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ABSTRACT 

 

Statins are generally well-tolerated, although statin-related myotoxicity (SRM) has been 

reported in a considerable number of patients. The risk factors underlying SRM have yet 

to be fully characterised. This study aimed to further elucidate the risk factors that 

increase the likelihood of SRM using data generated from cellular and clinical settings. 

The data from the cellular studies would provide information regarding candidate single 

nucleotide polymorphisms (SNPs) which could be tested in the clinical setting. 

 

In the cellular studies, three model cell lines were used; human proximal tubule (HK-2), 

rat skeletal muscle (L6) and human muscle cells. Lipophilic statins, simvastatin and 

atorvastatin, inhibited monocarboxylate transporter 1 (MCT1)-mediated DL-lactate 

uptake at the same magnitude as phloretin, a well-known MCT1 inhibitor. No significant 

lactate uptake inhibition was observed with up to 1 mM of hydrophilic statins (pravastatin 

and rosuvastatin). The magnitudes of inhibition of multidrug resistance-associated protein 

(MRP)-mediated CMFDA efflux and MDR1-mediated Hoeschst 33342 efflux by the 

lipophilic statins were lower than that caused by MK571 and cyclosporine A, which are 

typical inhibitors of MRP and MDR1, respectively. Both hydrophilic statins showed no 

significant effect on MRPs and MDR1 functions. 

  

In the clinical setting, a case-control study (116 cases and 314 controls) of unrelated 

dyslipidaemic patients was performed to determine the association between 12 SNPs 

from nine focus genes [i.e., SLCO1B1, ABCC2, ABCG2, CYP3A4 (*22 allele), COQ2, 

GATM, GPx, SLC16A1, SLC16A3] and SRM. Of the 12 SNPs genotyped, only SNP in 

SLCO1B1 (rs4149056) appeared to be the most important genetic predictor of SRM (P = 

0.059, P = 0.047 in univariate and multivariate analysis, respectively), thus confirming 

previous findings. The association between rs4149056 and SRM was demonstrated to be 

independent to the type of administered statins and was likely to be influenced by the 

patient gender. Further patient recruitment is ongoing to increase study power and to 

confirm the assumption of the abovementioned association. 

  

Abbreviations: ABCC2, ATP-binding cassette, subfamily C member 2; ABCG2, ATP-

binding cassette, subfamily G member 2; CMFDA, 5-chloromethylfluorescein-diacetate; 

COQ2, Coenzyme Q2 4-hydroxybenzoate polyprenyltransferase; CYP3A4, Cytochrome 

P450 subfamily 3A, member 4; GATM, Glycine aminidotransferase; GPx, glutathione 

peroxidase; MDR1, Multidrug resistance protein 1; SLCO1B1, Solute carrier organic 

anion transporter family member 1B1.  
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Chapter 1. Introduction 
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1.1 Atheroslerosis and Lipid Lowering Drugs 

 

Hypercholesterolaemia is the major risk factor for atherosclerosis-related and 

cardiovascular disease (CVD) across the globe. A report released by the World Health 

Organization (WHO) that the leading cause of death in 2004 worldwide for both male and 

females was attributed to CVD with per cents of total deaths of 31.5% and 26.8%, 

respectively (World Health Organisation, 2008). Familial hypercholesterolaemia (FH) is a 

common genetic cause of premature coronary heart disease (CHD) (i.e. ischaemic heart 

disease), such as myocardial infarction and angina pectoris. This is due to lifelong 

elevated plasma low-density lipoprotein (LDL) cholesterol levels (Austin et al., 2004, 

Goldstein et al., 2001). In the UK, CHD are the main cause of death and accounted for 

almost 180,000 deaths in 2010 ~ approximately one in three of all deaths that year 

(Townsend et al., 2012). However, the consequence of missed diagnosis and under-

treatment of individuals in the general population with FH, which attributed to the CHD, 

is largely unknown (Nordestgaard et al., 2013). Although the reliable number of 

individuals diagnosed with FH is difficult to predict, it was estimated that the condition 

accounted for nearly 12 % (approximately 123, 600 individuals) of overall UK population 

(Nordestgaard et al., 2013). 

 

Atherosclerosis is the most prevalent disease responsible for death from myocardial 

infarction, cerebrovascular events and renal failure. Atherosclerosis derives from the 

Greek language: athere meaning soft paste-like material and sclero for hard, a result from 

the proliferation of fibrous tissue and the presence of calcification (Fernandes e Fernandes 

et al., 2014). Its pathogenesis is complex and multifactorial and several epidemiological 

studies have identified risk factors, which are associated with its severity and widespread 

involvement of the arterial tree. Smoking, hypertension, hypercholesterolaemia, and 

diabetes mellitus have all been associated with atherosclerosis and the mechanisms 

leading to arterial injury became clear in extensive research conducted in the last two 

decades. The association between fatty materials such as cholesterol and atherosclerosis 

has been proven epidemiologically in human studies (De Backer et al., 2003, Cleeman et 

al., 2001). Injury and subsequently narrowing of the arteries lumen result from the 

deposition of macrophages laden with lipids, mainly oxidised LDL and formation of the 

atherosclerotic plaque. This atheromatous plaque can act as a focus for localised 

thrombosis or as a source of distal embolisation. By causing arterial stenosis or 
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thrombosis, atherosclerosis can eventually lead to regional ischemic damage, which can 

be life threatening.  

 

Treatment for atherosclerosis varies depending on the clinical manifestation of the 

disease. Some patients may opt for maintaining low fat diet and regular exercise, and 

some may require surgical intervention such as endarterectomy (a surgical procedure to 

remove the atheromatous plaque material or blockage) or drugs treatment. Lipid-

modifying interventions have been shown to decrease the risk of coronary heart disease 

both in patients with hypercholeterolaemia and those with relatively normal level of LDL-

cholesterol (LDL-C). Expert panels in the USA and Europe have also recommended 

dietary changes and, if necessary, the lipid-modifying therapy to decrease elevated 

cholesterol concentrations, particularly LDL-C (De Backer et al., 2003, Cleeman et al., 

2001).  

 

Lipid lowering drugs, such as statins, are the first-line option and have been demonstrated 

to significantly lower the incidence of CVD  in at risk individuals (Corsini, 2003, Sever et 

al., 2003), whilst other lipid-modifying drugs such as bile acid-binding resins (e.g. 

cholestyramine, colestipol, colesevalam), nicotinic acid (niacin), fibric acid derivatives 

(e.g. fenofibrate, clofibrate, gemfibrozil, bezafibrate), and more recently the cholesterol-

absorption inhibitors (e.g. ezetimibe) are also used to treat hypercholesterolaemia. The 

effect of statins on lowering the progression of coronary atherosclerosis, resulting in 

fewer new lesions and total occlusions compared with untreated hypercholesterolaemic 

patients, has been independently demonstrated by several investigators (Smilde et al., 

2001, Vaughan et al., 2000, Christians et al., 1998). This has been suggested to be a 

consequence of the shrinkage of the lipid core of the atherosclerotic plaque, avoiding 

plaque rupture that would otherwise trigger intramural haemorrhage and intraluminal 

thrombosis (Christians et al., 1998). 

 

The target organ for statins action is liver, the vital organ in human body that has wide 

range of functions including lipid metabolism and cholesterol synthesis. In the liver, the 

mechanism of statins in lowering LDL cholesterol plasma concentrations starts with the 

inhibition of HMG-CoA reductase thus inhibiting HMG-CoA conversion to mevalonate. 

The latter is the rate-limiting step in de novo cholesterol biosynthesis in the liver (Figure 

1.1). The consequent drop in cholesterol synthesis in hepatocytes leads to increased 

expression of LDL receptors (as a compensatory mechanism) in order to maintain 
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adequate intra-hepatic cholesterol levels (Lennernas and Fager, 1997, Brown and 

Goldstein, 1986) The increased expression of LDL receptors on hepatocytes will 

subsequently lead to the increased uptake of LDL from plasma. This also results in 

increased extraction of LDL-C from the blood and subsequently decreased circulating 

total cholesterol and LDL-C concentrations. As a result, statins prevent incidence and 

recurrence of cardiovascular disease because of reduction of plasma LDL. 

 

 

 
 

Figure 1.1 Biosynthesis pathways of cholesterol and downstream effects by 

statins (adapted from Needham & Mastaglia, 2014) 
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1.2 Statins 

 

1.2.1 Clinical benefits of statins  

 

Over the last decade, there has been a considerable number of large-scale clinical trials 

carried out to demonstrate the beneficial effects of statins in reducing morbidity and 

mortality in patients with and without CVD (Downs et al., 1998, Scandinavian 

Simvastatin Survival Study Group, 1994, Shepherd et al., 1995). Statins have been proven 

to improve survival rate for patients who were at risk but without established 

cardiovascular disease (Brugts et al., 2009). They were also shown to reduce stroke 

events by 10% with 1 mmol/l decrease in LDL-C concentration and up to 17% with a 1.8 

mmol/l reduction (Law et al., 2003). According to a systematic review using various 

evidence-based clinical reports, the highest doses of approved statins have been shown to 

decrease LDL-C- concentration in blood; 63 % with 40 mg rosuvastatin, 57 % with 80 mg 

atorvastatin, 46 % with 80 mg simvastatin, 41 % with 4 mg pitavastatin, 40 % with 80 mg 

lovastatin, 34 % with 80 mg pravastatin, and 31 % with 80 mg fluvastatin (Smith et al., 

2009). Statins also affect other lipid parameters, including increasing high-density 

lipoprotein cholesterol (HDL-C) concentration and decreasing triglyceride concentration 

(Maron et al., 2000). Secondary mechanisms initiated by statins which reduce levels of 

atherogenic lipoproteins have also been reported. For instance, inhibition of hepatic 

synthesis of apolipoprotein (Apo) B100 and a reduction in the synthesis and secretion of 

triglyceride-rich lipoprotein i.e., VLDL and IDL, was shown with statins uptake (Grundy, 

1998, Ginsberg et al., 1987). 

 

Several studies have also revealed that the effects of statins were not just due to their lipid 

lowering capacity; statins also possess some pleiotropic effects, independent of their lipid 

modifying properties (Liao, 2002) including restoration of endothelial cell function, 

modification of inflammatory responses, antithrombotic and antioxidant effects, as well 

as reduction of smooth muscle cell proliferation and cholesterol accumulation (Fang et 

al., 2013, Bonetti et al., 2002, Farmer, 2000) all of which contribute to the clinical 

benefits of statins. Indeed, in recent years a substantial quantity of data has accumulated 

showing that statins exert various effects on multiple targets, which are independent of 

their plasma cholesterol lowering properties. Many of these clinical effects (or so-called 

pleiotropic effects) have been shown to be secondary to the inhibition of the synthesis of 

isoprenoid intermediates of the mevalonate pathway (Goldstein and Brown, 1990), such 
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as farnesylpyrophosphate (Farnesyl-P-P) and geranylgeranylpyrophosphate (Geranyl-G-

P-P) and, therefore, are completely independent of the intracellular cholesterol 

biosynthesis (Figure 1.1). The inhibition of Farnesyl-P-P and Geranyl-G-P-P 

biosynthesis, which then leads to a reduction in the prenylation of small GTP-binding 

proteins such as Ras, Rac and Rho which are involved in muscle cell apoptosis (see 

figure 1.1). Furthermore, Farnesyl-P-P is an intermediate metabolite of ubiquinone/ 

coenzyme Q10 (CoQ10), a steroid isoprenoid, which plays an important role in the 

cellular energy transduction in the mitochondrial electron transport system. Thus, a 

reduced CoQ10 level may be one of the reasons underlying statin-related muscle adverse 

effects, consistent with the evidence of myofiber atrophy and muscular dystrophy shown 

as a result of a reduction of serum CoQ10 level (Miles et al., 2005). These biological 

effects beyond LDL reduction may differ among statins (Bonetti et al., 2003).  

 

Independent to the cholesterol biosynthesis pathway, statins have also been shown to 

induce antiatherosclerotic effects by a series of mechanisms involved in their effect on 

lipids, which then lead to affect arterial myocytes, macrophages and metaloproteases 

(Shitara and Sugiyama, 2006), the inflammatory mediators that have a central role in 

atherosclerotic lesion development and thrombogenicity. Macrophage activation results in 

the excretion of proinflammatory and cytotoxic substances (Nathan, 1987), including 

peroxynitrite, an early inducer of atherosclerosis through the endoplasmic reticulum (ER) 

stress pathway (Dickhout et al., 2005). Further, the accumulation of free cholesterol or 

uptake of oxidized LDL induces macrophage apoptosis (Li et al., 2006). Cytokine release 

from macrophages augments the inflammatory response and increases the lesion size. 

Cytotoxic substances, including peroxynitrite and tumor necrosis factor (TNF)-α, released 

by the macrophage results in cell death of lesion-resident endothelial and smooth muscle 

cells, thereby disrupting vessel structure. These aspects of the macrophage in 

atherosclerotic lesion biology have been hypothesised to drive the progression of other 

chronic progressive diseases characterised by cell apoptosis and tissue fibrosis such as 

cytokine-driven disease, Type 2 Diabetes Mellitus, Alzheimer’s disease and heart failure 

during statin therapy (Forrester and Libby, 2007). The possible association of diabetes, 

particularly, with statin therapy has started a wave of discussion in the medical 

community. A number of meta-analyses conducted in recent years have demonstrated that 

the association is real although causality has not been proved yet (Navarese et al., 2013, 

Preiss et al., 2011, Sattar et al., 2010, Rajpathak et al., 2009, Coleman et al., 2008).  
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1.2.2 Pharmacological properties of statins 

 

Depending on their chemical structures, statins have different affinities for HMG-CoA 

reductase, which determine their pharmacological effects, and different pharmacokinetics 

(PK) properties. These include tissue distribution, metabolic stability, enzymes and the 

transporters involved in their metabolism (Shitara and Sugiyama, 2006). Some PK 

properties of the individual statins are summarised in table 1.1. Lipophilic statins are 

statins with high affinity of statins for a lipophilic environment and most of them show 

hepatoselective properties. Of all the lipophilic statins; cerivastatin has the highest 

octanol-water coefficient, an indication of the greatest degree of lipophilicity (McTaggart 

et al., 2001, Corsini et al., 1999). It therefore achieves higher levels of exposure in non-

hepatic tissues and abundantly distributed over the peripheral tissue by passive diffusion 

(Hamelin and Turgeon, 1998). Furthermore, the lipophilic statins appear to be more 

susceptible to oxidative metabolism by cytochrome P450 (CYP) enzymes than 

hydrophilic drugs (Schachter, 2005). Rosuvastatin and pravastatin, in contrast, are 

considered as hydrophilic because of the presence of methane sulphonamide group and 

polar hydroxyl in their chemical structure, respectively (McTaggart et al., 2001, 

McTavish and Sorkin, 1991). Both of them are lack of the affinity to CYP enzymes and 

target membrane transporters (Kitamura et al., 2008) to exert their cholesterol lowering 

effects.  
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Table 1.1 Physicochemical and pharmacokinetic properties of statins 

Characteristics  Lovastatin  Simvastatin  Pravastatin  Fluvastatin  Atorvastatin  Rosuvastatin  Pitavastatin* 

Daily dosage (mg)  20-80  10-80  20-80  40-80  10-80  10-40  1-4 

Origin  Fungi  Semisynthetic  Fungi  Synthetic  Synthetic  Synthetic  Synthetic 

Pro-drug  Yes  Yes  No  No  No  No  No 

Solubility  Lipophilic  Lipophilic Hydrophilic  Intermediate  Lipophilic  Hydrophilic Lipophilic 

CNS permeation  Yes  Yes  No  No  No  No  No 

First-pass 

metabolism  

CYP3A4  CYP3A4  Multiple way  CYP2C9  CYP3A4  Limited 

CYP2C9  

Minimally 

CYP2C9 

Protein binding 

(%)  

95  95  50  98  90  90  96 

Half-life (hours)  2-3  2-3  1-2  0.5-2  13-16  19  11 

Hepatic 

elimination (%)  

69  79  46  >68  Not 

available  

63  Not available 

Renal excretion 

(%)  

30  13  60  <6  <2  10  2 

CYP, cytochrome P450 enzyme; CNS, central nervous system (table adapted from Chatzizisis et al. 2010). 

*Evidences obtained from Alagona, 2010
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1.2.3 Adverse effects of statins 

 

Although statins have been proven to be safe (Armitage, 2007), they possess a number of 

side effects. Meta analyses from 90 studies identified that muscular adverse effects were 

still ranked first among other outcomes following chronic therapy with statins, with odds 

ratio (OR) of 2.63 (95% CI 1.50 to 4.61) followed by risk of liver enzymes elevation and 

type 2 diabetes with OR 1.54 (95% CI 1.47 to 1.62) and 1.31 (95% CI 0.99 to 1.73), 

respectively (Macedo et al., 2014a). Indeed, the risk of muscular events related to the 

statin use has received greatest attention since the sudden case of cerivastatin withdrawal, 

due to its reportedly rhabdomyolysis-related death in August 2001 (Thompson et al., 

2003). The absence of a common agreement in the definition of statin-induced muscle 

events has hampered the precise estimation of their true incidence. Because patients 

considered to be susceptible to statin-induced muscle toxicity are excluded from 

controlled clinical trials, the reported adverse event rates may underestimate the true rate 

of these adverse effects in an unselected patient population.  

 

There are also other less common adverse effects of statins, such as cognitive loss, 

neuropathy, pancreatic and hepatic dysfunction, and sexual dysfunction, which have been 

reported in large epidemiologic studies and case reports (Backes and Howard, 2003, 

Sreenarasimhaiah et al., 2002, Pia Iglesias et al., 2001, Muldoon et al., 2000). However, 

epidemiologic studies, for example randomised controlled trials (RCTs), could 

misinterpret and underscore a critically important point relevant to rare drug adverse 

effects (ADRs) in general, which merits emphasis and has relevance to other reported 

statins adverse effects. In the case with statins for example, the true frequency of adverse 

effects of statins is difficult to quantify. The RCTs often underestimate the frequency of 

this ADR because patients with symptoms of intolerance are typically excluded during 

the run-in period (Abd et al., 2011, Psaty et al., 2008). A significant increase in rates of a 

problem on statin vs placebo in RCTs supports a causal link between that drug and the 

abovementioned adverse effects in some people. However, absence of an average 

significant increase, or even presence of a significant average reduction in the problem, 

does not preclude causal occurrence of that problem in some individuals (Golomb and 

Evans, 2008). Therefore, observational studies which could be either retrospectively or 

prospectively in the study design, would have been better represented the true clinical 

situation in the case with statin adverse effects in particular, and any drugs in general. A 

good example of this could be obtained from the case of cerivastatin that has had resulted 
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in its withdrawal in 2001. Underscoring the limitations of RCTs for identification of statin 

adverse effects, cerivastatin was withdrawn from the market due to excess risk of 

rhabdomyolysis, although no cases of rhabdomyolysis occurred among cerivastatin users 

in a meta-analysis of RCTs (McClure et al., 2007). In contrast, observational studies of 

real-world use reported that rhabdomyolysis occurred with substantially higher frequency 

on cerivastatin than other statins (Cziraky et al., 2006, Graham et al., 2004), particularly 

for cerivastatin in combination with fibrates (Graham et al., 2004). Above of these 

reported adverse effects related to statin therapy, absolute excess risk of these observed 

unintended adverse effects, however, was reportedly small compared to the beneficial 

effects of statins on major cardiovascular events following their long-term use (Lv et al., 

2014).  

 

1.3 Statin-Related Myotoxicity (SRM)  

 

1.3.1 Definition 

 

Research in SRM has been hampered to some extent by the lack of standardised 

nomenclature and phenotypic definitions. Previously in 2002, the American College of 

Cardiology/American Heart Association/National Heart, Lung, and Blood Institute 

(ACC/AHA/NHLBI) came up with terminology used to classify statin-related muscle 

adverse effects, including asymptomatic increases in creatine kinase (CK), myalgia, 

myositis and rhabdomyolysis, as summarised in table 1.2 below. An international expert 

workshop on statin-induced myotoxicity was convened in December 2013, to agree on 

more robust definitions and a minimum set of criteria to help with the identification of 

cases (Alfirevic et al., 2014). Adapted from the definitions recommended by the 

ACC/AHA/NHLBI, a numeric classification was then developed by the expert group to 

standardize the degree of severity of SRM based on a defined algorithm (SRM0 to 

SRM6), which described the clinical manifestation with and without CK elevation and/or 

evidence of muscle biopsy findings (Table 1.3).  

 

As described in the recently proposed definitions of SRM, myotoxicity covers the whole 

spectrum of drug induced muscle adverse effects. Myalgia, specifically, is a patient 

reported symptom, whereas myopathy is reserved for those cases with evidence of muscle 

damage, usually with CK elevation although the xULN cut-offs vary, >4x ULN for 
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SRM3 and >10xULN for SRM4 (severe myopathy). The term myositis has been used in 

the past to denote muscle symptoms with CK elevations, but the consensus group agreed 

that this should be used only where there is histopathology evidence of an inflammatory 

infiltrate. The term myopathy was used in SEARCH study (Link et al., 2008), but this 

excludes SRM2, (the most common presentation in clinical practice) in which CK 

elevation was <4xULN.  

 

 

Table 1.2 Different terms of skeletal muscle-related problems described by 

ACC/AHA/NHLBI (adapted from Pasternak et al., 2002). 

 

Condition   Definition 

Myopathy  General term to describe all skeletal muscle related 

adverse effects  

Asymptomatic  CK elevation without muscle symptoms  

Myalgia  Muscle pain or weakness without CK elevation 

Myositis  Muscle symptoms with CK elevation typically   

<10xULN  

Rhabdomyolysis  Muscle symptoms with CK elevation typically 

>10xULN, and with creatinine elevation (usually with 

brown urine and urinary myoglobin) 

 

CK= creatine kinase; ULN= upper limit of normal                  
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Table 1.3 Recent proposed numeric and phenotype classification for statin-

related myotoxicity (adapted from Alfirevic et al., 2014).  

 

SRM  

Classification Phenotype Incidence Definition  

 

SRM 0  

 

 

CK elevation 

<4XULN 

 

1.5-26% 

 

 

No muscle symptoms 

 

 

 

 

SRM 1  

 

Myalgia, tolerable 

 

0.3 to 33% 

 

Muscle symptoms without CK 

elevation 

SRM 2  

 

 

 

 

Myalgia, intolerable 

 

 

 

 

 

 

0.2-2/1,000               

patients years 

 

 

 

Muscle symptoms, CK 

<4xULN, complete resolution 

on dechallenge 

  

SRM 3  

 

 

 

 

 

Myopathy  

 

 

 

5/100,000 

 

 

 

 

Muscle symptoms, CK 

>4xULN <10xULN, complete 

resolution on dechallenge  

 

SRM 4 

  

 

 

Severe myopathy 

 

  

 

0.11% 

 

 

 

Muscle symptoms, CK >10 x 

ULN <50x ULN, complete 

resolution on dechallenge  

 

SRM 5  

 

 

 

Rhabdomyolysis 

 

 

 

 

0.1-8.4/100,000  

patients years 

 

 

Muscle symptoms, CK 

>10xULN or >50x ULN with 

evidence of renal impairment 

 

SRM 6  

 

 

 

 

Autoimmune-

mediated necrotising 

myositis  

 

 

 

 

~2/million per 

year 

 

 

 

HMGCR antibodies and 

expression in muscle biopsy, 

incomplete resolution on 

dechallenge  
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1.3.2 Mechanism of SRM 

 

The exact mechanism of statin myopathy remains unknown. The consequent intracellular 

depletion of intermediate metabolites and end products from the mevalonate pathway 

following statin therapy are thought by some to be the main events in the cellular 

apoptosis resulting in statin-induced myotoxicity. Since there is no solid, unifying 

pathway to explain mechanisms involved in SRM, I will outline, as described by 

Mosshammer and colleagues recently (Mosshammer et al., 2014), the literature 

background involved in the pathogenesis of statin side-effects as follows. 

 

Pharmacokinetic (PK) factors 

Contributory components involved in determining statin PKs are (i) statin hepatic 

biotransformation to metabolite, (ii) uptake into hepatocytes and (iii) efflux transport into 

bile canaliculi (Taha et al., 2014). PK factors from hepatocytes become the central focus 

for mechanism studies underlying statin-induced myopathy as they are among principal 

determinants of statin plasma concentration. With regards to hepatic biotransformation by 

CYP metabolising enzymes, PK studies consistently show higher systemic exposure of 

statins with substrate affinity to CYP3A4 when coadministered with an inhibitor of the 

CYP3A4 (Jacobson, 2004, Fichtenbaum et al., 2002, Azie et al., 1998). More commonly, 

statin-associated myopathy and rhabdomyolysis have been frequently reported during 

concomitant treatment with an inhibitor of CYP3A4 (Rowan et al., 2009, Maxa et al., 

2002, Omar and Wilson, 2002). Similarly, genetic polymorphism in the CYP3A4 

enzymes has also resulted in PK changes of statins, and thereby SRM. This will be 

discussed in section 1.5. 

 

With respect to membrane drug transporters, inhibition or single nucleotide 

polymorphism (SNP) in uptake transporters OATPIBI at the sinusoidal membrane, was 

shown to affect simvastatin PKs and to a lesser degree other statins (Niemi, 2010). 

Although, other uptake transporters such as OATP1B3, OATP2B1 and the Na
+
-

taurocholate cotransporting polypeptide (NTCP) (Nies et al., 2013, Niemi, 2010, Ho et 

al., 2006),  are also involved in hepatic statin transport, simvastatin are not affected by 

them as much as OATP1B1 (Sirtori et al., 2012). Until now, polymorphism in SLCO1B1, 

the gene that encodes the OATP1B1, is an important PK predictor for almost all statins as 

they share this transporter (Pasanen et al., 2007, Konig et al., 2006, Pasanen et al., 2006). 



 

14 
 

The SLCO1B1 polymorphism has a large effect on the PKs of hydrophilic rosuvastatin, 

as it is not metabolised by the CYP450 system (Pasanen et al., 2007).  

 

To a lesser extent, there is evidence also that the ATP- binding cassette (ABC) efflux 

transporters affect statin PKs as well. Among the efflux transporters in the liver, only P-

glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 2 (MRP2, ABCC2) 

and breast cancer resistance protein (BCRP, ABCG2) (Nies et al., 2013, Niemi, 2010) are 

shown to be implicated. Apart from expression in the liver, these efflux transporters are 

involved in intestinal secretion of statins (Generaux et al., 2011, Niemi, 2010, Itagaki et 

al., 2008). The contribution of membrane drug transporters in the intestine in determining 

statins PKs however remains inconclusive and needs further investigation (Mosshammer 

et al., 2014). 

 

Transporters in muscle cell membrane 

Transport of statins into and out of the muscle cells involves uptake and efflux 

transporters expressed on the membrane. They are therefore assumed to modulate local 

statin exposure in skeletal muscle and influence the development of SRM. So far, uptake 

transporter OATP2B1 (SLCO2B1) and efflux transporters multidrug resistance-

associated proteins 1 (MRP1, ABCC1), 4 (MRP4, ABCC4) and 5 (MRP5, ABCC5) have 

been shown to facilitate statin transport across the sarcolemmal membrane of human 

skeletal muscle fibers (Knauer et al., 2010). Although OATP2B1 is the only SLCO-group 

uptake transporter thus far found at the myocyte membrane level, the contribution of 

other uptake transporters such as monocarboxylate transporters (MCTs) from SLC group 

is unclear. 

 

MCT1 and MCT3/MCT4 are present in rat and human muscle cells (Bonen et al., 1997). 

MCT1 is expressed predominantly in slow-twitch oxidative (type I) fibers and in small 

quantity in fast-twitch glycolytic (type II) fibers (Thomas et al., 2012, Pilegaard et al., 

1999). Interestingly, MCT1 has been identified, along with lactate dehydrogenase (LDH), 

in cardiac and skeletal muscle mitochondria, in which they aid mitochondrial lactate 

oxidation and facilitate the "intracellular lactate shuttle" (Brooks et al., 1999). It is 

suggested that reduced function of MCT1 due to a genetic polymorphism may explain the 

mitochondrial dysfunction among statin myopathic patients as type I fibers (high MCT1 

contents) typically display a two- to threefold higher mitochondrial density (Picard et al., 

2012). This would in turn explain higher type I fiber-targeted muscular injury in rats with 
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cerivastatin treatment (Obayashi et al., 2011), which is consistent with the high MCT1 

level in the fibers. This is in agreement with MCT1’s involvement in lactate transport in 

skeletal muscle and mitochondria (Brooks, 2009, Hashimoto et al., 2006, Brooks et al., 

1999, Bonen et al., 1997). The contribution of the transporter can thus be proposed as a 

predictor for statin-related myotoxicity and/or mitochondrial toxicity. However, statins 

have been only found targeting MCT4 in a number of in vitro studies (Kobayashi et al., 

2006, Sirvent et al., 2005, Nagasawa et al., 2003), but there is not much evidence 

regarding the involvement of MCT1. 

 

Intracellular effect 

The mechanism of SRM at the intracellular level can be associated with mitochondrial 

disorder due to CoQ10 deficiency. One of the end products from cholesterol biosynthetic 

pathway is CoQ10, the component required for oxidative phosphorylation and adenosine 

triphosphate production in the mitochondria to maintain cell integrity. A decrease in 

CoQ10 biosynthesis and thus energy depletion mediated by statins has been postulated to 

be responsible for statin myotoxicity. To this effect, statin-mediated reduction of 

circulating, but not intramuscular CoQ10 concentrations, has been reported in both man 

and rats (Folkers et al., 1990, Willis et al., 1990). Statin therapy may reduce CoQ10 

production, however, it is not clear whether or not statins reduce muscle CoQ10 

concentrations (Marcoff and Thompson, 2007). Therefore it is uncertain whether CoQ10 

reduction is involved in the pathophysiology of SRM. To a certain extent, CoQ10 

deficiency may represent a predisposing factor for statin mediated myopathy, possibly in 

combination with other CoQ10 depleting conditions such as hereditary mitochondrial 

(e.g., MELAS syndrome) and metabolic disorders (Vladutiu et al., 2006). This proposal is 

supported by at least three cases of MELAS, syndrome characterised by mitochoncdrial 

myopathy, encephalopathy, lactic acidosis and stroke like episodes, after initiation of 

statin therapy in previously asymptomatic patients (Tay et al., 2008, Thomas et al., 2007, 

Chariot et al., 1993). Furthermore, findings from muscle biopsy suggest that statins could 

induce a mitochondrial myopathy. Indeed, ragged red fibers which are a characteristic of 

mitochondrial myopathy, have been reported in symptomatic patients on statin therapy 

(Phillips et al., 2002).  
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1.4 Non-genetic Risk Factors of SRM  

 

Recently, Taha and colleagues (Taha et al., 2014) have classified broadly the factors 

associated with SRM into environmental and genetic risk factors.  In this section, statin 

properties and its interactions with other concurrent medications, both of which 

considered as environmental factors, will be described.  

 

1.4.1 Patient characteristics 

 

Although the prevalence of statin-induced myopathy is considered low with only 1.2 per 

10,000 persons/years, the risk may be increased by factors such as the patients’ 

characteristics, concurrent drug medications and statin properties as discussed previously 

(Chatzizisis et al., 2010). In term of patient characteristics, several epidemiological 

studies have demonstrated that certain demographic features including advanced age 

(particularly above 80 years), female sex, small body frame and frailty, increase the risk 

of statin muscular adverse effects (Armitage, 2007, Schech et al., 2007, Pasternak et al., 

2002). The incidence of drug adverse effects is increasing with age (> 65 years old) has 

been reported in a number of studies such as in the Study Assessing Goals in the Elderly 

(SAGE study) (Deedwania et al., 2007) and the MRC/BHF Heart Protection Study (Heart 

Protection Study Collaborative Group, 2002). Nevertheless, myopathic symptoms may be 

hard to discern from muscular complaints commonly experienced in elderly patients, 

making the interpretation of the exact proposed age for the predisposing risk of SRM 

difficult. Multiple drug therapy and age-related impairment of kidney function, to some 

extent, may exacerbate the risk of myopathy among elderly patients. 

 

Females are more susceptible to SRM, by approximately 2-fold, because of their smaller 

vascular volumes and lower muscle mass, resulting in greater statin tissue exposure (Feng 

et al., 2012). Indeed, the risk of rhabdomyolisis was found more than 2-fold higher in 

females (Schech et al., 2007). On the other hand, a meta-analysis of 18 RCTs of statins 

with gender-specific outcomes did not detect any gender-specific differences in statin-

related adverse events, probably because of the underrepresentation of women in the 

clinical trials concerned. Furthermore, only statin dosage, but not patient’s gender, was 

identified as a risk factor for SRM in the Prediction of Muscular Risk in Observational 

Conditions (PRIMO) study (Bruckert et al., 2005). However, a risk-based approach 

according to gender factor has been used as selection criteria for cholesterol lowering 
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effect in Framingham study in which different age range for men and women; i.e.35-74 

years old and 45-75 years old, respectively for safety concern (Anderson et al., 1991). 

