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Abstract  

Subclinical hypothyroidism (SCH) is a common medical condition affecting 4-10% of 

the population. Unlike overt hypothyroidism, clinical manifestations are unclear and 

treatment remains controversial. It is known that fatigue may improve with 

levothyroxine in these patients but the mechanisms linking symptoms with abnormal 

tissue function are poorly understood. 

It was hypothesized that fatigue in patients with SCH is caused by peripheral tissue 

functional changes and that these changes are reversible with levothyroxine treatment. 

The objective of the study was to quantify the specific abnormalities in cerebral blood 

flow, cardiac function, cardiac and muscular energetic function, and autonomic function 

in patients with SCH, and to measure the changes in these abnormalities after 

levothyroxine therapy with any associated impact on fatigue. This was a pilot study as 

no previous studies looking into the mechanism of fatigue in patients with SCH have 

been reported.  

Subjects with SCH (TSH 4.0 -10.0 mU/L, normal free T4) and fatigue were studied 

before and after levothyroxine therapy and were compared with age and gender-

matched healthy controls (HC). Cerebral blood flow (CBF) was measured by MR 

arterial spin labelling. Cardiac function was measured using impedance cardiography.  

Cardiac and calf muscle energetic functions were measured by 31-Phosphorous 

Magnetic Resonance Spectroscopy. Autonomic function was assessed using heart rate 

variability. 

At baseline, patients with SCH had increased CBF, impaired cardiac function, and 

lower cardiac and calf muscle energetic function, compared with HC. Autonomic 

function was equal to that of HC. After levothyroxine treatment, CBF decreased, 

cardiac function was unchanged, and cardiac energetic function improved.  Calf muscle 

energetic function did not improve but autonomic function tests did. Although fatigue 

improved after levothyroxine treatment, these improvements were not correlated with 

peripheral tissue functional changes. 

Novel physiological abnormalities in both CBF and cardiac and calf muscle energetic 

functions have been demonstrated by these studies. Improvements were seen in CBF, 
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cardiac energetic function and autonomic function after levothyroxine treatment. These 

parameters may play a role in the reduction of fatigue and warrant further investigation. 
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Chapter 1 Subclinical hypothyroidism 

1.1 Definition  

Subclinical hypothyroidism (SCH) is a biochemical diagnosis defined as a state with 

raised serum thyroid stimulating hormone (TSH) levels and normal free thyroxine (FT4) 

and tri-iodothyronine (FT3) (Cooper and Biondi, 2012). SCH is a sign of early thyroid 

failure. It is often referred to as compensated thyroid failure with normal circulating 

thyroid hormones, despite disease affecting the thyroid gland. 

SCH is divided into two categories: those with serum TSH between 4 and 10 mIU/L and 

those with serum TSH above 10 IU/L. Patients with serum TSH above 10 mIU/L have a 

higher chance of disease progression to overt hypothyroidism and a greater association 

with cardiovascular disease than those with serum TSH between 4-10 mIU/L (Rodondi 

et al., 2010, Diez et al., 2005). This classification helps to categorise patients with SCH 

who may potentially benefit from levothyroxine treatment. Younger patients (aged 

below 70 years) with serum TSH above 10 mIU/L are routinely treated with 

levothyroxine as recommended in the recent European Thyroid Association guidelines 

(Pearce et al., 2013). The guidelines also suggest treatment for a period of 3 months in 

those with serum TSH below 10 mIU/L if they have symptoms suggestive of 

hypothyroidism and to continue the treatment if significant improvement in symptoms 

are shown at the end of 3 months. 

1.2 Prevalence 

The prevalence of SCH is reported to be between 4-10% in various studies (Biondi and 

Cooper, 2008). The differences in prevalence between various studies are due to 

variations in serum TSH cut-offs for defining SCH, iodine status, age groups, gender 

and ethnicity. In the Whickham survey, the prevalence of SCH (serum TSH above 6 

mIU/L) in women was 7.5% and in men was 2.8% (Vanderpump et al., 1995). In the 

NHANES III survey, SCH (serum TSH above 4.6 mIU/L) was prevalent in 4.3% of the 

reference population, which included multi-ethnic groups in the United States 

(Hollowell et al., 2002). The study has shown that SCH was more prevalent in 

Caucasians, and that the female gender, positive thyroid antibody status and age were 
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strongly associated with a higher prevalence of SCH. Iodine sufficient status was 

associated with a higher prevalence of overt and subclinical hypothyroidism than iodine 

deficient status in a Hungarian study (Szabolcs et al., 1997).  In a given population 

several factors may determine the prevalence of SCH. 

1.3 Diagnosis     

Autoimmune thyroid disease accounts for 60-80% of SCH (Cooper and Biondi, 2012). 

Other less common causes include previous thyroid surgery, radioiodine treatment, 

drugs (Lithium and amiodarone) or a recent episode of thyroiditis.  Ageing and obesity 

have been associated with a mild rise in serum TSH. Also, recovery from an acute 

illness has been associated with high serum TSH, which often resolves after 6-12 

weeks. It is important to exclude transient elevations in serum TSH before making a 

diagnosis of SCH.  A diagnosis of SCH should not be made on an isolated raised serum 

TSH and it is recommended that the serum TSH is repeated after a period of 3-6 

months. 

1.4 Impact of SCH 

SCH by definition is a biochemical diagnosis without any overt clinical symptoms. 

However, a number of studies have shown associations of physical and cognitive 

symptoms with SCH. Classic symptoms of overt hypothyroidism have been shown in a 

large number of SCH patients in some studies, although the studies have shown 

conflicting results. The Colorado study showed that hypothyroid symptoms were more 

prevalent in SCH (n=2336) than in euthyroid subjects (13.7 vs. 12.1%,p<0.05) (Canaris 

et al., 2000). It was not a true population study as the subjects were from a health fair. 

This might have led to more subjects with symptoms and healthcare-seeking behaviour 

in the study and fewer subjects without symptoms. However, in an Australian 

population study involving women only, the mean Psychological General Well-Being 

Index (PGWI) and the Short Form-36 (SF-36) scores did not differ between SCH 

(n=80) and euthyroid controls (n=240) (Bell et al., 2007). The fifth Tromsø study was a 

large-scale population survey involving men and women that assessed the prevalence of 

hypothyroid symptoms in patients with SCH (n=89, mean serum TSH 5.57 mIU/L), 

using a pre-defined serum TSH upper limit of 10.0 mIU/L (Jorde et al., 2006). The 

study found no excess prevalence of hypothyroid symptoms in this cohort. Furthermore, 
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treatment of those subjects with SCH did not lead to improvement in symptoms 

typically associated with hypothyroidism. 

A small (n=33) randomised double-blinded placebo controlled study (RCT) by Cooper 

et al. demonstrated improvement in hypothyroid symptoms with levothyroxine 

treatment in 8 out of 14 subjects with SCH (Cooper et al., 1984). The largest 

randomised placebo controlled trial of SCH (n=100, mean age 53.8 years, mean serum 

TSH 6.6 mIU/L) showed that fatigue improved with levothyroxine treatment in SCH 

(Razvi et al., 2007). Kong et al. showed  that fatigue and weight gain were the most 

commonly-reported symptoms in SCH (Kong et al., 2002). However, no improvement 

in symptoms was seen with levothyroxine treatment in this study. 

Overt hypothyroidism is known to cause various neuropsychiatric conditions, including 

reversible dementia and frank psychosis. Mild cognitive symptoms in SCH have been 

widely reported (Baldini et al., 1997, Samuels et al., 2007), (Haggerty et al., 1990, Bono 

et al., 2004). The study by Baldini et al. (mean age 52.9 years) showed reversible 

logical memory impairments in female SCH patients with goitre when compared to 

female euthyroid patients with goitre. The presence of goitre in both groups excluded 

perception of disease as the confounding factor in this study. Another study by Samuel 

et al. (age range 20-75 years)  has shown that experimentally-induced SCH (randomized 

blinded fashion) was associated with working memory impairment (Samuels et al., 

2007). These impairments were correlated with changes in FT4 or FT3 in these patients. 

However, the studies by  Jorde et al. (mean age 62.5 years) and  Park et al. (only above 

65 years included) did not show any significant changes in cognitive function in patients 

with SCH (Jorde et al., 2006, Park et al., 2009).  

As described above, the symptom reporting in SCH in various studies showed 

conflicting reports. There could be a number of reasons which might explain these 

variable results in different studies. This may be due to differing durations of disease, 

which is often not reported in many studies, and whether subjects were selected based 

on a single raised serum TSH or persistently raised serum TSH. Duration of disease can 

affect disease severity and hence severity of symptoms in SCH (Biondi and Cooper, 

2008). If the subjects were included based on a single elevated serum TSH, then many 

of these patients may not have SCH upon repeat testing and hence may not show 

hypothyroid symptoms. Ageing is associated with decline in general health and subtle 
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abnormalities in cognitive function. It is also well known that in elderly patients, using 

symptoms to identify patients for thyroid hormone testing is less reliable (Eden et al., 

1988). Ageing is associated with a mild rise in serum TSH and hence many of these 

patients may not have SCH and hence are unlikely to show any symptoms associated 

with a mild degree of hypothyroidism. The studies which showed no clear association 

between symptoms and SCH had higher numbers of elderly patients (Jorde et al., 2006, 

Lindeman et al., 1999, Gussekloo et al., 2004, Park et al., 2009, Roberts et al., 2006). 

The degree of serum TSH elevation may influence the presence of symptoms, which 

varied between studies assessing the symptoms in SCH. To summarise, there are several 

confounding factors which influence the outcome of symptom assessment in SCH. 

More studies are required to look into the mechanism of symptoms which correlate to 

disease severity in SCH. 

SCH often progresses to overt hypothyroidism. According to the Whickham 20-year 

follow-up study, the annual risk of progression is 4.3% in women with positive thyroid 

peroxidase (TPO) antibodies and raised serum TSH; and 3% in those with negative 

antibodies and a raised serum TSH (Vanderpump et al., 1995). Patients with serum TSH  

above 10 mIU/L have a higher risk of progression to overt hypothyroidism than those 

with serum TSH below 10 mIU/L (Diez and Iglesias, 2004). 

Cardiovascular morbidity and mortality have been studied in SCH recently. A recent 

meta-analysis has shown that in SCH, those with serum TSH above 10 mIU/L had 

higher coronary heart disease (CHD) events and CHD mortality than euthyroid controls 

(Rodondi et al., 2010). This was thought to be due to increased risk of 

hypercholesterolemia and atherosclerosis in SCH. These were observational studies and 

so far no RCTs have been performed to assess the true causal relationship between 

CHD and SCH. 

1.5 Current treatment recommendations. 

 In the absence of long-term RCTs that assess the benefits and risks of treating SCH 

with levothyroxine, there have been a number of expert panel recommendations over 

the last 10 years (Surks et al., 2004, Cooper and Biondi, 2012, Garber et al., 2012, 

Pearce et al., 2013). Most recommend treating SCH with levothyroxine if serum TSH is 

above 10 mIU/L, based on a high rate of progression to overt hypothyroidism.  
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Controversy exists in treating patients with SCH if they have a serum TSH below 10 

mIU/L. In this TSH range, some recommend treating patients less than 65 years of age 

with levothyroxine due to an increased risk of cardiovascular disease in this age group 

(Cooper and Biondi, 2012). Levothyroxine treatment also may be considered in this age 

group if they have any new onset hypothyroid symptoms, goitre or positive TPO 

antibodies (Pearce et al., 2013). Association of symptoms with thyroid status is less 

clear in this age and TSH range. Very few studies were done in younger patients with 

symptoms and serum TSH below 10 mIU/L. Therefore no recommendation exists for 

routine symptomatic treatment in this group. As mentioned previously, existing studies 

were mostly performed in older populations and did not show any convincing 

association with symptoms. 

1.6 Summary 

SCH is common in the general population. Autoimmune thyroid disease is the most 

common cause of SCH and diagnosis can only be confirmed after excluding a transient 

rise in serum TSH due to other conditions. Although it is a biochemical diagnosis, 

symptoms and cardiovascular disease have been attributed to SCH. Treatment of SCH is 

often controversial because of a lack of mechanistic studies linking SCH to a disease 

state and RCTs to prove a causal relationship between SCH and cardiovascular disease. 
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Chapter 2 Mechanism of fatigue in SCH 

In this chapter, the mechanism of symptoms in SCH will be discussed. Potential targets 

for mechanistic studies and existing research will be explored. Finally, the research 

proposal and hypothesis for this project will be discussed.  

Fatigue is defined as an extreme form of persistent and disabling tiredness, weakness or 

exhaustion, which could be physical or mental or both (Dittner et al., 2004). It is 

commonly seen in hypothyroid patients in varying degrees, as described previously. The 

mechanism of fatigue in hypothyroidism may be due to peripheral muscle, autonomic 

nervous system, or cardiac dysfunction, or alterations in cerebral blood flow. In the 

following sections, these subjects will be discussed in detail. 

2.1 Fatigue due to muscle dysfunction  

2.1.1 Muscle physiology- brief overview 

Human skeletal muscle largely consists of striated muscle fibres. There are three types 

of muscle fibres: 

Type I fibres: Appear red in colour due to high concentration of myoglobin. They are 

rich in capillaries and mitochondria. They solely use oxidative phosphorylation to 

generate ATP used for muscle contraction. These are often called slow twitch fibres 

because aerobic oxidation is slow to start and cannot sustain fast muscle contractions 

due to lack of anaerobic capacity. These fibres are fatigue resistant and can maintain 

prolonged aerobic activity due to a rich oxygen supply. 

Type IIa: These are similar to type 1 fibres, but use both oxidative phosphorylation and 

glycolysis. Hence, these fibres can contract at a faster pace than type I fibres. 

Type IIb: These fibres appear white because they are low in myoglobin concentration. 

They depend on glycolysis, and can contract at a faster rate than type I and type IIa 

fibres. 

Human skeletal muscle often has mixtures of these fibres, although some muscle might 

have higher proportions of certain types of muscle fibres. For example, an in vitro study 

showed that the percentage of slow fibres in soleus and gastrocnemius was 60-100% 
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and 34-82% respectively (Gollnick et al., 1974). Muscle fibre types in individuals are 

determined mainly by genetic polymorphism, gender, hormonal factors and exercise 

training (Schiaffino and Reggiani, 2011). In animal studies, it has been shown that 

hypothyroidism causes fast (type II) to slow (type I) changes in fibre composition, i.e. a 

99% reduction in the proportion of type II muscle fibres (Nwoye et al., 1982). Similar 

findings were demonstrated in muscle biopsies of hypothyroid patients  (Khaleeli et al., 

1983). The study showed a higher proportion of slow muscle fibres (type I) in 

hypothyroid patients, and after treatment with levothyroxine, a significant 

transformation to fast type muscle fibres was noted. These findings clearly reveal that 

thyroid hormones play a significant role in muscle fibre composition in addition to 

controlling muscle bioenergetics, as discussed later in the chapter. 

2.1.2 Muscle energetic physiology. 

Each muscle fibre contains several myofibrils, which are composed of actin and myosin 

filaments. Along the length of each myofibril are the repeats of sarcomeres, which are 

the functional unit of muscle contraction. Muscle mitochondria lie beneath the 

sarcolemmal membrane. Upon nerve stimulation, actin and myosin in each sarcomere 

slide over each other to create muscle shortening, which ultimately produces contraction 

in the whole muscle. The energy required for this process is derived from the hydrolysis 

of adenosine triphosphate (ATP) to adenosine disphosphate (ADP) and inorganic 

phosphate (Pi) by ATP-ases.  During muscle exercise, ADP and Pi levels significantly 

increase and ATP levels are maintained by metabolic pathways, described below. A 

steady level of ATP concentration within the muscle is critical for optimal muscle 

function. ATP is synthesised in muscle under aerobic and anaerobic conditions via 

separate metabolic pathways.  

2.1.3 Muscle bioenergetics under anaerobic conditions. 

The anaerobic metabolism is the predominant type of energy source for fast muscle 

fibres during exercise, and during prolonged exercise in slow muscle fibre types. During 

the initial stages of exercise, the pre-existing ATP is used for muscle contraction. This 

ATP is depleted rapidly and the muscle phosphocreatine (PCr) serves as an intermediate 

source of high energy phosphate, which is used to make ATP for a brief period. The 

concentration of PCr in muscle fibre is 10 times that of ATP. The PCr combines with 

ADP and hydrogen ions (H+) to produce ATP and creatine (Cr). This reaction is a 
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reversible process that occurs during recovery from exercise with re-synthesis of PCr. 

This is shown in the equation given below: 

PCr + ADP + H+ ↔ Cr + ATP 

The next source of ATP is via glycolysis in cytosol. Glucose is available either directly 

from blood circulation or via glycogenolysis. Glucose is metabolised down the 

glycolytic pathway to yield 2 ATP molecules and pyruvate. Under anaerobic conditions, 

pyruvate is converted into lactic acid and subsequently removed from the muscle cell. 

Although the glycolytic pathway produces only 2 ATP molecules per glucose, it is 2.5 

times faster than oxidative ATP synthesis. Hence, it provides sufficient amounts of ATP 

quickly in fast type muscle fibres.  

The figure 2.1 depicts the typical muscle spectra in a resting state from a phosphorus 

magnetic resonance spectroscopic study. The figure 2.2 shows the muscle spectra 

during exercising in which PCr undergoes depletion and replenished during recovery. 

The ATP level is maintained throughout the exercise to provide continuous supply of 

energy for muscle contraction during the exercise. 

 

Figure 2-1 : Typical muscle spectra from a phosphorus magnetic resonance spectroscopic study.  

It shows phosphocreatine (PCr), ATP, inorganic phosphate (Pi) and phosphodiester (PDE) peaks in parts 
per million (ppm). 
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Figure 2-2 : Muscle spectra during exercise. 

This figure shows that the phosphocreatine (PCr) level drops during the exercise and rise again during 
recovery after the exercise. The ATP level is maintained at a constant level during the exercise. 

    

2.1.4 Muscle bioenergetics under aerobic conditions. 

The major sources of fuel are glucose, lipids and amino acids in anaerobic conditions. 

This pathway occurs in the mitochondria using the electron chain transport system. In 

slow muscle fibres under aerobic conditions, the initial ATP synthesis is similar to ATP 

synthesis described under anaerobic conditions. The initial glycolysis is also common to 

both anaerobic and aerobic ATP synthesis. The pyruvate thus generated via the 

glycolytic pathway enters Kreb’s cycle in the presence of oxygen and results in the 

generation of ATP molecules. This is a slow process, but yields 32 molecules of ATP 

from one glucose molecule, along with carbon dioxide and water. Thus, aerobic 

oxidation produces large amounts of ATP required for protracted periods of exercise in 

slow muscle fibres. 

2.1.5 Thyroid hormone  and mitochondrial function. 

Muscle mitochondrial energetic functions are influenced by several factors, such as 

ageing, exercise and hormonal factors. Skeletal muscle mitochondrial membranes have 

triiodothyronine (T3) receptors, which suggests that thyroid hormones (TH) have a role 

in mitochondrial energetics (Sterling et al., 1978). The mitochondrial DNA contains 

promoter regions with response elements for thyroid hormone receptors. It is likely that 

TH affects mitochondrial protein expression by regulating the transcription of 

mitochondrial genes (Lanza and Sreekumaran Nair, 2010). 
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The effect of thyroid dysfunction on mitochondrial function has been extensively 

studied in animals. Mitochondria from hyperthyroid rats exhibited increased enzyme 

activities (Paradies et al., 1994). Exogenous thyroid hormone T4 increases 

mitochondrial volume density in both the liver and muscle in rats (Goldenthal et al., 

2004, Wooten and Cascarano, 1980). It was found that with 14 days of liothyronine 

treatment in hypothyroid rats increased UCP2 and UCP3 expression as well as 

mitochondrial ATP synthesis rates in the soleus muscle, heart, and liver (Short et al., 

2001). These data demonstrate that TH increases mitochondrial capacity for ATP 

synthesis in oxidative tissues, rather than simply increasing substrate oxidation to 

account for dissipation of the trans-membrane proton gradient (Lanza and Sreekumaran 

Nair, 2010). 

To summarise, TH affects mitochondrial activity in several ways, including 

mitochondrial protein expression, volume density, enzyme activity and oxidative ATP 

synthesis. As a result, thyroid dysfunction often leads to alteration in muscle energetic 

function, resulting in clinically important symptoms like muscle fatigue or weakness.  

2.1.6 Muscle fatigue in other diseases. 

Fatigue due to muscle dysfunction has been shown in other diseases where fatigue is a 

prominent symptom. Our collaborators have investigated primary biliary cirrhosis 

(PBC) in which patients usually complain of disabling fatigue (Hollingsworth et al., 

2008). Using 31P-MRS studies of calf muscle, the study compared 15 patients with PBC 

to healthy controls. Subjects undertook calf muscle exercise at 25% and 35% of 

maximum voluntary contraction (MVC). Patients with PBC exhibited abnormal 

mitochondrial energetics, thought to be due to an autoimmune anti-pyruvate 

dehydrogenase complex.  Greater fatigue severity assessed by the Fatigue Impact Scale 

(FIS) was reported in this group when muscle pH recovery time was prolonged.  It was 

suggested that prolonged acidosis within the muscle might act as a stop signal, leading 

to perception of fatigue.  

Fatigue in chronic fatigue syndrome has been investigated by our collaborator group 

(Hollingsworth et al., 2008). They studied patients with chronic fatigue syndrome, with 
31P-MRS in calf muscle, using plantar flexion at a fixed 35% load maximum voluntary 

contraction. These patients had delayed recovery of muscle pH following muscle 
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exercise. This was associated with abnormalities in proton efflux (the amount of acid 

pumped out of the myocyte following exercise, measured in mM/Minute) in the post-

exercise recovery period. The maximum proton efflux was low and the time to 

maximum proton efflux was high in patients compared to healthy controls. These 

abnormalities can probably lead to muscle fatigue in patients. Whether those changes 

were due to physical deconditioning because of a lack of regular exercise or due to a 

primary muscle energetic defect is currently unknown. Further interventional studies in 

these patients may reveal the precise mechanism for these abnormal muscle 

bioenergetics. 

The chronic fatigue syndrome was investigated by Wong et al. using 31P MRS study in 

calf muscle (Wong et al., 1992) using a different protocol to the study mentioned 

previously by Hollingsworth et al. They measured muscle bioenergetics during dynamic 

graded exercise to the point of exhaustion. The patients reached muscle exhaustion 

earlier and had shown low ATP levels at the point of exhaustion when compared to 

healthy controls. They have suggested abnormal oxidative function as the mechanism 

leading to clinical fatigue in chronic fatigue syndrome. 

These studies demonstrate, firstly, that fatigue in various diseases can be investigated 

using in vivo methods under physiological conditions, in real time, using exercise 

protocols. Secondly, that abnormal muscle bioenergetics have been consistently 

associated with fatigue. However, there are no interventional studies that show a causal 

relationship between fatigue and abnormal muscle bioenergetics. Our study aims to 

investigate muscle bioenergetics that might explain fatigue in patients with SCH and 

whether these changes, if any, will reverse with levothyroxine treatment, resulting in 

fatigue reduction.  

2.1.7 Muscle dysfunction in SCH. 

Skeletal muscle is one of the main targets for thyroid hormones and hence deficiency of 

thyroid hormones often leads to muscle symptom,  such as pain, stiffness and/or 

weakness (Argov et al., 1988). These can result in patients complaining of fatigue or 

poor exercise tolerance in hypothyroidism. 

