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Abstract  

This thesis explores the application of Chaos Theory to forecast urban traffic conditions.  

The research takes advantage of a highly resolved temporal and spatial data available from 

the Split Cycle Optimisation Technique (SCOOT) system, in order to overcome the 

limitations of previous studies to investigate applying Chaos Theory in traffic management.   

This thesis reports on the development of a chaos-based algorithm and presents results from 

its application to a SCOOT controlled region in the city of Leicester, UK.  A Phase Space 

Reconstruction method is used to analyse non-linear data from the SCOOT system, and 

establishes that a 20 second resolved data is suitable for understanding the dynamics of the 

traffic system.  The research develops the Lyapunov exponent as a chaos-based parameter 

to forecast link occupancy using a multiple regression model based on the temporal and 

spatial relationships across the links in the network.  The model generates a unique forecast 

function for each link for every hour of the day.  The study demonstrates that Lyapunov 

exponents can be used to predict the occupancy profile of links in the network to a 

reasonably high level of accuracy (R-values generally greater than 0.6).  Evidence also 

suggests that the predictions from the Lyapunov exponents (rather than occupancy) make 

it possible to report on the impending conditions over a wider part of the network so that 

imminent congested conditions can be foreseen in advance and mitigation measures 

implemented.   

Thus, the thesis concludes that incorporating chaos-based algorithms in this way can enable 

urban traffic control systems to be one-step ahead of traffic congestion, rather than one-

step behind.  This would improve the management of traffic on a more strategic level rather 

than purely within smaller network regions thus playing an important role in improving 

journey times and air quality and making a vital contribution to mitigating climate change.   
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Chapter 1. Introduction  

1.1 Introduction  

In most countries, especially those with well-developed or expanding economies, traffic 

congestion is widely recognised as a major problem given that it makes a significant 

contribution to global warming, environmental pollution and the depletion of fossil fuels 

(Manley and Cheng, 2010, O'Flaherty, 2005b, Papageorgiou et al., 2003).  Evidence that 

the UK has one of the most congested networks in Europe was presented by Goodwin 

(2004) (see Figure 1.1).  Traffic congestion causes substantial delays, especially in urban 

areas, which adversely affects journey times and the convenience of road travel in general.  

Congestion has a significant impact on local air quality with road transport being 

responsible for over 90% of domestic transport emissions, and the declaration of air quality 

management areas, in UK urban areas (DfT, 2011, Hitchcock et al., 2014).  The estimated 

cost of congestion is £13-£20 billion per year to the UK economy (Centre for Economics 

and Business Research, 2014, Goodwin, 2004, The Smith Group, 1999).  In the USA, 

vehicle miles has grown by nearly 500% since 1940, which currently costs approximately 

£72 billion per year (US Census Bureau, 2005).   

 

Figure 1.1: Comparison of Congested Links in European Countries 

(Source:(Goodwin, 2004)) 

One of the root causes of this problem is the steady growth since the 1950s in vehicular 

traffic (with relatively less infrastructural provisions) that has had far-reaching 

consequences on both the economy and the environment.  The average growth in road 

traffic in the UK is approximately 4% per annum, from 46.5 billion vehicle-kilometres in 
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1950 to 500 billion vehicle-kilometres in 2014 (DfT, 2015b, Goodwin, 2004).  By 

comparison, road length only increased by about 0.5% per annum from 297,000 kilometres 

to 396,000 kilometres, even though road capacity has some additional increment due to 

localised junction or network improvements and carriageway widening (DfT, 2015a, 

Goodwin, 2004).  Therefore, whilst the amount of road traffic has grown rapidly, road 

capacity has not expanded sufficiently to accommodate the additional demand.  Building 

new roads to increase urban road capacity on a large enough scale is unlikely as this often 

tends to be unpopular, economically unaffordable and environmentally unsustainable 

(Papageorgiou et al., 2003).   

Almost 50,000 deaths are brought forward annually in the UK as a result of air pollution 

from congested traffic (ONS, 2014).  Further, approximately 3.7 million people die per 

annum across the world due to the poor quality of outdoor air (WHO, 2015).  At a time 

when such externalities are now being a major public concern, increasing network capacity 

is inadvisable (Bigazzi and Figliozzi, 2013).  Instead, networks should be managed to 

maintain traffic flows at levels that cause minimal risk to health, and alleviating congestion 

is a significant step towards meeting this goal.  Consequently, the UK Government’s policy 

is directed towards investing in carbon efficient transport systems and exploring 

alternatives including traffic management and by encouraging non-car modes of transport 

as a means of reducing congestion resulting from car-borne journeys (DETR, 1998, 

Douglas et al., 2011, Eddington, 2006, Hickman and Banister, 2007, Hickman et al., 2010).   

1.2 UK Transport Policy (1998 – date)  

The Kyoto Protocol committed the European Union and national governments to reduce 

carbon dioxide (CO2) emissions by 60% in all sectors including transport by 2030 

(Hickman and Banister, 2007).  As reported, CO2 is a leading source of emissions in the 

UK and a major contributor to the estimated 14% of all greenhouse emissions attributed to 

the transport sector (an estimated 12.9% is due to the road sector) (Stern, 2006).  Therefore, 

a reduction of CO2 emissions in the transport sector is key to meeting the strategic targets 

of the Kyoto Protocol.  Since its adoption in 1997, UK transport policy has targeted 

strategies at minimising congestion and its adverse environmental impacts.  In 1998, a 

Government white paper set out a new integrated transport policy to promote the 

appropriate legislation and transport policies that would ensure continued economic 

growth, alleviate congestion, and improve journey time reliability, as well as tackling 

climate change (DETR, 1998).  In 2000, the Government published a 10 year investment 
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plan in surface transport, for the period up to 2010, incorporating strategies to tackle 

congestion and pollution by improving rail and road transport (Chatterjee and Gordon, 

2006).  In 2005, the UK Government commissioned the Stern Review and Eddington 

Transport Study to guide its policies on tackling climate change.  The findings of  the 

reports highlighted the adverse environmental impact of transport activities making the 

need for an urgent solution vital (Eddington, 2006, Stern, 2006).  In agreement, Hickman 

et al. (2010) suggested that the current progress towards achieving the targets of the Kyoto 

Protocol is slow, and therefore argued for urgent action.   

A major source of greenhouse emissions is the motor car, which is only second to freight 

transport contributing significantly to air pollution and CO2 emissions.  Recent advances in 

technology suggests that there is a vital role for fuel-efficient engines and alternative fuels 

towards significantly reducing emissions.  However, there is concern about the feasibility 

of deploying these solutions globally given the limited time frame available (Moriarty and 

Honnery, 2008).  Therefore, it is imperative to direct action at minimising car ownership 

and levels of use.  The challenge is the strong correlation between transport and economic 

growth, and Douglas et al. (2011) comment that this relationship poses a problem and likely 

to offset the gains made through technology (Chapman, 2007).  Therefore, it will be 

necessary to promote these technology-based solutions in parallel with strategies to 

minimise increasing car ownership and levels of use in order to boost efforts to achieve the 

environmental targets (Begg and Gray, 2004).  One of the principal objectives whilst 

satisfying economic growth and tackling the negative impacts of car use, is to ensure that 

the road network operates safely and efficiently with minimal congestion.   

According to the Eddington Study, approximately 89% of delay caused by congestion 

occurs in urban areas.  It predicts that the situation is likely to grow worse because urban 

areas are highly productive centres that attract and generate significant numbers of 

journeys.  If there are no interventions, then by 2015 an estimated 13% of vehicles could 

be subject to stop-start travel conditions.  However, if interventions yielded only a 5% 

reduction in travel time across all business travel on the roads, this would result in about 

£2.5 billion of cost savings, which is equivalent to about 0.2% of UK Gross Domestic 

Product (Eddington, 2006).  The monetary and environmental benefits of a free flowing 

network are immense, and make it necessary to implement the right interventions to 

alleviate congested urban networks and their catchments in order to enhance network 
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performance in terms of capacity, delays, reliability and sustain the productivity of the 

country.   

Further, the DfT estimates a future growth for over 24 million UK commuters per day using 

the transport network, which could further stress the limited available capacity (DfT, 2004).  

In order to operate the network efficiently, current strategies for managing the network 

need an overhaul through appropriate policy interventions to promote new technologies, 

supported by behavioural and lifestyle changes, as well as significant investment in other 

alternative modes such as public transport and ‘zero carbon’ walking and cycling 

(Chapman, 2007, Tight et al., 2005).  Ultimately, the practice of traffic management needs 

transforming by enhancing the ability of current systems to anticipate short-term network 

conditions in advance in order to mitigate appropriately and maintain under-saturated 

conditions.  The focus of this research is to investigate a means of identifying the onset of 

congestion in real-time to enable proactive traffic management interventions (feed forward 

control) in order to prevent congestion occurring downstream at a later time.  This will be 

more beneficial than the more traditional approach of operator intervention switching signal 

plans based on engineering judgement of traffic conditions over many months or years.  In 

practice, these reactive remedial measures referred to as “feedback control’’ are 

implemented at the time congestion occurs, which may be late and ineffective (see section 

2.5.6).   

1.3 Context of the Research  

Current demand responsive signal control systems model, process and interpret real-time 

traffic data (such as volume, density and link occupancy) to carry out their basic operations 

in order to determine the type of control strategy to implement (Jianming et al., 2003).  The 

bias in their approach, that also limits their functionality however, is that they are only able 

to implement solutions that tackle adverse network conditions as or after they begin to 

occur, rather than being pre-emptive of congestion events in order to implement mitigating 

strategies beforehand and therefore prevent the congestion occurrences.  It is argued that, 

in order for UTC systems to be more effective, they must develop this capability to 

anticipate congestion events and deal with them in advance.  Appropriate mitigation plans, 

when implemented ahead of congestion events, will improve urban traffic management and 

reduce congestion and associated emissions, but this can only be possible when the future 

conditions (in the order of minutes up to one hour) can be forecast spatially and temporally 

into the future with sufficient accuracy.   
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Given this background, it is important that modern UTC systems are equipped to forecast 

network events much more accurately, at least in the short term, as an enhanced benefit of 

ITS applications to urban traffic management (Han and Song, 2003).  It is no surprise, 

therefore, that the development of traffic condition forecast models has become an area of 

growing interest among researchers and practitioners alike who are exploring ways to 

understand the dynamics of traffic flow in order to be able to simulate and forecast real 

time traffic regimes more accurately (Huang and Sadek, 2009, Kesting and Treiber, 2008, 

Qi and Ishak, 2014, Vlahogianni et al., 2005).  Traffic condition models are able to predict 

conditions within the coming hour using data from roadway sensors.  The ability to predict 

traffic conditions in real-time makes these models much more attractive than traditional 

methods that can only make predictions based on (for example) annual growth factors.  

These are not only more susceptible to inaccurate projections due to their long forecast 

horizons but also of little value to day-to-day operation of traffic networks.  The benefits 

of a short-term prediction horizon should not be underestimated.  Cheslow et al. (1992) 

suggested that “the ability to make and continuously update predictions of traffic flows and 

link times for several minutes into the future using real-time data is a major requirement 

for providing dynamic traffic control.”  Indeed, the mere predictions of the flows are less 

beneficial without the ability to inform the future traffic condition.   

In recent years, several traffic condition forecast models have been developed including 

time series, non-parametric, filtering and phase space models.  Of these, the phase space 

model (based on Chaos Theory) seems to be the most promising for analysing the 

complexities in a perturbed traffic flow due to the several unpredictable and immeasurable 

quantities within road traffic systems.  The majority of the traffic condition models 

(including time series analysis, neural networks, Kalman filter theory and regression 

analysis) tend to assume that the uncertainty of traffic flow is primarily due to the stochastic 

input into the models.  However, modern systems theories prove that the uncertainty of 

traffic flow is not only due to the external stochastic input but also the internal non-linear 

structure of the system (Jianming et al., 2003).  This knowledge suggests that traffic 

conditions models can be improved by incorporating both the external stochastic process 

as well as the internal non-linear structure of the system into prediction models.  Chaos 

Theory therefore emerges as a prime candidate for an enhanced study of short-term traffic 

conditions given its unique ability to analyse the underlying non-linear structure of 

evolving systems.  Consequently, the overall approach to this research work is to use Chaos 
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Theory to understand the evolution process of the traffic condition (based on the Lyapunov 

exponents) through an analysis of time series measurements of traffic data variables.   

1.4 Research Gap 

Existing literature indicates that previous work that investigated Chaos Theory and the 

applications to road traffic congestion concentrated on simulated systems such as car 

following models or modelled gross traffic flows between different areas in a network 

(Kirby and Smith, 1991).  By relying on data aggregated together, these studies ignored the 

scale of interaction among vehicles in the traffic stream.  Consequently, the simulations 

may be artificially deterministic which can lead to the apparent presence of chaotic patterns 

where in the real world they do not exist.  On the other hand, research work that used actual 

(as opposed to simulated) traffic flow mainly concentrated on simple systems (such as 

motorway traffic), whilst the traffic data was of low temporal resolution (Nair et al., 2001, 

Lan et al., 2003, Shang et al., 2007, Krese and Govekar, 2013).  Given that the short-term 

fluctuation in this data is unaccounted for, there is high likelihood to affect the modelling 

outputs.  This brings into perspective the need for further studies that overcome previous 

limitations.  Due to recent developments, there are now new data sources that are able to 

provide high-resolution (temporal) traffic information (Shih et al., 2001).  These sources 

include pervasive low cost sensors known as Motes and Bluetooth devices (Bell et al., 

2009, Kay and Jackson, 2012) and sophisticated legacy systems such as Split Cycle Offset 

Optimisation Technique (SCOOT) (DfT, 1999) and Automatic Number Plate Recognition 

(ANPR) (Hounsell et al., 2009).  Of particular relevance is the ability of these sources to 

provide data over a sufficiently high spatial density.  This provides a new stimulus for 

further research into gaining a better understanding of chaotic traffic data to enhance the 

current automatic management of urban road traffic.  Thus, the benefits of integrating 

diverse data sources within existing urban control systems are that they will serve a dual 

function of delivering the traffic management and control function as well as providing the 

data to enable Chaos Theory to report on the situational state of the urban network in real 

time (Downes et al., 2006).  This could lead ultimately to a step change in the 

implementation of algorithms in existing UTC systems that trigger optimum control 

strategies that are one-step ahead of real-time traffic congestion, rather than being one-step 

behind.  In order to meet this aspiration, the focus of this research is to examine a complex 

network, for example, a group of interconnected urban junctions, such as a SCOOT region, 

using highly resolved traffic data.  In this sense, the potential economic benefits resulting 
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from a successful outcome of this research is substantial as the data are available at no extra 

cost.   

1.5 Research Questions 

From the research gap (see Section 1.4), the overarching questions to be answered by this 

research are:   

1. What are the main limitations and which gaps are identifiable for improvement from 

previous studies for developing Chaos Theory as tool for improving urban traffic 

control?   

2. Are traffic variables such as noise, flow and occupancy appropriate to yield results 

that would enhance the knowledge of applying Chaos Theory to traffic studies?   

3. Is the choice of the temporal resolution of traffic data an important factor in using 

Chaos Theory to analyse traffic data?   

4. Can Chaos Theory detect the onset of congestion within signalised urban networks 

under real world conditions? 

5. Which chaos parameter can be developed as a predictive tool for forecasting the 

occupancy of links in a SCOOT controlled network region? 

6. Is there a forecast time horizon that yields reliable predictions from the traffic 

model?   

7. If so, can this information be used to inform real-time traffic management and 

control strategies that are ‘one-step ahead’ of current traffic congestion strategies?’ 

Answering these research questions will bring new insights that will be invaluable in 

understanding and managing traffic congestion in signalised urban networks.  It may be 

possible to enact appropriate traffic control and management strategies before the onset of 

traffic conditions.  A better management of congestion through this enhanced 

understanding will have considerable benefits in terms of improving the environment of 

our towns and cities by reducing the negative impacts of congestion (for example traffic 

delays, environmental pollution and safety).   

1.6 Aims and Objectives  

The overall research aim is to use Chaos Theory to identify a (set of) parameter(s) that 

enables a better understanding of the traffic evolution process, and then develop a short-

term traffic prediction model, which uses this parameter to forecast the occupancy levels 

of a set of interconnected links in a SCOOT network.   
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The specific objectives of the research are, as follows:  

1. To explore mathematical principles that support Chaos Theory, and apply to the 

relevant variable(s) that enable understanding of the traffic evolution process.   

2. To identify a parameter(s) to characterise the data in terms of chaos and to develop 

this parameter as an indicator of the onset of congestion.   

3. To determine whether chaotic behaviour on the road network occurs at the micro-

scale (individual junctions) or across the entire network of inter-connected traffic 

zones, with respect to a chosen urban SCOOT network.   

4. To investigate how network managers may use this information in the prediction 

and management of future traffic patterns in order to implement appropriate 

remedial measures in advance.   

1.7 Contents of the Main Chapters  

In order to present the findings of the work undertaken to achieve the stated aims and 

objectives, and to answer the research questions, this thesis has been organised into four 

main parts comprising a total of ten separate chapters summarised as follows:   

Part I: A Review of Chaos Theory and the Practice of Congestion Management  

Chapter 2 examines congestion and refers to the six levels of service (from A through to F) 

established by the US Highway Capacity Manual (HCM) to explain how congestion occurs 

in road networks.  It provides a brief review of traffic flow theory in order to understand 

how congestion relates to key traffic flow variables (e.g. flow, headway, speed, density and 

occupancy).  Based on the mathematical relationships linking congestion and traffic flow, 

it establishes that occupancy is the most reliable indicator of traffic congestion.  Further, 

Chapter 2 provides an overview of urban traffic control strategies used in the management 

of congestion in urban areas.  It identifies that current signal systems for managing traffic 

in urban areas lack a coordinated approach to detecting the spatial and temporal evolution 

of congestion across control regions within city networks.  It argues that this inability 

severely inhibits these systems’ ability to detect reliably, on a strategic level, the onset of 

congestion and implement effective preventative action, for example through timely 

adjustment of traffic signal settings.  It concludes that the traffic system exhibits a time-

dependent and non-linear property and therefore emerges as a prime candidate for 

examining the application of Chaos Theory in urban traffic control environments to 

improve the operational abilities of control systems for better management of congestion 

and pollution.   
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Chapter 3 establishes that the road traffic system is sensitive to initial conditions and 

examines a number of activities that makes it susceptible to chaos.  By reviewing previous 

research work that has applied Chaos Theory in traffic studies, it draws on their limitations 

to inform the direction for future studies, thus making a justification for this research 

project.  It argues that a lack of high temporal resolution data has limited previous 

investigations to relatively uncomplicated motorway and inter-urban networks, arguably 

where the associated problems of congestion creating vehicle emissions have a less severe 

impact (for example on public health and climate change) given that motorways tend to be 

through rural areas for a high proportion of their length.  However, these limitations 

identified in earlier research can be overcome due to new data sources (such as Motes and 

Bluetooth devices) and sophisticated legacy data sources (such as SCOOT and ANPR) that 

are able to provide highly resolved (temporal) traffic data.  Consequently, it concludes that 

these developments now provide a new stimulus for further research to gain a better 

understanding of chaotic traffic behaviour for application to managing urban road traffic.   

Chapter 4 presents a critical review of Chaos Theory and its general applications.  It looks 

into the technical meaning of chaos in relation to dynamic systems, and examines the key 

characteristics of chaotic systems by reference to the logistic curve and bifurcation diagram.  

It also reviews key studies in this regard and identifies that the discovery of the Lorenz 

Attractor as pivotal to developing Chaos Theory.  Chapter 4 reviews Chaos Theory as 

applied generally to diverse subject disciplines (such as medicine, engineering and finance), 

using examples from the extant literature, and concludes that chaos and its application to 

transport deserves further investigation.  Finally, Chapter 4 draws a distinction between 

dynamical systems with known or unknown equations of motion, and introduces the phase 

space reconstruction theory as relevant to this research because the evolutionary equations 

for the traffic system are unknown.   

Part II: Mathematical Framework of Chaos Theory and Research Methodology 

Chapter 5 presents the framework of Chaos Theory, which forms the main methodology 

for this work.  It conducts a review of traffic condition models, identifies their weaknesses 

for short-term traffic predictions, and explains the suitability of phase space models (based 

on Chaos Theory) for the proposed research.  More importantly, it presents the 

methodology for the theory of the phase space reconstruction, and the algorithms for 

estimating relevant parameters (e.g. delay time, embedding dimension, correlation 

dimension and the Lyapunov exponents).  It uses the Lyapunov exponent as the parameter 
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for characterising the datasets in terms of chaos.  Finally, it interprets the Lyapunov 

exponents with respect to the cyclical changes in traffic behaviour from free flow through 

to congestion.   

Chapter 6 describes the overall methodology for this work.  It presents a pseudo-code of 

the algorithms for the phase space reconstruction of the traffic data, and the calculation of 

delay time, embedding dimension, correlation dimension, and the Lyapunov exponents, 

which were written in the Microsoft C# programming language.  Also, Chapter 6 explains 

the cross-correlation technique adopted to identify the temporal and spatial relationship 

between network links.  Further, it describes the use of the Lyapunov exponents for the 

hourly short-term traffic prediction of the link occupancies, based on a multiple regression 

dynamic traffic forecast model.   

Part III: A Case Study of Welford Road SCOOT Region, Leicester 

Chapter 7 presents the results of a preliminary assessment for the algorithms of Chaos 

Theory using noise and SCOOT flow and occupancy data.  The data were used to test-run 

the models in order to assess whether the necessary characteristics that identify chaotic 

behaviour can be identified in the road traffic system.  The assessment indicates that chaotic 

behaviour is present in traffic noise data; however, it was difficult to identify any structure 

in the system’s dynamic behaviour when the Lyapunov exponents derived from the noise 

data were analysed.  On the other hand, it was possible to explain the observed patterns 

from the profiles of the Lyapunov exponents calculated from the SCOOT link flow and 

occupancy data, in terms of known traffic behaviour.  Finally, an investigation of sampling 

frequencies of 1,10, 20, 30, 60 and 120 seconds for the SCOOT link data established a 20-

second interval data as reasonable for the flow and occupancy data to undertake a detailed 

study of the chaotic properties in the road traffic system.   

Next, Chapter 8 presents the results for the analysis of the chaotic nature of traffic travelling 

in a network of interconnected links in the Welford Road SCOOT region in Leicester.  It 

identifies that chaos is not an isolated event, but has spatial effects across the network.  It 

also illustrates how the Lyapunov exponents may signal the onset of changes in the 

dynamic behaviour of the system to prompt the emergence of congestion at a later time and 

different location in the network.  It identified that a minimum of approximately 5-10% of 

links would indicate chaos during the busiest time of the network activities.  Finally, it 

illustrates the use of the Lyapunov exponent for signalling the onset of congestion, in order 
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to trigger the implementation of preventative measures that are one-step ahead rather than 

lagging behind the saturated network conditions they are designed to resolve.   

Chapter 9 presents the results of a multiple regression model that predicts the occupancy 

of the network links using the Lyapunov exponents.  This assessment was undertaken using 

seven monthly cohorts from 1st January to 31st July 1999.  Five assessment scenarios were 

modelled based on the forecast horizon, threshold lags and correlation coefficients between 

links in order to assess what predicting the link occupancy from either the occupancy data 

or Lyapunov exponent profile does.  The forecast model was able to undertake the short-

term traffic predictions of 15 minutes with a high level of reliability.  The results therefore 

suggest that incorporating the forecast algorithms into existing systems would provide 

additional intelligence to these systems making them pre-emptive to anticipate congestion 

and therefore implement mitigating strategies in advance.   

Part IV: Discussions, Conclusions and Recommendations 

Chapter 10 presents the main conclusions of the study and makes recommendations for 

future research work.  It discusses the results of the study in the context of the extant 

literature, and demonstrates that the computed lag times, embedding dimension, correlation 

dimensions, and Lyapunov exponents are consistent with the findings of previous studies.  

It argues from a traffic management perspective that the Lyapunov exponents are capable 

of reporting on the situational state of the network better than the traffic occupancy.  The 

exponents are also used in a multiple regression model for forecasting the occupancy of the 

network links.   

The thesis concludes by referring to the research questions enumerated in section 1.5 above.  

It confirms that Chaos Theory is data hungry and that the sampling frequency of the data 

is crucial to understanding chaotic behaviour, and traffic flow and occupancy data sampled 

at 20 seconds intervals is suitable for understanding chaotic traffic behaviour.  Further, it 

identifies that the time series profiles of the Lyapunov exponent are useful for identifying 

the dynamic state of the individual network links.  Furthermore, the Lyapunov exponents 

can be used to forecast link occupancy reliably.   

In terms of study limitations, the investigation of traffic noise lacked detail because only 

data sampled at one-minute intervals were available.  The thesis therefore recommends that 

the chaos properties in traffic noise requires further investigations through the use of data 

sampled at various sampling levels less than one minute.  Further, the study of the SCOOT 
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network was limited to interpolated data, the work can be improved by the use of actual 

observed traffic flow and occupancy data at the required resolution.  Future studies may 

build on this work by using micro-simulation models to simulate events in order to verify 

the theoretical chaos as hypothesised in this research.   

1.8 Conclusions 

In conclusion, this Chapter has sought to set out the scene for this thesis by looking at the 

research proposal in relation to the relevant transport policy, and identifying the appropriate 

aims and objectives and research questions.  Next, Chapter 2 begins Part 1 with a literature 

review of traffic congestion in order to enhance our understanding of the fundamental 

mathematical concepts of congestion as well as the existing ways for managing congestion 

in urban areas.   
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PART I: A REVIEW OF CHAOS THEORY AND 

THE PRACTICE OF URBAN CONGESTION 

MANAGEMENT 
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Chapter 2. The Practice of Traffic Management in 

Signalised Urban Networks 

2.1 Introduction  

In order to discuss the relevance for this research work, this chapter seeks to establish that 

there are deficiencies in current methods for managing traffic congestion in signalised 

urban networks.  The limitations may be due to either weaknesses in the technological 

systems making them unable to perform to their full potential or an over-utilisation of the 

system’s capabilities, or both, thus hindering the deployment of optimum solutions.  For 

the purposes of identifying the specific issues, Section 2.2 explores congestion in the 

context of road traffic, and Section 2.3 provides insight into the process of the traffic 

evolution from free flow through to a number of degrees of vehicular interaction to 

congested conditions.  Section 2.4 describes the relevant traffic flow parameters, as well as 

their mathematical relationships, and how they may be used to quantify the amount of 

traffic flow in order to gauge the performance of a given section of road way.  Section 2.5 

presents a critical review of the practice of signal traffic control in urban areas with respect 

to the existing technology and identifies their limitations.  It concludes that autonomic 

forms of traffic control and coordination will revolutionise urban traffic management and 

therefore the next generation technology will benefit from software that utilise Chaos 

Theory.   

2.2 Traffic Congestion  

Congestion is defined as the impedance vehicles impose on each other on the road network 

in conditions of unstable equilibrium where the traffic volume exceeds the available 

capacity of the road space (Collins, 1995, Goodwin, 2004).  According to Weisbrod et al. 

(2003) traffic congestion is defined “as a condition of traffic delay (i.e. when traffic flow 

is slowed below reasonable speeds) because the number of vehicles trying to use a road 

exceeds the design capacity of the traffic network to handle it”.  The main characteristics 

of congestion are slower speeds, longer journey times and increased vehicle queues.  Under 

normal conditions when there is less traffic on the road, drivers are able to choose their own 

speeds; however, as traffic increases drivers become constrained by interactions with other 

vehicles and average speeds fall.  As more vehicles are added to the network, vehicle speeds 

tend to be gradually decreased giving rise to a platoon of slowing vehicles, which may stop 

and start as traffic flow becomes unstable and congestion emerges.  In extreme situations, 

significant queues occur and traffic remains at a standstill for long periods usually as the 

traffic demand approaches the capacity of the road.  These characteristics are further 
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examined in Section 2.4.4 based on the speed-flow relationship in Figure 2.1.  Dhingra and 

Gull (2011) view congestion as the product of the effects of interactions of vehicles within 

the traffic flow leading to disturbances such as stop-and-start traffic.  Next, Section 2.3 

reviews these interactive patterns as provided by the Highway Capacity Manual (HCM) 

(TRB, 1994).   

2.3 Range of Traffic Conditions 

The HCM provides six Levels of Service (LOS) for describing the quality of amenity 

provided by a given roadway, which are Levels A through to F.  The characteristics of 

Level A are free-flow, low volume, high-speed and comfortable operating conditions, 

whilst Level F indicates forced-flow, stop and start, and uncomfortable operating 

conditions (O'Flaherty, 2005a).   

At Level A, vehicles operate almost unimpeded with a greater ease of manoeuvrability 

within the traffic stream and the effects of minor incidents or breakdowns are unnoticed 

because there is sufficient capacity to absorb queues.  This enables drivers to experience a 

high level of physical and psychological comfort (May, 2005).  Traffic manoeuvres may 

be slightly restricted due to a slight depreciation in LOS at Level B; however, vehicles are 

still able to operate under reasonably free-flow conditions.  Level C offers stable speeds to 

motorists providing for conditions that are still close to free-flow speeds.  However, the 

ability to manoeuvre within the traffic stream can be noticeably restricted at this stage and 

lane changes require careful and attention from the driver.  Queues become noticeable at 

bottleneck areas of the networks such as junctions, but there is still capacity to absorb minor 

traffic incidents.   

At Level D, there is limited space to absorb disruptions making minor incidents prone to 

generate significant queues.  There is a further restriction in the degree of manoeuvrability 

within the traffic stream, and speeds begin to decline as flow increases.  At this stage, a 

small increase in flow has the tendency to cause a substantial deterioration in the road 

density.  The lower boundary of Level E describes driving conditions at capacity, where a 

roadway becomes extremely unstable and there are virtually no useful gaps within the 

traffic stream.  Consequently, vehicles in the traffic stream need to give way to admit those 

changing lane or entering the traffic stream from the side road.  At the upper level E 

boundary, freedom to manoeuvre within the traffic stream is extremely limited and minor 

traffic incidents can cause significant queues.  Level F describes forced or flow breakdown, 
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which occurs when the number of vehicles arriving at a given location or junction exceeds 

the capacity.   

By reference to the levels of service, speed deteriorates sharply with increasing flow, 

therefore, the onset of congestion is somewhere between level D and lower level E 

boundary as speed declines sharply with increasing flow, where movement becomes 

severely restricted.  In order to demonstrate how the traffic variables (e.g. flow, occupancy, 

time or space headway, and speed) relate to congestion, Section 2.4 provides a brief review 

of theory of traffic flow.  It discusses the fundamental principles that apply to traffic models 

and the tools for analysing the operation of the road network.   

2.4 Traffic Flow Theory 

The purpose of traffic flow theory is to provide mathematical relationships to describe the 

interactions between vehicles, drivers and the infrastructure.  This includes the highway 

system and the operational elements such as signal and control devices, signage and 

markings (Dhingra and Gull, 2011).   

Traffic engineers use a number of parameters to determine the performance of a given road 

section or network, which are determined from on-site measurements of information 

relating to the traffic stream.  These are normally randomly sampled as traffic streams are 

not uniform but vary over both space and time (Wardrop, 1952, May, 2005).  These 

parameters give an indication of the utilisation of road space or nature of vehicular 

interactions through measurements such as: 

1. rate of flow (vehicles per unit time); 

2. density (vehicles per unit road length); 

3. concentration (determined by density or occupancy); 

4. space headway between vehicles (distance per vehicle); 

5. time headway between vehicles (time per vehicle); 

6. speed (distance per unit time); and  

7. travel time over a known length of road.   

Sections 2.4.1 through to 2.4.5 describe the procedure for measuring these on-road 

parameters and the derivation of the mathematical formulae for estimating their values.  

Even though this research is largely dependent on flow and occupancy data, all of the 

enumerated parameters (1-7) are discussed because of their link to congestion.   
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2.4.1 Concentration and Flow  

Concentration and flow indicate the amount of vehicular traffic using a given section of a 

roadway, but the two parameters differ depending on how they are measured.  

Concentration refers to measurements over space at a point in time, whilst flow measures 

observations over time passing a point in space.   

Concentration (in terms of density) denoted as 𝑘 (𝑣𝑒ℎ/𝑚) is expressed as the number of 

vehicles per unit space.  It is measured from aerial photographs taken from cameras 

mounted on tall buildings or poles that record vehicular traffic over defined space at a fixed 

point in time.  The concentration of a given length of road (𝑥) containing some arbitrary 

number of vehicles (𝑛𝑥) in one lane at a point in time is:  

𝑘 =  
𝑛𝑥

𝑥
 

 

 

Equation 2-1 

Flow (volume) denoted as 𝑞 (𝑣𝑒ℎ 𝑠⁄ ) is the number of vehicles (𝑛𝑡) per unit time measured 

from a specific location in one lane of a roadway for a given time period (𝑡).  The data 

source is normally from manual or pneumatic counters (or some automated sources such 

as magnetic loop detectors).  In mathematical terms, the flow is given by the expression: 

𝑞 =  
𝑛𝑡

𝑡
 

 

Equation 2-2 

2.4.2 Headways  

Headways describe the degree of separation between vehicles within a traffic stream.  The 

two types of headways are space and time headways.  Space headways express the gap 

between traffic stream vehicles in terms of distance, whilst time headway measures the 

separation in time intervals.  They are important determinants of safety for vehicles in the 

traffic stream; for example, there is a high likelihood of a crash when vehicles travel close 

together, whilst pedestrians have minimal opportunities to cross the traffic stream with 

short headways.  As vehicles travel much closer when there is (or in the build-up to) 

congestion, the headways also can give an indication of the onset of congestion.   

For any two succeeding vehicles in a traffic stream, the space headway (or spacing), s, is 

the distance between the rear (or front) bumpers of the front and back vehicles at a point in 

time.  The measurements are normally from aerial photographs.  For a length of road (x), 

the sum of all the space headways is: 

∑ 𝑠𝑖

𝑛𝑥

1

= 𝑥 

 

Equation 2-3 
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The time headway (or headway), h, is the time interval between the rear (or front) bumpers 

of the front and succeeding vehicle crossing a given point in time.  In mathematical terms, 

the sum of all the time headway in the period (t) over which flow is measured gives: 

∑ ℎ𝑖

𝑛𝑡

1

= 𝑡 

 

 

Equation 2-4 

By substituting Equation 2-3 in Equation 2-1 gives a reciprocal relationship between the 

concentration and average spacing (ŝ), which is expressed by Equation 2-5.  

𝑘 =    
𝑛𝑥

𝑥
=  

𝑛𝑥

∑ 𝑠𝑖
𝑛𝑥
1

 =  
1

Ŝ
 

 

 

Equation 2-5 

Similarly, a reciprocal relationship between flow and the average time headway, ĥ, is given 

by substituting Equation 2-4 in Equation 2-2 as follows: 

𝑞 =  
𝑛𝑡

𝑡
=  

𝑛𝑡

∑ ℎ𝑖
𝑛𝑡
1

=  
1

ĥ
 

 

Equation 2-6 

2.4.3 Mean Speeds  

The quality of the journeys of vehicles within a traffic stream are expressed by the time 

mean speed (ūt) and space mean speed (ūs).  These are described here for later reference 

to the fundamental relationship linking density (occupancy), flow and speed.  In order to 

distinguish between the two speeds, suppose that there are n vehicles within a traffic stream 

travelling at n different speeds, 𝑢1 , 𝑢2, ... 𝑢𝑛 and the respective journey times are 𝑡1, 𝑡2, 

… 𝑡𝑛, where 𝑡̅ is the mean journey time.   

The time mean speed is the arithmetic mean of the speeds of all vehicles.  In mathematical 

terms: 

ū𝑡 =  
∑ 𝑢𝑖

𝑛
1

𝑛
 Equation 2-7 

The space mean speed however calculates the average speed based on the average journey 

time of all the vehicles on the assumption that all vehicles in the traffic stream travelled 

equally a certain known distance, 𝑑𝑠.  Consequently, the general expression for the space 

mean speed is given by the expression: 

ū𝑠 =  
𝑑𝑠

1
𝑛

∑ 𝑡𝑖
𝑛
1

=  
𝑑𝑠

 𝑡̅
    

 

Equation 2-8 
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This formula includes only those vehicles that travelled the entire distance 𝑑𝑠; however, for 

long road stretches, it is likely some vehicles in the traffic stream will not complete the 

entire distance especially in congested traffic.  Therefore, calculations based on Equation 

2-8 may not always be correct, given its explicit assumption that all vehicles travelled an 

equal distance of road length (Hall, 1997).  Therefore, the IHT (1976) provide a modified 

approach to address the lapse in the assumption.  This takes into account the actual total 

distance travelled divided by the total time, which provides a more realistic method for 

estimating the space mean speed.  This approach specifies an explicit rectangle on the 

space-time plane and accounts all travels within it irrespective of whether the vehicle 

partially or completely undertook the journey.  Assuming that the distance travelled by each 

individual vehicle is given by 𝑑𝑖, and substituting ti (the distance divided by speed) in 

Equation 2-8 gives:  

ū𝑠 =  
𝑑𝑠

1
𝑛

∑
𝑑𝑖

𝑢𝑖
𝑖

 Equation 2-9 

Under certain conditions, for example where all vehicles completed the entire journey, the 

expression of the mean speed is:  

ū𝑠 =  
𝑑𝑠

1
𝑛

∑
𝑑𝑠

𝑢𝑖
𝑖

 Equation 2-10 

Therefore, it may be possible to ignore the distance effects and estimate the space mean 

speed as equivalent to the harmonic mean of the individual vehicles within the traffic 

stream.  Equation 2-11 is the harmonic mean speed at a point over time, for the condition 

where ūs is independent of the distance travelled.   

𝑢̅𝑠 =  
1

1
𝑛

∑
1
𝑢𝑖

𝑖

 

 

Equation 2-11 

Harmonic mean speeds provide good estimates of ūs only for a given road section where 

vehicles are able to maintain relatively constant speeds across the entire road length.  The 

calculation will be inaccurate where a high variability in speeds exists across the entire 

length of the road resulting in a difference between the harmonic mean of speeds and the 

conventional mean calculated using  the space speed method (Wardrop, 1952, Lighthill and 

Whitham, 1955).  The likelihood is that the measurements at a point will over-represent the 

fast moving vehicles and under-represent the slower moving ones, leading to higher than 
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the true average speeds.  For this reason, the time mean speed tends to be generally higher 

than the space mean speed.  Therefore, there is a general preference for the space mean 

speed, compared to the time mean speed, for calculations involving mean speeds.   

The use of point measurements to estimate ūs is desirable, if only constant speeds are 

possible across a given roadway section.  In essence, there is hardly any statistically 

significant difference between the two speeds under uniform free flow conditions, although 

there will be difference under congested conditions (Hall, 1997).  According to Wardrop 

(1952) the relationship between time and space mean speed (where σδ is the standard 

deviation) is given by:  

𝑢̅𝑡 = ū𝑠 + 
𝜎𝛿

2

ū𝑠
 

 

Equation 2-12 

2.4.4 The Speed-Flow- Density Relationship  

Based on the understanding of the traffic stream variables from the above discussions, the 

parameters are now pulled together to derive the relationship between flow, density and 

speed, for understanding traffic flow behaviour in a given roadway section.   

Suppose that a traffic stream consists of k-vehicles per unit length of road travelling with 

an average speed of ūs.  Consider a set i of vehicles within the traffic stream of flow qi, 

and speed ui, and concentration ki.  From Equation 2-6, the time headway is 1 qi⁄  which 

implies the distance travelled in this time (space headway) is ui qi⁄ .  Hence, the 

concentration (number of vehicles per unit length) according to Equation 2-5 at any instant 

is given by:  

𝑘𝑖 =  
𝑞𝑖

𝑢𝑖
 

 

Equation 2-13 

Deducing the overall speed based on the fractional shares of the total density, and 

substituting Equation 2-13 gives: 

           ū𝑠  =  
∑ 𝑘𝑖𝑢𝑖

𝑛
1

𝑘
 Equation 2-14 

         ū𝑠   =   
∑ 𝑞𝑖

𝑛
1

𝑘
 Equation 2-15 

     ū𝑠 =   
𝑞

𝑘
 

 

Equation 2-16 
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𝑞 =  𝑘𝑢̅𝑠 

 

Equation 2-17 

In traffic engineering, Equation 2-17 is known as the ‘fundamental law of traffic flow’.  

Accordingly, traffic flow theory suggests that flow is the product of mean space speed and 

density, implying that flow is equal to zero when either one or both parameter(s) are zero.  

However, the maximum flow occurs at a critical combination of these two parameters.  

Traffic flow however is very low in traffic jams, and traffic density is very high (or 

maximum at the highest possible jam).  Figure 2.1 presents a generalised relationship 

between speed, flow and density, which helps to gain a better understanding of the 

association between these parameters.   

Generally, free flow speed (𝑆𝑓) occurs during low traffic flow conditions; however, the 

maximum flow (𝑉𝑚) occurs when the density reaches the critical density (𝐷0) and the 

optimum speed (𝑆0) decreases to approximately the half of the maximum speed (0.5 ∗ 𝑆𝑓).  

Beyond the critical density, the flow actually decreases, until the density reaches the jam 

density (𝐷𝑗), where the flow becomes zero and all traffic is stationary.  It is worthy to note 

further that traffic flow is also low under free flow conditions when traffic density is low 

whilst speeds are high.   

 

Figure 2.1: Generalised Relationships among Speed, Flow and Density 

(US DOT, 2013) 
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The optimum density therefore defines the critical threshold for traffic congestion to start 

to emerge on a given roadway.  Stable (or uncongested) traffic flow conditions exist when 

the density is below the critical density, whilst unstable conditions emerge and roadway 

capacity decreases close to or above this critical density.  However, it is important that 

stable conditions exist to ensure an optimum throughput across a given road way or network 

of interconnected junctions.  The role of network managers therefore is to maintain as much 

as possible the density below or close to the critical density in order to avoid congestion.  

This primary objective of traffic management is discussed in detail in Section 2.5.  Chaos 

is characterised by a rapid deterioration in speed and density as flow increases.  The 

relationship of Figure 2.1 to chaos is explained in Section 3.4.2.   

It is worth pointing out that the fundamental law of traffic flow in Equation 2-17 is based 

on the assumption of a constant spacing and uniform speeds within the main traffic stream.  

Due to the assumption of constant spacing that is unlikely in unstable conditions, and 

uniform speeds in all sub-streams is invalid because drivers tend to choose their own 

speeds, the fundamental law may not be applicable for all the ranges of traffic conditions.  

Hall (1997) pointed out that the estimation of density explicitly from flow may be 

inaccurate, especially once congestion sets in.  Further, the parabolic flow-density curve 

evaluates two solutions, one on either side of the critical density, for every flow value 

(except the maximum flow).  The indication of a simultaneous congested and free flow 

conditions at the same flow makes unclear the actual density for a given flow.  As a result, 

there is a preference for the occupancy measure based on the degree of passage over a loop 

detector on the roadway as a better indicator of the utilisation of a given road space.  This 

is supported by the fact that traffic density is not measureable directly (see 2.4.1) but 

requires post-processing of measured data from aerial photographs of substantial road 

lengths, which is not always convenient.  On the contrary, occupancy estimated from 

detector data is always readily available (Heydecker and Addision, 2011).   

2.4.5 Occupancy  

Occupancy (𝑂) is the proportion of time that a fixed loop detector is occupied by a vehicle 

(or the proportion of time when the detector can detect the presence of vehicles) (Hazelton, 

2004).  It is estimated from the aggregated sum of the time that each individual vehicle 

covers the detector, divided by the observational period (𝑇).  In practice, the change in the 

inductance of a vehicle detector (such as an inductive loop) is polled regularly usually every 

0.25 to 0.01 of a second to determine the presence or absence of a vehicle over the loop.  
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The loop detector outputs results in binary data format of the basic data of vehicles arrival 

and departure profiles including headways and the duration of every vehicle’s occupation 

of the detector.  This information is useful for estimating key statistics such as speed, flow 

and occupancy (Bell, 2005a).  According to Heydecker and Addision (2011), a repeated 

sampling of the detector provides a time-base estimate of the proportion of the road 

occupied by vehicles, and consequently an indicator of the degree of utilisation of road 

space.   

For example, suppose an inductive loop detector polled every 0.25 seconds yields the 

following binary data (where 1 and 0 indicate the loop is occupied and unoccupied 

respectively) in Figure 2.2. 

Time (in 1 4⁄ 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑒𝑐𝑜𝑛𝑑) 

                    

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Occupancy (binary data) 

0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 

Figure 2.2: Binary Data from an Inductive Loop Detector 

The binary information indicates that during the duration of observation of 5 seconds, the 

occupancy is 65% and the flow is two vehicles.  According to the groups of ‘1’ bits (6 and 

7), the two vehicle types have different characteristics.  The information also indicates that 

the advantage of occupancy as incorporating both the effects of vehicle length and 

compositions (car, bus, heavy goods vehicles, etc.), but density ignores these factors.  

Occupancy is therefore widely used in traffic management systems because it provides a 

better measurement of demand or the utilisation of road space.   

The binary data is also useful for calculating the speed of vehicles across the loop.  

Assuming that the length of the loop is one metre and the first vehicle has length of 5 

metres, then the effective length of the loop is 6 metres.  The speed of the vehicle is 4 m/s, 

given that dwell time of the vehicle is 1.5 seconds (i.e. six of 0.25 seconds according to 

Figure 2.2).  Similarly, the second vehicle’s speed will be 6 (7 ∗ 1 4) ⁄⁄ = 3.42 m/s, if both 

vehicles have the same length.  On the other hand, if the second vehicle’s length were 6 

metres, then the speed of both vehicles will be 4 m/s.   

Athol (1965) proved that occupancy is directly proportional to density, and inversely 

proportional to speed.  Assuming an observation over a time T, each vehicle’s dwell time 

on the detector can be determined from the vehicle speed (𝑢𝑖) and the effective vehicle 
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length calculated as the length of vehicle (𝐿𝑖) plus the length of the detector (𝑑).  The 

incorporation of the length of the detector is because the detector activates from the moment 

the front bumper starts to cross until the rear bumper crosses over the detector.   

Accordingly, occupancy (𝑂) is given by: 

𝑂 =  
∑ (𝐿𝑖 + 𝑑) 𝑢𝑖⁄𝑖

𝑇
 

 

Equation 2-18 

 

𝑂 =
1

𝑇
∑

𝐿𝑖

𝑢𝑖
+ 

𝑑

𝑇
∑

1

𝑢𝑖
𝑖𝑖

 

 

Equation 2-19 

By multiplying the secondary term in Equation 2-19 by 𝑁(1/𝑁) and substituting Equation 

2-2 and Equation 2-11: 

                    𝑂 =  
1

𝑇
∑

𝐿𝑖

𝑢𝑖
𝑖

+ 𝑑.
𝑁

𝑇
.

1

𝑁
∑

1

𝑢𝑖
𝑖

 Equation 2-20 

  𝑂    =
1

𝑇
∑

𝐿𝑖

𝑢𝑖
+ 𝑑. 𝑞.

1

ū𝑠
𝑖

 Equation 2-21 

                      𝑂    =
1

𝑇
∑

𝐿𝑖

𝑢𝑖
+ 𝑑.

𝑞

ū𝑠
𝑖

 Equation 2-22 

Substituting 𝑘 =  𝑞 𝑢𝑠⁄ : 

                                          𝑂 =  
1

𝑇
∑

𝐿𝑖

𝑢𝑖
𝑖

+ 𝑑. 𝑘 Equation 2-23 

                        𝑂 =       
∑

𝐿𝑖

𝑢𝑖
𝑖

𝑇
+ 𝑑. 𝑘 

Equation 2-24 

Introducing a factor of  
1

𝑁
 and substituting 𝑇 = ∑ ℎ𝑖𝑖 : 

                         𝑂 =   

1
𝑁

∑
𝐿𝑖

𝑢𝑖
𝑖

1
𝑁

∑ ℎ𝑖𝑖

+ 𝑑. 𝑘 

Equation 2-25 

                                      𝑂 =  

1
𝑁

∑
𝐿𝑖

𝑢𝑖
𝑖

ĥ
+ 𝑑. 𝑘 

 

Equation 2-26 

Assuming a constant vehicle length, 𝐿, the equation is simplified as follows:   

                                     𝑂 =  
1

ĥ
. 𝐿.

1

𝑁
∑

1

𝑢𝑖
+ 𝑑.  𝑘

𝑖

 

 

Equation 2-27 

Substituting Equation 2-6 and Equation 2-11:  
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𝑂 = 𝐿.
𝑞

ū𝑠
+ 𝑑. 𝑘 Equation 2-28 

𝑂  = 𝐿. 𝑘 + 𝑑. 𝑘 Equation 2-29 

𝑂  = (𝐿 + 𝑑). 𝑘 

 

Equation 2-30 

𝑂  = (𝐿 + 𝑑). 𝑘 Equation 2-31 

𝑂  =           𝑐𝑘. 𝑘 Equation 2-32 

Where: 𝑐𝑘   = 𝐿 + 𝑑 Equation 2-33 

On the assumption that, 𝐿 and 𝑑 are constant it can be deduced that occupancy and density 

are constant multiples of each other.  Substituting Equation 2-32 into Equation 2-16, an 

expression of the space mean speed and flow in terms of occupancy is: 

ū𝑠   =  𝑞.
1

𝑘
 

 

Equation 2-34 

     ū𝑠  =  
𝑞

𝑂
 . 𝑐𝑘 Equation 2-35 

𝑞 =  
𝑢̅𝑠 ∗ 𝑂

𝑐𝑘
 Equation 2-36 

It must be pointed out that the effective vehicle length is sensitive to the traffic composition 

and conditions, therefore the assumption of uniform length may not be valid under all types 

of traffic flow conditions (Heydecker and Addision, 2011).  Due to the advantage of 

occupancy over density, it may be reasonable to describe capacity in terms of occupancy 

multiplied by the speed than as flow expressed in terms of density multiplied by speed.   

In concluding the discussion on traffic flow theory, it is important to note that there are a 

number of traffic stream variables that enable traffic engineers determine the efficiency and 

quantity of traffic flow on a given roadway including speed, flow and concentration 

(occupancy and density).  The fundamental diagram identifies two main traffic states as 

stable and unstable (congested) flow conditions, which are regions below and above the 

critical density respectively.  As it is desirable to maintain free flowing conditions across 
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road networks, a number of traffic control technologies are currently in use to achieve this 

objective.  The modus operandi of traffic management is to stabilise traffic flow conditions 

to below optimal density levels by the use of appropriate technology.  Section 2.5 presents 

a review of the practice of urban traffic control, and explores the potential incorporation of 

algorithms of Chaos Theory in urban control systems for the analysis of the spatial and 

temporal evolution of traffic flow in order to implement solutions in advance to tackle 

imminent congestion problems.   

2.5 Urban Traffic Management  

Urban Traffic Management is the use of a number of technology-supported applications 

such as urban traffic control systems and variable message signs to achieve an efficient 

management of the urban traffic and transportation system (Hounsell et al., 2009).  The 

first type of traffic control technology was mainly fixed-time isolated traffic signals 

introduced primarily to prevent queuing and long delays on minor roads meeting major 

roads.  Originally, signals at junctions did not include pedestrian phases as the safe passage 

and stoppage of pedestrians was not a priority.  They operated with low intelligence 

compared to current systems; signal plans were fixed for periods (AM, PM and OFF peak) 

and ‘burned-in’ to the hardware.  They lacked several attributes such as the capability to 

coordinate the operation of adjacent signals or adjusting signal settings in relation to actual 

traffic demand, which are embedded in systems today.  Currently, traffic signals remain an 

integral part of Urban Traffic Control (UTC), and incorporates a number of advanced 

features that enhances their operation.  In addition to managing conflicting movements, 

these systems enable the network to operate with minimal delays and therefore enhance the 

overall efficiency of the urban road network.  Variable message signs have become useful 

in dealing with the previous weakness in the ability to control traffic over network areas by 

redistributing traffic over alternate routes to cope with incidents on the road network.  

