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Abstract 

Sphingosine 1-phosphate (S1P), a bioactive lipid mediator and ligand of 5 G-protein 

coupled receptors, is involved in many cellular processes including cell survival and 

proliferation, lymphocyte migration, and endothelial barrier function. As neutrophils are 

major mediators of inflammation, neutrophil trans-endothelial migration could be the 

target of therapeutic approaches to many inflammatory conditions. The aim of this 

project was to assess whether S1P can protect against inflammation by affecting 

neutrophil trans-endothelial migration, either by acting on neutrophils directly or 

indirectly through the endothelial cells. 

The direct effects of S1P on isolated human neutrophils from healthy volunteers were 

assessed. It was shown that S1P signals in neutrophils mainly through the receptors 

S1PR1 and S1PR4 and it induces phosphorylation of ERK1/2. Moreover, S1P pre-

treatment enhances IL-8 induced phosphorylation. However, in chemotaxis assays, S1P 

pre-treated neutrophils showed no altered migration towards IL-8 in comparison to 

untreated neutrophils. Additionally, in an in vitro flow-based adhesion assay, S1P pre-

treatment did not have a significant effect on IL-8 induced neutrophil adhesion to 

VCAM-1 and ICAM-1. 

 Next, the effects of S1P on endothelial cells were measured. When HMEC-1 

endothelial cell line and HUVEC primary endothelial cells were treated with S1P or 

S1P receptor agonists CYM5442 and CYM5541, the production of the chemokine IL-8 

was induced. On the other hand, this treatment inhibited neutrophil trans-endothelial 

migration through HMEC-1 and HUVEC endothelial cells. This indicates S1P enhances 

endothelial barrier integrity, with a mechanism involving reduction of VE-cadherin 

phosphorylation. Finally, S1P treatment caused upregulation of the adhesion molecules 

VCAM-1 and ICAM-1, but inhibition of TNF-α induced upregulation, also shown as 

reduced neutrophil adhesion to endothelial cells under in vitro flow conditions. 

To investigate the in vivo effects of S1P, two mouse models of cell recruitment were 

used, the peritoneum cell recruitment and the air pouch model. In the peritoneum cell 

recruitment model, S1P administration could successfully inhibit neutrophil recruitment 

at the peritoneum induced by IL-8. 

In conclusion, functional assays indicated no direct effect of S1P on neutrophil 

migration, although S1P receptor signalling in neutrophils can activate MAPK/ERK 
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signalling pathways and enhance IL-8 signalling. However, S1P can affect neutrophil 

migration indirectly, either by inducing IL-8 and adhesion molecules expression by 

endothelial cells, or by enhancing endothelial barrier integrity leading to inhibition of 

trans-endothelial migration of neutrophils. The latter effect appears to be more 

pronounced in vivo. 
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Chapter 1. Introduction 

1.1 Immune system 

The immune system is a system of biological functions, cells and molecules that 

protects the host organism from parasitic infection and other diseases. In order to act 

effectively, it must recognize foreign microorganisms, from bacteria and viruses to 

parasitic worms, and distinguish them from healthy host tissue. When the immune 

system “overacts”, allergy, autoimmunity and inflammatory conditions can develop. 

Allergy is a hypersensitivity of the immune system induced by common antigens that 

are often innocuous, leading to adverse immune reactions when subsequent exposure to 

the same substance occurs (Kay, 2000). In autoimmune diseases, the hyperactive 

immune system attacks healthy self-tissue, as if it was foreign, causing damage to it. 

Such conditions include rheumatoid arthritis, multiple sclerosis, systemic lupus 

erythematosus, etc (Grammatikos and Tsokos, 2012). In inflammatory diseases, 

persistent inflammation occurs even without infection or injury (Ferrero-Miliani et al., 

2007). An example of such a condition is ischemia-reperfusion injury that can occur 

after transplantation or myocardial infarction (Carden and Granger, 2000). 

Inflammation is the rapid response of the immune system to initiate host defense against 

infection or injury and help the healing process to occur. When it is not controlled, 

tissue damage can occur. 

There are two types of immune response, innate and adaptive immunity. In innate 

immunity, the response is non-specific, it starts rapidly after infection and forms no 

memory of the pathogen. In adaptive immunity, which is initiated by innate immunity, a 

pathogen-specific response is instigated, and memory is formed against future infection 

by the same pathogen. (Medzhitov and Janeway, 2000) 

1.1.1 Innate immunity 

The first line of defence in innate immunity begins with mechanical, chemical and 

biological barriers. Epithelial cells of the skin or mucosal surfaces form a physical 

barrier pathogens have to penetrate. Even if the epithelium is disturbed through 

wounding, rapid repair occurs. Mucus as well as tears and saliva trap and remove 

infectious agents, with the help of cilia movement at the respiratory tract or peristalsis at 

the gastrointestinal tract. Enzymes and other antimicrobial proteins and peptides such as 

defensins coat epithelial barriers and enhance anti-microbial function. Non-pathogenic 
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bacteria, called the microbiota, normally occupy epithelial surfaces and provide further 

defence against pathogenic microorganisms by competing for nutrients and surface 

attachment or even by producing antimicrobial agents themselves (Gallo et al., 2002; 

Koczulla and Bals, 2003). 

Another major non-cellular component of innate immune response is the complement 

system. It contains more than 30 different proteins that normally exist in inactive forms, 

but are activated during infection by proteolysis. There are three different pathways of 

complement activation, all of which result in the killing of the pathogen either directly 

by cell lysis, or indirectly by inducing phagocytosis (through opsonisation of the 

pathogen) and promoting inflammation. The lectin pathway is activated by the pattern 

recognition receptors MBL and ficolins that bind to carbohydrate structures on the 

surface of the pathogen. The classical pathway is activated by C1 which binds to 

pathogen directly or to antibodies bound to the surface of pathogens. Finally, the 

alternative pathway is activated by spontaneous hydrolysis of C3 which binds to 

microbial surfaces with the help of properdin (Cooper, 1985; Jack et al., 2001; Arlaud et 

al., 2002; Dodds, 2002). Several complement regulatory proteins exist to make sure 

complement will not act on healthy host cells and tissue, such as factors I and H 

(Kirschfink, 1997; Zipfel et al., 1999; Pangburn, 2000). Complement proteins are 

highly conserved with homologs existing not only in other vertebrates but also in many 

invertebrates’ species (Smith et al., 1999; Nakao et al., 2006).  

The next stage of the innate immune response involves several types of phagocytic cells 

and the initiation of an inflammatory response. There are three major classes of 

phagocytes: macrophages and monocytes, granulocytes, and dendritic cells. 

Macrophages mature from blood monocytes and reside normally in tissue throughout 

the body where they play a surveillance role and are usually the first cells to encounter 

the pathogen. Granulocytes refer to neutrophils, basophils and eosinophils, all 

characterized by the presence of granules; however neutrophils are the most abundant 

and play the biggest role in removal of infectious agents. Neutrophils or 

polymorphonuclear leucocytes (PMNs) are the most abundant leukocytes in the blood 

but they only migrate to tissue after recruitment by inflammatory signals. Dendritic cells 

reside in tissue, but unlike neutrophils and macrophages, their major role is not to kill 

the pathogens but to act as a bridge between innate and adaptive responses, by antigen 

presentation and cytokine production (Ezekowitz and Hoffmann, 1996; Fearon and 

Locksley, 1996). 
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Macrophages and neutrophils mainly kill microbes by phagocytosis which is the 

recognition, internalization and degradation of the pathogen. These cells express a wide 

range of receptors on their surface including pattern recognition receptors (PRR), such 

as C-type-lectin-like receptors, that can recognize pathogen components or complement 

proteins leading to binding and internalization of microbes and their derivatives (Feizi, 

2000; Linehan et al., 2000). The pathogen inside the phagosome is eventually 

destroyed, with mechanisms including acidification, action of enzymes and 

antimicrobial peptides, reactive nitrogen species and reactive oxygen species (ROS) 

produced by a process known as oxidative (or respiratory) burst. All these substances, 

contained in lysosomes in macrophages or primary and secondary granules in 

neutrophils that merge with the phagosome, can also be secreted to the extracellular 

space to battle microbes directly at the site of infection, but will thus damage host cells 

too (Aderem and Underhill, 1999; Dahlgren and Karlsson, 1999; Chertov et al., 2000). 

Within hours of infection or wounding, an inflammatory response is initiated. This 

includes the release of pro-inflammatory cytokines and chemokines by macrophages 

and other immune as well as stressed cells which then leads to the recruitment of more 

effector cells from the blood, especially neutrophils, and influx of plasma proteins to the 

tissue. Blood vessel endothelial cells are also activated to express chemokines and cell-

adhesion molecules aiding in leukocyte extravasation. Inflammation, moreover, induces 

coagulation and repair of the injured tissue (Svanborg et al., 1999; van der Poll, 2001). 

Toll-like receptors (TLRs) on the surface (or sometimes intracellularly on endosome 

membranes) of macrophages, dendritic cells and other immune or epithelial cells 

recognize pathogen components such as lipopolysaccharide (LPS) and signal the 

production of pro-inflammatory molecules. There are 10 different expressed TLRs in 

humans; each one recognising a different pathogen –associated molecular pattern 

(PAMP), e.g. TLR-4 recognises LPS (component of Gram-negative bacteria outer 

membrane), TLR-5 recognises flagellin (component of bacterial flagella), TLR-3 

recognises dsRNA (genetic material or intermediate of viruses), etc (Kopp and 

Medzhitov, 1999; Barton and Medzhitov, 2002). 

Another important cell type of innate immunity, are natural-killer cells (NK cells). 

These are cytotoxic cells that can distinguish virus infected or tumour cells from normal 

host cells by recognising alterations to MHC class I molecule expression. This leads to 

release of cytotoxic granules to the target cell that eventually causes apoptotic death, 

and production of interferon-γ (IFN-γ) (Biron et al., 1999; Borrego et al., 2002). There 
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are also some innate-like lymphocytes that can be considered a part of innate immunity. 

Intraepithelial γδ T cells have receptors of limited diversity and recognize molecules 

expressed by cells only when infected instead of pathogen particles presented on MHC 

molecules, like other lymphocytes (Jouen-Beades et al., 1997; Boismenu and Havran, 

1998). Similarly, the B-1 subset of B cells that are present in the peritoneum, bind 

general bacterial polysaccharide components, can produce antibodies of IgM class 

without the help of T cells, and no memory is generated; making them more like innate 

cells instead of the conventional antibody-producing B cells of adaptive immunity (Bos 

et al., 2000).  

1.1.2 Adaptive immunity 

Adaptive immunity is activated much later and only if innate immunity has not dealt 

with the pathogen completely. Innate immunity initiates adaptive immunity through 

cytokine and other molecule production and by antigen presentation, performed by 

specialized antigen-presenting cells (APCs) such as dendritic cells (DCs). The main cell 

families of adaptive immunity are the APCs, T lymphocytes, and B lymphocytes 

(Germain, 1994). 

Immature DCs reside in every tissue and can take up antigen by phagocytosis or 

macropinocytosis. The antigen is then combined with major histocompatibility complex 

(MHC) molecules, and is presented on the cell surface. MHC class I molecules are 

expressed in all cells, not only antigen-presenting cells, and they form complexes with 

antigens on the cytoplasm, to present on the cell surface, especially in the event of a 

viral infection (Williams et al., 2002). MHC class II molecules are mainly expressed by 

immune cells that can perform antigen presentantion, primarily DCs but also 

macrophages and B cells; they bind antigen peptide components from ingested pathogen 

such as bacteria and parasites in endosomal compartments (Villadangos, 2001). 

Immature DCs are activated by signals through their PRRs such as TLRs, or by 

cytokine receptors and are transported to peripheral lymphoid organs, such as the lymph 

nodes and spleen, where they gradually mature into specialized activators of naïve T 

cells, expressing more MHC and co-stimulatory molecules with little to no phagocytic 

abilities (Clark et al., 2000; Guermonprez et al., 2002). Macrophages and B cells can 

also present antigen to T cells, but mainly as a way to acquire help from effector T cells, 

in order to increase their effectiveness in killing the ingested pathogens or to stimulate 

antibody production respectively (Lanzavecchia, 1990; Underhill et al., 1999).  
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Naïve T cells are produced in the thymus and constantly circulate the lymphatic system 

going through peripheral lymphoid organs and scanning for specific antigens. When 

they come across antigen as a complex with MHC molecules on the surface of an APC, 

they bind it with their antigen specific T-cell receptor (TCR) (Itano and Jenkins, 2003). 

In order to become activated and start proliferating though, they also need co-

stimulatory signals such as the binding of B7 molecules (B7-1 or CD80 and B7-2 or 

CD86) on the APC surface to CD28 on the T cell surface (Gonzalo et al., 2001; Bour-

Jordan and Blueston, 2002). Activation causes the expression of the cytokine IL-2 and 

IL-2 receptor α subunit (CD25), providing an additional proliferation and differentiation 

signal (Appleman et al., 2000). T cells eventually differentiate into effector T cells, 

acting immediately when they encounter antigen without the need of co-stimulation 

anymore (Gudmundsdottir et al., 1999). There are two major T cell subtypes, CD4 and 

CD8 T cells.  

Activated CD4 T cells are effector cells that provide help to other types of cells, and 

bind to MHC class II - antigen complexes. There are at least five currently 

distinguishable CD4 T cell subsets: Th1, Th2, Th17, T follicular helper cells (Tfh) and 

regulatory T cells (Treg). Th1, Th2 and Th17 are distinguished by the different array of 

cytokines they produce. Th1 or type 1 cells mainly produce IFN-γ and their chief 

purpose is to activate macrophages infected with intravesicular pathogens, stimulating 

their microbicidal mechanisms to destroy the pathogen.Th2 or type 2 cells primarily 

produce the cytokines IL-4, IL-5 and IL-13, and help control parasite infections by 

stimulating eoshinophils and mast cells, and inducing IgE antibody production. 

Pathophysiological Th2 responses are related to allergies (Dong and Flavell, 2001). 

Th17 cells secrete cytokines of the IL-17 family, helping to recruit neutrophils directly 

or indirectly by activating epithelial and other cells to produce chemokines (Weaver et 

al., 2006). Tfh cells, unlike the previous subtypes that can function at the site of 

infection, only reside on lymphoid follicles and their sole role is to activate B cells to 

produce antibody. Tfh cells can produce either type 1 or type 2 cytokines, leading to 

production of IgG or IgE antibody isotypes by B cells respectively (Ma et al., 2012). 

Treg are not one distinct T cell subset; they can either be produced while still in the 

thymus, or differentiated by naïve T cells, known as induced regulatory T cells. Most 

Treg express the transcription factor FoxP3, secrete the anti-inflammatory cytokines IL-

10 and TGF-β and their role is to inhibit T cell responses, preventing autoimmunity 

(Suvas and Rouse, 2006).  
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Activated CD8 T cells are all cytotoxic cells, whose purpose is to recognize, by binding 

to MHC class I - antigen complexes, and kill the target cell, which is usually infected 

with viruses or other intracellular pathogens. However, CD8 T cells also produce 

cytokines, especially IFN-γ which has virus fighting properties, and there are cases 

where CD8 T cells express type 1 or type 2 cytokines (Mosmann et al., 1997; Amel-

Kashipaz et al., 2001; Barry and Bleackley, 2002). 

Naïve B lymphocytes or B cells are produced in the bone marrow, then circulate the 

peripheral lymphoid organs and reside in lymphoid follicles (Hardy and Hayakawa, 

2001). There they can encounter specific antigen that enters through the lymph or blood, 

or is retained on the surface of specialized macrophages and follicular DC (Batista et 

al., 2007). Antigen is recognized by the specific B-cell receptor (BCR), which is surface 

immunoglobulin, and is then internalized and can be degraded and presented as a 

complex with surface MHC class II molecules (Noorchashm et al., 1999). Specific 

helper T cells, like Tfh can then recognize it and stimulate the B cell through binding of 

molecules such as the CD40 ligand  (CD40L) of the T cell to the CD40 on the B cell 

surface, or production of cytokines such as IL-4 (Schultze et al., 1999). Naïve B cells 

will then proliferate and eventually differentiate into specialized antibody secreting 

cells, known as plasma cells (Maseda et al., 2014).  

Antibody responses can be classified into two categories based on the requirement for T 

cell help. These categories are T cell-dependent (TD) and T cell-independent (TI) 

antigens. B cells acquire, process and present antigen in complex with MHC class II, 

primarily in order to employ T cell help in the form of CD40-CD40L interactions 

(Schultze et al., 1999). However TI antigens can either crosslink multiple BCRs and 

provide sufficient activation in the absence of T cell help or can activate B cells 

polyclonally and induce antibody secretion (Obukhanych and Nussenzweig, 2006). 

Proliferating stimulated B cells form germinal centers in lymphoid follicles, where they 

undergo procedures known as class switching and somatic hypermutation. Class 

switching allows them to produce antibody of a specific isotype that is most effective 

for the type of infection. IgM isotype is produced by naïve or newly stimulated B cells. 

Mature B cells that undergo class switching will then produce mostly immunoglobulin 

of the IgG isotype, but also IgA and IgE, especially in the event of a parasitic infection. 

Somatic hypermutation alters the variable regions of the immunoglobulin genes leading 

to the production of higher affinity antibodies. The mutated cells that have the higher 
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affinity are selected and undergo differentiation into plasma cells or memory B cells 

(Wagner et al., 1996). 

Memory is another function that largely distinguishes the adaptive immune response 

from the innate one. During the maturation of both T cells and B cells, some memory 

cells are produced. These cells remain even after the resolution of infection and are 

ready to act in the event of a second or subsequent infection with the same pathogen. 

Memory B cells are long lived cells, that divide very slowly or not at all, and express 

BCR but do not secrete antibody (Franz et al., 2011). During a second encounter with 

their specific antigen, they will be the first to respond, proliferating and differentiating 

into plasma cells, which produce high affinity antibody, mostly of IgG isotype, since 

they have already undergone somatic hypermutation and class switching (Cumano and 

Rajewsky, 1986; Franz et al., 2011). Similarly, memory T cells are long lived cells that 

persist after the resolution of infection. They resemble more effector cells than naïve T 

cells, and in the event of a re-infection, they quickly mature into effector T cells, rapidly 

producing cytokines, and providing help or killing target cells depending on their CD4 

or CD8 nature (Bradley et al., 1992; Rogers et al., 2000; Kaech et al., 2002a). The 

presence of memory cells assures that a secondary or subsequent immune response will 

be more rapid and more effective than a primary immune response, with usually no 

appearance of disease symptoms. This is the principle onto which vaccinations are 

based, providing protection from serious diseases, without having to be exposed to the 

disease on the first place. This is accomplished by injection of immunogenic antigens of 

the pathogen that do not cause disease, but lead to an immune response that generates 

memory (Rogers et al., 2000; Kaech et al., 2002b; Kamphorst et al., 2015).  
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1.2 Neutrophils 

Neutrophils are one of the main cells of the innate immune system, and are amongst the 

first cells that are recruited to the infected or injured tissue. They are also called 

polymorphonuclear leukocytes (PMN), due to their lobular nucleus, and are the most 

abundant leukocytes in human peripheral blood. Their numbers increase even more 

during infection and inflammation (Kolaczkowska and Kubes, 2013). Neutrophils are 

short lived in the circulation, with a half-life of around 8 hours, before they translocate 

to the liver, spleen and bone marrow to undergo apoptosis and be phagocytosed by 

macrophages (Dancey et al., 1976; Hong et al., 2012; Casanova-Acebes et al., 2013). A 

more recent study however, argues that circulating neutrophil lifespan is longer than 5 

days (Pillay et al., 2010), though others disagree, claiming that the labelling process is 

also marking immature neutrophils in the bone marrow (Li et al., 2011; Tofts et al., 

2011). Neutrophil activation by chemokines or bacterial products during inflammation 

can increase their lifespan by several fold, ensuring their presence at the inflammation 

site (Colotta et al., 1992; Summers et al., 2010).  

The reason for the short lifespan of neutrophils might be their highly destructive nature 

that can damage host tissue together with pathogens. Indeed, when neutrophils 

accumulate to affected tissue, they release reactive oxygen species (ROS), proteolytic 

enzymes and other microbicidal factors that do not discriminate between host and 

microbe. These molecules are stored in special granules inside the neutrophil, which is 

the reason why neutrophils belong to the granulocyte family of cells (Spitznagel, 1990; 

Elsbach, 1998; Lehrer and Ganz, 1999). There are four distinct granule types, with the 

two most well-known being primary and secondary granules, each containing a diverse 

set of molecules. Often, they contain an inactive form of an antimicrobial factor that 

needs the action of a molecule or enzyme contained in a different granule or in the 

cytoplasm to become activated. Amongst the molecules neutrophils store in these 

granules are lysozyme, elastase, myeloperoxidase, gelatinase, etc (Faurschou and 

Borregaard, 2003). Another important anti-pathogenic ability of neutrophils is 

phagocytosis, during which the pathogen or cell debris is internalised by the cell 

membrane into the phagosome, which later fuses with the antimicrobial granules that 

eventually kill the pathogen (Underhill and Ozinsky, 2002). Finally, neutrophils can 

undergo NETosis, which is an active form of cell death that releases neutrophil 

uncondensed chromatin mixed with anti-microbial molecules. These structures are 
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termed Neutrophil Extracellular Traps (NETs), and can detain pathogens and eventually 

kill them (Fuchs et al., 2007).  

1.2.1 Neutrophil activation 

Neutrophils become activated when they interact with the activated endothelium 

through selectins and rolling, which causes the expression of other adhesion molecules 

such as integrins β2 for firmer adhesion and eventually trans-endothelial migration. 

Various kinase families are responsible for this activation event, including Src family, 

Syk, phosphoinositide 3-kinase (PI3K), and p38 mitogen-activated protein kinase 

(Mueller et al., 2010; Yago et al., 2010). Oxidative or respiratory burst is also initiated 

causing the release of ROS, such as hydrogen peroxide (H2O2). One of the enzymes that 

contribute in this event is the NADPH oxidase, which has to be assembled on neutrophil 

secondary granule membrane, before it is activated (Jesaitis et al., 1990). Neutrophils 

follow chemotactic gradients to lead them to the infected tissue, by chemokines such as 

CXCL8 (or IL-8) produced by the host, but also chemoattractants of pathogen origin, 

such as the peptide N-Formyl-Methionyl-Leucyl-Phenylalanine (fMLP). These 

molecules usually signal through G protein-coupled receptors (GPCRs), such as 

CXCR1 and CXCR2 for IL-8 and FPR1 for fMLP. The signalling pathway stimulated is 

the MAPK/ERK pathway, leading to further neutrophil activation and assembly of the 

oxidative burst complexes. Often, several molecules act together to activate neutrophils, 

such as lipopolysaccharide (LPS) and fMLP, which together highly induce the oxidative 

burst mechanism (Guthrie et al., 1984; El-Benna et al., 2008). LPS contributes to the 

assembly of the NADPH oxidase on neutrophil membranes, then fMLP induces enzyme 

activation by phosphorylation of its components (El Benna et al., 2002; El-Benna et al., 

2008). Different concentrations of chemokines can have different effects on neutrophils. 

An important example is IL-8, which at low concentrations causes induction of integrin 

β2 expression, at slightly higher concentrations activates the oxidative burst, and at the 

highest concentrations induces neutrophil degranulation (Ley, 2002). The final stages of 

neutrophil activation lead to the full execution of neutrophil antimicrobial functions of 

phagocytosis, degranulation and NETosis. This usually occurs when the neutrophil has 

reached a site where no discernible gradients exist and the chemoattractant is at the 

highest concentration. On the other hand, ligand desensitization may occur, when the 

binding of the chemoattractant leads to internalization of its receptor making the 

neutrophil unresponsive to repeated stimulation with this particular ligand (Didsbury et 

al., 1991; Claing et al., 2002). 
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1.2.2 Neutrophil – endothelial cell interactions 

The initial interaction of endothelial cells with neutrophils is mediated by the selectin 

family of adhesion molecules. Endothelial cells constitutively produce P-selectin, which 

they store intracellularly into Wiebel-Palade bodies. After activation they move P-

selectin to the cell surface where it can interact with carbohydrate-based ligands, such as 

P-selectin glycoprotein ligand-1 (PSGL-1) and sialyl-Lewisx on the neutrophil surface. 

They also produce E-selectin later after activation, which acts similarly. Neutrophils, on 

the other hand, express L-selectin, which interacts with the endothelial cell surface 

through similar ligands, but might also be a ligand for P-selectin (Kubes et al., 1995). 

The selectin interactions in either cell cause neutrophil localisation close to the site of 

inflammation and “rolling” to the surface of the endothelium through loose adhesion 

(Chamoun et al., 2000).  

Next, neutrophils are activated and upregulate another family of adhesion molecules, 

the β2-integrins, especially the CD11b/CD18 (Mac-1, αM/β2) and the CD11a/CD18 

(LFA-1, α1/β2) complexes. The integrins are constitutively expressed by neutrophils, but 

are upregulated and become clustered after activation (Constantin et al., 2000; Liu et 

al., 2002). CD11b/CD18 in particular is relocated to the cell surface from intracellular 

stores (Jones et al., 1988). Integrins acquire an activated conformation through rolling 

and chemokine signalling, with increased affinity for their ligands (Constantin et al., 

2000; Hogg et al., 2011). They interact with a different set of molecules, members of 

the immunoglobulin superfamily, which are expressed on the surface of endothelial 

cells after activation, such as ICAM-1, VCAM-1, and PECAM-1. ICAM-1 is the 

counterligand for CD11b/CD18, and their interaction allows a firm adhesion of 

neutrophils to the endothelium. Neutrophil myeloperoxidase (MPO) has been shown to 

bind to Mac-1 integrin and may facilitate firm adhesion and electrostatically driven 

neutrophil recruitment, as was also shown for elastase and proteinase 3 (Cai and Wright, 

1996; Johansson et al., 1997; David et al., 2003; Lau et al., 2005; Klinke et al., 2011). 

Another indication of neutrophils’ potentially destructive nature is the finding that 

neutrophil adhesion to the coronary endothelium can cause damage to the endothelium, 

leading to endothelial dysfunction (Jordan et al., 1999).  

Firm adhesion to the endothelium initiates a neutrophil crawling along the endothelial 

surface, mediated by integrin-ICAM-1 interactions, until an appropriate site for egress is 

identified, eventually leading to the trans-endothelial migration of neutrophils into the 
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injured tissue (Phillipson et al., 2006). PECAM-1 (CD31) is localised at the 

intraendothelial cell junctions and is thought to mediate this process (Muller et al., 

1993; Schenkel et al., 2004). Although neutrophils preferentially migrate through the 

intercellular endothelial junctions (paracellular migration), and especially at the sites 

where three cells meet, they can also migrate through endothelial cells themselves 

(transcellular migration) by creating intracellular pores (Burns et al., 1997a; Feng et al., 

1998; Carman and Springer, 2004; Phillipson et al., 2008). The crossing of the 

endothelium, or diapedesis, is completed with the penetration of the basement 

membrane with the help of metalloproteases and other proteolytic enzymes, and passing 

through gaps between the pericytes (Huber and Weiss, 1989; Mandeville et al., 1997). 

Once in the tissue, chemotactic gradients lead them to the exact site of inflammation.  

 

 

Figure 1.1. Neutrophil-endothelial cell interactions. Transendothelial migration of 

neutrophils starts with rolling, mediate by selectins, followed by firm adhesion mediated by 

integrins and ICAM-1, and finally diapedesis. PMN: neutrophil, I-R: ischemia-reperfusion, L-

sel: L-selectin, P-sel: P-selectin, ROS: reactive oxygen species 
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1.2.3 Neutrophil degranulation 

Neutrophil granules start forming during the early stages of maturation from 

myeloblasts to the mature polymorphonuclear leukocytes. There are four distinct types 

of granules. Primary granules (also known as azurophilic granules or peroxidase-

positive granules) are the first to form; they are the largest granules with diameters of 

approximately 0.3μm. The main component of primary granules is MPO, an important 

enzyme for respiratory burst, but they also contain defensins, lysozyme, 

bactericidal/permeability-increasing protein, and serine proteases such as elastase, 

proteinase 3, and cathepsin G (Nusse and Lindau, 1988; Faurschou and Borregaard, 

2003; Lacy, 2005). The next granules to form are the secondary granules (also known as 

specific granules), which are smaller in size, 0.1μm diameter, do not contain MPO and 

their main component is lactoferrin. They also contain other anti-microbial compounds 

and enzymes including lysozyme, NGAL, hCAP-18 and collagenase (Faurschou and 

Borregaard, 2003; Lacy, 2005). The tertiary granules (or gelatinase granules) are formed 

last during neutrophil maturation and are even smaller than secondary granules. As their 

name suggests they mainly contain gelatinase, as well as other metalloproteases and do 

not contain many microbicidal products (Kjeldsen et al., 1992; Kjeldsen et al., 1993). 

Finally, there is another type of granule called the secretory vesicles, which are 

endocytic in origin so they mainly contain plasma-derived proteins such as albumin, but 

their membranes are rich in important neutrophil activation proteins such as β2 

integrins, complement receptors, etc (Faurschou et al., 2002; Borregaard et al., 2007). 

Mobilization of these granules after inflammatory signalling is progressive, with 

secretory vesicles being the first to mobilize, followed by gelatinase granules, then 

secondary granules, with primary granules being the most difficult to mobilize. This 

differential mobilization appears to be mediated by calcium signalling (Borregaard et 

al., 1992; Kjeldsen et al., 1992; Sengelov et al., 1993; Borregaard et al., 1994). Each 

granule type is mobilized during different stages of neutrophil activation. After initial 

neutrophil rolling and activation, the secretory vesicles are mobilized to ensure firm 

adhesion, by transfer of β2 integrins to the cell membrane and continuous activation 

(Borregaard et al., 1994; Faurschou et al., 2002). During neutrophil diapedesis, 

gelatinase granules are thought to degranulate, so the metalloproteases they contain can 

assist neutrophils in traversing the basement membrane (Singer et al., 1989; Delclaux et 

al., 1996). When the neutrophils have finally reached the inflamed tissue, full activation 

occurs, with mobilization of primary and secondary granules, allowing initiation of the 
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oxidative burst and phagocytosis. These granules can either fuse with the plasma 

membrane to release their contents into the tissue or with the phagosomes to allow 

degradation of ingested microorganisms. Secondary granules’ membrane contains 

flavocytochrome b558, an essential component of the NADPH oxidase complex, an 

important oxidative burst enzyme which can be assembled after secondary granule 

mobilization (Jesaitis et al., 1990).  

1.2.4 Neutrophil respiratory burst 

Respiratory or oxidative burst in neutrophils is the process that produces ROS and other 

reactive species to be released in the tissue to contribute in the killing of microbes. The 

NADPH oxidase is assembled on neutrophil membranes and reduces molecular oxygen 

to superoxide anion (O2
–) (Babior, 1984; Hampton et al., 1998). NADPH oxidase is a 

protein complex that consists of both cytosolic and membrane - bound components. The 

membrane proteins p22phox and gp91phox form the cytochrome b558 complex that 

exists on secondary granule membranes and is transferred on the plasma membrane or 

the phagosome membrane. When neutrophils are activated, the cytosolic proteins 

p40phox, p47phox, and p67phox migrate to the membrane, after phosphorylation of 

p47phox, to associate with the cytochrome b558 and form the active enzyme (DeLeo 

and Quinn, 1996; Hampton et al., 1998; Babior, 1999; Clark, 1999; Winterbourn, 2008). 

Downstream of superoxide many other ROS are generated. Superoxide can dismutate to 

form hydrogen peroxide (H2O2) (Nathan, 1987). Alternatively, it can react with nitric 

oxide to produce peroxynitrite (ONOO–) (Beckman and Koppenol, 1996; Bogdan et al., 

2000). Patients with chronic granulomatous disease (CGD) have deficient NADPH 

oxidase, leading to failed oxidative burst responses, and inability to kill ingested 

pathogens. CGD patients are thus susceptible to recurrent bacterial and fungal infections 

that can even be life-threatening, but also autoinflammatory conditions, since NADPH 

oxidase can have regulatory functions (Gallin, 1991; Segal and Abo, 1993; Segal et al., 

2000; Seger, 2010).  

MPO is another important enzyme of the respiratory burst machinery that reacts with 

hydrogen peroxide to produce a vast array of reactive species, such as hypochlorous 

acid (HOCl) (Klebanoff, 1968; Klebanoff, 2005). MPO is a heme protein that can be 

found inside the primary granules of neutrophils and has a wide range of substrates that 

can produce different oxidant byproducts. Among them, aminoacids can be chlorinated 

to produce chloramines, tyrosine peroxide and reactive aldehydes can be generated, and 
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serum proteins and lipoproteins can be oxidated (Winterbourn et al., 1990; 

Leeuwenburgh et al., 1997; Hazen et al., 1998; Heinecke, 1999). MPO can act in the 

phagosome, creating a microbicidal environment to destroy ingested microbes, or it can 

be released in the extracellular space (Winterbourn et al., 2006). Apart from their 

antimicrobial action the released ROS can also modify host molecules. This might lead 

to stress signalling from affected cells to progress inflammatory responses by generation 

of pro-inflammatory cytokines and recruitment of more immune cells. Moreover, 

various proteases, phosphatases and other enzymes can be regulated through oxidation 

of cysteine residues (Johnson and Travis, 1979; Nathan, 2003; Shao et al., 2005).  

1.2.5 Neutrophil phagocytosis 

Phagocytosis is the process of active internalization of a particle or microbe to be 

eventually destroyed inside the phagocyte. It is the main mechanism utilized for 

pathogen or cell debris removal. Phagocytosis is mediated by FcγR or complement 

receptors, or by PRRs that recognize PAMPs. The mechanism of action of PAMP-

mediated direct phagocytosis is poorly understood. On the other hand, neutrophils can 

bind to IgG molecules by FcγR receptors or complement proteins by complement 

receptors to indirectly ingest opsonized pathogens (Underhill and Ozinsky, 2002). 

 FcγRIIA (CD32) and FcγRIIIB (CD16) are the two transmembrane Fc receptors on 

neutrophils that play a role in phagocytosis. Multiple FcγRIIA receptors bind to IgG 

immune complexes, and this aggregation leads to engulfment of the opsonized pathogen 

by pseudopod extensions. FCγRII binding to IgG-antigen complexes causes 

phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) on its 

cytoplasmic tail by Src tyrosine kinases. This allows docking of Syk kinase which 

subsequently activates downstream signalling pathways that involve PI3K and Rho 

proteins (Swanson and Baer, 1995; Greenberg et al., 1996; Massol et al., 1998). 

Neutrophils from Syk deficient mice cannot successfully ingest IgG-opsonized particles 

(Crowley et al., 1997; Kiefer et al., 1998). RhoA appears to be involved in F-actin 

mediated formation of pseudopods for engulfment of the complex, with Cdc42 further 

required for extension of the pseudopods over the edge of the complex (Hackam et al., 

1997; Caron and Hall, 1998; Massol et al., 1998). Finally, Rac1 and PI3K activate 

membrane fusion and closure of the phagosome (Cox et al., 1997; Massol et al., 1998). 

Specifically, PI3K mediates the myosin-induced contraction of the pseudopods to close 

the phagosome (Swanson et al., 1999; Cox et al., 2002). FcγRIIIB involvement in 
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phagocytosis is not thoroughly investigated. It appears that FcγRIIIB is a co-receptor, 

which after binding immune complexes, can recruit FcγRIIA to lipid raft membrane 

domains, allowing clustering of ITAMs for enhanced signalling (Chuang et al., 2000). 

Phagocytosis through complement receptors CR1 (CD35) and CR3 (or CD11b/CD18 

integrin) is performed by a different mechanism than that through Fcγ receptors. It does 

not involve active formation of pseudopods, but rather “sinking” of complement-coated 

particles into the cell after binding of C3bi molecules by CR3 in cell protrusions. Like 

FcγRIIIB, CR1 appears to be more of a co-receptor, merely assisting in the 

phagocytosis process rather than mediating it. Binding of CR1 and CR3 to C3b particles 

is not enough to promote phagocytosis; further activation by phorbol-12-myristate-13-

acetate (PMA) or fMLP and contact with fibronectin or laminin is required, to 

phosphorylate CR1 which can then signal to stimulate CR3 binding capacity (Brown, 

1986; Wright and Meyer, 1986). CR3 - mediated phagocytosis requires RhoA 

signalling, but unlike FcγR - mediated phagocytosis it does not require Cdc42 or Rac1 

(Caron and Hall, 1998). Moreover, CR3-mediated phagocytosis is independent of 

inositol phosphates production or rise of free calcium cations (Ca2+), which are required 

in FcγR-mediated phagocytosis (Fallman et al., 1989). Oxidative burst activation also 

appears to be unconnected with complement receptor-mediated phagocytosis, unlike 

FcγR-mediated (Wright and Silverstein, 1983; Yamamoto and Johnston, 1984). 

The two phagocytosis mechanisms can also work co-operatively. Neutrophils from CR3 

deficient patients have defective IgG-dependent phagocytosis as well as complement-

dependent phagocytosis, indicating a cross-talk between the complement and Fcγ 

receptors (Dana et al., 1984). This is further supported by findings of lectin-

carbohydrate interactions between CR3 and FcγRIIIB (Todd and Petty, 1997). 