31P-MRS has been used to investigate the metabolic changes in hypothyroid muscle 

both in animals and humans (Argov et al., 1988, Kaminsky et al., 1991, Taylor et al., 
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1992). Argov et al. demonstrated that the phosphocreatine/inorganic phosphate ratio 

(PCr/Pi) in hypothyroid muscle was low and this abnormality improved with 

levothyroxine treatment (Argov et al., 1988). Taylor et al. suggested that glycogen 

metabolic defect was the causative mechanism for the defective energy status in a 

hypothyroid state (Taylor et al., 1992), whereas two other studies suggested impaired 

mitochondrial function state for abnormal energetics in skeletal muscle (Argov et al., 

1988, Kaminsky et al., 1991). Reduced levels of mitochondrial transcription factor A 

(mtTFA) were shown in muscle biopsy specimens of patients with Hashimoto’s thyroid 

myopathy (Siciliano et al., 2002). The mtTFA has been shown to be one of the putative 

targets of thyroid hormones, and its lower levels may explain the molecular mechanism 

by which thyroid hormone deficiency leads to altered mitochondrial dysfunction in 

patients with hypothyroidism (Pillar and Seitz, 1997). 

In patients with SCH, muscular metabolic changes were found by Monzani et al. in 

1997 (Monzani et al., 1997). They showed that mean lactate levels and mean lactate 

increments were higher in SCH patients than in healthy controls during exercise. This 

might suggest impaired mitochondrial oxidation in SCH. Another study showed reduced 

exercise tolerance with reduction in forearm muscle maximal power output and 

maximal oxygen uptake (VO2), with an increase in workload in SCH patients when 

compared to healthy controls (Caraccio et al., 2005). In SCH, a similar mechanism is 

possible given that overt hypothyroidism is associated with mitochondrial dysfunction, 

as described above. 

In summary, muscular changes are common and have been found extensively in patients 

with overt hypothyroidism and SCH. To date, no study has correlated patient symptoms 

like fatigue with muscular metabolic changes in SCH. Thus, we propose to investigate 

using a 31P-MRS method whether abnormal muscular metabolism exists in SCH, which 

may contribute to the pathogenesis of fatigue. We also aim to discover whether or not it 

will reverse with levothyroxine treatment.  
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2.2 Fatigue due to autonomic nervous system dysfunction 

In this section, I will give a brief overview of the autonomic nervous system (ANS) 

followed by a description of the role of TH in the regulation of the ANS.  Fatigue due to 

autonomic dysfunction will be discussed.  

2.2.1 ANS physiology- A brief overview 

The human autonomic nervous system is mainly composed of the sympathetic and 

parasympathetic nervous systems (Guyton, 2000). The sympathetic and 

parasympathetic systems often act together to maintain visceral functions and provide 

physiological adaptations to various stimuli, such as stress, food intake etc. Both 

systems primarily consist of two neuronal pathways. The pre-ganglionic neurons 

originate in the central nervous system and synapse with various peripheral autonomic 

ganglia. The postganglionic neurons arising from the autonomic ganglia innervate 

various tissues throughout the body. The sympathetic pre-ganglionic neurons are mainly 

located in lateral horns of thoracolumbar spinal segments, and postganglionic neurons 

arise from the paravertebral sympathetic chain in the corresponding spinal segments. 

The parasympathetic pre-ganglionic neurons originate from various cranial nerve nuclei 

within the brain stem, and sacral spinal segments 3 and 4. The parasympathetic post-

ganglionic neurons arise from autonomic ganglia located within various cranial nerves, 

and on the walls of visceral organs located in the thoracic and abdominal cavities. 

2.2.2 Autonomic nervous system and cardiovascular function 

The vasomotor centre in the medulla and pons control cardiac functions via the 

sympathetic and parasympathetic nervous system. The sympathetic nerves for the heart 

originate from the thoracic spinal segments T3 to T6, whereas parasympathetic fibres 

mainly descend via the vagus nerve. Almost all of the sympathetic and parasympathetic 

preganglionic fibres secrete acetylcholine at their nerve terminals.  In the heart, 

sympathetic and parasympathetic post-ganglionic nerve fibres secrete noradrenaline and 

acetyl choline respectively. 

Sympathetic stimulation of the heart causes both inotropic and chronotropic effects (via 

beta-1 receptors) while parasympathetic stimulation results in opposing effects which 

help the heart to adapt to various physiological and pathological states. For example, 

during exercise, sympathetic stimulation increases cardiac muscle contraction so that 
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more blood is pumped out to target tissues, such as muscle, while parasympathetic 

stimulation decreases its pumping ability but allows the heart some degree of rest 

between bouts of strenuous exercise. 

The ANS is also involved in cardiac autonomic reflexes, such as baroreceptor reflexes 

for maintenance of blood pressure. The baroreceptors are located in the walls of large 

arteries and send appropriate signals to the heart, based on arterial blood pressure. In 

response to standing from a supine or sitting position, the baroreceptors send immediate 

stimulatory sympathetic signals to increase heart rate and contractility, and increase 

peripheral vasoconstriction to augment the preload of the heart. At the same time, the 

parasympathetic inhibitory signals are deactivated and this further enhances cardiac 

output to raise the blood pressure. Thus, this reflex mechanism helps to prevent a 

decrease in blood pressure to the upper body and to maintain upright posture in human 

beings. 

The peripheral vasculature is largely under sympathetic control in the resting state, 

under various physiological conditions. The sympathetic system innervates almost all 

blood vessels, including arterioles and veins (except capillaries, precapillary sphincters 

and most of the meta-arterioles). Noradrenaline is the main vasoconstrictor chemical 

substance at the sympathetic nerve terminals. The noradrenaline, and the adrenaline 

released from the adrenal medulla, act via alpha-adrenergic receptors to cause peripheral 

vascular smooth constriction in response to sympathetic activation. This mechanism 

helps to increase blood pressure in response to standing. The vasomotor centre in the 

medulla sends signals via the sympathetic nerves to keep the peripheral vasculature in a 

partially-constricted state in the resting state. This helps to maintain adequate tissue 

perfusion. In response to exercise, the sympathetic mediated vascular constriction in 

skin, splanchnic regions, kidney and inactive muscles helps to divert the blood to the 

active skeletal muscle. The sympathetic system facilitates adequate tissue perfusion in 

the resting state and rapidly provides adaptive vascular mechanisms during various 

physiological states. 

In summary, the ANS regulates cardiovascular functions both directly and indirectly via 

several mechanisms. So, any pathological state that leads to autonomic dysfunction can 

lead to abnormal cardiovascular functions. 
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2.2.3 Role of thyroid hormones in regulation of the  autonomic nervous system 

It is well known that thyroid hormones play a key role in autonomic nervous system 

functions under physiological conditions and pathological states. It regulates 

physiological conditions, such as adaptation responses during physical activity or 

exposure to cold (Silva and Bianco, 2008). TH has major role in regulation of 

thermogenesis in human beings. In pathological states like thyrotoxicosis, patients 

exhibit a variety of autonomic nervous system manifestations, such as tachycardia and 

sweating, whereas in hypothyroidism, patients exhibit bradycardia and cold skin. In 

hypothyroidism, the lack of appropriate thermogenesis leads to intense cutaneous and 

subcutaneous vasoconstriction, leading to cold skin. The interaction between TH and 

ANS is bidirectional, as described below. 

Effect of thyroid hormones on autonomic nervous system  

TH has an inhibitory role on central sympathetic output, and at a peripheral level it 

enhances the sensitivity of catecholamine mediated by β-adrenergic receptors (Silva and 

Bianco, 2008). Hence, in hypothyroidism, despite increased levels of peripheral 

noradrenalin concentrations due to enhanced central sympathetic central output, there 

are depressed adrenergic responses (Manhem et al., 1992, Christensen, 1973). The 

increase in central sympathetic output is thought to be due to a compensatory response 

to reduced catecholamine receptor response, or due to reduced cardiac output  

(Braverman).  Thus TH has a significant influence in modulating various physiological 

functions controlled by the ANS.  

Effect of autonomic nervous system on thyroid hormones 

Conversely, the ANS can affect TH secretion and function in many ways. It was 

suggested that sympathetic stimulation might have a direct stimulatory effect on the 

thyroid gland (Silva and Bianco, 2008). In animals, adrenergic stimulation leads to 

enhanced peripheral conversion of T4 to T3 in brown adipose tissue mediated by type II 

deiodinase (DIO2) enzyme. Human skeletal muscle has DIO2 enzyme (Salvatore et al., 

1996). It has been shown in cultured human skeletal muscle cells that adrenergic 

stimulation leads to enhanced DIO2 activity (Hosoi et al., 1999). In hypothyroidism, 

DIO2 mediated peripheral skeletal muscle T3 production is increased (Maia et al., 2005) 

due to enhanced sympathetic activity. 
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This suggests that thyroid hormones and the ANS interact in various physiological and 

pathological conditions. Hence, abnormal thyroid function can lead to disturbances in 

the ANS, resulting in the clinical manifestations seen in thyroid disease. 

2.2.4 Non-invasive in vivo human studies of autonomic dysfunction in 

hypothyroidism  

There is substantial evidence to show that autonomic dysfunction (AD) leads to clinical 

manifestations in thyroid disease. Cardiac autonomic functional status can be studied by 

non-invasive methods in patients using power spectral analysis, as described by 

Bellavere et al. (Bellavere et al., 1992). The power spectral analysis (PSA) uses fast 

Fourier mathematical analysis to define underlying frequency bands in heart rate 

variability (HRV). This analysis will reveal low frequency (LF) bands (0.04-0.15Hz) 

and high frequency (HF) bands (0.15-0.4Hz) which are modulated by the sympathetic 

system (when expressed in normalised units (nu)) and parasympathetic system 

respectively. The very low frequency spectrum (VLF) is also revealed during the PSA 

and its physiological significance is thought to be related to thermoregulation and 

peripheral vasomotor systems. The total HRV represents all cyclical components of 

HRV during the testing period. Cardiac autonomic function can be also be studied by 

time domain parameters over a 24-hour period, which give rise to various parameters 

like standard deviation (SD) of normal to normal R-R intervals (SDNN) and SD of all 

5-minute mean normal to normal R-R intervals (SDANN). 

Cacciatori et al. studied cardiac autonomic functions in 7 overtly hypothyroid patients 

(mean serum TSH 55.5 mIU/L and Free T4 3.1 pmol/L) (Cacciatori et al., 2000). All 

patients had Hashimoto’s thyroid disease (HD). PSA was carried out over a 10-minute 

period during rest and subsequently standing, deep breathing and Valsalva manoeuvre. 

In patients with HD, the high frequency component was low during rest and standing 

when compared to healthy controls, resulting in a high LF/HF ratio in patients with HD. 

The low frequency component in overt hypothyroid patients during rest was high during 

the standing position only. These changes were reversed after treatment with 

levothyroxine for 12-18 months, suggesting an enhanced sympathetic influence on the 

autonomic cardiovascular system, which was thought to be due to a secondary 

adaptation to an altered cardiovascular responsiveness. 
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In another study, PSA analysis was undertaken in 31 overtly hypothyroid patients (all 

due to HD, mean serum TSH 56 mIU/L and low free T4) over a 24-hour period (Galetta 

et al., 2008). The LF/HF ratio, which is a measure of sympatho-vagal balance, was 

significantly higher (p <0.05) in hypothyroid patients. All these parameters (LF, HF and 

LF/HF ratio) improved significantly after treatment with levothyroxine for 6 months.  

This study looked at PSA over a 24-hour period, unlike previous studies by Cacciatori 

et al. where they performed resting PSA for 10 minutes in a controlled environment. 

Both of the above studies included patients with severe hypothyroidism due to HD, but 

duration of disease was not specified. These studies have shown higher sympathetic 

function in hypothyroidism (raised LF/HF ratio), although absolute measurements in HF 

and LF were not consistent between the two studies, which might have contributed to 

differences in abnormal parameters of autonomic function. In the second study, the 

changes were reversible even with 6 months of treatment, which suggests that this 

period might be adequate to reverse autonomic functional abnormalities in 

hypothyroidism. 

Unlike patients with HD, who are likely to have long-term hypothyroidism, Guasti et al. 

studied the effects of short-term overt hypothyroidism using the PSA method over a 5-

minute period (Guasti et al., 2007). They performed the study in 42 patients with 

thyroid cancer after thyroid hormone withdrawal (mean serum TSH 87.4 mIU/L and 

low free T4) and after suppressive dose levothyroxine treatment. The LF/HF ratio was 

lower largely due to high HF in the  hypothyroid state, and it improved after 

levothyroxine treatment. Heemstra et al. studied 11 post-thyroidectomy patients with 

short-term overt hypothyroidism demonstrating a low LF/HF ratio when compared to 

the post-treatment state, suggesting sympathetic withdrawal (Heemstra et al.). However, 

this study did not report any comparison of PSA analysis between healthy controls and 

the treatment group at baseline before thyroxine treatment. A significant improvement 

after levothyroxine treatment in LF/HF ratio suggests a reversible abnormality in 

autonomic function in short-term overt hypothyroidism. 

Xing et al. studied 38 overt hypothyroid patients with mixed aetiology using 24-hour 

PSA analysis (Xing et al., 2001). They showed higher vagal tone demonstrated by 

raised HF in patients when compared to healthy controls, which improved significantly 

after treatment with levothyroxine. However, the LF was not significantly low in the 
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patients and did not alter after levothyroxine treatment. The duration of hypothyroidism 

after thyroidectomy and radioiodine treatment was not reported. It is likely these 

patients had short-term overt hypothyroidism following thyroidectomy and radioiodine 

treatment. 

Some of these studies reported higher vagal tone in hypothyroid patients with short-

term overt hypothyroidism (Guasti et al., 2007, Heemstra et al., Xing et al., 2001) while 

others describe increased sympathetic activity in patients with overt hypothyroidism 

(Cacciatori et al., 2000, Galetta et al., 2008). All these studies showed abnormalities in 

autonomic function in overt short-term and long-term hypothyroidism. However, the 

results were not consistent in that short-term overt hypothyroidism revealed higher 

parasympathetic tone and long-term overt hypothyroidism showed increased 

sympathetic activation. It is possible that short-term overt hypothyroidism induces 

impaired sympathetic function, resulting in relatively high parasympathetic tone. In 

long-term overt hypothyroidism, the compensatory mechanisms to increase sympathetic 

activation come into action and predominate over parasympathetic function. Differences 

in measuring PSA, age, and severity of hypothyroidism may also account for variation 

in autonomic dysfunction seen in all of these studies.  

PSA was studied over a 24-hour period in patients with SCH by Galetta et al. (Galetta et 

al., 2006). They studied 42 patients with SCH (mean serum TSH 9.8 ± 1.7 mIU/L and 

normal free T4). Only patients with elevated serum TSH for 3 or more months were 

included in the study, which showed that even in patients with SCH, HF is low with a 

relative increase in the LF/HF ratio, i.e. sympatho-vagal imbalance. The LF was the 

same as in healthy controls. Moreover, serum TSH was positively correlated with 

LF/HF ratio (r=0.42, p=0.006). After 6 months of levothyroxine treatment, both HF and 

LF/HF ratio improved significantly. This implies a possible causal link between these 

changes and thyroid status. This study is inconsistent with the previous studies of overt 

hypothyroidism described earlier in this chapter. Sahin et al. did PSA analysis using a 

24-hour method in 31 patients with SCH (mean serum TSH 10.55 mIU/L and normal 

free T4). The LF and HF showed no difference between patients and healthy controls. 

However, time domain parameters SDNN and SDANN showed a reduction in a 

subgroup of patients with serum TSH >10.0 mIU/L. The duration of SCH was not 

reported in this study, unlike in the previous study by Galetta et al. The functional 
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abnormalities in hypothyroidism partly depend on the duration of the disease. It may be 

that patients in the study did not have the disease long enough to reveal detailed 

functional abnormalities in the ANS. 

In summary, non-invasive assessments of cardiac autonomic functions have been 

performed in several studies involving patients with varying degrees of hypothyroidism. 

They all consistently showed autonomic dysfunction in overt and subclinical 

hypothyroidism. There were inconsistencies in specific abnormalities of autonomic 

parameters between different studies. This could be due to differences in a variety of 

factors like age, methods of measurement of PSA, aetiology and severity of 

hypothyroidism. All studies revealed that autonomic dysfunction improved considerably 

after 6-12 months of thyroxine treatment. This suggests a possible causal link between 

autonomic dysfunction and hypothyroidism. These non-invasive clinical studies are in 

agreement with in vitro studies discussed earlier in the chapter, suggesting autonomic 

dysfunction is prevalent in hypothyroidism.  

2.2.5 Functional abnormalities in the ANS and fatigue 

 Reversible autonomic dysfunctions are clearly evident in SCH. These abnormalities 

could contribute to clinical symptoms like fatigue. The studies discussed were not 

designed to correlate their findings with patient symptoms like fatigue; however, fatigue 

has been shown to be associated with autonomic dysfunction in other disease states 

where it is a prominent symptom.  Our collaborator group studied patients with primary 

biliary cirrhosis (PBC) with the above methods to correlate fatigue and autonomic 

disturbances (Newton et al., 2007, Newton et al., 2006). It was shown that fatigue was 

correlated with reduced heart rate variability and abnormalities in other traditional 

autonomic tests like the Valsalva manoeuvre in patients with PBC. Fatigued patients 

with PBC (Fatigue Impact Scale score >80) had lower HRV than non-fatigued (FIS 

score <28) PBC patients.  It was also found that baroreflex sensitivity (BRS), which is 

another marker of autonomic integrity, was abnormal in patients with PBC and this 

correlated with fatigue.  
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In summary, AD has been well researched previously in overt hypothyroidism and SCH 

using non-invasive methods. However, studies looking for a link between fatigue and 

SCH have not been performed before. Therefore we propose to investigate whether 

there is any link between fatigue and autonomic dysfunction in SCH. This might 

explain the mechanism of fatigue in these patients. 

2.3 Fatigue due to cardiac dysfunction 

2.3.1 Cardiac energetic physiology  

The contractile unit of the cardiac myocyte is actin and myosin, similar to skeletal 

muscle, as described previously. Unlike skeletal muscle, it is almost entirely reliant on 

aerobic energy metabolism via oxidative phosphorylation. Cardiac myofibrils are highly 

enriched with abundant mitochondria which enables continuous energy supply by the 

creatine-kinase energy shuttle mechanism. Heart muscle is one of the biggest consumers 

of energy per tissue by weight within the human body. As explained previously, with 

skeletal muscle physiology, phosphocreatine (PCr) acts as an energy transporter and 

energy reserve molecule in cardiac energy metabolism (Holloway et al., 2011). ATP 

generated are used for cardiac myofibrillar contraction as well as calcium reuptake by 

the sarcoplasmic reticulum Calcium-ATPase pump (Holloway et al., 2011). 

2.3.2 Control of myocardial energetics by thyroid hormones 

Thyroid hormone affects cardiac function in many ways. At a molecular level, it 

positively regulates gene encoding for α-myosin heavy chain and beta-adrenergic 

receptors via genomic actions (Klein and Ojamaa, 2001). The role of thyroid hormones 

in cardiac mitochondrial functions has been studied in the recent past. These studies 

have shown that thyroid hormones stimulate cardiac mitochondrial biogenesis, 

increasing myocardial mitochondrial mass, mitochondrial respiration, oxidative 

phosphorylation, enzyme activities, mitochondrial protein synthesis  cytochrome, 

phospholipid, and mitochondrial DNA content (Marin-Garcia). It is possible that 

thyroid hormone deficiency leads to impaired cardiac bioenergetic function, which 

might partly contribute towards abnormal cardiac haemodynamic functions.  
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2.3.3 Myocardial energetics as measured by 31P-MRS 

The cardiac PCr/ATP ratio, as measured by a 31P-MRS technique, has been shown to be 

a good indicator of myocardial bioenergetic function, which in turn is a measure of 

mitochondrial activity (Radda, 1986). The PCr/ATP ratio reflects myocardial energy 

reserve (Hudsmith and Neubauer, 2009). It is low in various myocardial diseases, 

including coronary heart disease, valvular heart disease, cardiomyopathies and heart 

failure (Hudsmith and Neubauer, 2009). Even in subclinical stages of diseases affecting 

cardiac mitochondrial functions, it is found to be abnormal. For example, a study in 

Frederickson’s cardiomyopathy showed a low cardiac PCR/ATP ratio in patients with 

normal left ventricular function (Lodi et al., 2001). In young patients with type 1 

diabetes, with no history of coronary heart disease, the cardiac PCr/ATP ratio was found 

to be lower than in matched healthy controls (1.90 +/- 0.4 vs. 2.15 +/- 0.3, p < 0.05) 

(Metzler et al., 2002). These studies clearly show that cardiac PCr/ATP ratio as 

measured by 31P-MRS is a reliable, sensitive and early indicator of various myocardial 

diseases. 

The functional and clinical significance of cardiac PCr/ATP has been studied in the 

past. For example, it correlated with left ventricular ejection fraction in patients with 

dilated cardiomyopathy (Neubauer et al., 1995). It was found to be a better predictor of 

cardiac mortality in patients with dilated cardiomyopathy than the New York Heart 

Association functional class or left ventricular ejection fraction (Neubauer et al., 1997). 

However, Cardiac PCr/ATP ratio is not yet used in routine clinical practice because of 

the technical challenges involved in adapting the cardiac MRS techniques for routine 

clinical practice. 

2.3.4 Cardiac dysfunction  in SCH 

Thyroid hormones have a significant effect on cardiovascular function. It is well known 

that patients with overt hypothyroidism have reduced cardiac output because of reduced 

stroke volume and heart rate (Klein and Ojamaa, 2001). Unlike patients with overt 

hypothyroidism, patients with SCH do not show overt cardiovascular disease or its 

symptoms. 

Although SCH does not cause overt cardiovascular changes, mild disturbances in 

cardiac function have been described in previous studies involving patients with SCH, 
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using highly sensitive cardiac imaging studies. For example, a study using radionuclide 

angiography involving patients with SCH showed a reduction in the left ventricular 

ejection fraction during exercise, when compared to healthy controls (Forfar et al., 

1985). Two other studies using Pulsed Wave Tissue Doppler Imaging showed right and 

left ventricular dysfunction in patients with SCH (Kosar et al., 2005) (Turhan et al., 

2006). These changes improved with levothyroxine treatment. 

It is possible that cardiac mitochondrial function is affected by mild thyroid deficiency 

in SCH. Hence, assessing PCr/ATP ratio may be a good non-invasive method to detect 

early changes in myocardial energetics in patients with SCH. This could possibly 

explain the mechanism of impaired cardiac function in SCH. No previous studies have 

been undertaken linking abnormal cardiac function in SCH and fatigue. Thus, we 

propose measuring the PCr/ATP ratio in patients with SCH using 31P-MRS before and 

after levothyroxine treatment, and correlating these abnormalities to fatigue.  

2.4 Cerebral dysfunction in SCH 

Cognitive dysfunction has been investigated in SCH by many studies with conflicting 

results (Bono et al., 2004) (Davis et al., 2003). It is important to look at the 

physiological and pathological aspects of brain dysfunction in SCH. In this section, I 

will explore a brief physiology of brain and thyroid hormones, and potential 

mechanisms whereby abnormal brain physiology might lead to cognitive dysfunction in 

SCH. 

2.4.1 Thyroid hormones and the brain 

The foetal and neonatal human brain requires adequate levels of thyroxine for 

development (Timiras and Nzekwe, 1989). Severe impairment of brain growth can 

occur in the absence of adequate thyroxine during the critical period of brain 

development. The adult brain also requires thyroxine for normal functioning and its 

deficiency leads to various behavioural and cognitive changes (Bauer et al., 2002, 

Dugbartey, 1998). 

