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Abstract 

Cell wall is a unique and essential component of bacterial cell. It defines cell shape and 

protects cell from bursting through its own internal osmotic pressure. It also represents a 

significant drain on the cells resources, particularly in Gram positives, where the wall 

accounts for more than 20 % of the dry weight of the cell, and approximately 50 % of 

‘‘old’’ cell wall is degraded and new material made to permit cell growth. After the 

discovery of penicillin, there has been active study of bacterial cell wall structure and 

metabolism, as it represents the major target for antibacterial compounds. The 

biosynthetic pathways for cell wall precursors has been well investigated in bacteria 

generally, but the coordination of cell wall metabolic processes and the fate of turnover 

cell wall materials have only been well characterised in Gram-negative bacteria (e.g 

Escherichia coli). In Gram-positive bacteria, it has generally been accepted that the old 

wall is released from the surface and lost to the environment during growth, with 

apparent recycling of this material during stationary phase for Bacillus subtilis. It is also 

known that the Gram-positive wall is subject to significant post-synthetic processing, 

involving the linkage of wall teichoic acids and the cleavage of molecules from the 

structure, e.g. D-alanine, although the function of these is unclear. Understanding the 

importance of these processes has relevance for both the pathogenicity and 

biotechnological use of bacteria, as well as for understanding bacterial cell biology. As 

it is known that the peptidoglycan fragments (e.g muropeptides) induce the innate 

immune response in higher organisms and so act as a signal for infection, particularly 

for Gram-positive bacteria. Thus, understanding how they are generated and recycled by 

the bacteria may offer potential insights into novel therapeutics, also the accumulation 

of cell wall muropeptides should be avoided in biotechnological products. In this thesis, 

the D-alanine metabolism was manipulated to understand the mechanistic details of cell 

wall metabolism and D-alanine recycling in B. subtilis, using genetic, biochemical, 

bioinformatics and fluorescent microscopy approaches. Through these analyses, a D-

alanine transporter (DatA, formerly YtnA) was identified by genetic screening. The 

roles of DatA and the carboxypeptidases, LdcB and DacA, in recycling of cell wall 

derived D-alanine have experimentally been confirmed. We also found that D-alanine 

aminotransferase (Dat) can act to synthesis D-alanine under certain conditions. From the 

data obtained a model for peptidoglycan assembly (coordinated synthesis and turnover) 

during growth of B. subtilis has been developed to take into account the various aspects 

of cell wall metabolism. 
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Chapter 1. Introduction  

Bacteria are prokaryotic unicellular microorganisms, whose cellular components are 

simpler comparing to complex eukaryotic cells. Bacterial cell is uniquely surrounded by 

a mesh-like structure, called cell wall, which maintains cell shape and prevents cell 

disruption due to turgor pressure (Koch, 2006; Muchová et al., 2011). Based on the 

differences in their cell wall structure, bacteria are categorised into two major groups, 

Gram-negatives (e.g E. coli) and Gram-positives (e.g B. subtilis). The cell wall of 

Gram-negative bacteria (Figure 1.1A) consists of an outer membrane and at least a 

single layer of peptidoglycan (3-6 nm thick), located in a periplasmic space between 

inner and outer membranes (Matias et al., 2003; Gan et al., 2008). In contrast, the cell 

wall of Gram-positive bacteria (Figure 1.1B) is composed of multi-layered 

peptidoglycan (10-20 layers) without outer membrane (Foster and Popham, 2002). 

Gram-positive cell wall also conatins two types of anionic polymers, which are wall 

teichoic acid (WTA) and lipoteichoic acid (LTA). The wall teichoic acid is attached to 

peptidoglycan, whereas lipoteichoic acid is anchored to cytoplasmic membrane at its 

base and extended through peptidoglycan (Neuhaus and Baddiley, 2003). Bacterial cell 

wall also has clinical importance, because peptidoglycan is the most suitable target of 

antibiotics (e.g β-lactams) in Gram-positive pathogens. The structure and metabolism of 

bacterial cell wall have been investigating since the middle of 20
th

 century (Martin, 

1966). However, there are still outstanding questions regarding cell wall metabolism 

and peptidoglycan assembly in Gram-positive bacteria. Continuous investigations of 

cell wall will provide further insights for developing new antibacterial drugs and 

controlling of infections, caused by antibiotic-resistant bacteria. Besides, further 

understanding of cell wall metabolism is important for biotechnological applications. 

The focus of this study is to further understand cell wall metabolic processes in 

particular recycling of cell wall derived D-alanine and the dynamics of peptidoglycan 

assembly in B. subtilis, which is a Gram-positive, rod-shaped, aerobic, soil inhabitant 

and endospore-forming bacterium (Oggioni et al., 1998; Tam et al., 2006). Our current 

understand of cell wall structure and metabolism in B. subtilis is reviewed in the 

following sections. 
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Figure 1.1 The structures of bacterial cell wall. A) Gram-negative cell wall (e.g E. coli). B) Gram-

positive cell wall (e.g B. subtilis). See the text for details. 

PG: peptidoglycan; CM: cell membrane; OM: outer membrane; CP: cell envelop;                                  

LPS: lipopolysaccharide; LTA: lipoteichoic acid; WTA: wall teichoic acid.  
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1.1 Peptidoglycan 

Peptidoglycan (murein) consists of cross-linked glycan strands, which are arranged 

around bacterial cell membrane (Figure 1.2). The peptidoglycan of B. subtilis is 30-40 

nm thick (Smith et al., 2000) and 20 times thicker than the Gram-negative 

peptidoglycan (Shockman and Barrett, 1983). Although the chemical structure of 

murein is almost identical among bacteria, the glycan strands are slightly different with 

regard of N or O acetylation and stem peptide composition (Holtje, 1998). The glycan 

strands consist of alternating two aminosugars, N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc), which are held together by β (1-4) glycosidic bonds 

(van Heijenoort, 2001). Peptide side chains extend from the lactyl groups of MurNAc 

residues. In E. coli and B. subtilis, the stem peptides comprise of L-alanine- D-

glutamate- meso-2,6-diaminopimelic acid (m-A2pm)- D-alanine- D-alanine (van 

Heijenoort, 1994). However, the free carboxylic group of m-A2pm residues are 

amidated in the case of B. subtilis (Atrih et al., 1999). The adjacent glycan strands are 

covalently cross-linked through the penultimate D-alanine residue (4
th

 D-alanine 

residue) of one glycan strand and the m-A2pm residue of the adjacent glycan strand. 

However, some bacteria e.g Staphyloccocus aureus has L-lysine instead of m-A2pm and 

the cross-links are mediated by a short peptide (Penta-glycine) (Vollmer et al., 2008a). 

1.1.1 Peptidoglycan precursor biosynthesis      

The peptidoglycan precursor (lipid II) is synthesised via a complex sequence of 

enzymatic steps in cell cytoplasm (Figure 1.2) (van Heijenoort, 1994). Firstly, 

Undecaprenyl diphosphate-N-acetylglucosamine (UDP-GlcNAc) is synthesised from 

fructose 6-phosphate. This is followed by the synthesis of UDP-N-acetylmuramic acid 

(UDP-MurNAc) from UDP-GlcNAc, this reaction is catalysed by MurA and MurB 

enzymes. Secondly, the amino acids (L-alanine, D-glutamate, m-A2pm and D-alanine-

D-alanine dimer) are attached to UDP-MurNAc one by one by the amino acid ligases 

(MurC, MurD, MurE, and MurF) respectively (Barreteau et al., 2008). The D-alanine 

molecules are already dimerised by D-alanine-D-alanine ligase (Ddl) before linking to 

the premature peptidoglycan precursors (Walsh, 1989). Thirdly, Lipid I is formed when 

UDP-MurNAc- peptapeptide is covalently attached to plasma membrane via an 

undecaprenyl-phosphate molecule by MraY. Finally, the peptidoglycan building block 

(Lipid II) is yielded by MurG through joining Lipid I to a GlcNAc molecule (Bhavsar 

and Brown, 2006; Barreteau et al., 2008).  
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Bacteria uniquely require two types of D-amino acids (D- alanine and D-glutamate) for 

synthesising peptidoglycan precursor, Lipid II (Holtje, 1998). D-amino acids are 

synthesised from the corresponding L-amino acids either by stereochemistric inversion 

of α-carbon, which is catalysed by amino acid racemase or epimerase (Figure 1.3A) 

(Yoshimura and Esak, 2003; Radkov and Moe, 2014) or stereospecific amidation of α-

ketoacid, which is catalysed by D-amino acid aminotransferase (Figure 1.3B). These 

two mechanisms of D-alanine and D-glutamate production are reversible (Radkov and 

Moe, 2014). D-alanine is a crucial amino acid for cross-linking of glycan strands and 

maintaining the integrity of peptidoglycan (Dul and Young, 1973). B. subtilis 

synthesises D-alanine from L-alanine in a bidirectional reaction, which is catalysed by 

alanine racemase (Figure 1.3A) (Walsh, 1989). The alanine racemase enzyme needs 

pyridoxal 5’-phosphate (PLP) as a cofactor (Yoshimura and Esak, 2003; Radkov and 

Moe, 2014). The two characterised alanine racemases in B. subtilis are AlrA and AlrB, 

which are expressed during vegetative growth and sporulation respectively (Ferrari et 

al., 1985; Pierce et al., 2008). The D-alanine auxotroph B. subtilis (alrA), is unable to 

grow in common rich media, which are normally free of D-alanine. This is due to the 

inability to synthesise cell wall, which is followed by cell lysis. In contrast, it was 

reported that alrA null strain can grow in minimal medium (MM) without addition of D-

alanine (Ferrari et al., 1985). The second essential D-amino acid for peptidoglycan 

synthesis is D-glutamate (Kimura et al., 2004). Before the discovery of glutamate 

racemases, it was thought that B. subtilis synthesises D-glutamate via transamination of 

D-alanine with α-ketoglutarate (Thorne et al., 1955). However, it was reported that B. 

subtilis also produces D-glutamate from L-glutamate by at least two characterised 

glutamate racemases, RacE and YrpC (Ashiuchi et al., 1998; Ashiuchi et al., 1999). The 

racE gene is expressed in both rich medium and MM, but the expression of yrpC gene 

only occurs in MM. It was also experimentally confirmed that the racE gene is essential 

for growth in rich media (Kimura et al., 2004). The glutamate racemases do not require 

PLP as a coenzyme (Yoshimura and Esak, 2003).  

Bacteria apparently utilise D-amino acid aminotransferase in D-alanine and D-

glutamate biosynthesis (Figure 1.3B) (Radkov and Moe, 2014). This enzymatic activity 

was historically detected in the cellular extract of B. subtilis (Thorne et al., 1955) and B. 

licheniformis (Kuramitsu and Snoke, 1962). The D-alanine-D-glutamate 

aminotransferases were purified and characterised in B. subtilis (Martinez-Carrion and 

Jenkins, 1965) and B. sphaericus (Yonaha et al., 1975). These enzymes obviously 
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catalysed the transamination from D-alanine and D-glutamate (amino donors) to α-

ketoglutarate and pyruvate (amino acceptors) respectively (Figure 1.3B) (Yonaha et al., 

1975). The D-amino acid aminotransferases are effectively inhibited by D-cycloserine 

and Gabaculine compounds (Yonaha et al., 1975; Soper and Manning, 1981). The 

complete genome sequence of B. subtilis showed dat (or yheM) gene, which encodes a 

putative D-alanine aminotransferase (Dat or YheM) (Kunst et al., 1997). The Dat 

protein of B. subtilis showed 42 % sequence homology to Dat protein in B. sphaericus 

(Fotheringham et al., 1998). More recently, it was reported that Dat did not recover the 

growth of a B. subtilis strain, which was mutated for both glutamate racemase genes 

(racE and yrpC), suggesting that Dat does not have significant role in D-glutamate 

synthesis (Kimura et al., 2004). Whilst the physiological roles of D-alanine and D-

glutamate racemases have been well understood in many bacteria, but the physiological 

functions of D-amino acid aminotransferases are still unclear. 
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Figure 1.2 Gram-positive peptidoglycan biosynthesis.  See the text for details. The idea of the figure is 

adapted from (Bhavsar and Brown, 2006) with some modification. 
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 Figure 1.3 Biosynthesis of D-alanine and D-glutamate in B. subtilis. A) Synthesis of the D-amino 

acids (D-alanine and D-glutamate) by racemase enzymes. B) Synthesis of the D-amino acids by D-amino 

acid aminotransferase (Dat), the figure is copied from (Radkov and Moe, 2014). See the text for details of 

the figures. 
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1.1.2 Peptidoglycan biosynthesis      

Peptidoglycan synthesis involves the formation of glycan strands (polymerisation of 

Lipid II), and then the cross-linking of the glycan strands (Figure 1.2). These two 

processes occur on the cell wall side of plasma membrane (van Heijenoort, 1994). The 

mature peptidoglycan precursor, Lipid II, is flipped out of the plasma membrane, where 

they are added to the reduced ends of the newly growing glycan strands by 

glycosyltransferases (Ward and Perkins, 1973). The glycan strands are cross- linked via 

their stem peptides to produce mature peptidoglycan (Sauvage et al., 2008). In cross-

linking reaction, the carboxyl group of 4
th

 D-alanine residue of one stem peptide is 

usually attached to the amino group of m-A2pm on the adjacent stem peptide by 

transpeptidases (Vollmer et al., 2008a). During transpeptidation, only penta-stem 

peptides serve as donor side chains and lose their terminal D-alanine residues (5
th

 

residue) upon cross-linking.  However, tri-, tetra- and even penta-stem peptides function 

as acceptor peptide side chains (Holtje, 1998; Egan and Vollmer, 2013). Not all the 

stem peptides are cross-linked, and only about 30-40 % of them were found to be cross-

linked in vegetative B. subtilis (Atrih et al., 1999; Sekiguchi and Yamamoto, 2012). It 

was observed that the number of cross-bridges increases in the stationary growing cells 

of B. subtilis (Atrih et al., 1999). 

The polymerisation and cross-linking of glycan strands are carried out by penicillin-

binding proteins (PBPs) (Figure 1.2) (McPherson and Popham, 2003; Wei et al., 2003). 

The biochemical and genetic analyses have identified several PBPs in B. subtilis (Table 

1.1). Apparently, the PBPs and their encoding genes are named in a complex system of 

nomenclature. The PBPs of B. subtilis 168 are classified into high molecular weight 

(HMW) and low molecular weight (LMW) PBPs. Here, we have only discussed HMW 

BPBs, but the LMW PBPs have been discussed in (section 1.1.3.2). The HMW PBPs 

are also categorised into class A and class B (Table 1.1) (Sauvage et al., 2008). The 

class A HMW PBPs are bifunctional, which exhibit glycosyltransferase activity at N-

terminal domain and transpeptidase activity at C-terminal domain. However, the class B 

HMW PBPs only catalyses transpeptidation reaction (McPherson et al., 2001). As some 

of the class A and class B HMW PBPs are produced during sporulation, we have just 

focused on the vegetative PBPs. The complete genome sequence of B. subtilis revealed 

four proposed class A HMW PBPs genes (Table 1.1) (Kunst et al., 1997). The deletion 

of all the four genes was not lethal in B. subtilis, suggesting that at least one 

glycosyltransferase (s) is still left to be discovered (McPherson and Popham, 2003). The 
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class A HMW PBPs also demonstrated functional redundancies in B. subtilis (Popham 

and Setlow, 1996; McPherson et al., 2001). The two vegetative class A HMW PBPs are 

PBP1 and PBP4 (Popham and Setlow, 1996). PBP1 plays role in cell division (Scheffers 

and Errington, 2004) and its absence (ponA null) slows down growth rate and alters cell 

morphology (McPherson and Popham, 2003). The ponA mutant requires more divalent 

cation (Mg
2+

) for having a better growth (Murray et al., 1998). The 

immunofluorescence technique and GFP-tagging were used to examine the localisation 

of PBP1, it was observed that PBP1 is localised at the cell septum (Pedersen et al., 

1999; Scheffers et al., 2004). The second class A HMW PBPs is PBP4, which plays role 

in cell wall synthesis during vegetative growth. The PBP4 is localised at the cell 

division septum and unevenly at the lateral cell edges (Scheffers et al., 2004). 

The class B HMW PBPs (Table 1.1) were also investigated in B. subtilis. Strikingly, 

PBP2b is the only essential PBP in B. subtilis. The PBP2b is required for cell wall 

synthesis at division site (Yanouri et al., 1993; Daniel et al., 1996; Daniel et al., 2000). 

Fluorescence microscopy (immunofluorescence and GFP-tagging) showed that PBP2b 

is localised specifically to the cell septa in both vegetative and sporulating cells (Daniel 

et al., 2000; Scheffers et al., 2004).  In addition, PBP2a and PbpH are mainly expressed 

during vegetative growth of B. subtilis (Murray et al., 1997; Wei et al., 2003). The lack 

of both PBP2a and PbpH is lethal, suggesting that they play redundant roles in lateral 

cell wall synthesis and rod shape determination (Wei et al., 2003). The GFP tagged 

PBP2a and PbpH were seen at both the cell septum and the cylindrical part of the cell 

(Scheffers et al., 2004). Moreover, PBP3 is identified as a member of class B HMW 

PBPs in B. subtilis. PBP3 is primarily produced during exponential growth and at lower 

level during sporulation (Murray et al., 1996). The GFP-PBP3 was localised at the cell 

periphery in granular pattern (Scheffers et al., 2004). The lack of PBP3 did not cause 

any detectable phenotypes during both vegetative growth and sporulation, so its role is 

unknown (Murray et al., 1996).  
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Bacteria 
PBP 

name 

Econding 

gene 
Class 

Molecular 

weight 
(kDa) 

Predicted 

functional 

activity 

Expression  

B. subtilis 

168 

PBP1
ϕ
 ponA 

A 

99.0  

high 

 

glycosyltransferase 

and transpeptidase 

V
 
and Spo 

PBP2c pbpF 79.0 Spo 

PBP4 pbpD 70.0 V 

PBP2d pbpG 71.0 Spo 

PBP3 pbpC 

B 

74.0 

transpeptidase 

V 

PBP2a pbpA 79.0 V and Spo 

PBP2b pbpB 79.0 V 

PBPH pbpH 76.0 V and Spo 

SpoVD spoVD 71.0 Spo 

PBP4b 
yrrR 

(pbpI) 
65.0 Spo 

PBP5 

(DacA) 
dacA 

C 

48.0 

low 

carboxypeptidase 

V 

PBP5* 

(DacB) 
dacB 42.0 Spo 

PBP4a 

(DacC) 
dacC 52.0 S 

DacF dacF 43.0 Spo 

PBP4*
ϕ
 pbpE 51.0 

endopeptidase 
V 

PbpX
ϕ
 pbpX 43.0 V 

 

Table 1.1 The list of identified penicillin-binding proteins (PBPs) of B. subtilis 168. The details of 

PBPs are shown in terms of name, encoding gene, classification, molecular weight, proposed function and 

the relevant growth stage. The proteins are classified as group A, B and C based on the predicted 

functions.  V: vegetative growth, S: stationary phases, Spo: sporulation stage, ϕ: cell envelope stress 

proteins. The table is adapted from (Sauvage et al., 2008) with some modification. 
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1.1.3 Modification of peptidoglycan  

1.1.3.1 Swapping of D-alanine residues  

Living organisms predominantly require L-amino acids for growth. However, D-amino 

acids are also found in both prokaryotic (e.g bacteria) and eukaryotic organisms 

(Yoshimura and Esak, 2003). The D-amino acids are produced in vitro by spontaneous 

racemisation (time-dependent geochemical reaction) and in vivo by enzymatic 

racemisation (Zhang and Sun, 2014). Bacteria normally release various D-amino acids 

during stationary growth. The D-amino acids prevent biofilm formation (Illana 

Kolodkin-Gal, 2010) and re-model the structural properties of peptidoglycan through 

active incorporation into the peptide side chains of the polymer (Lam et al., 2009). The 

swapping of D-alanine on stem peptides was initially studied in Gram-negative bacteria 

(Figure 1.4A). HPLC analysis revealed that the supplemented D-methionine is 

incorporated into the position 4 of the peptide side chains in E. coli, Vibrio cholera, 

Caulobacter crescentus and Pseudomonas aeruginosa (Caparrós et al., 1992; Lam et 

al., 2009; Cava et al., 2011). The swapping of fluorescently labelled D-amino acids 

with D-alanine residues at position 4 of stem peptides was recently re-confirmed in E. 

coil (Kuru et al., 2012; Lebar et al., 2014). The incorporation of D- methionine into 

peptidoglycan was also reported in stationary growing cells and even in β-lactams 

treated cells of E. coli (Tsuruoka et al., 1984; Caparrós et al., 1992). The exchange of 

4
th

 D-alanine residue with non-specific D-amino acids is catalysed in a poor substrate 

specificity reaction, but not all D-amino acids are incorporated (Caparrós et al., 1992).  

In Gram-negative bacteria (e.g E. coli and V. cholera), the incorporation of D-amino 

acids into peptidoglycan might be endowed by a common (non-specific) enzymatic 

reaction, catalysed by penicillin-insensitive LD- transpeptidases (Figure 1.4A) 

(Caparrós et al., 1992; Cava et al., 2011). 

The accumulation of different D-amino acids was reported in stationary culture 

supernatant of B. subtilis (Lam et al., 2009; Illana Kolodkin-Gal, 2010).  It was shown 

that D-amino acids are usually incorporated into the peptidoglycan of B. subtilis during 

both exponential and stationary growth (Figure 1.4B) (Lam et al., 2009). The 

incorporation of D-methionine into the 5
th

 position of stem peptides was observed in B. 

subtilis, Enterococcus faecalis and Staphylococcus aureus. This swapping reaction was 

inhibited by penicillin G, but not by D-cycloserine, in B. subtilis (Cava et al., 2011). 

The re-modelling of peptidoglycan with D-amino acids has inspired  some of the 

researchers to develop fluorescent D-amino acid probes (FDAAs), ideal for labelling 
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peptidoglycan in live cells. The FDAAs are swapped extracellularly with D-alanine 

residues at position 5 of stem peptides in B. subtilis (Kuru et al., 2012). This exchange 

reaction in peptidoglycan is catalysed by penicillin sensitive DD-transpeptidase (Figure 

1.4B) (Cava et al., 2011; Kuru et al., 2012). Moreover, the usual trimming of terminal 

D-alanine residues by DD- carboxypeptidase (DacA) resulted in a very weak 

fluorescent signal in the cell wall of wild type B. subtilis (Kuru et al., 2012).  

The amidation of free carboxylic group of m-A2pm residues normally happen in lipid II 

of B. subtilis, but not in E. coli (Warth and Strominger, 1971; Atrih et al., 1999; Bouhss 

et al., 2008; Vollmer et al., 2008a). Based on an in vitro experiment, it was reported that 

the amidation in lipid II is discriminated by the specificity of B. subtilis PBP1 and E. 

coli PBPA1 during cross-linking, that is to say the amidated stem peptides are only 

cross-linked by PBP1. This observation led to the development of new fluorescent 

probes (D-amino carboxamides), such as fluorescent-tagged D-Lysine carboxamide 

(FD-Lys-NH2), which is amidated at its free carboxylic group. The FD-Lys-NH2 nicely 

labelled the cell wall of wild type B. subtilis. There is a though that the D-amino 

carboxamides might tolerate trimming by carboxypeptidases, so its fluorescent signal 

persists in wild type peptidoglycan (Lebar et al., 2014). Moreover, analysis of 

muropeptide identities in B. subtilis revealed that the terminal D-alanine residues were 

replaced by glycine in a small percentage of muropeptides (Atrih et al., 1999). This 

suggests that the L-amino acid (s) might also take part in the alteration of peptidoglycan 

stem peptides.  

Recently, a few attempts have been done to identify the enzyme(s), which exchange the 

D-alanine residues with other D-amino acids in bacterial peptidoglycan. An in vitro 

study showed that the 5
th

 D-alanine residues of lipid II was swapped with [
14

C] D-

alanine by E. coli PBP1A, which is a PBP with glycosyltransferase and DD-

transpeptidase activities. The  DD-carboxypeptidase (DacA) was able to release the 

incorporated [
14

C] D-alanine residues (Lupoli et al., 2011). It was also demonstrated 

that E. coli PBPA1 and B. subtilis PBP1 were able to incorporate the fluorescently 

labelled D-amino acid (D-Phe) into synthetic peptidoglycan in vitro (Lebar et al., 2014).  
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Figure 1.4 D-alanine swapping in peptidoglycan of E. coli (A) and B. subtilis (B). See the text for 

details. 
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1.1.3.2 Carboxypeptidation of peptidoglycan 

Two types of carboxypeptidases have been identified in bacteria. The DD- 

carboxypeptidase cleaves the amide bond between the two D-alanine residues on 

peptide side chains and leave tetra-peptide side chains. Then, the LD- carboxypeptidase 

trims the 4
th 

position D-alanine residues on tetra-peptide side chains to leave tri-peptide 

side chains in peptidoglycan (Figure 1.5) (Atrih et al., 1999; Vollmer et al., 2008b; 

Barendt et al., 2011; Hoyland et al., 2014). DD-carboxypeptidases are LMW PBPs, 

which have been investigated in different bacterial species. The DD-carboxypeptidases 

of B. subtilis 168 are PBP5 (DacA), PBP5* (DacB), PBP4a (DacC) and DacF (Table 

1.1) (Sauvage et al., 2008). DacA is the main DD-carboxypeptidase in vegetative 

growing cells, and it is probably a membrane bound enzyme. Peptidoglycan analysis 

revealed that the majority of muropeptides have penta-peptide side chains in dacA 

strain, whereas in wild type the muropeptides mostly have tri-peptide side chains (Atrih 

et al., 1999). Despite having penta-stem peptides in peptidoglycan, dacA mutant did not 

apparently show any morphological abnormalities during exponential growth (Todd et 

al., 1986). The rest of B. subtilis DD-carboxypeptidases are produced during post-

exponential growth (stationary phase and sporulation) (Pedersen et al., 1998; Popham et 

al., 1999).   

LD-carboxypeptidases have been identified in a few Gram-negative and Gram-positive 

bacteria, such as E. coli (Metz et al., 1986; Ursinus et al., 1992), P. aeruginosa (Korza 

and Bochtler, 2005), Lactococcus lactis (Courtin et al., 2006), Streptococcus 

pneumoniae (Barendt et al., 2011; Hoyland et al., 2014), Helicobacter pylori (Sycuro et 

al., 2012). Novosphingobium aromaticivorans (Das et al., 2013) and Campylobacter 

jejuni (Frirdich et al., 2014). The LD-carboxypeptidase (LdcA) of E. coli is cytosolic 

and plays role in peptidoglycan recycling by converting tetra-peptide (L-alanine-D-

glutamate-m-A2pm-D-alanine) to tri-peptide (L-alanine-D-glutamate-m-A2pm), which 

is reused for de-novo synthesis of murein precursors. The ldcA mutant grows normally 

during exponential phase, whereas the cells grow slowly and start lysing during 

stationary phase (Templin et al., 1999). In contrast, the LD-carboxypeptidase (DacBspn) 

of S. pneumoniae is likely localised on the outside of cell membrane as a lipoprotein. It 

resides at the cell septum and over the entire cell surface. The lack of DacBspn causes 

asymmetrical cell division, which results in different cell morphologies, such as very 

small round shaped cells and enlarged long cells (Barendt et al., 2011). Also, the normal 
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helical shape of C. jejuni is changed to straight morphology in the absence of LD-

carboxypeptidase (Δpgp2) (Frirdich et al., 2014).  
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Figure 1.5 Carboxypeptidation of peptidoglycan. See the text for details. 
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1.1.4 Assembly and architecture of peptidoglycan 

Radioactive labelling, autoradiography, electron microscopy and fluorescent 

microscopic techniques were used to study the cell wall assembly and/or architecture in 

bacteria. Generally, there are two concepts about murein architecture in rod-shaped 

bacteria. The first concept (layered murein model) assumes that the glycan strands 

horizontally run around the cylindrical part of the cell and parallel to the plasma 

membrane (Holtje, 1998; Vollmer and Holtje, 2001; Vollmer and Holtje, 2004). 

However, second concept (scaffold model) speculates that the glycan strands extend in a 

vertical manner, perpendicular to cytoplasmic membrane, where the cross-links are 

stress-bearing sites in peptidoglycan (Dmitriev et al., 1999; Dmitriev et al., 2003; 

Dmitriev et al., 2005).  

The cell wall of B. subtilis was initially studied at population level, using radioactive 

pulse-labelling experiments. A delay of one generation long or more was detected 

before the turnover of the pulse-labelled wall (Mauck et al., 1971; Pooley, 1976a). This 

observation led to a suggestion that the cell wall of B. subtilis is a multi-layered 

structure. The new peptidoglycan layers are synthesised on the outer leaflet of cell 

membrane and subsequently moved outwards during growth. As the old peptidoglycan 

layers reach the cell surface, where they become labile to degradation by hydrolases. 

This suggestion was further experimentally supported by radioactive labelling 

experiments and illustrated in proposed models (Pooley, 1976a; Pooley, 1976b; Mobley 

et al., 1984; Koch and Doyle, 1985a).  

Several studies were also investigated murein assembly and architecture at cellular 

level. Mendelson (1976) studied the morphology and growth behaviour of a multiple 

mutant strain of B. subtilis, using phase contrast microscopy. He observed that the 

mutant cell were elongated and twisted around long axis of the cell. This observation let 

him to be first to propose a helical pattern model for bacterial cell growth. Mobley et al. 

(1984) used both autoradiography (labelling peptidoglycan with [1-
3
H] GlcNAc) and 

fluorescent microscopy (labelling teichoic acid with fluorescein- conjugated 

concanavalin A (ConA)) to study the pattern of cell wall synthesis and turnover in B. 

subtilis. Later, both immunoelectron and immunofluorescence microscopies were used 

by de Pedro et al. (1997) to study murein assembly and degradation in E. coli. The 

principle of the study was immunodetection of the periplasmic incorporation of D-

cysteine into the murein. From these analyses, it was suggested that polymerisation of 

glycan strands happens at the cell septum and along the lateral wall, but the cell poles 
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are metabolically inert. Furthermore, uranium stained teichoic acids were examined by 

electron microscopy in B. subtilis. It was observed that the new cell wall material 

seemed to distribute uniformly along the inner part of cell cylinder, but no specific sites 

of incorporation were observed (Merad et al., 1989). Recently, the peptidoglycan 

architecture in B. subtilis was described in a new coiled-coil model. This model was 

proposed based on high resolution atomic force microscopic examination of purified 

cell wall. It was observed that the outer surface of cell wall was rough due to turnover, 

but the inner surface showed cable- like structures (~50 nm width). It is thought that 

some of the glycan strands might be cross- linked to form a rope. The rope is twisted to 

from a cable, and then the cable is coiled around the short axis of the cell cylinder 

(Hayhurst et al., 2008). However, the scaffold and coiled-coil models were contradicted, 

when the intact cell and purified sacculi of B. subtilis were examined by electron 

cryotomography and computational modelling. This recent study suggested that the 

glycan strands in Gram-positive cell wall are polymerised around the cell cylinder and 

parallel to the short axis of the cell (Beeby et al., 2013), this is in agreement with the 

first concept (layered murein model) of peptidoglycan architecture.  

The advancement of fluorescent microscopy and the introduction of various fluorescent 

probes into biological applications have started a new era in bacterial cytology. The 

advantage of some of the fluorescent probes is labelling and imaging of live cells 

without toxic effect. Daniel and Errington (2003) firstly used fluorescein- conjugated 

vancomycin, a cell wall inhibiting antibiotic, to examine the incorporation site of 

nascent peptidoglycan. The idea was binding of FL-vancomycin to the D-ala-D-ala 

portion of stem peptides in peptidoglycan. Later, Tiyanont et al. (2006) also used 

fluorescent analogues of vancomycin and ramoplanin to study peptidoglycan 

biosynthesis in B. subtilis. The fluorescent vancomycin was also used by Formstone and 

Errington (2005) and Kawai et al., (2009) to study the role of MreB protein in 

peptidoglycan biosynthesis at the lateral cell wall of B. subtilis.  The above fluorescent 

labelling studies observed the synthesis of new peptidoglycan at cell division site and 

helically around the long axis of the cell. However, the main limitation of fluorescent 

antibiotics was inability to study the dynamic of peptidoglycan assembly in live cells. 

More recently, fluorescent D-amino acids (FDAAs) were successfully used to label 

newly synthesised peptidoglycan in live bacteria. The FDAAs are not taken up by the 

cells but are swapped extracellularly with either terminal or penultimate D-alanine 

residues of stem peptides. The cell wall synthesis was studied in E. coil and dacA null 



                                                                                                                                    Chapter 1. Introduction 

23 

 

B. subtilis by using FDAA. It was seen that the synthesis of new peptidoglycan occurs 

at the cell septa and lateral wall. The super-resolution microscopy showed a circlet 

arrangement of peptidoglycan in the wall of E. coli (Kuru et al., 2012). Thus, the recent 

electronic and fluorescent microscopic studies seem to support the first concept (layered 

murein model) of peptidoglycan architecture.  

1.1.5  Peptidoglycan turnover  

The cell wall of bacteria must undergo both anabolic (synthesis) and catabolic 

(degradation) processes during cell growth. Radioactive labelling was historically used 

to study the cell wall turnover and the effect of the lack of some peptidoglycan 

hydrolases (autolysins) on cell growth. Based on the inside-to-outside growth model, 

the new cell wall precursors are continually added to the innermost layers of 

peptidoglycan. Meanwhile, the old outermost layers of peptidoglycan are degraded by 

peptidoglycan hydrolases and released into the surrounding environment (Koch and 

Doyle, 1985a). Depending on bacterial species, about 25 % to 50 % of the old cell wall 

materials is turned over and released per generation (Mauck et al., 1971; Pooley, 1976b; 

Goodell, 1985; Park and Uehara, 2008). The eubacteria generally require peptidoglycan 

hydrolases for normal growth. These enzymes generally include N-acetylmuramidases, 

lytic transglycosylases, β-N-acetylglucosaminidases, amidases, endopeptidases and 

carboxypeptidases (Figure 1.6), which are produced at different stages of growth. Each 

enzyme specifically cleaves a chemical bond in peptidoglycan to facilitate cell growth, 

peptidoglycan turnover, cell division, cell separation, motility and autolysis (Smith et 

al., 2000; Vollmer et al., 2008b). B. subtilis genome accommodates more than 35 genes, 

which encode putative peptidoglycan hydrolases, and about 70 % of these gene products 

have been characterised so far (Sudiarta et al., 2010). The presence of large number of 

autolysins and their functional redundancies sometimes restrict our ability to precisely 

suggest the physiological role of some autolysins (Smith et al., 1996). The murein 

hydrolases of B. subtilis, which have been supposed and/or proposed to play roles in 

cell wall turnover are N- acetylmuramidase-lytic transglycosylase (CwlQ ?) (Sudiarta et 

al., 2010), β-N-acetylglucosaminidase (LytD), amidase (LytC) (Blackman et al., 1998) 

and DL-endopeptidase (LytE) (Bisicchia et al., 2007) (Figure 1.6). 

The coordination of peptidoglycan synthesis and turnover in E. coli was already 

illustrated in a proposed three-for-one growth model, in which murein synthases and 

hydrolases synchronously work to degrade an old glycan strand and incorporate three 

new glycan strands instead. This means that murein hydrolysis does not occur randomly 
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(Holtje, 1998; Vollmer and Holtje, 2001). The physical interaction was also observed 

among peptidoglycan synthases and hydrolases in E. coli. However, the direct-

interaction between peptidoglycan synthases and hydrolases may not be feasible in 

Gram-positive bacteria, because their cell wall is thick and grows according to inside-

to-outside growth model (Vollmer et al., 2008b). Mobley et al. (1984) used radioactive 

GlcNAc to study cell wall turnover in mutant strains of B. subtilis. They observed that 

cell wall turnover is notably reduced in autolysin deficient cells. Blackman et al. (1998) 

also showed that cell wall turnover is markedly reduced in lytC null mutant, labelled 

with radioactive GlcNAc. A greater reduction in cell wall turnover was observed in lytC 

lytD double mutant, comparing to lytC null (Blackman et al., 1998). Bisicchia et al. 

(2007) reported that cell wall turnover is affected in lytE mutant B. subtilis. However, 

several studies have suggested cell elongation role for LytE (see section 1.1.1.7). In 

addition, the cell wall turnover was significantly recovered after addition of autolysate 

to a culture of turnover-deficient mutant of B. subtilis (Pooley, 1976b). These studies 

clearly demonstrated that cell wall synthesis and turnover are regulated in Gram-

positive bacteria.  

On the other hand, the effect of inhibition of cell wall synthesis on cell wall turnover 

was studied, using radioactive amino acids. It was observed that the cell wall turnover 

was considerably reduced in B. subtilis W-32 and B. megaterium KM in the presence of 

Actinomycin D and penicillin G respectively. It was suggested that cell wall turnover 

does not occur properly, while cell wall synthesis is inhibited (Mauck et al., 1971). 

Thus, the above studies suggested that cell wall synthesis and turnover are apparently 

coordinated during cell growth.  

 

 

 

 

 

 

 

 

 



                                                                                                                                    Chapter 1. Introduction 

25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Peptidoglycan hydrolases (Autolysins). The eubacteria require peptidoglycan hydrolases for 

different growth processes, see the text. The vegetative hydrolases of B. subtilis are N-acetylmuramidase-

lytic transglycosylase (CwlQ), endo- β-N-acetylglucosaminidase (LytD), Exo- β-N-

acetylglucosaminidase (LytG) amidase (LytC), LD- endopeptidase (CwlK), DL-endopeptidases (CwlO 

and LytE), LD-carboxypeptidase (LdcB) and DD-carboxypeptidase (DacA). 

 

 

 

 

 

 

LytC 
CwlK 

CwlO, LytE LdcB 

DacA 

LytD CwlQ    LytG 

N-acetyl 
glucosamine  

L-Alanine 
D-Glutamate 
meso-2,6-diaminopimelic acid  
4th  D-Alanine 
5th  D-Alanine 

     N-acetyl 
muramic acid  



                                                                                                                                    Chapter 1. Introduction 

26 

 

1.1.6 Peptidoglycan recycling 

The consequence of bacterial cell wall turnover is the release of fragments of the cell 

wall continuously in actively growing cells. So, cell wall turnover represents a 

significant drain of cellular resources, unless the released materials are recycled. Cell 

wall recycling pathways have been suggested in some bacterial species, such as E. coli, 

B. subtilis and Clostrdium acetabulyticum (Park and Uehara, 2008; Litzinger et al., 

2010a; Reith and Mayer, 2011; Johnson et al., 2013). It is also known that some 

bacteria exploit cell wall recycling as a strategy to sense the inhibition of cell wall 

synthesis by antibiotics and to regulate resistant mechanisms (e.g induction of β-

lactamase and β-lactam resistant PBPs). It is also possible that pathogenic bacteria may 

recycle cell wall products to avoid activating of host innate immune response, which 

specifically responded to peptidoglycan fragments (Boudreau et al., 2012; Johnson et 

al., 2013; Bertsche et al., 2015).  

The fate of the cell wall turnover materials has been intensively studied in Gram-

negative bacterium, E. coli (Figure 1.7) (Mayer, 2012). Murein recycling seems to be 

very efficient in E. coli, because only 6.0-8.0 % of degraded peptidoglycan was detected 

in culture media per generation (Goodell, 1985; Goodell and Schwarz, 1985). It is 

probable that the outer membrane plays important role as a mechanical barrier to 

contain the degraded cell wall materials in periplasmic space (Holtje, 1998; Litzinger et 

al., 2010a). Thus, about 90 % of the cell wall turnover products is recycled in E. coli 

(Holtje, 1998). In E. coli, the lytic transglycosylases (SltY) and endopeptidases produce 

the main cell wall turnover products (anhydromuropeptide monomers (GlcNAc-

anhMurNAc-peptide)), which can be directly transported to cytoplasm (Holtje, 1998; 

Park and Uehara, 2008) via a permease (AmpG) (Jacobs et al., 1994). The recycled 

anhydromuropeptides are sequentially degraded in the cytoplasm by a group of 

muropeptide recycling enzymes, including a β-N-acetylglucosaminidase (NagZ) (Cheng 

et al., 2000; Votsch and Templin, 2000), an amidase (AmpD) (Jacobs et al., 1995) and a 

LD-carboxypeptidase (LdcA) (Templin et al., 1999). The free tri-peptides and amino 

sugars ( GlcNAc and anhMurNac) are then used for de novo synthesis of peptidoglycan 

precursors (Park and Uehara, 2008; Reith and Mayer, 2011), but the amino sugars can 

also be used as energy source (Dahl et al., 2004). Alternatively, the 

anhydromuropeptide monomers can be hydrolysed by an amidase (AmiD) in the 

periplasmic space to release the peptide side chains (Uehara and Park, 2007). The 

detached stem peptides can then be taken up via oligopeptide transport system 
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(Opp+MppA) (Park, 1993; Park et al., 1998). The free amino sugars are also transported 

by phosphotransferase system, NagE and MurP (Park and Uehara, 2008; Reith and 

Mayer, 2011).  