Moreover, C3b-coated targets can be also IgG-opsonized, activating both CR3 and Fcγ 

receptor-mediated phagocytosis at the same time (Ehlenberger and Nussenzweig, 1977). 

The engulfment of the opsonized targets through phagocytosis stimulates signalling 

pathways for activation of degranulation and respiratory burst inside the phagosome, by 

fusion of neutrophil granules with phagosome membranes, leading to the creation of a 

microbicidal environment to support killing of the ingested pathogen. 

1.2.6 Neutrophil Extracellular Traps 

NETosis is an active form of programmed cell death that releases neutrophil de-

condensed chromatin and granule anti-microbial molecules in the extracellular 
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environment. The formed NETs can trap pathogens and kill them with the contribution 

of histones, granule proteins and cytoplasmic anti-microbial molecules. The mechanism 

that causes NET formation and NETosis is still under investigation. It appears to require 

various respiratory burst mediators such as the NADPH oxidase and MPO, indicating 

the involvement of ROS in NET formation signalling (Brinkmann et al., 2004; Fuchs et 

al., 2007). 

NET formation can be triggered by various pathogens, such as bacteria, fungi, viruses 

and protozoa, but also chemical compounds like PMA and host inflammatory stimuli 

such as IL-8, ROS, TNF-α and activated platelets. Often various factors cooperate to 

stimulate NET formation (Brinkmann et al., 2004). NADPH oxidase isoform Nox2 and 

the ROS it generates, appear to be vital for NET formation. This is supported by 

evidence of lack of NET formation on CGD patients, who have deficient NADPH 

oxidase activity. In these patients, treatment with H2O2 leads to restored NET formation 

function, indicating the oxidative abilities of NADPH oxidase to be important (Fuchs et 

al., 2007; Nishinaka et al., 2011). ROS activate Raf-MEK-ERK signalling pathway that 

mediates NET formation in neutrophils (Hakkim et al., 2011; Keshari et al., 2012).  

After NET formation has been initiated, chromatin decondensation in the cell nucleus 

occurs by a mechanism involving neutrophil elastase and MPO which leave the 

azurophilic granules and infiltrate the nucleus. Elastase partially degrades histones that 

keep the DNA packed, leading to chromatin decondensation, whereas MPO causes 

further DNA relaxation with a mechanism independent of its enzymatic activity 

(Papayannopoulos et al., 2010; Metzler et al., 2011). Histone hypercitrullination also 

appears to play a role in chromatin decondensation and NET formation. Citrullination is 

the conversion of histone arginine residues to citrulline, mediated by the enzyme 

peptidylarginine deiminase 4 (PAD4) which can be found in neutrophil nucleus (Wang 

et al., 2009; Li et al., 2010; Leshner et al., 2012; Neeli and Radic, 2013). Neutrophils 

from PAD4-knockout mice cannot hypercitrullinate histones, and are unable to form 

NETs (Li et al., 2010).  

The next step in NET formation is nuclear envelope disintegration to release the 

decondensed chromatin in the cytoplasm, where it mixes with anti-microbial factors 

from neutrophil granules, which have also disintegrated. Finally, the plasma membrane 

bursts, releasing the formed NET to the extracellular space (Brinkmann and Zychlinsky, 

2012). This process leads to the neutrophil’s death via NETosis, 2-4 hours after initial 
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activation. However, another mechanism for rapid NET release has been described that 

does not lead to cell death and is independent of NADPH oxidase ROS formation. 

Stimulation with Staphylococcus aureus or Streptococcus pyogenes leads to the release 

of vesicles containing decondensed chromatin by neutrophils which then combines with 

granule molecules that have also been released in the extracellular space. The whole 

process only takes 5-60 minutes and leaves behind a still intact cytoplast that can crawl 

and phagocytose microbes (Pilsczek et al., 2010; Yipp et al., 2012). Taking into 

consideration that neutrophils are terminally differentiated cells with low transcriptional 

activity, loss of the nucleus would not have a huge impact to their functions, allowing 

for multiple anti-microbial mechanisms to act at the same time by rapid NET release, 

while still performing phagocytosis.  

NETs can effectively kill microbes by trapping them and exposing them to a high 

concentration of microbicidal factors. However, NETs have been implicated in various 

host diseases, including autoimmune and autoinflammatory conditions, thrombosis and 

cancer. NETs expose self molecules extracellularly, which can lead to the production of 

autoantibodies against chromatin and neutrophil components, such as anti-neutrophil 

cytoplasmic antibodies (ANCAs), antibodies against histones and DNA, which are 

characteristic in the diverse autoimmune disease systemic lupus erythematosus (SLE) 

(Hakkim et al., 2010; Villanueva et al., 2011). NETs have been also found in the 

airways of cystic fibrosis patients, a condition characterized by high sputum viscosity 

that leads to sputum accumulation and chronic airway inflammation (Marcos et al., 

2010; Papayannopoulos et al., 2011). Neutrophil elastase and MPO as well as 

extracellular DNA had been found in the past to be factors of the disease, making the 

discovery of NETs’ involvement even more compelling (Vogelmeier and Doring, 1996; 

Ratjen, 2008). Moreover, NETs can bind platelets, von Willebrand factor and other 

coagulation factors to form scaffolds for thrombus, in deep vein thrombosis (Si-Tahar et 

al., 1997; Fuchs et al., 2010; Brill et al., 2012; von Bruhl et al., 2012). NETs have been 

discovered in pediatric Ewing sarcoma (ES) tumours, where they might play a role in 

tumour cell killing or they might enhance tumour cell proliferation with the release of 

elastase which has been shown to promote tumour growth (Houghton, 2010; Berger-

Achituv et al., 2013). 
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1.3 Ischemia-reperfusion injury 

An inflammatory condition where neutrophils play a large role to is ischemia-

reperfusion injury (IRI). Ischemia is the restriction of blood supply to an area of tissue. 

Reperfusion is the subsequent return of the blood supply to the ischemic tissue. The 

term ischemia-reperfusion injury (IRI) is used to describe the phenomenon of damage 

and inflammation caused during ischemia and deteriorated during the reperfusion 

process. Ischemia reperfusion injury can occur after myocardial infarction, other tissue 

infarcts or during organ transplantation. While ischemia interrupts the aerobic 

metabolism, causing tissue necrosis due to hypoxia, and oxidative damage through 

accumulation of anaerobic metabolites and free radicals, the vital procedure of 

reperfusion can lead to the initiation of a cascade of events, causing extra damage due to 

oxidative stress, inflammation and leukocyte-mediated cell injury. Ischemia causes the 

accumulation of intermediate metabolites, resulting in an overwhelming generation of 

reactive oxygen species (ROS), after aerobic metabolism is restored with the return of 

oxygen during reperfusion. Severe oxidative damage is caused to the cells, which, as a 

response, produce several cytokines and other pro-inflammatory molecules. These 

molecules activate the vascular endothelium, causing endothelial cells to express 

adhesion molecules and release cytokines and chemokines such as interleukin-1 (IL-1) 

and IL-8. As a result, leukocytes, especially neutrophils, are attracted to the site of 

injury and pass through the endothelium. The neutrophils then cause even more damage 

to the afflicted area, by releasing oxygen free radicals and proteolytic enzymes, such as 

elastase, which attack the tissue. This causes the secretion of even more inflammatory 

molecules by the injured tissue, the endothelium and the neutrophils, resulting in a 

vicious cycle that can eventually affect multiple organs. (Boyle et al., 1996; Jordan et 

al., 1999). 
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1.4 Endothelial cells 

Endothelial cells line the interior of all blood and lymphatic vessels forming a 

monolayer called the endothelium. The endothelium is of mesodermal origin and it is 

characterized by a thin layer of squamous cells, approximately 1 - 6 x 1013 in total, 

weighing approximately 1kg and covering a surface area of 1 - 7 m2 in an adult human 

(Augustin et al., 1994). The endothelium acts as a partly permeable barrier between the 

blood and tissue. However, it is a dynamic layer that has many active functions apart 

from physically acting as a barrier. Endothelial cells have a variety of important 

autocrine, paracrine and endocrine actions and can influence the behaviour of other cells 

and blood elements, especially smooth muscle cells that line the vessel, circulating 

leukocytes and platelets. Actions where the endothelium is involved include regulation 

of vascular tone, coagulation and thrombolysis, platelet activation and aggregation, 

inflammation and immune modulation, vascular permeability, vascular smooth muscle 

cell proliferation and angiogenesis (Herrmann and Lerman, 2001).  

Endothelial cells can control vascular tone and regulate the blood flow and blood 

pressure by releasing vasodilator or vasoconstrictor substances. Vasodilator substances 

include nitric oxide (NO) and prostacyclin (PGI2), which are released in response to 

chemical stimuli such as thrombin, arachidonic acid, ADP and bradykinin, or 

physiological stimuli such as changes on blood shear stress and flow (Pohl et al., 1986; 

Vanhoutte, 2003). Both of these substances can cause smooth muscle cell relaxation 

leading to vasodilation, but can also inhibit platelet aggregation (Radomski et al., 1987; 

Mendelsohn et al., 1990; McGuire et al., 2001; Vane and Corin, 2003). NO can 

additionally inhibit platelet and leukocyte adhesion to the endothelium and smooth 

muscle cell migration and proliferation, providing it with anti-atherosclerotic effects 

(Garg and Hassid, 1989; Mendelsohn et al., 1990; Kubes et al., 1991; Marks et al., 

1995).  

On the other hand, vasoconstricting substances such as endothelin-1 (ET-1), 

prostaglandins H2 and platelet activating factor (PAF), are released in response to 

hypoxia, shear stress, adrenaline and ischemia (Boulanger and Luscher, 1990; Cines et 

al., 1998). ET-1 in particular, signals through two G-protein coupled receptors ETA and 

ETB, expressed by smooth muscle cells and endothelial cells respectively, with 

conflicting effects (Boulanger and Luscher, 1990; Herrmann and Lerman, 2001). 

Activation of ETA on smooth muscle cells leads to potent vasoconstriction through an 
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increase in intracellular calcium concentration, mediated by phospholipase C (Simonson 

and Dunn, 1990; Pernow et al., 1996; Kiely et al., 1997). Autocrine activation of ETB 

on endothelial cells however gives vasodilation signals, mediated by phospholipase A2 

which stimulates the production of other endothelial factors such as PGI2 and NO 

(Molnar and Hertelendy, 1995; Giardina et al., 2001). This mechanism might be in 

place to avoid excessive vasoconstriction. 

The endothelium surface under normal conditions has anticoagulant, anti-thrombotic 

properties that allow uninterrupted blood flow. Perturbation of the endothelium 

however, by chemical or physical factors leads to cell activation and transformation to a 

pro-thrombotic surface (Bombeli et al., 1997). Molecules such as heparan sulfate, and 

glycosaminoglycans (GAGs), or dermatan sulfate in the subendothelium, prevent 

platelet adhesion and promote thrombin inhibitors like antithrombin III, or heparin 

cofactor II, enhancing an anti-thrombotic environment (Marcum and Rosenberg, 1984; 

Tollefsen and Pestka, 1985). Thrombin is a serine protease, which is involved in platelet 

activation, fibrin production, factor V, factor XIII, and fibrinogen activation and 

endothelial cell pro-coagulant induction through thrombin receptor (Francis et al., 1983; 

Kanthou et al., 1995; Di Cera, 2008) Thrombomodulin is another molecule that binds to 

thrombin, inhibiting its pro-coagulant activities but also catalysing the activation of the 

anticoagulant protein C by thrombin (Esmon, 1993; Esmon, 1995). Protein S is also 

produced by endothelial cells, and is a co-factor for activated protein C (Fair et al., 

1986).  

The main step in the transformation of the endothelium from anti-thrombotic to pro-

thrombotic is the induction of tissue factor (TF) expression. Stimulants such as 

thrombin, shear stress, cytokines, hypoxia and endotoxins can induce the production of 

TF by endothelial cells. TF acts by enhancing factor VIIa-dependent activation of 

factors X and IX (Drake et al., 1989; Nemerson, 1995; Rapaport and Rao, 1995). 

Endothelial cells physiologically express tissue factor pathway inhibitor (TFPI) which 

binds to factors VIIa and Xa and inhibits activity of the tissue factor coagulation 

pathway; this can be depleted in pro-thrombotic conditions (Broze, 1995; Jesty et al., 

1996). Another important pro-coagulant molecule expressed by endothelial cells is von 

Willebrand factor (vWF), which is mainly stored intracellularly in specialized 

organelles called Weibel-Palade bodies, but can be released on the cell surface after 

activation. Once there, vWF interacts with the platelet glycoprotein receptor complex, 

initiating platelet adhesion and aggregation, and promoting thrombosis (Wagner and 
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Bonfanti, 1991). Endothelial cells also produce tissue plasminogen activator (t-PA) 

which generates plasmin from plasminogen to induce fibrinolysis, maintaining blood 

fluidity (Chang et al., 1997; Levin et al., 1997). Anexin II, which is expressed on 

endothelial cell surface, is a receptor for t-PA which enhances its activity (Barnathan et 

al., 1988; Hajjar et al., 1994; Ishii et al., 2001a). In contrast, plasminogen activator 

inhibitor type I (PAI-I), which is produced by endothelial cells after activation by 

inflammatory stimuli, is the main inhibitor of t-PA activity and hence fibrinolysis 

(Levin and Santell, 1987). 

Endothelial cells play a major role in inflammatory and immune reactions, by regulating 

leukocyte trafficking into tissue and permeability to macromolecules. Activated 

endothelial cells express PAF, which stimulates platelet adhesion to endothelium 

through a mechanism involving interactions of the platelet glycoprotein IIb/IIIa with 

fibrinogen and endothelial vitronectin receptors. Adherent platelets then act together 

with P-selectin to induce neutrophil adherence to the endothelium. CD154 (or CD40L) 

on activated platelets binds to CD40 on endothelial cells stimulating endothelial 

chemokine production and leukocyte adhesion molecule expression to induce leukocyte 

adherence (Barry et al., 1997; Thienel et al., 1999). Leukocytes extravasation occurs in 

at least four distinct phases, starting with loose adhesion and rolling, mediated by 

selectin molecules P-selectin and E-selectin in endothelial cells and L-selectin in 

leukocytes. Next, activation and firm adhesion occurs, mediated by β integrins such as 

LFA-1 and Mac-1 in PMN and VLA-4 (integrin α4/β1) in lymphocytes that bind 

immunoglobulin family molecules in endothelial cells ICAM-1, ICAM-2 and VCAM-1 

(Albelda and Buck, 1990; Carlos and Harlan, 1994; Cines et al., 1998). ICAM-2 is 

constitutively expressed by endothelial cells whereas ICAM-1 and VCAM-1 need to be 

upregulated by inflammatory signalling. Finally, leukocyte diapedesis or trans-

endothelial migration occurs. Activated endothelial cells produce IL-8 which promotes 

PMN chemotaxis and degranulation (Muller and Weigl, 1992; Springer, 1995; Butcher 

and Picker, 1996; Burns et al., 1997b; Huo et al., 2000).  

Morphological changes occur during inflammation that lead to increased vascular 

permeability and leakage. Endothelial cell contraction and injury result in leakage of 

serum and interstitial fluid. On the other hand, endothelial permeability increases 

indirectly by vasodilation mediated by NO and PGI2. In general, endothelial barrier 

integrity and vascular permeability are regulated by various factors, such as the 

intercellular junctions, cell surface binding proteins, the electrostatic charge of 
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endothelial monolayers, and the basement membrane. Most important of these factors 

appear to be the endothelial cell junctions that mediate cell attachment (Dardik et al., 

1999; Toborek and Kaiser, 1999). 

1.4.1 Endothelial cell junctions 

Endothelial cells can form three types of junctions with adjacent cells: gap junctions, 

tight junctions (TJs) and adherens junctions (AJs) (Rubin, 1992; Anderson et al., 1993; 

Beyer, 1993; Gumbiner, 1993; Schmelz and Franke, 1993). Gap junctions are 

transmembrane ion channels clustered together to allow transfer of ions and small 

molecules between the cells. Gap junctions are usually intercalated with tight junctions 

in vivo, as shown by their frequencies that correlate (Beyer, 1993). 

       

       

Figure 1.2. Electron micrographs of endothelial cell junctions. Transmission electron 

microscopy images of endothelial cells forming junctions with each other (arrows). (See 

Chapter 5 for description of experiment) 
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TJs (or zonula occludens) usually form closest to the luminar surface of the cells, and 

allow very close contact between adjacent cells. They consist of transmembrane 

adhesion proteins that interact with their partners on the adjacent cell, as well as 

intracellular signalling molecules that interact with the cytoskeleton (Farquhar and 

Palade, 1963; Staehelin, 1974; Milton and Knutson, 1990). Transmembrane proteins 

that mediate adhesion in TJs include occludin, claudins 1, 5 and 12 and junctional 

adhesion molecules (JAMs) (Furuse et al., 1993; Furuse et al., 1998; Martin-Padura et 

al., 1998; Aurrand-Lions et al., 2001; Muller, 2003). Among the intracellular 

components of TJs are zonula occludens- 1 and 2 (ZO-1 and ZO-2), cingulin and 

calcium/calmodulin-dependent serine protein kinase (CASK) (Stevenson et al., 1986; 

Anderson and Van Itallie, 1995; Cereijido et al., 2000; Anderson, 2001). These interact 

with the actin cytoskeleton to help stabilize the junction and perhaps regulate the 

opening and closing of the junction. Moreover, they have signalling functions or they 

can act as scaffolds for other junction proteins (Fanning and Anderson, 1999; Stevens et 

al., 2000; Dudek and Garcia, 2001; Matter and Balda, 2003). The number of tight 

junctions in endothelial cells in vivo can be varied, depending on the vascular bed and 

the requirements for vascular permeability. Whereas endothelial cells of the post-

capillary venules and especially the high endothelial venules of the lymphoid system 

where constant lymphocyte extravasation occurs form little to no tight junctions, cells of 

large arteries and especially the endothelium in the brain microvasculature have a very 

high frequency of organised tight junctions to strictly control permeability (Simionescu 

and Simionescu, 1991; Wolburg and Lippoldt, 2002; Nitta et al., 2003). 

Adherens junctions (or zonula adherens) are contacts of the cellular membrane through 

transendothelial cadherin molecules. Cadherins are a family of single-chain 

glycoproteins with a highly conserved cytoplasmic region and an extracellular domain 

consisting of calcium-binding motifs. Cell-cell adhesion mediated by cadherins is 

homophilic and calcium-dependent (Takeichi, 1991; Kemler, 1993). The main 

endothelial cadherin that exists only in endothelial cells is VE-cadherin, which mediates 

endothelial cell-cell adhesion. Endothelial cells also express neuronal cadherin (N-

Cadherin) which is present in other types of cells such as neural cells and mediates 

adhesion of endothelial cells with pericytes or smooth muscle cells (Lampugnani et al., 

1992; Gerhardt et al., 2000; Bazzoni and Dejana, 2004; Paik et al., 2004). Other 

cadherins such as P-cadherin and T-cadherin can be also expressed in different types of 

endothelial cells (Ivanov et al., 2001). Inside the cell, cadherins interact with many 
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intracellular proteins and the actin cytoskeleton through their cytoplasmic tails (Geiger 

and Ayalon, 1992; Tsukita et al., 1992). VE-cadherin associates with the intracellular 

junction proteins β-catenin, p120 and plakoglobin. Subsequently, β-catenin and 

plakoglobin bind to α-catenin which can interact with several actin binding molecules 

such as α-actinin, ajuba, and ZO-1 (Weis and Nelson, 2006). VE-cadherin with its 

associated junction molecules appears to be able to influence the actin cytoskeleton and 

can be influenced by it. VE-cadherin is very important in regulating endothelial barrier 

integrity and vascular permeability, and molecules that increase permeability like 

VEGF, thrombin and histamine target VE-cadherin (Rabiet et al., 1994; Rabiet et al., 

1996; Esser et al., 1998).  

Endothelium mechanisms that modulate vascular permeability affect AJ organization by 

directly targeting VE-cadherin and other junctional molecules either by 

phosphorylation, internalization or cleavage. As a general rule, tyrosine phosphorylation 

of VE-cadherin and other AJ components appears to increase endothelial permeability 

and impair barrier function. This is supported by the fact that endothelial permeability 

increasing molecules such as VEGF, TNF-a, histamine and PAF induce tyrosine 

phosphorylation of VE-cadherin as well as β-catenin, plakoglobin and p120 (Esser et 

al., 1998; Andriopoulou et al., 1999; Shasby et al., 2002; Hudry-Clergeon et al., 2005; 

Angelini et al., 2006). Several tyrosine kinases and phosphatases have been implicated 

in this mechanism, including SRC kinase, c-SRC tyrosine kinase (CSK), proline-rich 

tyrosine kinase 2 (PYK2), and vascular endothelial protein tyrosine phosphatase (VE-

PTP) (Nawroth et al., 2002; Baumeister et al., 2005; Weis and Cheresh, 2005).  

VE-cadherin can be phosphorylated at various different tyrosine and serine sites; 

different studies report different residues to be important for endothelial barrier integrity 

(Baumeister et al., 2005; Potter et al., 2005; Gavard and Gutkind, 2006; Allingham et 

al., 2007; Wallez et al., 2007; Turowski et al., 2008). For example, Wallez et al. found 

only tyrosine 685 phosphorylation of VE-cadherin by SRC after VEGF stimulation 

(Wallez et al., 2007). In another study, neutrophil adhesion to the endothelium via 

ICAM-1 caused phosphorylation of tyrosines 658 and 731of VE-cadherin by SRC and 

PYK2 (Allingham et al., 2007), whereas a different work showed activated lymphocyte 

adhesion to ICAM-1induced the phosphorylation of tyrosines 645, 731 and 733, and 

was mediated by Rho GTPases, but not by SRC (Turowski et al., 2008). Further work is 

needed to understand the conflicting data. Other AJ molecules such as β-catenin, 

plakoglobin and p120 can also be phosphorylated by similar mechanisms, although the 
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resulting effect on junction stability is still unknown (Lampugnani et al., 1997; Esser et 

al., 1998).  

Phosphorylation at a serine residue, at Ser665, activates another mechanism of 

increased permeability, that of VE-cadherin internalization. VE-cadherin 

phosphorylation at Ser665 induces the recruitment of β-arrestin, which promotes VE-

cadherin internalization in a clathrin-dependent manner (Gavard and Gutkind, 2006). 

Interestingly, VE-cadherin internalization appears to be modulated by the binding of 

p120, which could be a signal for retention of VE-cadherin to the cell membrane (Xiao 

et al., 2005). Moreover, the VE-cadherin extracellular domain can be easily digested by 

various enzymes, such as metalloproteases, elastase, cathepsin G or trypsin, providing 

another way for increased permeability and induced leukocyte diapedesis. Leukocytes 

and especially neutrophils can release most of these enzymes, which would allow their 

extravasation by VE-cadherin cleavage (Lampugnani et al., 1992; Herren et al., 1998; 

Xiao et al., 2003; Luplertlop et al., 2006). 
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1.5 Sphingosine 1-phosphate 

Sphingosine 1-phosphate (S1P) is a bioactive lipid mediator, metabolite of membrane 

sphingolipids. It was first identified in the early 1990s as a novel lipid involved in cell 

proliferation and signal transduction (Ghosh et al., 1990; Zhang et al., 1991). Since 

then, S1P has been implicated in several different biological functions both 

intracellularly and extracellularly.  The identification of at least five G-protein coupled 

receptors (GPCRs) involved in S1P signalling, termed S1PR1-5, and their wide 

expression by different cell types, led to a better understanding of the complex 

signalling pathways S1P can mediate, and its potential role in regulation of several 

pathophysiological processes. 

1.5.1 S1P metabolism 

S1P is a 379Da member of the lysophospholipid family. It is the direct metabolite of 

sphingosine through the action of two sphingosine kinases SphK1 and SphK2. The main 

metabolic pathway starts with the hydrolysis of sphingomyelin, a membrane 

sphingolipid, into a member of the ceramide family by the enzyme sphingomyelinase 

and the subsequent production of sphingosine by ceramidase (figure 1.3). Ceramides 

can also be produced de novo in the endoplasmic reticulum (ER) from serine and 

palmitoyl CoA, through multiple intermediates. Ceramides are a family of molecules 

comprised of sphingosine and a fatty acid, and can also be salvaged from sphingosine 

by the ceramide synthase enzyme family. S1P production is regulated by various S1P-

specific and general lipid phosphatases, as well as S1P lyase, which irreversibly 

degrades S1P into phosphoethanolamine and hexadecanal (Swan et al., 2010). The 

balance between intracellular S1P and its metabolite ceramide, can determine cellular 

fate. Ceramides promote apoptosis, whilst S1P suppresses cell death and promotes cell 

survival (Cuvillier et al., 1996; Alvarez et al., 2007; Kihara et al., 2007; Hannun and 

Obeid, 2008). This creates an S1P-ceramide “rheostat” inside the cells. S1P lyase 

expression in tissue is higher than it is in erythrocytes and platelets, the main 

“suppliers” of S1P in blood (Yatomi et al., 1997; Hanel et al., 2007). This causes a 

tissue-blood gradient of S1P, which is important in many S1P mediated responses, 

including the lymphocyte egress from lymphoid organs (Schwab et al., 2005; Pappu et 

al., 2007).  
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Figure 1.3. Sphingosine 1- phosphate metabolism. Ceramides, produced either de novo or 

from sphingomyelin, are hydrolysed into sphingosine which is then phosphorylated to become 

S1P. S1P can be irreversibly degraded by S1P lyase to phosphoethanolamine and hexadecanal. 

 

1.5.2 S1P receptor signalling 

Sphingosine 1-phosphate is produced inside cells; it can, however, also be found 

extracellularly, in a variety of different tissues. It is abundant in the blood, at 

concentrations of 0.4-1.5μM, where it is mainly secreted by erythrocytes and platelets 

(Yatomi et al., 1997; Hanel et al., 2007). Blood S1P can be found separately, but mainly 

it exists in complexes with high-density lipoprotein (HDL) (~60%). Many of the 

cardioprotective effects of HDL are hypothesized to involve S1P (Tamama et al., 2005). 

Before 1996, S1P was thought to act mainly intracellularly as a second messenger. The 

identification, though, of several G-protein-coupled receptors that bind S1P led to the 

initiation of many studies on extracellular S1P signalling through those receptors. In 

2001, Tamama and colleagues showed that S1P mediated regulation of DNA synthesis 

and migration of rat aortic smooth muscle cells does not involve intracellular S1P, but 
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extracellular S1P signalling through the Edg-5 receptor, now known as S1PR2 

(Tamama et al., 2001). There are five receptors that have been currently identified. 

These can be coupled with different G proteins. Assuming that each receptor coupling 

with a G protein has a slightly different function, one can recognize the complexity of 

S1P receptor signalling. 

1.5.2.1 S1PR1 

S1PR1 (formerly Edg-1) is widely expressed by cells of the immune system, brain, 

heart, lung, kidney, spleen and vasculature. It is coupled with Gi only, as pertussis toxin 

sensitivity suggests, so it acts through the ERK, phosphatidyl inositol 3-kinase 

(PI3K)/Akt, Ras/MAP, Rac and eNos pathways (Siehler and Manning, 2002). S1PR1 

knockout in mice is lethal, mainly due to severe vascular disruption (Liu et al., 2000). 

Experiments with partial inactivation suggest that S1PR1 plays key roles in 

angiogenesis, neurogenesis, immune cell trafficking, endothelial barrier integrity and 

regulation of vascular tone (Matloubian et al., 2004; Singleton et al., 2005; Sanna et al., 

2006; Takuwa et al., 2008). S1PR1 seems to be important for lymphocyte egress from 

the thymus, as well as T cell migration through the lymph nodes and other lymphoid 

organs (Allende et al., 2004; Matloubian et al., 2004). It seems that upon S1P ligation, 

S1PR1 is internalized and can be degraded. In micromolar saturating concentrations of 

S1P, as it is in blood and lymph, this effect is more persistent. In the thymus and other 

tissue however, with nanomolar concentrations of S1P, there is a mechanism that 

recycles S1PR1 on the cell surface, resulting in dynamic receptor stabilization. There 

are cases however where lymphocyte egress from lymphoid organs is inhibited, either 

for accumulation of cells before their release, or in immunosuppressive situations. In 

those cases, there seems to be a crosslinking of S1PR1 with CD69, a T cell activation 

antigen, causing greater levels of internalization and degradation (Shiow et al., 2006; 

Bankovich et al., 2010) and disrupting the balance. Data from our group suggest that, 

24h following T cell activation, CD69 expression increases, causing a disruption to 

S1PR1 signalling. After 3 days of activation though, subsequent T cell mitosis causes a 

decrease in the surface levels of CD69, allowing the re-acquisition of S1PR1 

responsiveness and the egress of mature effector T cells from the lymph nodes (Swan et 

al., 2012). Recent evidence suggests that S1PR1 is also involved in immature B cell 

egress from the bone marrow into the blood (Allende et al., 2010; Pereira et al., 2010). 
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1.5.2.2 S1PR2 

S1PR2 (formerly Edg-5), unlike S1PR1, couples with several different types of G 

protein, including Gi, Gq and G12/13. This means that it signals through all the pathways 

S1PR1 does, with the addition of phospholipase C (PLC) and Rho pathways. S1PR2 

knockout mice do not have an apparent phenotype, but there are reports of epileptic 

seizure cases (MacLennan et al., 2001) as well as deafness (Herr et al., 2007; Kono et 

al., 2007). This S1P receptor is also widely expressed. S1PR2 has been suggested to 

regulate macrophage recruitment and inflammatory cytokine production (Wang et al., 

2010; Skoura et al., 2011). S1PR2 signalling is proposed to promote smooth muscle cell 

differentiation through RhoA activation (Medlin et al., 2010). S1PR2 is also induced in 

microvascular endothelial cells and skin mast cells by various inflammatory factors (Du 

et al., 2012; Wang et al., 2012). 

1.5.2.3 S1PR3 

Like the previous receptors, S1PR3 (formerly Edg-3) is ubiquitously expressed by 

immune cells, as well as cells in the heart, lung, spleen, kidney, intestine, diaphragm 

and cartilage. Both vascular endothelial cells and smooth muscle cells can express it and 

S1PR3 can mediate vasoconstriction or vasodilation depending on the vascular bed and 

the G protein signalling pathway which is activated. S1PR3 couples with Gi, Gq and 

G12/13 leading to activation of distinct pathways with contradictory effects. It can 

activate Akt and eNos through Gi or Rho through G12/13 as well as PLC and Ca2+ 

mobilization through Gq. The cardioprotective effects of HDL are suggested to involve 

S1PR3 signalling (Theilmeier et al., 2006). On the other hand, S1PR3 can cause 

endothelial barrier disruption, in contrast to S1PR1 which helps maintain barrier 

integrity (Singleton et al., 2006). Studies suggest S1PR3 can promote inflammatory 

recruitment of monocytes and macrophages (Keul et al., 2011). S1PR3 knockout mice 

do not seem to have an obvious phenotype, although they lack several S1P effects on 

cardiovascular system (Ishii et al., 2001b). 

1.5.2.4 S1PR4 

S1PR4 (formerly Edg-6) expression, unlike the previous receptors, is mainly restricted 

to cells of the immune system, especially lymphocytes and hematopoietic cells. A 

S1PR4 knockout mouse model has only recently been investigated (Schulze et al., 

2011). It seems that S1PR4 deficiency doesn’t affect lymphoid organ structure and 
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lymphocyte numbers in blood, but dendritic cell (DC) function is severely altered, 

leading to reduced Th17 T cell differentiation (Schulze et al., 2011). S1PR4 mainly 

couples with Gi and G12/13, and it acts through ERK, PLC and Rho signalling pathways. 

S1PR4 is upregulated during megakaryocyte development and plays a role in their 

differentiation into pro-platelets (Golfier et al., 2010). There is also evidence to suggest 

S1PR4 signalling can inhibit T cell proliferation and cytokine secretion (Wang et al., 

2005). 

1.5.2.5 S1PR5 

Like S1PR4, S1PR5 (formerly Edg-8) expression is more restricted, mainly observed in 

cells of the central nervous system (CNS). It can similarly couple to Gi and G12/13, 

acting through ERK, Akt, or Rho signalling pathways. S1PR5 signalling plays a dual 

role: it can promote the survival of mature oligodendrocytes, through Akt-dependent 

pathway, or lead to process retraction of pre-oligodendrocytes, through Rho activation 

(Jaillard et al., 2005). Moreover, S1PR5 is expressed in natural killer (NK) cells, where 

it acts, similarly to S1PR1 on lymphocytes, to regulate cell trafficking of mature cells 

through the bone marrow and from blood to the lymph nodes (Jenne et al., 2009; Mayol 

et al., 2011). S1PR5 knockout in mice leads to absence of observed oligodendrocyte 

retraction (Jaillard et al., 2005) and deficient NK cell trafficking (Mayol et al., 2011). 

1.5.3 S1P as a second messenger 

S1P is involved in many cellular processes through its GPCR signalling; however there 

are studies demonstrating that S1P is acting at an intracellular level, too (Strub et al., 

2010). As was mentioned before, intracellular S1P plays a role in maintaining the 

balance of cell survival signal to apoptotic signals, creating a cell “rheostat” between 

S1P and its precursor ceramide. Important evidence that S1P can act intracellularly as a 

second messenger came from yeast (Saccharomyces cerevisiaei) and plant (Arabidopsis 

thaliana) cells. Although yeast cells do not express any S1P receptors, they can be 

affected by S1P during heat-shock responses (Mao et al., 1999; Skrzypek et al., 1999). 

Similarly, Arabidopsis has only one GPCR-like protein, termed GCR1 which does not 

bind S1P; however S1P regulates stomata closure during droughts (Ng et al., 2001). 

In mammals, the sphingosine kinases have been found to localize in different cell 

compartments, being responsible for the accumulation of S1P in those compartments to 

give intracellular signals. In mitochondria, for instance, S1P was recently found to 



32 
 

interact with prohibitin 2, a conserved protein that maintains mitochondria assembly 

and function (Strub et al., 2011). According to the same study, SphK2 is the major 

producer of S1P in mitochondria, and the knockout of its gene can cause disruption of 

mitochondrial respiration and cytochrome-c oxidase function. SphK2 is also present in 

the nucleus of many cells, and has been implicated to cause cell cycle arrest (Igarashi et 

al., 2003). Furthermore, it causes S1P accumulation in the nucleus (Hait et al., 2009). It 

seems that nuclear S1P is affiliated with histone deacetylases HDAC1 and HDAC2, 

inhibiting their activity, thus having an indirect effect in epigenetic regulation of gene 

expression (Hait et al., 2009). In the endoplasmic reticulum (ER), SphK2 has been 

identified to translocate during stress, and promote apoptosis. It seems that S1P has 

specific targets in the ER that cause apoptosis, probably through calcium mobilization 

signals (Ghosh et al., 1994).  

1.5.4 S1P signalling on immune cell trafficking 

As has been mentioned above, S1P has important roles in various immune cells’ 

trafficking through different S1P receptor signalling and S1P gradients. More 

thoroughly investigated is the regulation of lymphocyte trafficking through the lymph 

nodes by S1PR1 signalling (Matloubian et al., 2004; Cyster, 2005). Naïve T cells follow 

S1P gradients to move from peripheral lymphoid organs to the lymph and blood. 

However, when activated, they express CD69 on their surface, causing internalization of 

S1PR1 and lymphocyte arrest in the lymph nodes (Shiow et al., 2006). Three days later 

CD69 expression decreases sufficiently, allowing normal S1PR1 expression and egress 

from the lymph nodes (Swan et al., 2012). FTY720-phosphate (FTY720-P), an S1P 

structural analog, which can activate S1PR1, 3, 4 and 5, binds antagonistically to S1PR1 

causing internalization of the receptor as does S1P, but instead of recycling it back to 

the cell surface, it promotes its ubiquitination and degradation at the proteasome (Cohen 

and Chun, 2011). This has a direct effect on lymphocyte trafficking through the lymph 

nodes, which relies on S1PR1 signalling, leading to reduced lymphocytes in the blood. 

FTY720, a pro-drug, which is phosphorylated in vivo by SphK2 into FTY720-P, has 

been approved by FDA to be used as a drug against multiple sclerosis (MS).  

The effects of S1P on neutrophil trafficking have not been as thoroughly investigated as 

the effects on lymphocyte trafficking. Neutrophils mainly express S1PR1, S1PR4 and 

S1PR5, although in pneumonia S1PR3 expression seems to be induced (Rahaman et al., 

2006). There are studies that argue S1P pre-treatment has a negative effect on neutrophil 
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chemotaxis towards the chemokine CXCL8 (IL-8) or the potent chemoattractant fMLP 

(Kawa et al., 1997; Rahaman et al., 2006). S1P pre-treatment might also inhibit trans-

endothelial migration of neutrophils, without affecting their adhesion in the endothelium 

(Kawa et al., 1997). However, different S1P concentrations in blood and tissue, and the 

activation state in which the neutrophils are, could have various effects on neutrophil 

trafficking in vivo. So, we need to take everything into consideration, if we want to 

assess the effect S1P has on neutrophil trafficking during inflammatory conditions. S1P 

effects on neutrophil migration towards IL-8 might be the result of S1PRs crosslinking 

with the IL-8 receptors in neutrophils, CXCR1 and CXCR2. Indeed, there is evidence 

suggesting S1PR4 and S1PR3 form heterodimers with CXCR1 in neutrophils (Rahaman 

et al., 2006).  