The thyroid hormones exert their action via binding to nuclear thyroid responsive 

elements known as thyroid hormone receptors. Thyroid hormone receptors are present 

in neurons, oligodendrocytes and astrocytes (Anderson, 2001). The hippocampus and 

amygdala are rich in T3 receptors, with relatively low levels of T3 receptors present in 
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brainstem and cerebellum, as shown in animal studies (Ruel et al., 1985). Hippocampal 

neurogenesis was impaired in adult onset hypothyroidism in rats (Desouza et al., 2005). 

These parts of the brain have an important role in memory and behavioural functioning 

in adults. T3 is the key peripheral hormone which exerts its action through thyroid 

hormone receptors. As much as 50% of T3 in brain tissue is derived from T4 via local 

T3 production by type II deiodinase (Larsen, 1988). In hypothyroidism, there is a 

compensatory rise in local T3 production within the brain tissue (Dratman et al., 1982). 

2.4.2 Mechanism of cerebral dysfunction in hypothyroidism 

The exact underlying pathophysiology for cognitive and behavioural abnormalities in 

hypothyroidism is unknown. It was suggested that this may be part of a general 

hypometabolic state induced by tissue hypothyroidism (Braverman). 

There have been several studies looking into cerebral metabolic activity and cerebral 

blood flow (CBF) in overt hypothyroidism of varying aetiology. In myxoedema, a 

decrease in CBF by 38% and a 2-fold increase in cerebral vascular resistance have been 

shown in 8 patients using the nitrous oxide method (Scheinberg et al., 1950). The study 

also showed a mean 27% decrease in mean cerebral glucose consumption. It was 

suggested that mental changes in myxoedema are due to decreased oxygen and glucose 

metabolism. Cerebral bioenergetic metabolism has been investigated using cerebral 

MRS in ten patients (aged 21-56 years) with severe acute overt hypothyroidism (Smith 

and Ain, 1995). The study showed decreased phosphocreatine/inorganic-phosphate ratio 

(PCr/Pi) in the frontal lobe area, which improved significantly after treatment with 

levothyroxine. This suggests that thyroid hormones control energetic functions in brain 

tissue similar to that which has been described in skeletal muscle previously. However, 

the exact functional significance of abnormal bioenergetics was not described and needs 

further mechanistic studies to see if these changes are related to cognitive or 

behavioural disturbances in hypothyroidism. 

Over the last 10 years, several studies have looked at CBF in hypothyroidism using 

various methods. Positron emission tomography (PET) scans of the brain in patients 

with acute short-term severe hypothyroidism (post-thyroidectomy) showed global 

reduction in CBF and cerebral glucose metabolism (Constant et al., 2001). The CBF 

was measured when patients were euthyroid and after levothyroxine withdrawal. A 
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single-photon emission computerized tomography (SPECT) brain scan study was 

undertaken in patients with newly-diagnosed mild overt hypothyroidism due to 

autoimmune aetiology (mean age 45.9 years, mean serum TSH 14.6 mIU/L and low 

free T4) before and after levothyroxine treatment (mean duration 109 ± 44 days, range 

63–215 days) (Krausz et al., 2004). The study showed significant reduction in regional 

CBF in areas affecting various cognitive functions in patients when compared with 

matched healthy controls. Regional CBF deficits in the right primary cortex may be 

related to psychomotor slowness found in hypothyroidism.  There was no correlation 

between serum TSH and CBF, but the study involved only 10 patients. However, CBF 

did not improve with levothyroxine treatment. This may be due to shorter duration of 

treatment or persistent subtle abnormalities of cognitive function in treated hypothyroid 

patients (Krausz et al., 2004). Another SPECT study has shown improvement of CBF 

after restoration of euthyroidism in 56% of patients following a total thyroidectomy 

(Nagamachi et al., 2004). The affected areas were bilateral posterior parietal lobes and 

occipital lobes. The remaining patients did not show significant improvement in CBF 

with levothyroxine treatment in this study. This suggests a variable response in CBF to 

levothyroxine treatment. This is again consistent with varying responses of cognitive 

and emotional symptoms to levothyroxine treatment in hypothyroidism (Davis and 

Tremont, 2007). 

In another study of patients with SCH, a functional MR brain study looked at the blood-

oxygen level dependent (BOLD) signal changes before and after levothyroxine 

treatment (Zhu et al., 2006).  The n-back working memory tasks (a computer-based 

executive memory test) were used to induce functional changes in various parts of brain. 

The study showed that in the pre-treatment patients with SCH the load effect of BOLD 

response was only found in the bilateral parietal areas and premotor areas. No activation 

was found in other frontal cortex regions of interest (ROIs) (bilateral middle/inferior 

frontal gyri, bilateral dorsolateral prefrontal cortex, the supplementary motor 

area/anterior cingulated cortex) which are relevant areas in working memory in patients 

with SCH. After 6 months of treatment with levothyroxine, the patients with SCH 

exhibited the same load effects in all ROIs as the euthyroid subjects along with an 

improvement of performance in n-back tasks. BOLD signal is a surrogate marker of 

neuronal activation and subsequent local blood flow changes in cerebral  

microcirculation (Logothetis, 2008). Hence, it was inferred from the above study that 
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hypothyroidism affects specific neuronal activity in certain parts of the brain which are 

relevant to working memory.  

This was a preliminary study and no further similar functional MR brain studies have 

been published to show the reproducibility of these findings in a larger and different 

cohort of SCH patients. We also need to establish whether CBF is altered in SCH, as 

previous studies were done in overtly hypothyroid patients. Future studies aimed at 

correlating fatigue and abnormal cerebral physiologies with improvement after 

levothyroxine treatment are likely to yield answers as to whether SCH is truly 

associated with fatigue. This is especially relevant in the serum TSH range 4 to 10 

mIU/L because these patients are not routinely treated with levothyroxine as per current 

recommendations. Also, as previously discussed, younger patients with SCH have 

shown more association with abnormal cognition than older patients. Older patients are 

more likely to have co-existing medical conditions, which make the interpretation of 

abnormal cerebral physiology more challenging. Hence, studies looking at younger age 

groups are more likely to show abnormal cerebral physiology in initial exploratory 

studies in SCH. None of the studies have looked at whether CBF is related to fatigue. 

Abnormal CBF could explain fatigue in SCH. 

2.5 Assessment of fatigue 

The fatigue in clinical practice and research is commonly assessed by self-administered 

questionnaires. There are more than 30 types of fatigue-measuring questionnaires being 

used in clinical and research practice (Dittner et al., 2004). There are no fatigue-specific 

questionnaires available which are validated to measure fatigue in thyroid disease. 

Fatigue Impact Scale (FIS) is a widely-used questionnaire in fatigue research (Fisk et 

al., 1994a, Fisk et al., 1994b). This questionnaire has been used in investigating the 

mechanisms of fatigue in primary biliary cirrhosis and chronic fatigue syndrome. 

Therefore, FIS was used in our study to measure fatigue in patients and healthy 

controls. 
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2.6 Summary and hypothesis 

SCH is a common medical problem affecting millions of people worldwide. It has been 

associated with fatigue. This is more controversial in patients with serum TSH ranging 

between 4.0-10.0 mIU/L. Cerebral, cardiac, autonomic and skeletal muscle dysfunction 

have been studied in SCH, as described previously. These are potential mechanisms 

which can cause fatigue in SCH. Hence, the following hypothesis was proposed: 

Fatigue in SCH is due to functional abnormalities in peripheral tissues which are partly 

or wholly reversible with levothyroxine treatment. 

As described in previous sections, the associations between symptoms and tissue 

dysfunction have not been studied in SCH.  The aim of this research project was to 

study the cerebral blood flow, cardiac and skeletal muscle bioenergetics, and cardiac 

autonomics in patients with SCH before and after levothyroxine therapy. Measured 

parameters would be compared with an objective assessment of fatigue before and after 

levothyroxine therapy. This will help to explore whether functional abnormalities thus 

detected explain the mechanisms of physical symptoms in SCH.  
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Chapter 3 Methodology 

3.1 Overall Study design  

This was a pilot study investigating the mechanism of fatigue and cognitive dysfunction 

in patients with subclinical hypothyroidism (SCH). For the purpose of this MD thesis, 

the data was analysed for only the fatigue aspects of the study. The cognitive 

dysfunction and functional MR scan data were not included in this thesis. We planned 

to recruit 20 patients with SCH and their baseline data will be compared against 20 age 

and gender-matched euthyroid healthy controls. The patients were then treated with 

levothyroxine for 6 months to look for any improvement from the baseline results. The 

patients (n=20) were recruited from the secondary care endocrine clinics and various 

general practices in Gateshead. They were invited for a screening visit where they were 

assessed for inclusion and exclusion criteria. Those who met the criteria were entered 

into the study and underwent a functional MR scan of the brain, heart and leg, 

autonomic function tests and psychometric evaluation. They were then given 

levothyroxine at a dose of 1.6 mcg/kg once daily. During the subsequent 6 months, they 

had blood tests for FT4 and TSH every 6 weeks, and the levothyroxine doses were 

adjusted to keep TSH between 1-1.5 IU/L. At the end of 6 months, the tests were 

repeated i.e. MR scans, autonomic tests and psychometric evaluation. The patients then 

exited the study and were advised to discuss with their general practioners the need for 

continuing the thyroxine treatment. The healthy controls were recruited from the staff 

members of the research institute. The physical activity levels of both patients and 

healthy controls were not measured. The healthy controls underwent only baseline MR 

investigations. They did not undergo autonomic function tests and psychometric 

evaluation because of a lack of availability of rooms in the laboratory. The autonomic 

function data from age and gender-matched healthy controls in a previous study by our 

collaborators was used to compare with our patients cohort. There was no placebo arm 

in the study because it required a larger study group, which would have been very 

difficult to find and more funding resources would be required. 

3.2 Rationale for the study design  

This was a pilot study because a comprehensive research methodology looking into the 

mechanism of fatigue and cognitive dysfunction has not been undertaken previously in 

this specific group of patients. The data comparison between baseline pre-treatment 
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patients and age and gender-matched healthy controls will reveal whether there are 

abnormal results in patients. The data from patients between pre-treatment and post-

treatment tests will be used identify changes related to treatment.  

We have chosen to include patients between 18 years and 65 years because older 

patients might have more co-morbidities, which might be confounding factor underlying 

fatigue or cognitive dysfunction. Also, it is known that older patients might have raised 

serum TSH levels due to ageing itself. We selected patients with moderate-severe 

fatigue (FIS score >40) only, because of the pilot nature of the study. The patients had 

SCH for > 3 months, thus eliminating patients with transiently elevated TSH due to 

other illnesses or viral thyroiditis. Serum thyroid peroxidase (TPO) was measured in 

patients for identification of the aetiology of SCH.  

We have excluded patients with co-morbidities that may be contributing factors to their 

fatigue, such as diabetes mellitus, anaemia, liver disease and renal disease. The patients 

with hypertension, hypercholestremia, heart disease and stroke disease were excluded 

because these patients may have reductions in blood flow due the underlying 

atherosclerosis and might interfere with cardiac spectroscopy and cerebral blood flow 

measurements. We have excluded patients with major psychiatric disease, which could 

contribute to abnormalities in cognitive tests. Subjects who have indwelling metals that 

might interfere with MRI scans were excluded because of safety reasons. 

The symptoms of hypothyroidism are partly dependent on the duration of disease, as 

described in previous chapters. A longer duration of treatment is more likely to 

demonstrate changes with treatment rather than a shorter period of treatment. Hence, we 

chose 6 months for treatment duration so that functional changes due to treatment 

within various tissues studied may become more evident. This will also provide enough 

time to titrate the dose of levothyroxine to a target of serum TSH 1-1.5 mIU/L. The 

previous study by Razvi et al. showed that fatigue was significantly improved in the 

levothyroxine treated group (Razvi et al., 2007). The mean serum TSH in this group 

was 0.5 mIU/L. 10% of patients were over-replaced in that study. The serum TSH target 

of 1-1.5 mIU/L was chosen in our study because this might give the best chance of 

showing any functional changes in various tissues studied without exposing the patients 

to risk over-replacement. We chose to use a full replacement dose of thyroxine (1.6 

mcg/kg per day) as recommended by several experts in the past for treating younger 
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SCH patients without heart disease. The dose titration of levothyroxine was done based 

on the results of thyroid function tests. If the serum TSH was out of target, then the 

levothyroxine dose was adjusted and re-checked at the next visit. 

3.3 Patient recruitment 

The patients with known SCH were identified in secondary care endocrine clinics and 

approached if they had raised TSH between 4.0 and 10.0 mIU/L, with normal FT4 on 

two occasions or more for at least 3 months apart, and had fatigue as one of their 

symptoms. In a primary care setting, after seeking permission from primary care 

physicians, the General Practice Database was searched for patients with SCH using the 

above biochemical criteria and whether fatigue was mentioned in the GP records. Any 

patients with major co-morbidities, such as vascular disease, diabetes mellitus and 

epilepsy, and those on drugs interfering with thyroid function tests, were excluded at 

this stage (pre-screening). The patient information letters were sent out via post to these 

pre-screened patients, and a reply to the research team was requested if they were 

interested in participating. Those who expressed an interest to participate in the study 

were invited to attend the screening visit after 12 hours of overnight fasting. 

3.3.1 Screening Visit (Fasting) 

Written informed consent was obtained after addressing any questions and explaining 

about the study in detail. Subjects were screened for inclusion and exclusion criteria. 

3.3.2 Inclusion criteria:  

1. Age 18 to 65 years 

2. Subjects with confirmed SCH: Serum TSH between 4.1 and 10.0 mIU/L and normal 

FT4 for more than 3 months.  

3. Fatigue Impact Scale > 40. Please refer to page 31 for a detailed explanation. 
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3.3.3 Exclusion Criteria 

1. Subjects with previous thyroid disease or currently on thyroid hormone replacement, 

anti-thyroid drugs, amiodarone, Lithium, oral corticosteroids, hypotensive agents, 

aspirin, statins or ACE inhibitors/angiotensin receptor blockers. 

2. Subjects with known diabetes mellitus/impaired glucose tolerance/impaired fasting 

glycaemia. 

3. Known renal failure or a serum creatinine > 120 umol/l within the past 3 months. 

4. Previous participation in a clinical trial within the past month. 

5. Previous history of vascular disease (history and ECG). 

6. Malignancy (any).                                                           

7. Active infections.   

8. Major psychiatric disease (by history and Hospital Anxiety Depression score). 

9. Drug abuse.  

10. Previous major head injuries/epilepsy.   

11. Pacemakers/cerebral aneurysm clips.   

12. Pregnancy. 

13. BMI >35 kg/m2 

Blood tests were taken for the following measurements: FT4, FT3, TSH, anti-thyroid 

peroxidise antibody, glucose, cholesterol profile, liver function tests, urea &  

electrolytes, bone profile and full blood count. During treatment phase, serum TSH and 

FT4 was measured at 6-weekly intervals. These were random (not fasting) samples and 

not timed in relation to the time of ingestion of levothyroxine tablets. The serum free T3 

level was not measured during the treatment phase as the effect of levothyroxine 

treatment on serum free T3 level is unpredictable and its clinical significance is 

unknown (Jonklaas et al., 2014).  
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Medical history and clinical examination – cardiac auscultation to exclude any patients 

with likely structural heart disease, and height, weight and blood pressure were also 

measured. 

Questionnaires 

Fatigue impact Scale – those who scored less than 40 were excluded; this was to 

exclude patients without significant fatigue (Appendix A). This questionnaire evaluated 

overall impact of fatigue in a subject (Fisk et al., 1994b). This has not been validated for 

thyroid disease, but has been used for various diseases where fatigue is a clinical 

manifestation (Dittner et al., 2004). The FIS score was undertaken at the beginning of 

study in patients and healthy controls, and at the end of the study in patients.  

Hospital Anxiety and Depression score: to exclude patients with significant active 

depression (Appendix B). Depression can cause fatigue, and SCH has been associated 

with low mood in previous studies (Samuels). 

12-lead ECG: to exclude patients with ischaemic heart disease. 

N-back Test: this is a computer-based working memory test. Subjects are shown series 

of alphabets on the computer screen. The task is to spot the repeats of the same 

alphabets in a particular order. When the same alphabet is repeated immediately 

afterwards, it is called 1-back; when the same alphabet is repeated 2 letters later, then it 

is 2-back; and when the same alphabet is repeated 3 letters later, it is 3-back.The 

subjects undergo this test during functional MR of the brain to activate the brain, and 

resulting BOLD signals are captured and analyzed. During the screening visit, the 

subjects undergo 2 practice sessions of 8 minutes each and a third practice session will 

be done immediately before the MR scan. This was done for analysis in conjunction 

with functional MR brain results. This was not analysed or described in this thesis.   

The patients who met the inclusion criteria and did not have any exclusion criteria were 

entered into the study. 

3.4 Biochemical Investigations:- 

All screening blood samples were collected after 12 hours (from 9pm to 9am, water 

allowed) of overnight fasting. The samples were immediately analysed in the local 

clinical laboratory. The TSH, free T4 and free T3 were measured by Roche Cobas e601 
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and have coefficient of variation below 5%. The reference ranges for serum TSH, FT4 

and FT3 were: 0.4 – 4.0 mIU/L, 9 – 25 pmol/L and 2.5 – 7.5 pmol/L, respectively. 

3.5 Ethical approval:- 

The North Tyneside Research Ethics Committee 2 and Gateshead Research and 

Development Committee approved the project. 

3.6 Statistics:- 

Power calculations were made using a 2-sample t-test to produce 80% power with 95% 

significance. From our collaborator’s experience of variability in healthy subjects and 

patients in PBC and CFS, we estimate that by studying 20 subjects we can expect to 

detect an 8% difference in CBF, a 14% difference in the PCr/ATP in cardiac 

spectroscopy, and a 13% change in oxidative metabolism (1/2 PCr) of skeletal muscle. 

Depending upon the data distribution, paired Students t-tests or Mann Whitney U tests 

were used for comparison between before and after thyroxine treatment. Unpaired 

Student test or equivalent non-parametric tests were used to compare data between 

patients and healthy controls at baseline. Pearson analysis was undertaken for 

measuring association between 2 variables. The statistical analysis was performed using 

SPSS (version: 17). 
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3.7 Study visits 

Summary of the study visits after the screening visit are given in Table-3 

Visit  Setting Preparation Tests/intervention 
Visit 1 Newcastle 

Magnetic  
Resonance 
Centre.  
 

Nil MR scans 
Heart, leg and brain. 

Visit 2 Falls and 
Syncope 
Service, Royal 
Victoria  
Infirmary. 

Avoid smoking, strenuous 
exercise  and caffeinated drinks 
for 4 hours prior to tests 

Autonomic  Function 
Tests. 

Visit 3 Bensham 
Research  
Centre 

Nil Neuropsychometric 
Assessment. 
Start thyroxine 
treatment. 

Visit 4 
6 weeks 

Bensham 
Research  
Centre 

Advised to bring any remaining 
tablets for compliance check. 

Clinical assessment. 
Blood tests for free T4  
and TSH. 
Thyroxine dose titration 

Visit 5 
12 
weeks 

Bensham 
Research  
Centre 

Advised to bring any remaining 
tablets for compliance check. 

Clinical assessment. 
Blood tests for free T4  
and TSH. 
Thyroxine dose titration 
TSH not on target-Visit 
5a. TSH on target-Visit 6

Visit 5a 
18 
weeks 
(only if 
TSH not 
on target) 

Bensham 
Research centre 

Advised to bring any remaining 
tablets for compliance check. 

Clinical assessment. 
Blood tests for free T4  
And TSH. 
Thyroxine dose titration. 

Visit 6 
24 
weeks 

Bensham 
Research centre 

Advised to bring any remaining 
tablets for compliance check. 

Neuropsychometric 
Assessment. 
Blood test for freeT4 and 
TSH. 

Visit 7 
24 
weeks 

Falls and 
Syncope 
Service, Royal 
Victoria  
Infirmary. 

Avoid smoking, strenuous 
exercise  and caffeinated drinks 
for 4 hours prior to tests 

Autonomic  Function 
Tests. 

Visit 8 
24 
weeks 

Newcastle 
Magnetic  
Resonance 
Centre.  
 

Nil MR scans 
Heart, leg and brain. 
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Visit 1 

Newcastle Magnetic Resonance Centre, Newcastle General Hospital. 

Preparation- Nil. 

MRI screening questionnaire: Patients were asked to fill out a questionnaire to establish 

whether magnetic resonance scanning was contraindicated due to metallic components 

in their bodies and/or claustrophobia. 

N-back practice: Third session is done prior to scans. 

Scans were done in the following order. 

1. MR 31P cardiac spectroscopy: Patients lie down on the scanner table in a prone 

position for 40 minutes. 

2. MR 31Phosphurus Calf muscle spectroscopy: During rest, exercise and recovery after 

exercise (Section 4.4.2 and 4.4.3 for details of the protocol). 

3. Resting functional scan of the brain, and BOLD response to n-back test. 

Visit 2 

Falls and Syncope service, Royal Victoria Infirmary, Newcastle upon Tyne. 

Preparation – Patients were advised to refrain from smoking, caffeinated drinks and 

strenuous exercise (all of which can affect heart rate) for 4 hours prior to the visit. All 

patients had the tests at the same time of the day in a warm, quiet room. 

Autonomic function tests – Heart rate and blood pressure were measured continuously 

for the duration of the test using surface ECG electrodes and phasic blood pressure, 

using digital photoplethysmography ('Portapres', Amsterdam, the Netherlands). The 

built-in software programme (TASKFORCE) calculated heart rate variability and 

baroreflex sensitivity during rest, and each of the manoeuvres is given below. Cardiac 

impedance electrodes were also applied to measure various cardiac indices during rest 

and different manoeuvres.  
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Rest - for 10 minutes. 

Active standing for 2 minutes. 

Valsalva manoeuvre. 

Head-up tilt testing - 40 minutes. 

Visit 3 

Neuropsychometric assessment, Bensham Research Centre, Gateshead. 

1. Preparation: Nil. 

2. Setting: Single session lasting 90 minutes (with a 10-minute break after 60 minutes) 

was done in a warm, quiet and well-lit room. The session was supervised by myself or a 

research nurse for the study in the same order and methods of administration as below. 

Wechsler Abbreviated Scale of Intelligence (WASI) – vocabulary, block design, word 

similarities and matrix reasoning. 

Wechsler Test of Adult Reading (WTAR).  

The Controlled Oral Word Association Test.  

Wechsler Memory Scale-III abbreviated (WMS) - verbal story (immediate and delayed 

recall), family pictures (immediate and delayed recall), symbol search and digit span. 

Trail-Making.  

3. Patients were started on levothyroxine at 1.6mcg/Kg body weight once daily after the 

above tests. They were advised to take thyroxine on an empty stomach before breakfast 

and were given 6 weeks of appointments for measuring TFTs and dose adjustment (if 

required). 
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Visit 4 

Bensham Research Centre, Gateshead 

1. Clinical assessment. 

2. Compliance check. 

3. Blood test - for FT4 and TSH. 

4. Target TSH 1.0-1.5 IU/L and normal FT4. 

5. If required, levothyroxine dose adjusted to keep TSH on target. 

6. Next appointment in 6 weeks. 

Visit 5 

 Bensham Research Centre, Gateshead. 

1. Clinical assessment. 

2. Compliance check. 

3. Blood test - for FT4 and TSH. 

4. Target TSH 1.0-1.5 IU/L and normal FT4. 

5. If required, levothyroxine dose adjusted to keep TSH on target. 

6. Next appointment in 12 weeks (Visit 6) if TSH on target. 

 If outside target, next appointment in 6 weeks (Visit 5a). 

Visit 5a 

 Bensham Research Centre, Gateshead. 

1. Clinical assessment. 

2. Compliance check. 

3. Blood test - for FT4 and TSH. 

4. Target TSH 1.0-1.5 IU/L and normal FT4. 
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5. Levothyroxine dose adjusted to keep TSH on target. 

