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Abstract 

The aim of joint arthroplasty is to reduce pain and improve the range of motion and 

functionality in joints affected by diseases such as osteoarthritis and rheumatoid 

arthritis.  Data recorded in National Joint Registries offers the clinical perspective in 

relation to prosthesis failures; however, this does not explain why a prosthesis has 

failed.   

Surgeons performing revision surgery for different implants often report similar 

findings, despite designs of prostheses and the natural joints having numerous 

differences, including anatomy, loading and range of movement.  The underlying 

factor in the majority of cases of implant failure is complications arising as a result of 

wear debris.  

To understand the failures of artificial joints, a series of studies were performed 

examining hip prostheses in pre-clinical and post-clinical scenarios and finger 

prostheses in a post-clinical scenario.  The pre-clinical studies focussed on areas 

including: the effect of acetabular shell deformation; and validating a method to 

measure volumetric wear from femoral stem trunnions.  The deformation studies 

included an investigation of how bone strength influenced deformation.  The post-

clinical studies involved analysing retrieved finger and hip prostheses, to quantify the 

damage surfaces had sustained in vivo.  Analysis of the finger prostheses involved 

the use of a non-contacting surface profilometer, to determine the surface roughness, 

whilst for the hip prostheses a coordinate measuring machine was used to quantify 

the volumetric wear.  

The deformation studies found that the maximum deformation was 340 µm, which 

could be sufficient to disrupt the assembly process of modular acetabular 

components.  The strength of the bone was not found to correlate with the size of the 

deformation.  The validation study found that the coordinate measuring machine was 

able to measure trunnions with a maximum error of 0.13 mm³ compared with 

gravimetric measurements.  The ex vivo cohort of trunnions had a median wear 

volume of 0.14 mm³ (range 0.04 – 0.28 mm³).   

The first finger study analysed coated, metal-on-metal prostheses finding that 

prostheses had suffered extensive wear on the articulating surfaces.  This was 

hypothesised to be due to the failure of the coating interface, resulting in a hard 
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“grinding paste” that wore the articulating surfaces. The second finger study 

examined a cohort of explanted pyrolytic carbon prostheses.  Even after use in vivo 

the roughness average (Ra) for the articulating surfaces was below the 50 nm 

specified by British Standards as the maximum Ra for orthopaedic implants 

manufactured from metal or ceramic.  
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Table 1: Revision rates and the top three reasons for revision for joint arthroplasties 

as listed in the 2014 NJR Report 

Figure 1: Photos of the two piece LPM PIP prosthesis taken intra-operatively during 

implantation 

Figure 2: Photo of the PIP joint following revision surgery. Note the blackened 

staining of the surrounding soft tissue indicative of metallic wear debris 
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Table 2: Details of studies that have examined the clinical performance of pyrolytic 

carbon prostheses. Note that OA refers to osteoarthritis and RA refers to rheumatoid 

arthritis 

Figure 3: Diagram showing the anatomy of the hip joint and the typical surface 

damage caused by OA to the articular cartilage 

Figure 4: Photo of the Zimmer MoM Durom THR prosthesis (top left) and the Durom 

hip resurfacing prosthesis (bottom right).  Note that both prostheses utilise the same 

design of acetabular component 

Figure 5: Single piece silicone PIP prostheses: A) Wright Medical Technology 

Swanson prosthesis B) DePuy NeuFlex prosthesis 

Figure 6: Two piece PIP prostheses: A) Ascension Pyrocarbon prosthesis B) 

MatOrtho PIP MoP replacement prosthesis 

Figure 7: An intraoperative photo of a MoM hip revision procedure showing a 

pseudotumour and effusion 
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Chapter 1. Introduction 

1.1. Joint Replacement  

The aim of joint arthroplasty is to reduce pain and improve mobility in damaged 

joints, when other less invasive treatments have failed to improve the patients’ 

symptoms.  Whilst the vast majority of joint replacement prostheses are well 

functioning, a small proportion do require revision arthroplasty to replace the 

prostheses 1.  To document the performance of arthroplasty procedures the National 

Joint Registry (NJR) was established in 2003.  Initially the NJR only documented 

procedures performed in England and Wales; however from 2013 procedures from 

Northern Ireland were also included.  In 2013 170,935 procedures were documented 

in the NJR of which 16,145 were revisions1.  This represented an overall total 

revision burden of 9.44 % (Table 1), with knee arthroplasty having the lowest revision 

burden per joint at 6.7 % 1.  
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Joint Total 

number of 

operations 

Number 

of 

revisions  

Revision 

burden 

(%) 

Clinical reasons for revision (%) 

Hip 80,194 9,751 12.2 Aseptic loosening (38) 

Pain (22) 

Adverse soft tissue reaction (14) 

Knee  85,920 5,783 6.7 Aseptic loosening (32) 

Infection (23) 

Instability (15) 

Ankle  532 73 13.7 Aseptic loosening (47) 

Undiagnosed pain (41) 

Suspected infection (26) 

Elbow 395 113 28.6 Aseptic loosening (56) 

Infection (21) 

Instability (19) 

Shoulder 3,894 425 10.9 Conversion from hemi to total 

arthroplasty (31) 

Cuff insufficiency (26) 

Other (23) 

Total 170,935 16,145 9.44  

 

Table 3: Revision rates and the top three reasons for revision for joint arthroplasties 

as listed in the 2014 NJR Report 

Interestingly hip arthroplasty, regarded by Learmonth et al. as an extremely 

successful procedure 2, had a higher revision rate than that of knees at 12.2 % for a 

similar number of primary operations 1.  Both cohorts had comparable mean average 

ages at primary surgery: 68.78 years (stdev 11.43) for hips and 69.28 years (stdev 

9.64) for knees 1, therefore the difference is unlikely to be linked with age.  Both 

cohorts also had a comparable patient physical status grading 1.  

The main reason for revision for both hips and knees was aseptic loosening 1, 

accounting for 38% of revisions in hips and 32% in knees 1.  This equated to 3705 hip 

revisions and 1851 knee revisions, or a 2:1 ratio 1.  One important difference is that in 

2013, 14% (1365 procedures) of hip revisions were performed for adverse soft tissue 
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reactions 1.  Both aseptic loosening and adverse soft tissue reactions are associated 

with wear, giving a combined total of 5070 wear related hip revisions.  This is close to 

the number of knee prostheses revised (5783) for any reason in 2013 1.   

It is therefore likely that the difference in performance between hips and knees is 

linked to the wear performance of the prostheses.  For hips there are a number of 

poorly performing prostheses such as metal-on-metal (MoM) based articulations, 

which have higher than average revision rates 1.  An example of this is the DePuy 

Articular Surface Replacement (ASR) (DePuy Synthes, Warsaw, IN, USA), which had 

a cumulative percentage probability of revision at 10 years of 30.36% 1.  

The highest revision rates recorded by the NJR were for elbow and ankle implants 1.  

In all revision arthroplasties except shoulders, aseptic loosening was noted to be in 

the top three reasons for revision arthroplasty (Table 1).  For shoulders it was the 

fourth highest cause, listed in 14% of revisions 1. 

The NJR has proved a valuable tool in helping to identify trends in prosthesis 

performance. By providing relatively “real time” data, surgeons are able to identify 

particular types of prostheses that are performing below the minimum acceptable 

threshold, which for hips is a revision rate no greater than 5% at 10 years 3.  For 

example the Australian National Joint Registry identified issues with the ASR 

approximately 3 years before it was removed by DePuy from the market 4.   

Whilst the NJR is a valuable database there are still improvements that could be 

made.  One of its drawbacks is that no data is collected on prostheses from joints 

such as the wrist, fingers or toes 1.  This is likely due to the small number of 

procedures performed in comparison to the other joints listed in the registry.  One 

registry which has recorded data on such joints is the Norwegian Arthroplasty 

Registry, however it last published an annual report in 2010 5.  To contextualise the 

difference in joint numbers, in that year a total of 8224 hip procedures were 

documented compared to just 102 metacarpophalangeal joint arthroplasty 

procedures 5.  A useful expansion for the NJR would be to include arthroplasty 

procedures from all joints. 

Failed implants cause not only suffering to the patients, but also have substantial 

cost implications.  This is particularly significant at a time when there is considerable 

pressure to reduce expenditure.  The total cost of revision procedures has 
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dramatically increased within the last decade.  With regards to hip replacements, in 

2003 there were 2325 (9.3 % of procedures) hip revision procedures, whilst in 2013 

that number had increased to 9751 (12.2 % of procedures).  In 2012 Vanhegan et al. 

noted that for hips, revision costs can vary substantially depending on the reasons for 

revision 6.  The study reported a mean cost for an aseptic revision of £11,897 and a 

mean cost for peri-prosthetic fracture of £18,185 6.  An additional consideration is that 

these increasing numbers of revision procedures are being performed due to poorly 

performing prostheses, such as MoM THR and hip resurfacings which are becoming 

more difficult to treat 1.  MoM prostheses in particular are associated with adverse 

reactions to metallic debris which can result in substantial tissue destruction 7.   

If the number of revisions continues to rise then it could reach a point where it is no 

longer sustainable given the current economic climate.  It is therefore imperative to 

learn from and prevent failures by examining how prostheses function, as any 

improvement in their performance could have dramatic and positive implications. 

1.2. The role of engineering analysis  

Whilst National Joint Registries offer the clinical perspective in relation to prosthesis 

failures, this does not explain why a prosthesis has failed.  By examining retrieved 

prostheses using engineering analysis it is possible to understand how and why 

failure has occurred.  Typically, such analysis would include quantifying the 

volumetric wear, however in situations where this is not possible the surface 

roughness is examined, as it has previously been associated with wear 8 9.  In 

particular the parameter roughness average (Ra) was found to correlate with wear 9.  

Such ex vivo analysis has proved effective for a variety of different prostheses 

including: Charnley 8 10, ASR 11, MoM hip tapers 12, silicone fingers 13 14 and ankles 

15.   

Explant analysis is not a new concept with numerous studies identifying issues 

surrounding prostheses.  For example in the 1990s there were various publications 

examining explanted metal-on-polyethylene (MoP) prostheses with the aim of 

determining links between polyethylene wear and variables such as friction, surface 

roughness and head diameter 8 10 16 17.   
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In 1998 Elfick et al. investigated the correlation between the femoral head radius and 

patient parameters 17.  The study measured the volumetric wear rates using a 

shadowgraph technique and Kabo formula, in addition to calculating the clinical wear 

factor using a linear regression analysis.  The principal finding was the detrimental 

effect of a larger femoral head, which was reported to increase volumetric wear rate 

17.  The advantage of the clinical wear factor was that it enabled a comparison 

between the wear performance of a prosthesis despite the difference in patient 

activity levels 17.  A prosthesis should therefore have the same clinical wear factor 

regardless of being implanted in an active or sedentary patient 17.  

Langton et al. examined ex vivo ASR MoM hip prostheses using a coordinate 

measuring machine (CMM) to determine the wear volume and location of the worn 

region. The rationale was to determine why this prosthesis had a higher failure rate 

than other MoM prostheses 1 7 18.  The research identified that the key reason was 

that the ASR acetabular cup had a relatively small arc of cover (the subtended angle 

to the articular surface) of between 144° and 160° depending on the diameter of the 

acetabular cup 19.  This made the ASR particularly prone to “edge loading” where the 

contact patch of the femoral head extends over the rim of the acetabular cup, 

resulting in accelerated wear rates 20 21.  Due to this shallow arc of cover the ASR 

was particularly vulnerable to suboptimal positioning.  Optimal positioning was 

defined by Langton et al. as inclination 40° and 50° and anteversion of 10° to 20° 7.   

The studies by Langton et al. examined a large number of variables to determine the 

failure mode of the ASR.  In addition to providing wear volumes, Lord et al. later 

provided a full engineering validation of the CMM wear volume methodology 22.  

However one minor drawback is that the studies by Langton et al. examined ASR 

prostheses predominantly from one hospital, potentially leading to biased results 18 23 

11.  The ASR was available as both a MoM total hip replacement (THR) and a hip 

resurfacing with both prostheses utilising the same acetabular component.   

Whilst joint registries identified higher than expected revision rates with the ASR, 

engineering analysis showed that the failure mechanism was linked to a specific 

design feature, namely the shallow arc of cover.  In 2010 the ASR was removed from 

the market after being implanted into an estimated 93,000 patients worldwide 24 25.  

The ASR has subsequently been described as “one of the biggest disasters in 

orthopaedic history” 26.   
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Following the work on the ASR Langton et al. investigated why MoM THR prostheses 

had higher revision rates compared with their resurfacing counterparts.  In 2012 the 

results of a study examining two different prostheses, the ASR and the Pinnacle, 

both manufactured by DePuy, were published 12.  Again a CMM was utilised to 

quantify the wear volume.  The conclusion of the study was that the female taper 

surface of the femoral head of the THR was responsible for the increased revision 

rate of THR prostheses 12.  Large femoral head diameters, varus stems and lateral 

engagement of the trunnion with the taper were noted as potential contributing 

factors to taper failure 12.  The term trunnion refers to the tapered cone at the top of 

the femoral stem, which was designed to connect with the taper on the femoral head.  

