resulting in the

system waiting longer than necessary to detect a crashed node.

The inability to distinguish between slow and crashed nodes leads to the FLP impossibil-

ity discovered by Fischer, Lynch and Patterson[27]. The FLP impossibility formally proves

that it is impossible for distributed consensus to be achieved in a deterministic manner in an

asynchronous environment when a single crashed node is present.

2.1.3 Probabilistically Synchronous

Recent papers have called for an alternative to the asynchronous model to be utilised when

designing distributed systems. Aguilera and Walkfish[1] argue that the asynchronous model

is inherently unsafe. They believe that removing assumptions about synchrony at the lower

layers of a system can sacrifice liveness throughout the system. Furthermore the inability to

distinguish between a crash and a slow process can result in users of a system having to guess

on the appropriate action to take in order to remedy the situation, potentially violating safety.

Ezhilchelvan and Shrivastava[22] introduce a new communication model, Probabilistic Syn-

chronous Model (PSM), which aims to overcome the previously stated issues with asynchrony.

PSM is based upon the assumption that, in datacentres and cluster-based environments, there

is a correlation between the past and near future "performance" of the network; where perfor-

mance is the probability distribution of delays. The recent past performance of the network

2.2 Atomic Broadcast and Multicast Protocols 10

can then be used as an input parameter for distributed protocols, which utilise these values to

calculate probabilistic guarantees. Monitoring the recent past performance of the network also

enables protocols to utilise time outs that are considered accurate to a certain probability, R.

Therefore enabling processes to be distinguished as either slow or crashed with the probability

of false suspicions being 1−R.

2.2 Atomic Broadcast and Multicast Protocols

Atomic broadcast and atomic multicast protocols, abcast and amcast for short, are one-to-many

network protocols that provide specific guarantees on message delivery to ensure that messages

are delivered reliably and in the same order at all destinations; where message delivery is defined

as the passing of a message up the network stack to a higher level protocol or application.

Below we consider the guarantees required by broadcast and multicast protocols, in order

for them to be considered atomic. For the purpose of brevity, we refer only to amcast here,

however these guarantees also apply to abcasts. The following guarantees must be maintained

to ensure that a multicast is atomic, with regard to the delivery order and the set of destinations

that deliver the message.

G1 - Validity: If the source of mi does not crash until it amcasts mi, then all operative desti-

nations of mi deliver mi.

G2 - Uniform Agreement: If the source of mi crashes while amcasting mi, and if any destina-

tion delivers mi, then all operative destinations of mi must deliver mi.

G3 - Uniform Integrity: If mi has already been delivered by a destination d, then d cannot

deliver mi again.

G4 - Uniform Total Order: If two amcasts, mi and m j, have common destinations, then all

such destinations that deliver both mi and m j, must deliver them in an identical order (i.e.

either < mi,m j > or < m j,mi >)

As previously stated, message delivery is a one-time, irreversible operation that occurs when

a message is passed up from the amcast protocol to the next layer in the network stack. Once a

2.2 Atomic Broadcast and Multicast Protocols 11

message has been delivered, it cannot be undelivered, therefore any violations of message guar-

antees cannot be undone at the amcast level. Therefore meeting G1-G4 presents two challenges,

C1 and C2, that need to be met by all amcast protocols.

Consider m is to be amcast to a set of destinations m.dst, where m.dst contains the source

of an amcast message, as the receiving of the message incurs no additional network cost and

enables the source application to receive its own message. C1 and C2 are stated below:

C1 - If an operative d ∈ m.dst receives m, then every operative d′ ∈ m.dst must be able to

receive m so that G1 and G2 are not violated.

C2 - Every d that receives m must determine a safe moment to deliver m so that G3 and G4

are not violated.

Meeting both C1 and C2 is not a trivial task, as such there is a large amount of literature[16]

on amcast protocols spanning several decades. From the literature, it is clear that there exists

two distinct approaches to solving the challenges of abcast and amcast; Group Membership

and Quorum based based protocols. This section will describe each of these approaches and

explore notable examples of each approach.

2.2.1 Atomic Broadcast vs Atomic Multicast

So far we have considered abcast and amcast protocols to be one-to-many network protocols,

that must satisfy guarantees G1-G4 in order to be considered atomic. However, there are key

differences between broadcast and multicast protocols. Below we provide a definition for both

broadcast and multicast protocols and explore the strengths and limitations of each type.

2.2.2 Broadcast

In the literature[16] broadcast protocols, and hence abcast, are defined as a one-to-many net-

work protocols that only allow messages to be sent between a single destination set, with all

destinations in the set receiving each broadcast. For example if the total number of destinations

is equal to 5, then |m.dst|= 5 is always true.

Restricting one-to-many communication to a single destination set can provide performance

benefits over protocols that allow multiple destination sets, when the size of the destination set

2.2 Atomic Broadcast and Multicast Protocols 12

is small (e.g. |m.dst| < 5). This is because such protocols can employ various optimisations,

such as as piggybacking meta information on messages, as they know that m.dst remain the

same for all broadcasts when no node failures occur. Furthermore, broadcast protocols do not

have the overhead of handling more complex message routing problems such as the overlapping

subset problem described in 2.2.3.

Due to m.dst always being the same, the scalability of single destination set protocols is un-

derwhelming, with performance degrading dramatically as the number of destinations increase.

2.2.3 Multicast

In contrast to broadcast protocols, multicast protocols allow different messages to be sent to

multiple destination sets. Such protocols fall into two categories, those that only allow disjoint

destination sets and those that allow overlapping destination sets.

The creation of disjoint amcast protocols is trivial, as the majority of abcast protocols can

be converted into disjoint protocols with only a few minor adjustments [16]. Disjoint protocols

are not applicable to Infinispan, as the ability to only multicast to disjoint sets of destinations

does not provide a solution to either the partial or full replication problem, as described in 2.5.

Creating amcast protocols that support overlapping destination sets is a challenging task, as

any destination contained in two overlapping subsets has to satisfy G4 for all messages involved

in both destination sets. Say node a multicasts mi to m.dst = {a,b,c} and node d multicasts

m j to m.dst = {b,c,d} the challenge is ensuring that the common destinations {b,c} deliver

both messages in the same order; either mi before m j or vice versa. Furthermore, solving C2

becomes more difficult as we need to ensure that {b,c} do not miss mi or m j, in a way that is

not overly-restrictive on performance.

It is worth noting that, by definition, a amcast protocol can always be converted to a abcast

protocol as the multicast protocol can simply multicast all messages with the same destination

set.

2.2.4 Group Membership based approaches

This section details the Group Membership (GM) approach to solving the problem of creating

abcast and amcast protocols, before providing an example of a GM based amcast protocol. For

2.2 Atomic Broadcast and Multicast Protocols 13

the remainder of this section, we consider amcast protocols, however the use of GM is also

applicable to abcast.

The GM approach to amcast protocols refers to a group of protocols that rely on a higher

level service/protocol to maintain a current view of nodes that are correct (not crashed). The

amcast protocol leaves all crash detection to the GM protocol, and assumes that the latest view

vi issued by the GM protocol is representative of the network’s current state. When the GM

service detects that a node has crashed, it publishes a new view v j, which the amcast protocol

will utilise until a subsequent view is published. The amcast protocol is responsible for ensuring

that guarantees G1-G4 are maintained by taking appropriate action upon receiving a new view

from the GM service.

GM dependent protocols always operate on the assumption that the current view vi provided

by the GM protocol is accurate. A consequence of this is that when vi no longer represents

the actual state of the network, |vi| ̸= |ActiveNodes|, the amcast protocol will block until v j is

published. This blocking will result in a loss of availability for any amcast messages required by

higher level protocols/applications, however it is necessary to ensure that G1-G4 are maintained.

Upon receiving v j, the amcast protocol will safely remove any messages that have been received

from the crashed node, but have not yet been delivered by any destination (G1). A virtually-

synchronous[8] closure is typically used to ensure that all amcast messages sent by the crashed

node, that have been delivered by at least one correct destination, are delivered by all of the

remaining destinations (G2).

Newtop

Newtop[23] is a GM based amcast protocol developed by Ezhilchelvan et al. that supports

multicasting to overlapping destination sets. It utilises acknowledgements and logical clocks,

to ensure that C1 and C2 are met, respectively.

To ensure that C1 is met, the delivery of a message m, sent by m.o, is delayed until each

d′ ∈ m.dst −{m.o} has acknowledged m by sending ackd′(m) to every d ∈ m.dst and each

d ∈m.dst has received ackd′(m)∀(m.dst \{m.o,d}). This ensures that it is impossible to violate

C1, as every d has confirmation that m has been received by all members of m.dst. C2 is

addressed by each m and each ackd′(m) being tentatively timestamped with a value that is one

2.2 Atomic Broadcast and Multicast Protocols 14

more than the timestamp ever seen or used by the respective source [46]. Once m and the

ackd′(m) of every d′ ∈m.dst−{m.o} are received, d ∈m.dst finalizes a timestamp (m.ts) for m

as the largest of all these tentative timestamps.

Figure 2.1 shows how timestamps and logical clocks are used to finalise a timestamp for a

given m; where each node’s logical clock is represented as LC and each message contains a ref-

erence to m, the address of the source node sending the message and the associated timestamp.

Coordinator N1 N2 N3

LC=4amcast(m)

Send Amcast multicast(m, N1 7)

LC=7 LC=10

LC=11
LC=8

deliver m

Finalise
Timestamp

ack(m, N2, 8) ack(m, N2, 8)

ack(m, N3, 11)
ack(m, N3, 11)

Finalise
Timestamp

Finalise
Timestamp

deliver m

deliver m

LC=8

LC=11 LC=11

Fig. 2.1: Newtop Protocol Sequence Diagram

When d delivers every received m as per (finalized) m.ts, all guarantees are met. Proofs are

in [8, 23, 46] and the intuition is given below.

Since m.ts is finalized only after having received a tentative timestamp from every node in

m.dst, for any d ∈ m.dst, m.ts cannot be smaller than any of the tentative timestamps proposed

for m, when d finalizes m.ts, it must have received any m′ whose m′.ts could be finalized as

m′.ts < m.ts. So, if d finalizes m.ts before finalizing m′.ts, it will wait for m′.ts to be finalized

before delivering m.

Say, d′ ∈ m′.dst − {m.o} is crashed; When d ∈ m′.dst does not receive ackd′(m′), it is

blocked from finalizing m′.ts until the GM protocol confirms that d′ is crashed and ackd′(m′)

2.2 Atomic Broadcast and Multicast Protocols 15

does not exist (through virtually synchronous closure). Say, d has proposed ackd(m′).ts and also

it finalizes some m.ts while d′ remains crashed (Note: d′ is not in m.dst). If m.ts > ackd(m′).ts,

d is also blocked from delivering m until m′.ts is finalized, because d knows that m′.ts can be

finalized as m′.ts < m.ts.

Node d

m’ without ackd’(m’) = 10

m1 = 12

mn = 25

m2 = …

Largest Ts proposal received for a Message

:= Blocked Message

Fig. 2.2: Newtop Timestamp Blocking Diagram

Figure 2.2, shows the stages detailed above. Messages m1 cannot be delivered until m′.ts has

been finalised, i.e. the crashed node d′ has been detected by the GM service and node d finalises

m′.ts as it knows that ackd′(m′) will never be received. The largest proposed ts for mi can only

increase with time, therefore the longer the GM service takes to detect d′ has crashed, the larger

n in the figure becomes. Thus, when amcasts are initiated by an application, a large delay

between a node crashing and the GM service detecting it, results in an increased probability

of many nodes receiving amcasts that have the crashed node in their destination set. As the

number of nodes participating in amcasts involving the crashed node increases, the size of n

also increases, resulting in more finalized amcasts that cannot be delivered to the application.

Ultimately leading to a loss in the system’s liveness, as no progress can be made by any node

waiting for an acknowledgement from a crashed node, until the GM service detects the node

crash.

2.2 Atomic Broadcast and Multicast Protocols 16

Although the Newtop protocol blocks in the presence of node crashes, in their absence it

provides the smallest achievable latency available to amcast protocols. This is because Newtop

finalises m.ts within 2× xmx, where xmx is the maximum message latency between the nodes in

m.dst. Therefore allowing the protocol to deliver messages within 2× xmx when blocking does

not occur.

Finally, if the Newtop protocol is utilised in a single destination environment, hence as a

abcast protocol, it is possible to finalise m.ts and deliver messages with a single broadcast

from m.o. This is achieved by all d piggybacking ackd(m) on subsequent messages, therefore

reducing the load on the network and increasing throughput.

2.2.5 Quorum Based approach

This section details the canonical example of a Quorum based abcast protocol. It is possible to

solve amcast utilising a quorum based protocol, however it is a non-trivial task which is beyond

the scope of this thesis, therefore we only consider abcast protocols.

Quorum based abcast protocol are abcast solutions that utilise a master node to coordinate

slave nodes. The master node is responsible for sending all messages, and proposing m.ts,

which is confirmed when it receives ack(m) from a majority of nodes; hence the name quorum-

based. Thus each abcast requires at least 3 communication steps, resulting in a minimum

latency of 3× xmx.

The advantages of such protocols is that they preserve liveness in the presence of node

failures, this is because messages can still be delivered, without blocking, when the number

of slave failures is less than |m.dst
2 | − 1. However, mild blocking does occur whenever the

master node is suspected of crashing, as it is necessary for a new master node to be elected

before abcast delivery can resume. Furthermore, as the master node requires a quorum of

acknowledgements to proceed, it is not possible for such protocols to be utilised when |m.dst|<

3.

Paxos

Paxos[47][48] is arguably the most famous distributed consensus algorithm, in part because of

its notoriety as a difficult algorithm to understand, but more notably that it was the first provably

2.2 Atomic Broadcast and Multicast Protocols 17

resilient consensus algorithm for asynchronous networks. Although the FLP [27] impossibil-

ity states it is impossible for a deterministic consensus algorithm to guarantee progress in the

presence of node failures, Paxos is considered resilient as it guarantees safety, at the expense of

availability, in such circumstances. As consensus and abcast are equivalent problems[16], what

holds for Paxos holds for any abcast.

Although the Paxos algorithm has a reputation for being difficult to understand and even

harder to implement, the protocol has been widely utilised in both research and industrial set-

tings. The most famous example of which is its use in the distributed locks system Chubby

[11], which was created by Google for coordinating their internal services. In addition to the

basic Paxos algorithms, there exists many variations of Paxos that allow the protocol to cater

for different application needs [52], such as: handling byzantine failures [50], reducing total

message cost [51], reducing latency [49] and increasing throughput [53, 65].

In addition to this suite of Paxos protocols, there is also the increasingly popular RAFT

protocol developed at Standford University by Ongaro et al. [58]. RAFT provides all of the

safety guarantees provided by Paxos, however it has been designed with understandability and

simplicity of implementation in mind. This has led to widespread adoption of the protocol in

distributed systems, with open source implementations of the protocol now available for the

majority of mainstream programming languages.

The remainder of this section provides a brief overview of how the basic Paxos algorithm

can work as an abcast protocol. We examine the protocol from the perspective of both master

and slave nodes.

Master

1. Propose, propose(m, p.s), an abcast m to m.dst with a sequence number p.s.

2. Wait x amount of time for a quorum of nodes to respond. If a quorum cannot be

reached in x then abort and start a new proposal. If a quorum is reached in favour of

rejecting p.s, then record the largest sequence number returned p.s′, set the masters

local sequence to greater than p.s′ and start a new proposal. If a quorum is reached

in favour of accepting p.s, then send a commit commit(m, p.s) to all m.dst.

3. If the majority of m.dst respond with an accept accept(m, p.s) message, then the

abcast is considered successful, otherwise start a new proposal.

2.3 Coordination Services 18

Slave

1. Upon receiving a proposal, compare its sequence p.s with the highest sequence that

this node has currently agreed to, p.s′. If p.s> p.s′ then reply with an accept(m, p.s),

otherwise send a re ject(m, p.s) message with p.s′ to the proposer node.

2. When a commit(m, p.s) message is received, if this node agreed to p.s then m has to

be delivered.

2.3 Coordination Services

Coordination services are centralised systems that can be utilised by distributed systems to pro-

vide commonly required services that aid process coordination. Examples of such services are:

distributed lock management, low-volume storage and naming. System engineers can imple-

ment these features without using a coordination service, however these features are very com-

plex due to their distributed nature[11]. A coordination service hides this complexity, enabling

the engineer to focus on the core functionality of their system. Furthermore, incorporating a

coordination service into an existing system only requires calls to the services API, whereas

retrospectively introducing distributed services into even the simplest of systems is fraught with

difficulties.

Coordination systems are usually used by a system to store data that is crucial to their

operation, therefore high availability and fault-tolerance are required. Typically, coordination

services are implemented as a state machine ensemble, consisting of a small number of nodes1

that are all replicas of each other. Maintaining a distributed state machine between service

nodes allows the service to maintain availability and continue to service client requests when

node failures occur within the service. Utilising multiple nodes can also increase the throughput

of the service, as each node can simultaneously process client requests and, in the case of read

requests, it can respond to the client without interactions with other replica nodes.

In order to maintain a consistent state across the service’s replicas, it is necessary for a

consensus to be reached between the replica nodes when a client’s request modifies the service’s

state. Without consensus the service’s state would become inconsistent between replicas and the

1Typically 3-5 nodes and certainly no greater than 10.

2.3 Coordination Services 19

distributed state machine would no longer be valid. Such an occurrence could be catastrophic

for client applications that depend on the service, as responses from different replicas could

return conflicting data, potentially causing an irrecoverable state amongst client nodes.

As consensus is essential to the correct operation of a coordination service, the underlying

consensus protocol used by the service greatly affects the characteristics and performance of the

service. For example the availability of the service when node failures occur or the throughput

and latency of client requests. Furthermore, it is also possible for the service to expose its con-

sensus protocol to client nodes, so that they can utilise its primitives in order to solve agreement

problems[30].

2.3.1 Chubby

Chubby[11] is a distributed lock manager developed by Google that is based upon the Paxos[47][48]

consensus algorithm. Chubby cluster’s typically contain five nodes, however only one node is

able to service a client’s read and write requests at any one time; this node is called the master.

The role of the master is to service client requests and to ensure that the state of all replicas

is updated when a write operation is requested. Client write requests are coordinated between

replicas using the Paxos consensus algorithm, with a client request being completed when a

Quorum of replicas have confirmed the write operation.

Figure 2.3 shows the basic steps involved when a write request is received by the chubby

master node; the master node receives the client request (stage 1), abcasts it to all slave nodes

(stage 2), before processing the request locally and sending a response back to the client node

(stage 3).

Chubby Coordination Service

Master Replica Replica

2. Abcast Request
3. Chubby Response

1. Client Request

Fig. 2.3: Chubby Write Request at Master Node

Figure 2.4 shows the steps required if a client request is received by a replica node instead

2.3 Coordination Services 20

of the master; the replica node forwards the client request to the master node (stage 1), at which

point the master node executes the request as if it was originally received by the master node

(stages 2-4).

Chubby Coordination Service

Master Replica Replica

3. Abcast Request

1. Client Request

2. Forward Request to Master Node

4. Chubby Response

Fig. 2.4: Chubby Write Request at Replica Node

The main advantage of the Chubby system is its focus on high availability and reliability,

with production instances reported to have executed for over a year. However, the limitations

of the chubby system are caused by its excessive use of the master node. Utilising a single node

to handle all read/write requests severely limits the system’s throughput as the master node will

always become a bottleneck as the number of requests to the service increases. Furthermore,

because Chubby utilises the Paxos consensus algorithm, the minimum number of nodes in a

chubby coordination service is 3 as a quorum needs to be reached between service members.

This can be a disadvantage in systems where fast writes are required.

2.3.2 Zookeeper

Zookeeper[34] is an open source general purpose coordination service released under the Apache

Software License Version 2.0 [2]. Similar to Chubby, Zookeeper also employs a master node, as

it utilises the quorum-based protocol ZAB[41] to update each replica. However, unlike Chubby,

in Zookeeper read requests from client nodes are not restricted to the master node, rather any

replica node can handle them. This is advantageous, as it reduces the number of requests that

the master node must handle, enabling the master to focus on servicing write requests and pro-

cessing its own read requests.

Figure 2.5 shows how Zookeeper services read and write requests from clients. Stages 1-3

are the steps executed when a client write request is received, with each replica required to

2.3 Coordination Services 21

Zookeeper Coordination Service

Master Replica Replica

2. Abcast Request
3. Zookeeper Response

1. Client Write Request

B. Zookeeper Response

A. Client Read Request

Fig. 2.5: Zookeeper Write at Master, and Read at Replica Node

forward a client write request to the master node. This process is identical to that utilised for all

requests in the Chubby system, as shown in figure 2.3. However, unlike in Chubby, client read

requests can be handled by any replica node including the master. Stages A and B, in 2.5 show

how a Zookeeper service handles client read requests that are received by replica nodes; with a

request being received by a replica node (stage A), and a response containing the latest version

of the requested data being returned to the client node (stage B).

Distributing read requests across the entire Zookeeper service mitigates the bottleneck ob-

served in the Chubby service, however the problem is not eradicated as all write requests are

still served by a single master node. This limitation results in Zookeeper services favouring

workloads that have a read/write ratio of 10:1. Furthermore, when client read requests are han-

dled by the replica nodes it is possible for stale values to be returned to the requesting client.

This occurs if a client requests a value from a replica that has missed an abcast by the master

node due to the replica not participating in an earlier quorum. Therefore, a Zookeeper service

can only be considered weakly-consistent.

2.4 In-Memory Databases 22

2.4 In-Memory Databases

In-memory databases[29, 33, 35, 59, 60, 66] are database systems that aim to provide scalable,

low-latency data storage. Data is stored in RAM to provide fast data access, and is partitioned

across multiple nodes in a cluster for scalability. In order to provide availability and durability

in the presence of node failures, each partition is replicated across distinct nodes; the number

of replicas utilised for each data partition is the Replication Factor (RF). Storing data in RAM

provides superior read/write performance to traditional disk-based databases, whilst the dis-

tributed nature of the database allows it to elastically scale by simply adding additional nodes

to store data partitions.

The emergence of simpler NoSQL based data models, such as key/value pairs, has enabled

in-memory databases to become a reality. Previously, RDBMS services were the de facto stan-

dard for database solutions, however their rigid structure greatly limits their ability to elastically

scale due to the difficulty of maintaining table structures and distributing records across multi-

ple nodes[12, 14]. Distributing data across many nodes is essential for in-memory databases,

not only to provide availability, but to provide sufficient storage capacity for a database system;

RAM per node is typically measured in gigabytes, whereas disk based storage is measured in

terabytes.

Finally, due to RAM being a volatile storage medium (i.e its state is lost when power is lost)

it is common for in-memory databases to provide a means for persistent storage in the event of

power-loss or node crashes. Typically, this is achieved through asynchronous write-requests to

a persistent database that utilises the same data model as the in-memory database. However, in

some deployments, such as distributed caches, this is forsaken in order to provide applications

with the lowest possible response time.

2.4.1 Replication Schemes

Typically, in-memory databases offer two types of replication schemes: full and partial replica-

tion.

Full Replication is a data scheme where each data partition is replicated on every distinct

node in the cluster, RF = |nodes|. This greatly limits the scalability of the database, as the total

number of RPCs required to update each key/value pair increases when additional nodes are

2.5 Infinispan 23

added to the cluster. Furthermore, the maximum storage capacity of the database will always

be equal to the RAM size of the least capable node in the cluster. The advantages of using

full replication is that it can provide high availability, with only a few cluster nodes, as well as

providing high-performance when workloads are read dominant; full replication is extremely

effective for creating a highly-available distributed cache that sits between the application and

a persistent data store.

Partial Replication is a data scheme where each data partition is replicated across a subset

of nodes in the cluster, with no node hosting more than a single replica of a given partition and

no node storing all partitions of the database [66]. The advantage of this partial replication, is

the total size of the database is not limited by the weakest node, rather the collective memory

pool of all nodes in the cluster and the RF configured by the system administrator. Therefore,

elastic scalability is possible as the database’s capacity can be increased by simply adding an

additional node to the cluster. Ultimately, the scalability of a partially replicated database is

determined by the size of RF ; a high RF value (RF > 3) will provide high levels of availability

and fault-tolerance at the expense of write latency (as all RF replicas need to be updated);

whereas too low a value will provide low-latency writes at the expense of fault-tolerance and

availability. Defining the optimum size of RF and the total number of nodes required within an

in-memory database is a non-trivial task which is explored in detail in [17].

The total capacity of a partially replicated database can be expressed as:

Memory−Sys.Reserve
RF

Where Memory is the total amount of RAM available across the cluster, Sys.Reserve is the

RAM required by other system resources (operating system etc.) and RF is the configured

replication factor.

2.5 Infinispan

Infinispan [35, 54] is an open-source in-memory database system developed by Red Hat, Inc

[62]. that provides users with a JSR-107 [39] compliant, key/value data model. It can be used

as a distributed cache, or as a transactional NoSQL key/value store, and supports both full

2.5 Infinispan 24

and partial replication. From its inception Infinispan has been designed to be highly-scalable,

this section describes how Infinispan has addressed the challenge of implementing scalable

transactions, and the limitations of their current solutions.

As previously stated (§ 2.4.1), full replication is not scalable, therefore the rest of this docu-

ment will focus on the challenges posed by partial replication schemes; henceforth any reference

to key/value replication assumes partial replication. Furthermore, all references to read/write

operations are assumed to be in the context of Infinispan transactions, non-transactional opera-

tions are not considered.

2.5.1 Key Distribution

A key challenge of implementing distributed data stores is ensuring that each node in the cluster

is aware of where each data item is located, so that any node can access data when required.

This problem is further exasperated by Infinispan’s need to elastically scale.

A naive solution is for each node in the cluster to maintain meta-data about each key/value

pair stored in the database, however the maintenance of such data would create a large overhead.

Not only would the database require additional space to store the meta-data, but it would also

have to update the meta-data stored on each node in the cluster every time a node was added or

removed from the cluster. Clearly this is not a scalable solution.

Infinispan solves this problem by utilising a modified consistent hashing algorithm[35, 42,

64] to determine where key/value pairs should be stored; the algorithm utilises the key as a

parameter for computing the hash. The hashing algorithm divides the cluster into segments,

with each hashed key mapping to a single segment, and associates RF nodes with each segment.

The nodes for each segment are stored in an ordered list, with the index of a node determining

its replica status. Nodes stored at index 0 are considered the primary owner of all keys stored

in that segment, and nodes with an index greater than 0 are considered backup owners; primary

owners are used by Infinispan to coordinate various database operations; backup owners store

data purely for fault-tolerance.

Utilising this consistent hashing algorithm means it is possible for a node to determine the

primary and backup location of any key k in the cluster by calling hash(k). This enables any

node in the cluster to deterministically calculate the storage location of any key/value in the

2.5 Infinispan 25

database without a single RPC, therefore reducing the number of RPCs and aiding scalability.

2.5.2 Key/Value Operations

Infinispan provides implementations of all of the operations specified in JSR-107[39], as well

as additional operations for interacting with the underlying key/value store. However, two op-

erations get(k) and update(k,v) are particularly significant as they provide the foundations of

more complex operations. In this section we detail the purpose of each of these operations, as

well as the cost and workflow of these operations with respect to RPCs.

Get

The get(k) operation is a simple read-only operation that returns the value, v, associated with

the key, k. This operation may require RF RPCs in order to retrieve v, as it is possible that the

operation is executed on a node that does not host the segment which contains k. Hence, it is

necessary for v to be retrieved from a remote node.

Infinispan performs get(k) as follows: If the local node, n, executing get(k) hosts k, then

simply return the local v associated with k. Otherwise, n must send an RPC to all RF nodes

contained within k’s segment to request the latest value of k. Figure 2.6 shows the RPCs required

for a get(k) operation when k is not hosted on the node executing the operation.

Fig. 2.6: Infinispan Get Operation

2.5 Infinispan 26

Update

The update(k,v) operation associates the key, k, with a new value v irrespective of the previous

value associated with k. Unlike get(k), the update operation always requires at least one RPC

when RF > 1, as k’s association with v must be propagated to all RF replicas in k’s segment.

Figure 2.7 shows the RPCs required by update(k,v) when the primary replica for k is hosted on

the node executing the operation. N.B. when update(k,v) is executed on a node that does not

contain any replicas of k, then the RPCs required will be the same asin Figure 2.6.

Fig. 2.7: Infinispan Update Operation

2.5.3 Transactions

Unlike many NoSQL databases Infinispan can be used as a transactional data-store, with both

the JTA[40] and XA[69] standards supported. Both optimistic[45] and pessimistic transactions[5]

are provided, however optimistic transactions are used in the default Infinispan configuration in

order to reduce contention and the chance of deadlock. The traditional Two Phase Commit

protocol (2PC)[4] is utilised for implementing the locking strategy in both optimistic and pes-

simistic transactions. In addition to the two traditional lock based transactions, Infinispan also

offers a lock-free total order transaction scheme that relies on an atomic multicast protocol to

coordinate transactions.

The remainder of this section details the topology of Infinispan transactions, the relaxed

ACID guarantees that they provide, and an in-depth explanation of how transactions are coor-

dinated using locking (2PC) and lock-free (Total Order) schemes.

2.5 Infinispan 27

2.5.3.1 Transaction Topology

For all transaction flavours offered by Infinispan, the following always applies. A Transaction

(T x) is executed locally by the transaction coordinator T x.c, before a prepare prepare(T x)

message is sent to all nodes T x.dst involved in the T x. Only get(k) operations are executed

locally by T x.c. Once all get() operations have been satisfied locally, the values of k are included

in a prepare(T x) message that is sent to T x.dst. Each member of T x.dst then validates T x,

validate(T x), before committing T x commit(T x). It is only during the commit(T x) operation

that write operations are executed and these operations are only executed on nodes that host a

key that is being inserted or updated. For example if k is stored on N1 and N2, the operation

update(k,v) will only be executed by nodes N1 and N2.

Note, Infinispan does offer some operations, such as put(k,v), that require a get(k) to be

executed locally by T x.c, followed by update(k,v) at the nodes hosting k, however for the sake

of brevity it is assumed that all operations are exclusively read or write. Furthermore, write

operations are often executed on nodes other than the host of a key being updated so that they

can be stored in a local cache in order to reduce the total number of RPCs, however this opti-

misation is not core to the Infinispan protocol and can be disabled, therefore this functionality

is also omitted for the sake of brevity.

2.5.3.2 Relaxed ACID

Infinispan transactions abide by the ACID[31] properties, however the Isolation and Durability

guarantees are more relaxed than those provided by traditional RDBMS transactions; Dura-

bility is relaxed as a consequence of RAM being volatile, and Isolation level is relaxed from

the traditional 1-copy serialisability in order to reduce the overhead of maintaining distributed

transactions in a partially replicated context.

Durability

Infinispan provides two mechanisms for providing durability: the first is the use of redundant

key backups, i.e. the replication factor, and the second is an optional mechanism that allows

key/value pairs to be persisted to a separate persistent database. The latter is available in two

different configurations, write-through and write-beyond.

2.5 Infinispan 28

Write-through is a synchronous operation, that ensures that an insert/update operation on

an Infinispan key will not complete until the value has been updated in the cache and it has

been updated at the persistent store. This ensures that the contents of the cache will always be

consistent with the persistent store, therefore guaranteeing that in the event of a system wide

crash all committed key/value pairs will be preserved. The disadvantage of this approach is

that the users of the cache lose the performance benefits provided by in-memory storage as

any update/insert operation will always take at as long as storing the pair in a persistent store.

Ultimately, write-through is only an appropriate solution in read-heavy workloads that require

a strong emphasis on durability.

Conversely, write-beyond offers asynchronous persistence. Key/value updates and inserts

complete as soon as the operation has completed in the cache, and the values are persisted in the

background using a separate thread to the users request. This ensures that the users operation

is returned as quick as possible, and low-latency is maintained, however it presents a small

window in which the cache is not consistent with the persistent data store. Therefore, it is

possible for the most recent key/value write operations to be lost if all nodes containing RF

backups simultaneously crash or the entire cluster goes down.