6. Next appointment in 6 weeks (Visit 6). 

 

Visit 6 

Newcastle Magnetic Resonance Centre, Newcastle General Hospital. 

Preparation - Nil. 

 MRI screening questionnaire: Patients were asked to fill out a questionnaire to establish 

whether magnetic resonance scanning was contraindicated due to metallic components 

in their body and/or claustrophobia. 

N-back practice: Practice session prior to brain scan. 

Scans were done in the following order: 

1. MR 31P cardiac spectroscopy: Patients lie down on the scanner table in prone 

position for 40 minutes. 

2. MR Calf muscle spectroscopy: During rest, exercise and recovery after exercise. 

3. Functional scan of the brain and BOLD response to n-back test. 

Visit 7 

Falls and Syncope service, Royal Victoria Infirmary, Newcastle upon Tyne. 

Preparation - Patients were advised to refrain from smoking, caffeinated drinks and 

strenuous exercise for 4 hours prior to the visit. 

Autonomic function tests: Heart rate and blood pressure were measured continuously 

for the duration of the test using surface ECG electrodes and phasic blood pressure, 

using digital photoplethysmography ('Portapres', Amsterdam, the Netherlands). The 

built-in software programme (TASKFORCE) calculated heart rate variability and 

baroreflex sensitivity during rest, and each of the manoeuvres is given below. Cardiac 

impedance electrodes were also applied to measure various cardiac indices during rest 

and different manoeuvres.  
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Rest - for 10 minutes. 

Active standing for 2 minutes 

Valsalva manoeuvre - 2 attempts. 

Tilt testing - 40 minutes.  

Visit 8  

Neuropsychometric assessment and blood tests for FT4 and TSH, Bensham Research 

Centre, Gateshead. 

1. Preparation: Nil. 

2. Setting: Single session lasting 90 minutes (with a 10-minute break after 60 minutes) 

was done in a warm, quiet and well-lit room. The session was supervised by myself or a 

research nurse for the study in the same order and method of administration. 

Wechsler Abbreviated Scale of Intelligence (WASI) – vocabulary, block design, word 

similarities and matrix reasoning. 

Wechsler Test of Adult Reading (WTAR). 

The Controlled Oral Word Association Test. 

Wechsler Memory Scale-III abbreviated (WMS) - verbal story (immediate and delayed 

recall), family pictures (immediate and delayed recall), symbol search, digit span, and 

Trail-Making. These were tests for various aspects of cognitive function. The data from 

cognitive studies are not being analysed or discussed in this thesis. 

3. Blood tests for levothyroxine FT4 and TSH. 

4. Patients exit from the study. Their general practioner was informed about the exit 

from the study and patients were advised to discuss with their doctor about continuing 

thyroxine in the long-term. 

 

 



39 

 

Chapter 4 Calf Muscle MR spectroscopy 

4.1 Hypothesis:  

Fatigue in SCH is (partly or wholly) due to abnormal energy metabolism in peripheral 

skeletal muscle and is reversible with levothyroxine treatment. 

4.2 Primary Objectives:  

To measure non-invasively the following energy metabolic variables using 31P-MR 

dynamic spectroscopy and compare them with age and gender-matched euthyroid 

healthy controls: 

(i) The baseline and end exercise metabolite concentrations  

(ii) Maximal mitochondrial oxidative function inferred from phosphocreatine recovery 

from an exercise bout (PCr t1/2). This was the key primary end point. 

(iii) The time taken for muscle pH to normalise after cessation of exercise  

(iv) The rate of removal of acid (the proton efflux) from the muscles in the post-exercise 

period. 

4.3 Secondary objectives: 

To examine the metabolic measurements before and after 6 months of levothyroxine 

treatment. 

4.4 Use of Magnetic Resonance Spectroscopy: 

Muscle energy metabolism can be studied non-invasively by using phosphorus-31 

magnetic resonance spectroscopy (31P-MRS). 31P-MRS records signals from high-

energy phosphate-rich compounds, which are central to muscle energy metabolism 

(Mattei et al., 2004). The signals are generated when a magnetic field is applied to 

phosphorus nuclei resulting in alteration of its spin properties. The signal intensity is 

proportional to the concentration of corresponding molecules. The spectrum typically 

consists of 7 signals corresponding to 7 metabolites i.e. Pi, PCr, γ-ATP, α-ATP, β-ATP, 

phosphomonoesters (PME) and phosphodiesters (PDEs) (Mattei et al., 2004). The 

concentration of adenosine diphosphate (ADP) at rest (10M) produce insufficient 
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signals to measure directly, but can be indirectly estimated using the chemical equation 

based on the creatine-kinase equilibrium: 

PCr + ADP + H+ ↔ Cr + ATP 

Muscle pH can also be estimated indirectly using the relative chemical shift of Pi since 

the chemical shift of Pi is pH-dependent (Moon and Richards, 1973). Mitochondrial 

oxidative function is assessed by the rate of ATP synthesis during exercise. PCr 

recovery rate during recovery after exercise is a measure of mitochondrial capacity, 

because it reflects the rate of mitochondrial ATP production  (Heerschap et al., 1999).  

4.4.1 Advantages  and disadvantages of  31P-MRS-  

Unlike in vitro studies, MRS is non-invasive and muscle metabolism can be studied 

under physiological conditions during varying degrees of exercise. It is important to 

mention that 31P-MRS provides measurements of phosphate compounds at the tissue 

scale and not at a specific cellular or subcellular level (Heerschap et al., 1999). Only 

free and unbound phosphate compounds are measured using 31P-MRS, unlike biopsy or 

freeze-clamping studies where the total cellular level of a compound is measured. But, 

ATP levels measured with in vitro methods and 31P-MRS methods showed equivalent 

values, which suggests that the ATP pool is largely free and fully MR visible in muscle 

tissue (Gadian, 1995). PCr  within muscle cells is also largely unbound and fully MR 

visible, but an in vitro study showed lower levels than in vivo studies because of rapid 

breakdown of PCr mediated by creatine-kinase reaction during the freeze-clamping 

procedure (Meyer et al., 1982). 

4.4.2 Resting 31P magnetic resonance spectroscopy 

All MR scans for this study were undertaken using a Philips 3T Achieva scanner 

system. The part of the left calf with the greatest circumference was imaged using T1-

weighted scans. With the patient lying supine, with their left calf at magnet isocentre, 

MRS data were acquired using a 14cm diameter 31P surface coil for 

transmission/reception of signals, and the in-built body coil for anatomical imaging.  

4.4.3 Exercise 31P magnetic resonance spectroscopy 

A purpose-built exercise apparatus has been designed to operate within the MRI scanner 

(Figure 4.1). The subjects lay down on the scanner table and were able to undertake 
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controlled plantar flexion exercise using this apparatus. The restraining straps helped to 

avoid the employment of other muscle groups (e.g. quadriceps). The exercise session 

involved two exercise bouts with the following sequence: rest, 3 minutes of exercise 

(plantar flexion at 0.5 Hz and 25% of Maximum Voluntary Contraction (MVC), which 

was quantified prior to spectroscopy), then 6 minutes’ rest. The second exercise bout 

consisted of 3 minutes of the second exercise (plantar flexion at 0.5 Hz and 35% of 

MVC) and 6 minutes of rest, which allows the assessment of recovery from exercise. As 

lower intensity of exercise was used in the first exercise, which does not cause large 

decreases in pH, it permits the direct measurement of muscle oxidative metabolism. 

During the second exercise, a higher intensity exercise depresses pH and this allows the 

assessment of anaerobic metabolism and pH.  

 

Figure 4-1: The apparatus used to permit exercise (plantar flexion) within the MR scanner (left) 
                   and the 0°-30° of plantar flexion involved (right). 
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4.4.4 Muscle metabolism during rest, exercise and recovery as observed by 31P-

MRS. 

The various measurements made using 31P-MRS muscle spectroscopy are shown in 

Table-4.1 

Table 4.1: Metabolic parameters measured during rest and exercise with 31P-MR 

Spectroscopy. 

Leg exercise protocol stage Measurement Unit 

Rest – before first exercise. pH  

PCr concentration mM 

Pi concentration mM 

ADP at rest mM 

During the first exercise     (25%MVC)   

End of the first exercise End Exercise ADP µM 

PCr below basal µM 

%PCr  drop  

During recovery from the first exercise V (PCr resynthesis) mM/Min 

Qmax mM/Min 

PCr t1/2 Seconds 

ADP t1/2 Seconds 

Before the second exercise (35% MVC) pH (resting)  

The end of the second exercise End exercise pH  

During recovery from the second exercise Minimum pH  

pH recovery time Seconds 

Initial Proton Efflux  

Max Proton Efflux  
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4.4.5 Interpretation of 31P magnetic resonance spectroscopy:  

A Java-based resonance interface (jMRUI version 2.0) was used to undertake the 

analysis of averaged (resting) and individual time series spectra (Vanhamme et al., 

1999). As described by Kemp et al., at rest, an  ATP level of 8.2 mM was assumed 

(Kemp et al., 1997). A non-linear least squares algorithm (AMARES) was used to 

quantify phosphocreatine (PCr), inorganic phosphate and pH. The chemical shift 

between PCr and Pi was used to assess pH (Kemp and Radda, 1994). To assess pH the 

following equation was used: 

pH = pkA+10 log ([Δ1- Δ0]/[Δ0- Δ2]) 

pkA = 6.75, Δ0=chemical shift (in ppm) between PCr and Pi, Δ1=3.27ppm, 

Δ2=5.63ppm. 

The resting pH, end-exercise pH, and minimum pH following second-exercise pH, were 

determined. The end-exercise pH reflects the anaerobic glycolytic activity during an 

intense exercise. The pH recovery time was calculated by measuring the time from the 

cessation of exercise until pH returned to within 0.01 units of its pre-exercise value. 

This indicates the efficiency of proton efflux following exercise.  

The PCr and pH values were utilised to calculate ADP levels (ATP value of 8.2 mM 

and PCr value of 42.5 mM was assumed) using the creatine-kinase equilibrium (Kemp 

and Radda, 1994, Kemp et al., 1997). The ADP concentration was estimated using the 

following equation: 

[ADP] = [ATP] [Cr] / [PCr] [H+] Keq     

Keq= Creatine-kinase equilibrium constant =1.7 x 106 L.mM, [TCr] =Total creatine 

concentration =42.5mM, [ATP] = adenosine triphosphate concentration = 8.2mM. 

The equation used for the calculation of the PCr re-synthesis following exercise is: 

V=Δ[PCr]/Δt 

T=time 

The percentage of PCr depletion at the end of the first exercise was calculated from the 

reduction of PCr level in the first exercise from the resting PCr. The measured initial 
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rate of [PCr] resynthesis (i.e. at cessation of exercise), Vinit, and [ADP] concentration at 

end-exercise can be used to estimate the maximum possible oxidative ATP synthesis 

rate with unlimited ADP concentration. Assuming a hyperbolic relationship between 

ADP concentration and oxidative metabolism rate, the maximum possible oxidation 

rate, Qmax was estimated by: 

 Qmax = Vinit. (1 + (Km/[ADP]end-exercise)) where Km = 90 M. Km represents the 

concentration of ADP at which V = Qmax/2. 

The Qmax measures the oxidative capacity of the muscle mitochondrial pool (Prompers 

et al., 2006).  The rate of net proton efflux (E) from the acquired volume of muscle was 

estimated for every point after the cessation of exercise from the pH and the rate of 

phosphocreatine recovery.  The rate at which protons are generated by net PCr 

resynthesis and an estimate of the titration of protons by cytosolic buffering, is taken 

into account (Kemp et al., 1993, Kemp and Radda, 1994).The rate of proton efflux was 

estimated from: 

E =γV + βTd(pH)/dt 

where βT is the cytosolic buffer capacity, assumed to be 20 slykes (Kemp et al., 2001) 

and –γ is a pH dependent empirical factor relating the rate of change of phosphocreatine 

to the free cytosolic protons produced, and is given by: 

γ = 1/(1+10^(pH-6.75) 

Mono-exponential fits to the recovery data were used to estimate the half-times for 

recovery to equilibrium of ADP (1/2 ADP) and PCr (1/2PCr). The 1/2PCr is a surrogate 

measure of mitochondrial phosphorylation during the recovery from exercise. The 

proton efflux was calculated for every time point after cessation of exercise, and we 

noted the time point at which efflux reached its maximum, which should be the time 

point of cessation of exercise for healthy controls (Kemp et al., 1997). The proton efflux 

helps to recover cytosolic pH after exercise by pumping out hydrogen ions generated 

during exercise. Abnormalities in proton efflux have been associated with conditions 

such as chronic fatigue syndrome, and suggested as potential mechanism of fatigue in 

this condition (Jones et al., 2010) . 
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4.5 Results  

After undergoing the screening process and taking informed consent as described in 

chapter 3, 25 patients and 20 healthy controls were recruited. The data from one patient 

had insufficient signal-to-noise to process. Another patient did not complete the study 

due to personal reasons after autonomic studies. Hence, 23 subjects in the patient group 

had a successful baseline MR spectroscopy assessment (see Appendix C for details). 

The baseline demographic data is shown in Table 4.2 for both patients and healthy 

controls. It shows that the 2 groups were comparable in terms of mean age, gender 

distribution, blood pressure and cholesterol. Patients had significantly higher BMI and 

fasting blood glucose than healthy controls. As expected, patients had significantly 

higher serum TSH (not normally distributed, hence given as median and IQR) and 

lower FT4 than healthy controls. Serum FT3 was also higher in patients than in healthy 

controls, although it was within the normal reference range in both groups. The TPO 

was positive in 13 out of 23 patients with SCH and only 1 out of 20 healthy controls 

(56% vs 5%). Both TPO positive and negative patients were comparable in their 

baseline data (data not shown). The mean HAD score was 9.6 (±5.2) for anxiety and 7.4 

((±4.1) for depression. m2 

Characteristic 
SCH n=23 

Mean(±SD) 
HC n=20 

Mean(±SD) 
P 

value 
Age (years) 41.6 (±12.4) 42.1 (±12.5) 0.888 

No. of women (% of n) 19 (83) 17 (85) 0.832 

BMI (kg/m2) 29.0 (±6.0) 24.7 (±4.4) 0.012 

Blood pressure (mmHg) 122/75 (±17/10) 121/77 (±19/11) 0.690 

Blood glucose (mmol/L) 5.0 (±0.4) 4.7 (±0.5) 0.016 

Serum Total Cholesterol 

(mmol/L) 
5.6 (±1.0) 5.3 (±0.8) 0.447 

Serum TSH ( IU/L) 5.9 (IQR 5.25-8.2)* 2.1 (IQR 1.25-2.6) * <0.001 

Serum FT4 (pmol/L)  13.4 (±1.5) 14.7 (±1.4) 0.010 

Serum FT3 (pmol/L) 5.1 (±0.7) 4.5 (±0.7) 0.035 

FIS score 76.9 (±28.1) 4.3 (±5.0) <0.001 

 

Table 4.2: The baseline demographic data for patients and healthy controls are shown.  

     *The serum TSH is expressed as median (IQR-interquartile range) 
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The obesity has been associated with raised TSH in previous studies (Pearce, 2012). 

Since the BMI was higher in SCH group when compared to HC group, it is possible that 

it can lead to high serum TSH in SCH group. The figure 4.2 shows that there was no 

correlation between serum TSH and BMI in the SCH group (r2 =0.077, p=0.154). 

However, there was a positive correlation between serum TSH and BMI in the HC 

group (r2 =0.247, p=0.007) as shown in Figure 4.3. 

 

       Figure 4-2: This shows the correlation between serum TSH and BMI in SCH group (p=0.154) 

 
         Figure 4-3: This shows the correlation between serum TSH and BMI in HC group (p=0.007) 
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Figure 4-4: This shows the serum TSH distribution in pre- and post-treatment groups (n=18). 

Three patients did not complete the treatment phase of the study (2 patients were unable 

to tolerate MR scans and 1 patient moved out of the area); a further 2 patients were 

poorly-compliant with levothyroxine treatment (had serum TSH outside normal range) 

and their data were not analysed. Hence, pre- and post-treatment data for 18 patients is 

presented. After treatment with levothyroxine (mean dose 105.3 ± 26.1 mcg/day) for 6 

months, the mean serum TSH (note: normally distributed in post-treatment group), 

serum FT4 levels and FIS score were 2.1(±1.1) mIU/L, 19.1 (±2.3) pmol/L and 30.8 

(±35.4) respectively. The distribution of serum TSH in pre- and post-treatment SCH 

groups is shown in Figure 4-4.  

4.5.1 Resting calf muscle metabolism 

The resting muscle spectroscopic data (Table 4.3) shows that there were no significant 

differences between patients and healthy controls except in resting PDE concentrations. 

The mean resting PDE was significantly higher in SCH group than in healthy controls 

(p=0.002) and this did not correlate with serum TSH, FT4, FT3 or FIS scores (all p 

>0.05). Table 4.4 shows that there were no changes in any of the resting energy 

metabolites with levothyroxine treatment. 
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 SCH n=23 
(mean±sd) 

HC n=20 
(mean±sd) 

P value 

Pi (mM) 3.9 (±0.8) 3.8 (±0.8) 0.686 

PCr (mM) 33.9 (±3.8) 34.4 (±2.3) 0.669 

ADP (µM) 9.7 (±0.6) 9.9 (±0.6) 0.486 

pH 7.06 (±0.03) 7.06 (±0.02) 0.810 

PDE (mM) 3.4 (±1.1) 2.4 (±0.8) 0.002 

 

Table 4.3. The resting muscle spectroscopic data are shown for baseline patients and healthy controls. 
P value given for unpaired t-test 

 

 

SCH 
Pre-treatment

N=18 
(mean±sd) 

SCH 
Post-treatment

N=18 
(mean±sd) 

P value 
 

Pi (mM) 3.8(±0.6) 3.7(±0.7) 0.881 

PCr (mM) 33.8 (±4.2) 32.6 (±2.4) 0.239 

ADP (µM) 9.7 (±0.4) 9.8 (±0.5) 0.390 

pH 7.06 (±0.02) 7.06 (±0.02) 0.925 

PDE (mM) 3.4 (±1.3) 3.1 (±1.3) 0.179 

 

Table 4.4: The resting spectroscopic data are shown for patients before and after 6 months of 
levothyroxine treatment. P value give for paired t-test 

 

4.5.2  Calf muscle metabolism during first exercise and recovery 

Table 4.5 shows the muscle spectroscopic data during the first exercise and recovery for 

the baseline SCH group and healthy controls. The mean ADP concentration was 

significantly lower at the end of first exercise in patients when compared to healthy 

controls (p=0.037). The PCr concentration below basal level and the percentage drop in 

PCr at the end of first exercise was lower in patients than in healthy controls (p=0.036 

and 0.029 respectively). The 1/2PCr was the primary endpoint in the muscle 

spectroscopic data. The 1/2PCr was similar between the 2 groups (p=0.976). The initial 

rate of PCr resynthesis (V) was lower in patients than in healthy controls (p=0.025). The 
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Pi concentrations were similar between the 2 groups at the end of the first exercise. In 

both patients and healthy controls, the abnormal metabolic parameters did not reveal 

any significant correlation with serum TSH, FT4, FT3 or FIS scores (all p >0.05). The 

TPO positive and negative patients showed no significant differences between them in 

any of the metabolic parameters measured in the muscle spectroscopy. The muscle 

spectroscopic data did not demonstrate any changes with levothyroxine treatment (Table 

4.6).  

 
SCH 
n=23 

(mean±sd) 

HC 
n=20 

(mean±sd) 

P 
value 

ADP conc at end of 1st exercise (µM) 24.4 (±10.2) 33.1 (±16.1) 0.037 

PCr conc below basal at end of 1st exercise (mM) 6.2 (±3.2) 9.2 (±5.8) 0.036 

% PCr drop at end of 1st exercise 18.1 (±8.4) 26.9 (±16.5) 0.029 

V (initial PCr resynthesis) (mM/min) 6.7 (±3.6) 10.2 (±6.2) 0.025 

Qmax (linear model) (mM/min) 42.3 (±10.7) 49.1 (±22.6) 0.209 

1/2 PCr (sec) 35.2 (±8.4) 35.3 (±13.8) 0.976 

1/2 ADP (sec) 27.3 (±6.8) 25.6 (±9.1) 0.476 

Pi at end of 1st exercise (mM) 9.3 (±2.7) 10.5 (±5.0) 0.323 

Pi Max during 1st exercise (mM) 10.8 (±3.3) 13.0 (±5.2) 0.111 

 

Table 4.5: Muscle spectroscopic data during first exercise and recovery for baseline patients and healthy 
controls. 
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SCH 
Pre-treatment 

n=18 
(mean±sd) 

SCH 
Post-treatment 

n=18 
(mean±sd) 

P 
value 

ADP conc at end of 1st exercise (µM) 24.4 (±11.2) 22.1 (±6.5) 0.377 

PCr conc below basal at end of 1st exercise 

(mM) 
6.6 (±3.4) 5.8 (±2.3) 0.460 

% PCr drop at end of 1st exercise 
18.8% 

(±9.0%) 

18.0% 

(±7.0%) 
0.715 

V (initial PCr resynthesis) (mM/min) 6.7 (±3.7) 8.2 (±5.2) 0.349 

Qmax (linear model) (mM/min) 41.8(±10.1) 38.4 (±10.6) 0.112 

1/2 PCr (sec) 35.6 (±8.0) 36.5 (±10.5) 0.516 

1/2 ADP (sec) 26.7 (±5.3) 28.8 (±7.8) 0.105 

Pi at end of 1st exercise (mM) 8.6 (±1.9) 8.6 (±2.5) 0.953 

Pi Max during 1st exercise (mM) 10.1 (±2.9) 9.6 (±2.8) 0.627 

 

Table 4.6 : Muscle spectroscopic data during first exercise and recovery for patients before and after 
levothyroxine treatment. 

4.5.3 Calf muscle metabolism during second exercise and recovery 

Table 4.7 shows the muscle spectroscopic data during the second exercise and recovery 

for both baseline patients and healthy controls. It reveals that the ADP concentration 

was significantly lower in patients (p=0.021) than in healthy controls, but pH changes 

were similar between the 2 groups. The initial proton efflux was similar between the 2 

groups; however the maximum proton efflux was significantly lower in patients when 

compared to healthy controls (p=0.014). Interestingly, both maximum and end-exercise 

Pi concentrations were significantly lower in patients than in healthy controls (p=0.007 

and 0.020 respectively).  
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SCH 
N=23 

(means±sd) 

HC 
N=20 

(means±sd) 

P 
value 

ADP conc at end of 2nd exercise (µM) 29.7 (±9.0) 42.9(±24.4) 0.021 

pH at start of 2nd exercise 7.03 (±0.03) 7.04(±0.03) 0.685 

pH at end of 2nd exercise 7.06 (±0.06) 7.05 (±0.05) 0.529 

pH minimum during entire 2nd exercise and 

recovery 
6.98 (±0.11) 6.97 (±0.10) 0.787 

pH recovery time to within 0.01 of starting 

pH (sec) 

119.6 

(±111.7) 

150.0 

(±128.0) 
0.410 

Maximum proton efflux (2nd exercise) 

(mM/minute) 
1.8 (±1.1) 3.7 (±3.4) 0.014 

Initial proton efflux (2nd exercise) 

(mM/minute) 
1.5(±1.1) 2.3(±2.0) 0.124 

Pi at end of 2nd exercise (mM) 9.6 (±1.6) 12.3(±5.0) 0.020 

Maximum Pi during 2nd exercise (mM) 10.4(±1.9) 13.7(±5.3) 0.007 

 

Table 4.7: Muscle spectroscopic data during 2nd exercise and recovery at baseline for patients 
and healthy controls 
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However, the levothyroxine treatment did not modify any of these abnormal energetic 

parameters (all p>0.05) (Table 4.8). Abnormal metabolic parameters did not correlate 

with FIS, FT4, FT3 or TSH in patients and in healthy controls at baseline (all p>0.05). 