On the other hand, there are several studies showing S1P can increase IL-8 expression 

and/or secretion by several diverse types of cells, including human bronchial epithelial 

cells (Cummings et al., 2002), alveolar epithelial cells (Milara et al., 2009), airway 

smooth muscle cells (Rahman et al., 2014), gingival epithelial cells (Eskan et al., 2008), 

umbilical vein endothelial cells (HUVEC) (Lin et al., 2006), immature dendritic cells 

(Oz-Arslan et al., 2006), retinal pigment epithelial cells (Qiao et al., 2012), and ovarian 

cancer cells (Schwartz et al., 2001). This would cause an indirect positive effect on 

neutrophil trafficking. 

Another indication that S1P plays a role in neutrophil trafficking is a study on S1P lyase 

deficiency, which impairs neutrophil migration from blood to tissue in knockout mice 

(Allende et al., 2011). Little is known on the mechanism in which S1P lyase acts, 

although S1PR4 deficiency seems to alleviate the phenomenon, implicating S1P 

receptor signalling in neutrophil trafficking. These findings suggest S1P lyase and 

S1PRs in neutrophils as new therapeutic targets against ischemia/reperfusion injury and 

inflammatory conditions in general. Consistent with these results, another study showed 

that inhibition of S1P lyase can have a protective effect on the heart after 

ischemia/reperfusion injury, and this is alleviated when pre-treated with an S1PR1 and 

S1PR3 antagonist (Bandhuvula et al., 2011). Inhibition was achieved with an FDA 

approved food additive, 2-acetyl-4-tetrahydroxybutylimidazole (THI), providing a 

possible new drug perspective (Schwab et al., 2005; Bandhuvula et al., 2011).  Another 

S1P lyase inhibitor, LX2931, a synthetic analogue of THI, has been shown to cause 

peripheral lymphopenia when administered in mice, providing a potential treatment for 

autoimmune diseases and prevention of graft rejection after transplantation (Bagdanoff 
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et al., 2010). This molecule is currently under Phase II clinical trials in rheumatoid 

arthritis patients. 

1.5.5 Cardiovascular effects of S1P 

S1P can have direct effects on the cardiovascular system. Vascular endothelial cells 

mainly express S1PR1 and S1PR3, only a few types express S1PR2 (Panetti, 2002; 

Waeber et al., 2004).  S1PR1 and S1PR3 activation on these cells, has been shown to 

enhance their chemotactic migration, probably through direct phosphorylation of S1PR1 

by Akt (Lee et al., 2001), in a PI3K and Rac1 dependent signalling pathway (Kimura et 

al., 2000; Gonzalez et al., 2006). Moreover, it stimulates endothelial cell proliferation 

through an ERK pathway (Kimura et al., 2000; Tamama and Okajima, 2002). S1PR2 

activation however, inhibits endothelial cell migration, morphogenesis and angiogenesis 

(Sanchez et al., 2005; Skoura et al., 2007), most likely through Rho-dependent 

inhibition of Rac signalling pathway, as Inoki et al showed in mouse cells with the use 

of S1PR1 and S1PR3 specific antagonists (Inoki et al., 2006). Apart from endothelial 

cells, S1PR2 has an inhibitory effect on vascular smooth muscle cell migration and 

proliferation as well. These cells express S1PR2 and S1PR3 mainly, and it seems that 

their activation has similar contradictory effects as in endothelial cells, through the 

activation of equivalent pathways (Okamoto et al., 2000; Ryu et al., 2002; Tamama and 

Okajima, 2002; Sugimoto et al., 2003; Waeber et al., 2004).  

Regarding permeability of the vascular endothelium and endothelial barrier integrity, 

S1P receptors can have different effects. S1PR1 activation enhances endothelial barrier 

integrity by stimulation of cellular adhesion and upregulation of adhesion molecules 

(McVerry and Garcia, 2004; Singleton et al., 2005). On the other hand, S1PR2 and 

S1PR3 have been shown to have barrier-disrupting effects in vitro, and vascular 

permeability increasing effects in vivo (Singleton et al., 2006; Sanchez et al., 2007). All 

the effects S1P can have on vascular endothelium and smooth muscle cells suggest, that 

activation of S1PR2, but not S1PR1 and S1PR3, signalling, perhaps with the use of 

S1PR2 specific agonists, could be used therapeutically to inhibit angiogenesis and 

disrupt vasculature, suppressing tumour growth and progression. On the other hand, in 

several other situations, including transplantation and ischemia/reperfusion injury, 

S1PR1 activation and inhibition of S1PR2, could have positive effects in promoting 

angiogenesis and barrier function for recovery of the transplant or injured tissue 

respectively. 
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1.5.6 S1P in ischemia-reperfusion injury and other conditions 

In a mouse model of myocardial ischemia-reperfusion injury (IRI), S1P and its carrier 

HDL can help protect myocardial tissue and decrease the infarct size (Theilmeier et al., 

2006). It seems they reduce cardiomyocyte apoptosis and neutrophil recruitment to the 

ischemic tissue and they may decrease leukocyte adhesion to the endothelium. This 

effect appears to be S1PR3 mediated, since in S1PR3 knockout mice it is alleviated 

(Theilmeier et al., 2006). Fortunately for therapeutic potential, this cardioprotective 

effect of S1P can be produced not only by administering it before ischemia (pre-

conditioning), but also during reperfusion (post-conditioning). Ischemia activates 

SphK1 which is then translocated to the plasma membrane (Jin et al., 2004). This leads 

to an increase of intracellular S1P, helping to promote cardiomyocyte survival against 

apoptosis, induced by ceramide (Bielawska et al., 1997). SphK1 knockout mice cannot 

be pre-conditioned against ischemia reperfusion injury (Jin et al., 2007), whereas SphK1 

gene induction in the heart protects it from IRI (Duan et al., 2007). Interestingly, a 

recent study shows SphK2 may also play a role, since its knockout reduces the 

cardioprotective effects of pre-conditioning (Vessey et al., 2011). Furthermore, 

administration of S1P or sphingosine during reperfusion results in better recovery and 

attenuation of damage to cardiomyocytes (Vessey et al., 2008). Like with pre-

conditioning, SphK1 deficiency also affects post-conditioning of mouse hearts after 

ischemia-reperfusion (Jin et al., 2008). 

S1P does not protect the heart only, from IRI. During intestinal ischemia-reperfusion, 

multiple organs can be damaged, including the lungs. S1P treatment of mice during 

intestinal IR seems to have a protective effect on lung injury, probably due to 

suppression of iNOS-induced NO generation (Ding et al., 2012). Ischemia-reperfusion 

injury after rat lung transplantation was attenuated when recipient animals were treated 

with S1P before reperfusion. The treatment resulted in decreased pro-inflammatory 

molecule production and signalling, as well as reduced neutrophil infiltration and 

pulmonary oedema(Okazaki et al., 2007). In renal ischemia reperfusion injury, SphK1 

seems to be important, since its deficiency increased the damage in kidney tissue, 

whereas the lentiviral overexpression of SphK1 gene protected from injury (Park et al., 

2011). Another study suggests that apoptotic renal cells, after IRI, release S1P, which 

recruits macrophages through S1PR3 activation and might contribute in kidney 

regeneration and restoration of renal epithelium (Sola et al., 2011). On the other hand, 
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SphK2 is negatively implicated in hepatic IRI, its inhibition helping protect hepatocytes 

and restoring mitochondrial function (Shi et al., 2012). 

Studies are implicating S1P signalling or SphKs to several kinds of cancer. The first 

indication that S1P signalling might be involved in cancer came with the evidence that 

SphK1 overexpression in NIH3T3 fibroblasts transforms them into cancer-like cells, in 

the sense that they proliferate in serum free conditions, they have increased growth in 

vitro, and form fibrosarcomas in vivo (Xia et al., 2000). Although there is no proof that 

SphK1 is an oncogene, cancer cell lines overexpress it and depend on it for growth and 

survival (Vadas et al., 2008). Even more, in various human cancers, such as stomach (Li 

et al., 2009), lung (Johnson et al., 2005), brain (Van Brocklyn et al., 2005) and breast 

cancer (Ruckhaberle et al., 2008), increased levels of SphK1 mRNA and/or protein 

have been identified. There are several studies implicating the intracellular S1P-

ceramide rheostat to cancer cell survival or apoptosis and resistance to chemotherapy or 

irradiation in vitro (Pyne and Pyne, 2010). Studies with SphK1 inhibition in pancreatic 

(Guillermet-Guibert et al., 2009), prostate cancers (Pchejetski et al., 2005; Akao et al., 

2006) and leukaemia (Baran et al., 2007), show increased ceramide/S1P ratio and 

induction of apoptosis. On the other hand, S1P receptor signalling plays conflicting 

roles in cancer cell migration and metastasis. Generally, it seems that S1PR1 and S1PR3 

activation stimulates cancer cell migration, whereas S1PR2 inhibits cancer cell motility 

(Yamamura et al., 2000; Arikawa et al., 2003; Fisher et al., 2006; Yamashita et al., 

2006; Malchinkhuu et al., 2008).  

 The pro-drug FTY720, whose phosphorylated form can inhibit lymphocyte S1PR1 

dependent egress from the lymph nodes, causing lymphopenia, is already used in MS. It 

works as an immunosuppressant by stopping lymphocytes migrating into the brain, but 

it may also have direct effects on the CNS through neuroprotection. FTY720 can pass 

the blood-brain barrier (BBB) and it could be phosphorylated by local SphKs, to act 

through S1PR1 and S1PR3 receptors that are mainly expressed in CNS. In MS lesions, 

astrocytes upregulate those two receptors, and it has been shown that FTY720-P 

treatment in vitro inhibits astrocyte production of inflammatory cytokines (Van Doorn 

et al., 2010). Another study confirms the importance of S1PR3 signalling on activated 

astrocytes, which upregulate this S1P receptor and SphK1 expression, promoting the 

secretion of the potentially neuroprotective cytokine CXCL1 (Fischer et al., 2011). 
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FTY720 is investigated for other autoimmune conditions and for transplantation. 

Unfortunately, Phase II and III clinical trials for the prevention of kidney graft rejection 

did not show an advantage over standard therapies (Tedesco-Silva et al., 2005; 

Mulgaonkar et al., 2006; Salvadori et al., 2006; Tedesco-Silva et al., 2006; Tedesco-

Silva et al., 2007). Moreover, FTY720 can have some adverse cardiac effects, such as 

bradycardia, due to the activation of other S1P receptors, especially S1PR3. However, 

there are other S1PR1 antagonists that could be considered instead, including KRP-203 

(Shimizu et al., 2005), AUY954 (Pan et al., 2006), SEW2871 (Sanna et al., 2004), etc. 

KRP-203 in particular has been shown to prolong rat skin and heart allograft survival, 

and attenuate chronic rejection, without causing bradycardia (Shimizu et al., 2005), 

especially when combined with other immunomodulators (Takahashi et al., 2005; 

Suzuki et al., 2006). Moreover, it seems to have positive effects in mouse and rat 

models of autoimmune conditions, such as chronic colitis (Song et al., 2008), 

autoimmune myocarditis (Ogawa et al., 2007) and autoimmune kidney disease 

(Wenderfer et al., 2008). KRP-203 is currently undergoing Phase II clinical trials for 

cutaneous lupus erythematosus. 
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1.6 Project aims 

The overall aim of this project was to investigate the potential role sphingosine 1-

phosphate has on neutrophils trans-endothelial migration. This role could be direct or 

indirect, by having effects on neutrophils with direct signalling or by affecting 

endothelial cells and through them neutrophils. Neutrophils are major effectors in many 

inflammatory conditions including ischemia-reperfusion injury. They migrate from 

blood to the inflamed tissue after pro-inflammatory signalling by chemokines such as 

CXCL8 and the effect of adhesion molecules that allow their adhesion and subsequent 

extravasation from the endothelial layer. There are indications that S1P might have 

effects on neutrophils but it has not been explored thoroughly. Studies show S1P can be 

involved in ischemia-reperfusion injury, but it is not yet clear if the effects are only on 

an intracellular protective level or if neutrophil migration is also affected. Moreover, the 

S1P receptors involved have to be investigated to determine which receptor stimulation 

or inhibition could have positive effects for future therapeutic solutions. 

In order to examine all these, the current study investigated: 

 Which S1P receptors are expressed by neutrophils and which signalling 

pathways are activated 

 Whether S1P can modulate neutrophil migration and adhesion directly 

 What effects S1P has on endothelial cell chemokine and adhesion molecule 

expression 

 Whether S1P affects endothelial barrier integrity and neutrophil adhesion to 

endothelium indirectly 

 The S1P receptors responsible for any effects observed 

 When using in vivo models of neutrophil migration which effect was apparent, if 

any 
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Chapter 2. Materials and Methods 

2.1 Tissue culture 

All tissue culture work was performed under sterile conditions inside Class II 

Microbiological Safety Cabinets. Proper protective equipment was worn and safety 

procedures followed according to Newcastle University Safety Policy. Relevant 

COSHH and BIOCOSHH forms were read and signed before the use of any chemical or 

biological reagents.  

All cultured cells were maintained at 37 oC in a humidified atmosphere containing 5% 

CO2. They were cultured in polystyrene 75cm2 or 25cm2 tissue culture flasks with 

vented cap, or grown in polystyrene tissue culture plates with 6, 12 or 24 wells (Greiner 

Bio-One GmbH, Austria). 

2.1.1 Cell counting 

When there was a need to count cells, this was done using a haemocytometer. A small 

volume of cell suspension, 10-20μl, was pipetted in the haemocytometer chamber, 

under the coverslip. The cells inside the 5x5 grid were counted under an inverted 

microscope at 200x magnification. This measurement was then multiplied with 104 to 

give an estimate of number of cells per ml of cell suspension. To measure absolute cell 

number, this was then multiplied with the volume of available cell suspension.  

If viable cell counts were required, trypan blue dye was used to exclude dead cells. 

Trypan blue was mixed 1:1 with cell suspension before being added in the 

haemocytometer as before. Only cells that were not dyed blue were measured. 

Calculations were made as before, accounting for the 1:2 dilution step because of dye 

addition. 

2.1.2 Cryopreservation 

All cell lines used and some primary cells were recovered from frozen aliquots stored in 

liquid nitrogen. To culture them, the cryovial was rapidly thawed in a 37 oC waterbath, 

and then the contents were transferred in a tube with prewarmed culture media, 

appropriate for the cell line. Cells were washed by centrifugation at 500 x g for 5 

minutes, removal of supernatant and resuspension at appropriate cell density in 

prewarmed media, before being transferred to culture flasks or plates. 
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When there was a need for renewal of frozen stock of specific cells, an appropriate 

aliquot of cells was washed in Phosphate Buffer Saline (PBS; Sigma-Aldrich, USA), 

resuspended in ice cold cryopreservation medium, consisting of 90% Foetal Bovine 

Serum (FBS; Lonza, Switzerland) and 10% Dimethyl Sulfoxide (DMSO; Sigma-

Aldrich, USA) and transferred in cryopreservation vials. These were then stored at -80 

oC in a Nalgene Mr. Frosty Cryo 1°C Freezing Container (Thermo Scientific), for a 

controlled cooling rate. For long term storage they were moved in a liquid nitrogen 

tank.  

2.1.3 Dissociation of adherent cells for subculturing 

All adherent cell lines or primary cells were detached from culture vessels for 

subculturing using the following method, unless mentioned otherwise. For dissociation 

of cells 0.25% Trypsin-EDTA solution (2.5g porcine trypsin and 0.2g EDTA, Sigma-

Aldrich, USA) was used. Firstly, media was removed from flask and cells were washed 

with an excess amount of PBS, to remove any traces of serum that contains trypsin 

inhibitors. Trypsin-EDTA was then added and incubated for about 5-10 minutes at 37 

oC until all cells could be seen to detach under an inverted microscope. Complete media 

was then added to inactivate trypsin, and cells were collected into a universal tube. Cells 

were pelleted by centrifugation at 400 x g for 5 minutes, supernatant was removed, and 

pellet was resuspended in complete media in desired concentration, before being 

transferred to new culture vessels with proper amounts of complete media. 

2.1.4 Cell lines 

2.1.4.1 HL60 

The HL60 cell line (ATCC® CCL-240™) was derived from peripheral blood leukocytes 

of a 36-year old human female with acute myeloblastic leukaemia (Collins et al., 1977). 

The cells grow in suspension with doubling times from 20 - 45 hours. Morphologically 

they consist of large, blast-like cells with large rounded nuclei containing 2-4 distinct 

nucleoli, and a basophilic cytoplasm with azurophilic granules. HL60 cells can be 

induced to differentiate either to granulocyte-like or to monocyte/macrophage-like cells 

depending on the nature of the inducing agent. Polar-planar compounds such as DMSO 

and dibutyryl cyclic AMP, and other compounds such as retinoic acid and actinomycin 

D induce differentiation to granulocytes. This can be observed as a progressive decrease 

in cell size and nuclear/cytoplasmic ratio, as well as appearance of kidney-shaped nuclei 
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and later lobed nuclei, characteristic of banded and segmented neutrophils. On the other 

hand, compounds such as 1,25-dihydroxy-vitamin D3, phorbol esters like phorbol-

myristrate-acetate (PMA), and sodium butyrate induce differentiation to monocytes or 

macrophages. Within 24h of compound addition, the cells start to clump and adhere to 

the substrate, then spread out and acquire pseudopodia, whereas the nuclei remain 

rounded. When cells commit to a differentiation pathway, they are no longer immortal, 

and will eventually stop proliferating and become senescent (Gallagher et al., 1979; 

Collins, 1987; Birnie, 1988). 

HL60 cells were routinely grown in RPMI-1640 complete media which comprised of 

RPMI-1640 (Sigma-Aldrich, USA) with 10% FBS (Lonza, Switzerland), 2 mM L-

Glutamine, 100 U/ml penicillin and 0.1 mg/ml streptomycin (all Sigma-Aldrich, USA). 

For details on differentiation procedure see Chapter 3.2. 

2.1.4.2 HMEC-1 

HMEC-1 cell line (ATCC® CRL-3243™) was established from dermal microvascular 

endothelial cells isolated from human foreskins that were transfected with pSVT vector, 

a PBR-322-based plasmid containing the coding region for the simian virus 40 A gene 

product, large T antigen (Ades et al., 1992). They are adherent cells, with population 

doubling times 24-48 hours .They retain cobblestone morphology when cultured as 

monolayers, typical for normal endothelial cells, express von Willebrand's Factor 

(vWF), cell adhesion molecules ICAM-1 and CD44 and are capable of acetylated LDL 

uptake and rapid tube formation on matrigel. They retain many of the morphological, 

phenotypical and functional characteristics of primary human microvasular endothelial 

cells, so they are a good model for their replacement (Ades et al., 1992). 

HMEC-1 cells were cultured in complete MCDB 131 medium, which comprised of 

MCDB 131with L-glutamine in powder form (Sigma-Aldrich, USA), dissolved in 

sterile water with 15.7ml/L sodium bicarbonate solution 7.5% w/v (Sigma-Aldrich, 

USA) and filtered through 0.2μm pore membrane (Filtropur, Sarstedt, Germany), with 

added 10ng/mL Epidermal Growth Factor (EGF), 1 µg/mL Hydrocortisone, 100 U/ml 

penicillin and 0.1 mg/ml streptomycin (all Sigma-Aldrich, USA) and 10% FBS (Lonza, 

Switzerland). For dissociation of cells to subculture, the Trypsin-EDTA method was 

used (subchapter 2.1.3). For treatment of cells with specific reagents, a serum-free 

version of the complete medium was used, in which the 10% FBS was replaced by 0.5% 

Bovine Serum Albumin (BSA) fatty acid-free (Sigma-Aldrich, USA). 
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2.1.4.3 A549 

The A549 cell line (ATCC® CCL-185™) was derived from the explanted tumor of a 58-

year old human male with alveolar cell lung carcinoma (Giard et al., 1973). They are 

adherent cells with a population doubling of about 22 hours. A549 are human alveolar 

basal epithelial cells with squamous morphology that contain multilamellar cytoplasmic 

inclusion bodies typical of those found in type II alveolar epithelial cells of the lung. 

They have the ability to synthesize lecithin with a high percentage of disaturated fatty 

acids utilizing the cytidine diphosphocholine pathway (Lieber et al., 1976). This is a 

hypotriploid cell line with a modal chromosome number of 66, although cells with 64, 

65 and 67 chromosomes can also occur (Giard et al., 1973). 

A549 cells were culture in complete Dulbecco’s Modified Eagle’s Medium (DMEM), 

comprised of DMEM (Sigma-Aldrich, USA) supplemented with 10% FBS (Lonza, 

Switzerland), 2 mM L-Glutamine, and 100 U/ml penicillin and 0.1 mg/ml streptomycin 

(all Sigma-Aldrich, USA). To subculture them, they were dissociated from substrate 

using the Trypsin-EDTA method as described above (subchapter 2.1.3). When A549 

cells were treated with specific reagents, a serum-free version of the complete medium 

was used, in which the 10% FBS was replaced by 0.5% BSA fatty acid free (Sigma-

Aldrich, USA). 

2.1.4.4 EA.hy926  

The EA.hy926 cell line is a somatic cell hybrid of A549 alveolar epithelial cells with 

primary Human Umbilical Vein Endothelial Cells (HUVEC) (Edgell et al., 1983). They 

are adherent cells with endothelial cell characteristics including the expression of factor 

VIII-related antigen or von Willebrand factor and the presence of Weibel-Palade bodies 

(Edgell et al., 1990). They are also capable to exert functions common for differentiated 

endothelial cells such as angiogenesis in the form of tube formation in matrigel (Bauer 

et al., 1992; Rieber et al., 1993). They have maintained chromosomes from both cell 

precursors, leading to a modal chromosome number of 80. Population doubling is 

around 15 hours (Edgell et al., 1983). 

EA.hy926 cells were cultured in complete DMEM media, like their precursors A549, 

and were detached from substrate for subculturing using the Trypsin-EDTA method 

(subchapter 2.1.3). To treat them, the serum-free version of DMEM was used, as with 

A549. 
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2.1.5 Primary cells 

2.1.5.1 Neutrophil isolation 

Primary human neutrophils were isolated from human peripheral blood taken by 

phlebotomy performed by trained individuals from healthy volunteers, who had read 

and signed the appropriate consent form. Blood samples of 10-30 ml were immediately 

transferred into 50ml falcon tubes containing 1ml of sodium citrate 3.8% (Sigma-

Aldrich, USA) per 10ml blood. After gentle mixing, the tube was centrifuged at 300 x g 

with no brake for 20 minutes. The separated plasma (upper layer) was discarded and 

2.5ml of pre-warmed (in a 37 oC waterbath) solution of 6% Dextran in 0.85% NaCl 

(saline) solution (both Sigma-Aldrich, USA) per 10ml cell pellet were added. Pre-

warmed saline solution (Sigma-Aldrich, USA) was further supplemented until reached 

the initial blood level (e.g. 20ml if started with 20ml whole blood). Cells were allowed 

to sediment at room temperature for approximately 30 minutes, with the tube’s lid 

unscrewed. Percoll Plus (GE Healthcare, UK) and 10x Dulbecco’s Phosphate Buffered 

Saline without Ca2+ or Mg2+ (D-PBS; Sigma-Aldrich, USA) or its 1x dilution were used 

to create a percoll gradient. First, 90% Percoll was created by adding 0.6ml 10x D-PBS 

in 5.4ml Percoll. This was then used to create 55%, 70% and 81% Percoll, as described 

in the table below (table 2.1). 

 

 1x D-PBS added 90% Percoll added 

55% Percoll 1.125ml 1.375ml 

70% Percoll 0.75ml 1.75ml 

81% Percoll 0.475ml 2.025ml 

 

Table 2.1. Creation of Percoll Plus gradient solutions. Each Percoll gradient solution was 

created by combining the specified amounts of 1x D-PBS and 90% Percoll. 

 

After Dextran sedimentation, the leukocyte rich upper layer was transferred to a new 

tube and saline added up to 50ml. The tube was centrifuged at 200 x g for 5 minutes. 

The supernatant was discarded and the cells were resuspended in 2.5ml of 55% Percoll. 

The 70% Percoll was transferred carefully on top of the 81% Percoll, and then the 55% 

Percoll with the cells was added above that. The gradient tube thus contained 

approximately 2.5ml from each of the different Percoll solutions (55%, 70% and 81%). 
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The gradient was centrifuged at 700 x g with no brake for 20 minutes. After 

centrifugation, two bands of cells were visible, while the red blood cells were pelleted at 

the bottom of the tube. The top band (55/70 layer) contained the mononuclear cells 

whereas the bottom band (70/81 layer) contained the polymorphonuclear cells (PMN), 

or neutrophils. Usually only the PMN band was collected and the rest were discarded. 

The collected cells were washed in Hank’s Balanced Salt Solution without Ca2+ or Mg2+ 

(HBSS; Sigma-Aldrich, USA), at 200 x g for 5 minutes. Cells were resuspended in 

HBSS again and counted using a haemocytometer. For viability measurements trypan 

blue was added. Cells were then made to a density of 1 x 106 cells/ml and separated in 

different tubes, according to the experiments planned. After the separation, one last 

wash with HBSS was performed and cells were resuspended in serum-free medium 

usually RPMI-1640, which comprised of RPMI-1640 medium with 0.5% BSA fatty 

acid-free, 2 mM L-Glutamine, 100 U/ml penicillin and 0.1 mg/ml streptomycin (all 

Sigma-Aldrich, USA), with added reagents if needed for current experiment. To assess 

neutrophil purity after isolation, cells were routinely checked by flow cytometry, with 

anti-CD3 and anti-CD66b staining and Propidium Iodide (PI) addition for extended 

viability assessment. Sometimes, cytospins were made that were stained with Giemsa 

stain to further observe purity of neutrophil populations. Only populations with more 

than 95% purity and viability were used. 

2.1.5.2 HUVEC 

Human Umbilical Vein Endothelial cells (HUVEC) are primary endothelial cells, 

isolated from the vein of the human umbilical cord (Jaffe et al., 1973; Baudin et al., 

2007). These were bought from Promocell as proliferating cells from a single donor 

(Promocell, Germany). They are adherent cells with cobblestone morphology, which 

express von Willebrand factor and CD31, can uptake Dil-Ac-LDL, and contain Weibel-

Palade bodies. They can survive for at least 15 population doublings, with doubling 

time of around 92 hours, after which they may start to become senescent (Jaffe et al., 

1973).  

HUVEC cells were cultured in complete Endothelial Cell Growth Medium 2 

(Promocell, Germany), which contains 2% Foetal Calf Serum (FCS), 5 ng/ml EGF, 10 

ng/ml Basic Fibroblast Growth Factor (bFGF), 20 ng/ml Insulin-like Growth Factor 

(Long R3 IGF), 0.5 ng/ml Vascular Endothelial Growth Factor 165 (VEGF), 1 μg/ml 

Ascorbic Acid, 22.5 μg/ml Heparin and 0.2 μg/ml Hydrocortisone. This media was 
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chosen instead of the Endothelial Cell Growth Medium from the same company, since it 

was better defined and did not contain Endothelial Cell Growth Supplement (bovine 

hypothalamic extract) that might contain S1P or other substances that could interfere 

with experiments. For treatment of cells with specific reagents, a serum-free version of 

the complete medium was used, in which the 2% FCS was replaced by 0.5% BSA fatty 

acid free (Sigma-Aldrich, USA). When subculturing HUVEC, the Trypsin-EDTA 

method was used for cell dissociation (subchapter 2.1.3). However, since HUVEC 

complete media contains only 2% serum that is not enough for trypsin inactivation, 

another complete media was used in this step instead (usually complete DMEM). 
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2.2 Reconstitution of S1P Receptor Ligands 

2.2.1 S1P 

Sphingosine-1-phosphate, D-erythro was the synthetic solid form of S1P used (Enzo 

Life Sciences, USA). Before being utilized in any experiment, the powder was first 

dissolved in methanol at 1 mg/ml by heating to 65 oC until the solution was clear and 

colourless. S1P solution was then aliquotted in glass vials, 0.1mg per vial, and methanol 

was evaporated using a stream of nitrogen gas. What remained was a thin film of S1P 

on the sides of the vial that could be stored at -80 oC long term.  

To use the dried S1P, it was first dissolved in 0.01 M NaOH at 1 mg/ml by heating to 80 

ºC until the solution was clear and colourless. Next, the solution was further diluted in 

PBS with 0.5% BSA fatty acid-free (Sigma-Aldrich, USA) to a concentration of 125μM 

S1P, by heating and vortexing until a fully homogeneous solution was achieved. The 

final S1P solution was aliquotted appropriately and used immediately or stored at -20 oC 

for up to one month. Before using the stored solution it was first heated in a 37 oC 

waterbath and mixed by vortexing. 

2.2.2 CYM-5442 

CYM-5442 is a novel S1PR1 agonist which is a chemically optimized version of 

another agonist (CYM-5181) that was discovered through high throughput screening 

(Gonzalez-Cabrera et al., 2008; Schurer et al., 2008). It was chosen because of its high 

potency and high selectivity for S1PR1, with an EC50 of 1.35nM compared with no 

activity up to 10μM for the other S1P receptors, as well as its high solubility in water 

solvents. It can effectively induce phosphorylation, internalization and ubiquitination of 

S1PR1 in vitro and can cause peripheral lymphopenia in vivo. Moreover, it can 

successfully penetrate the Blood-Brain-Barrier (BBB), making it a successful candidate 

for targeting the central nervous system. It binds to a different hydrophobic pocket in 

the receptor than the orthosteric site that S1P uses which requires specific headgroup 

interactions (Gonzalez-Cabrera et al., 2008). 

CYM 5442 hydrochloride was purchased from R&D Systems in solid form (R&D 

Systems, USA). For use in in vitro experiments it was first dissolved in DMSO (Sigma-

Aldrich) at a concentration of 100mM, by warming and vortexing until solution was 

clear. This was further diluted in sterile water at 1mM final concentration and aliquotted 
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for short-term storage at -20 oC. Before using the frozen solution, it was warmed in a 37 

oC waterbath and vortexed until completely homogenous. 

2.2.3 CYM-5541 

CYM-5541 was the result of optimization of molecules discovered through the same 

screening process that lead to the eventual creation of CYM-5442 (Schurer et al., 2008; 

Jo et al., 2012). CYM-5541 is a potent and selective agonist for S1PR3, with EC50 of 

between 72 and 132 nM whereas for S1PR1 EC50 > 10 μM, for S1PR2 EC50 > 50 μM, 

for S1PR4 EC50 > 50 μM, and for S1PR5 EC50 > 25 μM. Unlike CYM-5442 that is only 

an alternative binding mode agonist, CYM-5541 is a true allosteric agonist, which 

occupies a different chemical space in the ligand binding pocket of S1PR3 than S1P 

does (Jo et al., 2012). 

CYM-5541 was purchased from Sigma in powder form (Sigma-Aldrich, USA). In order 

to use it, it was dissolved in DMSO at a concentration of 10mM, by continuous heating 

and vortexing until solution was clear. This was then aliquotted and stored at -20 oC for 

up to three months. Before use, it was warmed in a 37 oC waterbath and vortexed. 

2.2.4 SEW2871 

SEW2871 is a potent and selective S1PR1 agonist with an EC50 of 13nM, with no 

activity for the other S1P receptors at up to 10μM (Hale et al., 2004). It was only used 

at some optimization experiments before being replaced with the more potent and water 

soluble novel S1PR1 agonist CYM-5442. 

SEW2871 (Sigma-Aldrich, USA) was dissolved in DMSO (Sigma-Aldrich, USA) at a 

concentration of 2 mg/ml (or 4.54 mM) by warming in a 37 ºC waterbath and repeatedly 

vortexing until the solution was clear and colourless. The solution was then aliquotted 

into glass vials and stored at -20 ºC in the dark for up to three months. Before use, the 

frozen SEW2871 solution was brought to 37 ºC in a waterbath and vortexed to ensure 

total homogenization. 

2.2.5 FTY720-P 

FTY720 (or fingolimod) is a molecule that can be phosphorylated in vivo into FTY720-

phosphate (FTY720-P), an S1P analogue that is a potent agonist for S1PR1, S1PR4 and 

S1PR5, with EC50 values of around 0.3-0.6 nM, as well as S1PR3 with EC50 of about 3 

nM, but does not activate S1PR2 (Brinkmann et al., 2002; Mandala et al., 2002). 
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FTY720 has been approved as a medicine for MS. It has the ability to cause retention of 

lymphocytes to lymphoid organs by activation and internalization of the S1PR1 

(Brinkmann et al., 2010). For its use in vitro, the already phosphorylated form FTY720-

P was chosen to make sure it would be active even in the absence of sphingosine 

kinases. 

FTY720 (S)-Phosphate was purchased from Cambridge Bioscience (Cambridge, UK). It 

was dissolved in chloroform at a concentration of 0.5 mg/ml then aliquotted for storage 

at -20 °C. Before use it was warmed at a 37 ºC waterbath and vortexed. 
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2.3 Flow cytometry 

In flow cytometry, cells are stained with specific antibodies for surface or intracellular 

proteins, directly or indirectly conjugated with fluorochromes, which are molecules that 

absorb specific wavelengths of light and then emit light at a different wavelength 

spectrum. This allows for measurement of the relative expression of the specific target 

protein. The flow cytometer can measure the optical properties of single cells as they 

pass through the core of the instrument. Laser light is focused on the cells and is then 

detected by photomultiplier tubes (PMTs) as it passes through or is scattered by each 

cell. One PMT can detect light that is in line to the laser, giving a measurement called 

forward scatter (FSC), and another detects light perpendicular to the laser, giving a side 

scatter (SSC) value. FSC can be loosely correlated with size of individual cells, whereas 

SSC can be loosely correlated with granularity. Additional lasers in the instrument are 

used to excite fluorochromes or other fluorescent molecules, with perpendicular PMTs 

that detect the fluorescently emitted light. These PMTs are covered by band-pass filters 

that allow only a very narrow range of light spectrum to pass through. This allows the 

detection of light emitted by only one fluorescent molecule at a time. See table 2.2 for a 

list of the fluorescent molecules used in this study and the cytometer settings 

asscociated with each. Except for fluorochromes, conjugated with specific antibodies, 

fluorescent viability dyes were also used. These bind to nucleic acids or other cellular 

targets that are only exposed for binding in dead cells. This allows for distinction of 

alive from dead cells in the sample.  

2.3.1 Staining protocol 

Cells for staining were counted and separated in flow cytometry tubes (12 x 75 mm 

round bottom polystyrene tubes; BD Biosciences, USA), with around 100,000 – 

500,000 cells per tube. Cells were washed in FACS buffer (PBS with 2% FBS) by 

centrifugation at 500 x g for 5 minutes. Supernatants were removed and Fc receptor 

blocking solution was added (Human TruStain FcX; Biolegend, USA), 5 μl per tube, 

and incubated at room temperature for 15 minutes. Without washing, appropriate 

amounts of primary antibody solution was added, according to manufacturer’s 

instructions, and incubated at 4 oC for 30-45 minutes in the dark. Cells were then 

washed twice with 1ml FACS buffer by centrifugation at 500 x g for 5 minutes. If the 

primary antibody was not directly conjugated with fluorochrome, a secondary antibody 

was then added that was conjugated with fluorochrome and was raised against the 
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species of the primary antibody. Before addition, Fc receptor blocking was performed 

again. The cells were then incubated with the secondary antibody at 4 oC for 45 minutes 

in the dark. After another two washes, the stained cells were finally resuspended in 

200μl FACS buffer and taken to the flow cytometer for acquisition. At this point, the 

viability dye Propidium Iodide (PI) was added, when a measurement of cell viability 

was required. Acquisition occurred in a BD FACSCanto II instrument running BD 

FACSDiva software (BD Biosciences, USA). As controls, there was an unstained 

sample and samples stained with species and isotype matched antibodies conjugated 

with the same fluorochromes as the primary antibodies, or a secondary antibody only 

stained sample in the case of indirect flow cytometry. Data from flow cytometry were 

analysed using FlowJo 7.6 software (Treestar, USA). A list of all the antibodies used in 

this project can be seen at table 2.3. 