This study had several strengths.  Firstly it was the largest cohort of prostheses to 

undergo taper volumetric wear analysis reported in the literature (n=126).  Secondly 

the CMM directly measured the taper surface, rather than taking a cast and 

measuring this surface, as is required in optical systems, such as the Redlux 27.  

Thirdly it quantified the volumetric wear rather than scoring the surfaces visually 

using semi-quantitative fretting and corrosion systems, such as that developed by 

Goldberg et al, as has previously been reported for taper analysis 28 29 30 27 31 32 33 34 

35.  An added benefit over such scoring systems is that the CMM does not suffer from 

inter and intra user variability.  It is however, important to note that Langton et al. only 

examined two types of MoM hip replacements 12.  

Explant analysis has also been utilised for prostheses from other joints.  In 2003 

Joyce reported on a cohort of 12 silicone based metacarpophalangeal (MCP) 

prostheses noting that 10 of these had completely fractured at the junction of the 

distal stem and the hinge of the prosthesis 36.  The study concluded that the fractures 

were due to the subluxing forces experienced in rheumatoid MCP joints.  To reduce 

the risk of such fractures occurring the design of the Swanson, another silicone 

based finger prosthesis, was altered incorporating metal grommets to reduce the risk 

of fracture at the junction.  In 2014 Kanzaki et al. examined the clinical outcome of 

silicone Swanson metatarsophalangeal joint prostheses with and without grommets 

37.  The study noted that the use of titanium grommets appeared to protect the 

implant and improve the clinical outcome 37.   

Engineering analysis can of course be, and is also used in, a preclinical context to 

examine a range of different parameters.  An example of this is using a hip simulator 
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to simulate the wear performance of a prosthesis across millions of cycles.  When 

using a simulator it is important to understand what exactly is being simulated.  In 

2010 Kamali et al. offered an explanation as to why hip simulators were reporting 

lower wear rates than for ex vivo MoM hip prostheses 38.  The authors noted that hip 

simulators repeatedly perform identical loading patterns to many cycles, however in 

vivo the loading and movement is more extensive, creating a less favourable 

lubrication regime than that achieved in a simulator 38.  In an effort to more closely 

simulate in vivo performance for MoM, the authors proposed a loading and motion 

cycle to mimic typical daily activities such as climbing stairs 38.  

One method of determining the wear performance of a prosthesis is using wear 

simulators in pre-clinical testing.  As wear has been reported to be one of the largest 

limiting factors in the longevity of implants 39, it is important to fully wear test 

prostheses prior to clinical use.  Such simulator tests should include testing at 

suboptimal positions to determine worst case scenarios, as this has been shown to 

be key in the performance of implants such as the ASR hip 40.  This can reduce 

patient risk by identifying prostheses with high wear rates before they are implanted.   

There are however several major limitations associated with simulators. Firstly does 

the simulator fully recreate the natural biomechanics of the intended joint?  This is an 

important consideration as the wear rate may not be accurate if the simulation is not 

indicative of the natural biomechanics.   

Another limitation is the length of time required to perform a clinically relevant 

simulation.  To run a simulation to 500,000 cycles can take approximately a week 

depending on the frequency.  This includes the time to take measurements.  

Therefore to run a simulation to 10 million cycles would involve the simulator 

operating for a period of several months, this time is however much shorter than 

running a clinical trial.  This is therefore a significant advantage over clinical trials. It 

should be noted that there is debate surrounding how many cycles actually equates 

to a year in vivo service, as patient activity levels can vary greatly.  Generally one 

million cycles has been accepted to represent one year in vivo 41, however for more 

active patients three to five million cycles may be a more accurate reflection 42.   

In addition to the period required to run the experiments, each of these simulators 

can only test a limited number of prostheses at any one time.  An example of this is 

the HUT 4 simulator, used by Saikko et al. which is capable of testing 12 prostheses 
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at any one time 43.  This is however deemed to be large capacity, as most simulators 

are only capable of testing a maximum of six prostheses simultaneously.   

It is also important to mention that there are numerous challenges associated with 

running a simulator.  The first is that an appropriate quantity of lubricant must be 

used throughout the test. Without this the prosthesis may not be properly lubricated 

resulting in it running dry, potentially leading to increased wear.  The operator should 

regularly check the lubricant level and refill with deionised water as necessary 44.  In 

addition the lubricant should be completely replaced every 5 x 105 cycles 44. 

Another challenge is that the components must be set up correctly.  In addition to 

obtaining the correct inclination and anteversion, the centres of the axes of rotation 

for the head and cup of the hip prosthesis must be aligned 44.  This is an important 

factor for initial tests as it allows comparison between other prostheses tested at the 

same orientation.  Following this, further testing can then be performed to determine 

how the prostheses perform with different set ups, including suboptimal positioning 

which has been associated with higher wear rates 45 46 47 48. 

In an ideal situation wear would be quantified in vivo, enabling a clinician to 

determine if a prosthesis is wearing at a higher rate than expected.  At present this 

methodology is suitable only for polyethylene cups where the penetration depth is 

sufficient that it can be measured on X-ray.  An example of this is a programme 

named PolyWare (Draftware Inc, Ashland Cove Road, IN, USA) which has been 

utilised extensively in research to calculate wear from a range of different MoP THR 

prostheses49 50 51 52 53 54 55.  Alternatively wear can be quantified in vivo by using 

computer tomography (CT) to calculate the change in thickness of polyethylene cups 

56.  The software quantifies the depth of wear, rather than the wear volume, therefore 

does not offer the same level of precision as the PolyWare system.   

1.3. Other methods of quantifying joint performance 

Whilst in vivo volumetric wear analysis is not currently available for MoM prostheses 

there is another way of determining the in vivo wear performance.  When MoM 

prostheses wear, metal ions are released into the joint and eventually into the blood 

stream.  Studies have noted that analysing blood metal ions is an effective method of 

identifying how a metal prosthesis is performing in vivo 57 19 58.  This advice is also 

offered by the NHS 59; however there is still debate over the specific concentration of 
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metal ions at which a hip prosthesis is judged to be wearing abnormally.  According 

to a Medical Device Alert issued by the Medicines and Healthcare Products 

Regulatory Agency (MRHA), if the blood metal ions are higher than 7 µg/L, equating 

to 119 nmol/L of cobalt or 134.5 nmol/L of chromium, then it is recommended that 

further investigations be undertaken 60.  However if there are other indicators of poor 

performance then prostheses could be revised below this value.  In contrast, in 2013 

the US Food and Drug Administration noted that there is not enough evidence to 

provide a threshold value of metal ions that would trigger revision surgery 61.   

One of the most important factors to consider is patient satisfaction.  Since 2009 all 

providers of NHS funded care have collected Patient Reported Outcome Measures 

(PROMs), which assess the quality of care from a patient perspective 62.  The aim 

was to provide some quantification on how satisfied patients were with the outcome 

of four different procedures including hip and knee replacements 62.  A similar 

method of performing such an assessment would be the Oxford Hip Score (OHS) or 

the Oxford Knee Score 63.  Patients are graded on 12 different questions which 

examine pain and the ability to perform tasks 63.  There are other methods such as 

the University of California Los Angeles (UCLA) activity scale that can also be used 

to quantify patient physical activity levels 64.  

As described engineering analysis is useful in both a pre and post clinical context.  

By combining clinical data with engineering analysis a more detailed understanding 

can be developed with regards to prosthesis performance.     

1.4. Aims and Objectives 

The overall aim of the PhD was to examine different problems associated with 

orthopaedic prostheses using engineering analysis.  These problems were separated 

into four distinctive projects:   

Investigation of acetabular shell deformation  

Aims:  

 Can acetabular cup deformation be accurately measured in cadavers? 

 What is the size and nature of the deformation? 

 Is there a relationship between bone quality and deformation? 
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Objectives: 

 Conduct a pilot study to test the suitability of the optical measurement system 

to measure acetabular cup deformation in cadavers 

 Validate the system against a CMM 

 Take bone samples from cadavers and quantify the mechanical properties, 

comparing results to the size of the deformation 

Validating a method of calculating volumetric wear from femoral stem trunnions 

Aim:  

 Validate a method of calculating volumetric wear from the tapered cone atop 

the femoral stem (known as the trunnion) using a CMM 

Objectives: 

 Artificially induce wear in increasing amounts, on three different types of 

trunnions and measure wear volume with both a CMM and gravimetrically 

 Examine an ex vivo cohort of trunnions using this methodology to provide a 

clinical context 

Examination of the surface finish of the Exeter Trauma Stem (ETS) 

Aim:  

 Compare the surfaces of three types of cemented Exeter femoral stems  

Objectives: 

 Use a ZYGO interferometer to measure the surface roughness of each of the 

three types of stem 

 Compare the results and perform statistical analysis  

Examination of the articulating surfaces of retrieved finger prostheses 

Aim:  

 Determine the failure mode of two cohorts of ex vivo finger prostheses  

Objectives: 
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 Quantify the surface roughness of both cohorts of prostheses using a ZYGO 

interferometer and compare the results to the British standards for new 

orthopaedic prostheses 

 Measure the Leuwen Poeschmann Metal (LPM) prostheses’ surface chemical 

composition using an environmental scanning electron microscopic (ESEM) 
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Chapter 2. Analysis of Published Work 

The papers listed below examine a variety of orthopaedic problems in both pre-

clinical and post clinical settings, using a range of engineering techniques.   

Bone MC, Dold P, Flohr M, Preuss R, Joyce TJ, Deehan D and Holland J. A novel 

method for measuring acetabular cup deformation in cadavers. Proc IMechE Part H 

2013;227(12):1341-1344 

Dold P, Bone MC, Flohr M, Preuss R, Joyce TJ, Deehan D and Holland J. Validation 

of an optical system to measure acetabular shell deformation in cadavers. Proc 

IMechE Part H 2014;228(8):781-786 

Bone MC, Dold P, Flohr M, Preuss R, Joyce TJ, Aspden RM, Deehan D and Holland 

J. The influence of the strength of bone on the deformation of acetabular shells. A 

laboratory experiment in cadavers. Bone Joint J 2015;97(4):473-477 

Bone MC, Sidaginamale RP, Lord JK, Scholes SC, Joyce TJ, Nargol AV, Langton 

DJ.  Determining material loss from the femoral stem trunnion in hip arthroplasty 

using a coordinate measuring machine. Proc IMechE Part H 2015;229(1):69-76  

Petheram TG, Bone M, Joyce TJ, Serrano-Pedraza I, Reed MR, Partington PF.  

Surface finish of the Exeter Trauma Stem: A cause for concern? Bone Joint J 

2013;95-B(2):173-176 

Bone MC, Giddins G and Joyce TJ. An analysis of explanted pyrolytic carbon 

prostheses. J Hand Surg Eur 2014;39:666-667 

Bone MC, Cunningham JL, Lord J, Giddins G, Field J and Joyce TJ. Analysis of 

failed Van Straten LPM proximal interphalangeal prostheses. J Hand Surg Eur 

2013;38(3):313-320  

2.1. A novel method for measuring acetabular cup deformation in cadavers 

Deformation has been reported as a potential risk factor for ceramic liner fracture in 

multi component acetabular systems 65.  Therefore the rationale was to perform a 

pilot study to investigate whether an optical system is capable of measuring 

acetabular shell deformation in cadavers.  
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The objective of the pilot study was to test the suitability of the ATOS optical system 

and identify key technical challenges.  This was done by implanting six custom 

designed uncemented titanium acetabular shells into cadavers and measuring the 

deformation.  Each shell was measured prior and post implantation using the ATOS 

optical system 66, with the results compared to determine the total amount of 

deformation the shells experienced.   

There are two methods of achieving fixation for the acetabular component: cemented 

and uncemented 1.  For cemented acetabular shells the cement provides fixation, 

however for uncemented acetabular shells the initial stability is provided by under-

reaming the acetabulum 67 68.  This provides a press fit fixation to hold the shell in 

place until bone in-growth has occurred.  One of the driving forces behind using 

uncemented components was to avoid problems arising from the use of cement, 

which has reportedly resulted in loosening 69 70.  This may have been due to the 

cementing technique rather than the cement itself 69 70.   

Despite any perceived advantage, there are concerns that the forces required to 

achieve a press fit fixation may inadvertently deform the acetabular shell 67.  This in 

isolation is not necessarily an issue, however it has been reported that deformation of 

the shell may result in malpositioning of ceramic liners 65.  This can cause the 

ceramic to fracture, resulting in the patient requiring revision surgery 71.  These 

fractures are complex to treat as the debris from the ceramic liner needs to be 

completely removed.  Failure to do so has been reported to result in an “abrasive 

paste” potentially compromising the newly revised bearing surfaces 65 72.  Ceramic 

liners are potentially susceptible to fracture, compared with metal or polyethylene, as 

the ceramic suffers from intrinsic brittleness 65.   

There have been numerous studies examining deformation of acetabular 

components 67 73 74 75 76 77 78.  However, despite the number of studies there still 

appears to be little agreement between measurement methodologies and study 

designs, with numerous options reported.  For the measurement methodologies the 

list includes: optical measurement systems 77, telescopic gauges 67, Vernier callipers 

67 and CMM 73.  The study designs have included: impaction tests using polyurethane 

foam 73, finite element analysis 74, two point mechanical loading 67 and cadaveric 

studies 67 73.  
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In 2005 Jin et al. published a study consisting of two stages, testing three different 

types of CoCr alloy acetabular cups, including the DePuy ASR hip resurfacing 73.  