 

 

SCH 
Pre-

treatment 
n=18 

(mean±sd) 

SCH 
Pre-

treatment 
n=18 

(mean±sd) 

P 
value 

pH at start of 2nd exercise 7.03 (±0.03) 7.04(±0.02) 0.295 

pH at end of 2nd exercise 7.07(±0.03) 7.07(±0.02) 0.688 

pH minimum during entire 2nd exercise and 

recovery 
7.00(±0.04) 7.01(±0.02) 0.253 

pH recovery time to within 0.01 of starting pH 
127.8 

(±115.3) 

119.4 

(±92.7) 
0.835 

Maximum efflux (2nd exercise) 1.8(±1.2) 1.6(±1.0) 0.634 

Initial efflux (2nd exercise) 1.5(±1.2) 1.4 (±1.0) 0.823 

Pi at end of 2nd exercise 9.4 (±1.6) 8.8 (±2.0) 0.245 

Maximum Pi during 2nd exercise 10.2 (±1.9) 10.0 (±2.1) 0.649 

 

Table 4.8: Muscle spectroscopic data during 2nd exercise and recovery for patients before and 
after levothyroxine treatment. 

 

Correlation analysis between maximum proton efflux and minimum pH during entire 

second exercise and recovery showed an inverse relationship in HC (r2= 0.598, 

p<0.001) (Figure 4.5), but not in patients (r2=0.006, p=0.733) at baseline when all cases, 

including outliers, were included (Figure 4.6). However, there was significant 

correlation in patients (Figure 4.7) when 2 outliers were excluded in the correlation 

analysis (r2=0.312, p=0.009). 
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Figure 4-5: Correlation between maximum proton efflux and minimum pH during entire 2nd exercise 
and recovery in healthy controls (p<0.001). 

 

Figure 4-6: Correlation between maximum proton efflux and minimum pH during entire 2nd exercise and 
recovery in all patients at baseline (p=0.733). The outliers are labelled as cases 7 and 12. 
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Figure 4-7 : Correlation between maximum proton efflux and minimum pH during entire 2nd exercise and 
recovery in patients after excluding the outliers (cases 7 and 12 on Figure 4-3)) at baseline (p=0.009). 

 

Similarly, a strong positive relationship between maximum proton efflux and end-

exercise ADP following second exercise was seen in HC (r2 =0.686, p<0.001) (Figure 

4.8) and not in patients at baseline (r2 =0.026, p=0.461) (Figure 4.9). However, there 

was significant correlation in patients (Figure 4.10) when 1 outlier was excluded in the 

correlation analysis (r2=0.347, p=0.005). 
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Figure 4-8: Correlation between maximum proton efflux and end-exercise ADP concentration following 
second exercise in healthy controls (p<0.001). 

 

 

Figure 4-9: Correlation between maximum proton efflux and end-exercise ADP concentration 
following second exercise in all patients at baseline (p=0.461). The outlier labelled as case 12. 
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Figure 4-10 : Correlation between maximum proton efflux and end-exercise ADP concentration 
following 2nd exercise in patients after excluding the outlier (case 12 in Figure 4-9) at baseline 

(p=0.005). 

 

4.6 Discussion 

4.6.1 General discussion 

To my knowledge, this is the first time that MR spectroscopic data has revealed 

impairments of skeletal muscle energy metabolism and proton handling in patients with 

SCH. These abnormalities were evident when participants underwent both the first and 

second exercise protocols, but not under resting conditions. However, there was no 

improvement in energy metabolism with 6 months of levothyroxine treatment in 

patients with SCH. The impaired metabolic abnormalities in patients did not correlate 

with thyroid function tests or FIS score. Hence, these metabolic changes do not explain 

the fatigue observed in patients with SCH.  

The resting muscle energetic data did not demonstrate any significant abnormalities, 

apart from PDE concentrations being higher in patients at baseline when compared to 

healthy controls. A recent study in patients with SCH showed high PDE concentrations 
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and Pi levels in calf muscle using MR spectroscopy (Rana et al., 2012). MR 

spectroscopic studies on patients with overt hypothyroidism have also revealed resting 

high PDEs, Pi and low PCr (Khushu et al., Kaminsky et al., 1992b). Therefore, the high 

PDE levels in calf muscle seen in our study are consistent with previous similar studies 

of varying degrees of hypothyroidism. However, the normal levels of Pi seen in our 

study are not consistent with data by Rana et al. in patients with SCH. The precise 

reason for this result is unclear, but it is possibly due to the very mild nature of the 

disease in our cohort. 

Glycerophosphorylcholine is a type of cell membrane phospholipid which contributes to 

PDE signals when measured by MR spectroscopy (Cerdan et al., 1986). A study by Burt 

et al. has shown that glycerophosphorylcholine levels were increased during fast-to-

slow twitch muscle transformation via electric muscle stimulation in rabbits (Burt et al., 

1982).  In hypothyroidism, there is a change in muscle fibre composition from white 

type II (fast) to red type I (slow) fibres (Nwoye et al., 1982, Khaleeli et al., 1983). 

Hence, the muscle fibre transition has been proposed as a mechanism for high PDE 

levels seen in hypothyroidism. 

During the first exercise, there is less depletion of PCr in patients than in healthy 

controls.  During recovery from the first exercise, the PCr resynthesis (V) rate was 

significantly low (p <0.05). However, the 1/2 PCr and 1/2 ADP were normal in patients. 

The skeletal muscle oxidative capacity during exercise recovery was normal in patients 

with SCH in a previous study (Rana et al., 2012). Our study findings are in accordance 

with those of the dynamic muscle exercise protocol by Kaminky et al. in patients with 

overt hypothyroidism, but they did not measure the oxidative capacity of skeletal 

muscle (Kaminsky et al., 1992b). However, the % depletion of PCr was similar between 

patients and healthy controls in that study, in contrast to our study findings of low 

percentage PCr depletion in patients with SCH. A low percentage PCr depletion might 

have led to a low PCr recovery rate (Vinit) in our study.  

The mechanism of abnormal muscle energetic metabolism in hypothyroidism has been 

well described previously. The human muscle mitochondria have T3 receptors (Sterling 

et al., 1978). Thyroid hormones directly affect mitochondrial protein expression by 

regulating the transcription of mitochondrial genes (Enriquez et al., 1999). A review in 

2010 revealed multiple mechanisms whereby thyroid hormones influenced skeletal 
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muscle mitochondria (Lanza and Sreekumaran Nair, 2010). The thyroid hormones 

increase mitochondrial expression, mitochondrial volume density, mitochondrial 

enzyme activity and increased oxidative ATP synthesis. A review of specific effects of 

hypothyroidism on skeletal muscle function reveals a global inhibition of main 

oxidative pathways and of respiratory chain, which leads to clinical manifestations like 

muscle weakness, easy fatigability and muscle cramps. (Kaminsky et al., 1992a). 

During the second exercise, there was reduced maximum proton efflux in patients when 

compared to healthy controls. The initial proton efflux was normal in patients. This 

indicates that the proton efflux started off normally in patients, but was subsequently 

impaired due to some unknown factors. In chronic fatigue syndrome, decreased 

maximum proton efflux has been reported previously and suggested as a potential 

mechanism of fatigue in chronic fatigue syndrome (Jones et al., 2010).  However, FIS 

score was not correlated to maximum proton efflux in my study. Hence, abnormal 

proton efflux is unlikely to explain the mechanism of fatigue in SCH. The muscle pH 

during and recovery from exercise was normal in patients. Studies in overt hypothyroid 

patients have shown lower muscle pH towards the end of exercise (Khushu et al., 

Kaminsky et al., 1992b). The pH recovery following exercise was slow in overt 

hypothyroidism in another study (Taylor et al., 1992). Our findings are in contrast to 

these studies showing abnormal pH during exercise. But these were overtly hypothyroid 

patients, as opposed to SCH state, in our patients. No previous studies have reported 

proton efflux during exercise recovery in hypothyroidism. The study by Rana et al. did 

not mention any pH changes during resting state or exercise in patients with SCH (Rana 

et al., 2012). So, for the first time, my study has shown abnormal proton handling in 

SCH. 

The correlation between maximum proton efflux and nadir pH during second exercise 

recovery did reveal a tight physiological correlation in both patients and healthy 

controls. The correlation data also reveals that the ADP is a stimulator of proton efflux 

in healthy controls and patients. These findings would suggest that the proton efflux is 

not influenced abnormally by intracellular nadir pH (i.e. acid production) or ADP levels 

in patients. There could be other factors which affect proton handling. Decreased 

muscle blood flow and inadequate Na+/K+ ATPase pump functioning can affect proton 

handling (Taylor et al., 1992). Autonomic dysfunction is well documented in SCH, as 
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discussed in the previous chapters. Disturbances in peripheral autonomic function can 

result in impaired muscle blood flow and this might lead to impaired proton removal, as 

proposed by Jones et.al (Jones et al., 2010). Thyroid hormones modulate the synthesis 

of Na+/K+ ATPase and hypothyroidism leads to reversible reduction in the  number of 

ouabin binding sites in human skeletal muscle (Kjeldsen et al., 1984). This is another 

potential mechanism by which proton handling is affected in SCH.  

The energetic metabolic and proton handling abnormalities did not change following 

levothyroxine treatment in our patients. Argov et al. reported improvement in resting 

PCr/Pi ratio and PCr recovery rate following treatment in 2 hypothyroid patients (after 

4-6 weeks) and 8 male rats (Argov et al., 1988). Khushu et al. reported improvement in 

resting PCr/Pi ratio in 7 out of 9 patients after 12 weeks of levothyroxine treatment. 

However, the results of 2 patients and statistical significance were not given in the 

paper. Also, they did not report changes to PCr recovery rate and oxidative capacity 

following levothyroxine treatment. So, there is very little data in the literature of human 

studies to compare our treatment outcomes with previous studies.  

Lack of response to levothyroxine in high energy phosphate metabolism and proton 

handling may be due to a number of factors. It may be due to a shorter duration (6 

months) of levothyroxine treatment, although the study design precludes from drawing 

any definite conclusions. This might be also due to lack of stability of thyroid function 

during the 6 months of levothyroxine treatment. The study protocol involved 

continuation of the dose titration of levothyroxine during each visit if they did not 

achieve euthyroid status. Both studies previously mentioned have shown improvement 

in muscle energetic parameters within 3 months of levothyroxine treatment ((Argov et 

al., 1988, Khushu et al.). However, another study has shown that muscle energy 

substrates did not respond to one year of levothyroxine treatment in patients with SCH 

(Caraccio et al., 2005). Hence, the effects of a longer duration of levothyroxine 

treatment on skeletal muscle energy metabolism are unknown. It is obvious from the 

data that the patients were adequately replaced with levothyroxine because the mean 

serum TSH was well within the normal range. In addition, thyroid function tests did not 

correlate with any of the energetic metabolic abnormalities. Lack of correlation may be 

explained by a smaller sample size or lack of true association of abnormal metabolites 

and thyroid status. It is possible that metabolic changes observed in our study may not 
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be due to hypothyroidism and other factors may have influenced the energetic metabolic 

outcomes. The patients and healthy controls were well matched in terms of age, gender, 

blood pressure and cholesterol. Although the serum glucose was very slightly high in 

patients, it was well within the normal range. This may be due to higher BMI. It is 

unlikely that slightly higher glucose levels or higher BMI would have resulted in 

energetic metabolic changes in the muscle. It has been also shown that higher serum 

TSH in the SCH group was not due to higher BMI as there was no correlation between 

serum TSH and BMI in this group of patients. The positive correlation in HC group is 

an expected finding and is consistent with previous studies looking at the relationship 

between serum TSH and body weight (Pearce, 2012) 

Despite lower FT4 levels, patients had slightly higher serum FT3 when compared to 

healthy controls. High BMI has been associated with higher FT3 (although within 

normal range) when compared to non-obese individuals (Pearce, 2012). In summary, 

apart from the duration of treatment, none of the other factors would have influenced 

significant muscle energetic abnormalities in patients with SCH in our study. 

Patients are significantly fatigued compared to healthy controls. Fatigue can lead to 

exercise deconditioning and to impaired muscle metabolism. Chronic fatigue syndrome 

has been associated with abnormal proton handling, but causation was not proven 

(Jones et al.). It is possible that fatigue in our patients would have resulted in impaired 

skeletal muscle metabolism. However, FIS score did not correlate with abnormal 

metabolic parameters at baseline (both in patients and healthy controls) and 

improvement in fatigue with levothyroxine treatment did not lead to improvement in 

abnormal metabolic parameters. This would suggest a lack of effect of fatigue on 

skeletal muscle metabolism. Demonstrating this would require studying patients with 

SCH without fatigue and assessing their energy metabolism. 

4.6.2 Strengths and limitations 

The main strength of the study is that we selected patients with no interfering co-

morbidities which might lead to fatigue. This helps to minimise the impact of any 

disease which can affect muscle metabolism. Also, patients with definite SCH were 

selected by ensuring there was raised serum TSH for 3 months or more prior to 

recruitment. This will exclude any patients with transient elevations in serum TSH 
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being labelled as having SCH. A previous muscle MRS study on SCH did not find any 

major energetic abnormalities, but duration of SCH was not reported in the study (Rana 

et al., 2012). 

This study has important limitations. The small sample size in the study might have 

affected the results in terms of correlation analysis. There were no previous studies 

available to make power calculations for this study. We did not measure serum free T3 

level during the treatment phase as the effect of levothyroxine treatment on serum free 

T3 level is unpredictable and the clinical significance is unknown (Jonklaas et al., 

2014). The serum T3 was higher in healthy controls than patients at baseline, and it is 

unknown that the change in serum T3 during the treatment phase may have affected the 

metabolic parameters measured in the study. The FIS score calculates global impact of 

fatigue and not specifically for muscle fatigue. Hence, a muscle-specific questionnaire 

might have shown a significant correlation with muscle metabolic abnormalities. We 

did not have a group of patients without fatigue. This would have helped us to decide 

whether SCH without fatigue would have resulted in metabolic abnormalities in skeletal 

muscle and whether fatigue might have contributed to metabolic abnormalities in 

patients. The fitness level of healthy controls and patients were not measured in this 

study. The fitness level might have affected muscle energetic metabolism and I am 

unable to exclude this interfering factor in this study. The vitamin D status is known to 

affect skeletal muscle metabolism (Sinha et al., 2013). My study was undertaken 

throughout the year and the effect of vitamin D on skeletal energy metabolism during 

each season of the year is unknown in this study. The levothyroxine dose was adjusted 

during each study visit if the serum TSH levels were outside the target. Hence, this 

could have affected the measurements of metabolic parameters in the post-treatment 

group. This is a methodological limitation which need to be addressed in future similar 

studies. 

4.6.3  Future directions 

This study shows that the muscle 31P-MRS can be used to study muscle metabolism in 

SCH. The muscle 31P-MRS is sensitive enough to detect proton handling abnormalities 

in SCH which can used for measuring therapeutic efficacy in future studies with longer 

duration of levothyroxine treatment. The abnormal muscle metabolic results from this 

study may be used to do power calculations for future studies in SCH. Further studies 
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should be designed to include measurement of muscle fatigue with specific 

questionnaires which assess muscle function. Also, muscle strength and fitness level 

should be measured along with muscle metabolic abnormalities in the future studies. 
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Chapter 5 Cardiac Magnetic Resonance Spectroscopy 

5.1 Hypothesis 

Fatigue in patients with SCH is in part due to abnormal cardiac energetic function, 

leading to impaired cardiovascular haemodynamic function, and this is wholly or partly 

reversible with levothyroxine treatment. 

5.2 Primary objectives 

To measure cardiac Phosphocreatine/ATP ratio using non-invasive Cardiac Magnetic 

Resonance Spectroscopy and correlate with FIS score. These results will be compared 

with age and gender-matched euthyroid controls. 

5.3 Secondary objectives 

To compare baseline measurements in the aforementioned parameters with those 

following 6 months of levothyroxine therapy. 

5.4 Method 

We have already excluded subjects with clinical and electrocardiographic evidence of 

heart disease due to valvular pathology, hypertension with left ventricular hypertrophy, 

and ischaemic heart disease at the screening stage.   

We used the same methodology as our collaborators in their study of cardiac function in 

patients with primary biliary cirrhosis using cardiac MR spectroscopy (Jones et al.). 

This has been described previously by Jones et al. The study used a 3T Intera Achieva 

scanner (Philips, Best, NL) with a 10cm diameter 31P surface coil (Pulseteq, UK) for 

signal transmission and reception. The study participants lay down in a prone position 

and their position was adjusted so that their heart was placed at the isocentre of the 

magnet. To verify location of the heart, an in-built body coil was used and images were 

localised. A cardiac-triggered, breath-held field map was carried out to undertake 

shimming. The liver and skeletal muscle interference was eliminated to avoid 

contamination of spectra. The first spectrum detected beyond the chest wall was chosen 

in the study analysis. The jMRUI processing software was employed to quantify the 

PCr, γ-ATP and 2, 3-DPG using the AMARES time domain routine fit (Vandamme). 

The blood has high levels of 2,3-DPG and can contaminate the ATP peak area. This 

contamination was corrected for by 1/6 of the amplitude of the combined 2, 3-DPG 
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peak (Conway et al., 1998). The T1 values of cardiac PCr and ATP were obtained from 

the literature and were used for correcting PCr/ATP ratio.  

The typical cardiac spectrum from a healthy subject is shown below (Figure 5.1). It 

shows several peaks; however, in this study, the PCr/ATP ratio was analysed. This is 

widely studied and found to a marker of cardiac bioenergetic function (Radda, 1986).   

 

 

Figure 5-1: Typical cardiac 31P spectrum from a healthy subject.2, 3DPG, 2,3-disphosphoglycerate; PDE, 
phosphodiesters; PCr, phosphocreatine; ATP, adenosine triphosphate; ppm, parts per million 

5.5 Results 

Twenty-three patients with SCH had cardiac MR spectroscopy. Out of these, 2 had poor 

quality spectra and hence images were analysed for 21 patients (see Appendix C for 

details). Out of these 21 patients, 2 patients subsequently dropped out of the study (due 

to personal reasons), 1 had poor quality spectra on the post-treatment MRS scan and 2 

patients were poorly compliant with levothyroxine. Therefore, data was successfully 

acquired for 16 patients with adequate levothyroxine replacement (the post-treatment 

SCH group). Out of 20 healthy controls (HC), 17 had good-quality spectra that were 

included in the final analysis, and the remaining 3 subjects had poor-quality spectra 



65 

 

which were excluded from the study. Rejection of spectra was based on inadequate 

signal-to-noise to fit any or all of PCr, the γ resonance of ATP or 2, 3-DPG. 

The baseline demographic, clinical and biochemical data of the SCH and HC groups is 

provided in Table 5.1. At baseline, unlike serum TSH from the muscle spectroscopy 

cohort (patients and healthy controls, n=43), serum TSH is normally distributed in the 

cardiac spectroscopy cohort (patients and healthy controls, n=38) (Kolmogorov-

Smirnov test, p=0.200). Both groups were well-matched for gender distribution, age, 

blood pressure and fasting blood cholesterol. The mean BMI was higher in the SCH 

group (p<0.01). The fasting blood glucose was slightly lower in HC than SCH (p<0.05). 

The mean starting and end of study doses of levothyroxine were 103.1(± 25.6) mcg and 

102.3 (± 28.5) mcg respectively. The mean serum TSH and free T4 levels at the end of 

the study were 2.0 ±1.0 mIU/L and 19.0 ±2.4 pmol/L respectively. The serum TSH 

distribution in pre-and post-treatment groups is shown in Figure-5.2. The serum TSH 

was not normally distributed in the pre-treatment group (Kolmogorov-Smirnov test, 

p=0.016), but was normally distributed in the post-treatment group (Kolmogorov-

Smirnov test, p=0.200). 

Characteristic 
SCH n=21 

Mean(±SD) 

HC n=17 

Mean(±SD) 

Age (years) 40.5 (±12.0) 43.3 (±13.2) 

No. of women (% of n) 17 (81) 14 (82) 

BMI (kg/m2) 28.9 (±5.8) 24.7 (±4.8)* 

Blood pressure (mmHg) 122/74 (±17/9) 121/75 (±20/11)

Blood glucose (mmol/L) 5.0 (±0.4) 4.7 (±0.5)* 

Serum Total Cholesterol (mmol/L) 5.5 (±1.1) 5.4 (±0.8) 

Serum TSH ( IU/L) 6.5 (±1.7) 2.1 (±0.9)* 

Serum free T4 (pmol/L)  13.6 (±1.3) 14.4 (±1.3) 

Serum free T3 (pmol/L) 5.2 (±0.7) 4.4 (±0.8)* 

 

Table 5.1: Baseline demographic, clinical and biochemical features of patients SCH 
compared to HC. * p <0.05. 
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Figure 5-2: The figure shows distribution of serum TSH in both pre- and post-treatment 
SCH groups (n=16). 

5.6 Results of cardiac PCr/ATP ratio 

Figure 5.3 shows the typical cardiac MR spectra in a patient before and after treatment, 

and a healthy control. It clearly shows that resonance peak for PCr is shorter in SCH 

subject before levothyroxine treatment and became taller after levothyroxine treatment 

and this is comparable to that of healthy control. 

 

Figure 5-3: Cardiac 31P spectra from SCH and healthy control subjects.  

Sample cardiac 31P spectra from a SCH patient (A) before and (B) after treatment with levothyroxine,    
demonstrating PCr/ATP ratios of 1.69 and 2.09 respectively. (C) shows a spectrum from a healthy control 

with PCr/ATP ratio 2.07 ppm (parts per million). 
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The cardiac PCr/ATP ratio in patients with SCH at baseline was significantly lower than 

HC (1.80 ± 0.26 vs. 2.07± 0.20, unpaired-t, p=0.001) (Figure 5.4). 
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Figure 5-4: The baseline comparison of cardiac PCr/ATP ratio between SCH and HC 
groups. The cardiac PCr/ATP ratio was low in the SCH group at baseline (n=21) when 

compared with healthy controls (n=17); *unpaired-t, p=0.001. 

 

Figure 5.5 shows the PCr/ATP ratio for each SCH subject before and after 

levothyroxine treatment. It shows that 13 patients had improvement and 3 patients had a 

decrease in cardiac PCr/ATP ratio with levothyroxine treatment.  
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Figure 5-5: Cardiac PCr/ATP ratio of each SCH subject before and after levothyroxine 
treatment for 6 months 
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After treatment with levothyroxine for 6 months, mean cardiac PCr/ATP ratio improved 

significantly (1.74 ± 0.24 vs.1.91 ± 0.26, paired-t, p=0.004 (Figure 5.4). The mean 

cardiac PCr/ATP ratio in SCH after levothyroxine treatment is comparable to healthy 

controls (1.91 ±0.26 vs. 2.07 ± 0.20, p=0.051) (Figure 5.6) 
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Figure 5-6: The comparison of cardiac PCr/ATP ratio between SCH pre- and post-
treatment groups (* p=0.004), and HC and SCH post-treatment groups (**p=0.051) 

In the SCH group, the cardiac PCr/ATP ratio was not correlated with baseline free T4, 

free T3, serum TSH, BMI, blood pressure, serum cholesterol or fasting blood glucose 

(data not shown ). In the SCH post-treatment group, the change in serum TSH was not 

correlated to change in cardiac PCr/ATP ratio (data not shown) following treatment 

with levothyroxine.  

