
Optimisation of Data Collection
Strategies for Model-Based

Evaluation and Decision-Making

In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

Robert Cain

School of Computing Science

Submitted February, 2016

To Cat, Mum, and Dad

i

ii

Acknowledgements

I have had the pleasure of working with a lot of people during my varied and

unexpectedly long PhD journey. I appreciate everyone who has helped along the

way, here I name but a few.

I would first like to thank Aad for his valuable supervision and guidance

throughout my PhD. I would like to thank my Mum, Dad, my girlfriend Cat,

my brother Chris, and my Grandad for their unwavering moral support and pa-

tience. Without the belief of these people in either the work we were doing or my

ability to get it done, I likely would not have been able to finish.

Many friends provided guidance and enjoyment during my time at Newcastle

University. I can only include a few. Thanks to Derek and Matthew for the early

years, Matt, Martin, James, Paul, Becky, and Budi for the later years.

I would also like to thank HP Labs for funding our research ‘Prediction and

Provenance for Multi-Objective Information Security Management’ through its

Innovation Research Program, and our original project partners: Doug Eskins,

Robin Berthier, Bill Sanders, and Simon Parkin.

iii

iv

Abstract

Probabilistic and stochastic models are routinely used in performance, depend-

ability and, more recently, security evaluation. Models allow predictions to be

made about the performance of the current system or alternative configurations.

Determining appropriate values for model parameters is a long-standing prob-

lem in the practical use of such models. With the increasing emphasis on hu-

man aspects and business considerations, data collection to estimate parameter

values often gets prohibitively expensive, since it may involve questionnaires,

costly audits or additional monitoring and processing. Existing work in this area

often simply recommends when more data is needed rather than how much, or

allocates additional samples without consideration of the wider data collection

problem.

This thesis aims to facilitate the design of optimal data collection strategies for

such models, looking especially at applications in security decision-making. The

main idea is to model the uncertainty of potential data collection strategies, and

determine its influence on output accuracy by using and solving the model. This

thesis provides a discussion of the factors affecting the data collection problem

and then defines it formally as an optimisation problem. A number of methods

for modelling data collection uncertainty are presented and these methods pro-

vide the basis for solvable algorithms. An implementation of the algorithms in

MATLAB will be explained and then demonstrated using a business workflow

model, and other smaller examples. These methods will be presented, tested,

and evaluated with a number of efficiency improvements based upon importance

sampling and design of experiment techniques.

v

vi

Collaborations

The research described in this thesis began as part of a collaborative project with

the University of Illinois at Urbana-Champaign (UIUC) and sponsored by HP

Labs. The general aim was to improve security decision-making models. The

project featured two largely independent strands, one on better data collection for

models (Newcastle University) and one on better modelling of human behaviour

(UIUC). While the project was highly beneficial for the overall modelling process

and the discussion of early ideas, the work presented in this thesis is my own un-

less appropriately referenced and completed with collaboration of my supervisor

Aad van Moorsel.

The PRISM based examples in Chapter 6 were facilitated by working with

John Mace at Newcastle University. John created the related models and pro-

vided some assistance on integrating them.

vii

viii

Contents

Acknowledgements iii

Abstract v

Collaborations vii

1 Introduction 1

1.1 Aims and Objectives . 2

1.2 Approach . 3

1.3 Example Scenario . 4

1.4 Publications . 4

1.5 Thesis Outline . 5

1.6 Contributions . 6

2 Background and Related Work 7

2.1 Introducing Uncertainty . 7

2.2 Modelling . 9

2.2.1 Model Solving . 10

2.3 Data Collection . 11

2.4 Sensitivity . 13

2.5 Uncertainty . 17

2.6 Optimising Data Collection . 21

ix

x Contents

2.7 Simulation Reduction . 22

2.8 Security decision-making Models . 23

2.9 Software Tools . 24

2.10 Summary . 25

3 Defining Data Collection as Optimisation Problems 27

3.1 Introduction . 27

3.1.1 Research Questions . 28

3.1.2 Approach . 29

3.2 Data and Data Collection Quality . 30

3.2.1 Data and Data Sources . 30

3.2.2 Data Source Variables . 31

3.2.3 Data Quality . 35

3.3 Problem Formulation . 38

3.3.1 Formal Problem Definition 38

3.3.2 Mathematical Programming Definition 40

3.3.3 Strategy Solution Space . 49

3.4 Summary . 50

4 Measuring and Modelling the Effect of Input Uncertainty 53

4.1 Purpose . 54

4.2 Confidence Intervals . 54

4.3 Normal distribution-based . 56

4.4 Stratified Sampling . 58

4.5 Experimental Designs . 60

4.6 Bootstrap Resampling . 62

4.7 Combining Active Data Collection 64

Contents xi

4.7.1 Definition and Causes . 64

4.7.2 Statistical Approaches . 65

4.7.3 Combining & Selection Modes 66

4.7.4 Summary . 72

4.8 Data Transformation & Validation 73

4.8.1 Parameter Value Checking 73

4.8.2 Experiment Checking . 74

4.9 Summary . 74

5 Solving by Simulation 75

5.1 Introduction . 75

5.2 Basic Exhaustive Algorithm . 76

5.3 Importance Sampling Extension . 79

5.3.1 Choosing an Anchor Strategy 82

5.4 Uncertainty in the Algorithm Results (Var of Var) 83

5.5 Iterative Algorithm . 84

5.5.1 Incrementing Criteria . 86

5.5.2 Stopping Conditions . 87

5.5.3 Other Differences . 87

5.6 Exploring the Strategy Space More Efficiently 89

5.6.1 Preparation by Screening . 89

5.6.2 Partitioning & Searching the Space 90

5.6.3 Moving Window: Batch-based Solving 91

5.6.4 Cheapest-First Search Algorithm 91

5.6.5 Most-Expensive-First Search Algorithm 93

5.6.6 Iterative Expansion Algorithm 95

5.7 Discussion of Assumptions and Limitations 96

xii Contents

5.8 Summary . 98

6 Evaluation 99

6.1 M/M/1 Queue Examples . 100

6.1.1 Introduction . 100

6.1.2 BEA Examples . 103

6.1.3 Importance Sampling Examples 108

6.1.4 Iterative Algorithm . 113

6.1.5 Summary . 116

6.2 PRISM Examples . 117

6.2.1 Introduction . 117

6.2.2 Basic Exhaustive Algorithm (Restricted) 118

6.2.3 Importance Sampling . 120

6.2.4 Most-Expensive-First Search Algorithm 123

6.2.5 One to Many . 126

6.2.6 Summary . 129

6.3 Discussion . 130

6.4 Summary . 131

7 Conclusion and Future Work 133

7.1 Summary of Contributions . 133

7.2 Limitations . 135

7.3 Future Work . 136

7.3.1 Problem Constraints . 136

7.3.2 Parameter Uncertainty Modelling 137

7.3.3 Alternative Solving Algorithms 138

7.3.4 Additional Results Validation 139

Contents xiii

References 139

Appendices 153

A Implementation Details 153

A.1 Structure . 153

A.2 Data Classes . 155

A.2.1 ModelInput . 155

A.2.2 ModelDataSource . 155

A.2.3 ModelDataStrategy . 156

A.3 Main Functions & Execution . 158

A.3.1 Input Functions . 158

A.3.2 Optimisation Solving Algorithm Functions 160

A.3.3 Batched Solving Algorithms and Stopping Functions 163

A.3.4 Parallel Execution . 164

A.3.5 Objective Functions and Constraints 164

A.4 Tests & Automation . 166

A.4.1 AutoRunStrategyAlgorithm 166

A.5 Summary . 167

B PRISM Model Details 169

B.1 Workflow Details . 169

xiv Contents

List of Figures

2.1 Model Parameters, Inputs, and Outputs 9

3.1 Optimisation Problem Overview . 29

4.1 Different ways of distributing points using intervals [14] 59

6.1 M/M/1 BEA Maximum Spend Strategies: The effect of varying

samples between parameters on Variance Var[g(Y)|s] 106

6.2 M/M/1 BEA All Strategies: The Total Cost vs Variance Var[g(Y)|s] 107

6.3 M/M/1 Comparing BEA and BEA with Importance Sampling us-

ing s0 . 109

6.4 M/M/1 Comparing BEA and BEA with Importance Sampling us-

ing s1 . 111

6.5 M/M/1 Comparing BEA and BEA with Importance Sampling us-

ing s21 . 111

6.6 M/M/1 Comparing BEA and BEA with Importance Sampling us-

ing s11 . 112

xv

xvi List of Figures

List of Tables

4.1 Values For a Parameter Using Random and Stratified Sampling . . 60

6.1 M/M/1 Simple Strategies Input . 101

6.2 M/M/1 Simple Strategies Results . 102

6.3 M/M/1 BEA Top Strategies by Smallest Var[g(Y)|s] (Inputs) 103

6.4 M/M/1 BEA Top Strategies by Smallest Var[g(Y)|s] (Results) . . . 104

6.5 M/M/1 BEA Top Strategies Sorted by Cost, where V 0.1 (Inputs) 105

6.6 M/M/1 BEA Top Strategies Sorted by Cost, where V 0.1 (Results) 105

6.7 M/M/1 Iterative Algorithm Example Iterations 114

6.8 M/M/1 Iterative Algorithm Repeat Execution Comparison 115

6.9 PU Basic Exhaustive Algorithm Sorted by Var[g(Y)|s] (Top and

Bottom) . 119

6.10 PU Importance sampling: Sorted by Var[g(Y)|s] (Top and Bottom) 122

6.11 PU Most-Expensive-First Search: Sorted by Var[g(Y)|s] (Top Results)125

6.12 PU One to Many Base Strategies by Input Parameter 126

6.13 PU One to Many Sorted by Var[g(Y)|s] (Top Results) 128

xvii

xviii List of Tables

CHAPTER 1

Introduction

When creating and using stochastic models data must be collected to aid model

design and populate input parameters. While ideally we would use perfect data

for all aspects of the model, in practice this is not possible due to restrictions

on money, time, the collection methods available, and other factors. Decisions

must be made on how to allocate data collection resources amongst the available

options. Without guidance the data collection decisions would be uninformed

and may be costly and inefficient.

Given limited resources, one does not wish to allocate much collection effort

to aspects of the model that have little contribution to the quality of output. At

the same time one often cannot use all of one’s collection resources on one aspect,

especially with the prospect of a diminishing return on the investment. For all but

the simplest of models the best collection strategy will likely be a non-uniform

allocation of collection resources. This thesis creates a framework for describing

this problem area and looks at trying to create efficient, model-backed methods

for finding the optimal collection strategies. To put it differently, we observe that

‘garbage in - garbage out’ is a common maxim in modelling literature. The work

presented attempts to efficiently prevent the ‘garbage in’ part with the common

assumption that for a good model this should lead to better output.

There has been increased interest in using modelling in the area of informa-

tion security to simulate and quantify the possible effects of policy decisions on

both the systems and users involved. These models require data for creation and

optimisation. Due to the sensitive nature, and until the benefit is more proven,

1

2 1. Introduction

the allowable data collection for this purpose can be limited so it is important that

it is efficient and cost effective. While this is the primary application domain for

the presented work, the techniques can apply to a range of models if the model is

treated mostly as a black box.

The problem of data collection for model input parameters can be broken into

levels and be looked at from multiple points of view. At the lowest level of pop-

ulating a single parameter, one needs to specify what data is needed and then

compare the different ways of collecting that data. The collection methods and

the data produced will have different qualities which need to be taken into ac-

count to decide between them. To make predictions one needs to be able to es-

timate the effect of allocating variable resources (money, time etc.) to these data

collection methods.

Expanding upon that one needs to look at the input parameter in relation to

the model and its outputs. To compare inputs one should work out how influen-

tial the input is on the output. This is done by measuring its sensitivity: specifi-

cally in this context, the sensitivity to the parameter uncertainty. One must also

consider which model outputs are important and to what level of accuracy.

Looking at the problem from a higher level, one needs to be able to combine

these aspects in a way that allows for comparison between different combina-

tions and allocations (known here as a collection strategy). In turn, this allows

predictions to be made about those that are optimal.

Wrapping all of these is the need to make the entire process efficient and com-

putationally viable. Model simulation can be very costly with complex models

when exploring the input space. The process of deciding which data to collect

should not take too long to estimate and the process cost must be significantly

less than the cost of using a non-optimal strategy.

1.1 Aims and Objectives

The aim of this work is to develop a rigourous engineering approach to deter-

mine data collection strategies, in order to facilitate better model-based decision-

1. Introduction 3

making. A main target user of our work is the Chief Information Security Offi-

cer of a company and his team, assuming they use model-based approaches to

making information security decisions. The following primary objectives were

identified:

1. Study the literature to identify the state of the art in information security

decision-making and associated data collection approaches.

2. Formulate the data collection problem of comparing and deciding data sources

for model parameters, beginning with the fundamental aspects.

3. Expand the formulation and optimisation problem complexity over multi-

ple versions, including multiple parameters and variants of the optimisa-

tion problem formulation.

4. Develop efficient algorithms to solve the data collection optimisation prob-

lems.

5. Develop software tools that find optimal data collection strategies by solv-

ing the optimisation problem, using integration with the model software.

6. Apply, evaluate, and improve the optimisation tools using (simulated) case

studies.

1.2 Approach

Our approach is as follows: we establish a connection between uncertainty in the

input data with uncertainty in the output of the model. Data from data sources

that reduce the output uncertainty the most will be selected, since they corre-

spond to more accurate results and thus better justified decisions. This approach

implies that uncertainty of the inputs need to be modelled. We believe that in

many settings it is natural to assume a Normal distribution around a mean, jus-

tified by the fact that when sampling from data sources the central limit theorem

can be applied to determine uncertainty in the sample mean.

4 1. Introduction

A potential bottleneck of the proposed approach is the time the basic algo-

rithm takes to determine the optimal strategy. We therefore introduce alternative

algorithms, which provide complete or approximate solutions. One includes the

reuse of model results across different strategies, relying on importance sampling

equations to weigh the results appropriately. The application of our importance

sampling inspired speed-up is sensitive to various choices. We study this in detail

in the experiments with a simple queueing system. We also attempt to provide

an iterative approach using related work of Freimer and Schruben [1] and alter-

native techniques for strategy space searching that do not require us to evaluate

every strategy to find an optimal strategy.

1.3 Example Scenario

To help motivate and explain solutions in the thesis we introduce a recurring

example scenario. This will feature in various chapters throughout the thesis.

Example. One wishes to model a supermarket checkout process. The model

would provide estimated queue times, throughput, and productivity with dif-

ferent configurations, such as the amount of tills, reducing or increasing ser-

vice time, etc. The level of complexity may vary to appropriately illustrate the

related section.

1.4 Publications

This thesis includes work which has been previously included in, or is closely

related to, peer-reviewed publications which have been written or co-written by

the author.

• R. Cain and A. van Moorsel, “Optimization of Data Collection Strategies

for Model-Based Evaluation and Decision-Making,” presented at the IEEE/

IFIP 42nd International Conference on Dependable Systems & Networks

(DSN), 2012. [2]

1. Introduction 5

The above paper summarised the ideas that formed a basis for much of the

work that went into this thesis and therefore sections in multiple chapters. The

formulation and optimisation problems are edited and expanded in Chapter 3.

The Central Limit Theorem based input modelling is in Chapter 4 and the solv-

ing algorithms make up part of Chapter 5. A similar queue example is used in

Chapter 6, but it is covered in much more detail.

1.5 Thesis Outline

This thesis is structured as follows.

Chapter 1 Introduces the problem, aims, and contributions of the thesis. It de-

tails the thesis structure and existing publications.

Chapter 2 Reviews background material and related work to sufficiently under-

stand the area and position the work with respect to the field.

Chapter 3 Formally describes the problem area, including a collection of optimi-

sation problems the later method attempts to solve.

Chapter 4 Presents approaches to modelling input parameter uncertainty for anal-

ysis using the model.

Chapter 5 Explains the optimisation solving algorithms as well options to speed

up the process or reduce the solution space.

Chapter 6 Demonstrates and tests the methods using the MATLAB implementa-

tion and multiple examples. A queuing model is used to test all methods

and a PRISM workflow model is evaluated using the most appropriate tech-

niques.

Chapter 7 Summarises the conclusions of this work and briefly discusses future

directions that could be explored.

6 1. Introduction

1.6 Contributions

This thesis presents a number of key contributions to the area of data collection

for models:

1. A background and literature review of data collection for stochastic and

probabilistic models and related model analysis topics.

2. A problem formulation for expressing the data collection problem as a col-

lection of optimisation problems.

3. Algorithms to allow the solving of the optimisation problem, based on com-

puting the model output variance under different strategies.

4. Additional optimisations for improving algorithm efficiency using impor-

tance sampling and other techniques.

5. A prototype MATLAB tool allowing generic execution of the optimisation

solving algorithms and associated functions.

6. A demonstration and evaluation of the optimisation implementation using

multiple examples.

CHAPTER 2

Background and Related Work

This chapter provides background information for the thesis and discusses re-

lated research. The chapter explains the key concepts in this cross-discipline area

of data collection and computer modelling. It uses a review of existing research

to position the work of the thesis.

The remainder of the chapter is structured as follows. Section 2.1 introduces

uncertainty and related concepts to guide the chapter. Section 2.2 gives an overview

of the types of models considered throughout the thesis. Section 2.3 discusses the

data and data collection needed for these kinds of models including the issues

involved and where this work fits in. Section 2.4 explains sensitivity and sensitiv-

ity analysis in relation to models, including existing anlysis methods. Section 2.5

does the same for uncertainty and relates the two concepts. Section 2.6 reviews

further related work more specific to this area, those that tackle similar problems

to this thesis. Section 2.7 briefly discusses simulation reduction methods. Sec-

tion 2.8 provides more specialised model examples that this work is targeting.

Section 2.9 highlights the software tools used in this research and related models.

The chapter is concluded and briefly summarised in Section 2.10

2.1 Introducing Uncertainty

Uncertainty is common concept throughout this chapter and the remainder of

this thesis. We discuss application to models that are unintentionally uncertain

7

8 2. Background and Related Work

(due to incomplete knowledge about the problem) and intentionally uncertain (to

represent the scenario). The information and data used to populate these models

may be uncertain, and the techniques used to solve these models efficiently can

result in uncertain estimates for model outputs. It is therefore important to define

upfront what we mean by uncertainty, and which specific uncertainty we will be

concentrating on so that it is appropriately considered while reading the chapter.

Uncertainty is a lack of certainty. Uncertainty represents or quantifies how

confident we are that some measurement, prediction, or representation is accu-

rate. If there is large uncertainty in a variable, its true value may largely differ

from the estimated value but there is still small chance that it is close to it. We do

not know for certain since the true value is usually unknown. We lack complete

or perfect information about the scenario.

Accuracy is then a related concept. Accuracy is a quality of whether something

is correct or close to the true value. In many modelling situations it is difficult

to define if something is accurate since the true value is often unknown. It is

sometimes possible to estimate the uncertainty within specific probabilities. A

value for the number of installed tills in our supermarket example can easily be

measured accurately and with certainty.

In this work we are primarily interested in input parameter data uncertainty

(parameter data uncertainty, or simply parameter uncertainty). Parameter data un-

certainty considers how confident we are in the value used to populate an input

parameter for a target model. If non-trivially data collection is needed for a pa-

rameter, we likely do not know the true value so we cannot measure how accurate

the parameter value is but given other aspects of the scenario we can estimate or

represent its uncertainty. Later, we will attempt to efficiently reduce this uncer-

tainty.

It should be noted that uncertainty can have different definitions and usage

across domains. We attempt to be consistent with our usage here.

2. Background and Related Work 9

2.2 Modelling

The methods proposed in this thesis try to be as generically applicable as possible

to system modelling. The primary application is for probabilistic and stochastic

models. These are often used to simulate the behaviour of a system for perfor-

mance and dependability analysis. These models are designed to replicate a real-

world process, which could be anything from a single electrical component to

multiple machines in a factory or a representation of natural phenomenon like

river flooding. Modelling the system allows the user to make predictions about

its performance given some inputted state and configuration. The model may

also be used to provide predictions of the effect of alternative system configura-

tions, such as whether adding more tills to a simulated supermarket sufficiently

reduces customer queue time.

Model&' Y"

g(Y)% Var(g(Y))"I1'

I2'

…'
x = 2.5

µ

Parameters&P" Inputs' Outputs'

…"

µ

µ

p1'

p2'

p3'

I3'

�2

Figure 2.1: Model Parameters, Inputs, and Outputs

Each model takes a variable number of inputs that may be constants or ran-

dom variables. These inputs are configured to represent their real world values or

some new test configuration. The inputs can be categorised in multiple different

ways, we use the following (based on [3]):

Experimental inputs (or decision variables) Those that can be changed by the

user to test different configurations or treatments e.g. the number of tills

open. These may still need an informed starting value.

10 2. Background and Related Work

Model inputs These represent variable inputs in the system that include some

randomness but cannot usually be directly controlled e.g. the number of

customers arriving at the store.

Fixed inputs Those that are fixed representation of the real system’s behaviour.

There is no uncertainty during execution and the same value is always used

throughout. These may not need data if the true constant value is known.

The model implements an abstract representation of the system process. The

level of abstraction will vary based on the complexity of the system, the accu-

racy requirements, and the available implementation resources. In certain cases

a simple linear function combining a small number of inputs can be sufficient in

providing a reasonable estimate, others may have multiple interacting compo-

nents or sub-models and internal feedback [4].

2.2.1 Model Solving

Solving the model calculates one or more output measures based upon the in-

puts entire probability space. There are two main classifications of model solving

techniques: analytical and simulation [5]. If a model is analytically solvable it is

possible to calculate the output’s expected value (the value while taking into ac-

count the probability of all possible input values) with certainty e.g. E[Y] for out-

put Y. Within analytical solutions there are closed-form and analytical/numerical

techniques. Using closed-form techniques it is possible to express the output per-

formance measure explicitly in terms of input parameters based upon the model

structure. These are often only appropriate for the simpler models. The uncer-

tainty is taken into account and the output performance measure can be calcu-

lated directly. Analytic/numerical techniques result in a system of equations,

which can be solved using appropriate numerical analysis methods. These meth-

ods still provide an exact result.

For simple common model structures and components of larger models, ana-

lytical solving is a well covered textbook problem and part of learning modelling

theory. It can be difficult and impractical [6] for anything beyond simple models

2. Background and Related Work 11

and simulation techniques are widely used instead.

If a model cannot be analytically solved, an estimate for the output’s expected

value is produced by repeated execution of the model as part of simulation based

solving. Simulating the model involves executing for a finite number of steps

(or time) to produce one or more outputs. These outputs are measures on the

simulated system such as counts of the number of times something happened or

average measures taken over the execution. The model user may be interested in

both the mean value of the output (or performance measure) and the distribution

of the results over repeated simulations or different experimental inputs. The

mean is presented together with a measure of its confidence or uncertainty, such

as confidence interval or the variance. Replications within the solving allow the

resulting estimate to sample from more of the input probability space. Using

a larger amount of replications to produce the mean estimate results in lower

uncertainty about the value (whether it is near to the expected value). Increasing

the number of replications takes more computation time to produce a result so the

user or simulation software must balance required confidence in outputs against

available time and processing resources.

Improving the effectiveness of these models requires various forms of valida-

tion, explained in detail by Sargent [7]. This thesis is primarily concerned with

data validity and selection.

2.3 Data Collection

To create the best possible model you need to collect information about the system

to be simulated. The modeller needs to understand the process to be modelled

to decide the level of abstraction required and then to design and implement

it. The data collection process for modelling can be split amongst four stages of

modelling (including validation):

Preparation and design: information is needed to correctly represent the pro-

cess, its inputs, required outputs, interactions, and variability. This goes

into informing the design and implementation of the model. It attempts

12 2. Background and Related Work

to realise the appropriate system behaviour but depending upon the com-

plexity of the system it may not produce particularly accurate results at this

stage.

Fitting or optimising to the scenario: with a working idea of the system further

data may be collected to adapt or tune the model to the system being mod-

elled. This can involve collecting data to help define input parameters and

distributions, all the way up to redefining portions of the model.

Validation: further data may need to be collected to formally validate the com-

pleted model behaviour, looking at whether the outputs are sufficiently sim-

ilar to those of the real system, or the agreed expectations of experts.

Ongoing validation and improvement: after its initial usage, ongoing data col-

lection can be used to validate the model’s past or current predictions and

enable further calibration. If a model was used to predict the effect of a de-

cision, this data collection can be used to evaluate the prediction against the

reality and then to improve further predictions in future.

This thesis concentrates on fitting or optimising to the scenario, specifically it

looks at the inputs and their parameters. It assumes the overall model is suffi-

ciently valid and that improving the data used to define the inputs is the next best

action for reducing uncertainty in the model’s representation and improving the

accuracy of model outputs.

In practice it is difficult to define and therefore achieve a sufficiently valid

model for complex scenarios [7–9]. An alternative would be to assume that the

model is good enough but also that its behaviour is being separately and regularly

re-validated during the algorithms proposed in the thesis. If a problem is discov-

ered in the model that has a greater effect on the validity than the inputs, it would

need to be immediately prioritised over improving inputs. The model solving re-

sults and overall result produced by these algorithms may be used as part of this

ongoing validation. The model validation technique and its usage are a separate

problem not covered by this work.

2. Background and Related Work 13

The methods proposed in this thesis attempt to reduce the uncertainty in the

data used to populate the inputs, or the parameter uncertainty. If the model’s be-

haviour is correct it should in turn improve the quality of the model outputs.

Section 3.2 discusses other data collection aspects of the problem in more detail.

2.4 Sensitivity

Two primary model characteristics affect our optimisation of data collection de-

cisions: sensitivity and uncertainty (Section 2.5). Sensitivity is a measure of the

relative response to an action or input. If something is highly sensitive a small

change in input will result in a relatively large response. For modelling this is

important when identifying the most influential inputs. Inputs which the model

is sensitive to have a greater effect on the model outputs and performance mea-

sures. On the other hand, insensitive inputs have little to no effect on the model

outputs. We therefore wish to prioritise improving the quality of data and allo-

cate additional collection to the more sensitive inputs.

A sensitivity analysis is a procedure which assesses the sensitivity of one or

more inputs on one or more outputs. It establishes the relative importance of

inputs [10]. The results of the analysis can be a simple grouping of inputs [11],

relative sensitivity measures [12], or full breakdowns on interactions [13]. The

method can consider only the effect of one input singularly, its main effect, or in-

clude and review an output’s sensitivity to inputs interacting with other inputs.

The assessment of secondary and other interactions can help improve the cor-

rectness of the sensitivity results. Sensitivity analysis is an active research area in

modelling, as it allows us to more easily understand the behaviour of complex

models.

While a sensitivity analysis is useful for understanding data collection needs

it is primarily important during the model design and validation stages. The

modeller needs to understand the model sensitivities to concentrate design and

development resources in the right areas. For example, they may wish to abstract

away a complex area if the model is actually insensitive to the result [14], or in an

14 2. Background and Related Work

extreme case reduce the model down to a simpler function if the result is domi-

nated by only a small number of inputs. Sensitivity analysis has also been used to

optimise model design decisions [15]. Both sensitivity and uncertainty analysis

are recommended by international agencies as best practices for validation and

auditing [16–18].

Saltelli et al. [16] reviews recent work in this area and best practices. A clear

purpose is recommended by best practices. The typical purposes of a sensitivity

analysis can be split into: factor prioritisation and factor fixing. Factor and input

are often used interchangably. Factor prioritisation looks at ordering the inputs

or inputs parameters by their sensitivity within the model, the idea being that if

the first factor could be fixed at its true value it would reduce the variance in the

output the most. Factor fixing [19] or screening is the use of sensitivity analysis

to find inputs or input parameters which are insensitive that could be fixed at a

constant value, or for groups, reduced to simpler abstractions. More formally, the

fixing of factor should not greatly reduce the output variance.

Sensitivity can be assessed in many different ways from two perspectives. The

analysis may be local or global [20, 21]:

Local Sensitivity Analysis methods measure the sensitivity to deviations from

some current input state or values [22]. These methods test sensitivity by using

small changes from the current state in one or more input values, and then mea-

suring and comparing the effect on the output. This is easier to compute and is

often sufficient, if the current state and local to it are already known to be valid,

and if these are the only solution areas under consideration. If not, it may ignore

the fact that a model may be more or less sensitive to inputs at majorly different

areas of the valid input space. Even with these difficulties this type of analysis

still receives a lot of attention [17].

Global Sensitivity Analysis looks at the model sensitivity to an input across its

entire valid or expected range, or the entire distribution. The sensitivity is tested

systematically at different values. It has the benefit of more complete coverage of

the problem space and does not depend upon linearity, monotonicity, or the cor-

rectness of a current input value. For models with many inputs, this coverage can

2. Background and Related Work 15

require a lot more model solutions than local analysis, and therefore a lot more

simulations. So much so that many methods are often prohibitively expensive

when used with complex models [23]. Additional techniques can be used to re-

duce the number of inputs considered in the sensitivity analysis, or to efficiently

and accurately cover the problem space with less model results.

Sensitivity analysis methods can usually be split into two groups: regression-

based methods and variance-based methods [21]. The simplest sensitivty analy-

sis techniques are graphical [24], derivative based, or one at a time (OAT). While

inappropriate for many models, these kinds of methods are still often used and

explored [16]. Derivative methods [25–27] involve executing the model at two

different extreme input values, and using difference in output response Y to pro-

vide a gradient. These derivatives are compared across inputs or groups of in-

puts. OAT methods involve testing inputs (or factors) independently, where other

inputs are fixed at some predefined value. While unsuitable for many scenarios

these techniques can be useful for an easy rough exploration of the model space

before inviesting itme in a costly analysis process.

Variance-based methods are especially important to our problem area as they

take model-free or black box approach, which makes them applicable to all mod-

els and not dependent upon analytic solving. These methods use only the inputs

and outputs to understand the model, and compare the variance between model

solutions for different input values. Variance-based methods attempt to portion

the variance in the output to each input and simulation uncertainty.

The variance separation can be segregated and estimated in different ways

depending upon the method. It can be in terms of the main effects [28] (or first

order [19]), which estimates the effect of the inputs independently. Alternatively a

more complete breakdown of the effects into first order, second order (two inputs

together), and beyond, can be produced at higher cost in terms of model runs.

The total effects [12] quantifies the effect of an input including its interactions

with other inputs as a combined value. It can be produced more efficiently than

a many-order breakdown.

Sensitivity analysis methods usually look at the effect of input changes on the

16 2. Background and Related Work

ouput mean, assuming the distribution does not differ significantly. Bar Massada

and Carmel [29] propose a method for looking at the effect on the distribution of

the ouput using both the mean and variance of the simulation results.

Given the potential complexity concerns involved with running many model

simulations, the performance of the methods in relation to the number of inputs

and the number of experiments is fundamental. Some of the methods have been

compared by Christopher Frey and Patil [24], Ascough et al. [30], Chan et al. [13]

and Hamby [20].

Reducing the inputs to be analysed can be achieved by input or factor screen-

ing [31]. The screening filters the input factors to only the most important by

removing those that are insensitive. This is usually done with a more basic, much

less costly sensitivity analysis method. One that only results in sensitive and in-

sensitive groups, rather than exact measurements.

Kleijnen [31] summarises finding the most important factor by sequential bi-

furcation, which sequentially tests factors at low and high values while split into

groups of decreasing size. The analysis compares results from previous group-

ings to define the next groups (to efficiently search) and to decide the final impor-

tant factors. Kleijnen [11] discusses continued work in this area, as it has become

more necessary as we make increasingly complex models. Sequential bifurcation

requires monotonicity and known signs for the effect of parameters so cannot be

applied to all more models. More recently, Shi and Liu [32] extended it to incor-

porate multiple model responses (outputs), which is beneficial when there is not

just one primary output in the data collection problem scenario. Input screen-

ing does not need to be entirely independent of later more granulated sensitivity

analysis. Campolongo et al. [23] propose a unified approach starting with screen-

ing and then going on to calculate sensitivity indexes for the identified important

parameters. This is a one at a time (OAT) technique, which is not suitable for all

scenarios.

The filtering may also be done manually by the user, if they decide one or

more inputs can be disregarded as their analysis results would provide no benefit.

For data collection, an example would be that if no additional data collection was

2. Background and Related Work 17

possible for an input, it may be filtered out prior to analysis. This kind of user

involvement should be avoided where possible, as given extreme results it may

become important to re-assess the decision to restrict colleciton.

Efficient coverage of the problem space with limited simulation results is im-

portant for both sensitivity analysis and model solving in general, therefore sim-

ilar techniques can apply. Reduced usage of randomness using a stratified ap-

proach to model experiments can result in analysis results that accurately cover

the solution space with much less computation [14, 33, 34]. It is important to

make sure all extreme regions of the problem space are adequately represented.