Isolation

Infinispan does not provide support for 1-copy serialisability in its transactions, instead it pro-

vides two different isolation criteria: Read Committed (RC) and Repeatable Read (RR).

RC - All calls to a key get(k) return the last value of k committed by a transaction.

RR - The value returned by the first call to get(k) will be used for all subsequent calls to get(k)

within a transaction.

RC is advantageous as it ensures that all calls to get(k) always return the last committed

value of k at the time of the get(k) operation, however each call to get(k) may require a RPC as

k may not be stored on the local node due to k only being partially replicated across the cluster.

Thus, RC can be detrimental to performance in transactions that consist of multiple reads to the

same key. If such transactions are prevalent in a workload, it may be advantageous to utilise RR

isolation in order to reduce the total number of RPCs required by a transaction.

2.5 Infinispan 29

Infinispan implements RR by storing the value returned by get(k) in the transaction man-

ager’s context, and simply returns the stored value for any subsequent calls to get(k) within this

transaction. A consequence of adopting RR is that the potential for stale values to be utilised by

a transaction, T x j, increases. This occurs if another transaction, T xi, commits before T x j and

updates k, as T x j will still be utilising the previously committed value of k. If T x j attempts to

perform a write operation utilising this stale value of k, then the values committed in T xi will be

ignored; this is referred to as a write-skew. To detect when write-skews occur, Infinispan pro-

vides an optional Write Skew Check (WSC) that enables transactions to be aborted when such

anomalies are detected2.

The WSC determines whether a read operation, v = get(k), in a transaction T x j, has been

invalidated by a concurrent transaction T xi committing a update(k,v′) operation during the

lifetime of T x j. If T xi has committed a write operation on k between T x j performing get(k)

and update(k,v+1), then the WSC will detect this and allow the transaction manager to abort

T x so that the erroneous value v+1 is not committed.

2.5.3.3 Two-phase Commit Protocol

The Two-phase commit protocol (2PC)[4] is the traditional approach to coordinating distributed

transactions, and as such its benefits and limitations are well understood. Infinispan utilises the

2PC protocol for coordinating both optimistic and pessimistic transactions.

Example Scenario

Consider the following scenario: a node N1 executes a transaction T x that consists of a sin-

gle write operation update(k,v), however the primary and backup of k are stored on N2 and

N3 respectively, therefore it is necessary for T x to be committed at N1,N2 and N3 (T x.dst =

N1,N2,N3). To ensure that all three nodes come to the same conclusion about the transaction,

whether to commit or abort, the 2PC protocol is used.

2WSC is only available when Repeatable Read isolation is utilised, as write-skews are not possible with Read
Committed isolation.

2.5 Infinispan 30

Protocol Details

The 2PC is leader-based consensus algorithm that is specifically designed for coordinating dis-

tributed transactions, as the name suggests the protocol consists of two distinct phases: voting

and commit.

Voting Phase. The transaction coordinator T x.c, (T x.c = N1) sends a prepare, prepare(T x),

message to all T x.dst. Upon receiving the prepare(T x) message, all members of T x.dst will

validate, validate(T x), the transaction and decide whether the T x should be committed or

aborted. Once a decision has been made by a node, it sends its vote, vote(T x), to T x.c, and

awaits further instructions.

Commit Phase. Once the T x.c has sent prepare(T x) to all T x.dst, and has validated T x,

it waits to receive a vote(T x) from all T x.dst. If all T x.dst respond with a commit verdict,

then T x.c sends a final commit message, commit(T x), to all T x.dst, and commits T x locally.

However, if T x.c receives a single vote in favour of aborting T x, then T x must be aborted, so

T x.c sends a abort message abort(T x) to all T x.dst; T x.c does not need to wait for all vote(T x)

before issuing abort(T x), instead abort(T x) is issued as soon as the first abort vote has been

received. Finally, upon receiving a commit(T x) or abort(T x) each member of T x.dst will abort

or commit T x locally.

Figure 2.8 shows all of the sequences involved in 2PC based upon the example scenario,

and assumes that all T x.dst vote in favour of committing T x.

Key Locking

As previously stated, Infinispan has the notation of primary and backup owners of key/value

pairs. This is utilised by many functions within Infinispan, but one of the most important uses

is for determining which data replica should be locked during write transactions. Infinispan

always locks the primary owner of k for write operations, never a backup, therefore allowing

each transaction to acquire a lock on k at a single node. Thus limiting the number of RPCs

required to one, instead of RF RPCs. For example in the previous scenario, if the primary

owner of k was N2 and the backup N3, then the write lock for k would only be acquired at N2.

The time at which k’s lock is acquired is a defining characteristic of how transactions are

handled. Infinispan provides two different approaches, the more cautious Pessimistic trans-

2.5 Infinispan 31

Coordinator N1 N2 N3

prepare(Tx)

validate(Tx) validate(Tx)
vote(Tx)

vote(Tx)

commit(Tx)

commit(Tx)
commit(Tx)

commit(Tx)

execute(Tx)

Fig. 2.8: 2PC Sequence Diagram

actions which utilises pessimistic locking, and Optimistic transactions that utilises optimistic

locking. Each approach is detailed below along with the benefits and limitations of each ap-

proach.

Pessimistic Locking. When pessimistic locking[5] is used, the lock on k is acquired the

first time that a write operation is performed on k in T x and it is held until T x either commits or

aborts.

Tx.begin();

update(k,v); // Lock is acquired

Tx.commit(); // Lock is released

This means that a RPC is issued for every write operation in the transaction, at the time the

operation is encountered. Not only does this result in an increase in network traffic, due to the

number of RPCs required being equal to the number of write operations, but it also means that

locks are held for a longer period of time, increasing the likelihood of deadlocks occurring 3.

Optimistic Locking. When optimistic locking[45] is used, the lock on k is only acquired

during the prepare(T x) phase of the transaction. This means that no additional RPCs are re-

quired for locking, instead the lock is acquired by k’s primary owner when it receives prepare(T x)

3Details of which can be found in the next section "2PC Limitations".

2.5 Infinispan 32

from T x.c and T x is processed locally. The lock is then released by k’s primary owner when T x

commits or aborts.

Acquiring locks during the prepare phase of a transaction means that is possible for a write-

skew (§ 2.5.3.2) to occur, therefore an optimistic transaction can be aborted due to failing the

WSC (if enabled). However, acquiring locks during the prepare phase also reduces the total

number of RPCs required by a transaction, which can improve scalability and throughput.

Optimistic locking is the default locking strategy employed by Infinispan, henceforth all

references to lock-based transactions in Infinispan assume optimistic locking.

2PC Limitations

The key limitation of utilising the 2PC protocol with locking (both optimistic and pessimistic)

is that it is susceptible to deadlocks. Deadlocks occur when two concurrent transactions are

trying to acquire a lock on the same set of keys. Consider a situation where T x and T x′ are

executing concurrently, and both transactions want to write to key k1 and k2. It is possible for

T x to acquire a lock on k1 with update(k1), and T x′ to acquire k2’s lock with update(k2). In

this scenario, it is impossible for either T x or T x′ to progress as both are waiting to acquire the

locks held by each other, hence deadlock.

Infinispan utilises timeouts in order to recover from deadlocks, with a default timeout of

10 seconds. The transaction coordinator will wait a maximum of 10 seconds for k’s lock to

become available, if k’s lock does not become available during this period, then the transaction

coordinator aborts the transaction. The limitations of this approach are that it is possible for

false suspicions to occur, as transactions can timeout due to other circumstances, such as high

network load. Furthermore, in workloads where high levels of contention are present, deadlock

becomes increasingly likely, resulting in more transactions aborting, which ultimately leads to

a drop in transaction throughput and Infinispan’s request latency increasing.

2.5.3.4 Total Order Commit Protocol

In addition to the 2PC locking approach, Infinispan also provides a lock-free total order commit

protocol, that provides the same guarantees as 2PC (Read Committed, or Repeatable Read)

without locking key/values during write operations.

2.5 Infinispan 33

The key benefit of a total order commit, is that it does not utilise locks to ensure ACIDity.

Instead it utilises the guarantees (G1-G4 § 2.2) provided by abcast and amcast protocols to

ensure that transactions are processed sequentially and in the same total order at all destinations.

The absence of locks removes the potential for distributed deadlocks, which reduces the total

number of aborting transactions, therefore an increase in transaction throughput is expected.

Ruivo et al.[64] conducted a thorough performance evaluation of the Total Order Commit

protocol, utilising Red Hat’s bespoke benchmark, RadarGun[61], and the industry standard

benchmark, TPC-C[67]. For each benchmark they found that when RC or RR consistency

guarantees (§ 2.5.3.2) were utilised, the transaction abort rate was reduced dramatically when

key/value pairs were exposed to both high and low levels of contention. As expected this re-

sulted in an increased throughput rate and a reduction on the average latency encountered per

transaction. The difference between abort rates when comparing 2PC locking and Total Order

Commit, was much smaller when the benchmarks were performed using RR consistency with

the WSC enabled. This is because when the WSC check is enabled it is possible for transactions

to abort if a key/value pair has become invalidated by another concurrent transaction. However,

despite the difference in abort rates being reduced, the Total Order Commit protocol still pro-

vides a marked improvement in transaction throughput and latency over the 2PC approach.

In addition to eliminating deadlocks, the use of total order commit allows transactions to be

committed in only one phase (1PC) when RR or RC is used. The workings of 1PC and how the

WSC is executed in Total Order commits are explored below.

One-Phase Commit

Consider the scenario in 2.5.3.3. The transaction coordinator T x.c, (T x.c = N1), executes the

transaction locally (i.e. all get(k) operations are resolved) and sends prepare(T x) using an

atomic multicast protocol to T x.dst. Because prepare(T x) is sent to T x.dst using an amcast

protocol, we can guarantee that all T x.dst will receive prepare(T x) in the same total order.

Therefore if RR or RC is used, each transaction can be committed as soon as it is received by a

node without violating Infinispan’s ACID properties. Figure 2.9 , below, shows the sequences

involved in a 1PC transaction.

2.5 Infinispan 34

Coordinator N1 N2 N3

prepare(Tx)

validate(Tx) validate(Tx)

commit(Tx) commit(Tx)commit(Tx)

execute(Tx)

Send Amcast

validate(Tx)

Fig. 2.9: Total Order 1PC Sequence Diagram

Two-Phase with WSC

If RR is utilised with WSC enabled, the total order commit becomes a two-phase protocol. The

first phase is the same as above, with T x.c sending prepare(T x) to all T x.dst using an amcast

protocol, however it is not possible to commit the transaction instantly, instead an additional

voting stage is required. All T x.dst validate the transaction based upon the WSC criteria and

decide whether the transaction should be committed or aborted, this vote vote(T x) is then sent

to T x.c. The T x.c waits to receive a vote(T x) from all T x.dst, before sending a commit(T x) or

abort(T x) to all T x.dst. Finally, upon receiving a commit(T x) or abort(T x) each member of

T x.dst will abort or commit T x locally.

The overhead of this additional phase is slightly reduced by two minor optimisations. First,

the T x.c does not have to receive a vote from all replicas hosting a key, just one, as the process-

ing of a transaction is deterministic it is guaranteed that all replicas reach the same conclusion

during WSC validation. Secondly, like 2PC, as soon as a single abort(T x) vote is received by

T x.c the transaction is aborted.

Figure 2.10 shows the sequences involved in a transaction that utilises the WSC. In this

figure we have assumed that T x.c receives vote(T x) from both N2 and N3 before sending

commit(T x), however, as stated above, this is not essential, and it is valid for T x.c to have

only received vote(T x) from N2 or N3 before sending commit(T x).

2.5 Infinispan 35

Coordinator N1 N2 N3

prepare(Tx)

validate(Tx) validate(Tx)
vote(Tx)

vote(Tx)

commit(Tx)

commit(Tx)
commit(Tx)

commit(Tx)

execute(Tx)

Send
Amcast

Total Order

WSC

Fig. 2.10: Total Order Commit with WSC Sequence Diagram

2.5.3.5 Total Order Anycast - Atomic Multicast Protocol

Total Order Anycast (TOA)[64] is the amcast protocol currently utilised by Infinispan for coor-

dinating Total Order transactions (2.5.3.4). It is a GM dependent protocol that, like Newtop[23],

utilises logical clocks and acknowledgements, to solve C1 and C2 (2.2) respectively.

TOA’s structure is very similar to the 2PC protocol, in that it also consists of two distinct

phases (shown in Figure 2.11), both of which are required for a message m to be delivered. The

ack phase requires that all destinations in m.dst acknowledge the message origin m.o, and the

delivery phase involves m.o instructing all m.dst to deliver m. Thus the ack and delivery phases

are the equivalent of the vote and commit phases, respectively.

The ack phase consists of all d′ ∈ m.dst−{m.o} acknowledging m by sending ackd′(m) to

m.o. Once m.o has received all ackd′(m), the ack phase is complete, and C1 is guaranteed as all

m.dst are known to have received m.

The delivery phase in TOA is necessary to ensure that all m.dst know the final total order

of m. Like the Newtop protocol, TOA ensures C2 by piggybacking the timestamp of a sending

node’s logical clock onto all m, ack(m) and deliver(m) messages sent from that node. However,

in TOA the final timestamp of m is always finalised by m.o after the ack phase has completed,

with the deliver(m) message dictating the final timestamp of m to all m.dst in order to dictate

m’s place in the total order. Figure 2.11 shows the communication stages required for amcasting

2.5 Infinispan 36

m between nodes N1, N2 and N3.

Coordinator N1 N2 N3

multicast(m)

Timestamp(m) Timestamp(m)
ack(m)

ack(m)

deliver(m)

deliver m
deliver m

deliver m

amcast(m)

Send
Amcast

Ack Phase

Delivery
Phase

Finalise
Timestamp

Fig. 2.11: Total Order Anycast Sequence Diagram

The advantage of utilising m.o as a central coordinator, opposed to all m.dst acknowledging

each other, see Figure 2.1, is that the total number of messages involved in a single amcast is

reduced as |m.dst| increases. The total remote message cost for TOA and Newtop is expressed

below:

Let x = |m.dst| − 1. In TOA, m.o transmits 2x messages and the other nodes in m.dst

transmit 1 ack each. So TOA’s message cost is 3x. Whereas, in Newtop, each node in m.dst

sends x messages each, hence the cost is x(x+1). Note that:

x(x+1)> 3x ∀ x > 2

i.e. when |m.dst|> 3.

TOA Limitations

The TOA protocol suffers from the same limitations as other GM based protocols, such as

NewTop, most notably that message delivery is blocked in the presence of node failures. In the

context of Infinispan total order transactions, a crashed node c will cause all transactions that

interact with c to block until the GM service issues a new view. This causes the liveness of all

nodes interacting with c to be lost in the interim period, as the blocked transactions will not be

2.6 JGroups 37

able to commit, resulting in a loss of throughput.

Another limitation of the TOA protocol is that it does not scale well as the number of desti-

nations N increase. All multicast protocols incur 1−> N communication (i.e. m.o multicasting

m to all m.dst) as it is necessary for each destination to receive m. However, N− > 1 commu-

nication (i.e. N destinations in m.dst sending an acknowledgment to m.o) is expensive, as the

total time taken is equal to the slowest N. Therefore, any protocol that relies on N− > 1 com-

munication is more liable to encounter slow or crashed nodes as N increases, and is ultimately

more likely to block. This means that as the number of operations in a transaction increases

and keys become more distributed, the latency involved in each transaction will also increase,

severely hampering Infinispan’s ability to scale elastically.

Finally, the TOA implementation used by Infinispan does not guarantee uniform agreement

(§ 2.2) when a message originator crashes. Consider the scenario shown in Figure 2.11. If the

coordinator N1 fails after sending deliver(m) to N2, but before sending the same message to N3,

then N2 delivers m but N3 cannot as it never received deliver(m) from N1.

2.6 JGroups

JGroups [38] is a network framework written in the Java programming language, which pro-

vides implementations of many network protocols that can be utilised on their own, or as part

of a network stack. Furthermore, the framework provides an abstraction that allows users to

write their own network protocols that can be utilised within the network stack alongside ex-

isting JGroups protocols. Infinispan utilises the JGroups framework for all distributed commu-

nication and consequently all of the network protocols presented in this thesis have also been

implemented using the JGroups framework.

As previously stated, the JGroups framework provides implementations of various network

protocols. Of particular interest to this project are TOA and GMS, as they are both utilised by

Infinispan for atomic multicast and group membership services, respectively. The TOA proto-

col has already been discussed in detail in section 2.5, therefore the remainder of this section

details the inner working of GMS and the protocols from which it depends. It is necessary to

detail these protocols in order to show that, with a very high probability, node crashes will be

detected within a matter of seconds by the GMS protocol. Furthermore, the inner workings of

2.6 JGroups 38

these protocols are essential for understanding the design decisions made in chapter 4 and the

experiments conducted in chapter 6.

Group Membership Service

The GMS protocol keeps track of the current members of the network group by issuing network

views, with each view containing the address of each respective member. Upon a node joining

or leaving the network, a new view is issued to all nodes whose address appears in the updated

view of the network. The purpose of the GMS protocol is to update the current view of the

network when changes occur, however it does not detect these changes itself, instead it relies on

lower level protocols in the JGroups stack. Discovering new nodes is trivial, therefore the inner

workings of these operations are not detailed further. However, the detection of node failures is

non-trivial, due to the FLP impossibility stated earlier, and as such the GMS protocol relies on

three other protocols to detect node crashes. These three failure detection protocols are called

FD_SOCK, FD_ALL and VERIFY_SUSPECT ; all of which pass a SUSPECT message up the stack

when a node is suspected of crashing. The remainder of this section details the workings of

each protocol as well as providing a short conclusion that states how effective these protocols

are at correctly identifying a node as crashed.

FD_SOCK

FD_SOCK is the lowest of the three protocols in the stack, and it utilises a ‘ring’ of TCP sockets,

which is established between each node in the current view, to detect if one or more nodes

become inoperative 4. If a node’s TCP socket is abruptly closed, then FD_SOCK suspects that the

node has crashed and issues a SUSPECT message. Conversely, if a node wishes to leave the view

gracefully, i.e it has not crashed, then a leaving message is sent around the ring of TCP sockets

before the node closes its socket. This leaving message is sent when the JGroups shutdown

hook is activated during the normal shutdown process of a Java program (calling System.exit()

or requesting the process is terminated gracefully at the OS level).

4All of the experiments detailed in this thesis utilise UDP packets for sending unicasts, however the TCP
sockets are still open as part of the FD_SOCK protocol and are present purely for failure detection.

2.6 JGroups 39

FD_ALL

FD_ALL is a failure detector protocol that utilises a simple heartbeat protocol [3] to issue SUSPECT

messages. Each node periodically sends a heartbeat message to all other nodes in the current

view, and suspects another member of crashing if a heartbeat message has not been received

after a specified timeout. By default, FD_ALL utilises a timeout value equal to 40 seconds with

each heartbeat message sent every 8 seconds.

VERIFY_SUSPECT

Finally, the highest failure detection protocol in the stack, is the VERIFY_SUSPECT protocol.

This protocol aims to reduce the chances of a node being falsely suspected of crashing by

intercepting SUSPECT messages, sent from lower in the stack, and attempting to contact the

suspected node for a final time. If no response is received within 1.5 seconds, then the SUSPECT

message is sent upto the GMS protocol and the node will be excluded from the current view.

Otherwise, the original SUSPECT message is discarded as the suspected node must be alive if it

was able to respond to this protocol.

Summary

When utilised simultaneously the three protocols described above provide an effective method

for detecting node crashes, with initial experiments showing that the FD_SOCK protocol was

particular effective at detecting crashed nodes due to it not relying on large timeout values.

Furthermore, due to the combination of TCP sockets, the large timeout of FD_ALL and the

additional waiting period of VERIFY_SUSPECT, the probability of a node being falsely suspected

of crashing is very small.

Chapter 3

AmaaS - Atomic Multicast as a Service

This chapter introduces the concept of providing amcast messaging as a service to members of

a cluster.

First we describe the rationale behind Amaas, then we explore the requirements of such a

service and the challenges involved in meeting them. This is followed by the introduction of

SCast - an amcast protocol that utilises the AmaaS model. Finally, we discuss the limitations

of existing abcast protocols in the context of an AmaaS ordering service, and propose the need

for a new non-blocking abcast solution.

3.1 Rationale

Total order commit protocols can be utilised by distributed systems to coordinate transactions

without the use of locks. They reduce the abort rate of transactions when contention is high, as

system deadlocks cannot occur when distributed locks are not present. Therefore, they can aid

scalability and improve transaction throughput [64].

The limiting factor of a total order commit protocol is the underlying mechanism used to

provide atomic guarantees on message delivery. For example, the amcast protocol, TOA, cur-

rently utilised by Infinispan, does not scale well as the number of destinations N increase, as

N− > 1 communication is expensive (§ 2.5.3.5). Similarly, other GM protocols such as New-

top [23], exasperate the problem, as the number of messages required to perform an amcast

increases dramatically as N increases. Finally, quorum based protocols provide even less scal-

ability, than GM based protocols, as their inability to amcast messages to disjoint sets of nodes

3.2 System Model 41

typically requires all nodes in the cluster to participate in an abcast.

As the atomic multicast protocols required by the total order commit protocol are inherently

unscalable, we argue that transaction coordinators should not be burdened with the responsi-

bility of reaching a consensus on transaction ordering. We propose that transaction ordering

should not be conducted between the transaction coordinator and the Infinispan nodes partic-

ipating in the transaction, rather transaction ordering should be provided by an independent

ordering service. This decoupling of ordering and transactions, allows the transaction coordi-

nator to request and receive a total order from the service, before multicasting its prepare(T x)

message to all nodes participating in the transaction. Such an approach results in the number of

nodes involved in a transaction having no effect on the total number of nodes participating in

consensus, instead the number of nodes in a transaction only increases the number of unicasts

required when sending the transaction’s prepare(T x) message 1.

The most efficient implementation of such an ordering service, in terms of latency, would

consist of a single node providing transaction ordering to all Infinispan nodes. However, as the

progress of all Infinispan transactions is dependent on this ordering service, it is necessary for

crash-tolerance to be provided. Therefore, we envisage such a service consisting of a dedicated

set of nodes which act as a single state machine, with consensus being required amongst all

nodes within the service, when a new ordering request is received from an Infinispan transaction.

Hence, such an approach limits the number of nodes required to reach a consensus on ordering

to the total number of nodes providing the ordering service, regardless of the number of nodes

involved in a transaction.

We call this system model Atomic Multicast as a Service (AmaaS), and refer to the existing

Infinispan approach as peer-to-peer (P2P). The next section of this chapter provides a detailed

description of this system model.

3.2 System Model

The AmaaS approach introduces the concept of a dedicated set of nodes providing ordering

to disjoint sets of nodes involved in distributed transactions. We define the nodes providing

1Such a cost is unavoidable as the number of destinations will always determine the minimum number of
unicasts required to disseminate a prepare(T x) message.

3.3 AmaaS Requirements 42

the ordering service as service nodes, s-nodes for short, and denote them as Ns1 . . .Nsn, where

n≥ 2. As we consider a crash-tolerant ordering service essential, we do not consider n = 1. We

refer to the consumers of this ordering service as client nodes, or c-nodes for short, and denote

them as Nc1 . . . Ncx; where x is the total number of c-nodes utilising the ordering service.

For all unicasts sent between correct nodes, we assume that messages are sent via a reliable

network protocol, such as TCP[13] or Reliable UDP[63], and they arrive within some unknown

delay bound. Furthermore, all references to a message being multicast assumes that the message

is unicast to all of the destinations in the message’s destination set. Therefore, if all unicasts

between correct nodes are guaranteed to be received, it is also guaranteed that all multicast

messages sent between correct nodes will eventually be received by all destinations.

In our system model we assume that any node, both s-nodes and c-nodes, can crash at any

time, however we do not consider other types of node failures such as byzantine failures. In

order to detect node crashes we assume that a GM service and associated failure detection

protocols, such as the ones detailed in section 2.6, are utilised by both service and client nodes.

We assume that a node crash will eventually be detected by the GM service and an updated

view of the current network will be received by all nodes once the GM service has detected the

crash; hence all nodes within the current view will eventually know of a crash and receive a new

view. Furthermore, we assume that client and service nodes utilise their own GM service, as

it is envisaged that the service will operate independently of the client nodes. Therefore, if an

s-node crashes, only s-nodes will receive a new view, with clients only becoming aware of the

s-node crash when they interact with the ordering service. Similarly, if a c-node crashes, only

c-nodes will receive a new view.

3.3 AmaaS Requirements

The AmaaS model consists of two distinct entities: s-nodes and c-nodes. This section will

explore the requirements that need to be met in order for the AmaaS model to be effective. We

consider requirements from the perspective of both client and service nodes.

3.4 SCast: Atomic Multicast Protocol for AmaaS 43

Client Requirements

CR1 A c-node must be able to send amcasts to multiple destination sets that may overlap.

CR2 A c-node should be able to submit its amcast requests to any one of the correct s-nodes.

CR3 Upon receiving amcast m j via the ordering service, a c-node must be able to deduce every

mi that is ordered before m j and has itself as a multicast destination:

all mi : c-node ∈ mi.dst ∩m j.dst and mi is ordered before m j

Service Requirements

SR1 The service must provide crash-tolerance (|s-nodes|> 1).

SR2 The service must be highly available and non-blocking in the event of an s-node crashing

or even being suspected of having crashed.

SR3 All s-nodes must process client requests in the exact same order.

SR4 All s-nodes should be able to handle client requests.

3.4 SCast: Atomic Multicast Protocol for AmaaS

We have developed a protocol for the AmaaS model, which we call SCast; as the protocol offers

atomic ordering for multicast messages as a service, hence Service Multicast - SCast. The

SCast protocol enables atomic multicasting by c-nodes utilising an ordering service, precisely

defining the interactions required between c-nodes and the ordering service in order to ensure

the atomicity of each multicast.

Inside the ordering service, the SCast protocol maintains a replicated state machine amongst

s-nodes that stores the total order timestamps attributed to c-node requests. SCast’s ability to

meet requirements SR1 - SR3, is dependant on the characteristics of this underlying abcast

protocol utilised for state machine replication between s-nodes, with only SR4 guaranteed re-

gardless of the abcast protocol used 2. For example, consider requirement SR2. If the under-
2This can be guaranteed even if a leader based abcast protocol is utilised, as client requests can simply be

forwarded to the leader node. Such an approach can be seen in both Chubby and Zookeeper

3.4 SCast: Atomic Multicast Protocol for AmaaS 44

lying abcast protocol is GM based, then message delivery will block in the event of a node

crash, therefore it is not possible for SR2 to be met with a GM based protocol as the s-nodes

will become blocked if an s-node fails. Ultimately the performance and liveness of an ordering

service implementing SCast is tightly coupled to that of the underlying abcast protocol which

is utilised for state machine replication between s-nodes.

As SCast defines how c-nodes interact with the ordering service and how s-nodes maintain

a replicated state, it is necessary for the protocol to be explained from the perspective of both

client and service nodes. In the explanations below, for simplicity, we assume that Infinispan

is executing a 1-Phase Total Order transaction, without a second WSC phase, and that the

transaction has already been successfully executed locally. Finally, we refer to a collection of

s-nodes providing the amcast service as the ordering service.

3.4.1 Protocol Overview

Client Nodes

Stage 1 of the client SCast protocol starts once a transaction coordinator, T xi.c, has completed

its local execution of T xi and it is ready to amcast a prepare(T xi) message to T xi.dst as required

by the total order commit protocol. The key stages of the SCast protocol from the perspective

of a client node are detailed below:

C1 Choose and Inform Backup Coordinator - Transfer the contents of T xi to a backup

coordinator.

C2 Request Ordering - Send an ordering request req(T xi) to, and wait for a response mes-

sage rsp(T xi) from, the service.

C3 Receive Ordering and Multicast Transaction - Receive rsp(T xi) and multicast T xi with

its ordering data to all d ∈ T xi.dst as mcast(T xi).

C4 Order Transaction - Receive mcast(T xi) from T xi.c, and deliver T xi locally with respect

to its specified place in the total order.

Figure 3.1 illustrates the four key stages of the SCast protocol outlined above. Note, that

for any d ∈ T xi.dst, that is not T xi.c, only step 4 of the protocol is required. The content and

3.4 SCast: Atomic Multicast Protocol for AmaaS 45

significance of the operations req(T xi), rsp(T xi) and mcast(T xi) are discussed in section 3.4.3.

Ordering Service
Nc3Nc2 Nc4

Txi.c

Nc1

C2. Send req(Txi)

C3. Receive rsp(Txi)
 Send mcast(Txi)

C1. Delegate
 Backup

Receive req(Txi)

Send rsp(Txi)

C4. Order Transaction - Txi

Fig. 3.1: SCast Client Interaction Diagram

Service Nodes

Stage 1 of the service protocol starts when an ordering request, req(T xi), is received by an s-

node, Ns1. It is anticipated that each s-node will handle many requests simultaneously, however

for the sake of brevity our explanations assume that the service is only handling a single request

at a given time. The key stages of the SCast protocol from the perspective of Ns1 are detailed

below:

S1 Receive Request - Receive client request req(T xi).

S2 Send Atomic Broadcast - Process req(T xi) and abcast it to all s-nodes in the service,

abcast(T xi).

S3 Update Ordering Data - Deliver abcast(T xi) locally and update the stored ordering data

to include T xi.

S4 Return Ordering - Sends a response message, rsp(T xi), to T xi.c, which contains all of

the data required by c-nodes to order T xi.

Figure 3.2 illustrates the four key stages of the SCast protocol outlined above.

3.4 SCast: Atomic Multicast Protocol for AmaaS 46

Fig. 3.2: SCast Service Interactions Diagram

3.4.2 Atomic Multicast Guarantees

The SCast protocol is a deterministic amcast protocol, therefore for all amcasts the protocol

ensures that guarantees G1-G4, as stated in section 2.2, are met.

3.4.3 Protocol Details

In this section we explore the inner workings of each stage of the SCast protocol detailed in

3.4.1. We describe each stage in the order in which they are executed by the protocol, and

assume a single transaction T xi is attempting to amcast its prepare() message to all T xi.dst.

For the sake of clarity, each stage of the protocol utilises the same numbering and naming

scheme as section 3.4.1. Furthermore, all stages which are enacted by c-nodes are distinguished

by an offset background and vertical bar in the left margin.

1. C1 - Delegate Backup Coordinator

For the purpose of crash-tolerance, the first stage of the protocol is for T xi.c to create

a backup coordinator; where T xi.c denotes the original coordinator for transaction

T xi. T xi.c selects any destination, d, d ∈ T xi.dst, and sends it the payload of the

message that is to be multicast to T xi.dst (prepare(T xi)). T xi.c then waits for an

acknowledgement of receipt from d before proceeding to stage 2 of the protocol. If

an acknowledgement is received, d is designated as the backup coordinator T xi.bc.

However, if an acknowledgement is not received within a configurable amount of

3.4 SCast: Atomic Multicast Protocol for AmaaS 47

time, then T xi.c simply selects another destination d′ from T xi.dst and restarts the

process.

The purpose of creating a backup transaction coordinator is to allow for the possibil-

ity that T xi.c may crash during the multicast process. In the event of T xi.c crashing,

the group membership service for c-nodes detects the crash and the backup coordina-

tor assumes responsibility for multicasting prepare(T xi) to all d ∈ T xi.dst−{T xi.c}.

In order to accommodate such occurrences, we denote the currently active transac-

tion coordinator as T xi.c̃, the original coordinator as T xi.c and the backup as T xi.bc;

T xi.c̃ = T xi.c if T xi.c does not crash or T xi.c̃ = T xi.bc, otherwise.

When T xi.c̃ takes over from the crashed T xi.c, it completely restarts the multicast

process and selects another node from T xi.dst to be a backup coordinator. In the un-

likely event that the original coordinator and multiple backup coordinators crash, it is

possible that there wont be a member of T xi.dst left to utilise as a backup coordinator.