Unlike E. coli, the cell wall of Gram-positive bacteria has a thicker layer of 

peptidoglycan (Shockman and Barrett, 1983), which accounts for more than 20 % of 

total cell mass (Litzinger et al., 2010a). So, Gram-positives would require a more 

efficient recycling pathway to keep their cell wall resources (Reith and Mayer, 2011). 

However, the loss of degraded cell wall materials was historically reported in Bacillus 

spp. (Chaloupka et al., 1962; Mauck et al., 1971; Blackman et al., 1998). The rate and 

necessity of cell wall recycling are determined by nutritional status in the surrounding 

environment, so bacterial cell wall recycling may be repressed in rich media (Park and 

Uehara, 2008; Reith and Mayer, 2011). The peptidoglycan hydrolases such as N-

acetylmuramidases, β-N-acetylglucosaminidases, amidase and endopeptidases might 

generate different sorts of peptidoglycan turnover products in B. subtilis. Moreover, 

muropeptide recycling pathway has been identified in B. subtilis (Figure 6.1). An 

ortholog of muropeptide permease (AmpG) is apparently absent in B. subtilis so far 

(Reith and Mayer, 2011). Instead, the muropeptides are hydrolysed extracellularly by 

secretory N-acetylglucosaminidase (NagZ) and amidase (AmiE) during stationary 

phase. The NagZ only cleaves the glycosidic bond in muropeptides and produce 

MurNAc-peptide (Litzinger et al., 2010a; Litzinger et al., 2010b). The AmiE cleaves 

the bond between MurNAc and L-alanine only in the muropeptides, which were already 

procesed by NagZ (Litzinger et al., 2010a). The detached peptide side chains are 

probably recycled through two oligopeptide permeases, Opp (LeDeaux et al., 1997) and 

App (Koide and Hoch, 1994). The opp is expressed during exponential phase, whereas 

the expression of app is induced at the beginning of stationary growth. The Opp and 

App systems are specific for tetra- and penta-peptides, but Opp can also transport 

tripeptides (Koide et al., 1999). Besides, phosphotransferase systems NagE and MurP 

may recover the released cell wall-derived amino sugars. The rescue of muropeptides by 

NagZ and AmiE is the first evidence of cell wall recovery pathway in Gram-positive 

bacteria (Litzinger et al., 2010a). Thus, cell wall recycling pathways are apparently 

present in both Gram-negative and -positive bacteria.  
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Figure 1.7 Peptidoglycan metabolism in E. coli. It shows comprehensive metabolic pathways of 

peptidoglycan synthesis, turnover and recycling in E. coli, as a Gram-negative model. The figure is 

copied from (Mayer, 2012). See the text for details. 
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1.1.7 Roles of MreB isomers and LD-endopeptidases in cell shape maintenance and 

peptidoglycan synthesis 

The cytoskeleton proteins play key roles in controlling of cell shape and murein 

synthesis in both in Gram-negative and Gram-positive rod-shaped bacteria (Jones et al., 

2001; Carballido-Lopez and Errington, 2003b). The cytoskeleton proteins of B. subtilis 

are MreB, Mbl and MreBH (Figure 5.17) (Carballido-Lopez and Errington, 2003b). The 

mreB gene was firstly determined in E. coli, where synthetic mutations in mreB gene 

produced spherical cells, suggesting that MreB has role in rod shape determination (Doi 

et al., 1988). The identification and characterisation of mreB gene in E. coli inspired the 

researchers to look for the gene homologs in Gram-positive bacteria. The mreBCD 

genes of B. subtilis were originally identified by Reeve et al. (1973) and characterised 

based on the sequence homologies to mre locus of E. coli by Varley and Stewart (1992). 

The inactivation of mre genes was lethal in B. subtilis, probably due to developing a 

morphological phenotype analogous to that of E. coli (Varley and Stewart, 1992). It was 

found that magnesium ion (Mg
2+

) is required for stabilising the viability of mreB B. 

subtilis. When the mreB mutant was depleted for Mg
2+ 

and monitored by time-lapse
 

microscopy, the cells elongated normally, but the cell diameter was getting wider and 

followed by cell lysis (Formstone and Errington, 2005). The second mreB homolog 

gene, mbl, was identified in B. subtilis by Decatur et al. (1993). The insertional 

inactivation of mbl gene was not lethal but caused morphological changes, such as 

bloating and twisting of the cells (Abhayawardhane and Stewart, 1995). The third MreB 

homolog in B. subtilis is MreBH. The disruption of mreBH did not cause detectable 

morphological alterations (Carballido-Lopez and Errington, 2003b). However, another 

study reported that the depletion of MreBH increased cell diameter and changed cell 

morphology from rod to bent or vibrio shape (Soufo and Graumann, 2003). The mreBH 

mutant requires sufficient Mg
2+

 supplement to entirely recover its growth and 

morphological phenotypes (Carballido-Lopez et al., 2006).  

Additionally, the MreB isomers of B. subtilis were further characterised in terms of 

localisation and arrangement in bacterial cell. It was observed that the actin-like 

filaments (MreB, Mbl and MreBH) are co-localised as helical structures across the 

cylindrical part of the cell and presumably underneath the cell membrane (Jones et al., 

2001; Carballido-Lopez and Errington, 2003a; Carballido-Lopez et al., 2006). Besides 

co-localisation, different experimental methods also showed probable physical 

interactions among the MreB proteins in B. subtilis (Defeu Soufo and Graumann, 2006; 
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Kawai et al., 2009b). This observation led to a suggestion that MreB, Mbl and MreBH 

might assemble one heteropolymeric cord and function redundantly in cell wall 

synthesis (Carballido-Lopez et al., 2006; Kawai et al., 2009b).  

The morphological and localisation studies proposed different possible functions for 

MreB isomers in B. subtilis. The MreB and Mbl proteins have distinct and 

complementary roles in controlling of cell shape. The MreB seemed to control cell 

diameter, while Mbl might be important for rod shape maintenance (Jones et al., 2001; 

Formstone and Errington, 2005).  In addition to its role in cell morphogenesis, it was 

proposed that MreB has role in chromosome segregation (Soufo and Graumann, 2003), 

this suggestion was soon contradicted by growing the mreB null in the presence of Mg
2+ 

and
 
staining the chromosome with fluorescent dye (Formstone and Errington, 2005). 

Moreover, the helical polymerisation of peptidoglycan specifically requires Mbl protein 

(Daniel and Errington, 2003). Whilst the helical insertion of new cell wall materials is 

directed by Mbl protein, the cell elongation happens as a consequence of both 

peptidoglycan and Mbl polymerisations in a helical pattern. The role of Mbl filaments 

in helical polymerisation of peptidoglycan was also illustrated in hypothetical models 

(Daniel and Errington, 2003; Carballido-Lopez and Errington, 2003a; Carballido-Lopez 

and Errington, 2003b). More recently, experimental data suggested that MreB and Mbl 

play redundant role in cell elongation and lateral cell wall synthesis. The lack of all the 

three MreB isomers resulted in the loss of peptidoglycan synthesis in lateral wall and 

the appearance of spherical shape phenotype (Kawai et al., 2009b). The interactions of 

several PBPs with MreB, Mbl and to less extend MreBH were also reported in B. 

subtilis (Kawai et al., 2009a; Kawai et al., 2009b).  

On the other hand, the MreB proteins are also found to have roles in the activity of 

some cell wall hydrolases. It has been reported that MreB and Mbl respectively control 

the function of LytE and CwlO, the two well characterised major DL-endopeptidases in 

B. subtilis (Figure 5.17) (Dominguez-Cuevas et al., 2013). The LytE was localised at 

cell septum, cell pole and lateral cell wall, apparently in a helical pattern (Carballido-

Lopez et al., 2006; Hashimoto et al., 2012), whereas CwlO was detected at the cell 

septum and lateral cell wall, seemingly in a helical pattern as well (Hashimoto et al., 

2012; Dominguez-Cuevas et al., 2013). The localisation of CwlO and its regulation by 

Mbl are mediated by FtsEX, an ABC transporter complex (Dominguez-Cuevas et al., 

2013; Meisner et al., 2013). In addition, the deletion of mreBH gene resulted in de-

localisation of LtyE at the lateral wall of B. subtilis suggesting that MreBH plays role in 
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cell morphogenesis by recruiting LytE to the lateral cell wall (Carballido-Lopez et al., 

2006). The absence of DL-endopeptidase activities of LytE and CwlO is lethal in B. 

subtilis. The depletion of CwlO in lytE null mutant resulted in the  inhibitions of  lateral 

cell wall synthesis and cell elongation (Bisicchia et al., 2007). The roles of LytE and 

CwlO in cell elongation were further explained and displayed in hypothetical models. It 

was suggested that the two enzymes are localised to the lateral wall by the MreB 

proteins. Upon their localisation, LytE and CwlO start loosening the above layers of 

peptidoglycan and provide more space for insertion of new layers (Carballido-Lopez et 

al., 2006; Hashimoto et al., 2012; Dominguez-Cuevas et al., 2013). Thus, the above 

proposed roles of MreB proteins in cell shape maintenance and cell wall metabolism 

may convincingly suggest collaborative strategies among MreB proteins, PBPs and 

some of the cell wall hydrolases for synchronising cell wall synthesis and turnover 

during growth.  

1.2 Teichoic Acids 

In addition to peptidoglycan, the cell envelop of Gram-positive bacteria contains anionic 

polymers, called teichoic acids. The two main types of teichoic acids are wall teichoic 

acid (WTA), which is covalently linked to peptidoglycan and lipoteichoic (LTA) acid, 

which is attached to plasma membrane and extends through peptidoglycan (Figure 1.8) 

(Neuhaus and Baddiley, 2003). The WTA and LTA are synthesised through separate 

pathways (Ward, 1981) and play several roles in Gram-positive bacteria. The teichoic 

acids are involved in biofilm formation, maintenance of cell morphology, membrane 

integrity, temperature stability of cells, cation homeostasis, providing scaffolds for cell 

wall hydrolases, facilitation of surface adhesion and resistance against antimicrobial 

peptides  (Wecke et al., 1996; Peschel et al., 2000; Gross et al., 2001; Abachin et al., 

2002; Neuhaus and Baddiley, 2003; Steen et al., 2003; Kristian et al., 2005; Kovacs et 

al., 2006; Swoboda et al., 2010). The presence of both WTA and LTA are essential for 

viability of B. subtilis (Schirner et al., 2009). The structures and biosynthesis of WTA 

and LTA are discussed in the following sections. 

1.2.1 Wall Teichoic Acid  

The cell wall of B. subtilis 168 is composed of approximately equal quantities of 

peptidoglycan and teichoic acids, the majority of which is WTA (Foster and Popham, 

2002). The WTA is a crucial cell wall component for rod shape maintenance in B. 

subtilis, suggesting that it play a role in cell elongation (Schirner et al., 2009). The 
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WTA of B. subtilis 168 are classified into major and minor WTAs under non-

phosphate-limiting conditions. The major WTA is composed of a base unit of N-

acetylglucosamine-β-(1-4)-N-acetylmannosamine, which is attached to peptidoglycan 

and an extension part of poly(glycerol phosphate) chain, which consists of 45 to 60 

glycerol phosphate residues (Figure 1.8) (Formstone et al., 2008). The WTAs are 

synthesised on the cytoplasmic side of plasma membrane, where the tagA, tagB, tagD, 

tagO, tagF, 32va, and tagH gene products are required for major WTA biosynthesis. 

The products of the first four genes (TagA, TagB, TagD and TagO) play roles in the 

synthesis of the linkage unit, whereas the products of the last three genes take part in 

chain polymerization (TagF) and membrane translocation (TagG, and TagH) of WTA 

(Bhavsar and Brown, 2006; Formstone et al., 2008). Besides, an epimerase converts 

undecaprenyl-diphosphate-N-acetylglucosamine (UDP-GlcNAc) to undecaprenyl-

diphosphate-N-acetylmannosamine (UDP-ManNAc), which is required for the linkage 

unit synthesis (Soldo et al., 2002b).  

Although the major and minor WTA share the same linkage unit, the extension part of 

minor WTA consists of poly (glucosyl N-acetylgalactosamine 1-phosphate) chain. The 

biosynthetic pathway of the minor WTA requires all the essential enzymes of the major 

pathway except TagF, instead GgaA and GgaB polymerises glucosyl N-

acetylgalactosamine 1-phosphate repeats (Freymond et al., 2006). Also, a different 

epimerase enzyme catalyses the synthesis of undecaprenyl-diphosphate-N-

acetylgalactoseamine (UDP-GalNAc) from UDP-GlcNAc for minor WTA (Estrela et 

al., 1991). The GlcNAc moiety in WTA and the MurNAc moiety in peptidoglycan are 

covalently linked by a phosphdiester bond (Formstone et al., 2008). Recently, 

fluorescent microscopic data suggested that the incorporation  of WTAs into 

peptidoglycan probably occurs in a helical pattern around the cylindrical part of the cell 

(Formstone et al., 2008). The WTAs of B. subtilis 168 are predominantly replaced by 

teichuronic acids under phosphate-limiting conditions (Soldo et al., 1999; Bhavsar et 

al., 2004). The composition of WTAs also seems to be different among Gram-positive 

bacteria. For instance, the extension parts of WTAs are composed of poly (ribitol-

phosphate) chains in B. subtilis W23 and S. aureus (Brown et al., 2010). 

 The first acting enzyme in the biosynthetic pathway of WTA is TagO 

(phosphotransferase) that catalyses the synthesis of undecaprenyl-GlcNAc (Soldo et al., 

2002a). Despite the growth dispensability of tagO mutation in S. aureus (D'Elia et al., 

2006a) and the suggestion that tagO gene is indispensable in B. subtilis (Soldo et al., 
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2002a), a tagO null mutant of B. subtilis was constructed, which exhibited extremely 

slow growth with swollen and aggregated cell morphology. However, the later genes in 

WTA pathway are essential in B. subtilis (D'Elia et al., 2006b).  

1.2.2 Lipoteichoic Acid 

The LTA of B. subtilis 168 is composed of a hydrophobic membrane linkage unit 

(diglucosyl-diacylglycerol) and an extended hydrophilic chain of Poly(glycerol 

phosphate) (Figure 1.8). Unlike WTA, the LTA chain polymerisation occurs on the cell 

wall side of plasma membrane, and predominantly at cell division site (Sekiguchi and 

Yamamoto, 2012). B. subtilis genome contains four homologous genes (ltaS, yfnI, yqgS 

and yvgJ), which are suggested to take part in LTA synthesis (Schirner et al., 2009). 

The products of the first three genes are LTA polymerases and of the last gene is a LTA 

primase (Wormann et al., 2011). It was suggested that there are functional redundancy 

among the LTA synthases, so the deletion of any one of these genes seems to be 

compensated by the expression of the others (Hashimoto et al., 2013). Schirner et al. 

(2009) reported that LtaS is a major LTA synthase. The ltaS null mutant grows slower 

than wild type and produces long chainy cells. The yfnI, yqgS and yvgJ single mutants 

were not different from wild type in terms of growth rate and cell morphology. Even a 

triple mutant (yfnI yqgS yvgJ) strain was seemingly similar to wild type. In contract, 

deletions of all the four ltaS paralogue genes resulted in a very slow cell division and 

sever cell separation defects. The functional redundancy between LTA synthases was 

further confirmed, when each of LtaS, YfnI and YqgS individually was able to 

synthesise LTA in vitro (Wormann et al., 2011). Moreover, it was suggested that the 

lack of LTA affects divalent cation homoeostasis, which is followed by the impairments 

of cell morphogenesis, cell separation and cell division (Schirner et al., 2009). 

1.2.3 Modification of teichoic acids 

The glycerol phosphate residues of teichoic acids are usually modified with D-alanine. 

It is also known that glucose is attached to glycerol phosphate residues of WTA in a 

process, called glycosylation (Allison et al., 2011). In this section, we only discussed 

the details of teichoic acids D-alanylation. Besides its crucial role in peptidoglycan 

synthesis, D-alanine is also a component of teichoic acids. It was shown that 9.0 % of 

WTA’s and 44 % of LTA’s glycerophosphate residues are substituted with D-alanine 

esters in B. subtilis (Perego et al., 1995). The roles of teichoic acids and D-alanine 

esters have mostly been overlapped in literature. The suggested general roles of D-
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alanyl esters of teichoic acids are regulation of  autolytic enzymes activities, control of 

cation homeostasis in bacterial cell and determination the electromechanical features of 

Gram-positive cell wall (Neuhaus and Baddiley, 2003). The D-alanine esters of teichoic 

acids play some more roles in resistance against antibiotics (May et al., 2005) and 

cationic antimicrobial peptides (Saar-Dover et al., 2012), pathogen adhesion and 

virulence (Abachin et al., 2002), protein secretion (Nouaille et al., 2004), acid tolerance 

(Boyd et al., 2000) and modulation of secretory protein folding (Hyyrylainen et al., 

2000).  

The WTA and LTA are D-alanylated by the products of dlt operon, which consists of 

five genes (dltA, dltB, dltC, dltD and dltE) (Perego et al., 1995). Based on the homology 

of some of the dlt gene products in Lactobacillus casie and B. subtilis, it was proposed 

that the products of dltA and dltC genes are D-alanine-D-alanyl carrier protein ligase 

(Dcl) and D-alanyl carrier protein (Dcp) respectively. However, DltB and DltD are an 

integral transport membrane protein and a membrane protein respectively (Figure 1.8) 

(Perego et al., 1995; Neuhaus and Baddiley, 2003). The last gene of dlt operon (dltE) 

encodes an oxidoreductase with unknown role (Glaser et al., 1993). Apart from dltE 

inactivation, the D- alanine esterification of both WTA and LTA were completely 

inhibited by insertional inactivation of each of the other four genes (dltA-D) in B. 

subtilis. Besides, it was reported that the expression of dlt operon is inhibited before the 

initiation of transition phase (sporulation) (Perego et al., 1995). Disruption of dlt operon 

in B. subtilis did not cause alteration in cell growth, basic biochemical metabolisms and 

cell morphology. However, enhanced cell autolysis, slightly change in sporulation 

capability, change in cell motility and increased susceptibility to methicillin were 

observed in dlt mutant strain (Perego et al., 1995; Wecke et al., 1996; Wecke et al., 

1997).  

In Gram-positive bacteria, the mechanisms of teichoic acids D-alanylation have been 

summarised in two proposed models, Fischer and colleagues model and Neuhaus and 

Baddiley model (Figure 1.8) (Reichmann et al., 2013). In the former model, it was 

proposed that Dcl energises D-alanine molecule and then ligates the activated D-alanine 

to Dcp. The transmembrane protein (DltB) might mediate the transfer of D-alanine from 

Dcp to lipid-linked undecaprenyl phosphate (C55-P) derivative. The final step requires 

the role of an outside membrane protein (DltD) which catalyses the transfer of D-

alanine residues from C55-P intermediates to poly(glycerophosphate) chains (Figure 
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1.8A) (Fischer, 1994; Heaton and Neuhaus, 1994; Perego et al., 1995). Whilst there are 

some similarities between the two models, the role of C55-P intermediate was omitted in 

the latter model. Besides, it was hypothesised that DltD is localised on the inner side of 

cell membrane and forms a platform, where activated D-alanine is attached to DcP by 

Dcl. The D-alanylation of LTA is terminated by membrane translocation of D-ala-Dcp 

through a membrane protein channel that assembled by DltB (Figure 1.8B) (Debabov et 

al., 2000; Kiriukhin and Neuhaus, 2001; Neuhaus and Baddiley, 2003). The mechanism 

of D-alanine incorporation into teichoic acids was recently revised in S. aureus, the data 

were in support of Fischer and colleagues model (Reichmann et al., 2013). The in vivo 

and in vitro studies suggested that LTA donates its D-alanyl esters to WTA, and the D-

alanine ester substituents of LTA is compensated by de novo re-esterification (Haas et 

al., 1984; Koch et al., 1985b). A more recent study also showed that LTA is required 

for efficient D-alanylation of WTA in S. aureus (Reichmann et al., 2013). However, it 

is controversial whether WTA acquires D-alanine esters directly by the roles of Dlt 

proteins or indirectly from LTA (Perego et al., 1995).   

The quantity of D-alanyl ester content of teichoic acids is affected by the pH of culture 

media. That is to say, the D-alanyl ester substitutions of teichoic acids are progressively 

increased at acidic pH but decreased at alkaline pH, this is due to the base catalysed 

hydrolysis of the labile ester linkages (Ellwood and Tempest, 1972; Archibald et al., 

1973; Koch et al., 1985b; Hyyrylainen et al., 2000). Shifting the pH of culture medium 

from 6.0 to 8.0 reduced the D-alanine content of WTA and LTA to 3.0 % and 9.0 % 

respectively in S. aureus (MacArthur and Archibald, 1984). The rate of teichoic acids 

D-alanylation could also vary through different stages of cell cycle (MacArthur and 

Archibald, 1984). It is also evident that the D-alanine ester content of teichoic acids are 

decreased with increasing of temperature (Hurst et al., 1975) and NaCl concentration 

(Fischer and Rosel, 1980; Koch et al., 1985b). 
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Figure 1.8 Mechanisms of teichoic acids modification with D-alanine. A) Fischer and colleague 

model, adapted from (Reichmann et al., 2013) with some modification. B) Neuhaus and Baddiley model, 

adapted from (Neuhaus and Baddiley, 2003) with some modification. See the text for details. 

PG: peptidoglycan; CM: cell membrane; LTA: lipoteichoic acid; WTA: wall teichoic acid; ATP: 

adenosine triphosphate; AMP: adenosine monophosphate; PPi: Phosphate. 
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1.3 Amino acid uptake systems in bacteria 

Living organisms require amino acids for protein synthesis, energy production, nitrogen 

metabolism, cell wall synthesis and intercellular communication (Saier, 2000). L-amino 

acids are predominantly take part in the metabolisms of living organisms (Lam et al., 

2009). Bacteria obtain amino acids from in vivo and in vitro sources. In the former, the 

amino acids are synthesised from simple molecules or other amino acids in cytoplasm 

(Berg et al., 2002). In the latter, the amino acids are taken up from surrounding 

environment abundantly through amino acid transporters (Saier, 2000).  

Bacteria might be able to transport hydrophobic amino acid (e.g Tryptophan) by passive 

transport (diffusion), when the concentration of the amino acid is high in the 

surrounding environment (Figure 1.9A). However, cell membrane is a selective 

permeable barrier for most solutes, so the majority of the solutes (e.g amino acids) are 

actively transported by carrier proteins (Kramer, 1994). Bacteria can actively transport 

amino acids across cell membrane either by ATP binding cassette (ABC)- type uptake 

system (primary transport system) (Figure 1.9B) or secondary carriers (secondary 

transport system) (Figure 1.9C) (Hosie and Poole, 2001; Jung et al., 2006). Nineteen 

families of the ABC-type transporters are present in prokaryotes, of which only two 

families are related to the transport of amino acids, including polar and apolar 

(hydrophobic) amino acids. However, 9 out of 11 families of secondary carriers for 

transporting of amino acids and their derivatives were found in bacteria. Therefore, 

most of the bacterial amino acid transporters are secondary carriers (permeases) (Saier, 

2000). ABC-type uptake system is assembled by the products of more than one gene, 

which are composed of two integral membrane proteins (channel proteins), two 

cytoplasmic ATP binding cassette subunits and one or rarely two solute specific binding 

protein(s) (Hosie and Poole, 2001; Jung et al., 2006). ABC-type uptake system depends 

on adenosine triphosphate (ATP) as an energy source for transporting of amino acids 

(Saier, 2000). In contrast, secondary carriers (permeases) usually comprise of a single 

polypeptide chain, which is integrated into the plasma membrane through its 

transmembrane alpha helical domains and arranged either as monomer or oligomer. The 

secondary carriers transport amino acids by electrochemical energy (sodium or proton- 

motive force) accumulated in the gradients of sodium or hydrogen ions (Saier, 2000; 

Jung et al., 2006). Depending on the direction of gradients, secondary carriers are 

uniporter, symporter or antiporter. The uniporters usually transport amino acids, when 

the substrate’s own gradient is directed inwards (Figure 1.9C1). The amino acid/cation 
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(H
+
 or Na

+
) symporters are the most frequent secondary carriers in bacteria. These 

symporters couple either H
+
 or Na

+ 
with the amino acids during transport across the cell 

membrane (Figure 1.9C2). In contrast, the antiporters exchange two solutes across the 

cell cytoplasmic membrane (Figure 1.9C3) (Kramer, 1994). The active transport 

systems of the amino acids are highly substrate specific in bacteria (Cohen and Monod, 

1957). However, the structurally related amino acids may still be transported by a single 

transporter. For instance, kinetic studies showed that alanine, glycine and serine have a 

common uptake system in bacteria (Oxender, 1972; Halpern, 1974).  
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Figure 1.9 Solute transport across plasma membrane. A) Passive simple diffusion. B) Active ATP-

binding cassette (ABC) transport system. C) Active secondary carriers: uniporter (C1), symporter (C2) 

and antiporter (C3). See the text for details.
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Chapter 2. Materials and methods 

2.1 Solutions and Growth media 

The details of the solutions and media used in this study are listed in appendices A and B. 

2.2  Bacterial strains collection  

The bacterial strains were constructed by transformation. The details of the strains are 

shown in (Table 2.1). The abbreviations of antibiotic resistant genes, which were used for 

the strains selection, were bla (Ampicillin), cat (Chloramphenicol), spc (Spectinomycin), 

kan (Kanmycin), neo (Neomycine) erm (Erythromycin), zeo (Zeocine) and ble 

(Phleomycin). All the strains, once confirmed on having the correct genotype, were 

suspended in 20 % glycerol solution and kept at -80 °C.  
 

Table 2.1 Strains collection 

B. subtilis 

strains 
Genotype 

Construction or  Source or 

Reference 

168 CA trpC2 Bacillus subtilis Laboratory strains collection 

RD180 trpC2 ∆alrA::zeo  Daniel, unpublished 

KS11 trpC2 ∆dltA-D::cat This work: deletion of dltA-D genes  

KS12 trpC2 ∆alrA::zeo ∆dltA-D::cat       
This work: RD180 transformed 

with gDNA of KS11 

KS15 trpC2 ∆dacA::spc This work: deletion of dacA gene 

KS16 trpC2 ∆alrA::zeo ∆dacA::spc 
This work: RD180 transformed 

with gDNA of KS15 

KS17 
trpC2 ∆alrA::zeo ∆dacA::spc 

∆dltA-D::cat  

This work: KS16 transformed with 

gDNA of KS11 

KS18 trpC2 ∆ldcB:: erm This work: deletion of ldcB gene 

KS19 trpC2 ∆alrA::zeo ∆ldcB::erm 
This work: RD180 transformed 

with gDNA of KS18 

KS20 
trpC2 ∆alrA::zeo ∆ldcB::erm 

∆dltA-D::cat  

This work: KS19 transformed with 

gDNA of KS11 

KS21 
trpC2 ∆alrA::zeo + 

pLOSS*ΩalrA  

This work:  pLOSS*alrA 

transformed into RD180 

BKE30530    trpC2 ∆ytnA::erm 
(This gene was re-designated datA in this work) 

Bacillus genetic stock centre 

KS22 trpC2 ∆datA::erm 
This work:168CA transformed with 

gDNA of BKE30530           
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KS23 
trpC2 ∆datA::erm ∆alrA::zeo                      

+ pLOSS*ΩalrA 

This work: KS21 transformed with 

gDNA of BKE30530  

KS24 trpC2 ∆ldcB::erm ∆dltA-D::cat 
This work: KS18 transformed with 

gDNA of  KS11 

KS25 trpC2 ∆dacA::spc ∆dltA-D::cat 
This work: KS15 transformed with 

gDNA of  KS11 

KS26 
trpC2 ∆datA::erm amyE Ω (cat 

Pspac datA) 

This work: pKS1 transformed into 

KS22 

KS27 
trpC2 ∆alrA::zeo  amyE Ω (cat 

Pspac datA) 

 

This work: pKS1 transformed into 

RD180 

KS28 
trpC2 ∆datA::erm amyE Ω (spc 

Pxyl  datA-gfp) 

This work: pKS2 transformed into 

KS22 

KS29 
trpC2 ∆datA::erm  amyE Ω (spc 

Pxyl   gfp-datA) 

This work: pKS3 transformed into 

KS22 

KS30 trpC2 ∆datA::erm ∆alrA::zeo 
This work: KS22 transformed with 

gDNA of RD180 

BKE31400 trpC2 ∆alaT::erm Bacillus genetic stock centre 

KS31 trpC2 ∆alaT::erm 
This work: 168CA transformed 

with gDNA of BKE31400 

BKE 17640 trpC2 ∆alrB::erm Bacillus genetic stock centre 

KS32 trpC2 ∆alrA::zeo ∆alrB::erm 
This work: RD180 transformed 

with gDNA of BKE17640 

BKE 34430 trpC2 ∆racX::erm Bacillus genetic stock centre 

KS33 trpC2 ∆alrA::zeo ∆racX::erm 
This work: RD180 transformed 

with gDNA of BKE34430 

BKE 26810 trpC2 ∆yrpC::erm Bacillus genetic stock centre 

KS34 trpC2 ∆alrA::zeo ∆yrpC::erm 
This work: RD180 transformed 

with gDNA of BKE 26810 

BKE10970 trpC2 ∆yitF::erm Bacillus genetic stock centre 

KS35 trpC2 ∆alrA::zeo ∆yitF::erm 
This work: RD180 transformed 

with gDNA of BKE10970 

KS36 trpC2 ∆datA::erm ∆dltA-D::cat 
This work: KS22 transformed with 

gDNA of KS11 

KS38 trpC2 ∆alaT (markerless) 
This work: pDR244 transformed 

into KS31 
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KS39 
trpC2 ∆alaT (markerless) 

∆datA::erm 

This work: KS38 transformed with 

gDNA of BKE30530    

KS41 
trpC2 ∆datA::erm amyE Ω (cat 

Pspac datA- ftsLRBS) 

This work: pKS6 transformed into 

KS22 

KS42 
trpC2 ∆datA::erm amyE Ω (cat 

Pspac datA- ftsL(RBS)) ∆alrA::zeo 

This work:KS41 transformed with 

gDNA of RD180 

BKE34440    trpC2 ∆pbpE::erm Bacillus genetic stock centre 

KS49 trpC2 ∆dacA::spc ∆pbpE::erm 
This work: KS15 transformed with 

gDNA of BKE34440   

BKE04140     trpC2 ∆pbpC::erm Bacillus genetic stock centre 

KS56 trpC2 ∆dacA::spc ∆pbpC::erm 
This work: KS15 transformed with 

gDNA of BKE04140              

BKE31490   trpC2 ∆pbpD::erm Bacillus genetic stock centre 

KS57 trpC2 ∆dacA::spc ∆pbpD::erm 
This work: KS15 transformed with 

gDNA of BKE31490             

BKE27310 trpC2 ∆pbpI::erm Bacillus genetic stock centre 

KS58 trpC2 ∆dacA::spc ∆pbpI::erm 
This work: KS15 transformed with 

gDNA of BKE27310   

BKE13980 trpC2 ∆pbpH::erm Bacillus genetic stock centre 

KS59 trpC2 ∆dacA::spc ∆pbpH::erm 
This work: KS15 transformed with 

gDNA of BKE13980   

BKE23190 trpC2 ∆dacB::erm Bacillus genetic stock centre 

KS60 trpC2 ∆dacA::spc ∆dacB::erm 
This work: KS15 transformed with 

gDNA of BKE23190   

BKE10110    trpC2 ∆pbpF::erm Bacillus genetic stock centre 

KS61 trpC2 ∆dacA::spc ∆pbpF::erm 
This work: KS15 transformed with 

gDNA of BKE10110 

BKE37510 trpC2 ∆pbpG::erm Bacillus genetic stock centre 

KS62 trpC2 ∆dacA::spc ∆pbpG::erm 
This work: KS15 transformed with 

gDNA of BKE37510   

BKE18350   trpC2 ∆dacC::erm Bacillus genetic stock centre 

KS63 trpC2 ∆dacA::spc ∆dacC::erm 
This work: KS15 transformed with 

gDNA of BKE18350 

BKE15170    trpC2 ∆spoVD::erm Bacillus genetic stock centre 

KS64 trpC2 ∆dacA::spc ∆spoVD::erm 
This work: KS15 transformed with 

gDNA of BKE15170 
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BKE25000   trpC2 ∆pbpA::erm Bacillus genetic stock centre 

KS65 trpC2 ∆dacA::spc ∆pbpA::erm 
This work: KS15 transformed with 

gDNA of BKE25000   

BKE22320      trpC2 ∆ponA::erm Bacillus genetic stock centre 

KS66 trpC2 ∆dacA::spc ∆ponA::erm 
This work: KS15 transformed with 

gDNA of BKE22320 

BKE16950    trpC2 ∆pbpX::erm Bacillus genetic stock centre 

KS67 trpC2 ∆dacA::spc ∆pbpX::erm 
This work: KS15 transformed with 

gDNA of BKE16950 

BKE234380      trpC2 ∆dacF::erm Bacillus genetic stock centre 

KS68 trpC2 ∆dacA::spc ∆dacF::erm 
This work: KS15 transformed with 

gDNA of BKE234380 

AG364 
trpC2 ∆pbpD ∆pbpF ∆ponA 

ΔpbpG::Kan ΔdacA::zeo 
Guyet, unpublished 

4001                   
                                                                                                      

 trpC2 pbpB
(S309A)

 Xu et al., unpublished 

4261 trpC2 ∆mbl::cat Schirner and Errington (2009) 

KS69 trpC2 ∆dacA::spc ∆mbl::cat 
This work: KS15 transformed with 

gDNA of 4261 

3427     trpC2 ∆mreB::neo Laboratory strains collection 

KS70 trpC2 ∆dacA::spc ∆mreB::kan 
This work: KS15 transformed with 

gDNA of 3427 

4262     trpC2 ∆mrebH::erm Schirner and Errington (2009) 

KS71 trpC2 ∆dacA::spc ∆mrebH::erm 
This work: KS15 transformed with 

gDNA of 4262 

AG547    trpC2 ∆lytE::cat Guyet, unpublished 

KS72 trpC2 ∆dacA::spc ∆lytE::cat 
This work: KS15 transformed with 

gDNA of AG547    

1059 
chr::pJSIZΔpble (Pspac-ftzZ ble) 

trpC2 amyE::(spc Pxyl-ftsZ-cfp) 
Feucht and Lewis (2001) 

KS73 
trpC2 ∆dacA::spc chr::pJSIZΔpb-

le (Pspac-ftzZ ble) 

This work: KS15 transformed with 

gDNA of 1059 

804 

trpC2 Ω (ftsL::pSG441 aphA-3 

Pspac pbpB)799 (ϕ105J506) cat 

Pxyl ftsL 

Daniel et al. (1998) 
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KS74 

trpC2 Ω (ftsL::pSG441 aphA-3 

Pspac pbpB)799 (ϕ105J506) cat 

Pxyl ftsL ∆dacA::spc  

This work: KS15 transformed with 

gDNA of 804 

2085  
trpC2 dacA::pSG1493 (cat Pxyl-

gfp-dacA1-423) 
Scheffers et al. (2004) 

BKE09670 trpC2 ∆dat::erm Bacillus genetic stock centre 

KS78 trpC2 ∆alrA::zeo ∆dat::erm 
This work::RD180 transformed 

with gDNA of  BKE09670 

 

E. coli 

strains 
Genotype/Relevant features 

Construction or  Source or 

Reference 

BL21(DE3) 

fhuA2 [lon] ompT gal (λ DE3) 

[dcm] ∆hsdS λ DE3 = λ sBamHIo 

∆EcoRI-B 

int::(lacI::PlacUV5::T7  

gene1) i21 ∆nin5 

New England
 BioLabs

®
 

KS46 
BL21(DE3) + pET-28a(+) + datA-

His tag 

This work: pKS7 transformed into 

BL21(DE3) 

KS47 
BL21(DE3) + pET-28a(+) + His 

tag-datA 

This work:pKS8 transformed into 

BL21(DE3) 

C43(DE3) 
additional induced mutations in 

BL21(DE3) 

Miroux and Walker (1996) 

KS48 
C43(DE3) Ω pET-28a(+) + datA-

His tag N 

This work:pKS8 transformed into 

C43(DE3) 

DH5α 
fhuA2 Δ(argF-lacZ)U169 phoA 

glnV44 Φ80 Δ(lacZ)M15 gyrA96 

recA1 relA1 endA1 thi-1 hsdR17 

New England
 BioLabs

®
 

KS75 DH5α + pGH19 Ω data 
This work:pKS9 transformed into 

DH5α 

KS76 
DH5α + pGH19 Ω HA epitope-

datA 

This work:pKS10 transformed into  

DH5α 

KS77 
DH5α + pGH19 Ω datA-HA 

epitope 

This work:pKS11 transformed into  

DH5α 
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2.3 Plasmids 

The following table shows the list of plasmids, which were used in this study. The details 

of the plasmids construction have been explained in (section 2.8). 

Table 2.2 Plasmid constructs 

 

Name plasmid Relevant features Construction Source/Reference 

pLOSS*alrA 
bla spc Pspac alrA - PdivlA- 

lacZ lacI rep pLS20* 

Inserstion of alrA 

gene into  pLOSS* 

vector 

Daniel, 

unpublished 

pPY18 
bla amyE3’ cat Pspac lacI 

lacZ amyE5’ 
------ 

Duggin et al. 

(1999) 

pKS1 
bla amyE3’ cat Pspac datA 

lacI lacZ amyE5’ 

Insertion of datA 

gene and its 

upstream 30 bases 

into XbaI cut 

pPY18 

This work 

pSG1154 
bla amyE3’ spc Pxyl  -gfp 

amyE5’ 
------ 

Lewis and 

Marston (1999) 

pKS2 
bla amyE3’ spc Pxyl  datA-

gfp amyE5’ (C-terminus) 

Insertion of datA 

gene into XhoI 

and EcoRI cut 

pSG1154 

This work 

pSG1729 
bla amyE3’ spc Pxyl  gfp- 

amyE5’ 
------ 

Lewis and 

Marston (1999) 

pKS3 
bla amyE3’ spc Pxyl  gfp-

datA amyE5’ (N-terminus) 

 

Insertion of datA 

gene into XhoI 

and EcoRI cut 

pSG1729 

This work 

pKS6 
bla amyE3’ cat Pspac datA- 

ftsL(RBS) lacI lacZ amyE5’ 

 

Insertion of datA 

gene and RBS of 

ftsL gene into 

XbaI and BglIIcut 

pPY18 
 

This work 
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pET-28a(+) 

lacI T7 promoter lac 

operator RBS His.tag T7.tag 

thrombin His.tag T7 

terminator Kan 

----- 

 

Novagen
® 

 

pKS7 
pET-28a(+)Ω datA-His tag  

(C-terminus) 

 

Insertion of datA 

gene into NcoI 

and BamHI cut of 

pET-28a(+) 
 

This work 

pKS8 
pET-28a(+)Ω His tag- datA 

(N-terminus) 

 

Insertion of datA 

gene into NheI 

and XhoI cut of 

pET-28a(+) 
 

This work 

pDR244 
bla pACYCori cre spc cop 

repF 
----- 

Rudner, 

unpublished 

pGH19 ----- ----- 
Liman et al. 

