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Preface

This thesis describes research that was undertaken as part of an Engineering

Doctorate in Biopharmaceutical Process Development which was carried out

in collaboration with Fujifilm Diosynth Biotechnologies and sponsored by the

Engineering and Physical Sciences Research Council (EPSRC).

The thesis takes the format of a ‘thesis by portfolio’ which details a

number of projects that are linked by the theme of modelling and optimisation

techniques to be used in the pharmaceutical industry.

Being an industrially focussed Engineering Doctorate, the projects reflect

the research requirements of industry, and changed over the period of study to

meet new research challenges within the company.

The concluding chapter sets out recommendations to industry that have

been made based on the outcomes of the research.
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Abstract

The biopharmaceutical industry has seen rapid growth over the last 10 years in

the area of therapeutic medicines. These include products such as monoclonal

antibodies (mAbs) produced using mammalian cell lines such as Chinese

Hamster Ovary (CHO). In order to comply with the regulatory authority

(FDA) Quality by Design (QbD) and Process Analytical Technology (PAT)

requirements, modelling can be used in the development and operation of the

bioprocess. A model can assist in both the design, scale up and control of these

complex, non-linear processes. A predictive model can be used to identify

optimal operating conditions, which is vital for a contract manufacturer.

Traditionally industry has approached modelling through the

one-unit-at-a-time method, which can fail to capture unit interactions. The

research reported in this work addresses this issue by using a whole system

approach, which can also capture the interactions between units. Predictive

models for each of the process units are combined within an overall framework

allowing for the integration of the models, predicting how changes in the

output of one unit influence the performance of subsequent units. These

predictions can serve as the basis for the modifications to the standard

operating procedures to achieve the required performance of the whole

process.

In this thesis three distinct studies are presented; the first utilises a

hybridoma data set and presents a model to predict and characterise the

various critical quality attributes (CQAs), such as final product glycosylation

profile, and critical process parameters (CPPs) including titre and viable cell

count. The second data set concerns the purification of lactoferrin using

ion-exchange chromatography as a model system for developing downstream
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processing models. The output of this data set varied widely, and has led to the

development of a novel peak isolation methodology, which can ultimately be

used to characterise the elution. The final data set contains various CQAs and

CPPs for multiple units within one process. This data set has been employed

within a proof of concept study to show how an agent based framework can be

developed to allow for overall process optimisation.

The results showed that it is possible to link process units using a

common CPP or CQA. This work shows that using a agent based system of

two layers of modelling i.e. individual process unit models connected with a

higher level agent model that links via a common measurement allows for the

influences between units to be considered. The model presented in this work

considers the use of titre, HCP, measure of heterogeneity, and molecular

weight as the common measurement. It is shown that it is possible to link the

units in this way with the goal of predicting and controlling the glycosylation

profile of the Bulk Drug Substance (BDS).
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ŷi Vector of predictions

µ Specific growth rate (h−1)

µd Specific death rate (h−1)

µmax Maximum specific growth rate (h−1)

µmin Minimum specific growth rate (h−1)

εb Particle voidage

εp Internal particle voidage

ai f PARAFAC loadings matrix one in the i direction

bh Unknown parameter calculated by = u′hth/t ′hth

b j f PARAFAC loadings matrix two in the j direction

Cbi Chromatography column concentration

C f i(t) Feed concentration for chromatography column

ck f PARAFAC loadings matrix three in the k direction

Cpi Concentration of protein in molecule

dgln First order decomposition rate of glutamine (h)

eh Vector of errors for each component

ei jk PARAFAC sum of squares of residuals

EX Residual errors matrix of X

EY Residual errors of Y

fglc Glucose feed flow rate (L/h)

fgr Initial growing fraction

xxii



Fin Feed flow rate (L/h)

Fout Outlet flow rate (L/h)

kap Specific rate of apoptotic cell formation (h−1)

kd maximum cell death rate

Kglc Monod constant for glucose (mM)

kgln5 Second constant for glutamine degradation (h−1)

Kgln constant for glutamine degradation (h−1)

ki Film mass transfer coefficient

Klysis Lysis rate of dead cells (h−1)

KIamm constant for cell death due to ammonia accumulation (mM)

KIlac constant for cell death due to lactate for CHO cells (mM)

mglc Glucose maintenance coefficient (g of glucose consumed/g of cell/hr)

mgln Glutamine maintenance coefficient (g of glutamine consumed/g of
cell/hr)

PT Loadings matrix of X

pn Principal components analysis loadings vector for the nth component

pKa Acid dissociation constant

QT Loadings matrix of Y

Qamm Specific consumption/production rate of ammonia (mmol/cell/h)

QA Specific consumption/production rate of amino acid A (mmol/cell/h)

Qlac Specific consumption/production rate of lactate (mmol/cell/h)

QMAb Monoclonal antibody specific production rate (L/cell/h)

ramm Ammonia removal rate (mmol/cell/h)

T Scores matrix of X

t0 Column dead time

tg Retention time under gradient

th Scores for X

tn Principal components analysis scores vector for the nth component

tR Retention time

U Scores matrix of Y

Xg Concentration of growing cells (cell/L)

xxiii



Xap Apoptotic cell concentration(cell/L)

Xng Concentration of non growing cells (cell/L)

Xv Viable cell count (cell/L)

YAi/A j yield of amino acid Ai on amino acid A j (mmol/mmol)

Yamm/gln Yield of ammonia from glutamine (mmol/mmol)

yi Vector of true values

Ylac/glc Yield of lactate from glucose (mmol/mmol)

Yx,A yield of cells on amino acid A (cell/mmol)

Yx/A Yield of amino acid A on cells (mmol/cell/hr)

YX/glc Yield of cells on glucose (cell/mmol)

YX/gln Yield of cells on glutamine (cell/mmol)

[A] Extracellular concentration of amino acid A (mM)

[AMM] Concentration of ammonia (mM)

[GLC] Concentration of glucose (mM)

[GLN] Concentration of glutamine (mM)

[LAC] Concentration of lactate (mM)

[mAb] Extracellular concentration of monoclonal antibody (mM)

X 3-Dimensional input array

X 2-Dimensional input matrix

Y 2-Dimensional response matrix

B Normalised gradient ramp

F Number of components/modes in PARAFAC model

L Column length

R Resin molecule diameter

R Slope of chromatography gradient ramp

u Flow velocity

V Volume of culture (L)

xxiv



List of publications

Green, A. and Glassey, J. Multivariate analysis of the effect of operating

conditions on hybridoma cell metabolism and glycosylation of produced

antibody. Journal of Chemical Technology and Biotechnology, 90(2):303–313,

2015.

xxv



Chapter 1

Introduction

Within the pharmaceutical industry there has been a shift in the focus of

research and development over the last 10 years from small molecules to one

which places equal emphasis on small and large molecules. This is shown in

an analysis of the biotechnology industry as carried out by Evens and Kaitin

(2014) who highlight the increase in commercially available biotechnology

products. This trend in the pharmaceutical industry is shown in figure 1.1, with

the growth of biotechnology highlighted from the increase in products in

clinical trials since 2001.

Figure 1.1: Types of biotechnology products in clinical trials dur-
ing 2001, 2007, and 2012 (Evens and Kaitin, 2014)

The increased demand for biotherapeutic products over the last twenty

years has prompted the development of large scale production; with emphasis
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being placed on improving titre and/or yield. The primary method for doing

this has been through development of the cell line and production media.

However biopharmaceutical companies are now increasingly looking for

innovative solutions to improve the production process through reducing the

time to market, maintaining the cost effectiveness, and providing flexibility to

the manufacturing process whilst maintaining critical quality attributes

(CQAs). This change was driven by the introduction of an initiative by the

Food and Drug Administration (FDA) covering process analytical technology

(PAT) guidance and quality by design (QbD). This initiative addresses the

designing, analysing, and control of critical quality attributes (CQAs) through

critical process parameters (CPPs). Within the biopharmaceutical industry the

identification and subsequent control of CPPs which have the greatest

influence over the process allows for the establishment of a robust process with

the ability to control CQAs and CPPs such as final product quality and yield.

The research presented in this thesis aims to show that CPPs and CQAs of

subsequent steps in a bioprocess are linked, and that overall final product

CQAs can be controlled through the optimisation and control of multiple unit

CPPs.

Production of complex therapeutic proteins, such as monoclonal

antibodies (mAbs), is typically achieved through the use of mammalian cell

lines. Mammalian cell lines which have been used extensively in the

biotechnology industry include Chinese Hamster Ovary (CHO), Baby Hamster

Kidney (BHK), and murine hybridoma (NS0). CHO cells are used in both

industry and clinical development to produce approximately 70% of the

products currently on the market (Jayapal et al., 2007).