 

Fluorochrome or viability 

dye 

Excitation laser 

wavelength (nm) 

Band-pass filter (nm) 

FITC (Fluorescein) 488 530/30 

PE (Phycoerythrin) 488 585/42 

PerCP (Peridinin 

Chlorophyll) 

488 670LP 

PerCP/Cy5.5 488 670LP 

PE/Cy7 488 780/60 

PI (Propidium Iodide) 488 585/42 

APC (Allophycocyanin) 635 660/20 

Brilliant Violet 421 405 450/50 

Zombie Aqua 405 510/50 

Table 2.2. Fluorochromes and associated cytometer settings used. Laser wavelength and 

cytometer band-pass filter used for each fluorochrome and the viability dyes PI and Zombie 

Aqua in a FACSCanto II instrument (BD Biosciences). 
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Target Conjugate Clone Isotype Source 

Human CD45 APC 2D1 IgG1 R&D Systems 

Human CD11b PE 238446 IgG2b R&D Systems 

Human CD69 APC FN50 IgG1,κ BD Biosciences 

Human CXCR1 PE 42705 IgG2a R&D Systems 

Human S1PR1 APC 218713 IgG2b R&D Systems 

Mouse/Human S1PR3 - polyclonal  Alomone Labs, 

Israel 

Human CD45 PerCP 2D1 IgG1 BD Biosciences 

Human CD66b FITC G10F5 IgM Biolegend 

Human CXCR1 FITC 42705 IgG2a R&D Systems 

Human CXCR2 FITC 48311 IgG2a R&D Systems 

Human CD3 APC UCHT1 IgG1 R&D Systems 

Human CD54 (ICAM-1) PE HA58 IgG1,κ Biolegend 

Human CD106 (VCAM-1)  APC STA IgG1,κ Biolegend 

Rabbit IgG APC polyclonal  R&D Systems 

- (isotype control) APC MOPC-21 IgG1,κ BD Biosciences 

- (isotype control) PE 133303 IgG2b R&D Systems 

- (isotype control) PE 20102 IgG2a R&D Systems 

- (isotype control) FITC MM-30 IgM Biolegend 

- (isotype control) FITC 20102 IgG2a R&D Systems 

- (isotype control) PE MOPC-21 IgG1,κ BD Biosciences 

Mouse CD3ε PerCP/Cy5.5 145-2C11  Biolegend 

Mouse CD19 APC 6D5  Biolegend 

Mouse/Human CD11b PE/Cy7 M1/70  Biolegend 

Mouse Ly-6G Brilliant 

Violet 421 

1A8  Biolegend 

Mouse F4/80 PE BM8  Biolegend 

Mouse CD11c FITC N418  Biolegend 

Table 2.3. List of flow cytometry antibodies used. Reference table with all the antibodies used 

in this thesis, their conjugated fluorochrome (if any), clone number and company they were 

purchased from. 
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2.4 Chemotaxis assays 

To measure the chemotactic motility of cells, a modified Boyden chamber assay was 

used (Boyden, 1962). For this assay, transwell cell culture inserts with permeable 

membranes are placed into the wells of cell culture plates, splitting them into two 

chambers, a top and a bottom one, separated by the membrane. The membrane has 

pores that allow easy diffusion of chemoattractants and other reagents, but can inhibit 

cells from passing through freely, depending on the pore size. However, cells can 

actively pass through the pores when stimulated by appropriate chemotactic gradients. 

Cells are added on the top chamber, whereas the bottom chamber usually contains the 

chemoattractant of interest. Chemotactic ability is then measured by counting the cells 

that passed through the filters and into the wells, after a defined amount of time. This 

allows measurement of the directional movement of cells towards chemotactic 

gradients. Alternatively, adding the chemoattractant into both the top and bottom 

chambers, allows the measurement of chemokinesis, which is then non-directional cell 

motility stimulated by certain molecules. Chemotaxis assays can be performed with 

bare membranes, mentioned as trans-membrane chemotaxis or with endothelial cells 

growing on top of the membranes, so the cells would have to pass through the 

endothelial layer and the membrane to reach the bottom chamber, mentioned as trans-

endothelial chemotaxis assays (figure 2.1). 

 

                  

Figure 2.1. Chemotaxis assay set-up. Diagrammatic illustration of the set up of a trans-

membrane (A) or trans-endothelial (B) chemotaxis assay. PMN: neutrophils, ECs: endothelial 

cells. 

 

  

A B 
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2.4.1 Trans-membrane chemotaxis 

Cells were incubated in serum-free medium before the assay, from 30 minutes (for 

primary neutrophils) to 2 hours or overnight (for HL60). According to the experiment, 

they were pretreated or not with S1P or other reagents. Before starting the chemotaxis, 

the 24-well companion plate (BD Biosciences, USA) that was going to be used in the 

assay was blocked for 30 minutes with serum-free medium (RPMI 1640 with 0.5% 

BSA fatty acid-free). Then, 600μl of serum-free medium with or without 

chemoattractant were added to each well. Cell culture inserts, with 3μm pore diameter 

membranes (BD Biosciences), were inserted in the wells. Cells were resuspended to a 

concentration of 1 x 106 cells/ml and 100μl of cell suspension (100,000 cells) were 

added in each insert. Cells were left to migrate at 37oC, 5% CO2 for 60 - 120 minutes. 

Then the inserts were removed and 400-500μl of cell suspension from each well were 

transferred into flow cytometry tubes. A specific amount of counting beads 

(CountBright™ Absolute Counting Beads; Invitrogen) was added to the cells, and 

enumeration was achieved using a flow cytometer.  

Firstly, the beads were gated on the forward scatter towards side scatter axis. The cells 

were also gated on the same axis. At least 1,000 bead events (usually 2,000) were 

acquired to assure statistically significant calculations. In order to calculate the cell 

concentration as cells/μl of cell suspension, the following equation was used: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑒𝑣𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑎𝑑 𝑒𝑣𝑒𝑛𝑡𝑠
 ×  

𝑏𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 𝑢𝑠𝑒𝑑 (𝑙𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡)

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
 = 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙 

Example calculation: 500μl of cell suspension were used and then 20μl of bead 

suspension were added, with a lot concentration of 49,000 beads/50μl (so the 20μl 

would contain 19,600 beads). 

6645 𝑐𝑒𝑙𝑙𝑠

2002 𝑏𝑒𝑎𝑑𝑠
 ×  

19600 𝑏𝑒𝑎𝑑𝑠

500 𝜇𝑙
 =  130.11 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙 

In order to then calculate the total number of cells that had passed to the bottom 

chamber, the concentration was multiplied by the total volume of cell suspension in the 

bottom chamber (600μl). So, for the above example, the total migrated cell count would 

be:  

130.11 cells/μl x 600 μl = 78,066 cells. 
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In some experiments the cell culture inserts were fixed and stained with haematoxylin, 

to count the cells that adhered on the bottom side of the membranes. This was used as a 

verification method for bead counting. At the end of chemotaxis, media was removed 

from both chambers and the inserts were fixed in cold methanol at -20oC overnight, 

inside the 24-well plate. Methanol was removed and the filters were washed with water. 

Water was removed and 1.5ml haematoxylin was added to each well, for 30 minutes at 

room temperature. Haematoxylin was removed then, and the filters were washed with 

water, vigorously under tap. Scotts Tap Water was added for 2 minutes in room 

temperature. Scotts Tap Water was removed and 1ml of 50% ethanol was added to each 

well. After 2 minutes in room temperature, 50% ethanol was replaced with 75% 

ethanol. After another 2 minutes, 75% ethanol was replaced with 90% ethanol. Finally, 

90% ethanol was replaced with 100% ethanol. Filters were left to air dry, then were 

excised using a scalpel and mounted onto slides (basal side facing up) using DPX 

mountant and coverslip. They were observed under a microscope, and the cells that 

were on the correct side of the membrane were counted. 

2.4.2 Trans-endothelial chemotaxis 

For trans-endothelial chemotaxis, endothelial cells in 500μl complete culture media 

were placed on top of cell culture inserts with 3μm pores, in 24-well companion plate 

and left to grow to confluency in a 37 oC with 5% CO2 atmosphere. When confluent, 

they were treated with desired reagents, by removing media, adding 500μl serum-free 

media (their complete culture media with 0.5% BSA fatty acid-free instead of FBS) 

with treatment and incubating overnight. The wells of the 24-well plate that were going 

to be used for chemotaxis were blocked with serum-free media for 30 minutes, before 

adding 800μl serum-free media with chemokine (10ng/ml IL-8). The media with the 

treatment was removed and the cell culture inserts with the endothelial cells were 

transferred in the specific wells of the 24-well plate containing the chemoattractant. 

Isolated human neutrophils were added on top, 200,000 cells in 500μl serum-free media 

(the same media used for the endothelial cells and the chemokine), and incubated at 37 

oC, 5% CO2 for 2 hours. The inserts were removed and 400 μl of the cell suspension in 

the bottom chamber were transferred into flow cytometry tubes. The cells were then 

counted by flow cytometry using a defined amount of counting beads (CountBright™ 

Absolute Counting Beads; Invitrogen), following the same method as above.                      
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2.5 Quantitation of gene expression 

Gene expression is the transcription of genomic DNA (gDNA) to RNA, and then 

translation of messenger RNA (mRNA) to protein, though other RNAs like ribosomal 

RNA are the final product themselves. Measuring the abundance of a specific mRNA 

gives an indication of a gene’s expression, although this does not always translate 

accurately to protein quantitation. It can be used however to compare gene expression 

between different cell types or before and after treatment in the same cells. Total RNA 

needs to be isolated first from the cells of interest. This is then used as a template for 

cDNA synthesis by reverse transcription. Finally, quantitation of gene expression is 

achieved by real-time PCR, which uses the cDNA to amplify specific target genes using 

primers and probes. 

2.5.1 RNA isolation 

Total RNA was isolated using the TRI Reagent (Sigma-Aldrich, USA) method or the 

RNeasy Plus Mini Kit (QIAGEN). The whole procedure was performed carefully, using 

sterile, RNAse-free materials and wearing clean gloves and protective clothing to avoid 

contaminating with RNases.  

For the TRI Reagent method, cells in suspension were pelleted by centrifugation and 

1ml of TRI was added per 5-10 x 106 cells. After repetitive pipetting to lyse the cells, 

they were incubated for 5 minutes at room temperature to permit complete dissociation 

of nucleoprotein complexes. Next, 0.2ml of chloroform (Sigma-Aldrich) per 1ml TRI 

were added. After capping the tubes securely, they were shaken vigorously by hand for 

15 seconds and incubated at room temperature for 2 to 3 minutes. Centrifugation of the 

samples followed, at 12,000 x g for 15 minutes at 4oC. After the centrifugation, the 

mixture was separated in a lower red, phenol-chloroform phase, a white interphase that 

contains the genomic DNA and a colourless upper aqueous phase where the RNA 

resides. The aqueous phase was transferred in a new tube and the rest discarded. To 

precipitate the RNA from the aqueous phase, 0.5ml of isopropyl alcohol (2-propanol; 

Sigma Aldrich) per 1ml TRI used were added. After mixing the sample, it was 

incubated for 10 minutes at room temperature and then centrifuged at 12,000 x g for 10 

minutes at 4oC. The RNA precipitate could be seen as a gel like pellet at the bottom and 

side of the tube. The supernatant was discarded and the RNA pellet washed with 1ml of 

75% ethanol per 1ml TRI used by vortexing and then centrifuging at 7,500 x g for 5 

minutes at 4oC. After removing the ethanol, the pellet was left to air-dry for 5-10 
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minutes and then was dissolved in RNase-free water. The amount and quality of RNA 

was measured by spectrophotometry using a Nanodrop instrument (Thermo Scientific). 

Only samples with absorbance 260/280 ratio higher than 1.8 were used for reverse 

transcription and PCR. The RNA was used immediately or stored at -80oC for up to a 

few weeks. 

When RNeasy Plus Mini Kit (QIAGEN) was used, RNA isolation was performed 

following the manufacturer’s instructions. Cells were pelleted and lysed, using 600μl 

Buffer RLT Plus with 1% β-mercaptoethanol (Sigma-Aldrich) for 5-10 x 106 cells. For 

adherent cells grown into tissue culture plates, lysis was performed in the plates, by 

removal of media and addition of 600μl Buffer RLT Plus with 1% β-mercaptoethanol 

per well of a 6-well plate. Lysate was transferred into microcentrifuge tubes and 

homogenized using a needle and syringe. Homogenised lysate was then transferred into 

a gDNA eliminator column placed into a 2ml collection tube. This column binds the 

genomic DNA in the samples, which is then discarded, allowing for a gDNA free RNA. 

Centrifugation was performed at 8000 x g for 30 seconds. Column was discarded and 

one volume of 70% ethanol was added to the flow through. After mixing by pipetting, 

the sample was transferred into an RNeasy spin column placed in a 2 ml collection tube, 

700μl at a time, and centrifuged at 8000 x g for 15 seconds. Flow through was discarded 

and this process was repeated until all the sample had been transferred in the column. 

The RNeasy spin columns selectively bind only RNA, which can then be collected by 

elution. Rneasy spin column was washed with 700 μl Buffer RW1by centrifugation at 

8000 x g for 15 seconds and flow through was discarded. Column was then further 

washed with 500 μl Buffer RPE, diluted in 100% ethanol as instructed, by 

centrifugation at 8000 x g for 15 seconds. Flow through was discarded and a final wash 

was performed with another 500 μl Buffer RPE and centrifugation at 8000 x g for 2 

minutes. To ensure no residual Buffer RPE had remained in the column, the collection 

tube was replaced with a new one and centrifugation at 8000 x g for 1 minute was 

performed. Finally, to elute the RNA, the collection tube was replaced with a new 1.5 

ml collection tube, 30-50 μl RNase-free water were added directly to the spin column 

membrane, and centrifugation was performed at 8000 x g for 1 minute. The column was 

discarded and the RNA was analysed using a Nanodrop. Only samples with absorbance 

260/280 ratio close to 2 were used further. The RNA was used immediately or stored at 

-80oC for up to a few weeks. 
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2.5.2 cDNA synthesis 

The RNA isolated from the cells was then used to synthesize complementary DNA 

(cDNA), by reverse transcription (RT). The enzyme reverse transcriptase is an RNA 

dependent DNA polymerase which is able to use RNA as a template to create cDNA. 

These enzymes can be found in many RNA viruses that need them to create cDNA as a 

part of their replication cycles. 

About 1μg of total RNA was usually used for each RT reaction. The AffinityScript 

Multiple Temperature cDNA synthesis kit (Agilent, USA) was used, and the company’s 

optimized protocol was followed. According to this, the reaction was prepared in a 

microcentrifuge tube by adding in order: 1μg of total RNA, RNase-free water to a total 

volume of 15.7μl, and 3μl of random primers (0.1μg/μl). The reaction was incubated at 

65 oC for 5 minutes, and then cooled at room temperature for about 10 minutes to allow 

the primers to anneal to the RNA. After that, 2μl of 10x AffinityScript RT Buffer, 0.8μl 

of dNTP mix (25mM each dNTP), 0.5μl of RNase Block Ribonuclease Inhibitor 

(40U/μl), and 1μl of AffinityScript Multiple Temperature RT (reverse transcriptase) 

were added in the reaction in order. After mixing the components gently, the reaction 

was incubated at 25 °C for 10 minutes to extend the random primers, followed by 

incubation at 50 °C for 60 minutes for cDNA synthesis and 15 minutes at 70 oC to 

terminate the reaction. The cDNA was used immediately for subsequent qPCR 

amplification or stored at -80 °C to be used at a later time. 

For Chapter 5 of this thesis, the Tetro cDNA Synthesis kit (Bioline, UK) was used 

instead. This allows for faster one-step cDNA synthesis. The reaction was again 

prepared in a microcentrifuge tube by addition of 1μg RNA, 1μl random hexamer 

primer mix, 1μl 10mM dNTP mix, 4μl 5x RT Buffer, 1μl RiboSafe RNase Inhibitor 

(10U/μl), 1μl Tetro Reverse Transcriptase (200U/μl) and RNase-free water up to 20μl. 

After mixing the reaction gently by pipetting, it was incubated for 10 minutes at 25°C 

followed by 30 min at 45°C and finally 5 min at 85°C to terminate the reaction. 

Reaction was chilled on ice and used immediately for PCR or stored at -80 °C to be 

used at a later time. 
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2.5.3 Real-time PCR 

Polymerase chain reaction (PCR) is an enzyme-catalyzed amplification of a specific 

DNA sequence. A heat-stable DNA-dependent DNA polymerase is used, such as Taq 

polymerase, with specific 5’ and 3’ primers that will bind to the DNA template. 

In real-time quantitative PCR (qPCR), a DNA sequence is being amplified and, 

simultaneously, real-time quantitation of the number of amplicons is performed. This 

can be achieved with the use of primer-probe technology, such as the TaqMan Gene 

Expression assays (Applied Biosystems, USA), which contain a set of specific gene 

primers and fluorogenic probe that target the same gene. The probes have the 

fluorescent dye FAM at their 5’ end, and the quencher MGB at their 3’ end. When the 

probe is intact, it cannot fluoresce due to the proximity of the fluorescent dye and the 

quencher. The probe anneals to the DNA sequence to be amplified just like the primers 

do, and when the Taq polymerase reaches it while synthesizing the complementary 

strand, it uses its endogenous 5’ nuclease activity to cleave the probe, releasing the 

FAM dye that can now fluoresce separated from the quencher. With each subsequent 

PCR cycle, more dye is released, causing an increase in fluorescent intensity that is 

relatively proportional with the amount of amplicons synthesized. The qPCR instrument 

can detect this fluorescence and report it during the reaction process. Real-time qPCR 

can be used in conjunction with reverse transcription, to measure relative expression of 

a specific RNA by target cells, and compare expression after specific treatment. 

Usually 1μl of cDNA mixture (100ng equivalent of RNA) was used per qPCR reaction. 

This was mixed with RNase-free water, to a total volume of 9μl. Then, 10μl of qPCR 

master mix (TaqMan® Gene Expression Master Mix 2X; Applied Biosystems, USA or 

SensiFAST™ Probe Hi-ROX Master Mix; Bioline, UK) were added, containing the 

DNA polymerase, dNTPs and buffers needed for a PCR reaction. Finally, 1 μl of the 

specific Taqman Gene expression assay or equivalent was added, containing primers 

and probe set for the target gene. The mix was transferred to a qPCR 96-well plate, and 

the reaction took place in an ABI Prism 7000 Sequence Detection System (Applied 

Biosystems, USA) instrument.  The program used was: first cycle, 2 minutes at 50 °C, 

then 10 minutes at 95 °C (for activation of enzymes); next forty cycles, 15 seconds at 95 

°C (for denaturation of double strands), then 1 minute at 60 °C (for annealing and 

extention). As endogenous controls to compare gene expression, the house-keeping 

genes 18S ribosomal RNA or GAPDH were used. In all the experiments a negative 
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control containing no cDNA template was included, as well as an RT control, which 

contained RNA that had not been reverse transcribed into cDNA. All samples were run 

in triplicate, using the same amount of cDNA. The primers used can be seen on table 

2.4.  

 

Target gene TaqMan Gene Expression 

Assay (or equivalent) 

Source 

S1PR1 Hs00173499_m1 Applied Biosystems 

S1PR3 Hs01019574_m1 Applied Biosystems 

S1PR4 Hs02330084_s1 Applied Biosystems 

S1PR5 Hs00928195_s1 Applied Biosystems 

CD69 Hs00934033_m1 Applied Biosystems 

CXCR1 Hs01921207_s1 Applied Biosystems 

IL-8 Hs00174103_m1 Applied Biosystems 

18S Hs99999901_s1 Applied Biosystems 

GAPDH Hs02758991_g1 Applied Biosystems 

S1PR2 Hs_S1PR2_FAM_1 QIAGEN 

Table 2.4. List of primers used. All primers for real-time PCR used were TaqMan Gene 

Expression Assays (Applied Biosystems) except for S1PR2 that was purchased from QIAGEN. 

 

To analyse the qPCR results, the comparative CT method was used. The CT value (or 

threshold cycle) is defined as the intersection of the threshold line with the amplification 

plot for each sample. The threshold line is set automatically above the background and 

within the exponential growth phase of the amplification curve, and is the same for all 

samples. Data were analysed either using the expression of one of the genes as a 

reference, for relative expression of genes in one or more types of cells, or, when treated 

and untreated cells needed to be compared, the untreated cells’ gene expression was 

used as a reference. To calculate fold difference in expression between treated and 

untreated samples or between genes in the same type of cells, the 2-ΔΔC
T format was 

used, where ΔΔCT = ΔCT target – ΔCT reference and ΔCT = CT target – CT endogenous control and CT 

refers to the mean CT value of the triplicate samples. Analysis was performed in 

Microsoft Office Excel 2007 (Microsoft). 
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2.6 Western blotting 

Western blotting allows the relative measurement of expression of a target protein in a 

sample. Cell lysate is denaturated and loaded in SDS-PAGE gel, where the proteins in 

the sample are separated. The proteins in the gel are then transferred in a PVDF 

membrane by wet electroblotting. Finally, in order to detect target protein, the 

membrane is blotted with specific primary antibody followed by secondary antibody 

conjugated with horseradish peroxidase (HRP) that allows detection of 

chemiluminescence after addition of appropriate substrate.  

2.6.1 Cell lysis and protein quantification 

Cells were treated according to experiment, usually washed with ice cold PBS to rapidly 

stop treatment and pelleted by centrifugation. Cells were then lysed in around 60μl per 5 

x 106 cells lysis buffer (CelLytic M; Sigma-Aldrich, USA), containing protease 

inhibitors (cOmplete Protease Inhibitor Cocktail; Roche, Switzerland), and if 

phosphorylated targets were examined, phosphatase inhibitors (Halt Phosphatase 

Inhibitor Cocktail; Pierce, Thermo Scientific, USA) as well. For complete lysis, cell 

lysate was incubated for 10 minutes on ice and then sonicated. Centrifugation at high 

speed was performed to pellet debris and DNA, which are then discarded by transfer of 

the supernatant to a new tube. Samples were kept on ice until use, or if longer storage 

was needed, they were kept at -20 °C for a few days.  

For total protein quantification, a Bicinchoninic Acid (BCA) assay kit (Pierce, Thermo 

Scientific, USA) was used. This assay is based on the Biuret reaction, where peptide 

bonds reduce Cu2+ cations to Cu1+ when in an alkaline solution. The Cu1+ cation then 

chelates with BCA molecules, forming an intense purple-colored reaction product. The 

colorimetric absorbance at 562nm can then be measured using a protein standard of 

known concentrations to calculate sample protein concentration.  

Samples or BSA standard concentrations (0, 125, 250, 500, 1000 and 2000 μg/ml BSA) 

were assayed in duplicate. Usually, 5 μl per sample or standard were added in 200μl 

BCA reagent mix in a 96-well plate, and incubated for 30 minutes at 37 °C. Absorbance 

at 562nm was measured using a plate reader, and unknown concentrations were 

calculated by creating a standard curve fit for BSA concentrations, using linear 

regression, in Prism 3 (Treestar) software. 
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2.6.2 SDS-PAGE 

Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE) is a 

method used to separate protein molecules according to their size in a porous 

acrylamide matrix. The reducing agent β-mercaptoethanol is used to denature proteins, 

breaking the disulphide bonds that hold their tertiary structures, allowing the anionic 

detergent SDS to associate with the polypeptide chain. The number of bound SDS 

molecules is proportional to the length of the chain, so the negative electrical charge 

SDS provides is approximately proportional to the protein size. When electrical charge 

is applied then, the proteins in the sample run through the gel according to their size, 

towards the anode, with smaller proteins running faster than larger ones. 

Usually between 20-40 μg of total protein were loaded per sample, in the wells of a 

12% polyacrylamide gel. The gel consists of two parts, a stacking gel and a resolving 

gel. The first part of the gel is the stacking gel (5% polyacrylamide), with larger pores, 

where the samples move faster and are stacked so they all enter the resolving gel at the 

same time. The resolving gel (12% polyacrylamide) is the main part of the gel where the 

proteins are separated and run according to their size. The recipe for the creation of the 

two parts of the gel can be seen in table 2.5. Polymerization starts with addition of 

ammonium persulfate (APS) and is accelerated when N,N,N,N –

tetramethylethylenediamine (TEMED) is added. Usually the ingredients for the two 

parts were mixed beforehand, without addition of TEMED. The resolving gel was 

prepared first and left to polymerize, with 2-butanol on top to level the gel surface. 

When polymerization was complete, 2-butanol was removed and washed with deionized 

water, then the stacking gel was prepared and added on top of the resolving gel, and a 

comb was placed on top to create the wells. When the stacking gel polymerized, the gel 

was ready to be used for western blot immediately, or was stored at -4 °C until used.  

The samples were mixed 5 parts lysate with one part 6 x loading buffer (300 mM Tris 

(pH 6.8), 600 mM dithiothreitol, 12 % w/v SDS, 0.6 % bromophenol blue, 60 % 

glycerol; all Sigma-Aldrich, USA) with 30% β-mercaptoethanol (Sigma-Aldrich, USA) 

and were heated at 99 °C for 10 minutes, before being loaded in the gel. A protein 

ladder was also loaded (Prestained Protein Marker, Broad Range; New England 

Biolabs, UK) in at least one well per gel, so the molecular weights of the target proteins 

could be determined. The marker contains known molecular weight proteins conjugated 

with blue or red dye so they are visible in the gel and membrane. A mini vertical 
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electrophoresis unit (SE260, GE Life Sciences) was used to run the gel, at 30mA 

constant current for about 1 hour, until marker was well separated and loading front dye 

almost reached the end of the gel. Electrophoresis buffer used contained 0.025 M Tris, 

0.192 M Glycine, and 0.1% (w/v) SDS, with pH 8.3. 

 

12% resolving gel (10ml) 5% stacking gel (6ml) 

3.3ml dH2O 4.1ml dH2O 

4ml 30% (w/v) acrylamide / bisacrylamide 

mix 

1ml 30% (w/v) acrylamide / bisacrylamide 

mix 

2.5ml 1.5M Tris (pH 8.8) 750μl 1M Tris (pH 6.8) 

100μl 10% SDS 60μl 10% SDS 

100μl 10% APS 60μl 10% APS 

4μl TEMED 6μl TEMED 

Table 2.5. Recipe for creation of SDS-PAGE. 

 

2.6.3 Electroblotting 

After gel electrophoresis was finished, proteins were transferred in PVDF membrane 

using wet electroblotting. Membrane was cut at appropriate size and activated by 

immersing in methanol for 10 seconds, then washed twice with deionized water for 5 

minutes each and finally in transfer buffer (0.025 M Tris, 0.192 M Glycine, 10 % 

methanol) for 5 minutes. A transfer “sandwich” was prepared, with sponge, 2 pieces of 

whattman paper, the gel, PVDF membrane, 2 more pieces of paper and another sponge, 

all clamped tightly together after ensuring no air bubbles are trapped between the gel 

and membrane. The sandwich was then placed in a tank transfer unit (TE22, GE Life 

Sciences) filled with transfer buffer and run at 30V constant voltage overnight, or 

250mA constant current for 2 hours when rapid transfer was desired, both with water 

cooling and stirring. 

2.6.4 Immunoblotting 

When transfer was over, the membrane was removed from the device and was washed 

in PBS with 0.1% Tween-20 (PBS-Tween) for 5 minutes on an orbital shaker. To verify 

transfer was successfully, the membrane was stained with Ponceau-S which is a 

temporary protein stain that allows visualization of proteins in the membrane. Ponceau 
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solution was added for 2 minutes and then the membrane was washed with water until 

the red protein bands were visible. For destaining, membrane was washed with PBS-

Tween until the colour had faded sufficiently. Membrane was then blocked with 3-5% 

BSA in PBS-Tween (blocking buffer), for 1 hour at room temperature on an orbital 

shaker. Then, membrane was incubated with primary antibody, diluted in blocking 

buffer, overnight at 4 °C on an orbital shaker.  

Membrane was washed 3 times for 5 minutes each in PBS-Tween on an orbital shaker, 

then incubated with appropriate secondary antibody, HRP conjugated, diluted in 

blocking buffer, for 1 hour at room temperature, shaking. After another 3 washes with 

PBS-Tween, chemiluminescence substrate was added (Pierce SuperSignal West Pico 

Substrate, Thermo Scientific), incubated for 2-5 minutes and signal was detected using 

film (Kodak) developed in ready-made developer and fixer (Tentenal, Germany). 

2.6.5 Stripping and reprobing 

The PVDF membrane can be stripped to remove bound primary and secondary 

antibodies in order to then reprobe it with new antibodies for a different target, usually 

the loading control antibody. A low pH mild stripping buffer was used, containing 1.5% 

w/v Glycine, 0.1 % w/v SDS, 1 % Tween-20, with pH 2.2 (all Sigma-Aldrich, USA). 

The membrane was incubated 3 times for 10 minutes each with stripping buffer, at room 

temperature on an orbital shaker. Then it was washed 3 times for 5 minutes each with 

PBS-Tween, and was ready for reprobing. Before adding the new antibodies, blocking 

has to be repeated, since it was also stripped from the membrane.  
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2.7 Cellix VenaFlux flow-based adhesion assays 

The Cellix VenaFlux platform (Cellix Ltd., Ireland) is an in vitro microfluidics system 

that can be used to investigate cell interactions and cell adhesion to adhesion molecules 

or endothelial cell monolayers under flow conditions (figure 2.2). It consists of a 

nanopump that controls the flow rate, with very low flow rate capabilities of 5 pL/min 

to 10 μL/min, which can mimic physiological blood flow shear stresses of between 0.05 

– 20 dyne/cm2. The system is attached to a microscope with bright field and 

fluorescence capabilities, a motorized stage, a cage incubator to control temperature and 

a camera to capture images of cell adhesion. The whole system is connected to a 

computer with VenaFlux Software which controls all functions. 

There are two types of biochips that were used in this project. The Vena8/Vena8 

Fluoro+ biochips (the former have been discontinued and replaced by the latter, with 

their only difference being that the latter are optimized for fluorescence) comprise of 8 

microcapillary channels that are of similar dimensions with in vivo blood vessels, which 

they simulate (figure 2.3). Each channel is 100μm deep, 400μm wide and 28mm long, 

and it can be coated with recombinant adhesion molecules to examine leukocyte rolling 

or adhesion under flow. The VenaEC biochip can be used to culture endothelial cells 

creating a more physiological blood vessel-like channel, where the adhesion of cells on 

endothelial monolayers can be assessed. It comprises of two parts: a tissue culture 

treated substrate on which the endothelial cells are grown to confluency before the 

experiment, and a biochip part that is assembled on top of the substrate to create two 

microcapillary channels, each 120μm deep, 600μm wide and 20mm long (figure 2.4). 
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Figure 2.2. Cellix VenaFlux platform configuration. 

 

2.7.1 Adhesion molecule - coated biochips 

The channels of Vena8 or Vena8 Fluoro+ biochips were coated with recombinant 

human ICAM-1 Fc or VCAM-1 Fc (R&D systems) both 10μg/ml diluted in PBS. 

Around 12μl of ICAM-1 or VCAM-1 were pushed through the channel port with a 

pipette, making sure liquid could be seen at the other side. The biochip was incubated 

overnight at 4 °C in a sealed humidified container to prevent it from drying. Before use, 

the channels were blocked with 1% BSA in PBS for 30 minutes at room temperature, to 

prevent unspecific adhesion. In some cases, chemokine stimulant was added in the 

channel instead of with the cells, by adding 12μl of 500ng/ml chemokine (usually IL-8) 

in the channel and incubating for 30 minutes – 2 hours before the blocking step.  

Differentiated HL60 or primary human neutrophils were resuspended in serum-free 

RPMI-1640 media at a density of 1 x 106 cells/ml and incubated for 30 minutes – 2 

hours. If needed, they were treated with 1μM S1P for 1 hour in serum free media. 

Instrument was switched on and initialized, by running setup step in VenaFlux software, 

then adjusting camera image. The system was washed using pump washout step, first 

with sterile deionized water, then with 70% ethanol twice and finally water again, 

making sure no air bubbles were trapped in the plumbing. A final pump washout was 
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made with prewarmed RPMI-1640 basal media, which was also the flow medium, to 

prime the system. The biochip was then mounted on the microscope stage, and the 

channel to be observed was washed with 40μl medium at 40 dynes/cm2 using chip 

washout step. Excess media at the end of the channel was removed and 100μl of cell 

suspension (100,000 cells) were added in its place. For stimulation of cells with 

chemokine, S1P or MgCl2, appropriate amount of stimulant was added in the cell 

suspension just before addition in the channel. Flow was initiated at a shear stress of 10 

dyne/cm2 for 10 seconds to diffuse the cells into the channel, then continued at 0.5 

dyne/cm2 for 5 minutes to assess adhesion. At the last minute images were captured, at 

4-8 different fields of view along the length of the channel. This procedure was repeated 

for all the channels of the biochip used in the experiment. For each image captured, 

cells that had adhered were counted and analysed using Prism3 software (GraphPad 

Software Inc).  

 

Figure 2.3. Vena8 Fluoro+ Biochip. The Vena8 Fluoro+ biochip has 8 channels that can be 

coated with adhesion molecules to investigate cell adhesion. 

 

2.7.2 Endothelial cells - coated biochips 

VenaEC substrates were placed in the wells of a 6-well plate, treated side up, and were 

sterilized with UV light for 30 minutes before use. Sometimes, they were coated with 

20ng/ml fibronectin for 1 hour at room temperature, to allow endothelial cells to adhere 

more firmly. HMEC-1 or HUVEC cells were then subcultured on the substrates, at 37 

°C, 5% CO2, until they reached confluency. They were treated overnight in serum-free 

media with 10μM S1P or 100ng/ml TNF-α or both.  

Image of neutrophils 

adhering to ICAM-1 
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Isolated human neutrophils were stained with CFSE before being used in the Cellix 

assay, to distinguish them from the endothelial cells by fluorescence. Neutrophils were 

resuspended in PBS at a density of 5-10 x 106 cells/ml and CFSE was added at a final 

concentration of 20 μM. Cells were incubated for 10 minutes at room temperature in the 

dark and then cold complete RPMI-1640 media was added to stop labelling. Neutrophils 

were washed by centrifugation at 300x g for 5 minutes and resuspended in serum-free 

media at a density of about 2 x 106 cells/ml, to be used on the Cellix.  

The instrument was initiated as was described above for adhesion molecule coated 

biochips. The fluorescence bulb was switched on as well, to take fluorescent images of 

CFSE labelled neutrophils. VenaEC biochip was assembled by clamping together with 

substrate and was mounted at microscope stage. The channel was washed as above, 

although care had to be taken not to disrupt the endothelial monolayer (lower dynes 

were tried first to make sure the layer was stable enough). Neutrophil suspension was 

added in 100μl (around 200,000 cells) and flow was initiated as described above. 

Images were captured at both bright field and fluorescent mode for each field of view, 

for a total of 4-9 fields along the length of the channel. This was repeated for the second 

channel of the biochip and then substrate was replaced with another one and the whole 

process was repeated. Adhered neutrophils were counted in fluorescent images, using 

the bright field images for verification, and data were analysed using Prism3 

(Graphpad). 

   

 

Figure 2.4. Vena EC Biochip. Endothelial cells are grown on the VenaEC substrates. The 

VenaEC biochip is then assembled on top of the substrate to create the microcapillaries.   
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2.8 Statistical analysis 

Data were graphed and analysed using Prism3 software (GraphPad Software Inc) or 

Microsoft Office Excel 2007 (Microsoft, USA). For comparison between two groups, 

the two-tailed unpaired student’s t-test was used, with significant differences when 

p<0.05 (*), highly significant when p<0.01 (**), and extremely significant when 

p<0.001 (***). For comparison between many groups, one-way analysis of variance 

(ANOVA) was used. Flow cytometry data were analysed using FlowJo 7.6 software 

(Treestar). Image analysis was made using ImageJ software. PCR data were analysed 

using Microsoft Office Excel 2007 (Microsoft, USA). 
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Chapter 3. HL60 cell line as a neutrophil model 

3.1  Introduction 

The first “immortal” cell line was established in 1951, when human tumor cells from a 

case of cervical cancer were isolated and cultured in the lab to create the HeLa cell line 

(Scherer et al., 1953; Lucey et al., 2009). Since then, cell lines are routinely used not 

only to investigate diseases but also to imitate the “normal” cell types they are derived 

from. It is not always easy for a scientist to use ex vivo primary cells for his studies. 

These cells are hard or even impossible to maintain in culture, they are usually non-

proliferating terminally differentiated cells that will not survive in culture without using 

very specialized, often expensive, culture media with added nutrients that is 

complicated to create. Even if they can survive, they cannot divide and need to be used 

immediately for experiments since they will not last more than a few days at most. 

There are some exceptions to this, like the HUVEC cells that can survive for 5-7 

passages, but they will still undergo apoptosis afterwards. The procedures utilized to 

obtain ex vivo cells are usually quite complicated and time consuming, and the fact that 

the cells have to be used soon after their isolation makes their routine handling in the 

lab quite challenging. The fact that these procedures will have to be repeated every time 

a new experiment needs to be set up complicates things even more. 

For all the above reasons, scientists often rely on cell lines to perform their experiments. 

These might be cancerous forms of the type of cell they are interested in, or 

immortalized counterparts created in vitro. The main advantage of a cell line is its 

immortality, allowing them to be grown almost indefinitely in culture and stored for 

future use. Another important advantage, however, is the fact that all of the cells are 

identical, derived from the same cell precursor, from the same donor, allowing for more 

controlled, easily repeatable experiments, whereas ex vivo cells derived from different 

donors can vary significantly. On the other hand though, immortalization may have 

caused changes to the cells, making them less comparable to their primary counterparts. 

It is important, therefore, for a scientist that decides to use a cell line, to take this into 

consideration, and if possible investigate the differences between the cell line and the 

primary cells. 

In this study, neutrophils were the main cells of interest. Isolation of primary human 

neutrophils, however, is a relatively long, time consuming procedure (see chapter 2). 
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Moreover, neutrophils are very short lived cells, surviving only for a few hours ex vivo, 

meaning they have to be used the same day they were isolated. Furthermore, neutrophils 

derived from multiple donors may have significant differences in how they behave 

during assays and what they express. For these reasons, the use of a cell line as a 

neutrophil model was investigated. The cell line chosen was the HL60 cells, of human 

promyelocytic leukaemia origin, which have the capacity to differentiate into 

neutrophil-like cells under the appropriate conditions. HL60 differentiation was 

characterized and the expression of different markers and S1P receptors was examined. 