Incorporating variable message signs in this way has equipped UTC systems with the 

ability to respond to the requirements of more complex traffic management and in the 

provision of traffic information for drivers.  They provide mandatory, such as speed limits, 

or advisory information such as accident, congestion, delays, speed restriction, advisory 

routes, weather or environmental warnings of adverse road conditions etc. (IHT, 1997b).  

Local area traffic management has improved significantly by incorporating Vehicle 

Actuation (VA) and Microprocessor Optimised Vehicle Actuation (MOVA), but demand 

responsive control systems (e.g. SCOOT, SCATS, UTOPIA and PRODYN) emerges as 
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the most efficient form of control for area-wide network management.  The discussion in 

subsequent sections focuses on these systems and their role in urban traffic management.   

2.5.1 Traffic Signal Control  

Traffic signal installations at intersections consist of a set of signal heads connected by 

cables to a signal controller and loop detectors that are either above or below ground.  The 

signal controller may incorporate a microprocessor device that controls the signal 

indications via an on-site computer that runs software modules locally.  As such, some 

signals are controlled by loops that put in automated demands handled by the on-board 

controller but they may also run on 'fixed time' plans.  This will put the intersection into a 

cyclical routine, for example 120 seconds with 40 seconds given to each arm of the 

junction.  These can be programmed to take into account demands on loops using a sort of 

for-if logic.  Alternatively, the signal control is either activated remotely, manually 

requesting the plan over either mobile data or internet depending on how the intersection 

has been outfitted (varies on constraints of the signal's location), or in some cases via an 

automated system.  This can be based on journey time thresholds determined for example 

from ANPR data, or simply an automatic change of signals at different times of the day 

according to a timetable. 

The UK signal aspect is a 4-stage plan (green → amber → red  → red and amber) with a 

fixed-time allocation for amber (3 seconds) and red-and-amber (2 seconds) signal aspects.  

Except for fixed-time signal plans, the red and green control aspects may be varied 

depending on the clearance times, stage minimum and maximum, and the overall cycle 

time.  The minimum cycle time is given by:  

                                     𝑐𝑚  =
0.9 ∗ 𝐿

(0.9 − 𝑌)
 

 

Equation 2-37 

A well-known expression for a good cycle time obtained by Webster (1958) is: 

                                     𝑐 =
(1.5 ∗ 𝐿 + 5)

(1 − 𝑌)
 

 

Equation 2-38 

where 𝐿 = total lost time, 𝑌 =  ∑ 𝑞𝑖 𝑠𝑖⁄𝑖 , where 𝑞 and 𝑠 are the expected inflow and 

saturation flow respectively of the critical link within each stage sequence.  Based on the 

estimated minimum cycle times, the stage duration is given by: 
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                                     𝑔𝑖  =
𝑐𝑚 ∗ 𝑞𝑖

0.9 ∗ 𝑠𝑖
 

 

Equation 2-39 

Currently, the cycle time and signal plan for the on-street operation of the traffic signal is 

produced manually from off-line signal optimisation software such as LinSig (LINcoln 

SIGnals) and OSCADY (Optimised Signal CApacity and DelaY) for isolated junction and 

TRANSYT (TRAffic Network StudY Tool) for area signal control.  However, the latest 

version of LINSIG has the capability to model junctions in a network.  These programs can 

determine the stage durations as well as  generate the optimal stages, stage sequence and 

transition plans (Bell, 2005a).  This is the basic concept underlying the operation of traffic 

signals; however different types of controls offer enhanced benefits based on modifications 

to the algorithms.  Isolated traffic signals may incorporate vehicle actuation or 

microprocessor optimised vehicle actuation types of control.  Alternatively, a group of 

signals may be coordinated together by linking the operation of adjacent controllers, which 

may be operated together through a reactive (demand dependent or responsive) system.   

2.5.2 Signal Control at Intersections (Uncoordinated Signals)  

Early installations in the 1920s were isolated (uncoordinated) fixed-time traffic signals, 

where there is only a fixed amount of green time available irrespective of the number of 

vehicles waiting to be discharged through the junction.  By operating different signal plans 

optimised for significant changes in traffic turning movements during the day, typically 

AM, PM and OFF peak, efficiency in operation can be introduced from day to day.  

However, due to not optimising the green splits in real-time, in response to hourly 

variations in flow and turning movements, excess green could be available when only a 

few vehicles are awaiting discharge and vice versa.  This largely renders fixed-time signals 

unable to tackle the challenges and complexities of urban road congestion.  In order to 

achieve efficiency in operation of these traffic signals, in the 1960s, ‘intelligent’ stand-

alone (isolated) traffic signals such as Vehicle Actuation (VA) and subsequently 

Microprocessor Optimised Vehicle Actuation (MOVA) techniques were introduced (DfT, 

1999).   

VA systems operate in response to changes in vehicle demands and modify the start times 

and duration of phases via communication with upstream loop detectors.  In VA systems, 

a particular phase runs for a minimum time, and subject to the demands on the detector, 

there is further extension of the green time until a pre-set maximum time.  However, VA is 

prone to extend the green phase inefficiently, especially when there are long queues waiting 

at red signals, because consideration is not given to the opposing traffic streams.  Moreover, 
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it is difficult to set the duration of maximum greens effectively.  These factors can degrade 

the performance especially if traffic arrival patterns become platooned, which requires 

coordination of adjacent signals as well as the balance of flows in conflicting traffic streams 

(Simmonite, 2005).  VA systems however can operate better when linked together; for 

example, a study in Virginia that compared an original uncoordinated VA and final VA 

junctions gave 30% reduction in journey times (Byungkyu and Chen, 2010).   

MOVA generates its own signal timings cycle-by-cycle, which vary continuously with 

traffic conditions, and therefore are able to respond dynamically to variations in vehicle 

arrival rates (Meehan, 2003).  Simmonite (2005) suggests that MOVA overcomes the 

problems of VA by implementing a strategy based on delay-and-stops minimisation (under 

uncongested situations) or capacity-maximisation (under congested conditions).  During 

uncongested situations, MOVA seeks to disperse queue build-up during the red phase by 

carrying out a delay and stops minimising procedure every half second.  If there are 

predicted benefits, there is extension of the green phase and the calculations repeated; 

otherwise, the signal changes to the next stage.  In the congested mode, MOVA considers 

the overload of an approach in conjunction with the efficient use of green durations on all 

approaches, and determines the signal timings and durations that maximise the junction 

throughput under the prevailing traffic conditions.   

Isolated vehicle actuated junctions offer greater flexibility when changing signal plans, 

compared with coordinated junctions, because the subsequent effects on neighbouring 

junctions is not considered.  Although VA and MOVA are effective controls, they are 

generally limited to isolated junctions and generally not feasible at the network level, where 

it is desirable to coordinate the operation of neighbouring junctions, making them of limited 

use in urban traffic management.  However, isolated junctions non-the-less create 

congestion problems which can spill back and affect signal coordinated regions and should 

be considered part of a strategic traffic management capability offered by Chaos Theory.   

2.5.3 Signal Control Across Networks  

Signal coordination is important in urban networks for the complete dispersion of platoons 

of vehicles between the upstream and downstream intersections, which helps to overcome 

the limitations of uncoordinated traffic signals.  Often, the close proximity of neighbouring 

junctions in urban areas tends to inhibit traffic moving uninterruptedly across adjacent 

junctions.  Traffic engineers are therefore reliant on signal coordination to establish offsets 

that enable a platoon (normally formed during the red phase and released during to the 
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green phase) to pass through a sequence of intersections without stopping.  Isolated traffic 

signals including vehicle actuated systems that have coordinated junctions are often 

referred to Urban Traffic Control (UTC) systems.   

The earliest signal coordination techniques for urban network traffic management were 

designed in the late 1950s to coordinate the operation of fixed-time signals (but included 

vehicle actuation systems by the early 1970s) on a route to achieve a green-wave along a 

set of connected links such as a radial network.  In networks with across-road traffic linked 

with adjacent signal controlled junctions (whether chessboard or irregular typical of most 

UK towns and cities) optimisation of traffic across an area is required.  The off-line model 

TRANSYT developed by the Road Research Laboratory (now the Transport Research 

Laboratory) is adopted worldwide to create fixed time plans across a region (Robertson, 

1969).  Currently, LINsig software also offers this capability.  Signal junctions are included 

in the control region provided arrival patterns at stop-lines are platooned.  Compared with 

the original signal plans, TRANSYT gave a reduction of 7.4% to 11.4% in journey times 

throughout the state of California (Skabardonis, 2001), whilst a trial in Glasgow indicated 

a 3% reduction in fuel consumption (Robertson, 1983).  By optimising a performance 

index, which measures the aggregated cost of the stops and delays along the route, for 

example fixed-time signal plans are compiled for different times of the day (and for 

recurring events on the network) to handle varying traffic demand.  The plans are created 

for periods (typically one to three hours) resulting in three daily fixed time plans namely 

morning (AM), inter (OFF) and evening (PM) peak hour plans of the day, where flows and 

routes through the network are similar.  Signal coordination ensures minimised risks of 

significant queues between adjacent intersections, reduction in speed variability on major 

roads, and minimised stops at intersections, which ultimately minimises vehicular 

emissions that pollute the environment (Bell, 2005b).  However, fixed-time signal 

coordinated control is unable to respond, in real-time, to within and hour by hour changes 

in traffic conditions, and is prone to causing lengthy delay of traffic on side roads and a 

lack of coordination in opposing traffic streams.  Crucially, fixed time UTC whether green-

wave or area-wide is not demand responsive, and therefore unable to handle the complex 

changes in arrival patterns of vehicles at a stop line, or respond to unplanned incidents such 

as traffic accidents and road works (Hamilton et al., 2012).  Due to these drawbacks, their 

effectiveness in controlling and managing traffic flow is limited to traffic conditions up to 

about 90% degree of saturation on network links.  Such conditions are becoming less likely 

in urban networks, where the complex nature of the spatial and temporal evolution of 
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congestion across networks makes fixed-time signals inappropriate.  Moreover, their signal 

plans (compiled for different times of the day and for recurring events on the network) 

degrade in effectiveness rapidly due to changes in traffic patterns, and require regular 

updating to be effective (Bell, 1983).  The three main limitations of fixed-time area control 

include:  

(i) the need to change from one plan to another can create 9% additional delay, if 

triggered at peak hour flows (Bretherton, 1979);  

(ii) over time signal plans age by 3% per year (Bell, 1984); and  

(iii) unless the variation in turning movements and flows remain below about 10%-

15% throughout the peak period there is unnecessary delay (when flow 

transients are lower or higher than this tolerance) (Bell, 1984).   

Given these limitations, demand responsive forms of control have become popular in the 

management of traffic in urban areas.  These are equipped to handle the complex traffic 

flow better than with the traditional UTC systems.   

2.5.4 Demand Responsive UTC Systems  

In the 1970s, the (then) Transport and Road Research Laboratory (TRRL), in collaboration 

with suppliers of traffic systems in the UK (e.g. Plessey, Ferranti, GEC), developed the 

concept of demand responsive UTC systems to overcome the limitations of fixed-time UTC 

(DfT, 1999).  Operating as an on-line traffic model, SCOOT (Split Cycle Offset 

Optimisation Technique) was launched commercially in 1983 (Bourner, 1984, Hunt et al., 

1982).  Since then, considerable investment in SCOOT has occurred to include bus priority, 

database facilities and incident detection (Bowen and Bretherton, 1996a, Bowen and 

Bretherton, 1996b), emission sensitive (Bretherton et al., 1998), and gating and optimal 

queue management (Bretherton et al., 2006).  Other demand responsive control systems 

include SCATS (Sydney Co-ordinated Adaptive Traffic System) (Lowrie, 1982), UTOPIA 

(Urban Traffic Optimisation by Integrated Automation) (Donati et al., 1984), RHODES 

(Real Time Hierarchical Optimised Distributed and Effective System) (Mirchandani and 

Head, 2001), PRODYN (Programming Dynamic) (Farges et al., 1990), and MOTION 

(Method for the Optimization of Traffic signals In On-line controlled Networks) (Busch, 

1996).  As with SCOOT, these systems make use of detectors that monitor traffic flows 

continuously across the network in real-time and adjust the green splits, offsets, and cycle 

times to optimise their operations and reduce delays (Hamilton et al., 2013).  However, the 

configuration of detectors and algorithms used to assess demand to modify signals timings 

are different.  Systems typically monitor the network at the signal control region level 
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(typically 4-12 adjacent junctions), and undertake optimisation procedures to ensure the 

smooth flow of traffic across a particular section or area of the urban network.  These 

demand responsive systems manage traffic much better than fixed-time systems, with an 

estimated reduction of approximately 12-20% (on average) in delays in SCOOT, for 

example, compared to fixed-time signals (DfT, 1999).  By comparison, an installation of 

UTOPIA in Turin was able to achieve significant reduction in journey times of 20% for 

public transport and 10-15% for other vehicles (Papageorgiou et al., 2006); whilst 

MOTION demonstrated benefits of 30% reduction in traffic delays in Germany (Brilon and 

Wietholt, 2013).  Turner et al. (1998) estimated that generally SCATS benefits are about 

30% reduction in intersection delay and 19% increase in peak hour speeds, whilst Taylor 

and Abdel-Rahim (1998) reported up to 32% reduction in travel times in Michigan.   

In recent years, an integrated system of UTC with other traffic management systems has 

made it possible to achieve improved efficiency in the operation of the urban road network.  

Examples include Urban Traffic Management and Control (UTMC) in the UK (DfT, 2009) 

and National Transportation Communications in ITS Protocol (NTCIP) in USA 

(AASHTO, ITE and NEMA, 2009).  UTMC was an initiative of the Department for 

Transport to enable local authorities to obtain maximum benefits from their combined UTC 

systems and Intelligent Transport System (ITS) applications.  The system’s design allows 

different applications used within traffic management systems to communicate and share 

information with each other, which underpins its ability to provide a more dynamic, 

intelligent and real-time information system.  In order to achieve this, national standards 

were established to facilitate the unification of initially separate UTC and ITS systems, 

which also enabled wider, and potentially cheaper, selection of products and services for 

local authorities.  At the heart of the standardisation was the development of a common 

language to enhance communication among ITS features for an efficient means of sharing 

information.  Consequently, the transport system could utilise other forms of 

communication such as cable TV to send information without paying the high cost of 

installations.  This offered significant cost savings to operators, which encouraged 

competition in the market along with a wider choice of systems and suppliers, given the 

shift away from the costly practise of individual ownership of detectors and communication 

devices by individual ITS operators (Hamilton et al., 2013).   

By combining SCOOT with Intelligent Transport Systems such as variable message 

systems, for example to redistribute traffic over alternative routes in the event of incidents 
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occurring on the network, UTC systems have led to significant improvements in urban 

traffic management.  The proposed application of Chaos Theory to enhance congestion 

management uses data from a SCOOT system; therefore, more details are presented in the 

next section.   

2.5.5 The SCOOT Model 

Figure 2.3 shows the flow of information in the SCOOT system.  SCOOT makes use of the 

traffic information from detectors on the upstream end of the approach link, for an online 

implementation of the traffic model based on the cyclic flow profile.  These models use 

histograms to represent the arrival patterns of traffic, and the cyclic flow profiles indicate 

the average patterns of traffic flow during one cycle (IHT, 1997a).   

 

Figure 2.3: The Flow of Information in a SCOOT based Urban Traffic Control System 

(Source: (DfT, 1999)) 

SCOOT uses the cyclic flow profile to undertake the three important optimisations i.e. split, 

offset and cycle time optimisation to make adjustments to the signal timings in order to 

improve traffic movement across the network.  The split optimisation occurs at every stage 

change and results in increments/decrements of the green time by between one and four 

seconds in order to maintain a balance of degree of saturation for each stage at each 

intersection in the network.  In order to maximise the performance index (traditionally a 

quantification of the delays and stops, but also fuel consumption or pollutant emission), the 

offset changes by increments/decrements by 4 seconds and occurs once every cycle for 
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each intersection.  The cycle time optimiser operates every five minutes (or two and half 

minutes if the cycle time is rising rapidly) and increments/decrements the cycle time in 

steps of 4, 8 and 16 seconds in order to maintain the maximum degree of saturation at close 

to 90%.   

By continuous implementation of the optimisation strategies, SCOOT ensures not only 

appropriate green waves along specific routes, but also minimises the delays across the 

network.  The main drawback of SCOOT is the incomplete implementation of the ‘hill-

climbing’ offset optimisation procedure making it unlikely to derive and apply the network-

wide optimum offsets achievable in the model.  In normal ‘hill climbing’ techniques, for 

example in TRANSYT, the optimum offset is informed by assessing the effects of a range 

of positive and negative offsets on improving the performance index.  The optimum offset 

is the offset that makes the most significant improvement to the performance index.  In 

SCOOT, the optimisation is incomplete as only a single step change is made normally to 

any split, offset or cycle time assessment to inform the implementation of a new set of 

signal timings.  The traffic signal settings are therefore moved towards the optimum offsets 

suggested by the cyclic flow profile traffic model (Bell, 2005b).  Further, the inflow profiles 

are measured by inductive loops, whilst in TRANSYT, they are calculated in order to 

achieve an equilibrium.  Therefore, a deficiency is identified indicating an inherent 

weakness that limits exploiting the full capabilities of SCOOT.   

In order to manage congestion, SCOOT uses queue data collected via detectors, which are 

located at the upstream end of the link.  Stationary queues on the detectors are an excellent 

indication for potential exit blocking at the upstream junction.  SCOOT Congestion 

(CONG) is the proportion of the signal cycle that there is a queue over the detector.  A 

continuous occupancy of at least 4 seconds is taken to indicate a queue.  Therefore, the 

percentage congestion is given by: 

% 𝐶𝑂𝑁𝐺 =  
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ∗ 4 ∗ 100

𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
 Equation 2-40 

The %CONG may be interpreted as follows: less than 1% “no congestion”, 1-25% “some 

congestion”, 25-50% “congestion”, and more than 50% “severe congestion” (Siemens Plc, 

1999).  The %CONG is used in combination with a Congestion Importance Factor (CGIF), 

which is assigned to every SCOOT link.  In normal operation, SCOOT depends on the 

optimisation procedures to minimise delays in the network.  SCOOT runs the lowest cycle 
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time for the network to reduce delays and at higher cycle times to increase capacity, if 

needed.  However, SCOOT evokes extra logic in order to prevent exit blocking and the 

potential for gridlocking when the optimisation includes congested links.  In basic queue 

management, SCOOT acts to minimise queues on the links with higher congestion 

importance through an assessment in which the split optimiser makes use of the %CONG 

and CGIF to weight the calculation for the merit of the additional green request for the link.  

SCOOT also includes a congestion offset facility for handling congestion arising from 

inappropriate offsets, which are major causes of congestion in networks.  The facility 

enables the traffic engineer to specify fixed offset for congested conditions and indicate 

their relative importance, which allows SCOOT to determine and apply automatically the 

best solution for the problem (Cowling et al., n.d.).   

In more sophisticated queue management procedures, SCOOT deploys the gating facility 

that limits flow into sensitive areas of the network by relocating queues to less problematic 

areas.  SCOOT MC3 (Managing Congestion, Communications and Control) includes a 

congestion supervisor that continuously monitors congestion in the SCOOT controlled 

network; identifies problematic links; diagnoses the cause(s) for the problems and 

recommends probable solutions to enable the user to make use of optimal facilities within 

SCOOT to manage congestion.  Therefore, the facility offers the operator maximum 

benefits from the management facilities by providing a detailed overview of congestion in 

the network in order to enable the deployment of optimum solutions (Bretherton et al., 

2006, Hay et al., n.d.).   

2.5.6 Limitations and the Future of UTC Systems 

In spite of SCOOT’s success, the optimisation procedures are only effective within network 

regions in under-saturated and close to saturated traffic conditions, where queues build-up 

during the red phase and dissipate during the green phase or can be stored on longer links 

in the network by appropriate adjustment of offsets, cycle time or splits.  In over-saturated 

traffic conditions however, they are unable to cope with surges and perturbations in the 

traffic flow or sudden changes in capacity, to which SCOOT’s optimiser response can be 

lethargic.  This is because the optimisation procedures are designed to make small 

incremental changes in timings to avoid inappropriate response to the formation of transient 

queues.  In this way, signal plans evolve and regress to fixed–time modus operandi at 

network saturation.  Furthermore, UTC systems are unable to control and coordinate traffic 

flow between signalised regions or isolated junctions that make up the urban road network 

at those times in the day when appropriate to do so.  Due to the inability to manage traffic 
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between regions, traffic movement into an already saturated region continues unabated 

even at those times when congestion begins to develop as detected by the demand 

responsive control system and existing adverse traffic conditions are made worse.  If the 

ability to control the amount of inflow into network regions existed, then it would be 

possible to manage these inbound flows upstream, and perhaps more relevant is to better 

manage traffic flows on the outskirts of a town or city, to ensure that network regions 

remain in under-saturated conditions at a time in the future.   

In practice, all current demand responsive signal control systems analyse and process real-

time traffic data (such as volume, density, link occupancy) to carry out their basic 

operations in order to determine the type of control strategy to implement (Jianming et al., 

2003).  The bias in their approach, that also limits their functionality, is that they are only 

able to implement solutions that tackle at a local scale adverse network conditions as, when 

or after they occur, rather than being pre-emptive of congestion events likely to occur 

downstream in the network in the future in order to implement mitigating strategies 

beforehand.  Moreover, their reliance on historic (latest) data to determine the delay or 

control strategy to implement, in real-time traffic management, may be problematic 

because when real-time flow varies appreciably they become ineffective.   

In relation to this, Bell (2005b) argues that it will be reasonable to link the decisions 

affecting the control of traffic signals to a feed forward rather than feedback form of control.  

A feed forward control makes decisions affecting the control of traffic signals based on the 

predicted effects on performance taking into consideration the fact that lags are involved in 

the traffic process; for example, queues take some time to form and dissipate.  On the 

contrary, feedback control makes decisions based only on the current situation, which may 

be liable to achieve a significant loss in efficiency and give rise to instabilities.  Given that 

the traffic evolution process is characterised by natural lags makes a feed forward form of 

control a viable option.  In this option, the decisions for traffic control are dependent on the 

predicted effects of the network performance.  This implies that UTC system will be more 

effective by developing the capability to anticipate congestion events and deal with them 

in advance.  Appropriate mitigation plans, when implemented ahead of congestion events, 

will improve urban traffic management and reduce congestion and associated emissions.  

This is achievable only when traffic conditions can be forecast spatially and temporally into 

the future with sufficient reliability.  This will lead to improved journey times and reduce 

traffic delays, and travel time savings will accrue to economic benefits by taking 



 

38 

 

appropriate action.  As road traffic is a significant contributor of environmental pollutants, 

a means of reducing emissions will be a significant step forward in tackling climate change 

and in line with the UK Government’s objective of reducing CO2 emissions by 60% by 

2050 over 1990 levels (DfT, 2004), currently superseded by a mandatory target of an 80% 

reduction by 2050 (Ekins et al., 2011).   

Given this background, it is important that modern UTC systems are equipped to forecast 

network congestion events much more accurately, at least in the short term, as an enhanced 

benefit of ITS applications to urban traffic management (Han and Song, 2003).  

Consequently, the area of traffic condition forecasting has become of much interest to 

researchers and practitioners alike.  In recent years, several traffic condition forecast 

models have been developed including time series, non-parametric, filtering and phase state 

(Huang and Sadek, 2009, Kesting and Treiber, 2008, Qi and Ishak, 2014, Vlahogianni et 

al., 2005).  These models are discussed in detail in Section 3.3.  The majority of these 

methods respond to measured variability in traffic and rely on short-term (cycle-by-cycle) 

predictions of traffic behaviour.  The problem is the limitation that the uncertainty in traffic 

flow is small and primarily due to the short-term external stochastic behaviour into the 

models, without considering the uncertainty due to the internal non-linear structure of the 

system thus limiting the usefulness of these forecasting models (Jianming et al., 2003).  The 

use of Chaos Theory to analyse the uncertainties due to the internal non-linearity in 

dynamic systems opens up an opportunity to examine its potential for improving the short-

term forecast of traffic flow.   

2.6 Conclusions  

The adverse impacts of congestion are enormous.  They include unreliable journey times, 

unacceptable delays and the misuse of otherwise profitable working time in traffic due to 

significant loss of roadway capacity.  The social, economic and environmental benefits of 

an uncongested network are immense, which justifies intervention that alleviates congested 

urban networks and their catchments to enhance network performance in terms of more 

capacity, less delay, improved reliability as well as sustained productivity.   

Demand responsive control systems combined with ITS technologies are currently the most 

sophisticated for managing traffic in UK urban areas.  However, these systems are limited 

due to for example SCOOT's incomplete 'hill-climbing' procedure, and its ineffectiveness 

in saturated traffic conditions making it to regress to the fixed-time modus operandi.  

Further, demand responsive systems for managing traffic in urban areas lack a coordinated 
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approach to detecting the spatial and temporal evolution of congestion across signal control 

regions within city networks.  This severely inhibits these systems’ ability to detect reliably, 

on a strategic level, the onset of congestion and implement effective preventative action, 

for example through timely adjustment of traffic signal settings to hold queues upstream or 

reduce traffic volumes.   

In order to improve the operational efficiency of these systems therefore, it is important to 

equip them with enhanced facilities so that they are able to detect the onset of congestion 

and mitigate imminent flows that lead to adverse congested conditions accordingly to 

maintain network conditions at close to capacity but not in saturated conditions.  For 

example, they must be equipped with sophisticated traffic assessment tools that will enable 

them to forecast short-term traffic conditions more effectively.  As argued by Bell (2005b), 

a feed forward form of control is reasonable as it will link the decisions affecting the control 

of traffic signals to predicted effects on performance.   

Next, Chapter 3 argues that traffic is a recognised time-dependent and non-linear system 

and prone to chaos, which creates the opportunity to apply the principles of Chaos Theory 

to inform the management of urban traffic control systems to reduce congestion and vehicle 

emissions.  It presents a review of the existing literature on the application of Chaos Theory 

to traffic studies and identifies that highly resolved data is a primary requirement for future 

studies.  It concludes that such data has recently become available due to improved data 

collection and processing methods, and therefore these developments now provide a new 

stimulus for further research into gaining a better understanding of chaotic behaviour of 

traffic for application to managing urban road traffic.   
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Chapter 3. Chaos Theory and its Potential Role in Traffic 

Studies 

3.1 Introduction  

In order to apply Chaos Theory to traffic studies, it is important to establish firstly the 

chaotic properties that qualify the traffic system as an ideal candidate for such an 

investigation.  This chapter is focussed primarily on this objective, as well as presenting a 

review of previous research to identify specific issues that need to be addressed and whether 

Chaos Theory has the properties to overcome the limitations.   

This chapter establishes in Section 3.2 that a road traffic network is essentially a non-linear 

system.  Section 3.3 conducts a review of traffic condition models and concludes that Chaos 

Theory has greater ability to evaluate the non-linearity in traffic flow.  Consequently, 

Section 3.4 identifies those factors that influence the evolution of chaos in the traffic 

network and the conditions under which chaos can emerge.  Section 3.5 reviews previous 

applications of Chaos Theory to traffic analysis and identifies their limitations, whilst 

Section 3.6 concludes that these studies have focussed mainly on simple systems such as 

motorways, or those with low temporal resolution data, or both.  Section 3.7 identifies that 

emerging and existing legacy data sources have the capacity to overcome the data issues of 

earlier studies, and discusses some computing issues relevant for an efficient 

implementation of Chaos Theory.  Next, Section 3.8 introduces autonomic computing, 

which is pivotal for the self-management of an efficient transport system, focussing on its 

four main components namely self-configuration, self-optimisation, self-healing and self-

protection.  Finally, Section 3.9 draws conclusions and makes recommendations for 

applying Chaos Theory in the future to manage traffic in urban areas in order to reduce 

problems of congestion and atmospheric pollution, through the incorporation of new chaos-

based algorithms within existing UTC systems.   

3.2 Non-Linear Characteristics in Traffic Flow  

Traffic behaviour gives rise to nonlinear characteristics that makes traffic systems difficult 

to forecast network-wide events.  UTC systems for example only have a snapshot of the 

traffic state and therefore can model and forecast traffic flows on a link-by-link basis but 

not strategically network-wide (Cameron and Duncan, 1996, Frazier and Kockelman, 2004, 

Papageorgiou et al., 2003, Mahnke et al., 2005, Nair et al., 2001, Safanov et al., 2002, 

Hamilton et al., 2013).  Given the variability in traffic speeds, and vehicles not driving at 

the speed limit, the amount of traffic flow or occupancy over a loop detector at fixed 
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intervals over a certain period tend to fluctuate suggesting a non-linear character.  Fixed-

time traffic signals are unable to cope with these non-linear fluctuations in the traffic 

system, which then becomes a recipe for chaotic behaviour to develop (Frazier and 

Kockelman, 2004).  Chaos, amongst other reasons, is due to the combined effect of regular 

and randomly occurring events such as buses stopping, pedestrians crossing, vehicles 

parking and unparking at the roadside at which point UTMC traffic models are challenged 

(see Section  3.4.1).  This results in traffic signals discharging only a portion of an entire 

queue length during the green phase in each cycle, which, over time, can lead to severe 

queuing.  At the network level, these activities result in an exponential increase in queues 

occurring at a rate that is too fast for demand responsive control to react, or the capacity of 

the junction being exceeded or the ability of the link to store the queues thus causing exit 

blocking.  At this stage, a saturated link cannot accommodate any additional traffic from 

the upstream link when given the right of way causing further congestion that rapidly 

develops upstream.  As a result, such activities generate chaos on specific links or at 

junctions in a network on a day-to-day basis and opens up the potential for the technique 

to identify patterns spatially and temporally in network-wide traffic flows that lead to the 

congested state.   

It must be noted that even though non-linearity is a condition for chaos, chaos is not a 

property of all non-linear systems; hence the presence of non-linearity does not always 

guarantee chaos (Gleick, 1988).  In traffic studies however, it has been established that non-

linearity does generate chaos in the traffic system (Lan et al., 2003, Narh et al., 2014, Shang 

et al., 2007).  The existence of a non-linear structure clearly makes traffic a potential 

candidate for the investigation of the use of Chaos Theory, which helps to explain the 

evolution of chaotic systems through a measure of the rate of change of a system known as 

the Lyapunov exponent.  By definition, a positive exponent indicates chaos (instability), a 

negative exponent indicates a free flowing or congested network (stability) whilst a ‘zero’ 

exponent indicates a network in a meta-stable state (Károlyi et al., 2010).  In the traffic 

system, the Lyapunov exponents may be considered as an indicator of the lengthening and 

shortening of the gap between vehicles in a phase space.  Therefore, the Lyapunov exponent 

may be viewed as an indication of the nature of vehicular interactions by measuring how 

well the system is able to adapt to perturbations, which reflects available capacity.  It is 

important therefore to understand the evolution of traffic congestion, and its relationship to 

the Lyapunov exponents, to enable the state of the urban network to be identified.  By 

reference to Figure 2.1, free flow exists when traffic density is low, which is usually during 
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off-peak periods.  As such, asymptotic stable conditions (negative exponents) prevail at 

off-peak times when mean vehicular speed exceeds the optimal capacity speed, and density 

is below the safe capacity density.  However, traffic density increases as the flow rate 

increases (as more vehicles join the network) but speed tends to decrease (at an increased 

rate as flow approaches capacity), thus giving rise to a steady stable condition at 

synchronised flow where the system exhibits Lyapunov stability at the critical density (or 

optimum speed).  As congestion begins to emerge, the dynamic condition is unstable 

“chaos” (positive exponents) characterised by greater interaction due to the high flows and 

lower speeds.  Queues develop rapidly at an exponential rate until maximum flow occurs 

at capacity, where any additional traffic or slight loss of capacity results in congestion 

(negative exponents).  Chaos is characterised by rapid deterioration in speeds and density 

as flow increases.  In extreme conditions, traffic density tends to its maximum when flow 

rate and vehicular speeds are zero and stationary queues are common.  This is further 

explained in Chapter 8 (Figure 8.10) with a numerical example.  The changing conditions 

within a traffic system reveal a non-linear structure that exposes chaos as a precursor to 

congestion.  By observing the time series profile of the Lyapunov exponents, the turning 

points can reveal the ‘shoulders of congestion’ as a signal of impending congestion.  A 

gradient change of the profile from positive to negative reveals a state transition from free 

flow to unstable flow or chaos, whereas negative to positive change reveals a transition 

from congestion back to free flow.   

3.3 Review of Traffic Condition Models  

This section conducts a brief review of the main theoretical approaches in traffic condition 

modelling in order to identify their uses and limitations for forecasting the traffic system.  

Based on existing literature, this section concludes that Chaos Theory has the potential to 

overcome the weaknesses in the reviewed models and to provide a better understanding of 

the evolution of traffic flow.  Five main groups of traffic condition forecast models have 

emerged in recent years.  These are:  

Group 1: time series models including autoregressive, integrated and moving average 

models combining to produce models such as Box-Jenkins, AutoRegressive Moving 

Average (ARMA), AutoRegressive Integrated Moving Average (ARIMA) and 

AutoRegressive Conditional Heteroscedastic (ARCH);  

Group 2: non-parametric models (e.g. artificial Neural Networks, Regression, Kernel 

Smoothing and k-Nearest Neighbour);  
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Group 3: filtering models (e.g. Kalman filter theory, generalised linear models, Bayesian 

dynamic linear model and least mean square filters); 

Group 4: hybrid models (e.g. KARIMA (combining Kohonen maps with ARIMA), 

ATHENA, Bayesian Neural Networks and Hybrid Fuzzy rule-based models); and 

Group 5: phase state models (e.g. Space-Time ARIMA, Bayesian Vector AutoRegressive, 

and Seemingly Unrelated Regression). 

Qi and Ishak (2014) suggested that the majority of models in Group 1, 2 and 3 are 

constructed to fit data.  This can result in the more general issue of ‘over-fitting’, a problem 

that reduces a model’s ability to capture generalised trends.  More specifically, Group 1 

time series models (such as ARIMA and Box-Jenkins) assume that the data being analysed 

are a product of a linear process making them largely inappropriate if the underlying 

mechanism is non-linear (Zhang et al., 1998). Also ARIMA models concentrate naturally 

on modelling mean values to the detriment of forecasting extreme values, which makes 

such models unsuitable for predicting events such as congestion where the associated traffic 

flows are significantly different from the mean flow (Abdullah et al., 1999, Angeline et al., 

1994, Head, 1995).  Also in Group 1, non-linear time series models (such as the bi-linear 

model, the Threshold AutoRegressive (TAR) and ARCH models) are limited as they 

hypothesise explicit relationships within the data series but with little knowledge of the 

underlying laws determining the dynamic process.  These models are also difficult to 

formulate due to the many non-linear patterns within traffic datasets, suggesting that a 

generalised model may not capture adequately all the important features including the 

evolution of traffic congestion (Zhang et al., 1998).  In contrast, non-parametric models 

(Group 2) make no assumptions about the underlying traffic dynamics.  They do not 

necessarily require training of the data to calibrate the parameters before applying to 

forecasting, but rely on existing relationship within the data.  They have greater capability 

than Group 1 models to handle non-linear relationships given their ability to capture the 

underlying relationships without the need for prior assumptions, and to learn from data 

should the underlying relationships be unclear (Guo et al., 2014, Huang and Sadek, 2009, 

Zhang et al., 1998).  Vlahogianni et al. (2005) suggested that these characteristics may 

indicate an inherent (theoretical) ability of neural networks to model the temporal and 

spatial variability in traffic flow.  However, Khaleghei Ghosheh Balagh et al. (2014) argued 

that Neural Network models are not capable of modelling explicitly the serial correlation 

in time series data, which is inherent in the build-up of congestion.  Also, Neural Network 
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models suffer from the over-fitting issue and hence the smoothing of flow variability when 

profiles are changing rapidly which affects the accuracy of congestion forecasts (Qi and 

Ishak, 2014).  If the traffic data does behave as a linear static process, for example as can 

happen during off-peak periods when traffic is generally free-flowing, linear models such 

as ARIMA tend to perform better than the nearest neighbour and neural network models 

(Huang and Sadek, 2009, Zhang et al., 1998).   

In order to improve the performance of these standard forecasting approaches, hybrid 

models (Group 4) have been developed (for example, Guo et al. (2014), Huang and Sadek 

(2009) and Vlahogianni et al. (2005)).  Although these models do generally perform better 

than the standard approaches, they are still restricted in their applicability to congested 

traffic situations due to inherent weaknesses in replicating, in the modelling process, 

traffic’s non-linear behaviour.  In order to overcome the various limitations in the models 

described above (Groups 1-4), phase state models for example based on Chaos Theory have 

emerged.  A phase state model is a mathematical model of a physical system as a set of 

inputs, outputs and variables related by a first order differential equation, which is an 

equation of the unknown function and its derivatives and variables.  They provide a 

convenient method to model and analyse systems with multiple inputs and outputs by 

expressing them as “vectors” (see Section 5.2).   

Chaos Theory has the potential for analysing the complexities in perturbing traffic flow, 

which are due to the various unpredictable and immeasurable quantities within road traffic 

systems (Jianming et al., 2003).  Frazier and Kockelman (2004) identified three major 

benefits of Chaos Theory for system analysis:  

1. It applies to highly nonlinear systems. 

2. It naturally accounts for all important system dynamics. 

3. It uncovers system information and relationships without having to uncover 

the laws or equations of the underlying dynamics. 

In order to apply Chaos Theory to traffic studies, it is important to understand the non-

linear characteristics of traffic flow and establish the conditions under which chaos occurs 

and propagates through the urban road network.   

3.4 Chaos in the Road Traffic Network  

The ability of Chaos Theory to analyse uncertainties due to the internal non-linearity of 

systems makes it appropriate for the study of congestion.  The next question is to establish 
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whether chaos is present in urban road traffic, and, if so, under what circumstances does it 

occur?   

3.4.1 How Does the Evolution of Road Traffic Generate a Chaotic System? 

Due to its dynamic nature, traffic fluctuates between free flow and congestion, but any 

future state of the network cannot be determined accurately.  Primarily, this is due to 

changes in the initial conditions in the evolution process.  This is caused by the varied mix 

of human behaviours, which is partly a function of environmental factors (see section 

3.4.2), and partly due to the heterogeneity in the driver population (including personality 

mix of males and females of a wide age range), which gives rise to varied reaction times 

consequential of different driving styles (Dendrinos, 1994, Lee et al., 2014).  Many other 

events can affect the initial condition of the traffic system.  These include the movements 

of emergency vehicles (ambulance, police, fire etc.) requiring right of access, the rippling 

effect of the acceleration/deceleration of successive vehicles and transmission of ‘stop-and-

start’ conditions, and actions of drivers such as stalling the engine, weather, or other 

environmental conditions.  The other factors include temporary diversions, road closures, 

changes in road layout and road works, and the effects of network incidents (such as 

accidents, vehicle breakdowns and surges of vehicular or pedestrian volumes).   

Safanov et al. (2002) attributed the chaotic behaviour in traffic flow to delays in human 

reactions.  Others studies highlighted this chaotic behaviour, which they also identified as 

posing challenges to forecasting accurately events on the road transport network.  Zhu et 

al. (2010) attributed the randomness and uncertainty in traditional transport models to some 

"mass random" phenomena, but failed to explain the main causes of the underlying 

dynamics.  On the other hand, Xu and Gao (2008) noted the varying physical and human 

elements as being responsible for the formation and dissipation of a traffic jam, the effect 

of traffic incidents and the flow evolution.  According to Dendrinos (1994), these 

complexities develop the chaotic state of the road network, which makes accurate long-

term predictions difficult.   

Road traffic networks can be prone to sudden gridlocking even when only minor events 

occur.  A small change in a single driver’s behaviour, for example when brakes are applied, 

may affect network conditions, especially when the traffic volume is increasing and 

unstable conditions are beginning to emerge.  In other situations, fluctuations in speed or 

the spacing between vehicles, car parking and unparking or pedestrians jay walking even 

when traffic density is much lower than the jam density, may result in spontaneous traffic 
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congestion.  Hence, the ‘butterfly effect’ (see Section 4.3) can be observed due to an 

infinitesimal change in an initial condition at some location in the network having a 

significant effect on the long-term state of the system at some other time or place.  This has 

tendency to produce a serious adverse impact on the predictability and hence ‘forecast-

ability’ of the state of the road network (Kirby and Smith, 1991).   

Another reason why traffic can be prone to chaos is attributable to the similarity between 

fluid particles and traffic streams.  In practice, the presence of chaotic properties in a 

deterministic dynamic system (such as fluid particles), can be analysed by the 

transformation of the time series of the key variables of the system evolution into a phase 

space.  Fluid systems in scientific experiments analysed in this way indicate that particles 

released in the flow tend to deviate from each other over time, with the distances between 

pairs of particles growing at an exponential rate, which is normally characterised by the 

Lyapunov exponents (Károlyi et al., 2010).  Given the resemblance between the behaviour 

of traffic streams and fluid particles, the principles applicable to fluids may also be relevant 

to streams of vehicles.  This similarity can be observed, for example, if one focuses on the 

waves that ripple through the network as vehicles brake or accelerate in succession (Sipress, 

1999).  The transmission of ‘stop-and-go’ movement through a road network, as vehicles 

change speed, is comparable to the shock waves released when a mass of gas fluid hits a 

bottleneck and transmits a wave of compressed air back in the opposite direction to the 

stream of oncoming gas (Sessler, 2007).  Therefore, as in fluid systems, the rippling effect 

of the acceleration/deceleration of successive vehicles and transmission of ‘stop-and-go’ 

can potentially generate or exacerbate the chaotic state of the road network.   

Furthermore, the occurrence of unstable situations on road networks, as characterised by 

traffic jams and dynamic changes, is comparable to the change of state of fluid particles 

from the solid through the liquid to the gaseous state and vice versa, which is explained 

with respect to the levels of service.  The degree of manoeuvrability of vehicles (particles) 

in the road (fluid) system can be described by six levels of service (see Section 2.3) 

indicating the degrees of interactive patterns from free flow through to congestion (Jou et 

al., 2013, TRB, 1994).  When vehicles operate almost unimpeded with a greater ease of 

manoeuvrability within the traffic stream, they behave as typical fluid particles that have a 

high degree of movement (Level A) in the gaseous state.  At the phase of “synchronised 

flow” (Level C), vehicles behave as liquid state fluid particles, where manoeuvrability is 

noticeably restricted and drivers are forced to drive as part of the overall traffic stream with 
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restricted ability to change lanes, due to the restricted flow movement (Sipress, 1999).  At 

the extreme (Level F), there is highly restricted manoeuvrability on the road network, which 

is comparable to particles in the solid state (May, 1990).  The evolution of these levels of 

service is due primarily to forced vehicular interactions on a network with limited capacity, 

aggravated by the inability to clear the junction during successive back-to-back saturated 

traffic cycles, and the consequent accumulation of the resulting queues leads to severe 

congestion.  This phenomenon is likely to occur in the transition region between free flow 

and congestion, within the region of severely restricted movement, before Level F 

conditions.  As chaos indicates that traffic is likely to move out of the free flowing state i.e. 

congestion is starting to emerge, this can be used as a trigger for remedial action.   

In contributing to this discussion, Dendrinos (1994) proposed a utility maximisation model 

to explain the interactions of motorists in the environment and how this complexity 

develops the chaotic state of network.   

3.4.2 Utility Maximising Model  

The basic assumption in this model is that motorists tend to choose speed, acceleration, and 

spacing (headways) in order to maximise their utility, or the degree of satisfaction enjoyed 

by a motorist on the road network (Dendrinos, 1994).   

In practise, the utility enjoyed by drivers under certain conditions influences their choice 

of speed and acceleration, which affects the dynamics of the traffic stream.  The driving 

conditions are also functions of other environmental factors, which may include the 

maximum allowable speed, road surface conditions, weather, pedestrian activities, etc.  All 

these varying mix of conditions faced by each individual motorist, coupled with the 

heterogeneity in driver population gives rise to varied response/reaction times.   

According to the model, the utility of each individual driver is given by the utility function 

as:  

𝑈𝑗(𝑡) =  𝑈𝑗{𝑣̇𝑗(𝑡), 𝑣̈𝑗(𝑡), 𝑑𝑗(𝑡) … … … … … . } Equation 3-1 

such that: 𝐶𝑗𝑘
𝑡  {𝑣̇𝑗(𝑡), 𝑣̈𝑗(𝑡), 𝑑𝑗(𝑡), 𝑟𝑗(𝑡),  𝑠𝑗, 𝑡 … … … … … . } ≤  𝐶̂𝑗𝑘(𝑡) 

  [𝑣̇𝑗(𝑡), 𝑑𝑗(𝑡) ] ≥ 0,    𝑣̈𝑘 ≠ 0 

 where: 

 𝑣̇𝑗(𝑡) > 0 is the operating speed of the 𝑗𝑡ℎ vehicle at time 𝑡 (𝑡 ∈ 𝑇𝑖),  where 𝑇𝑖 is 

the duration of a time segment 𝑖 within a larger time interval 𝑇, say a day) across a 

designated cross-section of the road; 
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 𝑣̈𝑗(𝑡) > 0 (acceleration) and 𝑣̈𝑗(𝑡) < 0 (deceleration) are operational parameters of 

the 𝑗𝑡ℎ vehicle at time 𝑡 at that point; 

 𝑑𝑗(𝑡) is the vehicle density in the local area at time 𝑡 (as perceived by the driver); 

 𝑟𝑗(𝑡) is a driver’s reaction time; and  

 𝑠𝑗 is sensitivity or car response to the driver’s handling.   

The vehicle specific parameters are constrained also by other factors: 𝐶̂𝑗𝑘(𝑡), which 

includes the constraint imposed by the local maximum allowable speed, road surface 

conditions, weather, drivers reaction time, sensitivity or car response to the drivers 

handling.   

In the absence of congestion, drivers operate outside of a platooned environment and are 

unaffected by both the behaviour of neighbouring vehicles, and the distances from other 

vehicles.  However, as vehicular interaction begins to increase in platooned environments, 

drivers respond to speed, acceleration, and separation of vehicles in front and behind.  

Consequently, the macroscale density is affected by the choice of speed by the individual 

drivers.  Under these circumstances, motorists respond to the constantly changing 

influences of other motorists’ in attempts to maximise their individual utility.  

Consequently, there is a constant fundamental feedback as motorists change their driving 

behaviour in order to maximise utility.  Dendrinos (ibid.) states that, “this interaction alone, 

in effect, may be responsible for non-equilibrium unstable (possibly chaotic) dynamics, 

depending on the connectances between speed, acceleration/deceleration and immediate 

density at each individual’s utility and perceived constraint functions, and the system wide 

environment.”   

The speed-flow curve in Figure 3.1 shows an upper region of ‘stable flow’ and lower region 

of ‘unstable flow’.  Motorists enjoy their utility on the upper curve but less utility on the 

lower side is characterised by congestion, increased journey time and significant delays.   

As illustrated, speed tends to decrease (as flow increases) after an initial period of little 

change, but at an increased rate of change of speed as flow approaches capacity.  This 

region of a sharp deterioration in speeds defines the onset of an unstable region (chaos) 

characterised by low speeds as vehicles are forced closed together into the link (Ortuzar 

and Willumsen, 2006).  Dendrinos (1994) identifies that the utility of the motorist starts to 

become noticeably restricted due to the increased rate of interactions as flow approaches 
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capacity, and generates the fundamental feedback interaction that stimulates chaos, which 

creates conditions for hyper-congestion.   

 

Figure 3.1: The Standard Static Operating Speed versus Volume Relationship 

(based on Dendrinos (1994)) 

Dendrinos (ibid.) further alluded to the fact that urban road traffic (measured as traffic 

volumes or flow rates) exhibits periodicity when assessed over daily, weekly and monthly 

intervals, with the stronger periodicity observed when the level of aggregation is increased.  

On the contrary, the behaviour tends to aperiodicity, if analysed in finer time units of sub-

one-minute intervals.  For this reason, the finely resolved temporal traffic flow information 

is important for chaos studies enabling the chaotic properties of the system to be analysed.  

This will be revisited later in Sections 7.2 and 7.3.   

Since the 1990s, there have been a number of studies using real-world data to investigate 

Chaos Theory in traffic analysis; however, as is shown next in Section 3.5, these studies 

have been limited to ex-urban networks (motorways and trunk roads) and using relatively 

low-resolution data in which the short-term variability in the traffic flow is often lost.   

3.5 Previous Applications of Chaos Theory in Road Traffic Analysis  

Several studies have shown that traffic data can display chaotic behaviour close to saturated 

conditions, making road traffic an ideal candidate for examining the use of Chaos Theory.  

In the UK, Kirby and Smith (1991) conducted an exploratory study based on the car-

following theory to assess the possibility of applying Chaos Theory to traffic.  Their results 

encouraged the need to examine non-linear dynamics in more detail and confirmed that 

various parameters that arise in transport models, such as car following, do bear 

characteristic features of chaos.  The authors concluded that Chaos Theory is suitable for 
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understanding the conditions under which instabilities evolve and propagate through road 

transport systems.  The study also highlighted the need for guidance on how to select the 

forecasting horizon to make predictions realistic and, finally, recommended a study into 

ways of analysing and summarising data for timely detection of the transition to chaotic 

behaviour.   

More recently, research into Chaos Theory has mainly focussed on motorway networks, as 

they are relatively simple systems to analyse compared to urban road networks where 

several complexities exist due to the influence of various interacting elements (such as 

vehicle types, pedestrians, weather and road layout).  Motorways tend to be long stretches 

of carriageway, often without a dense deployment of detectors to provide sufficient and 

appropriate traffic data to be able to understand the evolution and propagation of the 

dynamic states across the network.  These studies were based on relatively low temporal 

resolution data, for example, one-hour intervals, and lacked investigations over a wide 

spatial area (such as a network of coordinated junctions and adjacent control regions, for 

example).  Nair et al. (2001) analysed time series data (consisting of speed, volume and 

occupancy) from inductive loops installed on the San Antonio freeway system.  The data 

were validated against established relationships between average speed, total volume and 

average occupancy.  However, the actual non-linear analysis of the traffic data focussed on 

average speed time series aggregated into 5-minute data.  By examining the deterministic 

properties of the data, traffic speed was characterised as chaotic, and techniques based on 

phase space dynamics were found to be suitable for analysis and prediction.  Consequently, 

the study identified that time series traffic data is deterministic and therefore rendered 

suitable for modelling by applying phase space techniques.   

Lan et al. (2003) collected automatic traffic count records sampled at one-minute intervals 

at 20 selected stations on the Miami Freeway in the USA, for testing and predicting traffic 

flow dynamics using Chaos Theory.  The statistical tests carried out included the Hurst 

exponent, largest Lyapunov exponent, Correlation dimensions and Kolmogorov entropy.  

These tests indicated consistently strong evidence of a chaotic rather than a random 

structure.  Furthermore, short-term traffic flow predictions were possible.  In a study in 

Sacramento, California, Frazier and Kockelman (2004) confirmed that a more generalised 

view could only be drawn when a wider range of traffic flow rates are analysed.  The latter 

study used data from inductive loops collected over a one-month period at 30-second 

intervals on a section of Interstate 80 highway.  Crucially, it concluded that a lack of 
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extensive data, or sampling at the wrong frequency, fails to capture accurately the important 

dynamic features in a system.  This has severely inhibited progress applying Chaos Theory 

to traffic congestion management.   

Shang et al. (2007) identified the existence of a possible geometry (rather than a stochastic 

character) in traffic speed time series data in Beijing when sampled every two minutes.  

This tends to suggest that the traffic flow process could be viewed from a new perspective 

by reference to its chaotic properties.  It indicated that traffic time series is deterministic 

and could be modelled using phase space techniques.  Similarly, Zhang and Liu (2007) 

analysed traffic data from video equipment installed on a freeway passing through a suburb 

of Tianjin in China using Chaos Theory.  The data were analysed for a range of time 

resolutions between 30 seconds and 6 minutes.  A recurrence plot indicated the possibility 

of chaos, and correlation dimensions could be determined.  Analysis showed traffic flow to 

be chaotic and fractal (irregular or fragmented geometric shapes, each of which is a small 

part of the whole) under a large range of observation time windows.  Correlation 

dimensions and largest Lyapunov exponents decreased with increasing time windows at 

one minute scales, which confirms the sensitivity of these parameters.  In order to achieve 

a reliable forecast the study suggested that the sample size should be more than ten times 

that of the correlation dimension of the short-term traffic flow.   