Despite their importance and popularity in biotechnology there is limited

information as to the post translational activity of CHO cells, which can

greatly affect the product. This lack of information includes the ability to link

operational conditions to the metabolic pathways, and lack of detailed first

principles models of processes such as glycosylation. Traditionally a

biopharmaceutical process is developed in two stages; the first being the

upstream fermentation and the second being the downstream purification.
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There are reports in the literature as to the development of platform process

and subsequent modelling of both of these stages (Li et al., 2010; Shukla and

Thömmes, 2010a; Low et al., 2007). However there is currently no technique

which would allow for the simultaneous development/optimisation of both

upstream and downstream together.

To develop such an overall process modelling framework there are three

separate factors required, these are process knowledge, process models, and

data. The process knowledge is obtained through understanding the

fundamental principles which govern each unit, for example the kinetics of

adsorption which determine the operation of the ion exchange chromatography

step. The process models can be formulated either based on fundamental

understanding of the process operation or from historical data typically using

multivariate data-based analysis techniques.

Multivariate modelling techniques can be used to predict future batch

performance from a historical data set. With regards to process development

this can aid in the optimisation of operating conditions, reduce experimental

number, provide on-line monitoring, and ultimately assist in the prediction and

control of critical quality attributes (CQAs) (Rathore et al., 2014a; Glassey

et al., 2011b). The proposed whole process modelling framework will allow

for the description of the whole process, the evaluation of the process and

conditions, monitoring, and predicting performance. It can also serve as an

evaluation tool for process scientists to use in system design. During process

development, this will be used as a tool to allow the process scientists to

explore the design space with minimal experimentation. To construct the

overall model first each unit must be considered.

The cultivation stage of the process relies upon the growth, protein

production, and harvest of the product. Cells are complex units, and as of yet

their full metabolism has not been fully characterised, various product

variations can be introduced at this stage which can affect the end product

efficacy. Provided in this research is a data-based model which can predict the

final glycosylation profile of the product. Furthermore through this research a

greater understanding of the process of glycosylation is presented; showing
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that glycosylation is a multi-step process with stages occurring in a particular

order. Additionally this research combines first principle models with

data-based models in a hybrid modelling structure, providing a characterisation

of the cultivation which can be employed to monitor the process. The second

unit considered is the ion exchange chromatography column.

In characterising the design space for a process and unit operation it is

standard practise that a range of operating conditions are tried at various set

points. In the case of chromatography this can cause significant changes in

process output which can make modelling difficult. This research presents a

method of peak isolation, through first principles and multivariate models.

This can then allow for the modelling and prediction of the peak at various

different conditions. The combination of first principles and multivariate

modelling techniques have overcome the challenges of a small data set to

produce accurate predictions. The final research presented in this contribution

is a proof of concept study. An agent based system is used showing how a

change in one process unit can influence and change the operation of another

unit.

One of the main issues facing the research presented in this thesis is the

lack of available data. Due to the sponsor company being a contract

manufacturer it was not possible to use data which belonged to the client.

Therefore the data used in this research was obtained form different studies

used to establish new technology, and from other academic sources.

In summary there are three distinct modelling techniques applied in this

research;

1. The application of statistical analysis and modelling tools to mammalian

cell culture and purification.

2. The development of a hybrid model using MVDA modelling along side

first principles models.

3. The application of an agent based model to allow for the simultaneous

optimisation of process units.
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1.1 Thesis layout and contribution

The chapters in this thesis present the work carried out over the course of the

Engineering Doctorate study. Chapters 2 and 3 provide a summary of the key

concepts which form the basis of the research, with Chapter 4 presenting the

methodologies used in the development of the models. Chapters 5-7 present

the results of the research, with chapters 5 and 6 being stand alone case studies

and Chapter 7 being the agent model for overall process optimisation. Chapter

8 presents conclusions and recommendations for industry based upon the

research carried out.

1.1.1 Chapter 2: Background information

This chapter presents background information necessary to understand the

biological aspect of the work presented in this thesis. This chapter covers the

structure and function of monoclonal antibodies, their production from cell

cultivation, and an overview of the purification stages. Also given is a

description of the bioreactor and ion exchange chromatography columns,

providing the necessary information required for modelling these units.

1.1.2 Chapter 3: Literature review

This chapter presents a review fo the literature concerned with monoclonal

antibody production, multivariate modelling, first principles modelling, and

agent based modelling. This literature is presented in the context of

biopharmaceutical development, with the focus being on techniques and tools

which have been study that comply with the FDA’s PAT and QbD guidelines.

1.1.3 Chapter 4: Methodologies and protocols

This chapter covers the methodologies for the experimental aspect of this

research, and the protocols for the modelling research. The chapter describes
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the generation of an ion exchange chromatography data set, and the origins of

both the hybridoma and Chinese hamster ovary data sets. The protocols cover

the techniques used to handle these data sets. Details are provided on array

unfolding, data preprocessing, multivariate techniques, first principles models,

hybrid model construction, and model performance assessment.

1.1.4 Chapter 5: Cell cultivation modelling

This chapter presents the models constructed for the cell cultivation process

unit. This chapter uses the hybridoma data set to construct models which can

then also be used, due to the similarities between the cells and products, with

CHO cells. The models presented include PLS models to predict the CPPs of

titre, and viable cell count, and the CQA of the final glycosylation profile. Both

titre and viable cell count are also then predicted using first principles models.

These two techniques are then combined to produce a hybrid model. It is this

hybrid model which really develops the work shown in literature. As currently

there few reports of hybrid models which predict both CPPs such as titre and

viable cell count, whilst also accounting for concentrations of metabolites.

This chapter presents a hybrid model which requires less data than multivariate

applications whilst still being able to predict changes in operational conditions.

1.1.5 Chapter 6: Ion exchange chromatography modelling

This chapter presents a similar study for ion exchange chromatography. A

lactoferrin data set was generated for use in constructing the models for this

unit. Again multivariate modelling techniques were used to predict yield, with

first principles models being used to generate the retention time of the

experiments. The use of the first principles model to predict retention time

allows for an automated model. It is this automated model, and the ability to

handle widely varying data sets which is the contribution of this chapter.
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1.1.6 Chapter 7: Agent based modelling

The concept presented in this chapter is the main focus of the research.

Showing that an agent based model can be used to predict how changes in the

operating conditions fo one process unit impact on the performance of another

unit. This chapter uses the models constructed in Chapters 5 and 6 to link

together the cultivation and ion exchange process steps. The chapter acts as a

proof of concept showing that it is possible to construct an agent based model

for a mammalian cell process. It can be seen that the cultivation and

purification stages can be linked with changes to the cultivation operating

conditions causing changes to the operation of the chromatography column.

1.1.7 Chapter 8: Conclusions and future work

This chapter concludes the work presented in this thesis, along with making

recommendations for the implementation of the research in industry, and

suggestions for future development.
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Chapter 2

An Overview of Bioprocessing

Chapter 1 introduced the current position of the pharmaceutical industry and

showed the increasing demand over the last decade for biotherapeutic products

such as those derived from monoclonal antibodies (mAbs). This chapter aims

to introduce the fundamental science around the production of

biopharmaceuticals from cell culture production systems with emphasis on the

impact of different process variables upon growth, production, purification,

final product quality and the economic viability of the manufacturing process.

2.1 Cell culture

Cell culture is the process whereby cells are grown outside of their natural

environment, under controlled conditions (in vitro). The term cell culture

refers to cells which have been taken from a multicellular organism. These

cells are eukaryotic as opposed to simpler prokaryotic cells, such as E. coli or

B. subtilis; which are incapable of performing complex post-translational

modifications (Wurm, 2004). Prokaryotic and eukaryotic cells are both capable

of producing proteins, and both are capable of performing post-translational

modification, but the complexity of these modifications is greater in eukaryotic

cells. This is due to the structure of the cells; prokaryotic cells do not have

internal membrane bound organelles whereas eukaryotic do. In prokaryotic

cells gene expression and protein synthesis occurs in the cytoplasm whereas
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for eukaryotic cells gene expression occurs in the nucleus and protein synthesis

in the cytoplasm. In eukaryotic cells there are organelles (Golgi body and

endoplasmic reticulum) which are the site for post translational modifications.

The Golgi body enzymes catalyse these reactions which include glycosylation,

phosphorylation, and ubiquitylation. This research is concerned with

glycosylation, which is the addition of a carbohydrate side chain to a protein.

Disadvantages of using mammalian cell expression systems include high

maintenance costs (in comparison to prokaryotic based systems), long culture

duration, and high nutrient requirements. Furthermore manufacturing sites that

use mammalian cells require operators that are specially trained and qualified.

In contrast mammalian cells can produce proteins with a similar structure to

naturally occurring proteins, as the post translational modifications are similar.

This is particularly important when the product is for human use, as proteins

with glycans identical to naturally produced glycoproteins are less likely to

produce an immune response. Some mammalian cell lines which are

commonly used expression systems for large-scale recombinant protein

production are Baby Hamster Kidney (BHK-12), murine myeloma (NS0), and

Chinese Hamster Ovary (CHO).