In which case a backup will not be created, as T xi.c̃ will be the last destination alive

in T xi.dst, therefore if T xi.c̃ crashes the transaction is aborted by default.

2. C2 - Request Ordering

Once a backup coordinator has been established, it is possible for the transaction

coordinator to request a multicast ordering from the service. Amcasts are initi-

ated by the T xi.c randomly selecting a s-node, Ns, from the ordering service and

sending an amcast request to that node - req(T xi)− > Ns; where req(T xi) con-

tains T xi.dst, T xi.c̃ and the unique id of the transaction, T xi.id. Hence, req(T xi) =

{T xi.id,T xi.dst,T xi.c̃}.

The content of the prepare(T xi) message is not sent to Ns as T xi.c only requires a

global order for T xi, therefore the contents of the message to be amcast to T xi.dst is

irrelevant and including it in the payload would increase bandwidth usage. However,

req(T xi) must include T xi.dst as this is the destination set of the amcast that T xi.c

is trying to send, and the ordering service needs this data to ensure that requirements

CR1, CR2 and CR3 are satisfied.

3.4 SCast: Atomic Multicast Protocol for AmaaS 48

Wait for a response from the ordering service . . .

If T xi.c̃ does not receive an ordering from the ordering service after a specified timeout,

then a different s-node, N′s, is selected and the ordering request is resent - req(T xi)−>N′s.

3. S1 - Receive Request

Upon receiving req(T xi), an s-node places the request in its Abcast Request Pool (ARP),

which holds client requests until they are abcast. If an s-node’s ARP becomes full, am-

cast requests are rejected and a reject response is sent to T xi.c̃. If T xi.c̃ receives a reject

response from all s-nodes, it can either abort T xi or resend the amcast request to an-

other s-node after a configurable amount of time 3. The ARP is necessary to ensure

that if the ordering service starts to become overloaded by client requests there is a ‘feed-

back’ mechanism that makes c-nodes aware of the service’s current limitations and allows

clients to restrict user operations if necessary.

4. S2 - Send Atomic Broadcast

A single thread, called the send thread, is utilised for retrieving requests from the ARP and

abcasting them to all s-nodes for ordering. The send thread retrieves an ordering request

from the ARP and sends an abcast, m, to all s-nodes containing the request. Requests are

retrieved from the ARP in the order that they were originally received (FIFO), however if

no requests exist in the ARP then the send thread waits for the pool to become non-empty

before resuming abcasting.

All abcast messages m, sent by an s-node, include the fields associated with T xi which

are sent as part of req(T xi) i.e.

m.tx_id = T xi.id

m.tx_c̃ = T xi.c̃

m.dst = T xi.dst

Furthermore, m also includes the the address of the sending s-node and a sequence num-

ber, as m.snid and m.seq#, respectively. Where m.seq# is an integer which increases by

3This cycle will not continue indefinitely, as eventually the transaction will timeout and abort.

3.4 SCast: Atomic Multicast Protocol for AmaaS 49

one every time an abcast is sent from this s-node.

5. S3 - Update Ordering Data

When an s-node, Ns, delivers m via abcast, it checks its records to see if it has already

processed a client request req(T xi) using the globally unique m.tx_id = T xi.id. If not, m

is accepted and processed via stages a-c detailed below; otherwise, the process detailed

in section 3.4.4 is initiated4.

a. Establishing a Total Order

Upon delivering and accepting m, Ns assigns a global order to m and the associated

m.tx_id, which is represented as m.order.

m.order = ts⊕m.seq#⊕m.snid

Where⊕ is the append operator and m.ts is the final timestamp provided by the underlying

abcast protocol that is utilised between s-nodes. As ts is generated by the underlying

abcast protocol and m.seq#⊕m.snid is specified before broadcast, it is guaranteed that

all s-nodes will produce the same m.ts.

b. Defining Total Order

The ordering of amcast messages, and hence transaction ordering, is defined as follows.

We denote that an amcast message m precedes another amcast m′ in the global total order,

i.e. m.order < m′.order as m≺ m′ and define this relationship as:

m≺ m′ =⇒ m.ts < m.ts

∨
(
m.ts = m′.ts∧m.seq# < m′.seq#

)
∨
(
m.ts = m′.ts∧m.seq# = m′.seq#∧ ranking(m.snid)< ranking(m′.snid)

)
Where ranking() is a deterministic function that returns an integer value for a given snid.

4Multiple client requests for T xi can be abcast between s-nodes as a consequence of T xi.c crashing, or timing
out, as these events result in req(T xi) being sent multiple times.

3.4 SCast: Atomic Multicast Protocol for AmaaS 50

Furthermore, we state that m, immediately precedes m′ in the total order if the following

statements are true:

(i) m≺ m′

(ii) There is no m′′ : m≺ m′′ ≺ m′

and we denote this relationship as m Î m′.

As SCast is an amcast protocol, it is possible for each m to have a different destination

set. Consequently, a message’s ordering also needs to be defined relative to the other

messages that have been received by each d ∈ m.dst. Therefore, let amcast m̃ precede m

for any destination d, if

d ∈ m̃.dst ∩m.dst ∧ m̃≺ m

and we denote this relationship as m̃≺d m.

Note: m̃ ≺d m =⇒ m̃ ≺ m, however m̃ ≺ m ≠⇒ m̃ ≺d m. For example, consider mi

and m j, if mi ≺ m j but mi.dst ∩m j.dst = {}, then it is not possible for mi to precede m j

for any d ∈ mi.dst.

Finally, we state that an amcast, m̃, immediately precedes m, with respect to destination

d, if:

(i) m̃≺d m

(ii) There is no m′ : m̃≺d m′ ≺d m

and we denote this relationship as m̃ Îd m.

c. Maintaining the Total Order

Once an order has been associated with T xi and m, it is necessary for the s-node to cal-

culate m.history[]. The purpose of m.history[] is to ensure that amcast guarantee G4, is

maintained by all d ∈ m.dst upon delivering m; as detailed in stage 8 of the protocol.

3.4 SCast: Atomic Multicast Protocol for AmaaS 51

We define m.history[] as an associative array that utilises the address of each d ∈ m.dst

as an index and stores the m̃.order value of m̃ that satisfies m̃ Îd m. If no m̃ Îd m exists,

then a null value is stored in its place. This is formalised below:

∀ d ∈ m.dst : m.history[d] = m̃.order

where m̃ Îd m

and Algorithm 1 presents the pseudocode for populating m.history for an amcast m.

Algorithm 1 Compute Message History
1: for all d ∈ m.dst do
2: if m̃ Îd m then
3: m.history[d]← m̃.order;
4: else
5: m.history[d]← null;
6: end if
7: end for

The m̃ values used to populate m.history[] are retrieved from Ns’s local ordering his-

tory, which is an associative array that utilises the same indexing scheme as history[] and

also stores past order values. We refer to this array as order_history[]. The purpose of

order_history[] is to maintain a history of amcast orderings for all known c-nodes; where

a known c-node is any node that has been involved in a prior transaction’s destination

set. Once Ns has populated m.history[] for m, it is necessary for m.order to be added to

order_history[] for all d ∈ m.dst, as m.order is now the latest amcast involving each d.

The Algorithm for populating order_history[] is presented in Algorithm 2.

Algorithm 2 Compute order_history[]

1: for all d ∈ m.dst do
2: if No order_history[d] exists then
3: create index order_history[d];
4: end if
5: order_history[d]← m.order
6: end for

For example, consider two ordering requests that have been abcast as mi and m j, with

destination sets equal to Nc1,Nc2 and Nc1,Nc3, respectively. Assume, that mi has already

3.4 SCast: Atomic Multicast Protocol for AmaaS 52

been delivered by an s-node Ns, and m j is now being processed by Ns; hence mi ≺ m j.

The calculated history for m j, m j.history[], is shown below in Figure 3.3.

Nc1

Nc3

Mi

null

Client Nodes <<d

Fig. 3.3: Message History Array

Once Ns has calculated m j.history[], it is necessary for m j to be added to the order_history[].

The resulting order_history[] is shown below in Figure 3.4.

Nc1

Nc2

Nc3

Ncn

Mj

Mi

Mj

Client Nodes Latest Message

Fig. 3.4: Order History Array

6. S4 - Return Ordering

At this stage the local s-node, Ns, has completed the ordering process for m, therefore it is

necessary for m to be sent to T xi.c̃ as a rsp(T xi) message in order for the amcast process

to continue; where rsp(T xi) consists of m.txid, m.tx_c̃, m.order, m.dst and m.history[].

To ensure that only one s-node responds to T xi.c̃, the rsp(T xi) message is only sent by

the s-node whose snid = m.snid.

Crash-Tolerance: Each s-node maintains a short history of rsp() messages as past mes-

sage orderings may be requested by c-nodes in certain circumstances 5.

5As described in section 3.4.4.

3.4 SCast: Atomic Multicast Protocol for AmaaS 53

7. C3 - Receive Ordering and Multicast Transaction

When T xi.c̃ receives rsp(T xi) from Ns, it appends the ordering information to the

original prepare(T xi) message and multicasts prepare(T xi) as mcast(T xi) to all

T xi.dst including itself; where a multicast consists of mcast(T xi) being unicast to

all d ∈ T xi.dst.

Crash-Tolerance: For the purposes of crash-tolerance, mcast(T xi) must be unicast

last to T xi’s backup coordinator when multicasting mcast(T xi) to all d ∈ T xi.dst. This

ensures that if the backup coordinator receives mcast(T xi), then at least one copy of

mcast(T xi) will have been sent to all d ∈ T xi.dst.

8. C4 - Order Transaction

Upon receiving mcast(T xi), a c-node destination, d, stores this mcast() as m in the

amcast_wait_queue (AWQ). This priority queue stores all of the amcasts received by

this node until they are delivered to the application. Messages are prioritised in the

AWQ based upon their m.order, e.g. m1 Îd m2 Îd m3 as shown in Figure 3.5, and

can only be delivered to the application when m̃, m̃ Îd m, specified in m.history[d],

has been delivered. It is necessary for the delivery of m to be delayed until after m̃ to

ensure that m’s, and subsequent amcasts involving this node, total order (guarantee

G4) is maintained.

m1

AWQ Head

m2m3mn

Fig. 3.5: Amcast Wait Queue

Messages are delivered to the higher-level application via the primitive am_deliver(),

which extracts the payload (prepare(T xi)) of the amcast message and sends it up the

network stack. A c-node considers the amcasting of T xi to be complete when it has

called am_deliver() for mcast(T xi), hence the amcast is complete when the payload

of mcast(T xi) has been delivered up the stack.

3.4 SCast: Atomic Multicast Protocol for AmaaS 54

Note: In order to preserve the total order dictated by the ordering service, a sin-

gle thread must am_deliver() messages to the application; we refer to this thread as

the delivery thread. If multiple threads were utilised, the execution of two amcast

messages could overlap, resulting in the total order property of the messages being

invalidated. Utilising a single thread for message delivery is not unique to SCast, but

is instead a limitation of all amcast protocols and can be seen in the TOA protocol.

Crash-Tolerance: All c-nodes must store a copy of a delivered mcast(T x) mes-

sage, if they were the designated backup coordinator for that T x. With each c-

node maintaining a finite list of such mcast(T x) messages; we refer to this list as

backup_history.

Algorithm 3 presents the pseudocode for processing the AWQ. The variable last_amcast

stores the m.order of the last amcast message that was dequeued from the AWQ; hence

this is the last amcast to have be delivered by d. Furthermore, the array last_delivered[s]

stores the m.order of the last amcast message which was processed by the s-node s.

3.4 SCast: Atomic Multicast Protocol for AmaaS 55

Algorithm 3 Amcast Wait Queue
1: while AWQ is non-empty do

2: h← peek(AWQ);

3: h.snid← h.order.snid;

4: h̃.order← h.history[d].order;

5: h̃.snid← h̃.order.snid;

6: if h̃.order ⪯d last_delivered[h̃.snid] then

7: if last_amcast ≺d h.order then

8: am_deliver(h);

9: last_delivered[h.snid]← h.order;

10: last_amcast← h.order;

11: dequeue(AWQ);

12: if d is Backup Coordinator for h then

13: backup_history.add(h);

14: end if

15: end if

16: end if

17: end while

3.4.4 Fault-Tolerance: Node Crashes

Fault-tolerance in SCast must consider the consequences of both crashed c-nodes and s-nodes.

Here we explore the consequences of both c-node and s-node crashes during various stages of a

SCast amcast. For the sake of simplicity, we only consider node crashes from the perspective of

a single transaction, however it is worth noting that each c-node would typically have multiple

transactions executing concurrently. In what follows, we consider failure instances with regard

to the four steps (C1-C4) in Figure 3.1.

Client Node Crash

Local Tx Execution

If a c-node, T xi.c, crashes during or directly after the local execution of a transaction,

3.4 SCast: Atomic Multicast Protocol for AmaaS 56

T xi, then no action needs to be taken as no interactions with other c-nodes or s-nodes

have occurred.

During C1

If T xi.c crashes during the creation of a backup coordinator node, T xi.bc, then two sce-

narios are possible:

i T xi.bc never receives the prepare(T xi) message, in which case the transaction can

only be aborted as its contents have been lost.

ii T xi.bc successfully receives the prepare(T xi) message and attempts to acknowl-

edge T xi.c; who will never receive T xi.bc’s acknowledgment as it has crashed. In

which case, the GM service will detect that T xi.c has crashed and issue a new view

to the network. Upon receiving this view, T xi.bc deduces that T xi.c has crashed and

becomes the new active coordinator, T xi.c̃, for T xi and restarts the multicast process

at stage C1.

During C2

If T xi.c crashes before or during the sending of a request req to the ordering service, then

T xi.bc simply restarts the multicast process at stage C1 when the GM service recognises

that T xi.c has crashed.

It is possible that the s-node that req was sent to, Ns, will still receive req, in which case

req will be processed as normal by the s-node. When bc sends a new ordering request to

the service for T xi, req′, this request is also processed. The ordering service accepts the

request which is delivered first by the abcast protocol and sends a response to the T xi.c̃

specified in the accepted request. Assuming that both coordinators send req and req′ to

Ns: If the s-nodes deliver req first in the total order, so that req≺ req′, then a response is

sent to T xi.c as Ns is unaware that this c-node has crashed. However, when Ns delivers req′

it deduces that both req and req′ concern T xi, and that req′ has only been issued because

T xi.c has crashed. Therefore Ns resends the original rsp(T xi) message associated with

req to the T xi.c̃ specified in req′ and the abcast message of req′ is discarded without

updating order_history.

Similarly, it is possible that req′ is sent to a different s-node than req, N′s, in which case

3.4 SCast: Atomic Multicast Protocol for AmaaS 57

N′s will also resend the original rsp(T xi) message, as N′s must have received both req and

req′ as per the guarantees of abcast.

In addition to the various scenarios described above, it is also possible that req was never

received, in which case the s-node that received req′ will send a response message to the

coordinator of req′ as if it were a normal request.

During C3

If T xi.c crashes before receiving a response from the ordering service, then T xi.bc takes

over and restarts the multicast process. When T xi.bc’s request is received by an s-node,

the s-node checks its recent history of processed requests and returns the ordering re-

sponse message associated with T xi.

The size of the recent history stored by s-nodes should be configurable to allow for vary-

ing levels of resilience. This is because as the size of the past history increases, the

chances of a prior response message being discarded decreases. Thus a larger record

provides a greater level of crash-tolerance, but at the expense of utilising more system

resources.

During C4

Assuming that T xi.c crashes at this stage, there are three distinct scenarios that can occur:

i T xi.bc has not received mcast(T xi).

ii T xi.bc has received but not yet delivered mcast(T xi).

iii T xi.bc has delivered mcast(T xi).

For all of the above scenarios it is not possible for T xi.bc to determine whether any

d ∈ T xi.dst has received mcast(T xi) without additional communication between nodes.

Therefore, in all three scenarios T xi.bc pessimistically assumes that at least one d has not

received mcast(T xi). Hence, T xi.bc must send its own multicast of mcast(T xi) to all d.

The corresponding recovery mechanism for each of the above scenarios is presented

below; here we assume that T xi.bc has discovered, via the GM service, that T xi.c has

crashed and we refer to this crashed c-node as c.

3.4 SCast: Atomic Multicast Protocol for AmaaS 58

i T xi.bc has not received mcast(T xi), therefore it is necessary for the protocol to be

restarted.

ii T xi.bc has already received mcast(T xi), therefore it must designate a new T xi.bc

before multicasting mcast(T xi) to all d ∈ T xi.dst.

iii T xi.bc has already delivered mcast(T xi), therefore it must check its entries in backup_history

and multicast all stored mcast() messages whose active coordinator was c.

Service Node Crash

Stage S1-S4

If an s-node, Ns crashes after T xi.c has sent an ordering request, req, to Ns, then T xi.c

will timeout waiting for a response for req and will resend the request to another s-node

as req′. It is possible for req to have been abcast to other s-nodes before Ns crashed, in

which case, the other s-nodes will deliver and process req as a normal request. As Ns has

crashed, a rsp() message will not be sent to T xi.c, due to no correct s-node satisfying

the condition snid = m.snid. However, as all other s-nodes in the ordering service have

delivered req, a rsp() message will exist at all correct s-nodes. Therefore, when req′ is

sent to a correct s-node, the original rsp() message which was associated with req will be

returned to T xi.c.

3.4.5 Fault Tolerance: Split Brain

Split brain refers to a situation whereby the current view of a group of processes has been parti-

tioned into two or more views, which is usually caused by one or more failures occurring at the

underlying network layer. Typically, these views will consist of disjoint sets of processes, how-

ever it is possible for overlapping to occur between multiple views. Eric Brewer’s seminal CAP

theorem, states that it is impossible for a system to provide Consistency, Availability and Par-

tition Tolerance simultaneously [9, 10, 28]. Therefore, when designing a solution for handling

split brain scenarios, which is a partition by definition, it is necessary for either availability or

consistency of part of the system to be compromised.

Handling split brain partitions across a cluster of c-nodes in which SCast operates is ulti-

mately the responsibility of the applications using SCast for amcasts. For example, in the case

3.4 SCast: Atomic Multicast Protocol for AmaaS 59

of Infinispan, if a cluster of c-nodes is partitioned then it is the responsibility of Infinispan to

determine whether consistency or availability should be preserved. However, as a Infinispan

cluster will be dependent on SCast and its ordering service, it is necessary for such a service to

provide a strategy for handling partitions that occur within the service itself.

Our solution for handling partitions within an SCast ordering service is to utilise a majority

partition scheme. When a network partition occurs, the s-nodes whose new network view is

a majority of the previous view continues to accept client requests and operate as an ordering

service. Whereas the s-nodes who are now in the minority partition sacrifice availability by re-

jecting future client requests until the juncture of the two partitions. The s-nodes in the minority

partition reject client requests in order to allow for the consistency of the system to be readily

resolved when the two partitions are rejoined. For example, if the availability of the minority

partition was not sacrificed, the merging of state required when the two partitions are rejoined

would not be trivial, with the predecessor data and active client requests of each partition having

to be fused in a way that does not compromise amcast guarantees G1-G4. Whereas, when only

one partition remains active when the network is divided, it is possible for the s-nodes in the

minority partition to clone the state of an s-node from the majority partition and start accepting

client requests again.

The majority partition scheme detailed above works as expected when |s-nodes| is an odd

number, however if it is an even number, then it is possible for the ordering service to be

partitioned so that no majority partition exists, in which case availability of the entire ordering

service must be sacrificed in order to maintain consistency. To reduce the chances of such a

scenario occurring it is possible for an additional ‘watcher’ node to be utilised when |s-nodes|

is even. A watcher node does not participate in the SCast protocol, rather it is used purely for

tie-breaking between the views of two s-node partitions that would otherwise be equal. Utilising

a watcher node reduces the chances of no majority partition existing, however it is still possible

as multiple partitions can occur, in which case availability will be sacrificed in the same manner

as when a watcher node is not utilised.

3.5 Message Bundling 60

3.5 Message Bundling

When utilising AmaaS it is possible for all amcast requests received from c-nodes to be bundled

into a single abcast (between s-nodes) at a receiving s-node, regardless of their destination set.

This is because s-nodes are only required to send abcasts to other s-nodes in order for a con-

sensus on transaction ordering to be reached, therefore the destination set for each abcast is the

same for all c-node requests. The ability to bundle multiple amcast requests into a single abcast

reduces the number of times that consensus needs to be reached between all s-nodes. Thus

further reducing the number of N−> 1 communication steps required, with the total number of

abcasts reduced by |bundle|; where bundle is the number of amcast requests from c-nodes that

are sent as a single abcast. As a result of this optimisation, network traffic is significantly re-

duced when requests are frequent, resulting in the capacity and scalability of an AmaaS service

increasing. Conversely, message bundling does not compromise performance when the number

of service requests is low, as bundling does not require any intensive computation or additional

communication steps.

In the case of SCast, message bundling is implemented as follows: The send thread retrieves

ordering requests from the ARP in their arrival order, and bundles them into a single message

bundle mb, with the first message being stored at index 0 and so on. This message bundle is

then abcast to all s-nodes. A configurable upper limit can be placed on the maximum size of a

bundle message. 6 If this upper limit is reached and the ARP still has available requests, then

the send thread will start processing the next message bundle, mb′, once mb has been abcast.

Upon abcast delivering mb, each s-node must unbundle mb and process each individual

c-node request in the same manner as if the request had been abcast as a single request. A

consequence of multiple ordering requests being bundled in to a single abcast is that the times-

tamps utilised in SCast to uniquely order transactions are no longer valid, due to multiple trans-

actions being associated with a single abcast, and hence a single ts. Therefore, in order to

uniquely order an transaction T xi, within mb, we redefine the unique order of each request as

m.order = ts⊕m.seq#⊕m.snid⊕sequence number of req(T xi) within mb.

6The maximum size could be specified in terms of bytes or the number of messages to be bundled.

3.6 A New Atomic Broadcast Solution is Required 61

3.6 A New Atomic Broadcast Solution is Required

Existing abcast and amcast solutions are of two types (§ 2.2); quorum based and GM based.

GM based protocols are typically leaderless, which allows such protocols to provide higher

levels of throughput than quorum based protocols when node crashes are absent 7, however

when crashes do occur GM protocols block indefinitely until a new GM view is propagated

across the cluster. This blocking behaviour is acceptable when such protocols are utilised in

traditional P2P environments like Infinispan, as it is presumed that the blocking will only occur

at a small subset of nodes in the cluster. In which case system liveness is maintained by the

majority of nodes in the cluster. However in the AmaaS model, if a s-node utilises a GM

protocol for abcasting requests amongst all s-nodes and a single s-node crashes, all s-nodes

will block, resulting in no client requests being satisfied. This means that, not only are the

s-nodes participating in the abcast blocked, but as a consequence of this blocking, so to are all

of the c-nodes utilising the service. Therefore the entire system’s liveness is lost until the GM

protocol is able to detect the s-node crash and unblock the ordering service; hence requirement

SR2 is undermined.

Alternatively, a quorum based protocol, such as those detailed in 2.3, can be utilised between

s-nodes. Such protocols perform worse than GM protocols in the absence of node failures,

however they only block mildly when a leader node crashes or is falsely suspected of crashing.

Both Zookeeper and Chubby coordination services utilise a quorum based abcast protocol for

state machine replication; with each service utilising a single master node to coordinate all ab-

casts. Consequently, the write throughput of each of these services is limited by the maximum

throughput capabilities of the designated master node. This is significant for AmaaS, as each

ordering request sent to the ordering service requires a single abcast. Therefore, as the number

of concurrently executing transactions increases, the throughput of an ordering service utilising

a quorum based protocol does not scale with demand.

In order to maximise the effectiveness of the AmaaS system model, a new abcast protocol

is required. This protocol must provide non-blocking message delivery in the presence of node

failures, whilst allowing for low-latency, high-throughput abcasts in their absence.

7Higher levels of throughput and lower latency atomic broadcasts, are possible with GM protocols as abcasts
can originate from any participating node. This is in contrast to quorum based protocols which typically require
a single master node to coordinate message delivery amongst participants, ultimately resulting in this master node
becoming a performance bottleneck for said protocol.

3.7 Summary 62

3.7 Summary

This chapter presented AmaaS - a new model for amcast protocols that utilises a dedicated set

of nodes to provide amcast as a service to distributed transactional systems. We then presented

a new protocol SCast that provides fault-tolerant amcasting in such an environment. Lastly, we

outlined the shortcomings of existing abcast solutions and the need for a new protocol in order

for the AmaaS approach to be fully realised.

Chapter 4

ABcast

In this chapter we introduce a hybrid abcast protocol, called ABcast, which provides non-

blocking message delivery in the presence of node failures and low-latency message delivery in

their absence. This protocol was designed for use amongst Ns1 . . .Nsn nodes within the AmaaS

system model.

The remainder of this chapter is structured as follows: First we introduce the rationale be-

hind utilising a Hybrid protocol and our design approach for ABcast, before detailing the pro-

tocol’s requirements and assumptions. This is followed by an in-depth look at the components

required by ABcast, and how they have been implemented. We then explore the two protocols

used to create the hybrid solution in detail, outlining each protocol’s delivery and rejection cri-

teria for abcast messages. Finally we describe a new flow-control protocol, AFC, which has

been designed specifically for use with ABcast.

4.1 Rationale

In the previous chapter we introduce AmaaS, a model that aims to increase the transactional

throughput of distributed in-memory transactional systems. This model depends on an abcast

protocol to maintain the replicated state between the service nodes which provide multicast

ordering to client nodes; with each multicast request requiring a state change between service

nodes. For an AmaaS service to be viable it is vital that it provides low-latency responses to the

requesting client nodes, as well as being able to handle an increasing number of client requests

as the transactional system scales. Furthermore, it is essential that such a service maintains

4.1 Rationale 64

high-availability, even in the presence of node failures, as an entire cluster of client nodes are

dependent on the service. Thus, it is essential that the underlying abcast protocol utilised by the

service can provide both non-blocking and low-latency message delivery in order to satisfy the

clients requirements of highly-available and low-latency requests respectively.

4.1.1 Existing Atomic Broadcast Solutions

The FLP impossibility [27] dictates that in an asynchronous environment abcast protocols must

either admit blocking to meet its atomic guarantees or permit a likelihood of its termination

guarantees not being met. As previously stated, known blocking protocols are of two types:

GM dependent and Quorum based, both of which admit blocking in order to remain atomic.

The quorum based protocols block mildly due to false/valid suspicions of the leader node and

GM protocols block severely but only in the presence of slow or crashed nodes.

Quorum based protocols provide non-blocking message delivery, however they only provide

low levels of throughput as they are typically leader based, which ultimately limits the scalabil-

ity of the system. Furthermore, there is also a non-zero probability that such protocols get stuck

indefinitely in a cycle of leader elections after the previous leader node is falsely suspected of

crashing1. On the contrary, leaderless GM based protocols typically allow for increased levels

of throughput, however the blocking inherent in GM protocols would critically undermine an

AmaaS service’s availability in the event of a service node crash.

From the disadvantages stated above, it is clear that the aforementioned protocols are not

ideal when utilised within AmaaS. Therefore it is necessary for a non-blocking approach to be

utilised, that allows for the possibility that guarantees G1-G4 (§ 2.2.2) will not always be met

in order to overcome the limitations of the FLP impossibility. Utilising probabilistic guaran-

tees on message delivery is an established technique for increasing the scalability of network

multicasting systems[43], which has also been applied to abcast protocols.

Felber et al. [25] propose an abcast protocol, PABCast, that provides probabilistic guaran-

tees on both message safety and liveness. With some non-zero probability, it is possible for only

a subset of the destination set to receive a broadcast, or for all destinations to deliver the broad-

cast but in an inconsistent ordering. The aim of the PABCast protocol is to provide increased

1This is unlikely to occur in practice with adaptive or sufficiently long timeouts used for crash-suspicion.

4.1 Rationale 65

scalability for atomic broadcasts across large numbers of destinations, not a small subset of

nodes as required by AmaaS. As such the protocol does not consider throughput a primary con-

cern. The protocol uses rounds to regulate when a node can initiate a broadcast and a node

cannot initiate a new broadcast until all broadcasts in the current round have been delivered

locally. Ultimately this protocol structure limits a sending node to a single broadcast, which

clearly limits the protocol’s throughput capabilities.

In the literature, the performance of PABCast is evaluated using a simulation that focuses

on the scalability of the system in terms of message cost as well as the likelihood of a broad-

cast’s safety and liveness being violated due to the probabilistic guarantees not being met. The

performance evaluation presented in the paper does not consider the throughput or latency of

the PABCast protocol, and the protocol is only evaluated using a simulation so it is not possible

to ascertain how such a protocol will function in a live asynchronous system. It is our view that

PABCast is not suitable for use in the AmaaS system model.

4.1.2 Existing Hybrid Solution

Bezerra et al.[7] propose a hybrid amcast protocol (Optimistic Atomic Multicast) that combines

a deterministic consensus protocol (Paxos), with a probabilistic protocol in order to reduce am-

cast latency. The probabilistic protocol is utilised for faster message delivery (optimisitic),

whereas Paxos is utilised to ensure correctness (determinism). Consequently, when the prob-

abilistic protocol delivers messages outside of the total order, it is followed up by a second,

correctly-ordered delivery, which enables applications to take retrospective action to correct the

ordering mistakes of the optimistic protocol. Hence, this approach requires both the determin-

istic and probabilistic protocols to finish executing in order for an amcast to fulfil all of its

guarantees.

Informally and assuming that there exists only a single group of destinations (abcast), Op-

timistic Atomic Multicast works as follows:

Optimistic Delivery

1 A abcast m, is timestamped with the sending processes, p, clock time and broadcast

to all m.dst.

4.1 Rationale 66

2 Upon receiving m, another process p′, computes a wait period specific to the sender

p, denoted as w(p). Where w(p) is a delay calculated utilising the estimated clock

difference between p′ and p, combined with the largest observed network latency

between p and p′.

3 p′ must then wait until its local clock reads m.ts+w(p) before optimistically deliv-

ering m (opt_del(m)).

Note: A G4 violation occurs, if m.ts is received at p′ after m′ has already been

opt_del(m′) and m.ts < m′.ts.

Deterministic Delivery

4 After opt_del(m) has been completed, it is necessary for a Paxos instance to propose

m to all d ∈ m.dst to decide upon a deterministic ordering for m.

5 Once a consensus has been reached by Paxos for m, it is necessary for m to be con-

servatively delivered to the application in its established total order (con_del(m)).

Application Level

6 The application processes opt_del(m) messages as if the total order is correct. How-

ever, if m is later delivered in a different total order via con_del(m), then the appli-

cation knows that G4 was violated by opt_del(m) and it must take retrospective

action.

In the context of abcast protocols, a key disadvantage of this approach is that the deter-

ministic protocol must always be executed in its entirety to ensure that incorrect message or-

derings are eventually detected. For a message m, the delay between a G4 violation occur-

ring (opt_del(m)) and the Paxos execution completing (con_del(m)) could be very large, as

con_del(m) cannot occur until at least m.ts+w(p)+ px; where px is the time taken for Paxos

to reach a consensus for m. Furthermore, as Paxos is a leader based protocol, all m must be pro-

cessed by the leader node for a consensus to be achieved, therefore the leader node will become

a bottleneck for con_del(m) under high levels of load, hence the delay between opt_del(m) and

con_del(m) could become even larger.

4.1 Rationale 67

At the application layer, a key disadvantage of Optimistic Atomic Multicast, is that two

independent delivery channels must be processed by the application at anyone time (con_del(m)

and opt_del(m)), with the application being responsible for both detecting and recovering from

G4 violations by contrasting the output of both channels. Hence the application has to allocate

additional resources for processing messages.