Both sensitivity and uncertainty analysis methods often use stratified and quasi-

random [19] sampling techniques, such latin hyper cube sampling [28, 34], to

efficiently create orthongonal experiments and increase input space coverage.

2.5 Uncertainty

Equally important to our problem as sensitivity is uncertainty. As mentioned

earlier, in modelling terms we can consider uncertainty in inputs as random vari-

ables, input parameters, uncertainty in the design of the model, and uncertainty

in the results from solving the model.

These uncertainties are commonly categorised as either: aleatory uncertainty

and epistemic uncertainty [35, 36]. Oberkampf et al. [37] defines aleatory uncer-

tainty as: the inherent variation associated with the physical system or the en-

vironment under consideration. It is the uncertainty intentional built into the

model, using probability distribution functions to represent the expected vari-

ability of the system. Aleatory uncertainty is also called stochastic or irreducible

uncertainty [35]. This uncertainty, combined with the structure of the model, is

what makes efficient data collection more difficult, more uneven, and in turn the

optimisation more important.

Epistemic uncertainty is defined as uncertainty due to a lack of knowledge in

any phase of the modelling process [37] e.g. modelling, data collection, validat-

ing. For example, the lack of knowledge could be related to the model design

18 2. Background and Related Work

decisions, input data, simulation and solving choices, or validation method. Epis-

temic uncertainty (or ignorance uncertainty) is the reducible uncertainty that di-

minishes with improved or additional knowledge of the related factor, which is

usually as a result of more effort or complexity in that area. We concentrate on

the parameter knowledge part of the epistemic uncertainty.

From the lowest level, data must be collected for a single parameter. A mea-

surement will be taken producing a value for the parameter. The measuring pro-

cess will often only be certain within some set of error bounds and the value may

vary depending on how and when the measurement is taken. Repeated mea-

surements or samples are used to increase the certainty that measurements are

accurate. It also ensures that the results as a whole take into account and repre-

sent the values real variability.

When these measurements are used in modelling context, variation in the val-

ues between usage or over time may be modelled as a random variable. This ran-

dom variable allows the value produced and used as an input within the model

to vary based on some specified probabilities. Random variables have a probabil-

ity distribution and one or more parameters. The value produced is intentionally

uncertain [38] to represent the recorded behaviour but has an expected value if all

probable values are taken into account. External to this there can be uncertainty

in the correctness of the parameters and the choice of distribution. These are of-

ten referred to as parameter uncertainty and model uncertainty respectively, and

collectively as input model uncertainty [38, 39]. The thesis covers only reducing

the parameter uncertainty. The assumption is that the other uncertainties have

already been minimised while producing a sufficiently valid model. While un-

certainty over distribution selection is discussed, this is outside the scope of the

thesis. It has been covered in other work [40–43] and can be a sufficiently complex

problem alone.

At a higher level a model, and in turn its outputs, have multiple causes of

uncertainty. The stochastic nature of the models we consider allow the usage of

random variables as input, which enables randomness in the simulation process.

This stochastic uncertainty [39] means that for the same input parameter values,

2. Background and Related Work 19

the model output can differ between repeated executions (unless repeated with

the same random seed). Model solving by simulation is affected by this uncer-

tainty, solving must take it into account to produce a confident result. Results are

often reported with their respective confidence intervals but do not usually take

into account the uncertainty of the chosen parameter values [44].

The design and implementation of the model as whole can be uncertain. This

is largely an extension of the problem of uncertainty in the choice of input distri-

butions and the validation that the model is sufficiently valid. These two model-

level uncertainties are sometimes separated as model error (measured in terms of

bias) and simulation error (measuring in terms of variance) [45].

The term uncertainty analysis defines a general class of methods that try mea-

sure the effect of model uncertainty (especially inputs) on model outputs. Input

uncertainty analysis methods can be a split into two categories: methods that

try to improve output confidence intervals to better take into account input un-

certainty [6, 46, 47] (sometimes described as looking at the risk involved in the

model or parameters being uncertain), and methods that try to assess the effect

of parameter or distribution uncertainty on the model [1, 48, 49] (recommending

areas to improve first or the effect of increased certainty). The latter can overlap

with sensitivity analysis and the two are often completed together. The work of

this thesis can be considered as a form of input uncertainty analysis: analysing

the effect of parameter uncertainty and model sensitivity to provide recommen-

dations on the optimal data collection strategy to reduce it.

Kleijnen [48] is one of the first to suggest using confidence intervals and the

Central Limit Theorem to represent parameter uncertainty in analysis. Specify-

ing that this could be used as either sensitivity analysis (quantifying the effect):

as part of deciding where would benefit from more data, or uncertainty analysis

(as risk analysis): trying to quantify the risks the parameter uncertainty has on

outputs. The approach does not continue much into the effect of additional col-

lection or consider the wider collection problem beyond that sometimes further

collection is not possible.

Barton [6] surveys input uncertainty issues, early solutions and recent progress

20 2. Background and Related Work

in the modelling simulation context. The methods look at the ‘propagation of

input model uncertainty to output uncertainty’ for a mixture of parameter and

distribution uncertainty. Four main current approaches are identified: direct

bootstrap resampling (including direct resampling), Bayesian model averaging,

delta method, and metamodel-assisted boostrapping [46]. Apart from the delta

method, these uncertainty analysis methods attempt to calculate new model out-

put confidence interval, which take into account parameter uncertainty or model

uncertainty.

Using bootstrap resampling is common in many uncertainty analysis meth-

ods. It was first described in [50] to account for the uncertainty in input distri-

bution correctness within output confidence intervals [51, 52]. We describe the

process and our usage in Section 4.6. More recently, Barton and Nelson [46] com-

bine bootstrap resampling with stochastic kriging metamodelling [53] to reduce

the simulations required.

Ankenman and Nelson [54] proposes a ‘quick’ bootstrap-based method for

assessing the overall effect of input uncertainty from fitting distributions (or pa-

rameters) when based on real world data, relative to simulation uncertainty. Since

it was not in fact quick, Song and Nelson [55] demonstrate efficiency improve-

ments. The method provides estimates for the sensitivity to additional data col-

lection. The user would then need to decide and allocated collection based on

these values.

Pappenberger and Beven [56] discuss some of the issues with using uncer-

tainty analysis in practice. In general, the main issues revolve around commu-

nicating what the results mean to the relevant party. Effectively, it extends the

already difficult problem of explaining the uncertainities of complex models to

parties without modelling backgrounds.

Like sensitivity analysis, uncertainty analysis can be costly in terms model

runs. Instead of the usual experiment reduction approach, Liu et al. [57] describe

and test an implementation that uses cloud computing resources, specifically

Windows Azure, to speed up achieving a result for groundwater flow models.

This needs to account for the issues with the portability of model software and

2. Background and Related Work 21

licensing of MATLAB for cloud usage. The licensing issue should now be less

of an issue as MathWorks (makers of MATLAB) work towards their own cloud

integrated solution [58].

Uncertainty is a problem throughout model usage from data collection via

model solving and into the produced outputs [59]. Methods must be used to

minimise this uncertainty, as much as is practical, to a level which is appropri-

ate for the problem. The thesis provides an extended discussion of this aspect of

modelling, a problem formulation of a chosen part of the uncertainty problem,

and multiple approaches attempting to provide solutions that reduce parameter

uncertainty while taking into account other aspects of uncertainty where appro-

priate.

2.6 Optimising Data Collection

The thesis aims to allocate data collection resources based on the uncertainty of

data, the needs of model, and within the limits of the collection scenario. The

closest existing methods for allocating more data look only at the first two or

simply highlight the need for more data. Freimer and Schruben [1] presented a

similar approach to those proposed in the thesis and provides a basis for certain

methods discussed later. While they provide a way to allocate additional samples

based upon the model, the method includes no data collection factors beyond the

existing samples and the number of samples. Samples are allocated to an input

rather than any consideration of where the data is coming from with other related

factors such as costs. Freimer and Schruben [1] highlights taking into account col-

lection cost as important future work for methods allocating additional samples.

Ng and Chick [49, 60] explain a Bayesian based approach [61] to reducing

parameter uncertainty by optimising the allocation of samples. It relies upon cre-

ating an output response function in term of the input parameters to use in place

of the model. They briefly propose representing the process as an optimisation

problem but with limited detail. The model is replaced with a response surface

metamodel using Bayesian model averaging [62], this kind of response surface

22 2. Background and Related Work

methodology is not only useful for the optimisation approach but also used more

widely in model analysis when direct model execution is too costly. This includes

both sensitivity analysis [63] and uncertainty analysis [60] methods.

Many data collection qualities are difficult to measure quantitively, solutions

to their assessment are usually subjective, which can lead to similar optimisation.

An expert opinion or the user giving qualities a score can be transformed into a

combined total but cannot be used with the model. Model sensitivity needs to be

assessed separately. This kind of assessment is more useful for choosing one data

source for an input rather than complete optimisation.

Närman et al. [64] tackles the problem of cost effective data collection but for

the purpose of software quality analysis. The method uses diagnosis in Bayesian

networks to choose which data sources are likely provide the most value for anal-

ysis with the least cost. The evaluation of data source value and cost is done in

subjective manner, which this work will attempt to avoid as much as possible, in

favour of measurable aspects.

Skoogh et al. [65] take an alternative approach to optimising data collection by

integrating ongoing data collection into the modelling process. In essence, they

are optimising the time it takes to get an updated model based on new data. This

kind of data collection could be used for some parameters in the models we target

but it needs to be customised based on the scenario and modelling tools used.

2.7 Simulation Reduction

Solving by simulation can be costly for complex models containing a lot of inputs

and stochastic uncertainty. When solving by simulation the user wishes to reduce

the variance (uncertainty) due to simulation in the result, while also limiting the

number of runs or simulation time used in simulation. We can try to reduce the

cost of simulation by variance reduction methods (improving the efficiency of the

simulation) or replacing the model with a response surface or metamodel (using

simulation less).

Variance reduction is a strong area of research in modelling, since the success

2. Background and Related Work 23

of these kinds of models depends upon their usage being computationally vi-

able. Techniques of interest here include: input filtering, sample design, design

of experiments, and importance sampling. Input filtering or screening has been

mentioned previously in terms of sensitivity analysis but the fixing of an unim-

portant uncertain input can also contribute to simulation variance reduction. In-

stead of completely random sampling from input distributions, one can increase

the rate of convergence using sample designs and design of experiments. Sample

designs including stratified sampling, ensure coverage of the input space. De-

sign of experiments [66], such as orthogonal arrays or latin hypercube sampling,

ensure coverage of the input space collectively. Importance sampling allows the

re-weighting of results based on the difference in probability distributions [67,

68].

Regression techniques allow us to replace a complex model with a simpler, less

costly model. For stochastic models, this kind of replacement is referred to as

response surface methodology [69] and metamodels. These approaches still re-

quire some simulation, as the inputs and outputs of the original model are used

to select an appropriate metamodel and then train or optimising the meta models

results to be an adequate representation of the original model. Response surfaces

are not only used for simulation reduction, sometimes their usage is simply to

pre-simulate all the required solution space.

2.8 Security decision-making Models

Computer security investment decision-making is largely based on Chief Infor-

mation Security Officer (CISO) experience and expert opinion. This knowledge

may provide many good decisions but provides limited auditable evidence, es-

sential for supporting big investments in a business environment. One possible

alternative is using modelling to: assist in a security investment decision mak-

ing; add evidence to these decisions; and highlight potentially unforeseen conse-

quences of these decisions.

Using models for security decision-making is becoming more popular [70], es-

24 2. Background and Related Work

pecially in the area of information security [71–75]. The purpose of these models

is to simulate a computer system, business organisation, or attacker and predict

how specific security policy decisions may affect the system outputs. The secu-

rity policy will dictate what security controls are implemented, which in turns

affects user behaviour and results. Two examples of this are password usage re-

quirements [72] and the usage of USB flash drives [71]. The security policy can

enforce or recommend the use of certain levels of password complexity or fre-

quency of password changes. This policy and the workers related behaviour will

have an effect on the business that we may wish to estimate prior to, or during,

its implementation.

The modelling of information security can cross over into economics style

modelling [76], trying to estimate the utility for the organisation, especially in

terms of trade-offs and costs. A common trade-off in these models and their out-

puts is Security vs. Productivity. The aim of the policy choice is to balance the

security of the business’ data against the potential cost of reduced productivity

or more limited availability. A business does not want to invest in a highly secure

system that no one can use, which prevents work being done and money being

made. They also usually do not want to be completely open to attack just to make

everything easy for the employees.

Due the complex mathematical and uncertain nature of this kind of modelling,

care must be taken when presenting and communicating these results to inter-

ested users. Parkin et al. [77] considers designing interfaces for CISO decision

making tools, including controlling the experimental parameters and displaying

the results from a completed model.

2.9 Software Tools

In this section we highlight third party software and libraries that were used in

the development of research solutions.

There are many software tools available to enable system modelling and anal-

ysis. We only discuss those used in this thesis, which were either already in use

2. Background and Related Work 25

or the most readily available. The primary software implementation of the re-

search was completed in MathWorks MATLAB (R2013a to R2014b) [78]. MAT-

LAB is both a programming language and development environment for numer-

ical computing. MATLAB has many different toolboxes for additional features

crossing multiple domains, including Simulink and SimEvents [79] for creating

and simulating different types of models.

PRISM [80, 81] is a Probabilistic Symbolic Model checker, it is a formal mod-

elling tool that allows us to create and analyse many different types of probabilis-

tic models. The tool assists in writing models in the PRISM modelling language

and it allows for model solving using both verification and simulation. It will be

used as part of the examples in Chapter 6.

2.10 Summary

This chapter introduced and explained the key background topics for this prob-

lem area. This background knowledge allows us to have sufficient understanding

of the problem domain leading into subsequent chapters. Part of this included

reviewing relevant research from this area in more detail. Doing so highlighted

gaps and areas for improvement in the current research, we hope to push forward

some of these with this thesis.

The next chapter uses this knowledge to present a formal framework for our

data collection problem. The problem of optimising data collection for models is

considered from multiple approaches and at different levels of complexity. The

most relevant related work [1] is used as a basis for Section 3.3.2.3.

26 2. Background and Related Work

CHAPTER 3

Defining Data Collection as

Optimisation Problems

The previous chapter provided an overview of the cross-discipline problem area

and a review of existing research into similar problems. The following chapter

provides a formal description or framework for describing our problem domain.

This will be continually used and built upon throughout the remainder of the the-

sis. We discuss key data and data collection attributes and metrics before defining

the problem as an optimisation problem to be solved in later chapters.

Section 3.2 breaks down and explains important variable aspects of data and

data collection that were considered for the problem formulation. Section 3.3 for-

mally defines the problem of collecting data for model parameters and optimis-

ing strategies. This starts from fundamental variables of the problem, building

into more complex optimisation problems from multiple different approaches. In

Section 3.4 we summarise the content and key contributions of the chapter.

3.1 Introduction

To evaluate and recommend data collection strategies that will improve model

output quality we must further explore the details and scope of the problem.

This will involve breaking down the problem and looking at variable aspects that

can be controlled and then optimised. We need to define what qualities are im-

27

28 3. Defining Data Collection...

portant to measure and how these could be related to an overall strategy quality

to optimise.

Example. Consider a complex version of our supermarket model. There are

multiple different parameters, e.g. average time between customers arriving,

probability of purchasing, average time to serve customer, difference in service

time between till operators, probability of till failure, number of tills available,

and number of employees available etc. There are multiple ways of getting

data for each with different properties. There exists restrictions on the allowed

collection. We want to select a data collection method for each parameter and

allocate certain amount of collection resources depending upon the potential

improvement provided.

3.1.1 Research Questions

• How can we quantitatively compare data sources and data, specifically for

model usage?

• How can we relatively quantify the importance of model parameters?

• How can we use these in combination to evaluate data sources across dif-

ferent parameters and in turn complete strategies?

These can also be inverted, looking at it from the defining an optimisation per-

spective:

• What defines a good data collection strategy?

• What is the objective or objectives? The goals of optimising the data collec-

tion.

• What are the problem constraints? The restrictions that will be put upon the

solution space that defines allowable collection strategies.

3. Defining Data Collection... 29

3.1.2 Approach

The optimisation process (Figure 3.1) must take into account the model’s input

parameters, the available data collection methods, and the stakeholder or model

user’s requirements. The input parameters have requirements, a current state,

and different levels of importance to the model. The data collection methods

have various attributes that provide data of differing quality based on the type of

collection and the amount of investment. The stakeholder will specify restrictions

on the optimisation process, such as the allowed collection methods, required

quality levels, and available collection budget.

There are many aspects of data and data collection quality that could be used

but some are not essential to the fundamental problem. We will review differ-

ent quality metrics, define those that continue into later chapters, and those that

could be added in future work. Starting from a simplified scenario we will build

optimisation problems of increasing complexity. These need to sufficiently repre-

sent the most important aspects of the problem area for prototype solutions to be

implemented in subsequent chapters.

Optimisation* Collection/
Strategy*

Model!

Stakeholder*
Requirements*

Model/Inputs!
with/meta=data*

Data/Sources!
with/meta=data*

Figure 3.1: Optimisation Problem Overview

30 3. Defining Data Collection...

3.2 Data and Data Collection Quality

This section provides an extended explanation of data collection methods mod-

elled as data sources. We first define data and data sources before reviewing im-

portant data and data source attributes. There is a short discussion of data quality

measures useful for the problem area that were considered for the formulation.

This is followed by a summary of how these fit into the problem formulation in

Section 3.3.

3.2.1 Data and Data Sources

The term data is used here for information collected to accurately represent the

system being modelled. This data can be collected by a variety methods including

direct measurement and monitoring, questionnaires, and expert opinions. The

method of collection and the data itself have attributes that need to be measured

and considered, when choosing how to collect the necessary data and how much

is needed.

To collect data for a model parameter you take a measurement of the related

system attribute either directly via instrumentation, or indirectly e.g. from the

users via a questionnaire, either results in one value. To make sure this informa-

tion is correct multiple additional values are usually collected (known as sam-

ples). These samples can then be evaluated using common statistical techniques

to inspect and analyse the behaviour of the results, and decide upon an estimate

to use for the input parameter.

In the following formulation, data collection methods are abstractly repre-

sented as a sampling based data source. Our problem considers using data collec-

tion results from a limited to set period of time. We do not discuss using or in-

tegrating streams of data although some ideas could apply. Non-sampling based

sources (such as an expert opinion) would need to be transformed into a similar

representation. This is done to allow comparison of measurable attributes in the

proposed methods. Quality assessment of subjective data is outside the scope of

this thesis. We assume data from a data source is separately validated for model

3. Defining Data Collection... 31

usage.

Uncertainty analysis allows us to consider which parameters are most in need

of additional data, by analysing the effect of their uncertainty on the model out-

put. This allows one to compare the effect of parameter data uncertainty across

inputs, taking into account their importance in the model. Separate to that, and

at a per parameter level, there may be multiple data sources available. The at-

tributes of the data source, and the data it produces, need to be comparable and

considered appropriately. In the next sections those we consider most important

to modelling and the thesis are discussed.

3.2.2 Data Source Variables

This section discusses important data collection attributes to consider when col-

lecting data for models and in general. Some of these are then translated into

variables that become part of the problem formulation in Section 3.3.

Data collection attributes related to a collection method or source:

3.2.2.1 Sample size

How many samples are needed to provide a sufficiently accurate estimate for the

parameter? How can samples be allocated? The number of samples is funda-

mentally important as the primary controllable aspect (beyond choosing which

data source). The number of samples needed will vary depending upon the qual-

ity/variability of the data and the importance of the parameter. To take this into

account a pilot collection may be carried out or information may be inferred from

historical data from the source or from the kind collection method. The units of a

sample are left undefined since it can be dependent upon the data source.

For each data source there will be requirements about how samples can be

allocated to the source. These requirements result in a set of valid values of the

sample size. For new collection with a data source there exists a minimum num-

ber of samples, a maximum number of samples, and a distribution that repre-

sents valid sample increments in between. For practical purposes the minimum

32 3. Defining Data Collection...

number of samples is both how many samples are produced from the minimum

investment in a collection method and the amount of samples required to pro-

duce a value for the input parameter. From a data collection perspective only, the

simplest case for a minimum is one sample. In real examples, most data sources

will produce multiple samples for the minimum to offset the initial cost of setting

up collection (discussed further in Section 3.2.2.3).

The maximum number of samples represents the upper limit on the allowed

collection with a data source. This can be as a result of stakeholder restrictions

on collection or practical limits on plausible collection. For example, if you are

collecting data from a population of users within an organisation and each user

can provide only one usable data point, then the maximum allowable number of

samples is equal to the population size. There can also be physical limits on the

maximum number of samples which could be collected in the timespan available

for collection. The stakeholder can also put restrictions on the data collection

which could affect the maximum sample size for certain data sources. Returning

to the previous example, the stakeholder might limit the amount of users that are

made available to the data collection. Any stakeholder limitations on access to

the organisation or system being modelled will likely affect the maximum sample

size for some of the data sources, for the rest the available budget will likely stop

further collection rather than per data source maximums.

How the sample size can be incremented with additional investment can also

vary between data sources. In the most basic case single samples can be pur-

chased, the collection sample size can then be any integer between the minimum

and maximum sample size for that particular data source. In some situations

samples will be allocated in batches, making the sample increment a number

greater than one. A method that collects a data sample once per hour for an en-

tire day, may be controllable by the number of days. This results in a sample

size increment of 24 (and a minimum of at least 24). In these simple cases, the

sample size increments uniformly but it does not need to be. The sample incre-

ment can be a function that depends upon the current sample size. For example,

a data source may allow only large sample size incrementing initially and for

sample sizes less than a certain value, but beyond that value small sample size

3. Defining Data Collection... 33

incrementing may be allowed as it becomes more cost effective.

3.2.2.2 Frequency and Timeframe

How often is the valued measured and over what length time? Collecting only

over a small timeframe or infrequently may result in aspects of the system be-

haviour being missed or anomalies over-emphasised. More frequent measuring

and measuring over the entire system life cycle are likely to achieve the best re-

sults but in turn will create higher costs. These time attributes need to be balanced

and taken into account by the data collector, who must choose how best to dis-

tribute allocations. This is highly dependent on the external collection method

and input to be populated. It is assumed that additional resources allocated to a

data source are used in the best possible and most appropriate sampling design.

The effect of these attributes can be encapsulated in the resulting quality and cost.

3.2.2.3 Cost of collection, additional samples and indirect costs

What does it cost to produce a set of samples and how does this cost change with

differing sample sizes? Each data collection method can have different associated

costs to collect and process the data. Collection may have a variety of costs in-

cluding collectors time, equipment and other resources needed to complete the

collection. This can sometimes include a cost on the system being collected from

e.g. productivity loss. These costs are all considered as a combined into one mon-

etary cost for collection.

In the simplest case, all collecting has a uniform cost, the marginal cost of one

sample costs the same as the next. For more complex techniques, such as those

requiring major upfront outlays for setup or equipment, the first samples will

have a large cost then subsequent additional samples can have a much lower cost.

Some data sources will follow an ‘economies of scale’ -like [82] behaviour, where

the average (sample) cost decreases as the quantity increases, from spreading the

initial outlay over more samples or reducing collection costs with size. It can also

follow the similar limit whereby average cost begins to increase after a certain

point.

34 3. Defining Data Collection...

The non-uniformity and indirect costs must be taken into account when com-

paring data sources based on total cost. If significant data collection has a neg-

ative affect on the system being modelled, the real cost of additional samples

may also increase as collection becomes a burden on the system. For example,

software monitoring and measuring the system too frequently may consume ex-

cessive computer resources and result in less or no productivity. Alternatively,

questioning all system users often will result in no less actual work-time. The

proposed optimal strategies should be realistic in their expectations or should

provide alternatives.

Collection cost relates to all of the previous attributes. While the per sample

cost can vary in either direction, the total collection cost for a data source will

increase as sample size increases. Increasing the frequency of data collection will

increase collection cost, either directly from the collection process or indirectly

from the effect upon the system. The same applies for increasing the timeframe

of the data collection.

3.2.2.4 Collection Type

How is the data collected? Is it from the system itself or from observations? Data

can be collected directly from the system by singular measurements or ongoing

monitoring. This is not always practical for all inputs but other data may be avail-

able via secondary sources such as questioning the users. The results and values

produced using questionnaires may not be as accurate, and may vary more than

direct measurement but can sometimes cover a longer time frame.

3.2.2.5 Formulation Representation

We now consider how these will be represented in the formulation. A collection

strategy s is a tuple {D, N(D), T(s)}, which is made up of a set of available data

sources D, a set of sample sizes N(D) unique to this strategy configuration, and

a total cost T(s). Within D, each data collection method and its resulting data is

represented as an abstract data source Dj which has a set of related variables and

functions:

3. Defining Data Collection... 35

Number of samples to collect N(Dj) A quantity of samples to collect at a later

date as defined in the data collection strategy. This is the primary attribute

that can be controlled as part of the strategy. The others are pre-defined or

based upon this quantity.

Sample cost cj The cost of collecting each sample in future planned collection.

This can be a number for uniform sample cost or a function for more com-

plex costing. It encapsulates all previously mentioned cost factors at a per

sample level.

Startup cost uj The initial outlay required to collect data with the data source.

This could also be considered as an additional cost on first sample collected

for data source.

Minimum sample size, maximum sample size, and Sample increment

Nmin(Dj), Nmax(Dj), h(Dj) The number of samples required as part of new

data collection, and a number of samples that must be added at each level

of investment in a data source. We restrict the scope of the current problem

to only constant increments.

Data source total cost Cj(N(Dj)) The combined cost of collecting a chosen amount

of new data samples. The total cost of a data source is a function related to

the number of samples needed N(Dj). The function’s structure will be vary

depending upon the complexity of the source. This encapsulates all previ-

ously mentioned cost factors at a per collection level. While more advanced

cases are discussed, the data sources in the implemented examples in Chap-

ter 6 use only linear functions with an optional constant (startup cost) for

their cost functions.

3.2.3 Data Quality

To differentiate data sources one must consider the qualities of any already col-

lected existing data and those expected from future data collection. While we

generally refer to the concept of parameter data certainty, there are many data

quality dimensions that can be used to define what makes good data. These can

36 3. Defining Data Collection...

be related to what makes better or more certain data for model parameters. Ba-

tini and Scannapieca [83] defines the following dimensions of data quality. While

largely orientated for data in terms of records, similar dimensions apply to data

sources in the modelling scenario:

Accuracy: given a real world value and an estimate, accuracy measures the close-

ness of the estimate to the real value. More generically, this can be split into

accuracy in terms of whether value is valid and appropriate, and whether

or not it is correct. Considering quantitative data collected for parameters,

we are interested in how well the mean represents the population mean.

One can also look at it from the other perspective, when not directly mea-

sured, one must consider whether the target or environment used for the

data collection is an accurate representation of the system being modelled.

Completeness: This quality is more appropriate for data as records where an en-

try is made up of multiple values [83]. When using multiple samples from a

system, one can also consider completeness in terms of whether these sam-

ples completely represent the system. For example, if collecting data for

mean inter-arrival time of customers, the data may be an incomplete rep-

resentation if only collected for one hour on a Friday afternoon. Similar

applies from a users perspective, the mean parameter designed to represent

all users should not be populated based on data from only one type of user.

This partly overlaps with the previous dimension as it can be considered as

a specific cause of inaccuracy.

Time dimensions: Currency, Volatility: how recently was the data created or col-

lected and how does the data qualities change with time. Since we are op-

timising future collection currency is less of an issue but it may still have

an effect. For example, there may be a data collection choice between an

expensive data source that can provide highly current data, and a data

source which is cheaper due to the data being less current. The volatility

dictates whether this currency is likely to make a difference. The currency

and volatility are also important when basing data collection decisions on

past data.

3. Defining Data Collection... 37

Consistency: This dimension looks at the integrity of data over multiple entries,

or samples in this context. One can consider the consistency of measure-

ments values or the consistency of data qualities during a single collection.

While accuracy looks at the distance from the real value, precision describe

how consistently close repeated measures are to the same value.

Accessibility: How easily can one access and integrate the required data? The

data may require additional transformation to be used. While mostly affect-

ing the data source cost, this may affect data qualities based on the transfor-

mations required especially if it involves combining with other data.

There are many ways of looking at the quality of groups of data and the im-

portance of each can vary depending on the situation [84]. Most are suitable for

consideration over sets of samples for a target value. Many of the qualities are dif-

ficult to measure, and often highly subjective. It is essential to the optimisation

that attributes be comparable across inputs, or at least able to be representable

that way. In this context of sampling-based data for parameters, we are primar-

ily interested in the more low level accuracy and variability of the data collected.

For this one can look at the variance of data from the data source. This provides

a measure of the variability of the data at the current sample size. As one will see

in Chapter 4 this can be used to represent the parameter data uncertainty.

The following variables represent the data quality of a data source in the for-

mulation:

Existing samples Each source has a small set of existing samples {x1, ..., xM(Dj)},

or a least a µ̂j sample mean, ŝ2
j variance, and M(Dj) previous sample size.

We assume there is some existing data from prior collection during build-

ing the model creation, a pilot study, or inferred from historical data for the

collection method. This assumption allows us to represent the current and

predicted data uncertainty in Chapter 4. Estimating this information, if un-

available, is outside the scope of this thesis. If the data source can collect

data for more than one input parameter (see Section 3.3.2.2) there must be

existing data for each parameter.

38 3. Defining Data Collection...

One could encapsulate other attributes with multipliers but these would be very

difficult to quantify, adding an extra layer of uncertainty. Similar is true for trans-

lating expert opinion (and certain aspects of qualitative sources) into a sampling-

based representation, which are outside of the scope of this thesis.

3.3 Problem Formulation

This section formalises our problem in Section 3.3.1, phrasing the problem of find-

ing the best data collection strategy as a mathematical programming problem in

Section 3.3.2.

3.3.1 Formal Problem Definition

The models we consider are discrete-event dynamic systems [85], of any type, be

it Markov chains, stochastic process algebras or discrete event simulation code,

and may also include rewards (Markov reward models etc.). The model M takes

as input a set P of input parameters or inputs: P = {p1, . . . , p|P|}. The output of the

model is a random variable Y, which is a function of M and P and typically one

would be interested in a function g(Y) for instance the mean of Y or some other

reward function over Y. In a queueing system, Y may be the steady-state queue

length distribution and we could be interested in the mean number in the queue,

the holding cost of jobs, etc.

Without loss of generality, we restrict the set P to the input parameters for

which data can be collected, and we consider only ‘individual parameters’ (not

full distributions), such as the mean or variance of a distribution or a probability

used in M. For each input parameter pi 2 P there may be multiple data sources

available. The set Di contains all available data sources for input parameter pi 2

P, and with |Di| the number of data sources, we write Di = {Di,1, . . . , Di,|Di|}.

A data source may be a set of samples from a sensor or the result of a set of

questionnaires, etc. We write D = [|P|
i=1Di for the set of all available data sources.

A data collection strategy s in the set S of all strategies is a subset of all possible

3. Defining Data Collection... 39

data sources D. In its most general form S ⇢ [|P|
i=1 [

|Di|
j=1 Di,j, but if appropriate we

can restrict the set of possible strategies. For instance, we may assume that valid

strategies select for each input parameter pi 2 P one and only one data source

from the set Di. Let the chosen data source be denoted di, then we can write the

strategy as s = {d1, . . . , d|P|}. If appropriate, we use |s| to denote the number of

data sources in the strategy s 2 S, so in this special case |s| = |P|. Another special

case is that we want to optimise the number of samples from a data source; since

that is the common case in this thesis, it is useful to introduce bespoke notation

for this case (instead of assuming each different sample count is a different data

source). The sample count for data source Di,j 2 D is denoted as N(Di,j) and a

strategy s is denoted as s = {N(Di,j)}, i = 1, . . . , |P|, j = 1, . . . , |Di|.

An example best illustrates the approach to formulating the optimisation prob-

lem.

Example. Assume our supermarket model needs the mean number of people

arriving in the store. Consider two different sources for this single input pa-

rameter: (i) a questionnaire of a subset of the population and (ii) live counting

at the store entrance for one hour each day for a number of weeks. We do not

expect the two sources to give a different result (they are both unbiased, and

with enough samples would converge to the same value for the model input

parameter). However, neglecting the cost of each approach, we may expect

that counting at the store entrance gives more accurate results than question-

ing arbitrary people, and thus will lead to more accurate output results.

To represent this thinking in an optimisation problem, we need expressions for

the uncertainty in input parameters caused by the various data sources. We also

need to identify for each possible strategy how this uncertainty propagates to

uncertainty in the output g(Y)|s.