The first stage involved removing pelvises from cadavers, implanting acetabular cups 

and measuring the deformation.  Whilst cadavers can recreate the conditions in vivo 

there are problems with the variability of cadaveric bone.  A CMM was then utilised to 

quantify the deformation of the acetabular cup.  The second stage involved 

implanting acetabular cups into polyurethane foam models of varying design, with the 

deformation measured via the same CMM method 73.   

For the cadaveric measurements the cohort was small, with only seven acetabular 

cups implanted, however this was due to the limited supply of cadavers.  A mean 

deformation of 64 µm (range 25 to 103 µm) was recorded, while for the cups 

implanted into the polyurethane foam models, the mean deformation was 

comparable at 70 µm (range 16 to 123 µm) 73.  Of the three types of polyurethane 

blocks only the two point loading model provided a suitable representation of the 

asymmetric deformation noted for the cadaveric measurements 73.  This result is 

advantageous as it enables researchers to recreate the loading conditions without 

the need for cadavers.  Another consideration is that the blocks are available in 

different grades each simulating a different values of bone strengths.  The term 

strength refers to compressive, tensile and shear strength.   

In 2006 Squire et al reported on a cohort of DePuy Pinnacle acetabular components 

implanted into eight men and 13 women, with the deformation measured using a 

customised telescopic gauge and Vernier callipers 67.  All surgical procedures were 

performed by a single surgeon, thus removing any potential for inter surgeon 

variability.  As the study examined live patients it was necessary to customise the 

telescopic gauge to fit into the surgical wound and allow it to be washed and 

sterilised between procedures 67.  Live patients will typically have healthier bone than 

cadavers; however any testing must fit within the confines of the operation without 

compromising the patient.  As the experimentation focussed on live patients, this also 

precluded the use of other types of measuring equipment, such as a CMM, again due 

to issues with access and sterilisation.  To the candidates’ best knowledge this is the 

only paper to report in vivo deformation data 67.  

Squire et al. reported a mean deformation value of 160 µm (range 0 to 570 µm) 67.  In 

addition the study also noted a mean force of 414 N (0 to 1539 N) acting on the 
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acetabular shell as a result of the bone 67.   The mean deformation was in excess of 

that reported by other cadaveric studies 73 77.  This is despite Squire et al. noting that 

as the measurements were taken in the slots of the shells, maximum deformation 

may not have been measured 67.  The major limitation with the study is that Vernier 

callipers do not offer the same precision as a CMM or an optical system.  Another 

limitation noted by the authors was that the sample size was small (n=21) 67.  

However, the cohort was larger in size than those reported for cadaveric deformation 

studies such as that by Jin et al (n= 7) and Liu et al. (n=6) 73 77.   

In 2012 Liu et al. reported on a single surgeon study where six Durom monoblock 

acetabular cups were implanted into the pelvises of three cadavers 77.  A mean 

deformation value of 42 µm (range 31 to 49 µm) was recorded 77.  This was 

comparable to the results published by Jin et al., however the mean deformation 

reported by Squire et al. (160 µm), were substantially higher 73 67.  This study 

involved a relatively small cohort; however measurements were carried out at three 

different time points to determine if the deformation was elastic or plastic.  Firstly at 

implantation, then at 24 hours, after which time the cups were removed from the 

acetabulum and then finally at seven days post implantation 77.  It would have been 

beneficial for the acetabular cups to be kept in the pelvises throughout the 

measurements to determine how this affected the deformation.  Another 

consideration is that it is unclear how the retrieval process affected the results, 

although this is somewhat addressed by the authors, who reported no statistical 

difference between the three measurements over the seven days 77.  

Liu et al. performed the deformation measurements using an optical system with 

white and black paint applied to the articulating surface to enable the acetabular cup 

to be detected 77.  The authors did not quantify the thickness of the paint layer; 

however as its function was to provide a difference in contrast; it is unlikely to have 

affected the results.  Without this coating it would not have been possible to perform 

the measurements 77.  

The last important limitation was that frozen pelvises were used for the study 77.  

Although they were defrosted for 12 hours before use, the authors noted that the 

freezing process decreased the mechanical properties; however this was not 

quantified 77.  Therefore the values presented may be an underestimate of the 

deformation 77.  
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Liu et al. demonstrated that an optical system can measure deformation in pelvises 

removed from cadavers 77.  Therefore the methodology proposed by the candidate 

for the pilot study was to use an optical system.  This was a distinct advantage as 

previous cadaveric studies in this area had been hampered by poor suitability of 

standard measuring equipment to the cadaveric environment 73 77.  The second 

advantage is that the optical system provided a full three dimensional image of the 

shell illustrating how the entire shell had deformed in vitro.  

For the six shells, deformation values of between 30 and 150 µm were recorded with 

three values over 100 µm recorded.  Two measurements were unavailable, one due 

to an incomplete scan, the other due to corruption as a result of fluid damaging the 

coating.  The deformation values were comparable to those noted in other studies 

such as Jin et al. (range 25 to 103 µm), Squire et al. (range 0 to 570 µm) and Liu et 

al. (range 31 to 49 µm) 67 73 77.  The deformation was also noted to be asymmetric in 

nature approximately corresponding with the ischium and ilium bones of the pelvis, 

again corresponding to the finding of Jin et al. 73. 

The pilot study demonstrated the suitability of the optical system to the cadaver lab; 

however there were some considerations regarding the methodology.  The use of 

cadavers involves several advantages and disadvantages.  The main advantage is 

that it allows the surgeon to recreate the conditions of primary surgery.  Other models 

aiming to recreate the pelvis such as polyurethane blocks, may oversimplify its 

anatomy.  Whilst these blocks are available with various elastic moduli representing 

different bone strengths, they do not replicate the viscoelastic properties of cortical 

and cancellous bone 73.  With regards to the blocks the term strength refers to 

compressive, tensile and shear strength.  This is an important consideration for 

deformation work due to the effect of viscoelastic relaxation, which Jin et al. noted 

may reduce the size of the deformation and stresses over time 73.  Without some 

relaxation it is difficult to seat the shell correctly, with multiple attempts required to 

achieve satisfactory fixation 73.   

However there are drawbacks to using cadavers.  Firstly they are donated to medical 

science 79, predominantly by the elderly, leading to an inherently skewed data set.  

One study examined the distribution of donors noting that the most likely were 

elderly, educated and married white males 80.  This is not necessarily a significant 

drawback as the average age of a hip replacement patient is 69 years old 1.   
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Another consideration is the quality of cadaveric bone.  This is the main difference 

between cadavers and living patients, as the freezing process has been noted to 

reduce the mechanical properties of the bone 77.  In this regard cadavers may not be 

fully representative of living patients who may have harder and healthier bone that 

may result in larger deformation of acetabular components.  Ideally the bone quality 

should have been assessed prior to the procedure; however this could only be done 

during the operation, in much the same manner as with a living patient.   

The study used an optical measurement system similar to that used by Liu et al. 77.  

To utilise an optical system a thin layer is needed on the internal surface to provide 

contrast 77.  In the candidate’s study a thin layer (1 µm thick) of titanium oxide was 

sprayed onto the surface with black and white markers placed around the rim of the 

shell.  The markers used in the candidate’s study allowed the pre and post 

acetabular shell scans to be aligned correctly during the post measurement analysis.  

Without these markers a comparison would not have been possible and the 

deformation could not have been calculated.  This was slightly different to Liu et al. 

where white paint was applied to the surface as a base layer with black markers 

sprayed over the top 77.  The surface coatings were not designed to be functional and 

due to the thickness, were unlikely to alter the mechanical properties of the shell or 

influence the deformation results.   

One of the technical complications encountered was fluid collecting in the cup.  The 

ATOS is an interferometry based system; any fluid collection could therefore 

compromise the scan.  Surgical swabs and absorbent pads were placed into the 

incision surrounding the acetabulum to collect as much of the fluid from the soft 

tissue as possible.  Care was taken to ensure that the swabs didn’t obstruct the 

visual access for the ATOS, nor come into contact with the acetabular shell.   

The final potential limitation to consider was the sample size.  As this was a pilot 

study the aim was to determine if the methodology was suitable for further testing, 

rather than producing statistically significant results.  A small sample size (n = 6) was 

therefore not considered to be a substantial drawback.  

Following the successful completion of the pilot study, the next stage was to validate 

the ATOS and quantify its accuracy.  A larger cohort could then be implanted and 

different variables including bone quality examined, to determine the effect upon the 

size of deformation.  
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2.2. Validation of an optical system to measure acetabular shell deformation 

in cadavers 

After the pilot study had demonstrated the ATOS’ suitability in a cadaveric 

environment 66, it was necessary to validate the system and determine its accuracy.  

Whilst Liu et al. offered deformation values for cadaveric measurements using an 

optical system, to the candidate’s best knowledge there has been no reported 

validation of such a system for this application 77.  

The validation compared the ATOS optical system against a CMM to determine the 

accuracy when measuring acetabular component deformation.  The specification set 

by the candidate stated that in order to be suitable, the accuracy of the optical 

measurement system should be within 10 µm of the CMM.  The objective was 

therefore to determine if this was the case, by compressing a cohort of acetabular 

shells and measuring deformation using both systems.  

To the author’s best knowledge there is only one paper to offer any measurement 

data using an optical system, however it only included measurements from six Durom 

metal acetabular cups 77.  The lack of studies using an optical system may be due to 

the samples requiring preparation, in order to use such a system.  As demonstrated 

by Bone et al. and Liu et al. the surfaces of metal acetabular cups required a thin 

layer of titanium oxide 66 or paint 77, in order to perform a measurement 66 77.  Due to 

the surface finishes and reflectivity it is likely that polyethylene and ceramic would 

also require such preparation.  This is not required for other measurement 

procedures such as a CMM, therefore reducing the appeal of an optical system.  

In 2011 Hothan et al. published the results of a deformation study using a two point 

loading cell to deform acetabular cups 75.  Ten acetabular cups of varying designs 

were clamped into the cell between two parallel plane jaws and loaded at three 

different levels 0, 1000, 2000 N 75.  Despite testing ten different designs, only one 

shell of each design was tested.  The deformation was measured using a CMM at a 

plane 1.5 mm below the rim, with the maximum diametral deformation ranging 

between 41 and 730 µm 75.  The maximum deformation value was higher than that 

reported by other studies such as Jin et al. (123 µm) and Squire et al. (570 µm).  The 

use of a load cell to deform acetabular shells allowed the authors to control the size 

of the deformation by varying the load; however it is unclear why these particular 

loads were chosen. 
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For the candidate’s study, the two point loading system, used by Hothan et al 75, was 

employed to apply predetermined loads to simulate known amounts of deformation.  

Two shells were compressed and measured using both the ATOS and a CMM.   

The system also simulated the asymmetrical nature of the deformation, where the 

maximum force is expected between the ischia and ilium 73 77.  Sixty measurements 

were taken in total for both the ATOS and the CMM with the results compared to 

determine the maximum difference between them. 

At the rim of the shell the maximum difference between the ATOS and the CMM was 

found to be 5 µm, whilst at the measurement plane closest to the pole the maximum 

difference was 9 µm.  The standard deviation of the ATOS results was 3 µm.  The 

results demonstrated that the deformation measured by the two systems was 

comparable; with the accuracy decreasing further away from the rim.  As maximum 

deformation was likely to occur at the rim, in the location of maximum load, the 

accuracy decrease at the pole was not critical to the success of the project 81.  

Therefore the ATOS system was judged to have been within the 10 µm limit stated.    

The study details the validation of the optical system for measuring acetabular shell 

deformation.  There were several points for discussion.  First was the choice of a 

suitable system against which to compare the ATOS.  A CMM was chosen for the 

comparison as it has previously been utilised.  For example, Jin et al. and Hothan et 

al. have used a CMM to measure the deformation of acetabular cups 73 75.  In 

addition CMMs have also been used to quantify the wear of hip prostheses 22 56 82 83 

84 85 86 87.  An alternative system considered was an out of roundness machine, 

however given that other studies have previously used the CMM to measure 

deformation, the candidate decided that the CMM was a more appropriate choice.  

Another important consideration was the location and number of the measurement 

planes.  As press fit shells are loaded at the rim, this is where the shell will 

experience the largest force 81 and potentially the maximum deformation, as 

demonstrated in the pilot study 66.  Consequently the accuracy of the ATOS system 

in measuring deformation at the rim was of greater importance than at the pole.  

Therefore the decrease in agreement between the systems away from the pole was 

not of critical importance.  
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To the candidate’s best knowledge this study is the first validation study for this 

application.  As the accuracy of the ATOS was within the specified 10 µm limit, the 

system can now be utilised in a full cadaveric study.  This should involve 

investigating the influence of several variables upon the size of the deformation.  