Krese and Govekar (2013) distinguished between the traffic dynamics of a ring road around 

Ljubljana in Slovenia and several adjoining highways, based on Chaos Theory.  The study 

concluded that the embedding dimensions for the highway were lower than the ring road 

traffic, whilst the maximum Lyapunov exponents showed higher sensitivity of the highway 

compared to the ring-road, which is indication that the ring-road was capable of responding 

better to small traffic perturbations than the highway.  This observation was attributed to 

the higher density of junctions and connections on a ring road, compared to the highway, 

making it easier for the redirection of traffic to avoid a traffic jam, accident, etc.   

In a non-motorway study, Xue and Shi (2008) analysed traffic flow data from Dongjiang 

Street in Dongguan, China.  These data were sampled at five minutes intervals from August 

to October 2006, which gave more than 30,000 data points for investigating the short-term 

forecasts based on Chaos Theory.  This research deployed the phase space reconstruction 

method, but used a local polynomial model of the nearest neighbour to forecast the traffic 

flow.  The previous 80-days data was used to provide an historic “picture”, whilst the latter 

12 days was used to examine the accuracy of the predictions.  The results indicated a 
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maximum relative error of 0.45% with a minimum of 0.04%, whilst 89.5% of the total data 

had a relative error under 0.10%.  The results demonstrated the high precision of local 

regression models used to make predictions from the reconstructed phase space of the 

evolution of the traffic flow.   

Further, research based on UTC-SCOOT data from the Traffic Management Bureau in 

Beijing carried out traffic flow forecasts from data sampled at an averaging frequency of 

15 minutes (Jianming et al., 2003).  The result of one of the roads presented in the paper 

indicated that the forecast and actual curves fitted well with a mean square error of 7.1% 

and equalisation coefficient of 95.4%.  It is unclear why the study did not analyse the spatial 

and temporal evolution of congestion across the network, but this could possibly be due to 

the low temporal resolution data (which conceals the short-term variability upstream-

downstream in traffic patterns) and the sparse distribution of available data for the network.  

Thus, even in the instance where the study used urban area-wide data, it could not 

investigate the complexities in the urban flow network to investigate the occurrence of 

chaos at the microscale level or across a network of interconnected junctions.  Therefore, 

it suggests that Chaos Theory is relatively data-hungry and requires highly resolved 

temporal and spatial data in order to function appropriately to reveal congestion patterns 

evolving in time and space across a network.   

3.6 Limitations of Previous Studies  

The above evidence does suggest that the chaos phenomenon can occur within road traffic 

networks.  However, these earlier studies have only focussed on systems with low temporal 

resolution or simple linear networks such as motorways that are relatively easy to analyse, 

compared to urban road networks.  Consequently, Chaos Theory has limited potential for 

traffic management in urban networks when the monitoring environment lacks a high-

resolution data capture rate.  Chaos Theory is data-hungry and dependent upon the 

availability of large volumes of data from a densely surveyed network with observations 

over a long time frame and possessing a resolution that preserves the variability in short-

term traffic patterns.  As indicated by Kirby and Smith (1991), the data must allow the 

transition to chaotic behaviour to be readily detected in order to enhance our understanding 

of chaotic traffic flow.  This is dependent on data of sufficiently high sampling rate 

available over a wide spatial area and data quality such that transients, measured variation 

in congestion is picked up in time and space.  This enables “early warning signs” of the 

state change within the system to be detected giving network managers more time to react.  
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Suitable data could be for example, sub-one-minute interval data of flow, speed, link 

occupancy and traffic noise (Frazier and Kockelman, 2004, Lan et al., 2003, Nair et al., 

2001).  Despite the problem of data resolution, previous work indicated that chaotic 

behaviour was present in traffic flow on motorways, inter-urban and urban roads.  

However, whether chaos is initiated at the microscale on a single link or across a network 

of interconnected junctions in the urban network remains an unknown.  The optimum 

approach therefore, to enhancing our understanding of road traffic’s chaotic behaviour, is 

to focus research on examining complex networks, for example, a group of interconnected 

urban junctions, such as a SCOOT region, using highly resolved traffic data.   

The next section suggests that there are now new and enhanced data sources that overcome 

previous limitations with applications of Chaos Theory to urban networks.  If chaos occurs 

network-wide, current signal control systems for managing traffic in urban areas will 

benefit from being able to take into account the spatial and temporal evolution of 

congestion across network regions.  The literature has revealed evidence to suggest that it 

is possible to use chaos-based algorithms to design optimal control solutions to address 

strategic network traffic problems by providing an additional level of intelligence to UTC 

systems.  This will enable these systems to proactively detect congestion and implement 

strategies to prevent saturated conditions occurring in a network region, over a group of 

regions or across an entire city region.  Chaos Theory will enable assessment of congestion 

in and between neighbouring network regions through systems that are capable of talking 

to each other, and therefore enabling the management of congestion strategically across a 

much wider area and in a more pre-emptive manner, with the overall benefit of more 

reliable journey times and reduced pollution area-wide.   

3.7 New Sources of High-Resolution Traffic Data 

The key characteristics of traffic behaviour (e.g. traffic flow and link occupancy) needed 

to deploy Chaos Theory can vary over a matter of seconds and within tens of metres across 

a network.  Therefore, to detect these variations, the system must capture relevant data at 

sufficiently high spatial and temporal resolution.  Otherwise, the full potential of the Chaos 

Theory application to urban traffic control will not be realised.  These data enable an 

understanding of the prevailing dynamic state and perturbations in traffic on a link, at a 

given point in time, and the evolution of the resulting congested state in the near and short-

term future.  The disadvantage of low-resolution data is the failure to preserve the short-

term variations in traffic patterns, making the dynamic property of the system unclear; 
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therefore, such data do not support the examination of Chaos Theory adequately.  Recent 

innovation in monitoring technologies (such as pervasive sensors known as Motes and 

Bluetooth devices) along with sophisticated legacy system data sources (such as SCOOT 

and ANPR) provide highly resolved (temporal) traffic data over a sufficiently high spatial 

density.  This provides a new stimulus for further research into gaining a better 

understanding of characteristics of chaos in traffic data to enhance the current automatic 

management of urban road traffic.  Thus, the benefits of integrating diverse data sources 

within existing urban control systems are that they will serve a dual function of delivering 

the traffic management and control function as well as providing the data to enable Chaos 

Theory to report on the more strategic situational state of the urban network in real time 

(Downes et al., 2006).  Sections 3.7.1 and 3.7.2 explore these data sources in more detail, 

in terms of their overall feasibility, and the requirements for high temporal and spatial 

resolution data.   

3.7.1 Pervasive Devices   

Motes and Bluetooth are relatively inexpensive devices that are easily and flexibly installed 

with minimal visual intrusion, enabling mass deployment in urban areas at relatively low 

capital and on-going maintenance costs.  A typical network consists of sensors attached to 

street furniture (e.g. traffic signal poles, lamp columns and railings).  Also, these devices 

can be programmed to collect traffic and environmental data at varied levels of temporal 

resolution (including second-by-second).   

Motes can be mains or battery-powered, compact and low-cost devices that contain a 

number of different types of sensors including temperature, humidity, carbon monoxide 

(CO), nitric oxide (NO), nitrogen dioxide (NO2) and noise that can be programmed to 

enable continuous monitoring and simultaneous measurement of ambient conditions 

including vehicle movement and pollution over a networked area (Akyildiz et al., 2002, 

Bell and Galatioto, 2013, Bell et al., 2009).  Depending on the type of in-built sensor, a 

mote device can gather traffic information such as traffic flow, link occupancy and speed 

when it detects vehicles within its zone of surveillance (Shih et al., 2001).   

The project MESSAGE (Mobile Environmental Sensing System Across Grid 

Environments) jointly funded by the UK DfT and the Engineering and Physical Sciences 

Research Council (EPSRC) developed prototype motes.  These were deployed in UK urban 

networks including Gateshead, Newcastle and Leicester (where the data captured was 

integrated with real-time traffic data from SCOOT in a database), as well as in London and 

Palermo in Italy.  The project was a collaboration of Imperial College (lead partner) and 
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the Universities of Newcastle, Cambridge, Southampton and Leeds.  The first commercial 

deployment of the Newcastle MESSAGE mote integrated with SCOOT system was in 

Medway and Newcastle (see Figure 3.2).  Data is sampled at 5Hz, and averaged to one 

minute, and transmitted from sensor to sensor (up to 5 hops) to a gateway which relays data 

from the whole array (up to 100 sensors) by GPRS or LAN/Wi-Fi (North et al., 2009).   

Bluetooth devices use a low cost transceiver chip to communicate and exchange 

information with other enabled devices within a global frequency range of 2.45Hz.  Figure 

3.3 shows a typical Hi-Trac® Bluetooth equipment installed on a traffic signal pole.  Each 

device has an unique identification called a MAC (Media Access Control) address, which 

facilitates the identification of individual vehicles (with an enabled Bluetooth device) 

passing through the network.   

 

 

 

Figure 3.2: Typical Mote Installed on a 

Lamp Column  

 

 Figure 3.3: Typical Bluetooth Installed on a 

Traffic Signal Pole  

 (Source: Bell (2012))  (Source: Lees (2013)) 

Bluetooth scans an enabled in-vehicle device (such as mobile phone, laptop and in-vehicle 

electronics/engine management systems).  When a vehicle passes through the device’s 

detection zone, a data recorder stores the device address and records the data type to the 

nearest second (Kay and Jackson, 2012).  Through the matching of MAC addresses at 

successive detection stations, Bluetooth devices provide a large volume of high-resolution 

traffic data including traffic volume, occupancy (density), speed and travel time (Blogg et 

al., 2010).  Examples of areas where Bluetooth networks are already deployed for traffic 
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data collection are Queensland (in Australia), Indiana, Pennsylvania and Chicago (in North 

America), and Altrincham, Manchester, Stockport and Wigan (in England), and Perth and 

Inverness (in Scotland) (Cragg, 2013, Galas, 2010).   

Unlike the Motes and Bluetooth detectors, SCOOT and ANPR systems are capital intensive 

and not as pervasive (with installations mainly at junctions and intermediate locations such 

as pedestrian crossings) making them less capable of providing high-density spatial data 

although they can collect high temporally resolved data.   

3.7.2 SCOOT and ANPR 

It must be emphasised here that SCOOT and ANPR systems are not new data sources, but 

the enhanced ability to analyse the data through increased storage capability and computing 

power makes them potential sources of data for Chaos Theory.  Until recently, SCOOT and 

ANPR datasets were only available in aggregated form at low resolution therefore less 

suitable for Chaos Theory.  Although the raw data is collected in 20 second, 30 second, one 

minute and two minute intervals, historically measurements have been aggregated typically 

in time synchronous intervals of 5 and 15 minutes providing average values for each time 

period.  This procedure reduces the size of data files for storage in databases (such as 

ASTRID) thus minimising the required memory and data writing (or retrieval) which can 

be both expensive and computationally intensive.  Once aggregated, any traffic variation 

within the time interval is lost; therefore, such low resolution data smoothes the short-term 

variation in traffic patterns, which ultimately affects the accuracy of short-term forecasts 

(Zheng and McDonald, 2007).  However, during the past few years, the unprocessed data 

has started to become available to traffic managers enabling processing to take place at 

second by second intervals.  As such, future studies will benefit from datasets whose short-

term variation in traffic patterns are known and therefore make possible the opportunity to 

investigate the underlying non-linear structure available in the detailed measurements.  

Furthermore, the use of computer technologies such as The Cloud computing system are 

able to meet the real-time data processing requirements and the computational intensity 

associated with making these databases more suitable for the Chaos Theory application.   

The SCOOT system’s layout was described in in Section 2.5.5.  As an adaptive system, 

SCOOT responds automatically to traffic fluctuations by performing three optimisation 

procedures namely split, cycle and offset and makes slight adjustments to the signal timings 

depending on traffic conditions within the SCOOT region (Peek Traffic Ltd. et al., 2008).  

Each optimisation affects a small incremental change in signal timings to avoid 
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inappropriate response to transient queues that impacts positively on the overall 

performance of the traffic signal network in the region (DfT, 1999).  SCOOT is used in 

signalised urban networks in more than 250 towns and cities in the UK and overseas to 

manage traffic in small areas of the urban network (TRL, 2013).  The relatively low number 

of SCOOT and ANPR networks is due to their large capital cost and does imply that Chaos 

Theory may be applicable only where high-resolution data are available, but it is unlikely 

that the data are available at an entire citywide level.  On the other hand, the spatial 

resolution of the data itself could be low depending on the distribution of loop detectors 

within the network.   

 

Figure 3.4. The Schematic Diagram for an ANPR System  

Yasin et al. (2009) 

Figure 3.4 shows the system’s layout for the ANPR, which provides continuous 

information from monitoring sites to determine conditions such as flows and journey time 

on the road network (Hounsell et al., 2009).  In the UK, a number of regional and national 

sites (and other local traffic control centres such as the ROMANSE office in Southampton) 

collate more than six million records of traffic data per day for real-time application (Zheng 

and McDonald, 2007).  It is possible to process ANPR data at any time resolution and 

therefore the installed sites could provide high-resolution data.  As both SCOOT and ANPR 

are potential data sources of low spatial density, combined with Bluetooth and Motes 

configured to deliver data at appropriate sampling time and at “critical locations” will be 

beneficial.  This will enable the problems regarding their network coverage to be resolved 
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for analysing the urban road network using Chaos Theory provided proxy measures of flow 

and occupancy can be derived from pollution and noise sensors (Galatioto and Bell, 2013).  

The benefit offered by Chaos Theory is that it can use the wealth of data available as a by-

product of existing ITS legacy systems.  In an environment of economic restraints, policies 

of ‘more for less’ demonstrating additional spin off benefits allows local government to 

justify ongoing maintenance of existing UTMC systems.   

In a real world application, it is possible that data from a single source will be inadequate 

for the study of an area-wide network, and therefore supplementing with other data sources 

may be necessary.  As SCOOT and ANPR are capital intensive and limited to key locations 

only, pervasive instruments (such as Mote and Bluetooth) may provide additional 

information, if required.  They may also allow existing areas covered by SCOOT and 

ANPR to operate through a “linking deployment” of Motes or Bluetooth sensors.  The 

challenge to the implementation of Chaos Theory is whether these different data sources 

could easily fuse together through an interoperable system.   

In extending the principles of Chaos Theory to real-time applications, a traffic system’s 

chaotic property will need to be determined continuously from the discrete measurement 

of the dynamic traffic stream variables.  Consequently, a further requirement will be an 

efficient and dynamic means of analysing these variables, for example, through stream 

processing.  Stream processing has the capability to execute data continuously over long 

periods so long as there is a supply of new data for processing.  For example, by constantly 

analysing the traffic data of network links in space and time, it will be possible through an 

understanding of the spatial correlation between links to use the Lyapunov exponents to 

forecast the congested links in real-time.  This would enable the network manager to 

implement strategic mitigation plans in advance to avoid or minimise the adverse impacts 

of congestion.  As such, it will be important, therefore, to address any potential memory 

constraints and computational inefficiencies within a computer system’s architecture 

(Horton and Suh, 2005).  In order to discuss other potential problems makes it necessary to 

introduce the concept of autonomic systems.   

3.8 Autonomous Systems 

In today’s world of pervasive computing, other potential computer issues include 

integration and interconnectivity problems.  There is a vision to connect trillions of 

computing devices over the internet, which poses a difficulty, but the need to integrate 

several heterogeneous software environment into corporate-wide computing systems and 
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beyond even makes matters more complex.  With systems becoming more interconnected 

and diverse, it create challenges making system architects less capable to anticipate and 

design interactions among components.  As these complexities increase, administrators find 

it more difficult to manage these systems and this has the potential to affect the ability to 

make timely, decisive responses to fulfil the stream of changing and conflicting demands.  

In order to address these challenges, in the future, it is likely that the option of autonomic 

computing will be pivotal.   

The essence of autonomic computing in urban traffic management is to upgrade current 

UTMC systems to behave in an autonomous way by equipping them to respond to high-

level objectives that will enable them to self-manage, with minimal human interventions, 

through four key processes namely self-configuration, self-optimisation, self-healing and 

self-protection.  Therefore, ultimately, the role of human administrators in the operation of 

traffic management systems will be reduced to predominantly relatively less frequent high-

level decisions, which the system’s capability will enable automatically via numerous, 

lower-level decisions and actions (Kephart and Chess, 2003).  Table 3-1 provides a 

comparative summary of the current and autonomic computing for the four self-

management processes.   

Self-configuration refers to the system’s ability to readjust itself automatically in support 

of changing circumstances or to assist in self-healing, self-optimisation or self-protection.  

This will deal with issues that relate to installation, configuration and integration of large, 

complex systems that could be time consuming and prone to errors.  Therefore, the system 

can accommodate new features such as software and servers without any disruption to the 

service (Sterritt, 2005).  Autonomous systems will automatically configure themselves 

based on high-level policies by specifying the desired objective or goal, and not necessarily, 

the means to achieve it.  For example, a new component such as Bluetooth (or mote) will 

integrate seamlessly into an autonomous system because as the component registers itself 

and capabilities, the other system components will adapt to its presence and learn how to 

use this component or modify their own behaviour appropriately.   

Self-healing will make computers capable to detect, diagnose and repair localised problems 

resulting from bugs or failures in the software or hardware.  Identifying problems of this 

nature is usually cumbersome and time consuming, whilst sometimes these problems 

disappear mysteriously after several unsuccessful attempts at diagnosis.  Autonomous 

systems will enable experts to use their time more profitably because for example the 
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system will diagnose the problem and match it against known software patches, install the 

appropriate patch, and retest.  Although current UTMC systems are able to detect and report 

faults, they require human intervention to fix the problem, whereas autonomous systems 

may alert a human programmer only when necessary.   

Concept Current Computing Autonomic Computing 

Self-

configuration 

Corporate data centres have 

multiple vendors and platforms. 

Installing, configuring, and 

integrating systems is time 

consuming and error prone. 

Automated configuration of 

components and systems 

follows high-level policies.  

Rest of system adjusts 

automatically and seamlessly. 

Self-optimisation 

Systems have hundreds of 

manually set, non-linear tuning 

parameters, and number 

increases with each release. 

Components and systems 

continually seek opportunities 

to improve their own 

performance and efficiency.  

Self-healing  
Problem determination in large, 

complex systems can take a 

team of programmers weeks. 

Systems automatically detects, 

diagnoses, and repairs localised 

software and hardware 

problems. 

Self-protecting 
Detection of and recovery from 

attacks and cascading failures is 

manual. 

System automatically defends 

against malicious attacks or 

cascading failures.  It uses early 

warning to anticipate and 

prevent system wide failures. 

Table 3-1: Four Aspects of Self-Management in Autonomous Systems 

(Source: Kephart and Chess (2003)) 

Self-protection means that autonomous systems will automatically protect themselves from 

malicious attacks and accidental cascading failures not addressed by self-healing measures.  

They may also anticipate problems based on early reports from sensors and take steps to 

avoid or mitigate against them.  This is necessary because in spite of the existence of 

firewalls and intrusion-detection tools, current systems still rely on human interventions to 

decide how to defend protect themselves.  However, autonomous systems will undertake 

this automatically (Kephart and Chess, 2003, Ganek and Corbi, 2003).   

Finally, self-optimisation means the system will operate with an awareness of what its ideal 

performance is, and is able to compare the ideal and current performance and initiate 

policies to improve itself (Sterritt, 2005).  This will enable autonomous systems to improve 

their performance continually by identifying and applying corrective measures to enhance 

their operational efficiencies.  In traffic systems, a number of parameters needs to be set 



 

62 

 

correctly, in order for the systems to perform optimally; often, there are only few people 

capable of tuning these parameters appropriately.  Further, tuning one parameter can have 

unexpected impacts on the entire system given that the components of the systems tends to 

be integrated with each other.  However, autonomous systems will have the ability to 

monitor and learn from experiment or experience and tune their own parameters, and 

therefore minimises the challenges due to human interventions or the non-optimal tuning 

of the system.  Self-optimisation is a prominent feature (to a large extent) in existing traffic 

systems such as VA, MOVA and demand responsive UTC systems such as SCOOT, 

SCATS etc., but there is room to enhance this process (see Section 2.5.3 and 2.5.4).  This 

research reveals the potential of Chaos Theory to expose the future dynamical state of the 

network in advance of real-time traffic conditions, thereby prompting the implementation 

of appropriate traffic management strategies.  Therefore, Chaos Theory can add value to 

the current means of optimising these systems.  Chaos Theory will have a role in the 

delivery of autonomous systems as a decision support tool in the traffic analysis procedure, 

which has ability to deliver a self-optimisation property for the self-management of road 

traffic systems.   

3.9 Conclusions  

This chapter critically reviewed the current knowledge in the applications of Chaos Theory 

to traffic studies and establishes that with today’s computer processing capabilities, there 

is much potential for its application to strategically monitor and forecast the onset of 

congestion.   

Therefore, Chaos Theory could play a role delivering a step-change in approach for traffic 

management, as the debate on how to deliver autonomic properties into traffic control 

continues to gain momentum among academics and traffic practitioners alike.  Chaos is a 

characteristic property of the road traffic system attributable to the effects of several 

interacting elements such as cars parking and unparking, pedestrians crossing, buses 

stopping and the effects of different behaviours consequent to the mix of males and females 

and their individual driving styles.   

In order to apply Chaos Theory to enhance the understanding of the evolution of the road 

traffic system, it is important to obtain traffic data that is able to capture the dynamics of 

how the system is evolving.  An essential attribute of such data is that it must be able to 

preserve the short-term variability in traffic patterns, and data (sub-one-minute) must be 
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available at a high level of spatial density.  As such, the acquisition of high-resolution traffic 

data (including flow, occupancy, speed, travel time and noise) is paramount.  

Previous studies have been limited due to either a lack of sufficiently high-resolution data 

(as the low-resolution data lacks the characteristics of the short-term variation in traffic 

flow) or confined to relatively simple systems such as motorways and inter-urban links in 

sparse data environments, or both.  However, due to recent developments, new and 

enhanced data sources such as Motes, Bluetooth, SCOOT and ANPR are now available.  

These should stimulate further research to examine properly the potential for Chaos Theory 

to help manage the urban road network.  If proven, it is likely that the UTMC industry will 

seek to configure their data processing to deliver at higher resolution especially if further 

opportunity emerges for sophistication in decision support resulting in more effective 

congestion management.   

In order to take advantage of highly resolved traffic data now available for progressing 

research for the application of Chaos Theory to urban networks, the next step is to 

understand the characteristics of chaotic systems and the mathematical algorithms that 

support Chaos Theory.  Therefore, Chapter 4 is devoted to a critical review of Chaos 

Theory, whilst Chapter 5 deals with the mathematical algorithms for estimating key chaos 

parameters such as delay time, embedding dimension, correlation dimension, and 

Lyapunov exponents.  Chapter 4 specifically makes a distinction between chaos and 

random systems by reference to the logistic map and bifurcation diagram.  Finally, it 

conducts a critical review of a number of pioneering studies in the development of Chaos 

Theory and concludes by examining some of its general applications.   

  



 

64 

 

 



 

65 

 

Chapter 4. A Critical Review of Chaos Theory 

4.1 Introduction  

Chaos is a phenomenon identified as a property of dynamic systems in the early 19th 

century, but it was not until the 1960s that Chaos Theory was applied to diverse fields 

including engineering, medicine, finance, human resources, etc.  In spite of the wide 

applications, investigations for traffic applications has been slow partly due to the lack of 

highly resolved spatial and temporal traffic data for urban networks.  As discussed in 

previous chapters, road traffic exhibits chaotic properties (see Section 3.4) and limitation 

of earlier traffic studies is no longer problematic due to the availability of rich new data 

sources (see Section 3.7).  Before exploring chaos for traffic studies in Chapter 5, our 

general knowledge of this subject area is enhanced through a review of the extant literature 

and an introduction of the fundamental concepts.   

Section 4.2 explains the concept of chaos in relation to dynamic systems, provides a 

technical definition and describes the characteristics of time-dependent non-linear systems 

that exhibit chaos.  The Logistic curve and Bifurcation diagram are used to illustrate how 

the analysis of time series data may reveal structured underlying patterns for some systems 

that appear visually random.  Section 4.3 discusses the Lorenz weather prediction model, 

which is pivotal to the development of Chaos Theory, along with the Lorenz Attractor and 

other contributory studies.  Section 4.4 conducts a general overview of the application of 

Chaos Theory to many subject disciplines, using examples from the literature, and argues 

that chaos is an ubiquitous phenomenon and its application to transport deserves further 

investigation.  Finally, section 4.5 distinguishes the methods for analysing chaotic systems, 

depending on whether the underlying equations of motion are known or unknown, and 

identifies that the method of the phase space reconstruction would be suitable for the traffic 

system given that its equations of evolution are unknown.   

4.2 Definition and Characteristics of a Chaotic System 

In plain language, ‘chaos’ refers to a messy situation; a state of utter confusion or disorder; 

a disoriented system that lacks organisation and possesses neither a pattern nor form of 

structure; or a system characterised by complete randomness.  On the contrary, the term 

suggests otherwise when applied to chaotic systems.  In order to understand Chaos Theory 

properly, it is important to establish the technical meaning of the term ‘chaos’.  According 

to Butler (1990) writing with regards to dynamic systems, “Chaos in this context describes 

the behaviour of a variable over time which appears to follow no apparent pattern but in 
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fact is completely deterministic, that is, each value of the variable over time can be 

predicted exactly”.  In more detail, Dreyer and Hickey (1991) state that, “the term ‘chaotic’ 

is generally used to describe non-linear, but deterministic systems whose dynamic 

behaviour proceeds from stable points through a series of stable cycles to a state where 

there is no discernible regularity or order.”  Chaotic behaviour is almost ubiquitous.  It is 

a property of a number of natural or artificial systems that support our daily lives, but often 

these systems appear so random that it is impossible to recognise visually any chaotic 

patterns, although such patterns indeed may exist.  Therefore, Chaos Theory techniques 

enable large arrays of parameters of chaotic systems to be represented in phase space (for 

example, a multi-dimension plot of a variable in an X-Y-Z plane) so that any possible 

underlying patterns can be identified to enable forecasting to be undertaken (Uittenbogaard, 

2011).   

In dynamic system theory, the term is useful in describing motions that are irregular and 

sensitive to initial conditions.  These motions are products of nonlinear dynamic systems, 

and they exist between the realms of periodic and random behaviour.  The latter definition 

gives a hint that chaos is a prelude to ‘randomness’ in systems that are sensitive to initial 

conditions.  Such systems are not completely dominated by random behaviour but they 

have some degree of orderliness that defines their deterministic properties (Wang et al., 

2005).  Therefore, it is important to note that chaotic systems are distinct from random 

dynamic systems.  The difference between the two systems is that chaos is predictable in 

the short-term, whilst randomness is unpredictable.  However, ultimately chaotic systems 

tend to become completely random at the limits (Hui et al., 2005).  Stewart (1997) is of the 

view that chaos is stochastic behaviour in deterministic systems.  This statement is 

essentially correct but seems to lack clarity and could be misconstrued, given that stochastic 

processes are probabilistic, which implies that only the likelihood of their occurrence can 

be predicted whilst deterministic systems could be predicted exactly.  Andrews (1996) 

clarifies this indicating that random behaviour could be associated to chaotic systems 

(which are non-random) only because of their extreme sensitivity to measurements.  That 

is, it is the extreme sensitivity to initial conditions that tends to make chaotic systems appear 

random, though this is not the case in reality.  In order to understand the characteristics of 

chaotic systems, Sections 4.2.1 and 4.2.2 include a numerical example from Butler (1990), 

which helps to explain the characteristics of chaos system in detail.   
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4.2.1 The Logistic Curve 

In this section, the Logistics growth map is used to facilitate the understanding of the 

properties of chaotic systems because of its relatively simple form, but yet possessing 

characteristic features of dynamic systems.  It describes the evolution of time of an arbitrary 

variable X (for example, population), which is a function of its previous value and a 

parameter k, which is the growth rate or ‘tuning parameter’ and the determinant of the 

steepness of the function.   

The mathematical function is given by 𝑋𝑡+1 = 𝑘𝑋𝑡(1 − 𝑋𝑡) where 0 < 𝑋𝑡 < 1 and 0 <

𝑘 < 4, and 𝑋𝑡  and  𝑋𝑡+1 are the previous and current values respectively.  As illustrated in 

Figure 4.1, the parabolic curve of this equation shows an exponential rise in 𝑋𝑡+1 as 𝑋𝑡 is 

increased below the mean value, but 𝑋𝑡+1 decreases as 𝑋𝑡 is increased above the mean 

value.  Another characteristic feature is that there is increased rate of change in 𝑋𝑡+1  as the 

k-value is increased.   

 

Figure 4.1: A Stable Time Path for a Logistic Growth Curve 

(Source: Butler (1990)) 

Figure 4.1 also illustrates the solution of the logistic equation determined graphically 

through an iterative process.  Let us suppose that we require a solution for the logistic 

equation 𝑋𝑡+1 = 3𝑋𝑡(1 − 𝑋𝑡), where 𝑡 = 1, 2, 3 … 50.  All values of 𝑋𝑡+1 will lie on the 

parabolic curve, whilst the 45° line shows the path of points when 𝑋𝑡+1 = 𝑋𝑡.  Suppose that 

the initial value (𝑋0) = 0.20 at time (𝑡) = 0, then the intercept 𝑋0𝐵 on the parabola 

defines 𝑋1 at the first iteration.  At the second iteration, 𝑋0 =  𝑋1 (this is determined from 
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the intercept of 𝑋1𝐵𝐶 on the 45° line), point 𝐷 on the parabola defines the future value (𝑋2) 

of the system.  Similarly, for the third iteration, let 𝑋0 =  𝑋2 and point 𝐹 on the parabola 

defines the future value (𝑋3) of the system.  This iterative process is repeated for a number 

of times until eventually the variable converges to a steady equilibrium 𝑋∗ at 
2

3
.  As long as 

the 𝑘-value is less than three, the system is stable and reaches some other steady state values 

other than the mean (Butler, 1990).   

This equilibrium point however becomes unstable as soon as the 𝑘-value exceeds three and 

the system starts to bifurcate (doubling of the solution) exhibiting a two-period cycle where 

the solution alternates between two values.  By increasing the 𝑘-value gradually the 

bifurcations increase further with the periodicity of 2𝑛 (where n = 1, 2, 3…), such that the 

cycles progress to 4-period cycle (where the system repeats the same sequence after every 

fifth iteration), then 8-period cycle, etc.  The bifurcations become more rapid until the point 

of accumulation with 𝑘-value of approximately 3.57, when the system becomes chaotic, 

where there can be an infinite number of periodic cycles.  This illustrates the characteristic 

of chaotic systems.  The observation reveals that a change in the 𝑘-value affects the degree 

of non-linearity in a deterministic system, which consequently impacts on the output 

solutions.   

Butler (ibid.) further illustrated that the time series plot of 𝑋𝑡 versus the number of iterations 

for the logistic curve shows a fluctuating profile even though the system converges to a 

stable point.  Therefore, in our illustrative example, it may be misconstrued based on the 

fluctuating times series profile that the system lacks chaotic properties, if the underlying 

pattern of the system was unknown.  This demonstrates that the fluctuating profile of time 

series data are not always outputs of completely random systems.  Andrews (1996) 

confirms this observation indicating that deterministic systems could generate profiles that 

may be pseudo-random but this is only due to their sensitivity to initial conditions.  This 

suggests that small changes in the initial conditions may be responsible for disproportionate 

changes in the future values of the system.  The foregoing discussion, in relation to the 

logistic curve, implies that traffic systems that generate non-linear time series profiles may 

be products of deterministic rather than stochastic processes.  Therefore, it is important to 

assess the data from these systems critically before drawing a factual conclusion, as to 

whether they are random or chaotic.  In particular, traffic time series data require detailed 

assessment to determine the type of system responsible for its evolution.   
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4.2.2 The Bifurcation Diagram  

An example of a biological population by May (1976) and May and Oster (1976) identified 

a progression of states of stable cycle through to a bifurcating hierarchical stable cycle with 

a period of 2𝑛 before exhibiting chaotic behaviour.  Figure 4.2 is a bifurcation diagram that 

presents a graphical view of the changes in population due to varying growth rates.  Similar 

to the Logistic map, the solutions of these biological and ecological populations also 

illustrate how the cycles of solutions in chaotic systems develop.   

 

Figure 4.2: The Bifurcation Diagram for the Population Equation 

(Source: Gleick (1988)) 

Figure 4.2 shows that the population is extinct at extremely low 𝑘–values (growth rates).  

At increased (but still low) growth rates, the population always settles to a single number, 

then further increases in 𝑘–values gives rise to bifurcations with a period of 2𝑛, which 

increase rapidly at higher rates until chaos appears, where there is no discernible order.  

That is, the regularity in period-doubling continues until another critical value, beyond 

which the equation gives solutions without any apparent order, which identifies the region 

where chaos is said to occur (Kirby and Smith, 1991).  According to Gleick (1988), there 

is still the possibility of stable cycles of odd periodicity i.e. stable cycles of 3, 6, 12…(or 7, 

14, 28…) beyond this hazy region, which could eventually plunge the system into a state 

of renewed chaos.  Rae (2006) puts it succinctly that a closer inspection of the white strips 

reveals a little window of order where bifurcations re-occur prior to a secondary chaos.  
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From this knowledge emerges the property of self-similarity (a characteristic property of 

chaos), which acknowledges that there was an exact copy of the graph hidden deep inside 

it.  In technical terms, fractal describe images that display the attribute of self-similarity; 

both self-similarity and fractals are discussed further in Sections 4.3.3 and 5.6.  It must be 

pointed out even though chaos is a property of nonlinear systems the presence of non-

linearity does not always ensure chaos (Lorenz, 1993b).   

In concluding this section, it is important to acknowledge the work of Xu and Gao (2008) 

that identified the presence of bifurcations in the nonlinear analysis of traffic flows.  The 

study identified point and period-2 attractors at low densities, period doubling 

(bifurcations) at high flow, and chaos in unstable flow conditions that induced higher rates 

of acceleration and deceleration of drivers in the traffic stream.  Chaos identifies the onset 

of congestion, which gives rise to stop-and-start conditions, which is undesirable to 

motorists.  Such conditions also increase fuel consumption, tailpipe emissions and the 

likelihood of accidents, and decrease the vehicle throughput across the junctions.  The study 

of chaos therefore is important in order to create an awareness of impending unstable 

conditions and allow the implementation of mitigating strategies to improve the level of 

service and safety of the road system.  The next section reviews important literature in the 

development of Chaos Theory and in the understanding of chaos in various dynamic 

systems.   

4.3 Pioneering Work of Chaos Theory  

The pioneering work in Chaos Theory was in 1961 by Edward Lorenz, an American 

mathematician and meteorologist, who observed that a small change in the initial setting of 

a system’s conditions could have a significant impact on its long-term state, as in Figure 

4.3.  This became known popularly as the ‘butterfly effect’ (Gleick, 1988, Andrews, 1996).  

The two curves in Figure 4.3 are plots from runs of the same model assuming different 

values as initial conditions.   

In this model, the data in the computer memory was six digits, but in order to save space 

the printout of the model output only shows three digits.  In order to repeat a particular 

sequence again for a better understanding of the model, Lorenz mistakenly used the 

conditions (three digits) at some point in the middle of the first run output as initial 

conditions for the second (instead of restarting the entire run).  Assuming that a small 

difference was inconsequential, Lorenz entered this second model’s initial conditions as 

three digits (instead of six digits) based on data from the first run.  Surprisingly, the results 
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that matched initially began to divert dramatically with the second run losing all the 

resemblance to the first run shortly afterwards.  Lorenz discovered that the observation was 

due to a change by a tiny amount of 0.000127 in the initial setting of the weather simulation 

model, which gave rise to a rapid divergence in the final output of the model.   

 

Figure 4.3: Lorenz Experiment Graphs 

(Source: Bradley (2010)) 

Lorenz concluded that small tiny changes in initial conditions could lead to dramatic 

impacts on the long-term state of the system.  Whilst these small changes can be due to real 

conditions in natural or technical systems, they also may be the outcome of rounding or 

approximation of values in a model.  This important finding by Lorenz became a worthy 

contribution to the System Theory of the time, and became the main foundation for the 

development of Chaos Theory when it became a subject discipline many years later.   

4.3.1 The Lorenz Attractor  

Lorenz’s later work in 1963 used the waterwheel to explain the instabilities that occur in 

the earth’s atmosphere, depicting its motion as a “double-spiral well-patterned curve”, 

though the behaviour of the system may appear visually as random.  Figure 4.4 is a typical 

waterwheel that comprises a large wheel mounted under a waterspout, which represents 

Lorenz’ model for investigating the instabilities in the atmosphere.   

The wheel has buckets equally spaced on its rim, each mounted on swivels that open 

upwards with water fed directly above and a small hole at the bottom, so that water that 

trickles into the top and drips out from the bottom.  At initial low flow speeds, the buckets 

do not fill up enough to overcome the frictional forces and therefore the wheel returns to 

Start (First run) End (First run) 

End (second run)  
Start (Second run) 
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its stationary rest position after an initial spin.  At some stage when gradually increasing 

the water flow speed, the heavier buckets empty of water when descending whilst the 

lighter buckets ascend in the upward motion to be refilled again.  The wheel continues to 

turn at constant flow rates through to average and higher rates of flow.  At higher speeds 

of flow, the waterwheel continues to maintain a clockwise/anticlockwise motion, but 

suddenly jerks about and revolves in the other direction.  The system now enters a chaotic 

state, where its previously simple rotation becomes awkward and there is no easily 

recognised pattern or repetition, because the conditions that allows for synchronicity of the 

bucket filling and emptying no longer operates (Lipa, n.d., Kolář, 1992).   

 

Figure 4.4: Twelve-cup Water Wheel 

(Source: Matson (2007)) 

According to Lorenz, the behaviour depicts the rotation of air columns in the atmosphere 

and the interpretation of the model is as follows.  The water contained in each bucket 

represents heat in the column of air, and the loss of water signifies heat losses by radiation.  

The greater force required to push down the heavier bucket corresponds to the force 

required to push out hot air.  When cold air from the atmosphere meets the ground, it is 

heated and then it rises up back into the atmosphere.  The rising hot air replaces the cooler 

air in the atmosphere inducing a rotation, which causes the denser air to fall to the ground, 

and consequently repeating the whole cycle.   

The Lorenz Attractor was derived from this experiment, and is illustrated in Figure 4.5, 

which shows a plot of the atmospheric state from time dependent variables in the respective 
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X, Y and Z planes: convective flow, horizontal temperature and vertical temperature 

distributions respectively (Yurkon, 1997).  The image is neither steady (in which the value 

of the variable never changes) nor periodic (that systems goes into a loop and repeat 

themselves indefinitely), but has a definite ordered pattern which neither settles down to a 

single point nor repeats itself.   

 

Figure 4.5: The Lorenz Attractor  

(Source: Yurkon (1997)) 

As alluded to by Butler (1990), such occurrences suggests that non-linear time dependent 

systems that appear to fluctuate may have an underlying pattern, which could be analysed 

to determine the system’s evolution.  Until Lorenz’s work, only the two states of ‘steady’ 

or ‘periodic’ were recognised.  This led to the discovery of the third state of dynamic 

systems formally became known as “chaos”, and the understanding of its mathematical 

principles became the foundation for Chaos Theory.   

4.3.2 Pre-1960s Studies  

As far back as the late nineteenth century, scientists had observed an unexplained 

phenomenon under the prevailing linear systems theory.  For example, the failure of linear 

systems theory to explain certain experiments the results of which led to the logistic maps 

alerted scientist to possible gaps in the understanding of dynamic systems.  However, due 

to imprecision in measurements or noise in the system this was ignored.  With the discovery 

of chaos led to a realisation that the previously unexplained phenomenon attributed to noise 

in the data was actually integral to the studied systems (Abdalah et al., 2010).  It is not clear 

why this erroneous view gained credibility for several decades before the Lorenz discovery.  
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However, it is possible to suggest that the advent of computing power for solving complex 

mathematical equations has supported immensely Lorenz’s work in the 1960s.  The 

computer is indispensable for studying chaotic dynamics, and for applying Chaos Theory 

in particular, given the need to overcome the challenges of repeated iterations of 

mathematical formulae that are either cumbersome or impractical by hand due to their 

computational intensity.  The dual importance of the role of computers in the application 

of Chaos Theory is firstly the relative ease to undertake iterations and secondly the ability 

to generate graphs and images that describe these systems making it possible to visualise 

the behaviour of chaotic systems irrespective of the nature and complexities (Dhillon and 

Ward, 2003).   

It is important to appreciate the contribution to this subject of key researchers in the late 

19th century.  Some authors credit John Clerk Maxwell, who first developed the theoretical 

unification of electricity and magnetism, as the first person to understand chaos, according 

to evidence from his work in 1876 that acknowledge the importance of systems that are 

sensitive to initial conditions (Hunt and Yorke, 1993).  Contrary to the view in statistical 

mechanics that complex behaviour was a product of the interaction of a large number of 

particles, Maxwell studied the interactions between two gas molecules and noted that 

sensitivity to initial conditions was pivotal in producing statistical regularity.  

One of the early proponents of Chaos Theory was Jules Henri Poincaré (as reported by 

(Moiola and Chen, 1996)) who, as early as the 1880s, undertook the foundation work for 

modern day Chaos Theory.  Poincaré formerly studied the three-body problem and later the 

𝑛-body problem (where 𝑛 is any number more than two orbiting bodies), where he 

attempted to find the general solution to the motion of two or more orbiting bodies in the 

solar system.  Poincaré discovered periodic orbits that neither increased indefinitely nor 

approached a fixed point (Sowmya and Sathyanarayana, 2014).  He identified the system 

as having a sensitive dependence on the initial condition, and also developed a topology to 

explain the general complexity of the evolution over time of the system (Wolfram, 2002).  

With these findings, Poincaré became the first person to discover a chaotic deterministic 

system, but this was benchmarked only after Lorenz’s ground-breaking research.  Lorenz 

work linked together previous knowledge such as the sensitive dependence on initial 

conditions, with strange fractals and its erratic dynamics, which all could be visualised 

together and replicated through a computer simulation model.  It is perhaps the relevance 

of Lorenz’s work in this context, and also to weather prediction, and subsequent 
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applicability to several disciplines of research that gave his work in the 1960s recognition 

as the third state for dynamic systems and not the mere identification of the phenomenon 

back in the 1880s.   

In 1898, Jacques Hadamard studied the chaotic motion of a free particle sliding on a 

frictionless surface (Goh et al., 2009).  The trajectories of the particles were unstable and 

diverged exponentially from each other, which emerges as positive Lyapunov exponent 

(Hadamard, 1898, Sowmya and Sathyanarayana, 2014).  Interestingly, the use of the 

Lyapunov exponent is still relevant to present day Chaos Theory, being widely accepted as 

a key determinant of chaos in dynamic systems.  Unlike Poincaré who showed the 

possibility of strange attractors and sensitive dependence on initial conditions (SDIC), 

Hadamard presented an explicit model for SDIC.   

Poincaré’s work inspired a number of theoretical development in the theory of oscillation 

for application to radio engineering.  Dating back to 1927, Van der Pol and Van der Mark 

found stable periodic oscillations (i.e. limit cycles in current chaos terminology), in 

electrical circuits employing vacuum tubes (Wolfram, 2002).  A limit cycle is a closed 

trajectory in phase space having the property that at least one other trajectory spirals into it 

(as time approaches infinity).  They reported that while driving the circuits at certain 

frequencies (close to the natural frequency) an irregular noise was produced before the 

frequency jumps to next lower level.  This was one of the first discoveries about 

deterministic chaos in radio engineering (Rosser Jr, 2009).   

In the early 1940s, Mary L. Cartwright and John E. Littlewood carried out one of the early 

research to demonstrate the complex nature of the dynamics of the Duffing oscillator, which 

is a model of an electro-magnetic vibrating beam.  By varying a crucial control parameter, 

the model generated double-period cascade of bifurcations in a transition to chaos.  Further, 

Cartwright was the first to study the theory of deterministic chaos, as applied to the Van 

der Pol oscillator.  In this work, Cartwright used a model of an electrical circuit with a 

triode valve whose resistance changes with current, according to the Van der Pol equation.  

The unforced version of the equation is:  

𝑑2𝑥

𝑑𝑡2
+ 𝑎(𝑥2 − 𝑏)

𝑑𝑥

𝑑𝑡
+ 𝑥 =  0 

 

Equation 4-1 

Where 𝑎 > 0 and 𝑏 is a control variable.  For 𝑏 < 0 the origin is an attractor, 𝑏 = 0 a 

bifurcation with a limiting cycle occurs and 𝑏 > 0, a Hopf bifurcation.  A Hopf bifurcation 
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occurs when a periodic solution or limit cycle, surrounding an equilibrium point, arises or 

goes away as a parameter of the system varies.  Cartwright detected chaos in signals from 

the model that depended sensitively on initial conditions and possessed non-periodic orbits 

consistent with Lorenz’ work (McMurran and Tattersall, 1997).  Next, Section 4.3.3 

discusses fractals that have also become an important aspect of the study of chaos.   

4.3.3 Fractals 

Fractal is a property of self-similarity found in many real world systems including blood 

vessels, the branches of a tree, internal structure of the lungs, graphs of stock market data, 

the bifurcation diagram and Lorenz Attractor.   

Benoit Mandelbrot is often characterised as the father of fractal geometry, but it is 

important to acknowledge that the ideal of fractality goes back to George Cantor (1872) 

(Peitgen et al., 2006).  Analysing coffee prices, Mandelbrot found that the results did not 

fit the normal distribution.  However, when viewed from the point of view of scaling, the 

sequence of changes was independent of the scale applied.  For example, Mandelbrot 

observed a perfect match between the curves for the daily and monthly price changes.  

Mandelbrot applied this principle to the coastline noting an increase in the number of bays 

in the coastline as the length of the coastline was magnified (Rae, 2006).  A typical example 

of this concept of scaling was captured graphically in Helge von Koch’s mathematical 

construction, called the Koch curve (Gleick, 1988).  Formed from an equilateral triangle, 

the Koch curve reveals a line of an infinite length surrounding a finite area (a circumscribed 

circle around the original triangle), which is best described by its fractal dimension (see 

Section 5.6.1).  The Koch curve has a fractal dimension of about 1.26, which suggests that 

the Koch curve is rougher than a smooth curve or line that has a dimension of one.  Since 

the dimension is less than two, it has no area and therefore poor at filling up space compared 

to a square.  In chaos mathematics, the fractal dimension provides a statistical measure used 

to judge the complexity of the attractor (Jianming et al., 2003).   

Although all of these works are of relevance for later studies of chaotic dynamics, it is 

interesting to note that Lorenz’s work was an independent investigation without any link to 

these previous works.  In spite of these, Lorenz’s work accelerated research and 

applications to several fields.  Lorenz’s work led to formal recognition of Chaos Theory 

and accelerated research in many disciplines arousing extensive investigations especially 

among mathematicians and professionals within the scientific research community.  The 

remainder of this chapter provides examples of chaotic systems and applications to 
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illustrate the capability of Chaos Theory in analysing varying forms of non-linear dynamic 

systems such as the traffic system.   

4.4 Chaos Theory: Examples and Applications 

Chaos Theory is a branch of nonlinear analysis used to analyse chaotic behaviour in 

dynamic systems, which includes complex systems such as traffic flow that appears too 

difficult to be handled by traditional techniques (Xu and Gao, 2008).  These systems 

include the transport environments such as the interaction of highly variable physical and 

human elements (such as vehicles, weather and road surface conditions, road layout, 

topography and pedestrian activities).  In these systems, it is the proper representation of 

the mix of interactions in a model, especially the immeasurable quantities and inconsistent 

relationships among these elements, that makes forecasting difficult.  Chaos Theory is 

capable of dealing with these complexities, by naturally accounting for all of the factors 

that are responsible for the system’s dynamics.  It can extract all the system information 

and relationships without the need to first determining the laws or equations of the 

underlying dynamics (Fraser and Swinney, 1986).  It is applicable to conditions (motions) 

that are highly sensitive to initial conditions and leads to aperiodic behaviour in 

deterministic nonlinear systems, thereby rendering long-term prediction impossible.  In 

such systems, the future (and even the past) state of the system can be determined according 

to the evolutionary equations, based on Chaos analysis, if the initial value is known (Frazier 

and Kockelman, 2004).  The difficulty is that the initial conditions are difficult to determine 

explicitly due to the continuous evolution of these systems.   

Núñez Yépez et al. (1989) noted that the dynamic instability that produces chaotic 

behaviour can be found in many electrical, optical, mechanical, chemical, hydro-dynamic, 

and biological systems.  Furthermore, chaos can be seen in the motion of a tossed coin 

(Levy, 1994, Ford, 1983), and experimental systems such as the damped and driven 

pendulum (Bevivino, 2009).  Chaos has been identified in the alternating cycles of 

economic booms and recessions (Levy, 1994, Becker, 2008), turbulent flow in fluids 

(Lorenz, 1993a), and the dripping pattern of a water tap (Ambravaneswaran et al., 2000, 

Coullet et al., 2005, Dreyer and Hickey, 1991, Núñez Yépez et al., 1989).   

Levy (1994) cites the toss of a coin or the roll of a dice is an example of a deterministic 

system, yet it yields unpredictably different outcomes for each event due to chaotic 

behaviour.  He notes that two variables that influence the outcome of each event are: (i) 

speed of the spin attributed to difficulty in tossing the die or flipping the coin in the same 
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manner twice and (ii) rate of fall due to the influence of circulating air currents on the 

downward motion of the coin or die (Rae, 2006).  The combined effect of both factors 

implies that, if it were even possible to toss the coin in exactly the same manner, the change 

in the circulating air current will affect the outcome (Ford, 1983).   

Chaos has been detected in the drops of water that fall from a leaky tap under appropriate 

conditions (Dreyer and Hickey, 1991, Núñez Yépez et al., 1989, Coullet et al., 2005, 

Ambravaneswaran et al., 2000).  The drop is subject to three main forces (gravity, liquid 

tension force and friction) at the tip of the tap.  The liquid tension force ensures that the 

drop does not fall immediately but grows until the gravitational force exceeds the liquid 

tension force.  Experiments identified a relationship between successive drops, based on 

evidence that each drop that exits the tap creates oscillations in the residue at the nozzle 

that serves as initial condition for the next drop.  Further assessment of incremental changes 

to the rate of flow of fluid through the tap induced bifurcations such that a transitional 

change of state occurred where the drop behaviour changed from steady to chaotic through 

a sequence of stable cycles until the flow became continuous.   

A number of related studies have also confirmed this.  Dreyer and Hickey (1991) measured 

the time interval (𝑡𝑁) between successive drops then plotted the time series data in a delay-

time coordinate system (𝑡𝑁+1  versus 𝑡𝑁) to generate the discrete time map.  The return map 

indicated patterns (clusters) that are characteristic of chaos.  Furthermore, Scientists at the 

University of California Santa Cruz recorded the time interval of the dripping tap, analysed 

the data and identified an uneven time interval between drips at certain flow velocities.  

However, the plot of the data indicated that an underlying pattern was present (Rae, 2006).  

Another study investigated the dripping behaviour of the tap as a function of the flow rate.  

At low flow of fluid, the tap dripped at constant rate and there was equal interval between 

successive drops.  Subsequently, the drops become subject to bifurcations with multiple 

drops exiting the tap, which increased with increasing flow until the emergence of chaos 

when there was no discernible order or pattern (Coullet et al., 2005).   

Analysis of chaotic behaviour helped to provide insights about complex systems such as 

the earth’s weather, the behaviour of water boiling on a stove, the migration patterns of 

birds, and the spread of vegetation across the continent.  Initial work in this area led to the 

discovery that complex systems often run through some kind of cycles, although these 

cycles rarely duplicate and repeat exactly.  Furthermore, the graphical profiles of these 
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systems also revealed settling down to some sort of equilibrium, irrespective of the initial 

conditions (Uittenbogaard, 2011).   