This suggests gender, to a certain extent, also attributes to the risk of CHD diseases as 

well as the risk for statin adverse effects.  

 

Apart from the age and gender of an individual, ethnic difference has also been regarded 

as a risk factor for SRM. The term ethnicity is a multidimensional classification that 

encompasses shared origins, social background, culture, and environment (Senior and 

Bhopal, 1994).  It is generally recognised that inter-individual variation in statin response 

among Asians is likely attributed to the genetic make-up in drug metabolising enzymes 

and drug transporters (Chatzizisis et al., 2010). Asian subjects which include Chinese, 

Malaysian, and Indian had greater plasma drug concentration versus time area under the 

curve (AUC) of rosuvastatin in comparison to patients of European ancestry receiving 

similar doses (Lee et al., 2005). It is suggested that smaller body size in Asians may 

explain the underlying variability in drug response in some studies (Xie et al., 2001). 

Considering the ethic difference, the FDA has limited the administration of statin doses 

based on major continental race (Feng et al., 2012) with the recommendation that 

Japanese or Chinese descent administered a lower statin dosage i.e., below the one-half of 

the maximum dosage approved for use in the United States (Talbert, 2006).  

 

1.4.2 Dosage and properties of statins 

 

The dosage and physicochemical properties of statins are other risk factors of statin 

myopathy. As with other drug therapy, the risk for muscular adverse event is generally 

thought to be affected with higher statins dose (Davidson et al., 1997). In other word, 

patients who are exposed to high-dose statin therapy may be at higher risk. However, no 

linear relationship between plasma statin concentrations and the risk of adverse muscular 

events has been established. The overall risk of myopathy attributed to standard statin 

doses is reported to be typically low (<0.01%) (Armitage, 2007).  A recent trial 

evaluating treatment with a standard dose of rosuvastatatin (20mg daily) reported that the 

rate of myopathy following statin treatment was no different to that of the matching 

placebo (Ridker et al., 2008).  In case of higher statin dose regimens, increased risk of 

myopathy has been shown with high doses of simvastatin (160 mg daily) (Davidson et al., 

1997) and pravastatin (160 mg daily) (Rosenson and Bays, 2003). An increased incidence 
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of myopathy has also been shown in patients with acute coronary syndrome treated with 

simvastatin (80mg daily) compared to placebo or simvastatin at lower dose regimens (20 

mg daily) (de Lemos et al., 2004), but not for atorvastatin (80 mg daily) (LaRosa et al., 

2005, Cannon et al., 2004), even though both drugs are lipophilic. Similarly, a greater 

incidence of statin related myopathy was attributed to atorvastatin (80 mg daily) 

compared to simvastatin (20 mg daily) (Pedersen et al., 2005) but this did not occur when 

atorvastatin (80 mg daily) was compared to either atorvastatin (10 mg daily) (LaRosa et 

al., 2005) or placebo (Amarenco et al., 2006).  

 

Physicochemical properties of statins determine their bioavailability and thereby the risk 

of muscle toxicity. A statin’s solubility in water affects its permeability across cell 

membranes of non-hepatic (including muscular) cells and its ability to cross the blood-

brain barrier. Pravastatin, rosuvastatin and to some extent, fluvastatin, exhibit hydrophilic 

properties, whereas other statin molecules i.e. atorvastatin, simvastatin and lovastatin are 

lipophilic (Hamelin and Turgeon, 1998). The lower risk of myotoxicity associated with 

pravastatin therapy appears to be related to its decreased penetration of the lipid-rich 

membranes  (Ziegler and Stunkel, 1992) and thus uptake by extra-hepatic tissues, 

presumably associated with the hydrophilicity of the molecule. Pravastatin is taken up by 

hepatic cells via the sodium-independent bile acid transporter, the OATP (Ziegler and 

Stunkel, 1992). Along with the sodium-dependent taurocholate co-transporting 

polypeptide, OATP also mediates the uptake of the hydrophilic rosuvastatin molecule by 

hepatocytes. Both in vivo (Nakahara et al., 1998) and in vitro (Gadbut et al., 1995) 

experiments are in agreement that lipophilic statins increase the risk of muscular adverse 

effects more than hydrophilic ones. However, the hydrophilicity of some statins has not 

been proven to offer clinically significant muscular protection (Bays, 2006). No clinical 

evidence exists that supports a direct association between the degree of lipophilicity and 

the myotoxic potential (Evans and Rees, 2002) since cases of rhabdomyolisis have also 

been attributed to hydrophilic statins. The susceptibility to statin myopathy may therefore 

be enhanced by factors that increase statin’s concentration in intramuscular tissue 

including patient profile (section 1.4.1) and/or the presence of concomitant drugs (will be 

discussed in the next section). 
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1.4.3 Statin-drug interactions 

 

The identification of other factors such as concurrent medications suggested that patient 

characteristics are not a sole determinant of the SRM. The SRM caused by statin-drug 

interactions, as a result of inhibition of and/or genetic polymorphisms of cytochrome 

P450 enzyme system or membrane transporters, have been described (Neuvonen et al., 

2006). 

 

There are basically three groups of drugs that may interact with statins causing SRM as 

shown in table 1.4 below. Overall, there is no evidence to implicate whether statin 

therapy with other group of lipid lowering drugs such as fibrates, niacin and ezetimibe 

induce muscle toxicity (Chatzizisis et al., 2010). Although Shek and Ferrill (2001) have 

reported that there was 0.12% incidence of myotoxicity when statins are administered in 

combination with fibrate therapy, the incidence, however, is considerably low to conclude 

its relevance to the whole patient population. 
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Table 1.4 Substances that may precipitate statin-induced myopathy (adapted 

from Chatzizisis et al., 2010). 

 

Interacting drugs/ co-medications Postulated mechanism 

Non-hypolipidaemic medicines 

Cyclosporin 

Macrolide antibacterials (erythromycin, 

clarithromycin) 

Azole antifungals (itraconazole, 

ketoconazole, fluconazole) 

Calcium channel antagonists (diltiazem, 

verapamil) 

Nefazodone 

HIV protease inhibitors (ritonavir, 

nelfinavir, indinavir) 

Warfarin 

Histamine H2 receptor antagonists 

(cimetidine, ranitidine) 

Omeprazole 

Amiodarone 

 

 

CYP3A4 inhibitor 

CYP3A4 inhibitor 

 

CYP3A4/CYP2C9 inhibitor 

 

CYP3A4 inhibitor 

 

 

CYP3A4 inhibitor 

 

CYP3A4/CYP2C9 inhibitor 

CYP2C9 inhibitor* 

 

CYP3A4 inhibitor 

CYP3A4 inhibitor 

 

Hypolipidaemic medicines 

Fibrates (gemfibrozil > bezafibrate, 

clofibrate, fenofibrate) 

 

 

 

Niacin 

 

 

Inhibition to statin glucoronidation 

(gemfibrozil only), activation of the 

peroxisome proliferator-activated 

family of nuclear receptors 

(interaction with fibrates) 

Unknown 

Other substances 

Grapefruit juice 

Over-the-counter medications (Chinese 

red rice fungus) 

 

CYP3A4 inhibitor 

Not available 

 

*No particular clinical significance reported during the interaction with fluvastatin  
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Concurrent treatment with drugs which can affect the absorption, metabolism, excretion 

or protein binding of statins can increase the risk of myotoxicity (Bellosta et al., 2004). 

About 60% of cases of statin-related rhabdomyolysis are related to drug interactions 

(Kashani et al., 2006). Additionally, most of the reported statin-drug interactions are 

associated with the interference with hepatic metabolism of statins (Bottorff, 2006). For 

instance, simvastatin and lovastatin are metabolised by CYP3A4 and appear to be more 

susceptible to the inhibiting effect of other drugs which are substrates for the same 

enzyme such as cyclosporine or calcium channel antagonists as shown in the table (Table 

1.4). Similarly, the interaction between fluvastatin, which is metabolised by CYP2C9, and 

drugs that interfere with the CYP2C9 (e.g. Histamine H2 receptor antagonists and azole 

antifungals) may be of clinical importance in SRM. However, rosuvastatin is minimally 

metabolised by CYP2C9 and therefore concomitantly administered drugs which interfere 

with this enzyme are of no consequence to its hepatic clearance.  

 

Apart from the role played by the CYP enzymes, transporter-mediated drug-drug 

interactions (DDIs) may occur through inhibition or induction of transporter mediated 

influx or efflux. Neuvonen and colleagues (2006) have provided extensive review of 

clinically relevant drug interactions with lipid lowering drugs including statins that lead to 

altered pharmacology properties of the lipid lowering drugs (Neuvonen et al., 2006). 

Indeed, examples of DDIs involving drug transporters have been documented since more 

than five decades ago. These include; elevated plasma concentrations of digoxin and 

central opioid effects of loperamide when used concomitantly with MDR1 inhibitors (Di 

Rosa and Di Rosa, 2014, Kim et al., 1999), elevated serum levels of penicillin, 

angiotensin-converting enzymes (ACE) inhibitors and HIV antiviral drugs when they 

were co-administered with probenecid, inhibiting OAT-mediated secretion in the tubular 

kidney cells (Ayrton and Morgan, 2001, Burnell and Kirby, 1951). In the case of statins, 

there is accumulating evidence describing the interaction between SLCO1B1 and genes 

transcribing CYP metabolising enzymes. For example, it has been suggested that 

simvastatin is likely to be affected by the drug interaction as it is the most selective 

substrate for both SLCO1B1 and CYP3A4 genes, thus further suggesting gene-gene-drug 

interactions to illustrate possible clinical outcomes (Sadee, 2013). 
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1.5 Genetic risk factors of SRM 

 

Genetic predisposing factors have been an active area of research in SRM for more than a 

decade. Recently, Maggo and colleagues (Maggo et al., 2011) have described the 

pharmacogenetic influence on SRM into two components; polymorphisms affecting 

genes involved in (a) statin pharmacokinetics (PK) and (b) statin pharmacodynamics 

(PD). Although a substantial number of studies have described the candidate genes 

involved in statin PDs (see Table 1.5), much of the reported adverse effects of statins 

were determined among candidate genes that were characterised by statin PKs (Shitara 

and Sugiyama, 2006). In general, the CYP metabolising enzymes and membrane drug 

transporters are the two major biological factors that determine PKs of statins. For 

lipophilic statins such as simvastatin and atorvastatin, which commonly undergo phase I 

oxidation, polymorphisms in CYP enzyme (typically CYP3A4, CYP2D6 and CYP3A5) 

can greatly affect PKs of the statin. Using the US Food and Drug Administration Adverse 

Event Reporting System database, the adverse events reporting rate and ratio (AERR) of 

rhabdomyolisis were compared for simvastatin (a statin 3A4 substrate) and pravastatin (a 

statin non-3A4 substrate) when each drug was coadministered with a CYP3A4 inhibitor. 

The study showed a six-fold increase in the AERR for simvastatin (with vs without a 

CYP3A4 inhibitor) and no increase in AERR for pravastatin (with vs without a CYP3A4 

inhibitor) (Rowan et al., 2009). The hydrophilic statins, as they are not metabolised by the 

CYP enzymes, are eliminated largely as unchanged and therefore, polymorphisms in the 

CYP enzymes are not determinants in the side-effects of the hydrophilic statins. 
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Table 1.5 Summary of important genetic factors involved in PK/PD properties 

of statin metabolism underlying statin-related myopathy (adapted from Maggo et al., 

2011). 

 

Genetic factors that may alter PKs of 

statin metabolism  

Genetic factors that may alter 

PDs of statin metabolism  

Cytochrome P450 (CYP) 3A4  Adenosine Triphosphate-Binding 

Cassette Transporters and CYP7A1  

CYP2D6  P-Glycoprotein (P-gp) 

CYP3A5  Apolipoprotein E protein (Apo E)  

Organic anion transporting 

polypeptides 1B1 (OATP1B1)  

 

Cholesteryl ester transfer protein 

(CETP)  

P-Glycoprotein (P-gp) HMG-CoA Reductase Enzyme  

 Proprotein Convertase 

Subtilisin/Kexin  

Type 9 (PCSK9)  

 Atrogin-1  
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Aside from the CYP enzyme system, hepatic membrane transporters, which include both 

uptake and efflux transporters, have been also considered to be determinants in the PKs of 

statins as well as their interactions with other drugs (Rodrigues, 2010). Until now, as 

stated earlier (section 1.3.2), common variants in SLCO1B1 (among the PKs factors) 

have been recognised as a major factor affecting statins exposure, as a result of reduced 

hepatic uptake of statins and consequently increased risk to muscle toxicity (Niemi et al., 

2011). In a GWAS in patients with established myopathy and those with new-onset 

symptoms receiving simvastatin 80 mg daily, common variants in the SLCO1B1 gene 

were linked to a significant increased risk of myopathy, with 60% of all myopathy cases 

attributable to one specific common non-synonymous variant rs4149056 (521T>C). The 

odds ratio for myopathy was 4.5 (95% confidence interval, CI, 2.6 to 7.7) per copy of the 

C allele, and 16.9 (95% CI, 4.7 to 61.1) in CC as compared with TT homozygotes (Link 

et al., 2008). Notably, these associations were demonstrated among patients receiving 

high doses of simvastatin, indicating that genetics is a prominent factor in SRM and that 

genotyping of patients for the SLCO1B1 variants may help to improve the safety of statin 

therapy, particularly in patients receiving high-dose regimen and with coexisting risk 

factors. 

On the other hand, genetic variants relevant to statin PDs could also be shown to 

influence statin efficacy. There are genes (refer Table 1.5) that code for proteins involved 

in the mechanism of action of statins, and therefore influence PD processes. This type of 

variation will not affect drug metabolism or transport, and will not impact on plasma or 

tissue levels of the drug. Take an Apo E variants for instance, it has been shown that Apo 

E variants were associated with variable response to statin treatment. Pharmacologically, 

Apo E binds to lipids and lipoprotein receptors, and modulates lipoprotein levels by 

influencing the clearance rate, lipophilic conversion as well as VLDL and TG production 

(Elghannam et al., 2000). A study comprising 328 males and females treated with 10 mg 

atorvastatin for one year indicated that males with Apo E2 variant allele showed 

significantly enhanced efficacy with respect to reductions in LDL-C (44%; p= 0.021), TC 

(34%; p = 0.033) and triglyceride levels (27%; p= 0.049) compared with patients with the 

E3 or E4 alleles (Pedro-Botet et al., 2001). Regarding fluvastatin therapy, the Apo E 3/3 

genotype has been attributed to enhanced efficacy with respect to reductions in plasma 

TC (20.4% vs 15.4%; p= 0.01) and LDL-C (28.7% vs 22.7%; p= 0.03) compared with 

Apo E 3/4 or 4/4 genotypes (Ballantyne et al., 2000). Furthermore, patients with the Apo 

E 2/3 genotype had a greater increase in HDL levels (19.1% vs 4.3%; p= 0.002) in 
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response to fluvastatin therapy than those with genotypes 3/3, 3/4 and 4/4 (Ballantyne et 

al., 2000). 

 

It is rather confusing on the group that P-gp (encoded through the ABCB1/MDR1 gene) 

might be presented on. The P-gp protein is another class of ATP-dependent efflux pump 

implicated in variable response to statins. One of the main features of this efflux pump is 

its broad substrate specificity and the ability to regulate the distribution, and hence 

bioavailability, of various drugs (Ambudkar et al., 2003, Fromm 2002). Therefore, it 

could be grouped among the PK components of statin metabolism. In fact, it has been 

reported that the AUC of simvastatin acid and atorvastatin was increased approximately 

60 % in homozygous individuals for the c.1236T-c.2677T-c.3435T haplotype versus 

homozygous for the reference c.1236C-c.2677G-c.3435C haplotype of ABCB1 gene; no 

effect was seen on simvastatin lactone (Keskitalo et al., 2008). The P-gp transporter, on 

the other hand, has been also shown to influence PD of statins. The efflux transporter is 

known to transport many therapeutic drugs from the gastrointestinal tract to the 

circulation (antineoplastics, calcium channel antagonists, antibacterials, anticonvulsants 

and others) including statins (Schwab et al., 2003). Thus, inhibition of the P-gp 

transporter by statins may lead to reduction in efflux back into the gut during absorption. 

This increase in absorption of those drugs transported by this transporter results in 

reduced efficacy or ADRs due to altered drug translocation and accumulation (Leslie et 

al., 2005, Ambudkar et al., 2003).  

 

With respect to genetic polymorphisms affecting lipid levels, allelic variants of the 

ABCB1 gene are known to affect the response to statin treatment (Kajinami et al., 

2004b). 344 patients treated with atorvastatin 10 mg/day for 52 weeks were genotyped for 

two polymorphisms in the ABCB1 gene. The presence of the rs1045642 SNP, commonly 

referred to as the 3435T homozygous variant, in females was significantly associated with 

reduced efficacy with respect to LDL-C reduction and a moderate increase in high-

density lipoprotein cholesterol (HDL-C) (Kajinami et al., 2004b). A further study by 

Fiegenbaum et al. (2005) incorporating 116 hypercholesterolaemic patients treated with 

simvastatin 20 mg per day for 6 months investigated the effects of genetic polymorphisms 

in the ABCB1, CYP3A5 and CYP3A4 genes and their effect on the response to statin 

treatment. Results indicated that patients who were carriers of the ABCB1 c.1236T 

variant allele (rs1128503) demonstrated significantly (p = 0.042) enhanced efficacy with 

respect to reduction in plasma TC (29%) and LDLC (39.6%) levels compared with 
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patients carrying the wild-type allele (24.2% and 33.8%, respectively). In this study, no 

significant associations with statin efficacy were related to polymorphisms in the 

CYP3A5 and CYP3A4 genes (Keskitalo et al., 2008).  

 

There is also evidence that other potential important genetic predictors of SRM, other 

than that of involvement of PK and PD components as mentioned above, that may have 

predicted SRM cases. Recently, a SNP in glycine aminidotransferase (GATM) that 

encodes the rate-limiting step in creatine synthesis i.e., rs9806699 was found to be 

associated with incidence of SRM in two separate populations with meta-analysis odds 

ratio of 0.60 (Mangravite et al., 2013). Thus this SNP was earlier regarded to be among 

promising gene candidates in SRM. The findings from a subsequent gene association 

study using a large, multicenter case-control study, however, did not replicate the findings 

by those of Mangravite et al. (2013). The GATM rs9806699 allele/genotype frequencies 

were found to be similar in statin myopathy cases and controls with unadjusted odds ratio 

for the A allele for any mild or severe statin myopathy was 1.14 (0.82 – 1.61; p=0.437) 

(Luzum et al., 2015), which was consistent to that found by two earlier studies (Carr et 

al., 2014, Floyd et al., 2014). There is also evidence of the involvement of mitochondrial 

stress and cellular reactive oxygen species (ROS) formation in SRM based on data from 

both human and animal studies (Kwak et al., 2012, Bouitbir et al., 2011). As reported by 

Larsen and colleagues (Larsen et al., 2013), the apparent 60% loss of glutathione 

peroxidase (GPx), an antioxidant enzyme, in patients chronically treated with simvastatin, 

may explain in part, the contribution of oxidative stress in decreased mitochondrial 

function and glucose intolerance seen in simvastatin related-skeletal muscle effects. This 

suggests polymorphism in genes transcribing antioxidant enzymes including GPx, 

catalase and members of the superoxide dismutase could to a degree, contribute to SRM 

along with other coexisting genetic polymorphisms. Finally, although the involvement of 

immune function is not widely established as an underlying cause for statin adverse 

reactions, the HLA class II allele, DRB1*11:01 was identified as a strong genetic risk 

factor for the development of one specific statin myopathy, anti-HMGCR-associated 

necrotizing immune myopathy (Mammen et al., 2012). 
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1.6 Population Candidate Gene Association Studies  

 

Genetic association studies test for a correlation between disease status and genetic 

variation to identify candidate genes or genome regions that contribute to a specific 

disease. The studies are major tools for identifying genes conferring susceptibility to 

complex disorders which mainly involve both genetic and environmental factors, and 

SRM is one such example. There are two approaches used in the genetic association 

studies; family-based design and population-based design. The advantages and pitfalls of 

these two designs have been described previously (Daly and Day, 2001). A typical 

population-based design is the case-control study, which is commonly designed 

retrospectively in genetic studies, comparing genetically unrelated individuals with the 

disease with appropriate controls (either community or clinical-matched controls). A 

large-scale for case-control design in genetic association studies has been featured in 

genome-wide association studies (GWAS) to detect associations using 500,000 to more 

than a million genetic markers.  

 

1.6.1 Single marker analysis in case-control design 

 

In genetic association studies, single marker analysis for both matched and unmatched 

case-control study has been described (Zheng et al., 2012). Simulation methods for 

matched case-control studies is rather more stringent than that of an unmatched method, 

as the purpose for the matched methods is often used to control for confounding variables 

and a known population (Zheng et al., 2012).  Common test statistics for genetic 

association covered in the unmatched case-control method normally include genotype-

based tests (i.e., Pearson’s chi-squared test, the Cochran-Armitage trend test, and the 

likelihood-ratio test) as described by Zheng and colleagues (2012). In genetic association 

studies, the data for case-control studies may be analysed assuming these pre-specified 

genetic models - dominant, recessive, multiplicative and additive genetic model. Please 

refer to Appendix A for further detail.  

 

1.6.2 Candidate SNPs of known functional significance 

 

There are factors to take into account during performing case-control studies. These 

factors include study design, methods for recruitment of cases and controls, functional 

significance of the selected polymorphisms for study and statistical analysis of data to 
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ensure that only genuine associations are detected (Daly and Day, 2001). Selection of 

SNPs with functional effects and candidate genes of disease pathway were considered the 

first step in candidate gene association studies. This method offers considerable 

advantages in terms of detecting disease associated genes, rather than randomly selected 

polymorphisms in particular genes (Risch, 2000). The availability of detailed information 

on functional significance before the initiation of an association study should help to 

avoid reporting of spurious associations (Roses, 2000). Functional effects of 

polymorphisms, however, are complex to understand, and it is important that the overall 

effects of possession of a particular haplotype, which may include tagging SNPs of non-

functional variants, be considered rather than the functional effects of a single 

polymorphism (Daly and Day, 2001). With the development of haplotype-tagging system, 

which is used to detect tag-SNP (will be described in section 1.6.3) in the International 

HapMap project, non-functional variants found in close proximity to functional markers 

or in linkage disequilibrium (LD) with other true functional polymorphisms, are also now 

feasible for the candidate gene studies (Stram, 2004). 

 

With the introduction of GWAS studies, certain genes in the candidate gene approach can 

be obtained from the findings, which then lead to more significant meaningful markers. 

As the GWAS manage to scan a large set of genetic variants and thus to identify 

associations with a particular trait or disease of which the traditional candidate gene 

method cannot do, the impact of candidate genes (resulted from the GWAS) on later 

studies cannot be denied. So far, only one GWAS has been established in the field of 

statin myopathy (Link et al., 2008) and the study has given a good example on how 

GWAS findings has produced subsequent successful replication studies. The GWAS, 

conducted in 2008, was carried out using a matched case-control study (ncases = 85, ncontrols 

= 90) from the 12,000-patient-strong Study of the Effectiveness of Additional Reductions 

in Cholesterol and Homocysteine (SEARCH) trial. The findings in the GWAS presented 

how the knowledge of a linked polymorphism i.e., a tag-SNP,  in a synonymous SNP 

(rs4363657) in SLCO1B1 gene will be useful in determining coding SNP (i.e., 

rs4149056) which in complete LD with the rs4363657 (r
2
 = 0.97) thus indirectly 

interpreted the functional significance of the genetic marker.  
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1.6.3 Candidate SNPs in tagging SNPs  

 

With the completion of the Human Genome Project (Venter et al., 2001) and the HapMap 

Project (Altshuler et al., 2010) increasing knowledge of the whole human genome and 

information about the location and function of genes, has prompted the suggestion of 

genetic association studies by selecting (presumably small) number of tagging SNPs (tag 

SNPs) for complete analysis of the haplotype structure of the human genome (Zhang et 

al., 2004). Tag SNPs are a reduced set of SNPs that capture much of the LD region and 

they can be used in whole-genome SNP association studies to reduce the number of SNPs 

needed to detect LD-based association between a trait of interest and a region in genome. 

Therefore, the use of tag SNPs, either by haplotype block-dependent or block-free 

methods (Zhang and Sun, 2007), in association studies can significantly reduce the effort 

put on genotyping of the whole SNPs in a gene. 

 

Unlike haplotype block-dependent methods, in the block-free methods, tag SNPs will be 

selected according to LD pattern (Nicolas et al., 2006, Carlson et al., 2004, Lin and 

Altman, 2004) or by using power computations (Byng et al., 2003, Cousin et al., 2003). 

There were three independent steps in the haplotype block-free selection of tagging SNPs; 

(i) identifying genomic segments where the tag SNP will be performed; (ii) defining a 

measure to quantify how well a set of tag SNPs can predict all observed and/or 

unobserved SNPs; (iii) searching a minimum set of tag SNPs that meets a desired 

threshold (Halldorsson et al., 2004). Although it has been argued that the use of tag SNPs, 

instead of all the SNPs, resulted in the loss of power in association studies, the loss of 

power was moderate (Zhang et al., 2002). The tag SNPs, however, are not sole 

determinant in this case, as many other factors such as sample size, number of SNPs used, 

MAF value, fraction of missing data and genotyping errors, has been found to affect the 

power of association studies (Zhang et al., 2004). 

 

1.7 Research Plan 

 

The work presented in this thesis is based on both cellular and clinical studies with the 

aim being that the findings of cellular work would result in some candidate SNPs which 

could then be tested in a clinical study. Since muscle toxicity is a common side-effect of 

statins, investigation of the effect of statins on transporters located in muscle cell 

membrane can be important in elucidating SRM. While there is evidence for the 
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involvement of OATP and MRP in transport of statins in striated muscle (Knauer et al., 

2010), there is no information available on the involvement of MCTs, which are 

abundantly expressed in the skeletal muscle, and their polymorphisms in relation to SRM.  

We hypothesised that SRM could be promoted by the increased local uptake of statins 

and/or accumulation of endogenous monocarboxylate metabolites (e.g. lactate) in skeletal 

muscle which mainly involve MCTs, possibly MCT1 and MCT4. Since the interplay 

between statin uptake versus efflux transporters modulates the response to skeletal muscle 

statin exposure, it is also of interest to determine statin impact on efflux transporter, 

possibly members of the MRP family. 

 

The statin transporters information obtained from the cellular work could be tested for 

genotype-phenotype relationship in SRM. This, along with a selection of other candidate 

genes with known clinical significance for statin efficacy and side-effects, will be studied 

in clinical setting using a case-control study. There has not yet been a genetic association 

study carried out to identify the association between SNPs in MCTs and SRM cases. 

Therefore, the general aim of this study is to gain better understanding into the risk 

factors that are responsible for the inter-individual variability to statin-induced muscle 

toxicity, by analysing data from both the preclinical and clinical study. 

Over the three years of my research, the following studies were planned to be undertaken: 

 

1. To assess statin impact on functional activity of MCT uptake transporters and 

efflux transporters, MRPs in particular, in a high-expression-MCT1 and -MRPs 

cell line model, HK-2 (a proximal tubule cells) cells.  

 

2. To replicate the same functional studies in a model of skeletal muscle cells from 

both rat and human. 

 

3. To evaluate the association between patient demographics (age, sex or body mass 

index), genetics and other contributory factors to the occurrence of SRM in a 

retrospective case-control study.  
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Chapter 2. Effects of Statins on Functional Expression of 

Monocarboxylate Transporters (MCTs) 
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2.1 Introduction 

 

There are numerous factors that influence statin-related myotoxicity (SRM), including 

patient characteristics, genetics, drug-drug interactions and statin dose as described in 

Chapter 1. Genetic variability of membrane transporters in hepatocytes has been shown to 

play a crucial role in determining statin plasma concentrations and the subsequent risk in 

developing myopathy. Although it has been established and recognised that elevated 

plasma statin concentration increases the risk of muscle toxicity (Huerta-Alardin et al., 

2005, Jones and Davidson, 2005, Ballantyne et al., 2003), the aetiology of statin-induced 

muscle toxicity is not well understood.  

 

It has been shown that exposure to lactate, a monocarboxylate, was found to be associated 

with the generation of reactive oxygen species (ROS) and the up-regulation of genes 

related to mitochondrial lactate oxidation complex in both in vitro and in vivo study using 

rat skeletal muscle cells (Bouitbir et al., 2011, Hashimoto et al., 2007). In muscle, lactate 

has been transported by monocarboxylate transportres (MCTs), possibly MCT1 and 

MCT4 since they are highly expressed in the striated muscle (Adijanto and Philp, 2012, 

Halestrap and Price, 1999).  Physiologically, the role of MCTs in skeletal muscle is 

undeniable since the organ is the major site of lactate production and removal in the body. 

So far, there has been no study to investigate the association of the MCTs with the risk of 

SRM. Substrates for MCTs have not been limited to endogenous metabolites but also 

xenobiotics such as statins, gamma-hydroxybutyrate (GHB) and valproic acid (Morse et 

al., 2014, Liu et al., 2013, Kobayashi et al., 2006, Sirvent et al., 2005).  

 

Our group has previously shown that HK-2 cells express MCT1 at the mRNA and 

functional levels (Jenkinson et al., 2012). Since statin-related side-effects are associated 

with muscle cells, I investigated statin effects on the expression of MCTs in two in vitro 

muscle models, namely the L6 rat skeletal muscle cells and the cells originated from 

primary human muscle cells. A number of studies have characterised MCT functions in 

the L6 cells (Hashimoto et al., 2007, Hashimoto et al., 2006, Kobayashi et al., 2004). 

However, there is no conclusive evidence that statins affect MCT function in muscle 

cells. This study thus aims to compare the effect of statins in the functional expression of 

MCT in these three cell lines. We hypothesised that statin-induced muscle toxicity could 

be promoted by an increase in the local uptake of the drug by striated muscle and/or 

accumulation of endogenous metabolites such as monocarboxylates lactate. I thus 
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investigated the effects of statins on functional expression of MCTs which could act as 

mediators of statin transport in muscle cells. It is possible that the inhibition of the 

transporter functions by statins could advocate myotoxicity due to intracellular lactate 

and/or statin accumulation.  

 

2.2 Materials and Methods 

 

2.2.1 Materials and reagents 

 

RT
2
 Profiler

TM
 Human Drug Transporter PCR array (Catalogue no:  PAHS-070Z), Rat 

Drug Transporter PCR array (PARN-070Z) and reagents were purchased from Qiagen 

Ltd (Crawley, UK). Simvastatin, atorvastatin, pravastatin, and rosuvastatin were gifts 

from AstraZeneca (Alderley Park, Cheshire, UK). [
2-3

H]-DL-lactate (at activity of 20 

Ci/mmol) was purchased from Hartmann Analytic (Braunschweig, Germany). SV Total 

RNA Isolation System was purchased from Promega (Southampton, UK). SYBR Green 

Dye Master Mix for real-time polymerase chain reaction was purchased from Roche 

Applied Sciences (Burgess Hill, UK). 3-(4, 5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine 

methosulpahte (PMS) were obtained from Promega (Southampton, UK). Unless 

otherwise stated, all other reagents were purchased from Sigma-Aldrich (Dorset, UK) and 

were of the highest quality available. 

 

2.2.2 Cell culture and maintenance 

 

Three cell lines were used in this project; human proximal tubule cells (HK-2), rat 

skeletal muscle cells (L-6) and human skeletal muscle myotubes. The cells were cultured 

and maintained as described as follow; 

 

a. HK-2 cells  

The HK-2 (ATCC
®
 number: CRL-2190

TM
) cell line was a gift from Professor John Kirby, 

Newcastle University. The cells are derived from normal human epithelial renal proximal 

tubule and immortalized with a recombinant virus (Human Papilloma Virus 16, HPV 16) 

containing E6 and E7 genes. The cells were used up to 20 passages from the initial 

culture and cultured in Dulbecco’s modified Eagle’s medium (DMEM) high 
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glucose/Ham-F12 medium at a 1:1 ratio, supplemented with 200 units/ml penicillin, 200 

µg/ml streptomycin, 5 mM L-gluatmine and 10% fetal bovine serum.  

 

b. L6 rat muscle cells 

The L6 rat muscle cell line (ATCC
®
 number: CRL-1458

TM
), supplied at myoblast stage, 

was kindly provided by Dr Audrey Brown of Newcastle University. The cell line was 

established from embryonic rat thigh muscle (Yaffe, 1968). L6 exists as myoblasts when 

cultured in maintenance culture medium, which comprises high glucose DMEM 

supplemented with 10 % foetal calf serum, 200 units/ml penicillin and 200 µg/ml 

streptomycin, until 70-80% confluency. The cells are then introduced to differentiation 

medium (high glucose DMEM supplemented with 2 % horse serum, 200 units/ml 

penicillin and 200 µg/ml streptomycin), upon which the cells differentiate into myotubes 

until confluent (Figure 2.1). L6 cells used in this project were within passage number 11 

and 30.  
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Figure 2.1 Visualization of various stageof L6 cell line cultured in a 24-well plate. 