4.1.3 Our Approach

Our approach is to create a hybrid protocol that combines the leaderless GM-based protocol

described in section 2.2.4, with a custom designed probabilistic abcast protocol that is also

leaderless. The deterministic GM protocol is utilised in the absence of crashed/suspected nodes,

however in their presence the probabilistic protocol is utilised in order to overcome the blocking

inherent in GM based protocols. We refer to the probabilistic protocol as Aramis, and the

deterministic protocol as Base, which when combined creates the hybrid Atomic Broadcast

protocol - ABcast.

It should be noted that both Aramis and Base work in parallel and additional overhead is

minimal as both protocols are leaderless in nature. That is, both protocols attempt to deliver

each abcast in parallel; when the faster one succeeds in delivering a given abcast, the slower

one’s attempt on that abcast terminates. Consequently, a given abcast is never delivered more

than once. Typically, Base succeeds when there are no crashes and Aramis succeeds when Base

is blocked.

Aramis[18–20] is a non-blocking abcast protocol that guarantees uniform total order (G4 §

2.2) with a probability close to 1. Aramis utilises the probabilistic synchronous model (§ 2.1.3),

in conjunction with closely synchronised clocks, to calculate a probabilistic upper bound on

abcast delivery times; we refer to this upper bound as a message’s delivery delay, ∆m.

Aramis: An Informal Description

Upon receiving an abcast message, a destination node waits for the calculated delivery delay to

expire before delivering the message to the application. If a message m does not reach one of

its destination, say Nsi, before ∆m, then it is possible for Nsi to deliver a subsequent message m′

if ∆m′ expires before m is received by Nsi. When such a scenario occurs the abcast guarantees

4.1 Rationale 68

G4 will not be met and therefore the broadcast cannot be considered to be atomic.

A key advantage of the Aramis approach is that no message acknowledgements are required

for a message to be delivered, instead it depends entirely on the calculated delivery delay ∆m.

Relying solely on ∆m ensures that faulty nodes have no effect on the delivery of a message

at correct nodes and it is therefore impossible for a message’s delivery to become blocked.

Furthermore, as no quorums or acknowledgements are required, it is possible for Aramis to

tolerate at most (n−1) destination crashes when n nodes are involved in an abcast.

The Aramis protocol was developed to be risk adverse, with all probabilistic calculations

carried out pessimistically in order to ensure that ∆m is rarely exceeded. Furthermore, ∆m

always assumes the worst case scenario will happen when the protocol is executing (e.g. the

originator node crashes during every broadcast) to ensure that such situations are catered for.

A consequence of this pessimism, is that the latency of a abcast message can be very large,

typically 100-1000ms. Note that these potentially large latencies, though not desirable, do not

undermine Aramis from offering high throughput.

Aramis and Base: An Informal Description

To counteract the large delivery latencies of Aramis it is necessary to operate a low-latency ab-

cast protocol, Base, alongside Aramis. The Base protocol is a GM based deterministic protocol,

similar to NewTop[23], that provides low-latency high throughput abcasts at the expense of

blocking when node failures occur. In the context of an AmaaS ordering service, Base works

as follows: A message’s orginator, say m.o = Nsi, broadcasts m to every Ns j, which in turn

broadcasts an ack j(m) to every node in the service. Once a s-node has received ack j(m) from

all Ns j, Ns j ̸= m.o, m becomes deliverable. Note that if one Ns j crashes during the abcasting of

m, the delivery of m will be blocked if the crashed node had not sent ack j(m) before crashing

and the protocol must wait for the GM service to detect the crash so that it can unblock m.

In order to hone the advantages of both protocols it was necessary to create the hybrid

protocol ABcast, where an abcast m becomes deliverable either when ∆m has elapsed (Aramis)

or when ack j(m) is received from every Ns j (Base). This approach provides the application with

the low-latency of Base for the majority of message deliveries, whilst ensuring that a missing

acknowledgement is not waited upon for more than ∆m time.

4.1 Rationale 69

In the event of a node failure the Base protocol has to wait for the GM service to detect

a crash before message delivery becomes unblocked, however messages will be delivered by

Aramis after ∆m expires. Therefore, when node failures are present the ABcast protocol will

always allow for a greater throughput of delivered messages than a traditional GM based proto-

col, assuming that ∆m remains smaller than the time it takes for GM to detect a node failure and

construct a new service. In the worse case, if the GM delay is smaller than ∆m, then the Base

protocol can simply unblock its message buffer and continue to deliver messages without the

use of Aramis. Finally, in normal working conditions, the ABcast protocol should have similar

performance to a traditional GM based protocol as, in the majority of cases, Aramis is not used

for message delivery.

As the ABcast protocol utilises the probabilistic protocol Aramis, it is possible for a node

to not receive an abcast m before ∆m, resulting in that node delivering a subsequent abcast m′,

via Aramis, ahead of m in the total order. However, as previously stated, Aramis is carefully

designed to keep the probability of meeting G4 close to 1. Furthermore, as Aramis is only used

when Base is slow or node failures occur, the probability of an abcast message m being missed

in the total order is the product of two very small probabilities; Base not being able to deliver

m and Aramis failing m. Therefore, in reality the occurrence of a node not delivering m in the

correct total order is rare.

4.1.4 ABcast Guarantees

Below, we state the guarantees provided by the ABcast protocol.

G1 - Validity: If the source of mi does not crash until it abcasts mi, then all operative destina-

tions of mi deliver mi.

G2 - Uniform Agreement: If the source of mi crashes while abcasting mi, and if any destination

delivers mi, then all operative destinations of mi must deliver mi.

G3 - Uniform Integrity: If mi has already been delivered by a destination d, then d cannot

deliver mi again.

G4-P - Probabilistic Total Order: For any two abcasts, mi and m j, destinations that deliver

both mi and m j, will deliver them in an identical order with a probability > R. Typically

4.2 Assumptions 70

R is close to 1 (R→ 1).

4.2 Assumptions

This section first defines the four key assumptions made when designing the Aramis protocol.

Assumptions:

A1 - Fault Tolerance

At most (n−1) of n nodes involved in a broadcast can crash. However, 2 or more nodes

cannot crash within an interval of some finite duration ∆m that is smaller than a few

seconds.

A2 - Synchronised Clocks

At any moment, clocks of any two operative nodes utilising ABcast are synchronised

within 2ε with a probability at least as large as (1−10−5).

We meet A2 by implementing a well known probabilistic clock synchronisation algorithm

[15]. The details of our implementation and the parameters used are explored in § 4.3.1.

A3 - Reliable Communication

When an operative node broadcasts m to all m.dst, all operative destinations d ∈ m.dst

will eventually receive m.

We use reliable UDP protocol to guarantee that all operative nodes receive m in crash-free

scenarios. However, when a broadcasting node crashes, the use of reliable UDP alone is

not enough to ensure that all of the operative destinations receive m. Therefore, a reliable

broadcast, rbcast, protocol will be required. The Reliable UDP and rbcast protocol we

use are explored in detail in § 4.3.3 and § 4.3.4, respectively.

A4 - Probabilistically Synchronous

Let xmx be the maximum delay estimated at time t by observing NTP transmissions in the

recent past: The delay xmx will not be exceeded in any of NTF , NTF ≤ NTP, transmis-

sions to unfold after t with probability (1−q); where q can be estimated with reasonable

accuracy. The measurement of xmx and q are presented in section 4.3.5.

4.3 ABcast Components 71

A4 is motivated by previous research conducted by Ezhilchelvan et al. [22] into PSM,

which proposes that the challenges of designing asynchronous distributed systems, namely

the FLP impossibility, can be avoided by assuming that the underlying network commu-

nication is synchronous to a given probability. This assumption is crucial to Aramis’s

efforts in minimising the probability of G4-P not being met. Informally, the larger the

estimated q, the more intensive the efforts made by Aramis to preserve these guarantees

and vice versa.

A consequence of A4, is that Aramis is not suitable for use over the Internet, or similar

networks that are susceptible to large fluctuations in network delays over a short period

of time. This is because frequent occurrences of such fluctuations in NTF can lead to q

being underestimated, i.e. more violations of xmx occur than indicated by q.

4.3 ABcast Components

In this section we detail the individual components required by the ABcast protocol. For each

component, we explain its purpose and design; with important implementation details high-

lighted where appropriate. All of the protocols presented in this thesis are implemented in Java

using the JGroups framework.

Synchronised
Clock (ɛ)

Aramis

rbcast

Reliable UDP

GM

DMC

Network

BaseSynchronised
Clock (ɛ)

Aramis

rmcast

Reliable UDP

GM

DMC

Network

BaseSynchronised
Clock (ɛ)

Aramis

rbcast

Reliable UDP

GM

DMC

Network

Base

Application

ack(m)

Provided by JGroups

Fig. 4.1: ABcast Protocol Components

Figure 4.1 provides an overview of all of the components required by the ABcast protocol;

where GM is the Group Membership service provided by JGroups, DMC is the Delay Measure-

ment Component (4.3.5) and rbcast is the Reliable broadcast Component (4.3.4).

4.3 ABcast Components 72

4.3.1 Clock Synchronisation

In order to provide synchronised clocks between nodes executing ABcast, we implemented

the probabilistic clock synchronisation algorithm presented in [15] as a dedicated protocol in

JGroups. Cristian’s algorithm is a master/slave protocol, that utilises a single master node’s

clock time to synchronise all of the slave nodes; with each slave periodically issuing a clock

synchronisation request to the master in order to synchronise their clock.

At any moment a slave’s clock value is synchronised with the master node with a maximum

error rate of ε , with probability Pε ≥ (1−10−5). All of the experiments presented in this the-

sis utilise clock synchronisation with ε estimated as 1 millisecond (ms). A major consideration

when estimating ε is the worst-case rate of clock drift between successive synchronisations.

Ultimately, the longer the synchronisation interval, the larger the drift rate between clocks. Es-

timation of ε = 1 usually assumes an interval of 45 minutes between synchronisations, however

we use a shorter 15 minute interval in order to increase Pε .

As each slave node synchronises its clock value with that of the master, it is possible for

any two slave nodes to have a maximum error rate of 2ε . This is because a slave Ni could

synchronise its clock behind the master’s clock value by ε time. Whereas, another slave N j

could synchronise its clock ahead of the master by ε . Hence, it is possible that N j.clockValue−

Ni.clockValue = 2ε .

4.3.2 Group Membership

JGroups provides a GM service, called GMS which simply stands for Group Membership Ser-

vice. GMS works as follows: upon discovering that a new node has joined the group or a node

failure has occurred, GMS issues a new view to all of the protocols in the JGroups stack. It

is then the responsibility of the individual protocols to take the appropriate action when a new

view is issued. For example, unblocking message delivery if the local node was waiting for an

acknowledgement from a node that is no longer present in the newly issued view.

4.3.3 Reliable UDP

JGroups provides a reliable UDP protocol, UNICAST3, which guarantees that all UDP messages

sent by a protocol higher in the network stack arrive at their destinations when node crashes do

4.3 ABcast Components 73

not occur. This reliable UDP layer is placed below ABcast in the network stack to ensure that

when messages are broadcast they are received by all destinations; where a broadcast consists

of m being unicast via UNICAST3 to each of its intended recipients.

As well as providing reliable UDP unicasts, the UNICAST3 protocol provides node-to-node

ordering as default for each message sent. This ordering means that if a node Ni sends two

consecutive unicast messages, m1 followed by m2, to N j, then N j will not deliver m2 until it

has first delivered m1. This behaviour is not always appropriate, therefore UNICAST3 allows

for messages to be sent Out-Of-Band (OOB), which simply means that messages will be sent

reliably but they will be delivered at a destination as soon as they are received, regardless of

the messages that have (or have not) been delivered before it. Unless stated otherwise, our

explanations assume that a unicast is sent using the default UNICAST3 behaviour i.e. not OOB.

4.3.4 Reliable Broadcast

In the event of a node failure reliable UDP alone is not sufficient to ensure that assumption

A3 holds. This is because it is possible for a messages originator, m.o, to crash during the

unicasting of m. Assume that m.dst = {Ni,N j,Nk} and m.o = Ni, if Ni crashes after unicasting

m to N j only, then Nk will never receive m. Similarly, if Ni crashes during the unicasting of m to

N j it is possible that Ni managed to send m before crashing, in which case m may eventually be

received by N j. Both scenarios highlight that an additional protocol is required to ensure that

all m.dst receive m in the event of m.o crashing.

To overcome the limitations of Reliable UDP we have implemented a Reliable Broadcast

protocol, called rbcast, that sits above the Reliable UDP layer in the network stack. This pro-

tocol is inspired by the work of Ezhilchelvan et al. [21, 24], as it utilises redundant broadcasts

in collaboration with PSM, to ensure that all destinations receive a broadcast. Our rbcast proto-

col has been designed specifically for use with PSM based protocols and consequently utilises

some of the values from the DMC (§ 4.3.5) as protocol parameters.

Below, we state the guarantees provided by the rbcast protocol. In stating them, we as-

sume two primitives rbcast(m) and rb.deliver(m), which are described in detail later on in this

section.

4.3 ABcast Components 74

Probabilistic Guarantees of rbcast

RB1 - RB-Validity with Probabilistic Timeliness: If the source of m does not crash until it

completes rbcasting m, then all operative s-nodes eventually rb.deliver(m), and do so

within D of rbcast(m) with a probability > R. Typically R→ 1.

RB2 - Agreement with Probabilistic Timeliness: If m.o crashes during rbcast(m) and if any s-

node rb.delivers m, then all operative s-nodes eventually rb.deliver(m), and do so within

D of rbcast(m) with probability > R. Typically R→ 1.

RB3 - Uniform Integrity: Any s-node rb.delivers(m) at most once.

RB1, RB2 and RB3 are directly used when implementing Aramis, to provide G1-G3 and

G4-P, as detailed in section 4.4.2. The remainder of this section describes the basic rbcast

protocol, whilst the calculations of D are presented in § 4.3.5.

The rbcast protocol

All messages broadcast via rbcast include a tuple {m.o,m.seq#,m.ts} that uniquely identifies

the broadcast. Where m.o, short for message originator, is the address of the node that initiates

a broadcast message; m.seq# is a sequence number unique to each m.o that is incremented after

each broadcast and m.ts is a timestamp of m.o’s synchronised clock. Note that the first two

values of the tuple are sufficient to uniquely identify a broadcast.

The rbcast protocol supports two primitives: rbcast(m) and rb.deliver(m). The protocol

uses a set of parameters provided by the DMC, these are:

xxxmx and qqq - As described in our assumptions.

ηηη - The delay observed between redundant broadcasts of m, to ensure successive broad-

casts remain independent as they are passed down the network stack. 2

ρρρ - The number of redundant wait periods to be included into D for a given m; the larger

the value of ρ , the closer R is to 1.

ωωω - A node’s estimate of the networks Packet Delay Variation (PDV).

2Utilising η ensures that lower protocols in the network stack do not bundle m.copy = 0 and m.copy = 1 into
a single network packet, as this bundling would undermine the broadcasting of redundant message copies.

4.3 ABcast Components 75

rrrbbbcccaaasssttt(((mmm)))

The primitive rbcast(m) works as follows:

i The message to be broadcast, m, is created with the parameters defined above

added as fields e.g. m.ρ,m.η , . . .

ii The m to be rbcast(m) is then broadcast two times by the originator, with the

second transmission occurring η time after the first one.

• Redundant transmissions of m are distinguished by the field m.copy, where

m.copy = 0∨1.

rrrbbb...dddeeellliiivvveeerrr(((mmm)))

As soon as a copy of m is received by a node, it is delivered up the stack to the

higher level protocol (ABcast); the later copy of m is not delivered up the network

stack, but is used as per the rbcast protocol.

A rbcast(m) is considered a success if every operative d ∈ m.dst performs rb.deliver(m).

Figure 4.2 shows the rbcast primitives and their relationship with the DMC and the underlying

reliable UDP layer.

DMC

rb.deliver(m)

Reliable UDP

rbcast

receive(m)broadcast(m)

rbcast(m)
{xmx, q, �, η, �}

Fig. 4.2: Reliable Broadcast Interactions

After rb.deliver(m) has been executed, any destination N j that receives m.copy = 0∨ 1

cooperates to ensure m is successfully delivered by all non-crashed nodes. Upon receiving

m.copy = 0, N j waits to receive m.copy = 1 for t1 time; where η and ω are included in m’s

metadata by m.o (Ni) and t1 = η +ω . If t1 expires before receiving a subsequent copy of m, N j

4.3 ABcast Components 76

assumes that Ni has crashed and starts broadcasting the largest value of m.copy it has received,

until m.copy = 1 has been broadcast. Note, N j rebroadcasts the largest copy of m that it has

received, as it does not know if all other d ∈ m.dst have also received this copy of m.

To reduce the probability that multiple nodes are re-broadcasting m simultaneously, N j waits

a further ζ time to receive subsequent copy of m from m.o, or another node in m.dst, before

broadcasting the latest m.copy; where ζ is uniformly distributed on (0,η). This process contin-

ues until all d ∈ m.dst have received or broadcast m with m.copy = 1.

Note that if Ni does not crash, or if it crashes and an operative node receives m, then m is

broadcast at least twice. Conversely, if Ni crashes during the initial broadcast of m, and no

members of m.dst−{m.o} receive a copy of m, then the broadcast has failed and m is lost. This

is acceptable for ABcast, because if no d ∈ m.dst−{m.o} receive m, then its not possible for

any node to rb.deliver(m), therefore it is not possible for abcast guarantees G1 or G2 to be

violated.

Implementation Optimisation

It is worth noting that in our implementations of rbcast, every broadcast where m.copy = 0 is

treated differently to subsequent broadcasts of m. Copy 0 of m is broadcast to all destinations

using the default settings of Reliable UDP, i.e. messages are delivered in the same order that

they were originally unicast from their source address. This means that if node Ni broadcasts m,

followed by m′, it is not possible for any of the destinations to receive copy 0 of m′ before it has

received m. This also implies that if the transmission of copy 0 of m is slow or becomes lost,

than copy 0 of m′ cannot be forwarded up the network stack to rbcast protocol until m has been

received. To overcome this issue all messages with m.copy > 0 are sent OOB to ensure that

they are forwarded to the rbcast protocol as soon as they are received at the destination node.

Therefore, if m′.copy = 0 has been received but not been forwarded to rbcast, then m′.copy = 1

is forwarded as soon as it arrives, bypassing the backlog of messages.

The calculations used to produce xmx,η ,ρ and ω are discussed in detail in § 4.3.5.

4.3.5 Delay Measurement Component (DMC)

For the sake of clarity, assumption A4 is repeated below:

4.3 ABcast Components 77

Let xmx be the maximum delay estimated at time t by observing NTP trans-

missions in the recent past: The delay xmx will not be exceeded in any of NTF ,

NTF ≤ NTP, transmissions to unfold after t with probability (1− q); where q can

be estimated with reasonable accuracy.

The delay measurement component is responsible for monitoring and observing the network

latency of NTP transmissions from the recent past. These latencies are then used to calculate

various parameters that are required by rbcast (and by Aramis) for executing abcasts in the near

future. Being conservative, we use NTF = 10% of NTP and NTP = 1000; so, a ABcast node

freshly estimates xmx for every 100 new delays it observes. Each fresh estimation of xmx results

in the recalculation of the following parameters: η ,ρ,q and ω .

Latencies are measured by the DMC based upon the timestamp m.ts, which is included in

every message m that is broadcast via the rbcast protocol. As the clocks of all nodes executing

the ABcast protocol are synchronised, it is possible to measure the one-way latency of each

message that is received by a node. For example, a node Ni sends an rbcast m to N j, upon

receiving m, N j immediately records the latency x:

x = (N j.clockValue−m.ts)+2ε (4.1)

It is necessary to add 2ε to each latency to ensure that if N j.clockValue is behind Ni.clockValue

by the maximum error of 2ε , a positive latency value is still recorded.

The remainder of this section explores each of the parameters provided by the DMC, ex-

plaining what they represent and how they are calculated, before providing a proof for rbcast

guarantees RB1 and RB2.

xmx
xmx is simply the largest latency out of the NTP latencies observed in the recent past.

q
The parameter q is the estimated probability that a transmission delay observed in the

near future will exceed xmx. We estimate q by assuming that each x in NTp increases by

5% in the near future. So, the estimated set of transmission delays that exceed xmx in the

4.3 ABcast Components 78

near future is:

{
x in NTp | 1.05× x > xmx

}
(4.2)

Note that:

1.05× x > xmx ⇒ xmx

1+0.05
≈ 0.95xmx (4.3)

So,

q =
Number of Transmissions in NTp that exceeds 95%xmx

|NTP|
(4.4)

It is possible that q is calculated close to 1 if many latencies in the recent past are within

95% of xmx. As q→ 1,ρ → ∞ so that R is close to 1. To deal with such extreme cases,

we fix an upper bound ρmx, ρmx > ρmn. Therefore we find q to be the largest value that

satisfies:

q <
(
1− R̃

)(1
ρmx+1

)
, where R̃ = R

1
n−1 (4.5)

η

η is the parameter used by rbcast to determine the amount of time to wait between each

broadcast of a message copy and is calculated as the maximum of xmx and the largest

delay incurred with probability R, when a given copy of m is sent to (n− 1) destina-

tions by reliable UDP. The latter is calculated by assuming that delays are exponentially

distributed with mean x̄. Thus,

η = maximum
{

xmx,−x̄[ln(1− R̃)]
}

(4.6)

where R̃ = R
1

n−1 and x̄ is the 67th percentile of delays observed in NTp.

The second term in Equation 4.6 turns out to be 5.3x̄ when R= 0.99 and n= 3. In general,

as R→ 1 (e.g. R = 99.99%), R̃→ 1 and ln(1− R̃)→−∞. Therefore one may wish to

4.3 ABcast Components 79

define η simply as:

η =−x̄[ln(1− R̃)] (4.7)

Equation 4.7 leads to η being immune to large outliers in NTp which exceed −x̄× ln(1−

R̃) and thus inflate xmx. It may be unnecessary to delay the second, redundant transmission

so excessively, solely in response to such large outliers.

ρ

ρ is a parameter that defines the number of redundant wait periods incorporated into the

calculation of D so that RB1 and RB2 are met with a probability > R; where R is a

configuration parameter specified before runtime.

The probability that a given operative destination receives at least one of m.copy = 0∨1,

before m.ts+ xmx is:

1−q(2) (4.8)

Given that there can be (n−1) operative destinations at any time, we require:

[
1−q(2)

]n−1
> R (4.9)

As we cannot change n, it is necessary for us to introduce the variable ρ which determines

the number of additional η length wait periods should be incorporated into D. Therefore,

the previous equation becomes:

[
1−q(ρ+1)

]n−1
> R

1−q(ρ+1) > R
1

n−1 = R̃
(4.10)

Rearranging, taking in both sides and accounting for the fact that ln(a)< 0 for 0 < a < 1,

4.3 ABcast Components 80

we set:

(ρ +1) >
ln
(
1− R̃

)
ln(q)

, ∀ q ̸= 1 (4.11)

i.e:

ρ >
ln
(
1− R̃

)
ln(q)

−1, ∀ q < 1 (4.12)

In theory, it is possible for ρ = 0 to be a valid parameter as it is possible for (1−q)> R.

However, as all of our calculations have been defined pessimistically, we define ρ to be

the smallest integer that satisfies:

ρ > maximum

{
ρmin,

ln
(
1− R̃

)
ln(q)

−1

}
(4.13)

Where ρmin ≥ 1 is a configuration parameter specified before runtime; unless otherwise

stated we utilise ρmin = 1. Observe that, for a given R, an integer I = ρmin,ρmin + 1, . . .,

satisfies:

I <
ln
(
1− R̃

)
ln(q)

−1 < I +1 (4.14)

for a wide range of q values; e.g., for R≈ 0.9999

ln(1− R̃)
ln(q)

−1 < 1 ∀ q < 0.01 = 1% (4.15)

This implies that small inaccuracies in estimating q may not adversely affect ρ estimates.

ω

ω is the parameter utilised by rbcast to approximate the PDV encountered by the network.

ω is simply calculated as:

ω = η− x̄ (4.16)

4.3 ABcast Components 81

Again, we assume exponential distribution and that x̄ is the exponential mean of NTP

observed delays.

Guarantees of rbcast

Let m be rbcast by Ni, as per its clock time m.ts. Let:

i D1 = ρη + xmx

ii D = xmx +2η +ω +D1

iii Dm = D+2ε

Let x, as before, denote a delay (observed) and X the (random) delay variable when m is

being rbcast. Finally, assume for now that ε = 0.

RB1 - RB-Validity with Probabilistic Timeliness

Figure 4.3 shows two multicasts by a correct Ni, with n = 3.

Time

Ni

m.ts

m.copy = 0
rbcast m

D1 = �η + xmx

m.copy = 1

m.ts + η

Nj

Nk

Fig. 4.3: RB1 (RB-Validity) Calculations

4.3 ABcast Components 82

A Single Correct Destination Receives m

To start with, let us focus on m.copy= 0 and a given correct destination, say N j. The probability

that N j receives m.copy = 0 by its clock time m.ts+ xmx is (1− q) by assumption A4. i.e.

P(N j receives m.copy = 0 by m.ts+ xmx) = (1−q).

Assuming that X is exponentially distributed with parameter λ ,

P(N j receives m.copy = 0 by m.ts+ xmx) =
(

1− e−λxmx
)

(4.17)

Therefore,

1− e−λxmx = 1−q =⇒ e−λxmx = q (4.18)

Let us add one redundant wait period of xmx. By the property of exponential distribution,

P(N j receives m.copy = 0 by m.ts+2xmx) =
(

1− e−λ2xmx
)

=

(
1−

(
e−λxmx

)2
)

= 1−q2

(4.19)

Adding 2 redundant wait periods, leads to:

P(N j receives m.copy = 0 by m.ts+3xmx) = 1−q3. (4.20)

In general, with ρ , ρ ≥ 1, redundant wait periods:

P(N j receives m.copy = 0 by m.ts+(ρ +1)xmx) = 1−q(ρ+1) (4.21)

All Correct Destinations Receive m

P(all (n−1) correct destinations receive m.copy = 0 by

m.ts+(ρ +1)xmx) =
[
1−q(ρ+1)

]n−1
> R

(4.22)

If there are fewer correct destinations then (n− 1), say (n− 2), then the above probability

4.3 ABcast Components 83

is:

[
1−q(ρ+1)

]n−2
>
[
1−q(ρ+1)

]n−1
> R (4.23)

When η ≥ xmx (see Equation 4.6):

D = ηρ + xmx ≥ ρxmx + xmx = (ρ +1)xmx (4.24)

Moreover, D > D1, so:

P(all (n−1) correct destinations receive m.copy = 0 by

m.ts+D)>
[
1−q(ρ+1)

]n−1
> R

(4.25)

Accounting for ε > 0 and recalling Dm = D+2ε:

P(each correct destinations receives m.copy = 0 by its clock time m.ts+Dm)> R (4.26)

Note: The RB-Validity property is met when a correct N j receives either m.copy = 0 or

m.copy = 1 by its cock time m.ts+Dm. Since, ρ ≥ 1,

P(RB-Validity is met within Dm)>

P(Each correct N j receives m.copy = 0 by its clock time m.ts+Dm)

> R

(4.27)

RB2 - Agreement with Probabilistic Timeliness

Suppose now that Ni crashes before completing the redundant transmissions of m and n > 2.

Suppose also that only one node, N j, has m with m.copy = 0. This is the worst case to be

considered because if N j m.copy > 0, then Ni crashed only after it completed broadcasting

m.copy≥ 0, therefore some node other than N j also has m; the more destinations which receive

some copy of m, the more likely it is that rbcast(m) is completed. On the other hand, if no

destination receives any copy of m from the crashed Ni, then the case for discussion does not

exist.

4.3 ABcast Components 84

If copy m.copy = 0 takes at most xmx to reach N j (which occurs with probability (1− q)),

N j would start disseminating on behalf of Ni at or before time:

m.ts+ xmx +η +ω +ζ (4.28)

Recall that ζ is the random wait that all disseminating nodes must observe before dissemi-

nating m, with ζ uniformly distributed on (0,η). Therefore, in our calculations we assume that

the observed ζ is the largest value possible, η and ζ in equation 4.28 is replaced by η in the

discussions below. Figure 4.4 shows the worst case scenario when n = 3.

Time

m.ts

m.copy = 0

rbcast m

D = xmx + η +

m.copy = 1

 η +

m.copy = 0

 η

Ni

Nj

Nk

Fig. 4.4: RB2 Calculations - Worse Case

Simplified Scenario

As before, we assume that propagation delays are exponentially distributed with parameter λ .

Also suppose, for now, that ε = 0 and N j instantaneously transmits its m.copy = 0 without

waiting for (η +ω) and a random wait 3.

Of interest, is the probability, PD2, that a given node, Nk receives m.copy = 0 from N j by

m.ts+D2; where D2 = (ρ +2)xmx. Recall that q = e−λxmx by the exponential assumption. The

3Both of these simplicity assumptions will be removed shortly.

4.3 ABcast Components 85

Time

m.ts

m.copy = 0

rbcast m

�� = (�+2)xmx

m.copy = 0

Ni

Nj

Nk

Fig. 4.5: RB2 Calculations - Simplified Scenario

time when Nk receives m.copy = 0 is determined by the sum of two independent exponential

delays (see Figure 4.5):

i Ni to N j

ii N j to Nk

This sum follows Erlang distribution with parameter λ and number of hops, k, k = 2. So,

PD2 = 1−
k−1

∑
n=0

[(
1
n!

)
e−λD2 (λD2)

n
]

=
[
e−λD2 + e−λD2 (λD2)

]
=
[
e−λD2 (1+λD2)

] (4.29)

4.3 ABcast Components 86

Recall that e−λxmx = q (see equation 4.18),

−λxmx = ln(q)

e−λD2 = eλ (ρ+2)xmx = q(ρ+2)

λD2 = λxmx(ρ +2) =−(ρ +2) ln(q)

(4.30)

From equation 4.29:

PD2 = 1−
[
q(ρ+2) (1− (ρ +2) lnq)

]
= 1−q(ρ+1) [q(1− (ρ +2) lnq)]

= 1−q(ρ+1) [q− (ρ +2)q lnq]

(4.31)

Let q lnq = 0. As q values are q→ 0+ typically small, we approximate:

q− (ρ +2)q lnq ≲ 1 (4.32)

So, applied to Equation 4.31 we get:

PD2 = 1−q(ρ+1) (q− (ρ +2)q lnq))≳ 1−q(ρ+1) (4.33)

Therefore, the probability that all (n−2) correct Nk receive m.copy = 0 from N j by m.ts+

D2 is:

[PD2]
n−2 ≳

[
1−q(ρ+1)

]n−2
>
[
1−q(ρ+1)

]n−1
> R (4.34)

When η ≥ xmx,

D− (2η +ω) = ρη +2xmx ≥ (ρ +2)xmx (4.35)

Thus, the probability that every correct Nk receives m.copy= 0 from N j, by m.ts+D− (2η +ω),

is larger than [PD2]
(n−2) > R.

4.3 ABcast Components 87

Simplifications Removed

Accounting for the fact that N j rbcasts m within at most (2η+ω) time after receiving m.copy=

0 from Ni and ε ̸= 0:

P(each correct Nk receives m.copy = 0 by its clock time m.ts+D+2ε)> R (4.36)

Thus, the agreement property is met for the delay of Dm = D+2ε , with probability > R.

Remarks

The simplifying approximation (q− (ρ + 2)q lnq) is not unreasonable; it evaluates to be 0.80

and 0.95 when q = 5% and ρ = 3 and ρ = 4, respectively. Other than this approximation,

the agreement anaylsis is pessimistic by considering the worse-case crash scenario. When Ni

crashes during a multicast, several scenarios are possible, with just some or all destinations

receiving m.copy = 0. In the former case, several N j may multicast m.copy = 0, increasing the

chances of the other destinations receiving m.copy = 0 within Dm. In the latter case the analysis

is similar to that presented for RB-Validity.