For a strategy s 2 S, we model the uncertainty in the outcome of a data source

by a random variable Xi,j(s) for parameter pi 2 P and data source Di,j, thus

resulting in the multi-dimensional random variable:

40 3. Defining Data Collection...

X(s) = {Xi,j(s)}. (3.1)

The uncertainty about the output random variable then depends on X(s), and

we can introduce a random variable g(Y)|X(s), which reflects in the output the

uncertainty of input sources. To attain an effective optimisation criterion, we use

the variance of g(Y)|X(s), which we refer to as the output variance (for the strat-

egy). It should be noted that alternative metrics can be used (such as correlation

ratios [13]), but the output’s variance is a common metric [1, 14] and suffices for

our purposes. The specific expression for the output variance Var[g(Y)|X(s)] de-

pends on the result we want out of the model. For instance, if we are interested

in E[Y], then the variance would be Var[E[Y]|X(s)]. In what follows we usually

drop X from the notation and write Var[g(Y)|s] to denote the uncertainty in out-

put under the data collection strategy s.

It is important to comment on the subtle difference between Var[Y] and

Var[E[Y]|X(s)]. Var[Y] is a metric of interest in its own right [29], which can be

computed directly from the model, as for instance in [86]. Var[Y] has no rela-

tion with any data collection strategy s. For our supermarket example Var[Y] is

the variance in queue length, for instance. However, in Var[E[Y]|X(s)], the met-

ric of interest is E[Y] (the mean queue length), and Var[E[Y]|X(s)] expresses the

uncertainty in the result for E[Y] caused by the uncertainty in the input parameter

introduced by the data collection strategy. Note that as a consequence, if X(s) has

no randomness, Var[E[Y]|X(s)] = 0 because there is no uncertainty in the input

parameter values.

3.3.2 Mathematical Programming Definition

The previous formal definition of the data collection problem provides us with an

objective function for optimal data collection strategies, namely to minimise the

output variance Var[g(Y)|s]. For practical applications it makes sense to add ad-

ditional constraints to the optimisation problem, for instance considering the cost

of collecting data, or a limit on the total number of samples for each source, etc.

One can also swap objective and constraints, thus minimising cost under some

3. Defining Data Collection... 41

constraint on the output variance. This leads to the following plausible versions

of the mathematical programming formulation of the optimisation problem: (1)

Minimise output variance given a total number of samples, (2) Minimise output

variance within a cost budget, and (3) Minimise the cost for a target output vari-

ance. We introduce these first before expanding problem complexity further.

3.3.2.1 Single Parameter Data Sources

Example. Consider a simple version of supermarket model with one till and

two parameters. p1 mean arrival time, p2 mean service time. If each parameter

has two data sources:

D1,1 p1

D1,2

D2,1 p2

D2,2

Let s 2 S be any possible strategy (that is, S ⇢ [|P|
i=1 [

|Di|
j=1 Di,j), and let di,j = 1 if

source Di,j 2 s, and di,j = 0 otherwise. We first provide the mathematical pro-

gramming formulation assuming exactly one source will be selected per input

(that is, |s| = |P|). Importantly, a strategy is variable in terms of the number of

samples associated with each chosen source, so a strategy s 2 S is determined

by the number of samples N(Di,j). Assume now that the total number of sam-

ples has an upper bound N, possibly because the time to collect is limited. The

following optimisation formulation is then natural:

Optimisation Problem 1 (Sample Constraint).

Mins2S Var[g(Y)|s]

42 3. Defining Data Collection...

subject to:

di,j 2 {0, 1} for i = 1, . . . , |P|, j = 1, . . . , |Di|

Â|Di|
j=1 di,j = 1 for i = 1, . . . , |P|

Â|P|
i=1 Â|Di|

j=1 di,j ⇥ N(Di,j) N

It is natural to enhance the above optimisation problem with a budgeting con-

straint C. This allows one to consider the cost of sampling, or the relative effort

spent on different data sources. To illustrate the formalisation, assume in above

Sample Constraint problem formulation that the cost of a sample of source Di,j

is given as ci,j and initially there are no other costs. The budget constraint then

limits the valid strategies as follows:

Optimisation Problem 2A (Budget Constraint).

Mins2S Var[g(Y)|s]

subject to:

di,j 2 {0, 1} for i = 1, . . . , |P|, j = 1, . . . , |Di|

Â|Di|
j=1 di,j = 1 for i = 1, . . . , |P|

Â|P|
i=1 Â|Di|

j=1 di,j ⇥ N(Di,j ⇥ ci,j) C

This can easily be expanded with more complex cost calculation (see Section 3.3.2.2).

The dual of this problem is equally interesting: find a strategy that minimises

the total collection cost with an acceptable level of uncertainty. In that case, the

variance Var[g(Y)] needs to be added as a constraint (with some preset value V)

to create a meaningful optimisation problem:

Optimisation Problem 3A (Minimise Cost).

Mins2S Â|P|
i=1 Â|Di|

j=1 di,j ⇥ N(Di,j)⇥ ci,j

subject to:

di,j 2 {0, 1} for i = 1, . . . , |P|, j = 1, . . . , |Di|

Â|Di|
j=1 di,j = 1 for i = 1, . . . , |P|

Var[g(Y)|s] V

3. Defining Data Collection... 43

3.3.2.2 Data Sources That Provide Data for Multiple Parameters

Input-data source mappings have so far been singular and encapsulated from the

input parameter perspective. Each input parameter pi had a list of data sources

in Di,j indexed according to the input and their order within that source list. Data

sources in our context are an abstract representation of a sampling based col-

lection method, with a number of samples to be collected, and a parameter to

populate. It is probable that at least one data source will be able to provide data

for more than one parameter at a time. We must define data sources at a higher

level than per parameter, but maintain some data quality measures for each pa-

rameter (those independent of the data source). There is no preference towards

data sources that populate many parameters but these can be more cost effective

and should be taken into account.

Example. We continue our slightly simplified supermarket model with one

till and two parameters: p1 mean arrival time and p2 mean service time. There

now exists three data sources without the previous singular mapping.

D1 p1

D2

D3 p2

D2 could be a person or software monitoring store traffic that results in esti-

mates for both parameters at the same (with negligible additional cost, signif-

icant cost would need to be taken into account and modelled separately). A

questionnaire can commonly cover multiple parameters although not well in

this case.

Consider now that a data source may map to one or more parameters in P. It

is no longer unique to a particular input and must be identified globally. D is a

set of all possible data sources. Dj is now a single data source that provides data

for one or more input parameters in P. To create strategies one must define which

44 3. Defining Data Collection...

parameters a source can provide data for. Let d now be a matrix indexed by data

source j and input i. d maps valid input to data sources combinations. If data

source D1 can provide data for input p1 and p3 then d1,1 = 1, d1,3 = 1, and for the

others d1,i = 0. Viewing over a single source gives an array of boolean values e.g.

d1,: = [1 0 1].

We still want to optimise the number of samples from a data source. The

sample count for data source Dj is denoted as N(Dj) and a strategy s can be

simplified to s = N(Dj), j = 1, ..., |D|. If N(Dj) > 0 the data source is providing

samples for one or more parameters as defined by dj,:.

For all inputs there is still a data requirement that there must be samples from

at least one data source for the strategy s to be valid. This is achieved by the first

two constraints in the next Optimisation Problems. No data source’s sample size

N(Dj) in the strategy can be negative. By using the data source mapping di,j and

sample allocations N(Dj) we check that the total number of samples allocated to

each input is greater than zero (across all sources), by doing a cross product of

each relevant row in d and the sample allocations array. The sum of each of these

products must be greater than zero.

When constraining or optimising by cost, each data source now has a cost

function Cj() that does not depend upon a specific input. It takes the number of

samples N(Dj) as its only parameter to produce an estimated total collection cost

for that data source. The previous Optimisation Problems become:

Optimisation Problem 2B (Advanced Minimise Variance).

Mins2S Var[g(Y)|s]

subject to:

N(Dj) � 0 for j = 1, . . . , |D|

Â(dj,i ⇥ N(Dj)) > 0 for i = 1, . . . , |P|

T(s) C where T(s) = Â|D|
j=1 Cj(N(Dj))

3. Defining Data Collection... 45

Optimisation Problem 3B (Advanced Minimise Cost).

Mins2S T(s) T(s) = Â|D|
j=1 Cj(N(Dj))

subject to:

N(Dj) � 0 for j = 1, . . . , |D|

Â(dj,i ⇥ N(Dj)) > 0 for i = 1, . . . , |P|

Var[g(Y)|s] V

optional:

T(s) C

3.3.2.3 ANOVA

The two previous perspectives have different related issues with regards to the

calculated output variance Var[g(Y)|s]:

• When the objective is to minimise total cost, it is difficult to pre-populate the

acceptable level of variance V. Especially since this is not the usual type

of variance. V must take into account simulation variance if solving by

simulation and the accuracy of all the estimators in the process, some of

which will be unfamiliar to the user.

• When the objective is to minimise variance, if there is no analytic solution avail-

able, the optimisation solving algorithm and its accuracy may need to con-

sider and take into account the simulation variance. So far it is assumed

that the model simulation and algorithm are run until sufficiently accurate.

Each may still have some variability. Once uncertainty from a strategy has

diminished, remaining variance is likely to be dominated by any simula-

tion variance. Investing in more expensive strategies will likely see little

improvement, possibly even deterioration due to the estimation and simu-

lation uncertainty. We may want to look at minimising Var[g(Y)|s] only to

the level that it is indistinguishable from the uncertainty due to simulation

and consider minimising total cost as a secondary objective.

Alternative Optimisation Problems using ANOVA (Analysis of Variance) tech-

niques could overcome these challenges for models solved by simulation. Mod-

46 3. Defining Data Collection...

els solved analytically already differentiate model output variance caused by the

strategy, since there is no simulation variance.

Freimer and Schruben [1] explain two overlapping approaches using ANOVA

to assess the need for further data samples. One for a fixed effects model and one

for a random effects model. Each is presented for single input parameter appli-

cation then expanded to support multiple input parameters. The process starts

with a number of samples for each input parameter, equivalent to a simplified

strategy with only one data source per parameter. The model is simulated using

experiments that represent the parameter uncertainty given a set number of sam-

ples (either using an interval or resampling). ANOVA is then used to decide if the

current sample sizes have sufficiently reduced the variance from parameter un-

certainty. Sufficient is defined as the variance from parameter uncertainty being

indistinguishable from simulation variance (like the earlier motivation). This is

decided using an F-test and constrained by a probability of the decision being in-

correct. The analysis results are used to decide whether to increment any sample

sizes and repeat, or stop process.

Due to the nature of our problem we are interested in the random effects

model. The following explains the essentials of the ANOVA part of their ap-

proach while integrating our problem formulation. More detailed derivation of

certain formulae can be found in most statistics books or in [1].

We first consider the effect of a single input parameter p1, or factor in ANOVA

terminology, on a simulation output. If one performs simulations at a randomly

selected factor levels and n simulation replications per factor level (these are

equivalent to k and r in Chapter 4), it is assumed the resulting output values

can be represented by the following statistical model:

Yij = µ + ti + eij

8
<

:
i = 1, ..., a

j = 1, ..., n

9
=

; (3.2)

Where µ is the overall mean, and ti and eij are random variables. Note here

that i (the levels) and j (the replications) are specific to these equations and not

related to our own parameter or data source indexing. To be able to test the

3. Defining Data Collection... 47

hypothesis of the statistical model, we assume that the treatment effects ti are in-

dependent and normally distributed with mean 0 and variance s2
t , and the errors

eij are independent and normally distributed with mean 0 and variance s2. By

independence the variance of the output our response is:

V(Yij) = s2
t + s2

In thesis terms, we can consider s2
t the variance of the treatment effects ti

as the variance caused by pushing modelled parameter uncertainty through the

model. The null hypothesis for the random effects model, tests s2
t :

H0 : s2
t = 0

This is true if all treatments are identical, and s2
t > 0 if not. The ANOVA decom-

position of total variability states [87]:

SST = SStreatments + SSE

which can be used to formulate a ratio for the test statistic:

F0 =
MStreatments

MSE
=

SStreatments/(a � 1)
SSE/(na � a)

. (3.3)

Under the null hypothesis F is a random variable with a � 1 and a(n � 1)

degrees of freedom. Using a significance level a, the null hypothesis H0 is rejected

if F0 > Fa,a�1,na�a. In the thesis context if the treatments are derived from the

parameter uncertainty due to the strategy X(s), and the error variance is due to

simulation uncertainty, rejecting H0 means that X(s) has a distinguishable effect

on Var[g(Y)]. Therefore, if F0 > Fa,a�1,na�a we should try to collect more data for

the parameter. If F0 Fa,a�1,na�a the effect of further data collection may not be

noticeable due to simulation uncertainty.

This is a one-way ANOVA but additional extended options are available to

consider the effect of multiple input parameters. Two-way ANOVA for two fac-

tors (parameters) up to n-way ANOVA for many factors. When using two-way

48 3. Defining Data Collection...

ANOVA or greater, one calculates an F-test and p result for each factor (the main

effects). One can also calculate results for the interaction effects for groups of

factors e.g. p1 main effect, p2 main effect, p1.p2 interaction effect. Freimer and

Schruben [1] define the following interpretation of the ANOVA results: If the

main effect for a factor (parameter) is significant the factor needs more data col-

lection. If the main effect is not significant, but an interaction effect for two factors

is significant, both factors need more data collection. This is further discussed in

Section 5.5.

Using ANOVA could breakdown strategy results into contributions of each

input parameter. This introduces another per parameter factor into the Optimi-

sation Problem. This new viewpoint fits best with the minimise total cost objec-

tive but results in a more extreme approach. When using ANOVA, a strategy

could be considered invalid if any parameters still have significant main effects

(or interaction effects to a sensible degree) when evaluted using X(s). Under the

assumption that these parameters need more data.

Optimisation Problem 4 shows the Minimise Cost problem with a new con-

straint that the strategy does not reject H0 with some set p value (different from

input parameter p). This could be supplementary to the V variance constraint

but it would more likely replace it. One may also wish to include an additional

constraint, setting a maximum limit on the total cost for valid strategies.

Optimisation Problem 4 (Minimise Cost with F-test).

Mins2S T(s) T(s) = Â|D|
j=1 Cj(N(Dj))

subject to:

N(Dj) � 0 for j = 1, . . . , |D|

Â(di,j ⇥ N(Dj)) > 0 for i = 1, . . . , |P|

8pi F0 Fa,a�1,na�1 (first and second order effects)

optional:

T(s) C

3. Defining Data Collection... 49

The minimise output variance Var[g(Y)|s] perspective is a less suitable case

for ANOVA. When solving by simulation this objective is to minimise the vari-

ance due to parameter uncertainty. The previous constraint has covered this,

within a chosen a probability of being correct. The variance from parameter un-

certainty being indistinguishable from the remaining variance means that it has

been effectively minimised. If the minimise output variance problem (2B) is kept

the same, but with a similar F-test constraint to the previous problem (4), the re-

maining variability may only be caused by simulation rather than the strategy. If

S only contains strategies with indistinguishable variance. We could effectively

be ordering by the quality of the simulation result instead of the certainty pro-

vided by the strategy.

Going forward the minimise cost approach of Optimisation Problem 4 appears

to be the only promising choice for ANOVA usage. It also facilitates iterative

improvement based solving, which will be discussed in Chapter 5. The stricter

F-test constraint may increase the chance that no valid or optimal strategies are

found. In this case one could reduce the significance of the test or re-evaluate

other constraints, such as increasing the available budget, after failing to find an

optimal result.

3.3.3 Strategy Solution Space

The stategy solution space S (strategy space) is made up of all currently valid

data collection strategies in the problem description. A strategy s was previously

defined as set of sample sizes N(Dj) for a collection of data sources D. Each

data source can provide data for one or more input parameters in P. A strategy

includes one chosen data source per parameter. Each unique set of pairings and

sample allocations is defined as a different possible strategy.

The complexity of the strategy space is therefore affected by the number of in-

put parameters |P|, the number of data sources per input, and the number of sam-

ple size levels within a data source. If one considers the complexity of strategy

space before any budget or variance constraints, one can estimate the complexity

50 3. Defining Data Collection...

as:

zk⇥|P| (3.4)

where z is the average number of available data sources per parameter, k is the

average number of sample levels per data source, and |P| is the number param-

eters being populated. The worst case complexity can be considered by replace

the averages with the maximum in each case. Both of these are likely to be over

estimates in practice as the budget constraint will invalidate many strategies. The

valid strategy space will reduce as problem constraints are applied. Depending

upon the constraint this reduction from the original strategy space may be before

or after model evaluation.

If all data sources in D each have a maximum sample size Nmax(Dj) or if there

is a collection budget C then the entire space can be generated. An exhaustive

approach to generating can be conducted by first creating a base strategy for each

possible pairing of input parameter to data source, and then generating strate-

gies for valid sample allocations within a base strategy (using the minimum and

maximum sample sizes, and sample size increments of the data sources). This

can be done recursively and may be additionally constrained using the collection

budget or other constraints during generation.

3.4 Summary

This chapter formally defined and explained the problem area, including the type

of models this thesis covers, data collection attributes for these models, and op-

timising the related data collection strategies. This formulation provides a basis

for all following ideas and solutions. It defined consistent terms and assumptions

that will be used throughout the remainder of the thesis. By breaking down the

problem into abstract optimisation problems, we presented an overview of what

needs to be solved independently of the solution method. This also allowed us

to present the simplest case before expanding to cover important more complex

factors from the problem domain.

In the next chapter we will describe ways of representing and using the pa-

3. Defining Data Collection... 51

rameter uncertainty (and uncertainty of data from data sources) with the model.

This covers the model input aspect of providing a solution to these optimisation

problems, by addressing the given s in Var[g(Y)|s]. Methods for solving the op-

timisation problems themselves will presented in Chapter 5.

52 3. Defining Data Collection...

CHAPTER 4

Measuring and Modelling the Effect

of Input Uncertainty

In the previous chapter we formally defined the problem domain and created

a set of optimisation problems. All of these optimisation problems were based

upon the idea of using the model itself to assess the potential improvements pro-

vided by different strategies. To enable the model to be used in the evaluation of

data collection strategies, we need a way to translate details about the strategy

from parameter data quality and data sources into model input parameters as

experimental values.

The following chapter explains possible methods of modelling parameter un-

certainty as experimental values to be evaluated using the model. These involve

three different approaches based on confidence intervals, the Central Limit The-

orem, and bootstrap resampling. The parameter uncertainty modelling methods

are designed to provide predictions on the behaviour of future data collection

based upon past samples and data source attributes. They must also take into ac-

count when data for a parameter is coming from multiple different data sources.

Section 4.1 provides an explanation of the motivation for this chapter. Sec-

tion 4.2 describes a simple confidence interval based method for modelling pa-

rameter uncertainty. Section 4.3 builds upon that and uses the Central Limit The-

orem to provide our first method. Section 4.4 and Section 4.5 discuss experi-

mental designs that may be used to improve efficiency. Section 4.6 explains how

resampling the existing data can be used as an alternative way of modelling the

53

54 4. ...Modelling the Effect of Input Uncertainty

parameter uncertainty. Section 4.7 discusses the effect of data sources providing

data for multiple parameters and how it affects the modelling methods defined

in this chapter. Section 4.8 describes how parameter transformation or validation

may affect integration. In Section 4.9 we summarise the content and key contri-

butions of the chapter.

4.1 Purpose

This section briefly reiterates more formally the purpose of modelling parameter

data uncertainty and the problem we attempt to solve.

Chapter 3 formally defined the modelling and data collection problem. A

multi-dimensional random variable X(s) represents the uncertainty of the pa-

rameters given a data collection strategy s, where each input parameter pi is ex-

pressed as Xi(s). We defined Var[E[Y]|X(s)] (shortened to Var[E[Y]|s]) as the

output variance as a result of the parameter uncertainty X(s) of strategy s. Since

we do not separate it here, this variable may include simulation variance as well

as parameter uncertainty variance.

The remainder of this chapter looks at approaches to realising X(s) into model

parameters as experiments so that we can attempt to calculate or estimate Var[E[Y]|s].

Doing so allows us to compare strategies and begin to solve the optimisation

problems described in Section 3.3.2. Where possible we look at limiting the num-

ber of values required per parameter since the model solutions may be costly if

lengthy simulation is required, and there may be many parameters in the model

resulting in a large strategy space.

4.2 Confidence Intervals

A confidence interval is one of the most commonly used ways to describe the

certainty of an estimator. To model data uncertainty for parameters we are inter-

ested in the confidence interval for a mean. The sample mean of the data samples

collected as part of populating an input parameter pi. This mean will be used

4. ...Modelling the Effect of Input Uncertainty 55

directly, as the value of pi, or after transformation (see Section 4.8).

For a data source D1, given an existing sample mean X̄ and standard deviation

s, from a number of previous samples m. We can use a 95% confidence interval [5]

to calculate low and high values to test for a parameter pi:

✓
X̄ � 1.96

sp
m

, X̄ + 1.96
sp
m

◆
(4.1)

This gives two experimental values (or treatment levels) for pi that provide a rep-

resentation of the certainty of D1. Additional experiments can be run by repeat-

ing the two values equally, r repetitions gives 2r experiments. Consider the data

source as part of single data source strategy. Solving the model for E[Y] gives 2r

results for this strategy, and allows us to calculate a mean and more importantly

variance Var[E[Y]|s] over the strategy’s results.

If we now add a number of new samples n to our sample size (where n > 0) as

part of a similar strategy, the sample size for D1 becomes m + n. We approximate

the new interval as:

low = X̄ � 1.96
sp

m + n
, high = X̄ + 1.96

sp
m + n

(4.2)

Additional samples then cause a reduction in the size of the interval and pro-

vide new low and high values for the parameter. We can once again solve the

model for E[Y] using these parameter values and compare the Var[E[Y]|s] of the

original strategy against this strategy, with additional samples. The process gen-

eralises to multiple parameters by pairing all combinations of experiment values

e.g. with two parameters { (low, low), (high, low), (low, high), (high, high) }. This

generically scales as 2|P| ⇥ r experiments, where |P| is the number of parameters

being evaluated and r is the number of times each experiment is repeated.

The ability to detect the effect of the intervals will be affected by interval size,

the model sensitivity to the parameter, the intrinsic uncertainty of the model, and

the number of model solutions used. Solving the model analytically would allow

the effect of the parameter variation to be much more noticeable, since the simu-

lation uncertainty is removed. With simulation-based solving the resulting vari-

ance is made up of simulation variance and parameter uncertainty variance. We

56 4. ...Modelling the Effect of Input Uncertainty

can either look at separating the two variances, or more likely, use indistinguish-

able parameter uncertainty variance as a goal of the strategy variance reduction.

Ideally, we increase the samples allocated to the data sources until the intervals

no longer produce notable improvement. Freimer and Schruben [1] complete this

approach in more detail, including defining the required number of experiment

repetitions. Therefore we do not continue it further but it provides a good moti-

vation for the idea of modelling parameter uncertainty through the model.

The technique described provides only two extreme values to represent the

parameter data uncertainty. We must asssume the output response in monotone

over the interval, or by discounting values in between it may ignore some be-

haviour of the model output. What if we wanted to remove this assumption

using many values, something that covered more of the distribution? A more

complete representation of the space would also allow experimental design ap-

proaches beyond all combinations of low and high. In the next section we provide

a method that offers this.

4.3 Normal distribution-based

This section describes an approach to modelling parameter data uncertainty based

on the Central Limit Theorem and Normal distribution sampling. We also discuss

the usage of design of experiments to cover the problem space more efficiently.

Our approach would allow any characterisation of X(s) to indicate uncer-

tainty in the input parameter values. However, if sources consist of samples that

are averaged to estimate an input parameter value, it is very natural to exploit

sampling statistics to gain insight in the variability of the source. In particular, let

x1, x2, . . . , xN be samples, then the sample mean and sample variance are given by

[87] :

[E[X] =
1
N

N

Â
n=1

xn, (4.3)

4. ...Modelling the Effect of Input Uncertainty 57

and

\Var(X) =
1

N � 1

N

Â
n=1

([E[X]� xn)
2. (4.4)

The Central Limit Theorem [87] then says that the distribution of the sample

mean [E[X] as a function of N converges to:

[E[X] ! N ([E[X],

s
\Var[X]

N
), (4.5)

where N (µ, s) is the Normal distribution with mean µ and standard deviation

s. It is important to stress that the use of the Normal distribution around the

sample mean does not imply that we assume the model incorporates Normal

distributions. For instance, if we have a model with an exponentially distributed

delay for some event, we would use the sample mean to estimate the rate of the

exponential distribution. There is no Normal distribution in the model, and the

Central Limit Theorem applies and represents uncertainty in the estimate for the

rate of the exponential distribution.

We use the Central Limit Theorem as follows, focusing initially on Optimi-

sation Problem 1. In that formulation of the optimisation problem, a strategy is

given by s = {N(Di,j}, i = 1, . . . , |P|, j = 1, . . . , |Di|. It may be that some data

has been collected already, namely M(Di,j) samples, and that the sample mean

is µ̂i,j and sample variance is ŝ2
i,j. Then for source Di,j we expect that if we add

N(Di,j) samples we obtain the following Normal approximation of the sample

mean (applying the Central Limit Theorem as indicated above):

N (µ̂i,j,
ŝi,jq

M(Di,j) + N(Di,j)
). (4.6)

If possible, µ̂i,j and ŝi,j are estimated from the M(Di,j) initial samples using

the sample mean and variance as in Equation 4.3 and Equation 4.4. Of course, if

M(Di,j) = 0 there are no existing samples, in which case one needs to use best

effort to determine µ̂i,j and ŝi,j. The essence of our approach is that we model the

uncertainty associated with the data sources (see Section 5.7).

The main observation now is the following equality, in which fX(s)(x) is the

58 4. ...Modelling the Effect of Input Uncertainty

probability density function for the random variable X(s) (as in Equation 3.1),

and g(Y(x)) denotes the output of the model for input x :

E[g(Y)|X(s)] =
Z

x
g(Y(x)) fX(s)(x)dx. (4.7)

The equation says that the output g(Y(x)) needs to be computed over all pos-

sible input parameter values of the strategy s 2 S, as drawn from the distribu-

tion of X(s). We are now in a position to connect input parameter uncertainty

with output uncertainty by solving the model based on samples drawn from the

Normal distributions that express the parameter uncertainty. We will have to

do that for every feasible strategy and then select the optimal strategy based on

Section 3.3.2. The first solving algorithm using this technique is presented in Sec-

tion 5.2.

4.4 Stratified Sampling

If we consider the uncertainty modelling proposed in the previous section, fairly

sampling all possible values of the distribution of X(s) is impractical for all but

the simplest models. It would produce too many model experiments to solve.

Instead, we randomly sample the distributions to provide an approximation for

the expect value E[g(Y)|s]. The quality of the approximation depends upon the

number of times the distribution is sampled and any experiment design approach

used. Note that this sampling and quantity is distinctly different from samples

with regard to data collection. The distribution sampling contributes towards

the accuracy of strategy results, rather than data collection certainty, and varies

independently.

With a sufficient number of experiments, and therefore distribution samples,

an accurate approximation could be represented. Where possible, we wish to

limit the number of model solutions one needs to compute, as this is expected

to be the most costly factor in the optimisation solving. Rather than completely

independent random sampling of the distribution of X(s), one can use design of

experiments techniques to attempt to better cover the space, even with a small

4. ...Modelling the Effect of Input Uncertainty 59

0 1

Figure 4.1: Different ways of distributing points using intervals [14]

number of samples.

In general, stratified sampling consists of splitting portions of samples amongst

groups within a population so that groups are proportionally represented. In the

context of testing input values, stratified sampling is an experimental design ap-

proach that can improve the rate at which estimated results converge to their true

values [14]. By splitting a distribution into equally probable intervals that contain

an equal number of samples, the analysis can better cover the input space with

smaller sample sizes compared to completely random sampling.

Samples are randomly distributed within an interval or positioned according

to a design. Figure 4.1 show examples of possible interval based sampling for a

single parameter. Each interval is of equal probability and each dot is one sam-

ple. The top line is not split and randomly sampled, equivalent to one interval.

The second and third lines show random sampling within intervals, each interval

contains one and two samples respectively. In the fourth line each interval con-

tains one sample, which is positioned in the midpoint of the interval. This results

in a biased estimate for variance. The bottom line is split into the same intervals

but the samples are positioned at the interval end points resulting in one extra

sample. This includes the complete range of parameter values.

Endpoints-based design needs to be adapted if the uncertainty modelling dis-

tribution has very long tails, since the value of the first and last point may be

emphasised while outside the expected or valid parameter range. For this reason

we use only random sampling within intervals and midpoints going forward,

other options exist for future work. The implementation in Appendix A primar-

60 4. ...Modelling the Effect of Input Uncertainty

ily concentrates on random sampling within intervals, but it also offers interval

midpoint sampling for more predictable sampling behaviour and testing.

The stratification can be applied to the Normal distribution based approach to

representing the parameter uncertainty. By splitting the normal distribution into

intervals with equal probability we can guarantee coverage of distribution even

with a small number of experimental values. When mapped to the probability

density function of a Normal distribution the intervals would no longer be of

equal length. Highly probable areas around the mean in the centre will have

smaller intervals and the intervals will rapidly increase in size as you go towards

the tails.

Let D1 be data source with existing data µ̂ = 5, ŝ2 = 10, M(D1) = 50, and

N(D1) = 0. Generating four values using plain CLT normal distribution sam-

pling and then using 4 intervals both random and mid points results in:

Table 4.1: Values For a Parameter Using Random and Stratified Sampling

Random Unsorted Random Sorted Interval Random Interval Midpoints

19.0414 19.0414 19.2429 19.2981

19.8435 19.3666 19.5582 19.7128

19.5446 19.4637 20.1113 20.0000

19.4637 19.5446 20.4397 20.2872

19.3666 19.8435 20.6963 20.7019

4.5 Experimental Designs

To solve the model, each parameter in P requires a value. We refer to each com-

plete set of one single value per parameter as an experiment. Parameter val-

ues modelling uncertainty are generated independently (per parameter) and one

must choose how to combine these into experiments. When the Normal distri-

butions representing X(s) are sampled randomly one can simply use the order

the values are generated to create one experiment per value generated. Where

the number of experiments R is equal to k the different values used to represent

4. ...Modelling the Effect of Input Uncertainty 61

parameter uncertainty, the number of times one samples from each parameter’s

distribution.

Confidence Interval based uncertainty modelling in Section 4.2 briefly intro-

duced pairing all combinations of input parameter values. For example, two pa-

rameters with two values each (low, high) became four experiments {(low, low),

(low, high), (high, low), (high, high)}. This is commonly known as 2k factorial

design (where k here is the number of parameters). Generically, using all combi-

nations, the number of experiments can be calculated in our terminology by:

R = k|P|. (4.8)

Stratified sampling using intervals generates a sorted or partially sorted set of

values for each parameter. Translating these into experiments requires a design.

The order can be randomised but this does not guarantee complete coverage of

the uncertainty space. The stratification would only guarantee coverage on a per

parameter level. Using all combinations of parameter values provides the ideal

solution to covering the parameter uncertainty space but at a greatly increased

cost in terms of the number of experiments.

Using all combinations is formally called a full factorial design, where there is

an experiment for every combination of input (factor) values. Let |P| be 2. If we

limit the solving to R = 25 experiments, when using basic random sampling the

number of values per parameter k = 25. If we use all combinations, we are only

able to sample k = 5 values per parameter. All combinations clearly becomes

costly as the number of parameters increases.

These options represent the two extremes of experiment design. Alternatives

exist, such as latin hypercube sampling [34], that balance the total number of

experiments used against the number of values used per input. The alternatives

try to efficiently cover a lot of the input space fairly but not necessarily all of the

extremes.

62 4. ...Modelling the Effect of Input Uncertainty

4.6 Bootstrap Resampling

This section discusses an alternative approach to parameter uncertainty mod-

elling using the existing data and resampling, called bootstrap resampling. In

its standard usage, bootstrap resampling attempts to discover more information

about the behaviour of a test statistic without collecting additional samples [88].

By resampling with replacement from an existing set of real world samples we

can learn about the distribution of an estimator e.g. the mean.

This bootstrapped estimator is calculated by the following process, using a set

of samples {x1...xm}:

1. Create b bootstrapped sample sets of size m by resampling with replace-

ment m times.

2. Compute the test statistic e.g. mean over each bootstrap resulting in b boot-

strapped estimators.

The distribution of these new estimators can be analysed using common tech-

niques e.g. bootstrapped confidence interval. In stochastic modelling this has

been used to look at how uncertainty in the input model, from fitting to samples,

can affect uncertainty in outputs and performance measures.