Initial cell density at day 0 was 1 x 10
5 
cells/mL and cultured with 500 µl growth media. 

Cells were then viewed; at myoblast stage on Day 1 (A), myoblast stage on Day 2 (B), 

and confluence on Day 3 (C). Subsequent cell maintenance with differentiation media 

transformed the myoblast into myotube structure on day 6 or 7 after differentiation (D) 

(40x magnification). Single representative field of view randomly selected. 

A 

C 

B 

D 
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c. Cultured human muscle cells 

Human muscle cells used in this project was supplied by Dr Audrey Brown of Newcastle 

University. These cells were sourced from healthy subjects with no family history of type 

2 diabetes. The subjects were recruited previously for another study by Brown and 

colleagues (Brown et al., 2007) for which full ethical approval was held. The cells were 

obtained from the vastus lateralis and satellite cells isolated as described by Blau and 

Webster (1981) (Blau and Webster, 1981). For this study, the cells, initially obtained as 

myoblasts, were used within passage 4 and 8 as previously described for cultured human 

skeletal muscle cells (Brown et al., 2008). The myoblasts were cultured in Ham’s F10 

medium supplemented with 20% (v/v) FBS, 2% (v/v) chick embryo extract, 100 units/ml 

penicillin and 100 μg/ml streptomycin, for approximately 5 to 7 days to reach 70-80 % 

confluency. The cells were subsequently differentiated into myotubes for another 6 or 7 

days (Figure 2.2) by the introduction of minimum essential medium (MEM) 

supplemented with L-glutamine and 2% (v/v) FBS. All experiments were performed 

using differentiated myotubes from three different subjects. 
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Figure 2.2 Visualization of various stages of human muscle cell line cultured in a 

24-well plate. Initial cell density at day 0 was 1 x 10
5 
cells/mL and cultured with 500µl 

growth media. Cells were then viewed; at myoblast stage on Day 3 (A) , myoblast stage 

on Day 6 (B), and the appearance of the myoblast on day 9 (C) remained the same as Day 

6 (B). Subsequent cell maintenance with differentiation media transformed the myoblast 

into myotube structure on day 6 or 7 after differentiation (D) (40x magnification). Single 

representative field of view randomly selected. 

 

 

 

 

A B 

C 
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2.2.3 Routine passage and maintenance 

 

All cell types were routinely grown in 75 cm
2
 (T75) flasks, each containing 15 ml of 

growth medium and incubated in a humidified incubator at 37°C and 5% CO2. Cells were 

passaged when they reached 80-90 % confluency. Passage of cells involved removing old 

medium and the adhered cell monolayer washed twice with 10 ml PBS before 

introduction of 0.25% trypsin/EDTA for 5 minutes at 37 °C to dislodge the cells. Equal 

volume of complete medium was added to deactivate the trypsin and the cell suspension 

was then centrifuged at 1500 rpm for 3 minutes to remove residual trypsin. Fresh medium 

was added to the cell pellet and resuspended by passing the mixture through a wide-bore 

needle. Cell count was performed using Cellometer Automated Cell Counter (Nexcelom 

Bioscieces, Lawrence, MA) before downstream applications.  

 

1 x 10
6
 passaged cells were transfer to a clean T75 cell culture flask for further 

propagation and cultured as described above. Passaged HK-2 cells were either seeded 

onto 12-well plates at a density of 100,000 cells/well or 96-well plates at a density of 

20,000 cells/well. The cells were cultured for 2 and 3 days using 96-well plates and 12-

well plates, respectively, before use in experiments. The other cell types (i.e., L6 rat and 

human muscle cells) were seeded onto 24-well plates at 50,000 cells/well or 96-well 

plates at 20,000 cells/well. They were cultured for 5 to 7 days to allow cells to reach 70-

80 % confluency. After which they were differentiated by changing the culture medium to 

the differentiation medium. Differentiation media were changed every two days.  

 

Routinely, 1 x 10
6
 cells were cryopreserved in liquid nitrogen to maintain low passage 

number. This involved suspending the cells in 1 ml of freezing medium (culture medium 

with 10 % fetal calf serum and 10 % DMSO) before gradual temperature drop (-1 

ºC/minute in nitrogen vapour) and stored in liquid nitrogen at temperature of -135 ºC. The 

cryopreserved cells were thawed quickly in a 37 ºC water bath and supplemented with 

warm fresh medium, and cultured as described above. 
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2.2.4 Assessment of cell viability by MTS assay 

 

MTS assay was used to assess the viability of all cell types used in this project. Medium 

of cells seeded on 96-well plates were aspirated gently and the adhered cells washed three 

times with warm modified-Krebs buffer (137 mM NaCl, 5.4 mM KCl, 0.3 mM NaH2PO4, 

1 mM MgSO4, 0.3 mM K2PO4, 2.8 mM CaCl2, 10 mM HEPES, 10 mM glucose, to pH 

7.4 with Tris base). The cells were then equilibrated with 100 µl modified-Krebs buffer 

for several minutes before 20 µl MTS/PMS mixture was added. The plate was incubated 

at 37 °C in the absence of light and absorbance of the formazan produced was measured 

at 490 nm after 4 hours using FLUOstar Omega Microplate Reader (BMG LabTech, 

Germany). 

 

2.2.5 RNA extraction and analysis 

 

a. RNA extraction 

Cell monolayers for RNA extraction were washed twice with ice-cold PBS and scraped 

into PBS and pelleted by centrifugation for 5 min at 1500 rpm. Total RNA was then 

isolated from the cells using SV Total RNA Isolation System (Promega) as per 

manufacturer’s instructions. RNA yield and quality were then quantified using a 

NanoDrop 1000 spectrophotometer (Thermo Scientific) and an Agilent 2100 Bioanalyzer 

(Agilent Technologies). All RNA samples included had a RIN (RNA integrity number) 

greater than 8. The RNA was then stored at -80°C for further use.  

 

b.  Quantitative real-time PCR arrays (qPCR) 

Th real-time PCR (or qPCR) is the method of choice to quantify expressed genes of 

interest at the RNA level. The qPCR has become a well-established procedures for 

quantifying levels of gene expression, as well as gene rearrangements, amplifications, 

deletions or point mutations. Compared with conventionally performed semi-quantitative 

end point PCR (reverse transcription-PCR, or abbreviated as RT-PCR), the qPCR has its 

own advantages because of its high sensitivity, high specificity, good reproducibility and 

wide dynamic quantification range (Dorak, 2006).  

 

There are three basic metadologies commonly used in the detection of RNA or DNA 

targets by the qPCR method and all of them utilise fluorescent dyes. The simplest assay 

system involves the incorporation of a free dye i.e., SYBR
® 

Green I (EvaGreen
TM

 and 
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BOXTO are the new free dyes that has been presented for use in qPCR) into the newly 

formed double-stranded DNA product. Fluorescence is emitted proportionally to the 

amount of double- stranded DNA. As described by Tevfik (2006), there are advantanges 

and disadvantages for the SYBR
® 

Green-based detection method over the other assays in 

qPCR such Taqman-based detection
 
assay (refer section 4.2.7b) in term of specificity and 

sensitivity. However, as required for both methods, optimal design of the PCR primers is 

essential for accuracy and specificity. For assays using SYBR
® 

Green I dye, detection is 

based on the binding of the dye into double-stranded PCR products (as it accumulates 

during PCR), which is a sequence-independent process. While this assay is cheaper than 

the specific probe-based assay i.e., Taqman
® 

assay (it uses a fluorogenic probe specific to 

target gene), it loses the additional level of specificity introduced by the hybridisation of a 

specific fluorescent Taqman
® 

probe to the PCR product. The sensitivity of detection with 

SYBR
® 

Green may therefore be compromised by the lack of specificity of the primers, 

primer concentration and the formation of secondary structures during PCR such as 

primer-dimers. The 5’ nuclease assay using Taqman
®
 probes would also be compromised 

by the lack of primer specificity and limiting primer concentration, and although these are 

not detected by the Taqman
® 

probe, they alter the amplification efficiency of the PCR 

reaction (Dorak, 2006).  

 

The quantitative endpoint for qPCR is the threshold cycle, CT, or also known as crossing 

point (Cp). The CT is defined as the PCR cycle at which the intersection between an 

amplification curve and a threshold line occurs when the ∆Rn (Rn is the reporter signal 

normalized to the fluorescence signal of reference dye) is plotted against PCR cycle 

number values. By presenting data as the CT, it can be assured that the PCR is in the 

exponential phase of amplification and the value is inversely related to the amount of 

nucleic acid present. There are two methods of presenting the quantitatitative 

measurement of gene expression i.e., absolute and relative quantification, as described 

previously (Schmittgen and Livak 2008). Unlike the absolute quantification method, the 

relative gene expression, which it is the preferred method of choice for this study to 

measure of fold change in mRNA level of a gene due to a treatment, presents the data of 

the gene of interest relative to some calibrator or internal control gene (refer Appendix 

B1). This is represented by the equation 2
-∆∆C

T (Livak and Schmittgene, 2001). This is an 

alternative method of presenting the qPCR data and thus proper validation of the internal 

control, or so-called housekeeping gene or lineage specific gene, is critical. The internal 

control gene should not change under experimental conditions (e.g. treated versus 

https://www.thermofisher.com/uk/en/home/life-science/pcr/real-time-pcr/qpcr-education/taqman-assays-vs-sybr-green-dye-for-qpcr.html#compare
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untreated or normal versus diseased state). Validation of the internal control should be 

done prior to quantifying the gene of interest. Methodology to validate internal control 

genes has been described by Schmittgen and Livak (2008) and a hypothetical example to 

determine whether a gene is suitable for use as an internal control in a drug treatment 

experiment is presented in Appendix B2. 

 

Using qPCR array plates from Qiagen Ltd (Crawley, UK), analysis of a panel of 84 drug 

transporter genes in the three cell lines studied (section 2.2.2) was carried out. The qPCR 

arrays are set of optimised real-time PCR primer assays on 96-well plate disc for pathway 

or diseased focused genes as well as appropriate RNA quality controls. The 

manufacturer’s instructions were followed for the assay. Briefly, 1.5 µg of total RNA 

samples from L6 rat and human muscle cells were reverse transcribed to cDNA using RT
2
 

first strand synthesis kit supplied by the PCR array. SABiosciences RT
2
 2x SYBR Green 

Master Mix (SABioscience) was added to the diluted cDNA. 25 µl of the mixture was 

then aliquoted into each of the well of the array and qPCR carried out using Lightcycler 

480 Real-Time PCR System (Roche Applied Science, Burgess Hill, UK) with the 

following programme: 95 °C, 10 minutes for 1 cycle followed by 45 cycles of 95 °C for 

15 seconds, 60 °C for 1 minutes. There are five housekeeping genes (Actin, Beta-2 

microglobulin, Hypoxanthine phosphoribosyltransferase 1, Lactate dehydrogenase A and 

Ribosomal protein) were used to normalise the expression levels using the RT
2
 Profiler

TM
 

array plate. Both the CT and 2
-∆∆C

T values can be automatically retrieved and analysed 

using SABioscience web-based portal 

(http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php. 

 

2.2.6 Functional assay of monocarboxylate transporters (MCTs) 

 

a. 3
H-DL-lactate uptake assay 

Lactate uptake by HK-2, human cells, and L6 cells seeded on 12-well or 24-well plates in 

the presence of statins were carried out. Cell culture medium was aspirated off and 

adhered cells washed with pre-warmed modified-Krebs buffer three times. The cells were 

equilibrated with appropriate buffers for 20 minutes at 37 °C. Sodium-free Krebs buffer 

was made by replacing sodium chloride with choline chloride. Uptake was initiated by 

replacing the modified-Krebs buffer with buffer containing 
3
H-labelled DL-Lactate (1 

µCi/ml). After a pre-determined incubation period, the uptake was terminated by washing 

cells three times with ice-cold Krebs buffer. To determine whether inhibitors inhibit the 

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php
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uptake function, cells were incubated with the 
3
H-DL-lactate in the presence or absence 

of the inhibitors. Initial binding of radio-labelled compound to the surface of the cells was 

determined by measuring uptake at 0 min. The cell monolayers from each well were then 

solubilised with 0.5 ml of 0.05% (w/v) sodium dodecyl sulphate (SDS) and the cell 

lysates were transferred into individual scintillation vials (Meridian, Surrey, UK). 

Following addition of 1 ml Optiphase HiSafe scintillation cocktail (PerkinElmer, 

Beaconsfield, UK), samples were vortexed and the associated radioactivity determined 

using an LS6500 liquid scintillation counter (Beckman Coulter, High Wycombe, UK). 

 

b. Calculation of radiolabelled substrate uptake 

The amount of DL-lactate accumulated by the cell monolayer was determined using 

Equation 2.1 below:  

 

Equation 2.1 

 

 

Monolayer DPM (disintegrations per minute) is the amount of radioactivity accumulated 

by the cell monolayer. Standard DPM is the total radioactivity available to the monolayer, 

calculated from the average of three 10 μl samples of the transport solution. In the 

equation, in order to calculate the total DPM available to the cell monolayer, the Standard 

DPM is multiplied by 30 because the monolayer was bathed in 300 µl volume. M is the 

total amount of DL-lactate (in moles) available for uptake. To take into account the 

approximate growth area (i.e., 1.9 cm
2
 and 3.8 cm

2
 for 24-well plate, 12-well plate, 

respectively), the values calculated by equation 2.1 are divided by the indicated surface 

area of the monolayer. Results are, therefore, are expressed as the amount of lactate 

accumulated by the monolayer, per cm
2
, over time (pmol/cm

2
/min). An example 

calculation for the 
3
H-DL-lactate uptake from a monolayer of 24-well plate is shown in 

Appendix C1.  

 

Uptake (pmol)     =        Monolayer DPM x M    ÷  surface area (cm
2

)  

(Standard DPM x 30) 
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c. Measurement of Km and Vmax values 

Calculation of the substrate concentration that yield half-maximal response, otherwise 

known as the Michaelis-Menten kinetic (Km), and the maximal response (Vmax) to 

describe the radiolabelled uptake kinetics was performed by GraphPad Prism software 

version 4 (GraphPad Software Inc. San Diego, CA, USA). 

 

In order to show the potency of inhibitor to inhibit transporter-mediated substrate uptake, 

an IC50 value (the concentration of competitor required to inhibit substrate uptake by 50% 

of the maximum, and therefore cause 50% reduced uptake) was used to characterise the 

inhibition of uptake kinetics. For the purpose of this study, all IC50 values were derived 

from their respective Km. The inhibition constant for the inhibitor (Ki) was calculated 

using Equation 2.2 as described by Cheng and Prusoff (Cheng and Prusoff, 1973). Ki 

values account for the differences in the affinity of individual transporter, and for 

differences in probe substrate concentration used. The lower the Ki, as with the IC50 

value, the more effective the inhibitor binds to a binding site and in this case, the 

membrane transporter, while the higher the Ki, the less effective the inhibitor binds to the 

transporter. 

 

Equation 2.2 

 

Ki        =                    IC50 

         ____________________ 

        1 +    ([ligand]) / Km   )      

 

where Ki is the binding affinity of the inhibitor, IC50 is the functional strength of the 

inhibitor shown by the concentration of inhibitor (for example, phloretin or statins) 

required to inhibit the increase in uptake activity by 50%, [ligand] is the fixed substrate 

concentration and the Km value is the concentration of substrate for radioligand required 

to produce 50% maximal increase in uptake transporter activity.  

d. 3
H-DL-lactate efflux assay 

The efflux of radiolabelled substrate was used to functionally measure the efflux 

expression of MCT. Briefly, cells were pre-incubated with 300 µl of Krebs containing 

radiolabelled DL-lactate (50 µM) for 60-90 minutes at pH 6.0, 37 °C to ensure cells were 

loaded with radiolabelled substrate. After incubation, cells were then washed with ice-

cold Krebs at pH 7.4 three times. To initiate lactate efflux, cell monolayers were 
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incubated with 300 µl pre-warmed 
3
H

-
DL-lactate-free Krebs buffer at pH 6.0 with and 

without 500 µM inhibitor. After several time intervals, the cell monolayers were 

solubilised in 0.5 mL of 0.05 % SDS and transferred to scintillation vials. The 

radioactivity was measured as described earlier. Fractional efflux rate (% of radiolabelled 

lactate efflux every 2 min intervals) was calculated according to the Equation 2.3 below 

(refer Appendix C2 for an example of calculation) and the magnitude of MCT-mediated 

3
H-DL-Lactate efflux in Krebs-inhibitor solution was compared to that of control with 

Krebs buffer only. 

 

Equation 2.3 

 

 

2.2.7 Statistical analysis 

 

All statistical analysis on data was performed using GraphPad Prism software version 4
 

(GraphPad Software Inc. San Diego, CA, USA). Statistical difference of continuous 

measurements was tested using Student’s unpaired t-test (two groups) or a One-Way 

ANOVA (mean values for three groups or more) with Dunnett’s post-hoc test as 

appropriate. A value of p < 0.05 was considered statistically
 
significant.

 
Unless otherwise 

stated,
 
results are expressed as the mean ± SEM from separate experiments performed on 

separate days.  
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2.3 Results 

 

2.3.1 Expression of MCT uptake transporter in HK-2 cells  

 

Relative mRNA expression of key uptake transporters 

The expression of a series of uptake transporters in HK- cells was carried out using qPCR 

array (catalogue no: PAHS 070Z). It was found that SLC16A1 (MCT1) mRNA was most 

abundantly expressed in HK-2 cells; however, no mRNA expression of SLC16A2 

(MCT2) and SLC16A3 (MCT4) was detected in this cell line (data not shown in figure 

2.3). Other SLC and SLCO groups of uptake transporters such as SLC22A2 (OCT2), 

SLCO2A1 (OATP2A1), SLCO3A1 (OATP3A1) and SLCO4A1 (OATP4A1) were also 

expressed at relatively lower concentrations. The pattern of expression of these uptake 

transporters is summarized in figure 2.3. 

 

 

 

Figure 2.3 Relative gene expression levels of key uptake transporters in HK-2 

cells. The relative gene expression level was analysed by standard RT² Profiler PCR 

Array data analysis from SABiosciences website. The expression levels were calculated 

using the 2
−ΔΔCp

 method and are relative to the geometric mean of five housekeeping 

genes provided by the array. Error bars represent the mean ± SEM of three independent 

assays of three separate cultures of HK-2 cells.  MCT, monocarboxylate transporter; 

OCT, organic cation transporter; OAT, organic anion transporter; OATP, organic anion 

transporting polypeptide.   
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Functional expression of MCT uptake transporter 

Functional expression of MCT uptake transporter was determined by 
3
H-DL-lactate 

uptake in the HK-2 cells. The kinetics of 3H-DL-lactate uptake by the cells is shown in 

figure 2.4. The uptake of DL-lactate (1 µCi/mL) was linear up to 15 minutes incubation 

time. The uptake of lactate was found to be saturable and concentration-dependent over 

the range concentration of 0.1 mM to 10 mM. A nonlinear regression analysis with a 

simple Michaelis-Menten equation gave a Km value of 4.21± 1.0 mM (95% CI: 2.18 - 

6.24).  Importantly the uptake of lactate was significantly (P<0.0001) higher at a more 

acidic extracellular pH (uptake at pH 5.5 > pH 7.4).  In addition the uptake of lactate was 

markedly Na
+
-dependent. This result is not consistent with the characteristics of MCTs 

which are Na
+
-independent transporters. It may reflect the expression of sodium-coupled 

monocarboxylate transporter (SMCT) and was Na
+
-dependent. 
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Figure 2.4  DL-Lactate uptake kinetics by HK-2 cells. (A) The uptake of 

radiolabelled DL-Lactate (100 µM) at 10 minutes was linear. (B) In the presence of 

sodium, the uptake was pH-dependent i.e uptake was significantly (***p<0.0001) 

reduced at pH 7.4 when compared to uptake at pH 5.5. (C) DL-lactate uptake over a 

range of concentration (0.5-10 mM) resulted in apparent Km value of 4.21± 1.0 mM (95% 

CI: 2.18 - 6.24) at 37 °C, pH 6.0. Data are presented as mean ± SEM of three independent 

experiments. Na, sodium ion. 

 

 

A 

B 

C 
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The impact of statin on the MCT-mediated 
3
H-labelled DL-lactate uptake  

The inhibition of 
3
H-labelled DL-lactate (100 µM) uptake by statins compared to that of 

phloretin, a well-known MCT1 inhibitors and CHC (a non-specific inhibitor for MCT) is 

shown in figure 2.5. Simvastatin and atorvastatin caused a similar degree of DL-lactate 

uptake inhibition as that for phloretin. In contrast, pravastatin, rosuvastatin and CHC 

caused a significantly lower (p<0.001) inhibitory effect on lactate uptake than that shown 

by phloretin; (13.22 ± 4.24 % and 51.18 ± 6.3 % for pravastatin and rosuvastatin, 

respectively; at a final concentration of 2 mM). Dose-response curves for DL-lactate (50 

µM) uptake inhibition by statins (0.025-5 mM) are shown in figure 2.6. The IC50 values 

of the curves are 0.43 ± 0.2 mM, 0.60 ± 0.2 mM and are 3.06 ± 1.1 mM, for simvastatin, 

atorvastatin and rosuvastatin, respectively, while no IC50 produced with pravastatin 

treatment up to the highest concentration of 5 mM used. 

 

 

 

 

Figure 2.5 The inhibition of DL-lactate uptake (100 µM) by statins and CHC in 

comparison to phloretin (all at 2mM). Data are mean ±S.E.M (n = 12) from 3 

independent determinations. Difference between treatment with statins and CHC and 

phloretin (controlled for phloretin) was tested for statistical significance by One-Way 

ANOVA with Dunnett’s post-test.  P=0.001***. CHC, α-Cyano-4-hydroxycinnamic acid 

N-ethyl-N,N-diisopropylammonium salt. 
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Figure 2.6  Dose-response curve for the ability of inhibitors (0.025 - 5.00 mM) to 

inhibit MCT-mediated DL-Lactate (50 µM) in HK-2 cells. Data are mean ± S.E.M. n = 

12 from three independent experiments, analysed with non-linear least-squares 

regression. MCT, monocarboxylate transporter. 

 

 

 

A 

B 
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2.3.2 Expression of MCT uptake transporter in L6 rat muscle cells 

 

Relative mRNA expression of key uptake transporters 

The expression of a series of uptake transporters (both SLC and SLCO sub-groups) in the 

L6 cells was carried out by qPCR array (catalogue no: PARN 070Z) using total RNA 

isolated from L6 cells at myotube stage on day 7 after differentiation. In order to assess 

whether statins affect gene expression of the uptake transporters in L6 myotubes, the cells 

were pre-treated with simvastatin (2 µM) for 48 hrs prior to RNA extraction (day 5) and 

compared to untreated control cells. Among the SLC and SLCO uptake transporters, 

mRNA for Mct1 (Slc16a1), Mct8 (Slc16a2) and Oatp3a1 (Slco3a1) were found to be 

highly expressed in L6 cells in contrast to Mct4 (Slc16a3) expression (Figure 2.7). 

Moreover, the regulation of the Mct1, Mct2 and Oatp3a1 in particular, appeared not to 

have been much affected by simvastatin pre-treatment. 
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Figure 2.7 Relative transporter gene expression levels of key uptake transporters in cDNA isolated from L6 cell line at 

differentiated stage. The relative gene expression level was analysed by standard RT² Profiler PCR Array data analysis from 

SABiosciences website. The L6 cells were differentiated for 7 days and treated with simvastatin (2 µM) for 48 hrs prior to RNA 

extraction. The corresponding culture with vehicle solvent (MeOH, 0.02 % v/v) represents the control. The expression levels were 

calculated using the 2
−ΔΔCp

 method and are relative to the geometric mean of 5 housekeeping genes provided by the array. Error bars 

represent the mean ± SEM (n=3). Mct, monocarboxylate transporter; Oatp, organic anion-transporting polypeptide; Oct, organic cation 

transporter; Oat, organic anion transporter; Slc, solute carrier; Slco, solute carrier organic anion family.
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Optimisation of 
3
H-labelled DL-lactate uptake as functional expression of MCT 

The uptake of 
3
H-DL-lactate (50µM) was used to assess MCT function in L6 cells. The 

time course for lactate uptake into L6 cells at pH 6.0 (at 37°C) is shown in figure 2.8a. 

The 
3
H-DL-lactate uptake was linear up to 5 minutes. Therefore a 2 minutes incubation 

time was chosen for subsequent uptake experiments. The effect of extracellular pH and 

sodium ion concentration on 
3
H-DL-lactate uptake was examined over the pH range of 

5.5 to 7.4. 
3
H-DL-lactate uptake was significantly higher (p<0.001) at lower extracellular 

pH (pH 5.5 vs pH 7.4) in the presence and absence of Na
+
. The uptake at pH 5.5 was 

found not to be affected by Na
+
 concentration (Figure 2.8b). The uptake experiments 

were subsequently performed at pH 6.0 in the presence of Na
+
 to mimic physiological 

conditions. 
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Figure 2.8 Time course and pH-dependency uptake of 
3
H-DL-Lactate in 

myotubes of L6 rat muscle cells. (A) The 
3
H-DL-Lactic acid (50 µM) uptake by L6 (at 

pH 6.0 and 37°C) was linear up to 5 minutes and 2 minutes incubation time was chosen 

for subsequent experiments. (B) Effect of pH and Na
+
 on the uptake of DL-lactate (50 

µM) by L6 cells. Data are presented as mean ± SEM (n= 12) from three independent 

determinations. Na
+
, sodium ion. 
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MCT1 function in L6 rat muscle cells 

The kinetics of 
3
H-DL-lactate uptake by the L6 cells is shown in figure 2.9. The uptake 

of DL-lactate (1 µCi/mL) was shown to be concentration-dependent (0.1 mM to 20 mM). 

A nonlinear regression analysis with a simple Michaelis-Menten equation gave a Km 

value of 16.17 ± 2.4 mM (95% CI = 11.47- 20.87) in the presence of Na+ and the Km 

value of 15.63 ± 3.0 mM (95% CI= 9.75 – 21.51) in the absence of Na+.  The Km values 

in both conditions were found not to be significantly different from each other (Figure 

2.10) suggesting that in L6 cells  the presence of Na
+
 has no impact upon the kinetics of 

the transporter. This is in stark contrast to the results found with HK-2 cells. 

 

The exact function of MCT1 transporter (i.e. either uptake or efflux of the substrate) is 

unclear, based upon previous reported studies in various cell lines (Bonen et al., 2000, 

Juel and Halestrap, 1999, Pilegaard et al., 1999, McCullagh et al., 1996), I first decided to 

determine MCT1 efflux capability using the 
3
H-DL-Lactate efflux assay. The fractional 

efflux rate of 
3
H-DL-Lactate (50 µM) at each time interval was low and the values were 

consistently at the level below than 10% from the baseline reading (Figure 2.11). 

Furthermore, the fractional efflux rates for DL-lactate were similar when co-incubated 

with MCT1 inhibitors, phloretin (a typical MCT1 inhibitor), CHC (non-specific MCT 

inhibitor), simvastatin (a representative of lipophilic statin) and pravastatin (a 

representative of hydrophilic statin), at a concentration of 500 µM of each inhibitor to that 

of control (substrate only).  This finding suggests that MCT1 does not exhibit efflux 

function for DL-lactate in the L6 muscle cells.   
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Figure 2.9 Concentration-dependence of DL-lactate uptake by L6 myotubes. 
3
H-

DL-Lactate uptake at 0.1 – 20 mM final concentration (at pH 6.0 and 37 °C) was 

determined over 2 minutes in (A) the presence of extracellular Na
+
 and (B) the absence of 

extracellular Na
+
. The Km values were 16.17 ± 2.4 mM (95% CI: 11.47 - 20.87) and 15.63 

± 3.0 mM (95% CI: 9.75 – 21.51) in the presence and absence of Na
+
, respectively. Data 

are presented as mean ± SEM from three independent determinations. Na
+
, sodium ion. 
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Figure 2.10 Comparison of Km values in the presence and absence of extracellular 

Na
+
. The mean Km value in the presence of Na

+
 (16.17 ± 2.4 mM) was not significantly 

different (paired t-test) compared to that without Na
+ 

(15.63 ± 3.0 mM). Data are 

presented as mean ± SEM (n = 6) from six parallel determinations. Na
+
, sodium ion. 
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Figure 2.11 Efflux assay for determination of MCT1-mediated 
3
H-DL-Lactate (50 

µM) efflux in L6 cells. There was no significant inhibition of DL-lactate (50 µM) efflux. 

Efflux rates were approximately 10 % for all conditions. All inhibitors were at 500 µM 

and each point represented as mean ±SEM (n =9) from three independent experiments. 

MCT, monocarboxylate transporter; CHC, α-Cyano-4 hydroxycinnamic acid N-ethyl-

N,N-diisopropylammonium salt. 
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The impact of statin on the MCT-mediated 
3
H-labelled DL-lactate uptake  

Inhibition assay was performed to determine whether statins affect functional expression 

of Mct1 in particular. L6 cells were incubated with 
3
H-DL-lactate in the absence and the 

presence of statins (i.e. simvastatin, atorvastatin, pravastatin and rosuvastatin). To 

confirm that statin was a substrate for Mct1, the magnitude inhibition of DL-lactate 

uptake by all tested statins were compared to phloretin (a well-defined Mct1 inhibitor) 

and CHC (a typical Mct1, 2 and 4 inhibitor). Figure 2.12 summarises the degree of DL-

lactate uptake inhibition. Simvastatin and atorvastatin significantly (p<0.001) inhibited 

DL-lactate uptake to the same degree as phloretin and CHC with IC50 values of 10.7 ± 1.2 

µM and 7.4 ± 0.9 µM, respectively (Table 2.1). In contrast, the inhibitory effects of 

pravastatin and rosuvastatin were weak even up to 1 mM (Figure 2.12).  

 

The IC50 (i.e., below 100 µM) that resulted in 50% of maximal DL-lactate uptake were 

independently determined (Appendix D); they did not affect L6 cells’ viability for up to 

48 hours post-treatment. 
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Figure 2.12  The DL-lactate uptake (50 µM) in the presence of statins, CHC and 

phloretin (all at 1 mM).  Data are mean ±S.E.M. n = 12, each data point was derived 

from a triplicate of experiments and from four independent determinations. Data were 

analysed using One-Way ANOVA with Dunnett’s post-test and compared to that of 

control without the presence of inhibitor. (*** p< 0.001); ns, non-significant. CHC, α-

Cyano-4 hydroxycinnamic acid N-ethyl-N,N-diisopropylammonium salt. 
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Table 2.1 IC50 and Vmax values for the ability of the agents to inhibit 
3
H-DL-

Lactate (50 µM) uptake into L6 myotubes. 

 

Inhibitors 

 

IC50 values  (95% CI) 

 

Vmax (mean ± SEM) 

 

Phloretin  
8.8 ± 0.7 µM  (7.43 – 10.17) 

72.07 ± 0.9 %  

Simvastatin  
 

10.7 ± 1.2 µM (8.35 – 13.05)   
61.30 ± 1.1 %  

Atorvastatin  
 

7.4 ± 0.9 µM (5.64 – 9.16) 
69.60 ± 0.8 %  
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2.3.3 Expression of MCT transporters in cultured human muscle cells 

 

Relative mRNA expression of key uptake transporters 

The expression of a series of uptake transporters (both SLC and SLCO sub-groups) in 

human muscle cells was carried out by qPCR array (catalogue no: PAHS 070Z). It was 

performed using total RNA isolated from myotubes of human muscle cell line on day 7 

after differentiation. Among uptake transporters, only mRNA for MCT1 (SLC16A1) was 

detected, though OATP3A1 and MCT8 (SLC16A2) were also detected but at very low 

levels. 

 

 

 

 

Figure 2.13 Relative transporter gene expression levels of key uptake transporters 

in cDNA isolated from human muscle cells at myotube stage. The relative gene 

expression level was analysed by standard RT² Profiler PCR Array data analysis from 

SABiosciences website. The expression levels were calculated using the 2
−ΔΔCp

 method 

and are relative to the geometric mean of five housekeeping genes provided by the array. 

Error bars represent the mean ± SD of two independent assays of two separate cultures of 

human muscle cells. MCT, monocarboxylate transporter; OATP, organic anion-

transporting polypeptide; OCT, organic cation transporter; OAT, organic anion 

transporter; SLC, solute carrier; SLCO, solute carrier organic anion family. 
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Optimisation of 
3
H-labelled DL-lactate uptake as functional expression of MCT 

Tritium radiolabelled DL-lactate was used to assess MCT function in human muscle cells. 