2.1.1 Baby Hamster Kidney (BHK)

Production of vaccines from cells grown in culture started in 1954 using

monkey kidney cells (Vero) (Eibl et al., 2008). However with increased

demand for large quantities of foot and mouth disease vaccine (FMD) it was

decided that the Vero cell line was too expensive (Butler, 2004). Baby hamster

kidney (BHK) cells were adapted for use in producing FMD vaccine as they

could easily be scaled up to large volumes (5000L) (Ozturk and Hu, 2006). As

more vaccines were developed for use in humans, BHK were suggested as

possible cell culture producers as they could be cultured in suspension and had

been approved for vaccine production (Eibl et al., 2008). Issues were raised,

however, as it was discovered that BHK cells contain virus particles harmful to

humans (Ozturk and Hu, 2006). Therefore BHK are now primarily used for

production of veterinary medicines (Butler, 2004).
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2.1.2 Hybridoma

Hybridoma cell lines were originally developed from murine myeloma cells.

In the 1970s Köhler and Milstein (1975) developed the technique of producing

cells which are a hybrid of B-lymphocytes and myelomas. B-lymphocytes

produce the desired antibodies, but they are mortal. After fusion with

myeloma cells the resulting cell can produce the antibody and become

immortal, meaning they can reproduce indefinitely (Shuler and Kargi, 2010;

Galfre et al., 2007; Butler, 2004). Hybridomas are well adapted for large-scale

production of antibodies as they can be grown suspended in culture.

Furthermore the antibodies produced by hybridoma cells have a wide range of

applications because of the high specificity in recognising proteins. Further

information on the synthesis and production of antibodies from hybridoma

cells can be found in work of Butler (2004).

Murine derived hybridomas, and the subsequent antibodies, are widely

used as reagents, in purification, and for diagnostic tests. However they have

had limited success in the treatment of humans. This is because antibodies

secreted in mice and humans have different constant regions (Fc) and thus an

antibody derived from a mouse and injected into a human could elicit an

undesirable immune response (Sofer and Hagel, 1997). (More detailed

information on the structure of antibodies, and the Fc region is provided in

section 2.2.1.)

2.1.3 Chinese Hamster Ovary (CHO)

CHO cell lines are one of the most widely applied mammalian cell lines in

industry, accounting for 70% of recombinant protein production (Li et al.,

2010). As previously mentioned mammalian cells are used for recombinant

protein production as they have the ability to perform the required

post-translation modifications. CHO cells are particularly popular as they

synthesise proteins whose glycoforms are similar to native human products

(Butler, 2004). Figure 2.1 shows that between 1994 and 2012 CHO cell lines
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account for 40% of mAb production (Reichert, 2012).

Figure 2.1: Manufacturing cell lines used for mAb production
between 1994 and 2012 in the European Union and United States
(Reichert, 2012)

CHO cells are popular because they work well with recombinant DNA

techniques. This is when DNA is isolated and transferred from one species to

another. It can also be used so that cells express high levels of a protein

(over-expression) which is particularly useful in manufacture (Butler, 2004).

Along with the gene of interest a marker gene is also transfected, an example

would be the CHO cell line derivative known as dhfr-CHO. This is a cell line

which has been altered so it is able to produce the dihydrofolate reductase

enzyme (DHFR). This gives a selective advantage to the transfected cells, so

that they can be grown in an environment where producing the DHFR enzyme

allows them to out compete non transfected cells. Another commonly used

marker gene is glutamine synthetase (GS), which was developed at Lonza.

More information on both of these marker genes can be found in the work of

Costa et al. (2010).

Table 2.1 provides a summary of common cell lines which can be

obtained from cell culture collections; a brief note of the application of the cell

line and references to literature concerning the cell line are provided.
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Table 2.1: Examples of common cell lines obtainable from culture collections. Information on cultivation conditions obtained from
Doyle and Griffiths (1998).

Cell
line

Origin Cell type Comments Cultivation media References

BHK
Baby

hamster
kidney

Fibroblast

Used for vaccine production,
cells are anchorage dependant

but can be induced into a
suspension.

Eagle’s basal medium
supplemented with 2% tryptose

phosphate broth (TPB) and
other supplementation,

including glucose, glutamine,
vitamins, lactalbumin

hydrolysate and pluronic F-68

Hernandez and
Brown (2010);
Moreira et al.

(1994)

CHO
Chinese
hamster
ovary

Epithelial

If a surface is available cells
will attach to it, but they will

also grow in suspension. Used
extensively for genetic

engineering

Suspension culture using F12
medium, with 10 % foetal

bovine serum (FBS). Vessel
should be gassed with 5 %

CO2. Cells require
hypoxanthine, glycine,

thymidine, and proline for
growth.

Hacker et al.
(2009); Li et al.

(2010)

HeLa
Human
cervical

carcinoma
Epithelial

First isolated in the 1950s, it is
a fast growing human cancer

cell.

Cells are cultured in Eagle’s
MEM (EBSS) supplemented

with glutamine, non- essential
amino acids and 10 % FBS

Doyle and
Griffiths (1998)

13



L
Mouse

connective
tissue

Fibroblast
A lot of cell development in
the 1950s was based on this

cell line

Cells are cultured in DMEM
with 10% FBS

L6
Rat skeletal

muscle
Myoblast

Used for differentiation of
muscle cells

Cells are cultured in Eagle’s
basal medium with 10% FBS

MDCK

(Madine
Darby)
canine
kidney

Epithelial

Anchorage dependant cells
with favourable growth

characteristics. Used in the
production of veterinary

vaccines.

Cells are cultured in Eagle’s
MEM with 10% FBS

Doyle and
Griffiths (1998)

MRC-5
Human

embryonic
lung

Fibroblast
Has a finite life span, is used

for human vaccine production.

Cells are cultured in Eagle’s
MEM with 10 % FBS.

Different media formulations
can increase lifespan of cells if

desired.

Doyle and
Griffiths (1998)

MPC-
11

Mouse
myeloma

Lymphoblast
Derived from mouse tumours,
is used to produce antibodies

Cells are cultured in RPMI
1640 with glutamine and 10%

FBS. The cells die in the
presence of HAT medium.

Namalwa
Human

lymphoma
Lymphoblast

Derived from cells of a human
suffering from Burkitt’s

syndrome; used for alpha
interferon production.

Cells are cultured in PMI 1640
with 5-15 % FBS at 37°C and

pH 6.8-7.0,

Doyle and
Griffiths (1998)
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NB41A3
Mouse neu-
roblastoma

Neuronal

Derived from tumour cells,
with favourable growth

characteristics. These cells
have similar properties to nerve

cells.

Cells are cultured in DMEM
supplemented with 2mM
glutmaine with 10% FBS

3T3
Mouse

connective
tissue

Fibroblast
Fast growing in suspension,
used for development of cell

culture techniques.

Cells are cultured in DMEM
supplemented with 2mM
glutmaine with 10% FBS

WI-38
Human

embryonic
lung

Fibroblast
Finite lifespan, used for human

vaccine production.
Cells are cultured in Eagle’s
basal medium with 10% FBS

Vero

African
green

monkey
kidney

Fibroblast

Infinite lifespan, but shares
characteristics with finite cells,

used for human vaccine
production.

Cultured in Dulbecco’s
modified Eagle’s medium
(DMEM) with 10 % FBS.

Butler (2004);
Doyle and

Griffiths (1998)
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2.2 Monoclonal Antibodies (mAbs)

Antibodies are protein molecules, known as immunoglobulins, synthesised by

the immune system of an organism in response to a foreign macromolecule,

known as an antigen (Galfre et al., 2007). In cell culture a population of cells

derived asexually from the same parent cell are monoclonal therefore the

antibodies produced are termed monoclonal antibodies (Galfre et al., 2007).

Production of mAbs in research and development was started by Köhler and

Milstein (1975) who developed the used of hybridomas as an expression

system. The popularity of mAbs in industrial production has grown rapidly, as

shown in Figure 1.1, between 2001 and 2012 mAbs were one of the fastest

growing areas of biotechnology in terms of products in clinical trials Evens

and Kaitin (2014). The evidence of this growth is further supported by the four

new mAb products which were approved by the Food and Drug

Administration (FDA) in 2014 (Reichert, 2015) (Table 2.2).

Table 2.2: Therapeutic antibodies marketed in the EU and US in
2013/2014 (Reichert, 2015).

Product Trade name Target Year
Adotrastuzuma-

bemtansine
Kadcyla® Humanised IgG1

(Breast cancer)
2013

Obinutuzumab Gazyva® Humanised IgG1
(Chronic

lymphocytic
leukemia )

2013

Siltuximab Sylvant® Chimeric IgG1
(Castleman

disease)

2014

Vedolizumab Entyvio® Humanised IgG1
(Ulcerative colitis,

Crohn disease)

2014

Ramucirumab Cyramza® Humanised IgG1
(Gastric cancer)

2014

Pembrolizumab Keytruda® Humanised IgG4
(Melanoma)

2014

Table 2.2 shows the mAb products brought to market in the EU and US in

2013/2014. This growth in the market is reflected in the global market value of

antibody drugs, which in 2013 was $63.4 billion. It is expected that this market
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will grow at a rate of 12.2 % between 2014 and 2019, with the result being that

by 2019 antibody drugs will have a market value of $122.6 billion (Dewan,

2015). This development potential comes from the interest shown in not just

developed, but also emerging markets (Imarcgroup, 2012). Additionally the

interest in mAbs is due to the wide range of diseases that can be treated using

them, as shown by the cross section of medical conditions which can be

treated by the products brought to market in 2013/2014 (Table 2.2).