Bootstrap resampling can be used as a method for represent parameter data

uncertainty [1]. Bootstrap resampling requires existing samples, so all data sources

under consideration must have existings samples, rather than summary statistics

(mean, variance, sample size). Let the samples used in resampling be the data

source’s existing samples for pi. Sample size m = M(Dj). To model different

data collection sample sizes, we resample M(Dj) + N(Dj) times for each boot-

strap, instead of the original m. We bootstrap a mean estimator, which can be

used as single value for pi. The number of bootstrap estimators required becomes

k, the number of experiment values generated per parameter to represent X(s).

First consider the simplified problem, where data sources are specific to single

input parameter. One can use bootstrap resampling to create experiment values

for the parameters using the data source of each parameter.

4. ...Modelling the Effect of Input Uncertainty 63

do{

for each Di,j with M(Di,j) + N(Di,j) > 0 {

resample M(Di,j) + N(Di,j) times to get B⇤
i,j

xi,j = E[B⇤
i,j]

}

set x = ({xi,j});

use x as required...

} k times (or a variable amount depending upon the solving algorithm)

For each experiment, a sample set is resampled, once for each parameter. The

mean is taken over the bootstrapped samples and used for the associated pa-

rameter with the model. The version where data sources can map to multiple

parameters is slighlty more complicated since one may need to combine data as

we will discuss in the next section (Section 4.7). The following algorithm presents

one option. For each data source providing data for a parameter pi, one creates

a resampled data set and a bootstrapped estimate. These are then combined to

produce an experimental value for the parameter pi.

do{

for each pi

for each Dj where dj,i = 1 and M(Dj) + N(Dj) > 0 {

resample M(Dj) + N(Dj) times to get B⇤
i,j

xi,j = E[B⇤
i,j]

}

set xi = E[xi,j]

}

set x = ({xi});

use x as required...

} k times (or a variable amount depending upon the solving algorithm)

64 4. ...Modelling the Effect of Input Uncertainty

4.7 Combining Active Data Collection

If an input parameter has multiple sources of data, these need to be taken into

account and possibly combined prior to populating the parameter. This section

explains why this may occur and different approaches to resolution. Section 4.7.1

provides motivation for the section with a problem definition and example causes

of multiple data sources. Section 4.7.2 discusses existing statistical approaches

and assumptions made regarding their usage. Section 4.7.3 explains the solution

as different data combining and selection modes including how these relate to

the previous uncertainty modelling methods in Section 4.3 and Section 4.6. Sec-

tion 4.7.4 summarises the section including what will be used going forward.

4.7.1 Definition and Causes

The model requiring data has a set of input parameters P to populate. There is a

set of all available data sources D. In the expanded optimisation problem, each

data source Dj can provide data for one or more input parameters simultane-

ously. For example a complex measuring process could provide data for only one

parameter, whereas software monitoring solution may measure multiple system

attributes resulting in data for multiple parameters. If the cost of providing data

for two parameters instead of one is negligible the collection is modelled as a

single source. For each input parameter pi there exists an array of available data

sources, and as part of a collection strategy s, pi has one or multiple active data

sources.

These capabilities result in the relationship between input parameter and data

source being one-to-one in the simplest case (a source capable of providing data

for only one parameter, and being used only by that parameter) up to a many-to-

many (an input parameter receiving data from multiple data sources, and one of

those data sources providing data to multiple parameters). Ideally in a collection

strategy each parameter pi has one chosen active source, the one that provides

the best possible data. Even then there can be multiple sets of data available to

use for the parameter.

4. ...Modelling the Effect of Input Uncertainty 65

Example. Here we expand upon our example from Section 3.3.2.2, a simplified

supermarket model with one till and two parameters: p1 mean arrival time

and p2 mean service time. There are three data sources and a strategy selects

D1 to provide samples for p1 and D2 for p2. D2 simultaneously (as a bonus)

provides samples for p1

D1 p1

D2

D3 p2

Given the problem formulation, we now have two sets of data source

information for p1 containing at least: {µ̂1,1, sµ2
1,1, M(D1), N(D1)},

{µ̂2,1, sµ2
2,1, M(D2), N(D2)}. We must decide whether and how to use the

secondary data for p1. Modelling the uncertainty of future data collection has

so far been orientated for a single data set.

In an ideal scenario, without constraints, D1 can be provide as much of

the ‘best information’ as required so the additional data samples are redun-

dant and can be ignored without any effect. As soon as any constraints are

added on the available collection resources, such as a maximum sample size

on D1, it becomes important to properly evaluate the usage of data provided

by multiple sources simultaneously.

4.7.2 Statistical Approaches

Many statistical techniques for comparing two (or more) data sets already exist.

Common statistics such as the sample mean, median, standard deviation, and

sample variance [89] are taken over a single set of samples but can be used to

compare different data sets. To decide how to use two sets of samples in this case

we are more interested in confirming both have the same true mean and where

appropriate a similar distribution. Statistics usually offers the inverse, the ability

66 4. ...Modelling the Effect of Input Uncertainty

to predict if they are significantly different with a chosen level of confidence.

These techniques can analyse for example, whether two sets of samples are likely

to have the same true mean or if the samples have statistically similar variance,

such as Student’s t-tests, F-test [89], or Levene’s test [90].

There are two useful results of using the statistics mentioned previously: one

can further analyse and validate the data provided by a single data source and

one can estimate if the data produced by two different sources (for the same pa-

rameter) is significantly different. The second is important for this section. If we

are populating an input parameter we should obviously not use and combine

significantly different data sets. Separate of this we must also question why two

different data sources for the same parameter can or have produced significantly

different results.

This problem goes into validating a data source (collection method) as suit-

able for populating an input parameter, which is outside the scope of the thesis.

For our usage we assume statistical techniques have been used to evaluate the

existing samples collected for each data source in D. We assume the result is that,

for each input parameter, the data sources do not have significantly different true

means. In practice it means that information from the sample sets could be com-

bined but this is not trivial. In the next section we discuss how they could be

combined in a way suitable for the methods of Section 4.3 and Section 4.6.

4.7.3 Combining & Selection Modes

In the previous sections it was explained how and why multiple data sets per in-

put parameter can occur and statistical approaches to comparison between sets.

Even if these data sets are not considered significantly different it is often not ap-

propriate here to just combine them into one larger set of samples. This is due

to the fact we are not just looking at the existing samples, we are also making

some predictions about the future samples from each respective data source. The

estimations, as part of modelling parameter uncertainty in Section 4.3 and Sec-

tion 4.6, are based on per source attributes including the total number of samples

to be collected. These therefore apply to and affect the data sample sets indepen-

4. ...Modelling the Effect of Input Uncertainty 67

dently rather than as a combined set.

If conducted, the combination phase must be completed after modelling the

future data collection. There are different ways this can be achieved. The rest of

this section discusses data combining and selection modes: different options for

combining the information or deciding which to use in our parameter uncertainty

modelling. This includes how they can be used with methods from Section 4.3

and Section 4.6, their default modes, and potential conflicts with optimisation

solving methods discussed later in Chapter 5.

4.7.3.1 All Data

The most obvious mode is All, attempting to model all active data collection

within the parameter uncertainty modelling under the assumption that all data

will be used after collection. This requires combining quality measures of the ac-

tive sources (for a parameter) before, and modelling their uncertainty once, or by

modelling the data uncertainty once for each source and feeding the combined

results into the system model. Either way the combination will likely involve

weightings based upon the amount of data contributed by the source. For each

input and data source we define a weight wi,j.

wi,j =
M(Dj) + N(Dj)

Ai

The weight for an active data source is the total number samples for the data

source, existing M(Dj) and new N(Dj)) over Ai the total number of samples for

the input from all active data sources. This weighting is one way of taking into

account the number of future samples when combining current data source in-

formation.

If we first consider the Central Limit Theorem-based Normal distribution sam-

pling proposed in Section 4.3, it takes estimates for the sample mean, standard

deviation, and total number samples for a source. From this it can produce val-

ues for the input parameter, by sampling from the obtained Normal distribution,

these represent the uncertainty of the data for model-based evaluation. While

68 4. ...Modelling the Effect of Input Uncertainty

sharing a (target) population mean, these data quality measures and attributes are

source specific. Completing this uncertainty modelling per data source for an in-

put parameter would result in separate experiment sets and separate results. We

could weight these model results to better represent the combined data but this

would be inefficient (for a parameter with two active sources). Since the model

execution complexity is already expected to be an important consideration [14],

we need to combine the data source information going through the uncertainty

modelling prior to model execution.

If we assume after collection that the two (or more) sets of data samples are

combined, we can assume the distribution of the combined collected data sam-

ples will be similar to a weighted combination of our estimates. More specifi-

cally, we weight the data source’s estimated sample mean and standard devia-

tion while combining them for use in the normal distribution. This results in the

following equations when using more than one active data source and All com-

bination mode.

µi = Â
j

0

@wi,j ⇥
x̂j,iq

M(Dj) + N(Dj)

1

A

si = Â
j

0

@wi,j ⇥
sj,iq

M(Dj) + N(Dj)

1

A

N (µi, si) (4.9)

Bootstrap Resampling described in Section 4.6 involves resampling the exist-

ing samples from a data source a number of times. The mean is then taken over

the resamples to create one value for the input parameter. In our case the number

of resamples is equal to the total number of samples allocated to a data source

as part of a strategy. Using All data with two (or more) active data sources, a

single bootstrap resampling results in two sets of bootstrapped samples B⇤. Since

the number of samples in each of the bootstrapped samples already matches the

total number of samples for each data source M(Dj) + N(Dj), we can combine

the bootstrapped samples without weighting B⇤
i = {B⇤

i,j}. This produces one

4. ...Modelling the Effect of Input Uncertainty 69

representation of the complete data from two sources after collection. The mean

is taken over the combined set of samples, rather than each set of bootstrapped

samples, and provides a single experiment value for the input parameter pi. For

multiple experiments the entire process is repeated resulting in a new sets of boot-

strapped samples and another mean estimate. The All data combining mode is

the most suitable for use with Bootstrap Resampling and is therefore the default

in the implementation (Appendix A).

4.7.3.2 Best & Worst Data

Most of the remaining modes described here result in a decision about which data

to use from the multiple active sources, rather than strictly combining. These

cover the key perspectives: best, worst, and independent of the data.

If we have more than one active data source for an input parameter, it is logical

to consider choosing only the data source which provides the ‘best data’. In the

problem definition presented here there are two ways of defining the best data:

the data source with the best existing data samples (Best Existing) and the data

source predicted to provide the best data from future collection (Best Estimated).

The existing samples approach looks only at the samples already collected. This

would not take into account the amount of samples expected to be collected as

part of the strategy, which makes it less beneficial in practice. If you have two

data sources providing data for an input parameter (Dpricey, Dcheap), Dpricey has

better existing data than Dcheap but costs a lot more to collect. There may exist

scenarios where little or no further data could be collected with Dpricey but lots

of additional samples could be provided by Dcheap. When combining or selecting

using Best Existing, Dpricey would still always be used in the modelling, result-

ing in no obvious improvement in parameter certainty even while varying the

samples allocated to Dcheap.

Best Estimated tries to use the parameter uncertainty modelling method (or

other analysis) to decide which data to choose when multiple active sources are

available. For example, one could estimate using the Central Limit Theorem

(CLT) similar to Section 4.3 by estimating the variance of the future samples

70 4. ...Modelling the Effect of Input Uncertainty

(given N(Dj) + M(Dj)). One would then choose the data from the data source

predicted to produce the least variance and the most confident mean estimate

to model in the strategy. This approach is highly dependent on the parameter

uncertainty modelling method but it takes into account the future sample sizes

rather than just existing data.

Best Estimated mode works best with CLT normal distribution-based parame-

ter uncertainty modelling since it gives a single comparable value. While it can

work with bootstrap resampling, it is more complex to calculate. One possibil-

ity is to look at the distribution of the mean from the resampling by repeating

the resampling process many times for each active data source. The quality of

this estimate is then also based upon the number of repetitions used here, adding

further uncertainty compared to straight calculation.

An inverse approach is to model the parameter uncertainty expecting the

worst. If for a parameter one used the total sample count over all active data

sources Ai and the worst existing data’s sample mean and variance in the param-

eter uncertainty modelling, one could then assume that the collection strategy is

likely to provide this Var[g(Y)|s] or better (less variance). Since some of the data

in the strategy is coming from data sources known to be better than their approx-

imate combined representations. Apply the above theory, the potential benefits

of better data sources become hidden. This makes it difficult for the optimisation

algorithm to find the real optimal solution(s). As an extreme example: consider a

strategy s where the worst data source provides data for all the input parameters.

In this mode regardless of the other selected data sources and sample sizes, the

sample data from the worst data source would be used in parameter uncertainty

modelling. It would then dominate and poison the strategy evaluation and at-

tempts to optimise. Given these drawbacks this mode is not recommended and

left only as a thought exercise.

4.7.3.3 User Decides

Human intervention is a simple option to solving this data combination or selec-

tion problem, either as a primary or fallback option. The user could be asked to

4. ...Modelling the Effect of Input Uncertainty 71

pre-specify data combining logic or select a primary source when needed (from

the parameter’s active data sources). This externalises the problem to a user deci-

sion. Custom data combining logic would require advanced understanding and

implementation changes so may be beyond many optimisation users. The more

usable option is allowing the user to define the primary data source for parame-

ters with multiple active data sources. This effectively overrides any other data

combining or selection mode. Data from the primary data source is then the only

data and source information used in the parameter uncertainty modelling (for

that parameter).

This mode works best when the user is certain about the data source they wish

to use (or not use) for a parameter. In a way it is a user constraint on the optimi-

sation problem, restricting the data options under certain conditions. It could be

done on demand or singular using user specified strategies. That would become

cumbersome with many overlapping data sources or with many strategies under

evaluation. Rather than specifying per strategy, the user could be asked to specify

a data source preference ordering either over all sources or on a per input basis.

This would only be used for solving the problem in this section and would not

affect overall data collection optimising.

4.7.3.4 Test All Independently

The final option explored here is the exhaustive approach: Test All. With two

active data sources in the strategy providing data for one parameter, one could

use the source information separately and model the parameter uncertainty once

for each. The result is two separate sets of experiment values for the input pa-

rameter, one for each active data source configuration. These could be separately

combined with the experiment values from the rest of the strategy and evalu-

ated with the model independently. One would effectively be separating it into

multiple strategies or sub-strategies, evaluating each single source combination

within the current strategy and then receive strategy analysis results for each.

This could require twice the model computation and rapidly multiplies with ad-

ditional active source decisions, as one would need to test all combinations of

72 4. ...Modelling the Effect of Input Uncertainty

internal strategy choices.

The results would be used to try to decide which data should used for the

parameter or in further analysis to try and estimate the effect of using all data in

the strategy. If it is just used to decide, this option becomes very similar to the

simplified problem, without the ability for parameter data to come from more

than one source simultaneously. Re-combining the strategy results to represent

using all data would be difficult, especially with more than one input parameter

with multiple active data sources.

4.7.4 Summary

The data combining and selection modes described in this section try to explore

plausible approaches for solving the problem of integrating information from

multiple active data sources into the proposed parameter uncertainty representa-

tions. Multiple active data sources are the result of two or more collection meth-

ods in the strategy providing data samples for the same parameter simultane-

ously. Each mode has their own benefits and drawbacks and can work differently

with the earlier methods in this chapter so there is no single best or guaranteed

to be the most effective mode. Multiple will be made available in the implemen-

tation to provide the choice and method appropriate defaults.

The following modes will be included All, Best Estimated, and User Decides. All

mode is the ideal solution where all collected samples could provide a benefit. It

also integrates well with Bootstrap Resampling. Best Estimated provides a good

alternative and can provide a single selection. User Decides allows manual over-

ride and externalises the problem should the user disagree with other techniques.

The others are not further explored. Worst mode makes solving the optimisation

problems more difficult as it hides the effect of additional data collection. Test All

becomes very similar to ignoring the subproblem altogether and increases com-

plexity. The modes will not be heavily evaluated against each other in the results

chapter, as the mode chosen is not expected to have a significant effect on the

examples.

4. ...Modelling the Effect of Input Uncertainty 73

4.8 Data Transformation & Validation

Certain types of input parameters will not always map directly to the data pro-

duced. The data needs to be transformed to be usable with the parameter in ques-

tion. For example, an arrival rate parameter l could have a data source that col-

lects data to estimate the mean time between arrivals. The transformation in this

case is trivial but its inclusion and positioning in the process is still important. The

data source uncertainty modelling represents the original untransformed state. It

models the mean arrival time. The transformation to a rate must be conducted

on each produced value prior to usage as the model’s parameter.

4.8.1 Parameter Value Checking

After any transformations it is essential to check whether the generated param-

eter value is within the valid range for the parameter. While many of the uncer-

tainty representations proposed in this chapter will result in testing small changes

in input parameters, it remains possible that the values generated can come close

to or be outside the valid range. To keep within the validated range of the model,

each input parameter can have a lower and upper limit, and other requirements

that need to be adhered to or else the model output may be invalid. Some limits

are common to specific data types such as probabilities being restricted to be-

tween 0 and 1, a rate parameter being greater than zero, or a parameter requiring

only integer values.

If not taken into account by the uncertainty modelling technique invalid val-

ues need to be filtered and re-generated to fairly represent the remainder of the

valid space. The filter and re-generation must be monitored since too many re-

generations shows either: not enough data (since there is too much uncertainty),

an issue with parameter uncertainty modelling, or an issue with the models de-

sign for that input.

74 4. ...Modelling the Effect of Input Uncertainty

4.8.2 Experiment Checking

Some models include dependencies between parameters, such as p1 < p2. These

can be checked on a second pass of filtering. The experiment values can be regen-

erated if randomly sampled such as using CLT normal distribution sampling or

random interval-based sampling. When using more strict experiment designs, for

example using all combinations parameter values, re-generation is not as simple

and is likely ineffective. The experiment or experiments in the invalid parameter

space need to be removed prior to strategy evaluation. A strategy result made up

of less experiments needs additional interpretation, and would often make the

strategy sub-optimal regardless of the result.

Where practical these dependencies could be included and avoided within the

uncertainty modelling, but that would introduce additional complexity. Another

alternative would be to alter the model abstraction to remove the dependency or

reduce the likelihood of its occurrence. The current solving algorithms will rely

only upon regeneration and deletion, we leave the other options to future work.

4.9 Summary

In this chapter we discussed the problem of modelling parameter data uncer-

tainty in a way which can be used with the model. Feeding this representation

through the model and into model outputs allows us to take into account the

model’s sensitivity to input parameters and the parameter uncertainty from the

strategy as a whole. In the final sections of the chapter we discuss other issues

that may arise during parameter uncertainty modelling, considering the effect of

valid parameter ranges and how using data from multiple different sources at

once affects the parameter uncertainty modelling.

In the next chapter we describe how these parameter uncertainty modelling

methods can be used to evaluate data collection strategies as part of the larger

optimisation solving algorithms.

CHAPTER 5

Solving by Simulation

This chapter describes six algorithms for solving the optimisation problem of effi-

cient data collection for model parameters. These algorithms take valid strategies

and provide recommendations on the optimal strategy or strategies depending

upon the optimisation problem objective and constraints. All the solving algo-

rithms use the model to evaluate the strategies by testing the effect of parameter

uncertainty on one or more outputs.

Section 5.2 presents the a generic algorithm overview and the Basic Exhaus-

tive Algorithm. Section 5.3 details a solving algorithm combing the Basic Exhaus-

tive Algorithm and importance sampling. Section 5.5 explains the Iterative Algo-

rithm, which uses ANOVA and selective strategy improvement to find a solution.

Section 5.6 describes issues that can occur due to a large problem space and how

these can be overcome by intelligently exploring a subset of the problem space.

Section 5.7 discusses any assumptions and limitations of the algorithms detailed

in this chapter. Section 5.8 summarises the content and key contributions of the

chapter.

5.1 Introduction

In Chapter 3 we defined a variable Var[g(Y)|X(s)] (shortened to Var[g(Y)|s]), the

variance in the output measure g(Y) due to the parameter data uncertainty in

the data collection strategy s. Chapter 4 described different methods of repre-

75

76 5. Solving by Simulation

senting the data uncertainty X(s) within model experiments for execution and

evaluation. This provides the input part of solving the optimisation problems.

The following sections provide methods for turning experimental values repre-

senting X(s) into an estimate for Var[g(Y)|s] of a strategy. The solving algorithms

attempt to find the optimal strategy (or strategies) in the solution space but may

not evaluate Var[g(Y)|s] for all strategies. The solution space and objective of the

optimal strategy are defined in Section 3.3.2.

To recap important terminology: We are optimising the data collection over

a set of model parameters P using a set of data sources D. Each data source Dj

can provide data for one or more pi parameters. A data source is made up of

multiple properties (see Section 3.2.2, for solving one is especially interested in

the number of existing samples M(Dj), the number of new samples N(Dj), and

the collection cost Cj(N(Dj)). The existing samples provide an estimate for one

or more parameters µ̂j,i and variance ŝ2
j,i. A strategy s = {D, N(Dj), T(s)} and

provides a configuration for data collection, specifying a unique combinations of

N(Dj) new sample sizes at a total strategy cost T(s).

Similar to many sensitivity and uncertainty analysis methods[14, 91], the solv-

ing trys to be ‘model-free’ by taking a black box approach to the model. It at-

tempts to use only information about the inputs and observed outputs to be as

generically applicable as possible.

5.2 Basic Exhaustive Algorithm

This section explains our first optimisation solving algorithm known as the Basic

Exhaustive Algorithm. The algorithm uses uncertainty modelling methods from

Chapter 4 to analyse every valid strategy before comparing the results.

The simplest, naı̈ve approach to solving can be achieved by generating all

the valid strategies in S and then evaluating Var[g(Y)|s] for every strategy. One

creates an estimate of Var[g(Y)|s] using model solutions for experiments that rep-

resent X(s). The experiments are generated with a parameter uncertainty mod-

elling method from Chapter 4, here we use CLT normal distribution sampling

5. Solving by Simulation 77

and bootstrap resampling but others could be used.

Optimisation Algorithm 1 specifies the algorithm independent of the param-

eter uncertainty modelling. Prior to the for loop (line 2) one defines all currently

valid strategies S based on the constraints, such as the collection budget, input-

data source combinations, and sample size restrictions. It is the currently valid S

since constraints may depend upon the result of Var[g(Y)|s], strategies may later

become invalid solutions. One then creates the Var[g(Y)|s] estimate by repeat-

edly generating parameter values (lines 4 to 7), solving the model (line 8), and

iteratively updating the estimators. The process is repeated until the algorithm

results are sufficiently accurate, which may be a set number of runs or based on

the confidence estimate (see Section 5.4). One must recheck which strategies in S

still meet the constraints, before evaluating the objective function of the optimi-

sation problem, either minimise Var[g(Y)|s] (output variance) or minimise T(s)

(total strategy cost).

Optimisation Algorithm 1 (Basic Exhaustive Algorithm).

1. define S based on constraints (without needing results);

2. for each s 2 S {

3. do {

4. for each pi {

5. generate xi using active data sources for i in D

6. }

7. set x = ({xi});

8. solve y = g(Y(x));

9. update E[g(Y)|s] using y;

10. (Eq.(4.3) with y for xn)

11. update Var[E[g(Y)|s]] using y;

12. (Eq.(4.4) with y for xn)

13. }

14. until Var[E[g(Y)|s]] accurate

15. }

16. filter S based on any constraints requiring Var[E[g(Y)|s]];

78 5. Solving by Simulation

17. select s that minimises Var[E[g(Y)|s]] or

minimise T(s) = Â|D|
j=1 Cj(N(Dj));

The algorithm can be customised to the Optimisation Problem and parameter

uncertainty method used. Optimisation Algorithm 2 presents an algorithm to

solve Optimisation Problem 1 (Sample Constraint) using CLT normal distribution

sampling. Similar algorithms can be formulated for Optimisation Problems 2A

to 3B.

Optimisation Algorithm 2 (Basic Exhaustive Algorithm for Problem 1).

1. define S based on constraints (without needing results);

2. for each s 2 S {

3. do {

4. for each Di,j with M(Di,j) + N(Di,j) > 0 {

5. draw xi,j from N (µi,j,
si,jp

M(Di,j)+N(Di,j)
);

6. }

7. set x = ({xi,j});

8. solve y = g(Y(x));

9. update E[g(Y)|s] using y;

10. (Eq.(4.3) with y for xn)

11. update Var[E[g(Y)|s]] using y;

12. (Eq.(4.4) with y for xn)

13. }

14. until Var[E[g(Y)|s]] accurate (Section 5.4)

15. }

16. filter S based on any constraints requiring Var[E[g(Y)|s]];

17. select s that minimises Var[E[g(Y)|s]];

Note that the algorithm purposely avoids the border case M(Di,j) = N(Di,j) =

0 for a source Di,j (line 4). This case corresponds to the situation that for source

Di,j we have no earlier samples (Mi,j = 0) and collect no additional samples

5. Solving by Simulation 79

(Ni,j = 0), but we do have an assumption about the sampling mean and standard

deviation (µi,j and si,j). In our proposed approach, we must rank these strategies

as leading to infinite variance in the input. Thus we are not able to compute vari-

ance of the output for this strategy, and draw the justified conclusion that such a

strategy is inferior to any other strategy. Finally, we note that the set S of possi-

ble strategies is derived from the distribution of the N available samples over all

sources. This can be programmed conveniently with a recursive algorithm, the

details of which are not included here.

All subsequent algorithms are specialised, more advanced versions of this

algorithm, which use alternative approaches to either: calculate Var[g(Y)|s] or

search through the strategies S (instead of exhaustively calculating and compar-

ing all Var[g(Y)|s]).

5.3 Importance Sampling Extension

This section presents a modified version of the Basic Exhaustive Algorithm. By

using importance sampling, the modified version can require less model solu-

tions per algorithm execution than the original.

The Basic Exhaustive Algorithm (Algorithm 1 & 2) may be expected to be time

consuming, since for each strategy the conditional output variance Var[E[g(Y)|s]]

needs to be computed. Naı̈vely, one could do this by simply running the mod-

els many times, for enough samples of the Normal distributions that represent

the input parameter uncertainty, but in this section we will show that samples

can be weighted to obtain results for many strategies concurrently. The idea of

weighting is identical to importance sampling, so we named our approach after

that technique.

Let us assume a target strategy s 2 S will be analysed by reusing the results

of anchor strategy sa 2 S. Translating the importance sampling weight into our

strategy and model terms, let the weight ws,sa(x) be defined as:

80 5. Solving by Simulation

ws,sa(x) =
fX(s)(x)
fX(sa)(x)

. (5.1)

That is, the weights express the magnitude of the difference in likelihood of

parameter values under different data collection strategies. Then the following

relation follows from Equation 4.7 using importance sampling:

E[g(Y)|X(s)] =
Z

x
g(Y(x)) fX(s)(x)dx (5.2)

=
Z

x
g(Y(x)) fX(s)(x)

fX(sa)(x)
fX(sa)(x)

dx (5.3)

=
Z

x
ws,sa(x)g(Y(x)) fX(sa)(x)dx (5.4)

The above means that we can weigh the outputs y = g(Y(x)) obtained from

the anchor strategy sa in order to get the result for other strategies. It is critical

that the weights are well defined for all possible x. In our specific setting this

implies that strategy s must use the same sources as the anchor strategy sa, but

possibly with a different number of samples. In particular, we use the Central

Limit Theorem as in the Basic Exhaustive Algorithm 2, and assume anchor strat-

egy sa is a valid strategy (Msa
i,j + Nsa

i,j) > 0 for all |sa| pairs (i, j) 2 sa, where we use

the superscript sa to denote that the number of samples is that of strategy sa. For

notational convenience, let xi,j be a value from source Di,j and [xi,j] be an ordered

sequence of |sa| input values. Then:

E[g(Y)|X(sa)] =
Z

[xi,j]
g(Y([xi,j]))’

i,j
Fsa

i,j(xi,j)d[xi,j] (5.5)

where Fsa
i,j(xi,j) is the probability density function of the Normal N (µi,j,

si,jq
Msa

i,j+Nsa
i,j
):

Fsa
i,j(xi,j) =

1r
2ps2

i,j
Msa

i,j+Nsa
i,j

e
�

(xi,j�µi,j)
2

2s2
i,j

(Msa
i,j+Nsa

i,j)
(5.6)

In Equation 5.5 we can weigh so that results for all strategies with different values

Ns
i,j are derived, not just for the one value of Nsa

i,j considered in the anchor strategy.

So, with Ns
i,j the number of samples in an alternative strategy s, we obtain:

5. Solving by Simulation 81

ws,sa([xi,j]) = ’
i,j

Fs
i,j(xi,j)

Fsa
i,j(xi,j)

(5.7)

= ’
i,j

vuuut
M(s)

i,j + N(s)
i,j

M(sa)
i,j + N(sa)

i,j

e
�

(xi,j�µi,j)
2

2si,j
2 (N(sa)

i,j +N(s)
i,j) (5.8)

where we assumed that Msa = Ms (this is a natural assumption, but the above

can easily be adjusted in the exponent if this assumption is not valid). Then from

Equation 4.3, Equation 5.4 and Equation 5.5 it follows that E[g(Y)|s] can be de-

rived from E[g(Y)|sa] using the Optimisation Algorithm 3. As in Basic Exhaus-

tive Algorithm 2, we assume a total of N samples to be distributed over the data

sources.

Optimisation Algorithm 3 (Importance Sampling).

1. define S based on constraints (without needing results);

2. choose an anchor strategy sa; (see Section 6.1.3)

3. do {

4. for each Di,j with Msa(Di,j) + Nsa(Di,j) > 0 {

5. draw xi,j from N (µi,j,
si,jp

Msa (Di,j)+Nsa (Di,j)
)

6. }

7. set x = ([xi,j]);

8. for all s 2 S {

9. compute weights ws,sa([xi,j]) as in Eq. (5.8)

10. }

11. solve ysa = g(Y(x));

12. for all strategies s 2 S {

13. update E[g(Y)|s] using y and ws,sa([xi,j]);

14. (Eq.(4.3) with ws,sa([xi,j])⇥ y for xn)

15. update Var[E[g(Y)|s]] using y and ws,sa([xi,j]);

16. (Eq.(4.4) with y for xn and ws,sa([xi,j]) as weight

17. for each term within sum)

82 5. Solving by Simulation

18. }

19. }

20. until for all s, Var[E[g(Y)|s]] accurate

21. (as in Section 5.4)

22. filter S based on any constraints requiring Var[E[g(Y)|s]]

23. select s that minimises Var[E[g(Y)|s]];

Comparing the Basic Algorithm with the Importance Sampling Algorithm,

we see that the Importance Sampling Algorithm replaces the outer For loop in

Optimisation Algorithm 1 with an inner loop (lines 8 & 12) that utilises the im-

portance sampling equations. This should create a considerable speed up, since it

implies that the original algorithm needs to be run for one strategy only (namely

the anchor strategy, lines 4 & 11). However, the precise efficiency gain depends

on the accuracy obtained using the importance sampling equations, which is de-

termined by the stopping criterion. We discuss the stopping criteria in Section 5.4.

5.3.1 Choosing an Anchor Strategy

Line 2 in this algorithm requires selecting or configuring of an anchor strategy.

When using importance sampling it is recommended that the initial distribu-

tion (the distribution that is sampled and computed directly, the numerator in

Equation 5.1) should have a thicker tail. This enables a larger range of values

to be sampled and used as inputs. A good anchor strategy is therefore a col-

lection of sample sizes for data sources that produce thicker tailed distributions

when representing the resulting input parameter uncertainty. These will be the

data sources with the least certain initial data or data sources configured with the

minimum sample sizes. Using this kind of anchor strategy will cover a relatively

large range of values in the input parameter space, allowing it to more easily be

re-purposed for a variety of strategies.

If all strategies being analysed by the algorithm use the same active data

sources, it is theoretically possible for any anchor strategy to produce accurate al-

gorithm results with a sufficient number of model experiments (number of values

5. Solving by Simulation 83

generated for the input parameters and run through the model). Using narrower

tailed distributions creates extremely uneven weights in the importance sampling

calculation. This makes it more difficult to get an accurate result and requires in-

creased sampling of the anchor strategy, reducing the efficiency improvement. A

bad choice of anchor strategy means that a lot of model experiments are required

to achieve good results, possibly even more than just completing evaluation us-

ing the original Basic Exhaustive Algorithm.