The time course of 
3
H-DL-lactate (50 µM) uptake into human muscle cells and the impact 

of pH on uptake are shown in figure 2.14a. Similar to the L6 cells, the 
3
H-DL-lactate 

uptake was linear up to 5 minutes and thus 2 minutes incubation time was chosen for 

subsequent uptake experiments. However, DL-Lactate uptake at the abovementioned 

concentration in myotubes of human muscle cells was significantly lower (p<0.0001) 

compared to that seen in L6 cells (6.45 ± 1.2 pmol/cm
2
/min vs 37.17 ± 4.3 pmol/cm

2
/min 

at 2 mins) under the same conditions (pH 6 and 37°C, in the presence of Na
+
). 

 

The effect of extracellular pH and sodium ion concentration on 
3
H-DL-lactate uptake was 

then examined over the pH range of 5.5 to 7.4. As with L6 myotubes (section 2.4.2), the 

uptake of the 
3
H-DL-lactate in human myotubes significantly increased (p<0.05) with 

increasing acidic extracellular pH (pH 5.5 vs pH 7.4) in the presence of Na
+
. While at the 

lower extracellular pH of 5.5, the DL-Lactate uptake was found to be not affected by Na
+
 

(Figure 2.14b).  
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Figure 2.14 Time course and pH-dependency of 
3
H-DL-Lactate uptake in 

myotubes of human muscle cells. (A) The 
3
H-DL-Lactic acid (50 µM) uptake by human 

muscle cells (at pH 6.0 and 37°C) was linear up to 5 minutes and 2 minutes incubation 

time was chosen for subsequent experiments; (B) Effect of pH and Na
+
 on the uptake of 

DL-lactate (50 µM) by human muscle cells. Data are presented as mean ± SEM (n= 12) 

from three independent determinations. Na
+
, sodium ion. 

 

 

 

 

 

 

 

 

 

A 

B 



 

64 
 

Functional expression of MCT uptake transporter in human muscle cells 

The kinetics of 
3
H-DL-lactate uptake by human muscle cells is shown in figure 2.15. 

Similar to the L6 myotubes (section 2.3.2), the uptake of 
3
H-DL-lactate (1 µCi/mL) was 

shown to be concentration-dependent (0.1 mM to 20 mM). A nonlinear regression 

analysis with a simple Michaelis-Menten equation gave a Km value of 9.66 ± 2.4 (95% 

CI: 4.96 – 14.36) mM in the presence of Na
+
 and the Km value of 9.85 ± 4.7 (95% CI: 

0.37-19.32) mM in the absence of Na
+
. However, the uptake value presented at the 

concentration of 20 mM in human muscle myotubes were not significantly different to 

that shown by L6 myotubes. 
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Figure 2.15 Concentration-dependence of DL-lactate uptake by human muscle 

myotubes. 
3
H-DL-Lactate uptake; 0.1 – 20 mM (at pH 6.0 and 37°C) was determined 

over 2 minutes in (A) the presence of extracellular Na
+
 and (B) Na

+
-free conditions. The 

Km values resulted from the DL-Lactate uptake is 9.66 ± 2.4 (95% CI: 4.96 – 14.36) mM 

and 9.85 ± 4.7 (95% CI: 0.64 -19.03) mM in the presence and absence of Na
+
, 

respectively. Data are presented as mean ± SEM from three independent determinations. 

Na
+
, sodium ion. 
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The impact of statin on the MCT-mediated 
3
H-labelled DL-lactate uptake  

Inhibition assay was performed to determine whether statins affect functional expression 

of MCT1 in particular. Human muscle cells were incubated with 
3
H-DL-lactate in the 

absence and the presence of statins (i.e. simvastatin, atorvastatin, pravastatin and 

rosuvastatin) and phloretin. To confirm that statin was a substrate to MCT1, the inhibition 

of DL-lactate uptake by all tested statins were compared to phloretin (a well-defined 

MCT1 inhibitor). Figure 2.16 summarises the relative uptake of DL-lactate (50 µM) with 

and without the presence of the agents. At concentration of 500 µM, simvastatin and 

atorvastatin significantly (p<0.001) inhibited DL-lactate (50 µM) uptake to the same 

degree as phloretin. In contrast, pravastatin and rosuvastatin were weak inhibitors of 

lactate uptake. 

 

Figure 2.17 and Table 2.2 show the IC50 and Vmax values of simvastatin and atorvastatin 

compared to those of phloretin. The IC50 value for simvastatin (211.8 ± 65.37 µM) was 

five-fold higher than that for both phloretin (45.58 ± 17.15 µM) and atorvastatin (42.82 ± 

15.06 µM). However, the Vmax for both simvastatin and atorvastatin were similar to that 

for phloretin.  
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Figure 2.16 The inhibition of DL-lactate uptake (50 µM) by statins and phloretin; 

all at 500 µM final concentration.  Data are mean ±S.E.M (n = 9) from 3 independent 

determinations. Difference between treatment with statins and phloretin (controlled for 

wells without inhibitor) was tested for statistical significance by One-Way ANOVA with 

Dunnett’s post-test. *** p= 0.001.Sim, simvastatin; Atv, atorvastatin; Pra, pravastatin; 

Rosu, rosuvastatin. 
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Figure 2.17 Dose-response curve for DL-lactate uptake in the presence of 

phloretin. (A), simvastatin (B) and atorvastatin (C) in cultured human muscle cells. 

Data are presented as mean ± S.E.M. n = 12 from three independent experiments, 

analysed with non-linear least-squares regression. 
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Table 2.2 IC50 and Vmax values for phloretin, simvastatin and atorvastatin to 

inhibit 
3
H-DL-Lactate (50 µM) in human muscle myotubes. 

 

Inhibitors 

 

 

IC50 values, mean ± SEM 

 

 

 

Vmax (mean ± SEM)  
 

Phloretin  45.58 ± 17.15 µM   62.01 ± 5.76 %  

Simvastatin  211.8 ± 65.37 µM   79.64 ± 9.31 %  

Atorvastatin  42.82 ± 15.06 µM  78.97 ± 7.07 %  
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2.4 Discussion 

 

The aim of this study was to investigate the effect of statins on transmembrane 

transporters which might be associated with their myotoxicity. The study mainly focused 

on the impact of statins on monocarboxylate transporters (MCTs), since they are 

abundantly localised in skeletal muscle, and to evaluate the possible effect of mutations 

on the functional activity of the transporters with a view to their selection as part of a later 

case-control study evaluating the impact of environmental and genetic factors on the 

susceptibility to statin-related myotoxicity (Chapter 4). 

 

 

The impact of statins on the functional expression of MCTs was first examined in an in 

vitro cell-based system using MCT-expressing cell line, HK-2 (originated from proximal 

tubule cell in human kidney), before embarking the same-designed functional studies in a 

model of muscle originated from both rats and humans. We have, previously, shown both 

mRNA and functional expression of MCT-1 in HK-2 cells, using DL-lactate as substrate 

(Jenkinson et al., 2012). DL-lactate uptake in HK-2 cells was found to be transported by 

mechanism obeying Michaelis-Menten kinetics (Km), indicating transporter-mediated 

uptake, likely through the MCT1 transporter which was the major SLC16A transporter 

found in the cells although the Na
+
 dependence of the uptake suggested that the uptake 

may have been mediated by SMCT1 (sodium-coupled MCT1) rather than MCT1. The Km 

value (95% CI: 2.25 - 6.17) for the DL-lactate uptake in the HK-2 cells was lower 

compared to that seen in L6 rat muscle (95% CI: 11.47 - 20.87mM) and human muscle 

cells (95% CI: 4.96 – 14.36 mM). The Km value in the HK-2 cells was, however, about 

the same magnitude to that found with L-lactate (3.5 ± 0.4 mM) transfected with MCT1 

cRNA in heterologous system Xenopus laevis oocytes expression system (Broer et al., 

1998). It might be possible that lactate kinetics were dependent on the nature of cell 

culture-based system in which tissue it has been derived from, thus suggesting the kinetic 

could be different among different tissues. Relatively, the mRNA expression level for 

MCT1 in the HK-2 cells was higher than L6 rat and human muscle cells (1.0 vs 0.06, in 

HK-2 cells and both L6 and human muscle cells, respectively), suggesting its lower 

affinity to DL-Lactate in both muscle models. Likewise, it could be possible that HK-2 

cells extensively transport or eliminate lactate as metabolite substrate and/or product of 

the endogenous production, thus resulting in lower Km values (high driving forces) than 
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that of muscle cells, since HK-2 cells were found to express more MCTs; MCT1, MCT2 

and MCT4, at both mRNA and protein levels (Wang et al., 2006). 

 

 

In the present study, myotubes originated from human and rat muscle cells were used as 

models for muscle to determine species differences, if any, in the kinetic of lactate uptake. 

Human and L6 rat muscle were found to have a Km value within the range of values 

obtained in the other studies on lactate transport in skeletal muscles. The Km values from 

both models match those observed in earlier studies. Previous reports from tracer studies 

have shown that Km values range from 13 mM in intact skeletal muscle to 40 mM in 

vesicles isolated from rat skeletal muscle (McDermott and Bonen, 1993a, McDermott and 

Bonen, 1993b, Juel, 1991, Roth and Brooks, 1990) to 12.5 mM in myotubes of L6 cell 

line (El Abida et al., 1992). Similarly, the Km for lactate transport prepared from human 

skeletal muscle is within the same range as the values obtained in sarcolemmal giant 

vesicles from rats (Juel et al., 1994). It can thus be suggested that the L6 rat muscle cells 

could be used as a model for MCT1 function that may resemble its functional expression 

in cell line as well as intact skeletal muscle originated from human.  

 

 

In contrast to the findings in HK-2 cells (Jenkinson et al., 2012), I found that the DL-

lactate uptake in L6 cells was Na
+
-independent. Since the absence of SMCT1 in the HK-2 

cells was verified by RT-PCR, it was suggested that the inhibition of Na
+
/H

+
 exchange in 

the HK-2 cells resulted in higher lactate uptake in the presence of Na
+
 (Jenkinson et al., 

2012). Therefore, one possible explanation of this discrepancy could be the result of high 

regulation of lactate/H
+
 exchange since it was found as major pH regulator in muscle cell 

compared to other mechanisms such as Na
+
/H

+
 exchange and bicarbonate/H

+
 (Juel, 1995). 

It seems that only the presence of excess proton (H
+
) intensifies the lactate transport, in 

accordance with other previous findings (Halestrap and Price, 1999, Broer et al., 1998) 

and thus suggests that muscle symptoms among lipophilic statin users in particular, is 

associated with the disturbance of pH regulation in muscle and eventually lactic acidosis 

which might lead to apoptosis and toxicity. 

 

 

To date 18 isoforms of MCTs have been characterised with MCT1 and MCT4 being the 

only major isoforms found in skeletal muscle (Bonen et al., 2000, Halestrap and Price, 
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1999). Therefore, the investigation as to whether statins functionally affect MCT 

transporter isoforms (either MCT1 or MCT4) might provide insight into the mechanism 

underlying SRM. It is interesting to note that lipophilicity of statins determine the affinity 

to the MCT1 suggesting that the SRM symptoms, among simvastatin and atorvastatin 

users particularly, might involve muscular lactate metabolism damage as a result of 

reduced lactate uptake and/or efflux inhibition. Since phloretin did not significantly 

inhibit lactate efflux in the L6 cells, then it can be inferred that Mct1 transporter in this 

cell line did not exhibit efflux function which is consistent with previous finding by 

Kobayashi and colleagues (Kobayashi et al., 2004). In addition, others have shown that 

MCT1 is specifically involved with lactate uptake (Juel and Halestrap, 1999, Pilegaard et 

al., 1999, McCullagh et al., 1996) while lactate efflux is mediated by MCT4 (Bonen, 

2001, Wilson et al., 1998). Although it could be worth determining as to whether statins 

specifically inhibit lactate efflux by MCT4, (unfortunately, we did not undertake any 

specific functional studies of MCT4 to implicate any meaningful MCT-specific analysis) 

which might be the reason for SRM as a result of depressed muscle function due to lactic 

acidosis, as explained by new paradigm for lactate metabolism (Gladden, 2004). This also 

corroborates with earlier findings (Kobayashi et al., 2006, Sirvent et al., 2005) that statins 

also affect MCT4 transporter function and could be of interest for future research, 

especially using specific transfection or site-directed mutagenesis of the gene.  

 

 

The cellular studies in this project have several limitations. Some statin uptake 

transporters, which were shown in previous studies, have not been expressed in at the 

messager level. Among the three cell lines studied, there was no expression of OATP1B1 

transcribing gene (SLCO1B1), the only transporter showing significant association with 

statin-induced muscle toxicity, and are thus poor models for functional studies of the 

OATP1B1 transporter. In this study, expression at the messager level for transporter such 

as OATP2B1 (Knauer et al., 2010), human organic anion transporter (OAT) 1 and OAT3 

(Takeda et al., 2004), were not exhibited in the human myotubes. It could be due to 

reduced expression events that may happen during substantial differentiation as cell lines 

with high passage numbers are more likely to exhibit alterations in cell morphology and 

functions. The skeletal muscle myoblast cells, however, was found to exhibit 

multinucleated characteristic of myotube feature up to 8 passage number under light 

microscopy observation. For future experiments, it is suggested to perform experiments 

using newly established low-passage primary myoblast cultures up to 3 or 4 passage 
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number only. There was also some limitations in term of the protocols used for functional 

assays described in the experiments. Relative uptake of the radiolabeled substrate into cell 

monolayers was expressed in terms of cell monolayer surface area (exhibited as cm
2
 in 

the equation 2.1) rather than the usual protocol of using cells number or protein 

concentration. Estimation of the substrate uptake according to the cell monolayer surface 

is subjective, and therefore is dependent on the extent of cell confluence. This deficiency 

might explain large SEM for the uptake values between replicates for certain result of 

experiments.  

 

 

In the present study, it was interesting to note that the affinity of both simvastatin and 

atorvastatin to the lactate uptake inhibition were different between cells originated from 

kidney and muscle (i.e., lower IC50 values for both statins in muscle cells). It seems that 

the affinity of statins to MCTs was likely dependent on their lipophilicity. The more 

lipophilic statins were expected to have higher affinity to MCTs and their affinity as 

substrates and/or inhibitors to the MCTs was higher to muscle cells than cells originated 

from kidney cells, the HK-2 cells. However, the reason as to why the affinity of the 

lipophilic statins was higher in muscle models is unclear. It is possible that co-expression 

of MCT4 function, though not detectable at the mRNA, in the HK-2 cells interfers with 

their affinity to the inhibition of MCT-mediated DL-lactate uptake. This is supported by 

the observation of the degree of DL-lactate uptake inhibition by CHC, a competitive 

inhibitor for MCT1 and MCT4 (Manning Fox et al., 2000) in HK-2 and L6 muscle cells. 

The capacity of CHC to inhibit the DL-lactate uptake in the HK-2 cells was not in the 

same magnitude as phloretin’s, which might be consistent with the existence of MCT4 in 

HK-2 cells, but not in the L6 cells. CHC did not completely inhibit the DL-lactate uptake 

in the HK-2 cells probably due to its binding to MCT4 as well. The difference in the 

sensitivity of CHC between MCT1 and MCT4, however, is unclear at the present time, 

and so further detailed investigations are needed to clarify this. 

 

 

The affinity of atorvastatin for MCT1 in the cells was five-fold higher than that of 

simvastatin. It seems that atorvastatin, although at lower concentration than that of 

simvastatin, would have resulted in higher inhibition to MCT1-mediated lactate transport, 

thus suggesting atorvastatin-related muscle symptoms are related to the MCT1 inhibition. 

This is explained by its lack-of- dose-dependency manner (10 mg versus 80mg) to induce 
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muscle adverse events (Athyros et al., 2010, Newman et al., 2006, LaRosa et al., 2005). 

Compared with simvastatin, atorvastatin was proven to be more safe, when evaluated in 

more than 11,000 patients, in which at higher dose, the rate of clinically significant 

atorvastatin-induced myopathy was very low (Waters, 2005). In contrast, simvastatin is 

more likely to induce SRM at higher dose (80 mg) (Armitage, 2007, Thompson et al., 

2006). In skeletal muscle, lower affinity of simvastatin to MCT1 results in higher 

competition with other MCT1’s substrates, and thus only simvastatin at higher dose will 

induce the same degree of muscle toxicity. Atorvastatin, regardless of the dose, will 

compete with other MCT1’s substrate and/or inhibit lactate transport and eventually lead 

to muscle toxicity as a result of lactate transport defect. This phenomenon is more likely 

to be more obvious in high lactate level condition such as during exercise or the presence 

of DDI with other substrates of MCT1. In a blinded, controlled trial (The Effect of Statins 

on Skeletal Muscle Function and Performance, STOMP) for example, the detrimental 

muscle effects (with increased CK levels) was confirmed for individuals with physical 

activity or exercise while treated with atorvastatin (Parker et al., 2013) indicating that 

atorvastatin-induced muscle symptoms were exacerbated by high lactate levels. 

 

 

In terms of localization, MCT1 in particular, has been found to be expressed abundantly 

in muscle and in mitochondria sarcolemmal (Butz et al., 2004, Brooks et al., 1999). 

Current literature has highlighted a possible association between SRM and structural and 

functional mitochondria damage (Larsen et al., 2013, Stringer et al., 2013, Golomb and 

Evans, 2008, Sirvent et al., 2008), suggesting that MCT1 inhibition might result in muscle 

symptoms in relation to damage caused by lactate oxidation at the cellular and/or 

mitochondrial level.  Several case reports have also reported statin myopathy exacerbated 

by exercise (Parker and Thompson, 2012, Thompson et al., 1997) which might be due to 

interference with lactate transport by circulating statins. In term of muscle mass, older 

individuals (El-Salem et al., 2011, Szadkowska et al., 2010) and females (although no 

strong evidence found for this group) tend to have lower muscle mass compared to their 

counterparts (Schech et al., 2007). This group of patients may therefore be more 

vulnerable to SRM possibly due to relatively lower MCT expression, consistent with 

lower muscle mass, to accommodate with high statin plasma level. These possibilities 

warrant further studies. 
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In conclusion, the lipophilicity of a statin influences its affinity to MCT1 transporter in 

kidney and muscle cells, and MCT1 may be a factor in mediating statin muscle tissue 

exposure and toxicity.  
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Chapter 3. Effects of Statins on Functional Expression of Efflux 

Transporters 
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3.1 Introduction 

 

As highlighted in the introduction (Section 1.3) and the findings in Chapter 2, research 

into the genetic influences of ABC transporters in relation to statin toxicity has gained 

attention among researchers (Hillgren et al., 2013). 

 

I sought to investigate the possible impact of statins on the functional expression of ABC 

transporters in muscle cells. Previously our group had established that 5-(3-(2-(7-

Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid 

(MK571) could be used as a high affinity MRP inhibitor in an MRP-mediated CMFDA 

efflux assay using HK-2 cells (Jenkinson et al., 2012). A dual dye assay was developed 

for the evaluation of the impact of two inhibitors, MK571 (MRP inhibitor) and CSA 

(MDR1 inhibitor); the accumulation of dye providing an indirect measure of efflux 

inhibition of the ABC transporters. Therefore, using the same approach, functional studies 

of efflux transporters were carried out in both animal muscle (L6) cells and human 

muscle cells. MDR1/mdr1a activity was assessed indirectly by measuring the inhibition 

of Hoechst 33342 (H33342) dye efflux from the cell by cyclosporine A (CSA). The 

ability of MK571 to inhibit CMFD dye efflux was used to assess activity of the multidrug 

resistance proteins (MRP/mrp). In order to assess the relative affinity of different statins 

to MDR1 and MRPs, the magnitude of the dye efflux inhibition was compared to that by 

their typical inhibitor, CSA and MK571, respectively. 

  

3.2 Materials and Reagents 

 

RT
2
 Profiler

TM
 Human Drug Transporter PCR array (Catalogue no:  PAHS-070Z, ) and 

Rat Drug Transporter PCR array (PARN-070Z), both from Qiagen Ltd (Crawley, UK) as 

indicated in section 2.2, was used to determine relative gene expression level for efflux 

transporters. Reagents for dye assay; 5-chloromethylfluorescein diacetate (CMFDA) was 

purchased from Invitrogen (Paisley, UK), Cyclosporine A (CSA) from CalBioChem 

(UK). Unless otherwise stated, all other reagents were purchased from Sigma-Aldrich 

(Dorset, UK) and were of the highest quality available.   
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3.3 Methods 

 

3.3.1 Dye efflux assay 

 

The general principle of this assay relied on the ability of the cells to retain fluorescent 

substrate in the presence of inhibitors, which is dependent on the functions of the 

substrate transporters (Figure 3.1). In this case, functional activities of MDR1 and BCRP 

were determined by the level of intracellular retention of substrate H33342, and the 

activity of MRPs by the retention of CMFDA product fluorescent, GSMF (glutathione 

methylfluorescein). Specific assays are described in the following sections. 

 

3.3.2 Assay principle: MDR1-mediated Hoechst 33342 efflux assay 

 

The H33342 dye can be used to measure the functional expression of MDR1 and BCRP. 

This dye diffuses easily across cell membranes. Upon binding with DNA, H33342 

becomes fluorescent with excitation spectral maxima at 367 nm and broad emission 

spectra with maxima 495 nm (Kasten, 1999).  In the absence of efflux transporters MDR1 

and BCRP, for both of which H33342 is a substrate, it establishes equilibrium between 

inter- and extracellular environments. If MDR1 or BCRP are present, H33342 is actively 

effluxed from the cell causing a drop in intracellular fluorescence levels. This efflux can 

be inhibited by the introduction of any agent that interferes with the efflux activity of the 

transporters, resulting in an increase in intracellular fluorescence (Muller et al., 2007).  

 

3.3.3 Assay principle: MRP-mediated CMFDA efflux assay 

 

CMFDA, 5-chloromethylfluorescein-diacetate, is a non-fluorescent, lipophilic derivative 

of fluorescein, which easily permeates across the cell membrane. Inside the cells it is 

cleaved by unspecific esterases forming the fluorescent intermediate 5-

chloromethylfluorescein (CMF). CMF is hydrophilic and exhibits a very slow permeation 

across cell membranes. In a second step, the chloromethyl group reacts with intracellular 

thiol groups such as glutathione to produce GSMF (Figure 3.1), which is much more 

hydrophilic. GSMF is a substrate of MRPs and is actively excreted out of the cells. 

Interactions of test-compounds with MRPs result in an increase in intracellular 

fluorescence intensity (Förster et al., 2008). FLUOstar Omega plate reader detects the 

fluorescence intensity for CMFDA at the excitation wavelength of 480 nm ± 5 nm and 
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emission of 520 nm ± 5 nm. The gain was set at the beginning of each experiment for the 

plate where highest fluorescence was expected and then kept constant throughout the 

experiment. The gain was consistently set to 4500 ± 250 units throughout all experiments.  

All experimental solutions were read on the instrument compared to water background 

and did not quench the fluorescence signal for the dye.  

 

3.3.4 Dual dye retention assay  

 

According to the knowledge of transporter-mediated substrate dye efflux, dual dye 

retention assay could be performed to functionally characterise MRPs and MDR1 

transporter simultaneously. We previously confirmed the dual dye retention assay as a 

novel approach to functionally characterise both transporters simultaneously (Jenkinson 

et al., 2012), and it was further confirmed in the present study in the HK-2 cells and the 

L6 cells. Non-overlapping in signal was detected for GSMF at emission wavelength of 

480 nm (within spectral range to detect free H33342 / H33342-DNA) and to an emission 

wavelength of 520 nm (within spectral range to detect GSMF). This will be an effective 

strategy to allow high throughput screening for functional expression of efflux 

transporters, one in which MRP and MDR1 transporters were evaluated in parallel using 

particular fluorescent probe specific to the transporter, respectively.  
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Figure 3.1 Principle of fluorescence dual dye efflux assays with substrate dyes H33342 for MDR1/mdr1 and CMFDA for MRP/mrp 

efflux transporters. In the absence of efflux transporters, dye diffuses through the cell membrane and establishes equilibrium. In an intracellular 

environment the dye becomes fluorescent, either by association with lipid (H33342; Crissman and Steinkamp, 1987) or after cleavage by 

intracellular esterases and subsequent conjugation with gluathione (CMFDA; Forster et al., 2008).  In the presence of functional effux 

transporters for which it is a substrate, fluorescent dye is actively effluxed and intracellular fluorescence decreases. With the introduction of a 

inhibitor/competitor, efflux of dye is reduced and intracellular fluorescence rises. Observed IC50 values are used to measure affinity of the 

receptor for the competitor.  H33342, Hoechst 33342; GSMF, glutathione methylfluorescein; MDR1, p-glycoprotein; MRP, multidrug 

resistance-associated protein; CMFDA, 5-chloromethylfluorescein-diacetate.
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3.3.5 Protocols 

 

Cells for transporter assays were cultured as previously described. The cells were kept at 

37°C by performing the experiment on thermostatic-controlled hot plates. The cells were 

then washed twice with 200 µl of pre-warmed Krebs buffer (refer section 2.2.4). The 

Krebs buffer was then aspirated off from the plate and replaced with Krebs buffer 

containing inhibitor and incubated for 40 minutes. In the remaining Krebs-inhibitor 

solution, a probe substrate (H33342 and/or CMFDA) at concentration of 1 µM was added 

and further incubated for another 40 minutes in the absence of light. 40 minutes was the 

optimised time interval for transporter assays in this study, instead of 20 minutes 

incubation previously described by Morgan and colleagues (Morgan et al., 1989). 

 

At the end of this period, cell monolayers were washed twice with ice cold-Krebs buffer 

and 200 µl fresh Krebs buffer was added to each well. Blanks wells were also prepared 

simulataneously using the same medium to assess background without fluorescent probe. 

The cellular fluorescent levels in each 96-well were measured using FLUOstar plate 

reader (BMG LabTech) with wavelengths of CMFDA (excitation at 480 nm, emission at 

520 nm) and H33342 (excitation at 355 nm, emission at 480 nm). The fluorescence 

reading is correlated with the magnitude of inhibition produced by the inhibitors. To 

ensure that the measured differences in intracellular fluorescence were due to the test 

compounds rather than solvent, solution in control well contained the same concentration 

of solvent (DMSO or methanol) to a final solvent concentration of 0.2 %, the highest 

percentage of solvent applied for the tested compounds and was previously found not to 

affect the viability of the cells up to 48 hours treatment.  
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3.3.6 Data analysis for dye efflux assay 

 

The readings from the background were subtracted from the raw data and these data were 

normalised to the average of readings for the solvent control, which was assigned to be 

100 %. The inhibition data were then expressed as a percentage of the control. The data 

was then fitted with a nonlinear least-squares regression curve (Michealis-Menten), and 

IC50 and Ki values were obtained as previsouly described (see equation 2.2 in section 

2.2.6). 

 

3.3.7 Statistics 

 

All statistical analysis on data was performed using GraphPad Prism software version 4
 

(GraphPad Software Inc. San Diego, CA, USA) as described in section 2.3.7. Statistical 

difference between group means was tested using Student’s unpaired t-test (also known as 

independent- samples t-test) or a One-Way ANOVA with Dunnett’s post-hoc test as 

appropriate. Paired t-test was used when the mean of continuous variables between 

groups were related in some way, while two-way ANOVA was used when two 

independent variables were evaluated on a continuous dependent variable of interest. A 

value of p < 0.05 was considered statistically
 
significant.

 
Unless otherwise stated, results 

are expressed as the mean ± SEM. 

 

3.4 Results 

 

3.4.1 Expression of efflux transporter in HK-2 cells  

 

Relative expression of efflux transporters at mRNA level 

Our group has previously reported on the expression of efflux transporters in the HK-2 

cells at both functional and mRNA levels (Jenkinson et al., 2012). For this novel 

technique two dyes in combination are used to demonstrate simultaneously the functional 

expression of MDR1 and MRP in vitro. In HK-2 cells, as shown in Figure 4.1, it was 

confirmed by qPCR array (cat. no: PAHS 070Z, from Qiagen Ltd., Crawley, UK) that 

relatively high mRNA expression of MDR1 (ABCB1) was present, but not of MRP2 

(ABCC2) or BCRP (ABCG2).  However, several other MRP isoforms such as MRP1, 
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MRP4 and to a certain degree MRP3 and MRP5 were expressed in the cells (Jenkinson et 

al., 2012). 

 

 

 

 

Figure 3.2 Relative expression levels of efflux transporters in HK-2 cells. The 

result were analysed by standard RT² Profiler PCR Array data analysis from 

SABiosciences website (Section 2.2.5 in Chapter 2). The expression levels were 

calculated using the 2
−ΔΔCp

 method and are relative to geometric mean of 5 housekeeping 

genes of the array. Error bars represent the mean ± SD of three independent assays of 

three separate cultures of HK-2 cells. MDR1, p-glycoprotein; MRP, multidrug resistance-

associated protein; BCRP, breast cancer resistance protein. 
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Optimisation of dual dye retention assay 

To minimize experimental variability, functional expression of MRP and MDR1 efflux 

transporters in the HK-2 cells were replicated using the same batch of cells (using the 

same number of cell passage, but at a density of 20, 000 cells/well instead of 40,000 

cells/well as was used by Jenkinson et al (2012). Consistent with the findings by 

Jenkinson et al (2012), I found that the expression of MDR1 and MRPs at functional level 

(Figure 3.3) could be detected by the use of CMFDA and H33342 dyes simultaneously 

with non-overlapping signal. Dye retention was significantly blocked by MK571 

(p<0.0001) but was only present in a range of fluorescent wavelength specific to 

CMFDA, whilst blockade with CSA resulted in significant dye retention (both H33342 

and CMFDA). 

 

According to figure 3.3a, addition of MK571 caused significant (P<0.0001) increase in 

dye retention (from 22077 ± 5742 a.u. to 122687 ± 15057 a.u) at CMFDA wavelengths 

(480nm excitation, 520nm emission). Surprisingly CSA resulted in similar increase in dye 

retention suggesting that it could also be used as an MRP modulator. However, at H33342 

wavelengths (355nm excitation, 480nm emission), MK571 did not cause any significant 

dye retention, whilst the dye retention was only seen by CSA addition; H33342 dye 

retention by CSA almost doubled when compared with wells containing the dye only 

(Figure 3.3b).  Therefore, CSA was used as the MDR1 modulator at the indicated 

wavelength. 

 

 

 

 

 

 

 

 



 

85 
 

 

 

Figure 3.3 Non-overlapping fluorescent signal for CMFDA and H3334 and the 

specificity of MK571 as an MRP inhibitor. There was no signal for H3334 either alone 

or in combination with CMFDA. Data are presented as mean± SEM (n=30) from 5 

determinations (6 replicates in each determination). * p< 0.05 *** p< 0.0001 ns= non-

significant. C, CMFDA (5-chloromethylfluorescein-diacetate); H, Hoechst 33342; C+H, 

combination of both dyes; CSA, cyclosporin A; MK571, 5-(3-(2-(7-Chloroquinolon-2-

yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid; Em, emission; Ex, 

excitation. 

 

 

A 

B 
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Prior to the functional experiments, the concentration used for both dyes (i.e. 1 µM) was 

optimised by a series of blockade experiment using CSA and MK571 (Figure 3.4). The 

preliminary experiments in the HK-2 cells revealed a significant (p<0.01) concentration-

dependent increase in fluorescence caused by intracellular glutathione methylfluorescein 

(GSMF) (the fluorescent product of the CMFDA dye as described in section 3.3.4) at the 

concentration of the CMFDA dye of 1 μM when co-incubated with 10 μM CSA. 

Similarly to the MDR1-mediated H33342 dye efflux, there was a significant (p<0.0001) 

concentration-dependent increase in intracellular fluorescence when H33342 (1 μM) was 

co-incubated with MK571 (10 μM). The efflux for both dyes (as low as 0.15 μM) was 

shown to be significantly inhibited (** p<0.05 for CMFDA and *** p<0.001 for H33342) 

in the presence of an inhibitor (at 10 μM). However, for all subsequent transporter-

mediated dye efflux experiments a final concentration of 1 µM was used for both dyes to 

allow ready detection of dye retention. 
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Figure 3.4 Optimisation of the concentration for the dyes used in dye retention 

assay in HK-2 cells. Concentration-dependent retention of (A) H33342 and (B) CMFDA 

dye in the absence and presence of CSA and MK571 (both inhibitors at 10 µM each), 

respectively. The concentration applied for the dye as low as 0.15 µM resulted in 

statistically significant (** p<0.01 for CMFDA and *** p<0.001 for H33342) retention in 

the presence of an inhibitor compared to that of control (treated with dye only). Data are 

represented as ± SEM (n = 18) from three independent determinations. H33342, Hoechst 

33342; CMFDA, 5-chloromethylfluorescein-diacetate; CSA, cyclosporine A; Em, 

emission; Ex, excitation. 