(1992) 

pKS9 pGH19 Ω data 

 

Insertion of datA 

gene into the 

EcoRI and XbaI of 

cut pGH19 

This work 

pKS10 
pGH19 Ω HA epitope-datA 

(N-terminus) 

 

Insertion of HA  

epitope-datA gene 

into the EcoRI and 

XbaI of cut 

pGH19 

This work 

pKS11 
pGH19 Ω datA-HA epitope 

(C-terminus) 

Insertion of HA 

epitope-datA gene 

into the EcoRI and 

XbaI of cut 

pGH19 

This work 

 

2.4 Media supplements  

2.4.1 Amino acids, inducers and substrates  

The amino acids, inducers and substrates (Table 2.3) were added to the media according 

to the strain genotypes and the purpose of the experiments. 
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Table 2.3 Amino acids, inducers and substrates  

Supplement 
Stock 

solution 

Final 

concentration 
Bacteria 

Amino 

acids 

Tryptophan 2.0 mg/ml 20 µg/ml 

B. subtilis 

L-alanine 20 mg/ml 
Various 

concentrations 
Glycine 20 mg/ml 

L-proline 20 mg/ml 

D-alanine 20 mg/ml 450-500 µM 

14
C-D-alanine 155.25 µg/ml 0.5-1.0 µM 

B. subtilis and  

E. coli 

Boc-D-2,3-

diaminopropionic 

acid (NADA)
 

25 mM 50 µM B. subtilis 

Inducers 
IPTG 1.0 M 

Various 

concentrations 

B. subtilis and  

E. coli 

Xylose 25 % 0.5 % B. subtilis 

Substrate 
X-gal 4.0 %  0.02 % B. subtilis 

Starch 2.5 % 0.12 % B. subtilis 

2.4.2 Antibiotics 

The details of the antibiotics, which were used in this study, are shown in the following 

table. 

Table 2.4 Antibiotics details 

Antibiotics Stock solution 
Final concentration 

B. subtilis E. coli 

Ampicillin  50 mg/ml --- 100 µg/ml 

Kanmycin  25 mg/ml 5 µg/ml 25µg/ml 

Chloramphenicol  10 mg/ml 5 µg/ml --- 

Spectinomycin 100 mg/ml 50 µg/ml --- 

Erythromycin 20 mg/ml 1.0 µg/ml --- 

Lincomycin 50 mg/ml 25 µg/ml --- 

Zeocine 100 mg/ml 10 µg/ml --- 

Phleomycin 2.5 mg/ml 1.0 µg/ml --- 

D-cycloserine  50 mg/ml 50 µg/ml --- 

Penicillin G  100 mg/ml 100 µg/ml --- 
 

2.5 Oligonucleotides 

The oligonucleotides (oligos) were designed by using Clone Manager software and 

Primer 3 Output online tool. After designing, they were synthesised by Eurogentec-



                                                                                                                   Chapter 2. Materials and Methods 

48 

 

Kaneka Corporation. Aliquots of 10 µM were prepared from the stock solutions and 

usually stored at -20 °C. The oligos of this study are shown in appendix C.  
 

2.6 General methods 

2.6.1 Extraction of genomic DNA (gDAN) 

The method developed by Ward and Zahler (1973) was used to extract gDNAs for 

transformation purpose. The DNeasy blood & tissue kit (QIAGEN) was used for 

extraction of gDNAs for PCR template. The isolated gDNA was usually stored at -20 °C. 

2.6.2 Extraction of plasmid DNA 

E. coli strains were grown in 5.0 ml of LB medium, containing the necessary antibiotic, at 

37 °C overnight. The plasmid DNA was extracted from the cells by QIAprep® Spin 

Miniprep Kit (QIAGEN) according to the manufacturer’s protocol. The plasmid DNA 

was stored at -20 °C. 

2.6.3 Polymerase chain reaction (PCR) 

The Q5
TM

 High-Fidelity DNA polymerase (
New England

 BioLabs
®
) was used in PCR 

throughout the study. The quantity of PCR components and the reaction conditions were 

according to the manufacturer’s instructions.  

2.6.4 Restriction digestion of DNA 

Restriction enzymes and appropriate digestion buffers from different suppliers (e.g 

promega, Roche and 
New England

 BioLabs
®
) were used to cut the PCR products and 

plasmids according to the manufacturer’s instructions. 

2.6.5 Purification of PCR and restriction digestion products 

QIAquick PCR Purification Kit (QIAGEN) was used to clean up DNA in PCR reaction 

according to the manufacture’s protocol.  

2.6.6 Agarose gel electrophoresis 

A 1.0 % of agarose gel (MELFORD biolaboratories Ltd.) was melted in 1.0 X TAE 

buffer. The solidified gel was submerged in 1.0 X TAE buffer in an electrophoresis tank. 

The DNA sample was mixed with DNA loading buffer and loaded into the agarose gel 

wells. The electrophoresis was run at 120 Volt for about 30-40 min. The gel was then 

soaked in 1.25 µg/ml of ethidium bromide (Sigma) in 1.0 X TAE buffer for 15- 20 min. 

The DNA bands were visualised by UV transilluminator. 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAAahUKEwi_psWy98TIAhWMWj4KHZEbAuQ&url=https%3A%2F%2Fwww.qiagen.com%2Fshop%2Fsample-technologies%2Fdna-sample-technologies%2Fgenomic-dna%2Fdneasy-blood-and-tissue-kit&usg=AFQjCNEM-hL7s2UE0SnxM5D5a4HTi7Jh4w&sig2=DcSH_9B5oLQVtPHaXcla5w
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCoQFjAAahUKEwjStZKO9cTIAhVCbT4KHeAjDXE&url=https%3A%2F%2Fwww.qiagen.com%2Fshop%2Fsample-technologies%2Fdna-sample-technologies%2Fplasmid-dna%2Fqiaprep-spin-miniprep-kit&usg=AFQjCNEwf92nV6U-xCA3cbjCj9YVoHMwvA&sig2=RZo2fEChpM5p3b4yUJcHjQ&bvm=bv.105039540,d.cWw
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCoQFjAAahUKEwjStZKO9cTIAhVCbT4KHeAjDXE&url=https%3A%2F%2Fwww.qiagen.com%2Fshop%2Fsample-technologies%2Fdna-sample-technologies%2Fplasmid-dna%2Fqiaprep-spin-miniprep-kit&usg=AFQjCNEwf92nV6U-xCA3cbjCj9YVoHMwvA&sig2=RZo2fEChpM5p3b4yUJcHjQ&bvm=bv.105039540,d.cWw
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2.6.7 Purification of DNA band from agarose gel 

Illustra GFX PCR DNA and Gel Band Purification Kit (GE healthcare life sciences) were 

used to purify DNA fragments from agarose gel according to the manufacture’s protocol. 

2.6.8 Dephosphorylation of plasmid DNA 

Before ligation, the digested DNA plasmids were dephosphorylated by Thermo-sensitive 

alkaline phosphatase (TSAP, Promega), according to the manufacturer’s instructions. 

2.6.9 Ligation of DNA 

The T4 DNA ligase (Roche) was used in the construction of knockout strains and cloning 

plasmid constructs (see sections 2.7 and 2.8). The ligation reaction contained the 

recommended quantities of T4 ligase and DNA according to the manufacturer’s protocol. 

The ligation reactions were carried out at 4.0 °C for overnight.   

2.6.10 DNA sequencing of cloned genes 

The correct sequence of the cloned genes in plasmid constructs was verified by DNA 

sequencing. The sequencing process was done by a sequencing service, based in 

University of Dundee, UK.    

2.6.11 Extraction of total RNA 

The wild type strain (168CA) was grown in LB media to mid-exponential growth (OD600 

~ 1.0) at 37 °C. Total RNA was extracted from 1.0 ml the culture, using total RNA 

purification plus Kit (NORGEN Biotek Corp.) according to the manufacturer’s protocol. 

The RNA extract was stored at -80 °C. 

2.6.12 Making complementary DNA (cDNA) 

The high capacity cDNA reverse transcription kit (Applied Biosystems
TM

) was used for 

making cDNA according to manufacturer’s protocol. The total RNA extract was used as 

template and non-specific random hexamers as primer. The cDNA was stored at -20 °C. 

2.6.13 Extraction of total cell protein and Polyacrylamide gel electrophoresis (SDS-

PAGE) 

The bacterial cells were grown for an appropriate period in LB media (with or without 

inducers). One millilitre of the culture was pelleted and suspended in 200 µl of NuPAGE
®
 

LSD sample loading buffer. The bacterial total cell protein was extracted by sonication 

(SONICS vibra cell 
TM

). The pre-casted NuPAGE® Bis-Tris gel (NOVEX
®

 by life 
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technologies) was submerged in 1.0 X NuPAGE
® 

MES running buffer in an 

electrophoresis tank. The protein extract was heated at 70 °C for 10 min before loading. 

Depending on the OD600 of the cultures, an appropriate amount (µl) of protein extracts 

were loaded into the gel wells. The electrophoresis was run at 150 Volt. 

2.6.14 Coomassie staining of SDS-PAGE gel 

The SDS-PAGE gel was fixed in fixation solution for 1.0 h. The Coomassie stain solution 

(1.0 % in ethanol) was diluted 1.0 in 10 with fixation solution. The gel was soaked in the 

stain for 1.0-2.0 h. The gel was then destained by incubating in water until the 

background was disappeared. The image of the stained protein gel was finally taken.   

2.6.15 Western blotting 

Wet Western blot method was used to transfer the protein bands from the gel to PVDF 

(Hybond P) membrane (GE Healthcare). The membrane was treated with methanol for 30 

seconds and soaked in transfer buffer. The gel was put on two layers of wet 

chromatography paper (Fisher Scentific) in a tray, contained transfer buffer. The wet 

PVDF membrane was put on top of the gel and two layers of chromatography paper were 

put on the PVDF membrane. Any possible air bubbles were removed by rolling a plastic 

tube on the chromatography papers - gel - PVDF membrane sandwich. The sandwich was 

soaked in transfer buffer in a tank (TransBlot Cell, BioRad) and run at 20 mA (5-6 Volts) 

overnight. The sandwich disassembled and the membrane was rinse in PBS. The 

membrane was incubated in blocking buffer for 1.0 h. Primary antibody was added and 

incubated for 1.0 h. The membrane was washed with PBST (0.1% tween 20 in PBS) five 

times (four short time washing (5 min) and one long time washing (15 min)). The washed 

membrane was incubated again in blocking buffer for 30 min. Secondary antibody was 

added and incubated for 1.0 h. The membrane was washed with PBST as before. Then, 

the membrane was incubated with Pierce
®
 ECL 2 western blotting substrate (Thermo 

Scientific), according to the manufacturer’s protocol. The protein bands were visualised 

and imaged by Luminescent image analyser (imageQuant LAS 4000 mini, GE 

Healthcare). In this study, the primary antibodies, such as Rabbit anti-Gfp IgG (life 

technologies), Mouse anti-His IgG (Qiagen) and Guinea pig anti-LdcB IgG (Richard 

Daniel), were used. The primary antibodies were diluted 1.0 in 1000 with blocking buffer 

before using. Meanwhile, 1.0 in 2000 dilution of acetone precipitation purified rabbit 

polyclonal anti-DacA IgG (R. Daniel) was used. The secondary antibodies were anti-
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rabbit IgG-, anti-mouse IgG- and anti-guinea pig IgG-Horse radish peroxidase (HRP) 

(Sigma
®
). These secondary antibodies were diluted 1.0 in 10000 with blocking buffer.  

2.6.16 Over-production and purification of membrane protein 

A 100 ml of LB medium plus an appropriate antibiotic was inoculated with E. coli strain, 

carried a plasmid copy of His tagged datA gene. The culture was incubated at 30 °C for 

overnight. The overnight culture was used to inoculate 5.0-10 L of LB medium, 

supplemented with kanamycin (25 µg/ml) and incubated at 37 °C until OD600 0.8. The 

culture was induced with 0.5-1.0 mM IPTG and incubated at 18, 22, 30 and 37 °C for 5 h 

and overnight. The induced culture was centrifuged at 6400 rpm, 4.0 °C for 20 min 

(Beckman coulter
®
, Avanti

® 
centrifuge J-26 XP, fixed angle rotor JLA-8.1000) The 

culture pellet was suspended in 60 ml of universal buffer and homogenised. The cells 

were disrupted by sonication (BRANSON digital sonifier
®
) three times at each of these 

strengths (10, 20, 30, 40, and 50 %). The period of each time of sonication was 20 

seconds. In addition, French press (Constant cell disruption systems, constant systems 

limited, UK) was used to disrupt the cells at 23 kpsi. The disrupted cell suspension was 

centrifuged at 42000 rpm, 4.0 °C for 45 min (Beckman ultracentrifuge). The pellet was 

suspended in 30 ml of extraction buffer, homogenised and kept at 4.0 °C for 1.0 h with 

gentle stirring. The membrane extract was centrifuged at 50000 rpm, 4.0 °C for 30 min in 

Beckman ultracentrifuge. The purification was done manually by using a PD-10 column, 

containing Ni-NTA super flow resin (Qiagen). The Ni-NTA column was firstly 

equilibrated with column equilibration buffer. The supernatant was applied to the column, 

and the column was washed with 50 ml of column wash buffer. The protein was eluted in 

3.0-10 ml of elution buffer. The diluted purified protein was concentrated to 500 µl by 

centrifugation, using a 50000 MWCO filter column. 

2.6.17 Preparation of membrane vesicles  

The membrane vesicle was prepared according to the methods, described in Konings and 

Freese (1972) and Wientjes et al. (1979). One litre of bacterial culture at OD600 1.5-2.0 

was centrifuged for 10 min at 10000 X g and 4.0 °C (Beckman coulter
®

, Avanti
® 

centrifuge J-26 XP, fixed angle rotor F10BA-6X500y)
. 
The cell pellet was washed with 

0.1 M potassium phosphate (pH 7.3) and suspended in protoplast formation buffer. The 

cell suspension was incubated at 30 °C for 45 min. Phase-contrast microscope was used 

to check that the majority of the cells turned to protoplasts. The protoplasts were pelleted 

for 20 min at 15000 X g and 4.0 °C. They were osmotically lysed by immediate 
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suspension in 0.1 M potassium phosphate (pH 7.3), and 10 µg/ml of deoxyribonuclease 

(DNAase, Sigma) was added. The cellular debris was removed by low speed 

centrifugation for 10 min at 15000 X g and 4.0 °C. The membrane vesicle in the 

supernatant was pelleted at 100000 X g for 1.0 h at 4.0 °C (Thermo Scientific WX 

ultracentrifuge, SureSpin™ 630 swinging Bucket Rotor). The membrane vesicles were 

suspended in 0.1 M potassium phosphate buffer (pH 6.6) at 5 mg protein per ml. The 

membrane vesicles were frozen in liquid nitrogen and kept at -80 °C. The D-alanine 

transport by membrane vesicles was studied at room temperature according to Konings 

and Freese (1972). The reaction mixture consisted of 0.5 µM (0.033 µCi/ml) of [1-
14

C] D-

alanine and membrane vesicles in 0.05 M potassium phosphate buffer (pH 6.6) with and 

without 5.0 mM NaCl.  A 100 µl of the mixture was filtered through cellulose nitrate 

membrane filter (Pore size 0.45 µm, diameter 25 mm, Whatman
TM

) under vacuum every 

10 min. The filter was washed with 0.05M potassium phosphate (pH6.6) and soaked in 

2.0 ml of scintillation cocktail in a vial. The radioactivity in membrane vesicles was 

measured with a scintillation counter (HIDEX 300SL, reading period, 5.0 min per 

sample).  

2.6.18 Transformation 

2.6.18.1 Transformation of B. subtilis 

The transformation of B. subtilis strains was fulfilled according to the method developed 

by Anagnostopoulos and Spizizen (1961) and modified by Young and Spizizen (1961). 

The transformed strains were checked for antibiotic resistance, and the gene knockouts 

were confirmed by PCR.  

2.6.18.2 Transformation of E. coli 

Fifty microliters of E. coli competence strains (DH5α, BL21 (DE3) and C43 (DE3)) were 

mixed with ligation mixture or plasmid DNA (~10 ng) and left on ice for 45 min. The 

transformation mixture was heat shocked by incubating at 42 °C for 2.0 min in a water 

bath. A 250 µl of LB medium was then added and incubated at 37 °C for 1.0 h. The 

transformation was selected on pates, containing an appropriate antibiotic. The plates 

were incubated at 37 °C for overnight. This transformation procedure was obtained from 

Current Protocol in Molecular Biology text book (Abusubel et al., 2003). 
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2.6.19 Microscopy 

2.6.19.1 Fluorescent Microscopy 

For staining of cell membrane, FM5.59 fluorescent dye (Invitrogen) was used. A 40 µl of 

cell culture was incubated with 1.0 µl of FM5.59 stock (200 µg/ml) for 3.0-5.0 min with 

shaking. The fluorescent D-amino acid (NADA) was also used for cell wall labelling. A 

multi-well slide was covered with a thin layer of 1.0 % agarose gel. A few microliters of 

the cells suspension was put on the agarose pad and let dry but not completely. The cell 

spot was covered with a cover slip and used in microscopic examination. For DNA 

staining, 2.0 µl of DNA staining fluorescent dye DAPI (DAPI in antifade mountant, 

molecular Probes
®
) was added to dried cell spots on a slide. The images were acquired by 

either a Sony CoolSnap HQ2 cooled CCD camera (Roper scientific) attached to a Zeiss 

Axiovert M200 microscope or Qimaging Rolera Em-c2 cooled CCD camera attached to a 

Nikon Eclipse Ti microscope. The Metamorph
®
 imaging software (MolecularDevices) 

was used to collect and process the microscopic images. The ImageJ program was used to 

apply scale bars to the images.  

2.6.19.2 Time-lapse microscopy 

The preparation of the microscopic slide for time-lapse microscopy was done according 

to a technique, described by de Jong et al. (2011). Fully NADA labelled live cells were 

pelleted and washed once with pre-warmed fresh PTM. The pellet was suspended in the 

same medium at OD600 0.05. A 2.0 µl of the culture was spotted on the top of solid PTM 

(PTM + 1.0 % agarose), which was already mounted on the microscopic slide. The 

preparation of cell sample for time-lapse was performed as quickly as possible, and the 

experiment was done at 37 °C. The Nikon Eclipse Ti-U inverted epifluorescence 

microscope fitted with a Plan-Apochromat objective (Nikon DM 100x/1.40 Oil Ph3.0) 

and a CoolSnap HQ2 cooled CCD camera (Photometrics) was used to acquire the images 

of the live cells every 4.0 min at an exposure time of 80 milliseconds (ms). The light was 

transmitted from a 300 Watt xenon arc-lamp through a liquid light guide (Sutter 

Instruments). The images were collected by Frap-AI 7.7.5.0 Software (MAG Biosystems) 

and used to make movies by ImageJ program. 

2.6.20 Immunofluorescence assay 

The bacterial strain was grown in LB medium to mid-exponential phase (OD600 ~ 1.0) at 

37°C. A 0.5 ml of the culture was pelleted at 10000 rpm for 1.0 min (Thermo 

ScientificPico ™ 17 Microcentrifuge, Fixed angle, 24 place rotor, RCF 17000). The pellet 
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was suspended in 0.5 ml of cell fixation solution (3.0 % paraformaldehyde in PBS) and 

held on ice for 30 min. The fixed cells were pelleted again and washed three times with 

PBS. The cells were finally suspended in GTE solution. A 20 µl of the fixed cell 

suspension in GTE was spotted on a multi-well slide and left for 5.0 min at room 

temperature. After settling down of the cells on the slide, the excess solution was 

aspirated off and 20 µl of 0.01 % poly lysine was added for 2.0 min. The excess poly 

lysine was aspirated off, and then the cells were treated with lysozyme in PBS solution (2 

mg/ml) for 1.0 min at room temperature. The excess solution was removed and the cells 

spot was washed with PBS. The cells were rehydrated with PBS for 3.0 min. The cells 

spot was blocked with cell blocking solution (2.0 % Bovine serum albumin in PBS) for 

15 min. The primary antibodies (Guinea pig anti-LdcB IgG and/or Rabbit anti-DacA IgG 

(provided by Richard Daniel)) were added at 1:1000 dilutions in cell blocking solution 

and incubated at 4.0 °C overnight. Next day, the cells spot was washes twice with PBST 

buffer and then 10 times with PBS. The secondary antibodies (Alexa Fluor
®

 594 anti-

guinea pig IgG (H+L) (Molecular Probes
®
) and/or FITC conjugated anti-rabbit IgG 

(Sigma
®
)) were added at 1:10000 dilution in cell blocking solution and incubated in a 

dark place for 1.0 h at room temperature. The cells spot was washed as before and 

mounted with 2.0 µl of DNA staining fluorescent dye DAPI (DAPI in antifade mountant, 

molecular Probes
®
). The slide was finally covered with a cover slip and examined 

microscopically, using red (mcherry) filter and 1000 msec exposure time for detection of 

Alexa flour, but green (GFP) filter and 750 msec exposure time for FITC detection (see 

section 2.6.19.1 for microscope details and image processing).   

2.7 Gene knockout (deletion) in B. subtilis 

The desired genes were deleted by PCR amplification of a pair of 2.0 kilo base (kb) long 

concatameric DNA fragments. The produced fragments were complimentary to the 

upstream and downstream sequences, which are located outside of the reading frame of 

the deleted genes. We designed oKS01, oKS02, oKS03 and oKS04 oligos for deletion of 

dltA-D genes. The oKS01 and oKS02 oligos were used to amplify a 2.0 kb DNA 

fragment, complimentary to the DNA sequence at the upstream of dltA gene. The oKS03 

and oKS04 oligos were used in the production of a 2.0 kb DNA fragment at the 

downstream of dltD gene. Although there is XbaI restriction site in the oKS02 and 

XbaI+BglII restriction sites in oKS3, but both the fragments were digested with BglII, 

because there was also a native BglII restriction site in the upstream fragment. After 

purification, appropriate quantities of the digested DNA fragments were ligated with a 
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chloramphenicol resistant cassette (cat), already digested with BamHI.  The ligation 

product was used in the transformation of B. subtilis 168CA strain. The correct knockout 

strain was confirmed by PCR and named KS11 (ΔdltA-D::cat).  

The deletion of dacA gene was done by designing four oligos (oKS05, oKS06, oKS07 

and oKS08). The oKS05 and oKS06 oligos were used to produce a 2.0 kb DNA fragment 

at the upstream of dacA gene, and oKS07 and oKS08 oligos used to amplify a 2.0 kb 

DNA fragment at the downstream of dacA gene. The oKS6 and oKS07 contained BamHI 

restriction site, so the fragments were digested with BamHI. The digested fragments were 

purified, and appropriate quantities of them were ligated with Spectinomycin resistant 

cassette (spc). The ligation product was transformed into B. subtilis 168CA strain. The 

correct knockout strain was confirmed by PCR and named KS15 (ΔdacA::spc).  

The KS18 (ΔldcB::erm) strain was constructed, using oKS09, oKS10, oKS11 and oKS12 

oligos. The oKS09 and oKS10 oligos were used in PCR reaction to amplify a 2.0 kb DNA 

fragment at the downstream of ldcB gene, whereas oKS11 and oKS12 oilgos were used in 

the PCR amplification of a 2.0 kb DNA fragment, complimentary to the DNA sequence at 

the upstream of ldcB gene. The 2.0 kb DNA fragments were digested with BamHI, 

because the BamHI restriction site was edited into the oKS10 and oKS11 oligos. The 

digested fragments were purified and appropriate amounts were ligated with 

erythromycin resistant cassette (erm). Finally, the competence B. subtilis 168CA strain 

was transformed with the ligation product. The correct transformant was checked by 

PCR. 

2.8 Plasmid constructs 

The pKS1 plasmid was constructed by inserting the datA gene coding sequence and its 

upstream 30 bases into the pPY18 vector. The datA gene was amplified by PCR using a 

pair of oligos (oKS21 and oKS22). The datA fragment and the pPY18 vector were cut 

with XbaI restriction enzyme separately. The digested datA fragment was purified and the 

digested pPY18 was dephosphorylated before ligation. The ligation mixture was 

transformed into E. coli DH5α competent cells. The plasmid constructs were extracted 

from six randomly chosen transformed colonies, and they checked by restriction digestion 

and sequencing. The correct plasmid construct (pKS1) was inserted into the amyE locus 

on gDNA of B. subtilis by transformation. The lack of amylase activity was confirmed by 

growing the transformed cells on nutrient agar plates, supplemented with 0.12 % starch.  

The KS2 and KS3 plasmids were constructed to express C- and N- termini GFP tagged 

datA respectively. The coding sequence of datA gene was amplified by PCR, using 



                                                                                                                   Chapter 2. Materials and Methods 

56 

 

oKS23 and oKS24 oligos. The amplified datA gene fragment was run in agarose gel 

electrophoresis and the desired band was cut out and purified by gel extraction kit. Then, 

the datA gene fragment and both pSG1154 (for C-terminus GFP tag) and pSG1729 (for 

N-terminus GFP tag) vectors were restriction digested with XhoI and EcoRI. The 

restriction digested vectors were dephosphorylated and ligated with the digested datA 

insert. The ligation mixture was transformed into E. coli DH5α competent cells, and the 

plasmid constructs were checked as mentioned above. The correct pKS2 and pKS3 

constructs were transformed into the amyE locus on gDNA of B. subtilis. The lack of 

amylase activity was also ensured. 

The pKS6 plasmid was constructed by inserting of datA coding sequence into the pPY18 

vector. The datA gene was amplified by PCR using a pair of oligos (oKS25 and oKS26). 

The ribosome binding site (RBS) of ftsL gene was edited to the upstream of start codon in 

the forward oligo (oKS25). The datA fragment and the pPY18 vector were cut with XbaI 

and BgIII restriction enzymes. The digested datA fragment was purified and the digested 

pPY18 was dephosphorylated before ligation. The ligation mixture was transformed into 

E. coli DH5α competent cells. Six transformed colonies of E. coli were randomly chosen 

for plasmid extraction. The plasmid constructs were checked as mentioned previously. 

The correct pKS6 construct was introduced into the amyE locus on gDNA of B. subtilis 

by transformation. The lack of amylase activity was used to confirm correct insertion of 

the genetic construct.  

The pKS7 and pKS8 plasmids were constructed to express C- and N- termini His tagged 

datA respectively. The coding sequence of datA gene was amplified by PCR, using two 

pairs of oligos (oKS27 and oKS28) for C-terminus His tag (oKS29 and oKS30) for N-

terminus His tag. The datA gene fragments and the pET -28a(+) vector were restriction 

digested with NcoI and BamHI for C-terminus and with NheI and XhoI for N-terminus 

His tag. The restriction digested vectors were dephosphorylated and ligated with the 

corresponding datA inserts. The ligation mixture was transformed into E. coli DH5α 

competent cells. The extraction and checking of the plasmid constructs were done as 

mentioned previously. The correct constructs were transformed into E. coli BL21(DE3) 

and E. coli C43 (DE3) strains. 

The pKS9 plasmid was made for expressing datA gene in Xenopus oocyte. Both oKS71 

and oKS72 oligos were used to amplify the coding sequence of datA gene by PCR. The 

second codon of datA gene was changed to GCA (an alanine specific codon), for keeping 

the optimal Kozak sequence (ACCATGG) at the beginning of the clone. The stop codon 

was also changed to TAA. The PCR product and pGH19 vector were restriction digested 
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with EcoRI and XbaI. The digested PCR product was purified and the digested pGH19 

vector was dephosphorylated. Both the datA insert and the pGH19 were ligated. The 

ligation mixture was transformed into E. coli DH5α competent cells. The pKS9 plasmid 

was linearised and cRNA was synthesised, using in vitro transcription (see appendix E). 

Besides, pKS10 and pKS11were constructed to allow the expression of N- and C-termini 

HA-epitope tagged DatA protein respectively. The oKS72 and oKS73 oligos were used in 

the PCR amplification of N-terminus HA-epitope-datA recombinant gene. The oKS71 

and oKS74 oligos were also used to amplify C-terminus HA-epitope-datA recombinant 

gene. Like pKS9, the pGH19 vector and the same restriction enzymes were used in the 

construction of pKS10 and pKS11. 

2.9 Quantitative measurement of D-alanine in culture supernatant by RP-HPLC 

2.9.1 Growth conditions  

The bacterial strain was grown in 5.0 ml of LB broth at 30 C° for overnight. The 

overnight culture was diluted 1:10 with pre-warmed LB and was grown again for 2.0 h at 

37 C°. After this incubation, the optical density at 600 nm (OD600) of the culture was read. 

An appropriate volume of the culture was centrifuged at 6000 rpm for 3 min in a 

benchtop centrifuge (Universal 320, 35° angle rotor, 6 place, RCF 9,509). The pellet was 

suspended with pre-warmed LB broth to make culture with initial OD600 0.1 and 

incubated at 37 C°. The growth of the strain was monitored by reading OD600, using a 

spectrophotometer (BECKMAN DU650).  

2.9.2 Culture sample processing 

Sample was taken from the culture at different time points and centrifuged at 6000 rpm 

for 5.0 min. The culture supernatant was filtered through sterile syringe filter (pore size 

0.2 µm, GILSON
®
) and then passed through spin column (Vivaspin 2.0 Hydrosart, 2000 

MWCO, Generon Ltd.). For standard curve, the LB medium sample was filtered and 

passed through the spin column as well. The highly filtered culture supernatant was kept 

at 4.0 C° and used as sample for RP-HPLC detection of D-alanine.  A 150 µl of the super 

filtered culture supernatant was concentrated to 50 µl by SpeedVac (SavantSPD131DDA 

SpeedVac concentrator, from Thermo Electron Corporation). A 150 µl of Marfey’s 

reagent (1.0 % Nα-(2,4-Dinitro-5-fluorophenyl)-L-alaninamide in acetone, from Sigma) 

was added and mixed by vortex. Then, 40 µl of sodium bicarbonate (1.0 M) was added 

and mixed to create an alkaline medium for the reaction. The mixture was heated for 1.0 h 

at 40 C° with shaking at 750 rpm (Thermomixer compact, Eppendorf). The mixture was 
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let to cool down and 25 µl of HCl (2.2 M) was added to stop the reaction.  The mixture 

was dried out by SpeedVac and suspended in 150 µl of HPLC suspension solution (90 % 

of 0.05M Triethylamaine phosphate (pH 3.0) and 10 % of Acetonitile + 0.1 % Formic 

acid). The dried pellet was solubilised by glass stirring manually, and followed by 15 min 

vortexing (Thermomixer compact, Eppendorf). The suspension was finally filtered 

through 0.22 µm centrifuge tube filter (cellulose acetate filter, from Costar) at 13000 rpm 

for 1.0 min, and the filtrate was use as sample for HPLC analysis. 

2.9.3 RP-HPLC analysis conditions 

The sample was run in Perkin Elmer series 200 HPLC machine. The column type was 

Spheri-5, RP-18, dimension 100 mm x 4.6 mm, particle size 5.0 µm (Perkin Elmer) and 

the column guard was NewGuard RP-18, 7.0 µm, 15 x 3.2 mm (Perkin Elmer). The 

solution A of the mobile phase was 0.05 M Triethylamaine phosphate (pH 3.0) and the 

solution B was Acetonitrile + 0.1 % formic acid. The linear gradient was increasing of 

solution B from 10 % to 25 % in 40 min. The flow rate was 1.0 ml/min at 35 °C and the 

detection wave length was 340 nm, using S200 Diode array detector (DAD).  After each 

run, the column was washed with solution D (water) and then with solution C (60 % 

methanol). The details of the run parameters are shown in (Table 2.5). 

Table 2.5 Pump and run parameters of RP-HPLC analysis 

Step Time (min) 
Flow 

(ml/min) 
  A   B   C   D Curve 

  Sample 

volume(µl) 

0 0.5      1.00   90.0  10.0 0.0 0.0 0.0 

     150 

1 1.5 1.00  90.0  10.0 0.0 0.0 0.0 

2 40.0 1.00  75.0  25.0 0.0 0.0 1.0 

3 25.0 1.00  60.0  40.0 0.0 0.0 1.0 

4 0.5 1.00  90.0  10.0 0.0 0.0 0.0 

5 20.0 1.00  90.0  10.0 0.0 0.0 0.0 

   Total 

Run Time 
87.00 

2.10 Radioactive [
14

C] D-alanine labelling of cell wall 

2.10.1 Radioactive incorporation assay 

The bacterial strain was grown in LB broth with 450 µM of D-alanine at 30 C° for 

overnight. The overnight culture was diluted 1:10 with pre-warmed LB broth, 
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supplemented with 450 µM of D-alanine and was let grow for 2.0 h at 37 C° on a shaker. 

An appropriate amount of the culture was pelleted at 6000 rpm for 3.0 min in a benchtop 

centrifuge (Universal 320, 35° angle rotor, 6 place, RCF 9,509). The pellet was suspended 

in fresh LB broth to prepare 0.1 OD600 culture. The D-alanine auxotroph cultures 

contained 450 µM of D-alanine, including both radioactive (1.1 µM) and non-radioactive 

(449 µM) D-alanine in 1:400 ratio, the radioactivity in the culture was 0.065µCi/ml. The 

properties of radioactive [1-
14

C] D-alanine stock were specific activity: 58.6 mCi/mmol, 

concentration: 155.25 µg/ml; 0.1 mCi/ml, from HARTMANN ANALYTIC. In the 

meantime, another culture without radioactive D-alanine was used for monitoring growth 

curve in parallel of radioactive labelling. Both radioactive and non-radioactive cultures 

were grown at 37 Cº with shaking at n=100 in shaking water bath (Thermo Scientific 

SWB25). A 100 µl of the radioactive culture was taken every 20 min for 2.0 h and filtered 

through cellulose nitrate membrane filter (Pore size 0.45 µm, diameter 25 mm, 

Whatman
TM

) under vacuum. The filter was washed with 4 ml PBS buffer and let dry in a 

scintillation vial.  Then, 2.0 ml of Ultima Gold scintillation cocktail (Perkin Elmer, Inc.) 

was added. The radioactivity (DPM) of the sample was measured with a scintillation 

counter (HIDEX 300SL, reading period 10 min per sample). The growth curve was 

simultaneously monitored by using a spectrophotometer (Thermo Scientific GENESYS 

20). 

2.10.2 Radioactive depletion (turnover) assay  

At the end of the labelling assay (after 120 min), an appropriate amount of both the [1-

14
C] D-alanine labelled and non- labeled cell cultures were centrifuged at 6000 rpm for 

2.0 min, using JENCONS-PLS minicentrifuge (Maximum speed/RCF: 6000 rpm/ 2000 

xg; rotor: 6 x 1.5/ 2.0 ml). The cell pellets were suspended in fresh LB medium, 

containing only 450 µM of non-radioactive D-alanine. The initial OD600 of the cultures 

was ~ 0.1. The culture of radioactive labelled cells was used for studying of cell wall 

turnover. The culture of non-radioactive cells was used for monitoring growth curve. The 

cultures were grown at 37 Cº in shaking water bath and the same sampling technique was 

used as described above. 

2.10.3 Measurement of radioactivity in culture supernatant 

The initial radioactivity and the radioactivity left in the culture medium after 120 min of 

incubation was measured. At the onset (zero min) and the end (120 min) of radioactive 

labelling assay (section 2.10.1), a 100 µl of the culture was taken and centrifuged at 6000 
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rpm for 2.0 min in Jencons-PLS minicentrifuge (Maximum speed/RCF: 6000 rpm/ 2000 

xg rotor: 6 x 1.5/ 2.0 ml).  A 25 µl of the culture supernatant was added to 2.0 ml of 

scintillation cocktail in a scintillation vial. The radioactivity was measured by the same 

scintillation counter as decribed above. 

2.11 Cell wall labelling with fluorescent D-amino acid (FDAA) 

2.11.1 Fluorescent D-amino acid incorporation assay 

The bacterial strain was grown in LB broth at 30 °C with shaking for overnight. The 

overnight culture was diluted 1:10 with pre-warmed LB broth. The diluted culture was let 

grow for 2.0 h at 37 °C on a shaker. A 2.5 ml of the culture was pelleted at 6000 rpm for 

3.0 min in a benchtop centrifuge (Universal 320, 35° angle rotor, 6 place, RCF 9,509). 

The pellet was suspended in 5.0 ml of pre-transformation media (PTM) and incubated for 

2.0 h at 37°C. An appropriate amount of the culture was pelleted and suspended in fresh 

PTM to make a culture with OD600 0.1. Then, Boc-D-2,3-diaminopropionic acid (NADA) 

was added to the culture and incubated at 37 °C. Samples were taken at different time 

points and the cells were pelleted at 10000 rpm for 1.0 min (Thermo ScientificPico ™ 17 

Microcentrifuge, Fixed angle, 24 place rotor, RCF 17000). The cells were washed three 

times with 1.0 ml of cold PBS and fixed with cell fixation solution (3.0 % 

paraformaldehyde in PBS). The fixed cells were suspended in PBS for microscopic study 

(see section 2.6.19.1 for microscopy details).  

Note: 25 mM of  Mg
2+  

was added to the cultures of ponA, mreB, mbl, mreBH mutants. 

2.11.2 Fluorescent D-amino acid depletion (turnover) assay 

As explained above, the bacterial cells were labelled with NADA for 2.0 h at 37 °C. An 

appropriate amount of the fully labelled cells was pelleted and suspended in fresh PTM to 

make OD600 0.1 culture. The culture incubated at 37 °C and samples were taken at the 

beginning and every 20 min for 2.0 h. The cell samples were pelleted at 10000 rpm for 

1.0 min (Thermo ScientificPico ™ 17 Microcentrifuge, Fixed angle, 24 place rotor, RCF 

17000). The cells were washed three times with 1.0 ml of cold PBS and fixed with cell 

fixation solution (3.0 % paraformaldehyde in PBS). The fixed cells were suspended in 

PBS for microscopic study (see section 2.6.19.1 for microscopy details). Cell wall 

turnover was also investigated in NADA labelled live cells by time-lapse microscopy (see 

2.6.19.2 for details).  
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2.11.3 Quantitative analysis of NADA labelled cells 

The Metamorph® imaging software (MolecularDevices) was used to collect and process 

the microscopic images of NADA labelled cells. All the images were acquired at a 

constant exposure time of 1000 msec, and using green (GFP) filter. The intensity of 

fluorescent (average of Gray level), which corresponds to the amount of NADA 

incorporated into the lateral cell wall, was measured by linescan tool (Scan width 6.0) of 

the Metamorph software. This software automatically generated the mean of fluorescent 

intensity in a selected area of the cell wall. Besides, ImageJ program was used to generate 

surface plot, showing differences in the distribution of fluorescent intensity throughout 

cell wall. 
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Chapter 3. Analysis of D-alanine metabolism in B. subtilis 

3.1 Introduction 

D-alanine is an essential amino acid for cell wall synthesis in bacteria. It participates in 

peptidoglycan cross-links, which are formed between the 4
th

 D-alanine residue on one 

stem peptide (donor) and the meso-2,6-diaminopimelic acid (m-A2pm) residue on the 

adjacent stem peptide (acceptor) by transpeptidases  (Vollmer et al., 2008a). Only about 

30-40 % of stem peptides are cross-lined in the peptidoglycan of B. subtilis (Atrih et al., 

1999; Sekiguchi and Yamamoto, 2012). The metabolic pathway of D-alanine has been 

studied for decades. However, the pathway has not been fully characterised in B. 

subtilis, so genetic manipulations in D-alanine metabolic pathway could be helpful to 

further understand D-alanine and cell wall metabolism in Gram-positive bacteria. B. 

subtilis synthesises D-alanine in vivo by the main alanine racemase, AlrA, which 

converts L-alanine to D-alanine and vice versa.  When the alanine racemase gene (alrA) 

is deleted, D-alanine must be added to the growth medium. However, it was reported 

that D-alanine auxotroph strain (alrA) is able to grow in MM without D-alanine 

supplement, and addition of L-alanine to MM inhibited its growth (Ferrari et al., 1985). 

It is unknown what gene product supports the growth of alrA strain in MM. A 

sporulation alanine racemase (AlrB) was also characterised in B. subtilis, but the 

physiological function of AlrB is still unclear (Pierce et al., 2008). 

Gram-positive bacteria also utilise D-alanine in the post-biosynthetic modification of 

teichoic acids, which are anionic polymers and second components of Gram-positive 

cell wall. The D-alanine molecules are added to the teichoic acids of B. subtilis by a 

four protein complex (DltA, B, C and D), encoded by dlt operon (Perego et al., 1995). 