Moreover, their chemotactic responsiveness to IL-8 and their adhesive capabilities 

under flow conditions were investigated.  
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3.2 Materials and Methods 

3.2.1 HL60 cell culture and differentiation 

HL60 is a human cell line of promyelocyte origin that was established from a 36-year 

old woman with acute promyelocytic leukaemia (Collins et al., 1977)(see chapter 2.1). 

HL60 can be induced to differentiate into granulocyte-like cells or to 

monocyte/macrophage-like cells, depending on the compound used to stimulate 

differentiation. In this study they were differentiated into granulocyte-like cells and 

were used as a neutrophil model.  

The cells were routinely cultured in pre-warmed complete medium which comprised of 

RPMI 1640 medium supplemented with 10 % foetal bovine serum (FBS),  2 mM L-

Glutamine, 100 U/ml penicillin and 0.1 mg/ml streptomycin (all Sigma-Aldrich). They 

were seeded to a density of 3-5 x 105 cells/ml and incubated at 37 °C with 5% CO2. 

They were passed every 3-4 days into fresh medium.  

For differentiation, about 1.25 x 106 cells were transferred into a 25cm2 flask, with 

complete RPMI medium supplemented with 1.25% DMSO which induces 

differentiation (differentiation medium). When these cells were split, they were re-

cultured in fresh differentiation medium. In some experiments, differentiated or 

undifferentiated HL60 were incubated overnight in serum - free RPMI 1640 medium 

with or without 1.25% DMSO respectively. Serum - free RPMI 1640 medium was the 

same as the complete medium except FBS was replaced by 0.5% fatty acid-free BSA. 

Differentiated cells were used 4-6 days after DMSO addition, unless otherwise 

specified. 

3.2.2 Immunocytochemistry 

With immunocytochemistry, a cell sample can be fluorescently labelled with antibodies 

that detect a protein of interest, then visualised using fluorescent or confocal 

microscopy. Cells need to be cytospun onto a slide and stained with the appropriate 

primary and secondary antibodies to detect expression by fluorescence. A DNA dye is 

usually used as well in order to stain the nucleus of the cell. 

Cells were washed with PBS + 1% BSA and resuspended in a density of about 5 x 105 

cells/ml. Then, 200μl of cell suspension (100,000 cells) were cytospun at 1000rpm for 3 

minutes onto glass slides, then left to air dry. The cells were fixed by immersing the 
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slides into ice cold methanol and leaving them for 10 minutes at -20 °C. After drying, 

the cell section was circumscribed with a hydrophobic barrier pen. The cells were 

blocked with PBS + 1% BSA for 1 hour and then stained overnight with a primary 

antibody diluted accordingly in PBS + 1% BSA, in a humidified atmosphere, at 4 °C. 

The next day the cells were washed twice with PBS + 1% BSA for 5 minutes. Then an 

appropriate fluorescently conjugated secondary antibody was added, diluted in PBS + 

1% BSA. The cells were stained with the secondary antibody for 3 hours, in the dark, at 

room temperature, and then washed 3 times with PBS for 5 minutes each. Finally, 

DAPI, a DNA dye, diluted 1μM in PBS was added and incubated for 2 minutes, then 

washed once more with PBS. The slides were mounted with coverslip using a 

fluorescent mounting medium (Dako). They were stored at 4 °C in the dark until 

observed with a confocal microscope. 

3.2.3 RT - qPCR 

RNA was isolated with the TRI Reagent (Sigma-Aldrich) method (see chapter 2.5.1). 

Reverse transcription for production of cDNA was performed using Agilent’s 

AffinityScript Multiple Temperature cDNA synthesis kit (chapter 2.5.2). The cDNA 

was then used for detection of gene expression by real time PCR, using TaqMan® Gene 

Expression assays (Applied Biosystems) as primers (see chapter 2.5 for full list), with 

the TaqMan® Gene Expression Master Mix 2X (Applied Biosystems) in an Applied 

Biosystems qPCR machine. The house-keeping gene 18S was used as the reference 

gene. Data were analysed using the ΔΔCT method (chapter 2.5.3). 

3.2.4 HL60 chemotaxis 

In chemotaxis assays, cells pass through a porous membrane into a bottom chamber 

containing a chemoattractant molecule (see chapter 2.4). For HL60 chemotaxis, the 

chemokine IL-8, important for neutrophil migration was used as the chemoattractant. 

Differentiated or undifferentiated HL60 cells were incubated in serum-free media for 2 

hours or overnight, and were then added on top of a 3μm membrane (BD Biosciences), 

usually 1x105 cells per well, and left to migrate towards 50ng/ml IL-8 in serum-free 

RPMI 1640 media for 2 hours. Cells that had passed in the bottom chamber were 

measured by flow cytometry using counting beads.  
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3.2.5 Cellix VenaFlux flow-based adhesion assays 

Channels on Vena8 biochips were coated with 10µg/ml VCAM-1 Fc or ICAM-1 Fc 

overnight (see chapter 2.7). Before using them in experiments, they were blocked with 

1% BSA for 30 minutes. Cellix device and VenaFlux software were switched on and 

initialised. After washing the pump connections, biochip was mounted on the 

microscope stage and the channel to be used was briefly washed. Differentiated HL60 

cell suspension in medium was added in one end of the channel, with or without 

chemokine or other stimulant and flow was initiated (0.5 dyne/cm2). Several (4-8) 

representative fields of view were captured along the channel’s length. This was 

repeated for all the channels used in the experiment. For each image captured, adherent 

cells were measured and results analysed using Prism3 software (GraphPad Software 

Inc). 

 

  



77 
 

3.3 Results 

3.3.1 HL60 characterization and differentiation 

HL60 are normally promyelocytic cells, so in order to be used as a neutrophil model 

they need to be differentiated into granulocyte-like cells. The compound used for this 

purpose was DMSO, at 1.25%, and their differentiation was investigated. 

Morphologically, after 4-5 days in DMSO cells became notably smaller in size, and 

their proliferation rate decreased gradually, until they finally appeared to have become 

senescent (data not shown).  

HL60 cells were incubated for 3-9 days with differentiation medium (RPMI-1640 

complete with 1.25% DMSO) and then characterised by flow cytometry. They were 

stained for CD45, CD11b and CD69 surface expression at different time points and the 

mean fluorescence intensity (MFI) was measured (figure 3.1). CD45 was expressed at 

high levels even by undifferentiated cells, but its expression increased after DMSO 

incubation, with a peak expression at 5-7 days of differentiation (figure 3.1A). CD11b is 

an early marker of HL60 differentiation. It was not expressed at all by undifferentiated 

cells, but started being produced even after only 3 days of DMSO incubation, peaking at 

7 days of differentiation (figure 3.1B). On the other hand, CD69 expression by HL60 

appeared to be variable. It started high in undifferentiated cells and was decreasing after 

differentiation, although at 5-7 days of DMSO incubation it increased again slightly 

(figure 3.1C). This is in contrast with primary neutrophil CD69 expression, which is 

non-existent on resting neutrophils cell surface, but can be induced by various 

compounds (Atzeni et al., 2002). 

Next, the cells were stained for S1PR1 and S1PR3, as well as the CXCL8 chemokine 

receptor CXCR1, normally expressed by primary neutrophils. In order to avoid 

decreased surface expression due to internalization of the receptors after binding to their 

ligand, the cells were incubated overnight in serum-free medium. Undifferentiated 

HL60 cells as well as cells induced with DMSO for 6 days were used. CXCR1 and 

S1PR1 were not expressed on HL60 cells’ surface, even after their differentiation 

(figure 3.2A-D). On the other hand, S1PR3 was expressed at a relatively high 

percentage of undifferentiated cells, but was downregulated after differentiation (figure 

3.2E-F). 
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Figure 3.1. Characterisation of HL60 differentiation by DMSO. HL60 cells were incubated 

for 0, 3, 5, 7, and 9 days with 1.25% DMSO, then stained for different cell surface antigens and 

analysed by flow cytometry. (A-C) The mean fluorescence intensity (MFI) of CD45, CD11b 

and CD69 respectively, normalized for the appropriate isotype control, in accordance with days 

of differentiation. The data represent means ± SEM from three independent experiments. 
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Figure 3.2. HL60 expression of chemokine and S1P receptors before and after 

differentiation. HL60 cells were incubated for 6 days with 1.25% DMSO for differentiation. 

Differentiated or not cells were incubated overnight in serum-free medium, and then stained 

with fluorescently - labelled monoclonal antibodies (red) or appropriate isotype control 

antibodies (blue). (A-B) CXCR1 expression in undifferentiated and differentiated HL60 cells 

respectively. (C-D) S1PR1 expression in undifferentiated and differentiated HL60 cells 

respectively. (E-F) S1PR3 expression in undifferentiated and differentiated HL60 cells 

respectively. Data are representative of 4 independent experiments. MFI: mean fluorescence 

intensity 
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The expression of the S1P receptors S1PR1 and S1PR3 was also measured using 

immunofluorescent staining of differentiated or undifferentiated HL60 cells. Confocal 

images from cells stained for S1PR1 show some S1PR1 expression in the cytoplasm 

and granules close to the nucleus (figure 3.3A), with decreased intensity of stain after 

differentiation (figure 3.3B). S1PR3 on the other hand, shows low intensity staining 

compared with S1PR1 (figure 3.3C), with even further decrease after differentiation 

(figure 3.3D). It is curious that we see S1PR1 stain with this technique, whereas there 

was none shown by flow cytometry, but this could be due to low surface expression, not 

enough to be detected by the antibody, or a fault with the immunofluorescense antibody 

detecting different targets. 

To further investigate the S1P receptors expression by HL60 cells, their mRNA 

expression was measured using real time quantitative PCR. Total RNA was isolated 

from undifferentiated and differentiated HL60 and used in qPCR after reverse 

transcription into cDNA. The housekeeping gene 18S was used for normalisation and 

the mRNA expression of S1PR1, S1PR3, S1PR4, S1PR5, CD69 and CXCR1 was 

calculated. Looking at the relative expression of these genes in undifferentiated cells, 

CD69 was the most abundantly expressed, with S1PR4 second and S1PR3 following 

(figure 3.4A). S1PR5 and CXCR1 were barely expressed, with S1PR5 expression 

slightly exceeding that of CXCR1, whereas S1PR1 could not be detected at all by the 

qPCR instrument (figure 3.4A). After differentiation, HL60 cells greatly downregulated 

S1PR3 expression, though CD69 was expressed in only slightly lower levels than before 

differentiation (figure 3.4B). On the other hand, there was a 3-fold increase in S1PR4 

expression, whereas S1PR5 and CXCR1, barely detected before, were upregulated 100 

and 40 times respectively (figure 3.4B). S1PR1 was still not detected even after 

differentiation (data not shown). 
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Figure 3.3. Immunofluorescent expression of S1PR1 and S1PR3 in undifferentiated and 

DMSO differentiated HL60 cells. Undifferentiated HL60 (A, C, E) and 6 days differentiated 

HL60 cells (B, D, F) were incubated overnight in serum-free conditions. Then they were 

cytospun onto slides, fixed, and stained with primary polyclonal antibodies for S1PR1 (A, B) 

and S1PR3 (C, D), and appropriate secondary antibodies, or secondary only as controls (E, F). 

DAPI was also used to stain the nucleus (genomic DNA). They were observed in a confocal 

microscope. Pictures are representative of two independent experiments. Green: antibody, blue: 

DAPI. Scale bars: 47.62μm 
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Figure 3.4. mRNA expression of S1P receptors, CD69 and CXCR1 by undifferentiated and 

differentiated HL60 cells. mRNA expression was measured by real time PCR. Data are 

normalized for the housekeeping gene 18S. (A) Relative expression of S1PR1, S1PR3, S1PR4, 

S1PR5, CD69 and CXCR1 mRNAs by HL60 cells, using S1PR3 expression as a reference. (B) 

Fold change of S1PR3, S1PR4, S1PR5, CD69 and CXCR1 mRNA expression after 

differentiation of HL60 cells, using undifferentiated cells’ expression as a reference. Undet: 

undetected mRNA expression   
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3.3.2 HL60 chemotaxis 

To further investigate the usefulness of HL60 as a neutrophil model for this project, 

their ability to migrate towards the important neutrophil chemoattractant CXCL8 (IL-8) 

was assessed. However, it was already implied that since the important IL-8 receptor 

CXCR1 is not expressed in undifferentiated HL60, there would be no migration towards 

IL-8 observed, as was indeed the case (data not shown). Differentiated HL60 appeared 

to, at least, express the mRNA for CXCR1, but still when their migration towards IL-8 

was measured, it was not significant over vehicle (figure 3.5). 

 

 

Figure 3.5. IL-8 chemotaxis of differentiated HL60 cells. About 1x105 differentiated HL60 

cells were left to migrate for 2 hours towards 50ng/ml IL-8 or vehicle (-). The cells that passed 

through the filter into the wells were measured by flow cytometry using counting beads. Data 

are representative of two independent experiments. ns p≥0.05 
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3.3.3 HL60 flow-based adhesion assays 

In order to investigate HL60 adhesion to the endothelium, another aspect that is 

important for this project, the Cellix VenaFlux system was used. This system can be 

used to simulate blood flow, allowing for flow-based adhesion assays, which are more 

physiologically relevant. The channels were coated with VCAM-1 or ICAM-1 adhesion 

molecules instead of endothelial cells, to create a more controlled assay. In resting state, 

without any stimulation, the β2-integrins on neutrophil surface bind to these molecules 

with low affinity. Stimulation with molecules such as the chemokine IL-8 though, 

changes integrin conformation, increasing its affinity for the adhesion molecules. 

Mn2+can also activate integrins unspecifically, so MnCl2 can be used as a positive 

control. Differentiated neutrophil-like HL60 cells (dHL60) were used in these assays, 

after 5 days DMSO treatment. Differentiated HL60 adhered to VCAM-1 quite well, 

even without any stimulation (figure 3.6). When they were stimulated with IL-8, S1P or 

MnCl2, there was no significant difference in adhesion (figure 3.6). On the other hand, 

dHL60 did not adhere to ICAM-1 at all, and stimulation with IL-8 could not change that 

(figure 3.7). Stimulation with MnCl2 caused some adhesion (figure 3.7), but very low 

compared with VCAM-1 adhesion (figure 3.6).  
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Figure 3.6. Flow-based adhesion assay to VCAM-1 with dHL60. Upper: Capture images 

from flow-based assay with dHL60 in VCAM-1 coated channels, untreated or treated with 

50ng/ml IL-8. Clearly defined cells are adherent (green arrow), blurred cells are flowing (red 

arrow). Bottom: Differentiated HL60 were treated with different concentrations of IL-8, S1P, or 

1mM MnCl2 as a positive control, and used in VCAM-1 coated channels. Bars show means ± 

SEM from 5-7 captured fields of view. Data are representative of 4 independent experiments. ns 

p>0.05 
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Figure 3.7. Flow-based adhesion assay to ICAM-1 with dHL60. Upper and middle: Capture 

images from flow-based assay with dHL60 in ICAM-1 coated channels, untreated or treated 

with 50ng/ml IL-8 or 1mM MnCl2. Clearly defined cells are adherent (green arrow), blurred 

cells are flowing (red arrow). Bottom: Differentiated HL60 were treated with different 

concentrations of IL-8, or 1mM MnCl2 as a positive control, and used in ICAM-1 coated 

channels. Bars show means ± SEM from 5-7 captured fields of view. Data are representative of 

2 independent experiments. ns p>0.05 
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3.4 Discussion 

HL60 cells have the capacity to differentiate into granulocyte-like cells, making them 

appropriate to be used as a neutrophil model. However, as with all cell lines, they can be 

different than the primary cells in many ways, so it is important to investigate before 

using them in a study. Depending on what one is planning to use them at, they can 

prove useful for one project but not so useful for another. 

HL60 differentiate after a few days in DMSO into cells that look like neutrophils, and 

have other neutrophil-like qualities, like decreased survivability (Collins, 1987). Like 

ageing mature neutrophils, terminally differentiated HL60 start to show signs of 

programmed cell death or apoptosis (Martin et al., 1990). HL60 express CD45 in higher 

levels after differentiation, which agrees with what Boss et al. had found (Boss et al., 

1980). Mature neutrophils also have increased CD45 expression compared to their 

precursors (Lacombe et al., 1997). CD11b, an important neutrophil adhesion molecule 

(see chapter 1), is an early differentiation marker for HL60, and they start expressing it 

immediately after differentiation is initiated, as has been shown before (Hickstein et al., 

1987). On the other hand, they express high levels of CD69, which is not normally 

expressed by neutrophils unless induced (Atzeni et al., 2002).  

Notably, HL60 do not express any surface CXCR1, an important neutrophil chemokine 

receptor. However, there is some CXCR1 mRNA expression detected after HL60 

differentiation, which agrees with previous findings (Hauert et al., 2002). This was not 

enough though to induce chemotaxis towards IL-8 on differentiated HL60 cells, 

although primary neutrophils are highly chemotactic towards this chemokine. Different 

studies are in disagreement on whether dHL60 can migrate towards neutrophil 

chemoattractants, such as IL-8 and fMLP; even when they appear to be chemotactic 

though, their migration is much lower compared with primary neutrophils (Fontana et 

al., 1980; Niedel et al., 1980; Sirak et al., 1990; Hauert et al., 2002). There are also 

reports of CXCR4 expression and CXCL12 (SDF-1) induced chemotaxis in 

granulocyte-like but not monocyte-like differentiated HL60 cells (Gupta et al., 1999; 

Gupta et al., 2001). 

For this project, the expression of S1P receptors by HL60 was important. Neither 

differentiated nor undifferentiated HL60 express S1PR1, which according to Rahaman 

and colleagues is one of the major S1P receptors expressed by primary neutrophils 
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(Rahaman et al., 2006). This was confirmed by the current study, which showed that 

neutrophils mainly express S1PR1 and S1PR4 (see chapter 4). HL60 do express S1PR4, 

but this might not be enough to show if S1P has an effect on neutrophils, by using HL60 

as a model. Furthermore, HL60 express S1PR3 before differentiation, but it is highly 

downregulated after their differentiation into neutrophil-like cells. Primary neutrophils 

do not appear to express S1PR3 either (chapter 4; Rahaman et al., 2006). In agreement 

with our findings, Sato et al. showed that S1PR3 mRNA expression is downregulated 

after HL60 differentiation, whereas S1PR1 and S1PR2 are not expressed at all before or 

after differentiation (Sato et al., 1998). S1PR1 is one of the major S1P receptors and has 

been implicated with cell trafficking for many different types of immune cells (see 

chapter 1), so its absence from HL60 cells would be a major drawback in their 

usefulness as a neutrophil model in this project. On the other hand, it has been shown 

that exogenous S1P causes calcium mobilization through phospholipase C activation in 

HL60 cell line, indicating there is some S1P signalling in these cells (Okajima et al., 

1996). 

Another neutrophil function that was important for this study is neutrophil adhesion. 

Differentiated HL60 showed a different adhesion pattern than expected, when used in 

flow-based adhesion assays. Neutrophils would be expected to adhere mainly to ICAM-

1, through their β2 integrin CD11b/CD18. However, differentiated HL60 do not adhere 

to ICAM-1 even when stimulated by IL-8 although they express CD11b. This might 

mean they lack CD18 expression, or their integrin might not be activated, resulting to 

low affinity for ICAM-1. Since we already know their IL-8 signaling is impaired, this 

could be the reason IL-8 stimulation does not have an effect. Generally, what one would 

expect for adhesion to VCAM-1 and ICAM-1, would be to be low without any 

stimulation and increased after stimulation. However, dHL60 greatly adhere to VCAM-

1 without stimulation, with no significant effect after stimulation, whereas they do not 

adhere at all to ICAM-1, and stimulation does not change that significantly.  

In conclusion, it appears that HL60 are not a good enough model for the purpose of this 

project. IL-8 signalling is important for neutrophil chemotaxis and other related 

functions such as adhesion, but it seems to be impaired in HL60. Moreover, their S1P 

receptor expression profile appears to be different than primary neutrophils, with the 

important neutrophil S1P receptor S1PR1 missing completely from HL60 cells. Finally, 

their adhesion to ICAM-1 and VCAM-1 seems to be abnormal, not allowing for 

investigation of normal effects of S1P on neutrophil adhesion. In many ways dHL60 are 
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very similar to neutrophils, and they might be useful as a neutrophil model for a 

different study, but they were not appropriate to be used in this study. 
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Chapter 4. Direct effects of S1P on neutrophils 

4.1  Introduction 

Neutrophils or PMN are major mediators of inflammation and are involved in many 

pathological inflammatory conditions such as ischemia-reperfusion injury. There are 

indications that S1P can affect neutrophil migration into tissue and other functions of 

neutrophils such as the respiratory burst and degranulation (Rahaman et al., 2006; Hao 

et al., 2014).  

Neutrophils appear to express transcripts of the S1P receptors S1PR1, S1PR4 and 

S1PR5, though in pneumonia S1PR3 is also expressed (Rahaman et al., 2006). There 

are reports that S1P can have inhibitory effects on neutrophil migration towards IL-8 

and fMLP in vitro (Kawa et al., 1997; Rahaman et al., 2006). A cross-talk between 

S1PR4 or S1PR3 and CXCR1, an IL-8 receptor, might be partly responsible for this 

effect (Rahaman et al., 2006). Moreover, S1P lyase deficiency, which results in 

increased S1P levels, causes impaired neutrophil trafficking in mice, through an S1PR4 

dependent mechanism, another indication that S1P might affect neutrophils (Allende et 

al., 2011). The same effect on neutrophil trafficking is observed when animals are 

treated with S1P to attenuate myocardial ischemia-reperfusion injury (Theilmeier et al., 

2006), or ischemia-reperfusion injury in the lung after transplantation (Okazaki et al., 

2007). These in vivo effects though could be either direct or indirect, with S1P acting on 

neutrophils directly, or through a cascade of effects to other cells.  

On the other hand, S1P has been shown to act through S1PR1 to cause or intensify 

hyperalgesia in mice in a neutrophil-dependent mechanism (Finley et al., 2013). 

Furthermore, S1P seems to enhance immune-complex activation of neutrophils through 

Fcγ receptor, affecting Ca2+ mobilization, ROS generation, morphology and adhesion to 

endothelial surfaces under flow conditions (Florey and Haskard, 2009a). S1P also 

increases antineutrophil cytoplasmic antibody (ANCA)-mediated neutrophil activation 

(associated with systemic small vessel vasculitis), by enhancing respiratory burst and 

degranulation (Hao et al., 2014). Similarly, S1P pre-treatment was shown to increase 

neutrophil respiratory burst activation mediated by fMLP, by stimulation of PI3K and 

Akt signalling pathways (Wang et al., 2015).  

It is clear that S1P might be able to affect neutrophils, but whether this effect is direct or 

not remains to be further investigated. Moreover, neutrophils can be affected in different 
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ways by S1P, positively or negatively, affecting their migration or activation, through 

different S1P receptor signalling and by stimulation of various signalling pathways. In 

this chapter, the direct effects S1P might have on neutrophils were investigated, 

focusing especially on any effects on neutrophil trafficking. For this reason, neutrophil 

S1P receptor expression was firstly examined, followed by the pathways through which 

S1P signals on neutrophils, and finally any direct S1P effects on neutrophil migration 

and adhesion were explored.   
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4.2 Materials and Methods 

4.2.1 Whole blood flow cytometry 

To use whole blood in a flow cytometry experiment, an extra red-blood-cell lysis step is 

added, and the whole procedure is carried out at room temperature rather than at 4oC. A 

small amount of blood was added per tube (usually 100µl), Fc receptor blocking was 

performed (Human TruStain FcXTM, BioLegend) and then stained as normally with 

fluorochrome conjugated primary antibodies or appropriate isotype controls, as 

described in chapter 2.3. After staining was completed, 2ml of red-blood-cell lysis 

buffer (FACS lysing solution, BD Biosciences) were added per tube and incubated for 

10 minutes. After centrifugation and removal of the lysis buffer, a wash was performed 

and cells resuspended in PBS + 2% FBS to be examined in the flow cytometer (FACS 

Canto II, BD Biosciences). Data were analysed using FlowJo 7.6 (Treestar). 

4.2.2 Neutrophil isolation and CD69 expression stimulation 

Neutrophils were isolated from whole human blood using the Percoll method as 

described in chapter 2.1.5. Sometimes the final wash step was performed at a higher 

centrifugation speed of 400 x g instead of 200 x g, to avoid losing many cells. However, 

this lead to higher levels of neutrophil activation, and neutrophil profile was slightly 

different, so in later isolations it was avoided. Cells were separated as needed and used 

immediately for experiments, or cultured for 30 minutes in serum-free RPMI-1640 

medium (RPMI-1640 with 0.5% BSA fatty-acid free) first. For stimulation of CD69 

expression, neutrophils were incubated for 18 hours in serum-free medium with 

500U/ml GM-CSF (PeproTech). In some experiments, neutrophils were incubated for 1 

hour in serum-free medium with 5ng/ml PMA (PeproTech) instead. CD69 expression 

was measured using flow cytometry with anti-CD69 APC conjugated antibody (BD 

Biosciences; see chapter 2.3). Data analysed using FlowJo 7.6 (Treestar). 

4.2.3 RT - qPCR 

RNA was isolated with the TRI Reagent (Sigma-Aldrich) method, or using the RNeasy 

Plus Mini Kit (QIAGEN), following the company’s protocol (see chapter 2.5.1). 

Reverse transcription for production of cDNA was performed using Agilent’s 

AffinityScript Multiple Temperature cDNA synthesis kit (chapter 2.5.2). The cDNA 

was then used for detection of gene expression by real time PCR, using TaqMan® Gene 
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Expression assays (Applied Biosystems) as primers (see chapter 2.5 for full list), with 

the TaqMan® Gene Expression Master Mix 2X (Applied Biosystems) in an Applied 

Biosystems qPCR machine. The house-keeping gene 18S was used as the reference 

gene. Data were analysed using the ΔΔCT method (chapter 2.5.3). 

4.2.4 Phospho-Akt (S473) cell-based ELISA 

The Cell-Based ELISA kit for Human/Mouse/Rat Phospho-Akt (S473) from R&D 

Systems was used, following the protocol the company provided. Cell-based Enzyme 

Linked Immunosorbant Assay (ELISA) allows detection of two target proteins at the 

same time on whole cells, with no need for cell lysis. Around 100,000 cells in 100μl 

were seeded in each well of the provided 96-well plate, incubated for 1 hour or 

overnight at 37 °C, 5% CO2, then stimulated for desired times with different reagents 

(S1P, IL-8 or H2O2), and 8% formaldehyde was added for 20 minutes at room 

temperature for fixation. Alternatively the fixed cells could be stored at 4 °C overnight 

or for up to 2 weeks before continuing the procedure. Formaldehyde was removed and 

the plate was washed with wash buffer 3 times for 5 minutes under gentle shaking on a 

rocker platform. Quenching buffer was added then, 0.6% H2O2 in wash buffer, and 

incubated for 20 minutes at room temperature. Another 3 washes were performed then 

for 5 minutes each with gentle shaking. Next, cells were incubated with blocking buffer 

for 1 hour at room temperature and then washed 3 times as before.  

Primary antibody mixture was added (rabbit anti-pAkt (S473) and mouse anti-total Akt 

in blocking buffer) and incubated overnight at 4 °C. After washing 3 times, the 

secondary antibody mixture (anti-rabbit IgG HRP-conjugated and anti-mouse IgG AP-

conjugated diluted in blocking buffer) was added and incubated for 2 hours at room 

temperature. The cells were then washed 2 times with wash buffer followed by 2 

washes with PBS, all for 5 minutes with gentle shaking. Finally, the fluorogenic 

substrates were added; first substate F1, and after 20-60 minutes incubation substrate F2 

followed by 20-40 minutes incubation, all while protected from light. Fluorescence was 

measured in a plate reader at 530nm excitation / 590nm emission for phospho-Akt and 

360nm excitation / 460nm emission for total Akt. Results were normalized for 

background, which was the fluorescence from secondary only wells, and presented as 

ratio of phospho-Akt / total Akt. For neutrophils, however, a modification to the 

original protocol had to be made, specifically for the quenching buffer step that was 

changed from 0.6% H2O2 to 2.4% H2O2, with 1 hour incubation instead of 20 minutes. 
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The reason for this was the endogenous peroxidase activity of neutrophils that had to be 

completely quenched in order to get appropriate measurements. 

4.2.5 Western blotting 

Cells were treated or pre-treated with S1P, IL-8 or H2O2 in serum-free media for 

appropriate time, then equal volume of ice cold PBS was added and incubated on ice for 

2 minutes to stop treatment. Cells were then lysed and protein measured with BCA 

protein assay (see chapter 2.6). Samples with loading buffer were loaded on a poly-

acrylamide gel together with a protein ladder; same amount of protein was loaded per 

sample. Gel was run at 30mA for about an hour. Western blotting “sandwich” was 

prepared, with sponges, whattman paper, the gel and a piece of PVDF membrane, and 

run in transfer buffer. Membrane was blocked and stained with primary antibody 

against phospho-ERK1/2 (phospho-p44/42 (Thr202/Tyr204); Cell Signaling, USA) 

overnight. After washing the membrane, appropriate secondary antibody, anti-rabbit 

HRP conjugated, was added and incubated for 1 hour. Finally, membrane was washed, 

incubated with substrate and developed. Membrane was then stripped and stained again 

with appropriate loading control antibody, usually total ERK1 or GAPDH. 

4.2.6 Phospho-kinase array 

The Proteome Profiler Human Phospho-Kinase Array Kit (R&D Systems) was used, 

following the protocol described at the company manual provided. The array can detect 

relative phosphorylation levels of 43 kinase phosphorylation sites and 2 related total 

proteins, with antibodies spotted in duplicate on two parts nitrocellulose mebranes. 

Isolated human neutrophils were treated for 3 minutes with 1μM S1P or 100ng/ml IL-8, 

or pre-treated with 1μM S1P for 1 hour then treated with 100ng/ml IL-8 for 3 minutes, 

all in serum-free media, and were then lysed using the provided lysis buffer. The 

membranes were blocked with provided block buffer for 1 hour at room temperature on 

a rocking platform. Lysates were prepared by dilution in block buffer and then added to 

the membranes and incubated overnight at 4 oC on a rocking platform. The membranes 

were washed 3 times with provided wash buffer for 10 minutes on a rocking platform, 

and were then incubated with appropriate Detection Antibody Cocktail, diluted as 

instructed, for 2 hour at room temperature on a rocking platform. Next, they were 

washed another 3 times and incubated for 30 minutes with Streptavidin-HRP solution, 

diluted appropriately, on a rocking platform. Finally, they were washed and developed 

using Pierce chemiluminescent substrate (SuperSignal West Pico Substrate, Thermo 
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Scientific), and Kodak film, as in western blotting (see chapter 2.6.4). Results were 

analyzed by densitometry using ImageJ software. 

4.2.7 Neutrophil chemotaxis 

Isolated human neutrophils were added at the top of a modified Boyden chamber with a 

3μm membrane and left to migrate towards different concentrations of the chemokine 

IL-8 (R&D Systems) for 60-90 minutes (see chapter 2.4). There were control wells with 

no chemokine, or chemokinesis control with chemokine on both chambers. In some 

experiments neutrophils were pre-treated with 1μM S1P in serum-free media for 30 

minutes then left to migrate towards IL-8. For CD69 induction before chemotaxis, 

neutrophils were incubated for 18 hours with 500U/ml GM-CSF or media only, and 

then left to migrate towards IL-8 with or without S1P pre-treatment. For all 

experiments, cells that had passed at the bottom chamber were measured by flow 

cytometry using counting beads. 

4.2.8 Cellix VenaFlux flow-based adhesion assays 

Channels on Vena8 or Vena8 Fluoro+ biochips were coated with 10µg/ml VCAM-1 Fc 

or ICAM-1 Fc overnight (see chapter 2.7). Before using them in experiments, they were 

blocked with 1% BSA for 30 minutes. Cellix device and VenaFlux software were 

switched on and initialised. After washing the pump connections, biochip was mounted 

on the microscope stage and the channel to be used was briefly washed. Neutrophil cell 

suspension in medium was added in one end of the channel, with or without chemokine 

or other stimulant and flow was initiated (0.5 dyne/cm2). Several representative fields of 

view were captured along the channel’s length. This was repeated for all the channels 

used in the experiment. For each image captured, adherent cells were measured and 

results analysed using Prism3 software (GraphPad Software Inc).  
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4.3 Results 

4.3.1 Neutrophil characterization and CD69 expression 

4.3.1.1 Neutrophil characterization 

In order to use primary neutrophils to test whether S1P has an effect on them, they have 

to be isolated from human blood. However, the isolation procedure has to be performed 

carefully, because neutrophils are fragile cells and need to be handled with care, 

otherwise they become activated and their profile changes significantly. They are also 

very short lived cells, starting to undergo apoptosis only a few hours after isolation. 

The first step to make sure isolated neutrophils would be similar with blood neutrophils 

was to compare them with neutrophils in whole human blood. Whole human blood was 

used in flow cytometry, after red blood cell lysis had been performed. In order to 

differentiate the leukocyte populations, the leukocyte marker CD45 was used, whereas 

the neutrophil marker CD66b was used to identify the neutrophil population (PMN; 

figure 4.1). Next, the PMN population was tested for cell surface expression of the 

chemokine receptors CXCR1 and CXCR2, the adhesion molecule CD11b and the 

activation marker CD69. Both chemokine receptors and CD11b were expressed by 

almost the entire neutrophil population, whereas CD69 was not expressed at all (figure 

4.2). 

Neutrophils were isolated from whole human blood, and were stained for flow 

cytometry immediately after isolation. At the forward scatter (FSC) towards side scatter 

(SSC) graph, it is obvious that there is mainly only one uniform population (figure 4.3). 

Propidium iodide was used to assess the viability, which was over 95%, whereas the 

gated population was found to not express CD3, a T cell marker, at all, indicating the 

purity of the PMN population (figure 4.3). Isolated neutrophils were stained for CD45, 

CXCR1, CD11b and CD69. All of them express CD45 and CD11b as was expected, 

most of them express CXCR1, and CD69 is not expressed at all (figure 4.4). These 

results are similar to what was observed for whole blood neutrophils, showing that 

isolated neutrophils are suitable to be used in further experiments. Isolated neutrophils 

were also stained with S1P receptor antibodies, for a first assessment of the receptors 

they express, demonstrating an expression of S1PR3, but no expression of S1PR1 

(figure 4.4E-F). 
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Figure 4.2. Flow cytometry analysis of PMN in whole blood. Whole blood flow cytometry 

was performed with gating to the neutrophil population. Cells were stained with fluorescently 

conjugated monoclonal antibodies for CXCR1, CXCR2, CD11b and CD69 (red) or appropriate 

isotype control antibodies (blue). Results are representative of 2 independent experiments. 
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Figure 4.3. Neutrophil isolation assessment. PMNs were stained immediately after isolation. 

(A) Gating technique. (B) Propidium iodide (PI) staining to assess viability of cells. PI+ non 

viable, PI- viable cells. (C) Staining with monoclonal fluorescently conjugated anti-CD3 

antibody (red) and appropriate isotype control (blue) to assess purity of cells. CD3 is a T 

lymphocyte marker.  
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Figure 4.4. Neutrophil expression of cell surface antigens. Human peripheral blood PMNs 

were stained, immediately after isolation, with fluorescently conjugated monoclonal antibodies 

or non-directly conjugated polyclonal primary antibody (S1PR3) and appropriate conjugated 

secondary antibody (red), and separately with appropriate isotype control antibodies or 

secondary only (blue). Data are representative of n independent experiments. (A) Surface 

expression of CD45 antigen (n=1). (B) Expression of the chemokine receptor CXCR1 (n=4). 

(C) Expression of the adhesion molecule CD11b (n=4). (D) Expression of the CD69 antigen 

(n=4). (E) S1PR1 surface expression (n=2). (F) S1PR3 surface expression (n=3). 
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4.3.1.2 Neutrophil S1P receptors 

To further investigate the S1P receptors that neutrophils express, real-time PCR was 

used. Total RNA was isolated from neutrophils and used in qPCR after cDNA 

synthesis. The S1P receptor genes’ S1PR1, S1PR3, S1PR4 and S1PR5 mRNA 

expression was assessed, in parallel with the chemokine receptor’s CXCR1 and 

activation molecule’s CD69 mRNA expression. S1PR1 and S1PR4 are expressed in 

higher levels than the rest, even higher than CXCR1 expression, with S1PR4 being the 

highest; whereas S1PR5 is expressed in very low levels and S1PR3 is barely expressed 

at all (figure 4.5). CD69 mRNA seems to also be present at relatively high levels (figure 

4.5). These results differ from what was observed for surface expression of S1PR1 and 

S1PR3 (figure 4.4); this could be due to a fault of the flow cytometry antibodies, with 

low sensitivity in the case of S1PR1 antibody, and recognition of different targets 

(perhaps another S1P receptor) for S1PR3. On the other hand, mRNA expression does 

not necessarily translate to protein expression, so that could be another reason for these 

contradictory results. As for CD69 expression, it appears that might be the case, since 

we can observe some mRNA expression with no surface expression apparent (figures 

4.4, 4.5). This could indicate a mechanism of CD69 mRNA accumulation for a rapid 

expression after activation; or that CD69 protein is instead stored intracellularly to be 

transported to the cell surface after appropriate stimulation. 
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Figure 4.5. Relative mRNA expression of different genes by neutrophils. mRNA expression 

was detected using real-time PCR. Data are normalized for the housekeeping gene 18S and 

presented as relative expression in comparison with CXCR1 gene expression. Data represent 

mean ± SEM from two independent experiments.  
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4.3.1.3 Neutrophils and CD69 

As has been previously observed, the activation molecule CD69 plays an important role 

in S1PR1 mediated lymphocyte egress from lymphoid organs (Shiow et al., 2006; Swan 

et al., 2012). However, CD69 can be expressed by neutrophils, too, after appropriate 

stimulation, though its role has not been thoroughly identified yet (Gavioli et al., 1992; 

Atzeni et al., 2002). In order to investigate whether CD69 interacts with S1P receptors 

in neutrophils, isolated neutrophils were treated with various molecules to stimulate 

CD69 expression.  