Levy (1994) noted that Chaos Theory is useful in predicting weather conditions based on 

simulations of measurements from thousands of points dispersed across the globe.  

However, accurate forecasts are limited currently to only a few days, but can give sufficient 

information to warn of impending natural disasters such as earthquakes, hurricanes, 

tornadoes, etc.  Due to deterministic properties inherent in the earth's system, the condition 

of the system at time 𝑡, if known, could be used to determine the future state at time 𝑡 + 1.  

Even though the earth’s system may appear to be visually unstable and complex, data 

measurements indicate that they are not completely random but do possess a certain degree 

of orderliness, which makes short-term forecasts possible.  Consequently, if a simulation 

model of the system is available (or constructed), then with accurately determined specific 

starting (initial) conditions it will be possible to provide useful forecasts over several 

consecutive time-periods.  The major challenge is that the initial conditions are difficult to 

know exactly introducing a component of error, and there is always the influence of small 

randomness that is difficult to incorporate in the model.  The impact of such uncertainties 

could result in unexpected outcomes (see Figure 4.3), which limits the reliability of weather 

forecasts to only a few hours (or days).  However, the long-term predictions may not be 

able to be determined for example when and exactly where events that lead to chaotic 

properties may occur, but may provide some information about the likely path of a potential 

occurrence.   

The stock and financial markets do alternate between cycles of recession and boom, 

although the depth and duration of each event is difficult to predict.  According to Becker 

(2008) previous studies have linked the difficulty of predicting such markets to the 

randomness of announcements and impacts of noise in both traders’ decisions and financial 

statements that do not affect cash flow but influence the choice of stock options.  The 

analysis of the time series information using Chaos Theory also may be useful to study the 

volatility of the stock market.  Chaos Theory may enable examining the relationships 

between business cycles and other variables such as demand, interest rates and availability 

of credits.  Becker (ibid.) identified chaos effects within business organisation attributing 

this to constant changes that are both internal and external to these establishments.  These 

changes that affect existing practise may be due to the effect of technology, deregulation, 

removal of trade barriers and mergers and acquisitions.  Therefore, the awareness of these 
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factors that influence chaos in the environment, if acted upon in a positive way, through for 

example acquisition of innovative technology or review of existing practise, could 

effectively increase operational capability and globalisation competitiveness in industries.   

Chaos Theory has also been widely applied in the field of medical sciences.  Chaos Theory 

has enabled medical practitioners to analyse the electrical activity of the human brain for 

the control of epileptic seizures (Kumar and Hedge, 2012, Oestreicher, 2007, Yambe et al., 

2005).  Research has revealed that the cranial activity of a healthy brain is essentially 

chaotic and therefore any anomaly is indicative of an unhealthy system (Sarbadhikari and 

Chakrabarty, 2001), whilst cardiac chaos may be a useful physiological marker for the 

diagnosis of an unhealthy heart (Denton et al., 1990).  Studies indicate that a brain’s chaotic 

pattern could suddenly change to abnormal regularity during epileptic seizures (Kumar and 

Hedge, 2012).  Scientists use an EEG (electroencephalogram) machine to measure the 

brain’s electrical activity which detects brain disorders when significant changes occur in 

measurements, where high-amplitude synchronised waves are observed for epileptic 

seizures (Oestreicher, 2007).  In order to prevent the onset of the disease, patients benefit 

from an implanted device that induces more chaos once a change is detected (Yambe et al., 

2005).  Similarly, an ECG (electrocardiography) machine that measures the electrical 

currents produced by the heart detects arrhythmia (abnormal irregular rhythms).  This 

enables the activation of chaos control programs to manipulate and normalise the heart’s 

rhythm (Schewe, 2007, Garfinkel et al., 1992).   

Chaos and fractals are also useful in the creation of computer art.  For example, a computer 

can create a beautiful tree using a simple formula that creates irregular patterns of the back 

of the tree that do not exactly repeat itself (Rae, 2006).  It also is applied to modelling 

shapes and rendering textures in digital images.  Barnsley et al. (1988) reported that images 

of clouds, mists and surf, seascapes and landscapes, and faces are reproducible from the 

chaos models of the original photographs.   

4.5 Types of Systems Deploying Chaos Theory  

After giving a detailed introduction of the subject in previous sections, this section 

identifies that Chaos Theory may be used to quantify chaos in dynamical systems 

depending on the known or unknown equations of motion of the systems.  Whether the 

equations of motions are known or unknown, a number of parameters (including fractal 

power spectra, entropy, fractal dimension, Lyapunov exponent, etc.) can be used to 

determine if chaos exists or not in the system.  The research reported in the thesis 
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investigates the Lyapunov exponent as a parameter for analysing the system.  Theoretically, 

the Lyapunov exponent relates to the expansion and contraction in different directions of 

the spheres of points of the phase space, which are defined accordingly by the Lyapunov 

spectrum.  The rate of separation can be different for different orientations of the initial 

separation and maximum in a certain direction.  When this largest Lyapunov exponent is 

positive for at least one direction, the system is chaotic.  This method is determined by 

monitoring the evolution of an 𝑛-sphere of initial conditions, which deforms into an 𝑛-

ellipsoidal shape over time due to the local deforming nature of the system (Wolf et al., 

1985).  In this way, this research relies on the use of the Lyapunov exponent to identify 

chaos, as well as to understand the time dependent evolution of the dynamical states, in 

terms of the onset and subsidence of congestion, in the traffic system.   

Systems and their Equations 

of Motion 

Parameter 

Values  

Lyapunov Spectrum 

(bits/s) 

Lyapunov 

Dimension 

Hénon:    

Xn+1 = 1 − aXn
2+Yn 

Yn+1 = bXn 
{

a = 1.4
b = 0.3

 λ1 = 0.603 
λ2 = −2.34 

1.26 

Rossler-chaos:    

Ẋ =  −(Y + Z) 
Ẏ =  X + aY 
Ż =  b + Z(X − c) 

{
a = 0.15
b = 0.20
c = 10.0

 
λ1 = 0.13 

λ2 = 0.00 

λ3 = −14.1 

2.01 

Lorenz:    

Ẋ = σ(Y − X) 

Ẏ =  X(R − Z) − Y 
Ż =  XY − bZ 

{
σ = 16

R = 45.92
b = 4.0

 
λ1 = 2.16 

λ2 = 0.00 

λ3 = −32.4 

2.07 

Rossler-hyperchaos:    

Ẋ =  −(Y + Z) 
Ẏ =  X + aY + W 
Ż =  b + XZ 
Ẇ = cW − dZ 

{
a = 0.25
b = 3.0

 

{
c = 0.05
d = 0.5

 

λ1 = 0.16 
λ2 = 0.03 
λ3 = 0.00 
λ4 = −39.0 

3.005 

Mackey-Glass:    

Ẋ =  
aX(t + s)

1 + [X(t + s)]c
− bX(t) 

 

{
a = 0.2
b = 0.1

 

{
c = 10.0
s = 31.8

 

λ1 = 6.30 × 10−3 
λ2 = 2.62 × 10−3 
|λ3| < 8.0 × 10−6 
|λ4| = −1.39 × 10−2 

3.64 

Table 4-1: Examples of Model Systems and their Lyapunov Spectra and Dimensions  

(Source: Wolf et al. (1985)) 

Table 4-1 provides a summary of previous research applicable to dynamical systems whose 

equations of motion are known.  For such systems, the Ordinary Differential Equations 

(ODE) approach provides a relatively straight forward procedure for computing the largest 

Lyapunov exponents (Benettin et al., 1980, Shimada and Nagashima, 1979).  Other forms 

of these systems were also studied by Froehling et al. (1981), Fraser and Swinney (1986) 

and Rosenstein et al. (1993).   
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In these models, it is difficulty to specify the initial condition along the principal axes 

because these are unknown explicitly.  Therefore, it is accepted practise to specify the initial 

condition with a value as small as the precision of the variable or the value allowable in the 

computer, and then with the non-linear ODE of motions allow the boundary condition to 

emerge from a series of iterations.  Given the constantly evolving nature of chaotic systems, 

it is difficult to monitor the deformation given by the exponents along the principal axes 

because these directions change continuously, especially as the separation becomes rapid.  

Therefore, it is not possible to guarantee a condition of small separation, which is a 

requirement for the convergence of the system, making this approach limited in chaotic 

systems.   

In order to address this problem, a ‘fiducial’ (the centre of the sphere) trajectory is defined 

by the ODE based on some initial conditions.  In addition, the trajectories of points on the 

surface of the sphere, which are separated infinitesimally from the fiducial trajectory, are 

defined by linearised equations of motions.  The principal axes of the linearised equations 

of motion are initially an orthonormal vector frame anchored to the fiducial trajectory.  In 

this way, the ‘fiducial’ trajectory, working in conjunction with its tangent space within a 

phase space, ensures the principal axis always exists.  Using this approach, any further 

diverges may be eliminated by renormalisation of the separations by a repeated use of the 

Gram-Schmidt Reorthonormalisation (GSR) procedure.  However, Murison (1995) proved 

that the difference in the separation calculated with or without the GSR procedure is 

indiscernible.   

In experimental data, the equations of motion are unknown and therefore the ODE approach 

is not directly applicable.  In order to handle such data, Wolf et al. (1985) proposed a 

method using an approximate GSR procedure in a reconstructed phase space (described in 

detail in section 5.4).  Unlike the ODE method, which gives only the largest Lyapunov 

exponent, this approximate GSR method enabled all possible instantaneous Lyapunov 

exponents in all directions to be calculated.  Similarly, for traffic systems, the equations of 

motion governing its evolution are unknown, therefore the ODE method is inappropriate.  

Applying the phase space reconstruction plus the approximate GSR procedures however 

needs modification to enable not only the positive but also the non-positive values of the 

Lyapunov exponents to be calculated.  In this research, the method applied is based on the 

finite-size approach proposed by Károlyi et al. (2010) discussed in Section 5.7.  Analysing 

the system in this way will make available the entire range of exponents of the system’s 
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evolution that could be processed further in order to understand how chaotic systems 

transition from one state to another.   

By incorporating the conclusions from Murison (1995), the research reported in this thesis 

makes use of the phase space reconstruction approach and calculates the separations based 

on the fiducial trajectories only.  However, instead of the approximate GSR procedures, the 

research applies a modified version of the finite-size Lyapunov exponent method proposed 

by Károlyi et al. (2010).  In this approach, the final separation of every individual point 𝑝𝑖 

and the average separation of points within a specified distance 𝑑𝑠 from 𝑝𝑖 is calculated.   

There are few studies in the literature which have reported practical uses of the Lyapunov 

exponent in traffic systems (see Section 3.5).  For example, Shang et al. (2005) applied the 

Lyapunov exponent to simply determine the presence or otherwise of chaos in traffic data 

whilst Hui et al. (2005) used the parameter in combination with a proposed radial base 

function neural network to predict chaos.  This study presents a first attempt at using the 

Lyapunov exponent from an unknown dynamical (traffic) system to understand the 

evolution of the flow regimes in order to gain an insight into the cyclical nature of the 

dynamic states resulting from the traffic characteristics.  This study is important because 

chaos gives rise to stop-and-start conditions and breakdown of traffic flow causing traffic 

delay, which is undesirable to motorists.  Such conditions also increase fuel consumption, 

tailpipe emissions and the likelihood of accidents, and decrease the vehicle throughput 

across the junctions.  Therefore, this study will investigate the use of the Lyapunov 

exponent to identify chaos in order to create awareness of impending unstable conditions 

and thus allow mitigating strategies to be implemented in real-time in order to improve the 

level of service and safety of the road system.   

4.6 Conclusions 

It is concluded that chaos is ubiquitous and widely ingrained in many natural processes 

such as the earth’s system and those that relate to the human system, such as rhythmic 

patterns in the function of the human heart, brain and immune systems, and the 

physiological process such as menstruation through to menopause (Kumar and Hedge, 

2012).  The above discussion demonstrates that Chaos Theory has wide applications in 

numerous fields, and the application to UTC system traffic may be feasible but requires in-

depth analysis in order to confirm this.   
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Chaotic and random systems are different because chaos is predictable in the short-term 

whilst randomness is unpredictable.  Chaos is a product of non-linear dynamic systems that 

are highly sensitive to initial conditions.  The literature review also identified that non-

linearity is sine qua non for the development of chaos, but the presence of non-linearity is 

not always a guarantee for chaos (Lorenz, 1993b).  Non-linearity ultimately gives rise to 

randomness (but not necessarily chaos); however, when both randomness and chaos are 

present there is always a progression of states from stable cycles through chaos before 

randomness.   

In this research, it is important to establish the validity of the assumption that road traffic 

is chaotic (rather than random) system.  According to the literature review, a discrete map 

may indicate chaos (Dreyer and Hickey, 1991), as well as proof of a progression of states 

from stable cycles through bifurcating hierarchal stable cycles with a period of 2𝑛 (Butler, 

1990, Coullet et al., 2005, Gleick, 1988).  Other tests include the evaluation of embedding 

dimension, correlation dimension or positive Lyapunov exponents for the system (Jianming 

et al., 2003).  These will give a general indication of the possibility of chaos in the traffic 

system due to the interactions of highly variable physical and human elements (such as 

vehicles, weather and road surface conditions, road layout, topography and pedestrian 

activities).  Such analysis will require time series information of traffic stream variables 

(such as flow, occupancy, speed) for the assessments.   

Once this initial first step is established with the available datasets, there will be a firm 

basis to apply Chaos Theory to determine the characteristics that will enable practical 

application to traffic networks.  It is anticipated that Chaos Theory will enable traffic 

forecasts to be determined more reliably to allow traffic management strategies to be 

implemented ahead of real-time to maintain under-saturated operating conditions in the 

network.   

This Chapter concludes Part 1, and against this background, Part 2 begins in Chapter 5 that 

deals with the mathematical framework that supports Chaos Theory in order to gain a firm 

understanding of its algorithms.  It presents a step-by-step procedure for applying Chaos 

Theory, and explains the key parameters (such as delay time, embedding dimensions, 

correlation dimensions, and Lyapunov exponents), which are subsequently coded in 

Microsoft C# program for application in this research.   
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PART II: MATHEMATICAL FRAMEWORK OF CHAOS 

THEORY AND RESEARCH METHODOLOGY  
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Chapter 5. Mathematical Framework of Chaos Theory 

5.1 Introduction  

This Chapter will focus on the mathematical framework that underpins the study of chaotic 

systems.  A good understanding of the fundamental mathematical concept is crucial to 

successful application of Chaos Theory in this research work.  Broadly, it discusses the 

Phase Space Reconstruction Method, which deploys the embedding coordinate technique 

to transform a one-dimensional time series data into a high-dimensional phase space.  This 

transformation is necessary to enable a one-to-one representation of the true, but unknown, 

dynamic system for subsequent determination of chaotic parameters of the system (see 

Section  (Zhu et al., 2010).   

In order to present the mathematical framework for this research, Section 5.2 introduces 

the technique of the phase space reconstruction for the transformation of a time series data 

into a phase space to enable the study of the system’s chaotic properties.  The subsequent 

discussions will focus on the procedures used to determine important parameters of the 

system.  Section 5.3 illustrates the overall process for applying Chaos Theory, whilst 

Section 5.4 describes the process of the phase space reconstruction.  Section 5.5 discusses 

the delay time (or lag) based on the autocorrelation and mutual information functions, 

whilst Section 5.6 deals with the algorithms for estimating the correlation and embedding 

dimensions.  Finally, Section 5.7 illustrates how these parameters are important inputs into 

the reconstructed phase space used to calculate the Lyapunov exponents, which gives an 

indication of the dynamic states of the system.   

5.2 Analytical Approach  

The two main analytical approaches in non-linear data analysis are (i) the delay-coordinate 

embedding technique and (ii) the time-frequency method based on the Hilbert transform 

(Lai and Ye, 2003).  The Hilbert-transform method performs well for nonlinear and/or non-

stationary time series, and in the analysis of the distribution of instantaneous physical 

frequencies of, for example, signal processes.  The literature review did not find evidence 

of the Hilbert transform method applied to traffic studies.  However, the delay-coordinate 

method has been widely used in many traffic studies, and specifically proven useful for 

analysis where the dynamic system that is responsible for the observed time series is of low 

dimensional, deterministic or mostly deterministic and the influence of ‘noise’ is minimal.  

The research presented in this thesis adopted the delay-coordinate embedding (DCE) 
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technique for analysing the traffic data because relative to Hilbert transform it has been 

used more widely in traffic studies and thus provides a good foundation for this work.   

Evidence suggests that Jianming et al. (2003), Hui et al. (2005) and Shang et al. (2005) 

used the DCE technique to reconstruct the phase space from scalar quantities.  Packard et 

al. (1980) applied the DEC technique to analyse a time series data from a single coordinate 

and constructed a phase portrait and determined the dimensionality of an attractor, whilst 

Eckmann and Ruelle (1985) used this method to examine the dynamics (turbulence) of a 

fluid system.  Froehling et al. (1981) noted that the method was sensitive to instrumental 

noise, and therefore required large amount of data points.  Frazier and Kockelman (2004) 

comment on the data issue indicating that the lack of extensive data or sampling at the 

wrong frequency will not accurately capture important dynamics of the system.  For any 

system, the time series information is the main data requirement for analysis using Chaos 

Theory.  The remainder of this section therefore illustrates how time series information can 

be applied in this analysis.   

5.2.1 Time Series Information   

The time series information normally consists of data points sampled at regular and 

frequent intervals, which may be restricted to either one or several variables at each sample 

time.   

Suppose an observed time series consists of the following 𝑘-vectors (where 𝑘 is the number 

of variables), which are: 

𝑋̅1, 𝑋̅2, 𝑋̅3……….𝑋̅𝑘 

 

Equation 5-1 

 

For the N-observations of each variable, the vector elements will be: 

X̅i =  [𝑋𝑖(1), 𝑋𝑖(2), 𝑋𝑖(3) … … … 𝑋𝑖(𝑁)]  Equation 5-2 

 

Consequently, for a time series observation of only one variable (one-dimensional scalar 

quantity), Equation 5-2 becomes:  

𝑋̅ =  [𝑋(1), 𝑋(2), 𝑋(3) … … …  𝑋(𝑁)]  Equation 5-3 

 

In summary, this theory deems that by using the vector elements in Equation 5-3, it is 

possible to create a phase space (based on the phase space reconstruction theory), which is 

a representation of the true but unknown system in Equation 5-2.   
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5.3 Deploying Chaos Theory 

The mathematical framework for the research is underpinned by the Phase Space 

Reconstruction theory (Jianming et al., 2003).  Figure 5.1 presents the four main stages, 

whilst a fifth stage makes use of the outputs from the reconstructed phase space for further 

analysis 

 

Figure 5.1: Overall Summary of the Chaos Theory Analytical Procedure  

The key steps include:  

Step 1. Construct a generic model of the phase space of the traffic flow series using 

the Packard and Takens Phase Space Reconstruction theory. 

Step 2. Determine the optimum autocorrelation lag (delay time). 

Step 3. Input the optimum lag and reconstruct the phase space for any arbitrary 

number of embedding dimensions  

Step 4. Calculate saturated embedding dimension and correlation dimension. 

Step 5. Reconstruct the phase space for the saturated embedding dimension and 

calculate the instantaneous Lyapunov exponents. 

Step 6. Undertake analyses including assessing the variability of Lyapunov 

exponents across the loops in the network based on the descriptive statistics 

and the testing of a number of hypotheses to answer the research questions 

3, 4, 5, 6 and 7. 

5.4 Phase Space Reconstruction Theory 

The DCE technique developed by Takens (1981) provides the mathematical foundation of 

the phase space reconstruction method for the non-linear analysis of dynamic systems.  

Using this method, Takens (ibid.) indicated that it was possible to construct the underlying 

dynamics of a nonlinear system using the time series of the system’s evolution.  He proved 

the existence of a one-to-one correspondence between the actual but unknown dynamic 

system and the reconstructed dynamic system.  That is, Takens (ibid.) showed that it was 
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possible to understand the characteristics of a dynamic system based on only the time series 

information without the need of any additional information (or evolutionary equations).   

Often, the equations governing these systems are generally unknown and their derivation 

often involves difficult mathematical computations.  Therefore, the delay-coordinate 

technique overcomes the challenges of deriving complex mathematical equations for the 

system, and instead simply focuses on the time series data to understand the system's 

evolution.  The raw time series may not be suitable to understand the system’s dynamic 

properties, but the transformed data enables key parameters to be determined thus 

enhancing our knowledge of the system (Lai and Ye, 2003).  In traffic studies, this 

technique can enable understanding of the temporal changes of the stable, unstable and 

chaotic nature of the network, as well as the evolution of free flowing and congested states.   

The main thrust of this technique is that even though the dynamical property of a system 

may involve several variables, the evolution of an arbitrary component (one variable) of 

the system is dependent on its other relative components (other variables).  For example, 

speed, flow and density relationships.  This influence means that the developing process of 

any arbitrary component contains relevant information of the other components.  Therefore, 

the theory suggests that one observed variable can reveal detailed information of the whole 

system (Jianming et al., 2003).   

5.4.1 Notation  

Suppose a scalar observed time series: 

X(i) = x(ti), for 𝑡𝑖 =  𝑡0 + i∆t, i = 1, 2, … . . N  Equation 5-4 

 

where ∆t is a constant sampling interval; 𝑡0 and 𝑁 are the initial and final times respectively 

within the sampling interval; and 𝑡𝑖 evaluates a specific time for the time series observation 

of interest.   

According to the delay coordinate embedding method, each scalar measurement x(t) is a 

component of a vector X(t) of 𝑚-dimensions and 𝜏 is the delay time (lag), as follows: 

X(1) = [x(1), x(1 + τ), x(1 + 2τ), … … … , x(1 + (m − 1)τ)] 

X(2) = [x(2), x(2 + τ), x(2 + 2τ), … … … , x(2 + (m − 1)τ)] 

X(3) = [x(3), x(3 + τ), x(3 + 2τ), … … … , x(3 + (m − 1)τ)] 

…….. 

X(k) = [x(k), x(k + τ), x(k + 2τ), … … … , x(k + (m − 1)τ)] 

Equation 5-5 
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where:  

 𝑚 is the embedding dimension  

 𝑁 = 𝑘 + (𝑚 − 1)𝜏 is the length of the time series  

Equation 5-5 suggests that the first observation in times series will be a point with 

coordinates x(1), x(1 + τ), x(1 + 2τ), … … … , x(1 + (m − 1)τ) in the phase space, the 

second observation becomes point x(2), x(2 + τ), x(2 + 2τ), … … … , x(2 + (m − 1)τ) and 

so on.  All the 𝑘 vectors will form a reconstructed phase space that maintains both the 

geometric and topological structure as well as the dynamic properties of the original system 

(Jianming et al., 2003).  Therefore, the reconstructed phase space preserves the invariants 

(such as the dimension and Lyapunov exponents) of the true but unknown system, which 

was responsible for the time series observations of variables such as flow, occupancy and 

speed.  Consequently, it is possible to investigate the dynamics of the original system based 

on the phase space constructed from the time series data.   

The above notation indicates that every reconstructed vector for a data point at an arbitrary 

position 𝑝 will require the data point at a relative position 𝑝 + (𝑚 − 1)𝜏  to define its 

coordinates correctly.  If 𝑘 is the last data point of the time series with a valid reconstructed 

vector, then the reconstructed phase space will contain 𝑁 − 𝑘 fewer vectors than the length 

of original time series.  This means therefore that it is not possible to construct any vector 

beyond 𝑋(𝑘) because the value of the 𝑚𝑡ℎ co-ordinate in the reconstructed vector 𝑋(𝑘) 

will be equivalent to the value of the 𝑁𝑡ℎ observation (i.e. the last observation of the 

original time series).  Given the length of the original time series 𝑁, any delay coordinate 

embedding vector beyond 𝑋(𝑘) will require components beyond the 𝑁𝑡ℎ component of the 

original data series, which would be unavailable and unknown.  The shortfall in length of 

the reconstructed vectors could reduce the number of points in the phase space and 

consequently limit its intended uses.  This is also reason why a large number of 

observations is required for analysing dynamical systems.  It is reasonable therefore to 

agree with Froehling et al. (1981) and Frazier and Kockelman (2004) that large volumes of 

data of appropriate sampling frequency is key to applying Chaos Theory.   

Lai and Ye (2003) identified some of the parameters that can be derived from the 

reconstructed phase space, as the Kolmogorov entropy, the relative weights of the 

deterministic and stochastic components embedded in the time series and the fractal 

dimension (which defines the self-similarity property of the underlying dynamic system).  
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In addition, it is useful in determining the paths of the unstable periodic orbits that 

constitute the skeleton of the invariant set responsible for the observed dynamics as well as 

the degree of sensitivity of initial conditions as characterized by the Lyapunov exponents.   

Equation 5-5 reveal the delay time (τ) and embedding dimension (m) as two important 

parameters whose values need to be determined explicitly in order to fully construct the 

phase space.  Without these, it will be impossible to construct the phase space accurately 

and therefore the key invariants of the system cannot be determined.  In order to 

demonstrate the uses of these parameters, let us consider a dynamic system with parameters 

m = 3 and τ = 1, where the regular interval sample data of N values are 4, 2, 6, 1, 5, 3,

8, 9, ...  In the reconstructed phase space, the coordinates of the first three points will 

be: X(1) = (4,2,6);  X(2) = (2,6,1);  X(3) = (6,1,5), etc.  Roux et al. (1983) is of the view 

that the determination of these values involves a trial and error procedure, which can be 

cumbersome involving the test of a number of embedding dimensions and delay times in 

order to select the optimum saturated values.  In this illustrated example, a range of τ (e.g. 

1, 2, 3 … 10) will tested to determine the optimum lag time based on an autocorrelation 

value of 0.4 (see section 5.5.2), which serves as input into Equation 5-5 in order to estimate 

the embedding dimension.  Similarly, the m values (e.g. 1, 2, 3 … 10) may be tested for a 

range of distances of separation between points in the phase space in order to determine the 

saturated value using the function of the embedding dimension (see Section 5.6.2).  

Therefore, this procedure could involve a large amount of iterations that may be difficult 

to undertake manually without computer software, and this confirms an initial perception 

in Section 4.3.2 of the indispensability of the computer in deploying Chaos Theory.  

Sections 5.5 and 5.6 provide a more complete description of the process of calculating these 

parameters.   

5.5 Delay Time  

5.5.1 Purpose of the Delay Time (Lag) 

The purpose of the delay time is to determine the length of interval when the individual 

observations of the time series are neither too independent nor less independent on each 

other.  Therefore, this parameter provides an indication of the delayed time intervals that 

observations correlate moderately for subsequent analysis.  The lag is useful for 

determining the coefficients of the independent variables (or coordinates) of the points in 

the reconstructed phase space of the dynamic system.  In addition, it is a crucial initial step 
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prior to determining the embedding dimension that defines the number of independent 

variables for describing the phase space accurately.   

It is important that the calculation of the delay time yields the optimum value as the choice 

of an incorrect lag could render the reconstructed phase space incapable of its intended 

uses.  In order to be sure that the reconstructed phase space of a time series dataset is of 

practical use, it is necessary to specify an optimum time interval such that the results are 

relatively insensitive to the chosen time interval (Froehling et al., 1981).  According to Lai 

and Ye (2003) and Jianming et al. (2003), the choice of a small value of 𝜏 makes the 

adjacent components too correlated to serve as independent variables.  This makes the 

coordinates appear almost consistent such that the trajectories dwindle into a straight line 

in the phase space.  On the other hand, a large 𝜏 is undesirable as they generate neighbouring 

coordinates that are highly uncorrelated and potentially give rise to phase space distortions 

– a phenomenon where the trajectory of a simple geometric curve could appear to be 

complex.  The effect of the extreme values is that it makes it impossible to establish a one-

to-one correspondence between the reconstructed phase space and the true but unknown 

system.   

The literature review identified two methods for selecting the optimum lag: (i) 

autocorrelation coefficient (AC) and (ii) mutual information (MI) (Boker, 1996, Jianming 

et al., 2003).  There are mixed views on the reliability of both approaches among authors; 

for example, Shang et al. (2005) state that “currently, there is no agreement among authors 

on which of the two methods should be used in order to determine the delay time”.  Reiss 

(2001) and Doniosio et al. (2003) are critical of the autocorrelation method on the basis 

that it provides a linear measure and may not always provide an accurate measure of serial 

dependence if there is significant non-linearity in the dataset.  Reiss (ibid.) for example 

indicates a preference for the mutual information method over the autocorrelation function 

given its ability to measure both linear and non-linear correlations.  However, Reiss (ibid.) 

appears to contradict this view in the conclusion to his work, where he assumes a neutral 

position whilst cautioning that neither mutual information nor autocorrelation coefficient 

method is suitable for all situations and therefore Reiss (ibid.) recommends the use of both 

functions.   

With reference to the mutual information method, Reiss (ibid.) states, “this is preferred 

over the autocorrelation function, because the mutual information can measure nonlinear 

correlations whereas the autocorrelation function only takes linear correlations into 
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account.  However, neither is definitive so it is recommended that both functions be used.”  

However, Jianming et al. (2003) indicates a preference for the autocorrelation coefficient 

method for analysing traffic data, stating that the, “Mutual Information method determines 

delay time according to seeking the corresponding delay time with the first minimum of 

mutual value.  But this method cannot guarantee that the mutual information always exists.  

Besides, the computation of mutual information is very difficult.”  This statement may 

imply that the mutual information method is appropriate when this is a property of the 

system; otherwise, the autocorrelation method is a better choice.  From the foregoing, it 

will appear that the choice of a method seems to depend on what works well in the particular 

application.   

According to Boker (1996) the mutual information and autocorrelation functions are similar 

when applied within a single time series because both methods seek to indicate a degree of 

dependence.  However, mutual information has the ability to measure mutual dependence 

even when the system is non-linear or chaotic, whereas autocorrelation may suggest an 

independent random process.  This means that the autocorrelation method may be 

disadvantaged because it assumes a linear property as an underlying characteristic of the 

system when calculating a value for dependency, and therefore the value may be inaccurate 

if the underlying process is non-linear.  Furthermore, autocorrelation requires that the 

distribution of the original time series and its lagged components be jointly normal but 

mutual information requires no such assumptions.  It is important to note however that 

Frede and Mazzega (1999) proved that the lag computed from both methods yield 

equivalent results.  Boker (1996) confirms this but indicates that both methods produce the 

same value of the optimal delay if the system is linear.   

In theory, the function of the mutual information provides the optimal lag based on the first 

minimum of the curve [i.e. 
𝑑

𝑑𝑡
𝑓(𝑀𝐼) = 0], whereas the autocorrelation methods calculates 

this value as the first zero crossing of the autocorrelation function [i.e. 𝑓(𝐴𝐶) = 0] (Wang 

et al., 2005).  For non-linear systems, Boker (ibid.) stated that the first minimum of the 

mutual information function only provides a minimum value for the optimum lag, and 

therefore the choice of the optimum lag must provide a balance between eliminating 

autocorrelation and preserving non-linear dependency.  However, there is no exact science 

for determining the optimum lag in this case, which allows for some degree of subjectivity 

in making this decision.  Boker (ibid.) further argued that the shortest possible lag is 

optimum because it minimises the degree of autocorrelation in the time series.  However, 
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Sauer et al. (1991) suggests that there is very low probability that the choice of the lag from 

either methods can affect the phase space construction of the true yet unknown dynamical 

process of the studied system.   

By considering their mathematical formulae, the mutual information method appears to be 

complex with a crucial step that involves the computation of probabilities whereas the 

autocorrelation coefficient method is relatively simple mainly requiring the computation of 

the mean of the entire datasets.  Whereas the parameters for using autocorrelation 

coefficient method are directly available and can be computed directly from the data, the 

mutual information method is logarithmic and requires probabilities as input that in turn 

increases the computation process making it cumbersome.  Therefore, the autocorrelation 

method emerges as the convenient and less complicated method for calculating the 

optimum lag time.   

Consequently, the research presented in this thesis used the autocorrelation coefficient 

method because of its simplicity and evidence of application in previous research.  

Autocorrelation refers to the correlation of a time series with its own past and future values.  

This real-world property helps to determine the tendency of the time series to remain in the 

same state from one observation to the next.  Regarding time series traffic data, a positive 

autocorrelation coefficient suggests for example the likelihood of an unstable condition in 

the future over a link detector because the link was unstable in the past.  The value of the 

autocorrelation can vary depending on the chosen lag, and therefore it is usual to sample 

the lags and evaluate the autocorrelation function in order to determine the optimum lag (or 

ideal lag interval).  Wang et al. (2005) identified different approaches that evaluate the lag 

as the autocorrelation function that reaches a certain value, for example 
1

𝑒
, 1 −

1

𝑒
, 0.1 or 0.5, 

instead of zero; because a value of zero ensures no correlation between the data points 

giving rise to disconnected trajectories in the phase space.  Therefore, in practise, the lag is 

chosen with a degree of subjectivity.  Jianming et al. (2003) successfully applied an 

empirical value of 
1

𝑒
 (or 0.4).  Further evidence is given by Ratner (2009) in section 9.5.1, 

which indicates a threshold value of 0.4 where the autocorrelation of the time series is 

neither strongly nor weakly correlated.  Consequently, this research also adopted this figure 

of 0.4.  Initial trials in sections 7.2.1 and 7.3.1 using a Microsoft C# program yielded 

satisfactory outcomes, and therefore all calculations presented here used this method.  

Section 5.5.2 is devoted to describing the mathematical algorithms for the autocorrelation 

coefficient method.   
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5.5.2 Autocorrelation Coefficient Method  

The autocorrelation coefficient method measures the correlation of a time series with its 

own past and future values.  The autocorrelation function for any arbitrary delay time (lag 

time) is given by:  

C(τ) =
∑ [𝑥(𝑖) − x̅][𝑥(𝑖 + 𝜏) − x̅]N−r

i=1

∑ [𝑥(𝑖) −  x̅]2N
i=1

  
Equation 5-6 

 

where: 

 𝑥 ̅ is the mean of observed data series 

 𝑥(𝑖) is the preceding time observation 

 𝑥(𝑖 + 𝜏) is the observation at the lagged time (𝜏).   

Equation 5-6 will be revisited in Section 6.6.2 for the coding in the C# program for 

computing the lag of the spatial and temporal research data.  The first step is to calculate 

the autocorrelation coefficient of a time series x(i) and the lag time value x(i + τ) under a 

number of pre-selected time lags.  From the calculated autocorrelations, it is then possible 

to select the optimal time delay from the plot of the correlation coefficients against the 

delay time (lag).  This graph is known as a Correlogram (or autocorrelation plot).  

Correlograms are commonly used to determine the presence of randomness within data 

sets, or to establish whether indeed a relationship exists between two or more adjacent 

observations.  If randomness exists, the autocorrelations should be close to zero for one or 

all time lags; otherwise, one or more autocorrelations will be significantly non-zero (Xiufen 

et al., 2002).   

The widely used approach estimates the optimal delay as the duration of a lag such that 

𝐶(𝜏) is equivalent to approximately 
1

𝑒
.  This optimal delay is the equivalent of the delay or 

lag duration that corresponds to an autocorrelation of 0.4 (as described above), an indication 

of when the autocorrelation of data points is moderate (Jianming et al., 2003).  The next 

two sections explain the mathematical concepts underlying fractals and dimensions 

(introduced at Sections 4.3.3 and 5.6.3 respectively) in which the lag plays a vital role.   

5.6 Dimensions  

Chaos Theory uses a number of dimension to describe the characteristics of a system under 

investigation.  These include the fractal dimension, embedding dimension and correlation 

dimension, which are discussed in sections 5.6.1, 5.6.2 and 5.6.3.   
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5.6.1 Fractal Dimensions  

The term ‘fractal’ describes systems with fractional dimensional.  Fractals possess a 

property of self-similarity at all scales by magnifying several pieces of the same objects, 

each of the magnified pieces is indistinguishable to the whole system.  The theoretical 

fractal dimension of an object equals the set of Euclidean or topological dimensions that 

ordinarily describe the geometric shapes.  For example, a 0-dimensional fractal sets 

describe points; a 1-dimensional set describes an object by length only.  Surfaces with both 

length and width are 2-dimensional objects, whilst those with length, width and depth are 

3-dimensional objects.  However, some strange objects in nature have fractions for 

dimensionality, unlike the simple geometrical objects that have whole number 

dimensionality (Lorenz, 1993b).   

Both fractal and non-fractal dimensions help to determine the number of equations (or 

unknown variables) necessary to describe the shape of the attractor.  Whilst non-fractal 

dimensions are normally associated with simple objects, fractal dimensions define 

dimensions of complex systems, or as Mandelbrot (1983) puts it “objects that are described 

as oddly shaped without any term to describe them in either the sciences or the arts”.  

Where a fractal dimension exists, the number of equations is incremented to the next higher 

integer (Orcutt and Arritt, 1995).   

Fractal dimensions are useful in describing natural objects and evaluating trajectories of 

dynamic systems (see section 4.3.3).  The fractal dimension is a statistical index that 

characterises the complexity of an object according to the ratio of how the detail in the 

fractal pattern changes with the scale of measurement (Mandelbrot, 1983).   

The mathematical derivation by Christos and Ibrahim (1994) is useful in describing the 

relationship between the fractal dimension and the scale of measurement.  Let us consider 

a simple object (of self-similarity property) of linear size 𝑙 that consists of a set of points in 

an ordinary Euclidian space of dimension 𝐷, which may also define the embedding 

dimension.  By dividing the length into equal parts by a factor of 1 𝑙⁄  in each spatial 

direction, the number of similar smaller objects, required to describe the original object is 

given by: 

𝑁 = (
1

𝑙
)

−𝐷

=  𝑙𝐷 

Equation 5-7 
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Figure 5.2 illustrates the number of similar small objects resulting from the combinations 

of different values of l and D, according to Equation 5-7.  For example, if each side of a 

cube of dimension D equals to 3 is divided into equal parts by a factor of 1,
1

2
 and 

1

3
 (which 

are the inverse of l), the resulting number of similar small objects are 1, 8 and 27 

respectively. 

 

Figure 5.2: Traditional Notations of Geometry for Defining Scaling and Dimension  

(Source: Brendan (2007)) 

By taking the natural log of both sides of Equation 5-7, the fractal dimension of a complex 

object is given by:  

𝐷 =  
𝑙𝑛 𝑁

 ln 𝑙
=  lim

𝑙→0

ln 𝑁

ln 𝑙
 

Equation 5-8 

Where in the limit 𝑙 = 0, 𝐷 = ln 𝑁, which is non-integer.   

5.6.2 Correlation and Embedding Dimensions  

The correlation dimension is a type of fractal dimension used to determine the possible 

fractal dimension of fractal objects.  In time series analysis, the correlation dimension is 

used to determine the degree of complexity of the chaotic structure of the underlying 

dynamics of the system (Shirer et al., 1997).  In this application, the correlation dimension 

provides an index to judge the type and complexity of an attractor, which also describes the 
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level of stability and the ability to determine the entire changing process of the system.  

This index is useful in determining the rough estimate of the embedding dimension, which 

defines the dimension of the high order phase space capable of containing the evolutionary 

process of the chaotic attractor, in order that the orbits do not overlap in the phase space  

(Jianming et al., 2003).  In other words, this index helps to specify the size of the phase 

space that would embed the evolution process of the chaotic system without any distortions.   

The process of constructing the phase space and subsequent determination of the 

correlation dimension and embedding dimension is as follows, and the relevant equations 

will be used in analysing the research data and therefore are revisited in Sections 6.6.3 and 

6.6.4.   

Consider two points in the reconstructed phase space: 

X(j) = [x(j), x(j + τ), x(j + 2τ), … … … … … … x(j + (m − 1)τ)] 

X(i) = [x(i), x(i + τ), x(i + 2τ), … … … … … … x(i + (m − 1)τ)] 
Equation 5-9 

Let 𝑟𝑖𝑗(𝑚) denote the distance between them, so that:  

𝑟𝑖𝑗(𝑚) =  ‖𝑋𝑖 −  𝑋𝑗‖ 

 

Equation 5-10 

Given a certain distance 𝑟, the ratio of the number of paired phase points whose distance of 

separation is less than 𝑟 to all the pairs of phase points is given by the accumulation 

function:  

𝐶2(𝑟, 𝑚) =  
1

𝑁(𝑁 − 1)
 ∑ 𝜃(𝑟 −  ‖𝑋𝑖 −  𝑋𝑗‖

𝑁

𝑖,𝑗=1
𝑖≠𝑗

) 

 

Equation 5-11 

where 𝜃(𝑧) is the Heaviside function, which is given by:  

 

𝜃(𝑧) = {
0, 𝑧 < 0
1, 𝑧 ≥ 0

 

 

Equation 5-12 

𝐶2(𝑟, 𝑚) describes the probability that two points in the phase space are separated by a 

distance less than or equal to 𝑟.  Hence, this condition of 0 <  𝐶2 (𝑟, 𝑚) < 1 must be valid.  

The ranges of values define the “scaling” region, which is the region sandwiched between 

the “depopulated” and “saturated” regions of each curve.  The pairs of points whose 

separation is below the lower end 𝑟-range is a “depopulated” region, whilst at the upper 
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end the 𝑟-value above which there is no further increase in the correlation function is the 

“saturated” point.   

In order to enable the selection of the appropriate correlation and embedding dimensions, 

it is important to examine the relationship that exists between 𝐶2(𝑟, 𝑚) and 𝑟.  As the 

correlation dimension is a form of fractal dimension, it is possible to adopt the approach of 

the latter in the derivation of 𝐶2(𝑟, 𝑚), where 𝑟 is the scaling factor.  Firstly, let us consider 

an extremely small value 𝜕 (which represents a certain multiple of 𝑟).  In the case of a 1-

dimension and linear attractor, the number of correlation points will be proportional to 𝑟/𝜕.  

If the attractor is 2-dimensional, then the number of correlation points is proportional to 

(𝑟/𝜕)2.  Consequently, the number of correlation points for a 𝐷2(𝑚)-dimensional attractor 

is directly proportional to (𝑟/𝜕)𝐷2(𝑚).  Hence:  

𝐶2 (𝑟, 𝑚) ∝  (
𝑟

𝜕
)

𝐷2(𝑚)

 
Equation 5-13 

𝐶2 (𝑟, 𝑚) = 𝑓 (
𝑟

𝜕
)

𝐷2(𝑚)

 
Equation 5-14 

Let 𝜕 = 1 and 𝑓 = 1, then:  

𝐶2 (𝑟, 𝑚) =  (𝑟)𝐷2(𝑚) Equation 5-15 

Taking the natural log of both sides:  

𝐷2(𝑚) =  
ln 𝐶2(𝑟, 𝑚)

ln 𝑟
 

 

Equation 5-16 

𝐷2(𝑚) is the function of the embedding dimension, which is the estimated value of the 

Correlation Dimension.   

The G-P Algorithm (GPA), a method by Grassberger and Procaccis (Xue and Shi, 2008, 

Wang et al., 2005, Zhang and Liu, 2007), is widely used to select the desired correlation 

dimension and embedding dimension.  The method is quite popular due to its simplicity 

and the additional benefits of the intermediate steps for calculating both correlation 

dimension and entropy.  It is extremely sensitive to the number of data points, 

reconstruction delay time, embedding dimension and highly reliant on large, noise-free 

datasets.  Given the large number of data points of the order of thousands required, the 

Lyapunov exponent may be preferred to the correlation dimension as an indicator of chaotic 
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behaviour because the scale of the data gives a more likely representation of the underlying 

process within the system (Rosenstein et al., 1993).   

In practise, the first step to determine the correlation dimension is to select an arbitrary set 

of 𝑚-values and 𝑟-values, and the computation process is dependent on a combination of 

these values.  For each 𝑚 –value, the process involves computing  C2(𝑟, 𝑚) for all 𝑟-values 

within the pre-defined range.  The next step is to generate a G-P curve of  C2(𝑟, 𝑚) against 

𝑟 for all 𝑚 − values independently i.e. a log-log profile of the accumulation function versus 

the pre-defined distances (𝑟-values) for any arbitrary number of 𝑚-values.  The rationale 

is to construct a phase portrait for a number of pre-selected 𝑚-values, starting from some 

arbitrary minimum and proceeding through a stepwise increment by one, until the phase 

portrait fails when an extra dimension is added.  In other words, this process requires 

increasing the embedding dimension gradually to reach the saturated embedding 

dimension, where any further increase in embedding dimension does not change the value 

of the correlation dimension.  The saturated embedding dimension is the preceding 

dimension before the phase portrait failure.  According to Zhu et al. (2010), the slope of 

the saturated curve (i.e. the curve whose m-value is selected as the embedding dimension, 

according to Equation 5-16 is the correlation dimension of the attractor.   

It is common practise to examine the sequential progression of the log-log 𝑚-curves.  The 

slope of the linear (straight-line) part will change gradually before stabilising for the 

remainder of the curves.  The stabilised slope is the desired correlation dimension and the 

embedding dimension 𝑚 at which this occurs is the saturated embedding dimension.  This 

process normally involves a visual inspection of the curves to select the saturated 

embedding (and subsequently the correlation dimension), which could be problematic if 

the change in gradient is not obvious.   

Probably it is in response to this that Shang et al. (2005) proposed the least squares fit of a 

straight line plotted over the “scaling region” to select the saturated embedding and 

correlation dimensions.  This revised method plots the local slopes (correlation exponents) 

against the corresponding embedding dimension values.  The saturated value of the 

correlation exponent gives the expected optimum, whilst the nearest integer above the 

embedding dimension defining this saturated value indicates the minimum number of 

parameters (coordinates) required to model the dynamics of the attractor.  In this method, 

if the correlation exponent increases indefinitely with increases in the embedding 

dimension, it is an indication that the system has a stochastic behaviour.   
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5.6.3 Relationship between Correlation and Embedding Dimensions  

According to the theory of Takens (1981), the saturated embedding dimension (𝑚∗) should 

satisfy 𝑚∗ ≥ 2𝐷2
∗ + 1, where 𝐷2

∗ is the saturated correlation dimension.  This is to ensure 

that the embedding dimension is sufficiently large in order to preserve the property of 

chaotic attractors, in which their orbits do not intersect or overlap with each other.  If 𝑚∗ is 

too small the attractor cannot spread out completely; when 𝑚∗ is too large, there is the 

likelihood of phase space distortions.   

Rosenstein et al. (1993) proved that the orbits intersect or overlap when the attractor has 

an embedding dimension that is less than that needed to describe the dynamics of the 

system.  This is because chaotic systems could become effectively stochastic due to 

inadequate capacity to accommodate the true dynamics of the system.  Takens (1981) 

criteria for selecting the appropriate embedding dimension seems to be a very robust one, 

given that Rosenstein et al. (1993) reported of an algorithm for calculating chaotic 

properties that performed well, even for 𝑚∗-values below the Takens' criteria.  The work 

of Echman in 1985 further strengthens this position, and provides proof that a range of 

𝐷2
∗ + 1 ≤ 𝑚∗  ≤ 2𝐷2

∗ + 1 is acceptable (Jianming et al., 2003, Zhu et al., 2010, Fenghua 

et al., 2005).  However, many authors who made use of this criteria also referenced Takens’ 

work.  Based on this evidence, Takens' criteria is applied to this study.   

Lai and Ye (2003) derived a mathematical relationship to prove the validity of Takens' 

theorem.  If one considers the set of intersection of two smooth surfaces of dimensions 𝑑1 

and 𝑑2 in an 𝑀-dimensional space, the dimension of the intersection set 𝑑𝐼 =  𝑑1 + 𝑑2 −

𝑀.  If 𝑑𝐼  ≥ 0, a self-intersecting (or generic) intersection occurs.  Figure 5.3(a) shows the 

intersection of two one-dimensional surfaces 𝑑1 and 𝑑2 in a two-dimensional plane 𝑀 = 2 

will be a point, and the calculated dimensionality evaluates as zero (i.e. 𝑑𝐼 = 0).  Similarly, 

if 𝑀 = 3, 𝑑1 = 2 and 𝑑2 = 1, then 𝑑𝐼 = 0 and an intersection of the curves will occur (see 

Figure 5.3(c)).   

Finally, Figure 5.3(b) indicates that there will be no intersection of the curves because 𝑀 =

3, 𝑑1 = 𝑑2 =  1, and therefore 𝑑𝐼 = −1 < 0.  Therefore, this phase space is considered 

large enough to accommodate the trajectory of the system's evolution.   
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(a) 𝑑1 = 𝑑2 = 1 and 𝑀 = 2 (𝑑𝐼 = 0 therefore generic intersection) 

 

 

 

 

 

 

 

 

(b) 𝑑1 = 𝑑2 = 1 and 𝑀 = 3 (𝑑𝐼 = −1, which is < 0 therefore non-generic intersection) 

 

 

 

 

 

 

 

 

 

 

(c) 𝑑1 = 1, 𝑑2 = 2 and 𝑀 = 3 (𝑑𝐼 = 0 therefore generic intersection) 

Figure 5.3: Illustration of Generic and Non-Generic Intersections of Simple Geometric Sets  

(Source: Lai and Ye (2003)) 
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The illustration in Figure 5.3 indicates that a one-to-one correspondence is only possible 

when a self-intersection does not occur i.e. 𝑑𝐼  < 0.  In mathematical terms, if 𝑑1 =  𝑑2 =

𝑑 and 𝑚 = 𝑀, then 𝑚 > 2𝑑, which does imply that 𝑚 ≥ 2𝑑 + 1.  By this illustration, Lai 

and Ye (ibid.) proved that it is important to select the appropriate embedding dimension 

otherwise it may be impossible to capture the invariant sets of the true dynamic system.   

5.7 Lyapunov Exponent  

In this research, the Lyapunov exponent (𝜆) has been identified as a suitable chaos 

parameter that can be used to characterise the traffic data in terms chaos, and subsequently 

developed as a suitable tool for the short-term forecasting of traffic states or conditions.  

The method deployed in this research is motivated by the finite-size Lyapunov exponent 

method proposed by Károlyi et al. (2010).  However, the analysis focused on the rate of 

separation of the fiducial trajectory based on the separation measured from the centres of 

the spread of points in the phase space (see Section 4.5).   

The Lyapunov exponent is one important product of the reconstructed phase space.  This 

parameter is useful for determining the presence of chaos in a nonlinear dynamic traffic 

system.  According to Rosenstein et al. (1993), the Lyapunov exponent provides a useful 

classification for chaotic systems through the measurement of the degree of sensitivity to 

initial conditions based on the rate of separation of infinitesimally close trajectories in a 

dynamic system.  Over the observed interval, if it yields at least one positive 𝜆-value, then 

the system can be classified to exhibit chaotic behaviour (Lai and Ye, 2003).   

Figure 5.4 shows the orbits of two points X0 (reference orbit) and X0 + δX0 (test orbit) and 

their initial separation in phase space is δX0.   

 

 

 

 

 

 

Figure 5.4: Representation of Two Orbits in Phase Space  

(Source: Elert (2007)) 

𝑋0 + 𝛿𝑋0 

𝛿𝑥(𝑋0, 𝑡) 

 

𝑋0 
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Each point generates its independent orbits in the space using some time-dependent 

parameter equations or system of equations.  Consequently, the separation between the two 

points is also time-dependent.  Given that the system’s sensitivity also affects the rate of 

propagation, the future state also depends on the initial condition.  After a certain period 𝑡, 

the separation between the reference and test orbits will be 𝛿𝑥(𝑋0, 𝑡).   

In mathematical terms, the rate of separation of two trajectories that diverge in phase space 

with initial separation 𝛿𝑋0 (if the divergence can fit within the linearized approximation) 

is given by: 

|𝛿𝑋(𝑡)|  ≈  𝑒𝜆𝑡|𝛿𝑋0|  
Equation 5-17 

In stable systems, the rate of separation diminishes asymptotically, and their orbits are 

characterised by attracting (fixed) points or periodic orbits.  In unstable systems, the rate 

of separation diverges at an (initial) exponential rate behaving erratically before eventually 

settling down.  By re-arranging Equation 5-17, the mean exponential rate of divergence of 

two initial close points is: 

𝜆 =  𝑙𝑖𝑚
𝑡→∞

|∆𝑋0|→0

1

𝑡
𝑙𝑛 |

𝑑𝑥(𝑋0, 𝑡)

𝑑𝑋0
| 

 

Equation 5-18 

The work of Károlyi et al. (2010) is supported by Equation 5-18 given by Elert (2007).  