2.3. The influence of the strength of bone on the deformation of acetabular 

shells: A laboratory experiment in cadavers 

No study to the author’s best knowledge has quantified the influence of bone upon 

the size of the deformation of acetabular shells.  Yet, the quality of the acetabular 

bone has been noted as one of the variables that potentially influences shell 

deformation 67.   

The aim of the study was therefore to compare the mechanical properties of the bone 

to the size of deformation.  This was done by implanting a cohort of acetabular shells 

into cadavers and measuring the deformation using the validated ATOS system.  

Samples of femoral bone were taken from these cadavers and tested using a 

compression test to quantify the peak modulus and yield stress.  These results were 

then compared to the deformation to determine if there was a statistically significant 

relationship.  

Despite not offering a direct comparison, Squire et al. is the only study in the 

literature to report any information on both bone quality and deformation 67 88.  The 

results indicated that the quality of the bone was marginally related to the size of 

force acting upon the acetabular shell (p= 0.07) 67.  

The study by Squire et al. used the Dorr grading system to grade the bone 67.  One of 

the benefits of this system is that it can be performed by examining a patient’s X-ray, 

without the need for mechanical testing of bone samples.  However this method is 

very subjective and could suffer from intra-operator variability.  Another consideration 

is that due to the limited number of grading options available many bone samples 

with different strengths or stiffness’s could be placed together within a particular 

group.  Therefore it may not offer enough detail to accurately define the strength or 

stiffness of the bone.  In addition the study did not quantify the strength or stiffness of 

the bone using mechanical testing.  
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In 1997 Li and Aspden performed a study examining the mechanical properties of 

bone cores taken from the femurs of patients undergoing hip replacement 89.  Bone 

core samples were taken from seven sites on the femoral head as follows: superior, 

inferior, anterior, posterior, medial, lateral and central 89.  The rationale was that 

these would represent regions with varying degrees of loading.  The superior surface 

was the most loaded region, the posterior, anterior and medial regions partially 

loaded and the inferior region the least loaded 89.  In addition cores from the central 

and lateral regions were obtained, however these regions experienced no direct 

loading 89.  The axis of all the samples was towards the centre of the femoral head. 

Li and Aspden characterised the stiffness of the bone by performing a compression 

test.  Various mechanical properties were quantified including stiffness, yield strength 

and energy absorbed to yield 89.  Rather than testing the samples to destruction the 

tests were stopped as soon as the stress-strain curve started to reduce 89.  By 

performing the study in this manner Li and Aspden left the samples available for 

further testing.  

Another important consideration in the study by Li and Aspden, was that the bone 

structure in the femur was not constant 89.  The structure of the bone within the 

femoral head is dependent upon the principal direction of loading 90.  The lateral side 

of the femoral bone is loaded in tension whilst the medial side is loaded in 

compression 90.  In the femoral head the bone structure is more complex forming a 

lattice style structure.  Therefore according to Gray’s Anatomy there is no single 

principal direction for trabecular bone within the femoral head 90. 

Li and Aspden noted that more heavily loaded regions of the femoral head were 

stiffer and had a greater density than less heavily loaded regions 89.  An advantage of 

this study was that samples were taken from multiple locations.  This enabled Li and 

Aspden to demonstrate that the sampling location could have a substantial influence 

over the mechanical properties of the bone samples.  

In addition to quantifying the mechanical properties of the bone and comparing these 

results to deformation it would be beneficial to compare these values to the surgical 

intra-operative grading.  This would determine if a surgeon is able to accurately 

grade the properties of the bone based on touch.   
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In the candidate’s study a cohort of 17 custom made titanium acetabular shells were 

implanted into the acetabulum of eight cadavers.  The deformation was then 

immediately measured using the previously validated ATOS optical system 91.   Prior 

to implantation the surgeon graded the bone quality of the cadaver using a three 

point scale by touching the acetabulum with his thumb.  

Five bone core samples were taken from each femur from five different locations: 

superior, inferior, anterior, posterior and central, based upon the locations used by Li 

and Aspden 89.  The bone samples were then subjected to an unconstrained 

compression test to calculate the peak modulus and yield stress, again based upon 

the methodology used by Li and Aspden 89.  Peak modulus was defined as the 

highest gradient in the stress-strain curve, whilst the yield stress was the stress at 

yield point.  The yield point was defined as the point at which the modulus decreased 

by 3% from its peak value.  The results for the left and right femurs were combined 

and the highest peak modulus and yield stress for each cadaver was used for 

comparison against deformation. 

The mean deformation was 129 µm (range 3 to 340 µm); however no correlation was 

identified between either peak modulus or yield stress, and deformation.  The 

surgeon intra operative grading did not match with the peak modulus; however the 

results indicated a potential correlation between the surgical grading and the yield 

stress.  No statistical analysis was performed for the surgeon grading as the sample 

size was small.  

To the candidate’s best knowledge this is the first study to quantify how bone affects 

the size of deformation.  A previous study by Squire et al. noted that the hardness of 

bone may influence the size of deformation; however this was not quantified 67.  

Instead a marginal relationship between the bone quality and the compressive force 

on the cup was noted 67.   

One of the major benefits of the candidate’s study was the sample size (n=17), one 

of the largest cohorts for a deformation study reported in the literature to date.  This 

was accomplished by implanting multiple acetabular shells per cadaver where the 

surgeon deemed the bone to be of suitable quality.  If the bone was not suitable then 

only one shell was implanted.  The surgeon started with the smallest suitable shell 

and, following completion of the measurement procedure, reamed up to 

accommodate a larger acetabular shell.  Multiple shells were implanted in five out of 



 

23 
 

11 acetabula used in this study.  In each case the fixation of the acetabular shell was 

such that it would be acceptable in live surgery.   

There were two main limitations to the study. The first was the use of femoral bone 

as a surrogate for acetabular bone.  The reason for choosing femoral bone was that 

the instantaneous modulus of articular cartilage on opposing joint surfaces has 

previously been shown to be comparable 92.  Therefore the assumption was that 

other mechanical properties, such as stiffness, may also be comparable.  

The second limitation was that although samples were taken from multiple locations 

these were not properly recorded and so could not be compared.  As previously 

mentioned the structure of the trabecular bone within the femur changes, so the 

location from which the bone sample is taken will have an influence over its 

mechanical properties 89.  This was further exacerbated by the loss of 18 out of 75 

bone samples, due to technical difficulties including a computer malfunction and 

samples toppling over during testing.   

On the other hand, the aim of the study was not to compare the different mechanical 

properties of the bone with the sampling location, as Li and Aspden had already 

published such data 89.  Instead the aim was to determine if there was a correlation 

between the mechanical properties of the bone and the deformation.  To this end the 

highest peak modulus and yield stress values for the entire cadaver were used for 

the comparison against the size of deformation.  Therefore whilst the sampling 

location wasn’t known, it was still possible to perform the comparison.   

There are several avenues that can be pursued with regards to future work.  Firstly it 

is important to establish the relationship between femoral bone and acetabular bone.  

This will determine if the femoral bone surrogate used to quantify acetabular bone 

stiffness 93 was appropriate.  The density and mineral content of the bone samples 

could be examined using micro CT, whilst the stiffness could be calculated using the 

same uniaxial loading method described previously 93.  The results for the femoral 

and acetabular bone would then be compared to determine any correlation.  The 

reason for the samples toppling over during testing was that the ends were not 

sufficiently perpendicular.  By using a bone saw rather than a surgical knife the 

number of samples toppling over should be substantially reduced.  It is also important 

to compare the bone samples taken from the same femoral head, as the bone 

structure and thus properties can change depending on the sampling location 89.  
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Until now the deformation work has focussed upon developing, validating and using a 

measurement method for determining shell deformation.  However these tests have 

only involved generic titanium (Ti6Al4v) acetabular shells.  A logical extension to this 

work would be to test currently available acetabular shells using the same 

methodology.  In addition this could be expanded to examine how the shell-liner 

assembly process is affected by deformation.  Such testing would utilise the same 

surgical and measurement methodology as used by the candidate previously 66 93. 

In conclusion the paper documented one of the first studies to quantify how the 

mechanical properties of the bone related to the size of acetabular shell deformation.  

No correlation was found between peak modulus or yield stress and deformation or 

yield stress.   In addition it also provided one of the largest cohorts of acetabular 

shells tested in a cadaveric environment for this application.   

2.4. Determining material loss from the femoral stem trunnion in hip 

arthroplasty using a coordinate measuring machine 

Wear analysis for THR prostheses has primarily focussed upon bearing 22 86 and 

taper surfaces 12 94.  However the taper only forms half of the taper junction with the 

trunnion forming the other half.  Only one study has published volumetric wear data 

on trunnions and this consisted of a cohort of only two samples 94.  No validation or 

accuracy data is available for these two measurements.  

The study’s aim was to validate and determine the accuracy of the CMM for 

measuring volumetric wear of trunnion surfaces.  This was done by simulating 

trunnion wear and measuring wear volumes with the CMM and gravimetrically.  The 

gravimetric results were then converted into a wear volume.  In addition the 

maximum error for the CMM for each wear stage was also calculated, by determining 

the difference between the median value and the upper and lower values.  This 

measurement method was then used on a cohort of ex vivo hip prostheses.   

Higher numbers of adverse reaction to metal debris (ARMD) revisions for MoM THR 

compared with hip resurfacing prostheses 1, has resulted in the taper junction being 

implicated as a potential cause of failure 95 12 96.  The Morse taper was introduced 

into total hip arthroplasty over 30 years ago and is now the only design used in 

modular THR femoral heads 97.  A Morse taper is a cone within a cone, where both 

have similar tapered angles resulting in an interference fit 12.  The female cone is 
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located in the femoral head and is termed the “taper”, whilst the male cone is located 

atop the femoral stem and is termed the “trunnion”.  Due to limitations in 

manufacturing processes, contact along the entire length of the cones is not possible 

97.  Therefore the angles of the taper and trunnion are designed in such a way that 

contact occurs over a reduced length at one end of the taper 97.  The end at which 

contact occurs is dependent upon the angle of the trunnion relative to the taper.  

Whilst extensive research has been conducted into damage of the femoral head 

taper 12 28 32 34 94 95 96 98, there have been a limited number of studies examining the 

trunnion 27 94 99.  To the author’s best knowledge there has been only one study 

reporting wear volumes for the trunnion 94.  This paper by Bishop et al. provided 

results for only two trunnions, reporting wear volumes of 0.035 mm³ and 0.020 mm³ 

94.  The wear volume from the corresponding tapers was 8.1 mm³ and 2.6 mm³ 

respectively 94.  All measurements were performed using a CMM 94.  Whilst two wear 

volumes have been offered, to date there has been no study published in the 

literature offering the accuracy of such measurements.  This is in contrast to 

measurement methods for the taper and bearing surfaces, which have been 

validated and found accurate to 0.2 mm³ 12 and 0.5 mm³ 22 respectively.  Both of 

these studies used a CMM to perform the measurements.  

Whilst various systems such as a Redlux (an optical measurement system) have 

been used to examine the surfaces of trunnions, no volumetric wear data has been 

reported using this methodology.  Therefore based upon the literature the most 

common method used for measuring volumetric wear of hip replacement prostheses 

is a CMM.  In addition a CMM was used as to validate the ATOS optical system in 

the study “Validation of an optical system to measure acetabular shell deformation in 

cadavers”. 

In the study “Determining material loss from the femoral stem trunnion in hip 

arthroplasty using a coordinate measuring machine” three types of trunnion were 

examined: an Exeter (Stryker), Corail (DePuy Synthes) and an Accolade (Stryker).  

These represented the most popular stems for cemented (Exeter) and uncemented 

(Corail and Accolade) THR arthroplasty 100.  Two of these trunnions (Exeter and 

Accolade) had a smooth surface finish, whilst the Corail had a grooved surface finish.  

This grooved finish was a design feature specifically introduced for use with ceramic 

femoral heads, but incorporated into all Corail stems. 
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To simulate different wear stages sandpaper was used to remove an increasing 

amount of material.  In total, four wear stages were tested including the unworn 

stage.  In all but one of these stages an unworn ring was left at the top of the 

trunnion.  In the final wear test of the Accolade stem the entire trunnion surface was 

worn to determine if the CMM was able to calculate a wear volume and if this was 

comparable to the gravimetric results.  This represented the worst case scenario 

likely to be encountered in a retrieved prosthesis.  Following the conclusion of the 

validation study a cohort of 28 ex vivo Corail trunnions were measured using this 

methodology to add a clinical context.   

The maximum difference between the gravimetric and CMM measurements was 0.13 

mm³.  The maximum error between individual measurements for the worn stages 

(excluding the unworn stage) was 0.02 mm³ for the Corail and 0.03 mm³ for the other 

Exeter and Accolade stems.  This was determined by calculating the mean values for 

both the CMM and gravimetric measurements at each stage and subtracting one 

from the other.  

For the unworn stage the Corail trunnion had the largest CMM wear volume recorded 

in the study (0.13 mm³), whilst for the other two stems the unworn wear volume was 

0.05 mm³.  This difference was hypothesised to be due to the grooved surface finish 

of the Corail compared with the smooth finish of the Exeter and the Accolade.  In the 

final wear stage of the Accolade where the entire surface was worn, the CMM was 

not able to accurately determine the wear volume.  This was due to the lack of a 

reference surface from which to determine the unworn surface.  The median 

volumetric wear for the 28 ex vivo Corail trunnions was 0.14 mm³ (range 0.04 – 0.28 

mm³). 