The deletion of any of the four dlt genes resulted in the complete absence of D-alanine 

in teichoic acids without causing any detectable growth and morphological defects 

(Perego et al., 1995; Wecke et al., 1996). The D-alanine esters of teichoic acids are 

spontaneously broken by the function of alkaline pH, whereas those of peptidoglycan 

are stable (Ellwood and Tempest, 1972; Archibald et al., 1973; Koch et al., 1985b; 

Hyyrylainen et al., 2000). Therefore, the D-alanylation of teichoic acids can be avoided, 

while peptidoglycan carboxypeptidations are the main focus of investigation.  

It was previously demonstrated that the D-alanine residues at positons 5 of stem 

peptides are trimmed by the main DD-carboxypeptidase (DacA) (Atrih et al., 1999). It 

was thought that carboxypeptidases regulate the degree of cross-links in peptidoglycan 
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(Izaki et al., 1968). However, the DacA of B. subtilis was inhibited by 6-

aminopenicillanic acid and even its encoding gene was deleted without causing a 

significant change in the degree of peptidoglycan cross-linking, comparing to the wild 

type (Sharpe et al., 1974; Atrih et al., 1999). Lastly, it was proposed that DacA has a 

role in peptidoglycan maturation (Atrih et al., 1999). Although the LD-

carboxypeptidase activity was historically detected in the membrane extract of B. 

sphaericus (Arminjon et al., 1977; Guinand et al., 1979), more recently the LD-

carboxypeptidase (LdcB, formerly YodJ)) has been characterised in B. subtilis. This 

enzyme trims the uncross-linked D-alanine residues on the position 4 of peptide side 

chains, for still unclear reason. The HPLC analysis showed that the peptidoglycan of 

ldcB mutant mainly contains tetrapeptide side chains (Hoyland et al., 2014). Despite the 

above hypotheses about the roles of DacA, the physiological roles of DacA and LdcB 

are unclear in B. subtilis.  

More recently, studies have shown that soil and marine bacteria consume D-alanine and 

some other D-amino acids from the surrounding environment (Lam et al., 2009; Azua et 

al., 2014; Zhang and Sun, 2014). Besides these observations, the consumption of 

exogenous D-alanine by D-alanine auxotroph bacteria is evident that bacteria possess an 

uptake system for D-alanine transport. However, only few attempts have been done to 

identify and/or characterise D-alanine transporter in bacteria. The isolation of D-

cycloserine resistant strains (cycA) of E. coli K-12 initiated the study of D-alanine 

transport in E. coli (Curtiss et al., 1965; Russell, 1972; Cosloy, 1973). D-cycloserine 

compound is a structural analogue of D-alanine and acts as a competitive antagonist of 

D-alanine in bacterial cell wall biosynthesis (Shockman, 1959; Strominger, 1959; 

Zygmunt, 1962). It must actively be transported into the cells to inhibit bacterial growth 

(Oxender, 1972). The D-cycloserine resistant mutants (cycA)  of E. coli K-12 showed 

nearly complete loss of D-alanine, D-serine, D-cycloserine and glycine transport, and 

partial loss of L-alanine transport (Wargel et al., 1971; Cosloy, 1973; Robbins and 

Oxender, 1973). Moreover,  a point mutation in cycA gene, encoding a L-alanine, D-

alanine, glycine, D-serine transporter, provided partial resistance to D-cycloserine in 

Mycobacterium bovis BCG vaccine strains (Chen et al., 2012). A dagA gene, which 

showed functional complementary to cycA of E. coli, was also identified in Alteromonas 

haloplanktis. It was suggested that DagA protein is a Na
+ 

coupled
 
D-alanine and glycine 

symporter (MacLeod and MacLeod, 1992). An alanine carrier protein (ACP) was also 

characterised in Bacillus sp. PS3 (thermophilic bacterium PS3). The transport of alanine 
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by ACP is driven by either Na
+
 or H

+
 (Kamata et al., 1992). Furthermore, an alanine-

sodium symporter (AgcS) was reported in an archaea bacterium, Methanococcus 

maripaludis, which transports both L-and D- alanine to permit them to be metabolised 

as a nitrogen source (Moore and Leigh, 2005). Recently, an ATP-binding cassette 

(ABC) transporter for D-alanine was characterised in Salmonella enterica. This 

pathogen has a dalSTUV operon, which encodes a periplasmic substrate (D-alanine)-

binding protein (DalS), two membrane spanning permeases (DalT and DalV) and a 

cytoplasmic ATPase (DalU) (Osborne et al., 2012). The properties of the above 

proposed D-alanine transporters are summarised in (Table 4.1).  Thus, the gene(s), 

encoding D-alanine transporter(s), has not been identified in B. subtilis. The 

identification of such transporter could be helpful to understand some of the aspects of 

cell wall metabolism (e.g roles of carboxypeptidation and the fate of the released D-

alanine). 

In this chapter, we characterised the growth of a B. subtilis D-alanine auxotroph (alrA) 

strain in LB and MM. This characterisation was exploited to determine the quantity of 

D-alanine in peptidoglycan and teichoic acids, to investigate the physiological functions 

of carboxypeptidases in cell wall metabolism, to identify a D-alanine transporter (DatA) 

and finally to discover how alrA strain is able to grow in MM without D-alanine.   
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3.2 Results 

3.2.1 Characterisation of D-alanine auxotroph B. subtilis. 

A B. subtilis D-alanine auxotroph can be constructed through deleting the major alanine 

racemase gene (alrA). The lack of alanine racemase (AlrA) causes growth inhibition in 

the rich media, unless D-alanine is added. Since D-alanine is only needed in cell wall 

biosynthesis, the characterisation of D-alanine auxotroph strain could be an important 

point to start studying cell wall metabolism. To determine the growth rate and the 

optimal D-alanine concentration for the growth of alrA strain, the wild type (168CA) 

and RD180 (∆alrA::zeo) strains were grown in LB medium, supplemented with a range 

of D-alanine concentrations (88 µM–1500 µM). The OD600 was read, using a microplate 

reader (FLUOstar OPTIMA, BMG LABTECH). It was observed that 168CA strain 

grew at a constant growth rate in all the D-alanine concentrations (Figure 3.1A and B). 

In contrast, the growth rate of ∆alrA::zeo strains was generally slower than the wild 

type and was dependent on the concentration of D-alanine. The ∆alrA::zeo strain did 

not manage to grow in the presence of about 200 µM of D-alanine, but it showed 

optimal growth at about 450 µM of D-alanine (Figure 3.1A and B). Thus the optimal 

growth of alrA strain can be obtained by addition of 450-500 µM of D-alanine to LB 

media. 
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Figure 3.1 Growth characteristics of wild type versus alrA strain. A) The growth of wild type 

(168CA) and RD180 (∆alrA::zeo) strains in LB medium supplimented with different concentarions of D-

alanine at 37 ºC. The growth curves are genarated from the data of two independent plate reader 

experiments and shown in Log10 . B) The growth rates of the the strains were measured at three time point 

intervals (60-80, 80-100 and 100-120 min) of figure (A). The error bars  reprsent the standard deviation of 

mean of growth rate in two independent experiments.  

168CA ΔalrA::zeo 
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B) 
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3.2.2 B. subtilis has almost equal amount of D-alanine in peptidoglycan and 

teichoic acids. 

As D-alanine is a component of both peptidoglycan and teichoic acids, we wondered 

how much of cell wall D-alanine is in the teichoic acids, and does the deletion of dlt 

operon totally inhibit teichoic acid D-alanylation in live cells. The ∆alrA::zeo and KS12 

(∆alrA::zeo ∆dltA-D::cat) strains were firstly grown in LB medium, containing 

different concentration of D-alanine (88 µM–1500 µM). The growth curve of the strains 

was recorded by microplate reader at 37 °C. The ∆alrA::zeo ∆dltA-D::cat strain 

managed to grow in the presence of about 200 µM D-alanine and showed maximum 

growth rate at about 300 µM. In contrast, it was observed that the ∆alrA::zeo strain was 

not able to grow at about 200 µM and showed maximum growth rate at about 450 µM 

(Figure 3.2A and B). The same results were obtained when the growth rate of 

∆alrA::zeo and ∆alrA::zeo ∆dltA-D::cat strains were studied in flask experiment, where 

the cell are supposedly provided with better oxygenation comparing to the small wells 

of microplate (data not shown). The above results showed that the dltA-D strain needs 

less D-alanine for cell wall biosynthesis than the wild type. To obtain more quantitative 

data, the D-alanine auxotroph strains, RD180 (∆alrA::zeo), KS12 (∆alrA::zeo ∆dltA-

D::cat), KS16 (∆alrA::zeo ∆dacA::spc) and KS17 (∆alrA::zeo ∆dacA::spc ∆dltA-

D::cat) were grown in LB medium, supplemented with 450 µM D-alanine (including 

both radioactive and non-radioactive D-alanine in 1.0:400 ratio). The radioactive 

labelled strains were incubated for 2.0 h at 37 ºC, and the cultures were pelleted and 

washed with cold PBS. Then, the radioactive labelled strains were treated chemically 

with sodium dodecyl sulphate (SDS) and sodium hydroxide (NaOH), and physically by 

boiling. The sodium dodecyl sulphate (SDS) destroys the cell membrane and the D-

alanine esters in teichoic acids can be released by alkaline effect of NaOH. Thus the 

cells should only have D-alanine in peptidoglycan after treating with SDS and NaOH. 

The washed radioactive cell pellets of each of the above strains were suspended in H2O, 

2.5 % SDS and 2.5 % SDS + 200 mM NaOH separately and boiled at 100 ºC for 15 

min. A 100 µl of the treated cells was filtration under vacuum and washed once with 4.0 

ml PBS. The dried filters were put in scintillation vials, containing 2.0 ml of 

scintillation cocktail. The radioactivity (disintegration per minute (DPM)) was 

measured for both non-treated cells (control) and treated cells. As shown in (Table 3.1), 

the radioactivity of ∆alrA::zeo strain decreased by 9.52 %, 36.75 % and 47.5 % after 

boiling in H2O, SDS and SDS + NaOH respectively. However, the KS12 (∆alrA::zeo 

∆dltA-D::cat) strain generally showed about 2.0-3.0 % reduction in radioactivity after 
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physical and chemical treatments. The KS16 (∆alrA::zeo ∆dacA::spc) strain retained 

full radioactivity after boiling in H2O and lost 4.0 % and 12 % of radioactivity after 

boiling in SDS and SDS + NaOH receptively. In contrast, the KS17 (∆alrA::zeo 

∆dacA::spc ∆dltA-D::cat) strain did not lose any radioactivity (Table 3.1). Thus the 2.0-

3.0 % of radioactivity, which is lost by KS12 (∆alrA::zeo ∆dltA-D::cat) strain, 

represents the cytosolic D-alanine. The subtraction of 2.0-3.0 % of cytosolic [1-
14

C] D-

alanine from the 47.5 % of the radioactivity, which is lost by RD180 (∆alrA::zeo) strain 

after SDS + NaOH treatment, is equal to the amount of D-alanine in teichoic acids and 

equate to 45 % of the total D-alanine incorporated into the teichoic acids by the cell 

population. 
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Figure 3.2 The dltA-D strain requires less D-alanine for growth. A) The growth curves of RD180 

(∆alrA::zeo) and KS12 (∆alrA::zeo ∆dltA-D::cat) strains in LB medium, supplimented with different 

concentarions of D-alanine (88-1500µM) at 37°C. The gtowth curves were recorded by plate reader 

shown in Log10 of OD600. B) The growth rate of the the strains were measured at three time points 

intervals (60-80, 80-100 and 100-120 min) of figure (A). The error bars reprsent the standard deviation of 

mean of growth rate in two independent experiments.  
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Table 3.1 The physical and chemical treatments of [1-
14

C] labelled cells. It shows the percentage of 

radioactivity (DPM), left in the [1-
14

C] labelled cells of RD180 (∆alrA::zeo), KS12 (∆alrA::zeo ∆dltA-

D::cat), KS16 (∆alrA::zeo ∆dacA::spc) and KS17 (∆alrA::zeo ∆dltA-D::cat  ∆dacA::spc) after boiling in 

water, 2.5 % SDS and 2.5 % SDS+ 200mM NaOH. The radioactivity (disinegration per minute (DPM)) 

was measured in 100µl of the treated cell. The ± value in the bracket expresses the standard deviation of 

mean of radioactivity percentage (% DPM) of three experimental replica (n=3.0). The background 

radiation was subtracted from the values. 

 

 

 

 

 

             Treatments 

 

 

         Strains 

Non-boiled 

cells   
Boiled cells 

H2O 

(control) 
H2O SDS SDS+NaOH 

RD180 (∆alrA::zeo) 
100 % 

 

90.48 % 

(±4.45) 

63.25 % 

(±1.27) 

52.50 % 

(±3.35) 

KS12 (∆alrA::zeo ∆dltA-D::cat) 
100 % 

 

96.90 % 

(±5.92) 

97.16 % 

(±5.49) 

98.34 % 

(±9.5) 

KS16 (∆alrA::zeo ∆dacA::spc) 
100 % 

 

103.38 % 

(±1.23) 

96.09 % 

(±3.66) 

88.05 % 

(±0.24) 

KS17 (∆alrA::zeo ∆dacA::spc ∆dltA-D::cat) 
100 % 

 

100.07 % 

(±0.13) 

99.44 % 

(±3.75) 

101.28 % 

(±3.04) 
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3.2.3 Cell wall synthesis in the absence of carboxypeptidases. 

Muropeptide analysis already suggested that uncross-linked D-alanine residues in the 

peptidoglycan of B. subtilis are usually trimmed by carboxypeptidases (LdcB and 

DacA) (Atrih et al., 1999; Hoyland et al., 2014). However, the functional requirement 

for the carboxypeptidation of peptidoglycan is unclear. There is a hypothesis about the 

role of the carboxypeptidases in recycling of peptidoglycan derived D-alanine provided 

that the rate of cell wall metabolism is not affected by the absence of the 

carboxypeptidases. The growth and morphology of KS15 (ΔdacA::spc) and KS18 

(ΔdlcB::erm) strains were compared to wild type (168CA) strain during growth in LB 

medium at 37 °C. It was observed that 168CA, ΔdlcB::erm and ΔdacA::spc strains grow 

similarly and no change was seen in their growth (Figure 3.3A). The morphology of the 

mutant strains was similar to that of 168CA as well (Figure 3.3B). These observations 

might suggest that the above strains have sufficient in vivo source of D-alanine, which 

can be avoided in D-alanine auxtroph strains while the roles of the carboxypeptidases 

are being investigated. The effect of ldcB and dacA mutations was studied in D-alanine 

auxotroph strains, RD180 (∆alrA::zeo), KS16 (∆alrA::zeo ∆dacA::spc) and KS19 

(∆alrA::zeo ∆lcdB::erm). These strains were grown in LB medium, supplemented with 

a range of D-alanine concentrations (88 µM–1500 µM). A microplate reader was used 

to monitor the optical density (OD600) at 37 °C. The growth of the strains was altered 

according to the D-alanine concentrations (Figure 3.4A and B). All the three strains 

(∆alrA::zeo, ∆alrA::zeo ∆dacA::spc and ∆alrA::zeo ∆lcdB::erm) did not manage to 

grow at the D-alanine concentrations below 200 µM but grew similarly at saturated 

concentrations of 650 µM and above. Interestingly, the growth of the strains was only 

discriminated at about 300 µM and 450 µM of D-alanine, at which the ∆alrA::zeo strain 

grew better than both ∆alrA::zeo ∆dacA::spc and ∆alrA::zeo ∆lcdB::erm strains. Also, 

the ∆alrA::zeo ∆lcdB::erm strain grew better than ∆alrA::zeo ∆dacA::spc (Figure 

3.4B). Similar results were obtained when the strains were grown in flasks (data not 

shown).  

In addition to the above experiments, the ∆alrA::zeo, ∆alrA::zeo ∆ldcB::erm, 

∆alrA::zeo ∆dacA::spc strains were grown in LB medium, containing 450 µM of D-

alanine (including both radioactive [1-
14

C] and non-radioactive D-alanine in 1:400 

ratio). Samples were taken from the cultures every 20 min for 2.0 h (see section 2. 10.1 

and 2.10.3 for method details). The amount of D-alanine taken up from the cultures and 

the amount incorporated into the cells were measured. The growth curves were also 
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monitored in parallel of the radioactive experiment. From these analysis, the  

∆alrA::zeo ∆dacA::spc strain took up and incorporated radioactive D-alanine more than 

∆alrA::zeo ∆ldcB::erm and  ΔalrA::zeo strains. The ∆alrA::zeo ∆ldcB::erm strain was 

also more radioactive than ΔalrA::zeo strain (Figure 3.5A). The amount of radioactive 

D-alanine consumed by ∆alrA::zeo, ∆alrA::zeo ∆ldcB::erm, ∆alrA::zeo ∆dacA::spc 

strains over 2.0 h of incubation were 4.07 %, 4.34 % and 9.23 % respectively (Figure 

3.5B). In addition, the D-alanine substitution of teichoic acids was prevented in D-

alanine auxotroph strains by deletion of dlt operon. The KS12 (∆alrA::zeo ∆dltA-

D::cat), KS20 (∆alrA::zeo ∆ldcB::erm ∆dltA-D::cat) and KS17 (∆alrA::zeo 

∆dacA::spc ∆dltA-D::cat) strains were grown as above. The results (Figure 3.5A) were 

generally similar to those explained previously for ∆alrA::zeo, ∆alrA::zeo ∆ldcB::erm, 

∆alrA::zeo ∆dacA::spc strains. Interestingly, the rate of cell wall metabolism was not 

apparently altered in the absence of carboxypeptidases (DacA and LdcB) (Figure 3.5A 

and 5.1). It was also observed that the rate of [1-
14

C] D-alanine incorporation increased 

in dltA-D
 +ve

 strains with time, whereas it stayed almost constant in dltA-D
 –ve

 strains 

(Figure 3.5A). 
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Figure 3.3 Growth and cell morphology. The growth of wild type (168CA) KS15 (ΔdacA::spc) and 

KS18 (ΔdlcB::erm) strains in LB medium at 37 ºC. The growth curves are shown in Log10 of optical 

density (OD600). B) The cell morphology of the same strains at 60 and 180 min of incubation and the cells 

were stained with flourscent membrane dye (FM5.95). The scale bar is 6.0 µm. 
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Figure 3.4 The growth curve and growth rate of 

D-alanine auxotroph strains. A) The growth 

curves of RD180 (∆alrA::zeo), KS16 (∆alrA::zeo 

∆dacA::spc) and KS19 (∆alrA::zeo ∆lcdB::erm) 

strains in LB medium, supplemented with different 

concentarions of D-alanine (88-1500 µM) at 37 °C. 

The gtowth curves were monitored by plate reader 

and shown in Log10 of optical density (OD600). B) 

The growth rates of the same strains were measured 

at three time point intervals (60-80, 80-100 and 

100-120 min) of figure (A). The error bars reprsent 

the standard deviation of mean of growth rate in 

two independent experiments.  
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Figure 3.5 Cell wall modification by carboxypeptidases in vegetative B. subtilis. The RD180 

(∆alrA::zeo),  KS19 (∆alrA::zeo ∆ldcB::erm),  KS16 (∆alrA::zeo ∆dacA::spc), KS12 (∆alrA::zeo ∆dltA-

D::cat), KS20 (∆alrA::zeo ∆ldcB::erm ∆dltA-D::cat) and KS17 (∆alrA::zeo ∆dacA::spc ∆dltA-D::cat)  

strains were grown at 37 °C in LB medium, supplemented with 450 µM D-alanine (including both [1-
14

C] 

D-alanine and non-radioactive D-alanine in a ratio of 1.0::400). A) The amount of radioactive D-alanine 

incorporated into the cells at different time points.  B) The amount of radioactive D-alanine taken up by 

the cells after 2.0 h of incubation. The radioactivity is measured as disintegrations per minute (DPM), and 

the background radiation was subtracted from the values. The error bars indicate the standard deviation of 

mean of radioactivity in two independent experiments.  
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3.2.4 Identification of a D-alanine transporter in B. subtilis. 

3.2.4.1 A genetic screen for D-alanine transporter 

D-alanine is usually taken up from culture medium by a D-alanine auxotroph strain, 

RD180 (ΔalrA::zeo) (Figure 3.1A). We wondered what gene(s) encodes D-alanine 

transporter(s) in B. subtilis. The idea for identifying D-alanine transporter gene(s) was 

the creation of synthetic lethality (i.e the deletion of D-alanine transporter encoding 

gene would be lethal in alrA strain). The synthetic lethality of the double mutations 

could mean that D-alanine uptake system is lost and the double mutant strain cannot 

transport exogenous D-alanine. To test this idea, the genome of B. subtilis was searched 

for any putative amino acid transporter gene, using Blast search tool of online Subtilist 

database. Forty three non-essential genes were finally selected. The gDNAs were 

extracted from the 43 single mutant strains (Table 3.2) and used to transform 168CA 

and RD180 (∆alrA::zeo) strains. The transformants were selected on nutrient agar 

plates, containing erythromycin and 500 µM D-alanine. The transformed colonies were 

checked for both erythromycin and zeocine resistance and D-alanine growth 

dependence. Consequently, it was found that only alrA ytnA double knockout is lethal, 

suggesting that D-alanine transport is lost in the absence of ytnA gene. In this study, 

ytnA gene has been renamed to datA, which stands for D-alanine transporter A. To 

investigate the effect of datA mutation on growth and morphology of B. subtilis, the 

168CA and KS22 (ΔdatA::erm) strains were grown in LB medium at 37 °C and the 

growth curves were monitored until early stationary phase. Both the strains grew 

similarly (Figure 3.6A) and the ΔdatA::erm strain was as normal as the 168CA in terms 

of morphology (Figure 3.6B).  

It is known that alrA strain is able to grow in MM without D-alanine (Ferrari et al., 

1985). This observation gave us an idea to select alrA datA double knockout on MM. 

The gDNA of ΔalrA::zeo strain was used to transform KS22 strain (ΔdatA::erm) and 

the transformation was selected on MM, containing zeocine. We were able to collect 

transformants with both alrA and datA deletions, which were confirmed by PCR. The 

KS30 strain (ΔdatA::erm ΔalrA::zeo) grows only in MM and seemed to grow slightly 

better in the presence of D-alanine (Figure 3.7). The growth of the strain was also 

inhibited by addition of L-alanine to MM. As expected, the ΔdatA::erm ΔalrA::zeo 

strain did not manage to grow on nutrient agar with and without D-alanine. 
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Table 3.2 A selection of putative amino acids transport mutants in Japanese strains collection. This 

was received from National BioResource Project, National Institute of Genetics (NIG), Japan. The 

pMUTIN4 vector (bla erm Pspac lacZ lacI) was genetically edited to be specifically inserted into the 

coding frame of the target gene. This resulted in the disruption of the gene function. These single 

knockouts were used in the identification of D-alanine transporter. 

Strains Geneotype 

MGNA-C343 trpC2 ∆yfkT::pMUTIN4 (erm) 

MGNA-B989 trpC2 ∆ycgH::pMUTIN4 (erm) 

MGNA-B757 trpC2 ∆ywaA::pMUTIN4 (erm) 

MGNA-C001 trpC2 ∆yckA::pMUTIN4 (erm) 

MGNA-C394 trpC2 ∆yqiN::pMUTIN4 (erm) 

MGNA-C383 trpC2 ∆yqiZ::pMUTIN4 (erm) 

MGNA-C480 trpC2 ∆yqgT::pMUTIN4 (erm) 

MGNA-A172 trpC2 ∆ytmL::pMUTIN4 (erm) 

MGNA-B963 trpC2 ∆ybeC::pMUTIN4 (erm) 

MGNA-B783 trpC2 ∆hutM::pMUTIN4 (erm) 

MGNA-B940 trpC2 ∆ybgF::pMUTIN4 (erm) 

MGNA-C381 trpC2 ∆yqiX::pMUTIN4 (erm) 

MGNA-B939 trpC2 ∆ybgE::pMUTIN4 (erm) 

MGNA-B914 trpC2 ∆yabM::pMUTIN4 (erm) 

MGNA-C084 trpC2 ∆ydgF::pMUTIN4 (erm) 

MGNA-C022 trpC2 ∆ycsG::pMUTIN4 (erm) 

MGNA-A551 trpC2 ∆yurH::pMUTIN4 (erm) 

MGNA-A736 trpC2 ∆ykbA::pMUTIN4 (erm) 

MGNA-A031 trpC2 ∆yjoB::pMUTIN4 (erm) 

MGNA-A468 trpC2 ∆yvbW::pMUTIN4 (erm) 

MGNA-A012 trpC2 ∆ytgP::pMUTIN4 (erm) 

MGNA-A909 trpC2 ∆yecA::pMUTIN4 (erm) 

MGNA-A362 trpC2 ∆yjkB::pMUTIN4 (erm) 

MGNA-A311 trpC2 ∆yobN::pMUTIN4 (erm) 

MGNA-A173 trpC2 ∆ytmM::pMUTIN4 (erm) 

MGNA-A230 trpC2 ∆aapA::pMUTIN4 (erm) 

MGNA-B479 trpC2 ∆yhdG::pMUTIN4 (erm) 

MGNA-C382 trpC2 ∆yqiY::pMUTIN4 (erm) 

MGNA-A171 trpC2 ∆ytmK::pMUTIN4 (erm) 

MGNA-C231 trpC2 ∆yfnA::pMUTIN4 (erm) 

MGNA-B782 trpC2 ∆yxeM::pMUTIN4 (erm) 

MGNA-A126 trpC2 ∆ytnA::pMUTIN4 (erm) 

MGNA-A595 trpC2 ∆yusA::pMUTIN4 (erm) 

MGNA-A596 trpC2 ∆yusC::pMUTIN4 (erm) 

MGNA-A686 trpC2 ∆yhaG::pMUTIN4 (erm) 

MGNA-C257 trpC2 ∆yflA::pMUTIN4 (erm) 

MGNA-A659 trpC2 ∆yhcG::pMUTIN4 (erm) 

MGNA-A653 trpC2 ∆yhcH::pMUTIN4 (erm) 

MGNA-A655 trpC2 ∆yhcJ::pMUTIN4 (erm) 

MGNA-A834 trpC2 ∆yoaC::pMUTIN4 (erm) 

MGNA-A835 trpC2 ∆yoaD::pMUTIN4 (erm) 

MGNA-A783 trpC2 ∆mtnK::pMUTIN4 (erm) 

MGNA-A082 trpC2 ∆spoVG::pMUTIN4 (erm) 
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Figure 3.6 Growth and morphology of datA strain. A) The growth of 168CA and KS22 (ΔdatA::erm) 

strains in LB medium at  37 °C. B) The phase contarst and membrane dye (FM5.59) microscopic images 

of both the strains at mid exponential phase. The scale bar is 3.0 µm. 
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Figure 3.7 Growth of KS30 and its parental strains on minimal and nutrient media. The RD180 

(ΔalrA::zeo), KS22 (datA:: erm) and KS30 (ΔdatA::erm ΔalrA::zeo) strains were grown on minimal 

media (MM) for 48 h and on nutrient agar (NA) for 24 h at 37 °C. Some of the growth media were 

supplemented with 0.5 mM of L- alanine or D-alanine. 
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3.2.4.2 Complementation of datA. 

Although our genetic screen suggested that DatA is involved in D-alanine transport, the 

genetic complementation of datA was required to eliminate possible polar effects of the 

knockout. The coding sequence of datA gene and 30 bases upstream, supposedly 

including the ribosome binding site (RBS), was cloned into pPY18 vector (bla amyE3’ 

cat Pspac lacI lacZ amyE5’) to produce plasmid pKS1 (bla amyE3’ cat Pspac Ω datA lacI 

lacZ amyE5’). The pPY18 vector contains an IPTG inducible promoter (Pspac) and amyE 

fragments for chromosomal integration of the vector. The pKS1 plasmid was inserted 

into the amyE locus of KS22 strain (∆datA::erm) by transformation. The produced 

strain, KS26 (∆datA::erm amyE (cat Pspac Ω datA)), was again transformed with the 

gDNA of RD180 strain (∆alrA::zeo). The selection medium was nutrient agar, 

supplemented with 0.5 mM D-alanine and 1.0 mM IPTG. Despite the sequencing 

analysis confirmed the correct assembly of the DNA fragment and integration of datA 

gene into the amyE locus, attempts to delete alrA gene in ∆datA::erm amyE (cat Pspa cΩ 

datA)) strain were not successful. On inspection of the datA coding sequence it was 

determined that the RBS sequence was particularly poor. Thus, the inability to 

complement datA null mutant with an inducible copy of the gene might be due to the 

poor translation of the cloned datA gene. To solve this potential problem, an optimised 

ribosome binding site (RBS), belongs to ftsL gene, was added to the upstream of datA 

coding sequence by PCR. The datA- ftsL (RBS) PCR product was inserted into the 

pPY18 vector to produce pKS6 (bla amyE3’ cat PspacΩ datA-ftsL(RBS) lacI lacZ 

amyE5’) construct. The pKS6 was inserted into the amyE locus of datA::erm strain by 

transformation to produce KS41 strain (∆datA::erm amyE Ω (cat Pspac datA-ftsL(RBS)). 

We were finally able to transfrom KS41 strain with the gDNA of ∆alrA::zeo strain in 

the presence of  IPTG and D-alanine. The produced strain, KS42 (∆datA::erm amyE Ω 

(cat Pspac datA-ftsL(RBS)) ∆alrA::zeo), required both D-alanine and IPTG for growth in 

nutrient agar (Figure 3.8). Thus this genetic complementation confirms that the loss of 

D-alanine transport in alrA datA strain was specifically due to the lack of DatA protein.  

To generate further confirmatory genetic data regarding the role of DatA, we used the 

observation of Ferrari et al., (1985), who reported that an ∆alrA strain maintains a 

plasmid copy of alrA gene in the absence of exogenous D-alanine. However, the 

stability of the plasmid was low when D-alanine was added to the growth medium. We 

exploited this observation for further confirmation of DatA as a D-alanine transport 

protein. The idea was if we delete datA gene in a strain, which is genotypically similar 
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to that of Ferrari et al., (1985), the plasmid copy of alrA gene might be completely 

stable and conserved even in the presence of D-alanine. So, the RD180 (∆alrA::zeo) 

strain was transformed with a pLOSS* Ω alrA construct (provided by R. Daniel) to 

produce KS21 strain (∆alrA::zeo + pLOSS* Ω alrA). The pLOSS* vector is an extra-

chromosomal plasmid, which possesses a Pspac promoter and a β-galactosidase gene 

(lacZ) for hydrolysing 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal). The 

∆alrA::zeo  + pLOSS* Ω alrA strain was then transformed with gDNA of BKE30530 

strain (∆ytnA (∆datA)::erm) to produce KS23 strain (∆datA::erm ∆alrA::zeo + pLOSS* 

Ω alrA). The two strains (∆alrA::zeo + pLOSS* Ω alrA and ∆datA::erm ∆alrA::zeo + 

pLOSS* Ω alrA) were grown on plates of nutrient agar supplemented with X-gal and 

with and without D-alanine at 37 °C. The results showed that it is feasible for having a 

strain with alrA datA double knockout on nutrient agar as long as it has a plasmid copy 

of alrA gene. It was seen that ∆alrA::zeo + pLOSS* Ω alrA strain keeps the plasmid 

copy of alrA gene in the absence of D-alanine (Figure 3.9A). However, ΔalrA::erm + 

pLOSS* Ω alrA cells started losing their plasmids in the presence of 450µM of D-

alanine (Figure 3.9B). When the concentration of D-alanine was doubled (900µM), the 

pLOSS* Ω alrA plasmid was lost by almost all the ΔalrA::zeo + pLOSS* Ω alrA cells 

(Figure 3.9C). In contrast to KS21, the cells of KS23 strain (∆datA::erm ∆alrA::zeo + 

pLOSS* Ω alrA) conserved their plasmids in the absence and the presence of D-alanine 

(Figure 3.9A, B, C). This means that the ∆datA::erm ∆alrA::zeo + pLOSS* Ω alrA 

strain completely rely on plasmid copy of alrA gene for in vivo synthesis of D-alanine.  
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Figure 3.8 Complementation of datA gene. Gowth of KS22 (ΔdatA::erm), RD180 (ΔalrA::zeo) and 

KS42 (ΔdatA::erm amyE Ω (cat Pspac datA-ftsL(RBS)) ΔalrA::zeo) strains on nutriet agar (NA) plates 

with and without 1.0 mM IPTG and 0.5 mM D-alanine. The plates were incubated at 37 °C overnight. 
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Figure 3.9 Loss of D-alanine transport in datA strain. The growth of KS21 (ΔalrA::zeo + pLOSS* Ω 

alrA) and KS23 (ΔalrA::zeo  ΔdatA::erm + pLOSS* Ω alrA)  strains on nutrient agar (NA) plus X-gal 

(A), X-gal and 450 µM of D-alanine (B) and X-gal and 900 µM of D-alanine (C) at 37 °C overnight. The 

blue colonies indicate that the pLOSS* Ω alrA plasmid is conserved in the cells, whereas the cells 

produced white colonies after losing the plasmid. 
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3.2.4.3 B. subtilis transports exogenous D-alanine via DatA. 

In the previous experiments, the D-alanine auxotroph strain (alrA) was used to 

investigate D-alanine transport in B. subtilis and it was found that DatA is required for 

D-alanine transport. We wondered whether exogenous D-alanine is usually taken up by 

wild type strain, using datA null as a control strain. Therefore, the transport of [1-
14

C] 

D-alanine was studied in 168CA and KS22 (ΔdatA::erm) strains. The strains were 

grown in LB medium plus 1.0 µM (0.065 µCi/ml) of [1-
14

C] D-alanine and the growth 

curves were also monitored in parallel. Samples were taken from the radioactive 

cultures at the beginning (t0) and after 120 min (t120) of incubation and centrifuged at 

6000 rpm for 2.0 min in JENCONS-PLS minicentrifuge (Maximum speed/RCF: 

6000rpm/2000 xg; rotor: 6x 1.5/2.0 ml). The culture supernatants were used for D-

alanine uptake measurement. To measure D-alanine incorporation into the cells, the cell 

pellets were rinsed with PBS and suspended in appropriate amount of PBS. Despite 

their similar growth it was observed that 168CA strain took up about 15 % of D-alanine 

from the medium, whereas no D-alanine was taken up by ΔdatA::erm strain after 2.0 h 

of incubation (Figure 3.10A). The incorporation of [1-
14

C] D-alanine was also observed 

into the cells of 168CA, but ΔdatA::erm strain did not incorporate D-alanine within 2.0 

h of incubation (Figure 3.10B). This result confirms that DatA is required for usual 

transport of D-alanine in B. subtilis. Moreover, it was also observed that the amount of 

the incorporated [1-
14

C] D-alanine into 168CA strain was less than the amount of the D-

alanine, which was consumed from the medium by 168CA (Figure 3.10A and B).  
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Figure 3.10 Role of DatA in the transport of D-alanine in B. subtilis. The D-alanine uptake (A) and D-

alanine incorporation (B) were studied in wild type (168CA) and KS22 (ΔdatA::erm) strains. The strains 

were grown in the presence of 1.0 µM of [1-
14

C] D-alanine in LB medium at 37 °C. The radioactivity, 

disintegration per minute (DPM), was measured in the culture supernatants and in the cells at the 

beginning (t0) and after 120 min (t120) of incubation. The error bars reprsent the standard deviation of 

mean of radioactivity (DPM) of two independent experiments and three replicas in each experiment. The 

background radiation was subtracted from the values. 

A)  D-alanine uptake 

B)  D-alanine incorporation 
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3.2.5 D-alanine aminotransferase (Dat, formerly YheM) contributes to D-alanine 

synthesis in minimal medium 

It had already been observed that alrA strain is able to grow in D-alanine free MM, but 

addition of L-alanine inhibited growth (Ferrari et al., 1985). We hypothesised that the 

exposure of alrA strain to L-alanine for long time may induce suppressor mutations in 

genes, which encode L-alanine transporter and/or transcriptional regulator of the 

unknown gene, which its product catalyses D-alanine synthesis in MM. In these cases, 

the produced strains might have ability to grow in the presence of L-alanine in MM and 

in the absence of D-alanine in rich medium. The identification of the unknown gene that 

supports the growth of alrA in MM was firstly tried by exploiting the growth inhibitory 

effect of L-alanine to obtain suppressor mutations. The ΔalrA::zeo strain was grown in 

MM to mid exponential phase at 37 °C. To this culture, 1.0 mM of L-alanine was added 

and kept growing overnight. The overnight culture was grown on MM plates with and 

without 10 mM L-alanine for 48 h. Then, six independent L-alanine insensetive strains 

of ΔalrA::zeo were selected and grown on nutrient agar. These L-alanine insensitive 

strains were able to grow on nutrient agar without D-alanine (data not shown). The 

gDNA of the strains were sequenced by Wipat research group, using Miseq platform. 

The genome sequencing result of each strain was analysed by CLC genomics 

workbench (Version 7.5). The location of the mutations on the genome was identified 

by using The Microscope Platform database (http://www.genoscope.cns.fr/agc/ micr-

oscope/home/). Through these analyses, it was observed that the deletion and 

substitution of single nucleotides happened in more than two genes in each strain. The 

point mutations in cardolipin synthase encoding gene (clsA) (substitution of Thymidine 

(T) by Guanidine (G) produced a stop codon (TAG)) and in transcription termination 

factor encoding gene (rho) (deletion of Thymidine (T) resulted in the alteration of fram 

reading of rho gene) seemed to be common in all the L-alanine insensitive alrA strains 

(data not shown). However, the products of these two genes apparently play no direct 

role in transport and metabolism amino acid. Thus, this route of investigation did not 

help us understand how alrA strain could grow in MM 

As a second alternative way to investigate the growth of alrA strain in MM, we used 

synthetic lethality approach, which is caused by double genes knockout. The hypothesis 

was if an enzyme catalyses D-alanine production in MM, the deletion of its encoding 

gene could inhibit the growth of alrA strain in MM. To test this hypothesis, the B. 

subtilis relevant databases (SubtiWiki, Subtilist, SubCyc) were searched for any 

http://www.genoscope.cns.fr/agc/microscope/
http://www.genoscope.cns.fr/agc/microscope/
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suspected genes that have either putative or functionally characterised roles in D-amino 

acid metabolism. We chose the genes that encode sporulation D-alanine racemase 

(AlrB), glutamate racemase (YrpC), two putative amino acid racemases (RacX and 

YitF) and D-alanine aminotransferase (Dat). The gDNAs of BKE17640 (ΔalrB::erm), 

BKE26810 (ΔyrpC::erm), BKE34430 (ΔracX::erm), BKE10970 (ΔyitF::erm) and 

BKE09670 (Δdat::erm) strains were transformed into RD180 (ΔalrA::zeo) strain to 

generate double mutants. These strains (KS32 (ΔalrA::zeo ΔalrB::erm), KS34 

(ΔalrA::zeo ΔyrpC::erm), KS33 (ΔalrA::zeo ΔracX::erm), KS35 (ΔalrA::zeo 

ΔyitF::erm) and KS78 (ΔalrA::zeo Δdat::erm)) were grown on MM at 37 °C to 

determine if growth is impossible under these conditions. From this analysis, only 

ΔalrA::zeo Δdat::erm strain was unable to grow on MM (Figure 3.11).  
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Figure 3.11 Growth of amino acid racemase mutants on minimal media (MM). The D-alanine 

auxotroph strains, RD180 (ΔalrA::zeo), KS32 (ΔalrA::zeo ΔalrB::erm), KS33 (ΔalrA::zeo ΔracX::erm), 

KS34 (ΔalrA::zeo ΔyrpC::erm), KS35 (ΔalrA::zeo ΔyitF::erm) and KS78 (ΔalrA::zeo Δdat::erm) were 

grown on nutrient agar (NA) and MM, with and without L-and D-alanine, at 37°C for 36 hours.  