A 

B 
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Next, the IC50 value for MK571 (Figure 3.5) was derived from dose-response curves 

relating to the ability of MK571 (0-50 μM) to increase intracellular CMFDA dye (1 μM) 

retention. The IC50 for CSA (Figure 3.6) was similarly gained from dose-response curves 

relating to the ability of CSA (0-50 μM) to increase intracellular H33342 dye (1 μM) 

retention. The IC50 values were 1.04 ± 0.4 µM and 1.36 ± 0.3 µM for MK571 and CSA, 

respectively. Remaining intracellular fluorescence product (exhibited by the percentage of 

control of the indicated dyes) of CMFDA retained by MK571 blockade was relatively 

six-fold higher (Vmax = 326 ± 23 %) than that seen with H33342 dye retention after 

blockade with CSA (Vmax = 58 ± 3.2 %)). This might corresponds with the relative 

mRNA expression level between MDR1 and MRPs as determined by the qPCR results 

(Figure 3.2).  
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Figure 3.5 MK571 concentration-dependence assay in HK-2 cells. Kinetic analysis 

of the data using a least-squares non-linear regression curve fit gave an apparent IC50 for 

MK571 (normalised to dye retention in control cells treated with CMFDA only) of 1.04 ± 

0.4 µM (Vmax of 326 ± 23 %). Data are presented as a mean ± SEM (n=12) from three 

independent experiments. MK571, 5-(3-(2-(7-Chloroquinolon-2-yl)ethenyl)phenyl)-8-

dimethylcarbamyl-4,6-dithiaoctanoic acid; CMFDA, 5-chloromethylfluorescein-diacetate. 

 

 

 

Figure 3.6 CSA concentration-dependence assay in HK-2 cells. Kinetic analysis of 

the data using a least-squares non-linear regression curve fit gave an apparent IC50 for 

CSA (normalised to dye retention in control cells treated with H33342 only) of 1.36 ± 0.3 

µM (Vmax of 58 ± 3.2 %). Data are presented as a mean ± SEM (n=18) from three 

independent experiments. CSA, Cyclosporine A; H33342, Hoechst 33342. 
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The impact of statins on the MRP-mediated CMFDA efflux 

 

As an initial experiment to determine the impact of statins on functional expression of 

MRPs, inhibitory magnitude shown by all 4 tested statins (all at 10 µM) was compared to 

that of MK571 and CSA (both also at 10 µM). Of the 4 statins examined, as shown in 

figure 3.7, simvastatin and atorvastatin (although more than 3-fold lower in CMFDA dye 

retention than that produced by MK571) significantly (***p<0.001) inhibited CMFDA 

dye efflux. In contrast, pravastatin and rosuvastatin had no significant effect on CMFDA 

dye retention when the cells were pre-treated with both the hydrophilic statins. 

Interestingly, CSA was also found to significantly (***p<0.001) inhibit CMFDA dye 

efflux, suggesting that it also has affinity towards MRPs. Prior experiments showed that 

the solvents used (i.e., 100 % methanol for simvastatin, while DMSO for others) for the 

dissolution of the statins did not impact the results as they had no effect on fluorescence 

measurements when compared to those from control samples which contained only 

CMFDA or H33342 (data not shown). 

 

The concentration for both simvastatin and atorvastatin to inhibit 50% of maximal 

velocity of the CMFDA dye retention (IC50) was obtained by incubating the cells with 

each statin (0-200 µM) (Figure 3.8).  It was shown that simvastatin exhibited higher 

affinity (lower IC50 value) toward MRP-mediated CMFDA efflux than that of atorvastatin 

(86.3 ± 7.9 µM versus 151.7 ± 40.3 µM). Neither pravastatin, nor rosuvastatin inhibited 

CMFDA retention 
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Figure 3.7 The inhibition of MRP-mediated CMFDA dye efflux by inhibitors (10 

µM) in HK-2 cells. Data are presented as a mean ± SD (n=18) from 3 independent 

experiments. Data are analysed with One-way ANOVA and Dunnett’s post test; 

***P<0.0001 and ns (non-significant) versus control. MRP, multidrug resistance-

associated protein; CSA, cyclosporine A; SIM, simvastatin; ATV, atorvastatin; PRA, 

pravastatin; ROSU, rosuvastatin; CMFDA, 5-chloromethylfluorescein-diacetate; MK-

571, 5-(3-(2-(7-Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-

dithiaoctanoic acid. 
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Figure 3.8 Dose-response curve for the ability of simavastatin (A) and 

atorvastatin (B) to inhibit MRP-mediated CMFDA efflux. Data are mean ± S.E.M. n = 

18 wells per concentration from a single experiment, representative of three independent 

experiments. Em, emission; Ex, excitation; MRP, multidrug resistance-associated protein; 

CMFDA, 5-chloromethylfluorescein-diacetate. 
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The impact of statins on the MDR1-mediated Hoechst 33342 dye efflux 

Since there was mRNA evidence for MDR1 transporter in HK-2 cells (Figure 3.2), it was 

decided to determine functional expression of the transporter in this cell line by 

determining H33342 dye retention. Figure 3.9 compares the inhibitory magnitude of all 

four tested statins to that of CSA, the MDR1 modulator. In contrast to the significant 

inhibitory effect of simvastatin and atorvastatin onto the MRP-mediated CMFDA efflux, 

they did not significantly inhibit the MDR1-mediated H33342 dye efflux at the same 

concentration (i.e., 10 µM) as CSA did.  

 

 

 

Figure 3.9 The impact of statins on MDR1 function in comparison with CSA. The 

inhibition of H3342 dye (H) efflux by simvastatin (A), atorvastatin (B), pravastatin (C) 

and rosuvastatin (D). Data are presented as mean ± SEM (n=18) from three independent 

experiments. Data were analysed with One-way ANOVA and Dunnett’s post test; 

***P<0.001 and ns (non-significant) versus control. MDR1, p-glycoprotein; CSA, 

cyclosporine A; H, Hoechst 33342; Em, emission; Ex, excitation; a.u, arbitrary unit. 
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3.4.2 Expression of efflux transporter in L6 rat skeletal muscle cells  

 

Regulation of efflux transporters in L6 cells 

The expression of a series of efflux transporters (both SLC and SLCO sub-groups) in the 

L6 cells was carried out by qPCR array (catalogue no: PARN 070Z from Qiagen Ltd., 

Crawley, UK). The experiment was performed using total RNA isolated from L6 cells at 

myotube stage on day 7 after differentiation. To assess the effect of statins on gene 

expression of these  efflux transporters in L6 myotubes, the cells were pre-treated with 

simvastatin (2µM) for 48 hrs prior to RNA extraction (day 5) and compared to untreated 

control cells. Among the ABC efflux transporters, only mRNA of Mrp1 (Abcc1) was 

found to be highly expressed in L6 cells compared to the other Mrps; Mrp2-Mrp6 (Figure 

3.10). It seems that the regulation of Mrp1 had not been much affected by pre-treatment 

with simvastatin. Although the expression of some transporters, for example Mrp2, Mrp3, 

Mrp6 and Bcrp1, was lower with simvastatin pre-treatment, the relative expression level 

was too low (i.e., < 0.02) to infer the effect of the statin treatment on these transporters. In 

addition, supported by high crossing point (Cp) values i.e., representing the PCR cycle 

number at which the reporter dye fluorescence was detectable above the background 

fluorescence, with the cut-of-point of 33, the expression of Mrp2-Mrp6, Mdr1, Mdr2 and 

Bcrp1 were considered low in the L6 cells with mean Cp values in the range of 29-31 

(Appendix E).  
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Figure 3.10 A selection of key efflux transporters in cDNA of L6 myotubes 

analysed by drug transporters qPCR array. The L6 myotubes were differentiated for 7 

days and treated with simvastatin (2 µM) for 48 hours prior to RNA extraction. The 

corresponding culture with vehicle solvent (MeOH, 0.02 % v/v) represented the control. 

The relative expression level was analysed by standard qPCR Array and data analysis 

from SABiosciences website (http://www.sabiosciences.com/pcrarraydataanalysis.php). 

The expression levels were calculated using the 2
−ΔΔCp

 method and are relative to the 

geometric mean of five housekeeping genes provided by the array. Error bars represent 

the mean ± SEM (n=3). Abc, ATP-binding cassette; Mdr1, p-glycoprotein; Mrp, 

multidrug resistance-associated protein; Bcrp, breast cancer resistance protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sabiosciences.com/pcrarraydataanalysis.php
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CMFDA dye retention assay 

Owing to the evidence of relatively high mRNA expression of MRPs, but not MDR1, in 

L6 cells (Figure 3.10), it was decided that the impact of statin on functional expression of 

efflux transporters will be studied focusing only on the MRP-mediated CMFDA efflux 

assay. The concentration used for the dye (i.e. 1 µM), as in MRP functional experiments 

in HK-2 cells, was pre-determined by a series of blockade experiment with MK571 (5 

µM). Similar to the findings in the HK-2 cells, L6 myotubes were shown to exhibit high 

functional expression of MRP transporters. The results indicated that the lowest dye’s 

concentration (i.e., at 0.15 µM), efflux was significantly (*** p<0.001) inhibited in the 

presence of MK571 (5 µM) compared to control wells that were treated with dye only 

(Figure 3.11). The concentration –dependence of the CMFDA after blockade with 

MK571 (5 µM) resulted in Km value of 1.43 ± 0.4 µM. 

 

In order to show that the functional expression of MRPs could be affected by statin, L6 

myoutubes were pre-treated with simvastatin (2 µM) up to 48 hours prior to their use in 

the functional assay. Compared to the un-treated L6 myotubes, there was no obvious up-

regulation or down-regulation of the MRPs at functional levels. The IC50 and Vmax values 

for MK571 (0-50 μM) were similar for both treated (IC50 = 0.81 ± 0.2 µM, Vmax = 219 ± 

11 %) and un-treated (IC50 = 0.91 ± 0.1 µM, Vmax = 246 ± 7.4 %) cells as shown in 

Figure 3.12.  
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Figure 3.11 Inhibition of MRP-mediated CMFDA efflux by MK571 in L6 cells. 

Addition of MK571 at 5 µM resulted in a significant increase in CMFDA dye retention 

compared to that of control wells with Km value of 6.66 ± 3.6 µM.
  ***

P<0.0001 

demonstrates the level of significance compared to the control without MK571 pre-

treatment (paired T-test).MRP, multidrug resistance-associated protein; CMFDA, 5-

chloromethylfluorescein-diacetate; MK571, 5-(3-(2-(7-Chloroquinolon-2-

yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid. 

 

 

 

              

Figure 3.12 Dose-response curve for MRP-mediated CMFDA (1 µM) efflux 

inhibition by MK571 in L6 cells.  L6 myotubes were exposed with simvastatin (A) and 

without simvastatin (B) pre-treatment for 48 hrs. Dye retention was measured after 

treatment with a range of MK571 concentrations after 40 minutes. Each point represents 

mean + SEM (n = 18) from 3 independent experiments. MRP, multidrug resistance-

associated protein; CMFDA, 5-chloromethylfluorescein-diacetate; MK571, 5-(3-(2-(7-

Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid. 

A B 
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The impact of statins on the MRP-mediated CMFDA efflux 

Having established the optimisation of MRP functional assay in L6 myotubes, the impact 

of statins to retain intracellular CMFDA dye (i.e GSMF) was compared to that of MK571. 

Of the four statins tested (each at 10 µM), only simvastatin (although five-fold lower than 

that of MK571) resulted in significant (p<0.05) CMFDA dye retention (Figure 3.13). 

Interestingly, having comparing dose-response curve between simvastatin (Figure 3.14a) 

and atorvastatin (Figure 3.14b), atorvastatin also significantly (P<0.0001) resulted in 

CMFDA dye retention at the concentration higher than 25 µM. Whilst, a rather gradual 

increase in CMFDA dye retention was seen with simvastatin treatment at 0-50 µM with 

the IC50 value of 25.05 ± 9.1 (95% CI= 12.93 – 37.40) (Figure 3.15).  Also, as expected, 

both the hydrophilic statins; pravastatin (Figure 3.14c) and rosuvastatin (Figure 3.14d), 

did not significantly affect dye retention up to the highest final drug concentration of 50 

µM.    

 

 

 

 

Figure 3.13  The inhibition by statins of the MRP-mediated CMFDA dye efflux in 

L6 cells. The concentration of all inhibitors used were 10 µM. Data are presented as mean 

± SD (n=18) from 3 independent experiments. Data were analysed using one-way 

ANOVA and Dunnett’s post test; *P<0.05 and ns (non-significant) versus control. MRP, 

multidrug resistance-associated protein; CMFDA, 5-chloromethylfluorescein-diacetate; 

MK571, 5-(3-(2-(7-Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-

dithiaoctanoic acid; ns, non significant. 
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Figure 3.14   Effect of statins (0.5-50 μM) on the MRP-mediated efflux of CMFDA 

in L6 cells. Significant dye retention was noted for simvastatin and atorvastatin at 

concentrations as low as 1 µM and 25 µM, respectively. Data are presented as mean 

±S.E.M. n = 6 wells per drug concentration from a single experiment representative of 4 

independent experiments, *** P<0.0001, *P<0.05 and ns (non-significant) compared to 

the control (without statins treatment). Data analysed using one-way ANOVA and 

Dunnett’s post-test. MRP, multidrug resistance-associated protein; CMFDA, 5-

chloromethylfluorescein-diacetate; Em, emission; Ex, excitation. 
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Figure 3.15 Dose-response curve for simvastatin (A) and atorvastatin (B) to inhibit 

MRP-mediated efflux of CMFDA in L6 myotubes. Data are presented as mean ± 

S.E.M (n = 18), with 6 wells per concentration, from 3 independent experiments. MRP, 

multidrug resistance-associated protein; CMFDA, 5-chloromethylfluorescein-diacetate; 

Em, emission; Ex, excitation. 
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3.4.3 Expression of efflux transporter in human muscle cells  

 

Relative expression of efflux transporters at mRNA level 

The expression of a series of efflux transporters (both SLC and SLCO sub-groups) in 

human muscle myotubes was assessed using qPCR array (catalogue no: PAHS 070Z, 

from Qiagen Ltd. Crawley, UK). The experiment was performed using total RNA isolated 

from the cells at myotube stage on day 7 after differentiation. Among the ABC efflux 

transporters, only mRNA of MRP1 (ABCC1) was found to be highly expressed, though it 

was less than half the expression level found in L6 myotubes. MRP3 (ABCC3), MRP4 

(ABCC4) and to some degree BCRP (ABCG2) were also present at low level of mRNA 

expression (Figure 3.16).  

 

 

 

 

Figure 3.16 A selection of key efflux transporters in cDNA of human muscle 

myotubes analysed by drug transporters qPCR array. The human muscle cells at 

myoblast stage were differentiated up to 7 days prior to RNA extraction. The relative 

expression level was analysed by standard qPCR Array and data analysis from 

SABiosciences website (http://www.sabiosciences.com/pcrarraydataanalysis.php). The 

expression levels were calculated using the 2
−ΔΔCp

 method and are relative to the 

geometric mean of 5 housekeeping genes provided by the array. Error bars represent the 

mean ± SD (n=2). ABC, ATP-binding cassette; MDR1, p-glycoprotein; MDR2, 

multidrug resistance protein 2; MRP, multidrug resistance-associated protein; BCRP, 

breast cancer resistance protein. 

 

http://www.sabiosciences.com/pcrarraydataanalysis.php
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CMFDA dye retention assay 

Owing to the evidence of relatively high mRNA expression of MRP1, but not other MRP 

sub-types as well as MDR1 (ABCB1) and BCRP (ABCG2), in human muscle myotubes 

(Figure 3.16), it was decided that that studying the impact of statin impact on functional 

expression of efflux transporters in this cell line will be focused on MRP-mediated 

CMFDA efflux assay. In addition, in order to confirm the qPCR array results, a 

preliminary experiment for MDR1- and/or BCRP-mediated H33342 dye efflux was 

performed in the presence of CSA (5 µM) and K0143 (1 µM), MDR1 inhibitor and BCRP 

inhibitor, respectively. As expected, there was no significant H33342 dye retention using 

both inhibitors when compared to that of control (data not shown) suggesting the absence 

of no functional expression of either MDR1 or BCRP transporters in this cell line. 

 

MRP-mediated CMFDA efflux was inhibited in the presence of MK571 (at 5 µM) having 

lower IC50 value (1.17 ± 0.3 µM, Figure 3.17a) thus suggesting higher affinity, than that 

of control without MK571 (5.19 ± 1.6 µM, Figure 3.17b). Intriguingly, the measurement 

of intracellular CMFDA fluorescence at the indicated wavelength was still detected for 

control wells without MK571 (although in the absence of MK571 which suggest poor 

MRP-mediated CMFDA efflux rate in these cells.  Also, in comparison to other cell lines 

studied; HK-2 and L6 cells, the percentage of the CMFDA dye retained in the cells after 

blockade with MK571 (5µM), presented by the Vmax value, was lower (approximately 15 

– 30 % of control) consistent with low expression level of MRP transporters in the human 

myotubes.  

 

The impact of simvastatin (1 µM) pre-treatment on the functional expression of MRPs 

was evaluated. As shown by Figure 3.18 simvastatin pre-treatment on human muscle did 

not result in significant CMFDA dye retention compared to control suggesting that 

simvastatin did not modify MRP function.  
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Figure 3.17 MRP-mediated CMFDA efflux inhibition by MK571 in human 

myotubes with (A) and without (B) the presence of MK571. Data are mean ± S.E.M (n 

= 18), with 6 wells per concentration, from 3 independent experiments. MRP, multidrug 

resistance-associated protein; CMFDA, 5-chloromethylfluorescein-diacetate; MK571, 5-

(3-(2-(7-Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic 

acid; Em, emission; Ex, excitation. 

 

 

 

Figure 3.18 The impact of simvastatin (1 µM) pre-treatment on MRP-mediated 

CMFDA efflux in human myotubes.  There was no significant difference in CMFDA 

intracellular fluorescence (two-way ANOVA) between the simvastatin-treated human 

muscle cells after treatment with MK571 (0-50 µM) and the control. Data are presented 

as mean ± SD (n = 18), with 6 wells per concentration, from three independent 

experiments. SIM, simvastatin; MRP, multidrug resistance-associated protein; CMFDA, 

5-chloromethylfluorescein-diacetate; Em, emission; Ex, excitation. 
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The impact of statins on the MRP-mediated CMFDA efflux 

As with other studied cell lines (section 3.4.1 and section 3.4.2), the ability of statins to 

retain intracellular CMFDA dye (i.e GSMF) was compared to that of MK571. Of the four 

statins tested (each at 10µM), only simvastatin significantly inhibited (p<0.01) CMFDA 

dye efflux (Figure 3.19). Interestingly, having compared dose-response effect for all the 

four statins (0 – 50 µM), a gradual increase in CMFDA dye retention was also noted with 

atorvastatin and pravastatin, though to a significantly lower extent than that of simvastatin 

(Figure 3.20). The IC50 values of the inhibitors are 0.06 ± 0.13 µM (Vmax = 8.5 ± 0.9 %), 

0.50 ± 1.48 µM (Vmax = 7.0 ± 1.7 %), 3.19 ± 1.22 µM (Vmax = 3.8 ± 0.4 %%) and 1.14 ± 

1.11 µM (Vmax = 6.6 ± 1.2 %) for MK571, simvastatin, atorvastatin and pravastatin, 

respectively (Figure 3.21). Lastly, of the four statins tested, only rosuvastatin (up to a 

final concentration of 50 µM) was devoid of any inhibitory activity. According to the IC50 

values, MK571 had the highest affinity for MRP-mediated CMFDA efflux in human 

muscle cells followed simvastatin > pravastatin > atorvastatin > rosuvastatin. It could be 

that specific rosuvastatin’s affinity to MRP2 transporter (Jemnitz et al., 2010), for which 

it was not observed at the mRNA levels in this cell line (Figure 3.16), resulted in lack of 

CMFDA dye retention with rosuvastatin treatment in figure 3.19 and figure 3.20. 
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Figure 3.19  The inhibition of MRP-mediated CMFDA dye efflux by MK571 and 

statins in human myotubes. Data are presented as mean ± SEM (n=18) from 3 

independent experiments. Data were analysed with one-way ANOVA and Dunnett’s post 

test; ***P<0.0001, **P<0.01 and ns (non-significant). MK571, 5-(3-(2-(7-

Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid; Em, 

emission; Ex, excitation. 
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Figure 3.20  The dose-response effect of statins on MRP-mediated CMFDA efflux in comparison with MK571. The result 

presents CMFDA-dye retention (% after controlling for dye-only wells) after statin treatment for 40 mins in human muscle cells.  Data 

are shown as mean ± SD (n=12) from two independent experiments. MRP, multidrug resistance-associated protein; CMFDA, 5-

chloromethylfluorescein-diacetate; MK571, 5-(3-(2-(7-Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic 

acid; Em, emission; Ex, excitation. 
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Figure 3.21 Dose-response curves for MK571 (A), simvastatin (B), atorvastatin (C) 

and pravastatin (D) for inhibition of MRP-mediated CMFDA efflux in human 

muscle cells. Data are presented as mean ± S.E.M (n = 18), with 6 wells per 

concentration, from three independent experiments. MRP, multidrug resistance-associated 

protein; CMFDA, 5-chloromethylfluorescein-diacetate; MK571, 5-(3-(2-(7-

Chloroquinolon-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid. 
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3.5 Discussion  

 

The main aim of this study was to determine the impact of statins on the functional 

expression of efflux transporters of the ATP-binding cassette (ABC) family including 

Multidrug Resistance-associated Proteins (MRPs) and Multidrug resistance proteins 

(MDR1 also known as P-glycoprotein) using an in vitro cell-based system. Unlike the 

OATP1b1 uptake transporter, limited information is available on the impact of statins on 

the functional expression of the ABC efflux transporters and the subsequent effect on 

statin pharmacokinetics and exposure in skeletal muscle cells. 

 

Although in its infancy, pharmacogenetic studies on the impact of inter-individual 

variability of ABC efflux transporters in determining statin efficacy and safety, are of 

interest to many researchers at the present time (Giacomini et al., 2013). Preliminary 

work on genetic polymorphism affecting liver efflux transporters ABCG2 and ABCG8 in 

particular, has been reported to affect LDL-C lowering capacity of both simvastatin and 

atorvastatin (Hu et al., 2011, Kajinami et al., 2004a). Both studies have shown that carrier 

of transporter’s variants in both genes were associated with a greater LDL-C reduction 

compared to the wild-type. Specifically, Kajinami and colleagues (Kajinami et al., 2004a) 

demonstrated that atorvastatin, although at low dose (10mg), was associated with LDL-C 

reduction for about 3 % in ABCG8 mutants. Although it is still crucial to fully describe 

the association between polymorphism in the efflux transporters and statin response, as 

the LDL-C reduction capacity reported was borderline-significant (p=0.048) and no 

subsequent replication studies have been done on the characterised polymorphism.  MRP 

efflux transporters however, are also considered among others of the best-characterised 

genetic factors to be associated with statin concentration in skeletal muscle (Canestaro et 

al., 2014, Rodrigues, 2010). 

 

Furthermore, preliminary findings at cellular level have provided convincing evidence 

that statins have an effect on efflux transporters, particularly MRPs, and that efflux 

transporters may be involved in statin-related myotoxicity (SRM) (Rodrigues, 2010, 

Knauer et al., 2010, Dorajoo et al., 2008). It has been proposed that reduced statin 

hepatobiliary excretion due to the inhibition of efflux transporters results in altered statin 

disposition and enhanced drug toxicity. However, further studies will be needed to verify 

such possibility (Rodrigues, 2010). Numerous in vitro studies targeting hepatocytes as the 

model to demonstrate statin uptake and efflux have been reported (Imaoka et al., 2013, 
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Pfeifer et al., 2013, Jemnitz et al., 2010, Ishigami et al., 1995). However research 

identifying muscle membrane transporters as determinants for statin-related side-effects is 

thought to be more relevant as muscle toxicity is a more common side-effect [OR 2.63 

(95% CI 1.50 to 4.61)] (Macedo et al., 2014b).  

 

In this study, using the same assay design as previously described (Jenkinson et al., 

2012), functional expression of efflux transporters was assessed in muscle cells from both 

rat and human, along with a replication study in the HK-2 cells. Basically, the working 

principles for this functional assays are based on the concept that inhibition of 

transporter-mediated probe substrate (i.e fluorescent dye) efflux by an inhibitor 

(modulator that irreversibly binds and inactivates functional activity of the transporter), is 

an indirect measure of affinity to the transporter as discussed in section 2.6. Before 

conducting the efflux assay using statins as the modulator, an optimised test for probe 

substrates that have an affinity towards the studied transporters were elucidated. Two 

dyes, namely CMFDA and H33342, have previously been used as the probe substrates 

and the former dye easily permeates into the cell membrane to produce fluorescent 

substrate whilst the latter dye binds with cell DNA in order to become fluorescent 

(Hooijberg et al., 2004). The fluorescent substance of the CMFDA dye (GSMF) is 

specifically excreted by MRP efflux transporter, and the retention of the intracellular 

substance (depicted by fluorescent intensity produced) directly indicates inhibition 

capacity of an inhibitor of the transporter. In this study, I confirmed that both MK571 and 

CSA inhibited the MRPs transporter at the CMFDA wavelengths. The same working 

principle applies to the efflux inhibition of MDR1-mediated H33342 dye by CSA, but not 

MK571, suggesting that CSA can be used as an inhibitor for both MRP and MDR1 

transporters. I further confirmed (Figure 3.3) the presence of both MDR1 (characterized 

by H33342 dye retention) and MRPs (CMFDA dye retention) in HK-2 cells. Moreover, 

consistent with our previous published study, I was able to demonstrate the presence of 

CMFDA, either alone or in combination with H33342, and vice versa, which did not 

overlap with each other’s fluorescence signal, in HK-2 cells, suggesting their specific 

affinity to the studied transporters. 

 

The functional expression of efflux transporter in this study is likely to have been 

attributed to by MRP1 owing to its relatively high expression level in all three cell lines 

studied. MRP1 is expressed ubiquitously, and is localised to the basolateral, rather than 

apical, membrane of epithelial cells. As with MRP2, MRP1 primarily effluxes a wide 
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range of substrates (Ballatori et al., 2005, Leslie et al., 2001), and may act as the most 

important efflux transporter for the extrusion of toxins or metabolites from cellular 

metabolism as suggested by Mueller and colleagues (Mueller et al., 2005). Among MRPs, 

although less evidence is available on the capacity of MRP1 for statin efflux than that 

demonstrated by MRP2 (Ellis et al., 2013), it has been demonstrated that polymorphism 

in both ABCC1 (MRP1) and ABCC2 (MRP2) genes are equally involved in the incidence 

of statin resistance and response (i.e. patients fail to achieve adequate reduction of LDL-C 

level) (Reiner, 2014, Rodrigues, 2010). Since MRP2, the 190 kDa membrane 

glycoprotein, is highly expressed in human apical hepatocytes (Buchler et al., 1996, 

Konig et al., 1999), the mutation and/or inhibition of MRP2 may become a major 

determinant of biliary excretion of statins resulting in statin plasma elevation, a risk factor 

for statin-related myotoxicity. Nevertheless, at local exposure in skeletal muscle cells, it 

has been shown that both atorvastatin and rosuvastatin accumulation is reduced due to 

MRP1 over-expression (Knauer et al., 2010) suggesting that the efflux of both statins is 

also attributed to the MRP1 transporter which is consistent with that found by Dorajoo et 

al. (2008). 

I was able to demonstrate that simvastatin had affinity to MRPs, though to a lower extent 

than that of MK571, based upon the inhibition of MRP-mediated CMFDA efflux in both 

rat and human muscle. It should be kept in mind that the affinity of simvastatin towards 

MRP-mediated CMFDA efflux does not distinguish between MRP1 substrate and 

inhibitor directly, but it is rather a modulator for MRP1 function since MRP1 is expressed 

at the highest mRNA level among other MRPs in all three cell lines studied. This 

observation warrants further evaluations possibly by direct transport study using 

radiolabelled simvastatin. 

 

The study results provide evidence that statins have a lower affinity towards MRP-

mediated CMFDA efflux inhibition than that seen with MK571, a potent inhibitor of 

rodent Mrp- and human MRP-proteins (Leier et al., 2000). The findings in Chapter 2 

indicated that simvastatin and atorvastatin inhibit uptake function of monocarboxylate 

uptake transporters to the same extent as that for phloretin, a typical inhibitor of the 

transporters. It could be argued that muscle toxicity caused by statins is attributed to their 

strong effect on the uptake transporters rather than efflux transporters or MRP 

particularly. Statins need to be transported first into muscle cells prior to the process of 

muscle fiber apoptosis (Copaja et al., 2011, Dirks and Jones, 2006) or statin-induced 
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mitochondrial impairment (Kwak et al., 2012, Golomb and Evans, 2008, Kaufmann et al., 

2006). The efflux transporters in muscle cells, which are expressed on the sarcolemmal 

membrane of muscle fibers, were suggested  by Knauer et al (2010) to rather have 

protective role against intracellular statin accumulation by their substrate affinity to the 

MRPs (i.e., MRP1, MRP4 and MRP5 particularly). However, as shown in this study, their 

affinity to MRP efflux inhibition were lower than that seen with the typical inhibitor of 

MRPs , MK571, suggesting lesser impact of statins on the efflux transporters compared to 

the their impact on MCT uptake transporters in the muscle. Although the findings in 

human muscle cells could be underestimated due to poor expression of the MRPs at both 

mRNA and functional levels, it is assumed that the hypothesis remains to be true as the 

same observation (i.e. low affinity inhibition to MRPs) was seen in high-MRP expression 

cell lines; HK-2 and L6 cells (see figure 3.7 and figure 3.13).  

 

As far as efflux transporters are concerned, MDR1 (ABCB1), MRP2 (ABCC2) and 

BCRP (ABCG2) remain to be important ABC transporters in statin disposition (Sissung 

et al., 2010). MDR1 and BCRP transporters have been regarded as the most characterised 

polymorphic efflux transporters (Lepper et al., 2005) and both of them mediate a wide 

range of substrate drugs including statins (Xiao et al., 2005, Gottesman and Ambudkar, 

2001). Indeed, up to the present time, genetic polymorphisms of the abovementioned 

ABC transporters were also found to be associated with inter-individual variability in 

statin response and side-effects (Canestaro et al., 2014, Ferrari et al., 2014, Feng et al., 

2012). Notably, the genetic mutations in the ABCG2 was reflected in statin 

bioavailability (i.e. atorvastatin and rosuvastatin) in general systemic exposure (Zhou et 

al., 2013, Keskitalo et al., 2009), but not at local exposure in skeletal muscle cells. 

Although the present study did not specifically elucidate the contribution of the three 

efflux transporters to statin-induced muscle toxicity, the findings are important as they 

provide a platform showing how modulation of transporter-mediated substrate dye efflux 

can be used as a high-throughput screening in cell cultures with high expression for the 

transporters. It can thus be suggested that the impact of statins on ABCG2 especially, can 

be assessed in the future either by using stably transfected HEK293 cells or high-ABCG2 

expression cell line such as BeWo cells (Ceckova et al., 2006, Mueller et al., 2005). 

Among the three abovementioned ABC efflux transporters (i.e. MRP, MDR1 and BCRP), 

I found no evidence that statins inhibit MDR1-mediated H33342 dye efflux. Therefore, it 

was decided to only focus on the contribution of genetic polymorphisms of ABCC2 and 

ABCG2 genes that best represent efflux transporters in determining their association with 
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statin-related muscle symptoms in the patient population (further detailed in the chapter 

4).     
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Chapter 4. Investigation of the Association between Genetic and 

Environmental Factors with Statin-Related Myotoxicity (SRM): A Case-

Control Study 
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4.1 Introduction 

 

Lipid lowering drugs, such as statins, have been demonstrated to significantly lower the 

incidence of cardiovascular events in at risk individuals. Whilst statins are generally well 

tolerated, statin-related myotoxicity (SRM) are relatively common (5 to 10%) and can 

rarely progress to severe and potentially fatal muscle toxicity, known as rhabdomyolysis. 

The factors contributing to the statin-related muscle toxicity remain largely unknown. 

However, there is evidence indicating that patient age, gender, concomitant therapy with 

certain drugs, increased drug exposure and genetic factors can promote SRM. There is 

also evidence that genetic factors, including those that influence statin disposition and 

localisation in skeletal muscle, contribute to SRM. The aim of the current study was to 

further elucidate the risk factors associated with SRM. Specifically, the study sought to 

determine the association between clinical, environmental and genetic factors (including 

polymorphisms in monocarboxylate transporters identified through my earlier cell-based 

work) and SRM.  

 

4.2 Patients, Materials and Methods 

 

4.2.1 Patients recruitments and blood collection 

 

The study was approved by the Joint University of Newcastle and Health Authority 

Ethics Committee (Appendix F). The controls and cases, as defined below, were 

identified from a review of their medical notes prior to clinic attendance according to the 

inclusion and exclusion criteria described in section 4.2.2.  