The paper presents, to the author’s best knowledge, the first validation of a method 

that quantifies the volumetric wear from the trunnion surface.  In addition it also offers 

results for the largest cohort of ex vivo trunnions (n=28) to undergo volumetric wear 

analysis reported in the scientific literature.  The primary finding for the ex vivo cohort 

was that the wear volumes were substantially lower than those reported for the 

bearing and taper surfaces 7 12 22 86.  To contextualise, Langton et al reported median 

wear volumes in excess of 2 mm³ for a cohort of 111 MoM femoral head tapers 12. 

There were several considerations for the study.  The first was the choice of 

measurement system.  Previously it was noted that gravimetric measurements were 
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the most accurate method for quantifying material loss due to wear 84 87.  However 

whilst gravimetric may be the most accurate method, it is not practical for ex vivo 

wear analysis as there is no reference point available from which to calculate wear.  

An alternative method was therefore necessary.   The CMM had previously been 

utilised in the deformation validation study 91 and has been used for several studies 

to quantify the material loss of bearing 86 22 94 and taper surfaces 12 94.  Bishop et al. 

have also measured two trunnion surfaces using a CMM 94.  Based upon this it was 

decided that the CMM would be a suitable system to use provided that the accuracy 

was comparable to the taper surfaces (0.2 mm³).   

Ideally a greater number of different types of trunnion would have been tested; 

however the small sample size was due to the limited stock available.  Orthopaedic 

implants cannot be purchased except by medical centres.  For this study the three 

femoral stems used had recently breached the implantation time limit and thus were 

made available for research purposes.  The three trunnions represented the most 

commonly implanted cemented and uncemented femoral stems according to the NJR 

1.   

In order to determine the unworn surface the CMM uses the straightness parameter, 

which is defined as the distance between two parallel lines touching and enclosing 

the data points at a minimum distance to each other 101.  For new types of trunnion 

the straightness of the unworn surface will need to be quantified using a profilometer 

prior to performing the CMM measurements.  This measurement needs to be 

performed on a new, unworn trunnion.  Measurements taken for the three trunnions 

indicated that the maximum straightness was less than 0.0025 mm.  This value was 

used for the CMM measurements, with straightness values greater than 0.0025 mm 

indicating wear.  For a new trunnion, if the straightness values are greater than 

0.0025 mm then the CMM threshold needs to be raised to avoid excluding unworn 

surfaces.  Whilst this aspect was not independently validated the entire method of 

determining volumetric wear was compared to gravimetric measurements for all three 

trunnions.   

One of the major limitations with ex vivo studies is that the dataset is inherently 

skewed.  However it is by examining these cohorts that trends can be identified in 

order to understand the modes of failure with the aim of preventing them (such as the 

ASR hip and the LPM finger) in the future.  It is also important to note that clinical 
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data is not always provided for all ex vivo prostheses.  Ideally they should come with 

a full medical history; however the completeness of the notes is usually dependent 

upon the clinical practitioners supplying the prostheses.   

There are numerous avenues that can be pursued as a result of this study.  Firstly 

research should focus upon understanding how tapers and trunnions wear.  

Trunnions form half of the taper trunnion junction, so it is vital to determine if there 

are factors that may increase risk of wear at this junction.  There are numerous 

variables that have been identified as potentially influencing the performance of the 

taper trunnion junction yet current studies have indicated that the problem is not well 

understood 34 102.   

One of the variables of interest is the surface roughness of both the taper and 

trunnion surfaces.  Munir et al. recently examined eleven trunnions from five different 

manufacturers noting that there were differences in the topography 102.  Further work 

should build upon this by measuring trunnions and tapers using the CMM to quantify 

the volumetric wear and a contact profilometer to quantify the roughness of the worn 

surface.  The results could then be compared to determine if higher roughness is 

associated with higher wear from either the taper or trunnion surfaces.  An expansion 

of this would be to examine the areas identified by the CMM as worn and unworn to 

determine if there is a difference in roughness between worn and unworn surfaces.  

Studies have identified imprinting of the trunnion surface finish on to the taper 

surface indicating that changes in surface roughness do occur 94 12.  

Another variable that could be examined is the relative angle between the taper and 

trunnion surfaces.  This angle influences the contact location and also the length of 

the contact region.  Such work could involve the use of a CMM to examine new and 

retrieved prostheses and thus calculate these angles.   

To conclude this study presents the first validation of a method to measure 

volumetric wear from the trunnion surface.  The maximum error between the CMM 

and gravimetric measurements was found to be 0.13 mm³.  In addition the study also 

reports the wear volumes of the largest cohort of ex vivo trunnions reported in the 

literature.  
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2.5. Surface finish of the Exeter Trauma Stem: A cause for concern? 

The National Institute for Health and Care Excellence (NICE) recently recommended 

the use of clinically proven femoral stems in place of designs such as the Austin 

Moore and Thomson for hemiarthroplasty procedures.  One of the stems listed as a 

suitable design is the Exeter Trauma Stem (ETS), which is based upon the clinically 

successful Exeter THR stem, despite having a different surface finish.  Previous 

changes in Exeter stem surface finish have resulted in adverse clinical performance 

103.  The rationale of the study was to examine the surface finish of the ETS stem and 

determine if it was equivalent to the Exeter stem as inferred by NICE.  

The primary concern of the study was therefore not the clinical performance of the 

ETS; more the potential misrepresentation as an equivalent to the Exeter stem for 

the treatment of hip fracture patients.  If the surface finishes were different then it 

cannot be assumed that the performance of the ETS would mirror that of the original 

Exeter.  This is especially pertinent given the high rate of loosening of femoral stems 

as a result of a change in surface finish 103.  

The aim of the candidate’s study was therefore to determine if there was a difference 

in the surface finish between the three types of Exeter stem.  This involved 

measuring the surface roughness of three different Exeter stems: the ETS, original 

Exeter and the matt finished Exeter.  The objective was to determine if the difference 

between the surface roughness values of the three stems were significant.   

Femoral stems utilised for THR are available in cemented and uncemented designs.  

The Stryker Exeter and the DePuy Corail represent the most commonly implanted 

cemented and uncemented stem designs according to the data from the 2014 NJR 

annual report 1.   

Cemented stems, such as the Exeter V40 (Stryker, Kalamazoo, MI, USA), have a 

polished finish, reducing friction between the prosthesis and the cement.  This allows 

the stems to subside distally from the initial position achieved during primary surgery 

to a final position of stability, taking advantage of a phenomenon known as cement 

creep 104.  The fixation of the stem has been termed taper lock 105 106.   

During the migration process the stem is continuously in contact with cement, 

enabling it to subside without damaging or fracturing the cement.  The specific 

geometry, in particular the taper angle 105 of the stem helps reduce shear stress and 



 

30 
 

promote radial compressive loading.  Race et al. also noted that the coefficient of 

friction between the stem and the cement is another important factor in obtaining a 

secure taper lock 105.  Taper lock is a fundamentally different fixation concept to that 

employed by non-polished stems, which rely upon a press fit to provide fixation until 

bone ingrowth has occurred 107.  

The importance of the surface finish to fixation was demonstrated when alterations 

were made to the Exeter stem, changing the finish from polished to matt.  In 1993 

Rockborn and Olsson reported on a cohort of 110 hips at a minimum follow up of five 

years, all utilising the matt stem.  They found that 15 (13.6%) had definite 

radiographic loosening and eight (7.3%) had suspected radiographic loosening 108.  

As this was a clinical study, ex vivo analysis was outside the scope of the project.  

Another study in 1998 by Howie et al. reported on a cohort of 40 Exeter stems split 

equally into two groups: 20 polished stems and 20 matt finish stems.  At nine years, a 

total of 15 patients (16 THRs) had died, six in the matt cohort and ten in the polished 

cohort 103.  This was a significant limitation.  Four matt stems required revision, three 

of these at four years and the final stem at eight years 103.  In contrast only two stems 

from the polished cohort required revision, one at two years and the other at seven 

years 103.  For the matt stems it was suggested that the surface finish of the stems 

prevented the distal motion within the cement, crucial for its performance 103 108.  It 

should be noted that no roughness values were reported.  

In 2010 Race et al. reported that the Ra for two original matt finished Exeter stems 

was approximately 1 µm 105.  However it did not state what system was used to 

measure the roughness.  Stems were implanted into cadaveric femurs and subjected 

to cyclic loading, simulating star climbing for the equivalent of 107 cycles 105.  This 

tested how the surface finish affected the ability of the stem to subside within the 

cement mantle 105.  The study determined that taper lock did occur for the polished 

stems but not for the matt finished stems 105.  This led the authors to conclude that 

their testing would have predicted the higher loosening rate for matt stems compared 

with polished stems 105.   

One limitation of their study was that matt stems were difficult to obtain, so the 

authors bead blasted contemporary stems to recreate the rough surface of the matt 

finish Exeter 105.  Therefore the stems were comparable but not identical.  However 

the aim of the study was to present a novel method of testing the cement creep 
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performance of stems with different surface finishes rather than particular stems 

themselves.  

As Ra had previously been used by Race et al. to quantify the roughness of two 

Exeter matt stems, it was decided that the candidate’s study would use this 

parameter to enable a comparison 105.  Roughness average is defined as the 

average deviation from the ideal surface profile 101.   

The surfaces of the three different types of stems were examined using a ZYGO 

interferometer.  Two ETS and two Exeter stems were available for testing, whilst one 

retrieved, matt finish Exeter stem was also obtained.  ZYGO images of the surface 

were taken in addition to roughness values.   

The results revealed a tenfold increase in the mean Ra of the ETS (0.200 µm and 

0.276 µm) compared with the original Exeter (0.022 µm and 0.027 µm); whilst the 

surface finish of the matt finish Exeter (0.973 µm) was three times higher than the 

ETS.  The difference between the ETS and the Exeter was found to be statistically 

significant (p < 0.001).  ZYGO images clearly identified distinct differences between 

the surfaces of the ETS and the Exeter. 

Following the publication of the study, Dr AJ Clive Lee an honorary university fellow 

and Mr JR Howell a consultant orthopaedic surgeon penned a response raising 

several points 119.  The first was that the introduction of the ETS predated the NICE 

guidelines, therefore it could not have been considered during the design stage 119.  

Secondly Lee and Howell noted that, in a study examining abrasive wear in stems, 

wear only occurred in stems with Ra values greater than 0.3 µm 120.   As the ETS Ra 

was slightly below this level (mean 0.238 µm) Lee and Howell conjectured that this 

may be due to luck 119, noting that the five year mortality rate of hemiarthroplasty 

patients is around 73% 121.  Lee and Howell stated that the long term performance of 

a trauma stem is of lower importance compared with other hip arthroplasty 

prostheses utilised in younger patients 119.   

In response, the primary concern that arose in the study “Surface finish of the Exeter 

Trauma Stem: A cause for concern?” was not of the long term performance of the 

stem; more the misrepresentation of the ETS stem as an equivalent to the original 

Exeter for the treatment of hip fracture patients.  Therefore as the ETS and Exeter 

stems have a different surface finish it cannot be assumed that the performance of 
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the ETS stem will mirror that of the original Exeter.  This is especially poignant given 

the high rate of loosening reported due to the change from a polished to a matt finish 

117.   

The small sample size may also be considered as a limitation of the study.  This was 

however offset by the number of readings taken from each stem (n=40), twenty on 

each side, to ensure that the sample size was large enough.  Retrospective power 

analysis supported the findings, indicating that five readings on each side would have 

been sufficient to obtain a power of 95 %.  Ideally at least one other Exeter matt stem 

would have been used to ensure two of each type of stem were tested; however as 

the stem was discontinued numerous years ago this was not possible.   

Another point regarding the matt stem analysed in this study was that it was an ex 

vivo prosthesis.  Upon inspection the stem didn’t have cement adhering to the 

surface and did not appear to have any significant damage which could have skewed 

the results.  To ensure that the roughness results were representative of the original 

surface finish of the matt stem, the Ra results (mean 0.973 µm) were compared to 

those published by Race et al. for an unused stem (1 µm) and found to be similar 105.   

The parameter Ra was chosen for several reasons.  Firstly it had been utilised by 

Race et al. therefore enabling the results of the two studies to be compared.  

Secondly it is the most widely used roughness parameter 109.  Finally, it was stated 

as the preferred parameter by the British Standard 7251-4:1997 for defining the 

surface finish of the bearing surfaces of hip replacements 110.  Whilst this standard 

does not directly apply to non-bearing surfaces it provides a basis to the study.  The 

use of Ra was not designed to indicate how the stem was likely to subside in clinical 

use, more to represent the differences between the three stem types.  However one 

of the main drawbacks of using Ra is the inability of the parameter to distinguish 

between peaks and valleys 17.  To this end it would have been beneficial to utilise 

other amplitude parameters such as maximum valley depth, maximum peak height 

and peak to valley.   