MM 

NA + 0.5 mM D-alanine  MM + 0.5 mM D-alanine  

MM  MM + 0.5 mM L-alanine  
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3.3 Discussion 

In this chapter, D-alanine metabolism was exploited as a way to investigate cell wall 

metabolic processes in B. subtilis. Through these analyses, we identified a D-alanine 

transporter and it was also found that a D-alanine aminotransferase (Dat) acts to 

synthesise D-alanine under certain growth conditions. As a starting point, D-alanine 

auxotroph strain (alrA) was characterised in terms of optimal growth requirement of D-

alanine. The characterisation was performed in rich media to avoid the slow growth rate 

of the strain in MM and because it was reported that alrA is able to grow in MM 

without D-alanine (Ferrari et al., 1985). We found that the alrA strain requires about 

500 µM of D-alanine for optimal growth in rich medium, and the strain usually grows 

slower than the wild type (see section 3.2.1). This result suggests that B. subtilis 

possesses an uptake system for D-alanine which is able to supply the cell wall 

metabolism with sufficient D-alanine from extracellular source. As D-alanine is also a 

component of teichoic acids, we took the advantage of deletion of dlt operon to prevent 

the D-alanylation of teichoic acids and determine the percentage of D-alanine in 

peptidoglycan. The results showed that dltA-D 
–ve 

strain requires less D-alanine for cell 

wall synthesis than the wild type (dltA-D 
ve+

) (see section 3.2.2). The radioactive results 

also demonstrated that the deletion of dltA-D genes totally removes D-alanine from 

teichoic acids and that peptidoglycan and teichoic acids of B. subtilis contain almost 

equal amount of D-alanine (see section 3.2.2). These data suggest the presence of high 

levels of D-alanine in teichoic acids during exponential growth. The absence of D-

alanine in teichoic acids is important to investigate the roles of carboxypeptidases in 

peptidoglycan metabolism.  

It is known that the uncross-linked D-alanine residues on position 4 and 5 of stem 

peptides are cleaved by LD-carboxypeptidase (LcdB) and DD-carboxypeptidase (DacA) 

respectively. We investigated the effect of lack of carboxypeptidase activities on growth 

and peptidoglycan metabolism. It was observed that the dacA and ldcB strains grow as 

much as the wild type in LB medium (see section 3.2.3), suggesting that the 

consequences of dacA and ldcB mutations are not detectable in D-alanine prototroph 

strains, where the in vivo source of D-alanine (AlrA) supplies the cells with enough 

quantity of D-alanine. However, the deletion of dacA and ldcB genes in a D-alanine 

auxotroph strain (alrA) clearly showed differences in the growth rate of the strains (see 

section 3.2.3). The differences can be detected only in narrow range of D-alanine 

concentrations (300 - 450 µM), where the growth rate of alrA strain was higher than 
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that of alrA dacA and alrA ldcB double mutants, besides the alrA ldcB strain showed 

intermediate growth rate. These results might hypothesise that the trimmed 5
th

 and 4
th

 

D-alanine residues by DacA and LdcB may be recycled in alrA strain. However, the 5
th

 

D-alanine resides are available for recycling in the case of ldcB strain and no D-alanine 

is released from the peptidoglycan of dacA strain. We also further investigated the role 

of carboxypeptidases in cell wall metabolism, using radioactive (
14

C) D-alanine 

labelling. The results showed that the cell wall of dacA strain is more radioactive than 

the cell wall of wild type and ldcB strain. Again, ldcB strain showed intermediate 

radioactivity (see section 3.2.3). The interpretation of these observations is that the dacA 

mutant holds more D-alanine in its peptidoglycan than ldcB mutant, and ldcB mutant 

possesses more D-alanine in its peptidoglycan comparing to the wild type. This is 

consistent with (Atrih et al., 1999; Hoyland et al., 2014). The same differences were 

again observed when ldcB and dacA genes were deleted in dltA-D 
–ve 

strains (see section 

3.2.3). Interestingly, the lack of carboxypeptidase activities did not affect the rate of cell 

wall synthesis. This supports our above hypothesis regarding the role of 

carboxypeptidases in D-alanine recycling rather than regulation of peptidoglycan cross-

links.  Moreover, it was observed that the incorporation rate of radioactive D-alanine 

increased in dltA-D 
ve+ 

strains with time, while it was constant in the dltA-D 
ve- 

strains 

(Figure 3.5A). This observation could be consistent with a study, which observed rapid 

increase in the D-alanine content of WTA in B. subtilis during exponential phase 

(Hyyrylainen et al., 2000). 

We previously observed that alrA strain takes up the supplemented D-alanine in culture 

medium. As D-alanine is an essential component of bacterial cell wall, the identification 

of its transporter could be quite useful in bacterial cell wall investigations. The online 

Subtilist database was firstly searched to identify the putative amino acid transporters in 

B. subtilis (see section 3.2.4.1 for the hypothesis). The alrA strain was transformed with 

gDNAs, carrying mutations in a suspected amino acid transporter. The results showed 

that alrA ytnA strain is unable to grow in LB medium, supplemented with D-alanine 

(see section 3.2.4.1). The lethal effect of the double mutations suggests the loss of D-

alanine transport in the absence of ytnA gene (this gene is re-designated datA in this 

work). Based on Ferrari et al. (1985) observation alrA strain grows in MM without D-

alanine, so we were able to isolate a viable double mutant on MM (see section 3.2.4.1). 

The alrA datA strain is only able to grow on MM and seemed to grow slightly better in 

the presence of D-alanine. However, it did not grow upon the addition of L-alanine to 
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MM. This may also suggest that the usual L-alanine content of rich medium inhibits the 

growth alrA and alrA datA strains. Thus, the above results suggested that DatA is a D-

alanine transporter in B. subtilis and L-alanine is still transported by datA strain.  

The role of DatA in D-alanine transport was further investigated, using genetic 

complementation (see section 3.2.4.2). An inducible copy of datA gene was able to 

restore the growth of alrA datA strain in rich medium, containing D-alanine. This result 

strongly suggests that DatA protein is required for D-alanine transport in B. subtilis.  

Furthermore, it was already observed that an alrA strain depended on a plasmid copy of 

alrA gene in the absence of exogenous D-alanine, but the plasmid was lost upon 

addition of D-alanine to the culture medium (Ferrari et al., 1985). Based on this 

observation we hypothesised if datA gene is deleted, the plasmid copy of alrA gene 

should be kept in the presence and absence of D-alanine. The effect of datA mutant was 

investigated in alrA strain by observing the stability of pLOSS* plasmid, which carried 

a constitutively expressed copy of alrA gene (see section 3.2.4.2). It was observed that 

the pLOSS*Ω alrA is required for alrA growth in rich medium, whereas the pLOSS*Ω 

alrA is lost in the presence of D-alanine in rich medium. However, the pLOSS*Ω alrA 

was kept by alrA datA strain in the presence and absence of D-alanine in the medium. 

This result suggests that D-alanine transport is absent in alrA datA strain and the strain 

only depends on the pLOSS*Ω alrA for D-alanine production in vivo. More 

experimental evidence about the role of DatA in D-alanine transport was obtained, 

when the wild type and datA strains were grown in LB medium, supplemented with 

radioactive (
14

C) D-alanine (see section 3.2.4.3). The wild type cells showed the 

transport (15 %) and incorporation of exogenous D-alanine, whereas datA strain did not 

take up and incorporate D-alanine within 2.0 h of incubation (see section 3.2.4.3). These 

observations suggested that despite having an in vivo source of D-alanine, wild type 

cells usually takes up exogenous D-alanine via DatA. There was also a significant 

difference between the amount of radioactive D-alanine transported and the amount 

incorporated in wild type B. subtilis, suggesting that a large amount of the transported 

D-alanine is utilised as energy source. Together, the above experimental data confirmed 

that DatA has high specificity to D-alanine, because DatA is able to discriminate D-

alanine from other amino acids in rich medium. The details of DatA characterisation is 

in chapter 4. 

Ferrari et al. (1985) previously observed that alrA strain is able to grow in MM without 

D-alanine supplement, but L-alanine supplement inhibited the growth. The same 
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consequence has been observed in this study, so we were curious to identify the gene 

product that catalyses D-alanine production in alrA strain in MM. The hypothesis was 

the addition of L-alanine to MM might induce suppressor mutations in genes that 

encode L-alanine transport system and/or tanscriptional regulator of the gene, which 

supplies the alrA strain with D-alanine. So, suppressor mutations in the assumed genes 

may give the ability to alrA strain to resist L-alanine and grow without D-alanine in rich 

medium. We firstly tried to make suppressor mutations in alrA strain by exploiting the 

growth inhibitory effect of L-alanine (see section 3.2.5). We collected six strains of L-

alanine insensetive alrA, which were able to grow in rich medium without D-alanine. 

However, the sequencing results of these six strains showed some point mutations in 

some genes (e.g rho, encodes transcription termination factor and clsA, encodes 

cardolipin synthase), which apparently do not have direct roles in the transport and 

metabolism of amino acids (see section 3.2.5). Alternatively, the creation of synthetic 

lethality was tried through synchronising the deletion of two defined genes, one of them 

was alrA and the other gene was either characterised or predicted to be involved in 

metabolising of D-amino acids. The B. subtilis online databases were hopefully checked 

for any possible genes and we selected five genes, which were predicted to have such 

activity. The alrA strain was transformed with the null mutation of the five genes (see 

section 3.2.5). Through this analysis, only dat alrA strain was not able to grow in MM, 

suggesting that the D-alanine aminotransferase (Dat) contributes to D-alanine synthesis 

in MM when the main alanine racemase (AlrA) is absent. This result also gave us a clue 

to explain why L-alanine inhibits the growth of alrA strain in MM and rich media. The 

reason is probably the interference of L-alanine in the metabolic activity of Dat enzyme, 

because L-alanine is the stereoisomer of D-alanine and Dat produces D-alanine from D-

glutamate in a reversible reaction. The available L-alanine may push Dat enzyme to 

convert L-alanine to D- or L-glutamate rather than making D-alanine from D-glutamate 

(Thorne et al., 1955). Due to the matter of time we were not able to further investigate 

cell wall metabolism of B. subtilis in MM, but this finding would solve the problem of 

future studies which are going to investigate alanine or cell wall metabolism in MM. 

.
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Chapter 4. Characterisation of D-alanine transporter (DatA) 

4.1 Introduction 

In chapter 3, we have found that DatA (formerly YtnA) is involved in D-alanine 

transport in B. subtilis. The characterisation of DatA protein could be really useful for 

further understanding the properties of amino acid transporters and the mechanisms of 

amino acid transport in living organisms generally. The primary data about datA gene 

has been shown on the specialized online databases, SubtiWiki, SubtiList and BsubCyc. 

The datA gene is 1389 base pairs (bp) long and located at 3124.70 kilo base (kb) of B. 

subtilis genome. The asnB and ytpA genes are located at the upstream and downstream 

of datA gene respectively (Figure 4.1A) (Kunst et al., 1997). It was thought that datA is 

co-transcribed with its upstream gene, asnB (Yoshida et al., 1999). However, northern 

blotting analysis did not show transcriptional connection between asnB and datA genes 

(Sierro et al., 2008). This seems to be supported by the Genbank entry (AF008220), 

which suggests the presence of a terminator at the end of asnB gene. Moreover, 

microarray analysis (Nicolas et al., 2012) showed that the transcription of datA seems to 

start from the promoter of metK gene and apparently did not terminate completely at its 

own terminator (Figure 4.1A). Thus the transcription of datA gene as a single 

transcription unit is controversial. In addition, the level of gene expression suggests that 

datA is expressed during vegetative growth (Figure 4.1B). The datA gene encodes a 50 

kilo Dalton (kDa) membrane protein, comprising of 463 amino acids, which is similar 

to proline transporter (Kunst et al., 1997). However, its neighbour genes have different 

suggested functions. The asnB gene is encoded to an asparagine synthase (Yoshida et 

al., 1999) and YtpA protein has phospholipase activity, which is required for the 

production of Bacilysocin antibiotic in B. subtilis 168 (Tamehiro et al., 2002). 

The amino acids are actively transported either by ABC transporters or secondary 

carriers (permeases), but the majority of amino acid transporters are secondary carriers 

in bacteria (Saier, 2000). The permeases have common structural features, such as 

possession of 10-12 alpha helical transmembrane domains, each hydrophobic domain 

contains about 20 amino acid residues and only a few of them are charged residues, the 

helical hydrophobic membrane domains are linked together through hydrophilic loops, 

which are relatively long on the cytoplasmic side of the membrane, the carboxy- and 

amino- termini are cytoplasmic and the presence of a surplus of positively charged 

amino acid residues (Arginine, lysine, Histidine) in the cytoplasmic loops (Poolman and 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=AF008220
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Konings, 1993). It has been demonstrated that substrate heterogeneity is common 

among amino acid uptake system, and kinetic studies suggest that alanine, glycine, 

serine and D-cycloserine share a common uptake system in bacteria (Oxender, 1972; 

Halpern, 1974).  

The accumulation of different D-amino acids has been reported in the stationary culture 

supernatant of B. subtilis (Lam et al., 2009). Interestingly, D-alanine was not detected 

despite the fact that it is normally trimmed in peptidoglycan by carboxypeptidases and is 

also spontaneously released from teichoic acids in alkaline growth condition. Thus, the 

tracking of the fate of released D-alanine molecules may provide interesting insights into 

the field of cell wall recycling in Gram-positive bacteria. 

 

In this chapter the suggested D-alanine transporter (DatA) is characterised in terms of 

gene transcription, membrane topology, substrate specificity, phylogeny and distribution. 

We have also shown the roles of DatA and carboxypeptidases (dacA and LdcB) in the 

recycling of cell wall-derived D-alanine. 
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Figure 4.1 The transcription profiles and expression of datA gene (formerly ytnA) in B. subtilis. A) It 

shows gene annotations in a region of the chromosome, where datA gene is located. The microarray 

analysis shows the transcription profiles of datA and its neighbour genes in different growth conditions. 

The location of suggested promoters and terminators are also revealed (Nicolas et al., 2012). B) The 

expression profile of datA gene across different growth conditions. The figures are adapted from 

SubtiWiki database 2.0/ Expression Data Browser.  

A) 

Expression of datA gene (formerly ytnA) 

B) 



                                                                          Chapter 4. Characterisation of D-alanine transporter (DatA) 

95 

 

4.2 Results 

4.2.1 Is datA gene a single transcription unit? 

As the transcriptional regulation of datA gene was still unclear (see section 4.1) and 

because we did not manage to genetically complement datA, where an inducible copy of 

datA gene was cloned with its native ribosome binding site (RBS) (see section 3.2.4.2). 

We decided to determine if datA is transcribed with its neighbour genes. The B. subtilis 

was grown in LB medium to mid-exponential growth at 37 °C. The genomic DNA 

(gDNA) and total RNA were extracted from the cells. The total RNA extract was checked 

for gDNA contamination, before making complementary DNA (cDNA) by using random 

hexamers. In the meantime 16 pairs of oligos (oKS38 - oKS69) were designed to amplify 

short and long DNA fragments, located inside and between the upstream and downstream 

genes of datA (Figure 4.2A). The gDNA was firstly used as the PCR template to check 

whether the oligos produce the expected fragments. As shown in (Figure 4.2Bi), all the 

oligos worked perfectly and produced the expected fragments. However, using cDNA as 

PCR template showed no bands for SAM-pckA (lane 15), datA-SAM (lane23) and ytoA-

metK (lane 25). Besides, thin bands for ytqB –ytpB (lane 2), ytoA-datA (lane 8), ytqB-ytoA 

(lane18), ytpB-datA (lane 20) and ytoA-asnB (lane21) were observed (Figure 4.2Bii). The 

thin bands particularly for large fragments could be the effect of mRNA degradation, 

which results in low copy number of cDNA. This problem was improved through 

increasing the number of PCR cycles from 25 to 32 cycles. To conclude, the comparison 

of the bars 8, 10, 19 and 20 and 22 in (Figure 4.2A) to the corresponding lanes in (Figure 

4.2Bii) clearly showed that datA is co-transcribed with its upstream genes, metK and asnB 

and downstream genes, ytpA and ytpB.  
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Figure 4.2 Transcription analysis of datA gene. A) The datA gene and some of its upstream and 

downstream genes were amplified by PCR. The numbered bars represent the corresponding fragments of 

the DNA, which were amplified with specific pairs of oligos (oKS38-oKS69). The images of agarose gel 

show products of PCR reactions (25 cycles), using gDNA (Bi) and cDNA (Bii) as templates. The lane 

numbers correspond to the numbered bars in the figure (A). The lane 26 is negative control, in which total 

RNA was used as template for amplifying bar 9. The white bordered square in figure (Bii) is 32 cycles 

PCR reaction. 
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4.2.2 Conservation of DatA protein 

The STRING 9.1 and National Centre for Biotechnology information (NCBI BLAST) 

databases were used to determine the conservation of proteins homologous to DatA and 

their percentage of identity in other organisms. The STRING 9.1 database showed a wide 

range of distribution of DatA-like proteins throughout bacterial kingdom and even in 

some eukaryotes. However, the proteins showed different percentage of identities to DatA 

as well as different putative functions (Figure 4.3 and appendix D). The high identities 

were shown by YtnA (89 %), GK3461 (79.8 %) and BcerKBAB4_0608 (75 %) proteins 

of Bacillus amyloliquefaciens, Geobacillus spp. and Bacillus weihenstephanensis 

respectively. The DatA homologous proteins were also found in clinically important 

members of Enterobacteriaceae (53-58 % identity), Pseudomonadaceae (45-69.8 % 

identity), Brucelace (43-44 % identity), Bordetella (34-35 % identity), Streptococcase 

(31.7-39 % identity), Campylobacteraceae (34-44 % identity), Helicobacteraceae (34% 

identity), Staphylococcaceae (50-51 % identity), Listeria (55 % identity), Bacillaceae (75 

% identity), Clostridiaceae (36-60 % identity) and  Corynebacterineae (33-52 % identity). 

Interestingly, the DatA homologs are suggested to be putative D-alanine/D-serine/glycine 

permease in Xanthomonas spp., Stenotrophomonas maltophilia, Brucella melitensis, 

Acidovorax citrulli, Delftia acidovorans, Comamonas testosterone, Streptococcus 

thermophiles, Clostridium botulinum Eklund and Mycobacterium spp. The full details 

about the bacterial species, proteins name, putative functions and identity rate are shown 

in appendix D. In addition, the NCBI BLAST revealed a significant conservation of DatA 

sequence, 72-100 % identity, among the members of Bacillaceae and Paenibacillaceae 

families. The NCBI BLAST search also showed homology between DatA and 

PRK11049, which is a computationally derived sequence representing a conserved 

putative D-alanine/D-serine/glycine permease (CycA)  in a diverse collection of bacterial 

spp. (Figure 4.4).  DatA seems to share good amino acid sequence identity (~ 48.0 % 

identity) with PRK11049 model even in non-membranous domains. Furthermore, we 

analysed the properties of the proposed D-alanine transporters in bacterial species (Table 

4.1). The DatA protein seems to show a reasonable percentage of sequence identity to 

CycA protein in E. coli (41.7 %) and Mycobacterium bovis BCG (35.4 %), so DatA could 

be a member of the amino acid transporter family in amino acid-polyamine-organocations 

superfamily (Table 4.1).  Moreover, no similarity was found between the genetic context 

of DatA and the DatA-like proteins, using STRING 9.1 database. 
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Figure 4.3 Phylogenetic distribution of DatA 

(formerly YtnA). The STRING 9.1 bioinform-

atics database was searched for the presence of 

proteins homologous to DatA in other 

organisms. The families of organisms are on the 

left and the organism groups are on the right 

side of the figure. The presence or absence of 

DatA homologous proteins in each family is 

marked with a quantitative coloured square, 

showing the amount of sequence conservation 

between DatA and its best hit in the other 

organisms. White colour is 0 % and dark brown 

is 100 % of identity. Incomplete Square means 

different rates of sequence conservation among 

the members of the family.  

 

For the details of the species, homologous 

proteins and identity rates (Bit score) see 

appendix D. 
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                         10        20        30        40        50        60        70        80 

                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 

gi 22DatA6     4 QKQELHRGLEERHISLMSLGAAIGVGLFLGSASAIQLAGPGILVAYAASGLVMFFIMRALGEMAIQKPVAGSFSRYARDY 83 

Cdd:PRK11049  14 AEQSLRRNLTNRHIQLIAIGGAIGTGLFMGSGKTISLAGPSIIFVYMIIGFMLFFVMRAMGELLLSNLEYKSFSDFASDL 93 

                         90       100       110       120       130       140       150       160 

                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 

gi 22DatA6    84 LGPLAGYLTGWNYWFLWVVTCMAEITAVGIYMGFWFPDVPNWIWALSALVIMTGVNFLAVKAYGELEFWFALIKIVAILS 163 

Cdd:PRK11049  94 LGPWAGYFTGWTYWFCWVVTGIADVVAITAYAQFWFPDLSDWVASLAVVLLLLSLNLATVKMFGEMEFWFAMIKIVAIVA 173 

                        170       180       190       200       210       220       230       240 

                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 

gi 22DatA6   164 MIAVGLLMIIAG-VGNGGIATGISNLWNNGGFFPHGLKGVLLSLQMVMFAYLGIEMIGVTAGEVKNPQKSLAKAIDTVFW 242 

Cdd:PRK11049 174 LIVVGLVMVAMHfQSPTGVEASFAHLWNDGGMFPKGLSGFFAGFQIAVFAFVGIELVGTTAAETKDPEKSLPRAINSIPI 253 

                        250       260       270       280       290       300       310       320 

                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 

gi 22DatA6   243 RILIFYVGALFVIMSIYPWQEIGSQGSPFVLTFQKVGIPSAAGIINFVVLTAALSSCNSGIFSTGRMLFNLAEQKEAPQA 322 

Cdd:PRK11049 254 RIIMFYVFALIVIMSVTPWSSVVPDKSPFVELFVLVGLPAAASVINFVVLTSAASSANSGVFSTSRMLFGLAQEGVAPKA 333 

                        330       340       350       360       370       380       390       400 

                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 

gi 22DatA6   323 YGQLTKGGIPGKAVLASAGALLVGVLLNYVVP--AKVFTWVTSIATFGAIWTWAIILLSQIKYRKSlKPEEKKQLKYKMP 400 

Cdd:PRK11049 334 FAKLSKRAVPAKGLTFSCICLLGGVVLLYVNPsvIGAFTLVTTVSAILFMFVWTIILCSYLVYRKQ-RPHLHEKSIYKMP 412 

                        410       420       430       440 

                 ....*....|....*....|....*....|....*....|.... 

gi 22DatA6   401 LFPFTSYVSLAFLAFVVILMAYSPDTRVAVIIGPIWFLILLAVY 444 

Cdd:PRK11049 413 LGKLMCWVCMAFFAFVLVLLTLEDDTRQALIVTPLWFIALGLGY 456 
 

Figure 4.4 The sequence alignment of DatA and PRK11049 model. The alignment was automatically 

generated by NCBI BLAST and shows the regions of amino acid sequence similarity (red letters) between 

DatA protein and CycA protein. The PRK11049 model represents a conserved putative D-alanine/D-

serine/glycine permease (CycA) in a collection of different bacterial species. The TMHMM server 2.0 

was used to determine the transmembrane domains, which are bolded and underlined on the aligned 

proteins sequences.  
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=2293166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=PRK11049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=2293166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=PRK11049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=2293166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=PRK11049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=2293166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=PRK11049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=2293166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=PRK11049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=2293166
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=cdd&term=PRK11049
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Bacteria 

 

Protein 

name 

Function 

Transporter No. of 

Transmembrane 

domains 

Identity 

to DatA 

(%) 

Reference  
Superfamily Family 

E. coli CycA 

D-serine/D-alanine/ 

Glycine/D-cycloserine 

permease 

2.A.3 Amino acid - 

polyamines - 

organocation (APC) 

2.A.3.1 Amino acid 

transporter 

12 41.7 

(Wargel et al., 1970; 

Wargel et al., 1971; 

Robbins and Oxender, 

1973) 

Mycobacterium 

bovis BCG 
CycA 

D-serine/L- and D-alanine 

/Glycine/ D-cycloserine 

transporter 

12 35.4 (Chen et al., 2012) 

Altromonas 

Haloplanktis 
DagA 

Sodium-linked D-alanine/ 

glycine symporter 

2.A.25 Alanine or 

glycine::cation 

symporter (AGCS) 

11 24.7 
(MacLeod and MacLeod, 

1992) 

Bacillus sp. PS3 ACP 
Sodium/Proton-dependent  

alanine carrier protein 
10 26.0 

(Kamata et al., 1992; 

Kanamori et al., 1999) 

Methanococcus 

maripaludis 

(Archea) 

AgcS 
L- and D-alanine: sodium 

symporter 
11 24.6 (Moore and Leigh, 2005) 

Salmonella 

enterica 

DalS 
Periplasmic substrate           

(D-alanine)-binding protein  
3.A.1 ATP-binding 

cassette (ABC) 

transporter 

3.A.1.3 Polar amino 

acid transporter 

(PAAT) 

----- 

----- (Osborne et al., 2012) DalU Cytoplasmic ATPase ----- 

DalT Membrane spanning 

transport channel proteins 

4 

DalV 5 
 

Table 4.1 The properties of few proposed D-alanine transporter in bacteria. The transporter family and superfamily were obtained from transporter classification database 

(TCDB), and the TMHMM Server V 2.0 was used to generate the number of transmembrane domains. The percentage of identity was determined by using SIM-alignment tool in 

ExPASY, a Swiss institute of bioinformatics resource portal. The selected parameters in SIM-alignment tool were comparison matrix: BLOSUM100, number of alignments 

computed: 1, gap open penalty: 0 and gap extension penalty: 0. The protein sequences, used in TMHMM server 2.0 and SIM-alignment tool, were obtained from online Uniport 

database
©
 2002-2016. 

http://www.cbs.dtu.dk/services/TMHMM/
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4.2.3 Biochemical characterisation and substrate specificity of DatA 

4.2.3.1 Membrane topology of DatA. 

We used prediction bioinformatics tools to characterise DatA protein in terms of its 

membrane topology and number of transmembrane helices. The protein sequence of 

DatA was firstly copied from online SubtiWiki database and inputted into the TMHMM 

Server V 2.0  to generate some predicted membrane properties of DatA protein. The 

data of TMHMM Server V 2.0 was used to produce a two-dimensional visual 

representation of DatA protein in cell membrane, using TransMembrane protein Re-

Presentation in two Dimensions software (http:// bioinformatics.biol.uoa.gr/ TMRPres- 

2D/) (Figure 4.5A). According to the output data of TMHMM Server V 2.0, DatA 

protein possesses 12 alpha helical transmembrane helices and there are approximately 

20 amino acid residues in each of the transmembrane domains, where the majority of 

the amino acid residues are uncharged. DatA protein also has five cytoplasmic 

hydrophilic loops, two extracellular hydrophilic loops and cytosolic carboxy (C)- and 

amino (N)- termini. The cytoplasmic hydrophilic loops are longer than the extracellular 

loops and contain positively charged amino acids (e.g lysine (K), arginine (R) and 

histidine (H) (Figure 4.5A).  

We also investigated the predicted crystal structure of DatA to gain some primary 

information about the protein’s structure. The Protein Data Bank (PDB) (http://www 

.rcsb.org/pdb/home/home.do) was searched for structurally solved DatA-like proteins. 

This identified Arginine:Agmatine antiporter (AdiC) in E. coli O157:H7 (Figure 4.5B) 

as having strong similarity to DatA. The alignment properties of DatA and AdiC were 

length: 325, identities: 76/325 (23 %), positives: 138/325 (42 %) and gaps: 25/325 (8 

%). AdiC is a member of amino acid, polyamine and organocation (APC) superfamily 

of transporters (Casagrande et al., 2008) and possesses 12 alpha helical transmembrane 

domains, which are integrated into the cell membrane as dimers (Figure 4.5B) (Fang et 

al., 2009; Gao et al., 2009). AdiC protein is generally similar to sodium-solute 

symporters in terms of structural folding (Gao et al., 2010).  

To test these bioinformatics predictions, the localisation of DatA protein was studied by 

fluorescent microscopy, using green fluorescent protein (GFP) tagging. The cloning 

vectors pSG1154 (bla amyE3’ spc Pxyl  -gfp amyE5’) and pSG1729 (bla amyE3’ spc Pxyl  

gfp- amyE5’) were respectively used to construct C-terminus (pKS2: bla amyE3’ spc 

Pxyl  datA-gfp amyE5’) and N-terminus (pKS3: bla amyE3’ spc Pxyl  gfp-datA amyE5’) 

http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
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GFP tagged DatA. The pKS2 and pKS3 constructs were separately introduced into the 

amyE locus of KS22 (datA::erm) strain by transformation, resulting in KS28 

(∆datA::erm amyE Ω (spc Pxyl  datA-gfp)) and KS29 (∆datA::erm  amyE Ω (spc Pxyl   

gfp-datA)) strains. The KS28 and KS29 strains were grown on nutrient agar, 

supplemented with 0.5 % xylose and incubated at room temperature overnight. The 

cells were mounted on a slide and examined by fluorescent microscope.  It was seen that 

only N- terminus GFP-DatA gave fluorescent signal, which seemed to be localised to 

the cytoplasmic membrane (Figure 4.5C). The Western blot analysis also showed the 

protein band of N-terminus GFP-DatA (data not shown). Despite the correct cloning 

and sequencing of KS28 strain (∆datA::erm amyE Ω (spc Pxyl  datA-gfp)), the C-

terminus DatA-GFP was not detected in both fluorescent microscopy and Western 

blotting for unknown reason. To check the functionality of N-terminus GFP tagged 

DatA, the KS29 strain (∆datA::erm  amyE Ω (spc Pxyl   gfp-datA)) was transformed with 

the gDNA of RD180 (ΔalrA::zeo) in the presence of D-alanine and xylose. However, 

no transformants were obtained from the cross, indicating that GFP tag might impair the 

transport activity of DatA. 
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Figure 4.5 Membrane topology and localisation of DatA. A) The predicted membrane topology and 

transmembrane helices of DatA in two-dimensional graphical model, generated by TMHMM Server V 

2.0 and TMRPres2D softwares. The coloured residues (Blue:positive, red:negative and gray:uncharged 

residues) show the electrostatic potential feature of the protein. B) Homodimeric assembly of structurally 

characterised Arginine:Agmatine antiporter (AdiC) in E. coli, 3.0A resolution, copied from (Gao et al., 

2010). C) Fluorescent microscopic images of KS29 strain (ΔdatA::erm amyE Ω(spc pxyl gfp-datA)), 

which was grown on nutrient agar plates, containing 0.5 % of xylose and 0.5 mM of D-alaine, and 

incubated at room temperature overnight. The scale bar is 3.0 µm. 

A) 

B) 

AdiC 

 C Phase DatA-GFP  

http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/


                                                              Chapter 4. Characterisation of D-alanine transporter (DatA) 

104 

 

4.2.3.2 Expression of DatA protein in heterogeneous hosts. 

It was found necessary to investigate the substrate specificity of DatA protein in vitro (e.g 

liposomes). The datA gene was firstly amplified by PCR and inserted into pET-28a(+) 

vector to generate pKS7 (C-terminus His-tagged datA) and pKS8 (N-terminus His-tagged 

datA) constructs. The pKS7 and pKS8 constructs were transformed into E. coli BL21 to 

make KS46 strain (E. coli BL21+ pET-28a(+)Ω C His-tagged datA) and KS47 strain (E. 

coli BL21+ pET-28a(+)Ω N His-tagged datA) respectively. The strains were grown in 

large scale LB media (5-10 L) and induced with IPTG (0.5-1 mM). The total cellular 

protein extract and the purified membrane fraction were analysed in stained SDS-PAGE 

and Western blot analysis (see section 2.6.16 for methods details). Despite the perfect 

cloning procedures and sequencing analysis, we did not manage to have purified DatA 

protein at different temperature degrees (18, 22, 30 and 37 °C) and at different periods of 

IPTG induction (5 h and overnight).  

It was known that the expression of DatA did not seem to work in E. coli BL 21(DE3), 

but it worked well in the living cells of B. subtilis (see section 3.2.4.2). This observation 

was used as a control to investigate the transport of D-alanine in the membrane vesicles of 

B. subtilis and E. coli C43(DE3), which was suggested to be a good expression system for 

toxic membrane proteins (Miroux and Walker, 1996). The B. subtilis strains, KS22 

(ΔdatA::erm) and KS41 (∆datA::erm amyE Ω (cat Pspac datA- ftsL(RBS))), were grown in 

LB medium at 37 °C. The cultures were induced with 0.5 mM IPTG at OD600 0.5. The 

cells were harvested for preparing membrane vesicles at OD600 1.5. The membrane 

vesicles were suspended in potassium phosphate buffer. The transport of [1-
14

C] D-

alanine by B. subtilis membrane vesicles was performed in the presence and absence of 

5.0 mM NaCl (see section 2.6.17 for method details). The membrane vesicles of 

datA::erm strain were not able to take up radioactive D-alanine (Figure 4.6A). However, 

D-alanine uptake by membrane vesicles of (∆datA::erm amyE Ω (cat Pspac datA- 

ftsL(RBS))) strain reached peak after 10 min of incubation, and then it seemed that the 

accumulated D-alanine started to leak out (Figure 4.6B). The leakage of lysine was 

already observed in the membrane vesicles of B. subtilis (Konings and Freese, 1972), this 

is probably due to the loss of membrane integrity. Although the membrane vesicles were 

prepared from cells grown in LB medium, which usually contains NaCl, the transport of 

D-alanine into the membrane vesicles seemed to be facilitated by 30 % in the presence of 

5.0 mM NaCl (Figure 4.6B). Before investigating D-alanine uptake in the membrane 

vesicles of E. coli C43(DE3) and KS 48 (E. coli C43+ pET-28a(+)Ω N His-tagged datA), 
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the  strains were grown in LB medium and  the culture of (E. coli C43+ pET-28a(+)Ω N 

His-tagged datA) strain was induced with different concentrations of IPTG at OD600 0.5. 

This experiment helped us to harvest the E. coli cells for making membrane vesicles at an 

appropriate time before the cells are affected by the expressed DatA (Figure 4.6C). The 

preparation of E. coli C43 membrane vesicles and the transport of D-alanine were done as 

previously (see section 2.6.17). It was seen that the membrane vesicles of E. coli C43 

were able to transport D-alanine (Figure 4.6D). The maximum uptake of D-alanine was 

observed after 10 min of incubation and stayed constant thereafter. In contrast, the 

expression of DatA protein impaired D-alanine transport in (E. coli C43+ pET-28a(+)Ω 

N His-tagged datA) strain (Figure 4.6E).  

As the expression of DatA and its transport activity were not possible in living cells and 

in membrane vesicles of E. coli,  we thought about the investigation of DatA transport 

activity in Xenopus laevis oocyte, which is a popular eukaryotic expression system for 

structural and functional studies of transport membrane proteins (Sigel, 2010).  The datA 

gene was cloned into an eukaryotic expression vector (pGH19) and then DatA encoding 

cRNA was made by in vitro transcription system. The cRNA was microinjected into the 

oocytes, where the cRNA is translated to DatA protein. The transport of radioactive D-

alanine into the oocytes was examined. However, the transport of D-alanine was not 

observed in the oocytes (possibly contain DatA) compared to the control oocytes (without 

DatA) at pH 5.5 and 7.0 (this work was done by Dr. Noel Edwards and Prof. David 

Thwaites in their lab., based in medical school, Newcastle University (see appendix E for 

method details)). Thus, from three different approaches it was difficult to directly confirm 

that DatA alone acts to take up D-alanine in heterogeneous hosts. However, it is obvious 

that DatA is required for D-alanine transport in B. subtilis. 
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Figure 4.6 D-alanine transport by membrane vesicles. A and B) The transport of radioactive [1-

14
C] 

D-alanine by membrane vesicles of B. subtilis KS22 (ΔdatA::erm) and KS41 (ΔdatA::erm amyE Ω (cat 

Pspac datA- ftsL(RBS))). C) The growth of E. coli C43 and KS48 (E. coli C43+ pET-28a(+)Ω N His-

tagged datA) in LB medium with and without different concentrations of  IPTG at 37 °C. D and E) The 

[1-
14

C] D-alanine uptake by membrane vesicles of E. coli C43 and KS48 (E. coli C43+ pET-28a(+)Ω N 

His-tagged datA). The mixture of D-alanine transport assay contained membrane vesicle in 0.05 M 

potassium phosphate, 0.5 µM [1-
14

C] D-alanine and ± 5.0 mM NaCl. The error bars indicate the standard 

deviation of mean of radioactivity (DPM) of three experimental replica (n=3). The background radiation 

was subtracted from the values. 

D) 



                                                              Chapter 4. Characterisation of D-alanine transporter (DatA) 

107 

 

4.2.3.3 L-alanine interferes in D-alanine transport.  

After the failure of datA expression in E. coli (section 4.2.3.2), we did amino acid 

competition assay. The idea of this in vivo assay was growing alrA strain in the presence 

of D-alanine and a low molecular weight amino acid such as L-alanine, glycine and L-

proline. If the growth of alrA strain is inhibited by a combination of D-alanine and one of 

the above amino acids, it could mean that D-alanine uptake system is not only specific to 

D-alanine. This trial might indirectly provide at least primary knowledge about the 

substrate specificity of D-alanine transporter in B. subtilis. The 168CA and RD 180 

(∆alrA::zeo) strains were grown in LB medium, supplemented with 450 µM of D-alanine 

and a range of L-alanine, Glycine and L-proline concentrations (0.0098 mM – 5.0 mM) 

separately. The growth of the strains was monitored at 37 °C, using microplate reader. It 

was observed that the growth of 168CA was not affected by the supplemented L-

alanine:D-alanine, Glycine:D-alanine and L-proline:D-alanine (Figure 4.7A, B and C). 

The ∆alrA::zeo strain also grew similarly in the presence of supplemented Glycine:D-

alanine and L-proline:D-alanine (Figure 4.7E and F). However, the growth of ∆alrA::zeo 

strain was affected by the supplemented L-alanine:D-alanine (Figure 4.7D). As LB 

medium normally contains L-alanine, we worked out how much L-alanine can interfer 

with D-alanine transport. The calculation of L-alanine content in tryptone and yeast 

extract, the two main ingredients of LB medium, was done depending on Difco
TM 

and 

BBL
TM 

manual (Zimbro et al., 2009). We found that LB medium itself contains about 3-4 

mM of free L-alanine. Taking all L-alanine into account, the growth of ∆alrA::zeo strain 

was reduced when L-alanine concentration was 10 fold higher than D-alanine, but the 

growth was totally inhibited when the ratio of L-alanine to D-alanine was 20:1 (Figure 

4.7D). Thus L- and D-alanine might be transported via a common transporter.  
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Figure 4.7 Amino acid competition assay. The inhibitory effect of suplemented L-alanine (A&D), 

glycine (B&E) and L- proline (C&F) on D-alanine transport in 168CA (A, B, C) versus RD180 

(∆altA::zeo) strain (D, E, F). The strains were grown in LB medium at 37 Cº. The growth curves are 

shown in optical density (OD600).  Note: LB medium intially contains about 3.0-4.0 mM of free L-alanine. 

168CA ΔalrA::zeo 

A) D 

B) E) 

C) F) 

A&D B&E C&F 
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4.2.3.4 Transport of D-cycloserine in datA strain. 

D-cycloserine is a compound that structurally mimics D-alanine (Shockman, 1959; 

Strominger, 1959; Zygmunt, 1962). It interferes with alanine racemase activity and 

blocks conversion of L-alanine to D-alanine (Roze and Strominger, 1966). D-

cycloserine also inhibits the formation of D-alanine dimer by D-alanyl-D-alanine ligase 

(Neuhaus and Lynch, 1964). Previous studies suggested that D-cycloserine is 

transported via D-alanine uptake system (CycA) in E. coli K-12 (Wargel et al., 1970; 

Wargel et al., 1971; Robbins and Oxender, 1973) and M. tuberculosis (David, 1971). 