This equation is deployed in this research to primarily understand the evolution of the 

traffic flow in the system.  The uniquenss of this method is the ability to generate the time 

series profile of the instantaneous Lyapunov exponent.  This enables the propagation of the 

system over time to be understood.  Rosenstein et al. (1993) criticizes the approach of Wolf 

et al. (1985) for failing to take advantage of all the available data because it focuses on one 

fiducial trajectory.  However, Rosenstein et al. (1993) took advantage of the work of Sato 

et al. (1987) to provde an improved method for estimating the largest Lyapunov exponent.  

Existing literature reveals that Shang et al. (2005) applied the method proposed by 

Rosenstein et al. (1993) to calculate the largest Lyapunov exponent of traffic time series 

data comprising of speed, flow and occupancy.  Rosenstein’s approach is emerging as 

particularly attractive because it requires less data and can simultaneously yield the 

correlation dimension.  In addition, it is useful in determining the longest forecast length, 
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which is the reciprocal of the largest Lyapunov exponent.  Notwithstanding this evidence, 

the algorithm is not considered ideal for this research, because it does not provide the 

instantaneous exponents that this work seeks to investigate in detail for the potential 

application of Chaos Theory to forecast urban traffic conditions.   

In order to apply Equation 5-6 to this research, the formula was coded in C# program (see 

Section 6.6.5).  Existing literature indicates that there are three kinds of orbits, which can 

be distinguished depending on whether the magnitude of λ is negative, zero or positive.  If 

λ < 0, the orbits exhibits asymptotic stability, where greater negativity indicates greater 

stability of the system.  Hence, 𝜆 = −∞ is indicative of super-stable systems that reach 

equilibrium as soon as possible.  The nature of dissipative (or non-conservative) behaviour 

in dynamic systems is identified by a negative λ, which indicates that the orbits are 

attracting (fixed) points of stable periodic orbits.  Other systems, which are characterised 

by 𝜆 = 0, exhibit Lyapunov stability, which is a steady state, where the system eventually 

settles to a neutral fixed point.  Chaotic behaviour is present if 𝜆 > 0, where the orbits 

diverge exponentially with time irrespective of the initial close proximity of the points 

within the phase space (Elert, 2007).   

Traffic behaviour can relate to these states in many respects.  During free-flowing 

conditions, it is possible to maintain the separation between two vehicles for as long as 

possible.  That is, the initial and final separations remain constant throughout the 

observation period.  Therefore, traffic networks exhibit stable conditions because it is free 

flowing, making free flow conditions likely of more negativity and nudge towards super-

stable conditions during the extremely quieter overnight periods.  Stable conditions may 

also be present during congestion.  Erratic behaviour is more likely in the lead up to 

congestion when there is a high interaction between vehicles, which is likely to be 

characterised by frequent changes in the separation between the vehicles.  This condition 

is termed chaos in dynamic systems behaviour and identified by a positive Lyapunov 

exponent.   

5.8 Conclusions  

This chapter has set out the mathematical framework for Chaos Theory based on the Phase 

Space Reconstruction method, which is suitable for analysing non-linear time-dependent 

chaotic systems.  It discussed the procedure for estimating parameter values (such as Lag 
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(delay time), embedding dimension and correlation dimensions, and subsequently the use 

of these parameters as inputs for the reconstruction of the phase space.  Section 7.2.1 

illustrates the computation of the delay time from the autocorrelation method, whilst 

Section 7.2.2 deals with the embedding and correlation dimensions.  Finally, this chapter 

explored the use of the Lyapunov exponent to determine the dynamic state of a non-linear 

system.  The discussion in this chapter underpins the research presented in the remaining 

chapters of this thesis.  The next chapter discusses the methodology for this research work 

in entirety.  It sets out how the contents of this chapter fits within the overall process, the 

development of computer programming codes to accelerate the delivery of this work, and 

the types of analyses undertaken to achieve the research aims and objectives.   
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Chapter 6. Methodology for the Research Study 

6.1 Introduction  

In order to answer the research questions, it is important to identify the appropriate research 

techniques as well as the systematic procedures that are required to implement these 

techniques.  It is important to understand for example, why the choice of a particular dataset 

will be more suitable among the options available, and why the particular analysis 

techniques for the data were chosen, and in addition, what are the appropriate models to 

use and how to interpret effectively their outputs.   

This chapter therefore follows on from the introduction to Chaos Theory in the preceding 

chapters, and describes how the literature review has enabled the formulation of this 

research methodology.  The data used in the research through to the systematic 

development of the programming codes are described, and the types of analysis used to 

explore how Chaos Theory might facilitate the management of traffic congestion in 

signalised urban networks are elaborated upon.   

Section 6.2 provides a brief description of the study network in the context of the local area.  

Section 6.3 describes the types of traffic data and their sources for this work.  It summarises 

the traffic data in the SCOOT database and discusses why the network analyses were based 

on the 1999 data.  Further, it describes the process of repair, interpolation and 

synchronisation to account for missing data.  Section 6.4 summarises the type of descriptive 

statistics used to explore the data.  Section 6.5 describes the modelling steps for deploying 

Chaos Theory focussing on the process of calculating the lags, embedding dimension, 

correlation dimension, and the Lyapunov exponents, and how the preliminary model was 

tested using noise and subsequently flow and occupancy data (from a single link) and 

subsequently the extension to a network of interconnected links.   

In order to make the modelling process easy to understand, Section 6.6 describes the chaos 

algorithms and presents a pseudo code of the Microsoft C# programs, which are more fully 

covered in Appendix A.  Section 6.7 describes the analysis of the Lyapunov exponents, 

based on the curve fitting using the LOWESS approach (see Section 6.7.1) and 

subsequently the derivation of relationships using cross-correlation techniques.  Section 6.8 

describes the spatial and temporal analysis of the network by using the Lyapunov exponents 
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(derived from flow data) to develop a multiple regression model for predicting the 

occupancy of the network links.   

6.2 Study Area 

The study area is located in Leicester, a city and unitary authority area in the East Midlands 

of England, and the county town of Leicestershire.  The city lies on the River Soar and at 

the edge of the National Forest.  Currently the largest unitary authority in the East midlands, 

the population of the Leicester Unitary Authority was 330,000 according to the 2011 

census.  The city is located at the intersection of the north/south Midland Main Line and 

east/west Birmingham/Leicester/Cambridge CrossCountry railway lines, to the south of the 

A46 and east of the M1/M69 motorways intersection, and west of the confluence of the A6 

and A47 trunk roads.   

The map in Figure 6.1 shows the location of the study area, which is the Welford Road 

SCOOT Region (Region KA), in relation to the local road network in Leicester City, which 

is to the south of University of Leicester.  This network is approximately two kilometres in 

length and includes 10 signalised junctions incorporating 40 network links.   

 

Figure 6.1: Network Layout – Welford Road SCOOT Region, Leicester 

Welford Road 

SCOOT Region KA 
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Figure 6.2: Schematic Diagram of the Welford Road SCOOT Region (“Region KA”), Leicester1

                                                 

1 Based on Schematic Drawing for SCOOT Region KA – Welford Road (dated 8th April, 2004) with permission of Leicester City Council 
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Figure 6.2 shows the schematic layout of the SCOOT Region KA.  The traffic data available 

from the SCOOT Region KA network is analysed in detail in Chapter 8 and Chapter 9.  

Table 6-1 provides details of the actual SCOOT link identifications, which were re-labelled 

as 1, 2, 3…40 (link IDs) for ease of reference in this research.   

Link 

IDs 

SCOOT 

IDs 

Link 

IDs 

SCOOT 

IDs 

Link 

IDs 

SCOOT 

IDs 

Link 

IDs 

SCOOT 

IDs 

1 09111A1 11 09131N1 21 09221R1 31 09231N1 
2 09111B1 12 09145B1 22 09221R2 32 09231P1 
3 09111C1 13 09156I1 23 09221S1 33 09241A1 
4 09112R1 14 09191A1 24 09221T1 34 09241B1 
5 09131I1 15 09191A2 25 09221U1 35 09241C1 
6 09131I2 16 09191B1 26 09221V1 36 09241D1 
7 09131J1 17 09191C1 27 09231I1 37 09253V1 
8 09131K1 18 09191D1 28 09231J1 38 09253W1 
9 09131L1 19 09191D2 29 09231K1 39 09283A1 

10 09131M1 20 09191E1 30 09231L1 40 09283B1 

Table 6-1: Look-up Table for Relabelled Link Numbers 

6.3 Data Types & Acquisition  

Traffic analysis requires measured observations of key variables of vehicular traffic over 

both space and time, and depending on the data type, may provide an indication of the level 

of traffic in the traffic stream (May, 2005, Wardrop, 1952).  The variables that describe 

traffic in a stream include flow, density, concentration, spacing (or space headway), speed 

and travel time were described in detail in Section 2.4.  In this research, the data sources 

were limited mainly to flow and occupancy from SCOOT inductive loop detectors, but 

noise data from motes were used for the preliminary testing of the models.  Flow and 

occupancy data were available from SCOOT inductive loop detectors.   

Flow (denoted as 𝑞 (𝑣𝑒ℎ 𝑠⁄ )) is the number of vehicles(𝑛𝑡) passing a point in one lane for 

a period (𝑡).  In Mathematical terms, flow is given by 𝑞 =  
𝑛𝑡

𝑡
. Occupancy is the proportion 

of time that a loop is occupied by a vehicle (or detects the presence of a vehicle) (Hazelton, 

2004).  This is computed as the sum of the time intervals that a detector is covered by a 

vehicle divided by the observational period (𝑇).  In SCOOT, a unit time interval is 0.25 

seconds given that the sampling rate is SCOOT detectors is 4Hz.   
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6.3.1 Data Sources  

Data 1 is a minute-by-minute dataset from 20 mote sensor locations in Medway (in Kent) 

for April, May, June and July 2011.  Data 2, 3, 4 and 5 comprise 1, 10, 20, 30, 60 and 120 

seconds resolution flow and occupancy data from the Leicester SCOOT system.  The 

preliminary research used Data 1, 2 and 3 only.  Data 2 and 3 is data for a single loop 

detector used for the preliminary testing of the procedures of Chaos Theory (together with 

Data 1) before applying Data 4 and 5 to the network of spatially and temporally connected 

loops in the SCOOT network in Leicester (see Figure 6.2).   

It is important to note that Leicester is one of UK instrumented cities, where the Institute 

of Transport Studies (ITS) at Leeds University has been accumulating and archiving traffic 

and environment data in support of its research activities.  The Leicester data sets cover the 

period from 1987 for SCOOT messages and since 1997 for pollutant levels and 

meteorological conditions until 2011 (Bennett et al., n.d.).   

The Leicester SCOOT database provided flow and occupancy data compiled for the study 

area for 1998-2011.  For the SCOOT system data, it is possible to identify missing data 

sections.  The missing data was typically attributable to incidences such as faulty loops, 

maintenance issues or system failures.  The most conspicuous being in 2010, where all data 

were unavailable.  However, data were available for all months in 1998, 2001, 2002, 2003 

and 2004; 11 months of data was available for 1999, whilst for the remaining years the 

number of month available varied but there was at least one full month of data.   

The Leicester SCOOT database provided flow and occupancy data compiled for the study 

area for 1998-2011.  For the SCOOT system data, it is possible to identify missing data 

sections.  The missing data was typically attributable to incidences such as faulty loops, 

maintenance issues or system failures.  The most conspicuous being in 2010, where all data 

were unavailable.  However, data were available for all months in 1998, 2001, 2002, 2003 

and 2004; 11 months of data was available for 1999, whilst for the remaining years the 

number of month available varied but there was at least one full month of data.   

In order to select the appropriate data (measured by the amount of missing data in the 

observations) from the database, an assessment of the monthly capture rate of the recorded 

data was carried out to determine the data quality.  For the purpose of this exercise, the 

capture rate of the on-road SCOOT detectors was defined as the ratio of the number of 
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recorded to the number of expected data points.  The summary of this assessment is 

presented in Table 6-2 and indicates that the capture rate ranged between 1% (June 2007) 

and 93% (September 2011).  The normality test at 5% significance level of the ratios gave 

a significant p-value of 0.03 indicating that the distribution is not normal.  The statistics are 

median 59%, whilst the first and third quartiles are 40% and 73% respectively.   

 Number of Recorded Data Points (%) 

 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2011 

Jan  51 81 59 40 41 58 47 41 28 - 78 43 - 

Feb 29 89 - 78 49 66 84 - 28 - - 47 - 

Mar 69 81 - 60 65 52 48 26 62 38 - 37 - 

Apr 71 79 - 68 59 37 61 58 - 32 - 21 - 

May 57 77 67 84 74 39 34 - 21 28 - 12 - 

June 65 81 48 81 86 46 66 - 65 23 28 32 3 

July 62 81 54 69 75 50 78 - 45 1 32 6 73 

Aug 68 46 45 74 78 73 42 71 35 17 40 - - 

Sept 69 73 89 63 83 93 65 40 43 - 51 18 93 

Oct  76 35 85 49 70 74 74 30 44 61 47 - - 

Nov 75 50 63 55 79 43 27 64 17 62 62 32 - 

Dec 76 - 48 40 48 40 36 55 - 59 59 - - 

Table 6-2: Monthly Breakdown of the Capture Rate of SCOOT Flow and Occupancy Data (Data 

2, 3, 4 and 5) (1998 – 2011) 

In this work, the selected baseline for quality of the data is the upper 75th percentile; 

therefore, the sampled months used in this work are of at least 75% capture rate.  This figure 

was based on assessing the effect of missing data on the total daily flow using SCOOT data 

for link 1, sampled at 20-seconds intervals for the entire day on 1st January 1999. In this 

exercise, a random number generator function in Excel software was used to remove 

missing data from the complete data in increasing steps of 1.25%.  For each missing datum, 

the ratio of the standard deviation to the mean was computed (see Figure 6.3).  The curve 

shows a gradual change in ratio from the lower end, which rises sharply from when the 

missing data are about 25%, and peaks at about 60% and falls away afterwards.  The results 

suggest a consistent change in ratio when the proportion of missing data in the sample is 
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less than 25%.  Therefore, applying data of a capture rate of at least 75% was satisfactory 

for this research work.   

 

Figure 6.3: Graph of the Ratio of Standard Deviation and Mean against Missing Data 

The assessment of the capture rate helped to establish a reasonable (statistical) basis for 

identifying suitable datasets for the research work by focussing mainly on datasets of high 

capture rate and therefore (relatively) minimal amounts of missing information.  The year 

1999 was found to have the highest number of qualifying months (against the prescribed 

criteria of more than 75%) with continuous data from January to July.  Therefore, the 

relevant months in the 1999 datasets were analysed in this research.  A summary description 

of the data sources studied in this research is given in Table 6-3.   

Data ID Data Type Year Data Source 
Stage in Research Data 

was Applied  

Data 1 Noise 2011 Motes in Medway Preliminary  

Data 2 Flow 1999 Leicester SCOOT System Preliminary  

Data 3 Occupancy  1999 Leicester SCOOT System Main  

Data 4 Flow 1999 Leicester SCOOT System Main  

Data 5 Occupancy 1999 Leicester SCOOT System Main  

Table 6-3: Summary Description of the Data Type and Sources 
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6.3.2 Data Repair/Interpolation 

In order to enhance the data quality for the analysis, it was necessary to fix the missing 

information.  However, this must not compromise the integrity of the data structure itself 

(which would consequently be of no use for chaos analysis), which is very likely if a high 

degree of repair was required.  As demonstrated above, the choice of the 75th percentile 

was appropriate.  Each data point recorded by the SCOOT system will also include a 

“period” variable that will state the time between subsequent measurements (which 

determines the current measurement frequency as the inverse of the period) of that 

particular message.  By analysing the time stamp of subsequent messages it was possible 

to identify missing data points within the overall data set.   

There are two options to address the problem of missing data points:  

1. Ignore the missing data:  This is normally only possible when any subsequent 

analysis does not rely on a complete data set with which to work.  Typically, this 

would be analysis requiring aggregate statistics.  For example, the average 

occupancy over a one-hour period will not need a complete data set and can provide 

a result with acceptable level of accuracy even with very patchy data, assuming no 

systematic bias is embedded in the missing data.   

2. Interpolation:  This is the most frequently used process when the subsequent 

analysis is reliant on complete data and therefore estimates of the missing data will 

be required.  This research required complete datasets making the data interpolation 

option essential.   

For the initial run of this work, interpolation of the data was undertaken using a simple 

linear interpolation between the two measured data points on either side of the missing data.  

The justification for this simple interpolation is two-fold:   

1. The missing data is typically random and infrequent; therefore, a simple linear 

interpolation is expected not to drastically affect the results.   

2. The amount of data that will need to be checked and then subsequently rewritten in 

a repaired format is extensive.  Therefore, a more sophisticated interpolation (for 

example, LOWESS (see Section 6.7.1)) will increase the time for the data repair 

quite substantially.   
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6.3.3 Synchronisation 

Although SCOOT data is collected at a known frequency (as logged by the “Period” 

variable in the messages reported by the SCOOT system), this frequency is not necessarily 

homogeneous across the entire SCOOT network, or indeed within the same SCOOT link 

at different time periods.  Typically, the SCOOT data is logged either at a frequency that is 

determined by the current state of the traffic system typically cycle-by-cycle data 

consolidation or at a fixed pre-set time usually five minutes.  This is not a problem as most 

SCOOT analysis takes place at the aggregate level (five minutes, for example) so the non-

synchronised data (both in terms of phase and absolute time) does not affect the analysis.  

However, for the chaotic analytical techniques it is necessary for the data to be both 

synchronised in phase and absolute time.  The sampling interval for the detectors must be 

homogenous across the network.   

Therefore, the data stream has also been manipulated so that each SCOOT cycle is 

completely synchronised.  In order to accomplish this the data have been processed in a 

similar fashion to that used to repair missing data (see Section 6.3.2).  A measurement time 

period was chosen such that the interpolation measurement cycle was a divisor of both the 

phase and the absolute time of the real world data.  The algorithm then interpolates between 

each measured pair, creating and inserting new data points and time periods so that there 

exists a continuous periodic data set for all of the SCOOT data that is being currently 

analysed.  The time period chosen in general is typically the longest suitable time-period, 

which may be different for each dataset investigated.   

Again, as with repairing the data, the algorithm used is quite simplistic but has the 

advantage that large quantities of data may be processed between different time periods 

and different SCOOT links can be easily compared.   

6.4 Analysing the Raw Data  

The descriptive statistics (i.e. mean, median and standard deviation) were derived and 

found useful to gain understanding of the datasets and to compare parameters across the 

independent links.  This initial assessment of the traffic data included generating 

visualisations of the data such as boxplots, time series plots and histograms that helped to 

visually identify possible extreme values in the datasets.  Furthermore, this initial analysis 
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assisted in identifying the normality of the datasets and thus to determine whether a 

parametric or non-parametric test was suitable for the statistical scrutiny of the datasets.   

The computed delay (lag) times of the datasets were used to investigate whether or not 

relationships exist between other metrics and whether the lag times of the respective 

datasets also revealed possible trends (see Section 8.3.2.  The importance of this step was 

to determine whether it was possible to evaluate the lag times directly from the calculated 

metrics of the datasets or whether there was evidence of autocorrelation in which case 

alternative approaches were needed as described in Section 5.5.2.  The next section sets out 

the procedure in using Chaos Theory to analyse road traffic data.   

6.5 Modelling the Process 

The flow chart of the methodological process included in Figure 6.4 gives an overview of 

the relationship among the key tasks undertaken to achieve the research aims and 

objectives.  Figure 6.4 also demonstrates how the preliminary investigations carried out 

feeds into the main research.   

6.5.1 Preliminary Research 

The first step was to translate the mathematical equation supporting the key stages into 

algorithms for coding in Microsoft C# program language.  All the program codes are 

included in Appendix A (Program 1, Program 2 and Program 3 are codes for the 

autocorrelation lag, embedding and correlation dimension, and Lyapunov exponent 

respectively).  The purpose of the programs are to provide a quick and efficient way to 

undertake the iterations of the mathematical formulae of Chaos Theory.   

Once completed, the model was checked, calibrated and validated at the preliminary 

research stage using noise data from a network of motes in Medway, Kent (Data 1) and a 

secondary data source of SCOOT flow and occupancy from a single link (Data 2 and 3 

respectively).  This process was important for establishing a reasonable range of values to 

derive variables such as the optimum lag time, embedding dimension, maximum 

separations in phase space, etc.   
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Figure 6.4: Flow Chart of the Methodological Process 
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In order to achieve this, the initial runs of the model tested several ranges for these 

parameters in the form of a jagged array.  The process identified that traffic noise, for 

example, required an embedding dimension range of 5-10 (see Section 7.2.2), whilst 

SCOOT variables were of a lower dimension of 2-3 (see Section 7.3.2).   

Moreover, a range of lags of durations between 0-1000 steps (appropriately 0-333 minutes) 

was reasonable for the model runs when computations of autocorrelation coefficients are 

required.  This suggests that the optimal lag for a time series of SCOOT data sampled at 20 

seconds interval was more likely to fall within this range.  This was the conclusion from an 

initial assessment of 10 lag ranges between 0-5000 (see Program 1 in Appendix A).   

The profiles of the Lyapunov exponents extracted from the outputs of the models were 

useful to identify the dynamic states of the signalised urban road network.  The results were 

able to distinguish between free-flow, steady and chaotic traffic conditions in the urban 

network.  The model tested various sampling frequency of 1, 10, 20, 30, 60 and 120 seconds 

of flow and occupancy SCOOT data (Data 2 and 3 respectively).  The profile of the 

Lyapunov exponent showed no visible structure at the lower and upper ends of the range, 

whilst a 20-second sampling frequency showed an underlying structure and proved a 

suitable range for assessing chaos (see Section 7.3.3).  These conclusions shaped the next 

step of expanding the modelling work to cover the SCOOT network of interconnected 

signalised links within the study area in the main research.   

6.5.2 Main Research 

In the main research, the computer programs were used to investigate an entire network of 

SCOOT links in order to identify whether chaos is an isolated phenomenon or an 

occurrence across a network of flows on links spatially and temporally connected in the 

urban environment.  The area studied was described in Section 6.2.  The construction of 

the network model was fundamental to the understanding of chaos and the extent of chaotic 

behaviour in the SCOOT network.  Data 4 and 5 were used at this stage, which included 

seven monthly cohorts of flow and occupancy data chosen based on the 75th percentile 

capture rate that were analysed.  The cohorts are January, February, March, April, May, 

June and July 1999.  The results of the network models are discussed in Chapter 8 and 

Chapter 9.   
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6.6 Coding of the Modelling Stages  

6.6.1 General 

The purpose of the program is to provide a quick and efficient way to undertake the 

iterations of the mathematical formulae of Chaos Theory.  All the program codes are 

included in Appendix A (Program 1, Program 2 and Program 3 are codes for the 

autocorrelation lag, embedding and correlation dimension, and Lyapunov exponent 

respectively) but some extracts are included in the text here for ease of reference.  Each of 

the programs are capable of dealing with an arbitrary number of files, undertaking specific 

calculations and storing the outputs to a designated location for further (or detailed) 

analytical processing.   

Once the program starts to run, a folder browser prompts the user to select the data folder.  

The program selects in a chronological order according to the filenames all the files in this 

location.  Then, all each file is written as a text file for subsequent calculations.  Next, the 

user must specify the start and end date as well as the time intervals of the time series of 

flow and occupancy data.  The program reads and splits all the lines of data within a 

prescribed interval with each line occupying a dedicated row with all data in the cell 

separated by a comma.  This process continues until the selection of all the data within the 

range is completed or the next line is empty.  In the case of the SCOOT data, for example, 

the order of the data is: Link ID, 𝑑𝑎𝑡𝑒, 𝑡𝑖𝑚𝑒, 𝑟𝑒𝑓𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑎𝑛𝑑 𝑓𝑙𝑜𝑤 

respectively.  The flow chart in Figure 6.5 illustrates this process.   

 

Figure 6.5: Initial Steps Algorithm for Opening and Reading Files in a Designated Folder 

6.6.2 Time Delay or Autocorrelation Lag (ACL) 

Given that the optimum lag is unknown, the results of an initial assessment using a number 

of arbitrary ranges of delay time is undertaken in order to identify a suitable range for 

further analysis.  The initial run of the tested a range of 10 sets of delay times to determine 
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the optimum estimate of the delay time corresponding to an autocorrelation of 0.4, but the 

analyses concluded that the acceptable data range of 0-1000 for flow and occupancy (and 

0-500 for noise) data for this research (as indicated previously in section 6.5.1).  The delay 

times were stored in a jagged array.  The algorithm is illustrated in Figure 6.6.  On 

completion of the model runs, the outputs were analysed based on correlograms, which are 

graphical plots of autocorrelation versus the lagged time.  According to the available 

literature, the optimum delay time corresponds to the solution for the autocorrelation at 0.4.   

 

Figure 6.6: Generic Algorithm for Calculating the Delay Time 
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6.6.3 Phase Space Reconstruction  

By using the optimum lagged time, the program code for Stage 2 translates a one-

dimensional time series into any arbitrary 𝑛-dimensional phase space.  Given that the actual 

dimension is unknown, there is a systematic trial of the dimension number to evaluate the 

correlation and embedding dimensions.   

Figure 6.7 illustrates the generic code for constructing the phase space, which shows that 

an observation 𝑋(1) translated into a 5-dimensional phase space will have its 1st, 2nd, 3rd, 

4th and 5th components as 𝑥(1), 𝑥(1 + 𝜏), 𝑥(1 + 2𝜏), 𝑥(1 + 3𝜏) and 𝑥(1 + 4𝜏) 

respectively, where 𝜏 is the length of the lag (calculated in stage 2).  The components are 

variables i, 𝑗, 𝑘, 𝑙 and 𝑚 respectively.   

 

Figure 6.7: Generic Algorithm for the Phase Space Reconstruction Process 

The observation recorded at the positions corresponding to i, 𝑗, 𝑘, 𝑙 and 𝑚 in the data series 

are then selected for the construction of the phase space.  Given that all of the individual 

components making up the coordinates will correspond to a specific numeric observation 
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in the dataset, the transformation identifies each observation as an exact point in the phase 

space.  The next step was to use the reconstructed phase space to determine the embedding 

and correlation dimensions and subsequently the instantaneous Lyapunov exponents.   

6.6.4 Embedding Dimension  

Figure 6.8 is flow chart of the generic algorithm used for calculating the embedding and 

correlation dimensions.   

 

Figure 6.8: Generic Algorithm for Determining the Embedding and Correlation Dimensions 
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Equation 5-10 provided the algorithm to code the program for the calculation of the 

embedding and correlation dimensions using pre-selected values of the embedding 

dimension (𝑚) and set distances (𝑟).  The program investigated a combination of 𝑚 and 𝑟 

values of between 1 and 10, and 2 and 15 respectively.  In the ensuing code for an assumed 

5-dimensional phase space for example, the distance between two points along each axis is 

𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝑟5 respectively.  The variable 𝑟𝑛 represents the actual separation, which is 

input into evaluating the Heaviside function (Equation 5-11).   

The outcome of the correlation function 𝐶2(𝑟, 𝑚) for the all m-values is stored, and finally 

the saturated embedding and correlation dimensions calculated from the m-curves given by 

the plot of ln 𝐶2(𝑟, 𝑚) against ln 𝑟 using the Grasberger-Procaccia (G-P) algorithm method 

(see section 5.6.2).  This will be used in the analysis and will be revisited in Sections 7.2.2 

and 7.3.2.   

6.6.5 Lyapunov Exponent  

The program code for the instantaneous Lyapunov Exponent is consistent with Equation 

5-18.  In the generic code illustrated in Figure 6.9, the separation between a point and 

neighbouring points in phase space is calculated for every point in the phase space.   

Next, the average separation with points less than a certain maximum distance, and the 

average time interval, is calculated and stored.  An initial separation between points is 

assumed for the phase space, and the logarithmic term of Equation 5-18 calculated as the 

ratio of the mean separation and the initial separation, which is divided by the average time 

to give the instantaneous Lyapunov exponent.  This will be used in the analysis and will be 

revisited in sections 7.2.3 and 7.3.3.   
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Figure 6.9: Generic Algorithm for Calculating the Instantaneous Lyapunov Exponent  

6.7 Network Status Analysis  

The instantaneous Lyapunov exponents output for all links in the network for each 20-

second interval for a 24-hour duration from midnight were calculated resulting in a matrix 

of dimension 4320 x 32 for each day.   

The chaotic state of the network was identified, with reference to the sign of the 

instantaneous Lyapunov exponents, by identifying the number of links indicating a 

‘positive’, ‘zero’ and ‘negative’ Lyapunov exponent at each sampling interval.  The profiles 

of the positive Lyapunov exponents were subsequently analysed with the assumption that 

they were the main indicator of chaos (see Section 8.6).  For each cohort, the daily positive 

Lyapunov exponents were summarised at the weekly and same day of the week (“same 
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weekday”) levels across the entire month.  The weekly analysis included profiles in the 

same week from Monday to Sunday, whilst the “same weekday” comprised, for example, 

all-Mondays, all-Tuesdays etc.  A fitted curve over the summarised data helped to 

understand the propagation of chaos in the network and identified the critical number of 

links exhibiting chaos characteristics that signal the onset of congestion (see Section 8.6.3).  

Finally, the data were also analysed to assess the degree of correlation among the pairs of 

the daily positive Lyapunov exponents.   

6.7.1 LOWESS (LOc WEighted Scatterplot Smoothing)  

A fitted curve using the LOWESS mathematical procedure over the occurrence of the 

positive Lyapunov exponents helped to determine the distributions of the positive 

Lyapunov datasets whilst minimising the influence of the noisy components of the system.  

LOWESS is a non-parametric regression where, unlike a ‘standard’ linear regression 

analysis, there is no assumption that the form of the relationship is a straight line.  It depicts 

the ‘local’ relationships between two variables over parts of their range, which may 

generally tend to differ from the ‘global’ relationship determined from the entire datasets.  

The Minitab LOWESS fitted curves over the data points in the sample explores the 

relationship between two variables without the need for a particular function and the only 

specification required being the degree of the polynomial and smoothing parameter value.  

In this research, the LOWESS regression procedure was used to explore differences and 

similarities for datasets over a day, from day to day and weeks.   

6.7.2 Correlation Coefficient  

Equation 6-1 is the mathematical formula for calculating the correlation coefficient between 

any two variables (𝑥 and 𝑦).  The coefficients provides a measure of the degree and type of 

relationship between two variables, and the squared value gives a ratio of the explained to 

the total variation in the data.  The correlation coefficient (𝑟) of +1, 0 and -1 respectively 

means there is ‘perfect correlation’, ‘no correlation’ and ‘perfect negative correlation’.   

𝑟 =  
∑ (𝑥𝑖 − 𝑥̅) (𝑦𝑖 − 𝑦̅)𝑖

[[√∑ (𝑥𝑖 − 𝑥̅)2
𝑖 ][√∑ (𝑦𝑖 − 𝑦̅)2

𝑖 ]]
 

 

Equation 6-1 

where:  

 𝑥𝑖 and 𝑦𝑖 are observations at time instant 𝑖 of variables 𝑥 and 𝑦 respectively 

 𝑥̅ and 𝑦̅ are the mean values of variables 𝑥 and 𝑦 respectively. 
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By using the correlation coefficients, the weekly and same weekday profiles were analysed 

according to the following four scenarios, which were formulated to understand the patterns 

of the frequency of occurrence of chaos across the entire network of interconnected links:  

1. Scenario A1: All the paired combinations of the “same weekday” for Monday, 

Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday across the month.  

For example, the correlation coefficient for Monday 1st February against Monday 

8th, 15th, and 22nd February.  Similarly, the coefficient for Tuesday 2nd February 

against Tuesday 9th, 16th and 23rd February etc.   

2. Scenario A2: All the paired combinations of each day versus the average profile 

for its corresponding same weekday.  For example, the correlation coefficient of 

the profile for Monday 1st February 1999 against the average Monday profile for 

the month of February.  Similarly, the coefficient of the profile for Tuesday 2nd 

February 1999 against the average Tuesday profile for the month of February etc.   

3. Scenario A3: All the paired combinations of each day versus its corresponding 

average weekly profile.  For example, the correlation of Monday 1st and Tuesday 

2nd February each against the average profile for 1st–7th February.  Similarly, the 

correlation of Monday 8th and Tuesday 9th February against the average profile for 

8th – 15th February.   

4. Scenario A4: All the paired combinations of the average profile of the seven “same 

weekday” analysed.  For example, the correlation of the average profile for 

Mondays against the average profile of Tuesday, Wednesday, Thursday, Friday, 

Saturday and Sunday etc.   

6.7.3 Determining the Longest Lag 

The Cross-Correlation function is simply the linear correlation function expressed as a 

function of the time lag.  The Cross-Correlation helps to find the value of the shift that 

maximises the correlation coefficient.  The cross correlation 𝑟 at delay 𝑑 is defined as: 

𝑟 =  
∑ (𝑥𝑖 − 𝑥̅) (𝑦𝑖−𝑑 − 𝑦̅)𝑖

[[√∑ (𝑥𝑖 − 𝑥̅)2
𝑖 ][√∑ (𝑦𝑖−𝑑 − 𝑦̅)2

𝑖 ]]
 

 

Equation 6-2 

where:  

 𝑥𝑖 and 𝑦𝑖 are observations at time instant 𝑖 of variables 𝑥 and 𝑦 respectively 

 𝑥̅ and 𝑦̅ are the mean values of variables 𝑥 and 𝑦 respectively.   
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The Cross-Correlation helps to find the value of the shift that maximises the correlation 

coefficient.  For any range of 𝑑 values, the lag is given by the 𝑑-value with the highest 

correlation coefficient.  This value is the cross-correlation lag (CCL).  Normally, the 

function evaluates the lag as negative because it measures the relationship between time 

series of variable 𝑥 (first variable) and the past time series of variable 𝑦 (second variable).   

The following steps, also coded in R in Appendix B (see program 1), were used to 

determine the combination of variables that gave the longest lag: 

1. Calculate the cross-correlation for all the possible pairs of the hourly flow across 

all detectors in the network.   

2. Select the highest lag associated with the highest correlation coefficient for every 

hour for each link.  

3. Calculate the average lag for every link for every hour of the day.  

4. Repeat step 1 through to 3 for flow-flow, occupancy-occupancy, Lyapunov 

exponent- Lyapunov exponent, occupancy-Lyapunov exponents and Lyapunov 

exponents-occupancy.   

5. Calculate the percentage increase of lag for flow-flow, occupancy-occupancy, 

occupancy-Lyapunov exponent and Lyapunov exponent-occupancy over the 

Lyapunov exponent-Lyapunov exponent.   

It must be noted that the cross-correlation lags are different from the autocorrelation lags.  

The study identified cross-correlation lags in the order of minutes and the autocorrelation 

lag in hours.  The algorithm above is based on the cross-correlation analysis, which gives 

shorter lags.  However, the sampling interval of one hour is more related to the standard 

practise in traffic studies, where it is normal to study traffic in hourly segments to identify 

for example peak hour or inter-peak etc. 

6.8 Short-term Link Predictions  

Sections 9.4 and 9.5 are devoted to the spatial analysis and short-term prediction of the 

network links.  In order to facilitate the process, an R program was developed to undertake 

the tasks outlined in Sections 6.7.3 and below, as well as for additional procedures for the 

short-term link forecasts.  The algorithms below suggests that the dynamic model has the 

ability to determine a unique function for forecasting each link for each hour in the day (for 
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all days in each cohort) depending on the qualifying links meeting a specified criteria for 

lags and correlation coefficient.   

A translated version of the program is described below for ease of understanding of the key 

steps, whilst the full R program is included in Appendix B (see Program 2).  The steps are:  

1. To create files to store the monthly data of the network links in columns and 

grouped under flow, occupancy and Lyapunov exponent respectively.   

2. To select the file of data for a specific month for modelling each link.   

3. To identify the model lag, which specifies the range of the data for testing of the 

regression of the model.   

4. To create a day to carry out the modelling exercise.   

5. To create two empty matrices one for the predicted and the other for the actual data 

to compare for the links for the chosen day.  The matrices are labelled ‘full_pred’ 

and ‘full_test’ respectively.   

6. To choose the occupancy data for every link one-by-one, and for each selected link 

process the data hour-by-hour.   

7. To create two blank matrices labelled ‘mlag’ and ‘mcor’ in which to store the lag 

and maximum correlations respectively, from a cross-correlation assessment.   

8. To perform cross-correlation of the chosen link’s hourly occupancy data and the 

Lyapunov exponent data of all other links.   

9. Repeat step 8 by varying the two datasets depending on what is being predicted and 

the data used.  The scenarios analysed are presented in section 6.8.1.  

10. To select the maximum correlation coefficient and corresponding cross-correlation 

lag (CCL) and insert into matrices ‘mcor’ and ‘mlag’ receptively.   

11. To repeat the exercise for all 24 hours in the chosen day for all 40 links.   

12. To select from the data generated for each link for every hour, the links with 

correlation coefficient and lag values meeting a specified criteria.   

13. To repeat step (11) above for all scenarios adjusting the specified criteria (see 

Section 6.8.1) appropriately.   

14. To construct a regression model for each link for every hour using the appropriately 

lagged data of Lyapunov exponents of the links that passed the criteria to forecast 

the link occupancy.   
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15. To test the constructed models for a number of scenarios, which are described in 

detail in Section 6.8.1.  The scenarios vary in terms of the assigned critical values 

of correlation coefficients and lags, and the selected links for predicting the lane 

occupancies.   

16. To modify the model lag appropriately depending on the forecast horizon in order 

to choose the test data.   

17. To insert the test data for each link for every hour into a new matrix called 

‘full_test’, which stores all the daily predictions for the links at the required 

resolution (i.e. sampling frequency of the data).   

18. To insert the lagged test data in the regression model in order to predict the link 

occupancy.   

19. To insert the predicted data for each link for every hour into a new matrix 

‘full_pred’, which stores all the daily predictions for the links at the required 

resolution.   

20. To calculate the coefficient of regression for the linear relationship between the 

‘full_pred’ versus ‘full_test’.   

6.8.1 Modelling Scenarios  

In order to test the model, the Lyapunov exponents from a preceding time segment (based 

on the lag) were input into the model, and the model used to predict the occupancy for a 

succeeding time segment.  The scenarios were developed to assess the suitability of 

predicting the link occupancy from the Lyapunov exponents rather than the occupancy data.  

The five scenarios tested are:  

1. Scenario B1 predicts the hourly occupancy profile 24 hours ahead (for 

example, Lyapunov exponent (LE) data from 0700h-0800h is used to construct 

the model, then the next day 0700h-0800h LE data is selected to forecast the 

0700h-0800h occupancy).  The “specified criteria” for the “selected links” is 

maximum correlation coefficients and lags greater than 0.4 and 100 seconds 

respectively.  

2. Scenario B2 predicts the hourly occupancy profile 15 minutes into the next 

hour (for example, LE data from 0700-0800 is used to construct the model, then 

the 0715-0815 LE data is selected to forecast the 0800-0815 occupancy).  The 
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“specified criteria” for the “selected links” is maximum correlation coefficients 

and lags greater than 0.4 and 100 seconds respectively.   

3. Scenario B3 is same as Scenario B2, except that occupancy data in used instead 

of LE data.   

4. Scenario B4 is same as Scenario B2, except that the threshold criteria for the 

“selected links” for the maximum correlation coefficient is greater than 0.7(only 

the stronger coefficients).   

5. Scenario B5 is same as Scenario B2, except that the threshold criteria for the 

“selected links” for the maximum correlation coefficient is greater than 0.3 

(inclusive of the weaker coefficients).   

6.9 Spatial Analysis 

The cross-correlation analysis helps to understand the relationship between the causes of 

events and corresponding spatial effects on the network.  By using the cross-correlation 

function, it was possible to determine the spatial impacts of events at one location by an 

indication of the strength of the relationship with other locations of influence and the 

duration interval over which the effects occur.  This analysis is presented in section 9.6.  In 

brief, each link is cross-correlated with all other links in the network.  That is, if there are 

links 1, 2, 3 … 40, link 1 will be cross-correlated with all the other 39 links, then link 2 

with the other 39 links, and so on. 

The process involved in assessing the spatial impacts of how activities at one location relate 

to another location in the network is as follows:  

1. Calculate the cross-correlation for the hourly Lyapunov exponents across all 

detectors in the network.   

2. Summarise the analysis for each hour giving two 32 x 32 matrices for (i) maximum 

correlation coefficient and (ii) corresponding lag times.  There are therefore 24-

paired matrices for the correlation coefficient and the corresponding lagged times 

for each day.   

3. Focus only on the correlation coefficients that are significant by using a threshold 

of significance for the correlation coefficient set as a minimum of 0.4 and extract 

the qualifying links meeting this criteria together with the corresponding lagged 

times, for those “upstream links” (links gaining right of way) and their “feeder 

links” (preceding links losing right of way).   
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4. Identify the most critical link in the network, which is the links among those gaining 

right of way that has the highest number of correlations to those losing right of way.  

The critical link has wider spatial impact, whilst the range of lagged time gives an 

indication of the window of opportunity to fix network problems ahead of real-time.   

6.10 Conclusions 

The methodology for undertaking the research requires analysis of an extensive amount of 

traffic data and involves several iterations of the steps enumerated in this chapter (see 

Sections 6.6, 6.7 and 6.8).  Therefore, it is important to process each individual step by 

coding in either Microsoft C# or R program in order to process the analyses quicker, 

minimise the time demands of the user and systematically iterate through the steps as the 

number of iterations required is not feasible to achieve manually.  The necessity of the 

programming aspects of the work confirm that the computer is an indispensable tool for 

analyses deploying Chaos Theory endorsing the literature review (see Section 4.3.2)   

Given the general lack of normality in the distribution of the raw data and output of the 

models, non-parametric tests (including Mood’s Median, Mann-Whitney and Kruskal-

Wallis) were used in the analysis when exploring relationships and to determine the 

statistical significance of the results.  These were mainly undertaken using Microsoft Excel 

and Minitab, which were also used for displaying descriptive statistics, regression analysis, 

time series plots as well as graphical displays such as scatterplots, bar charts, boxplots and 

histograms.   

Therefore, this chapter has set out the rationale for the proposed methodology for this 

research work.  Consequently, in subsequent chapters, this methodology is applied to flow 

and occupancy data for a SCOOT controlled region in Leicester (Data 4 and 5).  Prior to 

the study of this network, data including noise from motes (in Medway) (Data 1) and flow 

and occupancy (of a single link located in Leicester) (Data 2 and 3) were tested in order to 

ascertain the performance of the models, determine the requirements for selecting the 

research data, and to enhance understanding of the key parameters of Chaos Theory.  

Therefore, Chapter 7, which begins Part III, presents the results of the models as applied in 

the preliminary study to noise, flow and occupancy data (Data 1, 2 and 3 respectively). 
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PART III: A CASE STUDY OF WELFORD ROAD SCOOT 

REGION, CITY OF LEICESTER  
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Chapter 7. Preliminary Assessments of Noise, Flow and 

Occupancy Data 

7.1 Introduction  

The purpose of the preliminary assessment is to answer research question numbers two and 

three.  More specifically, it is to identify the datasets with appropriate characteristics (see 

Section 3.6) such that the underlying structure, which will allow analysis using Chaos 

Theory exists.  Also, the temporal resolution of the traffic data was investigated given that 

this is an important factor in determining the suitability of the dataset for analysis using 

Chaos Theory.  Both the data characteristics and temporal resolution are important to 

ensure that the right attributes (such as the sampling rate) exists in the traffic data in order 

to progress the analysis.  This Chapter also develops understanding of the evolution of 

chaos across a single loop detector, before applying this knowledge to a network of 

detectors within a SCOOT controlled region in Chapter 8 and Chapter 9.  This assessment 

will also enable prior testing of the models, described in Section 6.6 in order, to demonstrate 

their suitability for analysing the study network for the main research work.   

These preliminary assessments make use of three types of datasets to run the models2.  

These are (i) noise (Data 1) (ii) flow (Data 2) and (iii) occupancy (Data 3).  The noise data 

was from a network of motes in Medway, whilst the flow and occupancy data were from a 

SCOOT controlled region in Leicester City.  The sampling frequency of traffic noise was 

60 seconds, but interpolating the raw SCOOT data gave 1, 10, 20, 30, 60, and 120 seconds 

interval flow and occupancy data.  The data was available in Comma Separated Variable 

(.csv) format, in four/five column entries with each row containing a unique data string, the 

mote identification number (which was the same for all entries within a particular file), date 

and time stamp, and noise level measurement.  This chapter discusses the results of the 

analysis of the three main parameters (delay time, embedding dimension and Lyapunov 

exponents) derived from the data and associated with Chaos Theory applied to the 

aforementioned data types.  Section 7.2 discusses these parameters based on traffic noise, 

and the parameters from flow and occupancy are discussed in section 7.3.  As referenced 

                                                 

2 The raw data (noise, flow and occupancy) are not included in the appendix due to its large volume, 

but available in electronic format, if required 
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in Section 3.4, Sections 7.2.3 and 7.3.3 specifically looks into issues regarding the 

resolution of data when analysing chaotic systems.   

7.2 Noise Data (Data 1) 

Data 1 was available from 20 mote locations in the Medway urban area, and sampled at 

one-minute interval for the months of April, May, June, and July 2011.   

7.2.1 Delay Time (Autocorrelation Lag) for Noise 

The autocorrelation lag was computed independently for each mote location using data for 

weekly, monthly, and then for a continuous 2-month and 3-month period, in order to assess 

the sensitivity of the lag value to the total length of the data stream.  The ranges in minutes 

of lags tested were 0-100, 0-500, 0-1000, 0-1500, 0-2000, 0-2500, 0-3000, 0-3500, 0-4000, 

0-4500 and 0-5000.  For the longer (upper end) range of lags, the plot of autocorrelation 

coefficient versus delay time showed a polynomial relationship with multiple solutions at 

an autocorrelation coefficient of 0.4.  On the other hand, there were no solutions at the 

shorter (lower end) lags.  All ranges of lags were tested and the single range of 0-500 was 

found to be most appropriate based on the standard criteria of an autocorrelation coefficient 

equal to 0.4.   

 

Figure 7.1: Typical Autocorrelation Plots for Mote 106 (May 2011)(based on Data 1) 

Figure 7.1 is an example of a correlogram showing a plot of the autocorrelation coefficient 

versus delay time (or lag) for mote 106 in the month of May 2011.  Table 7-1 shows all the 

results of the optimal autocorrelation lags for the tested scenarios based on the 

autocorrelation plots for the weekly and monthly scenarios.   
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 April 2011 May 2011 June 2011 July 2011 

Mote 
ID  

Week 
1 

Week 
2 

Week 
3 

Week 
4 

All 
Week 

1 
Week 

2 
Week 

3 
Week 

4 
All 

Week 
1 

Week 
2 

Week 
3 

Week 
4 

All 
Week 

1 
Week 

2 
Week 

3 
Week 

4 
All 

21      278 212 215 215 234 227 205 210 240 234 220 215 212 215 234 

36      165 160 165 177 175 175 160 167 162 175 165 175 165 175 175 

39      195 155 160 175 175 188 165 155 157 175 155 157 149 150 175 

43      156 150 150 165 165 155 150 155 150 165 155 160 150 155 165 

46      150 140 149 155 154 148 147 145 138 154 141 145 140 145 154 

50      152 140 150 155 156 149 137 147 143 156 155 150 145 155 156 

53      170 165 170 200 175 172 165 170 175 175 170 170 168 166 175 

58      115 105 93 115 113 120 110 117 103 113 97 87 87 90 113 

59      143 138 120 150 148 133 131 125 117 148 125 124 118 125 148 

65      125 125 145 155 151 128 148 147 133 151 150 158 131 130 151 

87      200 190 190 200 214 202 * 200 186 214 * * * * 214 

102      184 177 180 170 183 181 175 179 175 183 175 180 170 180 183 

105  250 220 208 265 202 200 200 204 203 202 205 205 * 202 204 225 205 * 182 

106  212 227 213 230 210 207 207 206 205 208 210 209 * 207 204 225 210 * 212 

107  228 215 190 225 187 165 180 185 185 183 172 174 170 185 180 185 218 185 185 

108  220 215 170 210 195 187 187 195 189 178 168 175 * 179 191 200 181 * 190 

109  250 230 195 235 203 207 207 208 210 206 204 200 * 201 205 209 180 * 200 

112      214 182 195 226 212 210 205 210 195 212 212 200 185 190 212 

115      163 150 165 187 166 155 150 155 162 166 163 160 145 145 166 

116      162 150 155 160 163 155 151 153 146 163 155 155 150 155 163 

Table 7-1: Summary of Delay Times (based on Data 1) 
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For reasons explained in Section 5.5.2, there is a deliberate attempt in these calculations to 

ensure that the length of the lag is neither too short nor too long in order that when used in 

subsequent processes the ability of the phase space to represent the actual, but unknown, 

system is not compromised.  Accordingly, a solution for an autocorrelation of 0.4 yields a 

relatively moderate length of lag for the phase space reconstruction.   

From Figure 7.1, when autocorrelation reaches the value 0.4, the lag is 207.  A closer 

inspection of the graph through sensitivity analysis indicates that when autocorrelation 

reaches the value 0.7, 0.6, 0.5, 0.3, 0.1 and zero, the lag is approximately 100, 133, 167, 

232, 299 and 334 respectively.  Therefore, the results reveal that the 1st, 2nd and 3rd scenario 

tests (with stronger correlations) gave relatively shorter lags compared to an autocorrelation 

of 0.4, whilst the 4th, 5th and 6th scenarios (with weaker correlations) gave relatively longer 

lags.  Given that the longer and shorter lags adversely affect the evolution of the trajectories 

in the phase space, as discussed in Section 5.5.1, the results confirm the choice of an 

autocorrelation of 0.4 as ideal.   

There was no consistency in terms of the magnitude of the delay times, across the monthly 

data stream or combination of months for that matter.  The delay times for the various 

scenarios were evaluated to establish whether the optimal values were sensitive to the 

duration of the time series data stream.  As the distribution of the optimum delay times was 

not normal, the Kruskal-Wallis statistical test was used to compare the optimal delay times 

derived from the model.  A comparison of the delay times based on the weekly or monthly 

total gave a p-value of 0.000 indicating statistically significant differences in the medians 

across the motes location.  Similarly, when comparing the delay times using a different 

duration of data streams both weekly and monthly, the test gave a statistically significant 

p-value of less than 0.05.  Based on data sampled at one-minute intervals, this result implies 

that the delay time is sensitive to the total duration of the data stream.   

These findings are important for the subsequent stages in the application of Chaos Theory, 

because the delay time (or lag) serves as input into the construction of the traffic phase 

space.  As the lag values vary from one location to another, it is incorrect to generalise the 

lag durations across different spatial areas.  Therefore, every location’s lag needs 

calculating independently for the construction of a unique phase space for each mote 

location.   
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The duration of the lag is sensitive to the total length of the data, and gives different 

outcomes for the weekly and monthly datasets.  That is, the same time series information 

when assessed based on different lengths of time series data stream (for example hourly, 

daily, weekly, monthly or yearly) will yield different outcomes.  Therefore, it is important 

to maintain a consistent data duration across all the locations, but each of these locations 

will generate its own delay time (or lag) that must be used for its phase space construction.  

As explained in section 5.4.1, the duration of the data stream required to construct the phase 

space varies depending on the dimensionality of the phase space.  Therefore, a large volume 

of data (several thousand data points) is required for construction of the phase space, 

specifically because the actual embedding dimension is unknown and it is necessary to test 

multiple possibilities in order to determine this saturated value that would adequately 

embed the chaotic attractor.  This assessment used a dataset of one-month duration for each 

location to ensure a robust assessment of the dimensionality of the phase space.   