Further correlation analysis between serum TSH (log transformed to attain linearity) 

and Cardiac PCr/ATP ratio was performed after combining both HC and SCH groups. 

This was done to look for a linear relationship between the two variables across a 

broader range of serum TSH. A significant inverse correlation was found between 

serum TSH and cardiac PCr/ATP ratio (Pearson’s r= -0.37, p=0.026) (Figure 5.7). 
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Figure 5-7: Correlation between PCr/ATP and serum TSH (Pearson r=-0.37, p=0.026) 

The cardiac PCr/ATP ratio can be influenced by various factors other than thyroid 

status. A linear regression analysis was undertaken with cardiac PCr/ATP ratio as the 

outcome variable and gender, age, BMI, thyroid status (SCH and HC), cholesterol, 

glucose, blood pressure and FIS as the predictor variables. The results are shown in 

Table 5.2. It revealed that SCH status was a negative predictor for cardiac PCr/ATP 

ratio, independent of other variables (odds ratio (OR) -0.30, 95% confidence interval 

(CI) -0.13 to -0.47, p=0.001). Age was also a negative predictor of cardiac PCr/ATP 

ratio (OR -0.01, CI -0.01 to 0.00, p=0.04). BMI and FIS were not significant predictors 

of cardiac PCR/ATP ratio in this analysis. 
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Predictor variables B value
Confidence interval for B value 

P value
Upper Bound Lower Bound 

Gender 0.07 -0.12 0.27 0.46 

Age -0.01 -0.01 0.00 0.04 

Thyroid status -0.49 -0.82 -0.16 0.01 

BMI -0.01 -0.02 0.00 0.18 

Cholesterol 0.01 -0.09 0.11 0.79 

Glucose 0.19 0.00 0.38 0.05 

Systolic BP 0.00 -0.01 0.00 0.59 

Diastolic BP 0.00 -0.01 0.01 0.51 

FIS (pre-treatment) 0.00 0.00 0.01 0.18 

 

Table 5.2: Results of linear regression analysis using cardiac PCr/ATO ratio as the 
outcome variable and confounding variables listed above as the predictors. 

 

5.7 Discussion 

5.7.1 General discussion 

Our results show that the cardiac PCr/ATP ratio was reduced in patients with SCH but 

improved significantly after treatment with levothyroxine for 6 months. It did not show 

any correlation between fatigue and abnormal cardiac PCr/ATP ratio. Serum TSH was 

inversely correlated with cardiac PCr/ATP ratio and SCH status was a negative 

predictor of cardiac PCr/ATP ratio in this cohort.  

Our findings strengthen the results of previous studies assessing cardiac function in 

SCH and may further our understanding of the bioenergetic basis of myocardial 

dysfunction. A recent meta-analysis of 14 cross-sectional studies in patients with SCH 

using echocardiography have consistently revealed cardiac systolic and diastolic 

dysfunction (Chen et al., 2013). Various mechanisms for cardiac dysfunction have been 

proposed. A study in SCH using cardiac MR showed that the combination of decreased 
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cardiac preload and increased afterload as the possible mechanism of cardiac 

dysfunction, as opposed to a direct cardiac ionotropic impairment (Ripoli et al., 2005). 

However, direct effect of thyroid hormones on cardiac contractility has been suggested 

in another study by Monzani et al. (Monzani et al., 2001). Whether the low PCr/ATP 

ratio seen in our study is the effect of peripheral circulatory disturbances in SCH on 

myocardial function or a direct effect of thyroid hormones on myocardial function 

remains unknown.   

It is possible that thyroid hormone directly affects myocardial energetic function. At a 

molecular level, it positively regulates gene encoding for α-myosin heavy chain and 

beta-adrenergic receptors via genomic actions (Klein and Ojamaa, 2001). Work on the 

role of thyroid hormones in cardiac mitochondrial functions has shown that thyroid 

hormones stimulate cardiac mitochondrial biogenesis, increasing myocardial 

mitochondrial mass, mitochondrial respiration, oxidative phosphorylation, enzyme 

activities, mitochondrial protein synthesis, cytochrome, phospholipid, and 

mitochondrial DNA content (Marin-Garcia). Direct non-genomic action of 

triiodothyronine (T3) in hypothyroid sheep has been studied in the past. The study by 

Portman etc. al. showed that intravenous infusion of T3 in thyroidectomised sheep 

resulted in an increase of cardiac PCr/ATP ratio, as measured by 31P MRS (Portman et 

al., 2005). Therefore, it is possible that thyroid hormone deficiency directly leads to 

impaired cardiac bioenergetic function, i.e. a low cardiac PCr/ATP ratio, which might 

contribute towards abnormal cardiac haemodynamic functions.  

It is well known that patients with ischaemic heart disease have a low cardiac PCr/ATP 

ratio (Sardanelli and Quarenghi, 2006). Studies have shown reversible coronary micro-

circulation impairment in SCH (Baycan et al., 2007, Oflaz et al., 2007, Traub-

Weidinger et al., 2012). Subtle lipid alterations have been demonstrated in SCH, which 

might explain the mechanism of impaired coronary micro-circulation (Althaus et al., 

1988, Bindels et al., 1999, Razvi et al., 2007). It is possible that impaired coronary 

micro-circulation might explain the low cardiac PCR/ATP ratio seen in our cohort. 

Abnormal cardiac PCr/ATP ratio has been found in asymptomatic patients with diabetes 

and obesity (Shivu et al., 2010, Perseghin et al., 2007). These studies have also shown 

that an abnormal cardiac PCr/ATP ratio can be seen without evidence of coronary 

circulatory impairment. Another study has shown that high levels of free fatty-acids are 
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associated with a reduced cardiac PCr/ATP ratio in diabetic patients (Scheuermann-

Freestone et al., 2003). We have not measured circulating free fatty acids in our study. 

SCH has been associated with several metabolic changes seen in an insulin resistance 

state similar to diabetes (Pucci et al., 2000). Therefore, a direct circulatory metabolic 

effect may cause an abnormal cardiac PCr/ATP ratio in SCH, in addition to the 

mechanisms described previously. 

To summarise, multiple mechanisms are possible for a low cardiac PCr/ATP ratio in 

SCH, but the most plausible explanation would be a direct effect of myocardial tissue 

hypothyroidism. The serum free T3 levels were higher (but within the reference range) 

in patients than in healthy controls, possibly due to higher BMI. The intra-cellular 

concentration of T3 is largely determined by genetic polymorphisms in deiodinase 

enzymes (Jonklaas et al., 2014). Hence, the significance of raised serum T3 and its 

effects on cardiac myocytes is unknown and needs further studies to clarify this 

confounding factor. Clinical studies are unlikely to provide definitive answers because 

of overlapping factors like simultaneous effect of thyroid hormones on both vascular 

system and cardiac inotropic state. We need further in vitro studies to delineate the 

mechanism of low PCr/ATP in SCH. 

Patients with SCH had higher fasting blood glucose and free T3 levels than HC, but 

these were well within normal ranges. It is intriguing to find slightly higher free T3 

levels in SCH than HC. Previous studies have shown that SCH patients have mid to 

low-normal range free T3 levels (Pacchiarotti et al., 1986). Although the SCH subjects 

had higher BMI than the healthy controls, previous work has shown no effect of this 

degree of BMI difference on PCr/ATP ratio (Rider et al., 2012a, Rider et al., 2012b). 

There was no significant correlation between BMI, glucose, serum free T3 and 

PCr/ATP ratio in this study. 

Serum TSH was not correlated to cardiac PCr/ATP ratio in the SCH cohort. This could 

be due to small number of subjects in our SCH cohort and the narrow range of serum 

TSH (4-10 IU/L) for this study. However, when we combined both SCH and HC 

groups, resulting in a larger number of subjects and wider serum TSH range, cardiac 

PCr/ATP ratio inversely correlated to serum TSH. Serum TSH is widely accepted as a 

surrogate marker of tissue hypothyroidism. Hence, an inverse correlation between 

serum TSH and cardiac PCr/ATP ratio suggests an association between tissue thyroid 
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status and cardiac function. Similar findings have been demonstrated in previous studies 

in SCH. The serum TSH was inversely correlated to stroke volume in a study by Ripoli 

et al. using Cardiac MR in patients with SCH  (Ripoli et al., 2005). Another study by 

Monzani et al. using Doppler echocardiography and videodensitometric analysis have 

shown an inverse correlation between serum TSH and cardiac cycle variation index ( a 

measure of intrinsic myocardial contractility) (Monzani et al., 2001). However, these 

studies did not report the effects of potential confounding variables affecting cardiac 

function. In our study, the linear regression analysis showed that SCH status is a 

negative predictor of cardiac PCr/ATP ratio, even after adjusting for age and other 

potential confounding variables like BMI and FIS score. BMI and FIS score did not 

predict cardiac PCr/ATP ratio on this regression model. These findings strengthen the 

case for the association between tissue thyroid status and cardiac dysfunction. 

Normalisation of serum TSH in the SCH group with levothyroxine treatment led to 

significant improvement of cardiac PCr/ATP ratio and this was non-significantly 

different from HC. This suggests a possible causal relationship between serum TSH and 

cardiac PCr/ATP ratio in this study. The reproducibility of these findings needs to be 

shown in further studies involving a larger cohort of subjects to reveal the true causal 

relationship between thyroid function and cardiac bioenergetics. 

5.7.2 Clinical implications 

Fatigue Impact Scale scores were not correlated to an abnormal cardiac PCr/ATP ratio 

in our cohort. This data does not support our hypothesis that fatigue might be due to 

abnormal cardiac PCr/ATP ratio in SCH. This may be a true lack of effect on fatigue by 

cardiac dysfunction in patients with SCH. But, this could also be explained by mild 

reductions (as opposed to severe reductions) in cardiac PCr/ATP ratio which do not lead 

to overt clinical symptoms like fatigue. Although the FIS questionnaire is a good 

general-purpose tool for measuring impact of fatigue (Frith and Newton) , it has not 

been validated in SCH or thyroid disease. Also, it does not measure the fatigue severity, 

but assesses the impact of fatigue in different areas of individual’s functioning i.e. 

physical, cognitive and psychosocial domains (Dittner et al., 2004). Cardiac dysfunction 

leads mainly to physical fatigue and does not directly affect cognitive function. Hence, a 

total FIS score may not be a good tool to reflect upon, especially since the physical 
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aspect of fatigue affected by cardiac dysfunction. This could be another reason for not 

showing any correlation between FIS score and cardiac PCr/ATP ratio. 

SCH has been found to be associated with ischaemic heart disease (IHD) in large-scale 

epidemiological studies (Razvi et al., 2010, Walsh et al., 2005). A recent retrospective 

study has shown that levothyroxine treatment reduces the incidence of IHD in SCH 

patients (Razvi et al., 2012). Patients with IHD have low cardiac PCR/ATP ratio with or 

without overt occlusive coronary artery disease (Weiss et al., 1990, Buchthal et al., 

2000). After adjusting for coronary artery disease (CAD) and cardiac risk factors, a 

phosphocreatine-adenosine triphosphate ratio reduction of 1% increased the risk of a 

cardiovascular event by 4% (P=0.02) (Johnson et al., 2004). 

The treatment of SCH is controversial and many experts recommend treatment with 

levothyroxine if serum TSH is more than 10 IU/L because of the high rate of 

progression to overt hypothyroidism (Biondi and Cooper, 2008, Surks et al., 2004). For 

patients with serum TSH between 4 and 10 IU/L, the treatment benefits are uncertain 

(Surks et al., 2004), but surrogate markers of cardiac dysfunction have been shown to 

improve with levothyroxine treatment in this group (Monzani et al., 2001). Our study 

adds to the evidence that even with serum TSH below 10 IU/L, reversible cardiac 

dysfunction as manifested by abnormal PCr/ATP ratio can be demonstrated. Our study 

supports the treatment of SCH with levothyroxine for cardiovascular benefits, although 

large randomised controlled studies are required to prove clinical benefits in SCH. 

5.7.3 Strengths and Limitations 

Only patients with stable SCH were selected i.e. patients with raised TSH for more than 

3 months, so that tissue level bioenergetic changes were measurable with a cardiac 

MRS study. The disease manifestations in SCH depend on the duration and severity of 

the disease and peripheral sensitivity of the target tissues to thyroxine hormones (Biondi 

and Cooper, 2008). Patients with cardiovascular diseases or major risk factors for 

cardiovascular diseases were excluded to limit the effects of these confounding factors 

on the results of cardiac PCR/ATP ratio. 

The limitations of the study include lack of matching for BMI, which might have 

contributed to a lower cardiac PCr/ATP ratio, although correlation analysis did not 

confirm this potential confounder. Obesity is associated with raised serum TSH (Pearce, 
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2012).  Also, exercise levels were not measured in SCH and HC, which might have 

caused the lowering of cardiac PCr/ATP ratio in SCH due to cardiac deconditioning in 

people with fatigue. The serum T3 was not measured during the treatment phase. 

However, it is unknown whether this has affected the cardiac PCr/ATP ratio. Abnormal 

cardiac mass (which was not measured morphologically) might have contributed to an 

abnormal cardiac PCr/ATP ratio in SCH. However, levothyroxine treatment improved 

the cardiac PCr/ATP ratio, which suggests that exercise and abnormal ventricular mass 

were not contributing significantly to a low cardiac PCr/ATP ratio in this SCH cohort. 

5.7.4 Future directions 

This study has shown that the cardiac PCr/ATP ratio is low in SCH and increases with 

levothyroxine treatment. The results from this study could form the basis for future 

large-scale randomised controlled trials in subclinical hypothyroidism. These trials may 

demonstrate the true reversibility of cardiac effects in this common medical condition. 

Cardiac MR has been used in patients with SCH to detect ventricular dysfunction 

(Ripoli et al., 2005). Future studies should be designed to include cardiac MR 

ventricular functional assessment to detect subtle changes in the systolic and diastolic 

function along with cardiac PCr/ATP measurement. This may be able to assess whether 

impaired cardiac PCr/ATP ratio could contribute to ventricular dysfunction. 

5.7.5 Summary 

In summary, this study has shown that the cardiac PCr/ATP ratio is low in SCH and 

increases with levothyroxine treatment. This might be due to the direct effect of mild 

thyroid hormone deficiency and micro-vascular coronary ischemia in SCH. However, it 

did not prove our hypothesis that fatigue could be related to abnormal cardiac PCr/ATP 

ratio in SCH. The results from this study could form the basis for future large-scale 

randomised controlled trials in subclinical hypothyroidism. These trials may 

demonstrate the true reversibility of cardiac effects of this common medical condition. 
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Chapter 6 Cardiac autonomics and impedance 

6.1 Hypothesis 

Fatigue in subjects with SCH is in part due to abnormal cardiac autonomic nervous 

system functions and is reversible (partly or wholly) with levothyroxine therapy. 

6.2 Primary Objective 

To measure cardiac autonomic function parameters non-invasively and compare with 

age and gender-matched healthy controls, and correlate with fatigue. 

6.3 Secondary Objective 

To measure the above parameters after 6 months of levothyroxine treatment in patients 

with SCH. 

6.4 Method of cardiac autonomic function assessment 

Participant preparation: The tests were done in a non-fasting state and participants were 

advised to refrain from smoking and consuming caffeinated beverages for 4 hours prior 

to tests. 

Setting: The tests were done at the Falls and Syncope Service at the Royal Victoria 

Infirmary, Newcastle upon Tyne. They were performed in a warm, quiet room. 

Method: The subject was asked to lie down on a couch. The standard ECG electrodes 

were applied using limb leads I or II and digital blood pressure was recorded using 

Portapress® digital plethysmography, applied on the left forefinger or middle finger. 

This recorded continuous ECG and blood pressure throughout both the rest period and 

various manoeuvres (given below). A computerised system (TASKFORCE®) calculated 

heart rate variability (HRV) and baroreflex sensitivity (BRS) using autoregressive 

mathematical method (Bellavere et al., 1992) from the ECG RR intervals and 

continuous digital blood pressure recording. The absolute value of digital blood 

pressure was corrected automatically using a standard oscillometric blood pressure cuff 

applied to the right arm. The cardiac impedance electrodes were applied on the lower 

anterior chest and over the posterior aspect of the neck for measuring cardiac indices. 

The impedance cardiography (ICG) works by measuring changes in thoracic electrical 

bio-impedance over changes in time in relation to the cardiac cycle. The electrical and 
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impedance signal changes due to thoracic volume variations with each heartbeat were 

captured by these electrodes and were utilised with the help of algorithms to derive 

various cardiac haemodynamic parameters during rest and various manoeuvres. 

(Reference-http://www.impedancecardiography.com)  

1. Resting for 10 minutes: The subject was instructed to lie down on the couch for 10 

minutes without speaking or reading. They were advised to keep awake. 

2. Active standing: The subject was instructed to stand up from lying down position and 

remain in standing position for 2 minutes. 

3. Valsalva manoeuvre: In a sitting position, the subject was requested to blow into a 10 

ml syringe which was connected to sphygmomanometer. The subject sustained 

continuous gentle blowing to keep the pressure at 40mmHg for 15 seconds. This was 

repeated after 2 minutes. 

4. Passive Head-up Tilt (Passive HUT): The subject was instructed to lie down on the 

tilt-table with safety straps around waist and knees. The table was raised at the head-end 

and kept at a 70-degree angle for 40 minutes. The subject was advised not to speak 

unless symptomatic and refrain from reading and sleeping. 

The following parameters were measured during rest and above manoeuvres: 

Mean RR interval (milliseconds): The period from R wave to R wave derived from 

ECG signal. The mean calculated from all the RR intervals during each testing period. 

Non-beating sinus beats are removed semi-automatically and corrected using 

interpolation of preceding beats. 

Heart rate variability using power spectral analysis: The mean calculated from all the 

RR intervals during each testing period. The values were also given after correcting for 

body surface area (nu). Non-beating sinus beats are removed semi-automatically and 

corrected using interpolation of preceding beats. Using fast Fourier transform based 

techniques, various spectral analysis (analysis of heart rate variability in time and 

frequency domains) are performed by the computer-based TASKFORCE software as 

per international guidelines (1996). 

Total HRV (ms2): This reflects all cyclical components of heart rate variability. 
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High Frequency (HF) spectra (0.15-0.40 Hz): This is synchronised with breathing 

phases and associated with parasympathetic activity. 

Low Frequency spectra (LF) (0.04-0.15 Hz): This largely represents sympathetic 

activity. 

Very Low Frequency (VLF): This component accounts for long-term regulatory 

mechanisms related to humoral factors and thermoregulation. 

LF/HF ratio: This is a measure of sympatho-vagal balance. 

Cardiac indices: 

Cardiac Output (L/minute): This measures the amount of blood the left ventricle ejects 

each minute and broadly represents overall cardiac function. 

Left Ventricular Ejection Time (milliseconds): The time from opening to closure of the 

aortic valve. 

Total Peripheral Resistance Index (mmHg.min.m2/L): It is an indicator of cardiac 

afterload. 

End-Diastolic Index: This correlate with cardiac preload. 

6.5 Validation 

The TASKFORCE monitor is a commercial kit validated for clinical use and is widely 

used in in both clinical and research settings. No formal validating studies have been 

done in our research unit for this particular monitoring kit. Previous research studies 

undertaken using this kit have revealed consistent results comparable to other studies 

published in literature (Newton et al., 2006, Newton et al., 2007). 

6.6 Results of cardiac autonomic function measurements 

At baseline, there were 24 subjects with SCH who had autonomic tests. We analysed 

data from those who had completed a full 40 minutes of passive HUT protocol. There 

were 4 patients who did not complete the full 40 minutes of passive HUT and 1 

patient’s data was not recorded correctly (see Appendix C for details). The data from 1 

SCH subject was omitted to match the exact number of healthy control data (and nearest 

age and gender matching) from the historical cohort in the baseline data analysis (but 
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this subject’s data was included in the pre-and post-comparison analysis). So, there 

were 18 SCH subjects in the baseline group and we selected 18 age and gender-matched 

healthy controls from the historical cohort. The historical cohort was part of the 

previously published studies by our collaborative team (Hollingsworth et al., 2010). The 

mean age of SCH at baseline and HC were similar and gender distribution was equal in 

both groups. The serum TSH results were not available for HC, but they were free of 

any known thyroid and cardiovascular diseases. 

Among the 19 SCH subjects who had ANS tests undertaken in the post-treatment group, 

14 patients’ data were included in the analysis. Five subjects were excluded (from the 

baseline cohort of 19) from the data analysis of the post-treatment group due to the 

following reasons: 1 did not complete the full 40 minutes for passive HUT; 2 left the 

study due to personal reasons; and 2 patients had serum TSH out of target (poorly 

compliant). The mean serum TSH was 6.7 (±1.8) IU/L and 2.2 (±1.1) IU/L in pre- and 

post-treatment SCH groups respectively. The serum TSH distribution is shown in the 

Figure-6.1 in both groups. The serum TSH is not normally distributed in the pre-

treatment SCH group (Kolmogorov-Smirnov, p=0.042), but it was normally distributed 

in the post-treatment SCH group (Kolmogorov-Smirnov, p=0.200). 

 

Figure 6-1: The distribution of serum TSH in pre- and post-treatment SCH groups is shown in this figure 
(n=14) 
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Table 6.1 shows the resting cardiac autonomic data for SCH at baseline and HC groups. 

It reveals that there were no significant differences between the 2 groups in any of the 

variables measured. 

Variables 
SCH 
n=18 

HC 
n=18 

P value 

LFnu-RRI (%) 55.4±16.9 60.0±16.3 0.372 
HFnu-RRI (%) 44.6±16.9 40.0±16.3 0.372 
VLF-RRI (ms²) 289.6±292.0 638.2±993.6 0.176 
LF-RRI (ms²) 726.9±817.9 479.3±256.6 0.225 
HF-RRI (ms²) 793.2±1490.0 376.2±341.9 0.218 
PSD-RRI (ms²) 1809.7±2507.3 1493.8±1256.0 0.586 
LF/HF-RRI 1.8±1.3 2.8±2.5 0.187 

LF/HF 1.5±0.9 1.9±1.4 0.362 
 

Table 6.1: Comparison of resting cardiac autonomic parameters between baseline SCH and HC. 
Values are mean (SD) 

 

 

Table 6.2 shows the cardiac autonomic data during passive HUT protocol for baseline 

SCH and HC groups. It does not reveal any significant differences between the 2 

groups. 

Variables 
SCH 
n=18 

HC 
n=18 

P value 

LFnu-RRI (%) 76.0±9.3 79.6±11.0 0.218 
HFnu-RRI (%) 24.0±9.3 20.4±11.0 0.218 
VLF-RRI (ms²) 939.1±1226.0 707.2±982.1 0.499 
LF-RRI (ms²) 625.3±678.9 547.9±396.9 0.618 
HF-RRI (ms²) 135.5±100.1 101.1±79.9 0.203 
PSD-RRI (ms²) 2798.1±4827.8 1356.2±1139.0 0.194 
LF/HF-RRI 6.7±5.8 10.5±8.0 0.133 

LF/HF 5.2±4.9 8.4±7.0 0.148 

 

Table 6.2: Comparison of cardiac autonomic parameters during head-up tilt (HUT) between 
baseline SCH and HC. Values are mean (SD) 
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Table 6.3 shows the mean change in cardiac autonomic data during passive HUT from 

the resting value for baseline SCH and HC groups. It did not reveal any significant 

changes between the 2 groups. 