We wondered whether D-cycloserine is also transported by DatA in B. subtilis. The 

datA strain must be resistant to D-cycloserine, if DatA protein is specific to the transport 

of this compound as well. To test this hypothesis, the 168CA and KS22 (ΔdatA::erm) 

strains were grown in PAB medium at 30 °C overnight. A serial dilution (1.0 in 4.0) of 

the overnight cultures was prepared and 10 µl of each of the diluted culture was spotted 

on nutrient agar plates, with and without D-cycloserine. D-alanine was present in some 

of the plates to see whether competition between D-alanine and D-cycloserine rescues 

the cells from growth inhibition. The plates were incubated at 37 °C overnight. As 

shown in (Figure 4.8), both 168CA and KS22 (ΔdatA::erm) strains grew normally in the 

absence of D-cycloserine and in the presence or absence of D-alanine. In contrast, the 

growth of the strains was inhibited by D-cycloserine, and the ΔdatA::erm strain was 

slightly more sensitive to D-cycloserine than 168CA. Also, D-alanine supplement did 

not change the sensitivity of the strains against D-cycloserine. Thus D-cycloserine is not 

transported via DatA, suggesting that D-alanine and D-cycloserine apparently do not 

have a common uptake system in B. subtilis. 
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Figure 4.8 D-cycloserine sensitivity of datA strain. The 168CA and KS22 (ΔdatA::erm) strains were 

grown in PAB medium at 30 °C overnight.  Serial dilutions (1.0 in 4.0) of the overnight cultures were 

prepared. A 10 µl of each of the diluted culture was spotted on nutrient agar (NA) plates, with and 

without D-alanine (50 µg/ml) and D-cycloserine (50 µg/ml). The plates were left at room temperature for 

drying out the culture spots and then incubated at 37 °C overnight.  
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4.2.4 Recycling of cell wall derived D-alanine in B. subtilis 

As explained in the introduction section of chapter 3.0, D-alanine is known to be released 

from peptidoglycan by carboxypeptidases (DacA and LdcB) and to be spontaneously 

released from teichoic acids by the action of alkaline pH. However, little is known about 

the fate of the released amino acids. To determine if DatA has a role in the recycling of 

D-alanine, both qualitative and quantitative methods were employed. 

4.2.4.1 Cross feeding assay 

In this assay, the D-alanine auxotroph (alrA) strain was grown closely next to wild type 

and datA strain on a solid medium. The hypothesis was the released D-alanine 

molecules from the cell wall of wild type might be recycled and no D-alanine would be 

available to support the growth of alrA strain. In contrast, datA strain should not be able 

to retake up its cell wall D-alanine and the accumulated D-alanine might be enough to 

allow the growth of alrA strain. The D-alanine donor strains (wild type (168CA), KS11 

(ΔdltA-D::cat), KS22 (ΔdatA::erm) and KSS36 (ΔdltA-D::cat ΔdatA::erm)) were grown 

on nutrient agar plates for 3.0 h at 37 °C.  Then, the D-alanine auxotroph (recipient) 

strains (RD180 (ΔalrA::zeo) and KS12 (ΔalrA::zeo ΔdltA-D::cat)) were streaked 

closely parallel to the D-alanine donor strains and incubated for a further 23 h. In so 

doing it was found that the 168CA strain did not support the growth of ΔalrA::zeo and 

ΔalrA::zeo ΔdltA-D::cat strains (Figure 4.9A), whereas ΔdatA::erm strain did permit 

the growth of recipient strains (Figure 4.9B). To differentiate between D-alanine from 

peptidoglycan metabolism and that released from teichoic acids, the same analysis was 

done, using ΔdltA-D::cat and ΔdltAD::cat ΔdatA::erm as D-alanine donor strains and 

ΔalrA::zeo and ΔalrA::zeo dltA-D::cat as D-alanine recipient strains (Figure 4.9C and 

D). Again, the same results were observed as explained above. Although this method 

provided no indication of the amount of D-alanine released by normal growth, the 

results clearly suggested that cell wall derived D-alanine is recycled via DatA (Figure 

6.1).  
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Figure 4.9 Cross-Feeding Assay. The 168CA, KS11 (ΔdltA-D::cat), KS22 (ΔdatA::erm) and KSS36 

(ΔdltA-D::cat ΔdatA::erm) strains (D-alanine donors) and RD180 (ΔalrA::zeo) and KS12 (ΔalrA::zeo 

ΔdltA-D::cat) strains (D-alanine recipients) were used in this assay. The D-alanine donor strains were 

firstly streaked on nutrient agar plates and incubated for 3 h at 37 °C. Later, the D-alanine recipient 

strains were streaked closely parallel to the donor strains and kept incubating for a further 23 h. The total 

incubation time was 26 h.   
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4.2.4.2 RP-HPLC analysis of culture supernatant  

To provide a more quantitative measurement of released D-alanine, Reverse Phase- High 

performance liquid chromatography (RP-HPLC) was used to analyse culture supernatant 

of B. subtilis. Pre-column derivatisation of amino acids by Marfey’s reagent (MR) was 

the principle to permit detection and differentiation between L-and D-amino acids. 

Marfey’s reagent is 1-fluoro-2-4-dinitrophenyl-5-L-alanine amide that reacts with 

primary amines. The MR derivatives of D-amino acids are different from corresponding 

L-amino acids derivatives in the strength of intramolecular bonding. The D-amino acid-

MR derivatives having stronger intramolecular interactions, resulting in lower polarity 

compared to the corresponding MR derivatives of L-amino acids. Therefore, the 

derivatised L-amino acids elute much sooner than the derivatised D-amino acids in RP-

HPLC (Marfey, 1984).  

A standard curve was initially generated by using serial dilutions of D-alanine in LB 

medium (Figure 4.10A and B). The samples were processed and prepared to HPLC 

analysis according to the Marfey manufacturer’s instructions with some modifications 

(see sections 2.9.2 and 2.9.3 for methods details). Having defined the sensitivity of the 

system, the 168CA, KS22 (ΔdatA::erm), KS11 (ΔdltA-D::cat), and KS36 (ΔdltA-D::cat 

ΔdatA::erm) strains were grown in LB medium at 37 °C (see section 2.9.1 and Figure 

4.11A). Samples were taken at different growth phases (corresponding to 90, 180, 390 

min and after overnight (O/N) incubation). The samples were centrifuged and the 

culture supernatants were processed for HPLC analysis (see methods sections 2.9.2 and 

2.9.3). Comparing the HPLC results of 168CA to those of ΔdatA::erm strain (Figure 

4.11B), D-alanine was clearly detected in the culture supernatants of both the strains 

during exponential growth (90 and 180 min), with a greater amount of  D-alanine 

detected at 180 min of incubation than that seen at 90 min. It was also evident that the 

ΔdatA::erm strain released more D-alanine into its culture supernatant than 168CA at 90 

and 180 min. Surprisingly, D-alanine was not detectable easily in the culture 

supernatants of 168CA and ΔdatA::erm when sampled in stationary phase (390 min and 

O/N of incubation) (Figure 4.11B). It was also evident that a significant proportion of 

the amino acid content of the medium had been consumed by this stage (Figure 4.11B). 

To differentiate peptidoglycan derived D-alanine from that released from teichoic acids, 

the D-alanylation of teichoic acids was also prevented, using dltA-D 
-ve

 strains. The 

culture supernatants of KS11 (ΔdltA-D::cat) and KS36 (ΔdltA-D::cat ΔdatA::erm) 

strains were compared at 180 min of incubation. The ΔdltA-D::cat ΔdatA::erm strain 
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accumulated higher D-alanine (331.2 µM) in its culture supernatant than the ΔdltA-

D::cat strain (135.2 µM) (Figure 4.11C). Interestingly, the D-alanine quantity (231 µM) 

in the culture supernatant of 168CA at 180 min (Figure 4.11B) was about twice of D-

alanine (135.2 µM) in the ΔdltA-D::cat culture supernatant (Figure 4.11C). The 

ΔdatA::erm and ΔdltA-D::cat ΔdatA::erm strains also showed almost equal amount of 

D-alanine, 326 µM and 331.2 µM respectively at 180 min of incubation (Figure 4.11B 

and C). Thus these results clearly showed that D-alanine is usually released from cell 

wall and re-utilsed during both exponential and stationary growth phases. 
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Figure 4.10 Standard curve for D-alanine quantification in LB media.  A) The RP-HPLC analysis of 

2000 MWCO filtered LB medium with and without D-alanine (mM). The red arrows indicate the D-

alanine peaks, which were raised around 34 min. B) A standard curve was generated from the data of 

figure (A) for quantitative determination of D-alanine.    
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Figure 4.11 RP-HPLC analysis for D-alanine quantification in culture supernatants. A) The growth 

curve of 168CA, KS22 ( ΔdatA::erm), KS11 (ΔdltA-D::cat) andKS36 (ΔdltA-D:: ΔdatA::erm) strains in 

LB medium at 37 °C. The black arrows represent the time points, when the samples were taken for RP-

HPLC analysis. B) The RP-HPLC analysis of 2000 MWCO filtered culture supernatants of 168CA and 

KS22 (ΔdatA::erm) strains at different time points (90, 180, 390 min and O/N). C) The RP-HPLC 

analysis of KS11 (ΔdltA-D::cat) and KS36 (ΔdltA-D::cat ΔdatA::erm) strains at 180 min of incubation. 

The red arrows indicate D-alanine peaks, which appeared at around 34 min. 
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4.2.4.3 Is there a second uptake system for D-alanine? 

Our previous data suggested that DatA is the sole D-alanine transporter, when B. 

subtilis is grown in rich medium (see sections 3.2.4.1, 3.2.4.2 and 3.2.4.3). However a 

little better growth of KS30 strain (ΔalrA::zeo ΔdatA::erm) on D-alanine supplemented 

MM (Figure 3.7) and the disappearance of D-alanine in the stationary culture of KS22 

strain (ΔdatA::erm) (Figure 4.11B) suggested that D-alanine is still transported in datA 

strain. These observations were further investigated in MM. The 168CA and 

ΔdatA::erm strains were firstly grown for 240 min in MM, containing 1.0 µM (0.065 

µCi/ml) of radioactive [1-
14

C] D-alanine. The radioactivity in culture supernatant and 

the incorporation of radioactive D-alanine into the cells were measured at the onset (t0) 

and the end of the experiment (t240). Unlike in rich media, the 168CA and ΔdatA::erm 

strains showed efficient uptake of D-alanine in MM, 96 % and 93 % respectively 

(Figure 4.12A). Again, unlike in rich media D-alanine was incorporated into 

ΔdatA::erm cells nearly as much as of 168CA in MM (Figure 4.12B). It was also 

observed that the amount of incorporated radioactive D-alanine is much lower that the 

amount transported into the cells (Figure 4.12A and B). We also took the advantage of 

poor growth phenotype, caused by alaT mutation, to further investigate D-alanine 

transport in datA strain in MM. The AlaT is a poorly characterised protein with putative 

alanine transaminase activity. It is though that AlaT catalyses the synthesis of L-alanine 

from pyruvate and glutamate (A). The deletion of alaT gene does not have detectable 

effect on growth in rich medium, but the lack of AlaT causes the cells to struggle to 

grow in MM. The hypothesis was the addition of L- and D-alanine to MM may provide 

better growth to alaT strain, but the deletion of datA gene in the alaT strain might block 

D-alanine transport. The KS22 (ΔdatA::erm), KS31 (ΔalaT::erm) and KS39 

(ΔdatA::erm ΔalaT::markerless) strains were grown on nutrient agar and MM at 37 °C 

overnight. As shown in (Figure 4.12C), all the three strains grew normally on nutrient 

agar, whereas only ΔdatA::erm showed growth on MM. When D-alanine and L-alanine 

were added to MM, both ΔalaT::erm and ΔdatA::erm ΔalaT::markerless strains 

regained ability to grow on MM. Thus the above investigations showed that datA strain 

is able to transport D-alanine in poor growth medium. 
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Figure 4.12 Transport of D-alanine by datA strain in minimal media (MM). D-alanine uptake (A) and 

D-alanine incorporation (B) into the 168CA and KS22 (datA::erm) strains. The strains were grown in 

MM, supplemented with (1.0 µM) radioactive [1-
14

C] D-alanine at 37 °C. The radioactivity (DPM) in the 

culture supernatants and in the cells were measured at the beginning (t0) and after 240min (t240) of 

incubation. The radioactivity represents three experimental replicas (n=3) at each time point in one 

experiment. The background radioactivity is subtracted from the data. C) The growth of KS22 

(ΔdatA::erm), KS31 (ΔalaT::erm) and KS39 (ΔdatA::erm ΔalaT:: markerless) strains on nutrient agar 

(NA) and MM with and without D- and L-alanine at 37 °C for 24 h. 

B) D-alanine incorporation A) D-alanine uptake 

MM MM + 0.5 mM D-alanine MM + 1.0 mM L-alanine 

ΔalaT::erm 

ΔdatA::erm           

ΔalaT::  

markerless  
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NA 
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4.3 Discussion 

In this chapter the identified D-alanine transporter (DatA) has been characterised and its 

role in D-alanine recycling has been investigated. We revised the transcription profile of 

datA gene, using real-time PCR (see section 4.2.1). The results showed that datA is 

apparently co-transcribed with its upstream genes, asnB and metK, and downstream 

genes, ytpA and ytpB. This result is consistent with Yoshida et al. (1999), who thought 

that datA is possibly co-transcribed with the asnB gene. However, the result contradicts a 

previous northern blotting analysis, where no transcriptional connection between datA 

and asnB genes was detected (Sierro et al., 2008). Our result potentially explains why a 

cloned copy of datA gene did not work with its native RBS (see section 3.2.4.2). The 

reason might be related to the initiation of translation of the DatA-encoding mRNA, 

which may be unable to efficiently bind ribosomes as a single transcription unit 

(monocistronic mRNA). That is to say, the translation of upstream genes may normally 

promote the translation of datA as a part of a polycistronic mRNA. Moreover, the 

upstream (asnB) and downstream (ytpA) genes of datA did not show any direct relation to 

D-alanine metabolism and amino acid transport (see section 4.1).  

The bioinformatics databases were searched to identify proteins that have sequence 

homology to DatA protein. This investigation could be useful in structural and functional 

studies of DatA as well as in discovery of D-alanine transporter in other bacteria. The 

phylogenetic analyses revealed that the DatA-like proteins are putative or characterised 

amino acid transporters in many bacterial species (see section 4.2.2), but DatA is  highly 

conserved in the members of Bacillacae family. Interestingly, a few of the proteins 

homologous to DatA were putative D-alanine/D-serine/glycine permeases (CycA) in a 

group of diverse bacterial species. The DatA protein showed a good percentage of amino 

acid sequence identity to CycA proteins in E. coli K-12 and Mycobacterium bovis BCG 

(Table 4.1), supporting the D-alanine transport role of DatA and suggesting that DatA is a 

member of amino acid transporter family, which is included in amino acid-polyamine-

organocations superfamily. Moreover, the bioinformatics data showed that the genetic 

context of datA is absent in the other bacterial species, suggesting that the datA gene 

locus is unique to the Bacillus spp..  

The properties of DatA protein has been investigated, using bioinformatics tools and GFP 

tag. DatA protein predictably contains 12 alpha helical transmembrane helices and two 

extracellular hydrophilic loops, which might have specificity to D-alanine (see section 

4.2.3.1). The general predicted properties of DatA are quite similar to those of the amino 
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acid permeases (Table 4.1). Also, based on its identity to the structurally characterised 

Arginine:Agmatine antiporter (AdiC) of E. coli, DatA protein might be present in the cell 

membrane as a dimer (see section 4.2.3.1). The sub-cellular localisation of DatA protein 

seemed to confirm the above bioinformatics to some degree, because the GFP tagged 

DatA apparently localised to the cell membrane (see section 4.2.3.1). However, the GFP-

DatA recombinant protein was not functional to be able to complement datA mutant, 

suggesting that GFP tag might affect the correct membrane localisation of DatA protein. 

This also caused the GFP signal was not seen obviously at the cell membrane.       

We wanted to investigate the amino acid specificity of DatA in vitro (e.g liposomes). The 

study of transport activity in liposomes requires purified transport protein, but the 

attempts to over-produce His-tagged DatA protein in E. coli BL21(DE3) was not 

successful (see section 4.2.3.2). We then tried to investigate D-alanine transport in the 

membrane vesicles of E. coli C43(DE3), suggested to be a good strain for production of 

toxic membrane proteins (Miroux and Walker, 1996). However, the transport of D-

alanine seemed to be totally impaired in the membrane vesicles of an E. coli C43(DE3) 

strain, which carried an inducible copy of datA gene on a plasmid (see section 4.2.3.2). 

These problems are commonly encountered during overexpression of highly hydrophobic 

membrane proteins in E. coli, probably due to either poor overexpression or toxicity that 

causes host cell death (Grisshammer and Tate, 1995; Miroux and Walker, 1996). 

Alternatively, the transport of D-alanine by DatA was studied in Xenopus laevis oocyte, 

which is a popular eukaryotic expression model for structural and functional studies of 

transporters (Sigel, 2010). Again, we did not observe the D-alanine transport activity of 

DatA, possibly translated in Xenopus laevis oocytes (see section 4.2.3.2). It is suggested 

that some prokaryotic proteins are proven difficult to be translated in oocytes, and the GC 

content of the transporter gene should be about 50 %. The Xenopus laevis oocytes have 

mostly worked very well for the transporters, whose encoding genes have 49-56 % GC 

content (E-mail contact with prof. David Thwaites). However, the GC content of DatA 

encoding gene is 45 %. As the bioinformatics showed identity between DatA and AdiC, a 

homodimeric Arginine:Agmatine antiporter in E. coli (see section 4.2.3.1), one more 

possibility might be difficulty in the assembly of DatA transporter as homodimers in the 

cell membrane of the above heterogeneous hosts. Thus these limitations did not allow us 

to investigate the specificity of DatA in prokaryotic and eukaryotic expression systems.  

An amino acid competition assay was eventually done as an in vivo investigation to 

indirectly examine the specificity of D-alanine transporter (see section 4.2.3.3).  The idea 

of this assay was addition of an amino acid and D-alanine simultaneously to a culture of 
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D-alanine auxotroph (alrA) strain. If the growth of alrA is inhibited by the supplemented 

amino acid, it presumably means that the transport of D-alanine is prevented by the 

supplemented amino acid, in other words D-alanine and the supplemented amino acid 

have the same uptake system. The interference of some LMW amino acids such as L-

alanine, glycine and proline into D-alanine transport was investigated in LB medium (see 

section 4.2.3.3). We observed that only L- alanine inhibits the growth of alrA strain, 

suggesting that both L- and D-alanine have a common transporter in B. subtilis. 

Moreover, the studies already suggested a common uptake system for D-alanine and D-

cycloserine in E. coli K-12 (CycA) (Wargel et al., 1970; Wargel et al., 1971; Cosloy, 

1973; Robbins and Oxender, 1973) and M. tuberculosis (David, 1971). These suggestions 

made us to investigate the specificity of DatA to D-cycloserine (see section 4.2.3.4). The 

hypothesis was if D-cycloserine is transported by DatA, the deletion of datA gene must 

provide resistance against this compound.  In contrast to E. coli and M. tuberculosis, our 

data showed that D-cycloserine inhibits the growth of datA strain, suggesting that D-

cycloserine is not transported by D-alanine transporter (DatA) in B. subtilis. Again, the 

addition of D-alanine to the culture medium did not reduce the D-cycloserine sensitivity 

of wild type and datA strain. This again suggests that D-alanine and D-cycloserine have 

separate uptake system in B. subtilis. 

In the previous chapter, our data hypothesised that the released D-alanine molecules 

from cell wall might be recycled. This hypothesis was further investigated by a cross-

feeding assay (see section 4.2.4.1), which is a qualitative method in which alrA strain 

was streaked next to wild type and datA strain on a solid medium. Following incubation 

the growth of alrA strain was supported by datA strain. This means that the released D-

alanine molecules from cell wall (peptidoglycan and teichoic acids) are usually 

recycled, whereas in the case of datA mutant the proposed D-alanine transporter (DatA) 

is absent and the released D-alanine accumulates in the surrounding environment. 

Besides, the D-alanylation of teichoic acids was prevented through deletion of dltA-D to 

investigate the fate of the D-alanine residues, which are released from peptidoglycan by 

the carboxypeptidases (DacA and LdcB).  It was observed that dltA-D did not support 

the growth of alrA strain, but datA dltA-D strain did. These observations suggested that 

DacA and LdcB trim the uncross-linked D-alanine residues to be recycled via DatA in 

B. subtilis (Figure 4.9 and 6.1).  In addition, RP-HPLC was used as a quantitative 

method to investigate D-alanine recycling in B. subtilis (see section 4.2.4.2). The results 

revealed that the cell wall derived D-alanine molecules are released into the culture 

supernatant of both wild type and datA strain during exponential growth, but the 
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quantity of D-alanine was detectably higher in the culture supernatant of datA strain. 

Interestingly, the amount of D-alanine in the culture media of both wild type and datA 

strain was found to disappear on entry into stationary phase, which is consistent with 

(Lam et al., 2009). When the dltAD 
–ve 

strains were tested during exponential growth, 

the datA dltA-D double mutant strain accumulated more D-alanine than dltA-D strain in 

its culture supernatant. Again, the results of HPLC analysis suggested that B. subtilis 

recycles the cell wall derived D-alanine molecules via DatA (Figure 4.11 and 6.1). 

However, the disappearance of D-alanine in the stationary cultures of datA strain could 

suggest that D-alanine is still transported. This is consistent with our previous data 

showed a little better growth of datA strain in MM, supplemented with D-alanine (see 

section 3.2.4.1).  

We further investigated the transport of D-alanine in datA strain by growing the wild 

type and datA strains in MM, supplemented with radioactive (
14

C) D-alanine (see 

section 4.2.4.3). It was found that both wild type and datA strains almost similarly 

transported and incorporated D-alanine. Moreover, we exploited the poor growth 

phenotypic effect of alaT mutation, which potentially reduces the ability of B. subtilis to 

make L-alanine in vivo. The alaT strain grows normally in rich media (usually contains 

L-alanine), but the strain grows very slowly on MM. Therefore, we deleted datA gene in 

alaT strain to test D- and L-alanine transport in the absence of DatA protein (see section 

4.2.4.3). It was found that datA alaT mutant was able to transport D- and L-alanine in 

MM. The above experimental observations together suggested that the transport of D-

alanine in datA strain can only be detected in MM and in exhausted cultures of rich 

medi during stationary phase. Interestingly, it was observed that datA alaT strain 

happily grows in rich medium, suggesting that L-alanine is efficiently transported in the 

absence of DatA protein. This also suggests the transport of L- and D-alanine through 

different uptake systems in B. subtilis (more discussion in chapter 6).                         .
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Chapter 5. Peptidoglycan assembly in B. subtilis  

5.1 Introduction 

Peptidoglycan is the stress-bearing structure in the cell wall of Gram-positive bacteria 

(e.g B. subtilis). The peptidoglycan metabolic processes are synthesis, modification, 

turnover and recycling. These processes have generally been well investigated in Gram-

negative model bacterium, E. coli. However, apart from peptidoglycan synthesis other 

metabolic processes are less understood in B. subtilis.  Cell wall growth was initially 

studied in B. subtilis at population level, using radioactive labelling isotopes (
3
H and 

14
C 

GlcNAc and D-glutamate). The radioactive studies have consistently showed the pattern 

of peptidoglycan synthesis and turnover in models, suggesting that the new 

peptidoglycan layers are incorporated into the inner most layers by PBPs, meanwhile 

the stretched old peptidoglycan layers are degraded at the cell surface by hydrolases 

(Pooley, 1976a; Pooley, 1976b; Koch and Doyle, 1985a). Few attempts were previously 

made to visualise the growth of B. subtilis cell wall, using autoradiography and electron 

and fluorescent microscopies (Mobley et al., 1984; Merad et al., 1989). These studies 

demonstrated that the insertion of new cell wall material and the degradation of old cell 

wall occur uniformly along the cell cylinder, but the cell poles are metabolically less 

active. Moreover, the recent developments in peptidoglycan labelling fluorescent probes 

have offered a great progress in bacterial cell wall studies. The fluorescent microscopic 

studies increasingly suggested that the synthesis of new peptidoglycan occurs at cell 

division site and in a helical pattern around the cylindrical part of the cell (Daniel and 

Errington, 2003; Tiyanont et al., 2006; Kuru et al., 2012). This helical polymerisation is 

guided by actin-like proteins (MreB, Mbl and MreBH) (Kawai et al., 2009a; Kawai et 

al., 2009b) and facilitated by DL-endopeptidases (CwlO and LytE), which are 

hypothesised to play role in cell elongation through providing enough space for 

insertion of new peptidoglycan layers at the inner part of cell wall (Hashimoto et al., 

2012; Dominguez-Cuevas et al., 2013). A sophisticated coordination between 

peptidoglycan synthesis and turnover is crucial for cell wall strength, cell shape 

maintenance and cell elongation (Popham, 2013). The coordination of peptidoglycan 

synthesis and turnover has already been proposed in E. coli (three-for-one growth 

model) (Holtje, 1998; Vollmer and Holtje, 2001). However, the mechanistic details of 

peptidoglycan assembly during growth have not been elucidated in Gram-positive 

bacteria
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B. subtilis usually modifies its peptidoglycan by swapping the 5
th

 D-alanine residues on 

some of the stem peptides with other D-amino acids. It is suggested that penicillin- 

sensitive DD-transpeptidase(s) catalyses ‘‘D-alanine swapping’’ (Cava et al., 2011; 

Kuru et al., 2012). However, the physiological purpose of D-alanine swapping is 

unclear and enzyme(s) catalyses this swapping reaction has not been identified in B. 

subtilis. The identification of D-alanine swapping enzyme could be important to further 

understand how this bacterium controls the percentage of peptidoglycan cross-links. In 

addition, the involvement of carboxypeptidases in what is so-called cell wall maturation 

has already been proposed in B. subtilis (Atrih et al., 1999), but understanding the 

dynamics of peptidoglycan carboxypeptidation might improve our understanding about 

cell wall assembly in Gram-positive bacteria. 

In this chapter, radioactive D-alanine and fluorescent D-amino acids were used to 

understand the mechanistic details of cell wall assembly (coordination between cell wall 

synthesis and turnover) in B. subtilis. Besides, the identification of D-alanine swapping 

catalytic enzyme(s) and the fate of the released cell wall material were investigated in 

exponentially growing B. subtilis.  
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5.2 Results 

5.2.1 Cell wall turnover in the absence of carboxypeptidases 

The radioactive D-alanine and fluorescently labelled D-amino acid (FDAA) were used 

to investigate cell wall turnover and the effect of lack of carboxypeptidases on this 

catabolic process. The [1-
14

C] D-alanine labelled cells of RD180 (∆alrA::zeo), KS16 

(∆alrA::zeo ∆dacA::spc) and KS19 (∆alrA::zeo ∆lcdB::erm) strains were taken at 120 

min of the radioactive labelling experiment (described in section 3.2.3). The radioactive 

cells were washed and suspended in fresh LB medium (OD600 0.1), which contained 450 

µM of non-radioactive D-alanine. To measure radioactivity in the cells, culture samples 

were taken every 20 min for 2.0 h. The cells were filtered under vacuum and washed 

with PBS (see sections 2.10.2 for method details). It was observed that the level of [1-

14
C] D-alanine incorporated into the cell population gradually reduced and reached 

minimum level after 80 min of incubation (Figure 5.1). The third generation cells were 

no longer radioactive (generation time of alrA strain was 40 min in LB medium, 

containing 450 µM D-alanine at 37 °C in shaking water bath). We also observed that the 

D-alanine composition of cell wall varied according to the genotypes. The ∆alrA::zeo 

strain showed lowest level of  radioactivity, comparing to the other two strains. 

However, the ∆alrA::zeo ∆dacA::spc strain was more radioactive than both ∆alrA::zeo 

and alrA::zeo ∆ldcB::erm  strains. Interestingly, the differences in cell wall D-alanine 

content did not altered the rate of cell wall turnover in the strains. In addition, 

peptidoglycan turnover was investigated in dltA-D 
–ve 

strains, which lack D-alanine in 

teichoic acids. The [1-14C] D-alanine labelled cells of KS12 (∆alrA::zeo ∆dltA-D::cat), 

KS20 (∆alrA::zeo ∆ldcB::erm ∆dltA-D::cat) and KS17 (∆alrA::zeo ∆dacA::spc ∆dltA-

D::cat) were collected at 120 min of the radioactive labelling experiment (described in 

section 3.2.3). The strains were grown in LB medium, supplemented with 450 µM of 

non-radioactive D-alanine. The the cell samples were taken, filtered under vacuum and 

washed with PBS. The radioactivity was measured in the cells (see sections 2.10.2 for 

method details). Although these strains requires D-alanine only for peptidoglycan 

synthesis, the rates of peptidoglycan turnover in the ∆alrA::zeo ∆dltA-D::cat, 

∆alrA::zeo ∆ldcB::erm ∆dltA-D::cat and ∆alrA::zeo ∆dacA::spc ∆dltA-D::cat strains 

were generally similar to those explained previously for ∆alrA::zeo,  ∆alrA::zeo 

∆ldcB::erm and ∆alrA::zeo ∆dacA::spc strains (Figure 5.1). 

Peptidoglycan turnover was also visualised and investigated by taking the advantage of 

extracytoplasmic incorporation of fluorescent D-amino acids (FDAA) into the 



                                                                             Chapter 5. Peptidoglycan assembly in B. subtilis 

126 

 

peptidoglycan. The dacA strain was used in this investigation, because its peptidoglycan 

contains a significant amount of penta-stem peptides and their 5
th

 D-alanine residues are 

sufficiently swapped with Boc-D-2,3-diaminopropionic acid (NADA), a type of 

FDAA). The ΔdacA::spc strain was grown in PTM, supplemented with 50 µM NADA. 

Cell samples were taken every 20 min and fixed in 3.0 % paraformaldehyde before 

microscopy (see section 2.11.2 for method details). It was observed that the fluorescent 

signal firstly disappeared at the cell division site and gradually decreased at the lateral 

cell wall (Figure 5.2A). The cylindrical part of the cells showed minimum fluorescence 

after 100 min of growth (Figure 5.2), which is consistent with the above radioactive 

result (the generation time of dacA strain was 35 min in PTM). However, the cell poles 

kept the fluorescence throughout the growth. Interestingly, the images at 40 and 60 min 

showed that the glycan strands apparently arranged parallel to the short axis of the cell 

(Figure 5.2A). To have better visualisation of glycan strands arrangement in cell wall, 

the total internal reflection fluorescence (TIRF) microscope was used to examine the 

cells at 40 min of NADA depletion. The TIRF image showed stripy cell wall pattern 

(Figure 5.2B). Moreover, the radioactive and fluorescent results clearly showed that the 

degraded old cell wall is released to the culture medium during exponential growth 

phase. 
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Figure 5.1 Cell wall turnover in exponentially growing B. subtilis. The [1-
14

C] D-alanine labelled 

RD180 (∆alrA::zeo),  KS19 (∆alrA::zeo ∆ldcB::erm),  KS16 (∆alrA::zeo ∆dacA::spc), KS12 (∆alrA::zeo 

∆dltA-D::cat), KS20 (∆alrA::zeo ∆ldcB::erm ∆dltA-D::cat) and KS17 (∆alrA::zeo ∆dacA::spc ∆dltA-

D::cat)  strains were grown at 37 °C in LB medium plus 450 µM D-alanine for 2.0 h. Culture samples 

were taken for measuring radioactivity in the cells (see sections 2.10.2 for method details). The error bars 

indicate the standard deviation of mean of radioactivity in two independent experiments. The background 

radiation was subtracted from the values. 
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Figure 5.2 Peptidoglycan turnover in B. subtilis. A) The KS15 (ΔdacA::spc) strain was grown in PTM, 

contained 50 µM of NADA. After 2.0 h of incubation at 37 °C, the labelled cells were washed with fresh 

PTM and suspended in fresh medium with an initial OD600 0.1. A) The microscopic images of fixed cells 

in 3.0 % formaldehyde at different time points, the scale bar is 3.0 µm. The amount of NADA released 

(peptidoglycan turnover) from the lateral cell wall also measured by linescan tool of Metamorph software 

(see section 2.11.3 for details). The three white lines crossed the wall of KS15 strain (ΔdacA::spc) 

indicate the site of fluorescent measurement The error bar is the standard deviation of mean of Gray level 

average in 50 cells of one experiment. The background fluorescent was subtracted from the values. B) 

The TIRF microscopic image of KS15 (ΔdacA::spc) cells at 40 min of figure (A). The scale bar is 5 µm. 

B) 

 40 min 

Fluorescent intensity (AU) 

20 min 

0 min 

40 min 

60 min 

120 min 

Phase NADA 

80 min 

100 min 

A) 



                                                                             Chapter 5. Peptidoglycan assembly in B. subtilis 

129 

 

5.2.2 Dynamics of peptidoglycan carboxypeptidation in B. subtilis. 

Examining the localisation of carboxypeptidases probably help us to explain how 

peptidoglycan is undergone carboxypeptidation. It was previously determined that 

DacA-GFP was localised at cell division site (Scheffers et al., 2004). However, we 

observed that only about one fourth of DacA is fused to GFP in 2085 strain 

(dacA::pSG1493 (cat Pxyl-gfp-dacA
1-423

)), using DacA specific antibody in a Western 

blot analysis of total cell lysate (Figure 5.3A). This suggested that GFP tagging does not 

show the complete localization of DacA protein in the cell. Therefore, we used immune-

fluorescence assay to examine the localisation of LdcB and DacA in 168CA, KS18 

(ΔldcB::erm) and KS15 (ΔdacA::spc) strains (see section 2.6.20 for method details). 

The immunefluorescence of 168CA strain showed that LdcB protein is greatly localised 

at cell division site and extended decreasingly towards the poles probably in a helical 

pattern around the cylindrical part of the cell (Figure 5.4A). However, the ΔdacA::spc 

strain showed irregular localisation of LdcB proteins (Figure 5.4C). This is probably 

due to the unexposed substrates for LdcB in ΔdacA::spc strain. The DacA protein was 

also localised at cell division site and lateral cell wall in 168CA (Figure 5.4A) and 

ΔldcB::erm strain (Figure 5.4B). However, ΔdacA::spc strain unexpectedly showed 

fluorescent signal along its lateral cell wall (Figure 5.4C). A Western blot analysis of 

168CA and ΔdacA::spc cellular lysates, using anti-DacA IgG, also showed non- 

specific multiple bands (data not shown). The binding of anti-DacA IgG to some other 

non-specific proteins, obliged us to re-test the localisation of GFP tagged DacA, using 

2085 strain (dacA::pSG1493 (cat Pxyl-gfp-dacA
1-423

)). This strain was grown to mid 

exponential growth in LB medium, containing 0.5 % xylose. It was observed that 

DacA-GFP is clearly localised at the cell division site and thinly distributed along the 

lateral cell wall (Figure 5.3B).  
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Figure 5.3 Localisation of DacA protein. A)  Western blot of DacA protein in different strains, using 

rabbit anti-DacA IgG as primary antibody and anti-rabbit IgG-peroxidase as secondary antibody. B) The 

florescence microscopic image of 2085 strain (dacA::pSG1493 (cat Pxyl-gfp-dacA
1-423

)), which has GFP 

tagged DacA protein. The expression of DacA-GFP was induced with 0.5 % Xylose in LB medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5.4 Immunofluorescence microscopy of LdcB and DacA localisations. Immunofluorescence 

microscopic images of LdcB and DacA localisation in 168CA (A), KS18 (ΔldcB::erm) (B) and KS15 

(ΔdacA::spc) (C) strains. The Alexa Fluor (red fluorescence) represents LdcB protein and FITC (green 

fluorescence) represents DacA protein. The genomic DNA was stained with DAPI. The scale bar is 3 µm. 
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5.2.3 Role of penicillin binding proteins (PBPs) in ‘‘D-alanine swapping’’ 

It is known that some of the 5
th

 D-alanine residues are exchanged with non-specific D-

amino acids in the peptidoglycan of B. subtilis. However, only the 4
th

 D-alanine 

residues are subjected to swapping in E. coli (Cava et al., 2011; Kuru et al., 2012). As 

the 4
th

 D-alanine residues are usually trimmed by LdcB in B. subtilis, we wondered 

whether the exposed 4
th

 D-alanine residues are swapped in ldcB mutant strain. The 

168CA, KS18 (ΔldcB::erm) and KS15 (ΔdacA::spc) strains were grown at 37 °C in 

PTM, supplemented with 50 µM NADA. Samples were taken at different time points, 

and the cells were washed and fixed in 3.0 % paraformaldehyde (see section 2.11.1 for 

method details). The image of the fixed cells was taken by fluorescent microscope. The 

168CA strain showed the lowest fluorescent intensity in its lateral cell wall compared to 

ΔldcB::erm ΔdacA::spc strains. The lateral cell wall of ΔldcB::erm strain was a little bit 

more fluorescent than 168CA but significantly less fluorescent than ΔdacA::spc strain 

(Figure 5.5B and B). It was also observed that the fluorescent intensity in the lateral cell 

wall of the strains was increased with time. This means that the old peptidoglycan layers 

(non-florescent) were successively replaced by the new layers (fluorescent layers) 

(Figure 5.5).  

It has been suggested that penicillin sensitive DD-transpeptidases play role in D-alanine 

exchange in B. subtilis (Cava et al., 2011; Kuru et al., 2012). To identify what PBP(s) 

catalyses the swapping reaction in peptidoglycan, we firstly ensured the inhibitory effect 

of penicillin G (penG) on D-alanine swapping. Also, the effect of supplemented D-

alanine on the rate of NADA swapping was examined. The 168CA and KS15 

(ΔdacA::spc) strain were grown in PTM with and without 100 µg/ml penG for 2.0 min, 

and then 50 µM of fluorescent D-amino acid (NADA) was added. In addition, 

ΔdacA::spc strain was grown in the presence of 500 µM D-alanine and 50 µM NADA 

(ratio 10:1) at 37 °C. Cell samples were taken at different time points, washed with PBS 

and fixed with 3.0 % paraformaldehyde before microscopy (see section 2.11.1 for 

method details). We observed that penG inhibited the incorporation of NADA into 

peptidoglycan, but the presence of D-alanine in the culture did not affect the rate of 

NADA incorporation (Figure 5.6). 

After ensuring that the incorporation of NADA is catalysed by penicillin-sensitive 

enzyme(s), the single mutant strains of all known PBPs, KS15 (ΔdacA::spc), 

BKE23190 (ΔdacB::erm), BKE18350 (ΔdacC::erm), BKE234380 (ΔdacF::erm), 

BKE25000 (ΔpbpA::erm), 4001 (pbpB
(S309A)

), BKE04140 (ΔpbpC::erm), BKE31490 
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(ΔpbpD::erm), BKE34440 (ΔpbpE::erm), BKE10110 (ΔpbpF::erm), BKE37510 

(ΔpbpG::erm), BKE13980 (ΔpbpH::erm), BKE27310 (ΔpbpI::erm), BKE16950 

(pbpX::erm) and BKE22320 (ΔponA::erm),  (ΔspoVD::erm) were grown for 15 min in 

PTM, supplemented with 50 µM of NADA at 37 °C. The culture of ponA strain 

contained 25 mM of Mg
2+ 

as well. The cells were fixed with 3.0 % paraformaldehyde 

before microscopic examination (see section 2.11.1 for method details). The 

microscopic images showed that all the single pbp mutants obviously incorporated 

NADA into the cell division site (data not shown). To obviously see differences in the 

rate of D-alanine swapping and to generate quantitative data, the vegetative pbp genes 

were knocked out in ΔdacA::spc strain. The double mutant strains were labelled with 

NADA as above, and the labelled cells were processed for microscopic study (see 

section 2.11.1 for method details). As shown in (Figure 5.7), the double pbp mutants 

differently labelled their peptidoglycan with NADA. It was observed that the lack of 

PBP2a (pbpA), PBP3 (pbpC), PBP4 (pbpD), PBP4* (pbpE) and PBP1 (ponA) decreased 

the rate of NADA incorporation. In contrast, (ΔdacA::spc ΔpbpH::erm) strain was 

solely hyper-labelled. Even AG364 strain (∆pbpD ∆pbpF ∆ponA ΔpbpG::Kana 

ΔdacA::zeo), which lacked all the known class A PBPs, was still able to modify 

peptidoglycan with NADA. Thus D-alanine swapping was not totally inhibited by the 

absence of a particular PBP.  
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Figure 5.5 Peptidoglycan modification in carboxypeptidase mutant strains of B. subtilis. The 168CA, 

KS18 (ΔldcB::erm) and KS15 (ΔdacA::spc) strains were grown at 37 °C in PTM, containing 50 µM of 

NADA. The cells were washed with PBS and fixed in 3.0 % paraformaldehyde at different time points. 