According to one theory, CD69 is constitutively expressed in neutrophils, but is stored 

intracellularly until neutrophils are activated by appropriate compounds such as 

phorbol-12-myristrate 13-acetate (PMA) and fMLP, in which case it is rapidly relocated 

to the cell surface (Gavioli et al., 1992; Noble et al., 1999). This theory could not be 

reproduced in the current study, since when isolated neutrophils were treated for 1 hour 

with 5ng/ml PMA and then stained for CD69 surface expression and analysed by flow 

cytometry, no CD69 expression induction was observed (data not shown). 

According to a different study though, brief incubation is not enough to cause CD69 

surface expression in neutrophils, but an extended stimulation for 18 hours with GM-

CSF, IFN-α or IFN-γ causes an induction of CD69 expression, with up to 60% of 

neutrophils expressing it on their surface (Atzeni et al., 2002). The same study claims 

that this is due to new protein synthesis and an intracellular storage was not identified. 

For the current project, isolated neutrophils were incubated with 500U/ml GM-CSF for 

18 hours and CD69 surface expression was assessed. This method indeed caused some 

CD69 expression on neutrophils’ surface, which was observed only after incubation 

with GM-CSF and not after 18 hours in medium only (figure 4.6). The results varied, 

starting from 2.4% of neutrophils positive for CD69 expression with up to 40% positive 

in some cases. It is interesting to note that the method of isolation played a huge role in 

the capacity of neutrophils to express CD69 after incubation. When a washing step was 

altered to a higher centrifugation speed, neutrophil CD69 expression after 18 hours of 

GM-CSF incubation was lower, with 2 - 12% of neutrophils being positive, whereas in 

the non-altered method of neutrophil isolation, 12 - 40% of all neutrophils expressed 

CD69 on their surface (table 4.1).    
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Low expression group (n=6) High expression group (n=8) 

8.22% 30.5% 

10.6% 20.1% 

5.84% 12.3% 

2.42% 15.8% 

12.5% 20.1% 

6.73% 37.6% 

 40.6% 

 30.5% 

Mean ± SD = 7.72% ± 0.036 Mean ± SD = 25.94% ± 0.103 

 

Table 4.1. Neutrophil CD69 surface expression after GM-CSF incubation. Percentage of 

cells positive for CD69 surface expression after 18 hours incubation with 500U/ml GM-CSF as 

was assessed by flow cytometry. Low expression group refers to neutrophils isolated with an 

altered method whereas high expression group refers to neutrophils isolated with the regular 

method of neutrophil isolation. SD: standard deviation  
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Figure 4.6. Expression of CD69 after GM-CSF incubation. Neutrophils were stained after 

18h in medium only or after 18h in 500U/ml GM-CSF, with directly conjugated monoclonal 

antibody for CD69 (red) or appropriate isotype control antibody (blue). (A) Dot plot showing 

the percentage of cells expressing CD69 after 18h in medium. (B) Dot plot showing the 

percentage of cells expressing CD69 after 18h in GM-CSF. (C-D) Histograms for CD69 

expression after 18h in medium and 18h in GM-CSF respectively. MFI: Median fluorescent 

intensity 
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Neutrophils incubated for 18 hours with GM-CSF or medium only were then assessed 

for the expression of important neutrophil molecules, such as chemokine receptors, 

adhesion molecules and of course S1P receptors. The IL-8 receptor CXCR1 was still 

expressed on the surface of neutrophils after 18 hours incubation either in medium or 

GM-CSF, at relatively similar levels as when freshly isolated (figure 4.7 A-C). CD11b, 

an adhesion molecule, was also expressed; however 18 hours after isolation its 

expression decreased, although GM-CSF incubation kept it at relatively higher levels 

(figure 4.7 D-F). S1PR3 which seemed to be expressed by freshly isolated neutrophils, 

as indicated by flow cytometry, appeared to greatly decrease after 18 hours, whereas 

GM-CSF incubation caused an even further decrease (figure 4.7 G-I). 

To further assess the expression of S1P receptors, qPCR was used, to measure their 

mRNA expression after 18 hours incubation with GM-CSF or medium comparative to 

the expression by freshly isolated neutrophils (figure 4.8). S1PR1 was one of the S1P 

receptors mainly expressed by fresh neutrophils, but after 18 hours incubation with GM-

CSF it decreased considerably, at ¼ of its previous expression, something that was not 

observed as much with medium only. The other receptor expressed in high amounts by 

fresh neutrophils, S1PR4, underwent an ever more dramatic decrease, with only 10% 

expression of what was before remaining, both after 18 hours incubation with GM-CSF 

and with medium only. On the other hand, S1PR5, which was expressed at very low 

levels after isolation, increased 2-fold after 18 hours in medium and 2.5-fold after GM-

CSF incubation. S1PR3 was barely expressed after isolation, and its expression was 

even lower after 18 hours in medium or GM-CSF. Interestingly, CXCR1 mRNA 

expression appeared to decrease significantly after 18 hours in medium or GM-CSF, 

although CXCR1 protein was observed at similar levels on neutrophil surface. 

Moreover, CD69 mRNA did not appear to increase after 18 hours incubation in GM-

CSF, but this is probably due to high levels of mRNA present before incubation 

although there was no surface expression. However, 18 hours incubation in medium 

only did cause a decrease in the mRNA levels of CD69.  
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Figure 4.7. Variation in surface expression of CXCR1, CD11b and S1PR3 after GM-CSF 

incubation. Neutrophils were stained immediately after isolation, after 18h in medium only and 

after 18h in medium with 500U/ml GM-CSF. Red: specific antibody directly conjugated or with 

conjugated secondary antibody (for S1PR3), blue: appropriate isotype control or secondary 

only. Data are representative of n independent experiments. (A-C) CXCR1 expression 

immediately after isolation, after 18h in medium, and after 18h in GM-CSF respectively (n=2). 

(D-F) CD11b expression after isolation, 18h in medium, 18h in GM-CSF respectively (n=3). 

(G-I) S1PR3 expression after isolation, 18h in medium and 18h in GM-CSF respectively (n=3). 

MFI: mean fluorescence intensity, normalised for appropriate control. 
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Figure 4.8. Differences in mRNA expression of different genes after GM-CSF incubation 

of neutrophils. mRNA expression was measured using real time PCR. Data show the fold 

change in neutrophil mRNA expression of different genes after 18h in medium only or 18h in 

500U/ml GM-CSF, in comparison with the mRNA expression immediately after isolation.   
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4.3.2 Activation of phospho-kinase pathways in neutrophils 

4.3.2.1 Phospho-kinase array 

S1P signals through 5 G-protein coupled receptors leading to the activation of different 

signalling pathways. In order to investigate whether S1P can signal in neutrophils, after 

verifying that neutrophils express S1P receptors, the next step was to measure the 

phosphorylation of important kinases indicating a signalling cascade has been initiated. 

Thus, a phospho-kinase array was used, where neutrophils were treated with S1P or IL-

8 as a control, and the phosphorylation of different kinases was compared to that on 

untreated cells (figure 4.9). Indeed, neutrophils treated with S1P expressed a lot of 

phosphorylated kinases, including GSK3α/β, MSK1/2, p53, RSK1/2/3, c-Jun, STAT4 

and eNOS. Moreover, it was investigated whether S1P pretreatment has an effect on IL-

8 signalling. When neutrophils were first treated with S1P before being treated with IL-

8, there was an increase in phosphorylation of kinases MEK1/2 and MSK1/2 whereas 

the kinases GSK3α/β, RSK1/2 and STAT4, among others, were less phosphorylated 

(figure 4.9).  
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4.3.2.2 p-ERK and p-Akt expression 

To further investigate the phosphorylation of some important signalling kinases, cell-

based ELISA and western blotting were used. Neutrophils were treated with different 

S1P concentration as well as IL-8 and H2O2 as controls, before being used in a cell-

based ELISA for phospho-Akt (p-Akt). Although IL-8 and H2O2 caused an increase in 

p-Akt normalized for total Akt, S1P did not appear to have an effect (figure 4.10). On 

the other hand, when neutrophils were treated with 1μM S1P then used in western 

blotting for phospho-ERK1/2 (p-ERK1/2), there was a significant increase in ERK 

phosphorylation compared with untreated cells (figure 4.11). The optimal treatment 

time varied from 5-10 minutes, whereas IL-8 treatment for 3 minutes was enough to 

cause similar ERK phosphorylation. Again the results were diverse depending on the 

donor of the cells, with phosphorylation after IL-8 treatment sometimes being much 

more pronounced, comparable with the phosphorylation caused by H2O2, another 

positive control (figure 4.11). Moreover, S1P pretreatment before IL-8 stimulation was 

investigated, showing a significant increase in p-ERK1/2 phosphorylation in the 

pretreated compared with the non-pretreated cells (figure 4.12). 

 

Figure 4.10. Phospho-Akt expression of neutrophils after S1P treatment. Neutrophils 

(PMN) where treated with different concentrations of S1P as well as IL-8 and H2O2 as controls, 

then used at a cell-based pAkt ELISA assay. Results are depicted as a ratio of phospho-Akt/total 

Akt. 
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Figure 4.11. pERK1/2 expression of neutrophils after treatment with IL-8 and S1P. 

Isolated neutrophils were treated for different times with 100ng/ml IL-8 or 1µM S1P, or 600µM 

H2O2 for 5 minutes as control. Lysates where then prepared and used in western blotting 

experiments with pERK1/2 antibody, as well as total ERK1 antibody as loading control. Results 

are from two representative experiments out of 5 similar experiments. 

 

 

 

Figure 4.12. Effect of S1P pre-treatment on pERK1/2 expression induced by IL-8. Isolated 

neutrophils were either pre-treated with 1µM S1P for 1 hour or with medium only, then treated 

with 100ng/ml IL-8 for 3 minutes. Lysates were used for pERK1/2 western blotting (as above). 

Results are representative of two independent experiments. 
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4.3.3 Neutrophil chemotaxis 

After it had been established that S1P can signal on neutrophils through S1P receptors, 

the effects this signaling has were investigated. Specifically, the effects it might have on 

neutrophil chemotaxis towards IL-8, which is the focus of this study, were explored. 

Neutrophils are very chemotactic towards IL-8, even at low concentrations, as can be 

seen in figure 4.13. However, when neutrophils were pre-treated with S1P for 30 

minutes before being used for chemotaxis, there was no consistent effect observed. 

Again, the donor of the cells played a major role, leading to some expreriments showing 

a decrease in chemotaxis (figure 4.14), others an increase (data not shown), whereas in 

others there was no significant difference (figure 4.15). Interestingly, when a 

chemokinesis control was used, where IL-8 was added in both sides of the chemotaxis 

membrane, S1P seemed to cause a decrease in general chemokinetic capabilities of 

neutrophils (figure 4.15). 

Furthermore, the effects CD69 might have on S1P mediated chemotaxis towards IL-8 

were investigated. Neutrophils were treated with GM-CSF for 18 hours to induce CD69 

surface expression. Untreated neutrophils, after 18 hours of incubation, were 

considerably less chemotactic towards IL-8 compared to fresh neutrophils. When 

untreated neutrophils were pre-treated with S1P before IL-8 chemotaxis however, there 

was an increase in chemotactic response (figure 4.16). Neutrophils treated with GM-

CSF for 18 hours appeared to maintain more of their chemotactic ability; however, the 

effect of S1P on chemotaxis seemed to be ablated (figure 4.16). This might be an 

indication that CD69 expression on GM-CSF treated neutrophils interferes with S1P 

signalling, perhaps with a mechanism similar to that on lymphocytes. In this specific 

experiment, after GM-CSF incubation around 12.5% of the cells appeared to be positive 

for CD69 expression. Due to the relatively low percentage of CD69 positive cells, other 

mechanisms should also be considered.   
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Figure 4.13. Neutrophil chemotaxis towards different concentrations of IL-8. Neutrophils 

were incubated in serum-free medium for 30 minutes then left to migrate towards different 

concentrations of IL-8 for 60 minutes. The cells that passed into the wells were measured by 

flow cytometry. Data representative of two independent experiments. *p<0.05, **p<0.01 

compared with 0ng/ml IL-8. 

 

 

 

 

Figure 4.14. Effect of S1P pretreatment on neutrophil chemotaxis towards IL-8. 

Neutrophils (PMN) were incubated for 30 minutes in 1μM S1P in serum-free medium or 

medium only, then left to migrate for 60 minutes towards 50ng/ml IL-8 or vehicle (-). The cells 

that passed into the wells were measured by flow cytometry using counting beads. *p<0.05 
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Figure 4.15. Effect of S1P pretreatment on PMN chemotaxis and chemokinesis. PMNs 

were incubated for 30 minutes in 1μΜ S1P in serum-free medium or medium only, then left to 

migrate for 90 minutes toward 50ng/ml IL-8 or vehicle(-). A chemokinesis control was included 

where 50ng/ml IL-8 were added in both sides of the chemotaxis filter (control). Cells that 

passed into the wells were counted by flow cytometry. *p<0.05, ns p≥0.05 

 

 

 

 

Figure 4.16. Effect of S1P on GM-CSF pretreated neutrophils.  Neutrophils were incubated 

for 18h with medium only (-) or 500U/ml GM-CSF. Then, they were incubated for 30 minutes 

with 1μM S1P or medium only and left to migrate towards 50ng/ml IL-8 or vehicle for 90 

minutes. Cells that passed into the wells were counted. *p<0.05, ns p≥0.05 
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4.3.4 Neutrophil flow-based adhesion assays 

The CellixTM system of flow-based adhesion was used to assess whether S1P has an 

effect on neutrophil adhesion to VCAM-1 and ICAM-1 adhesion molecules. For these 

assays, the channels were coated with the adhesion molecules VCAM-1 or ICAM-1, 

and neutrophils stimulated or not with IL-8 were used to flow through. Neutrophils 

show low adherence to VCAM-1 without any stimulation; however stimulation with IL-

8 causes a major increase in adhesion, with 25ng/ml IL-8 being the optimal 

concentration (figure 4.17). On the other hand, neutrophils adhere to ICAM-1 even 

without any stimulation; again, however, IL-8 stimulation significantly increases 

adhesion, with 50ng/ml being the optimal concentration (figure 4.18). In several 

experiments, some neutrophils were pre-treated with 1μM S1P for 1 hour before being 

stimulated with various IL-8 concentrations and used in the assay (figure 4.19). S1P 

treatment appeared to have varied effects on neutrophil adhesion, so to further 

investigate, one “optimal” IL-8 concentration was chosen per adhesion molecule, 

25ng/ml for VCAM-1 and 100ng/ml for ICAM-1, and the neutrophils were pre-treated 

with a range of S1P concentrations (figure 4.20). Again, the effects seemed to be varied; 

so, eventually, one S1P concentration, that seemed to have the most significant effect 

for both VCAM-1 and ICAM-1 was chosen, 5μM S1P, and it was used with one IL-8 

concentration in a triple assay with 3 channels per adhesion molecule (figure 4.21). The 

conclusion after this assay was that S1P does not have a consistent significant effect on 

IL-8 induced neutrophil adhesion to VCAM-1 and ICAM-1.  
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Figure 4.17. Flow-based adhesion assay to VCAM-1 with PMN. Top: Capture images from 

flow-based assay with neutrophils (PMN) in VCAM-1 coated channels, untreated or treated 

with 25ng/ml IL-8. Clearly defined cells are adherent (green arrow), blurred cells are flowing 

(red arrow). Bottom: Isolated neutrophils were treated with different concentrations of IL-8, and 

used in VCAM-1 coated channels. Bars show means ± SEM from 5-7 captured fields of view. 

Data are representative of 5 independent experiments. *** p<0.001 compared with 0 ng/ml IL-

8. 
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Figure 4.18. Flow-based adhesion assay to ICAM-1 with PMN. Top: Capture images from 

flow-based assay with neutrophils (PMN) in ICAM-1 coated channels, untreated or treated with 

50ng/ml IL-8. Clearly defined cells are adherent (green arrow), blurred cells are flowing (red 

arrow). Bottom: Isolated neutrophils were treated with different concentrations of IL-8, and 

used in ICAM-1 coated channels. Bars show means ± SEM from 5-7 captured fields of view. 

Data are representative of 5 independent experiments. *** p<0.001 compared with 0 ng/ml IL-

8. 
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Figure 4.19. S1P pre-treatment effect on IL-8 stimulated flow-based adhesion of PMN. 

Isolated neutrophils were pre-treated with 1µM S1P or medium only for 1 hour, stimulated with 

different concentrations of IL-8, and then used in VCAM-1 (A) or ICAM-1 (B) flow-based 

adhesion assays. Bars show means ± SEM from 5-7 captured fields of view. Data are 

representative of 3 independent experiments. 
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Figure 4.20. Effect of different concentrations of S1P pre-treatment on IL-8 stimulated 

flow-based adhesion. Isolated neutrophils were pre-treated with different concentrations of S1P 

for 1 hour, stimulated with 25ng/ml IL-8 for VCAM-1 or 100ng/ml IL-8 for ICAM-1, and then 

used in VCAM-1 (A) or ICAM-1 (B) flow-based adhesion assays. Bars show means ± SEM 

from 2 independent channels in the same experiment. 
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Figure 4.21. S1P pre-treatment and IL-8 stimulated flow-based adhesion. Isolated 

neutrophils were pre-treated with 5µM S1P or medium only for 1 hour, stimulated with 25ng/ml 

IL-8 for VCAM-1 or 100ng/ml IL-8 for ICAM-1, and then used in VCAM-1 or ICAM-1 flow-

based adhesion assays. Bars represent means ± SEM from 3 independent channels in the same 

experiment. ns p>0.05 
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4.4 Discussion 

Neutrophils isolated from human blood appeared to mainly express S1P receptors 

S1PR1 and S1PR4, at least at an mRNA level, with very low amounts of S1PR5. This 

result partly agrees with Rahaman et al., who suggested neutrophils express the 

receptors S1PR1, S1PR4 and S1PR5 (Rahaman et al., 2006). CD69 is an early 

activation marker on T cells, which interferes with their egress from lymphoid organs 

by crosslinking with S1PR1 (Shiow et al., 2006). In regards to CD69 expression by 

neutrophils, they appear to express it at transcript level, but not on the cell surface, 

immediately after isolation. This seems to agree with findings of an intracellular storage 

of CD69, so that it can be rapidly relocated to the cell surface after activation with PMA 

or fMLP (Gavioli et al., 1992; Noble et al., 1999). However, no such relocation was 

observed after short PMA treatment. On the other hand, longer treatment with GM-CSF 

appeared to induce CD69 surface expression, a result that had also been observed before 

by Atzeni et al. (Atzeni et al., 2002). Interestingly for any connections between CD69 

and S1P, when neutrophils were treated with GM-CSF, leading to an upregulation of 

CD69 on the cell surface, S1PR1 was downregulated on an mRNA level, a result 

reminiscent of the effect CD69 can have on S1PR1 expression on lymphocytes (Shiow 

et al., 2006). 

Neutrophils not only express S1P receptors, but when treated with S1P, downstream 

signalling can be observed as well. This was shown by phosphorylation of several 

kinases and signalling molecules. Moreover, S1P pre-treatment appears to enhance IL-8 

modulated signalling. More specifically the ERK1/2 pathway appears to be mostly 

affected by S1P signalling. This pathway seems to be involved in several neutrophil 

functions, including neutrophil adhesion, degranulation, oxidative burst, the formation 

of neutrophil extracellular traps (NET), IL-8 production, etc (Sue et al., 1997; Capodici 

et al., 1998; Alvarez et al., 2006; Hakkim et al., 2011). 

In regards to neutrophil chemotaxis towards IL-8, S1P did not appear to have a 

consistent effect. This was in contrast to what has been shown in the past, where S1P 

was suggested to inhibit neutrophil chemotaxis towards IL-8, as well as fMLP (Kawa et 

al., 1997; Rahaman et al., 2006). There was some inhibition shown in some 

experiments, but is seems that the donor of the neutrophils can affect the results. 

Moreover, different techniques for chemotaxis assays and different counting methods 

might account for the disagreement in our data. Interestingly, when neutrophils were 
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incubated overnight before being used for chemotaxis, S1P seemed to increase their 

chemotactic ability which was highly decreased compared to fresh neutrophils. 

However this effect was not seen when neutrophils were treated overnight with GM-

CSF, causing an increase in their CD69 expression; indicating a possible link between 

CD69 and S1P signalling. 

As with neutrophil chemotaxis, neutrophil adhesion under flow conditions did not seem 

to be affected, at least in a consistent manner, by S1P. This result is in agreement with 

the findings of Kawa et al, who did not observe any effects of S1P on neutrophil 

adhesion to HUVEC cells, although S1P inhibited neutrophil trans-endothelial 

migration through the same cells (Kawa et al., 1997). On the other hand, Florey and 

Haskard found that S1P can enhance immune complex mediated neutrophil adhesion 

under flow conditions; although in the current study it could not enhance IL-8 mediated 

neutrophil adhesion (Florey and Haskard, 2009a). 

To sum up, S1P can signal on neutrophils through the receptors S1PR1 and S1PR4 to 

cause activation of downstream signalling cascades, like ERK1/2. IL-8 mediated 

signalling is also enhanced by S1P. However, this signalling does not appear to translate 

into an effect to neutrophil migration or adhesion. The neutrophil functions that are 

affected by S1P signalling need to be further investigated.  
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Chapter 5. Effects of S1P on endothelial cells 

5.1 Introduction 

S1P can affect neutrophils directly or it can affect them indirectly, by having an effect 

on endothelial cells. This can result in either a negative or a positive outcome on 

neutrophil migration. S1P effects on endothelial cells that would have an impact on 

neutrophil trans-endothelial migration would be effects on endothelial chemokine 

production, adhesion molecule expression, or endothelial barrier function. 

An important chemokine responsible for neutrophil migration to the sites of 

inflammation is CXCL8 (or IL-8) (see chapter 1). There are several studies reporting 

IL-8 inducing effects of S1P on many different types of cells (Lin et al., 2006; Oz-

Arslan et al., 2006; Milara et al., 2009). More thoroughly investigated are the cells of 

the respiratory system, with human bronchial epithelial cells (Cummings et al., 2002), 

alveolar epithelial cells (Milara et al., 2009), and airway smooth muscle cells (Rahman 

et al., 2014) reported to produce increased IL-8 after S1P stimulation. However, S1P 

can also induce IL-8 production in completely diverse types of cells, from immature 

dendritic cells (Oz-Arslan et al., 2006) to human retinal pigment epithelial cells (Qiao et 

al., 2012). In regards to endothelial cells which are the focus of this study, there is a 

report of S1P inducing IL-8 production of human umbilical vein endothelial cells 

(HUVEC) (Lin et al., 2006). Adhesion molecule expression of HUVEC cells has also 

been reported to be induced by S1P (Shimamura et al., 2004), with the same being 

shown for other types of cells too, including vascular smooth muscle cells (Yogi et al., 

2011), alveolar epithelial cells (Milara et al., 2009) and neuroblastoma cells (Costello et 

al., 2011). 

S1P may also affect endothelial cell barrier functions. According to several studies, 

exogenous S1P promotes endothelial barrier integrity and decreases endothelial 

permeability (Garcia et al., 2001; Singleton et al., 2005; Itagaki et al., 2007). This effect 

appears to be mediated by S1PR1 signalling (Singleton et al., 2005). On the other hand, 

S1PR2 and S1PR3 signalling appears to have the opposite effect, disrupting the 

endothelial barrier and increasing vascular permeability (Singleton et al., 2006; Sanchez 

et al., 2007). Furthermore, increased permeability can be also mediated by 

endogenously generated S1P, as was revealed by the use of a sphingosine kinase 

inhibitor, resulting in decreased endogenous S1P synthesis, and inhibition of thrombin - 
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and histamine - induced increase in permeability (Itagaki et al., 2007). The mechanisms 

behind the effects of S1P on endothelial barrier integrity are not thoroughly understood, 

but it appears S1P can cause cytoskeletal rearrangement, and specifically actin filament 

assembly (Garcia et al., 2001; Singleton et al., 2005). 

For the purpose of this study, S1P effects on endothelial cells that could indirectly affect 

neutrophil migration were investigated. Firstly, induction of IL-8 and other chemokines 

expression was examined. Moreover, the effects of S1P on endothelial barrier were 

studied, by neutrophil trans-endothelial migration and permeability assays. The 

mechanism for these effects was also explored. Finally, effects on neutrophil adhesion 

to endothelial cells were investigated, by measuring adhesion molecule expression of 

endothelial cells and performing flow-based adhesion assays. 
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5.2 Materials and Methods 

5.2.1 ELISA 

In Enzyme Linked Immunosorbant Assays (ELISA) of the “sandwich” format, an 

appropriate capture antibody is added to ELISA plate wells, followed by the sample that 

contains the protein of interest. The protein is captured by the antibody, and cannot be 

removed after washing, and then a biotinylated detection antibody is added that binds to 

the target protein as well, creating a “sandwich” of antibody-protein-antibody. Finally, 

avidin-peroxidase is added, which binds the biotinylated antibody, and allows detection 

after addition of appropriate substrate. A protein standard is used together with the 

samples, diluted in a series of known concentrations, to create a standard curve, in order 

to calculate protein concentration from absorbance values. 

ELISA assay for IL-8 was performed using the Human IL-8 ELISA Development Kit 

from PeproTech (UK), following the instructions provided. Capture antibody (rabbit 

anti-hIL-8) was diluted appropriately in PBS and added to wells of a specially designed 

96-well ELISA plate (Immulon, Fisher Scientific, UK). After overnight incubation at 

room temperature, plate was washed 4 times with wash buffer (0.05% Tween-20 in 

PBS) and blocked using 1% BSA in PBS as a block buffer, for 1 hour in room 

temperature. Plate was again washed 4 times and samples were added in triplicate in 

wells after being diluted in diluent (0.1% BSA in PBS-Tween) if needed. Recombinant 

human IL-8 was used as standard, diluted to five different concentrations from 1ng/ml 

to zero in diluent, which were also added in the plate in triplicate. After incubating for 2 

hours at room temperature, plate was washed in the same manner and incubated with 

detection antibody (biotinylated rabbit anti-hIL-8), appropriately diluted in diluent, for 

another 2 hours. Plate was then washed and incubated with Avidin-Peroxidase (Avidin-

HRP conjugate) diluted in diluent, for 30 minutes at room temperature. After another 

round of washes, plate was incubated with a substrate for peroxidase, O-

phenylendiamine (OPD) solution (0.4 mg/ml OPD, 50 mM citrate pH 5.0 and 0.012 % 

(v/v) H2O2) for 5-15 minutes at room temperature. The reaction was terminated by 

addition of 2M H2SO4. Absorbance at 492 nm was measured at a plate reader. Standard 

curve was created and unknowns calculated using Prism 3.0 software (Graphpad). 
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5.2.2 RT-qPCR 

RNA was isolated using the RNeasy Plus Mini Kit from QIAGEN, following the 

company’s protocol (chapter 2.5.1). Reverse transcription for production of cDNA was 

performed using Tetro cDNA Synthesis kit (Bioline, UK; chapter 2.5.2). The cDNA 

was then used for detection of gene expression by real time PCR, using TaqMan® Gene 

Expression assays (Applied Biosystems) as primers (see chapter 2.5 for full list), with 

the exception of S1PR2 primer-probe which was bought from QIAGEN 

(Hs_S1PR2_FAM_1 QuantiFast Probe Assay), using the SensiFAST™ Probe Hi-ROX 

Master Mix (Bioline, UK) in an ABI Prism 7000 Sequence Detection System (Applied 

Biosystems) qPCR instrument. The house-keeping gene GAPDH was used as the 

reference gene. Data were analysed using the ΔΔCT method (chapter 2.5.3). 

5.2.3 Chemokine array 

The Human Chemokine Array Kit (R&D Systems, UK) was used, according to the 

instructions provided. HUVEC cells were treated overnight with 10μM S1P or left 

untreated, and their supernatants were collected to be used in the chemokine array. 

Array contains nitrocellulose membranes with capture antibodies for 31 different 

chemokines in duplicate. Membranes were blocked using provided block buffer for 

1hour at room temperature on a rocking platform. Samples were prepared by 

appropriate dilution with provided buffers as per manufacturer’s instructions. Detection 

antibody cocktail was added and the samples were incubated for 1 hour at room 

temperature. Blocking buffer was removed from membranes, and was replaced with 

samples in detection antibody cocktail. Membranes were incubated overnight at 4 oC on 

a rocking platform. They were then washed with provided wash buffer 3 times, and 

incubated with appropriately diluted Streptavidin-HRP solution in blocking buffer for 

30 minutes at room temperature on a rocking platform. After washing again, 

membranes were incubated with provided chemiluminescence reagent mix and 

developed using X-ray film as in western blotting (chapter 2.6.4). Results were analysed 

by densitometry using ImageJ software. 

5.2.4 Neutrophil trans-endothelial chemotaxis assay 

HMEC-1 or HUVEC endothelial cells were cultured on top of 3μm pore membrane 

inserts (chapter 2.4). When confluent, they were treated overnight with different 

concentrations of desired molecules, usually S1P or analogs, in serum-free media (same 
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as their complete media, except FBS was replaced by 0.5% fatty acid free BSA). 

Isolated human neutrophils, around 200,000 cells, were added on the top chamber above 

the endothelial cells (media with treatment was removed first) and left to migrate 

towards the bottom chamber containing 10ng/ml IL-8 (R&D Systems) for 120 minutes 

(see chapter 2.4). Neutrophils that had passed through to the bottom chamber were 

measured by flow cytometry using counting beads (CountBright™ Absolute Counting 

Beads, Invitrogen). 

5.2.5 Transmission Electron Microscopy 

Samples were prepared as for trans-endothelial chemotaxis, with neutrophils added on 

top of 3μm pore membrane inserts coated with endothelial cells, and left to migrate for 

2 hours. The inserts with the cells were then transferred into new plate with 4% 

glutaraldehyde in sodium cacodylate buffer for fixation. After 24-48 hours at 4 °C, the 

fixed inserts were given to Newcastle University Electron Microscopy Research 

Services, where they were further processed, resin embedded and cut into ultrathin 

sections for observation at a transmission electron microscope (TEM). Images of 

neutrophils in contact with endothelial cells were taken, focusing on the contact sites. 

No neutrophils passing through the cells and/or the membrane pores were found as was 

desired. 

5.2.6 FITC-Albumin permeability assay 

HMEC-1 or HUVEC endothelial cells were cultured to confluency on 3μm pore 

membrane inserts. They were treated overnight with 10μM S1P, 10μM CYM5442, 

10μM CYM5541 or 10μM FTY720P, or left untreated. Bovine albumin conjugated with 

fluorescein isothiocyanate (FITC-albumin, Sigma-Aldritch) 50μM in medium was 

added on top of endothelial cells on inserts, replacing medium with treatment, and left 

to diffuse for 2 hours. FITC-albumin that had passed to the bottom chamber was 

measured by fluorescence at 485nm excitation / 528nm emission. A standard curve with 

known FITC-albumin concentrations was also created to calculate FITC-albumin 

concentration in samples. There was also a control insert without cells, to measure 

background membrane permeability. 
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5.2.7 Trans-Endothelial Electrical Resistance (TEER) 

For measurements of trans-endothelial electrical resistance (TEER), the Millicel ERS-2 

(Electrical Resistance System, Millipore Co) was used. This is a meter and electrode 

system that can be used to measure the electrical resistance of epithelial or endothelial 

cell monolayers. Cells were grown to confluency on 3 μm trans-well inserts (the same 

used for chemotaxis) and treated with desired agents overnight. An empty insert without 

cells was used for background resistance measurement. The electrode was sterilised in 

70% ethanol for 15 minutes before measurements commenced, then rinsed in media. 

For measurement of resistance, the short tip of the electrode had to be inside the insert, 

while the longer tip was immersed in the media bellow the insert, at 90° angle. 

Resistance was recorded in all wells, including the empty insert, and then background 

resistance was substracted from all samples to measure true tissue resistance. 

5.2.8 Western Blotting 

Confluent HMEC-1 or HUVEC cells were treated or not with 10μM S1P, overnight, 

then lysed and protein measured with BCA protein assay (see chapter 2.6). Samples 

with loading buffer were loaded on SDS-PAGE together with a protein ladder; same 

amount of protein was loaded per sample. Gel was run at 30mA for about an hour. 

Western blotting “sandwich” was prepared, with sponges, whattman paper, the gel and a 

piece of PVDF membrane, and run in transfer buffer. Membrane was blocked and 

stained with primary antibody anti- phospho VE-cadherin Y658 (Abcam) overnight. 

After washing the membrane, appropriate secondary anti-mouse antibody, HRP 

conjugated, was added and incubated for 1 hour. Finally, membrane was washed, 

incubated with chemiluminescent substrate and developed in X-ray film. Membrane 

was then stripped and stained again with control antibody for total VE-cadherin 

(Abcam). 

5.2.9 Flow cytometry 

Flow cytometry was performed mainly as described in chapter 2.3. After treatment, 

adherent cells were detached from substrate using 10mM EDTA in PBS or cell 

dissociation buffer enzyme-free PBS-based (GIBCO, Invitrogen), since an enzymatic 

dissociation (ie. trypsin), could digest surface proteins of interest. Moreover, 1mM 

EDTA was added in the FACS Buffer (2% FBS in PBS) to avoid cell clumping. Cells 

were washed, counted and added in flow cytometry tubes. Fc receptor blocking was 
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performed and cells were incubated with directly conjugated primary antibodies ICAM-

1 and VCAM-1 (BioLegend) for 45 minutes at 4 °C. After washing and resuspending in 

FACS buffer, acquisition was performed in a FACS Canto II (BD Biosciences) 

instrument. Analysis of results was carried out using FlowJo 7.6 (Treestar) software. 

5.2.10 Cellix flow-based adhesion assays with endothelial cells 

For adhesion assays with endothelial cells, the VenaEC biochips were used (see chapter 

2.7). Substrates were sterilized by UV light for 30 minutes, then HMEC-1 or HUVEC 

endothelial cells were cultured on top of them, inside 6-well plates. When almost 

confluent, they were treated overnight with 10μM S1P or 100ng/ml TNF-α or both, or 

left untreated, and then the biochip was assembled and connected to Cellix device. 

Cellix device and VenaFlux software were switched on and initialised. After washing 

the pump connections, the biochip was mounted on the microscope stage and the 

channel to be used was briefly washed. Neutrophils were stained with CFSE after 

isolation before being added in the Cellix biochip channel. After neutrophils were added 

in one end of the channel (about 200,000 cells), flow was initiated at a shear stress of 

0.5 dyne/cm2. Several representative fields of view were captured along the channel’s 

length, in both optical and fluorescent view. This was repeated for all the channels used 

in the experiment. For each image captured, adherent cells were measured and results 

analysed using Prism3 software (GraphPad Software Inc). 
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5.3 Results 

5.3.1 Chemokine expression induction by S1P 

5.3.1.1 Optimization using A549 cell line 

There have been studies where S1P has been shown to induce various kinds of cells to 

produce chemokines. More specifically, the chemokine CXCL8 (IL-8), a major 

neutrophil chemoattractant, has been shown to be produced by several diverse cell types 

when treated with S1P, including alveolar epithelial cells (Milara et al., 2009). The 

A549 cell line is an alveolar epithelial cell line that was used to show IL-8 induction by 

S1P (Milara et al., 2009). Before moving on to investigating endothelial cells, A549 

cells were used to optimize the techniques to measure chemokine induction by S1P. 

A549 cells (see chapter 2.1) were chosen as they are very easy to grow and maintain, 

compared to endothelial cells (especially primary cells), and have been studied before in 

regards to IL-8 production after S1P stimulation (Milara et al., 2009).  

A549 cells were treated with different concentrations of S1P and then the supernatants 

were used in an IL-8 ELISA assay. It appears that 1, 5 or 10μM of S1P all cause a 

significant increase in IL-8 secretion after 24 hours treatment, with 10μM being the 

most potent. The S1P analogs SEW2871 and FTY720P did not have an effect in IL-8 

secretion (figure 5.1). After 24 hours of S1P treatment there was a significant increase 

in secreted IL-8; the same appeared to be when the cells were treated with S1P for 48 

hours. After 72 hours though, the effect was reduced (figure 5.2). At less than 24 hours 

treatment, as little as 4 hours were sufficient to cause a significant increase in IL-8 

production compared with untreated cells, and 8 hours also caused IL-8 secretion. The 

S1PR1 agonist CYM-5442 appeared to also effectively increase IL-8 secretion, 

especially after 8 hours treatment, revealing S1PR1 as an important receptor for the 

effect on IL-8 production that S1P has (figure 5.3). 