4.4 Atomic Broadcast Protocol 88

4.4 Atomic Broadcast Protocol

Hitherto this chapter has focused on the underlying assumptions made when designing the AB-

cast protocol and the components it requires to function. This section focuses on how the

hybrid protocol functions, detailing the specifics of both the Aramis and Base protocols. First

we explore the Base protocol, as this protocol will be responsible for the majority of message

deliveries and is the more conventional of the two abcast protocols. We then explore the Aramis

protocol, detailing how it utilises the guarantees of rbcast to calculate ∆m. This followed by a

formal definition of ABcast’s delivery conditions. Finally, we discuss how the ABcast’s reliance

on the DMC requires an initialisation period to be observed by the protocol before abcasting

can begin.

4.4.1 Base

The Base protocol is based upon the NewTop [23] algorithm discussed in § 2.2.4, with a few

key differences motivated by our use of synchronised clocks and PSM.

The Base protocol works as follows when a node Ni sends an abcast m: Ni rbcasts m, and

as per the rbcast protocol m is assigned an id tuple {m.o,m.seq#,m.ts}. This tuple is utilised

by Base to specify the total order of m, with all destinations in m.dst ordering messages in

ascending order based upon their timestamp. In the event of any two messages having the

same m.ts value, the address specified in m.o is used for tie-breaking to ensure a total order;

note this is highly unlikely in practice as m.ts is recorded in nanoseconds. Similarly, in our

implementation it is not possible for the same node to rbcast two messages with the same m.ts,

as a single thread called the sender thread, is used for sending all m with m.copy = 0.

Like NewTop, delivery of m is blocked until each d′ ∈ m.dst −{m.o} has acknowledged

m by sending ackd′(m) to every d ∈ m.dst and all d ∈ m.dst have received ackd′(m)∀(m.dst \

{m.o,d}), thus C1 (§ 2.2.2) is met. With each acknowledgement consisting of the id tuple that

belongs to the message being acknowledged.

The use of synchronised clocks to uniquely timestamp each message, removes the need for

tentative timestamps to be shared between destinations. Instead the ordering of a message is

dictated from its inception based upon its timestamp. However, a message’s final place in the

total order is not known by a destination until it has received an acknowledgement from all

4.4 Atomic Broadcast Protocol 89

other d′ ∈ (m.dst−{m.o}). Figure 4.6 shows the message flow required by the base protocol

in order for an abcast to be delivered.

Fig. 4.6: Base Atomic Broadcast protocol

In order to overcome C2, as described in 2.2, and ensure that G3 and G4 are respected, it

is necessary for each d ∈ m.dst to maintain a vector clock [26, 55]; with each d’s vector clock

stating the last rbcast(m) sent by d as well as the the latest m to be rb.delivered, by d, that

originated from each d′ ∈ (m.dst − d) 4. This vector clock is then included in every m and

ackd′(m) sent by a node.

For any message m, regardless of whether it originated at the current node, it is necessary

for the associated acknowledgements and vector clocks to be checked to see if a message is

missing from the total order before m can be delivered. If a node Ni has not received m, but

has learnt of its existence via a vector clock or an acknowledgement, then we consider m to be

known by Ni. The Base delivery conditions are formalised below:

Base Delivery Rule:

A node, N j delivers any m, via Base, only after D1B and D2 stated below are satisfied:

D1B - m is acknowledged by all nodes other than m.o.

D2 - all known m′, with m′.ts < m.ts have been delivered.
4Where the latest m, is defined as the message containing the largest timestamp from a given d′

4.4 Atomic Broadcast Protocol 90

Acknowledgement Piggybacking

In the explanation of Base we assume that each acknowledgement is explicitly sent as dedicated

message, however in practice this is an expensive operation in terms of both latency and band-

width. Therefore in our implementation of Base we piggyback message acknowledgements on

subsequent rbcasts sent by an the acknowledging node; acknowledgements are piggybacked

onto all copies of m, i.e. all m.copy = 0,1, or not at all. Of course this is only appropriate

if there is a message waiting to be rbcast, otherwise deadlock will occur at all d ∈ m.dst as

an acknowledgement will never be sent. Consider, node N j is attempting to send ackN j(m) to

Ni, if N j does not receive an abcast request within Ad time, then an explicit acknowledgement

message is sent to Ni containing ackN j(m), as well as any other pending acknowledgements. We

define Ad as Ad = 2η +ω and an explicit acknowledgement as being a dedicated message mack

that is unicast to all d ∈ m.dst and is not assigned a rbcast id; hence only a single copy of mack

is broadcast via reliable UDP. 5

4.4.2 Aramis

As previously stated, Aramis is a non-blocking probabilistic abcast protocol that utilises a cal-

culated delivery delay ∆m to place an upper bound on message deliveries. The Aramis protocol

works in conjunction with Base to ensure that message delivery does not become blocked in

the event of slow or crashed nodes. However, the Aramis protocol does not simply deliver each

received message after ∆m has expired, as this could cause a known message to be missed in the

total order. Instead, it utilises the acknowledgements and vector clocks that are integral to Base

to ensure that known messages are not missed from the total order. Therefore, if a message m’s

∆m delay expires, the message can only be delivered after all known messages that precede m in

the total order have been delivered. The Aramis delivery conditions are formalised below:

Aramis Delivery Rule:

A node, Ni delivers any m, via Aramis, only after D1A and D2 stated below are satisfied:

D1A - The clock of Ni > m.ts+∆m, where ∆m = 2(D+ ε)+Ad .

D2 - All known m′, with m′.ts < m.ts have been delivered.
5Explicit acknowledgements are not rbcast in order to further minimise the bandwidth cost of sending mack.

4.4 Atomic Broadcast Protocol 91

Calculating ∆m

Let us, for simplicity, assume that ε = 0. The explanation is twofold. First, recall that rbcast

guarantees on agreement: if Ni rbcasts m and if any operative s-node (be it Ni or otherwise)

rb.delivers m, all destination nodes rb.deliver m within m.ts+D with probability > R.

Secondly, the aim of Aramis is to aid the delivery of abcast messages when Base is blocked

due to node crashes. So, delivery by Aramis is delayed until all acknowledgements are rb.delivered

when there are no crashes. Since an operative node can acknowledge at most Ad time after

rb.delivering m, we have:

∆m ≥ D+Ad +D (4.37)

Accounting for the clock synchronisation error rate of 2ε , we calculate ∆m as:

∆m = 2(D+ ε)+Ad (4.38)

Note: By delivering m at m.ts+∆m, ∆m > 2×D, Aramis indeed meets the total order (G4-P)

guarantee with a probability much larger than the user specified value of R.

4.4.3 Aramis and Base - ABcast

The ABcast protocol, is a hybrid solution that combines the delivery conditions of the Aramis

and Base protocols. Here we present a concise formalisation of the delivery rule for the entire

ABcast protocol. A node, N j delivers any m via ABcast, only after both D1 and D2 stated below

are satisfied:

D1 - The clock of Ni > m.ts+∆m (D1A) or m is acknowledged by all nodes other than

m.o (D1B).

D2 - All known m′, with m′.ts < m.ts have been delivered.

Extremely Delayed rbcast Messages

As Aramis is a probabilistic protocol it is possible for a message m to be rb.delivered at destina-

tion d, after its proceeding message m′ in the total order has already been ab.delivered; where

4.4 Atomic Broadcast Protocol 92

ab.delivered refers to a m being delivered by ABcast. In such a case, there is one of two actions

possible:

• Discard m when it becomes known to d; resulting in a violation of G1 and G2.

• Deliver m to the application via an exception; resulting in a violation of G4.

Aramis takes the second option and throws an exception when a rb.delivered message is

not ab.delivered; we refer to this process as a message being rejected. Explicitly rejecting a

message from the ab.delivery allows for higher levels in the network stack (e.g. SCast) to initi-

ate an appropriate recovery mechanism to mitigate the effects of G4 ordering violations on the

system’s state. Furthermore, as the rejected message is still being delivered to the application,

albeit via an exception, it is possible for the payload of the rejected message to be utilised by

the application as part of its recovery mechanism for ordering violations.

Message Rejections

A message, m, sent by node Ni, can only be rejected by another recipient, N j, when a message

m′ from N j has been incorrectly delivered before m in the total order; where m.ts < m′.ts but m′

is incorrectly ab.delivered first. In order for m′ to be ab.delivered ahead of m, resulting in m

being rejected by N j, it is necessary for both of the statements below to be true:

1. N j rbcasts m′ with m′.ts > m.ts, but m is not rb.delivered by N j before m′.ts+∆m′ .

2. N j does not receive an acknowledgement for m, or any rbcasts sent after m by Ni, before

m′.ts+∆m′ .

If condition one is not true, i.e. N j rb.delivers m before m′.ts+∆m′ , then N j has received

m before m′’s delivery time and therefore N j will not miss m in the total order. Similarly, if

condition two is not true, then N j will know that a message sent by Ni is missing as soon as it

inspects the received acknowledgement, attached vector clock or the seq# of the rb.delivered

message. When both conditions hold, it is guaranteed that m′ will be ab.delivered via Aramis,

as it is impossible for Base to ab.deliver a message if condition two is true.

The rules presented above can be extended to cater for when n > 2. Assuming the same

scenario described above, we introduce Nk which represents all nodes involved in an abcast that

4.4 Atomic Broadcast Protocol 93

are not Ni or N j. A message is rejected by a node N j if conditions 1 and 2 are true, as well as

the condition stated below:

3. N j does not rb.deliver an acknowledgement of m from any Nk, and it does not rb.deliver

a rbcast from any Nk, that has rb.delivered m, before m′.ts+∆m′
6.

If conditions 1,2 and 3 are true it is not possible for m to be known by N j before m′.ts+∆m′ .

This is because m has not been rb.delivered by N j and N j does not know of m, as m has not

been acknowledged, or described in a vector clock, by any Nk, before m′ is ab.delivered by N j.

4.4.4 Initialisation Period

The ABcast protocol requires a ‘warm-up’ period before abcasts can be sent between nodes.

This period is required in order to:

i Synchronise the clocks of all participating nodes in the view.

ii Ensure that each node’s DMC has recorded at least NTp latencies

Synchronisation must be performed first as the DMC is dependent on this assumption. Our

solution to recording NTp latencies, is to incorporate a mandatory probing period that must be

observed by all nodes in the current view after their clocks have been synchronised and before

abcasting can begin.

The probing period required during initialisation utilises ‘empty’ probe messages to record

NTp latencies at each node’s DMC. An empty probe consists of a message, with a payload the

size of those expected during abcasting, being unicast to all n nodes in the current view. This

requires each node in the view to send at least NTP
n probes, however in reality the number should

be higher to take into account that nodes will start the initialisation process at different times.

With each subsequent probe being broadcast x time apart; with x being a value determined

before run-time that should be an approximation of the expected frequency of abcasts. Once all

nodes in the view have sent their probes, and recorded at least NTp latencies, it is possible for

this node to start executing abcasts.

A disadvantage of utilising empty probes is the risk of network latencies being over-or un-

derestimated respectively, due to unknown load conditions that an application would experience
6Where m′.ts+∆m′ is based upon N j’s local clock.

4.5 Flow Control 94

later. Such inaccuracies are corrected as the application progresses and will not be an issue if

crashes do not occur at the start of the application.

4.4.5 Initialising a Newly Joined Node

When a new view is issued containing a new node, Ni, it is necessary for Ni to undergo an initial-

isation period similar to that described in the previous section. Clock synchronisation is simple,

as Ni can just contact the designated master node (as per [15]) and initiate the synchronisation

protocol.

Recording the required NTp latencies is slightly trickier, as utilising a probing period similar

to the initialisation period could have an adverse effect on all other nodes in the view. This is

because the existing nodes will most likely be heavily loaded from application requests, hence

the need for an additional s-node, and adding additional load over a short period of time would

be detrimental to performance. Therefore, we propose that a better solution would be for new

nodes to be silent watchers until NTp latencies have been recorded. A silent watcher, is a node

that receives abcasts from all other nodes in the view, but is unable to initiate its own abcasts

until after it has received NTp abcasts and hence recorded NTp latencies. When a new view is

issued by the GM service, existing nodes include Ni in the destination set of subsequent abcasts,

resulting in Ni eventually receiving NTp messages.

Note: While Ni is considered a silent watcher, it is still possible for it to participate in the

redundant rbcasts of message copies as the required timeout values are transmitted along with

the message itself.

4.5 Flow Control

The ABcast protocol described in this section functions as expected when each node’s through-

put is low. However, the ABcast protocol discussed thus far has no flow-control, therefore as

the number of requests per second increases, the protocol starts to become saturated by requests

and performance deteriorates. If the broadcast rate of a node is not restricted in any network

protocol, it is possible for a congestive collapse [36, 57] to occur. A congestive collapse is a

situation whereby the current load on the network has saturated the underlying network, result-

4.5 Flow Control 95

ing in little to no throughput due to the rate of packet loss and the overall delay encountered

by packets increasing. The increase in network delays is typically caused by the need for data

packets to be queued in a buffer at both the sending and receiving node, whilst the increase in

packet loss is attributed to the overflowing of said buffers; packet loss exasperates the problem

as additional network traffic is required when the lost packet is retransmitted. For a congestive

collapse to occur, its necessary for a network’s input rate to exceed its output rate over an ex-

tended period of time, therefore in order to avoid such a collapse, it is necessary for the input

rate of each node in the network to be throttled so that the network’s average rate of input is

approximately equal to its output rate.

Congestive collapse is the worse case scenario for the network, however it is possible for

similar symptoms to temporarily manifest themselves if the input rate of one, or more, nodes’

sporadically increases. Sporadic increases in a node’s input rate is likely to cause large bursts

of messages to be flooded into the network over a very short period of time, placing more stress

on the buffers of both the sending and receiving nodes. This burstiness can cause the network

to become temporarily congested, which does not lead to a total congestive collapse, however it

is liable to cause increased packet loss and delays, resulting in a loss of throughput. Therefore

it is important for a flow control protocol to not only ensure that a congestive collapse does not

occur, but also to ensure that each node transmits data at a consistent and stable rate.

Due to its reliance on the PSM model and assumption A4, the ABcast protocol is more

susceptible to the effects of network congestion than traditional deterministic protocols. As the

underlying network starts to become congested, then it becomes harder for the DMC to produce

even reasonably accurate estimates of future performance due to the variations in network delays

and increased likelihood of packet losses. Whilst assumption A3 ensures that all nodes will

eventually receive a lost packet, it is still possible for an increase in packet loss to have an

adverse effect on the overall system performance, as it is still necessary for the missing packets

to be retransmitted by the reliable UDP protocol. Therefore additional packets are sent across

the already congested network and the latencies recorded by the DMC will become larger. The

unpredictability of a congested network can cause the DMC to underestimate the latencies that

will be encountered by future transmissions, leading to assumption A4 being compromised.

Such an underestimation can result in more messages being delivered by Aramis, which in turn,

4.5 Flow Control 96

increases the probability that the abcast guarantess of ABcast will not be met due to messages

being rejected from the total order.

Ultimately, a flow-control mechanism is required by ABcast nodes to ensure that the number

of requests issued by a node, per second, does not adversely effect the performance of the un-

derlying communication network. The P2P abcast protocol currently used by Infinispan, TOA,

utilises a flow control scheme provided by JGroups, called UFC [68], to control each node’s

broadcast rate. UFC is based upon the sliding-window approach to flow control [6], however

in the JGroups literature they describe the sliding window concept in terms of a finite number

of credits that are maintained by each node; for completeness we utilise the same terminology

when referring to UFC.

The UFC protocol is based on the premise that a node’s credits are expended when a new

broadcast is sent and reimbursed when a destination node confirms receipt of the original broad-

cast. Informally, the UFC protocol works as follows: A receiving node, N j reimburses the send-

ing node Ni’s credits, by sending a response message to Ni with x amount of credits; where

x is equal to the number of bytes received by N j. If a sending node attempts to broadcast a

message equal to y bytes, but its remaining credits rc < y then the sending of a message m

becomes blocked until a a receiving node reimburses the sender for its earlier broadcasts or a

configurable timeout period expires.

The UFC approach works well for deterministic abcast protocols such as TOA, however it

is not well suited for use with ABcast, due Aramis’s reliance on the DMC’s calculations for

generating its probabilistic guarantees. As previously stated, the Aramis protocol is heavily

reliant on assumption A4, consequently, it is necessary to ensure that the DMC’s observed

latencies do not fluctuate unpredictably in a manner that would undermine A4.

The UFC’s independence from the DMC, ultimately means that it cannot determine whether

the current load on the network is having an adverse effect on the latencies been measured by

the DMC, and hence, UFC cannot take action in the event of the DMC’s measurements deterio-

rating. Similarly, the UFC approach can become overly-restrictive when utilised by ABcast, as

it is possible for a node to block the broadcasting of a message due to insufficient credits even

if the DMC is operating as expected and no large increases in network latencies have been ob-

served. Finally, the UFC protocol requires additional messages to reimburse each node’s credit

4.5 Flow Control 97

when a broadcast has been received by a destination. This additional bandwidth requirement

could alternatively be utilised by the underlying abast protocol to increase its throughput if it

were not required by UFC.

Ultimately, a bespoke flow-control scheme is required by ABcast to ensure that optimal lev-

els of throughput are maintained under heavy loads. Such a protocol should utilise the DMC’s

measurements to control the send rate of abcasts and to preserve the validity of assumption A4

where possible. The remainder of this chapter details the design and implementation of such a

protocol.

4.5.1 AFC Design

In contrast to the UFC approach to flow control, our approach does not require additional mes-

sages, or the concept of a finite number of credits to restrict a node’s transmission rate. Instead,

our solution depends entirely on the latencies measured by the DMC and its associated calcula-

tions. Consequently, our flow control protocol is tightly coupled with the ABcast protocol and

is not applicable for more traditional based abcast protocol such as TOA. The remainder of this

section describes the rational behind our approach.

Assumption A4 states:

Let xmx be the maximum delay estimated at time t by observing NTP trans-

missions in the recent past: The delay xmx will not be exceeded in any of NTF ,

NTF ≤ NTP, transmissions to unfold after t with probability (1− q); where q can

be estimated with reasonable accuracy.

Note: That (1−q) can be estimated is a major assumption. For example, if actual q is 5%

and is estimated as 25%, then this is not admitted by A4.

As previously stated, when ABcast nodes start to become overwhelmed by broadcasts it is

possible for A4 to be undermined, resulting in future transmissions exceeding xmx. Therefore,

we propose a new flow control protocol that utilises a rate-based scheme [6] that reduces a

node’s current broadcast rate if it starts to observe latencies greater than the last xmx value

calculated. We call this protocol ABcast Flow Control (AFC), and the basic design concept is

as follows:

4.5 Flow Control 98

A node is sending and receiving broadcast messages between a fixed destination set of

nodes and the latencies encountered by each broadcast is recorded by all recipient nodes7. In

the event that one or more of these latencies exceed the current xmx value, it is the responsibility

of AFC to ensure that the local node adopts a lower broadcasting rate until a new xmx value

is calculated. At which time, the newly calculated xmx takes into account the large latencies

observed in the recent past, reducing the probability of assumption A4 being compromised by

the latencies encountered in the near future. If latencies continue to exceed xmx then the node’s

broadcast rate will become increasingly restricted, whereas if no violations of xmx occur, then

no restrictions are placed on the node’s broadcast rate. Thus a node’s broadcast rate is restricted

only when actual delays violate A4.

Unlike UFC, our approach restricts the sending rate of a node, Ni, based upon the messages

it receives, not the rate at which Ni’s messages are received at other nodes in the network.

This may seem counterintuitive, but it is appropriate because the ABcast protocol is based

upon the assumption that the latencies observed by a given node, Ni, are representative of the

latencies which Ni’s broadcasts experience at destinations, therefore the AFC protocol simply

utilises this assumption and applies it to flow control. The AFC protocol is designed upon

the assumption that if Ni’s observed latencies repeatedly exceed xmx, then it is highly probable

that Ni’s message buffer or the underlying network is approaching saturation. In which case,

it is very likely that another node, N j, will also be observing increased-latencies due to similar

circumstances, therefore it is necessary for Ni’s broadcast rate to be lowered in order to reduce

the load on N j. This assumption is especially apt in the AmaaS model when the SCast protocol

is used, as each c-node randomly selects an s-node when sending a multicast request, resulting

in client requests being evenly distributed between s-nodes. Therefore each s-node is likely to

issue approximately the same number of abcasts, and thus, each node receives approximately

the same number of messages.

Figure 4.7 shows the new ABcast components diagram with the AFC protocol included.

Note that the AFC protocol is the highest in the stack, i.e. closest to the application, as all

abcast messages must be sent via the AFC protocol.

The remainder of this section focuses on the calculations used by a node to regulate its

broadcast rate.
7As required by the ABcast protocol.

4.5 Flow Control 99

Synchronised
Clock (ɛ)

Aramis

rbcast

Reliable UDP

GM

DMC

Network

BaseSynchronised
Clock (ɛ)

Aramis

rmcast

Reliable UDP

GM

DMC

Network

BaseSynchronised
Clock (ɛ)

Aramis

rbcast

Reliable UDP

GM

DMC

Network

Base

Application

ack(m)

Provided by JGroups

AFC

Fig. 4.7: ABcast Protocol Components with AFC

4.5.2 AFC Protocol

This section introduces the variables utilised by AFC, explaining their significance and why

they are required, before detailing the calculations that utilise these variables to alter a node’s

broadcast rate. The calculations presented in this section assume that a single message m is

being broadcast.

The steps required by AFC to initiate a broadcast of m are as follows: An application thread

sends m down the protocol stack, and upon receipt of m, the AFC protocol performs all of the

calculations presented in this section in order to calculate a flow control delay. This delay must

be observed between the time of a node’s previous broadcast and the broadcasting of m, with

neither this thread or another application thread able to broadcast a subsequent message until m

has observed its delay. Upon expiration of this delay, m can be sent to ABcast for broadcasting.

Once m has been broadcast, the applications request has been completed and it is possible for the

previously engaged thread to initiate a new broadcast. Note, it is possible for other application

threads to submit messages to the AFC protocol whilst m is being handled, or waiting for its

delay to expire; these messages cannot be processed until m has spent its required delay.

A common technique for implementing rate-based flow control, is the use of the leaky bucket

scheme [6, 37] to regulate the sending of many messages. In this scheme, messages are placed

into a ‘bucket’ until they are assigned a permit allowing them to be transmitted. The rate at

which permits are dispensed to messages, determines the broadcast rate of the node and is

equivalent to the estimated flow-control delay. It is common for leaky bucket implementations

to utilise buckets that consists of several messages, with the transmission of the bucket being

4.5 Flow Control 100

delayed until all of its messages have acquired a permit; hence a flow-control delay has been

observed by all nodes in the bucket. This leads to messages being sent in batches from each

node, with a large delay observed between subsequent buckets, opposed to individual messages

being sent at a consistent rate.

As implied earlier, the AFC protocol only utilises buckets consisting of one message, with

each bucket observing a flow-control delay. AFC does not utilise buckets consisting of multi-

ple messages due to ABcast’s reliance on acknowledgement piggybacking and vector clocks.

Sending messages in batches, means that ABcast is more likely to resort to sending explicit

acknowledgement messages as abcasts will not be initiated frequently by a node. Instead large

amounts of messages will be initiated over a short period of time, and in the interim period

between consecutive buckets there will be no abcasts for acknowledgements to be piggybacked

on.

Similarly, ABcast is reliant on regularly receiving vector clocks attached to abcasts from

other nodes, to ensure that no messages in the total order have been missed. If abcasts were

sent in batches, these clocks would not be received at a constant rate, rather they would be

received in large batches semi-frequently. In this interim period a node would be more likely

to violate the abcast total order as the node may not have received a vector clock from a given

node for a relatively large period of time, and hence it would be unaware of some messages that

were broadcast in the recent past.

Protocol Parameters and Calculations

When the AFC protocol receives m from the application, it polls the DMC to determine the

number of latencies that have exceeded xmx at the present time. These latencies are used to

calculate the flow control delay for m, which ensures that m and subsequent messages, are

broadcast at the newly calculated rate. Recall that the DMC utilises a NTF = 10% of NTP, where

NTP = 1000, and a new xmx value is calculated after every NTF latency has been recorded; in

this case a new xmx value is calculated after every 100 latencies observed. We consider a latency

x to have exceeded xmx if x > xmx and x is recorded after current xmx is computed. When NTF

latencies have been recorded since the last calculation of xmx, it is necessary for a new x′mx value

to be calculated that incorporates the latency values that previously exceeded xmx.

4.5 Flow Control 101

When a latency x exceeds xmx, we refer to this as a Marginal Peak Mp, as xmx is the boundary

(margin) value and Mp a latency that has peaked beyond the margin; we record Mp as the

difference between x and xmx, thus Mp = x− xmx. It is possible that multiple x values will

exceed xmx, in which case we record all Mp values and refer to the total number of Mp values

as #Mp. Once all Mp values have been recorded, we calculate the variable µ; which along with

the current xmx value determines the amount that a node’s broadcast rate should be restricted.

Let ΣMp = Mp+Mp′+, . . . ,+Mp′′, and µ be calculated as:

µ =
ΣMp
#Mp

(4.39)

However, if #Mp < 10, µ is calculated as follows:

µ =
ΣMp

10
(4.40)

Equation 4.40 is necessary, in order to reduce the effects of a small number of Mp values

from severely restricting a node’s broadcast rate. For example, consider xmx = 2ms and a single

Mp occurs where latency x, x= 4ms, this would result in Mp= 2ms. If equation 6.1 was utilised,

then µ = 2, which would produce a large flow-control delay, which in turn would result in

the broadcast rate being reduced significantly and the flow-control becoming overly restrictive.

However, when we utilise Equation 4.40, the influence of a small number of latencies (< 10)

on the calculated µ is reduced. In this example, and our implementations of AFC, we have

utilised 10 to define the minimum divisor required when calculating µ , however this value can

be configured depending on a system’s requirements.

The µ variable is used alongside xmx to calculate γ , where γ is calculated as:

γ =
xmx +µ

xmx
= 1+

µ

xmx
≥ 1 as µ ≥ 0 (4.41)

Calculating a New Broadcast Rate

Let λ1 represent the current broadcast rate of a given node. It is used alongside γ to calculate

the new broadcast rate and the duration of the flow-control delay that needs to be observed by

m.

4.5 Flow Control 102

Let λ2 denote the new rate which is calculated as:

λ2 = λ1e
(

1−γ

C

)
(4.42)

Where C > 0 is an input parameter for AFC.

γγγ === 111

When γ = 1, no Mp value has been observed so far; so, µ = 0 as per Equation 4.40 and

λ2 = λ1. Thus, m will be handed over to ABcast at the old rate of λ1.

γγγ >>> 111

When γ > 1, xmx has been observed to have been violated and hence the broadcast rate

must be slowed down. Moreover (1− γ)< 0, e
(

1−γ

C

)
and λ2 < λ1.

Note that ez̄ decays rapidly as z̄, z̄ > 0, decreases even by a small amount (see Figure 4.8).

To control λ2 becoming extremely small, we choose C to be a large positive constant.

0

1

z̄

ez̄ ez̄ = 1, when z̄ = 0

Fig. 4.8: The effect of z̄ decreasing on ez̄

Honouring λ2 for m, means that AFC must maintain the time at which it handed over a

message to ABcast most recently. Let m̃ be that message, and m̃.t be the time m̃ was handed

over to ABcast. Note that m̃.t is registered as per a node’s unsynchronised clocks and bears no

relevance to m̃.ts that ABcast would timestamp m̃ with. Let m.t = m̃.t+ 1
λ2

and AFC hands over

m to ABcast when the (unsynchronised) clock reads m.t and retains m.t instead of m̃.t.

4.5 Flow Control 103

The additional delay m experiences over m̃ is given by δ :

1
λ1

+δ =
1
λ2

(4.43)

Note: δ = 0 if λ1 = λ2.

A Practical Observation and Remedy

AFC presented above is very dynamic and can result in a node’s δ value fluctuating dramatically

over a period of time. Although a dynamic flow-control solution that reacts to the changing

conditions of the network is desirable, early experiments showed that calculating δ as above

resulted in very small delays being calculated for the majority of broadcasts. This resulted in

the broadcast rate of sending nodes not being restricted sufficiently over an extended period of

time, causing larger numbers of Mp values to suddenly appear. This sudden emergence of Mp

values results in the calculated δ value being extraordinarily high and the system’s throughput

becoming excessively restricted. Over time, as new xmx values were calculated and Mp values

stopped appearing, the flow-control began to increase the node’s broadcast rate, however we

found that δ eventually become too small again, causing a cycle to occur that consistently

repeated itself. Ultimately, solely utilising δ caused AFC to retrospectively react to a congested

network, when the purpose of AFC is to be proactive and stop congestion from occurring.

Our solution, was to propose two new constants δmin and δmax, which set a lower and upper

bound on δ . The new calculations for λ2 are presented below:

δmin
If

1
λ1
− 1

λ2
< δmin

then

λ2 = λ1

δmax
If

1
λ1
− 1

λ2
> δmax

4.5 Flow Control 104

then λ2 is recomputed as
1
λ2

=
1
λ1

+δmax

The purpose of the lower bound δmin is to ensure that all broadcasts are sent at a constant,

predictable rate, in order to stabilise xmx and ensure that the system does not become exces-

sively bursty. Conversely, the upper bound δmax ensures that if a large number of Mps occur

between xmx calculations, the calculated δ value will not be excessively large and thus wont

overly restrict a node’s broadcast rate. Like the other constants used by AFC, δmin and δmax are

determined before runtime, and therefore appropriate values can be set for each depending on

the network environment and the expected throughput of data.

4.5.3 Limitations

The AFC protocol detailed in this section has proved to be an effective flow-control protocol for

use with ABcast, with the broadcast rates of nodes in the cluster being restricted sufficiently to

prevent congestive collapse and minimise Aramis rejections (§ 6). However, the AFC has two

key limitations:

i The protocol is a rate-based scheme and therefore the limitations inherent with such an

approach can be attributed to AFC by default. Specifically, such an approach does not

guarantee that no buffer overflows will occur as it is possible that the calculated rate of

broadcast is too large. This is especially true if the conditions of the network change

dramatically over a short period, and in the case of ABcast this will also effect our ∆m

calculations.

ii The use of δmin and δmax as upper and lower bounds on delays. These bounds are required

to ensure that the system is not overly restrictive, or permissive, of abcast requests, how-

ever in the current design these values are specified before run-time and do not change

based upon the networks current condition. Therefore, it is possible that δmin may be

overly restrictive when the system is lightly loaded, whereas δmax may permit too many

broadcasts to be sent when the system is heavily loaded.

4.6 Summary 105

4.6 Summary

This chapter presented ABcast - a new hybrid protocol that utilises both a deterministic (Base)

and probabilistic (Aramis) protocol in order to create a non-blocking abcast solution. We de-

tailed the protocol’s assumptions and required components, before detailing the delivery and

rejection criteria of the two protocols. Finally, we presented a new flow-control protocol de-

signed specifically for use with ABcast.

Chapter 5

Probabilistic SCast

This chapter explores the consequences of utilising the ABcast protocol for state machine repli-

cation between s-nodes in the AmaaS model. Throughout our explanations we assume that the

SCast protocol and its system model are utilised for all interactions between c-nodes and the

ordering service. We refer to this approach as Probabilistic SCast, or PSCast for short.

The remainder of this chapter is structured as follows: First we present the new amcast

guarantees provided by PSCast. We then explore the ramifications of these new guarantees and

discuss how they can cause amcast messages to be delivered out of the total order at one or more

destinations. Finally, we describe the consequences of such missorderings, within the context of

Infinispan, and explore potential solutions that can be employed by Infinispan to tolerate these

missorderings.

5.1 PSCast Guarantees

Below, we state the amcast guarantees provided by PSCast.

G1 - Validity: If the source of mi does not crash until it abcasts mi, then all operative destina-

tions of mi deliver mi.

G2 - Uniform Agreement: If the source of mi crashes while abcasting mi, and if any destination

delivers mi, then all operative destinations of mi must deliver mi.