7.2.2 Embedding and Correlation Dimension for Noise 

In order to determine the embedding and correlation dimensions, a number of phase spaces 

were constructed with assumed embedding dimensions of 1, 2, 3… 10.  The lag values 

derived from the monthly data streams were input.  Figure 7.2 is a typical m-curve derived 

for noise (Data 1) based on mote 105 for the month of April 2011.  The existence of these 

log-log curves confirms the existence of chaotic character in the noise data as discussed in 

Section 5.4.2 (Jianming et al., 2003).   

 

Figure 7.2: m-Curves Showing Relationship between Ln C(r, m) and Ln r (based on Data 1) 
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Figure 7.3: Relationship between Embedding and Correlation Dimensions (based on Data 1) 

Figure 7.3 shows the relationship between the embedding dimension and the correlation 

dimension, which indicates that the saturated embedding dimension is 7 and the 

corresponding correlation dimension is 0.99.  Table 7-2 presents a summary of the 

correlation and embedding dimensions for motes 105 – 109 for the inclusive months April 

– July 2011.  Therefore, the results of the analysis confirm that chaos does exist in traffic 

noise (Data 1) because embedding and correlation dimensions are unique properties of 

chaotic systems.   

Table 7-2 shows that the embedding and correlation dimensions for every location were 

generally similar irrespective of month but can be different for each mote.  The estimated 

p-values are 0.494, 0.440, 0.615, 1.000 and 1.000 respectively for motes 105, 106, 107, 108 

and 109.  The p-values indicate that the results of the embedding dimensions for each mote 

across the months are not statistically significantly different at 95% confidence interval.   

 Embedding Dimension Correlation Dimension 

ID April May June July April May June July 

105 7 6 6 7 0.99 0.98 0.98 0.99 

106 6 5 5 9 1.0 0.99 0.99 0.99 

107 11 9 9 9 0.97 0.95 0.95 0.95 

108 6 6 6 6 0.99 0.98 0.98 0.98 

109 11 11 11 11 0.97 0.96 0.96 0.97 

Table 7-2: Summary of Embedding and Correlation Dimension for the Inclusive Months April-

July 2011 (based on Data 1) 
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There is however, a difference in results from one mote location to another and the test 

indicated a statistically significant p-value of 0.007.  Similarly, the results of the correlation 

dimensions were not statistically different for every mote, but different when compared 

across the different spatial locations.  The consistency of values of the embedding and 

correlation dimensions from month to month at every location is an indication that there is 

a structure, which is inherent in the noise data.  The results suggests that these parameters 

are unique properties, which are unaffected by the length of the times series data string so 

long as the associated delay time is also used to construct the phase space.   

In summary, the delay time is sensitive to the length of the data series string.  However, the 

embedding and correlation dimensions are constant determinants of chaotic systems if the 

phase space and lagged times are derived from the same volume of data.  Given this 

observation, it is important to use a consistent set of data to determine the optimal delay, 

embedding dimension and its corresponding correlation dimension and then subsequently 

for all other calculations (Lees, 2013).   

7.2.3 Lyapunov Exponents Profile for Noise 

By using the saturated embedding dimension and the lag time, the instantaneous Lyapunov 

exponents3 were calculated from the reconstructed phase space of the time series string of 

noise data to assess the underlying structure of the system’s evolution.  Figure 7.4 presents 

a typical time series profiles of the Lyapunov exponents based on the traffic noise data.   

For dynamic systems, a positive Lyapunov exponent indicates chaos; a negative value 

indicates a stable state whilst zero is the meta-stable state (see Section 3.2).  The entire 

observation of Lyapunov exponents was either wholly positive or negative (for example 

Figure 7.4 shows only positive exponents), which therefore did not enable an understanding 

of the characteristics of the cyclical nature of the dynamic state of the network.  The daily 

profiles were of a fluctuating character, but generally rising over the course of the day so 

that the start and end observations were completely at variance.  Ideally, it would be 

expected that the curve does not rise indefinitely but descend during the evening period 

when there is relatively less chaos at this time.  Consequently, this structure is not suitable 

                                                 

3 The Lyapunov exponent profiles for noise, flow and occupancy are not included in the appendix 

due to its large volume, but available in electronic format, if required 
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for explaining any patterns in traffic flow and therefore does not support the aspirations of 

this research work.   

 

Figure 7.4: Typical (Daily) Time Series of Lyapunov Exponents (based on Data 1) 

Given the evidence of the existence of delay duration (or lag time) along with embedding 

and correlation dimensions, which were indicative of some underlying chaotic behaviour, 

a more structured pattern is expected.  It has been reported in the existing literature that the 

sampling of the traffic data at the incorrect frequency may not capture the system’s chaotic 

properties with sufficient statistical significance (Frazier and Kockelman, 2004).  

Therefore, it could be possible that noise data averaged over 60 seconds is inappropriate 

for identifying chaos.  However, with time resolved data for example averaged out over 20 

seconds, or even lower frequencies down to the sampling rate, may reveal chaotic 

behaviour.  However, the raw noise data (Data 1) is not available, only the 60 second 

averaged data is available.  Therefore, it was not possible to interrogate the data extensively 

or undertake further assessments to establish the suitability of such data for analysing 

dynamic systems.   

In SCOOT for example, due to the cycle times varying in response to changes in traffic 

demand at different times of the day, there is additional data that makes it possible to 

harmonise the data at a finer resolution.  Therefore, representations of the SCOOT data 

were generated at various sampling intervals, which was not possible with the noise data 

because of the nature of how the noise data are generated.   

0 200 400 600 800 1000 1200 1400
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

-3

Time (seconds)

L
y
a
p

u
n

o
v
 E

x
p

o
n

e
n

ts
 

Time (minutes) 



 

145 

 

Therefore, given that the Lyapunov exponent profile (Figure 7.4) suggests that the traffic 

condition at the location of this mote is in a state of chaos throughout the 24-hour period, 

which is very unlikely, there was no (reasonable) underlying structure to justify further 

investigations using the traffic noise dataset (Data 1) for the main research work.  This 

problem may be due to the traffic noise data (Data 1) for computing the separation between 

points in the phase space being logarithmic (given by 𝐿 = 16 log(𝑠𝑝𝑒𝑒𝑑) + 9 log(𝑓𝑙𝑜𝑤)).  

Once transformed into the phase space, the distances between the points, as used in the 

Lyapunov exponent function, no longer become meaningful.  This makes the instantaneous 

Lyapunov exponents (from a logarithmic expression) based on reconstructed phase space 

invalid and therefore potentially explains why it is may be difficult to identify a suitable 

structure in the time series profile.   

7.3 SCOOT Flow and Occupancy Data (Data 2 and 3) 

Repeating the same procedure, the SCOOT flow and occupancy data for link N03221I1 

(Data 2 and 3 respectively) were analysed for the months of May, June, and July 2002.  The 

data were reconstructed at frequencies of 1, 10, 20, 30, 60 and 120 seconds intervals in 

order to determine the range of sampling frequencies that affect the generation of the 

underlying structure for the chaotic dynamics.  This was found to be necessary because the 

60 second frequency noise data (Data 1) proved to be unsuitable in the preliminary stage 

of this research.  Therefore, for each sampling interval, the delay times and correlation and 

embedding dimensions, which indicate that the time series data is a product of dynamic 

system that generates chaos, were calculated.   

Similar to the noise data (Data 1), there was no structured profile found for the Lyapunov 

exponent for data sampled at 1, 10, 30, 60 and 120 second intervals for Data 2 and 3.  

However, the Lyapunov exponent profiles for the 20 second interval data yielded structured 

patterns and therefore were deemed useful in achieving the outcomes of this research work 

by enabling an understanding of the propagation of the dynamic states in signalised urban 

networks by applying Chaos Theory.  The results for the data sampled at 20 second 

intervals is presented in Sections 7.3.1, 7.3.2 and 7.3.3 respectively with respect to 

calculating the delay time, embedding and correlation dimensions, and the Lyapunov 

exponents.   
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7.3.1 Delay Time (Autocorrelation Lag) for Flow and Occupancy  

The optimal delay times based on the SCOOT flow data for link N03221I1 (Data 2) for 

April, May, June and July were 303, 280, 243 and 253 respectively.  Similarly, the 

corresponding values for occupancy (Data 3) are 290, 323, 240 and 273 respectively.   

 
Figure 7.5: Delay Times for Flow and Occupancy for Inclusive Months April-July 2002           

(based on Data 2 and 3) 

Figure 7.5 presents a graphical display of the delay times for ease of comparison.  There 

was no observed trend in the observations, but a comparison of the two groups using the 

Mood’s median test gave a significant p-value of 1.000 at 95% significance level, which 

indicates that there was no statistical difference in the observations of the flow and 

occupancy (Data 2 and 3) across all months.   

7.3.2 Embedding and Correlation Dimensions for Flow and Occupancy  

Both the flow and occupancy data for link N03221I1 (Data 2 and 3 respectively) 

consistently indicated an embedding dimension of 3 across all months, whilst the 

correlation dimensions ranged from 0.14–0.16 and between 0.28–0.26 for flow and 

occupancy, respectively, as shown in Figure 7.6.  For flow (Data 2), the correlation 

dimensions are 0.15, 0.16, 0.15 and 0.14, and occupancy (Data 3) are 0.28, 0.24, 0.28 and 

0.26, for April, May, June and July respectively.   

Figure 7.6 shows that the correlation dimension for occupancy is generally higher than that 

for flow.  The Mood’s median test indicated that the correlation dimension of the two 

groups was statistically different with a significant p-value of 0.005.  However, the 

April May June July
0

50

100

150

200

250

300

350

Months (2002)

D
e

la
y
 T

im
e

 (
m

in
u

te
s
)

 

 

Flow

Occupancy



 

147 

 

correlation dimension was not statistically different between months for all the 

observations for each group.  The Kruskal-Wallis test (which was appropriate because more 

than two months were sampled) indicated p-values of 0.440 and 0.440 for flow and 

occupancy.  This result was similar to the case of the traffic noise data (Data 1), and 

confirmed that the embedding and correlation dimensions are unique characteristics of an 

evolving dynamic system.   

 
Figure 7.6: Correlation Dimensions for Flow and Occupancy for Inclusive Months April-July 

2002 (based on Data 2 and 3) 

In order to ensure confidence in the suitability of the phase space, the computed values of 

the parameters were further tested against Takens’ criterion, which is given by 𝑚∗ ≥

2𝐷2
∗ + 1, where 𝑚∗ and 𝐷2

∗ are the saturated embedding and correlation dimension 

respectively.  By using the highest value of 𝐷2
∗, and 𝑚∗ equal to 3, it is proved that for 

flow (Data 2): 3 ≥ (2 ∗ (0.16) + 1 = 1.32) and occupancy (Data 3): 3 ≥ (2 ∗ (0.28) +

1 = 1.56).  In both cases, the results indicate that the embedding dimension is more than 

10 times greater than the correlation dimension, as suggested by Shang et al. (2007).  

Therefore, the valid 𝑚∗ and 𝐷2
∗ values indicate that the phase space is sufficiently large to 

embed the trajectory of the attractor from both flow and occupancy (Data 2 and 3) time 

series.  The results further indicate that flow and occupancy (Data 2 and 3) time series have 

low dimensional properties for the traffic flow system, and therefore subsequent analysis 

of the profile of Lyapunov exponents presented in the next section will confirm the 

suitability of the Phase Space Reconstruction theory for low dimensional time series data.   
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7.3.3 Lyapunov Exponent Profile for Flow and Occupancy  

The independently reconstructed phase space for flow and occupancy (Data 2 and 3) 

enabled the instantaneous Lyapunov exponents to be calculated.  In each case, the 

calculations were based on monthly traffic flow and occupancy data, and the phase space 

that relied on inputs of the estimated delay time and embedding dimension.  Unlike the case 

of the traffic noise data (Data 1), the profiles fluctuate about the zero reference line and 

show a structured pattern that enables the interpretation of the traffic flow in terms of its 

dynamic behaviour.   

Figure 7.7 shows graphically typical hourly profiles of the Lyapunov exponent of the flow 

and occupancy variables (Data 2 and 3) for 0800h-0900h on 10th May 2002.  These profiles 

were plotted on the same graph for ease of comparison; however, the plots are on different 

scales due to the difference in the order of their magnitude values.  The primary and 

secondary axes are Lyapunov exponents related to occupancy (Data 2) and flow (Data 3) 

respectively.   

Hour

Minute

0908

00555045403530252015100500

0.75

0.50

0.25

0.00

-0.25

-0.50

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

O
c
c
 L

y
p

 E
x
t 

(x
1

0
E
-1

)

Fl
o

w
 L

y
p

 E
x
t 

(x
1

0
E
-1

)

occ

flow

Ref Line

 

Figure 7.7: One-Hour Graphical Profile of Lyapunov Exponent Based on SCOOT Data  

(0800h-0900h) (based on Data 2 and 3) 

The points above the zero reference line indicate an unstable state (chaos) and the points 

below represent the stable state whilst the zero line shows the transition between these two 

states.  The profiles generally provide a similar message from their respective Lyapunov 
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exponents.  For example, both profiles indicate a steady state behaviour during the period 

08.28-08.34, 08.36-08.42 and 08.50-08.59; and chaos between 8.03-8.04 and 8.59-9.00.  

Flow (Data 3) indicated chaos occurred at the following times: 08.07, 08.33 and 08.48, and 

it is relevant to note that occupancy (Data 2) also indicated chaos almost one minute after 

each occurrence at times 08:08, 08:34 and 08:49.  This is perhaps an indication that the 

flow and occupancy may detect chaos at slightly different times, an issue that is investigated 

further in Chapter 9; however, the similarity may also be indicative of the fact that these 

variables are directly proportional at low values (see Equation 2-32) (Athol, 1965).   

Further analysis comparing the Lyapunov exponents profiles from flow (Data 2) and 

occupancy (Data 3) showed statistical similarity.  The tests performed for different days 

consistently showed a statistical similarity in the hourly Lyapunov exponents of flow and 

occupancy variables.  The Kruskal-Wallis test consistently gave p-values of greater than 

5%, which indicates that the Lyapunov exponents from the two sets of data were not 

statistically significantly different.  Given that flow and occupancy and vice-versa infer the 

same results, both variables were considered suitable in this research for understanding the 

evolution of the dynamic state of traffic in a signalised network.   

The observations in these profiles are evidence of the capability of Chaos Theory to be 

useful in understanding the dynamic behaviour of traffic on links in a signalised urban 

network.  An identification of chaos in traffic flow or occupancy data is very important for 

identifying the sources of data for this research work.  Chaotic traffic causes “stop-and-

start” traffic that forces acceleration and deceleration to occur often, which is 

uncomfortable and undesirable by motorists and can lead to accidents.  The awareness of 

chaos is therefore important for transport planners and engineers, and traffic operators to 

initiate plans to maintain stable flow by improving the level of service and consequently 

the safety of the network (Xu and Gao, 2008).   

7.4 Conclusions  

In this chapter, times series data for noise, flow and occupancy were examined to identify 

the types of datasets suitable for an in-depth study of the potential use of Chaos Theory in 

traffic studies.  The analyses are based on the algorithms of the mathematical framework 

outlined in Chapter 5, and described in Chapter 6.  Firstly, the main parameters to calculate 

were delay time, embedding and correlation dimensions, which were used for 
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reconstructing the traffic phase space.  Secondly, the phase space was used to calculate the 

instantaneous Lyapunov exponent.  It was important in this process to ensure that the same 

dataset was used consistently to estimate the delay time, embedding and correlation 

dimensions, and the Lyapunov exponents.   

The analysis revealed that noise data (Data 1) sampled at a rate of 1 second but only 

available as averages over a 60 second interval were unable to generate the patterns of 

Lyapunov exponents necessary for analysis using Chaos Theory.  It was likely that the 

noise data averaged over 60 seconds were inappropriate; however, the raw noise data (Data 

1) was not available so the data could not be interrogated at other (higher) resolutions to 

establish the suitability of such data.  Given the aspirations of this research to understand 

the evolution of traffic based on Chaos Theory, the lack of unsuitable patterns from the 

noise generated Lyapunov exponents did not make Data 1 a viable option for further 

investigations in this research.  Therefore, Data 1 was not used in the main research analysis 

in Chapter 8 and Chapter 9.   

Further, the analyses indicated that the 20 second interval data Lyapunov exponent profiles 

for flow (Data 2) and occupancy (Data 3) could explain the underlying dynamics 

responsible for the evolution of the system.  However, the profiles for flow and occupancy 

(Data 2 and 3) at 1, 10, 30, 60 and 120 second interval data were unsuitable.  Therefore, 

the results confirm that reasonably highly resolved traffic data are required in order to 

explore applying Chaos Theory to traffic networks.  Given that the SCOOT flow and 

occupancy data (Data 2 and 3) were shown to help improve our understanding of the road 

condition on a single lane, it offers potential for extension to the analysis of the urban road 

network.  In conclusion therefore, flow and occupancy data (Data 2 and 3) of 20 second 

intervals are suitable types of traffic data for investigating chaotic behaviour in urban traffic 

systems.  The suitability of both variables demonstrates that the data source is limited to 

not only SCOOT but also any system.  For example MIDAS that the provides only flow 

data, but not occupancy.   

This type and characteristics in terms of resolution of traffic data will be the basis for further 

analysis in this research.  Chapter 8 and Chapter 9 extend the knowledge of dynamic 

behaviour from this preliminary assessment to a study area comprising of a SCOOT 

network of 40 interconnected links in Leicester City.  Chapter 8 makes use of this 
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understanding of dynamic systems to identify the status of a signalised urban network, 

whilst Chapter 9 explores the potential for the short-term forecasts of traffic lane-

occupancy.   
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Chapter 8. Network Status Analysis  

8.1 Introduction  

This chapter extends the application of the algorithms of Chaos Theory to a network of 

SCOOT links, in order to assess whether or not chaos as a phenomenon occurs network-

wide across connected links, with reference to the control region in Figure 6.2.  The 

fundamental understanding of chaos, in the context of the evolution of traffic congestion at 

a single loop (section 7.3.3), identified that traffic flow and occupancy data sampled at 20 

second intervals were a suitable temporal resolution for a detailed study of chaotic traffic 

on links in a network.  Given that Chaos Theory is data-hungry, requiring large volumes of 

data, the assessment makes use of continuously sampled data of seven monthly cohorts that 

passed the 75% capture rate qualifying criteria (see Section 6.3.1).  It is envisaged that the 

properties of the dataset applied to a signalised urban network will provide deeper insights 

into the chaotic behaviour of traffic that will ultimately be of benefit in the management of 

traffic in urban areas.   

In order to present the assessments undertaken, the structure of this chapter is as follows.  

Section 8.2 analyses the raw flow and occupancy data (Data 4 and 5 respectively) for each 

link in order to extract the descriptive statistics, and assesses the similarity and differences 

between links across the SCOOT region.  Then, the subsequent sections present the results 

of applying the methodology of Chaos Theory to the study network.  Section 8.3 presents 

and discusses the computation and analysis of the lag times based on the autocorrelation 

coefficient method.   

Section 8.4 makes use of the lag times to construct the phase space of the traffic flow on 

the links in the network for calculating the embedding and correlation dimension.  Section 

8.5 presents the results of the calculated Lyapunov exponents from the reconstructed phase 

spaces, and interprets the exponents in relation to identifying the temporal traffic flow 

condition of the network links.  Section 8.6 further analyses the exponents, for every cohort, 

with respect to the frequency of the links indicating chaos across the network links at every 

sampled interval.  Finally, Section 8.7 summarises the results of this chapter and presents 

the main conclusions.   
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8.2 Appreciation of SCOOT Flow and Occupancy Data 

A summary of the basic statistics of the analysed raw SCOOT (flow/occupancy) data4 for 

each link for every cohort is included in Appendix C (see Tables 1C-7C).  This includes 

the median, mean and standard deviations.  A normality test indicated that generally p-

values are consistently less than 0.05.  Therefore, at a 5% significance level, there was 

insufficient evidence to suggest that the observation in the datasets (deviation from the 

normal curve) was likely to be due to chance.  It is concluded that the datasets are not 

normally distributed, which is confirmed by the probability plots in Figure 1C through to 

Figure 40C (in Appendix C).  Further assessments indicated that the distribution of the 

descriptive statistics for mean, median, variance and range of the network links were also 

not normal.  Given the distribution of the data, the Kruskal-Wallis, Mann-Whitney and 

Mood’s Median tests were the main methods applied to identify the statistical significance 

level for the assessments presented in the remainder of the thesis.   

A comparison of the groups of the flow medians month-by-month for each link pair gave 

a non-significant p-value of 0.255, which suggests that the median values are not 

statistically significantly different across the seven cohorts at the 95% confidence interval.  

Similarly, the distribution of the link occupancies was not normal with p-values 

consistently less than 0.005.  The test of the monthly groups of the medians of the link 

occupancies indicated a p-value of 0.187, which tends to suggest that the median values of 

the link occupancies are not significantly different from month to month.   

The inferences from the flow and occupancy data (Data 4 and 5) indicate similar 

characteristics in the two datasets, likely due to the influence of the underlying proportional 

relationship between the two variables at low values.  These results suggest that the median 

flows or occupancies behave in a similar way across the links.  Figure 8.1 present a box 

plot of the median of the medians for the cohorts, for flow and occupancy, which indicate 

a statistically significant difference between the two variables with p-value of 0.0014 

according to the Mann-Whitney test.   

                                                 

4 The raw data (flow and occupancy) are not included in the appendix due to its large volume, but 

available in electronic format, if required 
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The available datasets provide a simultaneous measurement of the link flow and occupancy 

variables throughout the observed period.  The next step was to use one of these parameters 

initially to run the algorithms of Chaos Theory in order to identify the chaos-parameter 

(Lyapunov exponent) to be used to develop a basic understanding of the evolution of the 

system.  Then, subsequently, the Lyapunov exponent profiles (derived from the first 

parameter (i.e. flow) were used to predict the other parameter (occupancy) in the next stage.   

 

Figure 8.1: Box Plot of the Average Median of Flow and Occupancy 

Since the existing literature suggested that occupancy is a better indicator of congestion 

(see section 2.4.4 ), the decision was made to predict ultimately the occupancy variable.  

The rationale is that flow does not necessarily determine traffic flow regimes unlike 

occupancy, which not only indicates when flow is low or high, but also whether it is free 

flowing, unstable or congested.   

It must be noted however that not all detector systems measure both variables (e.g. MIDAS 

measures only flow but not occupancy).  Therefore, the remainder of this chapter mainly 

presents the analysis in relation to the traffic flow data, whilst Chapter 9 relates to the 

predictions of the link occupancy based on the Lyapunov exponents (derived from flow).   
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8.3 Delay Time (Autocorrelation Lag) 

In this section, the optimum lags (delay times) are determined from the time series profiles 

of the individual links.  The optimum lags are then modelled with the metrics of the link 

flow data to determine a polynomial function for the forecasting of the lags.   

8.3.1 Autocorrelations and Correlograms 

The autocorrelation lags from the correlograms are included in Table 1D (see Appendix 

D), which also includes the profile of the lag times of each link, computed independently 

for each of the seven cohorts (from January through to July inclusive) of traffic flow data 

sampled at 20 second intervals.  Figure 8.2 presents a scatterplot of the individual links lags 

categorised by month, as well as the monthly average, which indicates an average lag range 

between 140 and 270 minutes.   

 

Figure 8.2: Scatterplot of the Lags of the Respective Links Categorised by Month 

Further, Figure 8.3 presents a histogram of the distribution of the links.  Generally, the lag 

times for the links were normally distributed except for links 9, 30, 32 and 33 (see Table 

2D in Appendix D).  It must be noted however that only the data for March (Cohort 3) was 

available for links 11, 13, 14, 15, 16 17 and 24 (mainly connected to SCOOT node 09191) 

because of data problems (such as large amounts of missing data).  
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Figure 8.3: Distribution of Link Lags for All Cohorts of SCOOT Data 45 

The Kruskal-Wallis test showed that globally there was a statistical difference between the 

lag durations of the links in the network.  Table 8-1 presents the results for the Kruskal-

Wallis test based on the groups of adjacent links along with the statistical significance level 

of the lags.  In the southbound direction, the test gave a p-value of 0.000 at a 5% 

significance level. The equivalent result in the northbound direction was 0.001.  In order to 

identify clusters of links in which the lag times were shown to be statistically significantly 

similar in the network, groups of adjacent links were identified for analysis.  In spite of the 

conclusions of independently statistically significantly differences for the northbound and 

southbound links, the analysis showed that there were groups of links where the lags were 

not statistically significantly different.   

Table 8-1 shows that there are link groups (mainly of two to four links without any in-

between intermediary links) where the difference between the lags are not statistically 

significant.  These groups experience traffic platooning effects as there is minimal traffic 

flow variability across the links within these groups, and therefore the lags are not 

statistically significantly different.  This suggests that an understanding of the spatial 

                                                 

5 Lags for links 9, 30, 32 and 33 were based on median lag for the cohorts 
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distribution of lags may enable the identification of regions of well-coordinated platooning 

traffic in the network.   

Group Node Number Links Numbers p-value6 

1 Northbound links  Northbound links  0.001 

2 Southbound links  Southbound links  0.000 

3 09111/09131 1, 9 ,12 0.570 

4 09111/09131/09191 1, 9, 12, 18, 19 0.005 

5 09191 18, 19 0.007 

6 09131 3, 7 0.482 

7 09111/09131 3, 5, 6, 7 0.013 

8 09111/09131 3, 5, 6 0.008 

9 09112/09131 4, 5, 6 0.007 

10 09231/09283 31, 39 0.003 

11 09191/09231/09283 18, 31, 39 0.003 

12 09283/09231 27, 40 0.848 

13 09221/09283/09231 21, 27, 40 0.045 

14 09221/09283/09231 22, 27, 40 0.488 

15 09221/09283/09231 21, 22, 27, 40 0.132 

16 09231/09241/09253 29, 33, 38 0.645 

17 09231/09241/09253 32, 35, 37 0.843 

18 09221/09241/09253 34, 33, 38 0.076 

19 09221/09241 34, 36 0.078 

20 09253/09241 23, 37 0.054 

21 09221/09241 23, 26 0.180 

22 09221/09241/09253 26, 23, 37 0.092 

Table 8-1: Output of the Significance Testing of Lags of the Groups of Adjacent Links (p-values) 

On the other hand, mainly the groups that incorporated links connected to node 09191 

(signal at Chapel Lane/Knighton Lane East) showed a statistically significant difference in 

lags.  Due to the location of the node, at an approximate midpoint of the network and the 

distance between consecutive junctions, it is likely that the platoons may have become 

dispersed by the time the traffic arrives at this location (in both the northbound and 

southbound directions).  Figure 8.4 shows a number of examples of the areas of the network 

where the results suggest the likelihood of traffic platooning through groups of links.   

                                                 

6 The p-values in bold relate to adjacent links where traffic platooning occurs in the network  
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Figure 8.4: Examples of Groups of Links (Regions) of Platooning Traffic in the SCOOT Network  

KEY 

Group 3 

Group 6 

Group 14 

Group 16 

Group 17 

Group 18 

Group 22 
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8.3.2 Modelling of the Autocorrelation Lags and the Metrics of the Data  

In order to determine the relationship between the lags and the statistics (mean, median and 

standard deviation) of the data, a regression model was fitted to the scatter plot of the lags 

and the statistics of the datasets.  Table 8-2 presents a summary of the coefficient of 

determination (R2) for the non-linear model for the cohorts.   

 R2 Coefficients (%) for the model of Lag versus: 

Cohorts  Mean Median Standard Deviation of the mean 

Individual Cohorts 

1: January  0.17 0.16 0.17 

2: February  0.51 0.35 0.52 

3: March  0.02 0.03 0.03 

4: April  0.41 0.34 0.40 

5: May  0.42 0.31 0.41 

6: June 0.51 0.49 0.50 

7: July 0.28 0.23 0.29 

Average  0.33 0.27 0.33 

Combined Cohorts 

All Cohorts  0.26 0.22 0.26 

Table 8-2: Summary of R2 Coefficient (between Lags and Statistics (Data 4)) 

The results for March are particularly low, compared with the other months.  However, the 

average values of the independent cohorts compare well with the results of the model from 

the combination of all the cohorts data.  According to the models, on average, the mean, 

median and standard deviation independently explain about 32.9%, 27.3% and 33.1% 

respectively.  This result suggests that the strength of correlation of the lag time with mean, 

median and standard deviation is 57.3%, 52.2% and 57.5% respectively.   

The model for the combined datasets for all the cohorts, in Figure 8.5, Figure 8.6 and Figure 

8.7, show that the respective generalised models for the lag based on mean, median and 

standard deviation (s.d) from all the cohorts are included in Table 8-3. 

Lags Generalised Models 

𝐿𝑎𝑔𝑚𝑒𝑎𝑛 134.2 + 119.6 × 𝑚𝑒𝑎𝑛 − 54.8 × (𝑚𝑒𝑎𝑛)2 + 8.7 × (𝑚𝑒𝑎𝑛)3 

𝐿𝑎𝑔𝑚𝑒𝑑𝑖𝑎𝑛 153.5 + 84.6 × 𝑚𝑒𝑑𝑖𝑎𝑛 − 32 × (𝑚𝑒𝑑𝑖𝑎𝑛)2 + 4 × (𝑚𝑒𝑑𝑖𝑎𝑛)3 

𝐿𝑎𝑔𝑠.𝑑           124.9 + 166.8 × 𝑠. 𝑑 − 105 × (𝑠. 𝑑)2 − 24.5 × (𝑠. 𝑑)3 

Table 8-3: Generalised Models for the Lags Based on the Descriptive Statistics (Data 4) 
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Figure 8.5: Graph of the Link Optimum Lags versus Mean (Data 4) 

 

Figure 8.6: Graph of the Link Optimum Lags versus Median (Data 4) 

 

Figure 8.7: Graph of the Link Optimum Lags versus Standard Deviation (Data 4) 
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In order to test the model, the lags were predicted by using the statistics for each cohort as 

inputs for the above equations.  The R and p values for the assessments are included in 

Appendix D (Tables 3D-9D), whilst Table 8-4 presents a summary of the correlation 

coefficients between the observed and predicted values (where significant p-values are in 

bold).   

 Mean Median Standard Deviation  

Cohorts  R-value P-value R-value P-value R-value P-value 

1: January  0.694 0.000 0.593 0.000 0.700 0.000 

2: February  0.778 0.000 0.677 0.000 0.783 0.000 

3: March  0.734 0.067 0.178 0.364 0.022 0.913 

4: April  0.643 0.000 0.560 0.001 0.597 0.000 

5: May  0.629 0.000 0.548 0.002 0.630 0.000 

6: June 0.513 0.004 0.460 0.011 0.524 0.003 

7: July 0.414 0.023 0.375 0.041 0.493 0.006 

Cohorts 1-7 -0.217 0.001 0.236 0.000 0.509 0.000 

Table 8-4: Summary of R Coefficient (between Lags and Metrics (Data 4)) 

With the exception of Cohort 3 (March), the results indicate statistically significant 

relationships.  The observation in Cohort 3 is expected because the fitted model for Cohort 

3 gave extremely low R2 values of approximately 3% on average (see Table 8-2).  Even 

though the R2 values for the fitted model for Cohort 1 (January) are comparatively low as 

well (of approximately 17% on average (see Table 8-2)), the model of the combined data 

from all cohorts indicates a statistically significant relationship between the observed and 

predicted values for this cohort.  This is perhaps due to the advantage of the large sample 

of data points (cohorts 1-7 combined), which has addressed the weakness of the models 

caused by the small sample of data captured in some months.  The case of Cohort 3 (March) 

to some extent is an anomaly.  As alluded to previously in Section 8.3.1, Cohort 3 was 

based on fewer links because the lags were derived only for links 11, 13, 14, 15, 16 and 17.   

Further, the models were evaluated using the Mean Square Error (MSE) criterion (and 

confirmed by the Mean Absolute Error (MAE)) to identify the best model for predicting 

the lag of a time series based on the statistics derived from the time series.  The MSE is the 

average of the square of the errors in prediction, which is expressed mathematically as:  
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𝑀𝑆𝐸 =
∑ 𝑒𝑖

2

𝑛
 

Where: 

 𝑛 = number of data points which are predicted  

 𝑒𝑖 = error in the forecast, which is the magnitude of the difference between the 

predicted and expected values.   

The Mean Absolute Error (MAE) criterion was used in a second evaluation to validate the 

results of the MSE approach.  The MAE is the average of the absolute values of the 

differences between the predicted and observed values.  The expression for the MAE is: 

𝑀𝐴𝐸 =
∑|𝑒𝑖|

𝑛
 

As a standard convention in the analysis of forecasting models, the model with the lowest 

MAE or MSE is ranked as the highest performing model.  Due to primarily evaluating the 

average total errors between the observed and predicted values, the model with minimal 

errors generates the lowest vales in MAE or MSE.   

Table 8-5 presents the results for the comparative evaluation for the forecast models.  That 

is, both approaches show that the model of the lag predicted from the standard deviation 

emerged as the best model, outperforming the models based on the mean and median.  As 

evidenced in Table 8-5, the two methods both ranked the standard deviation as the best (in 

bold text), mean as second and median as third best.   

Lags predicted from: MAE  MSE 

Mean  44 44,525 

Median  57 96,219 

Standard Deviation  33 1,911 

Conclusion 
Model of lag and standard deviation 

is more appropriate for predictions. 

Table 8-5: Model Evaluation Results using MAE and MSE Criteria (Data 4) 

The outcomes suggest that the lag times depend more on the variation within the data rather 

than the mean or median flow level.  As the lag time indicates the time interval a particular 

dataset correlates within its own past and future values, it was expected a priori that the lag 
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would be influenced by the variation within the data.  Therefore, this result offers a tentative 

endorsement of this assertion.   

In summary, the models indicate relationships between the lags and the statistics of the 

traffic flow data.  However, the general trends of the models suggest that the lag time 

increases as the value of the statistic (mean, median and standard deviation) increases.  Both 

models of the lag against mean and standard deviation follow a positive gradient and 

therefore the lag increases with increasing values of these two statistics.  In the lag/median 

model however, the lag saturates at about 237 minutes from a median value of about 2.0 

upwards.  The results imply that any changes in the median values beyond about 2.0 do not 

affect the lag in the model.  This is essentially a limitation of this model that makes the 

model weak in explaining errors beyond this threshold value.  This ultimately affects 

MAE/MSE resulting in large errors and making this model less suitable.   

8.4 Correlation and Embedding Dimensions 

As the system’s dynamics are initially unknown, a number of embedding dimensions, 

ranging between 1 and 10 were tested for the network links in order to determine the 

saturated embedding dimensions.  The assessments showed that the embedding dimensions 

ranged between 2 and 5, and the range of correlation dimension is approximately 0.22-0.35.  

This confirms earlier results in the preliminary assessments that showed that the embedding 

dimension of flow, and occupancy, is equal to 3 (see section 7.3.2).   

Figure 7.2 showed a typical G-M log-log curve and the relationship between the embedding 

dimension and the correlation dimension for Link 2, which indicate that the embedding and 

correlation dimensions are equal to 2 and 0.347 respectively.  The evaluation of embedding 

and correlation dimension is an indication of the existence of a chaotic character in the time 

series data.  According to Takens (1981), the choice of parameters must satisfy the 

relationship given by 𝑚 ≥ 𝐷2 + 1, where 𝑚 and 𝐷2 are the embedding and correlation 

dimension respectively.  The theorem ensures that the embedding dimension is sufficiently 

large so that the orbits of the attractors do not intersect in the phase space, and it is often 

used to test the suitability of the choice of parameters (see section 5.6.3).  The calculated 

values of 𝑚 and 𝐷2 were at all times consistent with the prescribed criteria.   
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8.5 Model Outputs of Lyapunov Exponents 

This section presents the results of the model output for the Lyapunov exponents.  It 

describes the statistical inference and interprets the Lyapunov exponents in the context of 

dynamical systems.  Finally, it relates the exponents to the individual links, and discusses 

their implication for traffic management based on the understanding of the link behaviours.   

8.5.1 Description of the Results  

The respective lag and embedding dimension for every link, derived from the time series 

of the traffic flow information, were used to construct the unique phase spaces 

independently for each link in order to calculate its instantaneous Lyapunov exponents7.  

The assessment gave 20 second Lyapunov exponent profile of the links in the network from 

the 1st January to 31st July 1999, separated into monthly cohorts (1 through to 7).  Table 

8-6 presents a summary of the minimum and maximum Lyapunov exponents for each 

cohort.  Overall, the exponents range between -2.34 x 10-2 and 1.12 x 10-2.   

Cohort  Minimum Maximum 

1: January  -2.34 E-02 1.09 E-02 

2: February  -2.34 E-02 1.09 E-02 

3: March  -2.24 E-02 8.23 E-03 

4: April  -2.12 E-02 8.90 E-03 

5: May  -2.31 E-02 1.01 E-02 

6: June -2.32 E-02 1.10 E-02 

7: July -2.32 E-02 

 

 

1.12 E-02 

Table 8-6: Summary of Lyapunov Exponents for Seven Monthly Cohorts  

The normality test showed that the profiles of the Lyapunov exponents were not normally 

distributed.  The link median values were averaged over the seven cohorts as shown in 

Figure 8.8 for visualisation of the differences that exist in the Lyapunov exponents from 

link to link.   

The Kruskal-Wallis test gave a p-value of 0.001, when the average median profiles were 

compared, which indicates statistical differences in profiles.  Further, this result was 

confirmed by a comparison of the monthly groups of the median of the Lyapunov exponent 

                                                 

7 The Lyapunov exponent profile not included in the appendix due to its large volume, but available 

in electronic format, if required 
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profiles, which gave a significant p-value of 0.000.  The statistical differences highlight the 

uniqueness in the evolution of the traffic system from one location to the other.   

 

Figure 8.8: Average Median Profiles of Lyapunov Exponents (based on Data 4) for Seven 

Monthly Cohorts 

The Lyapunov exponents were examined further across the network in order to gain a better 

understanding of the dynamics of the traffic system.  In order to achieve this, the median 

Lyapunov exponents across all links in the network were extracted at every 20 seconds 

interval on 5th July 1999.  This provided a total of 4320 median points for every day in each 

of the seven cohorts.   

Figure 8.9 is an example histogram, which is not-normal and bi-modal, typical of the daily 

median Lyapunov exponents, whilst Figure 8.10 shows in detail the distribution for link 

29.   

The next step of the analysis was, for each cohort, to examine the median Lyapunov 

exponents of all the days with respect to the degree of correlation with due consideration 

of the p-values.  The results of the assessments are included in Tables 3D-9D (in Appendix 

D), whilst Table 8-7 presents a breakdown for each month of the number of correlations in 

each individual category.   
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Figure 8.9: Typical Histogram of the Daily Median Lyapunov Exponents across all Links 

 

Figure 8.10: Typical Histogram of Lyapunov Exponents for Link 29 

The number of days assessed for each month are 28, 27, 29, 28, 29, 29 and 29 respectively 

for cohorts 1 through to 7.  Given that the daily Lyapunov exponents were correlated with 

all other days gave a matrix table of R-values of 28 x 28, 27 x 27, 29 x 29, 28 x 28, 29 x 
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29, 29 x 29 and 29 x 29 respectively.  Therefore, the strength of the association of the 

exponent values of two links was measured by counting the number of links falling between 

certain ranges of values.   

Degree of Correlation 

Cohorts  

1 2 3 4 5 6 7 Total 

Very Strong (|𝑅| ≥ 0.70) 253 270 194 174 253 222 242 1608 

Strong (0.6 < |𝑅| ≤ 0.69) 64 56 111 101 80 129 91 632 

Moderate Strong (0.4 < |𝑅| ≤ 0.59) 12 3 25 23 27 10 28 128 

Weak (0.2 < |𝑅| ≤ 0.39) 9 12 17 24 22 32 13 129 

No Correlation (0 < |𝑅| ≤ 0.19) 40 10 59 84 24 13 32 262 

Total (0 < |𝑅| ≤ 1) 378 351 406 406 406 406 406 2759 

Table 8-7: Summary of Correlation Assessment for Median Lyapunov Exponents 

Discounting the main diagonal (to eliminate the correlation of a day with itself) and one-

half of the matrix (to eliminate double counting because of reversal in the pairing for 

example Day 1-Day 2 and Day 2-Day 1 etc.) gave the respective totals for the cohorts in 

Table 8-7.  The results showed that, in spite of the variability in the dynamics of the 

evolution of the traffic system from link to link (according to the Kruskal-Wallis test), the 

dynamics of the individual days do correlate reasonably well.  This conclusion was 

informed by the high proportion of p-values less than 5% given that, approximately 96% 

(2648 divided by 2759) of the correlation exercises exhibited statistically significant 

relationships.   

8.5.2 Interpreting the Lyapunov Exponent Profiles  

In dynamic systems, the interpretations of instantaneous Lyapunov exponents are as 

follows.  Positive, negative and zero exponents indicate unstable, stable and meta-stable 

states respectively, as explained in Section 0.  The unstable states mainly occur in the 

daytime when congestion is more likely.  Generally, the daily plots show a fluctuating 

profile peaking between 0600h-0900h and 1500h-1800h, and sometimes around midday.  

The identified peaks are indications of a change of state of the links, which are precursors 

to the links becoming congested and traffic behaviour transitions to chaos occur prior to 

congestion (Lyapunov exponents falling) following free flow (Lyapunov exponents 

increasing).  Appendix F (Figure 1F through to Figure 10F) includes a number of daily 
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profiles for links 21, 23, 29, 33, 34, 35, 36, 38, 39 and 40 to illustrate the uniqueness of the 

dynamic behaviour for the individual links in the network.   

 

Figure 8.11:  Typical 24-Hour Profile of Lyapunov Exponents (5th July 1999) for Link 29  

Figure 8.11 shows an example of a 24-hour profile of instantaneous Lyapunov exponents 

computed for a link 29 on 5th July 1999.  Ideally, the region below the Lyapunov exponent 

of zero (theoretical) reference line indicates that the network is extremely stable (i.e. when 

the link is free flowing due to low traffic flows or when in a congested state), whilst above 

the zero threshold indicates unstable states of the link.  Therefore, the area below the meta-

stable reference line determines the times when the network is less sensitive to 

perturbations in traffic flow, greater negativity and insensitivity.  This is most likely to 

occur during the overnight period, which is not associated with the onset of prolonged 

congestion, but can occur also in the following two situations.  The first is in free flow 

conditions when the network control system can respond to the randomness in the traffic 

arrivals at the stop line because there is plenty of spare capacity.  The second is in the 

congested state when traffic is generally stationary and very slow moving, in which state 

the traffic is calmed.  In both of these states, the network is considered to be stable and 

insensitive, as there are virtually no interactions between vehicles, and the Lyapunov 

exponent is negative, zero or a small positive value.  The link starts to become sensitive as 

Flow free heading 

to chaos 

Chaos heading to 

congestion 

Theoretical 

meta-stable 

threshold 

Onset of 

Congestion  
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the degree of interaction between vehicles increases with high positive Lyapunov 

exponents indicating extreme sensitivity.   

The Lyapunov exponent is sensitive to states of rapid change.  On short links, queues build 

up quickly and is reflected in the occupancy measured by SCOOT.  However, well-

coordinated traffic signal system ensures this link clears at each cycle therefore smaller 

positive values of the Lyapunov exponents are acceptable.  This situation occurs frequently 

overnight when signal timings are not coordinated, but instead operate in the demand 

dependent mode and during low flow periods of the day on a dedicated right turn link with 

short reservoir length.  For these reasons, there may be instances when the theoretical 

threshold value of zero is impractical (see Figure 2F in Appendix F).  Strict adherence to 

the zero criterion to an unlikely case dominated by negative Lyapunov exponents suggest 

the link is hardly in a chaotic state during the daytime period, which tends to be associated 

with the onset of prolonged congestion.  Therefore, the theoretical meta-stable datum may 

need adjusting to reflect the lesser likelihood of chaos over night.  That is, the low values 

of exponents overnight were used as a benchmark to determine the practical meta-stable 

points where dynamic behaviour transitions between the stable and unstable regions.  In 

future applications of chaos in real networks, it will be necessary to carry out further work 

to establish whether this threshold value for the Lyapunov exponent will be generic for a 

network or needed to be fine-tuned for each link.  This process could be implemented as a 

component of an autonomic or a feed forward system in the future.  This will be discussed 

further later in the thesis (in Section 10.2.6).   

By observing the time series profile of the Lyapunov exponents, the state change can be 

detected at the turning points of the curve, which determines the onset of congestion as a 

signal of impending congestion.  As shown in Figure 8.11, the onset of congestion is 

identified as the turning point from a positive to negative gradient, which is a state transition 

from free flow to chaos, whereas a negative to positive change reveals the instability 

associated with the onset of congestion or free flow.  This means that a positive-negative 

transition does indicate that the link is operating at or close to the optimum degree of 

saturation (usually 90-95% saturation).  Figure 8.11 identifies two instances of the onset of 

congestion in the morning around 0600h and 0900h but the link starts to become congested 

from about 0700 and 1100h respectively, whilst the evening peak is around 1500h (and 
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becomes congested from 1600h).  However, the sensitivity or vulnerability of the system 

during the evening peak is not as pronounced as the morning peak, indicating that relatively 

it is easier to stabilise perturbations during the evening peaks.   

At the network level, it is important to assess the chaos situation across all the individual 

links, which make up the network, in order to determine the total dynamic state across the 

network.  Such an assessment is a key step in determining the traffic conditions in the 

network because the instantaneous state of any arbitrary link may not necessarily define 

the state of the entire network.  Consequently, the raw Lyapunov exponents were analysed 

with respect to all other links in the network in order to determine the dynamical state of 

the entire SCOOT network.   

It was found, as shown in Figure 8.8 and Figure 8.10, that negative exponents dominate the 

profiles, which is revealed also in Figure 8.9 by the median profiles.  This was considered 

reasonable because it suggests that generally, traffic flow is stable, and the number of 

instances of chaos is relatively less compared with stable conditions as expected.  In order 

to analyse chaos across the entire network, a method is proposed in this research based on 

analysing the frequency of positive Lyapunov exponents for all the links in the network.  

The outcome from this method, together with an understanding of the link Lyapunov 

exponents profile will help to determine the critical times that should trigger the onset of 

congestion.  Section 8.6 seeks to demonstrate how this methodology is used to develop the 

Lyapunov exponent as an indicator of the onset of congestion.   

8.6 Exploring the Lyapunov Exponents to Determine the Network Status  

In order to understand the global state of the network, all daily profiles of the Lyapunov 

exponents for all the links need to be considered together.  Therefore, the next step is to 

count the number of positive Lyapunov exponents at each interval across all the links in 

the network.  In this way, the locations as well as how chaos occurs and propagates through 

the network can be investigated.  The number of links indicating negative, zero or positive 

Lyapunov exponents were determined every 20 seconds for all the surveyed days.  For 

example, the results at 0900 hours on the 21st July 1999 indicated that there are 21, 6 and 0 

links indicating positive, negative and neutral values of Lyapunov exponents respectively.  

The profiles of the positive exponent were then used in the subsequent analysis to 

understand the patterns of the frequency of occurrence of chaos across the entire network 
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of interconnected links. A summary of the full results of the analyses, which are used in 

analysing the scenarios described in Section 6.7.2, are sampled at one hour intervals and 

included in Appendix G (see Table 1G through to Table 49G).  These are described briefly 

below for each of the cohorts.  The discussion for the cohorts here are to establish whether 

chaos is a microscale event or has spatial effects in a network of interconnected links based 

on the analysis of positive Lyapunov exponents.   

8.6.1 Analysis of Results – Scenario A1 

Section 8.6.1 presents the results for Scenario A1, with Scenario A2 and A3 in Section 

8.6.2, and Scenario 4 in Section 8.6.3.  An assessment of all scenarios are necessary in 

order to establish how to address issues of missing Lyapunov exponent data especially 

when using this data for short-term traffic forecast of link occupancy.   

Table 8-8 presents the summary of the results for Scenario A1, based on the correlation 

coefficients of frequency (20 seconds) of positive exponents between link pairs on the same 

days (Scenario A1).  Table 8-8 includes the most and least correlated profiles, based on the 

average correlation coefficients, for cohorts 1 through to 7, for each ‘same day’ analysed.  

Table 8-8 shows that the most and least correlated profiles for Cohort 1 are Friday (0.68) 

and Monday (0.36) respectively, and for Cohort 2 are Saturday (0.75) and Wednesday 

(0.38) respectively.   

Further, the corresponding figures for Cohort 3 are Saturday (0.60) and Friday (0.34) 

respectively, and for Cohort 4 are Sunday (0.61) and Monday (0.22) respectively.  

Furthermore, the most and least correlated profiles for Cohort 5 are Friday (0.64) and 

Monday (0.12) respectively.  Therefore, Cohort 5 repeats the observation in Cohort 1.  

Similar to the observation in Cohort 4, Table 8-8 shows the corresponding results for 

Cohort 6 are Sunday (0.71) and Monday (0.32) respectively.  Finally, Table 8-8 shows that 

the highest and least correlated profiles for Cohort 7 are Friday (0.61) and Tuesday (0.21) 

respectively.    
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Cohorts Day of Week Minimum Maximum Average 

1
: 

Ja
n

u
ar

y
 

Monday  0.01 0.70 0.36 

Tuesday 0.08 0.70 0.39 

Wednesday  0.29 0.57 0.44 

Thursday 0.48 0.73 0.60 

Friday  0.37 0.91 0.68 

Saturday  0.26 0.79 0.52 

Sunday  0.49 0.79 0.63 

2
: 

F
eb

ru
ar

y
 

Monday  0.68 0.72 0.70 

Tuesday 0.15 0.70 0.42 

Wednesday  0.04 0.69 0.38 

Thursday 0.48 0.75 0.61 

Friday  0.47 0.75 0.61 

Saturday  0.72 0.77 0.75 

Sunday  0.70 0.73 0.72 

3
: 

M
ar

ch
 

Monday  0.41 0.68 0.56 

Tuesday 0.38 0.65 0.51 

Wednesday  0.52 0.61 0.57 

Thursday 0.16 0.67 0.39 

Friday  0.18 0.71 0.34 

Saturday  0.44 0.76 0.60 

Sunday  0.38 0.71 0.54 

4
: 

A
p
ri

l 

Monday  0.60 0.47 0.22 

Tuesday 0.39 0.62 0.53 

Wednesday  0.21 0.69 0.43 

Thursday 0.33 0.69 0.53 

Friday  0.46 0.75 0.59 

Saturday  -0.19 0.79 0.29 

Sunday  0.55 0.72 0.61 

5
: 

M
ay

 

Monday  -0.14 0.40 0.12 

Tuesday 0.12 0.83 0.51 

Wednesday  0.59 0.63 0.61 

Thursday 0.61 0.65 0.63 

Friday  0.54 0.72 0.64 

Saturday  0.35 0.73 0.58 

Sunday  -0.16 0.72 0.18 

6
: 

Ju
n
e 

Monday  0.12 0.62 0.32 

Tuesday 0.13 0.70 0.46 

Wednesday  0.18 0.65 0.41 

Thursday 0.63 0.70 0.66 

Friday  0.63 0.71 0.68 

Saturday  0.44 0.74 0.55 

Sunday  0.70 0.72 0.71 

7
: 

Ju
ly

  

Monday  0.40 0.65 0.56 

Tuesday -0.18 0.58 0.21 

Wednesday  0.28 0.58 0.44 

Thursday 0.22 0.56 0.38 

Friday  0.57 0.64 0.61 

Saturday  0.46 0.60 0.53 

Sunday  0.60 0.61 0.60 

Table 8-8: Summary of Correlation Coefficients (R) for Scenario A1 (All Cohorts) 
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Table 8-8 further indicate the minimum range of the correlation coefficients are 0.01 and 

0.49 (Cohort 1), 0.04 and 0.72 (Cohort 2), 0.16 and 0.52 (Cohort 3), -0.19 and 0.60 (Cohort 

4), -0.10 and 0.61 (Cohort 5), 0.12 and 0.70 (Cohort 6) and -0.18 and 0.60 (Cohort 7).  The 

corresponding ranges of the maximum correlations are 0.57 and 0.91 (Cohort 1), 0.69 and 

0.77 (Cohort 2), 0.61 and 0.76 (Cohort 3), 0.47 and 0.79 (Cohort 4), 0.40 and 0.73 (Cohort 

5), 0.62 and 0.74 (Cohort 6) and 0.56 and 0.65 (Cohort 7).   