To further investigate any correlations of IL-8 induction by S1P on A549 cells, with 

possible effects on endothelial cells, a comparative real-time PCR was performed to 

measure mRNA expression of S1P receptor genes on A549 and endothelial cell lines 

HMEC-1 and Eahy926. It was found that S1PR1, although expressed at high levels in 

all three cells, it was 100-250 fold higher in the endothelial cell lines. On the other hand, 

S1PR3 was expressed by A549 cells, but barely expressed by the endothelial cells. 

S1PR4 was expressed at very low levels by all three cells, whereas S1PR5 was 
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expressed at relatively high levels by A549 and HMEC-1 cells, but barely expressed by 

Eahy926 (figure 5.4).  
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Figure 5.1. IL-8 production by A549, after stimulation with S1P and analogs. A549 cells in 

6-well plates were treated with different concentrations of S1P, 10µM SEW2871, 10µM 

FTY720 or medium only (basal) for 24 hours. Supernatants were collected and used at an IL-8 

ELISA experiment. Bars represent means ± SEM. Data representative of 3 independent 

experiments. * p<0.05, ** p<0.01, ns p>0.05 compared with basal. 

 

 

 

Figure 5.2. IL-8 production by A549, time course. A549 cells in 6-well plates were either 

treated with 1µM S1P or left untreated, for 24 - 72 hours. Supernatants were collected and used 

at an IL-8 ELISA experiment. Bars represent means ± SEM. Data representative of 3 

independent experiments. * p≤0.05, ** p<0.01, ns p>0.05 
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 Figure 5.3. IL-8 production by A549, time course under 24 hours. A549 cells in 6-well 

plates were either treated with 10µM S1P, 10μM CYM5442 or left untreated, for 4 - 24 hours. 

Supernatants were collected and used at an IL-8 ELISA experiment. Bars represent means ± 

SEM. Data representative of 3 independent experiments. * p≤0.05, ** p<0.01, ns p>0.05 

compared with untreated. 

 

 

 

Figure 5.4. Comparison of S1P receptor mRNA expression between A549 and endothelial 

cell lines. S1P receptor mRNA expression by A549, HMEC-1 and Eahy926 cell lines was 

measured by real-time PCR. Data were normalized for the housekeeping gene GAPDH and 

presented as relative expression compared with the expression of S1PR1 by A549. Bars 

represent means ± SEM. 
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5.3.1.2 IL-8 expression induction 

To determine whether S1P can induce IL-8 expression by endothelial cells, the 

endothelial cell line HMEC-1 was used first. When S1P concentrations of 1-10μM were 

used, it was found that 5 or 10μM S1P could cause increased IL-8 secretion by HMEC-

1 cells, as was determined by IL-8 ELISA assay. Compared with the positive control 

TNF-α, this induction was much lower (figure 5.5). When HMEC-1 cells were treated 

with 10μM S1P for 4, 8 or 24 hours, there was an increase in IL-8 secretion, significant 

only after 24 hours treatment. Treatment with the S1PR1 agonist CYM5442 though 

caused significant increase in IL-8 secretion at 4 hours treatment as well as 24 hours 

(figure 5.6).  

To verify these results, a real-time qPCR was performed using mRNA from HMEC-1 

cells treated with 10μM S1P or CYM5442 for 4, 8 or 24 hours, to determine whether 

mRNA expression of IL-8 correlated with levels of secreted chemokine. It was found 

that at only 4 hours treatment with either molecule the expression of IL-8 had increased 

significantly, but at 8 and 24 hours it had declined to normal levels again (figure 5.7). 

This can be understood, since there is a delay between the increase in mRNA expression 

and the increase in protein synthesis and eventually protein secretion. 
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Figure 5.5. IL-8 production by HMEC-1 after S1P stimulation. HMEC-1 endothelial cells in 

6-well plates were treated for 24 hours with different concentrations of S1P, or 10ng/ml TNF-a 

as a positive control. Supernatants were collected and used at an IL-8 ELISA experiment. Bars 

represent means ± SEM. Data representative of 3 independent experiments. * p<0.05, ns p>0.05 

compared with untreated. 

 

 

 

Figure 5.6. IL-8 production by HMEC-1, time course. HMEC-1 cells in 6-well plates were 

either treated with 10µM S1P, 10μM CYM5442 or left untreated, for 4 - 24 hours. Supernatants 

were collected and used at an IL-8 ELISA experiment. Bars represent means ± SEM. Data 

representative of 2 independent experiments. * p≤0.05, ns p>0.05 compared with untreated. 
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Figure 5.7. IL-8 mRNA expression by HMEC-1, time course. HMEC-1 cells in 6-well plates 

were either treated with 10µM S1P, or 10μM CYM5442 or left untreated, for 4 - 24 hours. IL-8 

mRNA expression was measured by real-time PCR. Data were normalized for the housekeeping 

gene GAPDH. Bars represent means ± SEM. Data representative of 2 independent experiments. 

* p≤0.05, ** p<0.01, ns p>0.05 compared with untreated. 
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To further investigate effects of S1P on IL-8 expression by endothelial cells, primary 

endothelial cells were used next, specifically HUVEC cells (see chapter 2.1). First, a 

comparison of S1P receptor mRNA expression was made between HUVEC and 

HMEC-1 cells, by real time qPCR. Although both cells expressed high levels of S1PR1, 

HUVEC expressed 3-fold more than HMEC-1. On the other hand, S1PR2 was highly 

expressed by HMEC-1 cells, in even higher levels than S1PR1 in HUVEC was 

expressed, whereas HUVEC expressed it in much lower levels. Similarly, S1PR5 was 

expressed in relatively high levels by HMEC-1, but barely expressed by HUVEC. The 

opposite occurs with S1PR4, which was expressed by HUVEC, but barely expressed by 

HMEC-1. As for S1PR3, both cells only expressed it at minimal levels (figure 5.8). 

Next, HUVEC cells were used in ELISA assays for IL-8. As a further control, after 

supernatants were collected to be used in ELISA, the cells were then lysed and protein 

concentration was measured by BCA assay, to show that all treatments resulted in 

similar amount of total protein, with no significant variation, as was shown by ANOVA 

analysis (figure 5.9). Cells were treated with 10μM S1P, the S1PR1 agonist CYM5442, 

or the S1PR3 agonist CYM5541. After 24 hours treatment, all molecules caused 

significant increase in IL-8 secretion. S1P and CYM5442 also increased IL-8 secretion 

at 4 and 8 hours treatment as well (figure 5.10).  It appears that both S1PR1 and S1PR3 

are important for IL-8 expression by endothelial cells, but probably more than one 

receptor has to be induced for optimal results. 

These results were partly verified by real time qPCR for IL-8 mRNA expression. When 

HUVEC were treated with S1P for 24 hours, there was a significant increase in IL-8 

expession. CYM5442 treatment did not seem to have an effect (figure 5.11). Perhaps, as 

was the case in HMEC-1, treatment for less amount of time would result in increased 

mRNA expression which was then ablated after 24 hours treatment. 
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Figure 5.8. Comparison of S1P receptor mRNA expression between HMEC-1 cell line and 

HUVEC primary endothelial cells. S1P receptor mRNA expression by HMEC-1 cell line and 

HUVEC cells was measured by real-time PCR. Data were normalized for the housekeeping gene 

GAPDH and presented as relative expression compared with the expression of S1PR1 by 

HMEC-1. 

 

 

 

Figure 5.9. Protein concentration of HUVEC cells after ELISA experiment. HUVEC cells in 

6-well plates were treated with S1P or analogs, or left untreated, for 4 - 24 hours. Supernatants 

were collected and used at an IL-8 ELISA experiment. The cells were then lysed and protein 

concentration was measured using a BCA assay.  
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Figure 5.10. IL-8 production by HUVEC, time course. HUVEC cells in 6-well plates were 

either treated with 10µM S1P, 10μM CYM5442, or 10μM CYM5541, or left untreated, for 4 - 

24 hours. Supernatants were collected and used at an IL-8 ELISA experiment. Bars represent 

means ± SEM. Data representative of 3 independent experiments. * p≤0.05, ** p<0.01, *** 

p<0.001, ns p>0.05 compared with untreated. 

 

 

 

Figure 5.11. IL-8 mRNA expression by HUVEC. HUVEC cells in 6-well plates were either 

treated with 10µM S1P, or 10μM CYM5442 or left untreated, for 24 hours. IL-8 mRNA 

expression was measured by real-time PCR. Data were normalized for the housekeeping gene 

GAPDH. Bars represent means ± SEM. ** p<0.01, ns p>0.05 compared with untreated. 
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5.3.1.3 Chemokine array 

After determining the effects S1P treatment has on IL-8 chemokine secretion by 

endothelial cells, the next step was to investigate possible effects on other chemokines. 

So a chemokine array was used, with supernatants from HUVEC cells untreated or 

treated with 10μM S1P for 24 hours (figure 5.12). The two chemokines that were most 

highly expressed after S1P treatment were CXCL8 and CCL2. As was mentioned before 

CXCL8 (or IL-8) is a major neutrophil chemoattractant. On the other hand, CCL2 (or 

MCP-1) is a chemoattractant for monocytes mainly, but also T cells, dendritic cells and 

other inflammatory cells, but not neutrophils. Other chemokines induced by S1P 

included CXCL1 (or GROα), another neutrophil chemoattractant, CX3CL1 (or 

fractalkine), a chemoattractant for T cells and monocytes, and CCL7 (or MCP-3), 

another monocyte chemoattractant. CXCL12 (or SDF-1), a lymphocyte 

chemoattractant, was secreted at very low levels after S1P treatment. However, 

compared with the untreated that did not secrete any of the above mentioned 

chemokines, this is significant (p= 0.0171). On the other hand, the chemokine CXCL10 

(or IP-10), a chemoattractant for many cells including monocytes/macrophages, T cells, 

and dendritic cells, appeared to be secreted at very low levels by untreated cells and 

increase slightly after S1P treatment. However this increase was marginally not 

significant (p=0.0528). The non-chemokine molecules midkine and fibrinogen were 

included in this array as positive controls, as they were expressed by both untreated and 

S1P treated cells, and although there was a trend of midkine secretion decreasing and 

fibrinogen expression increasing by S1P treatment, these effects were not significant 

(p= 0.0986 and p= 0.0907 respectively) (figure 5.12).  
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Figure 5.12. Chemokine array with HUVEC endothelial cells. HUVEC cells in 6-well plates 

were untreated or treated with 10μM S1P for 24 hours. Supernatants were then collected and 

used in a chemokine array. Top: images of the developed membrane arrays; duplicate 

membranes for untreated and S1P treated samples. Bottom: Diagram showing mean pixel 

densities for different chemokines in the array; bars represent means ± SEM. 
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5.3.2 Effects of S1P on endothelial barrier function 

5.3.2.1 Neutrophil trans-endothelial migration 

In order to further evaluate whether S1P can affect neutrophil migration through the 

endothelial cells, neutrophil trans-endothelial chemotaxis experiments were performed. 

HMEC-1 endothelial cells were grown on top of chemotaxis filters to form a 

monolayer, and then they were treated overnight with different concentrations of S1P, 

before a chemotaxis experiment with neutrophils at the top chamber and medium with 

10ng/ml IL-8 at the bottom was performed. Concentrations of 1-10μM S1P were 

enough to cause significant decrease in neutrophil chemotaxis, whereas 0.1μM S1P was 

not (figure 5.13). As 5 and 10μM S1P appeared to be more potent, 10μM were chosen 

to be used in a similar experimental set up, with endothelial cells being treated with 

10μM S1P, the S1PR1 agonist CYM5442, the S1PR3 agonist CYM5541 or the S1PR1, 

3, 4 and 5 agonist FTY720P. S1P, CYM5442 and FTY720P all had similar inhibitory 

effects on neutrophil migration. On the other hand, CYM5541 appeared to have no 

effect. This result indicates S1PR1 but not S1PR3 as being responsible for inhibiting 

neutrophil migration through treated endothelial cells (figure 5.14). 

Furthermore, these experiments were repeated with HUVEC primary endothelial cells. 

The results were similar, with all S1P concentrations apart from 5μM causing 

significant decrease in neutrophil chemotaxis through the treated HUVEC cells, and 

10μM being the most potent (figure 5.15). Again, when the different S1P receptor 

agonists were used, S1P, CYM5442 and FTY720P caused a significant decrease in 

neutrophil chemotaxis, whereas CYM5541 did not have a significant effect, indicating 

S1PR1 as the major receptor responsible for inhibiting migration as was the case with 

HMEC-1 cells (figure 5.16). The effects S1P had on neutrophil migration through 

treated endothelial cells suggest S1P can enhance endothelial barrier function. 

In order to observe the interactions between neutrophils and endothelial cells, HMEC-1 

and HUVEC cells were set up in filters as for trans-endothelial chemotaxis assays, 

neutrophils were added on top and left to migrate towards IL-8. Then the membranes 

with the cells were fixed and prepared for observation by Transmission Electron 

Microscopy (TEM). Neutrophils can be observed in contact with endothelial cells 

(HUVEC) as they adhere to the endothelium and form pseudopodia in order to crawl on 

the endothelial surface seeking for appropriate regions to migrate through the 

endothelial monolayer (figure 5.17). 
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Figure 5.13. Neutrophil transendothelial migration through HMEC-1 treated with S1P 

concentrations. HMEC-1 endothelial cells on chemotaxis filters were treated overnight with 

different concentrations of S1P. Neutrophils were then added on top, and left to migrate for 120 

minutes towards 10ng/ml IL-8.  Cells that passed into the wells were measured by flow 

cytometry. Bars represent means ± SEM. Data representative of 4 independent experiments. * 

p≤0.05, ** p<0.01, ns p>0.05 compared with untreated. 

 

 
Figure 5.14. Neutrophil transendothelial migration through HMEC-1 treated with S1P 

analogs. HMEC-1 endothelial cells on chemotaxis filters were treated overnight with 10µM 

S1P, 10μM CYM5442, 10μM CYM5541, or 10μM FTY720P. Neutrophils were then added on 

top, and left to migrate for 120 minutes towards 10ng/ml IL-8.  Cells that passed into the wells 

were measured by flow cytometry. Bars represent means ± SEM. Data representative of 4 

independent experiments. * p≤0.05, ns p>0.05 compared with untreated. 
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Figure 5.15. Neutrophil transendothelial migration through HUVEC treated with S1P 

concentrations. HUVEC cells on chemotaxis filters were treated overnight with different 

concentrations of S1P. Neutrophils were then added on top, and left to migrate for 120 minutes 

towards 10ng/ml IL-8.  Cells that passed into the wells were measured by flow cytometry. Bars 

represent means ± SEM. Data representative of 4 independent experiments. * p≤0.05, ns p>0.05 

compared with untreated. 

 

 
Figure 5.16. Neutrophil transendothelial migration through HUVEC treated with S1P 

analogs. HUVEC cells on chemotaxis filters were treated overnight with 10µM S1P, 10μM 

CYM5442, 10μM CYM5541, or 10μM FTY720P. Neutrophils were then added on top, and left 

to migrate for 120 minutes towards 10ng/ml IL-8.  Cells that passed into the wells were 

measured by flow cytometry. Bars represent means ± SEM. Data representative of 4 

independent experiments. * p≤0.05, ** p<0.01, ns p>0.05 compared with untreated. 
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Figure 5.17. Electron Microscopy of neutrophil – endothelial cell interactions. Endothelial 

cells were set up on 3μm pore filters and neutrophils were added on top and left to migrate 

towards 10ng/ml IL-8 for 2 hours as in trans-endothelial chemotaxis assays. (A) Transmission 

Electron Microscopy (TEM) image of neutrophils interacting with HUVEC endothelial cell. (B) 

Higher magnification of the area in the square on B, showing the contact regions of a neutrophil 

to an endothelial cell. (C) TEM image of neutrophils forming pseudopodia to interact with 

HUVEC cells. (D) Higher magnification of C where the contact of the neutrophil to the 

endothelial cell by pseudopodia can be seen. PMN: neutrophils, EC: endothelial cells. 
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5.3.2.2 Endothelial permeability assays 

As a way of verifying that S1P can indeed affect endothelial barrier functions, 

endothelial permeability assays using FITC conjugated bovine serum albumin, were 

performed. In these assays, HMEC-1 or HUVEC cells were again grown on top of 

perforated membranes to form monolayers, then treated overnight with S1P or S1P 

receptor agonists, before FITC-Albumin was added on the top chamber and left to 

diffuse to the bottom chamber. Amount of albumin that had diffused to the bottom 

chamber was measured by fluorescence at 485nm / 528nm, using a standard curve 

method to calculate concentration. The results showed a trend for decreased 

permeability after treatment for most agonists, although it was not significant. This 

effect was observed for both HMEC-1 and HUVEC endothelial cells (figures 5.18, 5.19 

respectively).  

Another method to assess endothelial barrier integrity is by measuring electrical 

resistance of the confluent endothelial cell monolayer. This was tried, before and after 

treatment with S1P and analogues, for HMEC-1 and HUVEC endothelial cells. 

However, the results were inconclusive due to very low overall measurements of 

resistance (data not shown). The low resistance measurements can be expected, since 

endothelial cells rarely form tight junctions in vitro (Burns et al., 1997a), leading to 

gaps on the endothelial layer that decrease layer resistance.   
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Figure 5.18. HMEC-1 FITC-Albumin permeability assay. HMEC-1 cells on filters were 

treated overnight with 10µM S1P, 10μM CYM5442, 10μM CYM5541, or 10μM FTY720P. 

FITC-Albumin was then added on top, and left to diffuse for 120 minutes.  Fluorescence was 

then measured on the wells and FITC-Albumin concentration was calculated. There was also a 

control filter without any cells. Bars represent means ± SEM. Data representative of 4 

independent experiments. 

 

 
Figure 5.19. HUVEC FITC-Albumin permeability assay. HUVEC cells on filters were 

treated overnight with 10µM S1P, 10μM CYM5442, 10μM CYM5541, or 10μM FTY720P. 

FITC-Albumin was then added on top, and left to diffuse for 120 minutes.  Fluorescence was 

then measured on the wells and FITC-Albumin concentration was calculated. There was also a 

control filter without any cells. Bars represent means ± SEM. Data representative of 3 

independent experiments. 
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5.3.2.3 VE-cadherin phosphorylation 

In an attempt to further look into the mechanisms behind the effects S1P has on 

endothelial barrier function, the endothelial adherens junction molecule VE-cadherin 

was investigated. VE-cadherin (or CD144) is a member of the cadherin superfamily of 

cell-cell junction molecules, expressed exclusively by endothelial cells, and is important 

in the regulation of endothelium permeability and barrier functions (see chapter 1). VE-

cadherin can be phosphorylated at several sites, and most of these phosphorylations are 

linked with an increase in vascular permeability and / or increased leukocyte migration. 

The tyrosine 658 (Y658) phosphorylation site of VE-cadherin was chosen to investigate 

the effect S1P treatment has on endothelial barrier function, as it has been examined in 

regards to neutrophil migration in the past (Allingham et al., 2007). Specifically, 

HMEC-1 or HUVEC cells were treated overnight with 10μM S1P and then lysed and 

used in a western blot experiment for phosphorylated VE-cadherin (Y658), with total 

VE-cadherin as control. Both untreated HMEC-1 and HUVEC appear to constitutively 

express phosphorylated VE-cadherin, but when treated with S1P, expression of 

phosphorylated VE-cadherin decreases (figure 5.20). 

 

  

Figure 5.20. Expression of phospho-VE-Cadherin (Y658) after S1P treatment. HMEC-1 or 

HUVEC endothelial cells were treated overnight with 10μM S1P or left untreated. Lysates were 

then prepared and used in western blotting experiments with antibody for phosphorylated VE-

Cadherin (Y658), as well as total VE-Cadherin as a loading control. Data representative of 2-3 

independent experiments. 
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5.3.3 Effects of S1P on adhesion molecule expression 

S1P could affect neutrophil migration indirectly by having an effect on endothelial 

cells’ adhesion molecule expression. To investigate this, HMEC-1 endothelial cells 

were treated with S1P or TNF-α as positive control, as well as TNF-α with S1P 

together, and then used in flow cytometry experiment with antibodies for the adhesion 

molecules ICAM-1 and VCAM-1. All untreated cells expressed ICAM-1, but only 

around 15% expressed VCAM-1. S1P treatment seemed to increase both molecules’ 

expression at a small degree. TNF-α on the other hand, caused major increase in 

expression of both ICAM-1 and VCAM-1, with the latter now being expressed by all 

cells. Interestingly, when cells were treated with TNF-α and S1P together, VCAM-1 

expression appeared to decrease compared to cells treated with TNF-α alone. (figure 

5.21, table 5.1) 

HUVEC primary endothelial cells were also used in the same experimental set up, to 

measure expression of adhesion molecules ICAM-1 and VCAM-1. Around 75% of 

untreated HUVEC expressed ICAM-1, whereas VCAM-1 was expressed by only 17% 

of the cells. S1P treatment caused increased expression of both molecules, with ICAM-

1 being expressed by all cells and VCAM-1 expressed by 78% of the cells. Again, TNF-

α caused an even greater increase on ICAM-1 and VCAM-1 expression, with all cells 

expressing both molecules. Similar with HMEC-1, adding S1P together with TNF-α, 

caused a different expression profile, with VCAM-1 expression decreased compared to 

treatment with TNF-α alone. (figure 5.22, table 5.1)  
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Figure 5.21. Effects of S1P on HMEC-1 adhesion molecule expression. HMEC-1 endothelial 

cells were treated overnight with 10μM S1P, 100ng/ml TNF-α, or 100ng/ml TNF-a & 10μM 

S1P or left untreated. They were then stained with directly conjugated monoclonal antibodies 

for ICAM-1 and VCAM-1 adhesion molecules or appropriate isotype controls and analysed by 

flow cytometry. (A-D) Dot plots of ICAM-1 and VCAM-1 expression simultaneously in 

untreated, treated with S1P, TNF-α, or TNF-α & S1P cells respectively. (E-F) Histograms 

presenting ICAM-1 or VCAM-1 expression respectively after different treatments. Dark green: 

isotype control, light green: untreated, orange: S1P, blue: TNF-α, red: TNF-α & S1P. Data 

representative of 3 independent experiments. 
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Figure 5.22. Effects of S1P on HUVEC adhesion molecule expression. HUVEC endothelial 

cells were treated overnight with 10μM S1P, 100ng/ml TNF-α, or 100ng/ml TNF-a & 10μM 

S1P or left untreated. They were then stained with directly conjugated monoclonal antibodies 

for ICAM-1 and VCAM-1 adhesion molecules or appropriate isotype controls and analysed by 

flow cytometry. (A-D) Dot plots of ICAM-1 and VCAM-1 expression simultaneously, in 

untreated, treated with S1P, TNF-α, or TNF-α & S1P cells respectively. (E-F) Histograms 

presenting ICAM-1 or VCAM-1 expression respectively after different treatments. Dark green: 

isotype control, light green: untreated, orange: S1P, blue: TNF-α, red: TNF-α & S1P. Data 

representative of 5 independent experiments. 
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 MFI 

 HMEC-1 HUVEC 

 ICAM-1  VCAM-1  ICAM-1  VCAM-1  

untreated  1980 85.5  348 128 

S1P  2401 93.7  10600  1782 

TNF-α  51400 23200  102000  85400  

TNF-α & S1P 50700 10100 99300 24800 

 

Table 5.1. Median Fluorescence intensity of ICAM-1 and VCAM-1. HMEC-1 or HUVEC 

cells were treated overnight with 10μM S1P, 100ng/ml TNF-α, or 100ng/ml TNF-a & 10μM 

S1P or left untreated. They were then stained with directly conjugated monoclonal antibodies 

for ICAM-1 and VCAM-1 adhesion molecules or appropriate isotype controls and analysed by 

flow cytometry. The table depicts the median fluorescence intensity values (MFI) of ICAM-1 

and VCAM-1 for a representative experiment (see figures 5.20, 5.21). 
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5.3.4 Neutrophil flow-based adhesion assays with endothelial cells 

It appears that S1P can affect adhesion molecule expression by endothelial cells. To 

investigate whether this translates to an effect on neutrophil adhesion to endothelial 

cells, Cellix flow based adhesion assays with endothelial cells were performed. In these 

assays, HMEC-1 or HUVEC endothelial cells were cultured on biochips to form 

channels that simulate blood vessels. Before the experiment, they were treated with S1P 

or TNF-α or TNF-α with S1P overnight. Freshly isolated neutrophils were then added to 

flow through the channels, images were captured, and cells that adhered on the 

endothelial surface were measured. To make the process of calculating the cells that 

adhered easier, neutrophils were stained with CFSE just before being added to the assay 

and fluorescent microscopy was used to visualize them. This made it easier to 

distinguish neutrophils from endothelial cells and debris (figure 5.23).  

Neutrophils did not seem to adhere to untreated HMEC-1 or HUVEC at all. Treatment 

with S1P, although showed some small adherence in certain instances, did not cause a 

significant difference. When endothelial cells were treated with TNF-α though, there 

was a significant increase in adhered cells. This increase was much higher for primary 

HUVEC cells, with around 85 cells on average adhering compared to 3 cells for 

HMEC-1 (figures 5.24, 5.25). Some HUVEC cells were also treated with both TNF-α 

and S1P, and this caused an interesting decrease in adherence compared with treatment 

with TNF-α alone (figure 5.25). This observation agrees with previous findings of TNF-

α with S1P treatment of endothelial cells decreasing adhesion molecule expression 

compared with treatment with TNF-α alone (figures 5.21, 5.22, table 5.1). 
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Figure 5.23. Neutrophil flow based adhesion to endothelial cells. Representative images of 

flow based adhesion assays where HUVEC cells, untreated or treated with 10μM S1P or 

100ng/ml TNF-α, were coating biochip channels, and neutrophils flowed through and adhered 

on their surface. Neutrophils were stained with CFSE to distinguish from other cells and debris 

by fluorescence. Top row: optical images, bottom row: fluorescent images. Cells that are 

adhered are clearly defined in both types of images, non-adhered cells are blurred. 
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Figure 5.24. Neutrophil flow-based adhesion to HMEC-1. Isolated neutrophils stained with 

CFSE, were used in a flow- based adhesion assay to HMEC-1 endothelial cells untreated or 

treated with 10μM S1P or 100ng/ml TNF-α. Bars show means ± SEM from 2 independent 

channels in the same experiment. Data representative of 3 independent experiments. * p<0.05, 

ns p≥0.05 compared with untreated. 

 

 

 

 

Figure 5.25. Neutrophil flow-based adhesion to HUVEC. Isolated neutrophils stained with 

CFSE, were used in a flow- based adhesion assay to HUVEC endothelial cells untreated or 

treated with 10μM S1P or 100ng/ml TNF-α or both. Bars show means ± SEM from 2 

independent channels in the same experiment. Data representative of 3 independent 

experiments. ** p<0.01, *** p<0.001, ns p≥0.05 compared with untreated, or as shown. 
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5.4 Discussion 

S1P can affect multiple endothelial cell functions that indirectly have an effect on 

neutrophil migration. First of all, S1P can induce endothelial cells to upregulate mRNA 

expression and protein secretion of the potent neutrophil chemoattractant cytokine 

CXCL8 (IL-8). This result partly agrees with the findings of Lin et al., who found S1P 

can induce mRNA and protein expression of IL-8 in HUVEC cells in a time and 

concentration dependent manner (Lin et al., 2006). They found 16 hours was the 

optimal time of S1P treatment for mRNA expression of IL-8 by HUVEC, whereas in 

the current study, 4 hours appeared optimal for increased IL-8 mRNA expression by 

HMEC-1, and after 8 hours it seemed to be attenuated compared with untreated cells 

(Lin et al., 2006).  

S1PR1 and S1PR3 appear to be important for increased IL-8 production, as the use of 

the agonists CYM5442 and CYM5541 showed, although each one caused lower 

increase in IL-8 compared with S1P, revealing a possible additive effect. This 

observation agrees with a study where siRNA was used to knock out S1PR1 or S1PR3 

from HUVEC cells, resulting in inhibition of S1P induced IL-8 mRNA expression (Lin 

et al., 2007). Other chemokines were also upregulated by S1P, especially CCL2 (MCP-

1), expressed at comparative levels with IL-8, a finding shared with a previous study 

(Lin et al., 2006). Importantly, among the chemokines that were affected by S1P is 

CXCL1, which is another neutrophil chemoattractant.  

On the other hand, S1P treatment of endothelial cells was found to inhibit neutrophil 

migration through them. One could argue that since S1P induces IL-8 production of 

endothelial cells, the IL-8 presented by the endothelial cells to the neutrophils might 

interfere with the IL-8 gradient, causing the neutrophils to adhere to the endothelial 

layer instead of passing through. However, the IL-8 produced by endothelial cells was 

at very low concentrations making it unlikely that this was the reason of reduced 

neutrophil migration. More probably, this inhibitory effect indicates an enhancement of 

endothelial barrier integrity by S1P, that correlates with decreased permeability, as has 

been reported in the past by several studies (Garcia et al., 2001; Singleton et al., 2005; 

Itagaki et al., 2007). The S1PR1 agonist CYM5442 appeared to also inhibit neutrophil 

trans-endothelial migration, whereas CYM5541, an S1PR3 agonist, did not have an 

effect. It appears then that S1PR1 is the receptor responsible for maintaining endothelial 

barrier integrity, as was also verified by Singleton and colleagues (Singleton et al., 
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2005). Indeed, S1PR3 and S1PR2 have actually been found to have barrier disrupting 

effects, causing increased vascular permeability (Singleton et al., 2006; Sanchez et al., 

2007). 

As for a mechanism for the barrier enhancing effects S1P exhibits, the current study 

focused on VE-cadherin, which is an important molecule of adherens junctions, which 

control permeability and transcellular cell migration. It has been found in the past that 

S1P can increase localization of VE-Cadherin and other adherens junction molecules 

such as β-catenin at cell-cell contact regions, assisting in assembly of adherens 

junctions, without affecting total VE-cadherin protein levels (Lee et al., 1999; Mehta et 

al., 2005). Total VE-cadherin levels were not altered in our study either. Both S1PR1 

and 3 had been found to be important for the effect of increased localization at cell 

junctions (Lee et al., 1999). According to another study though, VE-cadherin is not 

required for S1P to cause transient increase in endothelial barrier function measured by 

trans-endothelial electrical resistance, although it is vital for maintained increase (Xu et 

al., 2007). Cell spreading to close intercellular gaps, mediated by actin filament 

rearrangement is the reason for the increase in endothelial barrier integrity according to 

the same study, but also proposed by other studies in the past (Garcia et al., 2001; 

Singleton et al., 2005; Xu et al., 2007). This project however focused on VE-cadherin 

phosphorylation that has been shown to affect endothelial permeability and leukocyte 

migration through the endothelium (Allingham et al., 2007; Turowski et al., 2008; 

Wessel et al., 2014).  

VE-cadherin can be phosphorylated at several sites, usually causing disassembly of 

adherens junctions, but can sometimes have junction tightening effects (Gavard and 

Gutkind, 2006; Allingham et al., 2007; Turowski et al., 2008). Opinions vary on which 

sites are responsible for which effect, but one site that is generally agreed to affect 

junction assemply negatively, assisting in leukocyte migration and endothelial 

permeability, is tyrosine 658 (Potter et al., 2005; Allingham et al., 2007). In the current 

study, it was found that although S1P did not affect total VE-cadherin protein amounts, 

it could reduce or completely abolish phosphorylation of VE-cadherin at tyrosine 658 

for both HMEC-1 and HUVEC cells. This result is reminiscent of the finding of another 

study that S1P can reduce phosphorylation of N-cadherin, a molecule of the cadherin 

superfamily, important for cell-cell adhesion between endothelial cells and mural cells, 

thus stabilizing blood vessels (Paik et al., 2004). Other VE-cadherin phosphorylation 

sites as well as phosphorylation of other junction molecules could be considered as a 
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continuation of this work in investigating the mechanisms of S1P - mediated endothelial 

barrier enhancement. 

Furthermore, S1P can affect adhesion molecule expression by endothelial cells. It was 

found that both ICAM-1 and VCAM-1 adhesion molecules surface expression was 

increased by S1P. What was interesting though is that S1P can inhibit TNF-α induced 

surface expression of VCAM-1. This means S1P has both stimulatory and inhibitory 

effects on adhesion molecule expression, probably involving different S1P receptors. 

This translated to effects on neutrophil adhesion to endothelial cells under flow 

conditions, where although S1P was not enough to induce adhesion by itself, it did 

reduce TNF-α induced adhesion. Similarly, Theilmeier et al. had shown that S1P can 

reduce adhesion under flow of murine macrophages to TNF-α activated endothelium 

(Theilmeier et al., 2006). Several studies have shown S1P can induce mRNA and/or 

protein expression of ICAM-1 or VCAM-1 adhesion molecules on endothelial cells, 

which agrees with the findings on surface expression in our study (Shimamura et al., 

2004; Kimura et al., 2006; Lin et al., 2007). The data on S1P inhibiting TNF-α induced 

expression of VCAM-1 agree with the results of another study, where they found 

similar results for both VCAM-1 and ICAM-1, with S1PR3 being responsible for this 

effect (Kimura et al., 2006). On the other hand, a study showed TNF-α induced VCAM-

1 expression and other endothelial activation functions, were mediated by sphingosine 

kinase, since its inactivation greatly reduced TNF-α effects on endothelium (Xia et al., 

1998). 

In conclusion, it appears S1P can affect neutrophil trans-endothelial migration indirectly 

in different ways. On one hand, it induces endothelial cells and other types of cells to 

produce IL-8 and other neutrophil chemoattractants, and increases adhesion molecule 

expression of endothelial cells, indirectly assisting neutrophil adhesion and subsequent 

migration through the endothelium. On the other hand, it can inhibit neutrophil trans-

endothelial migration by enhancing endothelial barrier integrity. Before S1P can be 

used as a therapeutic agent, both of these contradicting effects have to be taken into 

consideration, and further investigation is needed to establish the responsible S1P 

receptors so targeted therapies can be applied. The mechanisms have to be examined in 

more depth, too. 
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CHAPTER 6 

In vivo effects of S1P 
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Chapter 6. In vivo effects of S1P 

6.1 Introduction 

From the previous chapter (chapter 5), it became clear that S1P can affect neutrophil 

migration indirectly, on the one hand by enhancing endothelial barrier integrity, 

inhibiting neutrophil migration through the endothelium, and on the other hand by 

inducing IL-8 production and adhesion molecule expression by endothelial cells, 

possibly enhancing neutrophil trafficking. Since these two effects are contradictory, it 

would be interesting to discover which effect is more pronounced, if any, in vivo and 

whether S1P administration will eventually enhance or inhibit neutrophil trafficking in 

an in vivo setting.  

Several studies have demonstrated effects of S1P or analogues when administered in 

vivo. In a mouse model of myocardial ischemia reperfusion injury, S1P administered 

intravenously prior to the induction of ischemia could decrease the infarct size and 

diminish the number of neutrophils attracted to the site (Theilmeier et al., 2006). In 

another study, S1P caused vasoconstriction of canine basilar arteries when administered 

in the cerebrospinal fluid (Tosaka et al., 2001). Intravenously administered S1P, and in 

some cases intraperitoneally administered FTY720, significantly reduced pulmonary 

and renal leakage and inflammation in a mouse model of acute lung injury (Peng et al., 

2004). The S1P analogue FTY720, which is phosphorylated in vivo into FTY720-P, has 

been extensively shown to inhibit T and B cell migration from secondary lymphoid 

organs, by causing internalization and degradation of S1PR1 (Chiba et al., 1998; 

Pinschewer et al., 2000; Kahan, 2004). FTY720 and the S1PR1 agonist SEW2871 can 

also affect dendritic cell trafficking, with in vivo administration in mice causing 

increased numbers of circulating DCs in the blood, and decreased numbers in lymph 

nodes and spleen (Lan et al., 2005).  

There are several animal models for inflammation and cell recruitment. Among the 

most wide-spread in their use especially in rodents, are the paw oedema model (Winter 

et al., 1962), the pleural cavity inflammation model (Spector and Willoughby, 1957), 

the peritoneum cell recruitment (Murch and Papadimitriou, 1981) and the air pouch 

model (Selye, 1953). However, the paw oedema model does not allow for collection of 

inflammatory exudate to analyse the cells recruited, only measurement of paw swelling. 

The other three models, on the other hand, allow recruitment of cells in cavities to be 
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measured by collection of the cavity fluid. The pleural cavity model though, is difficult 

to perform in mice and is more widely used in rats. Moreover, it usually works by 

injection of inflammatory agents such as carrageenan in the pleural cavity causing 

inflammation and wider cell recruitment (Di Rosa et al., 1971). If focus on one cell type 

is preferred, and a single pro-inflammatory molecule such as a cytokine or chemokine 

needs to be investigated, the other two models of cell recruitment are cleaner and better 

suited. The type of cell that is recruited plays a role in which cell recruitment model 

would be more suitable, the peritoneal recruitment or the air pouch model. For example, 

for monocyte recruitment in a mouse air pouch several days would be needed, whereas 

recruitment of monocytes in a mouse peritoneal cavity would be sufficient after 16-24 

hours (Dawson et al., 1991). Neutrophil recruitment however can be produced in similar 

extent in both the peritoneal cavity and the air pouch model (Perretti et al., 1994).  