 

Controls 

Patients who had received one of the two commonly prescribed statins (either simvastatin 

40 mg nocte or atorvastatin 80 mg nocte) for at least 6 months without presenting with 

any muscle symptoms were recruited into the study. These individuals were recruited 

from the Lipid Clinic, RVI between May 2011 and January 2014.  
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Cases 

Patients who had previously received either simvastatin or atorvastatin (or both) but had 

discontinued the drug because of muscle symptoms, thus clinically assigned as SRM 

cases, were recruited.  

 

After obtaining informed written consent, patient demographic profiles, daily dose of 

statin used, indication for statin therapy, concurrent illness and medication, including 

those drugs known to affect the disposition of either simvastatin or atorvastatin were 

recorded using a structured questionnaire (Appendix G). Face-to-face interview about 

any muscle pain/weakness with the aid of a questionnaire or the review of medical 

records of those previously intolerant of simvastatin/atorvastatin was conducted by a 

trained research nurse. 

A single blood sample (30 ml in total) was then collected from each patient. The blood 

sample was subjected to: ( i) routine laboratory analyses (10 ml) for blood chemistries 

including liver function (alanine aminotransferase) and creatine kinase (CK) 

measurements (ii) centrifugation at 2500 rpm, on the same day (10 ml); the resultant 

plasma was stored at -20°C until further analysis. Another aliquot of whole blood (10 ml) 

was collected into EDTA tubes and stored without centrifugation under the same 

conditions prior to later DNA extraction for genotyping. 

 

4.2.2 Criteria for SRM 

 

The cases were defined as those presenting with a composite adverse events of any of the 

three outcomes as listed below, presenting within 6 months of starting therapy with a 

statin, consistent with the case identification criteria defined by Voora and co-workers 

(Voora et al., 2009) as follows:  

 

i. Premature discontinuation of statins due to any side-effects;  

ii. Myalgia/muscle cramps (irrespective of CK values) and clinically accessed as 

statin-related muscle toxicity by a clinician; and 

iii. CK elevation >3-fold the normal range (ULN) 

 

Cases corresponded to SRM2 to SRM5 according to the classification proposed by 

Alfirevic and co-workers (Alfirevic et al., 2014). To avoid vague, ambiguous, or 
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colloquial expression, all symptoms were recorded by staff in standard medical 

terminology in addition to the subject’s own words. For example, symptoms were 

recorded as “myalgia,” “muscle cramps,” or “elevated createine phosphokinase” as 

appropriate. Additionally, patients’ medical records were reviewed for symptoms of 

myalgia and their nature recorded.  

 

The principle study inclusion criterion was having received either simvastatin or 

atorvastatin for at least 6 weeks. This was to ensure that patients had adequate exposure to 

either statin prior to study participation. The study exclusion criteria were; renal and/or 

insufficiency, hypothyroidism, diabetes mellitus, history of muscular complaints (either 

due to trauma or exercise), taking drug interacting with statin disposition, issues identified 

to affect compliance with treatment.  

 

4.2.3 Single nucleotide polymorphism (SNP) selection 

 

a. SNPs of known functional significance  

The SNPs of known functional significance as listed in the Table 4.1 were selected based 

on previous findings. Additionally, rs1050450 and rs713041 the SNPs in glutathione 

peroxidase  1 (GPX1) and GPX4, respectively, were selected on the basis of reduced 

GPX activity associated with these SNPs reported by several previous studies (Blein et 

al., 2014, Men et al., 2014, Hong et al., 2013, Monteiro et al., 2013, Larsen et al., 2013, 

Gautrey et al., 2011). 
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Table 4.1 SNPs selected for genotyping on the basis of previous genotyping 

studies on statin-related myotoxicity (SRM). 

 

 

Gene 

 

SNP 

 

Evidence of the association with 

SRM/ reason for the selection 

 

Reference(s) 

 

SLCO1B1 

 

 

 

ABCC2 

 

 

 

ABCG2 

 

 

 

CYP3A4 

 

 

 

 

COQ2 

 

 

 

 

 

GATM 

 

rs4149056 

  

 

 

rs717620 

 

 

 

rs2231142 

 

 

 

rs35599367 

(*22 allele) 

 

 

 

rs4693075 

 

 

 

 

 

rs9806699 

 

 

 

OR for statin myopathy = 4.5, 

occurrence of SRM with p=0.03
 
 

 

 

Associated with switches to other 

cholesterol-lowering during 

simvastatin therapy 

 

Markedly affect PKs of simvastatin 

acid 

 

 

Associated with statin metabolism 

and response 

 

 

 

Associated with statin intolerance and 

myopathy 

 

 

 

 

 Meta-analysis odds ratio for SRM = 

0.60 

 

Link et al., 2008, Voora 

et al., 2008 

 

 

Becker et al., 2013 

 

 

 

Tsamandouras et al., 

2014, Keskitalo et al., 

2009 

 

Tsamandouras et al., 

2014, Elens et al., 2013, 

Elens et al., 2011 

 

 

Puccetti et al., 2010, 

Marcoff and 

Thompson, 2007, Oh et 

al., 2007 

 

 

Mangravite et al., 2013 

 

Abbreviations: SLCO1B1, Solute carrier organic anion transporter family member 1B1; 

ABCC2, ATP-binding cassette, sub-family C member 2; ABCG2, ATP-binding cassette, 

sub-family G member 2; CYP3A4, Cytochrome P450 sub-family 3A member 4; COQ2, 

Coenzyme Q2 4-hydroxybenzoate polyprenyltransferase; GATM, Glycine 

aminidotransferase; OR, odds ratio. 
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b. Selection of tagging SNPs in SLC16A1 and SLC16A3 genes 

Since there was no prior information available on the influence of either SLC16A1 

(MCT1) or SLC16A3 (MCT4) gene on statin-related myopathy, tag-SNP selection was 

employed for these two genes. For this approach, tag-SNPs in both MCT1 and MCT4 

were picked from the HapMap website (http://www.hapmap.org). The tag-SNPs were 

generated after retrieving SNP genotype data for each gene such as frequency in 

population of interest and MAF cut-off value. For this study, data from CEU (European) 

population and a MAF cut-off value of 0.2 was used. The data resulted from tagging 

approach from the HapMap website captured 100 % of alleles with mean r
2
 0.994 and 1.0, 

for SLC16A1 and SLC16A3 gene, respectively. The alleles captured (analysed on 12 

December 2012) by the chosen SNPs in each gene are detailed in Table 4.2. 

 

 

Table 4.2 Tag SNPs in SLC16A1 and SLC16A3 genes selected for genotyping. 

 

 

GENE 

 

TEST  

 

 

ALLELES CAPTURED 

 

SLC16A1 (MCT1) 

 

rs9429505 

 

 

 

 

rs7556664 

 

 

 

rs12028967 

 

 

rs7552903, rs4839272, 

rs2149036, rs4839270, 

rs3849174, rs7536532, 

rs9429505, rs7518984 

 

rs3789592, rs7169, 

rs1049434, rs6537765, 

rs7556664 

 

rs4301628, rs12028967 

SLC16A3 (MCT4) rs7503429 

 

rs12453290 

 

rs7503429 

 

rs12453290 

Those SNPs (bold print) were chosen for genotyping in this study according to the 

evidence of MAF (>0.20) value obtained from 1958 British birth cohort website 

(http://www.b58cgene.sgul.ac.uk/).  

 

 

 

 

 

http://www.hapmap.org/


 

119 
 

4.2.4 Genomic DNA preparation and analysis 

 

The DNA extraction was carried out by perchloric acid-chloroform extraction protocol as 

described by Daly and co-workers (Daly et al., 1998). In brief, 35 ml lysis buffer A [10 

mM Tris [tris(hydroxymethyl)aminomethane] –HCl (pH 8.0), 320 mM sucrose, 5 mM 

magnesium chloride and 1% (v/v) Triton X-100] was added to 5 ml venous blood in a 50-

ml polypropylene centrifuge tube. After mixing, the tube was centrifuged at 3,000 g (at  

4°C) for 10 min. The supernatant was discarded and the cell pellet was re-suspended in 2 

ml of solution B [(400 mM Tris–HCl (pH 8.0), 60 mM EDTA, 150 mM NaCl and 1% 

SDS]. A quantity of 500 µl of sodium perchlorate (5 M) was added and the sample was 

rotary mixed (Stuart Scientific) at room temperature for 10 min before incubating in a 

preheated hot block at 65 °C for 30 min for protein denaturation. Next, 2.5 ml of 

chloroform was added and the sample was mixed for 10 min at room temperature. The 

tube was then centrifuged at 1,400 g for 10 min, and the upper, clear DNA-containing 

phase was transferred to a new 15 ml polypropylene tube. Two volumes (5 ml) of cold 

100% ethanol were added to the aqueous phase, and the tube was gently inverted until the 

DNA precipitated. The DNA was spooled using a soft plastic sterile loop and allowed to 

air dry for 5 min, then re-suspended by incubation in 200 µl of 5 mM Tris-HCl (pH 8) 

and left overnight at 50 °C (or at room temperature) in a sterile 1.5ml screw-cap micro 

centrifuge tube. Samples were quantitated and their quality assessed by absorbance 

measurements at 260 and 280 nm using NanoDrop 2000 (Thermo Scientific, UK). 

Specifically, this absorbance range is used to access the purity of DNA in which a 

260/280 ratio of ~ 1.8 is generally accepted to indicate "pure" DNA.  An absorbance unit 

of 1 at 260 nm is equivalent to 50 µg/ml double stranded DNA (dsDNA). The quantified 

DNA samples were then diluted to100 ng/µl as working stocks and were kept at 4°C. The 

remaining stocks, if any, were stored at -80 °C for long term storage. 

 

4.2.5 Polymerase Chain reaction (PCR) used for genotyping by PCR-RFLP 

 

Lyophilised oligonucleotide primers were resuspended from an initial concentration of 

200 µM using sterile water and part of the stock was further diluted to 25 µM as working 

concentration. The working stock was stored at -4 °C while the remaining volume of 

stock concentration was stored at -20 °C. For each PCR reaction, genomic DNA (0.2 µg) 

was added and amplified in a total reaction volume of 20 µl containing; 0.1 mM dNTPs  
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(Bioline, London, UK), forward and reverse primers (both at 25 µM, Eurofins WMG, 

London, UK), 1x supplied buffer and 0.025 units Taq DNA polymerase (New England 

Biolabs, NEB,  Hitchin, UK). The PCR amplifications were performed in 0.2 ml sterile 

microtubes (Fisher Scientific, Loughborough, UK), using an Applied Biosystem 2720 

Thermal Cycler programmed to give the following cycling conditions; initial-denaturation 

at 95°C for 5 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing 

conditions as indicated in Table 4.3, and extension at 72°C for 1 min and then eventually, 

final extension at 72°C for 7 min. The quality of PCR products were checked by 

electrophoresis on 2% agarose gels (see Section 4.2.6a).  

 

The primer sets and the annealing temperature used for the PCR protocols were self-

designed by our laboratory as indicated in Table 4.3. Their specificity was confirmed 

using a computer-based BLAST search from Genbank (http://www.ncbi.nih.gov). To 

digest SNP in rs1049434, the restriction enzymes (as well as their recognition site) were 

selected according to their ability to cut the recognition site (see Figure 4.1) from the 

NEBCutter V2.0 website (http://tools.neb.com/NEBcutter2/index.php) by inserting at 

least 10 bp of gene sequences around the targeted site for variant sequences of interest.  

The restriction enzymes cut at their specific recognition site and digestion pattern 

between the wild-type and the variant sequences of interest were then differentiated 

according to the number of DNA bands produced. For example, since the mutation for 

rs717620 results in C to T substitution located in the 5’-untranslated region at position -

24, TaqI enzyme which cleaves between T and C in the target sites 5’-TCGA-3’ was 

selected for the digestion. The products resulted in digestion patterns which could be 

visualised on either agarose or acrylamide gel (see Section 4.2.6); the uncut DNA bands 

represented mutant individuals, the cut DNA bands represented wild-type individuals and 

heterozygotes containing both DNA bands. 

http://www.ncbi.nih.gov/
http://tools.neb.com/NEBcutter2/index.php


 

121 
 

Table 4.3 Primer set, PCR conditions and restriction enzymes used for PCR-RFLP assays.  

 

 

Assay 

 

Primer set  

 

PCR conditions¶ 

 

PCR 

product (bp) 

 

Restriction enzyme 

(Recognition site) 

ABCC2 

rs717620 

 

 

Forward 

5’-TGTCCATCCACTGTTTCAATG - 3’ 

 

Reverse 

5’-CTGGACTGCGTCTGGAT*C- 3’ 

Annealing at 54°C 

for 1 min 

193 TaqI (TCGA) 

ABCG2  

rs2231142 

Forward 

5’- GTCTCATTAA AATGCTATTT - 3’ 

 

Reverse 

5’- CTCTTGAATG ACCCTGTTGA - 3’ 

Annealing at 50°C 

for 35 sec 

151 MseI (TTAA) 

 

SLC16A1 

rs1049434 

Forward 

 5’- TCAATGAACAACTGGTATGA- 3’ 

Reverse 

5’- ATGGAGACTACAAA TACACA-3’ 

 

Annealing at 55°C 

for 1 min 

387 

 

BccI (CCATC) 

 

* T in primer sequence was replaced with A 

¶Apart of annealing temperature described in Table 5.4,  all PCR conditions were performed for 35 cycles, with denaturation at  94°C for 1min, 

extension at 72ºC for 1 min and was hold in the last cycle at 72ºC for 7 min to ensure elongation except for rs2231142. For rs2231142, the 

period for each step in each cycle was set for 35 sec instead of 1 min. All assays were self-designed by our laboratory. ABCC2, ATP-binding 

cassette, sub-family C member 2; ABCG2, ATP-binding cassette, sub-family G member 2; SLC16A1, Solute carrier family 16A; PCR, 

polymerase chain reactiom;bp, base pair; min, minute.
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Figure 4.1 FASTA sequences for ABCC2, SLC16A1 AND ABCG2 genes. The 

highlighted section (yellow) shows the position of both forward and reverse primers used 

for the PCR amplification and the red bolded character describes the studied SNP for the 

respective genes while the underlined sequences close to the SNP (red) are the 

recognition sites for the restriction enzymes. ABCC2, ATP-binding cassette, sub-family 

C member 2; ABCG2, ATP-binding cassette, sub-family G member 2; SLC16A1, Solute 

carrier family 16A. 
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4.2.6 Agarose and polyacrylamide gel electrophoresis (PAGE) 

  

a. Agarose gel electrophoresis 

The quality of PCR products and pattern of PCR products following digestion, were 

determined by agarose gel electrophoresis using 2% gels. The gels were made up by 

mixing agarose powder (Bioline, London, UK) with 1xTris-Acetate-EDTA (TAE) buffer 

i.e., 10-fold dilution  from 1L of 10x TAE stock (48.4 g Tris), 11.4 ml  glacial acetic acid 

[17.4M], 3.7 g [or 20 ml of 0.5M] EDTA, disodium salt), containing ethidium bromide 

(0.5 µg/ml). Prior to gel loading, 2 µl of 6x loading buffer (0.25 % w/v bromophenol 

blue, 0.25 % w/v xylene cyanol, 30 % glycerol) was mixed with 4.5 µl of PCR product. 

Electrophoresis was carried out in 1xTAE buffer for 30-45 min at constant voltage of 

100V and 50-60mA. The DNA bands were visualised with Fluro S-multi imager Quantity 

One (Bio-Rad Laboratories) and fragment sizes were estimated by comparison to a 100 

bp DNA ladder (NEB). 

 

b. Polyacrylamide gel electrophoresis (PAGE) 

PAGE was normally used to visualise digested PCR products where better band 

resolution was needed due to small differences in band size. A 50 ml solution for a 10% 

gel was prepared by mixing 29 ml Milli-Q water, 5 ml 10xTAE stock ( as described in 

section  4.2.6a above), 16 ml 30% amide-bisarylamide 29:1 (Fisher Scientific), 0.5 ml 

10% (w/v) ammonium per sulphate (Bio-Rad, Hemel Hempstead, UK) and 100µl 

TEMED (Fisher Scientific). The gel was cast between two pieces of 200 mm x 200 mm 

glass plates separated by 0.8 mm spacer and allowed to polymerize at room temperature 

for about 30 min. Loading buffer (2 µl of 6x) was combined with 18 µl digested PCR 

products and applied to the gel. Electrophoresis was carried out at constant voltage of 

180V for 2-3 h in 1x TAE buffer. The gel was stained with ethidium bromide 

(approximately 7 µl EtBr in 200 ml of 1xTAE buffer) for 10 min and fragment sizes were 

estimated by comparison to a 100 bp DNA ladder. Visualisation of the DNA fragments 

was then performed using Fluro S-multi imager Quantity One (Bio-Rad Laboratories) and 

fragment sizes were estimated by comparison to a 100 bp or 1000 bp DNA ladder (NEB), 

as necessary. 
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4.2.7 Genotyping assay 

   

a. PCR-Restriction fragment length polymorphisms (PCR-RFLP) 

Genotypes for polymorphisms in ABCC2 (rs717620), ABCG2 (rs2231142) and 

SLC16A1 (rs1049434) were determined by PCR-RFLP with the respective restriction 

enzymes listed in Table 4.3. PCR products were subjected to RFLP analysis by 

incubating the PCR product with the relevant enzyme (1.0 unit enzyme per µL of PCR 

product), as per manufacturer’s instructions, at the following conditions; for TaqI, the 

amplification products were digested at 65°C for 5 hours while the MseI and BccI 

digestions were at 37°C for 24 and 5 hours, respectively. Bands of digested products were 

viewed either by 2% agarose (section 4.2.6a) or 10% polyacrylamide (section 4.2.6b) gel 

electrophoresis. 

 

b. TaqMan SNP genotyping assay 

Genotyping for SNPs listed in Table 4.4 (except for SNPs in GPX1 and GPX4) was 

carried out using TaqMan SNP genotyping assay. The assay was designed to detect 

variants of a single nucleic acid sequence, without quantifying the target. The presence of 

two probes in each reaction allows genotyping of the two possible variants at the SNP site 

in a target sequence. Each TaqMan
®
 SNP genotyping assay consisted of a single, ready-

to-use tube containing; i. 2 sequence-specific primers for amplifying the polymorphism of 

interest, ii. 2 allele-specific TaqMan
®

 MGB probes for detecting the allles for specific 

SNP of interest. Each allele-specific TaqMan
®
 MGB probe has two reporter dyes at its 5’ 

end. Specifically, VIC
®

 dye is linked to the 5’ end of the Allele 1 probe while FAM
TM

 

dye is linked to the 5’ end of the Allele 2 probe. For the context sequence of 

GAC,,,,[C/T],,,AAA of rs4301628 SNP for example, the VIC
®

 dye-labelled probe binds 

to the G allele, and the FAM
TM

 dye-labelled probe to the T allele. This means that Allele 

1 VIC® dye-labelled probe corresponds to the first nucleotide inside the square brackets 

of the context sequence in the assay information file (AIF) shipped with each order. 

While, Allele 2 FAMTM dye-labelled probe corresponds to the second nucleotide inside 

the square brackets of the context sequence in the AIF. Therefore, three distinct genotype 

clusters (i.e., CC, CT and TT genotypes) from the intensity plot of an allelic 

discrimination assay using VIC
®
 and FAM

TM
 dyes were produced as shown in Figure 

4.2. The reactions were prepared in duplicate by using 2x Taqman Universal Master Mix, 

40x SNP Genotyping Assay Mix, DNase-free water, and 10ng genomic DNA in a final 

volume of 20μl per reaction. Positive controls and a no template control were included in 
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each assay as a quality control measure. The PCR amplification was performed using the 

ABI Prism 7000 Sequence Detection System machine (Paisley, UK) under the following 

thermocycler conditions: 10 min at 95ºC to activate the AmpliTaq Gold polymerase 

followed by 40 cycles of denaturation at 95 ºC for 15s and annealing/extension at 60 ºC 

for 1 min. The allelic discrimination results were determined using the SDS 2.2 software 

after the amplification by performing an end-point read. 

 

Similarly, genotyping for SNP in GPX1 (rs1050450) and GPX4 (rs713041) was carried 

out by end point genotyping assay using TaqMan probes with assay ID of C_2561693_20 

for rs713041, while a custom TaqMan assay was ordered for rs1050450 (assay 

ID:Hs00232019_CE, PCR/Sanger Sequencing Primer pairs were used).  The genotyping 

assay was, however, performed using Lightcycler 480 Real-Time PCR System (Roche 

Applied Science, Burgess Hill, UK) under the following thermocycler conditions: 10 min 

at 95ºC to activate the AmpliTaq Gold polymerase followed by 50 cycles of denaturation 

at 92 °C for 15s and annealing/extension at 60 °C for 1 min, a cooling step was set at 40 

°C for 10s. The genotyping for both rs1050450 and rs713041 were conducted by 

Jonathon Brown (Institute for Cell and Molecular Biosciences, Newcastle University). 
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Figure 4.2 Samples results for the TaqMan SNP genotyping assay for rs4301628 

in MCT1. Vertical axis represents relative fluorosence for FAM
TM

 label (marker of T-

minor allele); horizontal axis represents relative fluorescence for VIC
®
 label (marker of 

C- major allele). Cluster coloured blue is homozygous CC genotypes. Green coloured 

cluster is heterozygous CT genotypes while red cluster is homozygous TT genotypes. 

Cluster marked as X denotes the no template control (containing distilled water and 

TaqMan probes). SNP, single nucleotide polymorphism; MCT1, monocarboxylate 

transporter 1. 
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Table 4.4  SNPs genotyped using TaqMan SNP genotyping assay 

Gene  SNP Chromosome Assay ID Sequence (VIC
®
/FAM

TM
) MAF*  

      
SLCO1B1 rs4149056 

Chr.12: 

21331549 C_30633906_10 TCTGGGTCATACATGTGGATATATG[C/T]GTTCATGGGTAATATGCTTCGTGGA C=0.157 

      

SLC16A1 rs3849174 

Chr.1: 

113460917 C_8696747_10 TCCTAATATGTAAAACGGGCACAGG[G/T]CACTGTTGTGAGGAAGAAAAGATTT G=0.146 

 

rs4301628 

Chr.1: 

113492862 C_27970752_10 GACCCCAGGATAAAAATTTCTCATA[C/T]AGGAACAGAAGAGCAGGTCAATAAA T=0.247 

      

SLC16A3 rs7503429 

Chr.17: 

80191425 C_29221737_10 CTGAGGACCCTGGCGGGCTTCAAAC[A/C]CTGGGTCTGCCTGCGTCTCCCACCC C=0.472 

 

rs12453290 

Chr.17: 

80190329 C-31557177_10 TGGGCGAGGTTTCTGGAGAGGTCCC[A/G]GAGGAGCGGGCTTGGGCAGCAGGGG G=0.253 

      

CYP3A4 rs35599367 

Chr.7: 

99366316 C_59013445_10 GTGCCAGTGATGCAGCTGGCCCTAC[G/A]CTGGGTGTGATGGAGACACTGAACT A=0.090 

      

COQ2 rs4693075 

Chr.4: 

84192168 C_28947992_10 TCTACCACAACTTTCCCACAAATCA[C/G]GCTCACATCAATTTCTTGAGTTGCT G=0.427 

      

GATM rs9806699 

Chr.15: 

45740392 C_30104701_10 CCCCAGGCTGTCTGCTCCTGAGGGG[A/G]CTCTGGGGCATGGTGACATTCCCCA A=0.298 

 

GPx1 rs1050450 

 

Chr  

3:49357401 Hs00232019_CE ATCGAAGCCCTGCTGTCTCAAGGGC[A/G]CAGCTGTGCCTAGGGCGCCCCTCCT A=0.271 

GPx4  rs713041 

 

Chr.19: 
1106615 C_2561693_20 CCGCCCGAGCCCCTGCCCACGCCCT[C/T]GGAGCCTTCCACCGGCACTCATGAC     T=0.478 

 

*MAF values were obtained from 1000 genome browser website. Abbreviations: SLCO1B1, solute carrier organic anion transporter family 

member 1; SLC16A,  solute carrier family 16A; CYP,  cytochrome P450; COQ2, Coenzyme Q2 4-hydroxybenzoate polyprenyltransferase; 

GATM, Glycine aminidotransferase; GPx, glutathione peroxidase.   
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4.2.8 Quality control of genotyping data 

 

One disadvantage of a case-control study design compared with family-based association 

studies is the lack of an internal check on genotyping quality. Therefore, it is important to 

do a data-quality check to avoid any false-positive associations. In order to do that, 

genotype frequency was checked to be consistent with Hardy-Weinberg Equilibrium 

(HWE) for the control population, assuming the genotype frequencies in a population 

remain unchanged over the generations. The HWE can be defined using following formula 

(introduced by Godfrey H. Hardy and Wilhelm Weinberg in 1908); 

 

p² + 2pq + q² = 1 

 

where, p is defined as the frequency of the dominant allele and q as the frequency of 

the recessive allele for a trait controlled by a pair of alleles (A and a). In other 

words, p equals all of the alleles in individuals who are homozygous dominant (AA) 

and half of the alleles in people who are heterozygous (Aa) for this trait in a 

population (Weir, 1996). 

 

The HWE was assessed, according to the above formula, using a chi-square test and 

calculated using an online calculator at http://www.oege.org/software/hardy-

weinberg.shtml. Any deviation from HWE could possibly be due to bias in selection, non-

random mating (which is not expected here) or genotyping errors (e.g. Aa misclassified as 

AA or aa) during result interpretation which would cause the most concern. Any SNP that 

significantly deviated from HWE (i.e., at P<0.05) was not considered in further analysis. 

 

In order to deal with inconsistency that may happen during reading PCR-RFLP results, 

randomly 10% of overall samples were blinded and randomly selected (~ 20%) and re-

genotyped to confirm the authenticity of the results obtained earlier. Any missing data for 

genotyping (i.e failure to obtain blood samples from patient) resulted in exclusion from 

recruitment in the earlier stage of the study.  

 

 

 

http://www.oege.org/software/hardy-weinberg.shtml
http://www.oege.org/software/hardy-weinberg.shtml
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4.2.9  Statistical analysis 

 

Statistical analyses for all clinical parameters (expressed as mean, 95 % confidence 

interval, CI) were performed using SPSS software version 21 (SPSS, Inc., Chicago, IL). In 

univariate statistics, chi-square statistics were used for categorical variables and t-tests for 

interval variables. In multivariate analysis, by taking a dichotomous variable (cases vs 

controls) as dependent variable, binary logistic regression was performed to assess 

independent clinical and genetic risk factor/s associated with the cases. Genotype 

frequencies was first determined to be in Hardy-Weinberg equilibrium (HWE) and 

compliance with the HWE (section 4.2.8) was determined for control groups to confirm 

that they met standard quality criteria using a web-based calculator available as described 

earlier. Univariate analysis of genotype frequencies between controls and cases were then 

compared using Fisher’s Exact (two-tailed) test using an online calculator for 2x2 

contingency table (http://vassarstats.net/odds2x2.html) where p-value, odds ratio, 95% 

confidence interval and chi-square for trend were calculated. A dominant model of 

genotypes [i.e. wild-type individuals vs (heterozygous + homozygous mutants)] was used 

for all SNPs studied due to homozygous mutants being rare.  For all analysis, a p-value of 

<0.05 was taken as being statistically significant. 

 

4.2.10  Sample size calculation 

 

It is hypothesised that a multitude of factors contribute to the inter-individual variation in 

intolerance to simvastatin and atorvastatin in the general population, including clinical and 

environmental factors and common variants in the genes that mediate the drugs’ 

pharmacokinetics and pharmacodynamics. However, as there is no priori information 

available on the variance in drug exposure (plasma simvastatin/atorvastatin concentration), 

and its impact on plasma CK concentration (an index of myotoxicity) and the quantitative 

effect of genetics and other confounders including patient characteristics on the risk of 

toxicity, a sample size of about 600 patients (500 controls and 100 cases) was deemed to be 

sufficient to test our hypothesis 

 

 

 

http://vassarstats.net/odds2x2.html
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4.3 Results 

 

4.3.1 Clinical characteristics of study subjects 

 

Patient recruitment was slower than initially anticipated. Consequently, the study target of 

600 patients was not achieved by the end of my PhD studies. In effect a total of 430 

hyperlipidaemic patients (314 controls and 116 cases) were recruited between May 2011 

and April 2014. Subsequently all analyses were conducted based on 430 patients all of 

whom were European ancestry. The demographic and clinical characteristics of the cohort 

are summarised in the Table 4.5. There were slightly more female cases (58 %) than males 

(42 %). There was a greater proportion of patient on simvastatin therapy in both cases and 

control, with 84.5 % and 64.6 %, respectively, than atorvastatin and rosuvastatin (P < 

0.001). In both groups, simvastatin 40 mg/day was the most frequently prescribed while the 

most common dosage regimen for atovastatin was 80 mg per day. There was no significant 

difference in age between cases and controls with the mean age being 59 years (95 % CI: 

53-67) and 59 years (95 % CI: 50-67), respectively. Similarly, there was no significant 

difference in mean body mass index (BMI) between the cases (28.8, 95 % CI: 26.6-31.9) 

and the control group (28.7, 95 % CI: 25.9-32.9). The statin tolerant subjects (controls) had 

been on statin therapy longer than the cases (24 months, 95 % CI: 12-55 vs 8 months, 95 % 

CI: 3-18). There was no difference between the two groups for the commonly reported 

illnesses associated with statin-induced myopathy i.e.Type 2 Diabetes, hypertension and 

hypothyroidism. Similarly, there was no significant difference between the two groups for 

other types of medications use (Table 4.5).  
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Table 4.5 Demographic and clinical characteristics of patients who were statin-

tolerant (control) and those who withdrew statin therapy due to perceived muscle 

symptoms (SRM cases). 

Variables Control (n=314)  Cases (n=116)  P-value 

Sex 

         Female, N (%)  

         Male, N (%) 

  

151 (48)  

163 (52) 

 

67 (58)  

49 (42) 

0.075* 

Age, mean years (95% CI)  59 (50, 67)  59 (53, 67)  0.409 

BMI, mean (95% CI) 28.7 (25.9, 32.9)  28.8 (26.6, 31.9)  0.822 

Duration on statin (months)  24 (12, 55)  8 (3,18)  ND 

Statin, N (%) 

       Simvastatin,  

              10 mg/day 

              20 mg/day 

              40 mg/day 

              80 mg/day 

 

       Atorvastatin,  

              10 mg/day 

              20 mg/day 

              30 mg/day 

              40 mg/day 

              80 mg/day 

 

       Rosuvastatin,   

 

Medical conditions, N (%) 

        Type 2 Diabetes 

        Hypertension 

        Hypothyroidism 

        None 

         

Co-medications, N (%) 

        Non-hypolipidaemic   

           medicines
#
 

        Hypolidaemic medicines¶ 

 

203 (64.6) 

- 

4 (2) 

194 (95.6) 

5 (2.5) 

 

110 (35) 

1 (0.9) 

2 (1.8) 

1 (0.9) 

11 (10) 

95 (86.4) 

 

1 (0.3) 

 

 

27 (8.6) 

69 (22) 

14 (4.5) 

65 (20.7) 

 

 

49 (15.6) 

 

23 (7.3) 

 

98 (84.5) 

4 (4.8) 

10 (12) 

66 (79.5) 

3 (3.6) 

 

16 (13.8) 

1(6.3) 

- 

- 

- 

15 (93.8) 

 

2 (1.7)  

 

 

8 (6.9) 

28 (24) 

8 (6.9) 

20 (17.2) 

 

 

10 (8.6) 

 

3 (2.9) 

0.000* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.544* 

 

 

 

 

 

0.523* 

*
Pearson Chi-Square test (2-tailed) was performed for the analysis 

#
The number presented was based on warfarin and omeprazole use, only one individual was 

on diltiazem from controls and cases, respectively. 

¶All on fenofibrate. BMI, body mass index; ND, not determined. 
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4.3.2 Candidate Gene Association  

 

The genotype frequencies of all studied SNPs were checked for their consistency with 

Hardy-Weinberg Equilibrium (Section 4.2.8). The genotype frequencies of all the SNPs, 

except for rs1050450 in GPX1for controls, fulfilled the Hardy-Weinberg equilibrium and 

were not significantly different to the frequencies reported in the GBR (British in England 

and Scotland) derived from 1000 genome browser 

(http://browser.1000genomes.org/index.html). All SNPs described in the following section, 

were successfully genotyped in 99.3 % of the patients (blood samples were missing for 3 

individuals). 

 

a. SLCO1B1  

The SNP in SLCO1B1 gene is a non-synonymous rs4149056 (521T>C) SNP in SLCO1B1 

at position 521 in the exon 5, that results in a Valine to Alanine substitution at codon 174 

(Val174Ala). The results from Taqman genotyping produced a clear cluster separation for 

all samples genotyped similar to the example shown in Figure 4.2. This SNP was found to 

have borderline significant association with SRM by univariate analysis (P=0.059, 

OR=1.57, Table 4.6) and binary logistic regression (P= 0.047, OR = 1.59, Table 4.7), 

determined with other 11 SNPs studied as independent genetic factors.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://browser.1000genomes.org/index.html


 

133 
 

Table 4.6 Association between individual SNPs and statin-related muscle toxicity 

by univariate analysis. 