2.2.1 Structure

All antibodies have a similar structure containing four polypeptide chains; two

light and two heavy chains as shown in Figure 2.2, named according to the

molecular weight of the chains. Each of the antibody chains has a variable

amino acid sequence in the Fab region which is where the antigen specific

binding occurs. The flexible hinge region allows for antigen binding sites to be

variable distance apart. Once the antigen has bound to the Fab region the Fc

region (which is constant for all antibodies of the same class) interacts with

other components of the immune system. For example cancer cells are not

recognised by the immune system as foreign. Therefore when a mAb attaches

to the surface of a cancer cell the immune system recognises the mAb as a

foreign body and subsequently the cancer cell. In this way it can be said the

mAbs are acting as markers.

The production of mAbs for use as human therapeutics presents many

challenges. The first mAb product produced was Orthoclone, an

immunosuppressent against kidney transplant rejection. The product was not

successful and failed during clinical trials as patients who received the drug

developed an immune response to it (Ezzell, 2001). It was discovered that the

immune response was caused by the fact the mAbs were made using murine

derived hybridomas. The immune system recognises mAbs produced this way

as foreign and causes the human anti-murine antibody response (HAMA)

(Sofer and Hagel, 1997; Butler, 2004). This is an example of how product

properties and characteristics need to be considered as they can impact on the

safety and/or efficacy of the product (Rathore et al., 2014a).
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Figure 2.2: Structure of antibody (Immunoglobulin). (A) The di-
agram shows the four poly peptide chains (two light, two heavy),
the antigen binding site, and the Fab and Fc regions (B) A three di-
mensional model of an antibody molecule in the same orientation
as (A)(Sadava et al., 2007)

In the case of mAbs produced from murine hybridoma cells, CHO cells

(Li et al., 2010) were used as an alternative expression system as they offer

control over properties and characteristics of the product as summarised by

Costa et al. (2010):

• CHO cell produced mAbs are safe for use in humans.

• The glycan structure of the product is similar to that of naturally
produced human mAbs.

• The ease of transfection i.e. the introduction of new genetic material to
cell.

• They are a powerful gene amplification tool and can be used in the
replication of specific genes so that more of a specific protein is
produced.

• They can be easily adapted to grow in suspension and serum free media.

• They can be used to produce protein with a glycosylation profile similar
to that of naturally occurring human proteins.
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This research is particularly concerned with the last of these points, which is

the identification and control of glycosylation of mAbs produced from CHO

cell cultivation.

2.2.2 Critical Quality Attributes (CQAs)

Critical Quality Attributes (CQAs) are properties or characteristics that should

be maintained within appropriate limits to ensure the desired product quality

(Rathore et al., 2014b). Although it is not necessary for a company to fully

assess the CQAs of a biopharmaceutical product (ICH guideline Q11, 2011), it

is considered the first step to a quality by design (QbD) approach. Furthermore

characterising a product can help in the design and subsequent regulatory

approval of the product. Some examples of mammalian cell cultivation CQAs

include: the capability of attaining high product yield, the ability to perform

post-translational modifications, solubility, stability, therapeutic efficiency, and

time taken to be cleared from the body (Jayapal et al., 2007). Defining these

attributes prior to product manufacture is important, as the parameters which

influence them can be identified and controlled. These are referred to as

Critical Process Parameters (CPPs). Table 2.1 briefly describes some of the

cultivation conditions from different cell lines. The influence of these

parameters on CQAs will be discussed further in the following section.

Glycosylation

As mentioned in section 2.1 one of the benefits of mammalian cells is their

ability to perform the required post translational modifications, such as for

example glycosylation. There are various structures for a glycosylated proteins

used for human therapeutics it is important their structure resembles a

naturally occurring human one. Glycosylation is a reaction where a

carbohydrate is attached to a functional group of another molecule; generally

these molecules are proteins or lipids. With reference to the research presented

in this thesis a glycosylation reaction produces a glycoprotein, i.e. a protein

with a covalently attached carbohydrate chain. The carbohydrate chain is an
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oligosaccharide formed from single monosaccharides such as glucose or

fructose or others. When this chain is attached to a glycoprotein it is

commonly called the glycan. The glycosylation reaction which produces the

glycoprotein is a post translational modification, occurring after protein

synthesis but prior to secretion from the cell.

The glycosylation of the Fc region is essential for effector functions of the

antibody, such as complementary binding once in the human recipient (Butler,

2004). Additionally, approximately 20 % of human antibodies are

glycosylated in the Fab region, where glycans can be important for antigen

binding. The level of glycosylation of antibodies is small (2-3 % weight)

compared to other proteins. However, it is known that the glycan structures of

antibodies can significantly impact on the immune response (an example of the

HAMA response is described in section 2.2.1). Figure 2.3 shows the common

glycans of IgG with 0, 1, or 2 galactose terminal residues (G0, G1, and G2)

Figure 2.3: Three of the most abundant glycans in mAb bio-
pharmaceuticals. These glycans bind to the Fc region and are
terminated by 0, 1 or 2 galactoses. They are called G0, G1 or
G2 respectively (Sasorith and Lefranc, 2004). GLCNac is N-
Acetylglucosamine a derivative of glucose.

To avoid the undesired immune response it is important that the

cultivation maximises the content of fully processed glycoproteins. There are

various factors which affect the final glycoprotein, such as the metabolic

profile of the cell, and the environmental conditions of the culture. Process

parameters which have been shown to impact glycosylation include:

concentration of ammonia, dissolved oxygen levels (DO), concentration of

glucose, pH, and composition of media (Ivarsson et al., 2014; Hossler et al.,

2009; Kunkel et al., 1998; Spearman et al., 2007; Pacis et al., 2011a). It has

20



been shown that glycosylation can be controlled by temperature, with higher

levels of certain glycoproteins being produced at lower temperatures

(Spearman et al., 2007). Furthermore Pacis et al. (2011a) showed that high

levels of mannose glycosylation is strongly correlated with osmolarity levels

and extended cultivation durations. Kunkel et al. (1998) investigated how

varying DO levels effect glycosylation and showed that varying the DO did not

impact upon quantity of mAb produced, but noticeable differences in the

glycoproteins were observed. Normal levels of the 3 main glycoproteins

(Figure 2.3) were observed at 50 % DO.

2.3 Bioprocessing

Techniques used for the cultivation of mammalian cells differ greatly from the

techniques used to grow bacteria, yeasts, and fungi. A simplified

representation of a typical mammalian cell bioprocess can be seen in Figure

2.4. There are four distinct stages of the process, namely inoculation,

cultivation scale up, clarification, and purification.

Figure 2.4: Simplified bioprocess manufacture (inoculation, scale
up bioreactors, clarification and purification) (Ündey et al., 2010)

The inoculation is preceded by the development of the cell line. Currently

most cell line development by biopharmaceutical companies is based upon the

inhibition of DHFR (described in section 2.1.3) or on Lonza’s glutamine

synthetase (GS) system (Costa et al., 2010). The DHFR technique has been

established for longer than the GS which was only developed recently, thus the

DHFR technique is more widely adopted in industry. A typical cell line

development scheme is shown in Figure A1 in appendix. The expression

vector for the product is inserted into the host cell line, during a process known

as transfection. The cells are then selected and the genes amplified, leading to
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an increase in the recombinant gene copy number in the cells. The next step,

single cell cloning or limiting dilution, ensures that the cells selected for

processing produce the target protein. The cells are analysed by examining

product titre, so that the highest producer can be chosen for expansion. Further

information on cell line development can be found in the work of Lai et al.

(2013). After the cell line has been developed, it can be transferred under

aseptic conditions to a growth medium containing serum and small amounts of

an antibiotic in small T-flasks. These cells form the primary culture. At this

stage mammalian cells do not form aggregates but grow in the form of

monolayers on a support surface (Shuler and Kargi, 2010). If a cell line is then

obtained from this primary culture it is referred to as a secondary culture

which can be adapted during the scale up stage to grow in a suspension rather

than on a support. Scale up is important as the cells are in the growth phase

and the aim is to obtain a suspension with a concentration high enough to be

used in the production bioreactor and produce enough product (Shuler and

Kargi, 2010).

Large scale production aims to take the cells through the growth phase

into the production phase, whereby the cultivation is optimised to obtain

maximum product. The production bioreactor unit is described in detail in

section 2.3.1.

Antibodies can be recovered using a variety of methods depending on the

purity required. For use in patients a high purity is required, which means that

levels of contaminants must be reduced to acceptable levels (details can be

found in ICH guideline Q3A (2008); ICH guideline Q3B (2006)).

Additionally the purification process has to be validated to confirm that it

removes contaminating substances regardless of whether the presence of these

substances can be shown in the antibody source (Galfre et al., 2007).