A) The microscopic images of the cells after 120 min of NADA labelling. B) The amount of NADA 

incorporated into the lateral cell wall (three white lines crossed the 168CA cell in figure (A)) was 

measured by linescan tool of Metamorph software (see section 2.11.3 for details). The three lines crossed 

the cell shaft of 168CA indicate the site of fluorescent measurement The error bar is the standard 

deviation of mean of Gray level average in 50 cells in two independent experiments. The background 

fluorescent was subtracted from the values. The scale bar is 2.0 µm. 
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Figure 5.6 The effect of Pencillin G and D-alanine on peptidoglycan modification. The 168CA and 

KS15 (ΔdacA::spc) strains were treated with penG (100 µg/ml) for 2.0 min in PTM, after that 50 µM of 

NADA was added. KS15 (ΔdacA::spc) was also grown in the presence of 500 µM of D-alanine and 50 

µM of NADA. The strains were grown at 37 °C and samples were taken at different time points. The cells 

were washed with PBS and fixed in 3.0 % paraformaldehyde (see section 2.11.1 for method details). The 

scale bar is 3.0 µm. 
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Figure 5.7 NADA labelling of PBPs double mutant strains. The KS15 (ΔdacA::spc), KS65 

(ΔdacA::spc ΔpbpA::erm), KS56 (ΔdacA::spc ΔpbpC::erm), KS57 (ΔdacA::spc ΔpbpD::erm), KS49 

(ΔdacA::spc ΔpbpE::erm), KS61 (ΔdacA::spc ΔpbpF::erm), KS59 (ΔdacA::spc ΔpbpH::erm), KS67 

(ΔdacA::spc pbpX::erm), KS66 (ΔdacA::spc ΔponA::erm) and AG364 (∆pbpD ∆pbpF ∆ponA 

ΔpbpG::Kana ΔdacA::zeo) strains were labelled with 50 µM of NADA for 15 min. The cells were fixed 

before microscopic examination. The amount of fluorescent in the lateral cell wall was also measured by 

linescan tool of Metamorph software (see section 2.11.3 for fluorescent quantitative analysis). The three 

lines crossed the cell shaft of KS15 strain (ΔdacA::spc) indicate the site of fluorescent measurement. The 

error bar is the standard deviation of mean of Gray level average in 50 cells per strain. The background 

fluorescent was subtracted from the values. The scale bar is 2.0 µm. 
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5.2.4 Peptidoglycan synthesis and turnover are coordinated.  

The cell wall labelling fluorescent probe (NADA) was used to visualise the 

coordination of peptidoglycan synthesis and turnover in B. subtilis at cellular level. The 

fully NADA labelled ΔdacA::spc strain was grown in PTM with and without 100 µg/ml 

of penG. The samples were taken every 20 min for 2.0 h. The cells were washed with 

PBS and fixing in 3.0 % paraformaldehyde (see section 2.11.2 for method details). It 

was seen that the fluorescent signal gradually disappeared in the lateral cell wall in the 

absence of PenG and about 2.0 % of fluorescence left after 2.0 h of incubation. 

However, the cell poles maintained the fluorescence (Figure 5.8A and B). Interestingly, 

the inhibition of peptidoglycan synthesis by penG kept the fluorescent signal in the 

lateral cell wall of the survived cells (Figure 5.8A, B and C). The highest percentage of 

fluorescent intensity (~27 %) was lost during first 20 min, but the persistence of the 

fluorescent signal in the cell wall was almost stabilised beyond 20 min of incubation. 
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Figure 5.8 Coordination of peptidoglycan synthesis and turnover in B. subtilis. A) The KS15 

(ΔdacA::spc) strain was labelled with NADA in PTM (see section 2.11.1 for details). After 2.0 h of 

incubation at 37 °C, the labelled cells were washed with fresh PTM and suspended (OD600 0.1) in fresh 

PTM medium with and without 100 µM of penG.  Samples of cells were taken, washed with PBS and 

fixed in 3.0 % formaldehyde (see section 2.11.2 for details). B) The percentage of NADA released 

(peptidoglycan turnover) from the lateral cell wall was measured by linescan tool of Metamorph software 

(see section 2.11.3). The percentage (%) represents the mean of Gray level average in 50 cells in one 

experiment. The three lines crossed the cell wall of dacA strain at zero time represents the site, where the 

cell wall fluorescent was measured. C) The growth curve of KS15 (ΔdacA::spc) strain in the presence and 

absence of penG in PTM at 37 °C. The scale bar is 3.0 µm. 
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5.2.5 Dynamics of peptidoglycan assembly in B. subtilis.  

Our previous data suggested that peptidoglycan synthesis occurs in a helical pattern 

(Figure 5.2A and B) and peptidoglycan synthesis and turnover are co-ordinated (Figure 

5.8A and B). However, the mechanistic details of peptidoglycan assembly during cell 

elongation have not been understood. The slowdown of growth rate was helpful to 

closely investigate peptidoglycan assembly (the generation time of dacA strain was 35 

min in PTM) (Figure 5.9). We firstly used time-lapse microscopy to visualise cell wall 

synthesis and turnover in live cells. The KS15 (ΔdacA::spc) strain was grown in PTM, 

containing 50 µM NADA, at 37 °C for 2.0 h. The fully NADA labelled cells were 

collected by centrifugation, washed once with fresh pre-warmed medium and added to 

an agarose pad on a microscopic slide (see section 2.6.19.2 for method details). The 

images of the live cells were automatically taken every 4 min intervals. It was observed 

that new peptidoglycan (non-fluorescent) was incorporated at division site and moved 

towards the cell poles (Figure 5.10 and movie 5.1). In the meantime, the corresponding 

old peptidoglycan (fluorescent) was degraded and disappeared like waves from the cell 

division site towards the poles. The incorporation of new peptidoglycan to the division 

site was not immediately seen at the beginning of cell elongation (Figure 5.10). This is 

probably due to the multi-layered peptidoglycan of B. subtilis. Although the time-lapse 

microscopy provided a live view of peptidoglycan assembly in defined cells, the 

frequent exposure of the cells to the microscopic light source caused photobleaching of 

NADA. To get more obvious images of peptidoglycan assembly, we tracked the time-

course of peptidoglycan assembly in fixed cells. The ΔdacA::spc strain was grown in 

PTM in the presence of 50 µM of NADA at 37 °C. Samples were taken at different time 

points (2, 10 and 30 min), washed with PBS and fixed in 3.0 % paraformaldehyde (see 

section 2.11.1 for details). It was observed that the cells started incorporating new 

peptidoglycan precursor into the cell division site very quickly and increasing of 

fluorescent intensity in the lateral wall was time-dependent (Figure 5.11A). To see 

differences in the distribution of fluorescent signal in the entire cell wall, surface plots 

were generated by using ImageJ software. The surface plots obviously reveal uneven 

distribution of fluorescence intensity in the cell wall, the area of cell cylinder close to 

cell division site was more fluorescent than the area close to the cell poles. On the other 

hand, the depletion of NADA in fully labelled cells was examined (Figure 5.11B). The 

same pattern of cell wall synthesis and turnover was observed as explained for NADA 

incorporation.  
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To investigate the roles of essential cell division proteins (FtsZ and FtsL) in 

peptidoglycan assembly at the lateral cell, the KS73 (∆dacA::spc chr::pJSIZΔpble 

(Pspac-ftzZ ble)) and KS74 (∆dacA::spc Ω (ftsL::pSG441 aphA-3 Pspac pbpB)799 

(ϕ105J506) cat Pxyl ftsL) strains were grown in PTM for 2.0 h in the presence of IPTG 

and xylose respectively. The strains were depleted for FtsZ and FtsL by growing them 

in fresh PTM without the inducers (IPTG and xylose). The depletion of FtsZ lasted 100 

min but of FtsL was 120 min. Soon after the depletion of FtsZ and FtsL, 50 µM of 

NADA was added to the cultures and kept growing for 30 min. The cells were washed, 

fixed and prepared for microscopic study (see section 2.11.1 for details). The results 

showed the incorporation of NADA into the lateral cell wall, but no fluorescent signal 

was seen at the cell division site (Figure 5.12). 

The proposed role of DL-endopeptidase (LytE) in cell wall turnover was also 

investigated, using NADA labelling. The KS15 (ΔdacA::spc) and KS72 (∆dacA::spc 

∆lytE::cat) strains were grown in the presence of NADA for 2.0 h. The fully labelled 

cells were used to investigate cell wall turnover (see section 2.11.2 for method details). 

As shown in (Figure 5.13), the absence of LytE did not apparently cause any problem in 

cell wall turnover. Moreover, we revised the proposed roles of actin-like MreB proteins 

in cell wall biosynthesis. The effect of lack of MreB (KS70: ∆dacA::spc ∆mreB::neo), 

Mbl (KS69: ∆dacA::spc ∆mbl::cat) and MreBH (KS71: ∆dacA::spc ∆mrebH::erm) on 

peptidoglycan synthesis was studied, using  NADA labelling. It was observed that the 

pattern of peptidoglycan synthesis is not altered in the absence of anyone of MreB 

proteins (data not shown), this is consistent with Kawai et al. (2009b), who used 

fluorescent vancomycin to investigate the role roles of MreB proteins in cell wall 

synthesis.   
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Figure 5.9 Growth curves of B. subtilis. The growth of KS15 strain (ΔdacA::spc) was compared in LB 

and PTM media at 37 °C. 

 

 

 

 

 

 

Figure 5.10 Time-lapse microscopic images of NADA labelled B. subtilis. The KS15 strain 

(ΔdacA::spc) was grown in PTM, contained 50 µM of NADA. After 2.0 h of incubation at 37 °C, the 

labelled cells were washed with PTM and suspended in fresh medium.  The fully NADA labelled cells 

was put on a pad of agarose solidified PTM on a microscopic slide and grown at 37 °C. The images of 

live cells were taken every 4 minutes at exposure time of 80 ms (see section 2.6.19.2 for method details). 

The scale bar is 2.0 µm. 
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Figure 5.11 Tracking of peptidoglycan assembly (coordination of peptidoglycan synthesis and 

turnover) in B. subtilis. A) The KS15 (ΔdacA::spc) strain was grown in PTM, containing 50µM of 

NADA at 37 °C (see section 2.11.1). B) The fully labelled KS15 (ΔdacA::spc) cell was depleted from 

NADA in PTM (see section 2.11.2). The surface plots of the cells were generated by ImageJ software. 

The surface plots show the distribution of fluorescent intensity in cell wall. The scale bar is 2.0 µm. 
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Figure 5.12 Depletion of cell division proteins, FtsZ and FtsL, in B. subtilis. The FtsZ and FtsL 

proteins were firstly depleted in KS73 (∆dacA::spc chr::pJSIZΔpble (Pspac-ftzZ ble)) and KS74 

(∆dacA::spc Ω (ftsL::pSG441 aphA-3 Pspac pbpB)799 (ϕ105J506) cat Pxyl ftsL) strains. The depleted 

strains were grown in PTM, containing 50 µM NADA, for 30 min. The cells were washed with PBS and 

fixed in 3.0 % paraformaldehyde before microscopic study (see section 2.11.1). The scale bar is 3.0 µm.  
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Figure 5.13 The effect of lytE deletion on cell wall turnover in B. subtilis. A) KS15 (ΔdacA::spc) and 

KS72 (ΔdacA::spc ΔlytE::cat) strains were grown in PTM, containing 50 µM of NADA. After 2.0 h of 

incubation at 37 °C, the labelled cells were washed with fresh PTM and suspended (OD600 0.1) in fresh 

medium. The cells were washed with PBS and fixed in 3.0 % formaldehyde. B) The percentage of 

released NADA (as a result of peptidoglycan turnover) from the lateral cell wall was also measured by 

linescan tool of Metamorph software (see section 2.11.3). The percentage (%) represents the mean of 

Gray level average in 50 cells in one experiment. The three lines crossed the cell wall of dacA null at zero 

time image represents the site, where the linescane measurement tool was placed. C) The growth curve of 

KS15 (ΔdacA::spc) and KS72 (ΔdacA::spc ΔlytE::cat) strains in PTM at 37 °C. The scale bar is 3.0 µm. 
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5.2.6 Pattern of cell wall synthesis and turnover throughout generations of B. 

subtilis. 

We previously observed that the complete replacement of old peptidoglycan layers with 

new layers takes about three generations (Figure 5.1 and 5.2A). We wanted to 

understand the pattern of cell wall synthesis and turnover throughout generations of B. 

subtilis. The KS15 (ΔdacA::spc) strain was labelled with NADA in PTM. Cell samples 

were taken at different time points, washed with PBS and fixed in 3.0 % 

paraformaldehyde before microscopic study (see section 2.11.1 for method details). It 

was observed that the fluorescence increased unevenly along the cylindrical part of the 

cell and the cells showed different patterns of NADA labelling throughout generations 

(the generation time of dacA strain was 35 min in PTM) (Figure 5.14). The first 

generation of cells was supposedly born at around 30 min of incubation, when the cells 

were mostly at two stages of growth, early and late stage cells. The early stage cells 

were mature cells, with one new pole (fluorescent) and one old pole (non-fluorescent). 

The late stage cells were actually older than the early stage cells and they were dividing 

to give the second generation cells. The second generation cells were born at around 60 

min, when the cells were at two stages of growth as well. The early stage second 

generation cells were mature cells and of two types. The first type of early stage second 

generation cells had one old pole and one new pole, whereas the second type of early 

stage cells possessed two new poles. The late stage second generation cells were older 

than the early stage cells and were dividing to be the third generation cells. Finally, the 

third generation cells were born at around 100 min. The lateral cell wall of third 

generation cells was totally fluorescent. This could mean that the cell wall completely 

consists of new peptidoglycan layers, but one fourth of third generation cells still kept 

one pole from initial mother cell.  
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Figure 5.14 The NADA labelling of KS15 (ΔdacA::spc) strain throughout three generations. See the 

text for details. The surface plot of each cell image was generated by ImageJ software. The surface plots 

show the distribution of fluorescent intensity in cell wall. The scale bar is 3.0 µm. 
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5.3 Discussion 

In this chapter, we investigated the peptidoglycan metabolic processes in B. subtilis. 

The investigation led to the development of a model illustrating the mechanistic details 

of peptidoglycan assembly in such Gram-positive bacterium. Cell wall turnover and the 

effect of carboxypeptidases in this catabolic process were firstly studied during 

exponential growth, using radioactive (
14

C) D-alanine and fluorescently labelled D-

amino acids (FDAA) (see section 5.2.1). The radioactive labelling and fluorescent 

microscopy both suggested that the old layers of peptidoglycan are completely replaced 

by new layers in the lateral cell wall of third generation cells. The radioactive results 

also showed that cell wall turnover occurs normally in the absence of the 

carboxypeptidases (DacA and LdcB). This observation supports the proposed roles of 

carboxypeptidases in D-alanine recycling. Besides, similar rates of cell wall turnover 

was observed in dltA-D 
–ve 

strains and dltA-D 
ve+

 strains, suggesting that either D-

alanine esters of teichoic acids are spontaneously released or teichoic acids undergo 

turnover as much as peptidoglycan. The microscopic images showed that cell wall 

synthesis and turnover coordinately commence at the cell division site and continues 

along the lateral cell wall, whereas cell wall metabolism apparently does not occur at 

the cell poles. Also, the peptidoglycan layers are apparently arranged in helical pattern 

around the cell shaft and this is is the first obvious visualisation of peptidoglycan 

turnover and glycan strand arrangement in a Gram-positive bacterium. Moreover, the 

old cell wall material was released into the culture medium, indicating that cell wall 

recycling apparently does not occur during exponential growth as suggested by the 

radioactive assay (see section 5.2.1). The fate of released cell wall products is further 

discussed in chapter 6.  

It is known that the uncross-linked D-alanine residues in peptidoglycan are trimmed by 

the carboxypeptidases in B. subtilis. However, the dynamics of peptidoglycan 

carboxypeptidation has not been explained.  We studied the localisation of DacA and 

LdcB to understand the dynamics of carboxypeptidation in peptidoglycan, using 

immunofluorescent microscopy (see section 5.2.2). The results showed that LdcB is 

localised at the division site and distributed, probably in a helical pattern, along the 

cylindrical part of the cell. Although it was clear that DacA localised at cell division 

site, the non-specific binding of anti DacA IgG limited our ability to see DacA at the 

lateral cell wall. This limitation obliged us to re-examine the localisation of GFP-tagged 

DacA, which was already observed at division site (Scheffers et al., 2004). We again 
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observed that GFP-DacA is localised at the cell division site and thinly distributed at the 

lateral cell wall. However, our western blot analysis showed that only about one fourth 

of DatA were tagged with GFP (see section 5.2.2), so a clear localisation of DacA 

proteins may not be seen due to the GFP-DacA cleavage. Overall, DacA and LdcB are 

concentrated at cell division site and distributed in the lateral cell wall, where new 

peptidoglycan is present. With regard to the dynamics of peptidoglycan 

carboxypeptidation, we suggest that new peptidoglycan is processed by 

carboxypeptidases (DacA and LdcB) very soon after synthesis (Figure 5.5). The DacA 

firstly binds to the newly synthesised peptidoglycan layers to trim the 5
th

 D-alanine 

residues, and then LdcB acts relatively quickly to cleave off the uncross-linked 4
th

 D-

alanine residues (see Figure 5.15).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 The proposed dynamics of peptidoglycan carboxypeptidation. The figure represents a 

vegetative cell of B. subtilis. The new glycan strands are synthesised at cell division site and are extended 

towards the cell poles by coiling around the cell shaft. After cross-linking of the newly growing glycan 

strands, DD-carboxypeptidase (DacA) firstly binds to the new strands at cell division site and slides 

towards the cell poles, to trim the D-alanine residues at position 5 of stem peptides. When the 4
th

 D-

alanine residues are exposed, LD-carboxypeptidase (LdcB) is quickly localised and follows DacA to 

release the uncross-linked D-alanine residues at position 4. The arrow represents the direction of glycan 

strand polymerisation. 
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It is already shown that the 5
th

 D-alanine residues on some of the stem peptides are 

swapped with some other D-amino acids in B. subtilis (Lam et al., 2009; Cava et al., 

2011; Kuru et al., 2012). The number of 5
th

 D-alanine residues in peptidoglycan of dacA 

strain is theoretically equal to the number of 4
th

 D-alanine residues in the peptidoglycan 

of ldcB strain. We used NADA labelling to investigate ‘‘D-alanine swapping’’ in ldcB 

strain, which abundantly have tetra-peptide side chain in peptidoglycan (see section 

5.2.3). The ldcB strain showed a slightly higher rate of D-alanine exchange than the 

wild type. However, the rate of D-alanine exchange in ldcB strain was significantly 

lower than seen in the dacA stain. This suggests that the 4
th

 D-alanine residues are not 

exchanged, but the lack of LdcB might slightly reduce the efficiency of DacA in 

trimming of 5
th

 D-alanine residues, that is why the fluorescent signal is slightly higher 

in the lateral cell wall of ldcB strain.  

In addition to above, it is suggested that D-alanine swapping in peptidoglycan is 

catalysed by DD-transpeptidase (Cava et al., 2011; Kuru et al., 2012). The DD-

transpeptidation reaction is usually catalysed by penicillin-binding proteins (PBPs) 

(Sauvage et al., 2008). To determine if there is a specific PBP(s) doing D-alanine 

exchange, the pbp mutant strains were grown in the presence of NADA (see section 

5.2.3). The result showed that the rate of NADA incorporation was not abolished in 

anyone of the pbp single mutants, suggesting that D-alanine swapping may not be 

catalysed by a specific PBP. Interestingly, the lack of PBP2a, PBP3, PBP4, PBP4* and 

PBP1 individually caused detectable reduction in the fluorescent intensity in lateral cell 

wall, suggesting that these PBPs play redundant role in D-alanine swapping. The role of 

PBP1 in catalysing 5
th

 D-alanine exchange was already reported in an in vitro study 

(Lebar et al., 2014). In contrast, the rate of D-alanine exchange significantly increased 

in a pbpH strain (see section 5.2.3). This might be consistent with the suggested 

redundant roles of PBP2a and PBPH in lateral cell wall synthesis (Wei et al., 2003). 

That is to say the activity of PBP2a, which seemingly play role in D-alanine swapping, 

may increase to compensate the lack of PBPH. Once the writing up of this thesis was 

started, a paper was  published by Fura et al. (2015), who used fluorescently labelled D-

lysine and cytometry to identify PBP(s) that exchanges D-alanine residues in the 

peptidoglycan of B. subtilis. Consistent with our results, they observed that D-alanine 

swapping occurred in all single pbp mutants and the incorporation of fluorescent D-

lysine was significantly higher in pbpH null strain. They also proposed that PBP4 is 

primarily in charge of swapping process in B. subtilis. However, our results suggested 
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that PBP2a, PBP3, PBP4, PBP4* and PBP1 are potentially capable of incorporating 

unnatural D-amino acids into the B. subtilis peptidoglycan. Moreover, the addition of D-

alanine in a ratio of 10:1 of NADA did not affect peptidoglycan modification with 

NADA, suggesting that the natural D-alanine may not be swapped with the D-alanine 

residues on the stem peptides. 

The cell wall of bacteria normally undergoes anabolic (synthesis) and catabolic 

(turnover) processes during growth. We wanted to find out whether cell wall turnover is 

a random process or if it occurs coordinately with cell wall synthesis. The cell wall 

turnover was studied in fluorescently labelled cell wall in the presence of penicillin G 

(see section 5.2.4). The result showed a significant reduction in cell wall turnover, while 

cell wall synthesis is inhibited by penG. The highest rate of cell wall turnover was only 

observed at the beginning, this was expected because the cells were actively growing 

and the addition of penG may not inhibit cell wall synthesis immediately. This result 

suggests that cell wall synthesis and turnover depend on each other and the coordination 

of the two processes is required for normal growth. Our result is also consistent with 

Mauck et al. (1971), who studied the relationship between cell wall synthesis and 

turnover in B. subtilis and B. megaterium KM at population level, using cell wall 

inhibition antibiotics and radioactive isotopes. However, the possible drawback of 

Mauck et al. (1971) study was loss of radioactivity as a result of cell lysis due to the 

action of the antibiotic. Although it is clear that cell wall synthesis and turnover are 

coordinated in thick peptidoglycan of Gram-positive bacteria, the mechanistic details of 

such coordination have not been understood. 

Unlike radioactive isotopes, electron microscopies and fluorescently labelled antibiotics, 

the FDAA can be used to visualise the dynamics of cell wall assembly at single cell 

level during growth of B. subtilis. We used this useful advantage of FDAA to 

understand peptidoglycan assembly in B. subtilis. The dacA strain was used in the 

following investigations due to its good labelling with FDAA. The cells of dacA strain 

were labelled with NADA in PTM, a medium in which the cells grow slower than in 

usual rich medium. This strategy was helpful to visualise the time-course of cell wall 

assembly in fixed and live cells. Firstly, peptidoglycan assembly was studied in live 

cells, using time lapse microscopy (see section 5.2.5). It was observed that the new 

peptidoglycan is incorporated into the cell division site and continues along the lateral 

cell wall possibly in a helical pattern. In the meantime the corresponding old 

peptidoglycan is co-ordinately degraded. One drawback of time-lapse microscopy was 
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gradual inactivation of the fluorescent probe (NADA) upon frequent exposure to the 

light source (photobleaching). Secondly, peptidoglycan synthesis and turnover were 

investigated in FDAA labelled cells after fixation in paraformaldehyde. Although the 

results showed the same observation as of time-lapse microscopy, the fixation of the 

cells was useful to analyse the distribution of florescence in cell wall, using surface plot 

tool of ImageJ software. This single cell analysis led to the development of a model, 

explaining the dynamics of peptidoglycan assembly in the cylindrical part of Gram-

positive rod cell (Figure 5.16 and 5.17). According to our model, the polymerisation of 

new glycan strands successively starts at the cell division site and move around the 

cylindrical part of the cell towards the cell poles. That is to say, several new 

peptidoglycan layers are incorporated close to the cell membrane in a cascade manner 

and are extended around the cell shaft in helical patterns. Meanwhile, the corresponding 

outermost layers of old peptidoglycan are coordinately degraded and released to the 

surrounding environment (Figure 5.16 and 5.17). The model also shows how cell wall 

thickness and cell diameter are controlled during growth. To further test our model, the 

FDAA labelling was also used to see the effect of essential cell division proteins (FtsZ 

and ftsL) in peptidoglycan synthesis at lateral cell wall (see section 5.2.5). The result 

showed that the lack of FtsZ and FtsL only inhibits peptidoglycan synthesis at the cell 

division site. Moreover, a radioactive study already suggested that LytE, a DL-

endopeptidase, plays role in peptidoglycan turnover (Bisicchia et al., 2007). However, it 

is mostly suggested that LytE plays role in cell elongation (Carballido-Lopez et al., 

2006; Hashimoto et al., 2012; Dominguez-Cuevas et al., 2013). Therefore, we revised 

the proposed role of LytE in cell wall turnover, using NADA labelling (see section 

5.2.5). It was observed that cell wall turnover was not affected in the absence of LytE. 

This observation supports the proposed role of LytE in cell elongation. In addition to the 

understanding of peptidoglycan assembly in individual cell, we investigated the pattern 

of peptidoglycan synthesis and turnover through generations of B. subtilis (see section 

5.2.6). It was observed that the new and old peptidoglycan layers are unevenly 

distributed along the cylindrical part of the cells, suggesting that cell wall synthesis and 

turnover occur correspondingly and at different rates along the cylindrical part of the 

cell (see section 5.2.6 and Figure 5.18 for description).  

Thus our data in (Figure 5.1, 5.2, 5.8, 5.10, 5.11 and 5.14 and movie 5.1) led to the 

development of a comprehensive model illustrates the mechanistic details of 
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peptidoglycan assembly (coordinated peptidoglycan metabolism) in individual cell and 

throughout generations of B. subtilis (see Figure 5.16, 5.17 and 5.18). 
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Figure 5.16 A schematic model illustrates the dynamics of peptidoglycan assembly (coordinated cell 

wall synthesis and turnover) at the lateral cell wall of B. subtilis. A) a schematic cartoon shows the 

longitudinal view of an actively growing cell. The peptidoglycan synthases polymerize new glycan 

strands (blue layers) successively at the inner part of cell wall, starting at the cell division site towards the 

cell pole. Meanwhile, the corresponding old glycan strands (red layers) were degraded at the outermost 

layers of peptidoglycan by hydrolases. The digits represent the order of synthesis and degradation of 

peptidoglycan layers. The arrows display the direction of glycan strand polymerisation. B) It represents 

the left polar view of the cell in figure (A). It clarifies how bacterial cell evenly keeps the thickness of 

peptidoglycan along the cylindrical part of the cell, this is crucial for maintaining of rod shape and 

resisting turgor pressure. The black square in figure (A) represents an area that shown in details in (Figure 

5.17). 

A) 

B) 
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Figure 5.17 Proposed mechanisms of peptidoglycan metabolic processes in the lateral cell wall of B. 

subtilis. It shows a comprehensive mechanism of peptidoglycan metabolism during vegetative growth. 

The mature peptidoglycan precursor (lipid II) is membrane translocated and added to the newly growing 

glycan strand at the innermost layers of peptidoglycan by glycosyltranferase (GTase). The transpeptidase 

(TPase) cross-links about 30-40 % of stem peptides, possibly in the same strand and with the stem 

peptides of the upper layer. The new peptidoglycan layer is processed by carboxypeptidases (DacA and 

LdcB) soon after cross-linking. The cell must maintain its normal diameter during growth, so DL-

endopeptidases (LytE and CwlO) may loosen the already synthesised peptidoglycan layers to provide 

space for insertion of new peptidoglycan layers. The cell morphogenesis proteins (MreB isomers) are also 

essential in directing peptidoglycan synthases (GTase and TPase) and DL-endopeptidases (LytE and 

CwlO). Meanwhile, the peptidoglycan hydrolases (Exo-glucosaminidase (LytG), Muramidase (still 

unknown), Endo-glucosaminidase (lytD) and Amidase (LytC)) degrade old peptidoglycan at the 

outermost layers to facilitate cell growth. The roles of MreB proteins in directing the PBPs and DL-

endopeptidases are adapted from (Dominguez-Cuevas et al., 2013). CM: plasma membrane; PG: 

Peptidoglycan; P: Phosphate 
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Figure 5.18 A schematic diagram showing the pattern of peptidoglycan synthesis and turnover 

throughout generations of B. subtilis. This diagram was generated based on the microscopic images and 

surface plots in Figure 5.14, which shows the NADA labelling of peptidoglycan in KS15 (ΔdacA::spc) 

strain. The red colour represents multiple layers of old peptidoglycan, which coiled around the cell shaft. 

The blue colour represents multiple layers of new peptidoglycan, which are synthesised in the middle of 

the cell and moved in helical patterns towards the cell poles. 
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Chapter 6. General discussion and future directions 

Almost nothing was known about bacterial cell wall composition until 1950 (Martin, 

1966). After several decades of cell wall investigations, there are hopefully great 

knowledge about cell wall structure and metabolism in bacteria. However, the studies 

have primarily focused on the cell wall of Gram-negative model bacterium, E. coli. The 

cell wall synthesis and turnover have also been studied in rod shaped Gram-positive 

bacteria, but the coordination of the cell wall metabolic processes and the fate of cell 

wall degraded materials have been paid little attention. Also, the dynamics or 

mechanistic details of cell wall assembly are still not clearly understood in the multi-

layered wall of Gram-positives. This study set out to further understand the cell wall 

metabolic processes (synthesis, modification, turnover, recycling and dynamics of 

peptidoglycan assembly) in a Gram-positive model bacterium, B. subtilis. Exploiting the 

fact that D-alanine is an essential and a global component of bacterial cell wall, we did 

genetic manipulations in D-alanine biosynthetic pathway and in D-alanine involved cell 

wall processes to approach the aims of the study.  

We firstly characterised a B. subtilis D-alanine auxotroph (alrA) in rich medium as a 

starting point of the study. It was found that the alrA strain requires 500 µM of D-

alanine to obtain good grow in rich medium. Through deletion of dlt operon to prevent 

D-alanylation of teichoic acids, we found that teichoic acids contain almost the same 

amount of D-alanine as much as peptidoglycan during exponential growth (chapter 3). 

This result is in agreement with a previous study by (Hyyrylainen et al., 2000), who 

observed rapid increase in D-alanylation of WTA during exponential phase of B. 

subtilis. These can suggest that Gram-positive bacteria require sufficient amount of D-

alanine for the biosynthesis of peptidoglycan and modification of teichoic acids. Our 

result also supports a previous study, which reported the complete absence of D-alanine 

in the teichoic acids of a dlt strain (Perego et al., 1995). We also observed a significant 

difference between the amount of radioactive D-alanine consumed from the medium 

and the amount incorporated into the cells of D-alanine prototroph strains, but not the 

D-alanine auxotroph (alrA) strain (chapter 3 and 4), suggesting that the exogenous D-

alanine is used for cell wall synthesis as well as energy production. Moreover, it was 

previously shown that alrA strain of B. subtilis is able to grow in MM without D-alanine 

and the growth is inhibited by L-alanine (Ferrari et al., 1985), but this observation was 

not followed up beyond suggesting a second D-alanine racemase (AlrB) in B. subtilis 
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(Pierce et al., 2008). Whilst approaching the submission of this thesis we managed to 

identify that D-alanine aminotransferase (Dat), which produces D-alanine from D-

glutamate and vice versa (Figure 1.3B and 6.1), supports the growth of alrA strain in 

MM (discussed in chapter 3). We suggest that Dat could act to ensure the balance 

between D-alanine and D-glutamate production under some conditions. The inhibition 

of alrA growth by L-alanine might be related to the preference of Dat to convert L-

alanine to L- or D-glutamate rather that making D-alanine (Thorne et al., 1955). This is 

the first in vivo evidence about the role of Dat in D-alanine synthesis in B. subtilis. This 

finding would be really important to further understand alanine metabolic pathway and 

to investigate cell wall metabolism in MM. The role of Dat in D-alanine synthesis was 

already reported in D-alanine auxotroph (dal) L. monocytogenes as well (Thompson et 

al., 1998). In addition, the transport of D-alanine by alrA strain also inspired us to 

identify a D-alanine transporter (DatA, formerly YtnA) in B. subtilis. The genetic 

experiments (chapter 3) strongly suggested that DatA has high specificity to D-alanine, 

because the growth of alrA strain depends on DatA protein in rich media, supplemented 

with D-alanine. The datA gene seemed to be transcribed in an operon, but the proposed 

function of its upstream and downstream genes are not related to amino acid transport 

and D-alanine metabolism.  Following our genetic data, the bioinformatics analysis 

(chapter 4) suggested that DatA protein is a member of amino acid-polyamine-

organocations superfamily and the general features of DatA are similar to those of 

secondary carriers (permease) (Poolman and Konings, 1993). The proteins homologous 

to DatA are also found in many bacterial species, and the most interesting protein is D-

alanine/glycine/D-serine transporter (CycA) of E. coli, which showed 41.7 % identity to 

DatA.  

In the published literature, it is reported that D-alanine, D-serine, D-cycloserine, glycine 

and to some extend L-alanine are relatively transported through a common uptake 

system in bacteria. We firstly wanted to investigate the amino acid specificity of DatA, 

using in vitro system (e.g liposomes) and heterogeneous hosts (e.g E. coli and frog 

oocytes), but these attempts were not successful (discussed in section 4.3). 

Alternatively, we were able to indirectly examine the specificity of D-alanine 

transporter in alrA strain, using amino acid competition assay (see chapter 4 for details). 

We observed that only L-alanine inhibits the growth of alrA strain, which did not 

manage to grow when the ratio of L-alanine to D-alanine is 20:1. This observation 

indirectly suggested that either L- and D-alanine are transported via the same uptake 
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system or D-alanine transporter is distracted by L-alanine due to the structural identity 

of L- and D-alanine. This observation may suggest that the alrA strain actually requires 

less than the observed amount of D-alanine (500 µM) for growth, but the normal L-

alanine content of rich medium reduces the transport of the supplemented D-alanine. 

The above result could be consistent with the kinetics and amino acid inhibition study 

of Clark and Young (1974), who proposed a specific high-affinity transport system for 

both L- and D- alanine in B. subtilis168. Similarly, the transport of L- and D-alanine via 

a common transporter was also suggested in M. tuberculosis (David, 1971), Bacillus sp. 

PB3 (Kanamori et al., 1999) and an archaea bacterium, Methanococcus maripaludis 

(Moore and Leigh, 2005). In contrast to the above suggestions, we detected evidence for 

the transport of L-alanine by the datA strain, when it was grown in rich and minimal 

media (chapter 3 and 4). These observations directly suggest that B. subtilis has two 

separate uptake systems for L-and D-alanine. This suggestion can be supported by some 

studies, which suggested two separate transport systems for L-and D-alanine in E. coli 

K-12 (Wargel et al., 1970; Wargel et al., 1971; Cosloy, 1973; Robbins and Oxender, 

1973). Moreover, we found that D-cycloserine was able to inhibit the growth of datA 

strain. This suggested that D-cycloserine is normally taken up in the absence of DatA 

protein; hence D-alanine and D-cycloserine must have separate uptake systems in B. 

subtilis. This result is in agreement with Clark and Young (1977), who did not observe 

any reduction in the rate of D-alanine transport in D-cycloserine resistant B. subtilis 

168, which was less efficient in D-cycloserine transport. In contrast, in E. coli a 

common transport system for D-cycloserine and D-alanine was suggested (Wargel et 

al., 1970; Wargel et al., 1971; Baisa et al., 2013) and similarly for M. tuberculosis 

(David, 1971). Thus based on the above direct and indirect experimental observations 

regarding the specificity of DatA to L-alanine, D-alanine, glycine and D-cycloserine, we 

believe that DatA is a D-alanine specific transporter.  

It is known that the uncross-linked D-alanine residues in peptidoglycan are trimmed by 

DD- and LD- carboxypeptidases in B. subtilis, for unclear reasons. Interestingly, Lam et 

al. (2009) already used HPLC to analyse the accumulation of D-amino acids in the 

exhausted LB culture of some bacteria, but D-alanine was not detected in the culture of 

B. subtilis. From this result it seems that the released D-alanine from cell wall is re-

utilised, so this prompted us to investigate the roles of carboxypeptidases. We firstly 

asked why peptidoglycan is processed by carboxypeptidases or what are the 

physiological roles of carboxypeptidases in peptidoglycan metabolism?. Interestingly, 
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our radioactive labelling data showed that the lack of carboxypeptidases (DacA and 

LdcB) does not alter the rate of cell wall synthesis and turnover but increased the 

requirement of D-alanine for peptidoglycan synthesis in dacA and lcdB mutants (chapter 

3 and 5). This observation suggested that the carboxypeptidases apparently do not have 

a role in peptidoglycan biosynthesis and hypothesised that the trimmed D-alanine 

molecules from peptidoglycan might be recycled. The removal of D-alanine esters in 

the teichoic acids (deletion of dlt genes) and the identification of D-alanine transporter 

(DatA) were really useful to investigate the unclear role of carboxypeptidases and the 

fate of the cell wall derived D-alanine in B. subtilis. These were investigated by 

performing cross-feeding assay and RP-HPLC analysis (chapter 4). It was found that the 

released D-alanine molecules from peptidoglycan by carboxypeptidases and from 

teichoic acids by spontaneous breaking are recycled through DatA, suggesting that both 

DatA and carboxypeptidases establish a recycling pathway for cell wall derived D-

alanine (Figure 6.1). This finding can be supported by the  presence of a 22 nm 

periplasmic space between plasma membrane and cell wall in B. subtilis (Matias and 

Beveridge, 2005), because this space might accommodate the released D-alanine 

molecules and facilitate D-alanine recycling via DatA. Surprisingly, the RP-HPLC 

analysis showed that the accumulated D-alanine is disappeared even in the stationary 

culture of datA strain, suggesting that D-alanine is still transported (or recycled) in the 

absence of DatA protein. This observation is also consistent with Lam et al. (2009), 

who did not detect D-alanine in the stationary culture of B. subtilis. The transport of D-

alanine into datA strain was furthered confirmed by growing the wild type and datA 

strain in MM, supplemented with radioactive D-alanine, and by exploiting the poor 

growth of alaT mutant in MM (chapter 4). From our analyses (chapter 3 and 4) it was 

evident that even in a datA strain D-alanine uptake occurs, which can only be observed 

in MM and during stationary phase in rich medium, where the amino acid contents of 

the medium is predominantly consumed. This might suggest that datA strain 

presumably transports D-alanine via non-specific amino acid uptake systems in poor 

growth media. 