5.4 Uncertainty in the Algorithm Results (Var of Var)

Given that solving algorithms sample from representations of parameter data un-

certainty, the algorithm result for Var[g(Y)|s] is an uncertain estimate. Increas-

ing the number of experiments R, increases the coverage of the input space, and

in turn increases the certainty of the estimator. Rather than running for a set

large number of experiments we want to determine a confidence interval for our

Var[g(Y)|s].

This can be used to decide if the algorithm results are sufficiently certain, or

more importantly, compare the performance of different methods such as the im-

portance sampling produced results. We calculate this by looking at the sample

variance of Var[g(Y)|s], (shortened to Var of Var). It is calculated by:

Var o f Var =
1

R � 1
⇥

R

Â
i=1

(zi � z̄)2 (5.9)

zi = (yj � ȳ)2.wj (5.10)

z̄ =
ÂR

i=1 zi
R

(5.11)

Essentially we are looking at the variance of the squared differences that go into

calculating Var[g(Y)|s]. Where R : number of experiments for the strategy. yi :

output of experiment i of the strategy’s (or anchor strategy’s) results. ȳ : mean

taken over y for a strategy. wi : the weighting of the experiment output yi, 1 in

standard case (or calculated given the anchor and target strategies input distri-

84 5. Solving by Simulation

butions, see Section 6.2.3). Note these i and j are used only as indices and are not

related to any other i and j.

Calculating this value when using importance sampling allows us to compare

the quality of results provided by different anchor strategies. It can also be used

to estimate ratio for how much more computation would be needed to reach a

similar level of accuracy.

5.5 Iterative Algorithm

In this section we explain a third optimisation solving algorithm that takes an

iterative improvement based approach to finding the optimal strategy. The algo-

rithm is a recreation of a method Freimer and Schruben [1] describe, with addi-

tional integration into our problem specification.

As part of Optimisation Problem 4 in Section 3.3.2.3, we introduced the idea

of optimising strategies based on the results of an ANOVA method. The opti-

misation problem is only suitable for simulation-based solving scenarios since

it constrains valid strategies to those where the output variance from parame-

ter uncertainty X(s) is no longer noticable. It enables one to take into account

simulation variance more formally than when using the Basic Exhaustive Algo-

rithm. From a optimisation solving perspective, the general idea is to start from

base minimum strategy s1 and increment per parameter data collection, until it

is estimated that the evaluation results show no distinguishable variance due to

X(s).

When using ANOVA, a strategy s is not compared based on one overall vari-

ance value. Instead we attempt to portion the effect of the parameter uncertainty

X(s) to each input parameter in P. Using an F-test statistic (Equation 3.3) one

produces separate results for the main effect of each input parameter e.g. p1, and

interaction effects for the effect of two or more parameters together e.g. p1 ⇥ p2.

Based upon these results we increment sample size N(Dj) for one or more pa-

rameters, creating a new strategy to evaluate.

5. Solving by Simulation 85

Optimisation Algorithm 4 (Iterative Algorithm).

1. define s1 based on constraints (and best source per parameter);

2. while T(s) C {

3. do {

4. for each pi in s {

5. generate xi using active data sources for i in D;

6. }

7. set x = ({xi});

8. do {

9. solve y = g(Y(x));

10. update E[g(Y)|s] using y;

11. update Var[E[g(Y)|s]] using y;

12. } r times

13. } k times

14. calculate F0 and p-values (for pi and pi ⇥ pi+1) using y;

15. if all pi F0 F0.05,k�1,rk�1

16. stop;

17. else

18. increment {N(Dj)} using F0 using criteria (see Section 5.5.1);

19. }

We start by defining s1 the strategy to evaluate in the first interation (line 1).

Freimer and Schruben [1] used a simplified problem domain where each input

parameter has only one associated data source (in fact they do not actually go

into detail of where the data comes from or its cost). For our purpose, one must

select a single active data source per parameter. Multiple parameters can still

use the same data source Dj but only one chosen source per parameter will be

incremented when necessary. As before, one creates parameter values and exper-

iments using a data uncertainty modelling method from Chapter 4 (line 5). The

bootstrap resampling method is explained and applied by Freimer and Schruben

86 5. Solving by Simulation

[1] but any method should work as long as it represents X(s) and certainty in-

creases with additional data collection.

Each experiment is solved by simulation r times (lines 8 to 13). This is one of

the key differences from previous solving algorithms and it is required to do the

ANOVA calculations. Repeated simulation can be included in the previous algo-

rithms but it was not neccesary to produce results. It is redundant for analytical

solving since the result should be identical for the same experiment.

After completing the k ⇥ r solutions, one can compute the test statistics us-

ing Equation 3.3 (line 14). It results in an F and related p-value (ANOVA p, not

parameter pi) for each input parameter and the interaction of each pair of input

parameters.

5.5.1 Incrementing Criteria

Based on the F-test results, we decide which input parameters should be allocated

further data collection (line 18). We call the new combination of N(Dj) sample

sizes strategy s2 and this will be evaluated in the next iteration. The decision

to increment a sample size is based on whether one of a parameter’s effects is

deemed significant. In Algorithm 4 an effect is significant if the p-value < 0.05,

in which case the null hypothesis H0 is rejected (Section 3.3.2.3). If none of the

effects are significant the algorithm stops, and the current s is deemed optimal.

We use the criteria of Freimer and Schruben [1], slightly modified for our data

source problem specification, to choose which data sources to increment for the

next iteration. Let hj(Dj) be the next sample increment for Dj, and D⇤
i be short

hand for active data source for pi. If any of the effects are significant apply the

following rules:

for each pi {

if the main effect of pi is significant

and D⇤
i has not be incremented this iteration

set N(D⇤
i) = N(D⇤

i) + h(D⇤
i)

}

5. Solving by Simulation 87

if none of the main effects are significant

for each interaction effect pi ⇥ pi + 1 {

if the interaction effect is significant

and D⇤
i has not be incremented this iteration

set N(D⇤
i) = N(D⇤

i) + h(D⇤
i)

if the interaction effect is significant

and D⇤
i+1 has not be incremented this iteration

set N(Di + 1⇤) = N(Di + 1⇤) + h(Di + 1⇤)

}

5.5.2 Stopping Conditions

The algorithm stops when all of the ANOVA effects are not significant (line 16).

In this case, the strategy s from the final iteration is optimal. It is optimal because

it meets the F-test constraint and by incrementing from minimum must minimise

T(s). The algorithm can also stop if, after incrementing data source sample sizes,

the total cost of the new strategy T(s) is greater than the available budget C.

When that occurs, no optimal strategy was found.

5.5.3 Other Differences

The Iterative Algorithm is heavily dependent on the simulation solving variance.

It is also important in other algorithms but its effect can sometimes be overcome

with a large experiment sizes. Since the iterative algorithm decides no more data

is needed based on differentiating parameter uncertainty variance from simula-

tion variance, it is important that the certainty of the simulation solving is similar

(or slightly better) during algorithm execution to what it will be during produc-

tion model usage.

By increment from a base strategy, the iterative algorithm provides only a lim-

ited path through optimisation problem solution space. This both a benefit and a

drawback. The minimal approach, only adding and testing what is predicted to

be necessary, minimises the number of strategies that are evaluated by the algo-

88 5. Solving by Simulation

rithm. It provides a single approximate solution for the optimal strategy, or if the

budget constraint is reached no optimal solution. While this dramatically reduces

model computation versus the BEA (1), we do not learn much about the other

non-optimal strategies and the solution space, beyond what can be discovered

from the strategy iteration history. The non-uniform costs, sample incrementing,

and other factors not present in [1], means that there could possibly be more than

one optimal strategy and the result is an approximation.

The Iterative Algorithm also requires the user to configure the base strategy

s1 for the first iteration. In the base strategy s1, each input parameter pi needs a

single active data source D⇤
i which will possibly be incremented at the end of each

iteration. Selecting these removes the choice of data source from the problem. To

decide which data source one needs some understanding of which data source

will be both best for the first iterations but also remain the best choice after all the

incrementing. For most problems this will be quite simple, but when there are

many available data sources per parameter and complex cost functions, what is

the best choice initially may not be after greatly incrementing the N(Dj) sample

sizes.

A more extended algorithm could include this data source selection problem

within the solving algorithm by evaluating multiple base strategies, one for each

combination of input-data source pairings. This could be achieved by surround-

ing the current algorithm in another loop over each base strategy instead of a

single s1. It would increase the required computation but it would still be more

efficient than BEA as one would not be evaluating every possible sample size. It-

erating and incrementing from multiple base strategies produces multiple paths

through the solution space, which can result in more than one valid selection

(set of strategies S in Optimisation Problem 4). The original minimise cost objec-

tive function would then be needed to decide the optimal strategy (or strategies)

from S. This algorithm is not explored further and left as possible future work.

5. Solving by Simulation 89

5.6 Exploring the Strategy Space More Efficiently

If the model has many input parameters, many data sources, or highly granular

data source options, the optimisation problem can have a very large strategy so-

lution space. In this section we further discuss why this problem may occur and

present options for making the problem solving practicable. The problem can

be approached from two points of view, we can reduce the amount of potential

strategies (Section 5.6.1) or we can reduce the amount of strategies we evaluate

to find a result (Section 5.6.2).

We define a strategy’s analysis or evaluation cost as the computation of model

solutions needed to evaluate a strategy, and optimisation problem complexity

as the total number of strategies that need to be analysed as part of solving the

optimisation problem.

5.6.1 Preparation by Screening

As discussed in Section 3.3.3, the complexity of the strategy solution space is

affected by the number of input parameters |P|, the number of data sources per

input, and the number of sample size levels within a data source. Reducing any of

these three reduces the number of strategy configurations to test with the model

in the Basic Exhaustive Algorithm. When using the Basic Exhaustive Algorithm

with importance sampling only the first two reduce strategy evaluations with the

model.

The data collection optimisation is most important and beneficial for signifi-

cant input parameters, those that the model is at least slightly sensitive to. While

less important for low complexity problems, when problem complexity becomes

an issue the first and most obvious reduction is to remove any parameters that

are known to be or detected as insensitive. This parameter screening (or factor

screening as it is commonly known) can be achieved by using a simpler sensi-

tivity analysis method or a dedicated method [11]. It is important that the cost

of screening should be well below the cost of evaluating the strategies with the

insensitive parameters, or their removal provides little benefit beyond simplified

90 5. Solving by Simulation

results. The excluded insensitive parameters are likely to already have sufficient

data from the existing data but if necessary one could allocate a minimal amount

of additional collection in all strategies.

The second factor is the number of data source choices. Each new alternative

choice of data source brings a whole new set of strategies to compare. For some

data sources it is sometimes possible to tell before testing whether the data source

is very unlikely to be selected and add nothing particularly useful to the optimi-

sation results. For example, if a data source provides low quality data, is not

cheap, and will not be needed when another preferred data source reaches its

maximum sample size, it could be suitable for removal. Collection choices like

that should be avoided when specify the problem scenario but they can some-

times be naı̈vely included for completeness. If the user can interpret signs like

these with certainty, the data source could be excluded from the available op-

tions for a single input parameter or all input parameters. The exclusion from

either will reduce the optimisation problem complexity.

Reducing the optimisation problem complexity resulting from sample sizes will

be covered further in the following sections. From a pre-analysis screening per-

spective, we re-iterate that each data source can specify a minimum sample size

Nmin(Dj), maximum sample size Nmax(Dj), and a sample increment h(Dj) (Sec-

tion 3.2.2). Restrictive specification of these values, in line with the problem do-

main, provides a good starting point for limiting the overall complexity. When

these data source variables are flexible and optimisation problem complexity is a

concern, it is best to be restrictive with their initial specification. The initial results

can then be used to decide whether it is necessary to expand the solution space

as discussed in Section 5.6.6.

5.6.2 Partitioning & Searching the Space

The Basic Exhaustive Algorithm can be costly because it evaluates every strat-

egy. The opposite alternative is the Iterative Algorithm (Section 5.5) but this re-

quires a starting strategy and produces the bare minimum results, you cannot

compare the effect of changes in strategies outside the optimal. The importance

5. Solving by Simulation 91

sampling modification (Section 5.3) can reduce the required model computation

in the strategy evaluation cost but it still takes longer to compute as the optimi-

sation problem complexity increases, especially with many data source choices.

To reduce the effect of the optimisation problem complexity on the solving al-

gorithms, one can partition the solution space and use more intelligent searching.

There are many methods for efficiently searching an optimisation space, here we

suggest two approaches for the problem that we call moving window and iterative

expansion.

5.6.3 Moving Window: Batch-based Solving

The optimisation problems in Section 3.3.2 has two independent objective func-

tions: minimise variance and minimise cost. One can therefore approach the

strategy space from two directions depending upon the objective. As before, let

S be all currently valid strategies within budget (total cost T(s) C). As one will

see in the following sections, one can scan through S ordered by T(s) evaluating

strategies and make an informed decision on whether the optimal strategies has

been found. Rather than looking at the entire S space, we look at a moving win-

dow on S. While described in terms of standard model-based strategy evaluation,

these algorithms can also be used with importance sampling.

For generic and parallelising the execution it is easiest to consider and com-

plete strategies by this method in batches. These batches can have a fixed size

for simplicity and predictability, or variable size for more complex batching. A

variable size would be used if evaluating strategies within defined cost ranges.

5.6.4 Cheapest-First Search Algorithm

First consider the minimise cost objective, this is an example of an objective that can

be used to inform the search prior to calculating all the required results. In this

case, evaluating the constraints needs the results for each strategy rather than the

objective function. The total collection cost of each strategy can be calculated be-

fore analysing any strategies with the model. Therefore, the optimisation solving

92 5. Solving by Simulation

algorithm does not need check all of S. Since the total cost is known, we can or-

der the strategies by total cost T(s) and then start testing the cheapest strategies

first. The algorithm can stop when an optimal strategy is found, one that meets

the remaining constraints including the variance constraint, since no subsequent

strategy can better meet the objective function. The number of strategies that

need to be evaluated is now between 1 and original complete set |S|.

Optimisation Algorithm 5 (Cheapest-First Search Algorithm).

1. define S based on constraints (without needing results);

2. sort S by ascending total cost Â|D|
j=1 Cj(N(Dj)) ;

3. for each s 2 S {

4. do {

5. for each pi {

6. generate xi using active data sources for i in D

7. }

8. set x = ({xi});

9. solve y = g(Y(x));

10. update E[g(Y)|s] using y;

11. (Eq.(4.3) with y for xn)

12. update Var[E[g(Y)|s]] using y;

13. (Eq.(4.4) with y for xn)

14. }

15. until Var[E[g(Y)|s]] accurate (Section 5.4)

16. if stopping condition true (Var[E[g(Y)|s]] V)

17. select s and stop;

18. }

The main differences from BEA 1 are the pre-sorting of strategies (line 2) and

the stopping condition (lines 16 & 17), which allows escaping from the loop with-

out evaluating Var[g(Y)|s] for all s.

5. Solving by Simulation 93

5.6.4.1 Stopping Condition

The stopping condition can simply evaluate if any strategy in the latest batch has

achieved the required level of variance Var[g(Y)|s] V. For completeness, if

an optimal strategy is found the algorithm should continue until strategies at

the current cost level have been evaluated. There may be multiple strategies

with same total cost, which are equally optimal under the minimise cost objec-

tive alone.

5.6.5 Most-Expensive-First Search Algorithm

The minimise variance objective is an example of an objective that depends entirely

upon the analysis results, only the constraints can be evaluated prior to assess-

ing strategies. In these conditions algorithms that do not assess every strategy

only provide approximate solutions. When required we can still make assump-

tions based on the objective to inform the searching. We now consider the other

direction, starting the analysis with the most expensive strategies first. Given

that spending increases data certainty, it is reasonable to assume that the optimal

strategy for the minimise variance objective will involve spending the entire col-

lection budget or somewhere close to the data source maximums. To reduce the

optimisation problem complexity with this approach, one evaluates strategies in

batches, ordered by total cost starting with the most expensive first, and stop by

checking when the strategy results are no longer able to or likely to improve.

Optimisation Algorithm 6 (Most-Expensive-First Search Algorithm).

1. define S based on constraints (without needing results);

2. sort S descending by total cost Â|D|
j=1 Cj(N(Dj)) ;

3. for each s 2 S {

4. ...

5. if stopping conditions true (see Section 5.6.5.1)

6. select s that minimises Var[E[g(Y)|s]] and stop;

7. }

94 5. Solving by Simulation

The important differences from BEA 1 are the pre-sorting of S by descending

total cost T(s) (line 2) and the stopping condition that allows the escaping of

the loop (line 5) without evaluating Var[g(Y)|s] for all S. This algorithm differs

from Cheapest-First-Search as there are multiple conditions that need to be met

to allow stopping because the solution is uncertain.

5.6.5.1 Stopping Conditions

The stopping condition is more difficult for this algorithm than Cheapest-First

Search since we do not know for certain that no unchecked (cheaper) strategy

provides a better result for the objective function. To save on computation the

algorithm must intelligently predict whether all the optimal strategies have been

evaluated. We decide the stopping condition based on three factors:

1. Have all the most costly strategies within budget been evaluated? Under

the assumption that one of these strategies is likely to be optimal, one must

always evaluate those strategies. One should also evaluate those within a

set range from the budget since, due to collection restrictions, it may not

be possible to completely use the budget exactly. The scanning backwards

from the mostly costly strategies should at least try to include the maximum

extremes of all data sources, regardless of their distance from the budget

limit.

2. If the optimal strategy is within the last batch evaluated, one must evalu-

ate another batch. We want to make sure the algorithm covers a little more

than the minimum required the strategy space for some redundancy.

3. Are the variance results appearing to diverge? After the algorithm has

covered the extremes of the strategy solution space, the results in newly

evaluated batches of strategies are likely to be less and less optimal from

increasing variance. Classifying this diverging variance is key to this algo-

rithm being both accurate and efficient. One wants to be certain the approx-

imate solving result is good, while also saving computation by evaluating

limited amount of strategies.

5. Solving by Simulation 95

5.6.6 Iterative Expansion Algorithm

Instead of checking batches of strategies starting from the extremes, the optimisa-

tion solving algorithm could sample different areas of the solution space to find

areas worth exploring further. The first results probe the space before additional

more granular exploration tries to find the optimal.

To complete this approach one would first reduce the problem space by lim-

iting data sources to large sample size increments h(Dj). Based on the results

of the problem with decreased complexity, one could identify areas of the strat-

egy space that have produced promising results (such as the low variance for

minimise variance objective). In solution areas still under consideration, each

subsequent algorithm iteration decreases the sample size increments closer to the

original optimisation problem specification. Strategies not already evaluated in

these areas are analysed.

The technique has similarities with some tree and graph searching algorithms

in that we wish to review some results for each possible parameter-data source

combinations, before expanding down the path into more granular configuration

options based on promising results.

5.6.6.1 Stopping Conditions

The algorithm stops with an approximate solution if an optimal strategy is found

after expanding and analysing all the promising areas of the solution space S. If

an optimal result is not found, the algorithm stops assuming no optimal strategy

exists, or previously abandoned areas must be re-considered.

It is possible to integrate ideas from the previous section into this approach.

One could use the assumptions about total collection cost T(s) to inform where

in the solution space to sample and expand first, dividing and sampling the

space unevenly. For example for minimise cost, the initial probing of the strat-

egy space could be much closer together (less simplified sample size options) for

low cost strategies and more spread out (larger sample size increments) for high

cost strategies. This is a little bit like the areas have already been expanded based

96 5. Solving by Simulation

on prior assumptions and knowledge rather than analysis results.

5.7 Discussion of Assumptions and Limitations

This section discusses assumptions made in optimisation solving algorithms and

any other limitations of their usage.

The Basic Exhaustive Algorithm can quickly become too expensive with many

input parameters, many strategies in S, or models that take significant time to

solve. It remains important in understanding the approach and the other algo-

rithms are based upon it. We attempt to make solving more efficient using a

number of alternative algorithms, some more specialised to specific problems.

One can use importance sampling to greatly improve efficiency by re-using

model solutions over many strategies. Its performance is based on the quality

and coverage of the anchor strategy result, so in most situations some of the com-

putation saved from using importance sampling should be used to increase R the

number of experiments used in a strategy evaluation. The data source choices

per parameter can affect the efficiency of importance sampling. If the distribu-

tions representing parameter uncertainty greatly differ between the target strat-

egy and the anchor strategy (due to differing means etc.), it may be necessary to

evaluate and use results from multiple anchor strategies.

Incomplete and approximate solving algorithms (Section 5.5 and Section 5.6)

reduce the number of strategies evaluated to find and select a solution. The It-

erative algorithm assumes simulation is used for model solving, which is highly

probable for our target model area but not certain. Most-Expensive-First Search

and Cheapest-First Search assume a general pattern of certainty increases with

T(s), which is sensible assumption but fluctuations need to be taken into account

and are used to inform the stopping conditions.

Restrictions on the solution space can majorily reduce execution time but one

must also balance this with flexibility. Where practical, the user may want infor-

mation about the choices available rather than a single solution. This may include

some flexing of the constraints the user was not previously considering. Minimal

5. Solving by Simulation 97

solving like the Iterative algorithm cannot provide this.

It must be noted that most optimisation solving algorithms that do not evalu-

ate every strategy have the potential to miss the true optimal strategy. Mitigating

the chance of this occurring relies upon:

The accuracy of algorithm results must be reliable when previous results are used

internally to inform searching for optimal strategies.

Minimising the uncertainty of model solutions which can lead to inaccurate al-

gorithm results.

The validity of the searching algorithm assumptions. The assumptions need to

remain valid and when possible be challenged.

Analysing strategies slightly beyond what it is necessary to find an optimal re-

sult unless certain no other strategy can be better, an algorithm should not

always stop as soon as possible. It should continue along all likely avenues

and continue with some redundancy where practical, in case the algorithm

accuracy has caused an anomaly. This might entail expanding slightly over

the border of a promising area.

Given the independence of strategy evaluation, it is important to consider

parallelising the implementation, and using distributed computing where appro-

priate, to greatly speed up: model solving, strategy evaluation, and overall al-

gorithm solving. Most looping over a strategies in the solving algorithms could

be separated into independent jobs. The main single-threaded areas are the fi-

nal selection and the testing of stopping conditions. The bottleneck of stopping

conditions can be reduced with large batch sizes. Parallelism is less beneficial to

the iterative algorithm. It could evaluate experiments in parallel but in its normal

form cannot parallelise strategy evaluation, as only one strategy is used at time.

98 5. Solving by Simulation

5.8 Summary

In this chapter we explained six algorithms for solving the data collection opti-

misation problems in Chapter 3. The Basic Exhaustive Algorithm evaluates all

valid strategies using a method from Chapter 4. Basic with Importance Sampling

Algorithm allows for the reuse of existing results to reduce the number of model

executions. Iterative Algorithm provides an alternative minimal perspective for

solving, using incremental improvement rather than testing all strategies, and

ANOVA to assess if the uncertainty has been reduced sufficiently. Section 5.6

describes alternative algorithms that use informed searching to attempt to find

the optimal solution without evaluating every possible strategy. Appendix A ex-

plains a MATLAB implementation of these solving algorithms and the methods

discussed in Chapter 4. The next chapter demonstrates the solving algorithms

with multiple examples.

CHAPTER 6

Evaluation

The previous chapter presented algorithms for solving the proposed data collec-

tion optimisation problem. The algorithms attempt to find the optimal strategy

when collecting additional data for a model under some set scenario constraints.

This chapter demonstrates these solutions and their results using multiple dif-

ferent examples with a MATLAB implementation and two models: an M/M/1

queue model and a business workflow PRISM model. The M/M/1 model is a

simpler example well covered and often used in existing modelling and simula-

tion literature. This allows for easier analytic solving when needed and a more

complete understanding of the expected behaviour. The PRISM model provides

a more realistic but also more specialised example. Further details on the imple-

mentation can be found in Appendix A.

Section 6.1 explains the M/M/1 model and the data collection scenario, be-

fore presenting results from all major methods using the model. Section 6.2 ex-

plains the business workflow PRISM model with a data collection scenario. This

is tested with a selection of solving algorithms and options, informed by the re-

sults of Section 6.1. Section 6.3 discusses shared aspects of the results in more

detail.

99

100 6. Evaluation

6.1 M/M/1 Queue Examples

In this section we set up and solve optimisation problems for an M/M/1 queue

model. Different input and solving methods are used over multiple examples

and the results are discussed.

6.1.1 Introduction

Here we re-use a version of the recurring example:

Example. A single till in the supermarket is modelled using an M/M/1

queue. Inter-arrival time is exponentially distributed with rate l and the

service time is exponentially distributed with rate µ. This implies that there

are two input parameters, parameter p1 is the rate of the inter-arrival time

distribution and parameter p2 is the rate of the service time distribution. The

performance measure of interest E[Y] is the mean time a customer spends in

the queue E[W].

Note that value for the input parameters must obey p1 < p2 (in terms of

values of these parameters), otherwise the queue length is infinite. In our input

value generation, we ignore cases where p1 � p2, filtering and regenerating as

discussed in Section 4.8.

A Java implementation was used for the M/M/1 model when solving by sim-

ulation. Closed-form solving was completed in MATLAB using the known for-

mula [5]:

E[W] =
rE[S]
1 � r

=
l/µ ⇥ 1/µ

1 � l/µ
(6.1)

E[S] =
1

µ
(6.2)

Using analytic solving allows us to more quickly and easily understand the effect

of parameter uncertainty by removing simulation uncertainty. Not all models can

6. Evaluation 101

be solved analytically so we also include simulation to demonstrate the difference

in algorithm computation.

Data collection scenario (1) has two sources D1 and D2. Let D1 provide data

for p1 (l) and D2 for p2 (µ), resulting in data source-input mapping:

d =

2

4 1 0

0 1

3

5

Each has a set of existing data information for the respective input parameters,

D1 : {µ̂1 = 1; ŝ2
1 = 0.85; M(D1) = 30; c1 = 1}, D2 : {µ̂2 = 0.5; ŝ2

2 = 0.3; M(D2) =

30; c2 = 1}.

Let us begin with a restricted example to demonstrate the syntax/IO using

Scenario 1. If we first consider three extreme strategies when the budget is limited

to 200 samples:

Table 6.1: M/M/1 Simple Strategies Input

s Strategy lambda mu Total Cost

1 [1 0] [2 200] 200

2 [1 100] [2 100] 200

3 [1 200] [2 0] 200

Table 6.1 shows the algorithm input information of three strategies s1, s2, and

s3. Each parameter pi has a column which shows the parameter name if specified.

The column contains the active data sources for pi in the form of [j N(Dj)], where

j is the data source index and N(Dj) is the number of new samples allocated

to data source Dj. This column can also show M(Dj) the number of existing

samples, M(Dj) + N(Dj) the total number of samples, the collection cost for each

data source Cj(N(Dj)), or a combination of the four. It will be N(Dj) unless

stated. The final column is the total collection cost for the strategy T(s).

By executing the Basic Exhaustive Algorithm (BEA, Section 5.2) we get results

for each strategy. 500 experiments were generated using CLT Normal distribution-

based sampling (Section 4.3), with 500 values for each parameter pi, and 1 model

solution (repetition) per experiment. This results in 500 model solutions for each

102 6. Evaluation

strategy. In this case the model was solved analytically. Table 6.2 shows the strat-

egy results summary for the algorithm.

Table 6.2: M/M/1 Simple Strategies Results

s Total

Cost

Values

per pi

Experi-

ments

Exp.

Repetitions

E[g(Y)]

(mean)

Var[g(Y)|s] Var Of

Var

1 200 500 500 1 0.53129 0.039413 0.008385

2 200 500 500 1 0.52857 0.028865 0.004461

3 200 500 500 1 0.5626 0.083175 0.054164

The first column in Table 6.2 is the strategy index, an identifier that maps

strategies between tables within the same example. The second column is T(s)

the total collection cost, the same as in Table 6.1 but presented for side by side

comparison of results against cost. The next three columns describe the exper-

iments generated as part of modelling parameter uncertainty (see Chapter 4).

Values per pi : the number of values generated for parameter pi, the number

of model experiments created from these values, and the number of times each

single experiment was solved (repetitions).

The last three columns are the analysis results for each strategy: E[g(Y)] the

mean of performance measure results, Var[g(Y)|s] the variance given the strategy

(see Equation 3.1), and the Var of Var (see Section 5.4). The mean and variance are

taken over all of the strategy’s computed model solutions (for the chosen output).

The variance Var[g(Y)] is the primary output of interest for strategy evaluation.

We aim to minimise this variance (when using the minimise variance objective)

or keep it below a set amount (when using the minimise cost objective). The

Var of Var provides a estimate for the confidence in the strategy result. It essen-

tially calculates the variance of the squared differences that go into calculating

Var[g(Y)|s]. A relatively low Var of Var represents a more certain estimate for

Var[g(Y)|s].

If we apply the minimising variance objective, the optimal strategy from these

three options in Table 6.2 is s2 Strategy 2, which is sharing the 200 samples evenly

between both input parameters N(D1) = 100, N(D2) = 100. This will be fully

6. Evaluation 103

explored in the next section.

6.1.2 BEA Examples

Now let us expand upon on the example in the previous section to demonstrate

the Basic Exhaustive Algorithm results with a larger strategy solution space. Us-

ing data from Scenario 1, let the budget C = 500 and sample increment for both

sources be 25 samples. If we include strategies where N(Dj) = 0, |S| = 231, there

are 231 generated strategies to evaluate. Given the size of the strategy solution

space we do not include the complete table, only portions of the results.

Once again using CLT Normal distribution sampling, let k be the number of

values per parameter and R the number of experiments per strategy both = 1000.

If we first consider minimising variance, Table 6.3 and Table 6.4 show the ten strate-

gies sorted by Var[g(Y)|s]. We can immediately see the top strategies involve

spending all or most of available collection budget. The algorithm results sug-

gest the optimal strategy shares the available budget between both parameters

but not evenly. There is an obvious preference for p2 (µ).

Table 6.3: M/M/1 BEA Top Strategies by Smallest Var[g(Y)|s] (Inputs)

s Strategy lambda mu Total Cost

153 [1 200] [2 300] 500

110 [1 125] [2 350] 475

124 [1 150] [2 300] 450

186 [1 275] [2 225] 500

125 [1 150] [2 325] 475

126 [1 150] [2 350] 500

164 [1 225] [2 250] 475

77 [1 75] [2 400] 475

139 [1 175] [2 300] 475

111 [1 125] [2 375] 500

104 6. Evaluation

Table 6.4: M/M/1 BEA Top Strategies by Smallest Var[g(Y)|s] (Results)

s Total

Cost

Values

per pi

Experi-

ments

Exp.

Repetitions

E[g(Y)]

(mean)

Var[g(Y)|s]Var Of

Var

153 500 1000 1000 1 0.51612 0.012153 0.000337

110 475 1000 1000 1 0.51199 0.012479 0.000460

124 450 1000 1000 1 0.51649 0.012955 0.000424

186 500 1000 1000 1 0.51858 0.012968 0.000323

125 475 1000 1000 1 0.5144 0.013077 0.000661

126 500 1000 1000 1 0.51983 0.013269 0.000750

164 475 1000 1000 1 0.51396 0.013388 0.000511

77 475 1000 1000 1 0.51274 0.013544 0.000691

139 475 1000 1000 1 0.51881 0.013645 0.000601

111 500 1000 1000 1 0.51383 0.013674 0.000678

We can look further into the behaviour of maximum spending by comparing

all those strategies. Figure 6.1 shows only s where T(s) = 500. By ordering

strategies by N(D1) one can see the effect of toggling complete collection budget

from D2 to D1.

If we now consider minimising total collection cost and constrain the variance

requirement at an arbitrary V = 0.1. Valid strategies |S| = 221. Table 6.5 shows

(the first 10) strategies sorted by ascending total cost.

In Table 6.6 the optimal strategies require only T(s) = 50. When using only

the minimise total cost objective, both s3 and s23 are equally optimal. If one

also considers minimise Var[g(Y)|s] as a secondary objective, s3 would be rec-

ommended alone. Looking at Table 6.5 we can see s3, involves N(D1) = 0 and

N(D2) = 50. Parameter p2 remains slightly preferred in these results but new

samples are allocated to both parameters when sufficient budget is available.

It is difficult to visually present all strategies at once due to the many dimen-

sions that make up a strategy, even with only two parameters. One can plot

high-level strategy variables such as total cost. Figure 6.2 shows 230 of the orig-

inal S (231 strategies) comparing total collection cost T(s) against the resulting

estimate for Var[g(Y)|s]. One can see a decreasing downward trend as spending

6. Evaluation 105

Table 6.5: M/M/1 BEA Top Strategies Sorted by Cost, where V 0.1 (Inputs)

s Strategy lambda mu Total Cost

3 [1 0] [2 50] 50

23 [1 25] [2 25] 50

4 [1 0] [2 75] 75

24 [1 25] [2 50] 75

43 [1 50] [2 25] 75

61 [1 75] [2 0] 75

5 [1 0] [2 100] 100

25 [1 25] [2 75] 100

44 [1 50] [2 50] 100

62 [1 75] [2 25] 100

Table 6.6: M/M/1 BEA Top Strategies Sorted by Cost, where V 0.1 (Results)

s Total

Cost

Values

per pi

Experi-

ments

Exp.