The results indicate high variations across the minimum correlations compared with the 

maximum correlations.  The results further indicate that the weekdays had the maximum 

correlations in all the cohorts, whilst the weekends dominated the minimum correlations.  

Table 8-9 gathers the highest and lowest of the average correlation coefficients, and the 

corresponding ranges of maximums.   

Cohorts Highest Lowest Minimum Range  

1: January 0.68 0.36 0.34 

2: February  0.75 0.38 0.08 

3: March 0.60 0.34 0.15 

4: April 0.61 0.22 0.32 

5: May  0.64 0.12 0.43 

6: June 0.71 0.32 0.12 

7: July  0.61 0.21 0.06 

Table 8-9: Overall Summary of Correlation Coefficient (R) for All Cohorts (Scenario A1) 

Clearly, the summary statistics illustrate that patterns in daily Lyapunov exponents across 

the network were prevalent, which is neither limited to any particular month nor weekday 

but occurs on different days including a Saturday and on a Sunday depending on the month.  

This result confirms the need to continuously monitor the evolution of congestion in real-

time so that when the thresholds are reached in particular link pairs the onset of congestion 

is sent as an alert to an operator who can respond appropriately.   

8.6.2 Analysis of Results – Scenarios A2 and A3 

This section describes the results of the analysis in hierarchical order from Cohorts 1 

through to Cohort 7 for scenarios A2 and A3 (see Section 6.7.2), which are as follows:  

1. Scenario A2: each day profile versus the respective average same-day profile. 

2. Scenario A3: each day profile versus the respective average weekly profile.   
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  Scenario A2 Scenario A3 

Cohorts Day of Month Correlation Coefficients  

Highest Lowest Highest Lowest 

1
: 

Ja
n
u
ar

y
 

3rd Wednesday    0.89  

16th Saturday  0.93    

18th Monday  0.26  0.04 

Average 0.79 0.68 

2
: 

F
eb

ru
ar

y
 3rd Wednesday   0.11  0.13 

6th Saturday  0.91    

11th Thursday   0.89  

Average  0.82 0.78 

3
: 

M
ar

ch
 11th Thursday  0.45   

19th Friday     0.46 
27th Saturday  0.91    
29th Monday   0.92  
Average  0.78 0.76 

4
: 

A
p
ri

l 7th Wednesday    0.90  
11th Sunday 0.94    
24th Saturday  -0.13  -0.16 
Average 0.74 0.70 

5
: 

M
ay

 

3rd Monday  0.02  -0.09 
7th Friday 0.90  0.86  
Average 0.74 0.71 

6
: 

Ju
n

e 

8th Tuesday    0.32 
13th Sunday 0.90    
28th Monday  0.33   
29th Tuesday   0.97  
Average 0.80 0.77 

7
: 

Ju
ly

 26th Monday   0.04  -0.07 

27th Tuesday  0.88  0.85  

Average 0.77 0.71 

Table 8-10: Summary of Correlation Coefficients (R) for Scenarios A2 and A3 (All Cohorts) 

Figure 1H through to Figure 6H (in Appendix H) present the output of the bar chart analysis 

of the cohorts, whilst the key features of the graphical profiles are summarised in Table 

8-10 that shows the highest and lowest correlation of the daily profiles with the average 

same-day and weekly profiles together with the corresponding day.  The results of the 

cohorts consistently indicate a strong relationship between the daily and average same day 

profile, suggesting that the average same-day profiles may be useful surrogate data in the 

model for the forecast of occupancy.  This will be explored further in Chapter 9.   

Figure 8.12 presents the profile of Cohort 1, which also illustrates the characteristics of the 

profiles for Scenario A2 compared with Scenario A3.  Figure 8.12 indicates that Day 16 
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(Saturday) has the highest correlation of 0.93 for Scenario A2, whilst Day 18 (Monday) has 

the lowest correlation of 0.26.  Similarly, Day 15 (Friday) has the highest correlation of 

0.89, whilst Day 18 (Monday) has the lowest correlation of 0.04 for Scenario A3.  Figure 

8.12 shows that generally, the relationships in Scenario A2 are stronger than Scenario A3, 

and the results indicate that the average correlation coefficients for scenarios A2 and A3 

are 0.79 and 0.68 respectively.   

 

Figure 8.12: Profiles for Scenario A2 compared with Scenario A3 (January 1999) 

The inferences that can be made for the other cohorts in terms of the range of correlation 

coefficients are presented in Table 8-11.   

Cohorts Scenario A2 Scenario A3 

 Minimum Maximum Minimum Maximum 

2: February  0.11 0.91 0.13 0.83 

3: March 0.45 0.91 0.46 0.92 

4: April -0.13 0.94 -0.16 0.90 

5: May  0.02 0.90 -0.09 0.86 

6: June 0.33 0.90 0.31 0.97 

7: July  0.04 0.88 -0.07 0.85 

Table 8-11: Overall Summary of the Range of Correlation Coefficients (R) for                     

Scenarios A2 and A3 (All Cohorts) 
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The Mann-Whitney test gave a significant p-value of 0.0098 to confirm that the correlations 

of the daily profiles with the average same-day correlations were statistically significantly 

higher than the average weekly in Cohort 1.  The results therefore confirm, as might be 

expected, that the average same day of the week profiles tend to correlate with the 

respective days.  Cohorts 2, 5 and 7 also gave the same conclusions since the Mann-

Whitney test outputs reveal statistically significant values of 0.0019, 0.01 and 0.01 

respectively.   

Cohorts 
Scenario A2  Scenario A3 

Highest Lowest Minimum 

Range  
Highest Lowest Minimum 

Range  
1: January 0.93 0.26 0.67 0.89 0.04 0.84 

2: February  0.91 0.11 0.80 0.89 0.13 0.76 

3: March 0.91 0.45 0.46 0.92 0.46 0.46 

4: April 0.94 -0.13 1.07 0.90 -0.16 1.06 

5: May  0.90 0.02 0.88 0.86 -0.09 0.95 

6: June 0.90 0.33 0.57 0.97 0.31 0.66 

7: July  0.88 0.04 0.84 0.85 -0.07 0.92 

Table 8-12: Overall Summary of Correlation Coefficient (R) for All Cohorts                          

(Scenarios A2 and A3) 

On the other hand, the statistics for Cohorts 3, 4 and 6 indicated that there was no 

statistically significant difference between the correlations of the daily profiles with the 

average same-day and weekly profiles.  According to the Mann-Whitney test, the p-values 

are 0.23, 0.27 and 0.07 respectively, all greater than the critical value of 0.05 for 95% 

confidence interval.   

Overall, the results show that the daily profiles are either statistically similarly correlated 

with the average same-day and weekly profile or correlated more strongly with the average 

same-day profiles than the average weekly profiles.  It is important to note there is no 

instance that the results indicated the average weekly profiles correlated more strongly than 

the average same-day profiles.  Consequently, the average same-day profiles were used for 

further analysis.   

8.6.3 Analysis of Results – Scenario A4  

This section presents the analysis of the same-day of the week profiles for the seven cohorts, 

which falls under Scenario A4 (see Section 6.7.2).  The graphical profiles for the seven 
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cohorts are included in Appendix I (see Figure 1I through to Figure 7I), which consistently 

indicate at least about 10% of links in chaos during the daytime period (0600h–1600h) 

when congestion may be expected.  Figure 8.13 shows the profile for Cohort 7, which is 

included here to help to explain how the proportions of links that experience chaos vary 

throughout the day.  It is must be noted that unlike the commonly used flow profile Figure 

8.13 is a graph illustrating the onset of, rather than, the presence of congestion.   

The curves in Figure 8.13 start with an upward slope for the frequency of occurrence of 

congestion onset building up from midnight and peak between 0500h and 0700h during the 

weekdays (but slightly delayed peaks over the weekend).  It shows two distinct peaks that 

make them unique.  The weekday morning and evening onset of congestion occur around 

0600h and 1500h respectively.  The highest average frequency is 30% that occurs in the 

morning and evening onset of peaks on Friday and Monday respectively.  The weekend 

peaks are around 0800h with a frequency of circa 29%, whilst the not too pronounced 

evening peak occurs around 1700h on Saturday only with a frequency of circa 21%.  A 

further, less frequently, occurring peak occurs about 2030h.   

 

Figure 8.13: Graph of the Average ‘Same Day’ Profiles (July 1999) 

The curves reveal that there is a delay of about two hours between the morning weekend 

and weekday peaks.  That is, the weekday peak is approximately two hours ahead of the 
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weekend peak.  This is consistent with commuter traffic during the week and shopping at 

the weekend.  The absence of an evening peak on Sundays reflects early closing. The late 

evening peak on Saturdays is consistent with leisure and entertainment activities.   

Across the cohorts analysed, the highest frequency of links exhibiting chaos at the peak 

time ranged between approximately 28-32%, which occurred on different days.  The 

profiles generally indicated that the shapes of the weekend profiles (especially between 

0600h-1100h) were very similar, as were the weekday profiles (see Figure 1I through to 

Figure 7I in Appendix I), and therefore gave distinct clusters.  This observation, whilst 

illustrating the degree of consistency of patterns on particular days throughout the year 

month to month, reflects the different characteristic traffic patterns in terms of volumes 

over the weekends.  Therefore, there is a natural expectation for stronger correlations 

between the pairs of weekday-weekday or weekend-weekend than the weekday-weekend.   

Table 8-13 presents a summary of the results of the correlation assessments for the average 

same-day profiles for Cohort 4.  Generally, the results show that the correlations between 

the pairs of weekday-weekday or weekend-weekend are stronger than the combination of 

the weekday-weekend.  Cohort 2 is the only exception, where the average coefficients of 

the weekday-weekend indicate stronger relationship than the weekend-weekend, albeit less 

than the weekday-weekday.  This might be because February is a shorter month and 

possibly contains a school half-term.   

 Correlations of all daily pairs Average correlations 

Cohorts Minimum Maximum Average weekday-

weekday 

weekend-

weekend 

weekday-

weekend  

1: January  0.58 0.87 0.77 0.78 0.87 0.76 

2: February 0.51 0.89 0.73 0.79 0.66 0.68 

3: March 0.59 0.87 0.79 0.83 0.77 0.76 

4: April 0.60 0.87 0.76 0.77 0.85 0.73 

5: May 0.66 0.85 0.77 0.82 0.78 0.77 

6: June 0.58 0.89 0.77 0.84 0.82 0.69 

7: July 0.46 0.85 0.68 0.78 0.78 0.58 

Average 0.57 0.87 0.75 0.80 0.79 0.71 

Table 8-13: Summary of Correlation Coefficients for Scenario A4 (All Cohorts) 
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The results indicate that the average monthly minimum correlation between the daily 

profiles is 0.57 ranging between 0.46 and 0.66.  Similarly, the maximum is 0.87 ranging 

between 0.85 and 0.89, whilst the average is 0.75 ranging between 0.68 and 0.77.  Further, 

the average monthly correlation of the pairing of weekday-weekday ranges between 0.77 

and 0.84 and on average 0.80.  Similarly, the weekend-weekend ranges between 0.66 and 

0.87 and is on average 0.79, whilst the weekday-weekend is on average 0.71 ranging 

between 0.68 and 0.77.   

The Kruskal-Wallis test gave consistent p-values to indicate there is no statistical 

significant difference between the seven cohorts in terms of the minimum, maximum and 

average correlations in Table 8-13.  A similar assessment for the weekday-weekday, 

weekend-weekend and weekday-weekend options also revealed the same conclusions.  The 

p-values ranged between 0.435 and 0.499.  This result endorses the observations from 

Scenario A3.   

8.6.4 Summary and Inferences  

By undertaking the same analysis for the seven cohorts, the main inferences from the 

analyses of the positive Lyapunov exponents presented above are:   

1. generally, the correlations of the daily profiles against the average same-day 

profiles show stronger relationships than with the average weekly profiles.  

Otherwise, there is no statistical difference in the results although the average 

coefficients of the former are greater than the latter;   

2. there is a stronger relationship between the pairs of weekday-weekday or weekend-

weekend than the pairs of the weekday-weekend profiles (0330h-2200h);   

3. there is at least about 10% links showing chaos during daytime period; and 

4. the highest frequency of links showing chaos at the busiest time is circa 30%.  

The findings in 1 and 2 (above) are expected because the patterns of traffic flows tend to 

be similar for the same-day of the week, and therefore there is a stronger relationship 

between the week’s daily profiles and its respective average same-day profile across the 

month.  Given the variability in traffic flow from day-to-day, the daily profiles as expected 

were found not to correlate strongly with the average weekly profile.  It is likely however, 

that some of the weekday daily profiles will correlate well with the average weekly profile 

due to the smoothing effects from the averaging of the profiles over the week.  The 
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relationship between the daily and average same day profile implies that the average same-

day profile may be useful in the short-term forecast model, as replacement data in the event 

of missing data, whether an entire or segment of the day.   

Furthermore, the curves show distinct patterns in the profiles for the weekdays and 

weekends.  For example, the highest proportion of links indicating chaos on the curves tend 

to concentrate around 0530h-0700h for the average weekday profiles, whilst the delayed 

peaks of the weekends occur one or two hours later.  The curves have distinct shapes for 

the two categories.  Such patterns make the relationships within the weekday-weekday and 

weekend-weekend groups stronger with high correlation coefficients compared with the 

weekday-weekend combinations.   

The results indicate that there is more than one link indicating chaos during the busy 

daytime period when chaos is expected to be imminent.  The minimum frequency of links 

experiencing chaos is circa 10%, whilst the highest is circa 30%.  The observation therefore 

suggests that at the time when the network is in a chaotic state, there will be a number of 

links indicating a positive value of Lyapunov exponent.  The results demonstrate that chaos 

has spatial effects network-wide, which might be a result of natural lags in traffic flow and 

of events (such as the sudden application of brakes, high flow volumes, accidents) in one 

network location giving rise to secondary effects in other locations.   

8.7 Conclusions  

The analyses have revealed that the optimum lag time of the traffic flow time series of a 

link can be predicted from a multiple regression model of the lag against mean or standard 

deviation, although the standard deviation model performed better.  The lag times ranged 

between 140 and 270 minutes for the links in the network studied, which shows distinct lag 

times across the entire network.  However, there are identifiable groups of adjacent links 

in which the lag times are not statistically significantly different.  This is expected because 

platooning of traffic exists across these groups of links through SCOOT’s offset 

optimisation and therefore similar traffic patterns were observed.  The results imply that 

the lag durations monitor the extent of traffic platooning in the network such that if adjacent 

links indicate that the lags are not statistically significantly different then this is likely a 

result of platooning traffic on these links.   
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It is important to note that it was not possible to use the raw Lyapunov exponents of the 

individual links to generate a single parameter for analysing the entire network-wide 

system.  The results show a high frequency of the negative values in the time series of the 

Lyapunov exponents, which is useful to determine the stable and unstable episodes on the 

link detector but not network-wide.  From the traffic management point of view, it is 

important to provide an analysis tool for understanding the network-wide traffic behaviour 

necessary in order to keep the network operating in under-saturated conditions.   

By focusing on the frequency of occurrences of positive Lyapunov exponents offers the 

potential to target those individual network links occurrence of chaos to address the 

network-wide congestion problems.  This frequency of occurrence analysis revealed that 

the correlations between same-day (Monday-Monday, Tuesday-Tuesday, etc.) profiles did 

not yield any specific pattern, nor any indication of a statistically consistently strong 

relationship.  This suggests substantial inconsistency of traffic from day to day in a week, 

or same weekday in different weeks.  Therefore, there was further analysis of correlation 

of the daily and respective average same-day profiles (for example, Monday versus average 

of all Mondays, or Tuesday versus average of all Tuesdays etc.), and daily and respective 

average weekly profiles (for example, Monday, Tuesday etc. in week 1 versus average of 

all days (Mondays to Sunday inclusive) in week 1).  Based on the understanding that the 

daily correlations with the average same-day profiles were stronger than the weekly 

profiles, the average same-day profiles were examined to determine the progression of 

chaos in the network of SCOOT links.  According to the analysis, there is at least about 5-

10% links indicating chaos during the daytime period and a maximum of 30% during the 

onset of congestion at the busiest time of the day.   

The lag interval between an event occurring at one location and its effects at other locations 

whether upstream or downstream at a later time will be investigated in detail in Chapter 9.  

Subsequently, by analysing the causes and effects of the temporal and spatial evolution of 

traffic behaviour using the Lyapunov exponents, this research work demonstrates two 

important possible applications to signalised urban networks.  These are discussed in 

Chapter 9 making use of the Lyapunov exponents, which characterises the different traffic 

flow regimes (free-flow, unstable and congested), to investigate the forecast of link 
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occupancy and, subsequently how this may be beneficial for managing traffic in signalised 

urban networks.   
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Chapter 9. Exploring the Temporal and Spatial 

Relationships of Lyapunov Exponents for Short Term 

Forecasting 

9.1 Introduction  

The previous chapter identified the Lyapunov exponent as a suitable parameter for 

determining the dynamic status of the traffic in a signalised urban road network.  The 

Lyapunov exponents were subject to further analysis to demonstrate successfully potential 

for practical use in managing traffic in actual urban networks.  Consequently, this chapter 

presents the results of a real-world investigation into the application of the Lyapunov 

exponents for predicting the short-term traffic in a SCOOT region in an urban road network.  

It also explores the use of the Lyapunov exponent for anticipating where and when 

congestion will occur enabling traffic management strategies to be implemented in advance 

to deal with impending traffic conditions.  This will be achieved by an assessment of the 

temporal and spatial correlations between links in the network.   

In line with the stated objectives, Section 9.3 introduces the cross-correlation analysis that 

underpins the assessments in this chapter and explains how an understanding of the lags 

may be helpful for enhancing our knowledge of the evolution of traffic flow.  Section 9.4 

describes the forecasting model developed to deliver the short-term traffic predictions, 

enumerates the scenarios assessed based on the model, and presents the descriptive 

statistics of the results of the modelled scenarios.  Section 9.5 discusses the link-by-link 

results of the short-term predictions of link occupancies, and Section 9.6 presents the 

network analysis to identify the critical link based on the Lyapunov exponents and 

demonstrates how this understanding could enhance traffic management practise in urban 

areas.   

9.2 Review of Spatial-Temporal Time Series Models 

A review of traffic condition models was discussed at Section 3.3.  This section provides a 

further review of spatial-temporal regression models in order to justify the forecast 

technique based on nonparametric regression model adopted in the thesis.  By recognising 

that lags are naturally embedded in the traffic evolution process, the ideal model must have 

the capability to forecast the traffic flow at a given location using the time series 

information of the neighbouring locations in the network.  Essentially, this model must be 
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able to incorporate not only the temporal but also the spatial relationships of the predicted 

(dependent) link with the other (independent) links in the network.   

Models that describe the spatial-temporal evolution of a single or multiple variable 

relationship in space and time has received significant attention in the last thirty years due 

to the advancement in computer technology and existence of large databases.  Equation 9-1 

provides generalisation of the spatial-temporal model proposed by Cliff and Ord (1975a) 

incorporating autoregressive, moving average and regression techniques (and various 

combination of these) to model the behaviour of economic series.   

𝑌 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀 +  𝛾𝐴𝜀 Equation 9-1 

 In this model, 𝑊 and 𝐴 represent the matrices of known ‘structural weights’, 𝑋 is a matrix 

of known (non-stochastic) regressor or independent variables, 𝜌, 𝛾 and 𝛽 are unknown 

parameters, and 𝜀 is a random disturbance term with zero mean.  The first, second and 

fourth terms of the equation are the autoregressive, regressive and spatial moving average 

component of the model.  Therefore, if 𝛾 = 0 and 𝛽 = 0, the model is purely spatially 

autoregressive; if 𝜌 = 0 and 𝛾 = 0, the model is a conventional spatial regressive model of  

𝑌 upon a set of independent variables, 𝑋; and if 𝛽 = 0 and 𝜌 = 0, the model reduces to a 

spatial moving average.   

Following this work, various techniques have evolved in response to different inferential 

needs and data types in order to examine the relationship between two variables in space 

and time.  These include methodologies for space-time analysis such as Space-Time 

AutoRegressive Integrated Moving Average (STARIMA), Bayesian Vector 

AutoRegressive (BVAR), Dynamic Space-time (DS-t) and Seemingly Unrelated 

Regression (SUR) (Cliff and Ord, 1975b).  Both the STARIMA and BVAR models apply 

when investigating the spatio-temporal evolution of a single variable.  The distinction is 

that STARIMA performs better for large spatial and temporal dimensions, whilst BVAR is 

better suited for studies that involve a small number of locations.  The DS-t and SUR 

models describe relationships between multiple variables with a spatio-temporal reference.   

It is important to note that in STARIMA, each time series is modelled simultaneously as a 

linear combination of past observations and disturbances at neighbouring sites.  
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Fundamentally, in some respects, the spatial-temporal models are an extension of the 

univariate modelling techniques.  For example, STARIMA models depend on the basic 

univariate ARIMA principle, where the more recent exerts more influence than the distant 

past.  Such models are unsuitable in this research for two reasons.  Firstly, STARIMA 

models a variable (flow) with only information about the same variable (flow) without 

considering other information (for example, occupancy and speed) that may be relevant 

also.  However, in the research reported in this thesis a variable was modelled with the 

values of other variables.   

In spatial analysis which focusses on time series based on multiple variables, the spatio-

temporal evolution of traffic conditions, or functional relationship between variables, is not 

as important as the relationship between measurement of different variables (such as flow 

and density) observed in space and time.  Kamarianakis and Prastacos (2003) proposed a 

generalised first order serial and spatial autoregressive distributed lag model in vector form 

in macroeconomic modelling to examine the relationship between time series variables 

such as Gross Domestic Product (GDP), employment, labour force participation, 

productivity etc. representing data collected for different regions.  The model provided 

generalised relationships between variables in space and time based on aggregated data of 

the entire time series.  Therefore, such models are limited due to their inability to take 

advantage of disaggregate time series data to provide robust models that focus on, for 

example, specified time periods.   

For the reasons already discussed, the above models that are primarily based on 

autoregression are unsuitable for this research.  However, the lagged distribution of the 

time series observation was found to be necessary in any model considered for this work 

due to the time lag between causes and effects at different spatial locations in the network.  

Further, the model must be capable of making predictions based on disaggregate data to 

construct specific models for specific duration of time series observations.   

In deciding the choice of model for this work, attention was paid to the knowledge that 

regression models can treat time series data in a disaggregate form.  This suggests that it is 

possible to construct a spatial regression model for different locations over different time 

periods and thus the geographical relations can be modelled implicitly in the covariance of 

the system of equations (Anselin, 1988, Zellner, 1962).   
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Regression models, unlike the models discussed above, have the inherent ability to model 

a variable based on information of another variable, rather than on its own information.  

Linear regression is used to model the value of a dependent variable based on its linear 

relationship to one or more predictors.  Nonlinear regression is appropriate when the 

relationship between the dependent and independent variables is not intrinsically linear.  

Regression models may also be either parametric or non-parametric.  A finite number of 

parameters, which when defined remains constant irrespective of the forecast time segment, 

represent a parametric model.  On the contrary, the nonparametric model is not represented 

by a finite number of parameters but instead has the ability to compute a whole function 

instead of a set of parameters.  Therefore, when applied, a specific unique model is 

generated for every forecast scenario.   

A class of nonparametric model is the modelling, which can learn from local conditions 

and therefore provides a more accurate model estimator than other models such as neural 

networks that are global in nature (Atkeson et al., 1997).  Local models are real-time models 

that generate the functions from an infinite stream of training data.  These models include 

the local constant regression such as the k-nearest neighbours (Smith et al., 2000), kernel 

estimator (Elfaouzi, 1996) and local linear regression (Fan and Gijbels, 1996).  Rice et al 

(2001) in a study of travel time applied the time varying coefficient linear model, which is 

closely related to the local linear regression model, where the weighting function was 

determined by the difference in departure time rather than the distance of the covariates 

space.   

A potential problem with regression models applied to time series data is that the data tends 

to be generally autocorrelated.  As such, if there are common elements in the 

autocorrelation structure of the dependent and independent variables, then the equation may 

show strong relation when in fact the independent variables have no real explanatory power 

of the dependent variable.  Therefore, the concept of “dynamic regression” models for time 

series data has been applied in this research.  Dynamic regression (distributed lag 

regression) models enhance times series modelling by taking into account the possible time 

lagged relations between the input and output variables (Pankratz, 2012).   

Equation 9-2 gives a purely regressive model of Equation 9-1 for a dependent variable 𝑌𝑡 

and a set of independent variables 𝑋1, 𝑋2 … 𝑋𝑘 observed at a given time interval 𝑡.  
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Similarly, Equation 9-3 presents the lag distributed regression model for the dependent and 

independent variables.   

𝑌𝑡     = 𝛽0 + 𝛽1𝑋1,𝑡 + 𝛽2𝑋2,𝑡 + ⋯ 𝛽𝑘𝑋𝑘,𝑡 + 𝑒𝑡 

 

Equation 9-2 

 𝑌𝑡−𝑠 = 𝛽0 + 𝛽1𝑋1,𝑡−1 + 𝛽2𝑋2,𝑡−1 + ⋯ 𝛽𝑘𝑋𝑘,𝑡−1 + 𝑒𝑡−1 

 

Equation 9-3 

 where: 

 Yt is the linear function of the k predictor variables (X1,t, X2,t, … Xk,t)  

 Yt−s is the lag distribute model for the k predictor variables 

(X1,t−1, X2,t−1, … Xk,t−1) 

 β0 is the population intercept (a constant term) 

 β1, β2 … βk are the coefficients of the independent variables  

 et and et−1 are usually assumed to be an uncorrelated error term   

By reflecting on the knowledge of regression models in the background literature review, 

it was concluded that the distributed lag model in Equation 9-2 would be most suitable for 

this research.  Prior to applying Equation 9-2, the model undertakes a cross-correlation 

assessment exercise to evaluate the lag between the dependent and each of the independent 

variables.  Then, a specified criteria is imposed to select a particular set of independent 

variables to develop the model function, which was generated uniquely for every hour of 

the day for every predicted link.   

9.3 Exploring the Lyapunov Exponents for Predicting Link Occupancy   

This section develops a forecast function to enable a prediction of the network link 

occupancies using the Lyapunov exponents.  Due to natural lags embedded in the traffic 

data, the traffic behaviour at a given point at time 𝑡(𝑠) tends to be related to the data at 

another location at time 𝑡(𝑠 − 𝜏), where 𝜏 is lagged (delay) time.  The lag interval between 

two locations gives an indication of how long it takes for the traffic flow at an upstream 

location to influence the traffic flow at a downstream location.  In order to forecast traffic 

accurately therefore, the natural lag within the data is required to provide a good reference 

for the selection of the forecast horizon.  A sound understanding of lags in the datasets are 

important – the longer the lags, the longer the time horizon for the prediction of a traffic 

condition at a particular network location enabling timely selection and implementation of 

remedial measures to prevent congestion.  Further, as there are three variables involved in 
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this research, namely traffic flow and occupancy variables, and the computed Lyapunov 

exponents, it is important to determine which of these variables achieve the longest time 

horizon for the forecast.   

Consequently, this section aims to understand the existing lag within traffic flow and 

occupancy data variables as well as the computed Lyapunov exponents.  This analysis is 

carried out based on the cross-correlation function given by Equation 6-2 (see section 

6.7.3), which helps to determine the shift in time (lag) that maximises the correlation 

coefficient between any pairs of network links.   

In these assessments, the tested lags were within the range of zero to 1000 seconds, in steps 

of 100 seconds.  It must be noted that these lags from the cross-correlation method are 

different from the delay time (calculated from the autocorrelation method) for the phase 

space reconstruction.  The autocorrelation lags correlate the data series with its own past or 

future values at various lag values and uses the correlogram plots of the resulting 

coefficients to select the optimum lag as equivalent to the solution at a coefficient of 0.4.  

Therefore, this method ensures that in the process of the phase space reconstruction the 

length of lag when the data series is neither too correlated nor uncorrelated is used, whilst 

the cross-correlation method gives lags that maximises the correlation between the time 

series of two links.   

9.3.1 Determining the Cross-correlation Lags  

Cross-correlation assessment was undertaken for all possible pairs of links in order to 

examine the relationship between the maximum correlations and corresponding optimum 

lags (see Program 1 in Appendix B).  The four scenarios assessed were (i) Flow - Flow (ii) 

Occupancy – Occupancy (iii) Lyapunov exponents – Lyapunov exponents (iv) Occupancy 

- Lyapunov exponents and (v) Lyapunov exponents - Occupancy, for January 1999.  These 

scenarios describe how the datasets were correlated; for example, scenario (i) implies flow 

data from one location is correlated with flow data from another location, whilst scenario 

(iv) implies occupancy data from one location is correlated with Lyapunov exponents 

profile from another location.  The results are based on the averaging of the lags for all 

active loops over a 24-day period in January 1999 (see Table 1J through to Table 6J in 

Appendix J).  Figure 9.1 shows a boxplot of the comparative distributions of the scenarios 

based on the average daily lags, where higher negative values indicate that the lags are 
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longer and vice-versa.  The results indicate that the lags for the ‘Lyapunov exponent to 

Lyapunov exponent’ were longer than ‘flow to flow’ and ‘occupancy to occupancy’.  The 

lags for flow occur earlier than occupancy, confirming the observation in section 7.3.3, 

where the flow detects chaos slightly earlier than occupancy.  

 

Figure 9.1: Box Plot of Lags for Flow, Occupancy and Lyapunov Exponents 

From the traffic management perspective, this outcome is an indication that the exponents 

provide a longer forecast duration than flow and occupancy and therefore gives traffic 

managers more time to react.  On average, the lags of the exponent were between 5.97 and 

7.14 minutes (average of 6.54 minutes), which is 10.9% and 7.2% more than flow and 

occupancy respectively, but only 1.7% more than ‘occupancy-exponents’.  This is 

confirmed by the Mann-Whitney statistical test of equality at 95% confidence interval.  The 

lags for the ‘exponents-exponents’ option ranged between 5.97 and 7.14 minutes (average 

of 6.54 minutes), and were not statistically significantly different compared with the 

‘occupancy-exponent’ option.  The ‘exponents-occupancy’ option however ranged 

between 6 and 7.1 minutes (average of 6.56), which was 0.3% better than the ‘exponent-

exponent’ option.  The results suggests that, among all the scenarios considered, the 

‘exponents-occupancy’ option will forecast the occupancy longer.  Further, this implies 

that by choosing a forecast horizon of between 6 and 7.10 minutes, the forecast data would 
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be correlated strongly with actual data irrespective of predicting the occupancy from itself 

(occupancy) or the exponents.   

The result is reasonable justification for predicting the occupancy from the exponents.  

Firstly, it is an objective of the research to identify a parameter based on Chaos Theory 

suitable for predicting a traffic flow parameter.  Since the computation of the exponents 

used traffic flow data, it is reasonable to use the exponents to predict the occupancy that 

has no direct connection to the calculation of the exponents.  Given that the lags of the 

‘occupancy-exponents’ are relatively long, and they offer benefits for traffic management, 

this is the optimum choice for further investigations of the link-to-link interactions within 

the study network.  It indicated that the Lyapunov exponents could enable selection of a 

reasonably lagged yet well-correlated link pairs in the prediction model and therefore 

produce a better predictor of the occupancy of a link.   

9.4 Construction of Multiple Regression Models  

Figure 9.2 presents a generalised form of the modelling procedure, which relies on 

Lyapunov exponents (from the phase space constructed using traffic flow data).  The 

predictions of the link occupancies were determined from a multiple regression model, 

which generates a unique forecast model for each link for every hour of the day (see 

Program 2 in Appendix B).  Suppose there are 40 links numbered 1, 2, 3,…40 and the 

occupancy and Lyapunov exponent profiles are O1, O2, O3,…O40 and LE1, LE2, LE3,…LE40 

respectively.  The first step is to carry out a cross-correlation for every link’s occupancy 

against all the Lyapunov exponents of all other network links.  For example, the occupancy 

profile O1 (link (1)) is cross-correlated with LE2, LE3…LE40.  The next step is to determine 

the links whose Lyapunov exponent profile to include in the regression model (the “selected 

links” are those links where the maximum correlation coefficient and associated lags meets 

a “specified criteria” in the model).   

In this example illustrated in Figure 9.2, there are four selected links to predict the 

occupancy of an arbitrary link at time T+15.  The cross-correlation lags of the links are 15, 

10, 20 and 17.  The forecast model is constructed using one-hour occupancy data between 

T and T-60.  Taking into consideration the respective lags of the selected links, the range 

of the Lyapunov data are as follows: between T-15 and T-75, T-10 and T-70, T-20 and T-

80, and T-17 and T-77 for the first, second, third and fourth link respectively.  Once 
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completed, the model predicts the next 15-minute occupancy by using the respective links 

data ranging between T and T-60, T+5 and T-55, T-5 and T-65, and T-2 and T-62 to forecast 

the occupancy for the T+15 and T-45.   

 

Figure 9.2: Diagram of the Generalised Form of the Forecast Model
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By way of illustration, Table 9-1 presents the 24-hour profile for the qualifying links (the 

respective correlation coefficients and corresponding lags) for constructing the regression 

model for the Link 2 forecast on the 19th May 1999.  The “selected links” were found to be 

consistently different, even for the same link at different hours of the same day or the same 

hours on different days reflecting the variations in traffic flows under different varying 

conditions of the day.  This implies that when applied to traffic management remedial 

measures will also need to be monitored and continuously updated.   

Hour of 

Day 

Feeder Links (cc > 0.4)  

IDs Correlation Coefficients  Forecast Horizon 

01:00 6, 10 0.40, 0.43 -3.3, -16.7 

03:00 5, 32 0.43, 0.40 -6.0, 2.0 

04:00 2, 3, 40 0.57, 0.45, 0.44 -2.7, -2.0, -6.0 

05:00 1, 21, 27 0.43, 0.42, 0.40 -7.3, -16.7, -5.7 

06:00 1, 25, 32 0.41, 0.47, 0.41 -9.3, -4.0, -9.7 

07:00 1, 7, 12, 30 0.46, 0.51, 0.42, 0.44 -8.3, -2.0, -15.7,-4.7 

08:00 4, 12, 25, 33 0.49, 0.45, 0.42, 0.49 -12.3, -5.7, -5.3, -15.0 

11:00 10, 31, 39 0.41, 0.48, 0.52 -16.7, -9.3, -10.7 

12:00 
3, 4, 5,  

8, 19, 23 

0.46, 0.49, 0.60,  

0.41, 0.44, 0.55 

-7.0, -10.3, -11.0,                     

-15.7, -6.7, -11.0 

13:00 27 0.40 6.0 

15:00 35 0.46 -2.3 

16:00 8, 40 0.55, 0.42, 0.42 -5.7, -4.0 

19:00 9 0.45, 0.45 -9.0, -6.7 

20:00 6, 28 0.41, 0.46 -3.7, -9.7 

23:00 22, 25 0.40, 0.41 -3.3, -7.7 

Table 9-1: Summary of Model Information for Link 2 (15th May 1999)  

In order to predict the hourly occupancy of a link, a multiple regression forecast function 

is determined for each hour using the profiles of hourly Lyapunov exponents (or 

occupancy) of the selected links.  The generalised form of the regression formula for the 

hourly prediction is given by:  

𝑂𝑖 = 𝑎 + ∑ 𝑏𝑥 ∗ 𝐿𝑥

𝑛

𝑥=1

 

 

Equation 9-4 

 

where: 

 𝑂𝑖 is the occupancy for Link (𝑖), which is the predicted occupancy per link per hour 
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 𝑛 is the number of variables per hour explaining the variance in the predicted 

occupancy (𝑂𝑖) per link per hour 

 𝑎 is the constant or intercept of the regression line estimated per link per hour 

 𝑏𝑥 is the parameter for 𝐿𝑥 estimated per link per hour 

 𝐿𝑥 is the Lyapunov exponents profile per hour of link 𝑖 (𝐿𝐸𝑖) 

 𝐿𝑛 is the 𝑛𝑡ℎ (Last) independent Lyapunov exponents explaining the variance in 𝑂𝑖 

per link per hour 

For example, the regression model for 0815h-0915h will be based on the hourly Lyapunov 

exponents data from links 4, 12, 25 and 33, which are lagged at approximately 12, 6, 5 and 

15 minutes respectively, relative to the 0800h-0900h occupancy data from link 2.  The data 

for the independent variables (links 4, 12, 25 and 33) in the model will therefore correspond 

to data from 0748h-0848h, 0754h-0854h, 0755h-0855h and 0745h-0845h respectively.   

Section 5.5.2 notes that the shortfall in duration between the actual time series and the 

reconstructed phase space could limit its application.  Figure 9.2 illustrates this gap as the 

differential in length between the exponents and the flow/occupancy data.  In order to fill 

in this missing data to enable real time application, this work suggests given the evidence 

of a strong correlation between the same-day and the respective average same day profiles 

(see section 8.6.2) that the average same day profile of the recent weeks is used as surrogate 

data in the model.  Alternatively, a localised regression model would be useful to generate 

this data.   

9.4.1 Modelling Scenarios  

In order to test the model, the Lyapunov exponents from a preceding time segment (based 

on the lag) were input into the model, and the model used to predict the occupancy for 

succeeding time segments.  Five scenarios were considered:  

1. Scenario B1 predicts the hourly occupancy profile 24 hours ahead (for 

example, LE data from 0700h-0800h is used to construct the model, then the 

next day 0700h-0800h LE data is selected to forecast the 0700h-0800h 

occupancy).  The “specified criteria” for the “selected links” is maximum 

correlation coefficients and lags greater than 0.4 and 100 seconds respectively.  
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2. Scenario B2 predicts the hourly occupancy profile 15 minutes into the next 

hour (for example, LE data from 0700-0800 is used to construct the model, then 

the 0715-0815 LE data is selected to forecast the 0800-0815 occupancy).  The 

“specified criteria” for the “selected links” is maximum correlation coefficients 

and lags greater than 0.4 and 100 seconds respectively.   

3. Scenario B3 is same as Scenario B2, except that occupancy data in used instead 

of LE data.   

4. Scenario B4 is same as Scenario B2, except that the threshold criteria for the 

“selected links” for the maximum correlation coefficient is greater than 0.7.   

5. Scenario B5 is same as Scenario B2, except that the threshold criteria for the 

“selected links” for the maximum correlation coefficient is greater than 0.3.   

9.4.2 Scatter Plot Analysis  

Figure 9.3 is a typical scatter plot of the predicted versus actual occupancy for link 1 

(Scenario 5) on the 28th July 1999.  Figure 9.3 includes a total number of 4320 predicted 

points at every 20 second interval throughout the day.  It indicates a “very strong” 

correlation coefficient between the predicted and actual occupancy of approximately 93%.   

 

Figure 9.3: Scatterplot of the Predicted versus Actual Occupancy of Link 1 (typical) 

9.4.3 Descriptive Statistics of Correlation Coefficients  

Figure 9.4 presents a boxplot of the median values for the correlation coefficients of the 

predicted versus actual occupancy based on the daily hourly predictions in Scenario B1.  
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The number of days that were forecast in January, February, March, April, May, June and 

July are 25, 26, 29, 28, 29, 28 and 28 respectively.   

The respective minimum and maximum correlation coefficients sampled from the daily 

hourly correlation coefficients are included in Table 9-2, together with the median for this 

data range for the entire months.   

 

Figure 9.4: Boxplot of the Median Correlation Coefficients of the Hourly Actual versus Forecast 

Occupancy (Scenario B1) 

Cohort  Minimum Maximum Median  

1: January  0.0381 0.8163 0.5961 

2: February  0.1495 0.8143 0.5198 

3: March  0.048 0.8538 0.3935 

4: April  -0.0306 0.8923 0.4581 

5: May  0.0087 0.806 0.5382 

6: June 0.0274 0.9829 0.6678 

7: July -0.0238 0.8797 0.5324 

Table 9-2: Summary of Median Correlation Coefficients of the Hourly Actual versus Forecast 

Occupancy (Scenario B1) 

Similar to Figure 9.4, the following four figures presents the boxplots for the median values 

for the correlation coefficients of the predicted versus actual occupancy based on the daily 
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hourly predictions for other scenarios analysed, whilst a summary of the minimum, 

maximum and median correlation coefficients for their cohorts are included in Table 9-3.   

 

Figure 9.5: Boxplot of the Median Correlation Coefficients of the Hourly Actual versus Forecasts 

Occupancy (Scenario B2) 

 

Figure 9.6: Boxplot of the Median Correlation Coefficients of the Hourly Actual versus Forecasts 

Occupancy (Scenario B3) 
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Figure 9.7: Boxplot of the Median Correlation Coefficients of the Hourly Actual versus Forecast 

Occupancy (Scenario B4) 

 

 

Figure 9.8: Boxplot of the Median Correlation Coefficients of the Hourly Actual versus Forecast 

Occupancy (Scenario B5) 

 

JulyJuneMayAprilMarchFebruaryJanuary

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
ts

 (
D

a
ily

 M
e

d
ia

n
s
)

JulyJuneMayAprilMarchFebruaryJanuary

1 .0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

C
o

rr
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
ts

 (
D

a
il

y
 M

e
d

ia
n

s)



 

200 

 

 Cohorts 

 1 2 3 4 5 6 7 
Scenario 

Coefficients 

Minimum Correlation Coefficients 

Scenario B2  0.7189 0.6754 0.4110 0.2318 0.3064 0.3064 0.3487 

Scenario B3 0.6589 0.5095 0.706 0.6643 0.4399 0.7196 0.5401 

Scenario B4 0.5726 0.7418 0.6529 0.6844 0.7277 0.6874 0.2570 

Scenario B5 0.4920 0.4081 0.1426 0.2106 0.3127 0.3013 0.2830 

 Maximum Correlation Coefficients 

Scenario B2 0.9936 0.9997 0.9759 0.9998 0.9999 0.9989 0.9993 

Scenario B3 0.956 0.9301 0.970 0.9659 0.954 0.948 0.9307 

Scenario B4 0.9568 0.9998 0.9997 0.9999 0.9999 0.9999 0.9999 

Scenario B5 0.9817 0.9996 0.9660 0.9997 0.9998 0.9995 0.9992 

 Median Correlation Coefficients 

Scenario B2 0.8366 0.8527 0.8794 0.8745 0.8329 0.8561 0.9122 

Scenario B3 0.8630 0.8549 0.8748 0.8579 0.8448 0.8555 0.9005 

Scenario B4 0.8537 0.8777 0.8971 0.8398 0.9172 0.8641 0.8808 

Scenario B5 0.7907 0.7880 0.8095 0.7699 0.7789 0.7774 0.8635 

Table 9-3: Summary of Median Correlation Coefficients of the Hourly Actual versus Forecast 

Occupancy (Scenarios B2, B3, B4 and B5)

Figure 9.5 presents a boxplot of the median correlation coefficients in Scenario B2.  The 

number of days analysed in the respective months from January to July are 27 (January), 

27 (February), 30 (March), 30 (April), 29 (May), 29 (June) and 29 (July).   

Figure 9.6 presents a boxplot of the median correlation coefficients in Scenario B3.  The 

number of days that were predicted are 26 (January), 26 (February), 30 (March), 27 (April), 

26 (May), 27 (June) and 28 (July).  Similarly, Figure 9.7 presents the results for Scenario 

B4.  The number of days for which predictions were undertaken are 10 (January), 27 

(February), 30 (March), 29 (April), 26 (May), 29 (June) and 29 (July).  Further, Figure 9.8 

presents a boxplot of the medians of the hourly predictions in Scenario B5.  The number of 

days that were predicted are 10 (January), 27 (February), 30 (March), 29 (April), 26 (May), 

29 (June) and 29 (July).   

In general, the correlation coefficients are higher in Scenario B2, compared with Scenario 

B1.  By comparing the groups of medians for the monthly cohorts, the Kruskal-Wallis test 

of equality gave a statistically significant p-value of 0.785 for Scenario B1, which indicates 

that the medians from the cohorts can be considered similar.  The results of the analysis for 

scenarios B3, B4 and B5 also indicate the same conclusion with p-values of 0.218, 0.481 

and 0.481 respectively.  On the contrary, Scenario B2 gave a statistical significant p-value 
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of 0.022 indicating the medians were not the same, which was expected due to the effect 

of outliers in the outcomes of all but two cohorts.   

A Kruskal-Wallis test of equality for the medians within each month for Scenario B1 

indicated statistical equality with p-values ranging 0.462 and 0.465.  The conclusion of 

statistical similarity is valid for all the other scenarios.  The p-values ranged from 0.463 to 

0.465 (Scenario B2), 0.462 to 0.465 (Scenario B3), 0.437 to 0 0.465 (Scenarios B4 and B5).  

Further, all the scenarios were tested together for similarity and the Kruskal-Wallis test 

consistently gave p-values of 0.486 for all the scenarios (except Scenario B2 with p-value 

of 0.487), which also showed that the median of the daily correlation coefficients were 

statistically significantly similar.  The tests therefore confirm that the hourly predictions 

compared to the forecasts are statistically not different from each other.   

9.5 Analysing the Outputs of the Link Predictions  

Appendix K includes a summary of the correlation coefficients for the analysed five 

scenarios described in section 9.3.1, which are presented as follows: Cohort 1 (Table 1K 

through to Table 7K), Cohort 2 (Table 8K through to Table 14K), Cohort 3 (Table 15K 

through to Table 21K), Cohort 4 (Table 22K through to Table 28K), Cohort 5 (Table 29 

through to Table 35).  Before discussing the results, it is important to describe how the 

correlation coefficients were categorised and applied in these assessments.   

9.5.1 Categorizing the Correlation Coefficients  

In order to analyse the predictions further, the correlation coefficient between the predicted 

forecast and actual occupancy were analysed for five categories defined as follows: “very 

strong” (0.70 ≤ |r| ≤ 1.0), “strong” (0.60 ≤ |r| ≤ 0.69), “moderate” (0.40 ≤ |r| ≤ 0.59), 

“weak” (0.20 ≤ |r| ≤ 0.39) and “no” (-0.19 ≤ |r| ≤ 0.19) (Ratner, 2009).  There was no 

observed pattern in the distribution of correlation coefficients for the all links over the day.  

The correlation coefficients ranged between -1.0 and 1.0, but generally in favour of the 

moderate to high correlations.  Consequently, at 95% confidence level, the link-by-link 

predictions were not significantly different within a particular day (p-values > 5%); 

however, there was statistically significant difference when the link-by-link predictions 

were compared for different days (p-values < 5%).  Similarly, the monthly predictions were 

statistically significantly different from each other.   
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Table 9-4 presents a summary of the cumulative monthly predictions for the analysed 

cohorts for scenarios B1, B2 and B3.  Scenario B2 shows that there was generally an 

increase in the number of “strong” correlations, compared with Scenario B1.  This equates 

to about 38% more suggesting the short-term 15 minutes forecasts yielding better results 

than Scenario B1 where the next day forecast is 24 hours ahead.   

 Cohorts 

 1 2 3 4 5 6 7 
Average  Jan Feb Mar April May June July 

Scenario B1 (model build from LE, r=0.4, lag > 100 seconds, FH8 = 24-hours) 

No. of Days  25 26 29 28 29 28 28 28 

No. of Forecast Links 817 861 965 936 963 929 914 912 

 Number of Correlations:  

Very Strong  284 317 300 274 337 393 321 318 

Strong  233 202 230 232 257 178 158 213 

Moderate  66 51 67 68 82 50 46 61 

Weak  42 61 70 76 81 41 48 60 

No  192 230 298 286 206 267 341 260 

Scenario B2 (model build from LE r = 0.4 and lag >100 seconds, FH = 15 minutes) 

No. of Days  27 27 30 30 29 29 29 29 

No. of Forecast Links  979 969 1064 1092 1036 1028 990 1023 

 Number of Correlations:  

Very Strong  702 676 779 774 732 739 780 740 

Strong  155 162 163 184 160 152 96 153 

Moderate  38 45 42 47 48 44 51 45 

Weak  24 33 34 40 39 28 28 32 

No  60 53 46 47 57 65 35 52 

Scenario B3 (same as Scenario 2, but model build from occupancy data) 

No. of Days  27 27 30 30 29 29 29 29 

No. of Forecast Links  902 878 1003 886 882 912 917 911 

 Number of Correlations:  

Very Strong  667 648 759 667 635 699 709 683 

Strong  148 165 159 155 169 155 121 153 

Moderate  39 20 43 34 31 20 34 32 

Weak  27 21 19 23 19 15 27 22 

No  21 24 23 7 28 23 26 22 

Table 9-4: Summary of the Frequency of the Categorised Monthly Output of the Daily Average 

Hourly Forecasts for the Network (Scenarios B1, B2 & B3) 

                                                 

8 FH is the Forecast Horizon 



 

203 

 

9.5.2 Analysis of Model Outputs: Scenario B1  

In order to translate the results in Table 9-4 into an understanding of the performance of 

the model in making daily hourly forecasts of congestion events in the network, Figure 9.9, 

Figure 9.10 and Figure 9.11 present the average daily proportion of the link forecasts made 

for scenarios B1, B2 and B3.  Based on the five categories identified, Figure 9.9 indicates 

that the relative performance of the predictions in Scenario 1 are 29-42% (‘Very Strong’), 

17-29% (‘Strong’), 5-9% (‘Moderate’), 4-8% (‘Weak’) and 21-37% (‘No’).   

 

Figure 9.9: Profiles of Average Hourly Forecasts 24 Hours Ahead (Scenario B1) 

The results indicate that the proportion of the ‘No’ category alone in Scenario B1 is 

substantially more than the combined category of ‘moderate’, ‘Poor’ and ‘No’ correlations 

in Scenario B2.  The results therefore highlight the difficulty of forecasting the long-term 

(24 hours ahead) link occupancy of traffic on links in the network, given that the number 

of predictions with better than ‘poor’ correlations are up to 65%, but the proportion of 

‘Weak’ and ‘No’ correlations were as high as up to 35%.  The comparative figures for 

Scenario 2 are 92% and 8% respectively.   

This result is due to the highly temporal nature of the network characteristics due to a 

number of factors that disturb the stability of the network’s dynamic system.  Such factors 

may occur frequently or infrequently, but importantly do not repeat themselves exactly 

from time to time over the course of the hour (or day).  They result from variations in traffic 

volumes, traffic behaviour, rat-running, pedestrians’ jay walking and disruption, planned 
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road works or unplanned minor/major network incidents (see Section 3.4.1).  For this 

reason, there is a likelihood of a higher degree of variability in the sensitivity of the system 

(Lyapunov exponent) from day to day, compared with short time horizons of 15 minutes.   

Due to the Lyapunov exponent being prone to this variability, the predictions of the link 

occupancies for one hour 24 hours in advance were subject to a high proportion of link 

correlations being weak or non-existent correlation (35% ‘weak or ‘no’ correlation).  The 

model therefore suggests that it is difficult to predict accurately the short-term link 

occupancy one day in advance.  However, the results can be useful for strategic 

management of the network, though unsuitable for managing short-term variability.   

9.5.3 Analysis of Model Outputs: Scenario B2 

In Scenario B2 that tested the predictions for short-time forecasts of 15 minutes, the results 

in Figure 9.10 showed that the proportion of weak and non-existent correlations were about 

6%-9% (compared to 35%).  In this instance, the system’s sensitivity is less susceptible to 

high variability in the short term, and therefore the predictions were found to be highly 

correlated to the actual link occupancies.   

 

Figure 9.10: Profiles of Average Hourly Forecasts 15 minutes Ahead (Scenario B2) 

On average, about 91% of the links obtained moderate correlations or better.  It is important 

to note that a lag criteria (forecast horizon) of 15 minutes was used in selecting links for 

the forecast model.  Therefore, it is in line with the expectation that short-term 15 minute 

(close to the average lag) forecasts were correlated more strongly than the long-term 24-
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hour forecasts.  Further work may be needed to assess the relationship between the chosen 

lag and the duration of forecasts.   

Reflecting on the results for Scenario B2 in Table 9-4 based on the total monthly 

correlations gave the proportions for the five categories in Table 9-5.  On average, the 

results in Table 9-5 are similar to Figure 9.10 (based on the results for the daily averages).  