The first stage in antibody purification is clarification involving the lysis

and subsequent removal of debris and large macroimpurities. If product is

intracellular, as in the case of mAbs produced from CHO cells, the proteins

need to be released. A review of techniques for large scale disruption of cells

is given by Kula and Schütte (1987), with specific application to mammalian
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cells described by Tait et al. (2009). The most common technique for

clarification is through filtration and/or centrifugation (Liu et al., 2010). It is

important that the correct technique is used as the process of lysis will affect

the viscosity (Abraham et al., 2004). Typically, the use of a centrifugal

separator will have a 90 % recovery of product with 99.9 % of the cell debris

being removed (Sofer and Hagel, 1997). Clarification is important as removal

of macroimpurities increases the performance of subsequent steps (e.g.

prevents clogging of chromatography columns). The largest impurity (by

volume), water, needs to be removed prior to purification, to concentrate the

product. This process is generally carried out by ultra-filtration or by protein

precipitation. Generally, purification is carried out using a system of

chromatography techniques which are complementary to each other as this

keeps the number of steps low (Liu et al., 2010). The purification steps are

used to remove impurities which, depending on the product source, can

include viruses, endotoxins, nucleic acids, host cell proteins, mutated or

modified proteins, modified oligonucleotides or peptides, cell culture

additives, and processing chemicals (Shuler and Kargi, 2010). Additionally in

some cases modified products are produced during purification. These can

include for example, aggregates which can be highly immunogenic (Fradkin

et al., 2009). These impurities also have to be removed to make a safe product.

A key requirement is that a purification process must be reproducible and this

is achieved by demonstrating reproducibility using analytical methods, to both

identify and prove the removal of impurities (Sofer and Hagel, 1997).

The research presented in this thesis is primarily concerned with the

production bioreactor and the ion exchange chromatography column. However

a more detailed account of the purification methods can be found in Desai

(2000).

2.3.1 Production bioreactor

To obtain the required cell density and maximum product concentration the

type and design of the bioreactor and the operation of it must be carefully

considered. When considering the large scale production there are CQAs of
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the product which influence the type of bioreactor used. Section 2.2.2 lists

some of these which are important for CHO cells and in particular the

glycosylation of the mAb product. These CQAs are, as discussed, influenced

by CPPs which include:

• Method of air supply

• Dissolved Oxygen

• Temperature

• pH

• Culture mixing

The following section discusses the monitoring and control of these

parameters, along with the different bioreactor designs.

Bioreactor design and control

The simplest and most widely used bioreactor is the stirred tank bioreactor

(STR). This is the traditional design for growing cells and has been used

extensively for bacterial and yeast fermentations. However mammalian cells

are large (10 to 20 µm diameter), slow growing (td ≈ 10h to 50h), and often

very sensitive to shear damage and therefore require a modified design (Sofer

and Hagel, 1997). A typical 5L STR used in mammalian cell culture is shown

in Figure 2.5. As can be seen the bioreactor is mechanically agitated using an

impeller with the stirring shaft fitting through the head plate. The impeller

blades are designed so that it mixes both radially and axially to minimise the

shear whilst maximising the effectiveness of the mixing. The base of the

vessel is also curved to promote mixing and prevent dead zones.

As can be seen in Figure 2.5 allowance is also made in the head plate for

the addition of probes to control various CPPs. The first of these parameters is

temperature, which is measured using a probe, and controlled by the outer

jacket. The second controlled parameter is pH, which again is monitored by a

probe. Optimal pH for cell cultures is approximately pH 7.4 and maximum

cell growth occurs when this is maintained. One method of pH control is
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Figure 2.5: Stirred tank bioreactor (Butler, 2004).

through the addition of CO2 however this is limited by the available head

space in the bioreactor. An alternative pH control method is direct addition of

acid or alkali via a pump. Another parameter which is monitored is the

dissolved oxygen, as the cells need enough oxygen for the cell metabolism

requirements. As culture volume increases so does the complexity of the

oxygen supply system. In T-flasks the cells can generally get enough oxygen

through head space diffusion, whereas for reactors larger than 1L the volume

to surface ratio is too low (Shuler and Kargi, 2010). For larger volume

bioreactors, they are aerated by sparging. Although this can cause issues with

bubble bursting and foaming (Butler, 2004).

There are other types of bioreactors which can also be used in mammalian

cell culture, the most common of these are summarised in Table 2.3.
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Table 2.3: Examples of production scale bioreactors, references provide information on the structure of the bioreactor or studies car-
ried out using the bioreactor.

Bioreactor type Design Comments References

Stirred tank
reactor (STR)

This is the most widely use
type of bioreactor. it is a

simple design consisting of a
cylindrical vessel with a stirrer.

There can be issues with bubble
damage, shear, and foaming.

Heath and Kiss (2007); Catapano
et al. (2009); Butler (2004);

Ivarsson et al. (2014)

Airlift

Column reactor with an
internal draught tube. Fluid is
circulated by a stream of air

with passes through the inside
of the draught tube

This is a simple system, with no
mechanical components so it is

less susceptible to breaking down.
Bubble damage and foaming are

minimised.

Heath and Kiss (2007); Catapano
et al. (2009); Butler (2004)

Hollow fibre

This reactor contains bundles
of hollow fibres which provide
a matrix for cell growth. Liquid
can flow through the fibres and

the space between fibres.

Media must be pumped through
the fibres to supply the cells, this
can create high pressures, nutrient
gradients, and uneven cell growth.

Heath and Kiss (2007); Catapano
et al. (2009); Butler (2004);
Lipman and Jackson (1998)

Packed bed

The packed element of this
bioreactor provides a matrix

for cell growth with a
continuous flow of medium.

The aim of this reactor is to
provide maximum surface area for
growth. The packed element can
be; glass beads, ceramic cylinder
with channels, or stacked mesh

plates.

Heath and Kiss (2007); Catapano
et al. (2009); Butler (2004);

Meuwly et al. (2007); Golmakany
et al. (2005); Ducommun et al.

(2002); Wang et al. (1992)
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Fluidized bed
Cells are immobilised in beads

and held in suspension by
upward flow of medium.

This type of bioreactor can be
difficult to operate on larger scales.

Heath and Kiss (2007); Catapano
et al. (2009); Butler (2004)

Disposable

Has a disposable bag, which is
in contact with the cell culture,

it is encased in a permanent
structure.

There are two types which differ in
the method of agitation, one with
an internal stirrer and the other
uses a rocking motion (wave)

Heath and Kiss (2007); Tang et al.
(2007); Catapano et al. (2009);

Minow et al. (2012)
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Cultivation characteristics

The cultivation is controlled so that the cells are provided with the right

environment at each stage as shown in Figure 2.6. The first stage is the lag

phase with little growth when the cells are established within the new culture.

Second is the growth phase which can last between 2 - 5 days. This stage is

typically characterised by the consumption of glucose, and can often be

indicated through an increase in pH as toxic metabolites such as ammonia are

produced. The stationary phase is relatively short and the concentration of

viable cells drops significantly due to the build up of the toxic metabolites

such as lactate and ammonia. However the formation of the product (i.e.

mAbs) can occur during both the growth phase and after growth stops (Shuler

and Kargi, 2010).

Figure 2.6: The cell growth curve: illustrating the lag phase when
the bioreactor is first set up, the subsequent growth phase of cells,
the production phase of the protein, and finally the death phase
which occurs when the available nutrients have been consumed.

The specific growth rate (µ) of the cell population is defined as the

number of new cells produced per unit of living cells present in the culture

medium per unit time. It is limited by the concentration of the limiting

substrate (S), which for CHO cells is typically glucose and glutamine. The

specific cell growth rate is given in equation 2.1 (Xing et al., 2010).

µ = µmax

(
[GLC]

Kglc +[GLC]

)
·
(

[GLN]

Kgln +[GLN]

)
·
(

[KIlac]

KIlac +[LAC]

)
·
(

[KIamm]

KIamm +[AMM]

)
(2.1)
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where [GLC] is the concentration of glucose (mmol/L), [GLN] is the

concentration of glutamine (mmol/L), [LAC] is the concentration of lactate

(mmol/L), and [AMM] is the concentration of ammonia (mmol/L). Kglc and

Kgln are the half maximum rate concentration of glucose and glutamine for cell

growth rate (mM). KIlac and KIamm are the half maximum rate concentration

of lactate and ammonia for cell growth rate (mM). (µmax) is the observed

maximum specific growth rate (hr−1) in the absence of any limitations from

nutrients or inhibition metabolites. During culture the specific growth rate

usually decreases due to the depletion of nutrients or accumulation of

inhibitory metabolites. The specific rate of cell death (µd) is defined as the

number of dying cells per unit of living cells present in the culture medium per

unit of time (equation 2.2).