G3 - Uniform Integrity: If mi has already been delivered by a destination d, then d cannot

deliver mi again.

5.2 G4-PSCast Implications 107

G4-PSCast - Probabilistic Total Order: If two amcasts, mi and m j, have common destinations,

then all such destinations that deliver both mi and m j, will deliver them in an identical

order with a probability Rmc; where (1−Rmc) is linearly proportional to (1−R) and R

is the order probability of ABcast.

Note: The guarantees of PSCast are identical to those of the underlying abcast proto-

col, ABcast. This is because the guarantees of the abcast protocol, and any violations of

these guarantees, directly impacts how each s-node maintains its order_history[] and gener-

ates m.history[]; with m.history[] dictating the order in which a c-node must deliver amcasts (§

3.4).

5.2 G4-PSCast Implications

Recall that the SCast protocol utilises the final timestamp of the abcast message, which contains

a clients ordering request, to determine the total order of the amcast.

The SCast protocol, described in chapter 3, assumes that the underlying abcast protocol

provides deterministic guarantees for all G1-G4 (§ 2.2). Hence, the SCast protocol assumes

that all s-nodes will eventually deliver an abcast and that all abcasts are delivered in the same

order at each destination. This assumption means that the SCast protocol is able to guarantee

that all amcasts sent via the ordering service will respect G4 as it is guaranteed that all s-nodes

will always maintain a consistent order_history[]. Therefore, all ordering responses, rsp(T x),

from the service will contain the correct m.history[] data.

Conversely, PSCast utilises a probabilistic abcast protocol, ABcast, that only guarantees

G4 with probability R (G4-P). Therefore, for an abcast m sent between s-nodes, there is a small

probability (1−R) that a destination, Ns, will neither receive nor know of m before ∆m time.

In this case, it is possible for another abcast, m′, m.ts < m′.ts, sent from a different s-node,

m.o ̸= m′.o, to have been delivered at Ns when ∆′m expired. Resulting in a violation of G4, as m′

has preceded m, which causes Ns to reject m from the total order and deliver it to the application

(SCast), via an exception, when it eventually arrives.

5.2 G4-PSCast Implications 108

5.2.1 An Abstraction Based Explanation

The mechanisms that give rise to probabilistic total order of amcasts can be abstracted by mod-

elling abcast total order failures as random choices occurring with probability ≤ (1−R). Sup-

pose, to the contrary, that ABcast meets G4 deterministically; i.e. all abcasts are delivered only

by Base. Note that this supposition allows us to use Î and ≺ defined earlier. Suppose also that

each service node Nsi, upon delivering an abcast m, m.o ̸= Nsi, generates a random number

RV , which is distributed uniformly on (0,1) and carries out one of the two actions.

Case 1: RV ≤ R or m.o = Nsi

This represents the case that G4 is met and m is processed exactly as explained in the de-

terministic SCast protocol (§ 3.4.3). In particular, m is added to a node’s order_history[]

instantly as described in SCast.

Case 2: RV > R

This represents the case where G4 was not met. In this case, m is not inserted in order_history[]

until after x time elapses. With x being a random value that represents the unknown time

at which m would be delivered late by Aramis. Consequently, subsequent abcast mes-

sages, m′, m′.ts > m.ts, that are delivered by Nsi without any additional random wait of

x would be inserted into order_history[] ahead of m. When the random wait period ex-

pires, Nsi "detects" m to have disrupted the ideal Î supposed earlier and handles it in an

exceptional manner.

Remark

Had m.o = Nsi, then Nsi cannot deliver its own abcast late, hence Case 1 would apply.

This also means that when m.o ̸= Nsi and Nsi applies Case 2 for m, there will be another

service node Ns j = m.o which, unless crashed, applies Case 1 on m and converts it into its

corresponding amcast. In other words, that Nsi ̸= m.o chooses Case 2 for m does not nec-

essarily imply that the corresponding amcast to client nodes is unduly delayed. Next, we

discuss the consequences of Nsi ̸= m.o not promptly entering m into its order_history[].

Consider a scenario where Nsi delivers four abcasts, {m1,m2,m3,m4}; each m corresponds

to a transaction with the same value, e.g. m1→ T x1, and T x1.dst = {Nc1,Nc2,Nc3}; T x2.dst =

{Nc1,Nc3}; T x3.dst = {Nc1,Nc2}; T x4 = {Nc2,Nc3}, and m4.o = Nsi. Furthermore, each

5.2 G4-PSCast Implications 109

mcast(T x1) message sent as per the SCast protocol, is denoted as mc1 for short, e.g. mc1 is

associated with the same amcast as T x1 and m1.

If Nsi delivers all four messages in the correct order, all messages are inserted into the

order_history[] in the correct order. Therefore, a correct m4.history[] is produced by Nsi; the

resulting order_history[] and m4.history[] generated upon delivery of m4 are shown in Figure

5.1.

Alternatively, consider that a single abcast, m3,m3.o ̸= Nsi, is allocated a value RV > R.

This causes m3 to be delayed for x time. Assuming that m4 is delivered before x time, m4 will

take m3’s place in the total order, resulting in an erroneous order_history[] and m4.history[].

This is shown in Figure 5.2.

m3

m2

m1 m2 m3

m1 m3 m4

m1 m2 m4

Nc1

Nc2

Nc3

Client Nodes Latest Message
m1

m2

m3

m4

Total Order

Delivery
Order

order_history[] m4.history[]

Nc2

Nc3

Client Nodes <<d

Fig. 5.1: order_history[] with Correct ABcast Ordering (G4)

m1 m2

m1 m4

m1 m2 m4

m1

m2

Nc1

Nc2

Nc3

Client Nodes Latest Message
m1

m2

m4

Total Order

Delivery
Order

order_history[] m4.history[]

Nc2

Nc3

Client Nodes <<d

Fig. 5.2: order_history[] with ABcast Order Failure (G4 Violation)

The consequences of the incorrect m4.history[], as shown in Figure 5.2, are that it is now

possible for the c-node, Nc2, to miss mc3 in its total order, even though mc3 ÎNc2 mc4. In order

for such a miss-ordering to occur, both of the following must be true:

i Nc2 receives mc4 before mc3.

5.3 Service Node - Coping with ABcast Order Violations 110

ii Nc2 delivers the message stated in mc4.history[Nc2] before receiving mc3.

If condition (i) is true, then Nc2 will not know of mc3 as it is not stated in mc4.history[] and

if (ii) is also true, then mc4 will be delivered immediately. Note, that if Nc2 was to receive mc3,

before delivering mc4.history[Nc2], then mc3 will be known by Nc2 and the correct delivery

order of mc1 ÎNc2 mc3 ÎNc2 mc4 will be preserved.

5.3 Service Node - Coping with ABcast Order Violations

We now explore how ABcast order violations can be handled by s-nodes in order to reduce the

chances of SCast violations from occurring.

Let m and m′ be abcasts such that m Îd m′ for all d ∈ tx.dst ∩ tx′.dst; where tx and tx′ are

the transactions associated with abcasts m and m′ respectively. Now consider that m is assigned

a value RV >R and m′ RV ≤R at an s-node Ns. This results in Ns delivering m′ before delivering

m via an exception.

In the above scenario, Ns’s order_history[] will be missing m when m′.history[] is calculated,

therefore it is possible for one or more d to suffer from an SCast ordering violation. Upon

delivering m, it is not possible for Ns to update order_history[d], as order_history[d] contains

m′.ts which is more recent than m.ts, m.ts < m′.ts, and order_history[] must only store the

latest timestamp encountered for a given d. However, for all d′ ∈ tx.dst \ tx′.dst, it is necessary

for order_history[d′] to be updated if order_history[d′]’s current entry precedes m in the total

order. Updating all order_history[d′] entries ensures that the latest timestamps are recorded

where possible, therefore reducing the chances of further SCast ordering violations.

Crash-Tolerance

In the scenario (i) described above, it is not possible for m to create a correct m.history[] as

m′ will be present in order_history[d]∀d ∈ m.dst ∩m′.dst. However, an accurate m.history[]

needs to be generated in order to store a local copy of m, at Ns, as it may be required in

the event of a crashed node (§ 3.4.4 (C3 and S1− S4)). A possible solution to this prob-

lem, is to utilise a partially-persistent version of order_history[], ¯order_ ¯history[], that allows

5.4 Client Nodes - Detecting SCast Order Violations 111

past values associated with a given c-node to be queried 1. This would enable Ns to query

¯order_ ¯history[d]∀d ∈m.dst and find the message that actually precedes m in the total order, not

m′, so that an accurate m.history[] can be generated.

A limitation of such an approach would be the amount of memory consumed by the ¯order_ ¯history[]

data structure, however this is not a major concern as the amount of data required for each mes-

sage is very small. Therefore, utilising an eviction scheme alongside reusable data objects

would allow such a scheme to function indefinitely whilst storing thousands of message records

at any one time.

5.4 Client Nodes - Detecting SCast Order Violations

Recall that SCast utilises a single delivery thread to process the AWQ and am_deliver() all

amcast messages (mcast()) to the application. In addition to these threads, we also assume

there exists several worker threads which are responsible for delivering and processing unicast

messages to the SCast protocol. It is these threads that process unicast messages and determine

whether they are mcast() messages which must be added to the AWQ or if they are unicast

messages required by higher-level protocols in the stack; in which case, the worker threads

simply forwards the messages up the stack 2.

To detect order violations, we modify the behaviour of the original SCast protocol. Instead

of placing all received mcast() messages into the AWQ, it is now necessary for the worker

thread to inspect the mcast() message, m, and determine whether m has missed its place in the

total order. This is achieved by comparing m.order with last_amcast.order; where last_amcast

is the last mcast() message that invoked am_deliver(). If last_amcast.order≺m.order, then m

can be added to the AWQ and processed as normal. However, if m.order ≺ last_amcast.order

then we know that m has been missed in this node’s total order, therefore it is necessary for the

primitive am_deliver_with_exception() to be invoked.

The purpose of am_deliver_with_exception() is to enable an the application to still receive

m, whilst being aware that an order violation has occurred. Assuming that the primitive has

been invoked for a mcast() m, am_deliver_with_exception() works as follows: m is assigned

1This could be implemented by maintaining a partially-persistent linked list for each client, with each subse-
quent message associated with a client simply appended to the end of the list.

2The delivery thread is not required as normal unicast messages do not adhere to a total order.

5.4 Client Nodes - Detecting SCast Order Violations 112

an error bit to identify it as an order violation and it is delivered to the application via a worker

thread, i.e. as a normal unicast message. The delivery thread is not utilised as this node’s total

order has already been violated and it is necessary for the higher level application to receive m

as soon as possible.

For example, let amcast’s m1 ≺d m2 for a c-node destination d. Now assume that an ABcast

order violation occurred at an s-node when processing m1, which results in m2.history[] missing

m1 for m2.history[d]. Let d receive and deliver m2, before eventually receiving m1; hence

last_amcast = m2. Upon receiving m1, d will realise that m1 ≺ last_amcast and will therefore

invoke am_deliver_with_exception(m1). Assuming that the application is still executing m2

using the delivery thread, it is possible for the application to receive m1 via a worker thread

and initiate a recovery mechanism as soon as possible, in order to counteract m1’s SCast order

violation.

The pseudocode for receving a message and determining whether a mcast() has suffered a

SCast order violation at a destination d is presented in Algorithm 4, whilst the pseudocode for

processing the AWQ remains the same as Algorithm 3 presented in section 3.4.

Algorithm 4 PSCast Receive Message

1: m← receive_message();

2: if m is mcast() then

3: if last_amcast ≺d m.order then

4: add_to_AWQ(m);

5: else if m.order ≺d last_amcast then

6: am_deliver_with_exception(m);

7: end if

8: else

9: f orward_to_application(m);

10: end if

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 113

5.5 Infinispan (Client Node) - Coping with SCast Order Vi-

olations

In the event that one or more order violations occur, it is necessary for the client application to

be able to recover from such events. In this subsection, we present a recovery mechanism that

can be employed by the Infinispan transaction manager at each c-node in the event of a violation

occurring. The exact methods of the recovery mechanism are determined by the isolation level

chosen by the Infinispan clients before runtime; with one method required for Repeatable Read,

RR and Read Committed, RC transactions, whilst an alternative method is required for RR with

WSC due to its dependence on a voting phase to commit/abort transactions. Therefore, we first

explore the method required for RR and RC before detailing the provisions for RR with WSC.

5.5.1 Transaction Manager Assumptions

Our solutions for recovering from ordering violations assume that the following data structures

are implemented by the Transaction Manager (TM):

tttxxx_eeennntttrrryyy

For a transaction, T x, the following data must be stored:

• The duration of the transaction from its inception. (TTT xxx...ddduuurrraaatttiiiooonnn).

• A boolean flag, which is set to true if T x was delivered to the TM via an exception.

(TTT xxx...eeexxxccceeeppptttiiiooonnnaaalll).

• The value of all (k,v) pairs in this T x at the time T x starts to be processed. (TTT xxx...ssstttaaarrrttt_pppaaaiiirrrsss).

• The m.order value associated with the amcast which delivered T x’s prepare(T x)

message. (TTT xxx...ooorrrdddeeerrr).

• The final decision, whether to abort or commit the transaction. (TTT xxx...dddeeeccciiisssiiiooonnn).

• An associative array of all commit() or abort() votes received for this transac-

tion, with the source node of a vote being used for indexing (RR with WSC only).

(T x.votes[]). Note: votes received for transactions that have not yet been processed

by a TM are stored in a temporary buffer until the associated transaction becomes

active; at which point the votes are received and added to T x.votes[].

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 114

Henceforth, all references to a transaction, or T x, assumes that a tx_entry is maintained

along with all of the above values.

tttxxx_qqquuueeeuuueee

The transaction queue, tx_queue, is a priority queue which stores the TM’s currently exe-

cuting transaction, T x, as its head entry; a T x is dequeued when it has finished executing

and pushed onto tx_history. Subsequent entries in the queue are additional transactions,

T x′ that succeed T x in the total order. Note: When no order violations have occurred, the

tx_queue should only contain T x.

tttxxx_hhhiiissstttooorrryyy

The transaction history, tx_history, is a stack which stores the transactions which have

already been committed by the TM, with the T x stored at the top of the stack representing

the last transaction to have been committed by the TM.

Delivery Thread and TM

As the delivery thread utilised by PSCast is responsible for delivering all mcast() messages that

do not suffer an order violation, we assume that this thread is also responsible for processing

the tx_queue upon message delivery. Therefore, transaction processing occurs as follows: At

the PSCast level when am_deliver() is invoked, the delivery thread passes the prepare(T x)

message upto the TM, adds the T x to tx_queue and starts processing tx_queue; hence T x. Once

all messages in the tx_queue have been processed, the delivery thread returns to the PSCast

level and starts processing the next message in SCast’s AWQ.

Worker Threads and TM

We assume that all unicast messages sent between TMs are delivered up their destination’s

network stack and to their local TM via a worker thread. This enables the TM to receive unicast

messages from other TMs, e.g. votes when WSC is enabled, whilst enabling the delivery thread

to be utilised solely for amcasts that require processing by the TM.

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 115

5.5.2 Repeatable Read and Read Committed

When RR or RC isolation is utilised the outcome of a transaction is determined in a single

phase as each d ∈ T x.dst deterministically decides whether to commit or abort a transaction

without requiring any additional communication between destinations. Consequently, when a

TM receives a prepare(T x) message via PSCast, assuming that no ordering violations occur,

the TM is able to commit the transaction immediately.

Now consider that an amcast prepare(T x) message, mi has suffered an order violation and

a subsequent amcast m j has been delivered to the TM before mi. In such a scenario, the TM

remains unaware of mi until am_deliver_with_exception(mi) has been called by the PSCast

layer below and mi is received via an exception. Therefore, until TM receives such an exception,

the transaction associated with m j and any other m delivered ahead of mi will be processed as

if no ordering violation has occurred.

When mi is delivered to the TM via an exception, the only course of action is for a roll-back

procedure, similar to that utilised in compensating transactions [44], to be initiated; with all

transactions that should have been executed after mi’s transaction being reversed. Once all of

the offending transactions have been reversed it is possible for mi’s transaction to be executed

and the previously rolled back transactions reapplied in the correct total order. Hence, the data

maintained by this c-node eventually becomes the same as if no ordering violation had occurred.

For example, if the original value of a key k was v = 5, the transaction associated with mi

was update(k,10) and m j’s transaction was update(k,v+1). When mi is missing, the outcome

of m j’s transaction would be v = 6, however after mi is delivered via an exception and the

transactions are re-executed, the result of m j’s transaction will be v = 11.

Note: When using RR or RC isolation it is not possible for order violations to be resolved

before a transaction commits as both of these isolation levels utilise a single phase commit

protocol. In order for order violations to be resolved before committing a transaction it is

necessary for multiple phases to be used, therefore if an application cannot tolerate commits

being rolledback, RR with WSC isolation should be utilised (§2.5.3.2 and §5.5.3).

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 116

TM roll-back Implementation

Assume the same scenario as described in the previous section, with m j being incorrectly deliv-

ered to the TM ahead of mi; where m j and mi are associated with transactions T x j and T xi re-

spectively. When a destination eventually receives mi, it invokes am_deliver_with_exception(mi)

and delivers mi to the TM using the worker thread which delivered mi to the PSCast layer. Upon

receiving mi, and hence T xi, the TM takes the following actions:

1. T xi is stored within the TM as a tx_entry and inserted into the tx_queue. An interrupt is

sent to the delivery thread so that it is aware that at least one T x exists in the queue.

2. The delivery thread finishes executing its current transaction before processing the next

T x in the tx_queue; which will most likely be T xi
3.

3. During the execution of T xi, past transactions stored in tx_history are popped from

tx_history and inserted into the tx_queue (in order), until no transactions exist in tx_history

which succeed T xi in the total order.

4. Once all of the required transactions have been (re-)inserted into tx_queue, the TM will

execute T xi and then push T xi onto tx_history. This process continues until the tx_queue

becomes empty, at which point all transactions that are known by the TM will have been

executed in the order dictated by PSCast.

5. Once the tx_queue becomes empty, the roll-back procedure is considered complete and

the delivery thread is able to return to the PSCast level to start processing the next amcast

message in the AWQ.

Figure 5.3, shows the process of a transaction tx3 being executed and then pushed onto

tx_history. Note how tx2 is missing from tx_history as it was missed in the total order. Figure

5.4 shows the roll-back procedure being executed once tx2 is delivered to the TM via an excep-

tion, with tx3 being popped from tx_history, as it was erroneously executed ahead of tx2, and

reinserted into the tx_queue in its correct order behind tx2.

Algorithm 5 outlines the steps required by the TM to process the tx_queue when Repeatable

Read or Read Committed isolation is utilised by transactions. In this algorithm, we assume that

the transaction associated with the interrupting exception has already been added to tx_queue.
3Assuming only one ordering violation occurs, T xi will always be inserted at the head of the queue.

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 117

tx_queue

tx1

tx3tx4tx5 tx3

2. push(tx3)

1. dequeue(tx3)

tx_history

Fig. 5.3: PSCast: TM tx_queue and tx_history

tx_queue tx1

tx2tx3tx4 tx3 (tx2)

2.pop() - rollback

tx_history1. Delivered via exception.

Initiate rollback

3.Execute tx2

4.Push tx2

Fig. 5.4: PSCast: TM tx_queue and tx_history Executing a Roll-back

Limitations

A consequence of utilising a roll-back mechanism, with RR or RC isolation, is that ‘stale’ reads

can occur as it is possible for a subsequent transaction, to read v = 6 when requesting the value

of k, ultimately leading to write-skew. We consider this an acceptable risk for three reasons:

i Ordering violations are already the product of several small probabilities, therefore the

probability of write-skew occurring is even smaller.

ii The window of opportunity for a write-skew to occur is very small. We anticipate that

the time between an ordering violation occurring and being detected to be in the order of

milliseconds.

iii The Infinispan store is already susceptible to write-skews when the WSC is not utilised,

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 118

Algorithm 5 TM tx_queue Processing for RR and RC Isolation
1: while tx_queue is not empty do
2: tx← dequeue(tx_queue);
3: previous_tx← pop(tx_history);
4: while tx≺ previous_tx do
5: insert_into_tx_queue(previous_tx);
6: previous_tx← pop(tx_history);
7: revert_commit(previous_tx);
8: end while
9: if previous_tx is not null ∧ previous_tx≺ tx then

10: push_to_tx_history(previous_tx);
11: end if
12: tx.decision← process(tx);
13: if tx.decision ̸= abort(tx) then
14: push_to_tx_history(tx);
15: end if
16: execute(tx);
17: end while

therefore the business logic of the application utilising Infinispan should already be toler-

ant of such phenomena.

5.5.3 Repeatable Read with WSC

When utilising transactions with RR and WSC it is not possible to just utilise the roll-back

procedure outlined in section 5.5.2, as the outcome of each transaction affects the second voting

phase that is required to avoid write-skews. However, the additional voting stage required by the

WSC can be used to our advantage to prevent ordering violations from affecting the consistency

of Infinispan’s key/values.

Recall that for every key stored in the infinispan system there exists a single primary replica

and at least one backup replica. Thus, the WSC requires that a transaction coordinator, T x.c,

receives at least one commit vote for each of the distinct keys involved in a T x in order for it to

be able to send a final commit(T x) decision to all T x.dst. Whereas, T x.c only requires a single

abort vote from any of the T x.dst members in order to disseminate an abort(T x) decision. The

solutions presented in this section require a slight modification to this existing WSC behaviour.

Our solutions require that:

For all transactions, votes to commit or abort a transaction can only be sent by

the client node which contains the primary replica of a key.

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 119

Again consider that an amcast prepare(T x) message, mi has suffered an order violation

and a subsequent amcast m j has been delivered to the TM before mi. As is the case for RR

and RC isolation, the TM only becomes aware of mi once am_deliver_with_exception(mi) has

been called by the PSCast layer. Upon receiving mi, its associated transaction, txi is inserted

into tx_queue. In the event that the delivery thread is currently processing another T x, txi is not

processed until T x has finished executing.

TM Classification

How each T x stored in tx_queue is processed, depends entirely on the (k,v) pairs involved in

an individual T x and the relationship of the TM with each of these pairs. Below we define three

classifications of TM with respect to an individual T x:

Primary TM

We classify a TM as being a primary for a given T x, if this node hosts a primary replica of

at least one (k,v) pair that is modified by this transaction. Read requests do not count, as

these actions have already been performed before the prepare(T x) message was amcast.

Backup TM

A TM is classified as a backup, if it only hosts backup replicas of the (k,v) pairs involved

in a T x. A TM cannot be a backup if it hosts a primary replica of any of the (k,v) in the

T x.

Coordinator TM

A TM is classifed as the coordinator, if the node hosting the TM was the original node

who initiated T x, i.e. T x.c, or if this node is the currently active coordinator for the T x,

i.e. T x.c̃.

Note: It is possible for a TM to be both a coordinator and a primary or a coordinator and

backup, simultaneously. However, by definition it is not possible for a TM to be both a primary

and a backup.

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 120

Processing a Transaction

Once a T x becomes the head of tx_queue, and hence the active transaction, it is passed to

the function process(T x) which determines whether T x should be committed or aborted. The

actions taken by the TM when executing process(T x) depends on its classification, therefore

we present the actions of each classification below:

Primary TM

A primary TM takes the following actions for a T x:

1a. If T x was delivered via exception, i.e. tx.exceptional is true, then send an abort

vote(T x) to T x.c

1b. Otherwise, the outcome of the write skew check determines the vote to be sent to

T x.c, either commit(tx) or abort(tx).

2. Wait to receive the final decision from the T x.c.

Backup TM

As backup TM does not vote towards the progress of a transaction, it simply waits to

receive a final decision for T x from the T x.c.

Coordinator TM

If a coordinator is also a primary then it is necessary for the coordinator to first cast

a vote as required by the primary TM role before executing the actions required by a

coordinator. A coordinator must take the following actions:

1. Wait to receive a vote from all primary TMs associated with T x.

2a. If a single abort(T x) vote is received, then stop waiting and send an final abort(T x)

decision to all d ∈ T x.dst.

2b. Otherwise, if a commit(T x) is received from all primaries, send a final commit(T x)

decision to all d ∈ T x.dst.

Note: If a single abort(T x) vote, or all commit() votes, are not received after a pre-

determined timeout period then the coordinator aborts T x. This abort timeout is necessary

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 121

to overcome a deadlock scenario which, although unlikely, is possible with our solution.

This deadlock scenario is explored in detail later on in this section.

Once a T x has been processed and a final decision established, it is necessary for it to be

removed from tx_queue and the decision enacted. If the T x is to be committed, it must also be

pushed to tx_history. At this point the execution of T x at the local TM is complete, and the next

T x′ in tx_queue can be processed.

Algorithms 6 and 7 present the pseudocode for processing tx_queue and executing process(tx),

respectively, when WSC is enabled. The purpose of lines 5-15 in Algorithm 7 is described in

the next section.

Algorithm 6 Transaction Manager RR with WSC tx_queue Processing
1: while tx_queue is not empty do
2: tx← peek(tx_queue);
3: tx.decision← process(tx);
4: if tx.decision ̸= abort(tx) then
5: if Not a primary for any (k,v) in tx then
6: previous_tx← pop(tx_history);
7: while tx≺ previous_tx do
8: insert_into_tx_queue(previous_tx);
9: previous_tx← pop(tx_history);

10: revert_commit(previous_tx);
11: end while
12: if previous_tx≺ tx ∧ previous_tx is not null then
13: push_to_tx_history(previous_tx);
14: end if
15: end if
16: push_to_tx_history(tx);
17: end if
18: dequeue(tx_queue);
19: execute(tx);
20: end while

Backup TM Roll-back Required

Previously we stated that it was not possible to utilise the roll-back procedure utilised by RR and

RC isolation when the WSC was enabled. This is true when a TM is classified as a primary,

however in the case of a backup TM it is possible, and sometimes required, for a roll-back

mechanism to be utilised. The roll-back mechanism detailed on lines 5-15 of Algorithm 6

functions in much the same way as when RR or RC isolation is utilised and is required in the

following scenario:

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 122

Algorithm 7 TM process(tx) with WSC

1: if TM hosts primary replica of any (k,v) in tx then
2: if tx.exceptional is true then
3: v← abort(tx);
4: else
5: v← write_skew_check();
6: end if
7: send_vote(v);
8: end if
9: if TM is tx Coordinator then

10: votes_rec← size(tx.votes[]);
11: while votes_rec < #primaries in tx.dst do
12: if tx.duration > timeout then
13: decision← abort(tx);
14: break;
15: else
16: v← receive_vote();
17: tx.votes[source_address(v)]← v;
18: if v = abort(tx) then
19: decision← abort(tx);
20: end if
21: end if
22: end while
23: if descision is not set then
24: decision← commit(tx);
25: end if
26: send decision to all d ∈ tx.dst;
27: end if
28: tx.decision← receive_ f inal_decision();
29: return tx.decision

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 123

Let mi and m j, contain the transactions txi and tx j respectively, where mi ≺m j. Assume that

both txi and tx j consist of a single write operation, update(k1,x) 4, where nodes Nc1 and Nc2

host the primary and backup replica of k1, respectively. Finally, assume that node Nc3 is the

T x.c for txi and Nc4 is the T x.c for tx j.

Let mi and m j be successfully delivered at Nc1, resulting in the primary TM (Nc1) processing

T xi and T x j in the correct order. Let, Nc3 and Nc4 receive mi and m j respectively, without any

order violations. Now consider that mi suffers an order violation at its backup node, Nc2, and

m j is delivered ahead of it in the total order. This results in Nc2’s active transaction being tx j.

Consequently, txi is the active transaction for its coordinator and all of its primary TMs,

therefore it is guaranteed that a final decision for txi will be reached and eventually sent to

Nc2’s TM. As Nc2’s active T x is tx j, Nc2 will not process txi’s final decision until tx j has

finished executing. Therefore, Nc2’s TM will execute tx j before txi, whereas k’s primary TM

Nc1 will have executed txi before tx j. Thus, the backup replica of k has become inconsistent

from the primary replica. Note: An inconsistency only occurs at the backup TM if the final

decision for both txi and tx j is commit.

Figure 5.5 shows the message flow required by all parties in order for the above scenario to

occur.

Time

Nc1 - Primary

Nc4 -Coordinator

mi

mi

Nc2 -Backup
mj

Nc3 -Coordinator

vote
commit txi

commit(txi)

mj vote
commit txj

commit(txj)

mi

mj

mi delivered via exception
after mj becomes active

Fig. 5.5: PSCast: Roll-back Scenario with WSC

4We assume that the value of x is different for each T x

5.5 Infinispan (Client Node) - Coping with SCast Order Violations 124

When an inconsistency occurs between a backup and primary replica as described above,

it is possible to perform a roll-back operation at the backup node as the backup node does not

influence the coordinator’s decision to commit/abort a transaction. Hence, performing a roll-

back operation on a backup node is the same as when RR or RC isolation is utilised.

Deadlock Scenario

Let Nc1 and Nc2 be the primary replica for k1 and k2, respectively. Assume that amcasts mi and

m j correspond to transactions txi and tx j, with both transactions having Nc3 as their coordinator

and the following operations included in their payload:
Tx.begin();

update(k1, x);

update(k2, y);

Tx.commit();

Assume that mi and m j are both successfully delivered at Nc1 and Nc3, resulting in both of

their TM’s setting txi as their active transaction. Now assume that m j is delivered ahead of mi

at Nc2 due to an ordering violation; resulting in Nc2’s TM having tx j as its active transaction.

Such a scenario results in a deadlock occurring between the two transactions, as the coordi-

nator, who is executing txi will be waiting indefinitely for a vote from Nc2. This vote will never

arrive from Nc2 as its current transaction is tx j, hence only a vote for tx j will be sent to tx j.c.

Figure 5.6 shows the message flow required for deadlock to occur.

To prevent such a deadlock from halting progress indefinitely we introduce an abort timeout

as per the Two-phase commit protocol (§ 2.5.3.3). Therefore, in the case described above, txi

will eventually abort as no progress can be made until txi timesout at Nc3.

Note: Although we have reintroduced deadlock into the total order commit protocol, such

occurrences are very rare. The probability of a transaction being aborted is equal to the prob-

ability of an ordering violation occurring at a primary TM when a T x involves multiple keys

whose primary replicas exist across several nodes.

5.6 Summary 125

Fig. 5.6: PSCast: Deadlock Scenario with WSC

5.6 Summary

In this chapter we have explored the consequences of utilising the ABcast protocol for state

machine replication between s-nodes in the AmaaS model; which we refer to as PSCast. We

explore the consequences of ABcast’s probabilistic guarantees not being met between s-nodes,

specifically ordering violations at client nodes, and potential strategies for overcoming such

violations. More specifically, we have provided an in-depth exploration of potential strategies

that could be adopted by Infinispan’s transaction manager to ensure that the consistency of its

key/value pairs are maintained.

Chapter 6

Performance Evaluation

This chapter provides a comprehensive performance evaluation of the key concepts introduced

in this thesis. Evaluation focusses on five issues:

i The scalability of the AmaaS model over P2P.

ii A performance comparison between ABcast and TOA when utilised in the context of

AmaaS.

iii The performance of ABcast when requests are frequent over a long period of time.

iv The probability R of ordering correctness by ABcast, more specifically Aramis.

v The effectiveness of ABcast’s non-blocking message delivery in the interim period be-

tween a node crashing and the GM protocol publishing a new view.

The remainder of this chapter is structured as follows: First we detail an experiment that

emulates Infinispan’s distributed transactions, and is used to evaluate (i) and (ii) (§ 6.1). This is

followed by an experiment that replicates the inner workings of the SCast protocol, in order to

simulate an AmaaS service operating at maximum capacity, which is used to evaluate (iii) and

(iv) (§ 6.2). Finally, we introduce an experiment that evaluates (iv) and (v) by crashing a node

while abcasts are sent between nodes (§ 6.3).