Future work should focus upon understanding how the difference in surface finish 

affects the ability of the stem to subside within the cement mantle.  As discussed 

previously Race et al. performed cyclic loading to test the ability of a stem to subside 

to a position of stability 105.  Such a study could be performed with the ETS and the 
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performance compared to the Exeter.  The results could also be compared with those 

of Race et al. to further contextualise the performance of the ETS 105. 

To conclude, the study demonstrated that the difference in surface roughness 

between the three types of stems were significant (p < 0.001).  Therefore the 

candidate is of the opinion that the ETS should not be advertised by NICE as an 

equivalent stem to the Exeter for treatment of hip fracture patients.   

2.6. Analysis of failed Van Straten LPM proximal interphalangeal prostheses 

Reports of high failure rates of the LPM PIP prosthesis (Figure 1) 111, led to an audit 

by the British Society for Surgery of the Hand, which found that 29% of these had 

failed, with a further 20% at risk of failure.  Massive osteolysis leading to aseptic 

loosening was recorded as the most common failure mode 112.  At retrieval, 

blackened staining of the surrounding soft tissue was observed, indicative of wear 

debris 111 (Figure 2).  However, despite the clinical failure of the LPM no explant 

analysis had been reported in the literature.   

 

 

Figure 1: Photos of the two piece LPM PIP prosthesis taken intra-operatively during 

implantation 
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Figure 2: Photo of the PIP joint following revision surgery. Note the blackened 

staining of the surrounding soft tissue indicative of metallic wear debris 

The aim of the study was therefore to determine the failure mode of the LPM by 

examining a cohort of ex vivo prostheses.  To accomplish this, surface roughness 

and chemical composition of the articulating surfaces were measured using 

profilometers and an environmental scanning electron microscopy (ESEM). 

The LPM was a two piece semi-constrained prosthesis designed for use in the PIP 

joint.  The distal articulating surface was cylindrically shaped, whilst the proximal 

component was concave (Figure 1).  The substrate was manufactured from CoCrMo 

with a coating of titanium niobium on the articulating surfaces 113.  Such coatings 

were used to enhance properties such as surface finish or scratch resistance 114. 

There are to the candidate’s best knowledge only two papers on the LPM prosthesis.  

The first published the results of a clinical study on a cohort of 20 LPM prostheses 

111.  Six prostheses required revision surgery at a mean time of 19 months, with a 

further two listed for revision.  This equated to a failure rate of 40%.  While the cohort 

was small, this was the first study to report on the clinical performance of the LPM 

prosthesis.   

The second paper published the results of an audit into the clinical performance of 

the LPM 112.  Data was collected on 164 (63.8%) prostheses out of 257 sold in the 
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UK 112.  At a maximum follow up of six years the study noted that 47 (29 %) had been 

revised and a further 33 (20%) had radiological and clinical indications of failure.  The 

most common failure mode was reported as aseptic loosening due to “massive 

osteolysis” 112.  

One limitation of the audit was incomplete data 112.  Whilst 257 prostheses were sold, 

the authors of the audit were not able to determine how many prostheses were 

implanted into patients.  Some of the prostheses purchased were likely to have been 

retained by the hospital as stock and therefore could not be accounted for.  In 

addition numerous prostheses were lost to follow up, however this number could not 

be quantified.  The authors noted that even if all the prostheses that were lost to 

follow up were fully functioning, the clinical performance of the LPM would still have 

been below the acceptable standard 112.   

Despite the subpar clinical performance of the LPM prosthesis no study has reported 

any explant analysis to determine the failure mode.  In 2009 Joyce published an 

essay in which he hypothesised that the hard titanium niobium coating failed at the 

substrate coating interface, resulting in “a very hard, golden-coloured grinding paste” 

113.  However due to the lack of explant analysis this hypothesis has not yet been 

proven.  

As no ex vivo analysis had been reported for the LPM, it was necessary to 

investigate other methods of determining the failure mode.  In 2010 Joyce reported 

on a single Digital Joint Operative Arthroplasty (DJOA) prosthesis tested in a finger 

wear simulator 115.  Wear was determined gravimetrically, however in addition a 

ZYGO was used to measure the surface roughness, before and after testing 115.  

Roughness average was used, although the study does not state why this was the 

case.   

There have been several other studies that have used similar profilometers to 

examine the surfaces of different types of explanted prostheses.  Que et al used it to 

analyse knees, Vassiliou et al used it for hips, Joyce examined a 

metatarsophalangeal prosthesis and it has also been used to examine 

temporomandibular joint prostheses 116 117 118 119.  This demonstrated that such a 

methodology has been widely used throughout this field to quantify surface finish.   
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Profilometers have been used for various different studies in the literature.  In 

addition the candidate has previously utilised a profilometer for the study “Surface 

finish of the Exeter Trauma Stem: A cause for concern?”   

In the candidate’s study a ZYGO interferometer was used to measure the Ra of the 

bearing surfaces to determine the extent of the damage the prostheses had suffered 

in vivo.  In addition to measuring the Ra, the ZYGO also provided images of the 

surface that can indicate scratching or other surface damage.  Due to the shape of 

the proximal components (Figure 1) it was not possible to measure them with a 

ZYGO.  Therefore it was necessary to use a contact profilometer (Talysurf) to 

measure the proximal surfaces.  All prostheses were measured using the Talysurf, 

with the results compared to those obtained by the ZYGO for the three distal 

prostheses.  This was to ensure that the measurements were comparable between 

the two systems. 

As the LPM has a titanium niobium coating upon a CoCrMo substrate the damage to 

this coating was quantified by examining the chemical content.  To determine if the 

coating was intact, the chemical composition at various locations on the bearing 

surfaces was analysed using an ESEM.  If the coating was intact then the chemical 

composition would detect only titanium and niobium.  However, if the coating was 

damaged then the substrate elements of CoCrMo would be detected.   

All five LPM prostheses showed evidence of substantial damage to the bearing 

surfaces.  In several locations the coating was completely missing, thus exposing the 

substrate.  In addition, the surfaces were found to have high Ra values (range 100 

nm to 2200 nm).  These values are higher than the 50 nm limit set by British 

Standards 110.  These findings tie in with the hypothesis proposed by Joyce that the 

failed coating resulted in a “very hard, golden-coloured grinding paste”, thus further 

damaging the surfaces of the prostheses 113.  This wear debris is likely to have 

resulted in the osteolysis reported clinically 111 112.   

This study was the first to examine the failure mode of the LPM prostheses.  Whilst 

there was an audit into the poor clinical performance 112, it was imperative that the 

specific issues that led to the failure of the LPM were investigated.  Despite having a 

small sample size (n=5) this is the only study to offer any ex vivo data for the 

prosthesis and the first to propose a failure mode based upon experimental data.   
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This study built upon the roughness methodology utilised in the study “Surface finish 

of the Exeter Trauma Stem: A cause for concern?”  One of the major limitations for 

the LPM study was the lack of volumetric wear analysis.  Ideally this would have 

been performed; however the manufacturing tolerances would need to be determined 

prior to testing.  This can be done using the CMM by measuring an undamaged 

prosthesis and determining the form error, which could equate to the manufacturing 

tolerances in this situation.  Without the tolerances, wear may be over or under 

calculated.  As the LPM was withdrawn from the market and only 257 prostheses 

were sold it was not possible to obtain a new prosthesis.  Therefore volumetric wear 

analysis was not able to be attempted. 

As wear was not measured surface roughness was used to provide an indication of 

the in vivo wear performance.  It has previously been shown that roughness, and in 

particular Ra, is associated with wear for in vitro studies of hip prostheses 8 9.  In 

1997 Hall et al. reported that two roughness parameters, skewness and Ra, were 

found to correlate with wear, however the power of the relationship was significantly 

smaller than that found in in vitro studies 8.  Hall et al. stated that there were 

numerous factors that may have influenced this, including the variability of the 

surface roughness on explanted femoral heads 8.  In the absence of wear 

measurements Ra provided some indication of the in vivo wear performance of the 

prostheses. The parameter Ra was chosen not only to represent wear, but also to 

enable a comparison with the British Standards for orthopaedic devices 110.   

Whilst the ZYGO would have ideally been used to analyse all LPM components, due 

to the shape of the proximal component this was not possible.  It was therefore 

necessary to use the Talysurf contact profilometer (Taylor Hobson, Leicester, UK) on 

all prostheses to quantify the Ra, as the ZYGO could only be used on the distal 

components.  The results from the two profilometers were comparable, however the 

ZYGO has a higher resolution (1 nm) than those of the Talysurf (10 nm).   

The lack of volumetric wear analysis was a limitation, however it was evident from 

visual inspection that the surfaces had suffered substantial amount of damage.  

Despite the damage to the surface it was unclear whether the TiNb or the CoCrMo 

caused the osteolysis reported clinically 111 112.  The hypothesis is that it was likely to 

be a combination of the two, where the failed coating resulted in a hard grinding 

paste that accelerated the wear of the CoCrMo substrate.   
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For the LPM prostheses there is limited benefit to future work, as the prosthesis was 

withdrawn from the market by the manufacturer.  Therefore the candidate would not 

recommend any further work on this prosthesis.  However other prostheses utilise 

TiNb coatings, therefore future work should focus on examining and understanding 

how these coatings function and the effect that wear debris has upon patients.  

To conclude the study presented the first ex vivo engineering analysis for the LPM 

prosthesis.  The failure mode of the LPM was related to the failing of the coating, 

which resulted in wear debris generation.  This ties in with the “massive osteolysis” 

reported clinically 112.  

2.7. An analysis of explanted pyrolytic carbon prostheses 

Reports of the clinical performance of pyrolytic carbon prostheses in the small joints 

of the hand have been mixed; however there has been no ex vivo analysis reported 

for pyrolytic carbon prostheses in the literature to understand why these prostheses 

may fail 120 121 122.  

The aim of the candidate’s study was therefore to determine whether the failure of a 

cohort of pyrolytic carbon finger prostheses was linked to wear.  Once again, Ra was 

measured using a ZYGO interferometer, as it has previously been shown to correlate 

with wear 8 9.   

Early indications for pyrolytic carbon were promising, as the material offered several 

major benefits over its competitors.  Prior to its use in artificial joints, the material was 

successfully used in millions of artificial heart valves from the 1960s, as it offered 

excellent wear properties in addition to good bio-compatibility 123.  This was 

beneficial, as it meant that in theory, minimal wear debris would be produced 

compared to other materials 124.  Additionally it had a similar elastic modulus to that 

of cortical bone, reducing the stresses at the implant-bone interface, thus allowing 

good fixation 125 126. 

 

The outcomes of pyrolytic carbon arthroplasty in the hand have been mixed and high 

complication rates have been reported in various studies, in one instance as high as 

83% 124.  Table 2 documents the findings of numerous clinical studies on pyrolytic 

finger prostheses.  Common complications included subluxation 121 126, dislocation 124 

127 128 129, contraction of the joint 124 and a squeaking sound experienced by a large 
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number of patients 124 125.  Rates of complication and revision do not appear to be 

related to specific joints of the hand or the primary disease, with results varying 

across these groups (Table 2).   

 

There are considerations to discuss regarding these clinical studies.  Firstly some 

such as Nunley et al. and Nunez and Citron had small sample sizes so caution 

should be used when interpreting their results 130 129.  A second consideration is the 

short follow up time on some of the studies, with only one study reporting a mean 

follow up in excess of five years 120.  Despite the mixed clinical performance, no ex 

vivo analysis has been reported in the literature.   
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Table 4: Details of studies that have examined the clinical performance of pyrolytic 

carbon prostheses. Note that OA refers to osteoarthritis and RA refers to rheumatoid 

arthritis 

In the candidate’s study a cohort of 12 ex vivo pyrolytic carbon prostheses were 

examined using a ZYGO profilometer to quantify the surface roughness parameter, 

Ra.  These results were then compared against the British Standards limit of 50 nm 

for orthopaedic devices, to determine if they could be classified as worn 110.  

Results showed that the articulating surfaces had Ra values between 12 nm – 43 nm 

(Table 2), indicative of relatively unworn surfaces.  This range is below the 50nm limit 

discussed 110.   

This study built upon the use of profilometers in the literature as well as two previous 

studies by the candidate: “Surface finish of the Exeter Trauma Stem: A cause for 



 

41 
 

concern?” and “Analysis of failed Van Straten LPM proximal interphalangeal 

prostheses”.   Both these studies and the current study used the ZYGO to quantify 

roughness with the parameter Ra utilised in order to provide a reference for the in 

vivo wear performance of the prostheses.   

By using Ra the result could be compared to the British Standard for orthopaedic 

devices 110.  Although this Standard does not specifically cover pyrolytic carbon, 

similar roughness values are believed to be applicable to this material, as it is can be 

polished to achieve comparable values of surface roughness 131.   Values above the 

50 nm limit would indicate that the surfaces had roughened in vivo, indicating a wear 

process.   

One pyrolytic carbon sample had been implanted only three weeks before revision 

due to dislocation.  In some ways this component could therefore be considered a 

‘control’ sample, providing an indication of the unworn surface roughness of these 

prostheses.  The results indicated that the articulating surfaces were not worn (Ra 

<50 nm 110), and thus wear is unlikely to have contributed to the failure of the 

prostheses in this cohort.   