Repetitions

E[g(Y)]

(mean)

Var[g(Y)|s] Var Of

Var

3 50 1000 1000 1 0.58544 0.094336 0.14498

23 50 1000 1000 1 0.57749 0.09537 0.09078

4 75 1000 1000 1 0.56949 0.09107 0.2803

24 75 1000 1000 1 0.54434 0.06097 0.02482

43 75 1000 1000 1 0.56145 0.09683 0.25015

61 75 1000 1000 1 0.57405 0.097339 0.13174

5 100 1000 1000 1 0.57485 0.080825 0.11465

25 100 1000 1000 1 0.54578 0.059929 0.04377

44 100 1000 1000 1 0.55047 0.06235 0.04409

62 100 1000 1000 1 0.54957 0.06393 0.03578

106 6. Evaluation

Total Samples for p1

V
ar
[E
[Y
]|

s]

50 100 150 200 250 300 350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 6.1: M/M/1 BEA Maximum Spend Strategies: The effect of varying sam-

ples between parameters on Variance Var[g(Y)|s]

on collection increases, showing diminishing returns. One can also see the spread

of results at different cost levels. This is mostly likely caused by inefficiently allo-

cating N(Dj) data source samples but it can also be caused by uncertainty in the

estimated results from the normal distribution sampling process.

We removed one outlier s16 [0, 375]; as s16 has a very large variance result,

well beyond all others. The accuracy of the result can be questioned since the

Var of Var is also very high. The values of one experiment are very close to the

invalid parameter space. This is due to the random nature of the CLT normal

distribution sampling and p1 having N(D1) = 0 samples. Occurrences like this

can be mitigated if incorrect by either: being more conservative with the invalid

range specification, increasing the number of experiments, using an experiment

design approach or repeating the analysis when any Var of Var results are too

large.

6. Evaluation 107

Total Cost

V
ar
[g
(Y

)|
s]

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.2: M/M/1 BEA All Strategies: The Total Cost vs Variance Var[g(Y)|s]

108 6. Evaluation

6.1.3 Importance Sampling Examples

The Basic Exhaustive Algorithm with importance sampling (Section 5.3) allows

us to evaluate many strategies using the model results from one (anchor) strategy.

This section will demonstrate the algorithm results, compare them against the

direct evaluation of Basic Exhaustive Algorithm, and show the effect of anchor

strategy selection.

The Basic Exhaustive Algorithm with importance sampling is more appropri-

ate and efficient when the strategies being tested are using the same data sources

and a good anchor strategy is chosen. The first requirement means the strategies

differ only in sample sizes. This method remains valid since it could be used once

for each combination of parameters and data sources. This would still provide a

major reduction in model computation. Since one would need model results for

one strategy at each combination of sources, rather every strategy at each com-

bination of sources if completed via the plain Basic Exhaustive Algorithm. Here

we demonstrate with strategies using only one source per parameter.

The anchor strategy is the strategy evaluated directly with the model. The re-

sults of the anchor strategy are repurposed to calculate the results of other strate-

gies. The effect of anchor strategy choice will be explored later in the section.

For the following demonstration we define S as the maximal strategies from

the previous example (those where T(s) = C = 500) but we also include s0 where

N(D1) = 0 and N(D2) = 0. We first evaluate all the strategies directly using the

BEA with R = 1000, k = 1000, and r = 1. |S|⇥ R = 22000 model solutions used

to over all the strategies.

Next, we conduct the Basic Exhaustive Algorithm with importance sampling

to produce estimated results for the same strategies. In this case it re-uses the

results for strategy s0, making this the anchor strategy. Figure 6.3 shows the re-

sults of strategies {s1, ..., s22} for both BEA and BEA with importance sampling.

Going from left to right on the figure moves new samples from p2 as N(D2) to p1

as N(D1). This demonstrates that by using importance sampling we produced

similar results using only the anchor strategy’s 1000 model solutions instead of

1000 for each strategy.

6. Evaluation 109

Total Samples for p1

V
ar
[E
[Y
]|

s]

50 100 150 200 250 300 350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.3: M/M/1 Comparing BEA and BEA with Importance Sampling using

s0

The small variations between the results could be caused by minor inaccuracy

in the estimators of either method, and are likely caused by incomplete coverage

of the parameter uncertainty. One could easily use some of the saved model com-

putation time (from greatly reduced model experiments and solutions) to add

further experiments to the anchor strategy. Under the assumption that increas-

ing the parameter values used in evaluating the anchor strategy can improve all

importance sampled strategy results. If the model solving is completed via sim-

ulation, it may also be appropriate to use algorithm efficiency saving to increase

the simulation time and reduce the simulation uncertainty.

6.1.3.1 Anchor Strategies

Section 5.3.1 discussed how to choose an anchor strategy. The following example

demonstrates the effect of different anchor strategies on the results when using

the same number of experiments.

The previous example defined s0, ..., s21, where s0 was the anchor strategy with

110 6. Evaluation

N(D1) = 0 and N(D2) = 0. We now show the effect of using different anchor

strategies s1, s11, and s21. Figure 6.3 showed s0 with results very close to evaluat-

ing all strategies directly using the plain BEA.

Figure 6.4 shows anchor strategy s1 = {N(D1) = 0, N(D2) = 500}. The re-

sults diverge on the right side of the figure, as it approaches N(D1) = 500 and

N(D2) = 0. When solving the model for the anchor strategy strategy, the pa-

rameter data uncertainty was modelled using CLT normal distribution sampling

(Section 4.3). A Normal distribution based on D2 and N(D2) = 500 is a narrower

than a distribution with N(D2) = 0. Most of the parameter values generated from

the N(D2) = 500 distribution have a much narrower range, making it more dif-

ficult to translate results via importance sampling into representing N(D2) = 0.

The importance sampling will involve very large weights for a few experiments

to compensate. This leads to difficulties in achieving good results with the same

number of experiments.

Figure 6.5 shows the opposite of s1 in s21 = {N(D1) = 500, N(D2) = 0}.

Here the results struggle to represent strategies with smaller samples for p1 and

N(D1). The same cause applies, this time for N(D1). Figure 6.6 shows the mixed

case s11 = {N(D1) = 250, N(D2) = 250}. We can see how this can cause the

results to diverge from the expected at both extremes. Both ends of the graph

differ from the expected result.

From these results we confirm that a good anchor strategy should involve

wider distributions with longer tails. The anchor strategy (or strategies) used

when evaluating with importance sampling should be a strategy with low new

sample sizes N(Dj). Note that this may not be zero samples if that strategy is

not valid or under consideration. One can use the strategy with the next smallest

sample sizes, or include the N(Dj) = 0 strategy only to generate results for other

strategies.

6. Evaluation 111

Total Samples for p1

V
ar
[E
[Y
]|

s]

50 100 150 200 250 300 350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.4: M/M/1 Comparing BEA and BEA with Importance Sampling using

s1

Total Samples for p1

V
ar
[E
[Y
]|

s]

50 100 150 200 250 300 350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.5: M/M/1 Comparing BEA and BEA with Importance Sampling using

s21

112 6. Evaluation

Total Samples for p1

V
ar
[E
[Y
]|

s]

50 100 150 200 250 300 350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.6: M/M/1 Comparing BEA and BEA with Importance Sampling using

s11

6. Evaluation 113

6.1.4 Iterative Algorithm

The iterative solving algorithm (Section 5.5) attempts to find the optimum strat-

egy by iteratively adding samples, thus improving certainty, until the parameter

uncertainty is no longer distinguishable from the simulation uncertainty. Rather

than comparing data sources it requires a starting strategy of a selected active

data source for each parameter included in the optimisation. We attempt to re-

peat an example from [1] using the information available, before expanding it to

multiple input parameters. We continue to use the same M/M/1 model with p1

(l) the rate of arrival and p2 (µ) the service rate.

The following examples use the M/M/1 model with solving by simulation

and include experiment repetition not needed or used in previous examples. The

total number of experiments (and therefore model executions) per strategy be-

comes R = k|P| ⇥ r, where k is the number of values (or factor levels) per param-

eter, and |P| is the number of parameters in the strategy. Parameter uncertainty

modelling is conducted using bootstrap resampling (Section 4.6) and the M(Dj)

existing samples for each data source Dj.

6.1.4.1 One Input Parameter

Freimer and Schruben [1] use an M/M/1 model of a bank ATM to demonstrate

their method using the ANOVA Random Effects model. While multiple param-

eters are discussed the results are only shown for populating a single parameter

with more samples. Starting with this single parameter scenario, we attempt

to allocate additional samples to improve the certainty of the mean inter-arrival

time, which is used to for the rate p1 (l). We consider only allocating samples to

D1 for p1. The queue has a mean customer service time of 0.9 [1], so p2 is fixed at

1/0.9. This makes the number of parameters in the strategies |P| = 1.

One must configure a starting strategy s1 for the first iteration. p1 has one data

source D1 with M(D1) = 1000 existing samples for inter arrival times. These are

generated by randomly sampling 1000 times from an exponential distribution

with mean 1 (the same process as [1] {µ̂ = 1.008, ŝ = 0.955}), resulting in {µ̂1,1 =

114 6. Evaluation

1.0243, ŝ1,1 = 1.0004}. Sample size incrementing h(D1) is fixed at 500 samples.

Since cost is not used in [1], let c1 = 1. A budget C = 10000 is added to prevent

overly long execution if a valid optimal strategy is not found. From the demon-

stration result in [1] we expect the final strategy to be N(D1) = 3⇥ h(D1) = 1500,

2500 total of samples for D1 or somewhere within one or two h(D1) increments

of it.

The ANOVA test is setup as specified in [1]: a = 5 factor levels or 5 experi-

mental values per parameter. In this case, five bootstrap resampled mean values,

created using the (simulated) existing samples and the N(D1) of the current it-

eration. The a-value for the ANOVA test is 0.05 and we want the power of the

test to be 0.95 when the ratio s2
t/s2 = 0.05. This requires n = 240 repetitions (r

in our terms) and l = 3.6 (test l, not model parameter named l). We therefore

compute R = 51 ⇥ 240 = 1200 experiments and solutions per iteration strategy.

Simulation solving details are not specified, let simulation time to t = 10000.

Table 6.7 shows one application of the iterative algorithm to the previous

scenario. The algorithm ran until the budget constraint was reached after s21

(s21 = {N(D1) = 10000, ...}), resulting in no optimal strategies and going well

beyond the expected N(D1) = 3 ⇥ h(D1) = 1500.

Table 6.7: M/M/1 Iterative Algorithm Example Iterations

s N(Dj) Values

per pi

Experi-

ments

Exp.

Repetitions

E[g(Y)]

(mean)

Var[g(Y)|s] Var Of

Var

1 0 5 5 240 6.4176 2.0769 28.361

2 500 5 5 240 5.8208 1.6598 15.567

3 1000 5 5 240 6.8282 2.3626 17.495

4 1500 5 5 240 7.0389 2.6024 50.498

5 2000 5 5 240 6.3724 1.4183 8.258

. . .

19 9000 5 5 240 6.2977 1.4094 9.6782

20 9500 5 5 240 6.6152 1.5431 10.813

21 10000 5 5 240 6.6999 1.4399 8.0181

6. Evaluation 115

6.1.4.2 Repeated Evaluation

To further explore the solution space the same iterative algorithm execution was

repeated 3 times with the budget increased to C = 20000. Much greater than

expected to be needed for a result. The existing data for D1 was re-generated:

{µ1,1 = 1.0257, s1,1 = 0.9335}. As only one parameter is considered we can sum-

marise the results based on under what condition the algorithm stopped (due to a

chosen strategy or the budget constraint) and how many strategies (or iterations)

were evaluated. The expected result should use approximately 4 strategies.

3 out of the 3 algorithm executions stopped via the constraint after 41 strate-

gies, without finding an optimal strategy (one which met the ANOVA-based

constraint). s41 has N(D1) = 20000 new samples allocated to p1. This clearly

demonstrates a difference between these results and [1], which we assume must

be related to the simulation solving.

The repeated algorithm execution was continued using different values for

simulation time t = {1000, 5000, 10000, 20000} since precise solving details were

not specified in the source example. We also compare increasing the number of

factor levels (values per parameter) a = {5, 10} (discluding t = 20000), as this

improves the coverage of the parameter uncertainty space.

Table 6.8: M/M/1 Iterative Algorithm Repeat Execution Comparison

Simulation Time t a = 5 a = 10

1000 s10, s21, s10 ?, s28, s33

5000 ?, ?, s32 ?, ?, ?

10000 ?, ?, ? ?, ?, ?

20000 ?, ?, ? N/A

Table 6.8 shows the final strategy for each repetition of the algorithm at dif-

ferent a and t values. ? represents no strategy found and the budget constraint

reached after N(D1) = 20000. Decreasing t, and therefore simulation result cer-

tainty, causes the iterative algorithm to produce a valid strategy result more of-

ten and earlier but not particularly consistent, ranging from N(D1) = 4500 to

N(D1) = 10000. Increasing t did not change the optimal strategy result over

116 6. Evaluation

three algorithm repetitions.

Given the premise that variance due to parameter uncertainty in the strategy

should be indistinguishable from simulation variance (Section 3.3.2.3), it makes

sense that increasing simulation variance (by decreasing simulation certainty)

would increase the likelihood that a strategy is found. It also is natural to as-

sume that decreasing simulation certainty would result in an inconsistent result

for the optimal strategy. Increasing the number of factor levels a (equivalent to

values per parameter) appears to result in the optimal strategy being closer to or

beyond the budget constraint (and therefore not found).

6.1.5 Summary

In this section we demonstrated a selection of the solutions designed and im-

plemented in this thesis. One can see that even with analytic solving the num-

ber of experiments is important and can greatly effect the resulting estimates for

Var[g(Y)|s]. Stratified sampling, experimental designs, and importance sampling

can allow us to stabilise these results while keeping number of experiments man-

agable. Importance sampling must be configured correctly to provide desired

performance improvement, and should be used to increase experiments used in

the solution as well as reducing overall model computation. For complex mod-

els or strategy space, one should use importance sampling, use an approximate

solving algorithm, or in some situations both.

6. Evaluation 117

6.2 PRISM Examples

In this section we present a more advanced example using a model of a business

workflow with security policies.

6.2.1 Introduction

The business workflow model is a Markov Decision Point model. It is written

for and solved using the PRISM model checker [80, 81]. It was provided by John

Mace (Newcastle University) as part of yet to be published work (related to [92]).

It models the completion of a workflow that consists of 10 tasks being organ-

ised between 5 available users. The content of each task is left abstract but the

workflow specifies security policy that restricts which users can do which tasks.

The security policy can dictate which users are allowed to partake in completing

certain tasks due to permissions, separation of duties, and binding of duties re-

strictions. For example, a permission restriction may prevent a user from being

unable to access the required content needed to complete a task. With a separa-

tion of duty requirement, a user may be only allowed to work on certain tasks in

the workflow (regardless of whether they are capable). A binding of duty restric-

tion may require the same user to complete two tasks in a workflow. Complete

details of the policy restrictions can be found in Appendix B.

Using the PRISM model checker the model can be solved analytically (veri-

fied) or by simulation. Its output E[Y] is the maximum probability of completing

the workflow given those input parameters and the internal workflow restric-

tions.

The PRISM Model (PU, User-based) associates a probability of successfully

completing tasks with each user in the model. This probability is used for all

tasks the user attempts. In this case it is assumed that the user’s performance

is consistent within a workflow and it is not dependent on the task undertaken

e.g. the tasks they do are very similar. You could also assume that the security

policy restrictions have externalised any apparent difference in user performance

between tasks. The model takes 5 inputs parameters {p1, ..., p5}, identified in

118 6. Evaluation

the model as {u1, ..., u5}. Each parameter is the probability the associated user

successfully completes any task undertaken.

We create a single data source for each parameter {D1, ..., D5}, the data source-

input mapping d is therefore an identity matrix of size 5. Let the existing data for

all data sources be {µ̂ = 0.8, ŝ2 = 0.05, M(Dj) = 50}, and the per sample cost

cj = 1.

The scenario for examples in this section use Optimisation Problem 2B where

we wish to minimise variance Var[g(Y)|s]. Tables of results are sorted accord-

ingly. The budget constraint is specified separately for each example.

6.2.2 Basic Exhaustive Algorithm (Restricted)

We apply the BEA using CLT Normal distribution sampling to a restricted strat-

egy space to test the behaviour of the results and the problem complexity of the

PU model.

The PU model takes longer to analytically solve than the M/M/1 model, ap-

proximately 0.5 seconds. The PRISM software does not accept lists of experimen-

tal values, only single values or ranges, so every experiment evaluation must

be a fresh and separately launched process. PRISM is integrated into MATLAB

by launching the PRISM command-line application from the system and loading

the exported result from a CSV file. Each command execution in MATLAB adds

a small amount of extra time for shell setup and file reading. Parallel execution

of experiments is used to slightly reduce both the effect of these overheards and

the overall execution time.

Let the sample increment for all sources in D be 200 and the budget constraint

C = 600. Generating all strategies within the constraints gives 56 strategies when

N(Dj) = 0 is allowed. Let k = 200 and r = 1, then R = 200 experiments per

strategy.

6.Evaluation
119

Table 6.9: PU Basic Exhaustive Algorithm Sorted by Var[g(Y)|s] (Top and Bottom)

Row p1 p2 p3 p4 p5 Total Cost E[g(Y)] (mean) Var[g(Y)|s] Var Of Var

1 [1 0] [2 200] [3 0] [4 200] [5 200] 600 0.11398 0.00017626 7.6913e–08

2 [1 0] [2 200] [3 200] [4 200] [5 0] 600 0.11326 0.00018298 9.2344e–08

3 [1 0] [2 200] [3 200] [4 0] [5 200] 600 0.11412 0.00018769 9.7057e–08

4 [1 0] [2 200] [3 0] [4 0] [5 400] 600 0.11522 0.00021951 9.5463e–08

5 [1 200] [2 200] [3 200] [4 0] [5 0] 600 0.11352 0.00022688 1.3709e–07

6 [1 0] [2 200] [3 0] [4 0] [5 200] 400 0.11706 0.00022832 2.6464e–07

7 [1 0] [2 200] [3 0] [4 400] [5 0] 600 0.11437 0.00023058 1.7518e–07

8 [1 200] [2 200] [3 0] [4 0] [5 200] 600 0.11515 0.00023553 1.2357e–07

9 [1 0] [2 400] [3 0] [4 0] [5 200] 600 0.11689 0.0002384 9.9486e–08

10 [1 0] [2 200] [3 0] [4 200] [5 0] 400 0.1146 0.00024006 1.671e–07

11 [1 0] [2 400] [3 0] [4 200] [5 0] 600 0.11474 0.00024258 1.1838e–07

12 [1 0] [2 400] [3 200] [4 0] [5 0] 600 0.11608 0.00024774 1.1835e–07

. . .

52 [1 0] [2 0] [3 0] [4 600] [5 0] 600 0.11861 0.00047045 7.7461e–07

53 [1 0] [2 0] [3 0] [4 200] [5 0] 200 0.11991 0.00048493 6.8525e–07

54 [1 600] [2 0] [3 0] [4 0] [5 0] 600 0.11539 0.00048698 4.8468e–07

55 [1 0] [2 0] [3 0] [4 0] [5 0] 0 0.11794 0.00051235 6.648e–07

56 [1 0] [2 200] [3 0] [4 0] [5 0] 200 0.12025 0.0005157 9.0915e–07

120 6. Evaluation

Table 6.9 shows the top and bottom strategy results when sorted by ascend-

ing Var[g(Y)|s]. The top is effectively those that minimise Var[g(Y)|s] (objective).

There is a preference for p2 and a smaller preference for p5, which appears to be

the most sensitive parameters. p2 does not completely dominate since strategies

allocating most (400) or all (600) samples to p2 are not the top strategies. In gen-

eral, strategies with samples allocated to only a single parameter’s data source

are towards the bottom of the (complete) results, suggesting that at least some

spreading of the samples is more optimal. p1 appears to be the least sensitive

parameter.

The difference between the variance values is small, which makes the strategy

results ordering highly susceptible small changes in the quality of the parameter

uncertainty representation. This makes the number of experiments more impor-

tant. It is natural to assume that the strategy with no additional samples (only

existing data used for the parameter uncertainty) should be last. In these results

it is second last suggesting some inaccuracy in the results. The last strategy in

row 56 has a relatively large Var of Var value so it is likely to be a poor quality

result rather than least optimal.

Even with analytic solving available the analysis can become costly as the

number of input parameters increases. This example of 200 experiments for each

of the 56 strategies (11200 experiments total) took approximately 240 minutes to

compute on one quad-core Mac (parallelised where possible, used for all future

times). An average of 4.3 minutes per strategy, additional strategies would be a

linear increase in the total analysis time. At nearly 1.3 seconds per experiment,

the model cost could be a lot worse. Given the experiment design and amount

of experiments appears to be insufficient, we will use importance sampling to

expand the strategy space while increasing the number of experiments used per

strategy.

6.2.3 Importance Sampling

By using the Basic Exhaustive Algorithm with importance sampling, one can dra-

maticially reduced the required model computation. This section uses that algo-

6. Evaluation 121

rithm to allow more expanded strategy options. The following example uses

interval-based sampling to guarantee good coverge of the anchor strategy’s X(s)

parameter data uncertainty. Combining this with a full factorial experiment de-

sign results in an increased number of experiments per strategy compared to the

previous example but a reduction in the number of different values per param-

eter. With k = 5 and 5 input parameters, R = k|P| = 55 = 3125 experiments

per strategy. The increase is negated by only evaluating one (anchor) strategy

directly, as apposed to 56 strategies in the previous example. A total of 11200 ex-

periments were executed in the previous example, but a different, simpler design

was used.

The collection budget constraint is increased to C = 1000 and data source sam-

ple increments h(Dj) remain at 200 samples. There are 252 generated strategies

when completely covering the expanded problem. Thus the model computation

time saved by using importance sampling is used to evaluate the anchor strat-

egy with increased accuracy (more experiments) and evaluate more overall strat-

egy configurations. The anchor strategy is set to s1 = {...|N(D1) = 0, N(D2) =

0, N(D3) = 0, N(D4) = 0, N(D5) = 0} as recommended in Section 5.3.1 and

Section 6.1.3.

122
6.Evaluation

Table 6.10: PU Importance sampling: Sorted by Var[g(Y)|s] (Top and Bottom)

s p1 p2 p3 p4 p5 Total Cost E[g(Y)] (mean) Var[g(Y)|s] Var Of Var

189 [1 200] [2 400] [3 200] [4 0] [5 200] 1000 0.11267 8.3298e–05 1.0208e–07

86 [1 0] [2 200] [3 400] [4 200] [5 200] 1000 0.11169 9.2348e–05 9.15e–08

80 [1 0] [2 200] [3 200] [4 400] [5 200] 1000 0.10848 9.4265e–05 1.1092e–07

174 [1 200] [2 200] [3 200] [4 0] [5 400] 1000 0.11325 9.4752e–05 1.0741e–07

106 [1 0] [2 400] [3 200] [4 200] [5 200] 1000 0.10804 9.6471e–05 1.3559e–07

224 [1 400] [2 200] [3 200] [4 0] [5 200] 1000 0.11349 9.6806e–05 1.2209e–07

173 [1 200] [2 200] [3 200] [4 0] [5 200] 800 0.11244 0.00010051 9.6775e–08

78 [1 0] [2 200] [3 200] [4 200] [5 400] 1000 0.10862 0.0001094 1.3147e–07

179 [1 200] [2 200] [3 400] [4 0] [5 200] 1000 0.11646 0.00011198 1.5081e–07

77 [1 0] [2 200] [3 200] [4 200] [5 200] 800 0.10785 0.00011478 1.2673e–07

. . .

249 [1 800] [2 0] [3 0] [4 200] [5 0] 1000 0.14375 0.0013522 1.4555e–05

240 [1 600] [2 0] [3 200] [4 200] [5 0] 1000 0.14261 0.0013803 2.162e–05

141 [1 200] [2 0] [3 0] [4 800] [5 0] 1000 0.14252 0.0014143 1.12e–05

155 [1 200] [2 0] [3 400] [4 200] [5 0] 800 0.14344 0.0014768 1.7284e–05

160 [1 200] [2 0] [3 600] [4 200] [5 0] 1000 0.14348 0.0014923 2.0257e–05

151 [1 200] [2 0] [3 200] [4 600] [5 0] 1000 0.14213 0.0014934 2.0257e–05

215 [1 400] [2 0] [3 400] [4 200] [5 0] 1000 0.14479 0.0015892 2.7102e–05

157 [1 200] [2 0] [3 400] [4 400] [5 0] 1000 0.14433 0.0016672 2.723e–05

6. Evaluation 123

Table 6.10 shows the top and bottom strategy results when sorted by the ob-

jective minimise Var[g(Y)|s] (calculated using importance sampling). One can

immediately see that the strategies which minimise Var[g(Y)|s] allocate new sam-

ples to the data sources of the assumed most sensitive parameters p2 and p5. This

is demonstrated at both the top and bottom of the table. The overall optimal

strategy when minimising Var[g(Y)|s] is remains a split allocations of samples,

s189 spreads the budget C over multiple data sources.

The bottom of Table 6.10 is a little unexpected as it is not filled with the cheap-

est strategies, using zero or small amounts of new samples. Instead it is strategies

allocating significant sample sizes to the two parameters believed to be the least

sensitive (p1 and p4). These strategies also have the some of highest Var of Var

values, denoting relatively less certain algorithm results. It may also highlight

that spending the entire collection budget does not guarantee improvement.

The complete analysis of 252 strategies using BEA with importance sampling

took approximately 112 minutes. This averages out at roughly 0.4 minutes per

strategy, directly evaluating the anchor strategy with the model takes a significant

portion of that run time.

6.2.4 Most-Expensive-First Search Algorithm

In Section 5.6 we discussed ways of intelligently searching a large strategy solu-

tion space so that only strategies likely to be optimal are evaluated. This can be

used even when evaluating strategies using importance sampling.

With the optimisation objective minimise Var[g(Y)|s], one can use the Most-

Expensive-First Search algorithm (Section 5.6.5) and evaluate only a subset of the

strategy space to find an approximate solution to the optimisation problem.

Another bonus of the importance sampling technique is that we can re-shape

the strategy solution space and still use the previous anchor strategy results (as

long as the underlying data source choices and existing sample data are un-

changed). If we increase the budget to C = 1600, the complete strategy space

becomes 1287 strategies. Using the previous anchor strategy (s1) results from

124 6. Evaluation

3125 experiments, we use a Most-Expensive-First Search version of BEA with im-

portance sampling to produce an approximate solution.

Analysis stopped after 520 out of 1287 strategies, as the stopping conditions

were met (see Section 5.6.5). The optimal strategy s402 shares the new samples be-

tween parameters p2 to p5. p2 still receives the most samples in the top strategies.

p1 appears to be insensitive and should possibly have been removed from con-

sideration before algorithm execution. This highlights the importance of factor

screening (see Section 5.6.1).

Analysis took approximately 18 minutes with pre-calculated anchor strategy

results. This means that a 3125 experiment, 5 input parameter anchor strategy re-

sult can be importance sampled to new strategies using approximately 2 seconds

per target strategy. 520 strategies evaluated out of 1287 is close to only 40% of

the strategy solution space. While not a huge time saving in this case, that would

be a major time saving with a larger strategy solution space or a longer model

solving time. This can be further tuned with algorithm options on batch size and

stopping conditions (see Section 5.6.5).

6.Evaluation
125

Table 6.11: PU Most-Expensive-First Search: Sorted by Var[g(Y)|s] (Top Results)

s p1 p2 p3 p4 p5 Total Cost E[g(Y)] (mean) Var[g(Y)|s] Var Of Var

402 [1 0] [2 600] [3 200] [4 400] [5 400] 1600 0.11157 5.8124e–05 9.6045e–08

331 [1 0] [2 400] [3 200] [4 600] [5 400] 1600 0.11157 5.9179e–05 9.6421e–08

346 [1 0] [2 400] [3 400] [4 400] [5 400] 1600 0.1133 6.2269e–05 1.2022e–07

404 [1 0] [2 600] [3 200] [4 600] [5 200] 1600 0.11294 6.4542e–05 1.2306e–07

447 [1 0] [2 800] [3 200] [4 200] [5 400] 1600 0.11356 6.4975e–05 1.286e–07

333 [1 0] [2 400] [3 200] [4 800] [5 200] 1600 0.11242 6.6865e–05 1.0264e–07

412 [1 0] [2 600] [3 400] [4 200] [5 400] 1600 0.11488 6.701e–05 1.6721e–07

449 [1 0] [2 800] [3 200] [4 400] [5 200] 1600 0.11338 6.7064e–05 1.4024e–07

358 [1 0] [2 400] [3 600] [4 400] [5 200] 1600 0.11249 6.7125e–05 1.0753e–07

356 [1 0] [2 400] [3 600] [4 200] [5 400] 1600 0.11268 6.7594e–05 1.1258e–07

774 [1 200] [2 600] [3 200] [4 0] [5 600] 1600 0.11393 7.0961e–05 1.3885e–07

343 [1 0] [2 400] [3 400] [4 200] [5 600] 1600 0.11094 7.1615e–05 1.1151e–07

420 [1 0] [2 600] [3 600] [4 200] [5 200] 1600 0.11407 7.2242e–05 1.445e–07

984 [1 400] [2 400] [3 200] [4 0] [5 600] 1600 0.11276 7.3293e–05 1.5188e–07

126 6. Evaluation

6.2.5 One to Many

The following example increases the complexity of the problem description by in-

troducing data sources that provide data for multiple parameters simultaneously.

This also introduces the possibility that a parameter may have data available from

more than one data source in a single strategy.

Using the same PRISM model parameters {p1, ..., p5}, we define a different

collection of four data sources D with a data source-input mapping:

d =

2

6666664

1 0 0 0 0

0 1 0 0 0

0 0 1 1 1

0 0 0 0 1

3

7777775

The key differences from the previous examples are: (1) D4 can provide data for

p3, p4, and p5 simultaneously. (2) if both D3 and D4 are active in a strategy, p5

could use D3, D4, or if appropriate both.

Each data source has the same sample increment h(Dj) = 200 and the exist-

ing data is configured as: Dj = {µ̂i = 0.8, ŝi
2 = 0.05, M(Dj) = 50}. Sample cost

cj = 1 for all data sources except D3, which is c3 = 2. Given this data source infor-

mation we can generate the base strategies (each possible combination for pairing

an input parameter to one active data source). All strategies in the solution space

will be based on one of these.

Table 6.12: PU One to Many Base Strategies by Input Parameter

Base Strategy p1 p2 p3 p4 p5

1 [1 0] [2 0] [3 0] [3 0] [3 0]

2 [1 0] [2 0] [3 0] [3 0] [3 0; 4 0]

Each cell in Table 6.12 contains the index of active data sources in the strategy

with the minimum new sample size of the data source. Note in base strategy 2

while the selected data source for p5 is D4, data can also be provided by D3.

The objective of this example is minimise variance Var[g(Y)|s] subject to a max-

6. Evaluation 127

imum collection budget C = 1600. Generating all valid strategies results in 390

strategies. Using BEA with importance sampling, we evaluate all of these strate-

gies with anchor strategy set to s1 = {...|N(D1) = 0, N(D2) = 0, N(D3) = 0}.

The experiment count is increased: values per parameter k = 6 with a 6 interval-

based full factorial design, R = 65 = 7776 experiments.

The data combining mode for the parameter uncertainty modelling of each input

is set to Best Estimated. When more than one data source is active for a parameter,

only data from one data source is used (the one predicted to produce data with

smallest variance given the strategy information).

Table 6.13 shows the top and bottom strategies when sorted by Var[g(Y)|s]

(objective). Two strategies are estimated to be equally optimal s86 and s376. With

the chosen data combining mode these strategies are in fact equal as D4 in s376

(existing samples only) will not be used when D3 has a greater sample size. Since

D3 will have a narrower normal distribution representing parameter uncertainty

given the data source information. The optimal strategy spreads samples across

all parameters but includes a major allocation for p1 via D1. That allocation is

slightly surprising given it appeared to be quite insensitive in previous examples.

It could be partly due to the increased cost of samples for multi-parameter data

source D3 but it is more likely due to inconsistent behaviour of results between

examples.