6.1 AmaaS 127

6.1 AmaaS

To test our hypothesis that the AmaaS model can improve the scalability of Infinispan’s dis-

tributed transactions, we developed an experiment that emulates the workflow of these transac-

tions by replicating the amcast messages sent by Infinispan when executing total order transac-

tions (§ 2.5.3.4). This experiment does not utilise Infinispan, or implement a basic transaction

manager, rather it focuses purely on replicating the underlying communication stages required

by Infinispan transactions.

Existing research [64] has already shown the benefits of utilising a total order protocol

instead of 2PC, therefore our experiments concentrate on the performance of the underlying

amcast protocol used to coordinate these transactions.

In our experiments, if a new amcast protocol can demonstrably increase throughput and

reduce latency of amcast messages as the number of destinations increase, then we can infer that

the scalability of the Infinispan system will be improved by adopting this protocol. Therefore,

if our experiments show that the AmaaS model consistently outperforms P2P, then we assume

our hypothesis to be true.

In order to compare and contrast the performance of the AmaaS and P2P approach, it was

necessary for two experiments to be created.

The first experiment was designed to evaluate the latency and throughput of both a SCast and

PSCast service. This experiment allows the performance of the AmaaS model to be evaluated,

whilst also enabling the performance of the underlying abcast protocols, which are utilised by

the services for state machine replication, to be contrasted. Both the SCast and PSCast services

utilise a simplified version of the SCast Protocol (§ 3.4) to coordinate interactions between

c-nodes and s-nodes.

The second experiment was designed to measure the performance of amcast requests when

utilising the P2P approach. This experiment utilises the same workloads and parameters as

the first experiment, however, as per the P2P model, no s-nodes are present and consequently

there is no need for the SCast protocol. Instead, the TOA protocol is executed directly between

c-nodes when emulating transactions.

Utilising the same experiment structure and workloads across both sets of experiments al-

lows us to compare the performance of the two system models across a consistent environment.

6.1 AmaaS 128

This consistency enables us to contrast the performance of the TOA protocol, when utilised in

both the P2P model and the SCast service, with the ABcast protocol utilised by the PSCast

service.

6.1.1 Experimentation

SCast and PSCast Services

We implemented our AmaaS services using the JGroups[38] framework with n = 2 and n = 3

s-nodes. All nodes in the experiment utilised commodity PCs of 3.4GHz Intel Core i7-3770

CPU and 8GB of RAM, running Fedora 20 and communicating over Gigabit Ethernet. The s-

nodes and c-nodes utilised in our experiments are a part of a large university cluster, hence

communication delays between nodes can be quite volatile as they are influenced by other

network traffic and processes launched by other users.

Our experiments are based upon a heavily modified version of an existing performance test

available in the JGroups[38] framework, which mimics the partial replication of key/values in

Infinispan[35]. In these experiments we utilise ten c-nodes in the same cluster, each of which

emulates a transaction system which is reliant on an AmaaS service for transaction ordering.

Each c-node operates 25 concurrent threads to initiate and coordinate transactions, and a trans-

action T x involves a set |T x.dst|= 3,4, . . . ,10 c-nodes; where |T x.dst| includes T x.c. A thread

coordinating a transaction starts its next transaction, T x′, as soon as it executes a commit/abort

decision for the currently active T x. Thus, at any moment, 250 transactions are in different

stages of execution.

All of the emulated transactions consist purely of key/value write operations and thus re-

quire amcast messages for coordination. Infinispan’s read requests (get(k)) are not emulated,

as the retrieval of key/values occurs before T x.c amcasts its prepare(k) message, hence read

operations have no baring on the performance of the underlying amcast protocol.

Both the SCast and PSCast services utilise a modified version of the SCast protocol defined

in section 3.4 to dictate the interactions between c-nodes and s-nodes. In our implementation

s-nodes utilise message bundling to reduce the total number of abcast messages required.

Omission: Stage 1 of the SCast protocol has been omitted from this implementation because

we only compare the performance of the two approaches in a crash-free scenario. Our rationale

6.1 AmaaS 129

for removing this stage, was that the fault-tolerance provisions described in SCast is only one

possible solution for ensuring that the amcast protocol can continue to execute in the event of

the original coordinator crashing during a multicast and alternative solutions are not obliged to

utilise this additional communication stage. Furthermore, in our experiments we are comparing

SCast to the TOA protocol which does not implement any mechanism to cope with a crashed

message originator, therefore removing Stage 1 of SCast protocol makes for a fairer comparison

of the two protocols.

Experiment Workflow: The workflow of a transaction in our experiments is as follows:

1. A coordinator thread submits its amcast request for T x, denoted as req(T x), with some

s-node; who stores the request in FIFO order within its ARP.

2. The s-nodes Send thread retrieves requests stored in its ARP and places them into a mes-

sage bundle mb, which can have a maximum payload of 1kB 1, then abcasts mb to all

other s-nodes.

Note: If there exists no requests in the ARP, then the Send thread waits for it to become

non-empty before initiating the next mb′. Hence, the number of requests bundled in any

mb varies depending on the arrival rate of requests.

3. Once req(T x) has been abcast to all s-nodes, a response message, Rsp(T x) it is sent to

T x.c who disseminates this message to T x.dst as mcast(T x).

4. When all d ∈ T x.dst have received and delivered mcast(T x), as per the delivery condi-

tions of the SCast protocol, the transaction is considered complete and the coordinator

thread can start executing T x′.

In our experiments that utilise ABcast (PSCast service), an additional phase is required

before the experiments can begin. Prior to accepting requests from c nodes, s-nodes must

participate in an initialisation period that lasts approximately 1-2 seconds. During this period,

the clocks of the s-nodes are synchronized and each s-node broadcasts 103 probe messages,

with a payload of 1kB, to all other s-nodes. The purpose of these probe messages is to record

the NTP latencies required by ABcast’s DMC.
1In the experiments that utilise the ABcast protocol, we pad the contents of the message bundle to ensure that

it is always equal to 1kB. This ensures that all messages abcast by the protocol are approximately the same size,
which increases the accuracy of the DMC’s predictions at the expense of redundant bandwidth.

6.1 AmaaS 130

Finally, all of our experiments with ABcast (PSCast Service) utilise the the following con-

stant values. The DMC utilises R = 0.9999 (§ 4.3.5), and AFC utilises δmin and δmax values

equal to 1ms and 10ms, respectively (§ 4.5.1).

P2P

In order to test the performance of P2P total order transactions we repeated the experiments

detailed above, however, as per the P2P model, all c-nodes coordinate transactions between

themselves without utilising any s-nodes. In these experiments, a transaction is considered

complete when it has been successfully amcast to all d ∈ T x.dst by the P2P protocol; where

success is defined as all correct destinations delivering the amcast message.

Note: The same cluster of machines were used for both the P2P and AmaaS experiments to

ensure a fair comparison between protocols.

6.1.2 Results

Our performance evaluation focuses on the comparison of the TOA protocol, being utilised

in a traditional P2P scenario (TOA-P2P), with two different AmaaS services that utilise the

SCast protocol. The SCast service utilises the deterministic protocol TOA for state machine

replication, whilst the PSCast service utilises the probabilistic protocol ABcast, hence we refer

to these two services as the TOA-Service and ABService.

The performance of all three approaches is measured based upon the average transaction

latency and throughput rate. In both the TOA-Service and ABcast-Service, latency is measured

as the time elapsed between a c-node’s initial transmission of req(T x) to some s-node, and all

members of T x.dst delivering mcast(T x) to the experiment application. In TOA-P2P, latency

is measured as the time taken for all T x.dst to deliver T x to the experiment application. For

both approaches, throughput is measured as the average number of abcasts delivered by the

experiment application per second at each c-node.

Note: All of our experiments were conducted in isolation in order to prevent any side effects

caused by simultaneously executing multiple experiments on the same cluster, however we

conducted all experiments over approximately the same time period to ensure that the network

was under similar loads for all of our experiments.

6.1 AmaaS 131

Figures 6.1 and 6.2 show the latency and throughput results for our experiments, with 2N

and 3N representing an AmaaS service that consists of two and three, s-nodes respectively. Each

plot on the graph is an average of three crash-free trials; where a trial consists of each c-node

completing 104 transactions for a specific value of |T x.dst|. Thus, in all three trials the TOA-

Service and ABService each receive a total of 105 amcast requests. In TOA-P2P, each c-node

initiates 104 TOA executions between its peers (10 c-nodes ×104 = 105).

Concerning AmaaS performance, Table 6.1 shows the average number of client requests

received, the average number of abcast messages sent and the average number of requests

bundled into each abcast, based upon all of our experiments that utilised a AmaaS service. All

of theses average values are calculated based upon the statistics recorded by each s-node that

was utilised during our experiments.

Experiment # Client Requests # abcasts Bundle Size
ABService-2N 50000 12763.4 4
TOA-Service-2N 50000 16632 3
ABService-3N 33333.3 13416.4 2.5
TOA-Service-3N 33333.3 13507.8 2.5

Table 6.1: Average Node Statistics for Emulated Transaction Experiments

Table 6.2 shows the performance of the ABcast protocol in both the ABService-2N and 3N

experiments. It shows the average number of abcasts sent per node and the average number

of these messages that were delivered by the Aramis protocol, as well as providing the total

percentage of abcasts that were delivered via Aramis. Furthermore, this table details the ratio

of s-nodes that delivered an abcast via Aramis compared to the total number of s-nodes utilised.

For example, in the case of ABService-2N we performed 24 experiments, therefore we have

statistics for 48 s-nodes and our records show that only 3 of these nodes utilised Aramis to

deliver one or more abcast messages.

The very small number of Aramis deliveries is understandable as ∆m of Aramis is estimated

pessimistically and no crashes occur. In fact, it is surprising that some abcasts were indeed

delivered by Aramis faster than Base and more discussions on this aspect are presented in sub-

section 6.1.3.

6.1 AmaaS 132

Experiment # abcasts Nodes Affected Avg Aramis Deliveries % Aramis Deliveries
ABService-2N 12763.4 3:48 10.8 0.085%
ABService-3N 13416.4 30:72 15.3 0.114%

Table 6.2: Average ABcast Statistics per Node

Average Latency Comparison

Page 1

3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

ABService-2N ABService-3N TOA-Service-2N

TOA-Service-3N TOA-P2P

Number of Clients in a Transaction

La
te

nc
y

(m
s)

Fig. 6.1: AmaaS Latency Comparison

6.1 AmaaS 133

Average Throughput Comparison

Page 1

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

ABService-2N ABService-3N TOA-Service-2N

TOA-Service-3N TOA-P2P

Number of Clients in a Transaction

T
hr

ou
gh

pu
t (

kB
/s

)

Fig. 6.2: AmaaS Throughput Comparison

6.1 AmaaS 134

6.1.3 Evaluation

This section is split into three distinct subsections. First we directly compare the performance

of the AmaaS service and the P2P approach with both experiments utilising the same TOA

protocol. We then evaluate the performance of the ABService in contrast with the previous two

approaches, focusing on the differences between the performance of the ABcast and TOA based

service. Finally, we evaluate the performance of ABcast, focusing on how often the Aramis

protocol was utilised to deliver messages and its ability to maintain ordering correctness.

AmaaS vs P2P

In Figure 6.1 we can see that when |T x.dst| ≥ 4, TOA-P2P’s abcast latencies increase con-

siderably when compared to the two TOA-Service experiments. With TOA-P2P experiencing

approximately a 25% and 50% increase in average latency when compared to TOA-Service-3N

and TOA-Service-2N respectively. Thus, indicating that amcasting is best provided as a service

as the number of clients involved in a transaction increases. Comparing throughput in Figure

6.2 leads to similar conclusions, with the steady throughput observed as |T x.dst| → 10 also

suggesting an absence of node saturation.

TOA-P2P’s superior performance when T x.dst < 4 can be attributed to the additional stages

involved when utilising the AmaaS model. For example when TOA-Service utilises two s-nodes

(2N) the following stages are required: T x.c sends a request, the multicast service abcasts it with

|m.dst|= 2 to all s-nodes and returns it to T x.c, who must then multicast mcast(T x) to T x.dst.

Ignoring the individual message cost of each stage the total number of stages is four, whereas

in TOA-P2P the only step required is the amcasting of T x. So although |m.dst| for each amcast

is less in TOA-Service (|m.dst| = 2) than TOA-P2P (|m.dst| = 3), the overhead of sending a

request to the multicast service and back is much greater than the savings offered by reducing

|m.dst| by one node. However, as |T x.dst| increases, the overhead of TOA-P2P’s increased

|m.dst| becomes significant, to the point where TOA-Service’s additional communication stages

becomes less of an overhead than the cost of TOA-P2P amcating to a large m.dst.

6.1 AmaaS 135

ABService vs TOA-Service

In Figure 6.1 we can see that the latencies encountered by the ABService-2N and TOA-Service-

2N experiments are very similar, regardless of the number of clients involved in a transaction,

with the maximum difference between any two plots being no greater than 0.3 milliseconds.

Interestingly, our experiments show that in the majority of experiments, the ABService out-

performs TOA-Service. This superior performance can be attributed to a combination of two

factors: the number of requests that are bundled on average per abcast and the overall message

cost associated with the underlying abcast protocol.

The average number of client requests bundled into a single abcast can play a decisive role

in the latency and throughput of a AmaaS service as the higher the average bundle rate, the

lower the total number of abcasts required. As the abcasting of requests between s-nodes is

the most expensive operation, in terms of bandwidth and latency in the AmaaS model, it is

self-evident that reducing their frequency will reduce the average latency encountered by client

requests, therefore reducing the total duration of a transaction.

Table 6.1 shows that the average bundle rate for the ABService-2N was 4 messages, whilst

it was only 3 for TOA-Service-2N. Therefore, on average a node in TOA-Service-2N sends

≈ 3869 more abcasts then its counterpart ABService-2N, which partially explains the difference

in performance between the two approaches.

The difference in overall message cost between the two abcast protocols is a consequence

of the two different approaches to solving abcast and the optimisations present in the ABcast

protocol (§ 2.2.2 & 4.4.1). The ABcast protocol piggybacks any outstanding message acknowl-

edgements on subsequent message broadcasts, enabling abcasts to be executed in a single phase

when all nodes are frequently sending abcasts. Whereas, the JGroups implementation of the

TOA protocol does not implement any optimisations, and thus, each broadcast always consists

of two phases, therefore increasing the average latency encountered by transaction requests.

Correspondingly, it is possible to observe that the average and maximum difference between

the latencies encountered in the ABService-3N and TOA-Service-3N experiments is greater

than that observed when N = 2. The improving performance of the ABService can be attributed

to the ABcast optimisations becoming more effective as the number of s-nodes increase. For

example, if N = 3 and ABcast sends a broadcast, the total message cost for that single abcast

6.1 AmaaS 136

is only 2 unicasts when piggybacking occurs, whereas with TOA the total cost is always 6

unicasts. Clearly, such an optimisation will have a positive effect on the performance of the

ABService implementation, especially when service requests are evenly distributed amongst

s-nodes and are arriving frequently which is ideal for the ABcast optimisations.

Interestingly, in Table 6.1 we can see that the average bundle rate of ABService-3N and

TOA-Service-3N are almost the same, yet the difference between the observed latencies in the

two approaches has increased. This suggests that in these experiments the average bundle rate

has no significant impact on the performance of the two approaches.

The large difference between the average bundle rate observed in ABService-2N and 3N,

is a direct consequence of the DMC’s calculations and how AFC (§ 4.5.1) manages broadcast

rates. Recall that the delay imposed by AFC, for an abcast message, increases when latencies

start to exceed the previously calculated xmx value, and decreases to δmin when no such latencies

are observed. When 2 s-nodes are utilised, the observed xmx is typically lower than 3 s-nodes, as

the number of unicasts sent between s-nodes is less; hence the probability of large delays being

observed is reduced. The smaller the average xmx value, the more susceptible the system is to

delays periodically exceeding xmx. Therefore, when 2 s-nodes are utilised the probability of

the calculated AFC delay regularly exceeding δmin increases, which in turn reduces the node’s

broadcast rate. Consequently, the number of requests which can accumulate between abcasts

will increase, and hence the average bundle rate also increases. When 3 s-nodes are utilised, the

DMC’s observations are typically more stable, resulting in less outlier latencies being recorded

and the broadcast rate being more stable; hence an average bundle rate that is approximately the

same as the TOA-Service-3N.

The throughput of the ABService and TOA-Service for both 2N and 3N follows a very

similar pattern to that observed when analysing their latencies. This is not surprising as the

average transaction latency has a direct impact on the average rate of throughput. Combining the

results shown in Figures 6.1 and 6.2, it is clear to see that the ABService provides comparable

performance to that of the TOA-Service and that both of these AmaaS solutions consistently

outperform TOA-P2P when T x.dst > 3.

Note: While the overall performance of ABServive and TOA-Service are similar, the AB-

cast protocol used by ABService provides non-blocking message delivery in the event of node-

6.1 AmaaS 137

failures, as well as stronger guarantees on message ordering than TOA. Recall that TOA does

not provide uniform agreement in the event of a message originator crashing (§ 2.5.3.5), there-

fore it is not unreasonable to imagine that the performance gap between the two protocols would

increase, in favour of ABService, if the TOA protocol was adapted to provide uniform agree-

ment.

ABcast

In Table 6.2 we can see that only 3 of the 48 nodes utilised by ABService-2N delivered an

abcast via the Aramis protocol, with the average number of messages being ≈ 11, only 0.085%

of all messages. Hence, the ∆m value calculated by the DMC was sufficient for 99.915% of

abcasts. The results of the ABService-3N experiments shows that as the number of s-nodes

increased, the total number of Aramis deliveries also increased. Almost 50% of nodes delivered

at least one message via Aramis, with an overall average of ≈ 16 messages per node. Although

this is a large increase in the number of nodes requiring Aramis, the protocol still only accounts

for 0.114% of all abcasts sent.

The increase in Aramis deliveries as the number of s-nodes increase can be attributed to

the DMC recording each latency anomalously (without regard for source of the message) and

calculating ∆m based upon these latencies. In the experiments where n = 2, we know that all of

the latencies recorded by node Ns1 will be from messages originating at Ns2. Therefore, when

node Ns1 broadcasts message m, it is guaranteed that the calculated ∆m has been calculated

utilising latencies representative of Ns2’s past performance. Whereas, when n = 3, Ns1 will

have calculated ∆m based upon latencies recorded from both Ns2 and Ns3, therefore it is possible

that if Ns3 is slower than Ns2, the latencies calculated from Ns2 will dilute the larger latencies

recorded from messages originating at Ns3. Thus, the calculated ∆m could be smaller than the

value required by the slower node Ns3.

Note: None of the experiments that delivered a message via Aramis suffered an ABcast or-

dering violation and hence no SCast ordering violations occurred at any client nodes. Further-

more, we repeated our experiments with delivery condition D1B of the Base protocol disabled,

which causes all abcasts to be delivered via Aramis, in order to evaluate the accuracy of ∆m. We

found that, for both n = 2 and n = 3, the calculated ∆m was sufficient for all s-nodes to deliver

6.2 ABcast - Infinite Clients for Extreme Load Conditions 138

messages without a single ordering violation occurring. As expected, latencies were large, and

they were so large that a single experiment (emulating 105 transactions) took several minutes to

complete. Obviously such large latencies are not practical, however these experiments provide

evidence of ∆m’s ability to prevent ordering violations.

6.1.4 Summary

When deploying a large-scale distributed transaction system that executes transactions which

span several nodes (|T x.dst| > 3), higher throughout and lower-latency can be achieved by

utilising the AmaaS model for amcast messages. Furthermore, such a service can provide non-

blocking amcasts when the ABcast protocol is utilised for state machine replication, whilst

maintaining similar levels of performance to when a GM based protocol is utilised.

6.2 ABcast - Infinite Clients for Extreme Load Conditions

In the previous section, we tested the performance of the AmaaS approach whilst utilising the

ABcast protocol. Our results showed, that the Aramis protocol was rarely required to deliver

messages, accounting for only 0.015% and 0.114% of messages, when the number of s-nodes

was two and three respectively. However, in these experiments the total number of abcast mes-

sages was, on average, relatively low for each node; typically less than 2× 104. Furthermore,

each s-node’s rate of abcasts would vary depending on the restrictions of the AFC protocol and

the rate at which requests were being received by c-nodes.

Due to the number of client nodes being relatively small, it is probable that at times an s-

node’s ARP could have been empty. Therefore, in order to test the performance of ABcast under

extremely heavy loads, it was necessary for a new experiment to be developed. The purpose of

these experiments are two fold. First, they allow us to measure how often Aramis is required to

deliver messages and the frequency of order violations. Secondly, they allow us to monitor the

values calculated by the DMC during high levels of network load and determine their effect on

the resulting ∆m.

In order to test the performance of ABcast under heavy loads, we could simply increase the

number of client nodes that were used in our previous experiment, however this would require

6.2 ABcast - Infinite Clients for Extreme Load Conditions 139

a large amount of resources and would be cumbersome to orchestrate. Furthermore, such an

approach does not guarantee that the ARP of a given s-node will always have a request to

process.

We propose a new experiment, which we refer to as an infinite client system as it repre-

sents the performance of AmaaS ordering service if each s-node always has a full ARP. This

experiment does not utilise client nodes at all, instead, it simply consists of n nodes initiating

abcasts as fast as AFC permits. This is the same as the steps required by SCast for state machine

replication, however we do not have the overhead of maintaining the data structures required

by SCast at each node; i.e. order_history[]. Therefore the delay between subsequent abcasts

will be less in this experiment, hence the ABcast protocol will be under a heavier load in these

experiments than is possible in a complete SCast implementation.

6.2.1 Experimentation

The infinite client experiment was implemented using the JGroups framework and the same

ABcast implementations as the experiments detailed in § 6.1.1. Furthermore, our experiments

utilised the same computer cluster and specification of machine as our previous experiments.

An individual infinite client experiment consists of 3 nodes sending 106 abcasts between

themselves; with each individual node sending 106

n messages with a payload of 1kB. The work-

flow of our experiments is as follows:

1. A node broadcasts its requests as fast as possible using a single thread, which represents

the sender thread utilised in SCast

2. As soon as a message has been sent, another ABcast is initiated; where the sending of a

message m consists of m being sent down the JGroups stack, processed and delayed by

AFC, before being unicast to all n nodes.

3. An experiment is considered complete when each node has delivered 106 messages, or if

one or more order violations (#violations) has occurred, then (106−#violations) 2.

For all of our experiments the ABcast protocol used the following constant values: R =

2As none of our experiments maintain a state at the application level, abcasts that cause order violations are
not delivered to the application, instead their occurrence is simply recorded.

6.2 ABcast - Infinite Clients for Extreme Load Conditions 140

0.9999, δmin = 1ms and δmax = 10ms. Furthermore, we utilise the same initialisation period

from the AmaaS experiments.

6.2.2 Results

The experiment detailed in § 6.2.1 were executed a total of ten times, utilising the same ma-

chines for each experiment. Table 6.3 presents the results of each of these experiments based

upon each node’s individual performance as well as the performance of the cluster as a whole;

where Ns1,Ns2,Ns3 correspond to the values recorded by an individual node and we define the

cluster as being the combined performance of {Ns1,Ns2,Ns3}. For each node in an experiment,

we show the total number of abcasts that were delivered by Aramis and in brackets the number

of order violations. We also show the total number of abcasts delivered by Aramis across the

cluster, and the percentage of all abcasts that are delivered by Aramis.

Table 6.4 presents the average delivery latency encountered by all abcasts sent via ABcast

(including those delivered by Aramis), as well as the average ∆m value calculated by each node.

Each node records its delivery delay as Dtm−m.ts, where m.ts is the timestamp allocated to an

abcast message m when an abcast is initiated and Dtm is the time at which m is passed upto the

application. The average ∆m value is recorded using a given node’s calculations of ∆ not those

recorded by others, hence Ns1’s average is calculated using only ∆ values calculated by Ns1’s

DMC. Therefore, the ‘overall’ entry in the table provides the average ∆ value of all nodes in the

cluster.

6.2.3 Evaluation

In Table 6.3 we can see that out of all 107 messages, only 1.36% of abcasts were delivered

by Aramis. Furthermore, out of these 135684 Aramis deliveries there was not a single order

violation, therefore ABcast’s guarantees were maintained even when the rate of requests was

very high. This lack of order violations implies that the calculated ∆m is sufficiently large to

prevent messages being missed, whilst still being small enough for some abcasts (1.36%) to

be delivered via Aramis before the Base protocol could complete. Thus, for 1.36% of abcasts

the ABcast protocol reduces latency and prevents message blocking even in the absence of

node failures, when compared to traditional GM based protocols. Finally, the lack of order

6.2 ABcast - Infinite Clients for Extreme Load Conditions 141

Experiment Ns1 Ns2 Ns3 Total % of all abcasts

1 9220, (0) 7929, (0) 6434, (0) 23538 2.36

2 3348, (0) 4555, (0) 5008, (0) 12911 1.29

3 4496, (0) 4920, (0) 1952, (0) 11368 1.14

4 5832, (0) 6439, (0) 4801, (0) 17072 1.71

5 5320, (0) 5757, (0) 4066, (0) 15143 1.51

6 4181, (0) 3286, (0) 4157, (0) 11624 1.16

7 1743, (0) 2237, (0) 2235, (0) 6215 0.62

8 4188, (0) 1846, (0) 5421, (0) 11455 1.15

9 5621, (0) 4242, (0) 5291, (0) 15154 1.52

10 2953, (0) 5014, (0) 3192 , (0) 11159 1.12

Total 46902, (0) 46225, (0) 42557, (0) 135684 1.36

Table 6.3: Aramis deliveries (Order Violations) for infinite clients - ρmin = 1

Node Avg Delivery Latency (ms) Avg ∆m (ms)

Ns1 21.48 710.34

Ns2 23.47 687.29

Ns2 25.45 767.74

Overall 23.47 721.79

Table 6.4: Average ABcast Latencies and Calculated ∆m - ρmin = 1

6.3 ABcast - Fault Tolerance 142

violations indicates that the protocol is able to handle a large number of abcast requests without

compromising on message ordering.

Correspondingly, Table 6.4 shows that the average delivery latency encountered by abcast

messages remains low even when the network is heavily loaded. Furthermore, it shows that the

average ∆m value remains below 800ms for each node.

ABcasts ability to provide to low-latency message delivery in such conditions is crucial, as

the speed of the abcast protocol utilised in an AmaaS service ultimately determines the response

time for each client request. More significantly, the low average ∆m value shows that, even under

the heaviest of loads, the DMC is able to calculate an average ∆m that is sub 1 second and still

deliver all messages without a single order violation. This is a vital result, because if the ∆m

value became increasingly large as the load increased, ∆m would start to exceed the typical

delay required by the GM service to publish a new view after a node crash, therefore rendering

our hybrid approach redundant.

6.2.4 Summary

The ABcast protocol is capable of providing low-latency abcasts over a sustained period of

time in conditions representative of those found in an AmaaS service. In such conditions, the

DMC consistently calculates a ∆m value that is small enough to outperform GM services, whilst

being sufficiently large to ensure that no violations of abcast guarantees occur when messages

are delivered by Aramis.

6.3 ABcast - Fault Tolerance

In our previous experiments with ABcast we have evaluated the performance of the protocol

in the context of an AmaaS service where no node failures occur. However, as ABcast has

been designed to compliment the low-latency performance of GM protocols, by allowing for

non-blocking message delivery when node crashes occur, it is necessary to ensure that ∆m is

sufficiently small for messages to be delivered in the interim period between a node crash and

the GM service publishing a new view.

Ultimately, if the GM service is able to publish a new view before any messages are de-

6.3 ABcast - Fault Tolerance 143

livered via the Aramis protocol, then the hybrid approach we have taken is unnecessary. In

such a case, a traditional GM based protocol would be more suitable as order violations are not

possible. Therefore in order to determine the effectiveness of ABcast’s hybrid approach, it was

necessary to create an experiment that monitors the number of messages, if any, that are deliv-

ered by ABcast in the interim period between a node crashing and the GM service publishing a

new view.

Such an experiment also enable us to explore the impact of utilising different values for

ABcast’s configuration parameters, such as ρmin and R, on the number of messages delivered

in this interim period. More specifically, these experiments allow us to explore the impact of

these configurations parameters on the average ∆m value calculated by a node and how these

variations impact the observed number of order violations.

6.3.1 Experimentation

In order to test the performance of ABcast when a node crashes, we reuse the experiments

detailed in § 6.2.1. However, in these experiments, instead of all 3 nodes sending a total of 106

abcasts, only 2 of the nodes complete their broadcasts. The third node, Ns3, is crashed after

sending 50000 abcasts.

Note: As JGroups is implemented in the Java programming language, we crash Ns3, by

crashing the underlying Java Virtual Machine (JVM), not the physical machine.

In order to understand this experiment and why crashing the underlying JVM is necessary,

it is important to recall the design of JGroup’s GMS and associated failure detection protocols

presented in section 2.6. Recall that the failure detection protocol FD_SOCK is particularly ef-

fective at detecting node crashes; with crashes typically detected within seconds. Therefore,

in order for ABcast to deliver messages before the GMS protocol becomes aware of a node

crash, the calculated ∆m would need to remain relatively small (≲ 2 seconds) throughout our

experiments.

Due to FD_SOCK’s use of Java shutdown hooks, it was not possible for the crashed node in

our experiments to be exited as a normal Java application; as this would result in the terminating

node sending a leaving message to all members in the view and alerting GMS almost instantly

that the node was leaving the current view. Clearly such a leaving message cannot be sent when

6.3 ABcast - Fault Tolerance 144

a node is crashed unintentionally. Therefore, it was necessary for us to terminate the JVM in the

most disruptive manner possible, in order to replicate the untimely occurrence of a real node

crash. We achieved this by using reflection to access the sun.misc.Unsafe api and crash the

JVM. The code used to crash the JVM is shown below:

Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");

theUnsafe.setAccessible(true);

((Unsafe) theUnsafe.get(null)).getByte(0);

As previously stated, we crash the node Ns3 after it has initiated 50000 abcast requests.

Therefore, we consider each experiment to be complete when both Ns1 and Ns2 have delivered

(666666+ 50000− #violations) abcasts. For all of our experiments, we utilise the following

AFC values δmin = 1ms and δmax = 10ms. We execute our experiments utilising ρmin = 1,2,3

and R = 0.9999 in order to determine the effect of increasing ∆m on the number of messages

delivered before the GM service publishes a new view and the number of order violations.

Similarly, we also execute our experiments utilising ρmin = 1 and R = 0.99999, to see the effect

of increasing R on ∆m and the number of ordering violations.

Once again, we utilise the same initialisation period for ABcast as in our previous experi-

ments.

6.3.2 Results

Tables 6.6, 6.7 and 6.8 show the performance of the ABcast protocol in the experiments de-

scribed in 6.3.1, when ρmin is equal to 1,2 and 3, respectively. With each table showing the

results of ten experiments that were executed with the specified ρmin value. Each of these ta-

bles, show the average ∆m value calculated for messages originating at both Ns1 and Ns2, as

well as the total number of abcasts, #abcast, delivered by Aramis in the interim period between

node Ns3 crashing and the GM publishing a new view 3. Furthermore, the value in brackets

next to this total represents the number of order violations that occurred in the interim period.

Finally, #abcast shows the throughput gain provided by utilising the probabilistic Aramis pro-

tocol, as these abcasts would not have been delivered until GMS detected Ns3’s crash if a GM
3If a column contains − it indicates that no Aramis deliveries occurred before GMS detected Ns3’s crash.

6.3 ABcast - Fault Tolerance 145

based protocol had been used for abcasting.

Table 6.9 shows the performance of ABcast in the same experiments, but with ρmin = 1 and

the constant R = 0.99999. The fields and columns presented in this table are equivalent to those

describe above.