Variables 
SCH 
n=18 

HC 
n=18 

P value 

LFnu-RRI (%) 20.6±13.7 19.7±11.5 0.858 
HFnu-RRI (%) 20.6±13.7 19.7±11.5 0.858 
VLF-RRI (ms²) 661.8±1280.1 68.9±1495.7 0.206 
LF-RRI (ms²) 101.6±935.5 68.6±288.3 0.497 
HF-RRI (ms²) 657.8±1457.4 275.1±272.6 0.246 
PSD-RRI (ms²) 988.4±4777.8 137.6±1702.9 0.329 
LF/HF-RRI 4.9±5.4 7.7±6.7 0.190 

LF/HF 3.7±4.7 6.5±6.1 0.160 

 

Table 6.3: Comparison of change in cardiac autonomic parameters during head-up tilt (HUT) 
between baseline SCH and HC. Values are mean (SD) 

 

 

Table 6.4 shows the resting cardiac autonomic data for pre- and post-treatment SCH 

groups. It reveals that there were no significant differences between the 2 groups in any 

of the variables measured. 

Variables 
SCH 

Pre-treatment 
n=14 

SCH 
Post-treatment 

n=14 
P value 

LFnu-RRI (%) 54.6±16.6 57.4±14.0 0.374 
HFnu-RRI (%) 45.4±16.6 42.6±14.0 0.374 
VLF-RRI (ms²) 291.0±334.0 494.1±616.1 0.334 
LF-RRI (ms²) 735.2±905.6 409.4±374.0 0.205 
HF-RRI (ms²) 878.3±1688.8 347.4±413.7 0.259 
PSD-RRI (ms²) 1904.6±2840.3 1250.9 ±968.5 0.429 
LF/HF-RRI 1.8±1.4 2.1±1.7 0.178 

LF/HF 1.5±1.0 1.6±0.8 0.442 

 

Table 6.4: Comparison of resting cardiac autonomic parameters between pre- and post -SCH 
groups. Values are mean (SD) 
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Table 6.5 shows the cardiac autonomic data during passive HUT protocol for pre- and 

post-treatment SCH groups. It shows that the pre-treatment SCH group had lower LFnu-

RRI than the post-treatment group (77.1±8.4 vs. 80.2±7.0 %, p=0.016).It also shows 

that the pre-treatment SCH group had higher HFnu-RRI than the post-treatment group 

(22.9±8.4 vs.19.8±7.0 %,p= 0.016). A unit change in HFnu-RRI and LFnu-RRI during 

HUT with treatment did not correlate significantly with a unit change in TFTs, FIS 

score and Cardiac PCr/ATP ratio. 

Variables 
SCH 

Pre-treatment 
n=14 

SCH 
Post-treatment 

n=14 
P value 

LFnu-RRI (%) 77.1±8.4 80.2±7.0 0.016 
HFnu-RRI (%) 22.9±8.4 19.8±7.0 0.016 
VLF-RRI (ms²) 2417.1±5426.2 307.6±161.9 0.173 
LF-RRI (ms²) 581.9±718.3 937.0±1583.8 0.172 
HF-RRI (ms²) 108.2±81.2 111.1±81.1 0.891 
PSD-RRI (ms²) 3107.2±5467.8 1355.6±1679.2 0.277 
LF/HF-RRI 7.4±6.4 9.5±9.0 0.218 

LF/HF 5.7±5.4 7.2±7.3 0.279 

 

Table 6.5: Comparison of cardiac autonomic parameters during head-up tilt (HUT) between pre- 
and post-SCH groups. Values are mean (SD) 

Table 6.6 shows the mean change in cardiac autonomic data during passive HUT from 

the resting value for the pre- and post-treatment SCH groups. It did not reveal any 

significant changes between the 2 groups. 

Variables 
SCH 

Pre-treatment 
n=14 

SCH 
Post-treatment 

n=14 
P value 

LFnu-RRI (%) 22.5±14.2 22.8±12.5 0.923 
HFnu-RRI (%) -22.5±14.2 -22.8±12.5 0.923 
VLF-RRI (ms²) 2126.1±5385.5 -186.5±590.6 0.131 
LF-RRI (ms²) -153.3±990.0 527.6±1525.1 0.061 
HF-RRI (ms²) -770.2±1637.3 -236.3±381.6 0.248 
PSD-RRI (ms²) 1202.6±5426.6 104.7±1303.5 0.489 
LF/HF-RRI 5.6±6.0 7.4±8.5 0.254 

LF/HF 4.3±5.2 5.6±6.9 0.281 

 

Table 6.6: Comparison of change in cardiac autonomic parameters during head-up tilt (HUT) 
between pre- and post-SCH groups. Values are mean (SD)  
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6.6.1 General discussion 

The results showed that cardiac autonomics did not differ significantly between SCH 

patients and HC at baseline during rest and HUT. The pre-treatment SCH group had 

significantly lower LFnu RRI and higher HFnu RRI than post-treatment SCH during 

HUT. These results suggest lower sympathetic and higher parasympathetic activity 

during HUT in SCH patients, which improved significantly with levothyroxine 

treatment. Lack of correlation between HRV variables (HFnu-RRI and LFnu-RRI) and 

FIS suggests that fatigue is not related to HRV abnormalities in SCH patients.  

Previous studies have shown inconsistent results in hypothyroid patients when assessed 

for cardiac autonomic function. Short-term overt hypothyroidism was associated with 

lower sympathetic and higher parasympathetic responses in a study conducted by 

Heesmstra et al. in 11 post-thyroidectomy patients (Heemstra et al.). Overt 

hypothyroidism due to Hashimoto’s thyroiditis was associated with lower sympathetic 

activity in a study by Inukai et al.(Inukai et al., 1998). A higher parasympathetic tone in 

overt hypothyroidism due to varied aetiology has been shown by Xing et al. (Xing et al., 

2001). Our results are consistent with these studies. In contrast to these studies, a 

reduction in parasympathetic and increased sympathetic activity has been shown in 

overt hypothyroidism (Cacciatori et al., 2000). The conflicting results may be due to 

different methods of measurement of HRV, and varying aetiology, severity and duration 

of hypothyroidism. 

In SCH patients (n=42, mean serum TSH 9.8±1.7 mIU/L), Galetta et al. reported a 

reduction in parasympathetic tone, which improved with levothyroxine treatment. 

Sympathetic tone was not different between patients and HC, and did not alter after 

thyroxine treatment. However, a study by Sahin et al. has shown no significant changes 

in cardiac autonomic function in SCH patients with serum TSH  below 10 mIU/L 

(n=18), but revealed decreased sympathetic tone in SCH patients with serum TSH 

above 10 mIU/L (n=13) (Sahin et al., 2005). Our results have shown similar results in 

SCH patients. This study did not report a response to levothyroxine treatment and 

measured 24-hour HRV rather than specific dynamic stress tests (i.e. HUT) for 

autonomic function tests, as measured in this study. The abnormalities in HRV in our 

study became significant during HUT following treatment with levothyroxine. This 

indicates that changes in HRV exist in SCH patients with serum TSH below 10 mIU/L. 
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But these changes are very mild and not obvious during rest, and only dynamic tests 

may show significant abnormalities in HRV in SCH. 

In this arm of the study, multiple measurements of various HRV frequency domains 

have been made. If we were to correct for multiple testing with the Bonferroni method, 

then the results will not be significant. However, the results are consistent with 

previously reported similar studies and are physiologically plausible in hypothyroidism, 

as explained in the following paragraph. 

The mechanisms of abnormal HRV in hypothyroidism have been described previously. 

In hypothyroidism, central sympathetic output is increased in response to reduced 

peripheral vascular and cardiac sensitivity to catecholamines (Coulombe et al., 1977). 

Diminished catecholamine responsiveness in hypothyroidism is explained by the 

reduced number of catecholamines receptors and post-receptor defects  in 

hypothyroidism (Silva and Bianco, 2008). 

6.6.2 Clinical implications 

Fatigue in our SCH group is not explained by abnormal HRV measurements. The 

hypothesis is not proven by our results. This might be due to the smaller number of 

subjects or true lack of correlation between fatigue and thyroid status in SCH. No 

previous studies have been done to show any relationship between symptoms of 

hypothyroidism and autonomic dysfunction, although many of the clinical features of 

hypothyroidism can be explained physiologically by diminished adrenergic activity. 

Fatigue in primary biliary cirrhosis and chronic fatigue syndrome has been associated 

with autonomic dysfunction (Pagani and Lucini, 1999, Newton et al., 2006). But these 

were association studies only and no causal link has been established. 

Cardiac autonomic dysfunction has been associated with increased cardiac morbidity 

and mortality. These has been shown in a number of diseases, including diabetes (Maser 

and Lenhard, 2005, Chico et al., 2005). SCH has been associated with increased 

cardiovascular disease, as previously described (Rodondi et al., 2010). Recently it has 

been shown that mortality is increased in patients with chronic heart failure and SCH 

(Rhee et al., 2013). So, it is possible that cardiac autonomic dysfunctions seen in SCH 

may be linked to these cardiac morbidities and mortality.  
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6.6.3 Strengths and limitations 

Overt heart disease or hypertension can alter the results of cardiac autonomic evaluation 

(1996). We have excluded patients with overt cardiovascular disease or risk factors for 

cardiovascular diseases. This minimised the chance of underlying diseases affecting 

HRV measurements in this study. 

In this study, HRV and other dynamic testing were performed under supervised testing 

conditions. This is in contrast to many other studies where SCH patients were assessed 

using 24-hr Holter monitoring for cardiac autonomic evaluation. 24-hour monitoring 

can be influenced significantly by very low-frequency oscillations (1996). It is not a 

supervised testing condition, hence subject factors such as emotional stress situations or 

bouts of exercise can lead to abnormal HRV. Hence, short-term HRV carried out under 

testing conditions are more accurate and reproducible when compared to long-term 24-

hour monitoring. 

Some of the studies in the past did not show any improvement in HRV with 

levothyroxine treatment in hypothyroidism (Celik et al., 2011, Heemstra et al.). This 

may be due to shorter duration of treatment, inadequate dosing, or irreversible damage 

to ANS by hypothyroidism. The study by Heemstra et al. (Heemstra et al.) treated 

hypothyroid patients with levothyroxine for 2 months, which may not be long enough to 

demonstrate significant changes in ANS after treatment. In the study by Celik et al., 

although 6 months of levothyroxine treatment was given, serum TSH after treatment 

was 4.1 (normal range 2.6-5.6 µIU/mL) (Celik et al., 2011). This is a higher serum TSH 

than that achieved by many other studies like Galetta et al. and in this study. This shows 

that achieving adequate therapeutic targets for longer periods, as in the FIS study, is 

important to demonstrate tissue level changes in SCH. 

However, the study has important limitations. One of the inherent limitations of the 

HRV frequency domain measurements is that the normal range is not established in 

healthy controls in the literature. This is because of significant differences in testing 

conditions, variation in duration of measurements and significant random errors in HRV 

frequency domain measurements. Hence, it is recommended to have validation and test-

retest reproducibility studies in each centre for HRV measurements, and to obtain 

normal ranges based on age (Tannus et al., 2013). For LFnu during the tilt test, the 

coefficient of variation (CV) for HC was 8.7%. There was a 4.0% increase in LFnu 
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during tilt test in the SCH group after levothyroxine treatment. Although, it is 

statistically significant, it is still within the CV of tilt test for HC. So, it is important to 

design future studies so that more sensitive methodologies are used to assess serial 

changes in HRV measurements. We have not repeated HRV measurements in HC, 

because these were historical controls. The effects of repeat testing in the SCH group 

could not be verified because the SCH group did not have a placebo arm. This was done 

as a pilot study, hence future studies need to be designed so that the effects of repeat 

testing in the SCH group could be ascertained. 

The small sample of the study group is a potential reason for not showing any 

significant results. Previous studies have shown significant changes in HRV with larger 

study sample sizes in SCH (Galetta et al., 2006, Akcakoyun et al., 2009, Celik et al., 

2011). There were no power calculations made for this study with regards to the cardiac 

autonomics arm of the study. The data from this study might serve for future studies for 

power calculations so that adequate sample size can be calculated. 

The healthy control data was obtained from the historical controls who had undergone 

the same methodology as in the FIS study. Thyroid function data were not available for 

the HC in the historical cohort, although participants with a history of thyroid disease 

were excluded. Previous studies have shown that the prevalence of SCH in the general 

adult population is between 4-10%, more prevalent in the older population than the 

younger population (Biondi and Cooper, 2008). Hence, it is possible that 1 or 2 

participants in the HC group might have SCH. However, this is unlikely to affect the 

final outcome of the study findings. 

It has not been possible to match for body mass index (or body surface area) and blood 

pressure. This might have affected the results at baseline comparison between SCH and 

HC. Also, the presence of subclinical heart disease is not apparent on history, 

examination, and on a 12-lead ECG, and cannot be ruled out in participants in this 

study. Subclinical heart disease can be ruled out to a large extent using cardiac stress 

testing and echocardiography. Future studies should be designed so that full pre-study 

evaluations are conducted for potential interfering factors with HRV measurements.  
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6.6.4 Future directions 

Future studies should be designed so that full pre-study evaluations are conducted for 

potential interfering factors with HRV measurements. A larger study group with and 

without fatigue would help to differentiate between fatigue-associated changes and 

changes due to SCH. Long-term significance of abnormal HRV in SCH is yet be 

determined with large prospective observational studies. 
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6.7 Results of cardiac impedance measurements 

Table 6.7 shows the resting cardiac impedance data for SCH at baseline and HC groups. 

It reveals that the systolic BP was lower in SCH than HC (p<0.05). The measurements 

of cardiac pumping i.e. stroke volume, stroke volume index, cardiac output and cardiac 

index were all lower in SCH than HC (p<0.05). The afterload (TPRI) was higher in 

SCH than HC (p<0.05). The preload (EDI) was lower in SCH than HC (p<0.05). The 

cardiac contractility and LVWI were lower in SCH than in HC (p<0.05). 

Variables 
SCH 
n=18 

HC 
n=18 

P value 

Heart rate (beats/min) 66.9±6.9 67.9±10.9 0.727 
Systolic blood pressure (mmHg) 113.2±14.2 126.1±18.1 0.024 
Diastolic blood pressure (mmHg) 72.1±13.3 79.1±11.3 0.115 
Stroke volume (mls) 64.9±12.1 81.4±21.6 0.013 
Stroke volume index [ml/meter²] 36.0±10.0 46.3±11.8 0.012 
Cardiac output (litres/min) 4.3±1.1 5.4±1.4 0.018 
Cardiac index (litres/minute/meter²] 2.4±0.8 3.1±0.8 0.022 
Total peripheral resistance 
(dyne second /centimetre5) 

1672.0±445.8 1391.8±420.0 0.069 

Total peripheral resistance index 
(dyne second meter²/centimetre5) 

3144.7±1076.6 2460.4±806.9 0.036 

End-diastolic index (ml/meter²) 59.2±15.3 74.2±17.7 0.020 
Left ventricular ejection time  
(milliseconds) 

315.2±14.8 318.2±18.5 0.521 

Left ventricular work index  
(mmHg x litres/min/meter²) 

2.8±0.8 3.8±1.1 0.010 

Contractility index (1000/seconds) 36.7±19.2 53.6±19.9 0.022 
 

Table 6.7: Comparison of resting cardiac impedance parameters between baseline SCH and HC. 
Values are mean (SD) 

In patients during resting state, the free T4 was positively correlated to systolic BP 

(r=0.580, p=0.012) (Figure-6.1) and there was an inverse association between serum 

free T3 and LVET (r=-0.556, p=0.025) (Figure-6.2).  
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Figure 6-2: Relationship between systolic blood pressure and free T4 (pmol/litre) during rest in 
SCH 

 

 

Figure 6-3: Relationship Left ventricular Ejection Time (LVET) (milliseconds) and free T3 
(pmol/litre) during rest in SCH 

 

To explore the mechanism of low CI in SCH patients, further correlation analysis was 

undertaken between CI and key variables affecting cardiac index i.e. EDI, TPRI and IC. 
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It showed positive correlations between CI and EDI (Figure-6.4), CI and IC (Figure-

6.5); and an inverse correlation between CI and TPRI (Figure-6.6) (p value for all 

<0.001). 

 

Figure 6-4: Relationship between cardiac index (CI) (litres/min/meter2) and end-diastolic index 
(mls/meter2) during rest 
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Figure 6-5: Relationship between cardiac index (CI) (litres/min/meter2) and contractility index 
(1000/second) during rest 

 

 

Figure 6-6: Relationship between cardiac index (CI) (litres/min/meter2) and total peripheral 
resistance index (TPRI) (dyne second meter²/centimetre5) during rest 
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Table 6.8 shows the cardiac impedance data during passive HUT protocol for baseline 

SCH and HC groups. The mean heart rate was similar between both groups, but both 

systolic and diastolic BP were not different between the 2 groups (p values were 0.212 

and 0.088 respectively). Both stroke volume index and cardiac index were significantly 

lower in SCH than HC (p <0.05)). Afterload (TPRI) was similar between both groups, 

but preload (EDI) was lower in SCH than HC (p<0.05). The amount of work (LVWI) 

and force of work (contractility index) was significantly lower in SCH than HC 

(p<0.05). 

Variables 
SCH 
n=18 

HC 
n=18 

P value 

Heart rate (beats/min) 80.2±6.7 82.5±13.7 0.572

Systolic blood pressure (mmHg) 122.7±16.4 129.6±19.1 0.212

Diastolic blood pressure (mmHg) 83.4±11.2 90.4±13.6 0.088

Stroke volume (mls) 52.5±7.3 58.1±11.0 0.140

Stroke volume index [ml/meter²] 28.6±4.3 33.0±6.0 0.030

Cardiac output (litres/min) 4.2±0.6 4.7±0.9 0.107

Cardiac index (litres/minute/meter²] 2.3±0.4 2.7±0.6 0.023

Total peripheral resistance  
(dyne second /centimetre5) 

1872.3±313.4 1734.9±517.7 0.468 

Total peripheral resistance index  
(dyne second meter²/centimetre5) 

3475.2±787.6 3068.6±999.1 0.225 

End-diastolic index (ml/meter²) 51.5±7.7 59.9±11.3 0.028

Left ventricular ejection time 
 (milliseconds) 

283.8±13.6 279.1± 0.559 

Left ventricular work index  
(mmHg x litres/min/meter²) 

3.0±0.5 3.6±0.6 0.012 

Contractility index (1000/seconds) 26.8±8.1 36.1±12.3 0.024

 

Table 6.8: Comparison of cardiac impedance parameters during head-up tilt (HUT) between 
baseline SCH and HC. Values are mean (SD) 
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Table 6.9 shows the mean change in cardiac impedance data during passive HUT from 

the resting data for both SCH and HC groups. The change in stroke volume and stroke 

index were lower in SCH than HC (p<0.05).  

Variables 
SCH 
n=18 

HC 
n=18 

P value

Heart rate (beats/min) 13.3±5.9 14.6±7.3 0.668 
Systolic blood pressure (mmHg) 9.4±11.8 3.4±11.9 0.208 
Diastolic blood pressure (mmHg) 11.3±9.1 11.3±8.1 0.851 
Stroke volume (mls) -12.4±13.2 -23.4±13.9 0.024 
Stroke volume index [ml/meter²] -7.3±8.2 -13.3±7.7 0.036 
Cardiac output (litres/min) -0.1±1.1 -0.7±0.9 0.103 
Cardiac index (litres/minute/meter²] -0.1±0.6 -0.4±0.5 0.170 
Total peripheral resistance  
(dyne second/centimetre5) 

200.3±412.4 343.1±333.4 0.191 

Total peripheral resistance index  
(dyne second meter²/centimetre5) 

330.5±792.7 608.2±587.9 0.178 

End-diastolic index (ml/meter²) -7.7±12.2 -14.3±10.0 0.106 
Left ventricular ejection time  
(milliseconds) 

-31.4±15.1 -39.1±19.8 0.209 

Left ventricular work index  
(mmHg x l/min/meter²) 

0.2±0.8 -0.2±0.7 0.139 

Contractility index (1000/seconds) -10.0±15.3 -17.5±11.6 0.116 
 

Table 6.9: Comparison of change in cardiac impedance parameters during head-up tilt (HUT) 
between baseline SCH and HC. Values are mean (SD) 

 

 

 

 

 

 

 

 



94 

 

The change in TPRI during HUT was inversely correlated to free T4 (r=-0.522, 

p=0.026) (Figure-6.6). 

 

 

Figure 6-7: Relationship between change in total peripheral resistance Index (TPRI) (dyne 
second m2/centimetre5) and free T4 (pmol/litre) during Head-up tilt (HUT) in SCH. 
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Table 6.10 shows the resting cardiac impedance data for pre- and post-treatment SCH 

groups. It reveals that there were no significant differences between the 2 groups in any 

of the variables measured. 

 

Variables 
SCH 

Pre-treatment 
n=14 

SCH 
Post-treatment 

n=14 
P value

Heart rate (beats/min) 67.1±7.6 68.3±5.3 0.504 
Systolic blood pressure (mmHg) 115.1±15.7 115.9±12.2 0.815 
Diastolic blood pressure (mmHg) 72.6±12.1 74.3±11.5 0.474 
Stroke volume (mls) 64.7±11.7 63.1±9.4 0.375 
Stroke volume index [ml/meter²] 35.6±10.0 34.7±8.7 0.375 
Cardiac output (litres/min) 4.3±1.0 4.3±0.7 0.848 
Cardiac index (litres/minute/meter²] 2.4±0.8 2.4±0.6 0.804 
Total peripheral resistance 
(dyne second/centimetre5) 

1682.1±351.0 1692.8±344.8 0.885 

Total peripheral resistance index 
(dyne second meter²/centimetre5) 

3191.3±974.5 3171.6±843.6 0.895 

End-diastolic index (ml/meter²) 58.3±15.3 57.5±14.0 0.559 
Left ventricular ejection time 
(milliseconds) 

313.4±16.0 311.5±12.9 0.633 

Left ventricular work index 
(mmHg x l/min/meter²) 

2.9±0.8 2.9±0.6 0.977 

Contractility index (1000/seconds) 36.07±19.0 34.6±15.6 0.409 
 

Table 6.10: Comparison of resting cardiac impedance parameters between pre-and post-CH 
groups. Values are mean (SD). 
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Table 6.11 shows the cardiac impedance data during passive HUT protocol for pre- and 

post-treatment SCH groups. It does not reveal any significant changes between the 2 

groups. 

 

Variables 
SCH 

Pre-treatment 
n=14 

SCH 
Post-treatment 

n=14 
P value

Heart rate (beats/min) 79.7±6.4 80.5±3.6 0.677 
Systolic blood pressure (mmHg) 125.1±17.7 127.7±11.4 0.566 
Diastolic blood pressure (mmHg) 85.0±10.2 86.0±6.9 0.650 
Stroke volume (mls) 52.8±8.7 51.4±6.3 0.326 
Stroke volume index [ml/meter²] 28.5±4.9 27.8±3.4 0.358 
Cardiac output (litres/min) 4.2±0.7 4.1±0.6 0.681 
Cardiac index (litres/minute/meter²] 2.3±4.1 2.2±0.3 0.723 
Total peripheral resistance 
(dyne second/centimetre5) 

1925.6±376.3 1979.7±377.8 0.456 

Total peripheral resistance index 
(dyne second meter²/centimetre5) 

3600.5±847.3 3660.5±705.2 0.656 

End-diastolic index (ml/meter²) 51.1±8.7 49.8±6.5 0.308 
Left ventricular ejection time 
(milliseconds) 

284.7±12.7 283.4±7.2 0.712 

Left ventricular work index 
(mmHg x l/min/meter²) 

3.0±0.5 3.0±0.3 1.000 

Contractility index (1000/seconds) 26.2±9.0 25.1±6.6 0.348 
 

Table 6.11: Comparison of cardiac impedance parameters during head-up tilt (HUT) between 
pre- and post-SCH groups. Values are mean (SD). 
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Table 6.12 shows the mean change in cardiac impedance during HUT from the resting 

values for pre- and post-treatment SCH groups. It did not reveal any significant changes 

between the 2 groups. 