It should be noted that this is a small cohort (n=12), however it is the first to the 

candidate’s knowledge to offer any ex vivo analysis of pyrolytic carbon prostheses.  

These results indicate that the pyrolytic carbon prostheses may be one of the first 

types not to be affected by wear debris.  However further research supporting this 

finding is required.   

Further work could involve developing a measurement method for quantifying the 

volumetric wear from the articulating surfaces of ex vivo prostheses.  Such work 

would use the CMM, which has already been used for this purpose for hip prostheses 

12 7 18 22 132.  Recently, several new pyrocarbon prostheses were received through 

collaboration with clinicians from Wrightington hospital.  These could be examined 

using the CMM to determine the manufacturing tolerances, thus providing the 

foundation for future volumetric wear analysis.   

To conclude, the study presented the first ex vivo analysis of a cohort of pyrolytic 

carbon prostheses.  The low Ra values (12 nm – 43 nm) indicated that the prostheses 

were not heavily worn.  It is therefore unlikely that the failure of the prostheses was 

wear related.  
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Chapter 3. Discussion 

3.1. Introduction 

The papers presented in this thesis examined a range of orthopaedic problems using 

engineering analysis.  There are many different factors that can influence how a 

prosthesis will perform in vivo, however it is not always possible to identify specific 

issues from clinical data alone.  It is therefore important to fully examine prostheses 

both in a pre and post clinical context in order to understand and improve their in vivo 

performance.  

The aim of this thesis was to examine a range of problems within orthopaedics to 

determine how engineering analysis can contribute to the body of knowledge 

currently available.  As demonstrated through the seven papers previously detailed 

many of these issues would not have been fully understood through clinical 

observations and registry data alone.  Clinically the failure of a prosthesis will 

manifest itself in a particular manner, as will be discussed below; however that does 

not necessarily identify the failure mode of the prosthesis.  Also without extensive 

pre-clinical testing, patients could potentially receive substandard prostheses.   

Factors that could affect performance may include disease progression (i.e. 

rheumatoid and osteoarthritis have different clinical pathways), prosthesis design and 

biomechanical factors.   

3.2. Reasons for arthroplasty 

The most common indicator for joint arthroplasty is arthritis which affects 

approximately ten million people, or one in five, in the UK 133.  Osteoarthritis (OA) is 

the most prevalent type of arthritis 134.  It is estimated that by the year 2030 the 

number of cases of OA in the UK will double to more than 17 million 135. 

Osteoarthritis has been defined as “a failure of the repair process of damaged 

cartilage due to biomechanical and biochemical changes in the joint” (Figure 3) 136.  

In a healthy joint the hyaline cartilage matrix is continually broken down and repaired 

by cells known as chondrocytes 137.  The process is in a state of equilibrium so there 

is no significant loss or gain of cartilage 137.  Osteoarthritis causes an imbalance of 

this equilibrium, resulting in the chondrocytes failing to repair the cartilage matrix, 
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eventually leading to the loss of articular cartilage 137 138.  As the disease progresses, 

osteophytes form at the end of the joint margins, whilst the subchondral bone and 

synovial membrane may also thicken, resulting in deformation of the joint 139 140.  

Bone remodelling may also occur 136.  The pathway of OA however is not well 

understood and there is growing consensus that OA is not a single disease, but a 

group of diseases 136 141.   

 

Figure 3: Diagram showing the anatomy of the hip joint and the typical surface 

damage caused by OA to the articular cartilage 

After OA the second most common type of arthritis is rheumatoid arthritis (RA); 

estimated to affect 580,000 people in the UK 142.  There are fundamental differences 

in the progression of Rheumatoid arthritis compared with OA.  Rheumatoid Arthritis is 

characterised as an auto-immune disease, causing persistent inflammation of 

synovial joints, damage to the articular cartilage and bone and the generation of 

antibodies 143 144.  The most commonly affected joints are the PIP, MCP, 

metatarsophalangeal (MTP), wrist and ankle 145 5.   

The majority of joint arthroplasties are performed as a result of OA 1 133.  A total of 

91% of all hip arthroplasties (73,049 procedures) reported in the 2014 NJR Annual 

Report were for OA, whilst rheumatoid arthritis accounted for 1% (1,040 procedures) 
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3.  However for the small minority of rheumatoid arthritis patients undergoing 

arthroplasty, there have been reports of poorer clinical outcomes compared to OA 

patients 146 147 148.  This included: lower functional outcome 146 148, higher incidence of 

pain 146 and dislocation 147.  Other reports have contradicted these findings indicating 

no difference in performance between OA and rheumatoid arthritis 149 150 151.  The 

higher rates of dislocation in rheumatoid arthritis patients may be due to an increased 

risk of developing osteoporosis and poorer soft tissue quality 147.  This is in 

comparison to patients with OA.  However the poorer clinical outcome of rheumatoid 

arthritis patients is not well understood and further research is required. 

3.3. Design of prostheses  

As anatomical structures of joints vary, it is to be expected that the prostheses used 

to replace them will also differ.  

Hip prostheses have changed significantly since the original Charnley design, 

introduced in the early 1960s.  The original Charnley THR prosthesis comprised of 

two components: a stainless steel femoral stem with a hemispherical ball 22.225mm 

in diameter and a polytetrafluoroethylene (PTFE) acetabular cup 152.  Whilst the 

prosthesis was clinically successful there were issues associated with high wear 

rates and osteolysis 153 154.   

The Charnley was not the only type of hip prosthesis in development around the 

1960s.  The McKee-Farrar was a type of MoM prosthesis with both femoral and 

acetabular components manufactured from CoCrMo alloy 155.  As well as the 

material, another significant difference was the diameter of the femoral head, which 

at 41.275 mm was nearly twice the size of the Charnley prosthesis 155.  Due to 

concerns with osteolysis in MoP arthroplasty the use of MoM bearing prostheses 

increased, however whilst MoM had a reduced rate of osteolysis, it was associated 

with localised effects of metallic debris 156.  This resulted in MoM arthroplasty being 

shunned by many clinicians around the mid-1970s, with many reverting back to using 

the Charnley 157.   

The 1970s saw the first Exeter stem implanted 158.  The stem had a double tapered 

geometry with a polished surface finish and was manufactured from stainless steel.  

The term double taper refers to the specific geometry of the stem where it is tapered 

in two directions.  It is not to be confused with a femoral head taper which is the cone 
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into which the trunnion is inserted.  The Exeter design utilised a larger 30 mm 

femoral head to reduce the risk of dislocation 158.  Despite promising initial results, 

the surface finish of the Exeter stem was altered from a polished finish to a matt 

finish in 1976, as a result of a limited number of fractures at the femoral neck 158.  It 

was unclear why the manufacturers felt this alteration would improve the 

performance of the stem.  

The manufacturer however, did not anticipate the effect this change would have on 

the stem’s performance, with matt finish stems soon associated with a higher rate of 

loosening 103 159 108.  After a decade the manufacturers reverted back to a polished 

surface finish 158.  Two years later a taper was incorporated into the femoral head to 

provide modularity.  This provided greater flexibility to a surgeon during a revision 

procedure, enabling them to keep a well fixed stem, whilst replacing only the 

damaged femoral head.   

Despite their lack of use, work continued on developing improved MoM hip 

prostheses, in order to overcome the continuing issues with osteolysis.  The failure of 

first generation MoM was hypothesised to be due to the poor design of the implants 

rather than the material used 157.  Designs, such as the Metasul (Zimmer, Warsaw, 

IN, US), were introduced into the market in the late 1980s, with these prostheses 

hypothesised to benefit from improved manufacturing techniques and optimisation of 

the bearing surfaces 160 161.  The driving force was to understand and improve upon 

the poor performance of the first generation of MoM hip prostheses.   
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Figure 4: Photo of the Zimmer MoM Durom THR prosthesis (top left) and the Durom 

hip resurfacing prosthesis (bottom right).  Note that both prostheses utilise the same 

design of acetabular component 

One of the largest alterations to the fundamental design of a hip prosthesis was the 

introduction of the hip resurfacing procedure.  It was aimed at younger patients 

suffering from severe arthritis, but with reasonable quality of bone 162.  The procedure 

consists of “resurfacing” the femoral head and the acetabulum rather than replacing 

the entire joint with a THA.  On the femoral side, both the femoral head and neck are 

left intact and the prosthesis “resurfaces” the femoral head.  The resurfacing femoral 

head has a small femoral stem protruding from the posterior surface designed to 

insert into the femoral neck.  The acetabular component consists of a single metal 

monoblock constituent.  

The market leading hip resurfacing was, and remains, the Birmingham Hip 

Resurfacing (BHR) 163, although other manufacturers have offered their own variants 

including: the DePuy ASR and the Zimmer Durom (figure 4).   

Hip resurfacing was hypothesised to offer several benefits compared with a THR, 

including: lower rate of dislocation 164, preservation of femoral bone stock 165, greater 
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range of motion 164 166 and superior lubrication 167.  It was developed predominantly 

for younger patients to enable them to maintain high levels of activity hypothesised 

not to be achievable with conventional THR 41.  Preservation of the femoral neck is 

also important in younger patients who may require more than one hip arthroplasty 

procedure in their lifetime 165.  Upon failure of the hip resurfacing, a surgeon is able to 

perform a conversion to a THR by removing the femoral neck and inserting a 

‘conventional’ femoral stem.  The acetabular component can also be replaced during 

the same procedure.  

Whilst hip resurfacing consists of a CoCrMo femoral head and monoblock acetabular 

cup 22, modern THRs typically utilise four components, namely: a femoral head, 

femoral stem, acetabular shell and acetabular liner.  These multicomponent 

acetabular systems are known as modular cups.  An example of this system is the 

DePuy Pinnacle which consists of a titanium alloy acetabular shell, with the liner 

manufactured from metal, polyethylene or ceramic.  The driving force behind this was 

to enable modularity so that a surgeon could revise a damaged liner without needing 

to remove a well fixed acetabular shell.  Numerous studies have however noted, that 

acetabular shells are potentially susceptible to deformation as a result of surgical 

implantation 67 168 77.   

Acetabular cups are available for both cemented and uncemented procedures 1.  The 

introduction of uncemented acetabular components had several benefits.  Firstly it 

removed the need for cement which had been associated with several problems 

including loosening 69 70, although these may have been down to the cementing 

technique rather than the cement 69 70.  Secondly by removing the cement a larger 

acetabular cup could be accommodated within the acetabulum.   

Another noticeable change in hip prostheses has been the increase in the diameter 

of femoral heads.  The original Charnley prosthesis had a 22.225mm diameter head 

152.  However more recently there has been a trend to implant larger femoral heads 

as they are associated with lower rates of dislocation 169 and a greater range of 

motion 169.  According to the NJR, in 2003 the most common size of femoral head 

implanted was 28 mm whilst in 2013 it was 32 mm 1.  

Further changes have focussed on the bearing surface materials to reduce wear 

volumes.  There have been two major changes to the polymeric material used in 

acetabular components.  The first was the introduction of ultra high molecular weight 
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polyethylene (UHMWPE) 170, and more recently cross linked polyethylene (XLPE) 171.  

Both of these were designed to increase the wear resistance of the material, thus 

reducing wear volumes and improving the longevity of the implant.   

While many prostheses are designed to be anatomically correct this is not always the 

case.  In PIP arthroplasty there are two predominant designs: single component non-

anatomically correct prostheses (Figure 5) and two component anatomically correct 

prostheses (Figure 6).   Since its introduction in the 1960s the Swanson prosthesis 

(Figure 5A) has been one of the leading prostheses for arthroplasty of the PIP and 

MCP joints, despite not being anatomically correct 172.  The Swanson is a single 

piece silicone prosthesis designed to act primarily as a spacer, preventing bone on 

bone contact 173 174.  The primary aim of the implant is to relieve pain whilst providing 

a limited amount of functionality to the affected joint, rather than restoring its natural 

biomechanics.  The prosthesis is not fixed into the bone 175, allowing it to undergo a 

“piston” action during flexion extension, where the stems of the prosthesis glide 

within the intramedullary cavities 176.  This was hypothesised to increase the lifespan 

of the prosthesis by dispersing the forces along a broader area 172.  
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Figure 5: Single piece silicone PIP prostheses: A) Wright Medical Technology 

Swanson prosthesis B) DePuy NeuFlex prosthesis. 

 

Figure 6: Two piece PIP prostheses: A) Ascension Pyrocarbon prosthesis B) 

MatOrtho PIP MoP replacement prosthesis 

A later version of the Swanson utilises titanium grommets around the stem hinge 

interface, hypothesised to reduce the incidence of fracture 175.  The success of the 

Swanson has led other manufacturers to develop their own modified versions of the 

single piece silicone spacer, such as the NeuFlex (Figure 5B).  The NeuFlex has a 
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hinge design with a 30° flexion angle, mimicking the natural anatomy of the joint 175.  

The design rationale was that this would reduce the strain in the material, thus 

decreasing the risk of fracture 175.  Despite the issues surrounding fracture, silicone 

prostheses are still considered to be the “gold standard” in PIP arthroplasty 177.  