The top strategy results in Table 6.13 also include other strategies with equal

E[g(Y)] and Var[g(Y)|s] estimators because of similar combining mode selection

decisions. In some of these cases e.g. s140 more costly strategies with unused data

collection are equally optimal. Employing minimise cost as a secondary objective

can help migate the effect of these. While equal strategy results are possible,

they are only likely to occur when importance sampling is used, and only then

with a data selection mode that can result in strategies with identical parameter

uncertainty distributions. If plain BEA was used for this problem description the

results for these strategies would be similar but differ at least a small amount due

to the different randomly generated parameter values in experiments.

128
6.Evaluation

Table 6.13: PU One to Many Sorted by Var[g(Y)|s] (Top Results)

s p1 p2 p3 p4 p5 Total Cost E[g(Y)] (mean) Var[g(Y)|s] Var Of Var

86 [1 1000] [2 200] [3 200] [3 200] [3 200] 1600 0.10985 8.3145e–05 1.1511e–07

376 [1 1000] [2 200] [3 200] [3 200] [3 200; 4 0] 1600 0.10985 8.3145e–05 1.1511e–07

359 [1 800] [2 200] [3 200] [3 200] [3 200; 4 200] 1600 0.11714 0.00011322 3.3403e–07

78 [1 800] [2 200] [3 200] [3 200] [3 200] 1400 0.11714 0.00011322 3.3403e–07

358 [1 800] [2 200] [3 200] [3 200] [3 200; 4 0] 1400 0.11714 0.00011322 3.3403e–07

140 [1 0] [2 200] [3 600] [3 600] [3 600; 4 200] 1600 0.11829 0.00013589 6.0612e–07

9 [1 0] [2 200] [3 600] [3 600] [3 600] 1400 0.11829 0.00013589 6.0612e–07

139 [1 0] [2 200] [3 600] [3 600] [3 600; 4 0] 1400 0.11829 0.00013589 6.0612e–07

76 [1 800] [2 0] [3 400] [3 400] [3 400] 1600 0.11003 0.00015365 1.0052e–06

353 [1 800] [2 0] [3 400] [3 400] [3 400; 4 0] 1600 0.11003 0.00015365 1.0052e–06

. . .

197 [1 200] [2 0] [3 0] [3 0] [3 0; 4 1200] 1400 0.19977 0.011073 0.00048738

243 [1 200] [2 600] [3 0] [3 0] [3 0; 4 800] 1600 0.19824 0.011107 0.001152

147 [1 0] [2 400] [3 0] [3 0] [3 0; 4 1200] 1600 0.19955 0.011192 0.00072357

216 [1 200] [2 200] [3 0] [3 0] [3 0; 4 1000] 1400 0.20087 0.011662 0.00090593

128 [1 0] [2 200] [3 0] [3 0] [3 0; 4 1400] 1600 0.20313 0.012121 0.00068045

232 [1 200] [2 400] [3 0] [3 0] [3 0; 4 1000] 1600 0.20735 0.014255 0.0016616

198 [1 200] [2 0] [3 0] [3 0] [3 0; 4 1400] 1600 0.20993 0.014639 0.00084022

217 [1 200] [2 200] [3 0] [3 0] [3 0; 4 1200] 1600 0.21228 0.015881 0.0016901

6. Evaluation 129

Given the previous examples some of the strategy ordering is a little unex-

pected, especially since p1 was previously thought to be insensitive and p5 one

of the more sensitive parameters. There are a notable number of strategies with

relatively larger Var of Var values towards the bottom of the strategies results

(maximising Var[g(Y)|s]), many of which have larger sample sizes for D4 (p5

only data source). The results suggest further exploration of trying to normalise

the confidence of algorithm strategy results is required. This may involve using

a variable number of experiments based upon the Var of Var confidence measure

or new solving techniques.

There is also the possibility that importance sampling from the widest pa-

rameter uncertainty distribution to the narrowest struggles to maintain compa-

rable strategy result quality (with the current experiment design). If the anchor

strategy is not a real strategy under consideration, and we do not evaluate the

Var[g(Y)|s] for it, the anchor strategy experiments used in importance sampling

do not need to be the same single source distribution for all experiments. Instead,

it may better for the anchor experiments to be made up of values sampled from

multiple source distributions, both wide and narrow distributions. This in turn

covers both the required range and the likelihood of values in the target strate-

gies. Analysing a strategy with importance sampling could also use only a subset

of the more likely experiments values, to stabilise the importance sample weights.

Further exploring this factor of importance sampling is beyond the scope of this

work.

6.2.6 Summary

This section of PRISM-based examples highlights the need to consider solving

complexity and to further explore the relative confidence of algorithm strategy

results.

The initial results in this section appeared to highlight a need to increase the

number of experimental values. While the model execution cost is relatively

small, the overall time still increases rapidly when evaluating a full factorial de-

sign or a large strategy space. BEA quickly becomes long running to impractical

130 6. Evaluation

with limited computational resources.

The proposed algorithms do not appear to be viable for this model at granu-

lar sample sizes and may need further future work to produce useful consistent

results at the demonstrated sample sizes. Differences in behaviour between ex-

amples brought further questions about the relative quality of the Var[g(Y)|s]

estimates. Even when using an increased number of experiments in later exam-

ples, this uneven quality appears to dominate, making general strategy ordering

or patterns difficult to resolve with certainty. Further work is needed to normalise

Var[g(Y)|s] confidence (during or after solving) before the results can be usable

in practice.

6.3 Discussion

This section provides a further discussion of the results in Section 6.1 and Sec-

tion 6.2 including what can be learned from them collectively.

The results show that we are dealing with very small values for variance and

other results, which makes the result very sensitive to errors from algorithm or

solving inaccuracy. With large or unpredictable simulation variance it may be

hard to distinguish the effect of parameter uncertainty, although one could also

argue that that is a good thing. If the input, and specifically, parameter uncer-

tainty is deemed the next best improvement to the model results, then simulation

uncertainty must already be manageable.

Larger data source sample size increments make the optimisation problem

both easier to deal with and easier to see results, since changes have a more noti-

cable effect on the uncertainty between sample levels. This is why others [1] use

large increments like 500 in an example. It would not necessarily scale easily to

much more granular sample sizes. One could claim that this shows a problem

in evaluating the algorithm results to sufficient accuracy (given very small num-

bers), or that we must also consider whether the parameter uncertainty modelling

is representative. Either way this could be greatly improved with the use of more

realistic data.

6. Evaluation 131

Even with small models the computation costs multiply rapidly. The impor-

tance sampling-based approach becomes necessary rather than an optional effi-

ciency improvement. Other methods sometimes resort to metamodel simplifica-

tions in place of actual models. These are trained with some experiments to then

solve for many inputs. While we have avoiding doing this directly, one could

consider our importance sampling approach similar to these. When using models

that take longer to solve than those presented here, anything beyond small strat-

egy solution space will likely need to use the approximate solving algorithms.

6.4 Summary

In this chapter we presented the results from applying the optimisation solving

algorithms with different options to two models: an M/M/1 queue model and

PRISM based business workflow model.

Section 6.1 (M/M/1) demonstrated features of the various methods presented

in the thesis. It showed the techniques working but only in an ideal, less complex

scenario. Section 6.2 (PRISM) applies what was learned in the earlier sections to

a less than ideal scenario. One sees the issues when applying the algorithms to

more complex models, many of which are common to sensitivity and uncertainty

analysis type methods. The results were then discussed as whole considering

what can be learned from evaluation across different models. The next chapter

concludes the thesis by summarising the contributions of the thesis and describ-

ing possible directions of future work in this area.

132 6. Evaluation

CHAPTER 7

Conclusion and Future Work

This thesis has looked at optimising the data collection strategy when collecting

data for stochastic models and provided a number of contributions in this area.

The following chapter reviews the key contributions of the thesis and the limita-

tions.

The rest of the chapter is structured as follows: Section 7.1 highlights the con-

tributions of this thesis, including how they link to each chapter. Section 7.2 sum-

marises limitations in the proposed solutions. Section 7.3 discusses different di-

rections of future work in this interesting problem area.

7.1 Summary of Contributions

This section summarises the key contributions of the thesis, and relates them to

the appropriate chapter.

• A background and literature review of data collection for stochastic and

probabilistic models and related model analysis topics.

We provided a cross discipline review of the diverse problem area and re-

lated work. Chapter 2 explained the key topics and issues relating to the

scenario, before discussing existing work that is similar to our problem or a

subproblem within it. This included the essential aspects of sensitivity and

uncertainty analysis. These techniques overlap with the thesis problem but

are tools in the process rather than a solution to our optimisation. Similar

133

134 7. Conclusion and Future Work

work in this area does not consider the expanded data collection problem,

only the need for more data.

• A problem formulation for expressing the data collection problem and a

collection of optimisation problems

We formally defined key aspects of the data collection problem domain and

presented a framework for describing it throughout the thesis. In Chapter 3

the data collection problem was broke down into a number optimisation

problems, which were then expanded to include more complex aspects of

the problem. We provided multiple perspectives on the problem, looking at

minimising uncertainty or minimising cost, and a thorough consideration

of the collection constraints not often mentioned in related work.

• Algorithms to allow the solving of the optimisation problem, working

strategy qualities through the model.

Multiple algorithms were developed for different approaches to solving

the optimisation problem, and another based on related work [1] was inte-

grated into our framework to encapsulate additional constraints. Each uses

the model to estimate the effect of a strategy’s parameter data uncertainty

on the model outputs. Chapter 5 presented details of the algorithms and a

discussion of their assumptions and complexity. The value of our approach

is the ability to optimise the allocation of additional data samples within the

problem constraints.

• Additional optimisations for improving algorithm efficiency using im-

portance sampling and other techniques.

Chapter 5 provided an importance sampling based alternative that can greatly

reduce the required model computation. We added stratified sampling and

experiment designs to better cover the parameter uncertainty space of a

strategy with less model executions (Chapter 4).

Reducing the required model solutions is not the only way we can improve

efficiency. We also looked to reduce the numbers of strategies that need to

be evaluated to find the optimal strategy. Additional algorithms were pre-

sented that intelligently search the space based upon information known

7. Conclusion and Future Work 135

before the evaluation and the results evaluated so far. These can dramati-

cally reduce the number of strategies evaluated, which in turn can reduce

model solutions needed.

• A prototype MATLAB tool allowing generic execution of the optimisation

solving algorithms and associated functions.

The solving algorithms and all related methods were developed and tested

in MATLAB. The MATLAB tool interfaces with external models in PRISM

and Java as required. Where possible, components of the tool were split up

and made model independent. For example, the models, input generation

methods and objectives can be swapped out relatively easily. Appendix A

provides a detailed description of the implementation.

• A demonstration and evaluation of the optimisation implementation us-

ing multiple examples.

We evaluate the algorithm results in Chapter 6 using an M/M/1 model and

a PRISM model. The M/M/1 model is a simpler example well covered and

often used in existing analysis literature, including many demonstrations of

uncertainty analysis. The PRISM model provides a more realistic but also

more specialised example. The additional solving cost of the PRISM model

allowed us to better consider how we apply the algorithms.

7.2 Limitations

The main limitation of the proposed solution is the computational cost in the

face of uncertainty. In Section 2.5 we discussed the many uncertain aspects in

the problem domain. These make it difficult to produce accurate algorithm re-

sults at a low computational cost. The parameter uncertainty modelling involves

exploring the effect of relatively small changes in the parameter values (which

themselves may contribute to random inputs). Detecting the effect of these small

changes can require many model experiments. Uncertainty and sensitivity anal-

ysis methods tend to avoid this requirement since it does not scale well with an

increasing number of inputs or model cost. Since the proposed algorithms do

136 7. Conclusion and Future Work

the equivalent of multiple uncertainty analysis runs, it is obviously even more

important.

We proposed many ways to improve efficiency in an attempt to overcome this

limitation but for some costly models or models with many important parameters

the methods will not be practical without a long run time or significant process-

ing power. Where possible we have enabled parallel execution, working towards

the assumption that distributed computing may be required in certain situations.

One could also argue that if a company is interested in the result of a very com-

plex model, they also more likely to be able to invest the necessary computing

resources for a costly analysis.

7.3 Future Work

This section describes possible directions for future work in the problem area. We

consider four classifications of future work: Additional or more complex prob-

lem constraints (Chapter 3), Parameter uncertainty modelling (Chapter 4), Alter-

native solving algorithms (Chapter 5), and Additional Results validation (Chap-

ter 6) .

7.3.1 Problem Constraints

In Chapter 3 we described the data collection problem with objective functions

and constraints. These constraints restricted the set of valid strategies. Data col-

lection cost and budget were an important part of the constraints. In practice

one is also restricted by the available data sources and we allowed configuration

of the sample size minimum value, maximum value, and increments for a data

source.

These constraints could be made more complex or additional constraints added

to better represent a data collection scenario. In our implementation we had lin-

ear cost functions based upon sample size but for many collection methods you

would want something more complex, such as a reducing sample cost as sam-

7. Conclusion and Future Work 137

ple size increases. Considering additional constraints, one could separate time

from the current abstraction. The time available for collection at a per data source

level would change the maximum sample size modelling, and constrain whole

strategies. We currently allow any combination of data sources within a strategy

(as long as other constraints are met) but it is plausible that the use of one data

source makes another unavailable, for example if doing one collection method

could affect and invalidate the data of another. The only way right now to ac-

commodate many of these would be by manually configuring each strategy to

test, so assisting and automating the constraint specification could be explored

further.

7.3.2 Parameter Uncertainty Modelling

This section discusses future work in generating input parameter values and de-

signing experiments with these values.

One of the most important parts of solving the data collection optimisation

problem is estimating and modelling a strategy’s parameter uncertainty. This

representation is fed into the model to analyse each strategy. How we model

the current parameter data uncertainty and then make predictions on future col-

lection are a fundamental part of all solving algorithms. We discussed three ap-

proaches in Chapter 4 but the overall framework was designed in such a way that

would allow alternatives to be added and evaluated.

These methods generate sets of experiment values for each input parameter.

Each input parameter’s data uncertainty is modelled and a value generated in-

dependently. Looking at the existing approach there is also the opportunity for

further exploiting of stratification and design of experiments. The current design

of experiments is either none or all combinations. The implemented solution of-

fers basic random stream like usage, where generated values are used and paired

in order they are generated. Alternatively, it can create experiments using all

combinations of the generated experiment values. The latter is the best solution

for covering the input space but can become costly with many input parameters.

Efficiently designing experiments that cover the input space is a well researched

138 7. Conclusion and Future Work

problem. Incorporating and evaluating other techniques not covered in the thesis

would be beneficial.

The parameter uncertainty modelling looks at a small number of measurable

factors when making estimations. The most important of which are the variance

and the number samples. In Section 3.2 we discussed other data qualities that

may be important when evaluating data and data sources. Many of these are

difficult to measure, especially in a way which is comparable across data sources,

and this is an interesting problem by itself. Beyond that you can consider whether

these metrics could be accommodated in our approach of testing strategy quali-

ties through the model. For example a simple but difficult to calibrate approach

would be to include multipliers altering the other algorithm inputs or results

based upon other the metrics.

7.3.3 Alternative Solving Algorithms

Chapter 5 described optimisation solving algorithms for finding the optimal strat-

egy or strategies. Three of these either tested all strategies or incrementally im-

proved a strategy. With many input parameters, many data sources or very flex-

ible data source options there may be a lot of valid strategies to test. In Sec-

tion 5.6 we discussed other ways of reducing the problem or searching the space

but these were not all fully formalised or implemented. Based upon these ideas

and existing optimisation techniques, other solving algorithms could be devised

to efficiently explore and solve a large strategy space.

As part of the Iterative Algorithm (Chapter 5) we also explored the idea of

separating parameter uncertainty from simulation uncertainty with the use of

ANOVA. The idea being that a strategy needs to be good enough that parame-

ter uncertainty is no longer noticeable, and only simulation uncertainty remains.

While the results were inconclusive, similar techniques based upon the same idea

definitely warrant further research.

Parallel execution options were included in the MATLAB implementation to

speed up strategy and experiment evaluation. These could be expanded further

to multiple machines using MATLAB Distributed Computing Server [58]. For

7. Conclusion and Future Work 139

very complex models or solution spaces it would appropriate and interesting

to extend the solving to use cloud computing [57, 93] resources, such as Ama-

zon EC2 [94] which has recently been added to MATLAB Distributed Computing

Server.

7.3.4 Additional Results Validation

In Chapter 6 we demonstrated the method with two different models over mul-

tiple examples. Like all new methods, the solutions described in this thesis will

need further testing both using additional models and by being incorporated into

the modelling lifecycle. Other types of models could be used, as well as even

more complex models with a long simulation time or many inputs. These would

further test the computational requirements of running the solving algorithms.

To further evaluate the solving algorithms, they need to be used with a real

active case study. The optimal data collection strategies would then be imple-

mented and real data collected. This alone would allow you to compare the re-

sulting data against the predicted improvements, testing and then tweaking the

parameter uncertainty modelling techniques. If possible a control strategy would

be implemented, created by expert opinion or using other methods. This kind of

case study based evaluation was planned but fell through for two different stud-

ies. Long term validation of modelling and predictions is an important aspect

for their usage but it is difficult to do in practice, especially with redundancy for

comparison. For security, part of the problem is the rapidly changing systems

being modelled and the surrounding landscape.

The ideal, but most costly way to evaluate these algorithms would be to use

a well understood model and then do a lot of data collection for all possible data

sources. This collection would be well beyond that recommended by the strate-

gies, ideally the maximum collection allowed for each data source. One could

then compare all strategy recommendations against strategies created after the

fact, based upon the data collected. It would be the perfect test and allow major

calibration of the methods but it would obviously be very costly.

140 7. Conclusion and Future Work

References

[1] M. Freimer and L. Schruben, “Collecting data and estimating parameters

for input distributions,” in Proceedings of the 34th Winter Simulation Confer-

ence, 2002, pp. 392–399.

[2] R. Cain and A. Van Moorsel, “Optimization of Data Collection Strategies

for Model-Based Evaluation and Decision-Making,” in IEEE/IFIP 42nd In-

ternational Conference on Dependable Systems & Networks (DSN), Jun. 2012.

[3] P. Limbourg, “Dependability Modelling under Uncertainty: An Imprecise

Probabilistic Approach,” Studies in Computional Intelligence, vol. 148, Sep.

2008.

[4] J. Fitzgerald, P. Larsen, K. Pierce, M. Verhoef, and S. Wolff, “Collaborative

modelling and co-simulation in the development of dependable embedded

systems,” English, in Integrated Formal Methods, ser. Lecture Notes in Com-

puter Science, vol. 6396, Springer Berlin Heidelberg, 2010, pp. 12–26, ISBN:

978-3-642-16264-0. DOI: http://dx.doi.org/10.1007/978-3-642-16265-

7_2.

[5] B. R. Haverkort, Performance of computer communication systems: a model-

based approach. J. Wiley, 1998.

[6] R. R. Barton, “Tutorial: Input uncertainty in output analysis,” in Proceedings

of the 2012 Winter Simulation Conference, IEEE, 2012, pp. 1–12.

[7] R. G. Sargent, “Verification and validation of simulation models,” in Pro-

ceedings of the 37th Winter Simulation Conference, 2005, p. 143.

[8] L. F. Konikow and J. D. Bredehoeft, “Ground-water models cannot be vali-

dated,” Advances in Water Resources, vol. 15, no. 1, pp. 75–83, 1992.

141

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-16265-7_2
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-16265-7_2

142 References

[9] N. Oreskes, K. Shrader-Frechette, K. Belitz, et al., “Verification, validation,

and confirmation of numerical models in the earth sciences,” Science, vol.

263, no. 5147, pp. 641–646, 1994.

[10] J. Cariboni, D. Gatelli, R. Liska, and A. Saltelli, “The role of sensitivity anal-

ysis in ecological modelling,” Ecological Modelling, vol. 203, no. 1-2, pp. 167–

182, Apr. 2007.

[11] J. P. C. Kleijnen, “Factor Screening in Simulation Experiments: Review of

Sequential Bifurcation,” in Advancing the Frontiers of Simulation: A Festschrift

in Honor of George Samuel Fishman, Springer-Verlag, 2009, pp. 1–15.

[12] T. Homma and A. Saltelli, “Importance measures in global sensitivity anal-

ysis of nonlinear models,” Reliability Engineering & System Safety, vol. 52,

no. 1, pp. 1–17, 1996.

[13] K. Chan, A. Saltelli, and S. Tarantola, “Sensitivity analysis of model out-

put: variance-based methods make the difference,” in Proceedings of the 29th

Winter Simulation Conference, 1997, pp. 261–268.

[14] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, and J. Cariboni, Global sen-

sitivity analysis: the primer. Wiley, 2008.

[15] J. Hamel, M. Li, and S. Azarm, “Design Improvement by Sensitivity Analy-

sis Under Interval Uncertainty Using Multi-Objective Optimization,” Jour-

nal of mechanical design, vol. 132, 2010.

[16] A. Saltelli, M. Ratto, S. Tarantola, and F. Campolongo, “Sensitivity analysis

practices: Strategies for model-based inference,” Reliability Engineering &

System Safety, vol. 91, no. 10-11, pp. 1109–1125, 2006.

[17] A. Saltelli, “Global sensitivity analysis: an introduction,” in Proceedings of

4th International Conference on Sensitivity Analysis of Model Output (SAMO004),

2004, 27–43.

[18] E. Plischke, E. Borgonovo, and C. L. Smith, “Global sensitivity measures

from given data,” European Journal of Operational Research, vol. 226, no. 3,

pp. 536–550, 2013, ISSN: 0377-2217. DOI: http://dx.doi.org/10.1016/j.

ejor.2012.11.047. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0377221712008995.

http://dx.doi.org/http://dx.doi.org/10.1016/j.ejor.2012.11.047
http://dx.doi.org/http://dx.doi.org/10.1016/j.ejor.2012.11.047
http://www.sciencedirect.com/science/article/pii/S0377221712008995
http://www.sciencedirect.com/science/article/pii/S0377221712008995

References 143

[19] I. M. Sobol’, “Sensitivity estimation for nonlinear mathematical models,”

Matematicheskoe Modelirovanie, vol. 2, no. 1, pp. 112–118, 1990, MMCE (1993)

(in English).

[20] D. M. Hamby, “A comparison of sensitivity analysis techniques,” Health

Physics, vol. 68, no. 2, pp. 195–204, 1995.

[21] B. Sudret, “Global sensitivity analysis using polynomial chaos expansions,”

Reliability Engineering & System Safety, vol. 93, no. 7, pp. 964–979, 2008,

Bayesian Networks in Dependability, ISSN: 0951-8320. DOI: http://dx.

doi . org / 10 . 1016 / j . ress . 2007 . 04 . 002. [Online]. Available: http :

//www.sciencedirect.com/science/article/pii/S0951832007001329.

[22] A. Saltelli and P. Annoni, “How to avoid a perfunctory sensitivity analysis,”

Environmental Modelling and Software, vol. 25, no. 12, pp. 1508–1517, 2010,

cited By 134.

[23] F. Campolongo, A. Saltelli, and J. Cariboni, “From screening to quantitative

sensitivity analysis. A unified approach,” Computer Physics Communications,

vol. 182, no. 4, pp. 978–988, Apr. 2011.

[24] H. Christopher Frey and S. R. Patil, “Identification and review of sensitivity

analysis methods,” Risk analysis, vol. 22, no. 3, pp. 553–578, 2002.

[25] M. D. Morris, “Factorial sampling plans for preliminary computational ex-

periments,” Technometrics, vol. 33, no. 2, pp. 161–174, 1991.

[26] I. Sobol’ and S. Kucherenko, “Derivative based global sensitivity measures

and their link with global sensitivity indices,” Mathematics and Computers in

Simulation, vol. 79, no. 10, pp. 3009–3017, 2009, ISSN: 0378-4754. DOI: http:

//dx.doi.org/10.1016/j.matcom.2009.01.023. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0378475409000354.

[27] ——, “A new derivative based importance criterion for groups of variables

and its link with the global sensitivity indices,” Computer Physics Commu-

nications, vol. 181, no. 7, pp. 1212–1217, 2010, ISSN: 0010-4655. DOI: http:

//dx.doi.org/10.1016/j.cpc.2010.03.006. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S001046551000086X.

http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2007.04.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.ress.2007.04.002
http://www.sciencedirect.com/science/article/pii/S0951832007001329
http://www.sciencedirect.com/science/article/pii/S0951832007001329
http://dx.doi.org/http://dx.doi.org/10.1016/j.matcom.2009.01.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.matcom.2009.01.023
http://www.sciencedirect.com/science/article/pii/S0378475409000354
http://www.sciencedirect.com/science/article/pii/S0378475409000354
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2010.03.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2010.03.006
http://www.sciencedirect.com/science/article/pii/S001046551000086X
http://www.sciencedirect.com/science/article/pii/S001046551000086X

144 References

[28] M. McKay, J. Morrison, and S. Upton, “Evaluating prediction uncertainty

in simulation models,” Computer Physics Communications, vol. 117, no. 1-2,

pp. 44–51, 1999.

[29] A. Bar Massada and Y. Carmel, “Incorporating output variance in local sen-

sitivity analysis for stochastic models,” Ecological Modelling, vol. 213, no.

3-4, pp. 463–467, 2008.

[30] J. Ascough, T. Green, L. Ma, and L. Ahuja, “Key criteria and selection of

sensitivity analysis methods applied to natural resource models,” Interna-

tional Congress on Modeling and Simulation Proceedings, 2005.

[31] J. P. C. Kleijnen, “Searching for important factors in simulation models with

many factors: Sequential bifurcation,” European Journal of Operational Re-

search, no. 96, pp. 180–194, Dec. 1996.

[32] W. Shi and Z. Liu, “Factor screening for simulation with multiple responses:

Sequential bifurcation,” European Journal of Operational Research, 2014.

[33] X. Wang, Y. Tang, and Y. Zhang, “Orthogonal arrays for estimating global

sensitivity indices of non-parametric models based on ANOVA high di-

mensional model representation,” Journal of Statistical Planning and Infer-

ence, vol. 142, no. 7, pp. 1801–1810, 2012, ISSN: 0378-3758. DOI: http://

dx.doi.org/10.1016/j.jspi.2012.02.043. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0378375812000900.

[34] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three

methods for selecting values of input variables in the analysis of output

from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

[35] C. J. Roy and W. L. Oberkampf, “A comprehensive framework for verifi-

cation, validation, and uncertainty quantification in scientific computing,”

Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 25-28,

pp. 2131–2144, Jun. 2011.

[36] J. C. Helton, J. Johnson, C. Sallaberry, and C. Storlie, “Survey of sampling-

based methods for uncertainty and sensitivity analysis,” Reliability Engi-

neering & System Safety, vol. 91, no. 10-11, pp. 1175–1209, 2006.

http://dx.doi.org/http://dx.doi.org/10.1016/j.jspi.2012.02.043
http://dx.doi.org/http://dx.doi.org/10.1016/j.jspi.2012.02.043
http://www.sciencedirect.com/science/article/pii/S0378375812000900
http://www.sciencedirect.com/science/article/pii/S0378375812000900

References 145

[37] W. L. Oberkampf, J. C. Helton, C. A. Joslyn, S. F. Wojtkiewicz, and S. Ferson,

“Challenge problems: uncertainty in system response given uncertain pa-

rameters,” Reliability Engineering & System Safety, vol. 85, no. 1-3, pp. 11–19,

Jul. 2004.

[38] S. G. Henderson, “Input modeling: input model uncertainty: why do we

care and what should we do about it?” In Proceedings of the 2003 Winter

Simulation Conference, Winter Simulation Conference, Dec. 2003, pp. 90–

100.

[39] F. Zouaoui and J. Wilson, “Accounting for input model and parameter un-

certainty in simulation,” in Proceedings of the 33nd Winter Simulation Confer-

ence, 2001, pp. 290–299.

[40] A. Law and W. Kelton, Simulation modeling and analysis, ser. McGraw-Hill

series in industrial engineering and management science. McGraw-Hill,

2000, ISBN: 9780070592926. [Online]. Available: http://books.google.

co.uk/books?id=QqkZAQAAIAAJ.

[41] R. C. H. Cheng, “Selecting input models,” in Proceedings of the 1994 Winter

Simulation Conference, IEEE, 1994, pp. 184–191.

[42] S. Sankararaman and S. Mahadevan, “Distribution type uncertainty due to

sparse and imprecise data,” Mechanical Systems and Signal Processing, vol.

37, no. 1-2, pp. 182–198, 2013, ISSN: 0888-3270. DOI: http : / / dx . doi .

org/10.1016/j.ymssp.2012.07.008. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S0888327012002713.

[43] S. E. Chick, “Input distribution selection for simulation experiments: ac-

counting for input uncertainty,” Operations Research, vol. 49, no. 5, pp. 744–

758, 2001.

[44] J. P. C. Kleijnen, “Sensitivity analysis versus uncertainty analysis: when to

use what?” In Predictability and Nonlinear Modelling in Natural Sciences and

Economics, J. Grasman and G. van Straten, Eds., Springer Netherlands, 1994,

pp. 322–333, ISBN: 978-94-010-4416-5. DOI: http://dx.doi.org/10.1007/

978-94-011-0962-8_27.

http://books.google.co.uk/books?id=QqkZAQAAIAAJ
http://books.google.co.uk/books?id=QqkZAQAAIAAJ
http://dx.doi.org/http://dx.doi.org/10.1016/j.ymssp.2012.07.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.ymssp.2012.07.008
http://www.sciencedirect.com/science/article/pii/S0888327012002713
http://www.sciencedirect.com/science/article/pii/S0888327012002713
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-011-0962-8_27
http://dx.doi.org/http://dx.doi.org/10.1007/978-94-011-0962-8_27

146 References

[45] R. R. Barton, R. C. H. Cheng, S. Chick, S. Henderson, A. M. Law, L. Leemis,

B. Schmeiser, L. Schruben, and J. Wilson, “Panel on current issues in sim-

ulation input modeling,” in Proceedings of the Winter Simulation Conference

2002, 2002, pp. 353–369.

[46] R. R. Barton and B. L. Nelson, “Quantifying input uncertainty via simula-

tion confidence intervals,” INFORMS Journal on Computing, vol. 26, no. 1,

pp. 74–87, 2014.

[47] R. C. H. Cheng and W. Holland, “Calculation of confidence intervals for

simulation output,” ACM Transactions on Modeling and Computer Simulation

(TOMACS), vol. 14, no. 4, pp. 344–362, 2004.

[48] J. P. C. Kleijnen, “Risk analysis and sensitivity analysis: antithesis or syn-

thesis?” ACM SIGSIM Simulation Digest, vol. 14, no. 1-4, pp. 64–72, 1983.

[49] S. Ng and S. Chick, “Reducing parameter uncertainty for stochastic sys-

tems,” ACM Transactions on Modeling and Computer Simulation (TOMACS),

vol. 16, no. 1, pp. 26–51, 2006.

[50] R. R. Barton and L. Schruben, “Uniform and Bootstrap Resampling of Em-

pirical Distributions,” in Proceedings of the 25th Winter Simulation Conference,

New York, NY, USA: ACM, 1993, pp. 503–508.

[51] ——, “Resampling methods for input modeling,” in Proceedings of the 2001

Winter Simulation Conference, vol. 1, 2001, pp. 372–378.

[52] R. R. Barton, Presenting a more complete characterization of uncertainty: Can it

be done? 2007.

[53] B. E. Ankenman, B. L. Nelson, and J. Staum, “Stochastic kriging for simula-

tion metamodeling,” in Proceedings of the 2008 Winter Simulation Conference,

2008, pp. 362–370.

[54] B. E. Ankenman and B. L. Nelson, “A quick assessment of input uncer-

tainty,” in Proceedings of the 2012 Winter Simulation Conference, IEEE, 2012,

pp. 1–10.

[55] E. Song and B. L. Nelson, “A quicker assessment of input uncertainty,” in

Proceedings of the 2013 Winter Simulation Conference, IEEE, 2013, pp. 474–485.

References 147

[56] F. Pappenberger and K. J. Beven, “Ignorance is bliss: or seven reasons not

to use uncertainty analysis,” Water Resources Research, vol. 42, no. 5, 2006,

W05302, ISSN: 1944-7973. DOI: http://dx.doi.org/10.1029/2005WR004820.

[57] Y. Liu, A. Y. Sun, K. Nelson, and W. E. Hipke, “Cloud computing for inte-

grated stochastic groundwater uncertainty analysis,” International Journal of

Digital Earth, vol. 6, no. 4, pp. 313–337, Jul. 2013.

[58] MathWorks, MATLAB Parallel Computing Toolbox, http://uk.mathworks.

com/products/parallel-computing/, Accessed 2015-01-15, 2014.