µd = kd

(
[LAC]

KDlac +[LAC]

)
·
(

[AMM]

KDamm +[AMM]

)
(2.2)

where kd is the maximum cell death rate. KDlac and KDamm are half maximum

rate concentration of lactate and ammonia for cell death rate (mM). Cell death

is often low at the start of the culture and then increases due to nutrient

depletion or accumulation of inhibitory metabolites. The change in the

concentration of glucose and glutamine is defined as the number of millimoles

of nutrient consumed per unit of living cells present in the culture medium per

unit of time. For mammalian cell cultures it is generally found to have a linear

relationship to cell growth, and is given in equations 2.3 and 2.4.

d[GLC]

dt
=−

(
(µ−µd)

YX/glc +mglc

)
·Xv (2.3)

d[GLN]

dt
=−

(
(µ−µd)

YX/gln +mgln

)
·Xv−dgln[GLN] (2.4)

where mglc and mgln are the glucose and glutamine maintenance coefficients (g

of glucose consumed/g of cell/hr). YX/glc and YX/gln are the glucose and

glutamine yield coefficients (cell/mmol). dgln is the decomposition rate of

glutamine. The change in concentration of lactate and ammonia is defined as

the number of millimoles of metabolite excreted per unit of living cells present
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in the culture medium per unit time (equations 2.5 and 2.6) (Xing et al., 2010).

d[LAC]

dt
= Ylac/glc ·

(
(µ−µd)

YX/glc +mglc

)
·Xv (2.5)

d[AMM]

dt
= Yamm/gln ·

(
(µ−µd)

YX/gln

)
·Xv− ramm ·Xv +dgln[GLN] (2.6)

where Ylac/glc and Yamm/gln are the lactate yield from glucose and ammonia

yield form glutamine respectively (mmol/mmol). ramm is the ammonia removal

rate (mmol/cell/hr). Equations 2.1 to 2.6 are the equations which describe the

main mechanisms within the cell culture cultivation. These relationships can

become more complex when further variables are included such as the

production and consumption of all twenty amino acids. The inclusion of

amino acids into cultivation models will be explored in this research.

2.3.2 Purification

In the process shown in Figure 2.4, a protein A chromatography column is

used to actively bind the target protein, allowing host cell proteins, cell culture

media, and viruses to flow through the column (Sofer and Hagel, 1997). After

this, ion-exchange chromatography (IEX) is typically applied as a polishing

step. When applied in this way IEX is used to reduce high molecular weight

aggregates, charge-variants, residual DNA, host cell protein, leached protein

A, and viral particles (Sofer and Hagel, 1997). It is often used as a technique

for proving purity to regulatory bodies. The research carried out in this thesis

is primarily concerned with IEX chromatography, which is discussed in more

detail in subsequent sections.

Purification of mAbs

The cell line development for mammalian cell cultures over the last twenty

years has significantly increased the product titre from a cultivation. However

there is still a demand on industry to continue to increase final product titre,

which has caused a shift in the bottleneck from cultivation to purification. The
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demand for an increase in titre is an economic one, as production costs are so

high the more product a process can make the more profit for the company.

The purification stage of a process accounts for between 45-92 % of the total

process costs (Saraswat et al. (2013)). One of the main purification challenges

which can arise is the formation of aggregates in the process. Protein

aggregation is defined as a complex, multi-stage process which involves the

folding or misfolding of monomers followed by one or more assembly steps to

form oligomers. As mAbs are complex molecules, understanding the

aggregation process can be difficult due to the wide range of factors which can

introduce stress conditions during the manufacturing process that cause

aggregation. The Fc and Fab regions of a mAb molecule have different

properties and as such will respond differently to stress conditions (Chen et al.,

2010). Studies, such as that by Chen et al. (2010); Xu et al. (2012), show the

successful application of IEX chromatography for the removal of aggregates.

Ion-exchange (IEX) chromatography

The basic principle of IEX chromatography is that the charged areas of the

molecules in the product stream are attracted to the charged ligands on the

chromatography resin. There are two types of IEX, anion and cation. In anion

IEX the molecules carry a negative charge and the resin a positive, whereas in

cation IEX the molecules are positively charged and the resin is negatively

charged.

The five stages of IEX chromatography are shown in Figure 2.7

(GE-Healthcare, 2010). In summary the first stage is equilibration where the

chromatography resin is brought to the starting state (charge and pH) that

allows binding of the target molecule. The second stage is called the sample

loading where the product is applied to the column. Molecules with a suitable

charge will reversibly bind with the resin whilst unbound substances will wash

out during the third stage (wash). The fourth stage is elution, where the

conditions in the column are changed to make it unfavourable for binding.

This is done through the application of a buffer of a higher ionic strength

whereby the salt competes with the molecules for binding sites. This can either
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(a) Equilibration (b) Sample load
and Wash

(c) Elu-
tion

(d) Re-
generation

Figure 2.7: The five main stages of ion-exchange chromatog-
raphy; equilibration, wash, elution, and regeneration (GE-
Healthcare, 2010).

be done gradually (gradient elution) or stepwise (step elution). The final stage

includes the removal of any unbound material by application of a buffer with a

high ionic strength (high salt content), and then the column is re-equilibrated

to return the resin to a point where binding of target molecules can occur. To

optimise the binding of molecules and to achieve the required purity various

CPPs can be changed. For example to promote binding of target molecules the

mobile phase buffer should be of a low conductivity (Desai, 2000). Table 2.4

summarises the main CPPs and the ideal conditions for IEX chromatography.
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Table 2.4: Properties of ion-exchange (IEX) operation

Process
parameter

Operation Comments

Product
concentration

The concentration of the sample loaded onto a
column should not exceed the maximum

binding capacity for the resin, which is specific
for each resin.

When carrying out the removal of water from the
product stream (as described in section 2.3) the

concentration of the product should be monitored, as it
can vary greatly. If the concentration is less than 1

gl−1 then it is recommended that the solution should
be concentrated.

Viscosity

The viscosity of a sample should be
determined prior too chromatography. If the
viscosity is to high it can prevent diffusion of

molecules and damage the resin.

If the protein and/or nucleic acid content of the
solution is high then it may be quite viscous. If it is

greater than 4cP is may be necessary to reduce it prior
to chromatography. If the viscosity is not reduced it
can increase the back pressure of the column, this in

turn decreases the flow rate. The viscosity can be
reduced by dilution of the feed stream.

Ionic strength
(conductivity)

Elution is performed by changing the pH or
ionic strength of the elution buffer. It can be
difficult to control a change of pH, so a salt

gradient is normally used. The most commonly
used salt is NaCl.

If the solution containing the product has a high ionic
strength (greater than 5 mScm−1) at a neutral pH, there
can be problems with IEX chromatography. This is a

problem because the charged molecules (e.g. salt) will
competitively bind to the ligands and prevent the target

molecules from binding.
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pH

The pH of the buffer selected for binding and
elution affects the charge on weak ion

exchangers but not on strong ion exchangers,
this is why strong ion exchangers are used in

industry.

The net charge of a molecule depends on the pH, if the
pH was altered towards the isoelectric point of the

substance it looses charge and therefore desorbs from
the column.
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To understand and subsequently model an IEX column it is easer to look

at the bulk-fluid and particle phases separately. Figure A2 on page 292,

illustrates the two phases, fluid and stationary. A mass balance constructed for

the bulk-fluid phase is concerned with the concentration and movement of

particles through the column. A stream entering the column is characterised by

the feed concentration as a variable of time (C f i(t)), however as this stream

moves through the column, the concentration (Cbi) becomes dependant on

time, axial position (distance travelled) in the column and radial diffusion.

Additionally the space between particle (voidage (εb)) needs to also be

considered as this is the flow path of the fluid. A mass balance for the bulk

fluid phase can be found in the appendix as given by Gu (1995).

Figure 2.8: Resin bead cross sectional diagram for ion exchange
chromatography, showing phase boundaries (Gu, 1995).

Figure 2.8 shows a cross section diagram of the phase boundary around a

resin bead. A more detailed diagram is shown in Figure A2 on page 292.

Around each resin particle there is an area which relates to the mass transfer

from the bulk fluid phase to the particle phase. This is accounted for by the

film mass transfer coefficient (ki). Once a molecule has diffused through the

film surrounding the bead, the diffusion into the bead is dependent upon the:

molecule diameter (R), molecule concentration (Cpi), and internal particle

voidage (εp). A mass balance for the particle phase can be found in the

appendix as given by Gu (1995).

Chromatographic separation

The compounds which elute from the column are transported in the mobile

phase to the UV detector and recorded as a Gaussian curve. The signal

produced for each compound is called a peak and the trace for the whole
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Figure 2.9: Example chromatogram showing a two component
system. t0 is the dead time, tR is the retention time of components
one and two respectively, t ′R is the net retention time, and w is the
peak width (Northern Arizona Univeristy).

purification is called the chromatogram. The peaks provide information, which

is both qualitative and quantitative, on the mixture being purified.

(a) Qualitative: when the chromatographic conditions are identical the

retention time (tR) of a component is constant. The retention time is the time

that elapses after the sample is injected until the recording of the signal

maximum by the detector. The chromatographic conditions consist of the

column dimensions, the temperature, the type of resin used (stationary phase),

the buffer used (mobile phase), and the flow rate.