Whilst the Swanson predominantly functions as a spacer for the joint, there is an 

alternative group of prostheses that utilise articulating bearing surfaces to replicate 

the natural anatomy and biomechanics of the joint 178.  The two most common 

designs (Figure 6 A and B) are the Pyrocarbon PIP prosthesis (Ascension / 

Integralife, Plainsboro, New Jersey, USA) and the surface replacement (SR) PIP 

prosthesis (Small Bone Innovations Inc., Morrisville, PA, USA).   

The SR PIP prosthesis consists of an UHMWPE component and a CoCrMo 

component, both using a titanium alloy stem 178.  This combination of articulating 

surfaces forms a MoP bearing couple 179.  PyroCarbon PIP prostheses are 

manufactured from a high strength graphite substrate 125 which is then coated in 

pyrolytic carbon using a process known as chemical vapour deposition 128.  The 

manufacturers claim that pyrolytic carbon is a hard wearing material which virtually 

eliminates the problem of wear related failures 180.   

The main advantages of using a non-anatomically correct implant such as the 

Swanson is that it provides an increased amount of stability compared with 

anatomically correct prosthesis 173.  As two piece prostheses mimic the natural 

biomechanics of the joint, stability can be difficult to achieve with such prostheses, as 

they rely upon the quality of soft tissue.  In rheumatoid arthritis the disease can result 

in increased soft tissue imbalance as ligaments are elongated and tendons displaced 

181.  It has also been shown that in these circumstances two piece unconstrained PIP 

joint prostheses have poorer clinical outcomes than Swanson silicone arthroplasty 

181.   

3.4. Failure modes of joint prostheses 

As mentioned previously there are many different ways in which a prosthesis may 

fail.  For anatomically correct prostheses the bearing surfaces articulate against one 

another allowing movement of the joint.  During the articulation process there are 

several possible modes of failure, which will be discussed in turn.  
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The first method of failure is wear related.  During relative motion between the 

articulating surfaces of the prostheses, asperity contact may result in wear particle 

generation 39 182.  The most commonly observed wear regime is abrasion 182.  The 

host response is dependent upon the type of wear debris, so it is important to 

differentiate it into three categories: polymer, metal and ceramic.   

The release of polyethylene wear particles cause a host response of periprosthetic 

bone resorption, known as osteolysis, leading to aseptic loosening 39 183 184 185. This 

is defined as mechanical failure of the interface between the prosthesis and the host 

186.  Aseptic loosening was noted as one of the top three reasons for revision for the 

majority of joint arthroplasties listed in the NJR 2014 annual report (hips, knees, 

ankles and elbows) with shoulder arthroplasties the exception to this (Table 1) 1.  

Numerous studies have reported wear debris induced osteolysis in arthroplasties of 

joints such as hips 39 183, knees 187 and ankles 188, supporting the findings of the NJR 

1.   

There have also been reports of PIP joint osteolysis in the literature 189 112.  In 2008 

the results of an audit into the failure of the LPM PIP prosthesis were published, with 

“massive osteolysis leading to aseptic loosening” noted to be the most common 

cause of failure 112.  These findings indicate that wear related failures are a limiting 

factor for the longevity of different types of prostheses.  

Metallic wear particles have been reported to result in a number of different clinical 

problems including pseudotumour formation 190 191 (Figure 7), aseptic lymphocyte-

dominated vasculitis associated lesion (ALVAL) 190, tissue destruction 7 and adverse 

soft tissue reactions 7.  These problems are categorised under the term ARMD 

failure, which is an acronym of adverse reaction to metal debris.  In 2013 such 

adverse reactions were responsible for 14 % (1,363 procedures) of all hip revisions 

according to the NJR 1.   
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Figure 7: An intraoperative photo of a MoM hip revision procedure showing a 

pseudotumour and effusion 

Ceramic orthopaedic products such as the BIOLOX range (CeramTec GmbH, Lauf 

Site, Germany) are manufactured from a zirconia toughened alumina ceramic 192.  

Numerous studies have reported low wear rates for CoC THAs, in comparison to 

metal or polyethylene based articulations 193 194 195.  However while ceramic particles 

are noted to be more biologically inert, if they were to be released in sufficient 

numbers it could potentially result in osteolysis similar to that of polyethylene 

particles 196. 

Another common reason for revision is dislocation or subluxation (partial dislocation), 

which in 2013 accounted for 13% (1,303 procedures) of hip revisions 1.  Dislocation 

usually occurs as a result of trauma, forcing the bones of a joint to undergo abnormal 

separation.  For hip replacements there are several reported causes of dislocation 

such as patient factors 197 and implant factors including head diameter 197 198 199 and 

the positioning of the acetabular cup 200 201 .  For the PIP joint, dislocation is also an 

issue 5 due to the unconstrained nature of many of the prostheses utilised and the 

reduced stability of the surrounding soft tissue due to RA. 
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Fractures are also a common cause of failure1.  In the NJR 2014 annual report the 

term fracture may refer to fracture of the prosthesis, acetabulum or femoral neck 1.  

Of these the most common fracture was periprosthetic fractures, a fracture of the 

bone surrounding the implant, which resulted in 10 % (963 procedures) of hip 

revisions in 2013 1.  Femoral neck fracture following hip arthroplasty was commonly 

associated with intra operative notching of the femoral neck 202 203, varus placement 

of the femoral component and insufficient cover of the reamed femoral bone by the 

prosthesis 203 202.  In contrast to hips, broken or defective prostheses accounted for 

38 % of all PIP revisions noted in the Norwegian arthroplasty register 5.  Numerous 

studies have also reported PIP prosthesis fractures 174 176 128 204 205.   

Finally, whilst not a failure mode per say, pyrolytic carbon PIP prostheses, CoC and 

MoM hip prostheses have been reported to squeak in vivo 206 205,207.  However, a 

squeaky prosthesis is unlikely to be revised in the absence of other clinical symptoms 

such as pain.  

3.5. Thesis contribution to the literature 

The overarching aim of the studies presented within this thesis was to apply 

engineering analysis to identify failure modes of prostheses both in a pre and post 

clinical context.  The studies examined a range of different problems presented in 

orthopaedics, some of which are not widely publicised.   

The deformation studies have provided a detailed account of the testing, validation 

and implementation of an optical system to measure acetabular shell deformation in 

cadavers.  One of the largest contributions to the literature is the validation of the 

ATOS system, a validation which has not been reported for any other measurement 

system used for this application.  The third deformation study “The influence of the 

strength of bone on the deformation of acetabular shells” also offers the first 

quantified comparison between the mechanical properties of bone and size of the 

deformation.  Combined, these studies provide a detailed methodology that can be 

applied by other researchers to standardise the testing of acetabular shell 

deformation and allow direct comparison between studies.   

The trunnion study was not the first to present volumetric wear results, however it 

was the first to include a large cohort of ex vivo samples (n=28), the largest cohort 

reported in the literature.  In addition to this it is the first study to validate a 
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measurement method for quantifying the volumetric wear from the trunnion surface.  

This methodology can now be applied by other studies examining the trunnion 

surfaces.  

The study “Surface finish of the Exeter Trauma Stem: A cause for concern?” was not 

the first to offer surface roughness data for the Exeter matt finish stem.  However it 

was the first study to offer a comparison between the original Exeter, the ETS and 

the Exeter matt stems, demonstrating the different surface finishes of all three types.   

The study found that there was a statistical difference between the surface finish of 

the ETS and the Exeter stem.  Given that NICE have implied that the ETS is 

equivalent to the Exeter stem, the results indicate that this may be misleading and 

further research should be conducted to determine if it has a similar clinical 

performance.  

The study entitled “An analysis of explanted pyrolytic carbon prostheses” was the first 

independent ex vivo analysis of such implants reported in the literature.  Similarly the 

study “Analysis of failed Van Straten LPM proximal interphalangeal prostheses” 

offered the first explant analysis of this design of prosthesis.  Given the limited ex 

vivo analysis performed on finger prostheses, an important issue highlighted 

previously 36; these two studies represent a significant contribution in this field.  

3.6. Links between studies 

The major link between all the studies is that they examined orthopaedic prostheses 

using engineering analysis.  Whilst the specific issues being investigated varied from 

study to study, the underlying theme between them remained the same.  The aspect 

that changed was the measurement methods used. 

There is a distinct link between the three deformation studies as these were 

performed in a linear sequence where the previous paper informed the following one.  

All three studies used the same optical system to measure deformation; however the 

second paper “Validation of an optical system to measure acetabular shell 

deformation in cadavers” also used a CMM.  The study “Determining material loss 

from the femoral stem trunnion in hip arthroplasty using a coordinate measuring 

machine” also uses a CMM.  
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In addition to both using a CMM, the studies were also validations of measurement 

methods.  The study “Validation of an optical system to measure acetabular shell 

deformation in cadavers” used a CMM to validate the optical system, whilst the study 

“Determining material loss from the femoral stem trunnion in hip arthroplasty using a 

coordinate measuring machine” used gravimetric measurements to validate the 

CMM.   

The studies “Surface finish of the Exeter Trauma Stem: A cause for concern?” “An 

analysis of explanted pyrolytic carbon prostheses” and “Analysis of failed Van Straten 

LPM proximal interphalangeal prostheses” characterised the topography by using a 

profilometer to measure the surface roughness.  In addition all of the studies used 

the same parameter Ra.   

The ETS study focussed upon the roughness of the main surface of the stem, 

whereas the finger explant studies focussed on characterising the bearing surfaces.  

The method of measuring roughness using a ZYGO was first applied to the ETS hip 

prostheses, before being used for the finger prostheses.  In addition the trunnion 

validation study also utilised a profilometer although this was used to characterise the 

straightness of the trunnion samples rather than the roughness.   
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Chapter 4. Suggestions for future work 

Future work could and should examine prostheses from different joints using similar 

methods to those described in this thesis to understand their performance.  

Firstly in vitro wear testing should be standard for new prostheses to avoid implanting 

potentially dangerous devices into patients.  For hips, this should include at high 

inclination and anteversion angles of the acetabular component.   

Whilst pre-clinical evaluation is important, one of the key ways in which prostheses 

can be improved is by routinely performing ex vivo analysis on failed prostheses to 

determine the mode of failure.  Such analysis should include quantifying the wear, 

which has been shown to be a major limiting factor in the long term survival of 

prostheses 208.  Measurements can quickly be performed using machines such as a 

CMM, which is capable of measuring the bearing surfaces of two hip replacements in 

a mean time of 45 minutes 87.  Where this is not possible roughness should be 

measured to provide some quantification of the surface damage.  

The main difficulty is not with the measurement methodology, but the lack of a 

protocol that specifies what should happen with failed joint replacements.  The lack of 

consensus on how ex vivo prostheses should be treated currently results in the 

majority of prostheses being destroyed.  A practical solution would be to establish 

retrieval centres with an expansion of the NJR to include volumetric wear of different 

prostheses.   

A pilot study running since November 2013, known as the Northern Retrieval 

Registry (NRR), has already been established between five hospitals in North Tees, 

Durham, Sunderland and Newcastle 87.  It functions by utilising an online data 

tagging system.  Once a surgeon has retrieved a hip prosthesis they enter the details 

into the NRR online system which generates a code for that particular prosthesis.  

This code links the patient details stored in the NHS to the hip prosthesis so that 

different variables can be investigated.  All hip prostheses retrieved from these 

hospitals during revision surgery are sterilised and then sent to the retrieval centre for 

volumetric wear analysis.  The aim is to identify key design factors that are 

associated with clinical success or failure in order to identify harmful prostheses 

early.  The use of patient variables allows other parameters, such as gender and BMI 

to also be compared to wear.  
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Chapter 5. General candidate statement on published works 

It should be noted that there were issues in obtaining correct reflections of the 

candidate’s contribution to each study.  

For the Exeter Trauma Stem paper all measurements and analysis were performed 

by the candidate, with the exception of the statistical analysis.  The data was 

supplied to the surgeons as requested and from this a paper was drafted.  The paper 

was not sent to the authors at Newcastle University prior to submission, with a copy 

instead supplied after submission for inspection.  This was indicative of the way in 

which the project functioned.  

For the trunnion validation study the generic design of the experiments was proposed 

by David Langton with the specifics defined by the candidate.  The research was 

conducted by the candidate and one other co-author in a 50:50 split between 

gravimetric and CMM measurements.  The candidate was responsible for the CMM 

measurements and all the data analysis, whilst the second author was responsible 

for the gravimetric measurements.  

Throughout the collaboration with Ceramtec there have been complications and 

significant disagreement over how the project should be run, and who was 

responsible for which aspects of each study.   An example of this was the validation 

study, where the draft manuscript provided by Ceramtec was completely inadequate 

for publication and in several instances plagiarised our previous work.  The candidate 

spent several months completely rewriting the manuscript to ensure it was of suitable 

quality for publication and ensuring that it did not plagiarise.     

In order to get Ceramtec to sign the documents for the three papers they were 

involved with, lower percentage contributions from the candidate were presented to 

all co-authors.  The surgeons and academic staff involved with the study signed the 

documents confirming the candidate’s contribution; however Ceramtec disputed the 

already reduced values, lowering them further still.  Whilst this was substantially 

lower than the actual contribution, there was little choice but to accept the revised 

values, otherwise the signatures would have been retracted and the forms left 

unsigned. 
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