 

Variables 
SCH 

Pre-treatment
n=14 

SCH 
Post-treatment 

n=14 
P value

Heart rate (beats/min) 12.6±6.5 12.2±5.0 0.681 
Systolic blood pressure (mmHg) 10.1±12.5 11.8±10.8 0.521 
Diastolic blood pressure (mmHg) 12.5±8.2 11.7±12.5 0.761 
Stroke volume (mls) -11.9±13.4 -11.7±10.9 0.883 
Stroke volume index [ml/meter²] -7.1±8.3 -6.9±7.1 0.810 
Cardiac output (litres/min) -0.1±1.2 -0.2±0.9 0.896 
Cardiac index (litres/minute/meter²] -0.1±0.7 -0.1±0.5 0.979 
Total peripheral resistance 
(dyne second/centimetre5) 

243.5±465.5 286.9±446.3 0.531 

Total peripheral resistance index 
(dyne second meter²/centimetre5) 

409.2±867.3 488.9±784.7 0.518 

End-diastolic index (ml/meter²) -7.2±12.6 -7.7±10.9 0.656 
Left ventricular ejection time 
(milliseconds) 

-28.8±13.8 -28.0±11.4 0.839 

Left ventricular work index 
(mmHg x l/min/meter²) 

0.1±0.8 0.1±0.6 0.977 

Contractility index (1000/seconds) -9.9±16.0 -9.6±12.6 0.850 
 

Table 6.12: Comparison of cardiac impedance parameters during head-up tilt (HUT) between 
pre- and post-SCH groups. Values are mean (SD). 

 

6.7.1 General Discussion 

At rest, the cardiac impedance data shows impaired cardiac index in SCH when 

compared to HC. These changes did not occur with levothyroxine treatment. The heart 

rate was similar between both groups. Low cardiac index was related to reduced 

contractility (CI) and preload (EDI), and increased afterload (TPRI) in SCH. This 

suggests multiple impairments in cardiovascular physiology in SCH during resting 

conditions. The serum FT4 is positively related to systolic blood pressure, but the 

significance of this is unclear. The serum FT3 in inversely related to LVET, meaning 
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higher FT3 is associated with lower left ventricular ejection time. FIS and cardiac 

PCr/ATP ratio were not correlated to cardiac indices during rest. These findings indicate 

that the cardiac PCr/ATP ratio is not contributing to low cardiac output, and fatigue is 

not caused by low cardiac output during the resting stage.  

During passive HUT, SI, CI, EDI, LVWI and IC were low in SCH when compared to 

HC. This shows that the patients were unable to respond sufficiently to physiological 

strain of HUT. However, the TPRI were not significantly different between SCH and 

HC. This suggests that peripheral response was appropriate in SCH during HUT. So, the 

low CI was due to low EDI and IC. Levothyroxine treatment did not improve any 

abnormalities in SCH. 

The findings from this study are in accordance with some of the studies that reported 

cardiac dysfunctions previously. A cardiac MR study in SCH showed lower end 

diastolic volume, SV,CI; and a higher peripheral resistance in SCH than healthy 

controls (Ripoli et al., 2005). These findings were similar to my study. They inferred 

that the reduction in afterload and preload were responsible for reduction in CO in SCH. 

This study has shown that cardiac contractility is also low, which is contributing to 

lower CO in SCH. They found significant improvement in cardiac function with 

levothyroxine for a median duration of 86 days. Unlike this study, my study did not find 

any improvement in cardiac function following levothyroxine treatment for 6 months. 

Cardiac impedance was measured in patients with SCH before and after levothyroxine 

treatment in another study (Faber et al., 2002). This study did not compare patients with 

healthy controls, but shows improvement in CO and a reduction in peripheral resistance 

with levothyroxine treatment after a mean duration of 157 days in patients. However, 

another study using cardiac impedance in patients with SCH did not show any 

improvement in cardiac function with levothyroxine treatment (La Viola et al., 2003). In 

summary, my study did corroborate some of the previous studies, but this needs further 

studies in bigger cohorts to draw definitive conclusions. 

The lack of response to levothyroxine in cardiac function in SCH is unexplained. In 

addition to the discussions in the previous sections, general factors like obesity may 

have caused subtle cardiac dysfunction in SCH. Obesity is associated with  diastolic 

dysfunction, which improves with weight loss (Rider et al., 2012b). The patients in my 

cohort did not have very high BMIs and this degree of raised BMI was not associated 
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with diastolic dysfunction. The cardiac impedance data may not be sensitive enough to 

identify subtle improvements in cardiac function in SCH with levothyroxine treatment. 

This could be another reason for not showing any improvement with levothyroxine 

treatment, unlike previously-mentioned studies in this section. 

6.7.2 Strengths and limitations 

The general strengths and weakness of the study were described in previous sections. 

These are applicable to this particular arm of the study as well, especially since small 

sample size might have limited the power of the study in the pre- and post-treatment 

arm of the study.  
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Chapter 7 Cerebral Blood Flow using Arterial Spin Method 

7.1 Hypothesis 

Fatigue in subjects with SCH is mediated through (wholly or partly) altered CBF and is 

reversible with levothyroxine treatment. 

7.2 Primary endpoints 

To quantify whole-brain grey matter blood flow using MR arterial spin labelling (ASL) 

in SCH and compare with age and gender-matched euthyroid healthy controls. 

7.3 Secondary endpoints 

To quantify whole-brain grey matter blood flow after 6 months of levothyroxine 

treatment in patients with SCH. 

7.4 Method 

To examine this hypothesis, the ASL technique was used to measure CBF in SCH 

patients both at the baseline and after 6 months of levothyroxine treatment, as well as in 

age and gender-matched controls (HC). 

 

MRI was performed on a 3T whole body scanner (Philips Medical Systems, Best, 

Netherlands) using the integrated body coil for transmission and signal detection 

through an 8 channel SENSE head coil. A T1 weighted anatomical volume with 1 mm 

isotropic resolution was collected using a standard clinical protocol (3D MPRAGE 

sequence, FOV 240 x 240 x 180mm3, TE/TR =4.6/9.6ms, SENSE factor 2). Cerebral 

blood flow (CBF) was measured using a FAIR arterial spin labelling (ASL) sequence 

(Kim and Tsekos, 1997, Kim, 1995) in the same manner as previously described 

(Tryambake et al., 2013). The ASL images were processed as previously described 

(Tryambake et al., 2013) to derive whole-brain grey matter CBF. 

7.5 Results 

Out of 25 of those recruited, 3 patients with SCH did not have complete brain MR scans 

(unable to tolerate or attend brain MRI scans) and 1 subject had a poor-quality image. 

Hence, we had 21 SCH subjects with completed data, with the data from 1 SCH subject 

not analysed, to match with 20 healthy controls (see Appendix C for details). The 
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patient demographic information is shown in Table 7.1 for SCH at baseline (n=20) and 

HC (n=20). It shows that the subjects in each group were well matched, except for BMI. 

As expected, the mean serum TSH (serum TSH was normally distributed as per 

Kolmogorov-Smirnov test, p=0.083), FT4 and FIS score were significantly different in 

each group. The whole-brain grey matter CBF for SCH at baseline and HC were 

49.3(±6.6) vs. 46.9(±5.8) ml/100g/min (p=0.225) respectively. 

Parameters 
SCH 
n=20 

HC 
n=20 

Unpaired t-
test 

(p value) 
Age (years) 40.6(±12.2) 42.2 (±12.5) 0.685 
Gender  (no. of females) 18 17 0.229 
Body Mass Index  
(kg/m2) 

29.5 (±6.3) 24.7 (±4.4) 0.008 

Blood Pressure (mmHg) 
123.2/76.6 

(±17.8/10.1) 
121.2/77.1 

(±19.2/11.5) 
0.728 

Total Cholesterol 
(mmol/L) 

5.5 (±1.0) 5.3 (±0.8) 0.500 

Glucose (mmol/L) 4.9 (±0.4) 4.7 (±0.5) 0.121 
TSH (mIU/L) 6.7 (±1.9) 2.0 (±0.9) <0.001 
Free T4 (pmol/L) 13.5 (±1.3) 14.7 (±1.4) 0.012 
Fatigue Index Score 77.6 (±22.7) 4.3( ±5.0) <0.001 
 

Table 7.1: Characteristics of subclinical hypothyroid patients at baseline were compared to healthy controls.  
Values are mean (±SD). 

Out of 20 subjects in the baseline SCH cohort, 2 subjects were poorly compliant with 

levothyroxine and 1 had head rotation during the repeat imaging. Hence we had 17 

subjects in the post-treatment SCH group (see Appendix C for details). Table 7.2 shows 

the comparison of SCH patient groups before and after levothyroxine treatment. Figure-

7.1 shows the distribution of serum TSH in pre- and post-treatment groups. In the pre-

treatment SCH group, the serum TSH was not normally distributed (Kolmogorov-

Smirnov test, p=0.028), but serum TSH in the post-treatment SCH group was normally 

distributed (Kolmogorov-Smirnov test, p=0.200). The CBF in pre- and post-treatment 

SCH groups were 50.6 (±8.5) vs. 46.7 (±8.5) (p=0.013) respectively. The CBF in SCH 

post-treatment group was not non-significantly different from HC (46.9±5.8 vs.46.7 

(±8.5) ml/100g/min, p=0.947). The whole grey matter CBF for HC, SCH pre-

levothyroxine treatment and SCH post-levothyroxine treatment is shown in Figure 7.2, 

and the corresponding CBF in SCH (pre- and post-levothyroxine treatment) is indicated 

by a line. 
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Figure 7-1: This graph shows the distribution of serum TSH in pre- and post-treatment SCH groups (n=17). 

 

Parameters SCH pre T4T 

(N=17) 

SCH post T4T 

(N=17) 

Paired t-test 

(p value) 

Magnitude 

change 

TSH 6.6 (±1.8) 1.9 (±1.0) <0.001 -4.7 (±2.1) 

Free T4 13.5 (±1.4) 19.2 (±2.4) <0.001 +5.6 (±2.2) 

FIS 79.9 (±23.9) 34.2 (± 35.7) <0.001 -45.7 (±31.0) 

CBF 50.6 (±8.5) 46.7 (±8.5) 0.013 -3.9 (±5.7) 

 

Table 7.2: Changes in TSH, free T4, fatigue index score and cerebral blood flow after 6 months 
of levothyroxine treatment in SCH group. The last column is the result of a t-test for difference 

between groups.  Values were mean (SD). 
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Figure 7-2: Cerebral blood flow of each individual. Cerebral blood flow significantly decreased 
in the SCH post-thyroxin treatment compared to the baseline.  The levothyroxine treatment 

appears to have a normalisation effect on CBF (HC vs. SCH post-treatment, p=0.947) 

 

7.6 Discussion 

7.6.1 General discussion 

In this study, we have shown that the CBF in SCH was significantly reduced by 

levothyroxine treatment to the level seen in HC. FIS is significantly higher in SCH 

baseline compared to HC, and levothyroxine treatment significantly relieves the fatigue 

in SCH.  

The results suggest that increased CBF was secondary to the SCH state where the main 

effects of SCH are on the cellular level. At cellular level, thyroxine hormone (T4) is 

converted to triiodothyronine (T3) by deiodinase enzymes in brain.  In hypothyroidism, 

there is upregulation of type II deiodinase enzyme (DIO2) activity in brain, and animal 

studies have shown enhanced local production of  T3 within brain tissue in 

hypothyroidism (Dratman et al., 1983). T3 has known vasodilatory properties by acting 

on vascular smooth muscles (Ojamaa et al., 1993). Hence, it was postulated that a slight 

increase in CBF in SCH may be an over-compensatory response to mild tissue 

hypothyroidism. Treatment of the hypothyroid state by levothyroxine led to a decrease 
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in DIO2 activity (Burmeister et al., 1997) and tissue T3 levels, which can lead to 

normalisation of tissue blood flow. 

Normalisation of increased cerebral blood flow velocities after levothyroxine treatment 

in overt hypothyroidism was found in a study by Utku et al. using transcranial Doppler 

sonography (Utku et al., 2011). They found a similar increase of mean blood flow 

velocities of bilateral middle cerebral arteries in both over hypothyroidism (n=30,mean 

age 37.4 years, men/women ratio 3/27, mean serum TSH 19.8 IU/L) and SCH (n=30 , 

mean age 34.4 years, men/women ratio 4/26, mean serum TSH 6.3 IU/L) groups. The 

SCH group had similar demographic characteristics, as in our study. They reported 

normalisation of blood flow after levothyroxine treatment in overt hypothyroidism, but 

did not report the response to levothyroxine treatment in the SCH group. My study has 

shown a reduction of CBF in the SCH group with levothyroxine treatment. The 

proposed mechanism for altered cerebral blood flow was of mild atherosclerosis and 

consequent narrowing of major cerebral arteries, leading to increased blood velocity or 

due to systemic hypertension (Utku et al., 2011). The precise cerebral auto-regulatory 

mechanism in hypothyroidism remains unknown, as is the case with various diseases 

affecting cerebral circulation (Paulson et al., 1990). Further studies are required to 

reveal the true pathophysiological mechanisms of cerebral circulation in SCH. 

7.6.2 Clinical implications 

The observed fatigue was not associated with CBF in SCH, suggesting that CBF is not a 

marker of fatigue in SCH. So, the data does not support the hypothesis that fatigue may 

be due to altered CBF. This may be due to the fact that very early tissue hypothyroidism 

may not be severe enough to cause altered neuronal or direct cerebral circulatory 

dysfunctions leading to fatigue in SCH. This could also be due to small sample size of 

the SCH group. Fatigue in SCH could be related to peripheral muscular dysfunction 

(Beyer et al., 1998, Caraccio et al., 2005) rather than due to a central cause. Patients 

with a greater severity of SCH (i.e. serum TSH >10 IU/L) might have shown more 

pronounced changes in CBF. We studied patients with serum TSH below 10 IU/L, as 

those with serum TSH above 10 IU/L are routinely treated because of the high rate of 

progression to overt hypothyroidism (Surks et al., 2004). Hence, my study aim was to 

explore for any reversible pathophysiological changes in SCH with borderline elevated 

serum TSH who are not routinely treated with levothyroxine at present (Surks et al., 
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2004). FIS measures composite of three domains viz. cognitive, physical and social 

(Fisk et al., 1994b). CBF may not affect physical and social factors directly; hence, the 

total FIS score may not correlate with CBF. 

7.6.3 Strengths and weaknesses 

The major strength of this study is that we selected only subjects with no overt vascular 

disease and without major risk factors for vascular disease. No subjects were on any 

drugs which could affect vascular function. The disease manifestations in SCH depend 

on the duration and severity of the disease and peripheral sensitivity of the target tissues 

to thyroxine hormones (Biondi and Cooper, 2008). Hence, only patients with stable 

SCH (i.e. those with raised serum TSH for more than 3 months) were selected, and 

patients were started on a full replacement dose of levothyroxine to maximise the 

chance of detecting any tissue level changes on CBF. The limitation of the study is that 

the small size of the sample might have reduced the power of the study, but this was a 

preliminary exploratory study and we were unable to carry out the precise power 

calculations for the study. We did not repeat scans for HC to see whether changes in 

CBF in SCH were not due to random variations on repeat measurements.  

7.6.4 Future directions 

The findings from this study would need to be reproduced in a larger and separate SCH 

cohort because our study was the first one to look at this specific group of patients with 

SCH i.e. younger patients with serum TSH below 10 IU/L. Also, data from this study 

could be used for future power calculations for similar studies in SCH. The effect of 

combination therapy of hypothyroidism with levothyroxine and triiodothyronine 

(known as “T4+T3 therapy”) on CBF has not been studied before. The clinical benefits 

of T4+T3 therapy has been shown to be inconsistent in previous studies (Chakera et al., 

2012). It was suggested that a specific subgroup of hypothyroid patients with common 

variation in the DIO2 gene might benefit from T4+T3 combination therapy (Panicker et 

al., 2009). The effect of T3 therapy on tissue levels of T3 has been demonstrated in the 

past in animal models (Short et al., 2001). MR methods like ASL may be used to study 

tissue level changes in hypothyroidism in this subset of hypothyroid patients and to 

correlate tissue levels changes with genetic variations in DIO2 enzyme. This might help 
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many thousands of patients who are not gaining significant improvement on 

levothyroxine alone. 

7.7 Summary 

To conclude, we found a reduction of CBF in SCH patients after levothyroxine 

treatment, and its physiological significance is unknown. The CBF did not correlate 

with fatigue in our cohort. Hence, CBF is not a marker of fatigue in SCH. Future studies 

are warranted to look at CBF in SCH patients. 
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Chapter 8 Overall Discussion 

The hypothesis of the study was that fatigue in SCH is due to functional abnormalities 

in peripheral tissues which are partly or wholly reversible with levothyroxine treatment. 

The hypothesis is not proven in that none of the target tissues showed any abnormalities 

which will explain the mechanism of fatigue in SCH. 

The muscle MRS data showed abnormal PCr recovery and maximum proton efflux. 

These findings were consistent with existing literature. However, in patients these 

abnormalities did not improve with levothyroxine treatment. These abnormalities did 

not correlate with thyroid function tests at baseline or fatigue. The functional 

significance of this impaired skeletal muscle metabolism is unknown in our study. But, 

as explained previously, other studies have linked fatigue to these abnormalities in 

primary biliary cirrhosis and chronic fatigue syndrome. In our study, these were not 

linked to fatigue, which might be due to true lack of association or methodological 

limitations, as described previously.   

The cardiac MRS data showed a low cardiac PCr/ATP ratio which improved with 

levothyroxine treatment. However, it did not correlate with FIS score and hence 

indicates that fatigue is not contributed by impaired myocardial energetics. After 

combining both patients at baseline and healthy controls, serum TSH had an inverse 

correlation with cardiac PCr/ATP ratio. Thyroid status was a strong independent 

predictor of cardiac PCr/ATP ratio. Although thyroid status seems to modulate cardiac 

bioenergetics, it may not be severe enough to lower cardiac output significantly. The 

cardiac autonomics data showed improvement in sympathetic and parasympathetic tone 

in patients with levothyroxine treatment. The impedance data showed impaired cardiac 

indices at baseline, which did not improve with levothyroxine treatment. There were no 

significant correlations between FIS and any of these abnormal parameters, which show 

that fatigue is not caused by abnormal cardiac function. The CBF data showed surprise 

results of increased CBF which normalised with levothyroxine treatment. These results 

were consistent with another study, but it did not correlate with FIS score. 

There were several potential reasons for hypothesis not being proven in this study. SCH 

may not have led to severe tissue dysfunction, which can cause symptoms. FIS score 

measured global fatigue rather than specific organ dysfunction and associated 
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symptoms. Also, the small sample size might have affected the power of the study. 

However, it is possible that combination of functional changes in peripheral tissues 

might have contributed to the fatigue. These need further investigation in future studies.  

Although the hypothesis is not proven, the study has revealed interesting functional 

abnormalities in SCH. This shows that even with serum TSH between 4 and 10 mIU/L, 

tissue level abnormalities are seen in myocardium, peripheral skeletal muscle and 

autonomic nervous system. The true clinical significance of these findings needs to be 

explored in future studies.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 

 

Appendix 

Appendix A 

Fatigue Impact Scale Questionnaire 
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Appendix B 

 

Hospital Anxiety and 
Depression Scale (HADS) 

 
 

 
 

F
O

L
D

 H
E

R
E

 

Name: ______________________________________________________  Date: ________________ 

Clinicians are aware that emotions play an important part in most illnesses. If your clinician knows about 
these feelings he or she will be able to help you more. 

This questionnaire is designed to help your clinician to know how you feel. Read each item below and 
underline the reply which comes closest to how you have been feeling in the past week. Ignore the 
numbers printed at the edge of the questionnaire. 

Don’t take too long over your replies, your immediate reaction to each item will probably be more 
accurate than a long, thought-out response. 

F
O

L
D

 H
E

R
E

 

 

 A D  
    I feel tense or ‘wound up’ 
 3   Most of the time 
 2   A lot of the time 
 1   From time to time, occasionally 
 0   Not at all 
    I still enjoy the things I used to enjoy 
  0  Definitely as much 
  1  Not quite so much 
  2  Only a little 
  3  Hardly at all 
 

  
 I get a sort of frightened feeling as if 

something awful is about to happen 
 3   Very definitely and quite badly 
 2   Yes, but not too badly 
 1   A little, but it doesn’t worry me 
 0   Not at all 

    I can laugh and see the funny side of things 
  0  As much as I always could 
  1  Not quite so much now 
  2  Definitely not so much now 
  3  Not at all 

    Worrying thoughts go through my mind 
 3   A great deal of the time 
 2   A lot of the time 
 1   Not too often 
 0   Very little 

    I feel cheerful 
  3  Never 
  2  Not often 
  1  Sometimes 
  0  Most of the time 

    I can sit at ease and feel relaxed 
 0   Definitely 
 1   Usually 
 2   Not often 
 3   Not at all 

A D

I feel as if I am slowed down     
Nearly all the time   3  

Very often   2  
Sometimes   1  

Not at all   0  

I get a sort of frightened feeling like 
‘butterflies’ in the stomach 

 
   

Not at all  0   
Occasionally  1   

Quite often  2   
Very often  3   

I have lost interest in my appearance     
Definitely  3 

I don’t take as much care as I should  2 
I may not take quite as much care  1 

I take just as much care as ever  0 

I feel restless as if I have to be on the move     
Very much indeed  3   

Quite a lot  2   
Not very much  1   

Not at all  0   

I look forward with enjoyment to things     
As much as I ever did   0  

Rather less than I used to   1  
Definitely less than I used to   2  

Hardly at all   3  

I get sudden feelings of panic     
Very often indeed  3   

Quite often  2   
Not very often  1   

Not at all  0   

I can enjoy a good book or radio or 
television programme 

 
   

Often   0  
Sometimes   1  

Not often   2  
Very seldom   3  
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 Now check that you have answered all the questions  

   A D  
 TOTAL     
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Appendix C 

The table below shows the individual subjects with SCH who had each test at pre- and 

post-treatment visits. The explanation of the alphabets in the table is given below, which 

state the reason why certain individuals did not have tests or why their data not included 

at each pre- and post-treatment visit. 

a=poor scan quality, b=intolerant of MR scan, c=drop out, d=omitted to match the data 

e=poorly compliant, f=incomplete recording, g=did not complete the tilt test  

 
Recruited

Subject No. PRE POST PRE POST PRE POST PRE POST

1 1 1 1 1 1 1 1 1

3 3 3 3 a 3 3 a a

10 10 10 10 10 10 10 10 10

11 a a a a g g 11 11

12 12 c b b g c b b

13 13 c 13 c 13 c d d

15 15 c 15 c c c b b

17 17 e 17 e 17 e 17 e

18 18 18 18 18 18 18 18 18

21 21 21 21 21 21 21 21 21

22 22 e 22 e 22 e 22 e

23 23 23 a a f f 23 23

24 24 24 24 24 24 g 24 24

30 30 30 30 30 d 30 30 30

31 31 31 31 31 31 31 31 a

33 33 33 33 33 33 33 33 33

36 36 36 36 36 g g 36 36

37 c c c c 37 c c c

41 41 41 41 41 41 41 41 41

44 44 44 44 44 44 44 44 44

46 46 46 46 46 46 46 46 46

47 47 47 47 47 47 47 47 47

48 48 48 48 48 48 48 48 48

49 49 49 49 49 g g 49 49

50 50 50 50 50 50 50 50 50

25 23 18 21 16 18 14 20 17

Total

MUSLCE HEART ANS CBF
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