Gene and 

SNP 

Genotype Frequencies, n  P-value 

for HWE
a
 

 

P-value
b
 

OR (95% CI) 

  Control
c 

Cases    

SLCO1B1  

rs4145096 

WT 

Het 

Mut 

224 

77 

10 

72 

42 

2 

0.293 0.059 1.57 (1.00-

2.47) 

ABCC2  

rs717620 

WT 

Het 

Mut 

193 

106 

12 

75 

36 

5 

0.586 0.654 0.89 (0.57-

1.39) 

ABCG2 

 rs2231142  

WT 

Het 

Mut 

247 

57 

7 

97 

17 

2 

0.185 0.341 0.76 (0.43-

1.33) 

CYP3A4 

rs35599367 

(*22) 

WT 

Het 

Mut 

275 

34 

2 

104 

12 

0 

0.406 0.737 0.88 (0.44-

1.76) 

COQ2 

 rs4693075 

WT 

Het 

Mut 

123 

154 

34 

48 

52 

16 

0.165 0.740 0.93 (0.60-

1.43) 

GATM  

rs9806699 

WT 

Het 

Mut 

163 

114 

34 

58 

45 

13 

0.043 0.665 1.10 (0.72-

1.69) 

GPx1 

rs1050450 

WT 

Het 

Mut 

168 

85 

43 

58 

49 

9 

<0.001 ND ND 

GPx4 

rs713041 

 

 

SLC16A1 

rs1049434  

 

 

 

rs3849174 

 

 

 

 

rs4301628 

 

 

WT 

Het 

Mut 

 

 

WT 

Het 

Mut 

 

WT 

Het 

Mut 

 

 

      WT 

Het 

Mut 

96 

162 

53 

 

 

91 

163 

57 

 

199 

96 

16 

 

 

  137 

140 

34 

31 

63 

22 

 

 

36 

54 

26 

 

65 

47 

4 

 

 

      60 

47 

9 

0.273 

 

 

 

 

0.28 

 

 

 

0.326 

 

 

 

 

       0.84 

 

 

0.409 

 

 

 

 

0.812 

 

 

 

0.146 

 

 

 

 

       0.190 

 

 

1.22 (0.76-

1.97) 

 

 

 

0.92 (0.58-

1.46) 

 

 

1.39 (0.90-

2.15) 

 

 

 

0.73 (0.48-

1.13) 
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SLC16A3 

 

rs7503429 

 

 

 

rs12453290 

 

 

 

 

WT 

Het 

Mut 

 

WT 

Het 

Mut 

 

 

 

 

102 

154 

55 

 

139 

146 

26 

 

 

 

34 

77 

5 

 

60 

43 

13 

 

 

 

0.811 

 

 

 

0.15 

 

 

 

0.560 

 

 

 

0.230 

 

 

 

1.18 (0.74-

1.87) 

 

 

0.75 (0.49-

1.16) 

a P-value for HWE calculated in control group and compared with CEU population 
b 
P-value derived from using Fisher's Exact test analysed between wild type individuals 

and combined heterozygous+homozygous mutant individuals in 2 x 2 tables. 
c
 3 missing values in control group 

Abbreviations: HWE, Hardy-Weinberg equilibrium; SLCO1B1, Solute carrier organic 

anion transporter family member 1B1; ABCC2, ATP-binding cassette, sub-family C 

member 2; ABCG2, ATP-binding cassette, sub-family G member 2; CYP3A4, 

Cytochrome P450 sub-family 3A member 4; COQ2, Coenzyme Q2 4-hydroxybenzoate 

polyprenyltransferase; GATM, Glycine aminidotransferase; SLC16A, solute carrier 

family 16A; GPx, glutathione peroxidase; WT, wild type individuals; Het, heterozygous 

mutants; Mut, homozygous mutants; OR, odds ratio; CI, confidence interval; ND, not 

determined. 
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Table 4.7 Association between selected SNPs and SRM according to binary 

logistic regression analysis. 

 

Dependent 

variable  

Controls Cases  Explanatory variables  P-value
# 

 OR 95% CI for Odds 

Ratio¶ 

Lower  Upper  

Statin-

related  

muscle 

toxicity 

314*  116  SLCO1B1 (rs4149056) 

ABCC2 (rs717620 )  

ABCG2(rs2231142)  

CYP3A4*22 

(rs35599367) 

COQ2 (rs4693075) 

GATM (rs9806699) 

GPx4 (rs703041) 

SLC16A1 (rs1049434) 

SLC16A1 (rs3849174) 

SLC16A1(rs4301628) 

SLC16A3 (rs7503429) 

SLC16A3(rs12453290) 

0.047 

0.639 

0.247  

 

0.656  

0.866  

0.842  

0.443  

0.653  

0.494  

0.318  

0.750 

0.265  

 

1.59 

0.90 

0.71 

 

0.85 

0.96 

1.05 

1.21 

0.88 

1.20 

0.77 

1.09 

0.77 

1.01  

0.57 

0.40  

 

0.42  

0.62  

0.67  

0.74  

0.50 

0.71 

0.45  

0.66 

0.49 

2.52 

1.42  

1.26  

 

1.73  

1.50  

1.62  

1.97 

1.55 

2.02 

1.29 

1.79 

1.22  

 

* Genotypes from 3 individuals were not included in the analysis. 
# 

P-value for comparison of genotypes frequencies possession of one or two variant alleles 

between cases vs controls (reference) using multiple logistic regression; Hosmer and 

Lemeshow goodness-of-fit test was used as an indicator of the validity at the last step of 

iterations 

¶ Odds ratio describes the odds to have at least one variant allele in the cases relative to the 

controls. 

Abbreviations: HWE, Hardy-Weinberg equilibrium; SLCO1B1, Solute carrier organic 

anion transporter family member 1B1; ABCC2, ATP-binding cassette, sub-family C 

member 2; ABCG2, ATP-binding cassette, sub-family G member 2; CYP3A4, Cytochrome 

P450 sub-family 3A member 4; COQ2, Coenzyme Q2 4-hydroxybenzoate 

polyprenyltransferase; GATM, Glycine aminidotransferase; SLC16A, solute carrier family 

16A; GPx, glutathione peroxidase; OR, odds ratio; CI, confidence interval. 
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b. CYP3A4 

The SNP in CYP3A4 gene evaluated in this study is rs35599367 which is usually referred 

to as CYP3A4*22 (http://www.cypalleles.ki.se/cyp3a4.htm). This SNP was genotyped by a 

TaqMan genotyping assay and the results produced a clear cluster separation for all samples 

genotyped resembling the example shown in Figure 4.2. There were no significant 

associations between genotypes and SRM by either univariate analysis (Table 4.6) or 

binary logistic regression (Table 4.7), determined with other SNPs studied as independent 

genetic factors.  

 

c. COQ2 

The SNP in COQ2 assessed in this study is rs4693075, encoding para-hydroxybenzoate-

polyprenyltransferase, which participates in the biosynthesis of coenzyme Q10. This SNP 

was genotyped by TaqMan genotyping assay and the results produced a clear cluster 

separation for all samples genotyped resembling the example shown in Figure 4.2. There 

was no association between genotypes and SRM according to either univariate analysis 

(Table 4.6) or binary logistic regression (Table 4.7), determined with other SNPs studied 

as independent genetic factors. 

 

d. GATM  

The polymorphism, rs9806699, in glycine amidinotransferase (GATM), the gene encoding 

the enzyme regulating creatine biosynthesis was ascertained by a TaqMan genotyping assay 

and the results produced a clear cluster separation for all samples genotyped as shown in 

Figure 4.2. Since the p-value for lack of HWE in the controls showed only borderline 

significance (p=0.043), the SNP was still included in further statistical analysis. However, 

there was no association between genotypes and SRM according to either univariate 

analysis (Table 4.6) or binary logistic regression (Table 4.7), determined with other SNPs 

studied as independent genetic factors. 

 

e. GPX1 and GPX4 

Both the rs1050450 polymorphism in GPX1 and rs713041 in GPX4 were genotyped using 

TaqMan hybridisation probes. The p-value for SNP in GPX1 was <0.001, which was 

deviated from HWE so the SNP was excluded for further statistical analysis. The SNP 

genotyping assay for SNP in GPX4 produced a clear cluster separation for the three distinct 

genotype clusters (i.e., TT, TC and CC genotypes) but there was no association between 
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genotypes and SRM according to either univariate analysis (Table 4.6) or binary logistic 

regression (Table 4.7), determined with other SNPs studied as independent genetic factors. 

 

f. ABCC2  

The SNP in ABCC2 assessed in this study is rs717620 (C-24C>T) which is responsible for 

C to T substitution located in the 5'-untranslated region at position -24. The SNP was 

genotyped by PCR-RFLP (see Figure 4.3 for a typical result using 2% agarose [a] and 10% 

acrylamide [b] gel). The SNP was successfully genotyped in 97% individuals in the study 

cohort. However, there was no association between genotypes and SRM according to either 

univariate analysis (Table 4.6) or binary logistic regression (Table 4.7), determined with 

other SNPs studied as independent genetic factors. 
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Figure 4.3 Genotyping of rs717620 (-24C>T) in ABCC2 by PCR-RFLP-based 

assay on (A) 2% agarose gel and (B) 10% polyacrylamide gel. Lane 0, 100 bp marker 

ladder; lane 1, uncut PCR product; lane 2, CC genotype (174 bp); lane 3, CT genotype 

(193-, 174- and 19 bp) and lane 4 (uncut), TT genotype (193 bp). The 19 bp fragment in (B) 

was invisible in the gel owing to its fast migration speed. ABCC; ATP-binding cassette, 

sub-family C member 2; PCR-RFLP, polymerase chain reaction-restriction fragment length 

polymorphism; bp, base pair. 
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g. ABCG2  

The SNP rs2231142 in ABCG2 was examined by PCR-RFLP (see Figure 4.4 for a typical 

result using 2% agarose gel). There was no association between genotypes and SRM 

according to either univariate analysis (Table 4.6) or binary logistic regression (Table 4.7), 

determined with other SNPs studied as independent genetic factors. 

 

 

 

 

Figure 4.4 Genotyping of rs2231142 in ABCG2 by PCR-RFLP-based assay on 2% 

agarose gel. Lane 0, 100 bp marker ladder; lane 1 (uncut), CC genotype (124 bp); lane 3, 

CA genotype (124-, 80- and 44 bp) and lane 2, AA genotype (80- and 44 bp). ABCG2, 

ATP-binding cassette, sub-family G member 2; PCR-RFLP, polymerase chain reaction-

restriction fragment length polymorphism; bp, base pair. 
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h. SLC16A1  

Three tag-SNPs in SLC16A1 were selected for this study (i.e.,rs1049434, rs3849474 and 

rs4301628). Of the three SNPs, rs1049434 was analysed using PCR-RFLP (see Figure 4.5) 

while the other two were assessed using TaqMan genotyping assays. For rs3849474and 

rs4301628, the results produced a clear cluster separation for all samples analysed  

resembling the example shown in Figure 4.2. The SNPs were successfully analysed in 100 

% the patients. However, there were no associations between the three tag-SNPs and SRM 

analysed by both univariate analysis (Table 4.6) and binary logistic regression (Table 4.7), 

determined with other SNPs studied as independent genetic factors  

 

 

     

 

Figure 4.5 Genotyping of rs1049434 in SLC16A1 by PCR-RFLP-based assay on 

2% agarose gel. Lane 0, 100 bp marker ladder; lane 1, uncut PCR product; lane 2 (uncut), 

TT genotype (394 bp); lanes 3, TA genotype (394-and 223bp) and lanes 4, AA genotype 

(223 bp). SLC16A1, solute carrier family 16A, member 1; PCR-RFLP, polymerase chain 

reaction-restriction fragment length polymorphism; bp, base pair. 

 

 

 

 

 



 

141 
 

i. SLC16A3  

Two tag-SNPs in SLC16A3 were selected in this study (i.e., rs7503429 and rs12453290). 

Both were genotyped using TaqMan genotyping assays and the results produced a clear 

cluster separation for all samples genotyped resembling the example shown in Figure 4.2. 

The SNPs were successfully genotyped in 100% individuals in the study cohort. There were 

no associations between genotypes and SRM for either rs7503429 or rs12453290 in 

univariate analysis (Table 4.6) and binary logistic regression (Table 4.7), determined with 

other SNPs studied as independent genetic factors. 

 

4.3.3 Multivariate analysis of data 

 

The SLCO1B1 rs4149056 individuals were further stratified according to the type of statins 

(simvastatin and atorvastatin) used (Table 4.8). A borderline significant different in C 

allele frequency was detected between cases and controls (X
2
 [1, N = 427] = 0.902, P = 

0.059), regardless of the type of statin used. In the cases, the possession of C allele was not 

associated with the use of either simvastatin (X
2
 [1, N = 286] = 0.902, P = 0.393) or 

atorvastatin (X
2
 [1, N = 126] = 1.828, P = 0.239).  

 

 

Table 4.8 Univariate analysis comparing the distribution of SLCO1B1 rs4149056 

genotypes in both cases and controls and stratification according to the type of statin 

 

Statin-type 

 

 

Cases 

  

  

Controls 

 

  

C allele frequency 

 

    

  T/T T/C C/C T/T T/C C/C Cases Control P-value* 

All 

 

72 

 

42 

 

2 

 

224 

 

77 

 

10 

 

0.198 

 

0.156 

 

0.059 

 

Simvastatin 

 

55 

 

26 

 

2 

 

146 

 

49 

 

8 

 

0.18 

 

0.16 

 

0.393 

 

Atorvastatin 9 7 0 80 28 2 0.219 0.145 0.239 

* P-value derived from Pearson correlation using Fisher Exact test using a dominant 

model of genotypes 
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Further multivariate analysis for the SLCO1B1 rs4149056 genotypes controlled for the 

effect of other patient factors such as age, BMI and gender revealed that rs4149056 

(dominant model) had a borderline significant association with SRM (Table 4.9) between 

case and control (P = 0.073; odds ratio = 1.52, 95 % CI = 0.96-2.39). Patient age and BMI 

made no significant contribution to the regression model. Interestingly, patient gender, after 

controlling for other factors indicated in the Table 4.9, also exhibited a borderline 

significant association with SRM (P=0.057; odds ratio = 1.53, 95 % CI = 0.99-2.37) 

between cases and controls with odds ratio of 1.53. 

 

 

Table 4.9 Multivariate analysis using logistic regression for cases vs. control to 

control for the effect of factors which are relevant to SRM 

 

 

Variables  

 

 

OR (95% CI) 

 

  

P-value* 

 

 

SLCO1B1 rs4149056 (Reference: TT genotypes) 1.52 (0.96 – 2.39) 0.073 

   

Age 1.01 (0.99 – 1.03) 0.305 

   

Sex (Reference: Male) 1.53 (0.99 – 2.37)       0.057 

   

BMI 1.00 (0.96 – 1.04)       0.923 

   

 

*Calculation assume dominant model for SLCO1B1 rs4149056 genotype. SLCO1B1, 

Solute carrier organic anion transporter family member 1B1; BMI, body mass index; OR, 

odds ratio; CI, confidence interval. 
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4.4 Discussion and conclusion 

 

Here I describe the outcome of an interim analysis of an ongoing, population-based case-

control study of the association between genetics, drug exposure and SRM symptoms. The 

current analysis was limited to a subset of 430 patients for which data were available (314 

controls, 116 cases), instead of the planned number of 600 patients (500 controls, 100 

cases) which is the final study recruitment target. 

 

The data are consistent with the accumulating evidence on the role of single nucleotide 

polymorphism (SNP) in SLCO1B1 gene (c.521T>C, p.V174A; rs4149056), the gene that 

codes for the hepatic OATP1B1 uptake transporter, in determining susceptibility to SRM 

(Wilke et al., 2012, Voora et al., 2009, Link et al., 2008). The data show a borderline 

association (with P=0.047 in multivariate analysis, Table 4.7) of the SLCO1B1 rs41490565 

variant allele with statin myopathy with an odds ratio of 1.57 for carriage of the variant. 

However, a Bonferroni correction for multiple testing based on the total number of 

genotyping tests resulted in absence of any significant signal. The SLCO1B1 result reported 

here therefore needs to be treated with caution. In previous studies including the 

STRENGTH (Statin Response Examined by Genetic Haplotype Markers) study in 2009, 

the association of the SLCO1B1 rs41490565 with adverse events in patients assigned to 

simvastatin appeared to be the strongest and associated with creatine kinase (CK) 

elevations (Voora et al., 2009), although this was not the case with other population such as 

Greeks (Giannakopoulou et al., 2014). Voora and colleagues also found that, when patients 

treated with various statins were considered, myalgia was not correlated with CK elevations 

(Voora et al., 2009). It seems that the occurrence of the muscle symptoms was linked to the 

presence of the SNP, rather than the CK levels directly, although CK level has previously 

been identified as a biomarker for muscle disorders. The present study was based on cases 

who reported muscle symptoms, regardless of CK levels (refer section 4.2.2 for case 

identification). 

 

Carriage of SLCO1B1 rs4149056, remained the strongest genetic predictor for SRM, albeit 

of borderline significance (p=0.047), after controlling for the 11 other SNPs that were 

studied. However, it should be pointed out that the results are based upon an inadequate 

sample size. Patient recruitment for the study is ongoing at the time this thesis was written. 

It is thought that the association between SLCO1B1 and SRM will become more obvious 

when the study is adequately powered. When the SLCO1B1 rs4149056 was corrected for 
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the effect of other patient factors such as age, sex and BMI, the effect of SLCO1B1 was 

lost. Epidemiological studies have shown that advanced age, female sex (linked to small 

body frame) and frailty, increase susceptibility to SRM (Armitage, 2007, Schech et al., 

2007, Bays, 2006) thus supporting the contribution of patient gender to this clinical 

consequence. The contribution of rs4149056, gender and to a certain degree, BMI, for the 

susceptibility to SRM have been confirmed further in a post-hoc analysis of data on 600 

patients, which was the originally calculated sample size for this study (refer Appendix H). 

  

The study findings did not support those reported by Brunham et al. (2012) who 

demonstrated that the differential effect of the SNP was stronger for simvastatin users 

compared with atorvastatin in the Netherlands patient population. There was a strong 

association documented between rs4149056 and the risk of statin-related myopathy among 

simvastatin users in the SEARCH (Study of the Effectiveness of Additional Reductions in 

Cholesterol and Homocysteine) trial (Link et al., 2008) and most recently by Carr and 

colleagues (Carr et al., 2013).  However in the current study, I found no evidence of an 

association between the SNP and either simvastatin or atorvastatin. As shown in Table 4.8, 

after stratification of SLCOIB1*5 genotypes according to the type of statin that each case 

and control was prescribed, there was no difference in genotype frequency between cases 

and controls for either simvastatin or atorvastatin users. However, this may well be due to 

the study not being sufficiently powered as demonstrated with the small effect size. It is 

anticipated that an adequate sample size (with the same MAF value for the SLCO1B1 

rs41490566 as presented in the current data) will increase the existing small effect size to a 

small-to-medium effect size at p<0.05. Uncertainties, however, remain for atorvastatin 

users, since some of them had been switched from simvastatin and were therefore not 

entirely representative for atorvastatin group and therefore resulted in higher effect size 

than that seen with simvastatin sub-group. It might be that the atorvastatin sub-group cases 

might be contaminated with those intolerant to simvastatin and thus, the question whether 

the lack of different association to the SRM cases between these two statins remains 

inconclusive. Furthermore, the contribution of SLCO1B1 to SRM may be less for 

atorvastatin transport than for simvastatin as demostrated by the plasma drug concentration 

versus time area under the curve (AUC) reported by several previous studies. Confirming 

this, C allele carrries for the SLCO1B1 rs4149056 had a significantly increased mean AUC 

of active simvastatin acid (3.2-fold), atorvastatin (2.4-fold), and rosuvastatin (1.7-fold) 

compared with c.521TT genotype, whereas no effect was seen for simvastatin lactone and 

fluvastatin (Pasanen et al., 2007, Niemi et al., 2006, Pasanen et al., 2006). A further study 
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with a prospective case-control design is warranted to elucidate the true impact of the 

SLCO1B1 rs4149056 among both simvastatin and atorvastatin users on the occurrence of 

SRM. 

 

The present study shows no evidence of contribution of newly proposed candidate genes in 

SRM. It is interesting to note that carriers of rs9806699, a variant in GATM, a gene that 

encodes the rate-limiting enzyme in creatine production, highlighted as an emerging factor 

in pharmacogenetics of statins (Canestaro et al., 2014, Norata et al., 2014), was not 

associated with SRM in my study. The rs9806699 was first demonstrated by Mangravite et 

al. (2013) to contribute statin-related side effects, although this finding was not supported 

by later studies (Luzum et al., 2015, Carr et al., 2014, Floyd et al., 2014). Carr et al. (2014) 

showed that the minor allele frequency (MAF) of the SNP was not significantly different 

between controls (n = 587) and myopathy cases (n = 150) with odds ratio of 0.94 (P = 0.68) 

and ‘severe’ myopathy (creatine kinase, CK, > x10ULN) cases (n=37) with odds ratio of 

0.94 (P = 0.83). Additionally, Luzum et al. (2015) failed to replicate the protective effect of 

the GATM reported by Mangravite et al. (2013), using case-control analyses of statin 

myopathy in 715 Caucasians. Despite it was once claimed promise as a candidate for statin-

related myopathy, it is not known and remains controversial (Ballard and Thompson, 2013) 

as to why the rs9806699 carrier status was associated with reduced incidence of statin-

related myotoxicity (Mangravite et al., 2013). Consistent with the subsequent findings by 

Carr and colleagues (2013), I found no association between rs4693075 in COQ2 gene and 

SRM. Similarly, CYP3A4*22 was not associated with SRM cases even though the SNP 

rs35599367 is associated with reduced CYP3A4 activity which is relevant to the 

metabolism of both simvastatin and atorvastatin, and has been found to be relevant to 

variability in simvastatin response in the Dutch population (Elens et al., 2011). Although 

proposed as a new promising SNP in personalised medicine (Elens et al., 2013), none of 

previous studies have found an association between rs35599367 and SRM. Finally, none of 

tag-SNPs from both SLC16A1 (MCT1) and SLC16A3 (MCT4), demonstrated an 

association with SRM. In particular, I found no association between SRM and the genes 

that determine statin exposure in muscle. Above all the genetic predictors studied, it seems 

that the best predictor of SRM is the SLCO1B1 rs4149056 which determines statin plasma 

concentrations. 

 

In addition to genetic factor, other patient-specific factors such as gender also predict the 

susceptibility to SRM. In fact, patient-related risk factors have been reported to constitute a 
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major component for statin myotoxicicty (Taha et al., 2014). Despite the strong signal 

shown by SLCO1B1 genotype in a GWAS in 2008, efforts to determine other genetic 

contributory factors in SRM remain to be confirmed (Tsamandouras et al., 2014, 

Mangravite et al., 2013). Other genes may still contribute to SRM with lower effect sizes or 

via gene-gene or gene-environmental interactions but assessing such effects would require 

extremely large numbers of cases far in excess of those studied in the current study. 

However, the data from the current study suggest that patient gender, in addition to 

SLCO1B1 rs4149056 genotype, contributes to SRM susceptibility with a borderline 

significant effect. It is anticipated that a more definite association (with lower p-value) for 

SLCO1B1 and age will be detected once the final study target of 600 individuals is reached. 

Considering other parameters, the distribution of concurrent illness (Type 2 diabetes, 

hypothyroidism and hypertension) and polypharmacy (hypolipidaemic vs non-

hypolipidaemic medicines) in general was not significantly different between cases and 

controls. This is important as lack of matching for these factors might have influenced the 

genetics findings. From large scale meta-analyses of statin trials, there is a suggestion for a 

diabetogenic effect of statins (Sattar and Taskinen, 2012). Furthermore, evidence which 

suggests an increased risk of diabetes was recently reported in patients treated with statins 

(van de Woestijne et al., 2014, Zaharan et al., 2013) but there was no suggestion that this 

occurred in the current study.  

 

Until more recent times, there was no universally accepted method for assessing causality 

for statin-related adverse events (Agbabiaka et al., 2008). However, lately Alfirevic and 

colleagues have developed an algorithm that will help to assign phenotypes to SRM cases, 

based on clinical and biochemical parameters, including CK levels (Alfirevic et al., 2014). 

The SRM classification, adapted from the recommendation of the American College of 

Cardiology/American Heart Association/National Heart, Lung and Blood Institute Clinical 

Advisory Board (Pasternak et al., 2002), was developed by the group to standardize the 

degree of severity of SRM based on a defined algorithm i.e. SRM0 to SRM6, which 

described the clinical manifestation with and without CK elevation and/or evidence based 

upon muscle biopsy findings (section 1.3.1). Some hold the view that any assessment of the 

effect-size of genetics regarding SRM should be based upon measurement of the degree of 

CK elevation (Carr et al., 2013, O’Meara et al., 2014). Apart from CK, measurement of 

alanine aminotransferase, urine myoglobin levels (when clinically indicated), and renal 

function may be useful. In patients with a suspected autoimmune myopathy, the 

measurement of anti-HMGCR antibodies and muscle biopsy should be considered 
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(Alfirevic et al., 2014). Since CK levels were unavailable (at the time the case group had 

stopped statin therapy or during muscle pain had been reported), any conclusion on a 

possible correlation between CK levels and SRM cannot be made. Although most 

researchers have opted to use CK value (a non-specific marker for muscle damage) as a 

criterion to identify statin-related muscle toxicity (Link et al., 2008, Thompson et al., 2006, 

Ballantyne et al., 2003, Pasternak et al., 2002), its use alone remains controversial. In this 

study, statin intolerant cases were selected based on their clinical phenotypes, irrespective 

of CK levels. Although the CK levels were not a central focus for the inclusion criteria, 

majority of cases, but not all, were selected from SRM2 (muscle symptoms accompanied 

with CK <4xULN) cases with a few from SRM3, SRM4 and SRM5, (according to the 

recent classification by Alfirevic et al., 2014). After statin withdrawal, the reported muscle 

symptoms were then resolved (partially to complete disappearance) within 2 months.  

 

In conclusion, this interim analysis showed an association between SLCO1B1 and SRM 

among statin (simvastatin and atorvastatin) users. However, it was not possible to show 

such association for the individual statins. 
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Chapter 5. General Discussion 
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In this chapter, I will be discussing the main findings of my research; (a) the impact of 

statins on the functional expression of membrane transporters studied at cellular levels 

(Chapter 2 and Chapter 3) and (b) from gene candidate study (Chapter 4) in the case-control 

study of statin-related myotoxicity (SRM). In particular, I will be focusing on implications 

of the findings and future research direction. 

 

(a) Through my cellular work I showed that simvastatin and atorvastatin have a significant 

impact on monocarboxylate transporter (MCT), presumably MCT1, which is in keeping 

with previous findings (Ansari, 2007).  This provided information that statins caused 

muscle toxicity by having a direct effect on muscle cells (thus affecting intracellular events 

including mitochondrial function). MCT1 is found to be present in almost all tissues, in 

many cases with specific locations within each tissue (Halestrap and Price, 1999).  MCT1 is 

also localized in sarcolemmal membrane of mitochondrion (Brooks, 2009, Hashimoto and 

Brooks, 2008, Brooks et al., 1999), which is linked to SCL16A1 (MCT1 transcribing gene) 

polymorphism; it is possible that statins cause muscle toxicity by interfering with 

mitochondrial function. Indeed this has been demonstrated by both in vitro and in vivo 

regarding the mode of action of simvastatin (Bonifacio et al., 2014, Galtier et al., 2012, 

Kaufmann et al., 2006), suggesting that lipophilic statins are better at targeting MCT1 to 

induce mitochondrial toxicity than hydrophilic statins. Further work is thus needed to 

determine whether altered function of MCT1 either by inhibition with an inhibitor or by 

genetic mutation would exacerbate statin myotoxicity and/or mitochondrial toxicity.  

 

According to the case-control study results (discussed below), I found no association 

between SLC16A1 polymorphism and SRM. Therefore, at this point, although it is 

conclusive that lipophilic statins (such as simvastatin and atorvastatin) modulate MCT1 

function at cellular level, further studies are needed to assess whether reduced MCT1 

function would have significant clinical consequences. It is worth exploring in the future 

the association between the polymorphisms in SLC16A1 or SLC16A3 (or its tag-SNPs) and 

clinical endpoints such as blood lactate level and/or any evidence of mitochondrial 

pathology. Last but not least, a site-directed mutagenesis could be adopted in order to 

access whether the polymorphisms in MCT1 result in differential drug transport in vitro 

followed by in vivo studies using animal models (e.g. gene knock-down). 
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In contrast to the effect on MCTs, lipophilic statins did not inhibit cellular MRP or MDR1 

efflux transporters (Chapter 3). Consistently, none of genetic variant candidates of the ABC 

transporters (i.e., rs717620 and rs2231142, SNP in ABCC2 and ABCG2, respectively) 

resulted in any significance association with SRM among both simvastatin and atorvastatin 

users in the case-control study. Although both SNPs were considered to be critical 

determinants of both expression and activity of the efflux transporters and subsequently 

response to some drugs including statins (Bailey et al., 2010, Keskitalo et al., 2009, Han et 

al., 2007, Sparreboom et al., 2004), neither of them have yielded reproducible outcomes. In 

fact, very recently, the SNPs in the genes for the ABC transporters are considered to be less 

suitable genetic markers to predict therapeutic outcome of many clinically relevant drugs 

including statins (Bruhn and Cascorbi, 2014). It is unknown how statins impact BCRP 

function (as efflux transporter) at cellular level, which are highly expressed in the 

gastrointestinal tract and canaliculi, and are considered among the principal transporters 

involved in the bioavailability and systemic clearance of the majority of statins (Generaux 

et al., 2011). It is expected that both simvastatin and atorvastatin would have a low impact 

on BCRP efflux transporter, as there is no priori evidence of the involvement of the BCRP 

with lipophilic statins, except with rosuvastatin (Jemnitz et al., 2010, Kitamura et al., 2008) 

and pitavastatin (Fujino et al., 2005, Hirano et al., 2005). 

 

Like all potential prognostic markers, the effect of polymorphisms on clinical endpoints 

must be validated through preclinical and clinical investigations. At pre-clinical stage, 

evidence for SRM at cellular level is supported by a number of ways as described by Taha 

et al. (2014). At clinical level, however, it is much more difficult to assess statin exposure 

at skeletal muscle level because it would require invasive procedures such as muscle 

biopsy. Assessment of biomarker such as creatine kinase (CK) levels is one way of 

predicting the degree of SRM (Ferrari et al., 2014, Carr et al., 2013), though a systematic 

review of 35 randomized, placebo-controlled trials of the six FDA-approved statins failed 

to show significant differences in CK elevations in statin-treated patients compared with 

placebo (Kashani et al., 2006). Furthermore, assessment of the CK level could be 

misleading as statin-induced myopathy has also been reported with normal CK levels in a 

case-report of four related patients from a Norwegian family (Troseid et al., 2005) 

suggesting that CK is not a direct product or biomarker for SRM. Interestingly in the case 

report, two of the four patients showed evidence of mitochondrial pathology with normal 

CK level, while the other two suffered muscle pain without any pathologic findings. It is 

likely that genetic factors, either directly or indirectly, affected mitochondrial pathology. It 
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is possible that in the former two patients defective lactate transport, as a result of a genetic 

defect of MCT1, had resulted in mitochondrial pathology with statins further suppressing 

the transporter function.  In the cellular studies, the protocols adopted in the MCT uptake 

function studies to estimate cell numbers based on cell monolayer surface area became the 

major limitation. The protocols described in this thesis were based on relative comparison 

of the radiolabelled uptake to controls without treatment, and hence, explained huge 

variation in certain results. In future, it is suggested that the normalisation of the substrate 

uptake in cell monolayers be carried out using total cells number or protein measurement 

methods instead.  

 

(b) The interim analysis of data relating to the case-control study confirmed what is already 

known about the association between SLCO1B1 polymorphism (rs4149056) and SRM 

(Carr et al., 2013, Brunham et al., 2012, Donnelly et al., 2011, Voora et al., 2009). The SNP 

in the SLCO1B1 gene, a predictor of toxicity for drugs such as methotrexate, erythromycin 

and docetaxel (Lima et al., 2014, de Graan et al., 2012, Lancaster et al., 2012),  is likely to 

be considered as the first-level genetic predictor for SRM. Knowledge of SLCO1B1 

genotypes is believed to have clinical utility for predicting SRM in patients on chronic 

statin therapy. SLCO1B1 polymorphism is found to be strongly associated with 

simvastatin-related myotoxicity according to a genome-wide association study, GWAS 

(Link et al., 2008). It has been suggested by Clinical Pharmacogenetics Implementation 

Consortium (CPIC) that SLCO1B1 could be used as a guide for effective management of 

patients receiving simvastatin therapy (Wilke et al., 2012). The SNP is still being regarded 

as the only convincing genetic predictor of SRM (Carr et al., 2013) which was also 

supported by my study findings. 