(b) Quantitative: the peak area and peak height are both proportional to

the amount of compound injected onto the column. In the case of the data

presented in this research the concentration of protein is known thus the

relationship with the peak area and height can be easily modelled.

Figure 2.9 shows an example of a chromatogram, where w is the peak

width at the baseline, t0 is the dead time of an un-retained compound. The

dead time is the time it takes the mobile phase to pass through the column and

is also referred to as the breakthrough time. The linear flow velocity (u) can be
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calculated as shown in Equation 2.7 (Horvath et al., 1967).

u =
L
t0

(2.7)

where L is the column length. If a compound does not bind to the column it

appears on the chromatogram at t0, additionally if the maximum binding

capacity of the resin is reached there may be unbound compound of interest in

the peak at t0. t0 is identical for all eluted substances and represents the

mobile-phase residence time. The retention time is given as tR. t ′R is the net

retention time or adjusted retention time. It represents the stationary phase

residence time and is different for each separated compound. The longer a

compound remains in the stationary phase, the later it is eluted.

The retention time is a function of mobile phase flow velocity and column

length. Meyer (2010) states that if the mobile phase is flowing slowly or if the

column is long, then t0 is large and hence so is tR; and is therefore not suitable

for characterizing a compound. In this case the retention factor (k) value is

used (Equation 2.8).

k =
t ′R
t0

=
tR− t0

t0
(2.8)

k is independent of the column length and mobile phase flow rate and

represents the molar ratio of the compound in the stationary and the mobile

phase.

2.4 Summary

In the last decade mAbs have been the fastest growing class of biotherapeutic

and this trend is set to continue. It is estimated that by 2019 the market share

for mAbs will be $122.6 billion (Dewan, 2015). There is a wide range of

mammalian cell expression systems available including CHO, NS0, and BHK.

There are a number of factors influencing which is the appropriate expression

system to use; these include cost to manufacture, product yield, ability to

perform post translational modifications, and complexities of the purification

process. The most widely used cell expression system in industry is CHO,
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accounting for 70% of recombinant protein production (Li et al., 2010). This

is because they are well adapted for production of proteins for use as

treatments in humans due to their ability to perform post translational

modifications similar to those naturally found in humans. In particular CHO

cells are able to perform glycosylation and produce glycoproteins which do

not produce an immune response. In addition to their ability to perform post

translational modifications, CHO cells also have two well established vector

expression systems (DHFR and GS) and there are platform technologies for

the transfection, amplification, selection, and expansion of the cell line (Lai

et al., 2013). The CQAs highlighted in this chapter form the basis for the

modelling work which is presented in chapter 3.
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Chapter 3

Literature Review

3.1 Process development in the biopharmaceutical

industry

The growth seen in the biotechnology industry over the last three decades has

produced significant development in areas such as genomics, cell and protein

engineering, but also in the development of the manufacturing processes.

Advances include the development of large scale fermentations, optimisation

of downstream processes and the development of disposable technology

(Strandberg et al., 1991; Wheelwright, 1991; Eibl et al., 2010). Within

industry the growth and discovery of new therapeutic proteins is directing the

need for successful large scale production and purification to provide the

economic advantages to companies as discussed by Kayser and Warzecha

(2012). Furthermore there are other factors which are promoting this

development of low cost faster biopharmaceutical production, namely the

unsatisfied market needs, the growing competitions between companies, and

the economic constraints of healthcare systems which are often turning to

cheaper generic products (Gottschalk, 2003). All of these factors are placing

pressure on making improvements to bioprocess development which is

typically expensive and time-consuming.

Literature has shown a few of these improvements which have been
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made. Farid (2007) discusses the development of scaled up bioreactors to

20,000L and Jagschies et al. (2006) discuss the improvements in product titre

to monoclonal antibody (mAb) concentrations in excess of 5 g/L both of which

have decreased the cost and time associated with bioprocess development. A

recent trend has emerged which has identified downstream purification as the

crucial limiting step in biopharmaceutical development (Aldington and

Bonnerjea, 2007; Birch and Racher, 2006; Rito-Palomares, 2008; Farid et al.,

2000). It could be said that the technological advances observed in the

upstream have far out stripped the advanced in the downstream, which has

resulted in 50-80% of the total manufacturing cost for one biopharmaceutical

product being in the purification and polishing steps (Lowe et al., 2001). This

means that both industry and academia are investigating new technologies

which can be incorporated into platform processes to reduce costs.

It is not only the cost of the downstream processing which is an issue. In

the competitive biopharmaceutical industry the time to market is also crucial.

Therefore the time given to establish the process is important. Normally the

process development is carried out and established during pre-clinical trials

and is then subsequently scaled up, optimised, and transferred to commercial

manufacturing facilities under Good Manufacturing Practise (GMP) before

phase 3 clinical trial and authority inspection is implemented (Nfor et al.,

2009). Once the manufacturing process has been reported to a regulatory body

it is very difficult and complicated to change any operation and specification

later. Historically the only exception being if there is evidence to suggest that

the safety, quality, or efficacy of the product are equivalent or better in the

modified process (United States Food and Drug Administration (FDA),

2004a). However this has now advanced with the introduction of QbD and

PAT, so that if a design space is fully characterised changes may be possible.

The current procedure for downstream process development is to

investigate various conditions in a laboratory or pilot plant, then scale up to a

large scale production using a general purification platform (Shukla et al.,

2007). This method requires large amounts of time, man power, and capital in

both designing and optimising at both small and large scale. However,
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ultimately it provides little understanding and few improvements to the

established platform process (Low et al., 2007). It is due to this that often in

industry process optimisation is reliant on operator experience and often lacks

a proper design approach. Therefore a systematic process design and

development strategy at an early stage can greatly improve knowledge of

bioprocesses and subsequently also achieve reductions in the time and capital

required for manufacturing optimisation.

3.1.1 Quality considerations in development and manufac-

ture

For therapeutic protein production it is important from a regulatory point of

view to address the quality and safety of the products produced. Historically

the strict quality requirements were primarily focused in manufacturing rather

than the process development, and quality was controlled by specifications

rather than through understanding. Now however the regulatory authorities

and industry have both adopted the Quality by Design (QbD) concept which

was introduced by the FDA (United States Food and Drug Administration

(FDA), 2004a). QbD is a comprehensive approach to product development

which includes designing and developing processes, identifying critical quality

attributes, critical process parameters, and sources of variability. The aim of

this approach is to improve the understanding of how the impact and

interactions between process parameters can influence product quality during

the process development stage (Kelley et al., 2009).

As part of the FDAs initiative ’Pharmaceutical cGMPs for the 21st

Century - A Risk-Based Approach’, they also produced a further document,

’Guidance for Industry: PAT — A Framework for Innovative Pharmaceutical

Development, Manufacturing, and Quality Assurance’ (United States Food

and Drug Administration (FDA), 2004b) designed to help with the

introduction of new technologies to improve the efficiency and effectiveness of

manufacturing process design, control quality and assurance (United States

Food and Drug Administration (FDA), 2004a). The FDA defines Process
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Analytical Technology (PAT) as being;

”a system for designing, analysing, and controlling manufacturing

through timely measurements (i.e. during processing) of critical

quality and performance attributes of raw and in-process materials

and processes, with the goal of ensuring final product quality”

(United States Food and Drug Administration (FDA), 2004b)

It is clear from this that the FDA’s PAT initiative is focused on promoting

optimisation of biopharmaceutical manufacturing and quality control through

companies adopting state-of-the-art methods for process control and analysis.

These methods allow for the consideration of more data from the process to be

able to relate this to final product quality, therefore allowing for quality to be

in-built in the products.

Figure 3.1: Summary of the FDA’s Process Analytical Technology
(PAT) framework, highlighting where the work presented in this
thesis fits within the framework.

Figure 3.1 provides a summary of the FDA’s PAT framework with the

areas where this work fits in shaded in grey. It can be seen that within the

framework there is a section concerning tools and a section concerning process

understanding. These two areas are captured through the modelling work

presented in this thesis, in that the model provides a tool for process

optimisation, whilst also increasing process understanding.
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In short, the biopharmaceutical industry needs a method of guaranteeing

the quality, safety, and efficacy of the products as early as possible (European

Medicines Agency, 2000). In order to predict, control, and analyse quality

effects, it has been shown that a mathematical equation, or a model, can be

highly beneficial when applied in early bioprocess development (Yu, 2008;

Rathore, 2009). Nevertheless, there is currently no framework which can be

applied to different bioprocesses or products. Even when the same platform

process is used there are variations in cultivation and purification conditions

which can vary significantly between expression systems and products.

Therefore a systematic approach is needed, which can be applied to establish

the relationship between critical process parameters (CPPs) and critical quality

attributes (CQAs) (ICH guideline Q11, 2011). The aim in this research is to

develop such a framework and models specifically for mammalian cell

systems.