[59] A. D. Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does it mat-

ter?” Structural Safety, 2009.

[60] S. Ng and S. Chick, “Reducing input parameter uncertainty for simula-

tions,” in Proceedings of the 33rd Winter Simulation Conference, 2001, pp. 364–

371.

[61] S. E. Chick, “Bayesian methods for simulation,” in Proceedings of the 2000

Winter Simulation Conference, IEEE, 2000, pp. 109–118.

[62] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian

model averaging: a tutorial,” Statistical Science, 1999.

[63] C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Sallaberry, “Implementa-

tion and evaluation of nonparametric regression procedures for sensitivity

analysis of computationally demanding models,” Reliability Engineering &

System Safety, vol. 94, no. 11, pp. 1735–1763, Jul. 2009.

[64] P. Närman, P. Johnson, R. Lagerström, U. Franke, and M. Ekstedt, “Data

Collection Prioritization for System Quality Analysis,” Electronic Notes in

Theoretical Computer Science, vol. 233, pp. 29–42, 2009.

[65] A. Skoogh, J. Michaloski, and N. Bengtsson, “Towards continuously up-

dated simulation models: combining automated raw data collection and

automated data processing,” in Proceedings of the 2010 Winter Simulation

Conference, 2010, pp. 1678–1689.

[66] J. P. C. Kleijnen, “Design of experiments: overview,” Proceedings of the 40th

Winter Simulation Conference, pp. 479–488, 2008.

http://dx.doi.org/http://dx.doi.org/10.1029/2005WR004820
http://uk.mathworks.com/products/parallel-computing/
http://uk.mathworks.com/products/parallel-computing/

148 References

[67] P. W. Glynn and D. L. Iglehart, “Importance sampling for stochastic simu-

lations,” Management Science, vol. 35, no. 11, pp. 1367–1392, 1989.

[68] A. Owen and Y. Zhou, “Safe and Effective Importance Sampling,” Journal

of the American Statistical Association, vol. 95, pp. 135–143, 2000.

[69] J. P. C. Kleijnen and R. G. Sargent, “A methodology for fitting and validat-

ing metamodels in simulation,” European Journal of Operational Research, vol.

120, no. 1, pp. 14–29, 2000.

[70] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based evaluation:

from dependability to security,” IEEE Transactions on Dependable and Secure

Computing, vol. 1, no. 1, pp. 48–65, 2004.

[71] A. Beautement, R. Coles, J. Griffin, C. Ioannidis, B. Monahan, D. Pym, M. A.

Sasse, and M. Wonham, “Modelling the human and technological costs and

benefits of USB memory stick security,” Managing Information Risk and the

Economics of Security, pp. 141–163, 2009.

[72] S. Arnell, A. Beautement, P. Inglesant, B. Monahan, D. Pym, and M. A.

Sasse, “Systematic Decision Making in Security Management Modelling

Password Usage and Support,” HP Tech Report, pp. 1–32, Mar. 2011.

[73] S. Parkin, R. Yassin Kassab, and A. Van Moorsel, “The impact of unavail-

ability on the effectiveness of enterprise information security technologies,”

Service Availability, pp. 43–58, 2008.

[74] W. Zeng and A. Van Moorsel, “Quantitative Evaluation of Enterprise DRM

Technology,” Electronic Notes in Theoretical Computer Science, vol. 275, pp. 159–

174, 2011.

[75] R. C. Thomas, M. Antkiewicz, P. Florer, S. Widup, and M. Woodyard, “How

Bad Is It? – A Branching Activity Model to Estimate the Impact of Informa-

tion Security Breaches,” 12th Workshop on the Economics of Information Secu-

rity (WEIS), 2013. DOI: http://dx.doi.org/10.2139/ssrn.2233075.

[76] R. Anderson and T. Moore, “Information Security Economics - and Be-

yond,” in DEON ’08: Proceedings of the 9th international conference on Deontic

Logic in Computer Science, Berlin, Heidelberg: Springer-Verlag, Jul. 2008,

pp. 49–49.

http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.2233075

References 149

[77] S. Parkin, A. Van Moorsel, P. Inglesant, and M. A. Sasse, “A stealth ap-

proach to usable security: helping IT security managers to identify work-

able security solutions,” in Proceedings of the 2010 workshop on New security

paradigms (NSPW), ACM Request Permissions, Sep. 2010, pp. 33–50.

[78] MathWorks, MATLAB R2013a–R2014b, http : / / www . mathworks . co . uk,

Accessed 2014-08-01.

[79] ——, SimEvents, http://uk.mathworks.com/products/simevents/, Ac-

cessed 2015-01-15.

[80] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: verification of

probabilistic real-time systems,” in Proc. 23rd International Conference on Com-

puter Aided Verification (CAV’11), G. Gopalakrishnan and S. Qadeer, Eds.,

ser. LNCS, vol. 6806, Springer, 2011, pp. 585–591.

[81] ——, PRISM - Probabilistic Symbolic Model Checker 4.2,

http://www.prismmodelchecker.org, Accessed 2014-08-01, 2014.

[82] R. H. Frank and B. Bernanke, Principles of economics. McGraw-Hill, 2004.

[83] C. Batini and M. Scannapieca, Data Quality, ser. Concepts, Methodologies

and Techniques. Springer, Sep. 2006.

[84] R. Wang and D. Strong, “Beyond accuracy: What data quality means to data

consumers,” Journal of management information systems, vol. 12, no. 4, pp. 5–

33, 1996.

[85] Y.-C. Ho, “Introduction to special issue on dynamics of discrete event sys-

tems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 3–6, Jan. 1989.

[86] A. Van Moorsel, L. Kant, and W. H. Sanders, “Computation of the asymp-

totic bias and variance for simulation of Markov reward models,” in Pro-

ceedings of the 29th Annual Simulation Symposium, IEEE, 1996, pp. 173–182.

[87] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for

Engineers. John Wiley & Sons: John Wiley & Sons, 2010.

[88] B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confi-

dence intervals, and other measures of statistical accuracy,” Statistical sci-

ence, pp. 54–75, 1986.

http://www.mathworks.co.uk
http://uk.mathworks.com/products/simevents/
http://www.prismmodelchecker.org

150 References

[89] B. M. Ayyub and R. H. McCuen, Probability, Statistics, and Reliability for En-

gineers and Scientists, 3rd. CRC press, 2011.

[90] H. Levene, “Robusts tests for the equality of variance,” in Contributions to

Probability and Statistics: Essays in Honor of Harold Hotelling, Stanford Uni-

versity Press, 1960.

[91] A. Saltelli and T. Homma, “Sensitivity analysis for model output: Perfor-

mance of black box techniques on three internation benchmark exercises,”

vol. 13, no. 1, pp. 73–94, Nov. 2001.

[92] J. C. Mace, C. Morisset, and A. P. A. van Moorsel, “Quantitative workflow

resiliency,” in Computer Security - ESORICS 2014 - 19th European Symposium

on Research in Computer Security, Wroclaw, Poland, September 7-11, 2014. Pro-

ceedings, Part I, 2014, pp. 344–361. DOI: http://dx.doi.org/10.1007/978-

3-319-11203-9_20.

[93] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud

computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online].

Available: http://doi.acm.org/10.1145/1721654.1721672.

[94] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/

ec2/, Accessed 2015-01-15, Amazon Web Services Inc., 2014.

[95] Oracle, Java SE Development Kit 7, http://www.oracle.com/technetwork/

java/javase/overview/index.html, Accessed 2014-08-01.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-11203-9_20
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-11203-9_20
http://doi.acm.org/10.1145/1721654.1721672
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html

Appendices

151

APPENDIX A

Implementation Details

Chapter 5 explained different solving algorithms for the data collection optimisa-

tion problems described in Chapter 3, including Basic Exhaustive Algorithm, Ba-

sic with Importance Sampling Algorithm, and the Iterative Algorithm. These al-

gorithms and the supporting methods from previous chapters were implemented

in MATLAB. This appendix provides a structural overview and functional expla-

nation of the MATLAB tool implementation and supporting software used in the

examples. It explains how the key components work and interact. This enables

one to understand the software for execution or extension, and bridge the method

explanations to the results in Chapter 6.

The rest of the appendix is structured as follows: Section A.1 provides a high

level overview of the modules, key functions and classes, and how they interact.

Section A.2 details they main data classes and any supporting data structures.

Section A.3 explains the MATLAB functions, including the input modelling func-

tions in Section A.3.1 and algorithm evaluation functions in Section A.3.2.

Section A.4 discusses running tests and examples, as well as automated repeated

execution. Section A.5 summarises the content.

A.1 Structure

This section provides an overview of the implementation structure and explains

the main components. The implementation was designed to be generic, to be eas-

153

154 A. Implementation Details

ily usable with different models and scenarios, and to be modular, to allow inter-

changing and testing of different methods. The implementation is largely written

in MATLAB but also uses Java [95] and PRISM for the execution of models. It is

split into: MATLAB Core, MATLAB MM1, and PRISM modules. MATLAB Core

is where most of the work is done with all of the generic classes and functions

applicable to all models and examples. MATLAB MM1 provides functions and

scripts for conducting MM1 queue based examples. The PRISM module enables

integration of external model execution using PRISM model checker and includes

related scripts for those examples.

Three primary classes store and manage the information about inputs (Mod-

elInput), data sources (ModelDataSource), and strategies and their results (Model-

DataStrategy). These classes are used to create strategies and analyse strategies

using the algorithms described in Chapter 3.

Each Algorithm from Chapter 5 has its own function to complete the process.

The functions are largely based around different ways of executing and evaluat-

ing a shared single strategy evaluation function, analyseStrategy. The algorithm

functions take a variety of options to allow customisation and are not specific

to one parameter uncertainty modelling method or model. These can both be

defined separately.

The parameter uncertainty modelling methods, explained in Chapter 4 are

provided by ModelInput and ModelDataSource, and with a small amount of ef-

fort can be used interchangeably.

Models are wrapped and represented by a MATLAB function, which analyt-

ically solves the model, simulates the model to the desired accuracy, or interacts

with external simulation software as required. As long as the model can be rep-

resented and interfaced in the required form, it can be used with any algorithm.

Examples are created and executed using scripts that use the above to setup

the data collection scenario, define the model function, and then call the cho-

sen optimisation algorithm function. Additional automation functions allow for

algorithms to be repeatedly executed with different parameters to allow for com-

parisons to be made. The following sections describe key data classes and an

A. Implementation Details 155

explanation of the major functions.

A.2 Data Classes

The three primary data classes hold and control the data needed to setup and

execute each of the algorithms. This section describes those classes and how they

relate to each other and the larger functions.

A.2.1 ModelInput

ModelInput class represents an input parameter pi which is used in the model and

available for additional data collection. It is initialised with a numeric identifier,

name and data type (ModelDataType). The data type allows transformations or

restrictions on the input value used, such as rounding to integer or transforming

it into a rate. Using the other data classes described below, ModelInput is linked

to a list of the available data sources, and a chosen active source (or sources) and

sample size for the current strategy. The class provides functions to use these

one or more data sources to produce values for model experiments that repre-

sent the parameter uncertainty. This includes the methods discussed earlier: CLT

normal distribution sampling, interval-based CLT normal distribution sampling,

and bootstrap resampling. Each has configurable options and are more fully ex-

plained in Section A.3.1.

A.2.2 ModelDataSource

Each data source Dj and any existing data are represented using ModelDataSource

and DCOExistingData classes. It is assumed that some existing data has been

collected, and that DCOExistingData holds the M(Dj) existing samples or (if un-

available) just a sample mean, sample variance, and sample size for the data.

ModelDataSource is a wrapper for this existing data and properties of the planned

collection of strategy. ModelDataSource is initialised with an identifier, a mapping

of the source to input parameters (similar to di,j of Section 3.3.2), existing data for

156 A. Implementation Details

one or more input parameters to be populated, and a sample cost. Additional

properties can be set such as the sample increment hj, used when increasing sam-

ple sizes, the minimum Nmin(Dj) and maximum Nmax(Dj) allowed samples sizes,

and the start up cost uj for the collection. The class provides helper methods for

generating input values in ModelInput.

A.2.2.1 Cost Functions

The total cost of strategy T(s) is calculated by computing the collection cost for

each data source in the strategy. Each data source has a cost function Cj(Nj) (as

described in Section 3.3.2). In the ModelDataSource class, the cost function can be

set as a property and uses a provided linear sample cost function by default. This

calculates the source’s total cost by

Cj(Nj) = uj + (Nj ⇥ cj)

Where uj is start up cost and cj is the cost per sample. The start up cost is the

initial outlay required to collect the first set of samples with the associated source.

This is just one example of non-uniform total cost. The cost function can easily be

replaced and configured as appropriate. A function for computing the maximum

samples within budget must also be provided. This function effectively solves

the cost function for the number of samples given a maximum total cost and it is

required for generating strategies (see Section A.2.3).

A.2.3 ModelDataStrategy

A data collection strategy is a combination of data sources and N(Dj) a number

of samples to collect for each source, which links to a set of input parameters

of a model. ModelDataStrategy holds a list of the input parameters (ModelInput),

information about available and active data sources (ModelDataSource), and all

the related model input and output values created when evaluating that strategy.

ModelDataStrategy provides functions to:

A. Implementation Details 157

• Connect the ModelInput and ModelDataSource instances based on valid com-

binations and the current strategy’s configuration.

• Calculate the mean and ouput variance over model results for the strategy,

both via the standard method and by using importance sampling weight-

ings. It also computes the variance of the variance result for assessing the

algorithm accuracy.

• Calculate the total cost collection for the strategy when using the current

data source configuration

• Complete an ANOVA using the random effects model for the strategy’s re-

sults to estimate main and interaction effects of the input parameters.

Strategies using ModelDataStrategy can be set up manually or created by using

the generateStrategies function. This dedicated function takes an array of model

inputs and array of data sources. It produces all valid strategies within a given

budget. It is achieved by first translating all valid input-data source pairings into

a set of base strategies, which feature one data source for each input. Each data

source has a sample size increment property. For each base strategy, those sample

increments, the data source cost functions, the available budget, and any sample

size limits are used to exhaustively create all combinations of sample allocations

within budget. All input parameters in the generated strategies have one primary

data source, but a parameter may receive additional data from other data sources

when appropriate (see Section 3.3.2.2).

With many sources per input, small data source sample increments, or a large

budget, the generateStrategies function can result in many strategies to evaluate.

In some situations one may need to start with larger sample increments to explore

the space and then more flexible options to fine tune the solution. The function

also offers the option to limit the generated strategies to those with a total cost

between a chosen value and a maximum value. This option is beneficial when

the optimal strategies are expected to be those that spend close to the collection

budget, or generate batches in total cost ranges.

158 A. Implementation Details

A.3 Main Functions & Execution

A.3.1 Input Functions

Chapter 4 explained a number of ways of modelling input parameter uncertainty

as model experiments. The MATLAB implementation provides three of these as

experiment generators: Central Limit Theorem (CLT) based Normal distribution

sampling, CLT-based Normal distribution sampling with intervals, and bootstrap

resampling. Generically all of these operate at a per input parameter level and

take a function parameter for the number of values required. The functions use

the input’s associated data source information to generate the experiment values.

Since all these generator functions follow the same interface they can be used

interchangeably with the Optimisation Solving Algorithms.

An input parameter can have one or more active data sources. If the parameter

is populated using data from multiple active data sources generating experiment

values uses a data combining mode. This is either All, which uses or attempts

to combine information from all active sources into the parameter uncertainty

modelling, or Best Estimated where only the predicated best source is used. The

effects of these modes and the defaults are described with each function (for more

extended explanation see Section 4.7).

generateValuesNormalSampling Using the method described in Section 4.3, a

normal distribution is constructed based upon the existing data from the

data source and the total number of samples to be collected. The function

randomly samples this distribution to produce values for the associated

input parameter. Additional transformations may be applied depending

upon the parameter type such as rounding to integer or converting to a rate.

Best Estimated uses only the data source with the smallest estimated stan-

dard deviation when taking into account strategy sample sizes. All mode:

creates a standard deviation estimate by weighting the standard deviation

estimate contribution from each active source. The weight is the ratio of

the data source samples to the total samples for an input (across all active

sources).

A. Implementation Details 159

generateValuesNormalIntervalSampling This generation function is similar to

the above normal distribution sampling for parameter uncertain modelling,

but uses interval based sampling (Section 4.4). Rather than randomly sam-

pling from the entire normal distribution, it is split into a number of inter-

vals with equal probability and an equal number of distribution samples

are allocated to each interval. The sampling within intervals can be either

random or at fixed distances, such as the mid-points of each interval. This

technique is less random but allows guaranteed good coverage of the nor-

mal distribution, and therefore the modelled uncertainty, even when using

a smaller number of experiment values.

generateValuesBootstrap The Bootstrap resampling technique is explained in

Section 4.6 including how it can be applied to this context. Given an array

of existing samples, an experimental value is created by repeatedly resam-

pling with replacement from the existing samples and then taking the mean

of the resulting ‘bootstrap samples’. In this case the number of times to re-

sample depends upon the total number of collection samples allocated to

the source M(Dj) + N(Dj) (existing + planned). This results in one experi-

ment value for the input parameter, the process is repeated for the required

number of values. The preferred combining mode for this function is All

which conducts the bootstrap resampling over all actives sources for an in-

put. If there is more than one active data source, there will be multiple

bootstrapped sample sets. An experiment value for the input parameter is

created by simply taking for the mean over all the bootstrapped samples.

Best Estimated mode uses only the active source with the smallest sample

variance.

A.3.1.1 Parameter Validating

Parameter values are validated at an input parameter and strategy level. Each

ModelInput can include an optional minimum and maximum value. These can

be set to any value or pre-populating based on the input parameter type e.g. a

parameter of probability type can be restricted to between 0 and 1. The generated

160 A. Implementation Details

parameter value is internally checked against this valid range when using the

previous input functions. If it falls outside the range, a value will be automatically

re-generated until the maximum number of regenerations is reached (this can be

defined per parameter). Overflowing the regeneration limit maximum shows a

problem with the data source configuration that needs to be addressed.

During strategy evaluation, each experiment (a complete set of values, one

for each parameter) can also be validated. Each solving algorithm function can

take an optional parameter checking function. This function can be created and

customised for each model’s requirements. The function must compare the pa-

rameter values in an experiment against the valid space of the model, and return

a boolean for whether it passed. It is used by the analyseStrategy function. For

failing experiments it will either: re-generate the experiment (for random exper-

iments with no design), or remove the experiment (when using the ‘all combina-

tions’ full factorial design). Like parameter regeneration, there is a configurable

amount for the maximum number of experiment regenerations or deletions be-

fore an error is thrown.

A.3.2 Optimisation Solving Algorithm Functions

Specialised implementation was created three solving algorithms from Chapter 5.

Each has its own function to complete the algorithm process, Basic Exhaustive

Algorithm as analyseStategies, Basic Exhaustive Algorithm with Importance Sam-

pling as analyseStrategiesWithImportanceSampling, and the ANOVA based Iterative

Algorithm as iterativeStrategyAlgorithm. All use a shared analyseStrategy function

to execute the evaluation of a single strategy. The analyseStrategy function uses

the model to test the effect of the strategy’s parameter uncertainty on the model

output. It takes the following parameters:

Strategy the ModelDataStrategy which includes information about data sources

for each input. It holds the generated experiments, the model and strategy

results.

Input function a handle for the function to use to generate experiment values.

A. Implementation Details 161

One of the input functions from Section A.3.1 can be used. It can also be any

function that takes one parameter, the number of experiments, and returns

the same number of values. An anonymous function may be used to wrap

other functions enabling them to meet specification.

Model function the model we are using and planning data collection for. The

model function is either called once per experiment with a single output, or

in batch mode, once per batch of experiments returning an array of model

outputs. The model function is usually a wrapper interfacing with the

actual model functions in MATLAB or external modelling tools such as

PRISM. In batch mode, the model function can offer parallelised execution.

Number of repetitions per experiment The number of times to repeat each ex-

periment with the model. Repeated execution can be important when sim-

ulation variance is high and is necessary for ANOVA calculations.

Maximum number of experiments R⇤: The number of experiments used to anal-

yse the strategy R R⇤. R is calculated based upon whether the all com-

binations experimental design is used and the number of repetitions per

experiment. Equation A.1a is when plain random ordering is used, Equa-

tion A.1b is when all combinations mode is used.

R = k ⇥ r. (A.1a)

R = k|P| ⇥ r. (A.1b)

Additional options include: whether all combinations of parameter values are

used in generated experiments and if the model function accepts batches of

experiments.

The three solving algorithm functions take the same algorithm parameters

and some function specific parameters. The solving functions then use analyseS-

trategy in different ways resulting in varied amounts of model computation.

analyseStrategies Completes the Basic Exhaustive Algorithm (Section 5.2) by

simply evaluating the shared analyseStrategy function for every strategy.

162 A. Implementation Details

The results can then be compared or further constrained before an optimal

strategy is chosen using an objective function (Section A.3.5).

Algorithm complexity: proportional to the number of strategies.

Important additional parameters: the algorithm can execute strategies in par-

allel if appropriate. The algorithm can take an optional batch size and stop-

ping function (see Section 5.6 & Section A.3.3).

analyseStrategiesWithImportanceSampling Completes the Basic Algorithm with

importance sampling (Section 5.3). It uses analyseStrategy for a single ‘an-

chor strategy’, specified in the parameters, and then importance sampling

is used to create results for the other strategies. The importance sampling is

achieved by weighting each model result by comparing the probability dis-

tribution functions of the parameter uncertainty modelling, for each input

in the anchor strategy against those in each of the target strategies.

Algorithm complexity: one strategy is evaluated with the model but addi-

tional results may be needed if anchor strategy choice is poor or alternative

data source choices are significantly different. Complexity increases pro-

portional to the number of strategies but at a much slower rate than analy-

seStrategies.

Important additional parameters: importance sampling anchor strategy index

and anchor strategy results if pre-calculated. The algorithm can execute

strategies in parallel if appropriate.

iterativeStrategyAlgorithm Completes the Iterative Algorithm (Section 5.5) which

uses the analyseStrategy to assess a single strategy once per iteration and

uses the results to decide the next iteration. ANOVA is used to decide if the

current strategy has diminished parameter uncertainty variance enough.

The algorithm takes a starting strategy instead of many strategies. A nextStrat-

egy function creates subsequent strategies by incrementing sample sizes at

the end of each iteration based on the rules in Section 5.5.1. Execution stops

if an optimal strategy is found or the constraint is reached.

Algorithm complexity: Varies but it should be smaller than the others as it

explores only a limited path through the solution space.

A. Implementation Details 163

Important additional parameters: an optional constraint function can be in-

cluded. This can be used to constrain strategy evaluation to those within a

set budget.

A.3.3 Batched Solving Algorithms and Stopping Functions

The batch-based algorithms: Cheapest-First Search and Most-Expensive First Search

can be executed by specialised configuration of analyseStrategies or analyseStrate-

giesWithImportanceSampling. The strategies must be pre-sorted by cost based on

the needs of the algorithm using the available sorting function. The sorted strate-

gies are then passed to an algorithm function. Both algorithm functions accept a

batch size and a stopping function. The batch size is how many strategies are eval-

uated between each test of the stop condition using the stopping function. To

meet the requirements described in Section 5.6, a stopping function was created

for each algorithm:

stopVarianceReached for the Cheapest-First Search Algorithm: The stopping

condition tests if any of the strategies evaluated so far met the variance

constraint Var[g(Y)|s] V. V must be specified as a parameter. Once an

optimal strategy is found, the function does not allow the algorithm to stop

until all strategies of equal T(s) total cost are evaluated. This makes sure all

optimal strategies are found, not just the first optimal strategy.

stopVarianceDiverging for the Most-Expensive-First Search Algorithm: Based

on the batches of strategies evaluated so far and their results, the function

makes a prediction on whether the most optimal strategy (or strategies)

have been found. This involves making sure the extremes of strategy to-

tal cost T(s) have been covered and if the variance results are diverging. In

this case, diverging is defined as the lowest Var[g(Y)|s] in the latest batch of

strategies being 10% more than the current lowest Var[g(Y)|s]. The percent-

age threshold is configurable. We also allow the specification of a minimum

T(s) difference between the first and stopping strategy.

164 A. Implementation Details

The stopping function-solving algorithm interfacing uses two parameters, the

strategy results so far and the batch size, and returns a stop boolean. The above

functions need or allow additional parameters which can be defined before exe-

cution using an anonymous function.

A.3.4 Parallel Execution

All of the solving algorithms except the Iterative Algorithm can (optionally) eval-

uate strategies in parallel using the MATLAB Parallel Computing Toolbox [58].

The implementation is primarily aimed at multi-core evaluation on the same

computer. Depending upon the modelling software used it could also be eval-

uated via a Distributed Computing Server using a local cluster.

Separately as part of the MATLAB-Model interfacing experiments per strat-

egy can also be executed in parallel. This is especially important if the modelling

software only supports single-threaded solving and one experiment at a time. In

most situations these two parallel options will not be used together. With sim-

ple models or small solution spaces parallel execution may not always reduce

computation time.

A.3.5 Objective Functions and Constraints

In Section 3.3.2 we presented our data collection problem as Optimisation Prob-

lems with two different possible objective functions dictating the optimisation

goal. These looked at the problem from two different perspectives: minimise the

variance from the strategy’s uncertainty (within budget) and minimise cost (within

some acceptable level of variance), with other possible constraints strategies.

Mins2S Var[g(Y)|s]

Mins2S T(s) T(s) =
|D|

Â
j=1

Cj

Most of the constraints (such as the collection budget) were encapsulated in ei-

ther strategy generation function or by manual strategy configuration. The objec-

tive functions were implemented as separate MATLAB functions in the solution

A. Implementation Details 165

with a shared generic structure. Each takes an array of strategies (ModelDataS-

trategy which includes the results) and zero to many function parameters. They

return one (or more) optimal strategies depending upon the results and objective

parameters. This allows the objective functions to be used interchangeably or

swapped out for an alternative objective function.

Minimise variance function: The function attempts to minimise the output vari-

ance when testing each strategy with its parameter uncertainty representa-

tion. The function looks at the all the strategies output variance results and

returns the smallest. It is assumed all strategies passed to the function are

valid, meeting the required constraints including the collection budget. In

the unlikely event that more than one strategy meets the minimise variance

objective, by having the same and lowest variance, multiple strategies can

be returned. An optional secondary objective minimise cost can be enabled

to choose between the strategies that equally meet the first objective.

Minimise cost function: The objective function in MATLAB also encapsulates

the maximum variance constraint (see Section 3.3.2). The objective aims to

find the strategy with smallest total collection cost while also checking the

strategy’s result meets the constraint. The variance value is provided as

function parameter. If strategy configurations options and data source costs

are granular, it is possible that multiple strategies may meet the constraint

and have the same minimum total cost. As before, a secondary objective

can be enabled, in this case to minimise variance over the strategies chosen

by the first objective.

Either or both functions can be run as the final stage of the Basic optimisation

Algorithms, to find the optimal strategies, or as part of stopping condition eval-

uation.

166 A. Implementation Details

A.4 Tests & Automation

This section describes simple tests for each function and support functions for

automated repeated algorithm execution.

Tests and optimisation examples are executed using MATLAB scripts. Each

of the major functions has an accompanying test script. These test scripts demon-

strate usage and run the function using a range of the different options available.

Each optimisation example script has a similar form. First it initialises the related

inputs and data sources before setting up or generating one or more strategies.

These strategies are evaluated using an Optimisation Algorithm function and the

results are then displayed.

A.4.1 AutoRunStrategyAlgorithm

This function enables automated repeated execution of a solving algorithm with

or without varying a number of algorithm options. The function can repeatedly

execute a same algorithm to compare its results between executions. It can also

test a optimisation solving algorithm while varying the following algorithm op-

tions:

Number of experiment values k the number of different values that are gener-

ated as part of modelling the input parameter uncertainty..

Number of experiment repetitions r the number of times the simulation or solv-

ing of an experiment is repeated..

Simulation Time t the lengthy of time or number of steps in one model simula-

tion.

An additional helper class DCOAlgorithmResult was created to hold algorithm

parameters and results when running many algorithm executions in a single ses-

sion. The automated repeated execution algorithm uses this to track and return

results.

A. Implementation Details 167

A.5 Summary

This appendix provided a detailed explanation of a MATLAB implementation of

the optimisation solving algorithms from Chapter 5 and related supporting meth-

ods from Chapter 4. It described the data structures and function architecture

which allows for interchanging of models and uncertainty modelling methods

with little to no changes to existing implementation.

168 A. Implementation Details

APPENDIX B

PRISM Model Details

The following appendix provides additional details of the workflow represented

as a PRISM model in Section 6.2.

B.1 Workflow Details

10 Tasks, numbered 1 to 10

5 Users, numbered 1 to 5

10 Permission Restrictions

5 Separation of Duties

1 Binding of Duties

Permission Restrictions

perm1 task 1 only user 3 and 5 have the necessary permissions

perm2 task 2 only user 1 and 5 have the necessary permissions

perm3 task 3 only user 2 have the necessary permissions

perm4 task 4 only user 1, 3, 4, and 5 have the necessary permissions

perm5 task 5 only user 1 and 2 have the necessary permissions

perm6 task 6 only user 2, 3, 4, and 5 have the necessary permissions

perm7 task 7 only user 2 and 3 have the necessary permissions

perm8 task 8 only user 3 has the necessary permissions

perm9 task 9 only user 2, 3, 4, and 5 have the necessary permissions

perm10 task 10 only user 3 and 4 have the necessary permission

169

170 B. PRISM Model Details

Separation of Duties

sod1 task 6 and 8 cannot be completed by the same user

sod2 task 1 and 3 cannot be completed by the same user

sod3 task 3 and 5 cannot be completed by the same user

sod4 task 4 and 6 cannot be completed by the same user

sod5 task 1 and 2 cannot be completed by the same user

Binding of Duties

bod1 task 1 and 7 must be completed by the same user

	Titlepage
	Dedication
	Acknowledgements
	Abstract
	Collaborations
	Contents
	Introduction
	Aims and Objectives
	Approach
	Example Scenario
	Publications
	Thesis Outline
	Contributions

	Background and Related Work
	Introducing Uncertainty
	Modelling
	Model Solving

	Data Collection
	Sensitivity
	Uncertainty
	Optimising Data Collection
	Simulation Reduction
	Security decision-making Models
	Software Tools
	Summary

	Defining Data Collection as Optimisation Problems
	Introduction
	Research Questions
	Approach

	Data and Data Collection Quality
	Data and Data Sources
	Data Source Variables
	Data Quality

	Problem Formulation
	Formal Problem Definition
	Mathematical Programming Definition
	Strategy Solution Space

	Summary

	Measuring and Modelling the Effect of Input Uncertainty
	Purpose
	Confidence Intervals
	Normal distribution-based
	Stratified Sampling
	Experimental Designs
	Bootstrap Resampling
	Combining Active Data Collection
	Definition and Causes
	Statistical Approaches
	Combining & Selection Modes
	Summary

	Data Transformation & Validation
	Parameter Value Checking
	Experiment Checking

	Summary

	Solving by Simulation
	Introduction
	Basic Exhaustive Algorithm
	Importance Sampling Extension
	Choosing an Anchor Strategy

	Uncertainty in the Algorithm Results (Var of Var)
	Iterative Algorithm
	Incrementing Criteria
	Stopping Conditions
	Other Differences

	Exploring the Strategy Space More Efficiently
	Preparation by Screening
	Partitioning & Searching the Space
	Moving Window: Batch-based Solving
	Cheapest-First Search Algorithm
	Most-Expensive-First Search Algorithm
	Iterative Expansion Algorithm

	Discussion of Assumptions and Limitations
	Summary

	Evaluation
	M/M/1 Queue Examples
	Introduction
	BEA Examples
	Importance Sampling Examples
	Iterative Algorithm
	Summary

	PRISM Examples
	Introduction
	Basic Exhaustive Algorithm (Restricted)
	Importance Sampling
	Most-Expensive-First Search Algorithm
	One to Many
	Summary

	Discussion
	Summary

	Conclusion and Future Work
	Summary of Contributions
	Limitations
	Future Work
	Problem Constraints
	Parameter Uncertainty Modelling
	Alternative Solving Algorithms
	Additional Results Validation

	References
	Appendices
	Implementation Details
	Structure
	Data Classes
	ModelInput
	ModelDataSource
	ModelDataStrategy

	Main Functions & Execution
	Input Functions
	Optimisation Solving Algorithm Functions
	Batched Solving Algorithms and Stopping Functions
	Parallel Execution
	Objective Functions and Constraints

	Tests & Automation
	AutoRunStrategyAlgorithm

	Summary

	PRISM Model Details
	Workflow Details