Overall, there was a likelihood of a “moderate” to “very strong” correlation of 92%, with 

“weak” correlation” of 3% and “no” correlation of 5%.   

 Cohorts 

 1 2 3 4 5 6 7 
Average 

 Jan Feb Mar April May June July 

Very Strong  72% 70% 73% 71% 71% 72% 79% 72% 
Strong  16% 17% 15% 17% 15% 15% 10% 15% 
Moderate  4% 5% 4% 4% 5% 4% 5% 4% 
Weak  2% 3% 3% 4% 4% 3% 3% 3% 
No  6% 5% 4% 4% 6% 6% 4% 5% 

Table 9-5: Summary of the Proportions of the Categorised Correlation Coefficients within the 

Five Categories (Scenarios B2) 

A comparison of Figure 9.9 and Figure 9.10 illustrates the deficiencies in the model results 

of the two scenarios.  The results indicate that the degree of correlation in Scenario B2 is 

higher than Scenario B1.  In line with expectations, there were better correlations for the 

short term compared to the long term duration interval and on average 90% (an increase of 

about 30% compared to Scenario B1) of the links indicated moderate to high correlations 

with actual observations.  On average, only 3-5% of the links showed predictions that were 

uncorrelated with the actual observations.   

9.5.4 Analysis of Model Outputs: Scenario B3  

In order to demonstrate the reliability of the short-term forecasts, Scenario B3 repeats the 

analysis from Scenario B2, but instead the link occupancies were predicted from occupancy 

data (rather than the Lyapunov exponents).  Figure 9.11 indicates as 3-6% of the links were 

weakly correlated or had no correlation.  The distribution of the correlation coefficients 

were 72%-77% (‘very strong’), 13%-19% (‘strong’), 2%-4% (‘moderate’), 2%-3% 

(‘weak’) and 1%-3% (‘no’).  This was confirmed by the Mann-Whitney test, which 

revealed that the number of predictions in Scenario B3 was statistically significantly greater 

than Scenario B2 for the ‘very strong’ and ‘strong’ categories, and vice-versa for the 
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‘moderate’, ‘poor’ and ‘no’ categories.  On a month-by-month comparison the actual 

difference in the categories of Scenarios B2 and B3 is less than two links.  The highest 

difference of approximately 5% was recorded in June, which equates to about two 

additional ‘very strong’ forecasts in terms of actual counts.  Therefore, although the results 

are statistically significantly different, the differences between the two scenarios in terms 

of actual numbers are small, and therefore the outputs from the two forecasts agree well.   

 

Figure 9.11: Profiles of Average Hourly Forecasts 15 Minutes Ahead (Scenario B3) 

However, it is important to note advantages of using the Lyapunov exponents instead of 

the occupancy data that emerge from the data.  Spatially, and over all the seven cohorts 

analysed, there were a total of 7158 links forecasted the onset of congestion for Scenario 

B2 whilst there were 6380 in Scenario B3.  This difference is attributable to the high failure 

rate of the occupancy data, against the adopted criteria based on the degree of correlation 

coefficient and the lag time, for choosing the selected links.  This means that the forecasts 

from the Lyapunov exponents (rather than occupancy) make it possible to report on the 

impending conditions over a wider part of the network and with longer time horizon.   

Overall, the results for Scenario B3 confirm that the short-term forecasts of link occupancy 

based on Lyapunov exponent (Scenario B2) with a reasonable lag time are better.  

Therefore, the short-term predictive capability of the Lyapunov exponents could be 

exploited for traffic management in urban areas.  This has the potential to overcome 

existing limitations of current demand responsive systems that only address network 



 

207 

 

problems as or after they occur.  The results suggested that incorporating the forecasting 

algorithms into existing systems would provide additional intelligence to these systems 

making them pre-emptive to anticipate congestion and therefore implement mitigating 

strategies in advance.   

9.5.5 Analysis of Model Outputs: Scenarios B4 and B5 (Sensitivity Testing) 

The results discussed above indicated that the predictions of the link occupancies from the 

Lyapunov exponents are a better approach, compared with occupancy itself, to forecast 

congestion.  The next step is to assess the robustness of the model to parameters that govern 

the results.  For example, the threshold correlation coefficient value of 0.4 is the assumed 

optimum however, the model performance may be improved by varying this value.  Table 

9-6 presents a summary of the total number of forecast for each month for the analysed 

cohorts for Scenarios B4 and B5 (sensitivity tests), where the assumed correlation 

coefficients are 0.7 and 0.3 respectively.  The former includes only ‘very strong’ 

correlations, whilst the latter incorporates ‘weak’, ‘moderate’, ‘strong’ and ‘very strong’ 

correlations. 

 Cohorts 

 
1 2 3 4 5 6 7 

Average 
 

Jan Feb Mar April May June July 
Scenario B4 (same as Scenario 2, but r = 0.7) 

No. of Days  27 27 30 30 29 29 29 29 

No. of Forecast Links 198 606 740 701 716 706 577 606 

 Number of Correlations:  

Very Strong  142 476 609 546 583 549 449 479 

Strong  36 81 100 103 99 101 78 85 

Moderate  9 10 10 16 15 16 17 13 

Weak  6 13 10 16 17 16 31 16 

No  5 26 11 20 2 24 2 13 

Scenario B5 (same as Scenario 2, but r = 0.3) 

No. of Days  27 27 30 30 29 29 29 29 

No. of Forecast Links  403 992 1090 1073 1015 1040 998 944 

 Number of Correlations:  

Very Strong  255 607 709 654 634 676 715 607 

Strong  74 165 163 183 194 174 108 152 

Moderate  23 55 49 76 46 52 36 48 

Weak  19 73 64 58 51 51 46 52 

No  32 92 105 102 90 87 93 86 

Table 9-6: Summary of the Frequency of the Categorised Monthly Output of the Daily Average 

Hourly Forecasts for the Network (Scenarios B4 and B5) 
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The results indicate that compared to Scenario B2, the numbers of the predicted links 

decreases significantly in Scenario B4 when the threshold correlation coefficient increased 

to 0.7 as expected (see Section 9.5.3).  The Mann-Whitney test indicated at 95% 

significance level that the number of forecast links in Scenario B2 is statistically 

significantly greater than Scenario B4, the result indicating a significant p-value of 0.0005.   

 

Figure 9.12: Profiles of Average Hourly Forecasts 15 Minutes Ahead (Scenario B4) 

 

Figure 9.13: Profiles of Average Hourly Forecasts 15 Minutes Ahead (Scenario B5) 

This means that there is a high failure rate of the Lyapunov exponents profile when 

screened against the correlation coefficient of 0.7, mainly because of the filtering out of the 
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data at the onset, which limits its ability to predict.  As was mentioned previously (in 

Section 9.5.4), a major disadvantage of this result is that, by considering only those link 

pairs with ‘very strong’ correlations, it inhibits the ability of the exponents to report on the 

situational dynamic state over a wide spatial area of the urban network. 

Turning now to the results of Scenario B5 with correlation coefficient threshold of 0.3 

presented in Table 9-6, the Mann-Whitney test indicated that the number of predictions in 

scenarios B2 and B5 were statistically similar given a p-value of 0.3964.  The results 

therefore indicate that reducing the threshold correlation coefficient to 0.3 (in Scenario B5) 

does not give any significance to the results from the forecast.  This suggests the ‘weak’ 

correlation do not make any significant impact in this respect.  In terms of actual counts, 

the total number of average monthly predictions in Scenario B2 was 1023, which is more 

than the 944 (in Scenario B5).   

Figure 9.12 and Figure 9.13 present the average hourly profiles for Scenario B4 (with 

threshold of 0.7) and Scenario B5 (with threshold of 0.3) respectively.  The results indicate 

that the average hourly predictions for Scenario B4 are 95% above "weak” with only 5% 

below “weak” correlations.  The corresponding figures for Scenario B5 are 85% and 15% 

respectively.  This suggests that reducing the criteria for selecting qualifying links does not 

necessarily improve the forecasting function.  It is important to note that Scenario B2 (with 

respective figures of 92% and 8%) provides a higher quality of predictions than Scenario 

B4, even though there is statistically no difference between the two scenarios in terms of 

the actual number of forecasts.  Finally, in terms of actual counts and reporting on the 

spatial network impacts, the results indicates Scenario B2 is more suitable.   

9.6 Exploring the Lyapunov Exponent for Traffic Management 

Apart from the forecasts, there was an investigation of the uses of the Lyapunov exponents 

for understanding the spatial interactions between the network links in order to explore how 

the Lyapunov exponents may be beneficial for managing the road network traffic 

conditions.  In order to improve traffic flow, it is common for traffic operators and 

managers to monitor the network using Close Circuit Television (CCTV) surveillance and 

apply remedial strategies in the vicinity of crucial bottlenecks to maintain traffic conditions 

at below saturated levels.  This section explores the use of the Lyapunov exponents for 

identifying critical links in a network in advance of them experiencing congestion by 
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investigating the spatial and temporal correlation across the network of the time series 

Lyapunov exponents of all the links.  The methodology was set out in Section 6.9.   

Given that the Lyapunov exponents are an indication of the nature of vehicular interaction, 

the spatial correlation of its value for all the links helps to understand how the dynamic 

behaviour of a link at time 𝑡 (𝑠) is influenced by other links at a time in the past 𝑡 (𝑠 − 𝜏), 

where 𝜏 is the lagged time interval.  Therefore, through this investigation, the ‘critical’ link 

is identified as a link whose future dynamic behaviour is influenced by significant dynamic 

behaviour in the past of traffic ‘feeder’ links (which may or not be physically connected to 

the critical link).  This method is similar to the assessment carried out in Section 9.3.1 and 

is based on the cross-correlation of the Lyapunov exponent – Lyapunov exponent link 

interaction for every hour of the day at a sampling interval of 20 seconds.  For every link, 

the cross-correlation is for the link’s profile against all the feeder links for every hour of 

the day.  The feeder links with correlation coefficients greater than a threshold of 0.4 and 

the associated lag times were selected for further analysis.  Then, for every link, the 

frequency of feeder links above the correlation threshold of 0.4 was computed.  For each 

hour, the link with the highest number of feeder links was identified as the critical link for 

the period, and the associated lag time provide a window of opportunity for the mitigation 

of imminent network problems.   

Table 9-7 presents a summary of the result for the 0800h-0900h peak for 24 days in January 

1999.  Table 9-7 suggests that, the critical links and their associated feeder links vary from 

day-to-day for the 0800h-0900h period, and also from hour-to-hour within the same day.  

The variation in what are the critical links and their feeder links is widespread.  It is 

pertinent to note that this also confirmed the similar observation in Section 9.4 in the 

selection of links for forecasting.  Therefore, the results do confirm that the dynamic 

behaviour of the traffic system does not repeat itself exactly due to initial conditions 

changing continuously.  Due to the variability in the traffic conditions on those links which 

are critical at a particular point in time, and which are the feeder links, makes long-term 

forecasts based on (for example) annual growth factors unreliable.  This suggests that it 

may be impossible for traffic behaviour on a specific critical link to be linked consistently 

with a particular set of other links due to the inconsistent patterns in the evolution of traffic 
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flow.  However, this is not necessarily a problem, because the dynamic process is re-

assessed continually as time progresses and ‘learns’ this building intelligence over time.   

Day Critical 

Link IDs 

Feeder Links (correlation Coefficient >= 0.4) 

Frequency Links IDs Correlation 

Coefficients  
Lags (minutes) 9 

1 37 3 10, 21, 38 0.52, 0.42, 0.45 -1.3, -4.7, -5 

4 18 2 20,29 0.52, 0.41 -9.7, -7 

5 10 3 19, 21, 32 0.41, 0.42, 0.43 -3.3, -15.67, -9 

6 31 4 23, 26, 30, 36 0.42, 0.41, 0.44, 0.49 -15.7, -1, -0.7, -5.3 

7 8 3 4, 12, 23 0.44, 0.45, 0.46 -2.7, -13.7, -4 

9 33 3 3, 5, 29 0.50, 0.42, 0.46 -1, -4, -3.7 

10 40 4 20, 21, 28, 30 0.41, 0.42, 0.41, 0.42 -9.7, -2.3, -4.3, -6.7 

11 38 2 2, 21 0.46, 0.63 -13, -4.3 

12 30 3 3, 21, 28 0.40, 0.40, 0.42 -14, -5, -16.7 

13 19 3 25, 29, 34 0.41, 0.43, 0.44 -11.3, -6.7, -15 

14 9 3 1, 10, 31 0.43, 0.56, 0.44 -12.3, -1.3, -16.7 

15 23 4 3, 18, 33, 36 0.91, 0.45, 0.57, 0.77 -12, -8.7, -12.3, -0.3 

16 1 4 5, 6, 12, 26 0.84, 0.44, 0.77, 0.48 -8.3, -12.3, -12, -16.7 

17 29 2 2, 21 0.41, 0.56 -7, -16.3 

19 10 11 

1, 8, 19, 21, 

22, 23,29, 30, 

31, 35, 40 

0.61, 0.79, 0.54, 0.67, 

0.68, 0.60, 0.49, 0.67, 

0.72, 0.77, 0.79 

-14.3, -14.3, -14.3, -12.3, 

-14.3, -10, -14.3, -14.3,    

-14.3, -14.3, -14.3 

20 39 6 
7, 19, 33, 36, 

38, 39 

0.54, 0.44, 0.56, 0.56, 

0.52, 0.57 

-10.7, -12.3, -6.7,-12.7,-

12.7, -12.3 

21 33 4 4, 5, 32, 37 0.48, 0.44, 0.94, 0.54 -1.7, -8.3, -14, -16 

22 33 6 1, 4, 20, 38, 

39, 40 
0.74, 0.49, 0.52, 0.77, 

0.50, 0.49 

-9, -1.7, -0.3, -1.3, -2, -9 

23 30 6 5, 7, 19, 22, 

28, 39 
0.43, 0.43, 0.43, 0.40, 

0.42, 0.45 

-6, -13.7, -10.3, -8.3,       

-5.3, -5.7 

24 1 4 3, 21, 29, 36 0.43, 0.40, 0.40, 0.66 -3.3, -16.7, -15, -10.7 

25 7 4 19, 23, 26, 39 0.43, 0.40, 0.40, 0.41 -2.7, -6.7, -2, -0.3 

26 9 3 4, 21, 27 0.52, 0.45, 0.49 -2.7, -16, -16.3 

27 30 6 3, 23, 33, 34, 

35, 38 

0.49, 0.43, 0.42, 0.48, 

0.45, 0.43 

-0.3, -3.7, -6.7, -3.7, -15.7, 

-0.3 

28 23 5 3, 19, 21, 26, 

31 

0.48, 0.45, 0.60, 0.45, 

0.46 

-6, -13.7, -4.7, -11.7,       

-15.7 

Table 9-7: Summary of Cross-Correlation Analysis for January 1999 

                                                 

9 Negative lag indicate that the computation of the correlation coefficient is between the first variable 

and the past time series of the second variable.   
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The analysis also shows different lags associated with the critical links throughout the 24 

days.  The computed lags indicate the time interval that the dynamic behaviour of a ‘feeder’ 

link maximises its influence on a critical link and governs the response time available for 

operators and managers to implement appropriate alleviation measures.   

Therefore, by selecting the relevant lag of those feeder links associated with the critical link 

provides a window of opportunity to implement remedial measures in order to address 

impending network problems in advance.  The longer the lags the longer the time available 

to the traffic manager to take action on how to keep the network operating below saturated 

levels.  However, the longer the lag times, the greater the uncertainty in the accuracy of the 

forecast.  Overall, the results indicated an average lag of 8-10 minutes as optimum, which 

was entirely consistent with the average lag computed in Section 9.3.1, which was a 

maximum of approximately 8 minutes.  Given that the select forecast horizon of 15 minutes 

in Section 9.5 was robust, the results will be even better with a lower forecast horizon.   

The link layout plan (Figure 9.14) illustrates the interconnectivity between the critical and 

feeder links for the assessment for 0800h-0900h on the 6th of January 1999.  Figure 9.14 

shows that the critical link “31” is correlated with four upstream links (23, 26, 30 and 36).  

The correlation coefficients for the links are 0.42, 0.41, 0.44 and 0.49, and lags -15.7, -1.0, 

0.7 and 0.53 minutes respectively.  Link “23” has the highest lag with link “31”, and 

therefore gives a window of opportunity of up to 15.7 minutes in advance to mitigate 

conditions at links “23”, “26”, “30” and “36”.   

In this example, whilst the highest lag is 15.7 minutes, the other lags are relatively small 

and therefore the choice of any of these low values do not allow as much time to implement 

remedial measures, even though an action designed at link 23 has potential to resolve the 

situation at links 26, 30 and 36 in a timely manner.  Therefore, the traffic manager may find 

it appropriate to make decision based on the highest lag; however, the averaging of the lags 

may be reasonable assumption if the lags are not significantly different.  The challenge is 

to get the right balance between a significantly high enough correlation and enough time to 

implement effective remedial action.  The choice of the lag may therefore need further 

investigations to determine the optimum value to traffic management decisions. 
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Figure 9.14: Link Interactions in SCOOT Region KA Welford Road (0800h-0900h) 
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9.7 Conclusions  

In previous chapters, it was identified that Chaos Theory can be used to identify the onset 

of congestion in UTC network regions.  By analysing individual links, Chaos Theory 

provides strong indication that the Lyapunov exponents can be used as a measure to expose 

the shoulders of congestion in a SCOOT controlled region in Leicester.  Further, chaos is 

not an isolated incidence at an individual junction but has spatial effects across the 

independent links on the entire network of interconnected junctions.  It was estimated that 

during the busy daytime period, more than 10% of the links will indicate positive Lyapunov 

exponents before the effects of chaos are fully-developed within the network region.  

Consequently, this chapter examined Lyapunov exponents in combination with adjacent 

network links to improve short-term traffic forecasts through optimising neighbouring links 

together in order to harmonise their operations.   

It is recognised that there are a number of processes in the urban network that tends to 

impact on the accuracy of forecasts of traffic volumes or occupancy across a loop detector 

or a section of the road network.  These include changes in a single driver’s behaviour, 

effects of the movement of emergency vehicles, changes in weather conditions, road 

closures, diversions, rat-running, unusual conditions such as major sporting events.  

Therefore, in order to make accurate predictions, it is necessary to consider the relationship 

of a link with both downstream and upstream links across the entire network.  This is 

important as the dynamic behaviour of traffic flow on a link is a result of the temporal 

variability in interactions between the interconnected links.  Therefore, regression models 

that seek to undertake predictions of a link based on only specific links are likely to 

compromise on the dynamic evolution of the road network and consequently affect the 

forecasting accuracy.  Consequently, Chapter 9 demonstrated that a dynamic regression 

model that selects links for the model construction based on a cross-correlation assessment 

of all links in the network can forecast the occupancy of the network links with high 

certainty.  Table 9-4 shows that out of the 7158 links tested, the breakdown of the number 

of forecasts for “very strong”, “strong”, “medium”, “weak” and “no” correlations were 

5182, 1072, 315, 226 and 363 respectively.  Therefore, 6569 links representing 

approximately 92% of links indicated at least a moderate correlation between the actual 

and forecast occupancy.   

From a traffic management perspective, the inference from a cross-correlation exercise of 

the Lyapunov exponents of links in a SCOOT region suggests that Chaos Theory is suitable 
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for managing traffic in urban network.  Section 9.3 indicated that the lags between the 

Lyapunov exponents of all links can enable identifying a time window of approximately 8-

10 minutes (on average) as a trigger for implementing strategies ahead of actual time of 

occurrence of congestion in order to ameliorate imminent saturated traffic conditions.  

Currently, network managers optimise a set of parameters and conditions, or continuously 

learn and apply corrections, to control parameters at the time of implementing strategies to 

manage transport networks and systems.  Therefore, the incorporation of chaos-based 

algorithms into current systems would be beneficial towards autonomic applications for 

traffic systems, which require that systems are able to self-manage their operations through 

various capabilities with minimal human support, thus minimising the role of network 

managers (see Section 3.8).  It is important to note therefore that Chaos Theory could play 

a role in this step change requirement for traffic management, as the debate for autonomic 

traffic control continues to gain momentum among academics and traffic practitioners 

alike.   

Chapter 9 concluded chaos-based algorithms will enable enacting appropriate traffic 

control and management strategies that are “one step ahead” rather than “one step behind” 

of prevailing traffic conditions.  This would radically improve the management of traffic 

on a strategic level rather than purely locally within smaller network regions.  Thus playing 

an important role in improving journey times and air quality and making a vital contribution 

to mitigating climate change.  
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PART IV: DISCUSSIONS, CONCLUSIONS AND 

RECOMMENDATIONS  
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Chapter 10. Discussions, Conclusions and Recommendations 

10.1 Introduction  

This chapter is devoted to discussing the findings of the analysis in the context of the 

existing literature, in order to identify how this work relates to the knowledge established 

in previous investigations of the application of Chaos Theory in traffic studies.  It highlights 

principally the contribution this research work makes to knowledge and understanding of 

whether road traffic exhibit properties of a chaotic system.  Available literature shows that 

the study of Chaos Theory, and its application in traffic studies, is still at the fundamental 

stage.  The majority of previous works have mainly tested traffic data such as flow (Lan et 

al., 2003, Zhang and Liu, 2007, Frazier and Kockelman, 2004, Xue and Shi, 2008, Jianming 

et al., 2003, Krese and Govekar, 2013), occupancy (Nair et al., 2001) and speed (Shang et 

al., 2007) in order to identify the presence or absence of chaos in these datasets.  Frazier 

and Kockelman (2004), Hui et al. (2005), Jianming et al. (2003), Xue and Shi (2008) and 

Zhu et al. (2010) applied Chaos Theory in combination with standard techniques for 

forecasting purposes.  However, only a few studies have explored Chaos Theory as a 

forecasting technique of traffic conditions in urban networks.  Other than confirming that 

datasets of road traffic variables exhibit chaotic properties, the majority of studies have not 

examined traffic data in detail in order to explore the benefits of the practical application 

of Chaos Theory in traffic management such as forecasting in advance the onset of 

congestion.  This study, therefore, looked at traffic variables such as flow, occupancy and 

noise, and examined how these variables help to answer the research questions enumerated 

in Section 1.5 through novel analysis.  This research demonstrates that traffic flowing in 

urban signalised networks has chaotic properties, and concludes on how Chaos Theory may 

be useful for traffic management in urban areas.   

In order to present the discussion, conclusion and recommendations for future work, this 

concluding chapter of the thesis is set out as follows.  Section 10.2 presents the discussions 

of the results under six main themes: (i) data requirements (ii) lag times (iii) dimensions 

(iv) Lyapunov exponents (v) forecast horizon and (vi) spatial-temporal analysis to forecast 

the onset of unstable traffic predictions.  It argues that whilst chaos may be an inherent 

property in time dependent non-linear systems, in order to derive benefits other than the 

mere detection of chaos, the data must be sampled at a sufficiently high temporal resolution.  

Furthermore, it argues that the Lyapunov exponents are very suitable for understanding the 

spatial relationship between network links and incorporating this knowledge within 
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existing traffic control systems will enable initiating control measures that are one-step 

ahead of congestion.  Section 10.3 presents a summary of the limitations of the research 

work and Section 10.5 the overall conclusions of this study, and demonstrates the 

importance of the research, and how the results of the study help to answer the research 

questions enumerated in Section 1.5.  Finally, some recommendations for future studies are 

discussed in Section 10.6.   

10.2 Discussions of the Results  

The results demonstrated the potential role for Chaos Theory in traffic management.  The 

Lyapunov exponent is the principal parameter developed for monitoring and understanding 

the evolution of traffic states prevalent in networks.  The lag (delay time) and embedding 

dimensions, which serve as input to the process of reconstructing the phase space need to 

be pre-determined before the profile of Lyapunov exponents can be derived.  The 

discussion in this section focusses on these main parameters in addition to data issues, the 

forecast horizon and the analysis of the temporal and spatial correlations of the datasets.   

10.2.1 Data Requirements 

The literature review identified in previous research that significant variability exists in the 

sampling interval of data used for detecting chaos.  For example, for speed five-minutes 

(Nair et al., 2001) and two and half minutes (Shang et al., 2007); for flow data one-minute 

interval (Lan et al., 2003), 15 minutes (Jianming et al., 2003), 30 seconds (Frazier and 

Kockelman, 2004) and ranging between 30 seconds and six minutes (Zhang and Liu, 2007).  

The research results carried out in this thesis endorsed these earlier observations because 

chaos was detectable at varied degrees of sampling.  However, understanding the 

development and propagation of chaos in the traffic system was found not to be possible 

with data of either too high or low resolution (e.g. 1, 30, 60 and 120 seconds).  Therefore, 

for practical application of Chaos Theory rather than simply determining the chaos status 

of the data requires highly resolved temporal traffic information.   

On the suggestion of Frazier and Kockelman (2004), this research analysed three types of 

traffic related data (flow, occupancy and noise) at a wide range of sampling rates 

demonstrating that the urban road traffic system is a chaotic system.  The results of the 

research shows that identifying chaos from a given dataset may be independent of the 

sampling interval, but the choice of sampling interval is crucial to the understanding of the 

propagation of chaos in the system.   
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The chaos status of traffic noise is unknown, according to the literature reviewed, and 

therefore this research represents a first attempt at discovering this.  This work found that 

traffic noise is chaotic, but because the data was available only at a 60-seconds sampling 

frequency a detailed assessment was not possible.  However, for the reconstructed flow and 

occupancy data, chaos was observed at 10, 30, 60 and 120 seconds.  However, the profiles 

of the Lyapunov exponents did not produce any underlying structure to enable examining 

this data for practical uses except at 20 second resolution.  The highly resolved 10 second 

data did not prove to be suitable consistent with the view of Kirby and Smith (1991) that 

stated that the data at the appropriate sampling frequency was essential if the transition to 

chaos was to be readily and correctly detected.  This research also showed that the flow and 

occupancy data revealed consistency in results as expected because these variables are 

directly proportional at low values (see Equation 2-32) (Athol, 1965).  Therefore, the 

outcomes of the analysis of the two datasets collected at the same location and sampling 

interval would reveal similar patterns.   

There is currently no specific guidelines on how to select an appropriate sampling interval.  

However, this work suggested that the best approach is to carry out an initial assessment 

based on varying sample frequency to identify the optimum sampling frequency for 

analysing the chaotic behaviour in non-linear systems.  Based on the analysis conducted, 

typically sampling at reasonably high frequency of 20 seconds is needed to harness the 

properties of traffic flow data to detect the transition to chaos.  Therefore, this research 

shows that a highly sampled data can overcome the limitations of previous studies.  

However, the study cautions that after a certain optimum level of temporal resolution, there 

is no improvement (or even a deterioration) in the performance of the algorithm for more 

finely resolved times series.  There is therefore a need for caution in the choice of the 

temporal resolution of the data that will be suitable for revealing chaotic properties in the 

systems.   

10.2.2 Delay Time (Autocorrelation Lags)  

The autocorrelation lag indicates the time interval that the time series data points correlates 

with itself.  The autocorrelation method gave lag values ranging between 140 and 270 

minutes for the links within the network studied (see Section 8.3), which shows a global 

disparity in the lag times across the entire network.  The large number of independent lags 

computed for the 40 links in the network presents a reasonably wide range of 

autocorrelation lags for comparison with previous work.  However, due to the different 

sampling frequency and the length of time series data, statistical comparison was 
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inappropriate.  Similar to this research, Jianming et al. (2003) applied the autocorrelation 

method to time series of traffic flow data sampled at 15 minute intervals over a duration of 

one-month, which gave an estimated lag time of 210 minutes for the time series 

information.  An alternative approach based on the mutual information method applied by 

Frazier and Kockelman (2004) gave a lag time of 175 minutes but for traffic flow data 

sampled at 5 minute intervals for a 5 week time series sample.  In spite of the unequal 

sampling interval of data, these results based on the autocorrelation coefficient or mutual 

information method respectively are within the range of the lags computed in this research.  

The results may also suggest some credibility in the assertion of Frede and Mazzega (1999) 

about the equivalence of the results from the autocorrelation and mutual information 

methods.  However, this may be possible only when both methods are used to test the same 

datasets because a combination of factors affect the lags including the sampling interval, 

length of the datasets and type of data.  The study of Krese and Govekar (2013) confirm 

these factors by revealing lag times of between 300 and 360 minutes in traffic flow data 

sampled hourly for three years on a ring-road and motorway (in Ljubljana, Slovenia).  The 

higher lag values from this latter study are likely to be due to inherent properties of the data 

with hourly sampling frequency and the long duration of the data collection.   

10.2.3 Dimensions 

The embedding dimension for flow and occupancy ranged between 2 to 5, and correlation 

dimension between 0.22 to 0.35.  These figures satisfy the Takens’ criterion, which is given 

by 𝑀 ≥ 2𝐷 + 1, where 𝑀 and 𝐷 are the embedding and correlation dimension respectively.  

However, the figures from the research are low compared with the existing literature.  Krese 

and Govekar (2013) estimated an embedding dimension of 6 (motorway) and 8 (ring-road) 

in Ljubljana, Slovenia.  This is the only literature that actually interprets the variables in 

terms of traffic flows.  The authors suggested that 6 and 8 variables can describe the 

dynamics of the motorway and ring-road respectively.  The differences being due to the 

fact that the ring-road, compared with the motorway, has relatively a higher number of 

junctions offering an ease of connectivity to the spatial network.  In principle, urban 

networks are more complicated in terms of design than ring-roads and motorways, and 

traffic movement may be severely restricted to a few links in the network, depending on 

the traffic management in operation.  Interpreting the results in line with the thoughts of 

Krese and Govekar (2013) suggests that the relatively low embedding dimensions 

emerging from this research is due to much less opportunity to divert away from the study 

area in the event of network incidents.  On the contrary, the work of Jianming et al. (2003) 
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yielded embedding dimension of 8 and correlation dimension of 2.7 ± 0.2 for traffic flow 

sampled at 15 minutes intervals from UTC/SCOOT system in Beijing, China, which is 

comparatively higher than this research.  Similarly, Xue and Shi (2008) estimated an 

embedding dimension of 8 and correlation dimension of 3.4 ± 0.2 from traffic flow data 

sampled at five minute intervals over a three-month period in Dongguan, China.  The 

previous two studies and this research used data from an urban area, unlike the ring-road 

and motorway data used by Krese and Govekar (2013).  However, the result of this research 

appear in conflict with that of the others.  The relatively low dimensions from this research 

were therefore more likely due, among other factors, to the high temporal resolution of the 

traffic flow data compared with the previous studies.   

10.2.4 Lyapunov Exponents  

In relation to traffic studies, the Lyapunov exponents may be considered as an indicator of 

the nature of the lengthening or shortening of the gaps between vehicles in the road traffic 

network.  This research is unique in its approach to using the instantaneous Lyapunov 

exponents to explain the changing traffic conditions on an urban link in a SCOOT network.  

The research adopts the established criteria that negative, zero and positive values of the 

exponent respectively are indicative of the traffic status as stable, meta-stable and chaos.  

It is useful to draw attention to the fact that when interpreting the Lyapunov exponents the 

idealised meta-stable state is assigned the value of zero.  However, in order to apply Chaos 

Theory in practice, it may be necessary to adjust the theoretical reference line to match the 

duration of the observed traffic condition.   

Overall, the values of the exponents ranged between -0.234*10-1 and +0.0578*10-1, which 

are generally higher than the values of 0.0353±6*10-4 (ring-road) and 0.139±6*10-4 

(highway) reported by Krese and Govekar (2013) for the interurban networks.  The results 

thus indicate that the traffic in the urban network studied in this research is more sensitive 

to small perturbations than a ring road and highway, which are networks with more capacity 

and typically can more easily dissipate congestion and minor network incidents.  Previous 

research mainly used the maximum Lyapunov exponent as the indicator of chaos, without 

close examination of the implications in the context of the evolution of the traffic system.   

This research concluded that there is a maximum of about 30% links (or a minimum of 

10%) exhibiting chaos at the busiest times of the day.  This information is crucial for urban 

traffic management; the network manager can take advantage of this knowledge to inform 

the design of remedial measures to implement in advance of impending congestion.  The 



 

224 

 

research thus provided a potential tool for network management suggesting that by 

monitoring the progression of the states of the Lyapunov exponent profiles of the individual 

links, it will be possible to identify the critical links in the network for timely 

implementation of remedial measures to inform the network operation to keep traffic flow 

below saturated levels.  Furthermore, the research also proved the Lyapunov exponents to 

be an independent variable within a spatial-temporal multiple regression model to forecast 

successfully the link occupancy.   

10.2.5 Forecast Horizons from the Cross-correlation Lags 

In this study, the method for calculating the maximal prediction length 𝑇𝑚 was dependent 

on the lag time that corresponds with the highest cross-correlation coefficient.  The analysis 

carried out indicated that a forecast horizon of about 8 minutes was good reference; and the 

modelling results based on the 15 minute forecast horizon gave satisfactory results.  

However, existing literature has indicated that this value was the reciprocal of the highest 

Lyapunov exponent 𝜆1, 𝑇𝑚 =  1
𝜆1

⁄  (Kant’z method).  Shang et al. (2005) suggested that a 

20 second raw data feed of flow, speed and occupancy aggregated into 2 minute data gave 

good predictions within a window of 9-12 minutes, even though the reciprocal formula 

gave a maximum window of 8 minutes.  On the other hand, the study by Zhang and Liu 

(2007) proved that the maximal prediction lengths increase proportionally as the time 

window of the aggregated data.  From their analysis, time windows of 30, 45, 60, 120, 180, 

240, 300 and 360 seconds for the aggregated data gave corresponding maximal predicted 

lengths of 13.5, 15.0, 15.5, 17.5, 17.5, 18.5, 19.0 and 23.0 minutes respectively.  

Extrapolating this profile indicates that the maximal prediction window for a 20-second 

interval data is approximately 12.5 minutes.  The results therefore suggest that the reference 

forecast horizon estimated from the method used in this research is consistent with the 

Kantz’, and the actual forecast horizon was consistent with Shang et al. (2005) and Zhang 

and Liu (2007).  Kantz’ method is generally limited to time series with low noise and 

therefore unsuitable for data with a strong noise component, and the process of determining 

the maximal Lyapunov exponent is quite laborious.  Therefore, this research proposed a 

simplified method based on the cross-correlation assessments as an alternative approach 

for calculating the forecast horizon for the forecast of the onset of congestion.   

10.2.6 Spatial-Temporal Analysis and Traffic Predictions  

In order to forecast the link occupancies, this research developed a novel multiple 

regression model that depends on the spatial and temporal relationship of link occupancy 

and Lyapunov exponent (calculated from flow).  The model, described in detail in Chapter 
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9, involved a dynamic process requiring filtering to identify the influencing links to include 

in the prediction model at every stage depending on the correlation coefficient and the lag 

time intervals.  With an average of 90% of the link predictions resulting in medium to high 

correlation with the actual observations, the research shows that the model can validly 

predict the link occupancy from the exponents for the short-term predictions of up to 15 

minutes.  Given the reliability of the predictions, the methodology adopted for the selection 

of this forecast horizon may well provide answers to Kirby and Smith (1991) who 

highlighted the need for guidance on how to select the forecasting horizon to make 

predictions realistic.  The degree of fit between the actual and predicted observations 

typically by the model is in line with the conclusions of Jianming et al. (2003) who gave 

an equalisation coefficient of 95.44%  in their model.  However, it must be pointed out here 

that the two models have different data sampling frequency (15 minutes and 20 seconds for  

Jianming et al. and this work respectively), whilst in the former, the result was for an 

isolated location and did not data analyse spatially over the network.   

In this research, it may be argued that the predictions of the link occupancy from the link 

occupancy data gave slightly higher degrees of correlation coefficient compared to the 

Lyapunov exponents data.  Considering this, the question arises “Is there any benefit in the 

use of the Lyapunov exponents?”  Even though in terms of the degree of correlation the 

model forecasting the link occupancy from the occupancy data slightly out-performs the 

Lyapunov exponent’s model, the latter has a higher number of valid predictions spatially 

than the occupancy model.  Over all the seven cohorts, the number of valid predictions 

were 7158 and 6380 links for the model based on the Lyapunov exponents and occupancy 

respectively.  Consequently, the Lyapunov exponents (rather than the occupancy) have 

greater ability to report on the situational state of the network over a wider area of the 

network.  Therefore, from the temporal-spatial analysis perspective, this observation 

suggests that the Lyapunov exponents-based forecast model will provide a better 

understanding of the future traffic flow considering the network as a whole.   

The model’s ability to predict to such a high level of accuracy means that incorporating 

these algorithms into existing demand responsive systems such as SCOOT has the potential 

to enhance the current practice of urban traffic management.  The prediction of the link 

occupancies based on the temporal and spatial analysis can provide a rich source of 

information for the operation of SCOOT systems.  Current operations rely on historic traffic 

information used to undertake optimisation procedures off-line to modify engineering 
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judgements or override SCOOT splits, offsets and cycle times in response to recurrent 

congestion events to maintain the network operation at the highest level of service.  Even 

though currently the most effective form of control, this approach has two main limitations.  

Firstly, the optimised solution may not be suitable given the difficulty in judging the 

consistency of the current with previous congestion event through CCTV surveillance and 

there can be significant disparity between the historic and the actual flows.  Secondly, 

operation is reactive rather than proactive.  Operators respond to what is happening in the 

network without the ability to determine congested conditions in advance.  Chaos Theory 

opens up the potential to operate with more sophistication with potential to avoid saturated 

traffic conditions.  The incorporation of these algorithms means optimisation procedures 

can be derived to influence the build-up of flows downstream into the future and therefore 

avoid saturated conditions.  This approach would address the current operational 

deficiencies due to the disparity in the historic and observed flows in a reactive system.   

Further, this research provides a novel approach to determine continuously from the current 

predicted flows the future network traffic conditions in terms of being saturated or 

unsaturated.  Since the future flows can be predicted with sufficient accuracy to calculate 

the Lyapunov exponents, the dynamic condition of the traffic in the network can be forecast 

ahead of real-time to enable network managers to initiate measures to avoid such adverse 

network conditions.  Therefore, this approach maintains the use of the existing legacy 

control systems but provides a functional support by implementing additional algorithms 

based on Lyapunov exponents to improve effectively the outputs of the optimisation of the 

splits, offsets and cycle times.  Given the computational ability of current computer systems 

(the use of The Cloud and parallel processing) it is envisaged that faster than real time 

modelling will enable a bespoke signal control intervention to be derived.   

The algorithms therefore present intelligent traffic (transport) systems an opportunity to 

enhance their potential through an ability to forecast the onset of congestion based on a 

model of short-term traffic flows with acceptable levels of accuracy for the planning of 

traffic management strategies to be derived to minimise the impacts of adverse traffic 

conditions.  The importance of this is summarised by Cheslow et al. (1992) that “the ability 

to make and continuously update predictions of traffic flows and link times for several 

minutes into the future using real-time data is a major requirement for providing dynamic 

traffic control.”  The model developed in this thesis fits into the requirement for providing 

dynamic control considering that it possesses the ability to make accurate predictions, and 
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the algorithms allow for continuous updating of the predictions so that the network’s future 

state is known and thus to alert managers to implement mitigation measures to avoid the 

adverse impacts.  Consequently, the results offer a potential to render the decision making 

a feed forward rather than a feedback form of control.   

10.3 Policy Implications for Government and Local Authorities 

The forecast model developed has the ability to predict to a high level of accuracy, and 

therefore provides Local Authorities (LAs) a tool to enhance the current practice of urban 

traffic management by incorporating Chaos Theory into existing demand responsive 

systems such as SCOOT.  The prediction of the link occupancies based on the temporal 

and spatial analysis can provide a rich source of information for the operation of SCOOT 

systems.  Current operators in LAs rely on historic traffic information to undertake 

optimisation procedures off-line to modify engineering judgements or override SCOOT 

splits, offsets and cycle times in response to recurrent congestion events to maintain the 

network operation at the highest level of service.  Even though currently the most effective 

form of control, this approach has two main limitations.  Firstly, the optimised solution 

may not be suitable given the difficulty in judging the consistency of the current with 

previous congestion event through CCTV surveillance and there can be significant disparity 

between the historic and the actual flows.  Secondly, operation is reactive rather than 

proactive.  Operators respond to what is happening in the network without the ability to 

determine congested conditions in advance.  Chaos Theory opens up the potential to operate 

with more sophistication with potential to avoid saturated traffic conditions.  The 

incorporation of these algorithms means optimisation procedures can be derived to 

influence the build-up of flows downstream into the future and therefore avoid saturated 

conditions.  LAs would benefit from this approach to address the current operational 

deficiencies due to the disparity in the historic and observed flows in a reactive system.   

Further, by making use of rich data sources from existing legacy systems, this research 

provides Local Authorities a novel approach to determine continuously from the current 

predicted flows the future network traffic conditions in terms of being saturated or 

unsaturated.  Since the future flows can be predicted with sufficient accuracy to calculate 

the Lyapunov exponents, the dynamic condition of the traffic in the network can be forecast 

ahead of real-time to enable network managers to initiate measures to avoid such adverse 

network conditions.  Therefore, this approach enables LAs maintain the use of the existing 

legacy control systems but provides a functional support by implementing additional 
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algorithms based on Lyapunov exponents to improve effectively the outputs of the 

optimisation of the splits, offsets and cycle times.  Given the computational ability of 

current computer systems (the use of The Cloud and parallel processing), it is envisaged 

that LAs could feasibly implement faster than real time modelling to enable a bespoke 

signal control intervention to be derived.   

The algorithms therefore present LAs an opportunity to enhance their potential of existing 

intelligent traffic (transport) systems through an ability to forecast the onset of congestion 

based on a model of short-term traffic flows with acceptable levels of accuracy for the 

planning of traffic management strategies to be derived to minimise the impacts of adverse 

traffic conditions.  The importance of this is summarised by Cheslow et al. (1992) that “the 

ability to make and continuously update predictions of traffic flows and link times for 

several minutes into the future using real-time data is a major requirement for providing 

dynamic traffic control.”  The model developed in this thesis fits into the requirement for 

providing dynamic control considering that it possesses the ability to make accurate 

predictions, and the algorithms allow for continuous updating of the predictions so that the 

network’s future state is known and thus to alert managers to implement mitigation 

measures to avoid the adverse impacts.  Consequently, the results offer LAs a potential to 

render the decision making a feed forward rather than a feedback form of control.   

Furthermore, the research offers an additional reason to justify the maintenance of existing 

UTMC systems because LAs will find beneficial the wealth of data available as by-product 

these systems useful for implementing Chaos Theory.  However, in real world application, 

LAs may require highly resolved temporal data from different spatial locations to enable 

the tempo-spatial modelling using Chaos Theory.  In the event that insufficient spatial data 

is available, LAs may find it appropriate to investigate the potential use of pervasive sensors 

such as Bluetooth and motes operating through a “linking deployment” with existing legacy 

systems such as SCOOT and ANPR.    

10.4 Limitations of the Study  

The use of only one-minute interval noise data due to the unavailability of highly resolved 

traffic noise data at various sampling intervals did not allow for a detailed assessment of 

the potential of traffic noise in this research.  The raw noise data was not available so the 

data could be not interrogated at other (higher) resolutions to establish the suitability of 

such data.  Consequently, the study failed to establish the suitability of noise data in 

understanding the evolution of the traffic in a signal controlled system.   
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Further, the study has been limited to Welford Road SCOOT region in Leicester.  Time 

constraints did not allow replicating the study in other SCOOT regions and non-urban 

networks.  Notwithstanding, the scope of the research proposal has been executed fully.  

However, the potential to enrich further the conclusions by the assessment of other 

scenarios have not been possible.   

Finally, it would be helpful to apply the approach developed in the study to examine in 

more detail the results of previous work from similar networks, but this was not possible 

because of the disparity in the type and scale of the networks.  This would have given a 

richer understanding of the differences found in the results.  This study offers a 

comprehensive analysis of the traffic evolution of 40 links in a network, whilst the majority 

of studies reported in existing literature have focussed on only a single link location that 

are not necessarily in urban areas.  Therefore, there was no other work to compare the 

spatial aspect of the output from this research.   

10.5 Conclusions  

The introductory chapter highlighted a number of objectives targeted at addressing specific 

questions in order to enhance our knowledge about applying Chaos Theory in traffic 

studies.  Having fulfilled these objectives, and presented the results and discussions, this 

concluding section reflects upon the findings of the study in order to establish how the 

research undertaken answers the research questions enumerated in section 1.5, which are:  

1. What are the main limitations and which gaps are identifiable for improvement 

from previous studies for developing Chaos Theory as tool for improving urban 

traffic control?   

2. Are traffic variables such as noise, flow and occupancy appropriate to yield results 

that would enhance the knowledge of applying Chaos Theory to traffic studies?   

3. Is the choice of the temporal resolution of traffic data an important factor in using 

Chaos Theory to analyse traffic data?   

4. Can Chaos Theory detect the onset of congestion within signalised urban networks 

under real world conditions? 

5. Which chaos parameter can be developed as a predictive tool for forecasting the 

occupancy of links in a SCOOT controlled network region? 

6. What is the forecast time horizon that yields reliable predictions from the traffic 

model?   
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7. If so, can this information be used to inform real-time traffic management and 

control strategies that are ‘one-step ahead’ of current traffic congestion 

strategies?’   

The conclusion refers to the research questions in order in the following paragraphs.   

The extant literature indicated that previous attempts at applying Chaos Theory in traffic 

studies mainly focussed on identifying or proving the presence of chaotic properties in 

traffic data, but the studies conducted were found to be mainly for inter-urban and 

motorway environments and were not exhaustive in exploring the practical uses of Chaos 

Theory for urban traffic control.  The traffic data used in previous studies was of low 

temporal resolution, and coupled with low spatial density and relatively short observation 

period did not enable the investigation of valid practical uses for Chaos Theory.  The 

research confirmed that Chaos Theory is data-hungry and dependent on high temporal and 

spatial resolution data. The research conducted in this thesis has taken advantage of the 

appropriate data with these requisite qualities to overcome the weaknesses of earlier 

studies, and to address where possible their recommendations thus to gain further insight 

into the chaotic properties embedded in traffic time series data.  Specific issues addressed 

relate to: (i) how to determine the forecast horizon to ensure reliable predictions; (ii) how 

to analyse the data for a timely detection of the transition to chaos and (iii) the verification 

of the importance of the sampling frequency in understanding properties of significance in 

the system.   

The previous studies mainly focused on time series data of traffic flow, occupancy and 

speed.  This study showed that traffic noise, flow and occupancy data are variables that 

indicate that road traffic has properties that enhances the potential for applying Chaos 

Theory in traffic studies.  However, the traffic noise data available for use in this research 

lacked a detailed assessment due to the constraint of the data availability at only 60 second 

sampling intervals.  Although the study identified traffic noise is chaotic, the profile of the 

Lyapunov exponents did not indicate any underlying structure to enable interpretation of 

the exponents in relation to known traffic flow behaviour.  This was possibly due to the 

unsuitable use of the logarithmic noise data in the exponent formula, which is also 

logarithmic.  Perhaps, a highly resolved temporal data could give a suitable profile, but the 

data limitations did not enable this investigation.  On the other hand, the results of this 

research indicated that flow and occupancy at 20 second sampling frequency generated the 

appropriate profiles to investigate and gain understanding of the evolution of the traffic in 
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a signal control system.  Flow and occupancy data sampled at 10, 30, 60 and 120 seconds 

did not; whilst they demonstrated the presence of chaos were insensitive to the onset of 

congestion.   

The research highlighted the importance of the choice of the temporal resolution in 

applying Chaos Theory that the appropriate resolution must be identified by a systematic 

analysis of the data to be studied.  The results showed that the resolution needed to be 

reasonably high and for the flow and occupancy data in this research, 20 seconds was most 

suitable for understanding the system’s evolution.  Frazier and Kockelman (2004) raised 

this concern about sampling drawing attention to the fact that at the wrong frequency 

important system dynamics were unable to be captured.  Whilst this research has tested 

different sampling frequencies to reach this conclusion, a specific criterion to determine the 

most suitable frequency was not established.  Future work may find it prudent to test a 

number of sampling frequencies and data types to endorse the approach in this research or 

recommend an alternative.  For flow and occupancy, this research showed that data sampled 

at 20 seconds frequency is suitable.    

A novelty of this research is the ability to use Chaos Theory to determine the onset of traffic 

congestion.  Extant literature has not been able to connect Chaos Theory to congestion in 

traffic networks.  However, this work shows that the profiles of the Lyapunov exponents 

can give an indication of the traffic flow regimes in the road network.  A change in the 

progression of the curve from positive to negative gradient (both in the unstable region) 

indicated a state change from free-flow to chaos (unstable).  On the other hand, a change 

from negative to positive gradient (both in the stable region) is a state change from chaos 

(unstable) to free flowing/congestion.   

The study found the Lyapunov exponents were a useful parameter to characterise the 

datasets in terms of chaos.  Further, the study identified the Lyapunov exponent as a 

parameter suitable for developing as a predictive tool for forecasting the link occupancy.  

Consequently, the study proposes a dynamic multiple regression model using the Lyapunov 

exponents as the independent variable for the forecast of the link occupancy based on the 

understanding of the temporal and spatial correlation of the flows on the links across the 

network.   

The developed model suggested that the link occupancy can be predicted with an acceptable 

degree of accuracy up to 15 minutes in advance based on the Lyapunov exponents.  The 



 

232 

 

results of this model compared with a forecast horizon of one hour indicated that the 

moderate to strong predictions are 92% and 65% respectively.  The comparative figure 

from an alternative model of the link occupancy from the occupancy data itself is 96%.  

The actual numbers of links predicted 15 minutes ahead were fewer in the occupancy model 

than the Lyapunov exponents’ model.  The problem of the occupancy data was the high 

failure rate against the adopted criteria based on the degree of correlation and the lag time 

for choosing the selected links to include in the model.  This means that the predictions 

from the Lyapunov exponents (rather than occupancy) make it possible to report on the 

impending conditions over a wider part of the network.  That is, the Lyapunov exponents 

provide a better indication of the overall state of the network.   

The prediction model has the potential to overcome existing limitations of current demand 

responsive systems that only address network problems as or after they occur.  The results 

suggest that incorporating the forecasting algorithms into existing systems would provide 

additional intelligence to these systems making them pre-emptive to anticipate congestion 

and therefore implement mitigating strategies in advance.   

10.6 Recommendations for Further Studies  

The results of the urban network analysed were compared with the existing literature of 

studies from the both urban and non-urban networks.  The comparisons, based on different 

resolution data, of the different networks gave reasonable conclusions.  In order to obtain 

better understanding of the chaos parameters (lag, embedding and correlation dimensions 

and Lyapunov exponents), however, it will be necessary for a future comprehensive study 

to focus on the comparative appraisals of the different types of networks such as ring-road, 

highway etc. using traffic data of the same resolution and characteristics.   

This thesis has analysed data and developed an understanding of free flow, congestion and 

transition from/to free-flow to/from congestion going through the states associated with 

chaos.  This was hypothesised using engineering judgement based on traffic flow data from 

traffic management systems such as SCOOT.  Future studies may build on this 

understanding by using micro-simulation models to simulate events that will actually result 

in chaos.  By developing experimentally controlled events of chaos, the theoretical chaos 

hypothesised in this research can be verified.  By repeating these events using different 

seeds and changes in input variables and analysing outputs together with the Lyapunov 

exponents, future studies can confirm that the interpretations based on engineering 

judgement and real-time traffic are in fact true.  This would enhance further our 
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understanding of the Lyapunov exponents, their sensitivity and their relationships to 

different traffic flow regimes, by mapping of the exponents to specific conditions 

particularly in determining the onset of congestion.   

Finally, this thesis identified that Chaos Theory has the potential for application to traffic 

management, by predicting the temporal and spatial evolution of traffic in the network 

building up to create events using the cross-correlation of Lyapunov exponents on links 

within the network.  Future studies can explore the comparative modelling of the observed 

and predicted flows to assess the capability of Chaos Theory to forecast the concentrations 

of environmental pollutants.  If this proves to be feasible and yields reasonable outcomes, 

then it would justify a further use of the Lyapunov exponents in traffic studies.   
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