ρmin R
Violation
Free Runs

Violations

Ns1 Ns2

3 0.9999 10/10 − −

2 0.9999 9/10 − 1
19485

1 0.9999 8/10
− 1

12483

− 1
10544

1 0.99999 9/10 − 1
17016

Table 6.5: Summary of ρmin and R when node crashes occur

Table 6.5 provides a summary of all of these previous tables, with each set of experiments

represented as a single row and being uniquely identified by the combination of R and ρmin

values used in the experiments. For each experiment, we show the number of experiments that

encountered no order violations over the total number of experiments, and in experiments where

violations did occur we present the number of order violations over the number of successful

Aramis deliveries that occurred before GMS detected Ns3’s crash4.

6.3.3 Evaluation

From Tables 6.6, 6.7, 6.8 and 6.9 we can clearly see that the ABcast protocol allows for a large

number of abcasts to be delivered in the interim period between a node crashing and the GMS

protocol detecting it. With an individual node delivering, on average, greater than 104 abcasts

and in one case more than double that amount. Furthermore, out of 40 experiments there was

only two instances where there was no benefit to using the ABcast protocol, and this was when

the protocol utilised more conservative values of R = 0.99999 or ρmin = 3.

In 6.5, we can clearly see that increasing the size of ρmin has a direct impact on the reliability

of Aramis, as the number of order violations reaches zero when ρmin is at its largest. This can be

4In Table 6.5, − indicates that no Aramis order violations occurred

6.3 ABcast - Fault Tolerance 146

Experiment
Ns1 Ns2

∆m Aramis ∆m Aramis

1 240 10544, (0) 212 10544, (1)

2 553 6874, (0) 527 6874, (0)

3 517 17452, (0) 402 17452, (0)

4 334 18487, (0) 274 18483, (0)

5 426 12483, (0) 322 12483, (1)

6 717 4723, (0) 429 4723, (0)

7 491 8936, (0) 816 8936, (0)

8 510 393, (0) 475 392, (0)

9 478 3798, (0) 931 3798, (0)

10 234 17341, (0) 290 17805, (0)

Rex 1 0.9999803

Table 6.6: Aramis deliveries (Order Violations) before GMS detects Ns3 has crashed
R = 0.9999, ρmin = 1

Experiment
Ns1 Ns2

∆m Aramis ∆m Aramis

1 664 5509, (0) 580 5509, (0)

2 636 13697, (0) 555 13697, (0)

3 1020 2688, (0) 496 2688, (0)

4 320 19481, (0) 279 19485, (1)

5 331 19012, (0) 400 19106, (0)

6 456 2669, (0) 466 2669, (0)

7 432 10823, (0) 939 10823, (0)

8 271 18412, (0) 272 18414, (0)

9 498 5440, (0) 362 5449, (0)

10 716 3611, (0) 376 3611, (0)

Rex 1 0.9999901

Table 6.7: Aramis deliveries (Order Violations) before GMS detects Ns3 has crashed
R = 0.9999, ρmin = 2

6.3 ABcast - Fault Tolerance 147

Experiment
Ns1 Ns2

∆m Aramis ∆m Aramis

1 452 17651, (0) 451 21064, (0)

2 475 − 679 -

3 754 3911, (0) 515 3911, (0)

4 355 16516, (0) 515 3911, (0)

5 214 17620, (0) 503 17619, (0)

6 386 12968, (0) 694 12968, (0)

7 453 7311, (0) 345 7311, (0)

8 632 12613, (0) 546 12613, (0)

9 356 18030, (0) 569 18034, (0)

10 695 13907, (0) 511 13907, (0)

Rex 1 1

Table 6.8: Aramis deliveries (Order Violations) before GMS detects Ns3 has crashed
R = 0.9999, ρmin = 3

Experiment
Ns1 Ns2

∆m Aramis ∆m Aramis

1 387 17982, (0) 453 17016, (1)

2 7507 255, (0) 3804 742, (0)

3 2019 8117, (0) 1676 8117, (0)

4 3094 - 1899 -

5 264 10876, (0) 416 10880, (0)

6 683 9262, (0) 605 9262, (0)

7 244 18224, (0) 301 18222, (0)

8 1160 2207, (0) 830 2207, (0)

9 334 19058, (0) 278 19060, (0)

10 233 17588, (0) 421 17586, (0)

Rex 1 0.9999903

Table 6.9: Aramis deliveries (Order Violations) before GMS detects Ns3 has crashed
R = 0.99999, ρmin = 1

6.3 ABcast - Fault Tolerance 148

explained by a larger ρmin increasing the calculated ∆m value for each abcast (as seen in Tables

6.6, 6.7, 6.8) 5.

Conversely, when we increase R from 0.9999 to 0.99999, with ρmin = 1, the number of

violations is reduced from two to one, at the expense of a greatly enlarged ∆m (compared to

ρmin = 1,2,3 when R = 0.9999).

From its initial conception, ABcast has been designed with pessimistic assumptions in order

to minimise the chances of ∆m being exceeded by a given abcast. This pessimism is reflected in

our experiments, with Tables (6.6, 6.7, 6.8, 6.9) all showing that the experienced R, denoted as

Rex, is greater than the user specified R. Where Rex for a given set of experiments is calculated

as

1−Rex =

10
∑
1

Number of Order Violations

10
∑
1

Messages Delivered by Aramis
(6.1)

unless the number of messages delivered by Aramis is zero, in which case Rex = 1.

Finally, while our experiments show that a larger number of abcasts are delivered in the

interim period between node failures and detection, we believe that in the event of a ‘real’ crash

this value could be much higher. In our experiments we crash the JVM instantly, which results

in the TCP sockets utilised by the FD_SOCK protocol being closed immediately. This means that

it is almost certainly the FD_SOCK protocol that detects the failure of Ns3 each time. If a crash

was preceded by a slowing down period where node responses become more staggered and

the node was unresponsive, but still running and maintaining an open TCP socket, it is highly

probable that the total number of abcasts sent in the interim period would be much larger, as

the alternative failure detection protocol FD_ALL has a default timeout period of 40 seconds.

5The difference in calculated ∆m values is not significant between ρmin = 1,2,3 in our results, however this can
be attributed to the varying state of the underlying network. Our experiments were conducted in sets based upon
their constant values, e.g. all ten experiments that utilised ρmin = 1 and R = 0.9999 were performed one after the
other. Therefore, as these experiments take several minutes each, the time required to conduct all of the experiments
was significant, and as a consequence these experiments were conducted over several days. Consequently, the load
on the underlying network will have varied for each set of experiments. However, we can still attribute the reduced
number of order violations to an increase in ∆m, as this variable is calculated based upon latencies that represent
the networks current state. Therefore, if a smaller ρmin value was utilised under the exact same network conditions
as the ρmin = 3 experiments, we know that the calculated ∆m value would have been significantly smaller.

6.4 Summary 149

6.3.4 Summary

We have found that utilising the ABcast protocol for abcasts allows for a significant number

of messages (> 104) to be delivered in the interim period between a node crash and the GM

protocol publishing a new view. Furthermore, we have found that increasing both ρmin and

R reduces the chances of order violations occurring in the presence of node crashes. When

ρmin = 1, Rex is much larger than the specified R, with the difference increasing as ρmin becomes

larger. However, a larger ρmin can occasionally risk Aramis not being able to deliver any abcasts

before the GM publishes a new view, so it is recommended to keep ρmin = 1.

6.4 Summary

In this chapter, we have presented a thorough performance evaluation of both the AmaaS model

and the ABcast protocol. We have shown that, as the number of nodes involved in a transaction

increases, the AmaaS model, coupled with the SCast protocol, can improve the average latency

and throughput of distributed transactions when compared to the existing P2P approach.

Additionally, we have shown that the ABcast protocol can provide comparable performance

to existing deterministic protocols, such as TOA, when utilised within a AmaaS service. Cru-

cially, this performance does not come at the expense of ABcast’s guarantees, as we have

demonstrated that these guarantees can be met when handling large numbers of abcasts. Fur-

thermore, we have shown that with the correct configuration parameters, it is possible to avoid

order violations when node crashes occur. Finally, we have shown that ABcast’s non-blocking

message delivery enables a significant number of abcast messages to be delivered in the interim

period between a node crashing and a GM protocol detecting it.

Chapter 7

Conclusions

This thesis explored the challenges of designing totally ordered multicast protocols for the co-

ordination of distributed transactions in partially replicated environments.

Existing research [64] shows that utilising atomic multicast protocols in partially replicated

environments to coordinate distributed transactions, opposed to the classic 2PC, can improve

transaction throughput as it removes the need for distributed locks. However, a consequence

of transactions being coordinated via amcast is that the transactional throughput of a system

deteriorates linearly with the performance of the underlying amcast protocol; as it is the amcast

protocol that ultimately determines the commit rate of transactions.

In this thesis we have shown that the performance of existing amcast protocols starts to

deteriorate as the number of nodes involved in a multicast increases. This degradation occurs

because the existing amcast protocols execute in a P2P manner, resulting in the number of

nodes that require consensus increasing with the multicast’s destination set. To overcome the

limitations of the P2P amcast approach, we advocate the use of the AmaaS model, to dictate

amcast message ordering to amcast participants. The key advantage of this approach being that

the number of nodes required to reach consensus is constant regardless of the number of nodes

participating in an amcast, hence as the number of nodes involved in a transaction increases

the cost of consensus remains constant. Performance evaluations have shown that utilising the

AmaaS approach can provide significant performance improvements, in terms of both latency

and throughput, to amcast’s when the number of destinations becomes greater than three.

In addition to advocating the AmaaS model, another key contribution of our work has been

the development of a non-blocking, low-latency, probabilistic atomic broadcast protocol called

7.1 Thesis Summary 151

ABcast, which was specifically designed to facilitate state machine replication within AmaaS

ordering services. The development of a probabilistic consensus protocol was necessary to

fully realise the benefits of the AmaaS model, as deterministic consensus protocols must all

admit blocking in the event of nodes failures due to the well known FLP impossibility. Without

such a probabilistic protocol, the availability characteristics of AmaaS would be poor during the

reconciliation of node failures in the ordering service itself.

The remainder of this chapter is structured as follows: Section 7.1 provides a summary of

the content and key findings of each chapter in this thesis. This is then followed by Section

7.2 which explores the limitations of our work. Lastly, we explore potential avenues for future

research in Section 7.3.

7.1 Thesis Summary

In chapter 2 we began by examining related work in the field of atomic broadcast and multicast

protocols, as well as the current state of existing coordination services, before providing an in-

depth analysis of Red Hat’s open source in-memory NoSQL database, Infinispan. This analysis

of Infinispan is essential for understanding our work, as all of our proposed solutions have

been designed within the context of Infinispan’s distributed transactions, and consequently our

performance evaluation was also based upon their semantics.

In chapter 3, we proposed that an alternative system model, AmaaS, should be utilised for

coordinating distributed transactions in partially replicated environments. We advocate the use

of an external ordering service to provide total ordering for multicast messages, as an alternative

to Infinispan nodes executing atomic multicasts between themselves via the P2P model. This

was followed by the introduction and analysis of the fault-tolerant atomic multicast protocol

SCast. Performance evaluation in chapter 6 shows that, when the SCast protocol is utilised

for coordinating transactions and the total number of destinations is greater than 3, the AmaaS

model consistently outperforms the existing P2P protocols utilised by Infinispan.

Chapter 4 introduced the hybrid atomic broadcast protocol, ABcast, which was designed for

state machine replication between service nodes in an AmaaS ordering service. ABcast lever-

age’s a traditional deterministic protocol, Base, in conjunction with a new probabilistic protocol,

Aramis, in order to create an abcast protocol that provides low-latency message delivery in the

7.2 Limitations 152

absence of node failures and non-blocking message delivery in their presence.

Due to Aramis’s probabilistic guarantees, the ABcast protocol can only guarantee a mes-

sage’s total order with a probability close to 1; hence it is possible for order violations to occur.

This small probability of order violations motivated Chapter 5, which provides an analysis of

potential strategies that can be adopted by the PSCast protocol and the Infinispan transaction

manager, in order to mitigate the repercussions of ABcast and SCast order violations.

Finally, chapter 6 presented the results of our extensive performance evaluation and showed

that the ABcast protocol is able to maintain similar levels of performance to traditional de-

terministic atomic broadcast protocols in the absence of node crashes, whilst providing non-

blocking message delivery in the presence of such crashes. With, on average, > 104 messages

being delivered in the interim period between a node crash and the group membership service

publishing a new view. Furthermore, we have shown that the ABcast protocol is able to handle a

large number of broadcasts (107) without a single order violation occurring, even when smaller

values are utilised for R and ρmin.

7.2 Limitations

In our performance evaluation we have shown that AmaaS is an effective model for improving

the performance of atomic multicasts, however our performance evaluation only considers a

case where ten clients issue requests to the service at any one time. It is inevitable that any

AmaaS service will have an upper limit on the number of ordering requests that it can accom-

modate at anyone time. Therefore, a limitation of the AmaaS approach is that the service will

eventually have to start rejecting client requests as the number of client requests becomes greater

than the service’s throughput capabilities. This is an inherent limitation of using a centralised

service and is an acknowledged limitation of other coordination services such as Chubby [11].

Another key limitation of the ABcast protocol is the need for additional logic higher up the

network, or application, stack in order to handle order violations. Examples of the additional

logic required by SCast and Infinispan’s transaction manager are presented in chapter 5. From

these examples it is clear to see that this additional logic can require substantial redesigning

of existing systems and is often far from trivial to implement. However, it is worth noting

that this problem is not unique to ABCcast and similar additional logic is required if any other

7.3 Future Work 153

probabilistic atomic broadcast or atomic multicast protocol is utilised.

7.3 Future Work

This section explores potential future research problems that have arisen from the work docu-

mented in this thesis.

7.3.1 Multiple AmaaS Services

As stated in § 7.2, it is inevitable that an AmaaS ordering service will eventually become sat-

urated by requests if the number of clients in the system continues to increase. A possible so-

lution to this problem is to utilise multiple ordering services simultaneously, with client nodes

assigned a specific service that they must interact with. This would allow multicasts to be sent

between clients, who are utilising the same service, in much the same manner as requests are

handled in the existing SCast protocol. However, if a client wishes to send a multicast between

clients which utilise distinct ordering services, then it is necessary for these services to share

state between themselves in order to service the client’s request and return accurate ordering

data. Enabling two ordering services to interact in such a way is far from trivial and is an inter-

esting research challenge. Furthermore, designing an algorithm to effectively partition clients

in a way that minimises the frequency in which distinct ordering services need to interact is also

non-trivial.

7.3.2 Utilising ABcast for State Replication in Zookeeper

At present, the AmaaS protocol SCast presented in chapter 3 has only been utilised in a proof of

concept implementation. In order for it to be utilised in production systems, it would necessary

for a standalone service that exposed an API to client nodes to be implemented. One solution to

this problem would be to utilise the existing Zookeeper implementation, which is open source

and released under the Apache License Version 2.0 [2], as a foundation for a new AmaaS

service. The existing protocol used by Zookeeper for state machine replication, ZAB, could be

replaced with ABcast. The SCast protocol could be then created as an additional application that

resides on the Zookeeper nodes and utilises the underlying primitives exposed by Zookeeper for

7.3 Future Work 154

state machine replication, in order to provide its own API for client multicasts. Such a solution

would not only provide a solid foundation for the ordering service, it would also enable existing

applications that depend on Zookeeper to utilise the new implementation as the Zookeeper API

would remain the same 1.

7.3.3 Extending Infinispan to Support AmaaS with ABcast

The performance evaluation presented in chapter 6 compares the performance of an AmaaS ser-

vice utilising PSCast, with the performance of Infinispan’s existing P2P protocol TOA. In these

experiments, we evaluate the performance of each approach by contrasting the performance of

the underlying amcast protocol when executing emulated Infinispan transactions. This is an

effective way of comparing amcast performance, however it does not take into account other

factors relevant to Infinispan, such as the transaction abort rate 2, and it does not allow industry

standard benchmarks such as TPC-C [67] to be evaluated.

In order to enable the measurement of such metrics, it is necessary for Infinispan to be ex-

tended to support the PSCast model. Such an undertaking would require a large engineering

effort, which was unfortunately beyond the scope of this thesis, as it would require the Infin-

ispan system to be adapted to utilise PSCast instead of TOA and for Infinispan’s transaction

manager be reimplemented so that it provides a recovery mechanism for handling order viola-

tions. Furthermore, as the PSCast protocol depends on an external ordering service, it would

also be necessary for a standalone service to be implemented similar to the solution described

in § 7.3.2.

1Where possible. The potential for state machine replication to fail because of order violations would require
some slight changes to Zookeeper’s API.

2Transactions can abort when the WSC fails or when a order violation has occurred in PSCast

References

[1] Aguilera, M. K. and Walfish, M. (2009). No time for asynchrony. In Proceedings of the
12th Conference on Hot Topics in Operating Systems, HotOS’09, pages 3–3, Berkeley, CA,
USA. USENIX Association.

[2] Apache License, Version 2.0 (2015). Apache license, version 2.0. https://www.apache.org/
licenses/LICENSE-2.0. [Accessed: 18-March-2015].

[3] Attiya, H. and Welch, J. (2004). Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). John Wiley Interscience.

[4] Bernstein, P. and Newcomer, E. (1997). Principles of Transaction Processing: For the
Systems Professional. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[5] Bernstein, P. A. and Goodman, N. (1981). Concurrency control in distributed database
systems. ACM Comput. Surv., 13(2):185–221.

[6] Bertsekas, D. and Gallager, R. (1992). Flow control. In Data Networks, Chapter 6 (2nd
Ed.), pages 493–535. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[7] Bezerra, C., Pedone, F., Garbinato, B., and Geyer, C. (2013). Optimistic atomic multicast.
In Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International Conference on,
pages 380–389.

[8] Birman, K., Schiper, A., and Stephenson, P. (1991). Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3):272–314.

[9] Brewer, E. (2012). Cap twelve years later: How the "rules" have changed. Computer,
45(2):23–29.

[10] Brewer, E. A. (2000). Towards robust distributed systems (abstract). In Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’00,
pages 7–, New York, NY, USA. ACM.

[11] Burrows, M. (2006). The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI
’06, pages 335–350, Berkeley, CA, USA. USENIX Association.

[12] Cattell, R. (2011). Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27.

[13] Cerf, V. G. and Icahn, R. E. (2005). A protocol for packet network intercommunication.
SIGCOMM Comput. Commun. Rev., 35(2):71–82.

[14] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Bench-
marking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA. ACM.

[15] Cristian, F. (1996). Synchronous and asynchronous. Commun. ACM, 39(4):88–97.

[16] Défago, X., Schiper, A., and Urbán, P. (2004). Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

References 156

[17] Di Sanzo, P., Antonacci, F., Ciciani, B., Palmieri, R., Pellegrini, A., Peluso, S., Quaglia,
F., Rughetti, D., and Vitali, R. (2013). A framework for high performance simulation of
transactional data grid platforms. In Proceedings of the 6th International ICST Conference
on Simulation Tools and Techniques, SimuTools ’13, pages 63–72, ICST, Brussels, Belgium,
Belgium. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering).

[18] Emerson, R. and Ezhilchelvan, P. (2014a). A non-blocking atomic-multicast service for
scalable in-memory transaction systems. Number CS-TR-1435.

[19] Emerson, R. and Ezhilchelvan, P. D. (2014b). An atomic-multicast service for scalable
in-memory transaction systems. In IEEE 6th International Conference on Cloud Computing
Technology and Science, CloudCom 2014, Singapore, December 15-18, 2014, pages 743–
746.

[20] Emerson, R. and Ezhilchelvan, P. D. (2014c). Faster transaction commit even when nodes
crash. CoRR, abs/1404.7548.

[21] Ezhilchelvan, P., Clarke, D., and Di Ferdinando, A. (2011). Near certain multicast delivery
guarantees amidst perturbations in computer clusters. Technical Report CS-TR-1267, School
of Computing Science, Newcastle University.

[22] Ezhilchelvan, P. and Shrivastava, S. (2010). Learning from the past for resolving dilemmas
of asynchrony. SIGOPS Oper. Syst. Rev., 44(2):58–63.

[23] Ezhilchelvan, P. D., Macedo, R. A., and Shrivastava, S. K. (1995). Newtop: A fault-
tolerant group communication protocol. In Proceedings of the 15th International Conference
on Distributed Computing Systems, ICDCS ’95, pages 296–, Washington, DC, USA. IEEE
Computer Society.

[24] Ezhilchelvan, P. D. and Shrivastava, S. K. (1994). rel/rel: a family of reliable multicast
protocols for distributed systems. Distributed Systems Engineering, 1(6):323.

[25] Felber, P. and Pedone, F. (2001). Probabilistic atomic broadcast. In in Proceedings of the
12th International Symposium on Distributed Computing, pages 318–332. Springer.

[26] Fidge, C. J. (1988). Timestamps in message-passing systems that preserve the partial
ordering. In Proceedings of the 11th Australian Computer Science Conference, volume 10,
pages 56–66.

[27] Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382.

[28] Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59.

[29] GridGain (2014). Gridgain: In-memory computing. http://www.gridgain.com/. [Ac-
cessed: 29-August-2014].

[30] Guerraoui, R. and Schiper, A. (2001). The generic consensus service. IEEE Trans. Softw.
Eng., 27(1):29–41.

[31] Haerder, T. and Reuter, A. (1983). Principles of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287–317.

[32] Han, J., Haihong, E., Le, G., and Du, J. (2011). Survey on nosql database. In Pervasive
Computing and Applications (ICPCA), 2011 6th International Conference on, pages 363–
366.

[33] Hazelcast (2014). Hazelcast.org. http://hazelcast.org/. [Accessed: 29-August-2014].

http://www.gridgain.com/
http://hazelcast.org/

References 157

[34] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010). Zookeeper: Wait-free co-
ordination for internet-scale systems. In Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’10, pages 11–11, Berkeley, CA, USA.
USENIX Association.

[35] Infinispan (2014). Infinispan: Distributed in-memory key/value data grid and cache. http:
//infinispan.org/. [Accessed: 29-August-2014].

[36] Jacobson, V. (1988). Congestion avoidance and control. In Symposium Proceedings on
Communications Architectures and Protocols, SIGCOMM ’88, pages 314–329, New York,
NY, USA. ACM.

[37] Jain, R. (1996). Congestion control and traffic management in atm networks: Recent
advances and a survey. Comput. Netw. ISDN Syst., 28(13):1723–1738.

[38] JGroups (2014). The jgroups project. http://www.jgroups.org/. [Accessed: 01-September-
2014].

[39] JSR-107 (2014). The java community process(sm) program - jsrs: Java specification re-
quests - detail jsr-107. https://jcp.org/en/jsr/detail?id=107. [Accessed: 01-September-2014].

[40] JTA (2014). Java transaction api. http://www.oracle.com/technetwork/java/javaee/jta/
index.html. [Accessed: 02-September-2014].

[41] Junqueira, F. P., Reed, B. C., and Serafini, M. (2011). Zab: High-performance broad-
cast for primary-backup systems. In Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems&Networks, DSN ’11, pages 245–256, Washington, DC,
USA. IEEE Computer Society.

[42] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., and Lewin, D. (1997).
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots
on the world wide web. In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 654–663, New York, NY, USA. ACM.

[43] Kermarrec, A.-M., Massoulié, L., and Ganesh, A. J. (2003). Probabilistic reliable dissem-
ination in large-scale systems. IEEE Trans. Parallel Distrib. Syst., 14(3):248–258.

[44] Korth, H. F., Levy, E., and Silberschatz, A. (1990). A formal approach to recovery by
compensating transactions. In Proceedings of the 16th International Conference on Very
Large Data Bases, VLDB ’90, pages 95–106, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

[45] Kung, H. T. and Robinson, J. T. (1981). On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226.

[46] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565.

[47] Lamport, L. (1998). The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169.

[48] Lamport, L. (2001). Paxos made simple. ACM SIGACT News, 32(4):18–25.

[49] Lamport, L. (2006). Fast paxos. Distributed Computing, 19(2):79–103.

[50] Lamport, L. (2011). Byzantizing paxos by refinement. In Peleg, D., editor, Distributed
Computing - 25th International Symposium, DISC 2011, Rome, Italy, September 20-22,
2011. Proceedings, volume 6950 of Lecture Notes in Computer Science, pages 211–224.
Springer.

http://infinispan.org/
http://infinispan.org/
http://www.jgroups.org/
https://jcp.org/en/jsr/detail?id=107
http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

References 158

[51] Lamport, L. and Massa, M. (2004). Cheap paxos. In 2004 International Conference
on Dependable Systems and Networks (DSN 2004), 28 June - 1 July 2004, Florence, Italy,
Proceedings, pages 307–314. IEEE Computer Society.

[52] Marandi, P. J., Benz, S., Pedone, F., and Birman, K. (2014). Practical experience report:
The performance of paxos in the cloud. CoRR, abs/1404.6719.

[53] Marandi, P. J., Primi, M., Schiper, N., and Pedone, F. (2010). Ring paxos: A high-
throughput atomic broadcast protocol. In Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, pages 527–536. IEEE.

[54] Marchioni, F. (2012). Infinispan Data Grid Platform. Packt Publishing, Limited.

[55] Mattern, F. (1988). Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms, pages 215–226. North-Holland.

[56] Moniruzzaman, A. B. M. and Hossain, S. A. (2013). Nosql database: New era of databases
for big data analytics - classification, characteristics and comparison. CoRR, abs/1307.0191.

[57] Nable, J. (1984). Congestion control in ip/tcp internetworks. ARPANET Working Group
Requests for Comment, DDN Network Information Center, SRI International, Menlo Park,
CA. RFC-896. [Accessed: 04-February-2015].

[58] Ongaro, D. and Ousterhout, J. (2014). In search of an understandable consensus algorithm.
In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 305–320, Berkeley, CA, USA. USENIX Association.

[59] Oracle Coherence (2014). Oracle coherence. http://www.oracle.com/technetwork/
middleware/coherence/overview/index.html. [Accessed: 10-September-2014].

[60] Pivotal GemFire (2014). Big data | pivotal gemfire. http://www.pivotal.io/big-data/
pivotal-gemfire. [Accessed: 10-September-2014].

[61] RadarGun (2014). Radargun. https://github.com/radargun/radargun/wiki. [Accessed: 25-
September-2014].

[62] Red Hat (2014). The world’s open source leader. http://www.redhat.com/. [Accessed:
01-September-2014].

[63] Reliable UDP (1999). Internet engineering task force - reliable udp. http://tools.ietf.org/
html/draft-ietf-sigtran-reliable-udp-00. [Accessed: 15-September-2014].

[64] Ruivo, P., Couceiro, M., Romano, P., and Rodrigues, L. (2011). Exploiting total order
multicast in weakly consistent transactional caches. In Proceedings of the 2011 IEEE 17th
Pacific Rim International Symposium on Dependable Computing, PRDC ’11, pages 99–108,
Washington, DC, USA. IEEE Computer Society.

[65] Santos, N. and Schiper, A. (2012). Tuning paxos for high-throughput with batching and
pipelining. In Proceedings of the 13th International Conference on Distributed Computing
and Networking, ICDCN’12, pages 153–167, Berlin, Heidelberg. Springer-Verlag.

[66] Schiper, N., Sutra, P., and Pedone, F. (2010). P-store: Genuine partial replication in wide
area networks. In Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed
Systems, SRDS ’10, pages 214–224, Washington, DC, USA. IEEE Computer Society.

[67] TPC-C (2014). Tpc-c | transaction processing performance council. http://www.tpc.org/
tpcc/. [Accessed: 25-September-2014].

[68] UFC-JGroups (2015). Unicast flow control. http://www.jgroups.org/javadoc-3.x/org/
jgroups/protocols/UFC.html. [Accessed: 27-January-2015].

[69] XA (2014). Distributed transaction processing: The xa specification. http://pubs.
opengroup.org/onlinepubs/009680699/toc.pdf. [Accessed: 02-September-2014].

http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.pivotal.io/big-data/pivotal-gemfire
http://www.pivotal.io/big-data/pivotal-gemfire
https://github.com/radargun/radargun/wiki
http://www.redhat.com/
http://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00
http://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.jgroups.org/javadoc-3.x/org/jgroups/protocols/UFC.html
http://www.jgroups.org/javadoc-3.x/org/jgroups/protocols/UFC.html
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Problem Statement
	1.2 Our Approach
	1.3 Thesis Contribution
	1.4 Thesis Structure

	2 Background
	2.1 Network Communication Paradigms
	2.1.1 Synchronous
	2.1.2 Asynchronous
	2.1.3 Probabilistically Synchronous

	2.2 Atomic Broadcast and Multicast Protocols
	2.2.1 Atomic Broadcast vs Atomic Multicast
	2.2.2 Broadcast
	2.2.3 Multicast
	2.2.4 Group Membership based approaches
	2.2.5 Quorum Based approach

	2.3 Coordination Services
	2.3.1 Chubby
	2.3.2 Zookeeper

	2.4 In-Memory Databases
	2.4.1 Replication Schemes

	2.5 Infinispan
	2.5.1 Key Distribution
	2.5.2 Key/Value Operations
	2.5.3 Transactions
	2.5.3.1 Transaction Topology
	2.5.3.2 Relaxed ACID
	2.5.3.3 Two-phase Commit Protocol
	2.5.3.4 Total Order Commit Protocol
	2.5.3.5 Total Order Anycast - Atomic Multicast Protocol

	2.6 JGroups

	3 AmaaS - Atomic Multicast as a Service
	3.1 Rationale
	3.2 System Model
	3.3 AmaaS Requirements
	3.4 SCast: Atomic Multicast Protocol for AmaaS
	3.4.1 Protocol Overview
	3.4.2 Atomic Multicast Guarantees
	3.4.3 Protocol Details
	3.4.4 Fault-Tolerance: Node Crashes
	3.4.5 Fault Tolerance: Split Brain

	3.5 Message Bundling
	3.6 A New Atomic Broadcast Solution is Required
	3.7 Summary

	4 ABcast
	4.1 Rationale
	4.1.1 Existing Atomic Broadcast Solutions
	4.1.2 Existing Hybrid Solution
	4.1.3 Our Approach
	4.1.4 ABcast Guarantees

	4.2 Assumptions
	4.3 ABcast Components
	4.3.1 Clock Synchronisation
	4.3.2 Group Membership
	4.3.3 Reliable UDP
	4.3.4 Reliable Broadcast
	4.3.5 Delay Measurement Component (DMC)

	4.4 Atomic Broadcast Protocol
	4.4.1 Base
	4.4.2 Aramis
	4.4.3 Aramis and Base - ABcast
	4.4.4 Initialisation Period
	4.4.5 Initialising a Newly Joined Node

	4.5 Flow Control
	4.5.1 AFC Design
	4.5.2 AFC Protocol
	4.5.3 Limitations

	4.6 Summary

	5 Probabilistic SCast
	5.1 PSCast Guarantees
	5.2 G4-PSCast Implications
	5.2.1 An Abstraction Based Explanation

	5.3 Service Node - Coping with ABcast Order Violations
	5.4 Client Nodes - Detecting SCast Order Violations
	5.5 Infinispan (Client Node) - Coping with SCast Order Violations
	5.5.1 Transaction Manager Assumptions
	5.5.2 Repeatable Read and Read Committed
	5.5.3 Repeatable Read with WSC

	5.6 Summary

	6 Performance Evaluation
	6.1 AmaaS
	6.1.1 Experimentation
	6.1.2 Results
	6.1.3 Evaluation
	6.1.4 Summary

	6.2 ABcast - Infinite Clients for Extreme Load Conditions
	6.2.1 Experimentation
	6.2.2 Results
	6.2.3 Evaluation
	6.2.4 Summary

	6.3 ABcast - Fault Tolerance
	6.3.1 Experimentation
	6.3.2 Results
	6.3.3 Evaluation
	6.3.4 Summary

	6.4 Summary

	7 Conclusions
	7.1 Thesis Summary
	7.2 Limitations
	7.3 Future Work
	7.3.1 Multiple AmaaS Services
	7.3.2 Utilising ABcast for State Replication in Zookeeper
	7.3.3 Extending Infinispan to Support AmaaS with ABcast

	References