In the current project both of these mouse models of cell recruitment were used to 

assess the effects of S1P on neutrophil trafficking in vivo. In the air pouch chemotaxis 

model, an air pouch was formed subcutaneously on the back of the animal by injection 

of sterile air, and was then filled with liquid containing the neutrophil chemoattractant 

IL-8, to assess neutrophil migration in the air pouch, with or without S1P 

administration. In the peritoneal recruitment model, IL-8 was administered 

intraperitoneally and neutrophil migration to the peritoneal cavity was measured, as well 

as whether S1P administration had an effect on it. These in vivo models could help 

show whether S1P indeed has an effect on neutrophil trafficking similar to the in vitro 

effects, and whether this effect is stimulatory or inhibitory. 
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6.2 Materials and Methods 

6.2.1 Reagents 

For the in vivo experiments a different form of S1P was used. It was Huzzah S1P 

(Avanti Polar Lipids, USA), a Human Serum Albumin (HSA) / S1P complex. Huzzah 

S1P consists of S1P conjugated with HSA, a physiologically relevant carrier protein, at 

a 2:1 ratio. This makes S1P easily soluble in aqueous solutes without the need of an 

organic solute that could affect viability and phenotype of cells or in this case have 

adverse effects when injected in animals. Huzzah S1P was reconstituted in sterile PBS 

in appropriate S1P concentration (usually 500μM), and injected in mice immediately, or 

kept overnight at 4 oC before being injected in mice. Huzzah Control (Avanti Polar 

Lipids, USA) was utilized as vehicle for the experiments that used Huzzah S1P, and it 

was essentially HSA of the same grade as in Huzzah S1P, that was also reconstituted in 

sterile PBS, at the same concentration used for S1P.  

The recombinant human CXCL8 (Peprotech) was used for these experiments. This was 

reconstituted in sterile PBS at appropriate concentration for each experiment. 

6.2.2 Animals and procedures 

Female BALB/c mice bought from Charles River UK were used for all animal 

experiments. They were maintained under appropriate pathogen free conditions and 

used at ages 7 - 10 weeks. All animal procedures were done in accordance with UK 

Home Office and EU Institutional Guidelines and within the parameters of current 

personal and project licences. Work with live mice was performed by trained staff at the 

Comparative Biology Centre (Medical School, Newcastle University, UK). 

6.2.2.1 Air pouch cell recruitment 

For the air pouch experiment (see figure 6.1), 3ml of sterile air were injected 

subcutaneously into the back of each animal under general anesthesia (day 1). The next 

day (day 2), as well as days 4 and 5, another 1 ml of air was injected in the same air 

pouch without anesthesia. On day 5, the animals were also injected intravenously (i.v.) 

with 100μl S1P 500μM or vehicle. After 24 hours, 1ml of PBS containing 5μg IL-8, or 

PBS only was injected into the air pouch. Mice were euthanized by cervical dislocation 

4 hours later, and air pouch was lavaged with 1ml of 1mM EDTA in PBS twice to 

collect air pouch fluid. The air pouch fluid was then centrifuged at 500x g to pellet cells, 
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which were then resuspended in PBS with 2% FBS, counted by heamocytometer and 

separated into tubes to be stained for flow cytometry or used for bead counting (see 

chapter 2.4.1). For two of the samples that had excess of cells, a cytospin on glass slides 

was performed, slides were fixed in methanol and stained with Diff-Quick stain to 

differentiate different cell types under the microscope. 

 

Figure 6.1. Air pouch cell recruitment mouse model. Diagram depicting air pouch creation 

steps for cell recruitment experiment.  

 

6.2.2.2 Peritoneal cell recruitment 

For the peritoneal recruitment experiments, mice were injected intraperitoneally (i.p.) 

with 5μg IL-8 in 200μl, or with 200μl PBS and 4 hours later euthanized by cervical 

dislocation or carbon dioxide asphyxiation. In some experiments mice were injected i.p. 

with 200μl S1P (Huzzah S1P) 500μM or vehicle (Huzzah Control) 24 hours before the 

IL-8 injections. Peritoneal fluid was collected as soon as possible after death, by 

injecting 5ml PBS with 2% FBS and 1mM EDTA in the peritoneal cavity, massaging to 

dislodge attached cells, and then collecting liquid back with syringe and Pasteur pipette. 

Fluid was centrifuged at 500 x g to pellet cells that were then resuspended in PBS with 

2% FBS and 1mM EDTA, counted with a heamocytometer and separated into tubes for 

flow cytometry and bead counting (see chapter 2.4.1).  
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6.2.3 Multicolour flow cytometry 

Cells derived from peritoneal or air pouch fluid were stained in the same tube, with 

appropriate directly conjugated primary antibodies. An antibody mix with appropriate 

antibody concentrations was created first and then added in the flow tubes. Staining 

proceeded as described in chapter 2.3. Compensation is necessary in multicolour flow 

cytometry as the fluorescent emission spectra of many fluorochromes can overlap in a 

certain degree and be detected by the same PMT. Compensation allows the subtraction 

of the part of a fluorescent molecule’s emission spectra that can be detected by other 

than its primary detector. Single stains were used as compensation controls for the 

multicolour flow cytometry, as well as “Fluorescence Minus One” (FMO) controls, 

which contained all antibodies expect one each, to properly place negative gates. 

Antibodies used were anti - mouse CD3ε, CD19, CD11b, CD11c, Ly6G and F4/80 

(Biolegend, UK; see chapter 2.3 for full list). The viability dye Zombie Aqua Fixable 

Viability Kit (Biolegend, UK) was used to distinguish alive from dead cells. Flow 

cytometry was performed on FACSCanto II instrument (BD Biosciences) and data were 

analysed using FlowJo 7.6 software (Treestar). 
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6.3 Results 

6.3.1 Air pouch model of cell recruitment 

To determine the effects S1P can have on neutrophil recruitment in vivo, the air pouch 

mouse model of cell chemotaxis was employed. In this model, mice are injected 

subcutaneously with sterile air a number of times until an air pouch is formed. This 

pouch can then be filled with chemokine and cell recruitment in the pouch is measured 

by collecting the air pouch fluid. For the purposes of this study, mice were injected 

intravenously (i.v.) with 100μl S1P 600μM or vehicle (PBS with Human Serum 

Albumin) after the air pouch had been formed, and 24 hours later they were injected 

with 5μg CXCL8 (IL-8) in 1ml PBS or PBS only into the air pouch. This resulted in 3 

groups of mice, a control group injected with S1P and then PBS, a group injected with 

vehicle then IL-8 and a group injected with S1P then IL-8. Mice were euthanized 4 

hours later and air pouch fluid was collected. Cells collected this way were then stained 

with multiple antibodies and viability dye for flow cytometry and were counted using 

counting beads. The antibodies used were CD19 and CD3 for B and T cells 

respectively, Ly6G and CD11b for neutrophils, F4/80 for macrophages and CD11c for 

dendritic cells. The viability dye Zombie Aqua (Biolegend) was used to distinguish 

alive and dead cells.  

Two of the samples were also cytospinned and stained with Diff-Quick stain to be 

observed under the microscope. The first sample was from an animal treated with S1P 

only with no IL-8 afterwards, as a control. The second sample was from an animal 

treated with vehicle then IL-8. In the first sample, various kinds of cells can be seen, 

whereas in the second sample the cells are almost only neutrophils (figure 6.2).  

For the flow cytometric analysis of the cells infiltrating the airpouch, gating was first 

done on forward scatter (FSC)/side scatter (SSC) axis, followed by FSC-A/FSC-H to 

exclude any doublets. Zombie aqua negative cells were then chosen as live cell 

population and gated on CD3/CD19 axis. CD3 negative CD19 negative (CD3- CD19-) 

cells were chosen to exclude B cells and T cells. These were further analyzed on 

Ly6G/CD11b axis to gate for neutrophils as a distinct Ly6G high CD11b high (Ly6Ghi 

CD11bhi) cell population (figure 6.3). Due to the variability of the data no statistically 

significant differences between the three groups were observed (figure 6.4). Total cell 

counts were varied within samples from the same group. Total neutrophil count and 
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percentage of neutrophils in total cells were measured, but no effect could be 

determined. Moreover, when comparing with the control, that received no IL-8, there 

was not a significant increase in cell recruitment in the other two groups. This indicates 

some technical fault with the experiment, probably due to blood contamination (figure 

6.4). Higher numbers of mice samples might be required to identify any significant 

effects. 

 

 

 

Figure 6.2. Images of cells recruited in air pouches. Cells from air pouch of an animal treated 

with S1P then PBS (A) and an animal treated with vehicle then IL-8 (B). Neutrophils (arrow) 

are visible in both samples, but in B there are much more compared with other types of cells. 
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Figure 6.3. Gating on neutrophils for cell recruitment in air pouch. The whole cell 

population of the air pouch is gated first on the FSC/SSC axis. Then doublets are removed by 

gating on the FSC-A/FCS-H axis. Alive cells are selected by gating on Zombie Aqua (viability 

dye) negative events. Gating on CD3/CD19 axis allows selection of CD3- CD19- cells, 

excluding B and T lymphocytes. These cells are then gated on Ly6G (neutrophil 

marker)/CD11b axis to select neutrophils, which are Ly6Ghi CD11bhi. 
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Figure 6.4. Effects of S1P on air pouch cell recruitment. Air pouches were formed on mice 

that were then injected i.v. with 100μl S1P 500μM and 24 hours later 5μg IL-8 in 1 ml PBS 

were injected into the air pouch. Mice were euthanized 4 hours later and fluid was collected 

from air pouches. Cells were stained for flow cytometry and counted using beads. Neutrophils 

counts, total cell counts and percentage of neutrophils in total cells were measured. 
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6.3.2 Optimization of peritoneal cell recruitment by IL-8 

In order to further investigate the effects S1P might have in vivo a model of cell 

recruitment in the peritoneum was used. In this model, the chemokine IL-8 is injected in 

the peritoneum of mice, and after 2 – 8 hours there is a recruitment of cells in the 

peritoneal cavity, and especially neutrophils. Before moving on to add S1P and observe 

if it can affect IL-8 induced cell recruitment, an optimization experiment was 

performed, to make sure there is enough recruitment achieved by IL-8 alone. In this 

experiment, mice were injected intraperitoneally (i.p.) with 5μg IL-8 in 200μl PBS, or 

with PBS alone as vehicle. The mice were euthanized 4 hours later and peritoneal fluid 

was collected. The cells were then stained with multiple antibodies for flow cytometry 

in order to determine the different cell populations. CD19 and CD3 were used to gate on 

B cells and T cells respectively, Ly6G and CD11b to distinguish neutrophils, F4/80 for 

macrophages and CD11c for dendritic cells. A viability dye was also used to distinguish 

alive and dead cells (Zombie Aqua, Biolegend).  Moreover, counting beads were 

utilized, to measure cell counts accurately.  

After dead cells had been excluded, CD3- CD19- cells were gated. These were then 

analyzed on a Ly6G/CD11b axis, and neutrophils were determined to be a distinct 

population that was Ly6Ghi CD11bhi. Interestingly, there was a considerable amount of 

neutrophils on both IL-8 treated and vehicle treated mice (figures 6.5-6.6). This was not 

the case with test mice that were not injected at all, which had almost no neutrophils in 

their peritoneal cavity (data not shown). This probably means that the act of injecting 

itself causes some inflammation and leads to the recruitment of neutrophils. However, 

mice injected i.p. with IL-8 had significantly more neutrophils than mice injected with 

vehicle alone. Moreover, the total cell count was significantly higher, too (figure 6.7).   
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Figure 6.5. Neutrophils in peritoneum after IL-8 injection. Alive cells were gated on 

CD3/CD19 axis to exclude T and B lymphocytes. The CD3- CD19- population was further gated 

on Ly6G/CD11b axis, where neutrophils were gated as Ly6Ghi CD11bhi population. Data 

representative of one mouse sample out of 3 that were treated with 5μg IL-8 i.p. 

 

                         

 

Figure 6.6. Neutrophils in peritoneum after vehicle injection. Alive cells were gated on 

CD3/CD19 axis to exclude T and B lymphocytes. The CD3- CD19- population was further gated 

on Ly6G/CD11b axis, where neutrophils were gated as Ly6Ghi CD11bhi population. Data 

representative of one mouse sample out of 3 that were treated with vehicle (PBS) i.p. 
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Figure 6.7. Neutrophil and total cell count in the peritoneum after IL-8 recruitment. Mice 

were injected i.p. with 5μg IL-8 in 200μl PBS or with 200μl PBS only. 4 hours later mice were 

euthanized and peritoneal fluid collected. Cells were stained for flow cytometry and counted 

using beads to measure total cell count and neutrophil population count. * p<0.05  
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6.3.3 Effects of S1P on peritoneal cell recruitment by IL-8 

The next step was to include S1P treatment in the peritoneal cell recruitment experiment 

in order to examine what effects this would cause. Mice were separated in 4 groups this 

time. One group was injected intraperitoneally with 200μl S1P 500μM and 24 hours 

later further injected with 5μg IL-8 in 200μl as before; a second group was injected with 

vehicle and then IL-8, the third group was injected with S1P and then PBS as vehicle 

for IL-8, and finally the last group was injected with vehicle twice. Like before, mice 

were euthanized 4 hours after the second injection and peritoneal fluid was collected. 

The cells were again stained with multiple antibodies and viability dye, and beads were 

also used for counting. Although originally there were 5 mice per group, the presence of 

blood in some of the samples lead to their exclusion from further analysis. 

Gating on peritoneal cells was first done on FSC/SSC axis, followed by FSC-A/FSC-H 

to exclude any doublets. As with previous experiments, neutrophils were determined to 

be the distinct Ly6Ghi CD11bhi population of the CD3- CD19- proportion of the live cell 

population (figure 6.8). Compared with the control groups, that received no IL-8, the 

total cell count and neutrophil recruitment was significantly higher in the other two 

groups that received IL-8 in the second injection (figure 6.9). This was in accordance 

with the optimization experiment (figure 6.7). Moreover, the group that received S1P 24 

hours before the IL-8 injection had decreased neutrophil count in comparison to the 

group that received vehicle and then IL-8. The total cell counts for these two groups 

were not significantly different (figure 6.9). It appears then, that S1P inhibited 

neutrophil recruitment in the peritoneum induced by IL-8.   
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Figure 6.8. Gating on neutrophils for cell recruitment in peritoneum. The whole cell 

population of the mouse peritoneum is gated first on the FSC/SSC axis. Then doublets are 

removed by gating on the FSC-A/FCS-H axis. Alive cells are selected by gating on Zombie 

Aqua (viability dye) negative events. Gating on CD3/CD19 axis allows selection of CD3- CD19- 

cells, excluding B and T lymphocytes. These cells are then gated on Ly6G (neutrophil 

marker)/CD11b axis to select neutrophils, which are Ly6Ghi CD11bhi.  
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Figure 6.9. Effects of S1P on IL-8 cell recruitment in the peritoneum. Mice were injected 

i.p. with 200μl S1P 500μM or vehicle (-), then 24 hours later injected with 5μg IL-8 in 200μl or 

vehicle (-). After 4 hours mice were euthanized and peritoneal fluid collected. Cells were 

stained for flow cytometry and counted using beads. Total cell count and neutrophil count 

(Ly6Ghi CD11bhi) were measured. * p<0.05, ** p<0.01, *** p<0.001, ns p≥0.05. Originally n=5 

per group, but samples with blood were excluded from analysis.  
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6.4 Discussion 

Although CXCL8 (IL-8) is a human chemokine that is not expressed in mice, the human 

chemokine receptors CXCR1 and CXCR2, which bind IL-8, have homologues in mice, 

that can recognize human IL-8 (Fan et al., 2007). For this reason, mice can be used 

successfully as an in vivo model system to measure neutrophil recruitment mediated by 

IL-8, as has been demonstrated by several studies (Singer and Sansonetti, 2004; Proost 

et al., 2008; Gangavarapu et al., 2012). The most common system used is peritoneal 

recruitment, with IL-8 injected i.p. causing rapid recruitment of neutrophils in the 

peritoneal cavity of the mouse. In the current project, this model was used to 

successfully recruit neutrophils. Moreover, S1P injection 24 hours before the 

administration of IL-8 showed significant inhibition of neutrophil recruitment in the 

peritoneum. This result is in agreement with previous in vitro data that showed S1P 

treatment of endothelial cells inhibited neutrophil migration through them, by enhancing 

endothelial barrier function (see chapter 5). It appears then that in vivo S1P also 

enhances endothelial barriers, preventing neutrophils from migrating towards the 

peritoneal cavity by following IL-8 gradients. Although other in vitro data showed that 

S1P can also induce chemokine production and adhesion molecule expression by 

endothelial cells (see chapter 5), this effect appeared secondary in vivo, with the 

inhibitory effect being more pronounced. However, a higher number of animals, and use 

of S1P receptor agonists would help verify and expand these results in the future.  

Another well established mouse model for cell recruitment is the air pouch model 

(Edwards et al., 1981; Sin et al., 1986; Romano et al., 1997a). In this model, IL-8 is 

injected in an air pouch created on the back of the animal, causing neutrophil 

recruitment similar with the peritoneal recruitment model (Perretti et al., 1994; Romano 

et al., 1997b). For this project however, when this model was used to assess the effects 

of S1P on neutrophil recruitment induced by IL-8, the results were too variable to reach 

a conclusion. Generally, cell recruitment was not optimal, since IL-8 did not appear to 

cause increased recruitment over vehicle. It is possible that the use of more animals, 

with optimization experiments for neutrophil recruitment beforehand, would help 

provide a clear result. Cell recruitment should be measured at different time points 

following the administration of a range of IL-8 concentrations, leading to the 

identification of optimal conditions for maximised neutrophil recruitment. Then, using 

an optimized IL-8 concentration and time, S1P effects on neutrophil recruitment could 

be better assessed. 
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To sum up, mice can be used as in vivo models for IL-8 induced cell recruitment. S1P 

appears to have an inhibitory effect in neutrophil recruitment in vivo according to a 

mouse model used, pointing towards an effect in endothelial barrier function in vivo as 

was shown in vitro. However, these in vivo results were pilot experiments and further 

examination using more animals, and different S1P receptor agonists would help 

expand and provide more information on the mechanisms of action by S1P in vivo. 
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Chapter 7. Discussion 

Neutrophils are major mediators of many inflammatory conditions including ischemia-

reperfusion injury. They migrate through the blood stream to the sites of inflammation 

by following chemokine gradients and passing through the endothelial barrier according 

to a firmly regulated procedure of rolling, firm adhesion, endothelial crawling and 

diapedesis. Theurapeutic approaches to many conditions could target neutrophils, and 

specifically their migration, by affecting any of these specific processes. The main 

objective of this study was to investigate whether the lipid mediator S1P or any of its 

analogs and agonists could be used to target neutrophil migration to the sites of 

inflammation. S1P could affect neutrophil migration directly by induction of S1P 

receptor signalling on neutrophils and crosslinking with chemokine receptors, causing 

inhibition in chemokine mediated migration or adhesion to endothelium; or it could 

affect neutrophil migration indirectly, by signalling on the endothelium, causing 

enhancement of the endothelial barrier and disrupting neutrophil diapedesis through it, 

or affecting endothelial cell chemokine production and adhesion molecule expression, 

that would guide neutrophils to migrate to the inflammation site.  

This study showed direct signalling of S1P on neutrophils exists but does not result in 

an effect in migration or adhesion. On the other hand, S1P signalling on endothelial 

cells was found to have conflicting effects on neutrophil migration. It can enhance 

endothelial barrier integrity leading to inhibition of neutrophil diapedesis through the 

endothelium. However, S1P signalling also results in chemokine production by 

endothelial cells, which would attract more neutrophils to the site, leading to an increase 

in neutrophil trafficking. Furthermore, S1P also stimulates adhesion molecule 

expression on endothelial cells that would also assist neutrophil migration. The question 

raised was which effect would eventually prevail in an in vivo environment, so that a 

decision can be made on whether S1P could be used as a therapeutic approach in the 

future. An in vivo model gave a provisional answer to this question, by showing that 

S1P administered in vivo can inhibit neutrophil recruitment to the site of chemokine 

injection. Further work is required though, to investigate whether that is indeed the case, 

which S1P receptors are involved, and the mechanisms of action, before proceeding to 

human trials. 
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7.1 Use of cell lines vs. primary cells 

An interesting point raised during the course of this study is the use of cell lines as 

models for primary cells in vitro. The first cell line was created on 1951 with the HeLa 

cells, derived from cervical cancer cells that were isolated and cultured in the lab 

(Scherer et al., 1953; Lucey et al., 2009). Cell lines are either cancer derived or 

otherwise immortalized cells that can be kept in culture almost indefinitely. That is their 

greatest advantage, they can be cultured for as long as you need them in order to 

perform your experiments, unlike primary cells that need to be used immediately and 

have to be isolated every time you need to perform an experiment with them. Another 

advantage of cell lines is the fact that all cells are basically identical, derived from the 

same donor, divided from the initial cell culture. This allows researchers to perform 

standardized, easily repeatable experiments, unlike using primary cells that may differ 

from donor to donor. On the other hand, the main disadvantage of using cell lines 

instead of primary cells is the fact that they are phenotypically different from their 

primary counterparts. The simple event of immortalisation, whether that was because 

they are of cancer origin or they were immortalised in the process of creating the cell 

line, can change their characteristics dramatically, and all these divisions can change 

them even further by the accumulation of mutations. So, every researcher should have 

that in mind when using a cell line as a model for primary cells, and not expect results 

to be exactly the same as when primary cells are used. Sometimes though, the 

differences might be subtle enough that results can be adequately accepted as a valid 

model for the cells of interest. 

In this project, both cell lines and primary cells were used. HL60 cell line was tried as a 

human neutrophil model, before moving on to using primary human neutrophils. 

However, when differentiated HL60 were compared with primary neutrophils, many 

differences arose, that lead to the conclusion that they were not suitable to be used in 

this project further. First of all, their IL-8 signalling was severely impaired, with an 

important IL-8 receptor, CXCR1, missing from their surface. This lead to deficient 

migratory function towards IL-8, that was in contrast to the migratory capabilities of 

primary cells. Other functions of IL-8 signalling were also missing, like the stimulatory 

effects of IL-8 to neutrophil adhesion. In terms of S1P signalling that was the focus of 

this project, HL60 completely lacked an important S1P receptor that was highly 

expressed by primary neutrophils, S1PR1. This severely limited their value as a model 

to assess the effects of S1P on neutrophils. A few other differences, such as the 
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expression of CD69 and abnormal adhesion patterns contributed in eventually moving 

on to using only primary neutrophils for the rest of this study. Of course the use of the 

cell line was still useful in terms of optimization of experiments, before moving on to 

repeat them with the harder to obtain and more demanding primary neutrophils. 

Endothelial cell lines were also used in this project. HMEC-1 and Eahy926 were tried 

before moving on to HUVEC primary endothelial cells. Eahy926 were abandoned early 

on, as they did not appear to behave like endothelial cells enough (eg. not forming 

uniform monolayers). This might be because they are actually a hybrid cell line of 

endothelial and epithelial origin (Edgell et al., 1983). HMEC-1 cells however were 

found to behave similarly with how primary endothelial cells would be expected to 

behave. Both HMEC-1 and HUVEC provided similar results when used in trans-

endothelial chemotaxis assays. Both cells also appeared to be able to express IL-8 after 

stimulation with S1P, although primary HUVEC could produce considerably higher 

amounts compared with HMEC-1 IL-8 production. This means that some functionality 

was impaired but that was not so significant for the current project. In terms of S1P 

receptor expression, both cells express S1PR1, although HUVEC express more than 

HMEC-1; both express S1PR2, although HMEC-1 express much more than HUVEC. 

As for S1PR4 and S1PR5, HUVEC express the former, whereas HMEC-1 express the 

later; S1PR3 is barely expressed by both cells. S1P could also induce adhesion molecule 

expression in both cells, although the expression pattern was slightly different. So there 

are some differences between the cell line and the primary cells, but in this case at least 

they could be set aside, since the similarities were more important. It should also be 

noted, that there are many different types of endothelial cells, and the fact that HMEC-1 

are derived from human microvascular endothelial cells, whereas HUVEC are 

macrovascular cells from human umbilical vein, might be the reason for the observed 

differences. 
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7.2 Direct effects of S1P on neutrophils 

There are a number of studies that have somehow linked S1P signalling and neutrophils. 

However, not all of the effects observed are necessarily direct effects on neutrophils. 

For example, S1P lyase deficiency, that would lead to S1P accumulation, causes 

impaired neutrophil trafficking (Allende et al., 2011). However, it is not completely 

clear whether S1P affects neutrophils directly or the observed outcome is the result of 

S1P affecting other types of cells, i.e. endothelial cells. There are nevertheless a couple 

of in vitro studies, using ex vivo human neutrophils that have indeed shown some direct 

effect of S1P on neutrophil migration. Specifically, they both showed S1P can inhibit 

neutrophil migration in vitro (Kawa et al., 1997; Rahaman et al., 2006).  

In this study, it was investigated whether S1P can indeed affect neutrophils directly. 

Neutrophils were found to express mainly S1PR1 and S1PR4 as had been reported by 

previous research (Rahaman et al., 2006), and the main signalling pathway activated by 

S1P through these receptors was the ERK1/2 pathway. This signalling pathway has 

been reported in the past to be involved in neutrophil functions such as adhesion, 

degranulation, oxidative burst, formation of neutrophil extracellular traps (NETs), and 

IL-8 production (Sue et al., 1997; Capodici et al., 1998; Alvarez et al., 2006; Hakkim et 

al., 2011). Moreover, S1P signalling was found to be able to enhance IL-8 induced 

signalling, indicating some crosslinking of S1P receptors with IL-8 receptors. Rahaman 

et al. had reported something similar, when they observed a crosslinking between 

S1PR4 and CXRCR1 that seemed to result in the observed inhibitory effect of S1P on 

neutrophil migration towards IL-8 (Rahaman et al., 2006).  Nevertheless, and despite 

what was previously reported, there was no significant effect of S1P on neutrophil 

chemotaxis towards IL-8 observed in the current study. This result could be explained 

by the diversity of neutrophils from different donors, allowing for small scale effects to 

be rendered insignificant; the sensitivity of different chemotaxis counting methods 

could also play a role, as well as the range of IL-8 concentrations being used – maybe 

the effect would be more noticeable if sub-optimal concentrations of IL-8 had been 

used. 

In a similar way as with neutrophil migration, neutrophil adhesion to ICAM-1 and 

VCAM-1 adhesion molecules was not found to be affected by S1P. Neither was the IL-

8 induced adhesion to these molecules affected in any way, although IL-8 induced 

ERK1/2 signalling was enhanced by S1P, and it has been shown in the past that 
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neutrophil adhesion can be governed by this signalling pathway. However, Kawa et al. 

did not find any effects of S1P on neutrophil adhesion either, although their data was for 

adhesion to endothelial cells (Kawa et al., 1997). On the other hand, Florey and 

Haskard had shown that S1P can affect immune complex mediated neutrophil adhesion 

under flow conditions, among other things, although S1P did not have a significant 

effect by itself (Florey and Haskard, 2009b). 

Another aspect that was investigated in the chapter about direct effects of S1P on 

neutrophils was the role of activation molecule CD69 and whether there was any 

crosslinking with S1P receptors that affected neutrophil migration in any way. CD69 

has been found to be important in lymphocyte trafficking through lymphoid organs, by 

association with the S1PR1 that is necessary for the egress of these cells. It was 

therefore hypothesized that CD69 might have a similar role in neutrophils trafficking. 

However, neutrophils do not constitutively express CD69 on their surface; it needs to be 

induced by different compounds. There is a theory for the existence of an intracellular 

storage of CD69 that can be rapidly relocated on the cell surface after proper stimulation 

(Gavioli et al., 1992; Noble et al., 1999). In this study, although there was evidence of 

such storage in the form of CD69 mRNA expression, surface expession could not be 

induced that way. On the other hand, longer stimulation with GM-CSF resulted in CD69 

expression on the cell surface, as had been shown before (Atzeni et al., 2002). It was 

observed that when neutrophils were treated with GM-CSF to induce CD69 expression, 

it resulted in a considerable decrease in S1PR1 transcription, indicating a link between 

CD69 and S1P signalling. Moreover, although neutrophils left in media overnight could 

be stimulated by S1P to increase their impaired chemotaxis when compared to freshly 

isolated neutrophils, GM-CSF induced CD69 expression resulted in no such effect 

being observed. Again this could be another indication of CD69 crosslinking with S1P 

receptors in neutrophils. 
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7.3 Effects of S1P on endothelium 

According to the current study, it appears that S1P cannot affect neutrophil migration 

significantly by acting directly on neutrophils. However, neutrophil migration can be 

regulated in indirect ways, through effects on other cells that would lead to altered 

chemokine production, adhesion molecule expression, etc.; especially if these cells are 

endothelial cells. Since neutrophils need to pass through the endothelium in order to be 

recruited to the inflammation sites, any change in endothelium status could affect their 

trafficking. The most important endothelium aspect that would affect neutrophil trans-

endothelial migration is the endothelial barrier, which regulates endothelial 

permeability. There are several reports in the literature that S1P can enhance endothelial 

barrier integrity (Garcia et al., 2001; Singleton et al., 2005; Itagaki et al., 2007). This 

was confirmed in the current study, where S1P was found to inhibit neutrophil 

migration through treated endothelial cells, as well as decrease endothelial permeability. 

The S1P receptor that is responsible for this effect appears to be S1PR1, a finding 

shared with Singleton et al., although a novel S1PR1 agonist was used to show this in 

our study (Singleton et al., 2005). 

The mechanism through which S1P signalling enhances endothelial barrier integrity is 

not thoroughly understood yet. Some studies report S1P effects on cytoskeleton, and 

specifically actin rearrangement, that leads to cell spreading to close intercellular gaps 

(Garcia et al., 2001; Singleton et al., 2005; Xu et al., 2007). Whether that is enough to 

inhibit neutrophil migration through the endothelium though is still a question. 

Endothelial cells interact with each other and keep in close contact through intercellular 

junctions. One of the most important types of these junctions is adherens junctions, 

which consist of several molecules forming a complex that links with respective 

complexes from the adjacent cell.VE-cadherin is a major molecule of endothelial 

adherens junctions, that has been found to be increasingly localized in cell-cell contact 

regions by S1P without affecting its total protein levels (Lee et al., 1999; Mehta et al., 

2005). This localization could assist in adherens junction assembly, leading to increased 

endothelial barrier functions and decrease in permeability. However, phosphorylation of 

VE-cadherin can cause junction instability and prevent proper assembly, which would 

have the opposite effect in permeability and endothelial barrier integrity. So it is 

important to investigate whether the VE-cadherin affected by S1P is phosphorylated or 

not, before we can make any conclusions. As was shown in chapter 5, S1P can actually 

decrease VE-cadherin phosphorylation on tyrosine 658 (Y658), an important residue for 
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junction assembly, leading to better junction stabilization and eventually enhancement 

of endothelial barrier integrity. 

Neutrophils migrate through the endothelium by following chemokine gradients and 

adhering to the endothelial cells through adhesion molecules before finding a gap to 

pass through to the inflamed tissue. So, any effects on chemokine production or 

endothelial cells adhesion molecule expression would also affect neutrophil trans-

endothelial migration. S1P can induce chemokine production by endothelial cells, more 

notably the chemokine IL-8 which is important for neutrophil migration. The 

chemokine CXCL1, which is another chemoattractant for neutrophils, is also affected. 

In the literature it has been reported that S1P induces IL-8 expression not only by 

endothelial cells (Lin et al., 2006), but also several other types of cells, including 

alveolar epithelial cells (Milara et al., 2009), immature dendritic cells (Oz-Arslan et al., 

2006) and human retinal pigment epithelial cells (Qiao et al., 2012). Increased IL-8 

production by S1P would lead to increased neutrophil recruitment, theoretically. 

Moreover, S1P appears to be able to induce adhesion molecules ICAM-1 and VCAM-1 

surface expression by endothelial cells, which would increase neutrophil adhesion to the 

endothelium, theoretically assisting neutrophil migration. In flow based adhesion assays 

though, the increase in adhesion molecules did not appear to be enough to increase 

adhesion of neutrophils to endothelial cells. On the other hand, S1P can inhibit TNF-α 

induced VCAM-1 expression and neutrophil adhesion to endothelium. Therefore, in an 

inflammatory state that would cause TNF-α production, S1P could be able to inhibit 

neutrophil adhesion and subsequently migration to the site of inflammation.  

The diagram on figure 7.1 sums up the basic effects S1P has on endothelial cells that 

could indirectly affect neutrophil migration. On the one hand it could inhibit migration 

by enhancing endothelial barrier integrity; on the other hand it could assist neutrophil 

migration by inducing the production of IL-8 and endothelial adhesion molecules 

ICAM-1 and VCAM-1 (figure 7.1). Since these two are contradicting effects, it would 

be interesting to find out which effect persists in an in vivo environment. Using a mouse 

model of peritoneal cell recruitment by IL-8, it was discovered that S1P, when 

administered in vivo, could inhibit neutrophil recruitment, concluding that S1P 

enhancement of endothelial barrier is the more pronounced effect in vivo. 
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Figure 7.1. Effects of S1P on endothelial cells. Schematic diagram summarising the diverse 

effects S1P has on endothelial cells and how these could affect neutrophil migration. ECs: 

endothelial cells, p-VE-Cadherin: phosphorylated VE-cadherin, PMN: neutrophils 
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7.4 Future work 

There are a lot of further investigations that could arise from the work performed in this 

study. Before moving on to using S1P therapeutically to inhibit neutrophil recruitment 

in inflammatory conditions, further work is required. The chapter on the direct effects of 

S1P on neutrophils showed some results conflicting with previous reports. Before 

reaching to a conclusion as to which result is true, it would be useful to repeat some of 

these experiments by changing certain parameters that would maybe lead to a different 

outcome. For example, repeating the experiment on the effects of S1P on neutrophil 

chemotaxis towards IL-8, using lower, sub-optimal concentrations of IL-8, might 

produce different results. Even if that is not the case and S1P indeed does not have a 

direct effect on neutrophil chemotaxis, S1P signalling on neutrophils should produce 

some effect, since downstream ERK1/2 signalling was observed. Other neutrophil 

functions, such as neutrophil degranulation, oxidative burst, and NET formation could 

be investigated to determine which of them are affected by S1P. In regards to any 

connection of CD69 with S1P signalling on neutrophils, although there was some 

evidence towards that in this study, it was far from conclusive. There appeared to be a 

cross-linking between CD69 and S1PR1 expression. This could be further investigated 

by using immunoprecipitation techniques, to determine if the two molecules are 

physically linked on the cell surface. Cross-talk between the chemokine receptors 

CXCR1 or CXCR2 and S1P receptors on neutrophils might also exist and could be 

investigated in the future using the same technique. 

It was found that S1P can inhibit neutrophil trans-endothelial migration in vitro by 

enhancing endothelial barrier integrity. This result could be expanded, by using siRNA 

to knock out specific S1P receptors on endothelial cells to better determine the S1P 

receptors responsible for this effect, and confirm the results shown by using S1P 

receptor agonists. Another method for that would be to use S1P receptor antagonists, 

together with S1P, that would block the binding of S1P to a specific S1P receptor, 

observing the outcome to neutrophil chemotaxis. Furthermore, the mechanisms behind 

the barrier enhancing effects of S1P could be further investigated. It was found that S1P 

can decrease VE-cadherin phosphorylation at Y658, potentially leading to increased 

junction stability and barrier enhancement. Other candidate residues that could be 

investigated are tyrosine 685 and 731, also reported to have an effect on junction 

assembly. Moreover, other junction molecules like β-catenin can also be phosphorylated 

leading to increased endothelial permeability. These could be further examined as well 
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as part of the mechanism of action of S1P on the endothelial barrier. A different method 

to examine general phosphorylation of junction molecules, other than western blotting 

using specific phospho-antibodies, would be immunoprecipitation with phospho-

tyrosine antibody. This result could be expanded further by looking into tyrosine 

kinases Src and Pyk2 expression to determine whether S1P signalling leads to inhibition 

of these molecules, which have been reported in the past to be responsible for VE-

cadherin phosphorylation (Allingham et al., 2007). 

In order to examine whether S1P signalling is a viable therapeutic target for the 

manipulation of neutrophil migration under various inflammatory conditions, in vivo 

animal models should be utilized first. The in vivo models used in this project could be 

expanded, by adding higher numbers of animals to result in a more significant outcome. 

The peritoneal recruitment model appeared to be more promising, but some further 

optimization of the air pouch model could lead in cleaner results. Moreover, the use of 

different S1P receptor agonists and antagonists would allow to better focus on the 

desirable S1P effects, eliminating any unwanted diverse effects. After researching the 

agonists in vitro, to find the most suitable, they could be used in vivo to expand the 

animal models. Another approach that could be followed is the production of knock out 

animals for different S1P receptors, to investigate whether neutrophil recruitment is 

impaired or enhanced. However, this might prove difficult for some receptors like 

S1PR1, which are vital and their absence would cause serious developmental problems, 

including embryonic lethality. In that case, a conditional or inducible knockout animal 

model, which would result in the selective inactivation of the receptor on specific types 

of cells, at the desired time point, would be an alternative approach. 
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