.
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Figure 6.1 Proposed D-alanine and peptidoglycan recycling pathways in B. subtilis. The diagram 

clarifies cell wall metabolism during vegetative growth. The newly synthesised peptidoglycan layers are 

processed by carboxypeptidases (DacA and LdcB) soon after cross-linking. The released D-alanine 

molecules from both peptidoglycan and teichoic acids are re-taken up via DatA for de novo synthesis of 

peptidoglycan precursor. Meanwhile, the peptidoglycan hydrolases (muramidase (CwlQ ?), exo- and 

endo-β-N-acetyl glucosaminidase (LytG, lytD) and amidase (LytC)) degrade the old peptidoglycan at the 

outermost layers. The released muropeptides are then hydrolysed by a β-N-acetyl glucosaminidase 

(NagZ) and an amidase (AmiE). The amino sugars (MurNAc and GlcNAc) and detached stem peptides 

are probably taken up through their specific uptake systems. The muropeptide recycling pathway (NagZ, 

AmiE, NagP and MurP) is adapted from (Litzinger et al., 2010a; Reith and Mayer, 2011) 

CM: plasma membrane; PG: Peptidoglycan; P: Phosphate; LTA: Lipoteichoic acid; WTA: Wall teichoic 

acids. 
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Previously, different techniques were used to study the assembly and architecture of cell 

wall in Gram-positive bacteria (see introduction of chapter 5). However, the ability to 

understand the mechanistic details of assembly of multi-layered peptidoglycan was 

limited, because of the potential artifacts generated through the atomic force and 

electron microscopic techniques and the radioactive experiments only provided indirect 

explanation. We took the advantage of the development of a cell wall labelling 

fluorescent probe (NADA) to visualise different peptidoglycan metabolic processes 

(synthesis, modification and turnover) (chapter 5). Cell wall synthesis and turnover 

were firstly investigated, using radioactive D-alanine and NADA, which is 

extracellularly exchanged with the 5
th

 D-alanine residues on some stem peptides in the 

peptidoglycan of B. subtilis ‘‘D-alanine swapping’’. It was found that the complete 

shedding of old peptidoglycan and its replacement by new peptidoglycan take about 

three generations. This observation is consistent with the previous studies, which 

investigated cell wall turnover over, using radioactive GlcNAc and D-glutamic acid 

(Mauck et al., 1971; Mobley et al., 1984; Blackman et al., 1998). Our radioactive data 

also suggested that either the  D-alanine residues of teichoic acids are spontaneously 

released, which is consistent with (Ellwood and Tempest, 1972; Archibald et al., 1973; 

Koch et al., 1985b; Hyyrylainen et al., 2000) or teichoic acids undergo turnover as 

much as peptidoglycan. This is in agreement with Mauck et al. (1971), who used 

radioactive phosphate (
32

P) for monitoring teichoic acids turnover  in B. subtilis and 

with Wong et al. (1974), using radioactive GlcNAc for cell wall investigation in S. 

aureus. Unlike the radioactive studies, we visualized and tracked the coordinated 

peptidoglycan synthesis and turnover in growing cells, in which the incorporation of 

new and the degradation of old peptidoglycan started at the cell division site and 

continued towards the cell poles (chapter 5). However, peptidoglycan synthesis and 

turnover were not observed at the cell poles, which is consistent with the studies by 

Mobley et al. (1984) and Merad et al. (1989) (see introduction section of chapter 5). 

Moreover, radioactive and fluorescent data demonstrated that the degraded cell wall 

materials are released into the culture medium during exponential growth, suggesting 

that the efficient recycling of old cell wall material does not occur in exponential phase. 

This observation is consistent with Mauck et al. (1971), who analyzed the composition 

of culture supernatant of B. subtilis W-23, growing in minimal medium. The absence of 

cell wall recycling during exponential growth could be due to catabolic repression of 

cell wall recycling pathway by nutrients in the medium as suggested by (Reith and 

Mayer, 2011). However, we observed the transport of D-alanine in both exponential and 
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stationary growth phases (chapter 4), suggesting that the recycling of simple cell wall 

derived molecules (e.g amino acids) are possible during exponential phase. The 

repression of cell wall recycling could have impact on both quantity and quality of 

biotechnological products because of a massive loss of nutrients through cell wall 

turnover (Reith and Mayer, 2011) and the induction of innate immune response by the 

soluble cell wall contaminants (e.g muropeptides) (Boudreau et al., 2012; Johnson et 

al., 2013; Bertsche et al., 2015). The synthetic inhibition of cell wall recycling pathway 

might have clinical importance, because the released cell wall material from pathogenic 

bacteria could activate host immune system to control the bacterial infection with the 

aid of antibiotics.   

Regarding the modification of peptidoglycan, we proposed the dynamics of 

peptidoglycan carboxypeptidation in B. subtilis based on immunofluorescence 

microscopy and GFP tagging (see discussion of chapter 5). We also studied D-alanine 

swapping and found that the swapping reaction can be catalysed by some of the PBPs 

(PBP2a, PBP3, PBP4, PBP4* and PBP1), but more potentially by PBP2a. In contrast, 

Fura et al. (2015) suggested that D-alanine swapping is primarily catalysed by PBP4, 

using flow cytometry (see discussion in chapter 5). Unlike in E. coli, we also found that 

the 4
th

 D-alanine residues on the stem peptides in ldcB strain are not swapped with 

NADA, using microscopic analysis. This observation is in agreement with the previous 

studies (Lam et al., 2009; Cava et al., 2011; Kuru et al., 2012), which reported the 

swapping of only 5
th

 D-alanine residues in the peptidoglycan of B. subtilis, using 

muropeptides analysis. The physiological role of D- amino acid swapping in 

peptidoglycan is unclear, we assume that D-alanine swapping occurs during glycan 

strand polymerization by the transpeptidase domains of PBP2a, PBP3, PBP4, PBP4* 

and PBP1. It is possible the swapped 5
th

 D-alanine residues on some stem peptides 

guide the transpeptidases to only cross-link the modified stem peptides,  in other words, 

D-alanine swapping might play role in controlling the percentage of peptidoglycan 

cross-links because only 30-40 % of stem peptides are found to be cross-linked in the 

peptidoglycan of B. subtilis (Atrih et al., 1999).   

The interpretation of the fluorescent microscopic data all together led to the 

development of an interesting model, illustrating the coordination and mechanistic 

details of cell wall assembly in single cell and throughout generations of B. subtilis (see 

chapter 5). Briefly, we proposed that the polymerisation of new glycan strands 

successively starts at the cell division site and are extended around the cylindrical part 
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of the cell towards the cell poles, in other words, new peptidoglycan layers are 

incorporated close to the cell membrane in a cascade manner and are polymerised in 

helical pattern around the cell shaft. In the meantime, the corresponding outermost 

layers of old peptidoglycan are coordinately degraded and released to the surrounding 

environment (see discussion section of chapter 5). The developed model integrates the 

inside-to-outside model of cell wall growth (Pooley, 1976a; Pooley, 1976b; Koch and 

Doyle, 1985a) and supports the murein layered model of cell wall architecture (Holtje, 

1998; Vollmer and Holtje, 2001; Vollmer and Holtje, 2004). In the model, the 

peptidoglycan layers are arranged in a helical pattern around the cylindrical part of the 

cell, which is consistent with the observations made using fluorescent vancomycin 

labelling of cell wall (Daniel and Errington, 2003; Tiyanont et al., 2006). In contrast to 

the old models (Pooley, 1976b; Mobley et al., 1984), which proposed even distribution 

of new and old peptidoglycan along the cylindrical part of the cell, our model suggests 

that the area of lateral cell wall close to the cell division site contains more new 

peptidoglycan than the area close to the cell poles. This means that the rates of 

peptidoglycan synthesis and turnover varied along the cylindrical part of the cell (see 

section 5.2.6 and Figure 5.18).  

Taken together, the investigation of D-alanine metabolism and its involvement in 

different cell wall metabolic processes in B. subtilis led to the identification of a D-

alanine transporter (DatA), which functions with carboxypeptidases (DacA and LdcB) 

as a recycling pathway for cell wall derived D-alanine. Despite our characterisation of 

D-alanine transporter (DatA), more biochemical and structural investigations should be 

done. We also found that D-alanine aminotransferase (Dat) can act to synthesis D-

alanine when alrA strain is grown in MM. Interestingly, a model with regard to the 

mechanistic details of peptidoglycan assembly has been proposed as well. As our 

microscopic data showed obvious coordination between peptidoglycan synthesis and 

turnover, it is still unclear how the peptidoglycan synthases and hydrolases coordinate 

in the multi-layered peptidoglycan of Gram-positive bacteria. It is increasingly 

suggested that teichoic acids are turned over as much as peptidoglycan, but it is still 

unclear how the turnover of teichoic acids occurs and what is the fate of the released 

teichoic acid material. The suggested role of PBP2a in D-alanine swapping should also 

be investigated at structural level. 

. 

(Bertran et al., 1992; Kennedy et al., 2002)
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 Appendices 

Appendix A. Solutions and buffers 

       Name           Composition 
 

DNA loading dye                            0.04 %    Bromphenol blue in 50 % glycerol 

 

50× TAE buffer                 2.0 M      Tris pH 8.0 

     50 mM    Acetic acid 

     100 mM  EDTA 

 

SSC                   0.15 M    Sodium chloride  

     0.01 M    Sodium tricitrate 

                     pH 7.0 

 

Protein gel fixation solution                10 %       Methanol 

     10 %       Acetic acid 

     10 %       Isopropanol 

     5.0 %      Glycerol 

 

Coomassie brilliant blue (G) stain        1.6 % 

 

1X MES SDS running buffer                50 mM   MES 

     (Stock solution: 20X)                       50 mM   Tris Base 

                                                              0.1 %      SDS  

                                                              1.0 mM   EDTA 

                                                                              pH 7.3 

 

Transfer Buffer                 0.5X       MES SDS running buffer 

(Wet transfer)                 20 %       Methanol 

 

Protein membrane blocking buffer       3.0 %      Milk powder  

      0.1 %     Tween 

                              in PBS 

 

PBST buffer                                          0.1 %     Tween 20 in PBS 

 

HPLC solution A                                  0.05M    Triethylamaine phosphate  pH3 

 

HPLC solution B                                   99.9 %   Acetonitrile  

                                                              0.1 %      Formic acid                                                                                                                                                      

 

HPLC suspension solution                    90 %      0.05M Triethylamaine phosphate pH 3 

                                                              9.99 %    Acetonitile  

                                                              0.01 %    Formic acid   

 

Spizizen minimal medium (SMM)   0.2 %      Ammonium sulphate   

                                                   1.4 %      Dipotassium phosphate  

               0.6 %      Potassium dihydrogen phosphate  

      0.1 %     Sodium citrate dihydrate 
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      0.02 %   Magnesium sulphate  

 

Casamino acids (CAA)                        20 %       Casamino acids 

      

Solution D                  0.1 M     CaCl2 

 

Solution E                  40 %       D-glucose 

 

Solution F                  1.0 M      MgSO4 

 

Solution H                                             0.065 M MnSO4 

  

Solution P                                             5.0 ml     solution D 

                                                              25 ml      solution F 

                                                              0.1 ml     solution H 

                                                              filled up to 100 ml with d H2O and autoclaved.   

 

Universal buffer                                    300 mM NaCl 

                                                              20 mM   Tris-HCl pH 8.0 

 

Extraction buffer                                   300 mM NaCl 

                                                              20 mM   Tris-HCl pH 8.0 

                                                              1.5%       DDM or 

                                                                             2% Triton X-100 

                                                              10%        Glycerol 

 

Column equilibration buffer                 300 mM NaCl 

                                                              20 mM   Tris-HCl pH 8.0 

                                                              0.2 %      DDM  or  1.0 % Triton X-100 

                                                              10 %       Glycerol 

 

Column wash buffer                             300 mM NaCl 

                                                              20 mM   Tris-HCl pH 8 

                                                              0.2%       DDM  or  0.2 % Triton X-100 

                                                              10%        Glycerol 

                                                              25 mM    Imidazole 

 

Elution buffer                                       300 mM  NaCl 

                                                              20 mM   Tris-HCl pH 8 

                                                              0.2 %      DDM or 0.2 % Triton X-100 

                                                              10 %       Glycerol 

                                                              300 mM Imidazole 

 

Protoplast formation buffer                  0.1 M      Potassium phosphate 

               0.5 M     Sucrose  

               200µg/m Lysozyme 

                              pH7.3 

 

TE buffer                                              10 mM   Tris pH 8.0 

                                                              1.0 mM  EDTA 
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GTE buffer                                           50 mM    Glucose 

                                                              25 mM   Tris pH 8.0 

                                                              10 mM   EDTA pH 8.0     

  

Cell fixation solution                            3.0 %     Paraformaldehyde in PBS 

Cell blocking solution                           2.0 %    Bovine serum albumin in PBS 
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Appendix B. Growth media 

               Name    Composition 

 
Pre-transformation medium (PTM)         10 ml      SMM 

         0.25 ml   solution E 

         0.1 ml     Tryptophan  

         0.1 ml     solution P 

         0.2 ml     CAA 

 

Transformation medium (TM)                 10 ml      SMM 

         0.15 ml   solution E 

         0.05 ml   solution F 

         5.0 µl      CAA 

 

LB medium                      10 gm     Tryptone 

         5 gm       Yeast extract 

         10 gm     NaCl 

                                 adjusted to pH 7.0, filled up to 1.0 L 

                                 with dH2O and autoclaved. 

 

Nutrient Agar                      28 gm     Oxoid Nutrient Agar 

                        filled up to 1.0 L with dH2O and 

                        autoclaved. 

 

PAB medium                      17.5 gm Oxoid antibiotic medium no. 3 

                        filled up to 1.0 L with dH2O and  

                        autoclaved. 

 

Minimal medium                                      0.2 %      Ammonium sulphate   

                                                       1.4 %      Dipotassium phosphate  

                   0.6 %      Potassium dihydrogen phosphate  

          0.1 %     Sodium citrate dihydrate 

          0.02 %   Magnesium sulphate 
   

                                                                                 filled up to 97 ml with dH2O and 

                                                                                 autoclaved, then the following 

                                                                                 solutions added.  
         

         1.5  ml    solution E 

         0.6 ml     solution F 

         0.05 ml   solution D 

         1.0 ml     Tryptophan 

                        for solid medium 1.5 % agar no.1 

                        added. 

 

 

 

 



                                                                                                                             Appendices 

191 

 

Appendix C. Oligonucleotides 

Name Sequence 
Restriction 

site 
Purpose 

 oKS01 5´-AAGGAACAGATGATGCGCACG-´3 --------- 

For deletion  

of dltA-D    

genes 

 oKS02 
5´AGTTCTAGATCCGCATGTGTTTGAA 

TAGC-´3 
Xbal 

 oKS03 
5´ATATCTAGAAGATCTAGCGAAGGG 

CTTCCAGGTTGC-´3 

Xbal and 

BglII 

 oKS04 5´-TGCGATTTCTCCTGTTTCACCG-´3 --------- 

 oKS05 5´-ATGTACGCATAGGCCATTCCG-´3 --------- 

For deletion  

of dacA gene 

 oKS06 
5´ATAGGATCCGCCGTTAAGGACATT 

TTCAATGC-´3 
BamHI 

 oKS07 
5´ATAGGATCCTGATGGATGTTAGGG 

CTCTTTCG-´3 
BamHI 

 oKS08 5´-TCGCCTTTGTGTACAAGCTTTGC-´3 --------- 

oKS09 5´-CAGGTTGCTCATCGTAA TCGCC-´3 --------- 

For deletion  

of ldcB gene 

oKS10 
5´-ATAGGATCCCGCTTACACTAGATA 

AGCGGGC-´3 
BamHI 

oKS11 
5´TGCGGATCCTTATCAATCGTTTCCG 

CATGC-´3 
BamHI 

oKS12 5´-TAGTATTCGGCACAGATCGGC-´3 --------- 

oKS13 5´-TATCATGGACATATGACGGCG-´3 --------- For checking 

alrA gene 

deletion 
oKS14 5´-TGCTTCGTTTCTCCCGCATCGC-´3 --------- 

oKS15 5´-TAGCTCCGGTCGGCGGAGGGC-´3 --------- For checking 

ldcB gene 

deletion 
oKS16 5´-AAGCCCTGTCAATTCTCACCG-´3 --------- 

oKS17 5´-CGCGAAAGCCATCCGCATGACG-´3 --------- For checking 

dacA gene 

deletion 
oKS18 5´-TGTTTGAGCCATTTCTTGGTC-´3 --------- 

oKS19 5´-GTTTCTGCTTTCACTTGAACG-´3 --------- 

 

For checking 

dltAD genes 

Deletion 

 
oKS20 5´-ATTGCCAAGTTCCAGCAGGCG-´3 --------- 
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oKS21 
5´ATCTCTAGAAATGATATTTTTTTCTA

GGGGAGAAGAAGC-´3 
XbaI 

For pKS1 

construction 
oKS22 

5´TGATCTAGATCAGCTGATATTTCGT 

TCGCTGGC-´3 
XbaI 

oKS23 
5´ACGCTCGAGATGCAAAAACAAAAA 

CAAGAGCTGC-´3 
XhoI For pKS2 and 

pKS3 

construction oKS24 
5´ATAGAATTCGCTGATATTTCGTTCG 

CTGGCAGCAGC-´3 
EcoRI 

oKS25 

5´ATCTCTAGAAAAATTAAAAGGAGG 

TCATCAGCCTATGCAAAAACAAAAAC 

AAGAGCTGCACCGC-´3 

XbaI 
For pKS6 

construction 

oKS26 
5´TGAAGATCTTCAGCTGATATTTCGT 

TCGCTGGC-´3 
BglII 

oKS27 
5´ATACCATGGGCATGCAAAAACAAA 

AACAAGAGC-´3 
NcoI 

For pKS7 

construction 
oKS28 

5´ATAGGATCCGCTGATATTTCGTTCG 

CTGGC-´3 
BamHI 

oKS29 
5´ATAGCTAGCATGCAAAAACAAAAA 

CAAGAGC-´3 
NheI For pKS8 

construction 

 oKS30 
5´ATACTCGAGTCAGCTGATATTTCGT 

TCGCTGGC-´3 
XhoI 

oKS31 5´-CAGCCGTAAAATTTGGACTGTGC-´3 --------- For checking 

datA gene 

deletion 
oKS32 5´-CAACAAACATAAGACCTGCTTCG-´3 --------- 

oKS33 
5´-TGAAGTGGCGGAACGGATTTACC 

G-´3 
--------- 

For checking 

alaT gene 

deletion oKS34 5´-ATATCACACATGTCTTATTTCCGC-´3 --------- 

oKS35 5´-TGGAACTACTGGTTTTTATGGG-´3 --------- 

For checking 

the sequence 

of cloned datA 

gene, it binds 

to 300 bases 

downstream of 

start codon 
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oKS36 5´-AACCCGCAAAAATCGTTAGCC-´3 --------- 

For checking 

the sequence 

of cloned datA 

gene, it binds 

to 700 bases 

downstream of 

start codon 

oKS37 5´-TACAAAATGCCTTTATTTCCG-´3 --------- 

For checking 

the sequence 

of cloned datA 

gene, it binds 

to1200 bases 

downstream of 

start codon 

oKS38 5´-AACGGCTCGGTGACATGTAT-´3 --------- 

oKS38 

to 

oKS69 

used for 

transcription 

analysis of 

datA gene 

 

 

 

oKS39 5´-TGTTCAATGGCTTTGATCGT-´3 --------- 

oKS40 5´-GGACTTGGACCAGCAAACAG-´3 --------- 

oKS41 5´-CGGAAAAACCTCCCTTTTCT-´3 --------- 

oKS42 5´-AGCGGTGCTTTCTGTGAAAT-´3 --------- 

oKS43 5´-GTGCGGCTATTATTGCGATT-´3 --------- 

oKS44 5´-TGTCCAGCTCTTGATGAACG-´3 --------- 

oKS45 5´-CAGAGAGTGGGAAGGGCTTT-´3 --------- 

oKS46 5´-GCATCACAAGAAGCGGAACT-´3 --------- 

oKS47 5´-TCGCTCCGTCACTTAAGGTT-´3 --------- 

oKS48 5´-ACTTGCCCCGTGAATGATTA-´3 --------- 

oKS49 5´-TTCTCCGATCACGACATCAC-´3 --------- 

oKS50 5´-CGGAGAACAGTCCAGCATTT-´3 --------- 

oKS51 5´-ATCCCGATTAAGGCGTTCTT-´3 --------- 

oKS52 5´-CGCCCTGCAAAAGTCATC-´3 --------- 

oKS53 5´-TTGCTGGCTGTGTACTATGGA-´3 --------- 

oKS54 5´-TTTCTTTTCTTCCGGCTTCA-´3 --------- 

oKS55 5´-ATCCCGGGTAAAGCTGTTCT-´3 --------- 

oKS56 5´-GCGGTGCAGCTCTTGTTT-´3 --------- 

oKS57 5´-AGCTGAGCCATCAGCCTAAA-´3 --------- 

oKS58 5´-CCGTTCTTCGTTTTCAGCTC-´3 --------- 

oKS59 5´-CGCGATGTGACGAAGACTTA-´3 --------- 

oKS60 5´-GCTTGTTAAAAACCCCGACA-´3 --------- 

oKS61 5´-GGAGCAGCTGCGTAAAGAAG-´3 --------- 
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oKS62 5´-GGGCAAGTGAAATTGGAAGA-´3 --------- 

oKS38 

to 

oKS69 

used for 

transcription 

analysis of 

datA gene 

oKS63 5´-ATCGGATACACACGTGCAAA-´3 --------- 

oKS64 5´-GCCCCTCCGTAACAGATTC-´3 --------- 

oKS65 5´-TGAAAGGCACAAAGACCAAA-´3 --------- 

oKS66 5´-TCGTAAAAGGGTTTGCAATG-´3 --------- 

oKS67 5´-CAGCGGTCAAATCAACTGAG-´3 --------- 

oKS68 5´-AGCGGCTGTACACGAAAGTT-´3 --------- 

oKS69 5´-AACGGCTGCTCAACTGTTTT-´3 --------- 

oKS70 
5´-ATCATCAATAAACCGACAGC-´3 

--------- 

For checking 

the sequence 

of cloned datA 

gene, it binds 

to 500 bases 

downstream of 

datA start 

codon 

oKS71 

5´-GCGCGAATTCCCACCATGGCAAAA 

CAAAAACAAGAGCTGCACCGCGGACT 

CG-´3 

EcoRI 

For 

construction of 

pKS9 

and pKS11 

oKS72 
5´GCGCTCTAGACCTTAGCTGATATTT 

CGTTCGCTGGCAGCAGCCGC-´3 
XbaI 

For 

construction of 

pKS9 

and pKS10 

oKS73 

5´-GCGCGAATTCCCACCATGGCATAC 

CCATACGATGTTCCAGATTACGCTCA 

AAAACAAAAACAAGAGCTGCACCGC 

GGACTCG-´3 

EcoRI 
For pKS10 

construction 

oKS74 

5´-GCGCTCTAGACCTTAAGCGTAATC 

TGGAACATCGTATGGGTAGCTGATAT 

TTCGTTCGCTGGCAGCAGCCGC-´3 

XbaI 
For pKS11 

construction 

 The restriction sites are bolded and underlined. 

 The red highlighted nucleotides represent the coding sequence of HA-epitope. 

 

 

.
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Appendix D. Distribution of DatA (formerly YtnA) homologous proteins 

The following data are generated by STRING 9.1 bioinformatics database. The coloured 

cells represent the families and groups of the organisms (see the end of the table). 

Families Organisms Protein Function Bit score 

Enterobacteriaceae 

Escherichia coli 

ProY 

 

Putative proline-

specific 

permease 

603.4 

Escherichia fergusonii 600.9 

Salmonella enterica 600.9 

Yersinia pestis 606.5 

Yersinia 

pseudotuberculosis 
605.5 

Yersinia enterocolitica 616.6 

Shigella flexneri 597.4 

Shigella boydii 603.4 

Shigella dysenteriae 603.4 

Shigella sonnei 603.4 

Klebsiella pneumoniae 598.5 

Dickeya zeae 611.4 

Hamiltonella defensa 589.7 

Pectobacterium spp 616.6 

Cronobacter spp 599.2 

Edwardsiella 614.9 

Photorhabdus spp 573.0 

Erwinia pyrifoliae 605.1 

Proteus mirabilis 566.7 

Enterobacter sp 595.0 

Dickeya dadantii 
Dd703 

_2910 
617.0 

Citrobacter koseri 
CKO 

_02767 
596.7 

Serratia 

proteamaculans 

Spro 

_1046 

618.7 

 

Pseudomonadaceae 

Pseudomonas 

aeruginosa 
PA0789 

Amino acid 

permease 

739.5 

Pseudomonas putida 
PputW61

9 _1089 
728.3 

Pseudomonas 

fluorescens 

PFL 

_4906 
736.4 

Pseudomonas 

entomophila 

PSEEN 

1179 

Amino acid 

permease 
729.4 

Pseudomonas syringae ProY 
Proline-specific 

permease  
568 

Pseudomonas stutzeri AroP1 Aromatic amino 

acid transport 

protein 

479.8 

Sodalis glossinidius SG0465 480.5 

 

 

 

 

Thiotrichales 

 

 

 

Francisella tularensis FTF1633c 
Amino acid 

transporter 
356.9 

Francisella novicida LysP 

Lysine:H+ 

symporter 

357.6 

Francisella 

philomiragia 

Fphi 

_0529 
359.7 
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Families Organisms Protein Function Bit score 

Moraxellaceae 

Acinetobacter 

baumannii 
ProY 

Proline-specific 

permease 
552.7 

'Acinetobacter sp. 
ACIAD 

1168 

Amino acid 

APC transporter 
549.6 

Xanthomonadaceae 

Xanthomonas oryzae 
PXO 

_04173 

D-alanine/D-

serine/glycine 

permease 

467.2 

Xanthomonas 

campestris 
XCC3533 

488.8 

 

Xanthomonas 

axonopodis 
XAC0600 488.1 

Xanthomonas 

campestris 
CycA 481.2 

Stenotrophomonas 

maltophilia 
Smlt0526 466.5 

Legionellales Legionella pneumophila 
LPC 

_2317 

Amino acid 

permease 
321.6 

Unclassified 

Gammaproteobacteria 

Baumannia 

cicadellinicola 
LysP 

Lysine-specific 

permease 
338.4 

Aeromonadaceae 

Aeromonas hydrophila AroP Aromatic amino 

acid transport 

protein 

512.9 

Aeromonas salmonicida 
ASA 

_2547 
512.9 

Tolumonas auensis 
Tola 

_2345 

Amino acid 

permease-

associated 

region 

491.6 

Rhizobiaceae 

Rhizobium etli 

AnsP L-asparagine 

permease 

protein 

398.8 

Agrobacterium 

radiobacter 
403.3 

Agrobacterium 

tumefaciens 
398.8 

Rhizobium sp. 
NGR 

_b23020 
436.1 

Rhizobium 

leguminosarum 

Rleg2 

_5754 

Amino acid 

permease-

associated 

region 

396.3 

Brucellaceae 

 

 

 

Brucella melitensis 
BAWG 

_1429 

D-serine/D-

alanine/glycine 

transporter 

462.0 

Brucella abortus 
BruAb 

2_0056 
Amino acid 

permease family 

protein 

462.0 

Brucella suis BRA0056 462.0 

Brucella microti BMI_II58 458.1 

Brucella ovis 
BOV 

_A0051 
464.4 

Ochrobactrum anthropi 
Oant 

_4275 

Amino acid 

permease-

associated 

region 

467.9 

 

 

Methylobacterium 

 

 

Methylobacterium 

nodulans 

Mnod 

_4992 

Amino acid 

permease-

associated 

region 

608.9 
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Families Organisms Protein Function Bit score 

Bertonella 

Bartonella quintana BQ06710 

Amino acid 

permease 

505.9 

Bartonella grahamii 
Bgr 

_12560 
500.4 

Bartonella tribocorum BT_1464 494.4 

Bartonella henselae BH06520 500.7 

Bartonella bacilliformis AroP 

Aromatic amino 

acid transport 

protein 

479.1 

Xanthobacteraceae 
Azorhizobium 

caulinodans 

AZC 

_1994 

Putative amino 

acid permease 

471.7 

 

Acetobacteraceae 

'Gluconobacter oxydans' GOX0699 
L-asparagine 

permease 
448.0 

Acetobacter 

pasteurianus 

APA01 

_02480 

Amino acid 

transporter 
438.9 

Gluconacetobacter 

diazotrophicus 
AapA 

Putative amino 

acid permease 

383.1 

 

Sphingomonadaceae Sphingomonas wittichii 
Swit 

_0683 

Amino acid 

permease 
386.2 

Caulobacteraceae Caulobacter sp 
Caul 

_5252 

Amino acid 

permease 

 

467.9 

Berkholderiaceae 

 

Burkholderia 

pseudomallei 

ProY 

 

Proline-specific 

permease 

767.1 

 

Burkholderia mallei 
BMA 

2796 

Amino acid 

permease 
764.7 

Burkholderia 

thailandensis 

BTH 

_I3129 

 

Amino acid 

permease-

associated 

region 

764.7 

Burkholderia 

cenocepacia 

Bcen2424

_4371 
750.7 

Burkholderia ambifaria 
BamMC4

06_1095 
550.6 

Burkholderia 

vietnamiensis 

Bcep1808

_4336 
647.3 

Burkholderia 

phytofirmans 

Bphyt 

_3123 
513.6 

Burkholderia phymatum 
Bphy 

_0601 
508.4 

Burkholderia glumae 
bglu 

_2g11350 
533.9 

Ralstonia eutropha 
Reut 

_B4894 
761.5 

Burkholderia sp 
Bcep1819

4_B1646 

Amino acid 

transporter 
747.2 

Burkholderia 

multivorans 

Bmul 

_4250 

AAT family 

amino acid 

transporter 

754.2 

Burkholderia 

xenovorans 

Bxe 

_A0842 

Aromatic amino 

acid/H+ 

symporter 

509.4 

Ralstonia eutropha 
H16 

_B2165 

Amino acid 

ABC transporter 

permease 

752.8 
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Families Organisms Protein Function Bit score 

Berkholderiaceae 

 

Cupriavidus taiwanensis ProY 

Proline transport 

protein, APC 

family 

746.2 

Ralstonia metallidurans 
Rmet 

_5046 

Histidine 

transport protein 
580.0 

Ralstonia pickettii 
Rpic12D 

_0905 
Amino acid 

permease-

associated 

region 

575.4 

Polynucleobacter 

necessarius 

Pnuc 

_0665 
632.3 

Ralstonia solanacearum LysP 
Lysine-specific 

permease 
369.1 

Comamonadaceae 

Acidovorax citrulli 
Aave 

_2608 
D-alanine/D-

serine/glycine 

permease 

495.8 

Delftia acidovorans 
Daci 

_3739 
484.3 

Comamonas testosteroni 
CtCNB1 

_0951 
601.3 

Verminephrobacter 

eiseniae' 

Veis 

_2830 

Amino acid 

permeas 
383.4 

Bordetella 

Bordetella avium BAV1610 

Lysine-specific 

permease 

370.1 

Bordetella parapertussis 
LysP 

356.5 

Bordetella petrii 365.2 

Bordetella 

bronchiseptica 
cadR 359.7 

Neisseriaceae 

Laribacter 

hongkongensis 
LysP 

Lysine-specific 

permease 
354.1 

Chromobacterium 

violaceum 
ProY 

Proline-specific 

permease 
792.2 

Desulfovibrionaceae 
Desulfovibrio 

desulfuricans 

Ddes 

_0172 

Amino acid 

permease 
662.7 

Campylobacteraceae 

Campylobacter fetus LysP 
Lysine-specific 

permease 
363.5 

Sulfurospirillum 

deleyianum 

Sdel 

_0552 

Amino acid 

permease- 

region 

464.8 

Helicobacteraceae 

Helicobacter pylori HP_1017 
Amino acid 

permease 

359.7 

Helicobacter 

acinonychis 
rocE 359.7 

Leuconostocaceae 

Leuconostoc citreum 
LCK 

_00446 

Gamma-

aminobutyrate 

permease 

479.8 

Leuconostoc 

mesenteroides 

LEUM 

_0515 

Amino acid 

transporter 
501.4 

Staphylococcaceae 

Staphylococcus aureus SAR2400 
Putative amino 

acid permease 
542.3 

Staphylococcus 

epidermidis 

SERP 

1902 

Amino acid 

permease 
534.2 

Listeria Listeria monocytogenes ProY 
Proline-specific 

permease 
586.6 

Paenibacillaceae Brevibacillus brevis 
BBR47 

_14760 

Amino acid 

permease 
567.0 

Veillonella Veillonella parvula 
Vpar 

_1627 

Amino acid 

permease 
582.1 
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Families Organisms Protein Function Bit score 

Streptococcaceae 

Streptococcus pyogenes 
M5005_ 

Spy_1359 

Amino acid 

permease 

400.2 

Streptococcus suis 
SSU98 

_2026 
336.6 

Streptococcus equi 
SZO 

_03910 
401.6 

Streptococcus 

dysgalactiae 

SDEG 

_1715 
402.3 

Streptococcus 

agalactiae 
SAG1480 415.9 

Streptococcus uberis SUB1411 390.4 

Streptococcus mutans 
SMU 

_1450 

Putative amino 

acid permease 
399.1 

Streptococcus 

thermophilus 
CycA 

D-Serine/D-

alanine/glycine:

H+ symporter 

388.3 

Lactococcus lactis LysP 
Lysine specific 

permease 
374.0 

Lactobacillaceae 

Lactobacillus reuteri lr0024 

Amino acid 

permease-

associated 

region 

497.9 

Lactobacillus 

rhamnosus 
ProY 

Amino acid 

permease 

495.5 

Lactobacillus 

delbrueckii 
Ldb1796 370.8 

Lactobacillus johnsonii LJ_0507 488.8 

Lactobacillus plantarum lp_0120 
Amino acid 

transport protein 
497.2 

'Lactobacillus casei 
LSEI 

_0642 

amino acid 

transporter 
496.5 

'Pediococcus 

pentosaceus' 

PEPE 

_1230 

Gamma-

aminobutyrate 

permease related 

permease 

505.2 

Exiguobacterium 
Exiguobacterium 

sibiricum 

Exig 

_0221 

Amino acid 

permease 
715.1 

Clostridiaceae 

 

Clostridium botulinum 

Eklund 

CLL 

_A1399 

D-serine/D-

alanine/ 

glycine 

transporter 

552.0 

Clostridium botulinum 
CLK 

_3428 

Lysine-specific 

permease 
385.5 

Clostridium novyi 
NT01CX

_2354 Lysine-specific 

permease 

390.0 

Clostridium perfringens CPE1166 
383.4 

 

Clostridium kluyveri 
CKL 

_0647 Putative amino 

acid permease 

638.3 

Clostridium 

acetobutylicum 
YifK 559.7 

Lysinibacillus 

 

 

Lysinibacillus 

sphaericus 

Bsph 

_0500 

Hypothetical 

protein 
638.6 
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Families Organisms Protein Function Bit score 

Bacillaceae 

Bacillus cereus 
ProY 

Proline-specific 

permease 

796.4 

Bacillus thuringiensis 796.8 

Bacillus anthracis BAS0659 

Amino acid 

permease family 

protein 

796.4 

Bacillus 

weihenstephanensis 

BcerKBA

B4_0608 
 796.8 

'Bacillus licheniformis YdgF ----- 571.9 

Bacillus 

amyloliquefaciens 
YtnA ----- 943.8 

Bacillus pumilus YbxG 

APC family 

amino acid-

polyamine-

organocation 

transporter 

566.0 

Geobacillus spp GK3461 
Amino acid 

transporter 
845.3 

Bacicllus subtilis YtnA 
Putative amnio 

acid permease 
1059.7 

Peptococcaceae 

Desulfitobacterium 

hafniense 

Dhaf 

_2459 
Amino acid 

permease-

associated 

region 

605.8 

Desulfotomaculum 

reducens 

Dred 

_3225 
600.2 

Thermoanaerobacterac

eae 

Carboxydothermus 

hydrogenoformans 

CHY 

_2456 

Amino acid 

permease 
582.1 

Corynebacterineae 

Mycobacterium 

tuberculosis 

CycA 
D-

serine/alanine/ 

glycine 

transporter 

protein 

459.9 

 

Mycobacterium bovis 463.0 

Mycobacterium 

ulcerans 
392.5 

Mycobacterium 

marinum 
459.5 

Mycobacterium leprae AnsP 446.6 

Mycobacterium 

smegmatis 

MSMEG 

_3587 
457.4 

Corynebacterium spp cu0683 
Putative 

transporter 
473.8 

Rhodococcus 

erythropolis 
ProY 

Proline-specific 

permease 
549.9 

Nocardia farcinica 
NFA 

_12290 

Putative amino 

acid transporter 
551.0 

Gordonia bronchialis 
Gbro 

_2751 

Amino acid 

permease 
352.0 

Micrococcaceae 

Arthrobacter spp 
Arth 

_0369 

Amino acid 

permease 
536.7 

Micrococcus luteus 
Mlut 

_01910 

Gamma-

aminobutyrate 

permease-like 

transporter 

484.7 

Kocuria rhizophila proY 

Putative proline-

specific 

permease 

532.8 



                                                                                                                             Appendices 

201 

 

Families Organisms Protein Function Bit score 

Microbacteriaceae 

Clavibacter 

michiganensis 
CMS0688 

Putative L-

asparagine 

permease 

399.1 

Leifsonia xyli ansP 400.2 

Frankineae 
Nakamurella 

multipartita 

Namu 

_1301 

Amino acid 

permease 
430.9 

Pseudonocardiaceae 
Saccharopolyspora 

erythraea 

SACE 

_5703 

Amino acid 

permease-

associated 

region 

568.8 

Streptosporangineae 
Streptosporangium 

roseum 

Sros_289

1 

L-asparagine 

permease 
478.7 

Streptomyces Streptomyces spp 
SGR 

_4625 

Putative proline 

permease 
536.0 

Propionibacterineae 
Propionibacterium 

acnes 
PPA1069 

Aromatic amino 

acid transport 

protein 

549.2 

---------- 
Catenulispora 

acidiphila 

Caci 

_3270 

Amino acid 

permease 
476.3 

---------- 
Kineococcus 

radiotolerans 

Krad 

_4431 

Amino acid 

permease 
432.6 

Bifidobacterium Bifidobacterium longum aroP 

Aromatic amino 

acid transport 

protein 

470.3 

Flavobacteriaceae 
Flavobacterium 

johnsoniae 

Fjoh 

_3147 

Amino acid 

permease 
458.5 

Elusimicrobia Uncultered bacterium 
TGRD 

_007 

Aromatic amino 

acid transport 

protein 

435.8 

Arthropoda Apis mellifera GB13584 
Similar to 

CG12531-PA 
396.7 

Caenorhabditis 

Caenorhabditis 

japonica 

CJA2918

8 
--------- 

398.1 

Caenorhabditis remanei 
CRE0995

9 
450.4 

Trichocomaceae Aspergillus spp --------- 
Putative amino 

acid permease 
331.4 

Saccharomycetaceae 

Pichia stipitis GAP1.2 
General amino 

acid permease 
316.4 

Saccharomyces 

cerevisiae 
LYP1 

High-affinity 

Lysine-specific 

permease 

317.4 

Poaceae Oryza sativa Indica 
BGIOSIB

SE037819 
---------- 473.5 

 

 

 

 

 

Protobacteria-G 

Protobacteria-A 

Protobacteria-B 

Protobacteria-D 

Protobacteria-E 

Firmicutes 

Actinobacteria 

Bacteroidetes 

Others 

Eukaryot

a 

Bacteria 
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Appendix E. Transport of D-alanine by DatA protein translated in oocytes of 

Xenopus laevis. 
 

 Making complimentary ribonucleic acid (cRNA) 

The pKS9 construct (pGH19 Ω datA) (table 2.2) was firstly linearised by restriction 

digestion with XhoI. The linear construct was used as template in making cRNA, using 

in vitro transcription system (mMessage mMachine T7 transcription kit, Ambion™).  

 Microinjection of cRNA into the oocytes 

A 50 µl of cRNA (50 ng) was injected into the recovered Xenopus laevis oocytes in 

Barth’s solution, using a Nanoject II automated injector (Drummond Scientific 

Company, Broomall, USA). The injected oocytes were kept at 18 °C for three days 

before use.  

 D-alanine transport in oocytes.  

The transport of D-alanine into the oocytes was done according to (Bertran et al., 1992) 

and (Kennedy et al., 2002).The prepared oocytes were incubated in transport solution 

for 2.0 min. The oocytes were washed and suspended in 200 µl of transport solutions 

(pH 5.5 and 7.0) plus [
3
H] D-alanine (1.0 µM, 5.0 µCi/ml). The transport suspension 

was incubated at 22 °C for 40 min, and then the oocytes were washed 3.0 times with 

ice-cold transport solution. The oocytes were lysed with 200 µl of 10 % SDS in 

scintillation vials (n=10), and then 1.0 ml of Optiphase HiSafe scintillation cocktail 

(PerkinElmer, Beaconsfield,UK) was added. The mixture was vortexed and the 

radioactivity (DPM) was measured, using an LS6500 liquid scintillation counter 

(Beckman Coulter, High Wycombe, UK). 

Solutions composition 

Barth’s solution: 88 mM NaCl, ; 1.0 mM KCl; 0.41 mM CaCl2; 0.82 mM MgSO4; 

0.33 mM Ca(NO3)2; 2.4 mM NaHCO3; 10 mM HEPES; pH 7.5 with Tris base. 

Transport solution: 100 mM NaCl; 2.0 mM KCl; 1.0 mM CaCl2; 1.0 mM MgCl2; 10 

MES (pH 5.5 with Tris base) or HEPES (pH 7.0 with Tris base). 

 

 

.
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