 

The case-control study did not determine the association between SRM and statin type, 

dose and level of statin exposure. Therefore further work will be needed to evaluate such 

possible relationships. It seems that exposure (assessed by measurement of AUC) for all 

statins appears to be attributable to the SLCO1B1 polymorphism. It was found that, relative 

to the wild-type TT genotype, homozygosity for the C allele increases AUC by 221% for 

active simvastatin acid, 162%-191% for pitavastatin, 144% for atorvastatin, 57%-130% for 

pravastatin, 62%-117% for rosuvastatin and 19% for fluvastatin (Wilke et al., 2012). For 

simvastatin users especially, the possession of > C allele accounted for clinical sensitivity 

and specificity of 70.4% and 73.7%, respectively, for the prediction of definite or incipient 

myopathy during 5 years of 80 mg/day simvastatin use (Stewart, 2013). If the frequency of 
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C allele of the SNP was taken into consideration, the association of the SNP with statin 

response and side-effects may be true for certain populations such as Caribbean and Black 

African group in the UK with low MAF value for the SNP (Hippisley-Cox and Coupland, 

2010), while it did not hold for other populations (Giannakopoulou et al., 2014, Lee et al., 

2005). Among Caucasians, as this study suggests, it seems that rs4149056 attributes to the 

susceptibility of all grades of SRM, regardless of statin type (simvastatin and atorvastatin) 

and dose (40 mg or 80 mg). 

 

A recent review by Mosshammer and colleagues (2014) implies that SRM is multifactorial 

and that other factors which directly influence statin exposure in striated muscle need to be 

taken into consideration. Also other than genetics, patient-related factors contribute to SRM 

(Taha et al., 2014). Despite the strong signal shown by SLCO1B1 genotype in an earlier 

GWAS in 2008 (Link et al., 2008), further efforts have been made to identify other genetic 

factors contributing to SRM (Tsamandouras et al., 2014, Mangravite et al., 2013). Gene 

candidate studies should be viewed in association with other genetic and non-genetic 

factors, through either gene-gene or gene-environmental association studies, in order to 

further elucidate the contributory factors to SRM. My study showed that SLCO1B1 

rs4149056 genotype and gender contributed to SRM (although with borderline 

significance). However, I found no evidence for gene-gene interaction among the candidate 

genes studied. Although the variants in SLC16A1 and SLC16A3, (genes transcribing 

MCT1 and MCT4, respectively) resulted in significant alteration of MCT function at 

cellular level, polymorphisms in these genes were not significantly associated with SRM in 

our study patients classified as having mild-moderate muscles symptoms. Polymorphisms 

in these transportes could still play a role in the more severe SRM cases which might be 

worthy of further investigation.  

 

Overall, a small sample size was considered a limitation of the current case-control study. 

Because of slow recruitment the study did not reach its requisite target sample size of 600 

patients by the time I had completed my PhD research. As such, I found only borderline 

association between SLCO1B1 polymorphism and patient factors of sex and BMI and 

SRM. However, a later post-hoc analysis of data based on 600 patients (refer to Appendix 

H), confirmed the presence of a strong association between SLCO1B1*5, patient sex, BMI 

and SRM as was previously reported in other patient populations (Hou et al., 2015, Joy and 

Hegele 2009).  
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According to previous pharmacogenetic studies, different threshold CK have been applied 

to classify statin-associated muscle intolerance (Carr et al., 2013, Brunham et al., 2012, 

Donnelly et al., 2011, Marciante et al., 2011, Voora et al., 2009, Link et al., 2008). For 

example, Donnelly and colleagues (2011) used CK levels within the range of 1-3x ULN as 

a composite definition of statin intolerance, whereas CK levels of more than 10x ULN has 

been used by others to classify subjects with SRM (Brunham et al., 2012, Marciante et al., 

2011). The different classifications of SRM among these studies could have contributed to 

the differences in their findings. In the present study, however, the cases were predicted 

based on composite muscle adverse events, as described earlier (section 4.2.2), and not 

solely the CK levels. Despite the lack of CK levels the cases phenotypically corresponded 

to SRM2 to SRM5 according to the classification proposed by Alfirevic and co-workers 

(Alfirevic et al., 2014). For future work it will be important to assess the extent of 

contribution of SLCO1B1*5 to SRM in a more precisely defined patient group selected 

according to the standardised phenotype definitions (Alfirevic et al., 2014). 

 

Last but not least, other than statins, there is also increasing focus of clinical studies on new 

LDL-lowering drugs for the treatment of hypercholesterolaemia. The new LDL-lowering 

drugs such as inhibitors to proprotein convertase subtilisin/kexin type 9 (PCSK9), apo B, 

and microsomal triglyceride transfer protein (MTTP) has been currently studied to ascertain 

their efficacy and safety. PCSK9 inhibitors such as alirocumab, evolocumab and 

bococizumab increase the hepatic uptake of LDL-C, while apoB and MTTP inhibitors 

decrease the synthesis and secretion of apoB-containing lipoproteins, for which they are all 

lead to marked reductions in plasma LDL cholesterol (Sahebkar and Watts, 2013). In term 

of efficacy, the PCSK9 inhibitors for example, are well tolerated and even patients who 

achieved very low LDL-C ≤ 0.65 mmol/l (∼ 25 mg/dl) did not have any significant adverse 

effects (Reiner, 2015), however the outcome data with endpoints on their effects are still 

lacking and their long-term impact on cardiovascular events is currently under 

investigations (Sahebkar and Watts, 2013). Consistently with the apoB and MTTP 

inhibitors, a main safety concern i.e., the risk for hepatic steatosis, during treatment needs 

to be explored in prospective, long-term trials (Sahebkar and Watts, 2013). Above all those 

abovementioned drugs for the new lipid-lowering therapies, statins are remained to 

consider as the first option for lipid-lowering agents presumably due to lower cost. The 

favourable safety profile and cost-effectiveness of statin therapy is indeed undeniable 

(NCGC, 2014, Lazar et al., 2011). 
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APPENDIX A Different analysis methods used for SNP association studies for (1) 

arbitrary genotype counts and (2) for genotype counts in a case-control study. Adapted 

from Lewis and Knight (2012). 

  

 

 

Briefly, Pearson’s chi-square test can be used to assess departure from the null hypothesis 

in that case and controls have the same distribution of genotype counts (2-sided 

significance level). A higher frequency of a SNP allele or genotype in a series of 

individuals affected with a specific disease (or so cases) can be interpreted as the tested 

variant directly associates with the risk of the disease. In comparison with other genetic 
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markers such as microsatellite markers, insertion/deletions, variable-number tandem repeats 

(VNTRs), SNPs are the most widely tested markers in the genetic association studies.  

 

In brief, the genetic variance can be divided into additive and non-additive genetic variance 

(Lynch and Wash 1998, Falconer and Mackay 1996). The non-additive parts include 

everything that has a nonlinear effect such as dominance (Wang et al., 1998), where the 

presence of just one allele contributes as much as two of the same allele, or epistasis 

(Lopez-Fanjul et al., 1999) where alleles act differently depending on what other alleles are 

present, or gene-environment effects where the contribution of an allele changes depending 

on the environment such as in the case of gene-dose effect of a drug. The fraction of the 

variance explained by the additive genetic effects, on the other hand, includes all the 

genetic effects. Since a single SNP has 2 alleles at each locus (termed as biallelic), the 

genotype counts for each group of the SNP between two groups (i.e., cases and controls) 

can be summarised in a different level of contingency table, as shown above. The first 

method known as multiplicative model in which contingency table may be decomposed 

from genotypes into alleles, with cell counts of the number of G alleles, and the number of 

T alleles carried by cases and controls, regardless of the genotype combination in which 

these alleles were carried (Appendix A1, upper left) and this test is valid under the null 

hypothesis of no association. When the true model of association is multiplicative (or log 

additive), the genotype relative risks for GG, GT, and TT genotypes can be modelled as 1, 

r, and r
2
, with relative risk increasing by a factor r for each T allele carried (Sasieni, 1997). 

An alternative test for this model is the Cochran–Armitage test for trend (Appendix A1, 

upper right), which, as its name implies, tests for a trend in differences in case and control 

groups across the ordered genotypes in a 2x3 the contingency table. While other analysis 

methods may also be interpreted as an association based on the assumption that the disease 

risk may increase (or decrease) as the number of certain allele increases, assuming T (see 

dominant or recessive model) is a high-risk allele, in three genotype clusters i.e., CC, CT 

and TT. Additive model of inheritance may also be applied in a genetic association study 

and this model can be tested using Armitage test for trend as illustrated in the figure 

(Appendix A1, upper right). The model assumes an increased disease risk of r for GT 

genotypes, and 2r for TT genotypes. This model shows a clear trend of an increased number 

of GT and TT genotypes, with the risk for GT genotypes approximately half that for TT 

genotypes. 
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APPENDIX B Analysing qPCR data by the comparative 2
-∆∆C

T method (adapted 

from Schmittgen and Livak 2008). 

 

1. An example for the calculation of the fold change in expression level of a gene 

due to drug treatment. 

The mean CT of the HOXD10 gene in treated and untreated samples was 24.6 and 27.5, 

respectively. The mean CT of the 18S rRNA internal control in the treated and untreated 

samples was 9.9 and 9.8, respectively. What is the fold change in expression of the 

HOXD10 gene due to treatment? 

 

Fold change due to treatment  = 2
-∆∆CT 

     = 2-[(24.6-9.9) – (27.5-9.8) 

     = 8 

 

2. An example for the determination of the suitability of internal control for use 

in a drug treatment experiment.  

The gene expression is to be compared in cell cultures that are treated with a hypothetical 

drug to those that are untreated. The mean CT from replicate runs of an internal control 

gene are 27.2, 27.0 and 27.4 (treated samples) and 26.2, 26.3 and 26.0 (untreated samples). 

What is the fold change in expression of the internal control in the treated versus the 

untreated samples? Does this gene serve as a useful internal control in this experiment? 

 

Treated Untreated 

2
(-27.2)

 = 6.49E-09 

2
(-27.0)

 = 7.45E-09 

2
(-27.4)

 = 5.65E-09 

Mean = 6.53E-09 

2
(-26.2)

 = 1.30E-08 

2
(-26.3)

 = 1.21E-08 

2
(-26.0)

 = 1.49E-08 

Mean = 1.33E-08 

 

The fold change in the internal control in the treated samples compared to the untreated 

sample is: 6.53E-09/1.33E-08 = 0.490. Drug treatment reduced the expression of the 

internal control by 2.04-fold so it would not make a good internal control gene.  
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APPENDIX  C An example for calculation of (A) 
3
H-DL-lactate uptake and, (B) 

fractional 
3
H-DL-lactate efflux rate in section 2.2.6. 

 

1. Calculation of 
3
H-DL-lactate uptake. 

For example, uptake over 2 minutes of 50 μM [
3
H]-DL-lactate at 1 μCi.ml-1 in 300 μl 

Krebs’ (pH 5.5, Na
+
-free) from a monolayer of 24-well plate was calculated as:  

 

DL-lactate uptake  =    7546 x 15,000 pmol      /     1.9 

                                                (6417 x 30)  

 

                                    = 309.46 pmol.cm
-2

.(2min)
-1

 or 154.73 pmol.cm
-2

.(min)
-1 

 

2. Calculation of fractional 
3
H-DL-lactate efflux rate 

 

 Reading 1 Reading 2 Reading 3 

Radioactivity collected on the 1
st
 2 min 4381 4032 3945 

Radioactivity collected on the 2
nd

 2 min 1493 1390 1529 

Radioactivity collected on the 3
rd

 2 min 567 587 506 

Radioactivity collected on the 4
th
 2 min 348 316 366 

Radioactivity collected on the 5
th
2 min 229 233 245 

Radioactivity collected on the 6
th
 2 min 231 238 236 

Radioactivity collected on the 7
th
 2 min 195 197 197 

Radioactivity collected on the 8
th
 2 min 140 137 138 

    

Final radioactivity remained in cells 

 

2846 2821 2804 

Total radioactivity  10430 9951 9966 
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Thus, fractional efflux rate (%) was gained as follow; 

  Reading 1 Reading 2 Reading 3 MEAN 

1 42.00384 40.51854 39.58459 40.70232 

2 24.68177 23.4837 25.39445 24.51997 

3 12.44513 12.96092 11.26447 12.22351 

4 8.723991 8.016235 9.182137 8.640788 

5 6.289481 6.425814 6.767956 6.494417 

6 6.770223 7.014441 6.992593 6.925752 

7 6.130148 6.244057 6.275884 6.216696 

8 4.688547 4.631508 4.690687 4.670247 

 

An example for the values in Reading 1 from the table above were derived as follow; 

42.00384 = 4381/10430*100 

24.68177 = (1493/ (10430-4381)*100 

12.44513 = (567/ (10430-(1493+4381))*100 

8.723991 = (348/ (10430 – (4381+1493+567)*100 

6.289481 = (229/ (10430 – (4381+1493+567+348))*100 

6.770223 = (231/ (10430 – (4381+1493+567+348+229))*100 

6.130148 = (195/ (10430 – (4381+1493+567+348+229+231))*100 

4.688547 = (140/(10430 – (4381+1493+567+348+229+231+195))*100 
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APPENDIX D L6 cell viability for statin treatment for a range concentration of 1 

µM to 100 µM 

 

 

 

L6 myotubes were exposed to statins at a concentration range 1 to 100 μM for 48 

hours, or to 0.1% triton-X-100 for 1 hour. For the determination of cell viability, L6 

mytotubes were exposed to MTS reagents and incubated for 90 minutes at 37 ºC in the 

absence of light, after which absorbance of intracellular formazan was read at 490 nm.The 

background absorbance was substracted, and the readings were normalised to 100 % for 

cells exposed to solvent control and MTS reagent. Data are mean ± SD (n = 15), each n = 5 

wells per concentration, from 3 independent experiments. Data are analysed by One-way 

ANOVA with Dunnett’s post-test compared to solvent control; * P< 0.05, *** P < 0.0001.

 

    

    



 

161 
 

 APPENDIX E  CT values from RT
2 
qPCR array results to determine drug transporters expression at mRNA level in L6 rat skeletal muscle cells in 

the presence and absence of simvastatin (2 µM) pre-treatment for 48 hours 

 

Plate 

position Gene Gname 

Test 1 

  

Test 2 

  

Test 3 

  

      

Simvastatin-

treated L6 

cells 

Control 

1 

Simvastatin-

treated L6 

cells 

Control 

2 

Simvastatin-

treated L6 

cells 

Control 

3 

A1 Abca1 - 30.76 29.03 28.83 26.2 30.75 28.48 

A2 Abca13 - 33.32 31.7 31.43 27.54 31.97 29.77 

A3 Abca17 - 28.77 31.85 28.94 27.75 29.32 29.65 

A4 Abca2 Abc2 29.77 29.6 30.55 27.84 29.14 29.11 

A5 Abca3 - 27.32 29.29 27.8 26.85 27.64 28.12 

A6 Abca4 ABCR 31.65 31.67 31.59 27.77 32.57 30.48 

A7 Abca9 - 27.3 26.09 28.52 26.91 26.69 26.99 

A8 Abcb11 Bsep/Spgp 40 36.77 33.71 28.19 35.9 31.7 

A9 Abcb1b Abcb1/Mdr1/Pgy1 29.61 29.56 29.23 27.59 29.42 29 

A10 Abcb4 Mdr2/Pgy3 

 

32.91 32.47 28.59 37.44 31.61 

A11 Abcb5 RGD1566342 40 31.74 31.79 28.02 33.92 29.89 

A12 Abcb6 MGC93242 30.25 29.94 32.85 29.74 31.67 32.26 

B1 Abcc1 Abcc1a/Avcc1a/Mrp/Mrp1 25.04 26.58 26.44 25.3 25.96 26.51 

B2 Abcc10 - 35.22 33.03 34.77 30.66 34.51 33.12 

B3 Abcc12 - 36.2 31.52 31.53 27.45 33.95 29.5 

B4 Abcc2 Cmoat/Mrp2 31.9 30.76 30.86 26.86 32.06 29.01 

B5 Abcc3 Mlp2/Mrp3 31.45 30.68 30.33 27.58 30.42 28.94 

B6 Abcc4 Mrp4 30.63 30.65 31.71 29 30.07 30.97 
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B7 Abcc5 Abcc5a/MGC156604/Mrp5 28.67 29.3 28.9 27.43 28.93 29.49 

B8 Abcc6 Mrp6 32.68 32.52 31.84 27.74 32.89 31.77 

B9 Abcd1 RGD1562128 28.65 28.14 28.64 25.98 28.44 28.29 

B10 Abcd3 PMP70/Pxmp1 26.69 26.58 26.94 26.98 26.46 27.08 

B11 Abcd4 MGC105956/Pxmp1l 27.65 28.63 28.87 27.67 28.34 28.74 

B12 Abcf1 Abc50 24.18 24.03 24.16 24.48 24.04 24.58 

C1 Abcg2 BCRP1 36.25 30.69 31.14 27.14 32.29 28.67 

C2 Abcg8 - 32 31.63 30.83 27.49 31.93 29.69 

C3 Aqp1 CHIP28 30.53 33.14 29.93 27.99 31.52 31.62 

C4 Aqp7 - 34.01 33.05 32.13 27.75 33.7 31.42 

C5 Aqp9 MGC93419 40 33.23 32.25 28.01 32.63 31.5 

C6 Atp6v0c Atp6c/Atp6l 21.62 22.72 22.85 22.98 22.73 23.81 

C7 Atp7a Mnk 26.07 26.43 27.23 26.8 26.59 27.28 

C8 Atp7b Hts/PINA/Wd 34.47 31.55 32.3 27.74 32.24 29.97 

C9 Mvp - 25.87 25.83 26.67 26.16 26.1 26.86 

C10 Slc10a1 Ntcp/Ntcp1/SBACT 32.58 31.89 31.24 27.77 31.68 29.72 

C11 Slc10a2 ISBAT 35.62 30.95 31.22 27.63 32.07 28.81 

C12 Slc15a1 Pept1 

 

30.19 31.86 27.96 32.66 28.74 

D1 Slc15a2 MGC91625 37.12 32.81 33.13 27.97 34.02 31.53 

D2 Slc16a1 MCT1/RATMCT1/RNMCT1 24.97 25.12 25.58 25.28 25.57 26.42 

D3 Slc16a2 - 26.76 28.18 27.82 27.09 27.63 28.58 

D4 Slc16a3 Mct3 33.98 33.1 32.13 28.04 32.95 30.92 

D5 Slc19a1 MGC93506/MTX1 28.07 28.19 28.92 28.2 28.91 29.66 

D6 Slc19a2 MGC124887 27.95 29.12 28.46 26.86 28.62 28.85 

D7 Slc19a3 - 35.79 34.09 32.61 28.2 32.66 31.29 

D8 Slc22a1 MGC93570/Oct1/Orct1/Roct1 35.41 33.55 32.23 27.79 33.29 30.53 

D9 Slc22a2 OCT2/OCT2r/rOCT2 35.49 31.59 31.3 27.31 32.72 29.6 
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D10 Slc22a3 - 40 32.78 32.27 27.72 33.62 30.8 

D11 Slc22a6 MGC124962/Oat1/Orctl1/Paht/Roat1 37.19 34.69 33.09 29.24 35.66 33.17 

D12 Slc22a7 Oat2 35.5 32.23 33.42 29.22 34.88 32.51 

E1 Slc22a8 MGC93369/OCT3/Oat3/Roct 40 34.58 32.43 28.44 36.24 31.86 

E2 Slc22a9 Oat5/Slc22a19 36.24 30.24 31.29 26.82 32.94 28.95 

E3 Slc25a13 RGD1565889 30.13 29.47 30.05 27.76 30.63 30.19 

E4 Slc28a1 Cnt1 37.4 31.44 31.85 27.94 34.34 30.25 

E5 Slc28a2 - 30.54 31.54 30.29 26.59 31.86 29.17 

E6 Slc28a3 Cnt3 

 

31.6 31.57 27.52 33.61 29.56 

E7 Slc29a1 rENT1 28.56 28.94 30.59 27.65 31.75 30.04 

E8 Slc29a2 - 27.88 28.11 28.8 26.81 29.54 29 

E9 Slc2a1 GLUTB/GTG1/Glut1/Gtg3/RATGTG1 33.46 30.29 34.58 32.79 34.92 35.28 

E10 Slc2a2 GTT2/Glut2 27.56 31.6 27.02 26.08 27.79 27.97 

E11 Slc2a3 GLUT3 27.87 28.18 30.59 27.58 29.73 30.04 

E12 Slc31a1 Ctr1/LRRGT00200 26 26.92 26.99 26.55 25.72 26.71 

F1 Slc38a2 Ata2/Atrc2/Sat2/Snat2 23.29 24.15 24.26 24.33 23.92 25.03 

F2 Slc38a5 SN2 33.63 33.06 32.56 28.51 35.66 31.21 

F3 Slc3a1 - 25.52 25.63 26.09 25.79 26.66 27.51 

F4 Slc3a2 Mdu1 24.52 25.31 25.91 25.98 26.98 27.88 

F5 Slc5a1 MGC93553/SGLT1 35.7 31.51 31.88 27.52 32.61 30 

F6 Slc5a4a Slc5a4 30.98 30.85 29.68 26.87 30.84 28.97 

F7 Slc7a11 - 28.76 30.67 28.92 27.28 29.17 29.32 

F8 Slc7a4 - 32.94 33.14 31.59 27.88 32.68 31.2 

F9 Slc7a5 E16/TA1 25.51 27.74 27.99 27.58 27.15 28.56 

F10 Slc7a6 - 28.47 29.02 28.95 27.16 28.77 28.65 

F11 Slc7a7 y+LAT1 28.52 28.88 28.87 27.18 29.76 29.58 

F12 Slc7a8 Lat2/Lat4 31.71 32.01 31.51 27.71 31.91 29.66 
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G1 Slc7a9 MGC114282 31.43 30.99 31.3 27.46 32.72 30.51 

G2 Slco1a5 OATP-3/Oatp3/Slc21a7/Slco1a2 40 34.1 32.67 27.86 34.83 31.05 

G3 Slco1a6 Oatp5/Slc21a13 

 

32.23 32.57 27.67 33.09 29.8 

G4 Slco1b3 

OATP-4/Oatp4/Slc21a10/Slco1b2/rlst-

1 37.69 32.87 32.78 27.87 33.77 30.69 

G5 Slco2a1 Matr1/Slc21a2 32.83 29.89 30.59 26.18 32.51 28.81 

G6 Slco2b1 Slc21a9/moat1 36.26 33 32.52 27.82 34.69 31.49 

G7 Slco3a1 Slc21a11 26.15 26.59 25.77 25.49 26.07 26.65 

G8 Slco4a1 OATP-E/Slc21a12 32.87 33.12 31.54 27.49 34.72 31.06 

G9 Tap1 Abcb2/Cim/MGC124549 29.85 29.17 31.59 29.24 29.72 30.34 

G10 Tap2 Abcb3/Cim/MGC108646 26.42 26.68 26.24 26.07 26.79 27.16 

G11 Vdac1 - 22.71 22.63 23.81 23.32 23.49 24.16 

G12 Vdac2 - 24.03 24.57 25.16 24.69 24.54 25.2 

H1 Actb Actx 18.57 19.5 18.45 18.84 19.67 20.23 

H2 B2m - 24 23.84 24.13 24.17 24.92 25.52 

H3 Hprt1 Hgprtase/Hprt/MGC112554 21.01 21.21 20.82 21.17 21.75 22.54 

H4 Ldha Ldh1 21.5 21.89 23.05 22.65 22.71 23.44 

H5 Rplp1 MGC72935 19.84 20.12 19.2 19.25 19.65 20.26 

H6 RGDC RGDC 37.66 33.09 34.1 33.55 30.11 32.82 

H7 RTC RTC 24.49 23.79 24.96 24.33 24.42 24.92 

H8 RTC RTC 24.48 23.83 24.91 24.26 24.43 24.87 

H9 RTC RTC 24.48 23.72 24.97 24.32 24.33 24.87 

H10 PPC PPC 19.15 20.02 19.42 19.72 19.45 19.66 

H11 PPC PPC 19.68 20.48 19.66 19.66 20.01 19.97 

H12 PPC PPC 19.51 20.31 19.6 19.52 19.7 19.91 
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APPENDIX F Ethical approval of the study 
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APPENDIX G Patient information sheets. 
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Investigation of the association between 
genetics, drug exposure and statin-induced 

muscle toxicity 
 
 
 

Muscle Symptom Questionnaire (B) 
(For patients withdrawn from statin therapy because of muscle symptoms) 
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APPENDIX H Data presentations according to the total number of completed 

patient recruitment of 607 patients (125 cases and 482 controls). 

 

1. Demographic and clinical characteristics of patients who were statin-tolerant 

(control) and those who withdrew statin therapy due to perceived muscle 

symptoms (SRM cases). 

 

Variables Control (n=314)  Cases (n=116)  P-value 

Sex 

         Female, N (%)  

         Male, N (%) 

  

213 (44.2%)  

269 (55.8%) 

 

73 (58.4% 

52 (41.6%) 

0.004* 

Age, mean years (± SD)  60.9 (± 13.2)  

 

60.3 (± 9.1)  

 

0.610 

BMI, median (LQ, UQ) 28.5 (25.8, 32.0)  

 

28.5 (26.4, 31.7) 

 

0.933
† 

Duration on statin (months) 

median (LQ, UQ) 

24 (12, 65) 

 

8 (3, 18) 

 

<0.001
†
 

Statin, N (%) 

       Simvastatin,  

 

              10 mg/day 

              20 mg/day 

              40 mg/day 

              80 mg/day 

 

       Atorvastatin,  

 

              10 mg/day 

              20 mg/day 

              30 mg/day 

              40 mg/day 

              80 mg/day 

      

       Rosuvastatin,   

 

297 (61.6)  

 

- 

4 (1.3)  

286 (96.3)  

7 (2.4)  

 

184
# 
(38.2)  

 

1 (0.5)  

2 (1.1)  

1 (0.5)  

12 (6.6)  

167 (91.3) 

 

1 (0.2) 

 

103 (82.4)  

 

7 (6.8)  

15 (14.6)  

77 (74.8)  

4 (3.9)  

 

17 (13.6)  

 

1(5.9) 

- 

- 

1 (5.9)  

15 (88.2)  

 

5 (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*
Pearson Chi-Square test (2-tailed) was performed for the analysis 

†
t-test after log transformation to achieve approximate normality  

#
one missing value from one individual in this group 
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2. Univariate analysis of the association between individual SNPs and statin-related 

muscle toxicity by univariate analysis. 

 

Gene and 

SNP 

Genotype Frequencies, n  P-value 

for HWE
a
 

 

P-

value
b
 

OR (95% CI) 

  Control
c 

Cases    

SLCO1B1  

rs4145096 

WT 

Het 

Mut 

354  

112  

11  

78  

45  

2  

0.547 0.011  1.73 (1.14- 2.64)  

ABCC2  

rs717620 

WT 

Het 

Mut 

301  

158  

18  

80  

39  

6  

0.626 0.917  

 

0.962 (0.64 – 1.45) 

ABCG2 

 rs2231142  

WT 

Het 

Mut 

375 

94  

7  

104  

19  

2  

0.690 0.318 0.8365 (0.49 -1.44)  

 

CYP3A4 

rs35599367 

(*22) 

WT 

Het 

Mut 

423  

51  

2  

111  

14  

0  

0.729 1.000 1.01 (0.54 -1 .88)  

 

COQ2 

 rs4693075 

WT 

Het 

Mut 

190  

220  

66  

51  

57  

17  

0.856 0.918 0.96 (0.64 – 1.44)  

 

GATM  

rs9806699 

WT 

Het 

Mut 

252  

176  

47  

64  

48  

13  

0.052 0.763 1.07 (0.73 – 1.60)  

GPx1 

rs1050450 

WT 

Het 

Mut 

245 

160 

54 

63 

52 

10 

<0.001 ND ND 

GPx4 

rs713041 

 

 

SLC16A1 

rs1049434  

 

 

 

 

 

rs3849174 

 

 

 

WT 

Het 

Mut 

 

 

WT 

Het 

Mut 

 

 

 

WT 

Het 

Mut 

 

137 

251  

85  

 

 

130  

255  

88 

 

 

 

309  

151  

16  

 

39  

59  

27 

 

 

36 

54 

26 

 

 

 

70  

51  

4  

 

0.106 

 

 

 

 

0.059 

 

 

 

 

 

0.639 

 

 

 

0.739 

 

 

 

 

0.435 

 

 

 

 

 

0.077 

 

 

 

1.09 (0.70-1.70) 

 

 

 

 

0.84 (0.54-1.28) 

 

 

 

 

 

1.45 (0.97-2.17) 
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rs4301628 

 

 

 

SLC16A3 

 

rs7503429 

 

 

 

rs12453290 

 

 

WT 

Het 

Mut 

 

 

 

WT 

Het 

Mut 

 

WT 

Het 

Mut 

 

 

206  

220  

50 

 

 

 

 130  

237 

103  

 

217  

220  

40 

 

63  

52  

10 

 

 

 

36  

82  

7 

 

64  

47  

14  

 

 

 0.437 

 

 

 

 

 

0.797 

 

 

 

0.128 

 

 0.159 

 

 

 

 

 

0.823 

 

 

 

0.269 

 

0.75 (0.51-1.11) 

 

 

 

 

 

0.95 (0.61-1.46) 

 

 

 

0.76 (0.51-1.23) 

a 
P-value for HWE calculated in control group and compared with CEU population 

b 
P-value derived from using Fisher's Exact test analysed between wild type individuals 

and combined heterozygous+homozygous mutant individuals in 2 x 2 tables. 

c
 3 missing values in control group 

ND, not determined 
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3. Association between patient sex, rs4149056 SNP and SRM (adjusted for patient 

age, sex, BMI and other 11 genotypes) according to binary logistic regression 

analysis. 

 

Depende

nt 

variable  

Contr

ols 

Cases  Explanatory 

variables  

P-

value
# 

 

OR 95% CI for Odds 

Ratio¶ 

Lower  Upper  

Statin-

related  

muscle 

toxicity 

482*  125 Patient sex 

SLCO1B1 (rs4149056) 

MRP2 (rs717620 )  

BCRP1 (rs2231142)  

CYP3A4*22 

(rs35599367) 

COQ2 (rs4693075) 

GATM (rs9806699) 

GPx4 (rs703041) 

MCT1 (rs1049434) 

MCT1 (rs3849174) 

MCT1(rs4301628) 

MCT4 (rs7503429) 

MCT4 (rs12453290) 

0.006  

0.014 

0.800 

0.228 

  

0.884 

0.837  

0.747  

0.733 

0.456 

0.121 

0.406 

0.990 

0.310  

  

1.72  

1.66 

0.96  

0.74  

 

 0.98  

0.98  

1.03  

1.09  

0.83  

1.29  

0.80  

0.95  

0.81  

1.15  

1.08  

0.64 

0.44 

 

0.52 

0.65  

0.68  

0.69 

0.49 

0.78 

0.49 

0.61 

0.54  

 

2.59  

2.54 

1.49 

1.25 

 

1.86 

1.48  

1.54  

1.70 

1.44 

2.04 

1.33 

1.51 

1.22  

 

* Genotypes from 5 individuals were not included in the analysis. 

# 
P-value for comparison of genotypes frequencies possession of one or two variant alleles 

between cases vs controls (reference) using multiple linear regression; Hosmer and 

Lemeshow goodness-of-fit test was used as an indicator of the validity at the last step of 

iterations 

¶ Odds ratio describes the odds to have at least one variant allele in the cases relative to 

the controls. 
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4. The resultant OR relative to male wild type (TT genotypes) among rs4149056 

genotypes 

 

Category OR  95 % CI P-value 

Male TC/CC genotypes   

Female TT genotypes 

Female TC/CC genotypes   

2.43 

2.25 

2.93 

1.3140, 4.4843 

1.3550, 3.7212 

1.5847, 5.4279 

0.0046 

0.0017 

0.0006 

 

 

5. Stratified analyses for the effect of patient sex and BMI according to the 

rs4149056 genotypes 

 

Parameter  Study cohort             Frequency of rs4149056 genotypes P-value 

    Wild type, n C allele carriers, n   

BMI Controls                      

123 (mean logged BMI= 

3.382) 0.02 

 

Cases 

 

47 (mean logged BMI= 3.320) 

 

     BMI Controls 354 (mean logged BMI=3.358) 

 

0.13 

 

Cases 78 (mean logged BMI= 3.391) 

  

     

     Sex Controls 

 

66 (Male) 0.581 

   

57 (Female) 

 

     

 

Cases 

 

23 (Male) 

 

   

24 (Female) 

 

     Sex Controls  202 (Male) 

 

0.001 

  

152 (Female) 

  

     

 

Cases 29 (Male) 

  

  

49 (Female) 
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