3.1.2 The move towards monitoring, modelling, and optimi-

sation in the biopharmaceutical industry

Since the introduction of the FDA’s QbD and PAT initiatives there have been

various approaches suggested with the aim of accelerating bioprocess

development. These approaches include bioprocess modelling, disposables,

and high throughput technology (Carrier et al., 2009; United States Food and

Drug Administration (FDA), 2004a; Lee and Gilmore, 2006; Mandenius and

Brundin, 2008; Milavec et al., 2002; Nfor et al., 2009). The focus of this

research is on the development of bioprocess modelling techniques in

particular.

Historically process development relied on trial and error, and one factor

at a time methods i.e. empirical methods determined by intuition and

experience. This relied heavily on luck being an element of success and the

methods give little insight into the process (Simutis et al., 1997). Up until a

few years ago modelling was not considered as an important element in

industrial bioprocess design as it requires a lot of effort and resources to
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produce an accurate model. Recently industry has shown a greater interest in

modelling (Velayudhan and Menon, 2007), with the main driving force being

the requirements of the QbD and PAT incentives developed by the United

States Food and Drug Administration (FDA) (2004a). These concepts and

technologies use models to enhance the understanding of complicated

bioprocesses in pharmaceutical manufacturing, with the long term benefit for

companies being that the models can aid in the design and development of

processes more quickly. They also can be used for on-line analysis, and

control.

There are applications of QbD and PAT to laboratory scale fermentations

of bacterial expression systems Gnoth et al. (2007); Carrondo et al. (2012);

Mercier et al. (2013). Although these systems are not as complex as a

mammalian cell expression system there are benefits in applying these

approaches. Mammalian cell line development has traditionally focused on

cell line and culture improvements and the PAT principles have yet to be

widely adopted in the biopharmaceutical industry. However, Carrondo et al.

(2012); Mercier et al. (2013). Mercier et al. (2013), Kirdar et al. (2008a),

Glassey et al. (2011b), Teixeira et al. (2009a) have shown that multivariate

data analysis (MVDA) can be used to extract important process information

from a data set. It was shown that this reduces the complexity of the data set

by eliminating co-linearity and noise (Eriksson et al., 2013; Næs and Mevik,

2001). Due to these characteristics MVDA could potentially be used to

identify CQAs in line with the PAT and QbD requirements. However as the

biopharmaceutical industry is still in the process of adopting the PAT and QbD

initiative there is no suggestion of how process/product complexity, changing

cultivation environment over the cultivation trajectory, and the lack of direct

signal to physiological mechanism relevance would affect the application of

the PAT methods. One example in literature which focuses on the use of

MVDA as a tool for PAT in the biopharmaceutical industry is by Teixeira et al.

(2009a). In contrast to this there has recently been an increase in the literature

investigating the understanding of the cellular metabolism and the impact of

the changes in environmental conditions on the cell metabolism and the

product quality (Ozturk and Palsson, 1991; Ozturk et al., 1992; Nolan and Lee,
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2011; Trummer et al., 2006; Li et al., 2012). This provides the motivation to

develop accurate dynamic models which combine data-based models to

predict process variables using process data measured during the cultivation

with first principles understanding of cell metabolism and product synthesis.

3.2 Bioprocess modelling of mammalian cell sys-

tems

This thesis considers three different modelling techniques: first principles,

multivariate, and hybrid. Each of these techniques has been widely reported in

literature (e.g. Gadgil (2014); Huang et al. (2009); Psichogios and Ungar

(1992)). They differ in the construction and requirements for training. First

principles models use established laws of physics, with assumptions made

about the system. In contrast multivariate modelling is dependent upon the

collection of data. A model is then produced based upon observations of the

data. Hybrid modelling combines these two techniques to utilise the best

features of both. This review covers applications of all three techniques to

bioprocessing with the aim of selecting the most appropriate techniques for

this work.

3.2.1 First principles modelling of mammalian cell cultiva-

tion and purification

First principles modelling has been used for decades to describe the

mechanisms and dynamics behind experimental observations (Tomlin and

Axelrod, 2007). Within the field of biology one of the most well known

models is Turing (1952) reaction-diffusion equations. This model used

differential equations for morphogenesis (structure and shape) and applied it to

tentacle formation of different cells. Since this work many other models have

been derived which specify how concentrations of biochemical substances

change with time, in and around cells (Tomlin and Axelrod, 2007). To derive
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and construct these models experimental data, and knowledge or a hypothesis

of the systems behaviour are required (Bailey, 1998b). First principles models

have begun to find a place in industrial use in the last few decades due to the

improvements in data collection. Prior to this there was not enough

information on the performance and function of systems such as cells,

meaning models could be hypothesised, but they could not be validated

(Tomlin and Axelrod, 2007; Weis et al., 2014).

Mathematical models can be classified based on the model ’architecture’

and on the mathematical implementation. The term model architecture refers

to whether the model is constructed ’bottom-up’ or ’top-down’. The

bottom-up approach uses the component parts and their interactions, with the

higher level processes being determined from these parts being assembled.

This approach promotes that in order to understand a system the component

parts must first be understood (Milo, 2002; Hartwell et al., 1999; Bhalla and

Iyengar, 1999; Guido et al., 2006). In contrast the top-down uses a functional

model of the entire system and successively replaces each function with a

model of the mechanism that implements it. As a high level system could

contain many lower level mechanisms (Reid, 1985) the challenge is

determining which mechanisms are involved. With both of these modelling

approaches the components of the model are chosen based upon experimental

data (Morris et al., 2010). The mathematical implementation refers to the kind

of model used to represent the dynamics of each component (Tomlin and

Axelrod, 2007). Literature has shown that the most popular implementation

technique is differential equation models. Differential equations can represent

increase or decrease of biochemical compound concentration over time as

continuously varying signals (Turing, 1952). Within these equations are

parameters which include decay rates, rates of reaction, and rates of diffusion

etc. values of which must be identified using experimentation.

Industrial biotechnology benefits from the use of first principles models

as they can aid in understanding, predicting, and optimising the properties and

behaviours of various process units (Almquist et al., 2014). These benefits

mean that first principles models have been used to increase yields, titre, and
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productivity of a desired product (Bailey, 1998b). When modelling a

biological system such as the cell metabolism of a culture during a fed batch

process the response is characterised by its dependence on time. Almquist

et al. (2014) state that to account for this time dependence the model is

dependent on having accurate predictions of the rates of production and

consumption each component. This is further supported by the models

suggested by Kontoravdi et al. (2007); Naderi et al. (2011); Xing et al. (2010)

who all have produced models for CHO cell metabolism and have varying

methods for prediction of rates.

Developments in mathematical modelling of cell cultivations have

primarily focused on two main areas: increasing understanding of cell growth

and metabolism, and the prediction of cell performance in producing target

products. With the development of mammalian cell culture in the 1980s this

encouraged the development of mathematical expressions which could be used

to monitor, predict, and optimise the culture. Furthermore the 1980s saw

improvements to data generation and collection which made mathematical

modelling a more viable option. It is through the work of Glacken et al. (1988)

who began to establish models for cell growth that the more complex models

can be derived.

Glacken et al. (1988) focused on the generation of an equation to predict

cell growth rate for hybridoma cells. This equation was based on the Monod

equation (Monod, 1949) but included terms for the main metabolites of

hybridoma metabolism, namely glutamine, lactate, and ammonia. This work

was primarily concerned with developing equations such as those which could

be used in a ’bottom-up’ approach to characterise a system with little

experimental data. This method of characterising each aspect of the

metabolism is what is referred to by Tomlin and Axelrod (2007) as an

unstructured model, and from the 1980s onwards sees its use and application

grow. Suzuki and Ollis (1989) took a slightly different approach, in that they

hypothesised from data that the specific antibody production rate of hybridoma

cells increases as the specific growth rate of cells decreases. The result is a

structured model which takes into account the stages of cell division, and
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related this to specific production rate, showing that the most product was

produced during the G1 phase. This phase is classified as being just after

mitosis during which the cells biosynthetic activity slows. G1 is thus the stage

where is speeds up again.

These early models quickly established the basic equations used in almost

all subsequent models, whilst also establishing the range of application.

Glacken et al. (1988) stated that first principles models have the potential to

optimise a cell culture with minimal experimentation. It is this limited

experimentation aspect which has seen the popularity of this modelling

technique grow. Having established both the models and the applications, the

next stage in the development of first principles models for mammalian cells

was the development of more sophisticated models. These include both

unstructured (Bree et al., 1988; Glacken et al., 1989; Frame and Hu, 1991;

Zeng, 1996) and structured models (Batt and Kompala, 1989; Sanderson et al.,

1995). Generally it is found that the structured models are more complex as

they aim to characterise cell activities, which can include functions within the

cell organelles. On the other hand, unstructured models view the cell as being

a unit and they characterise the cell as a whole, being concerned more with the

initial conditions and end result, such as metabolites and cell products (e.g.

mAbs). As the unstructured models are generally simpler there has been more

work conducted into the development of unstructured models as they have less

computational requirements, and require less data. Jang and Barford (2000)

present an unstructured model for hybridoma cells which considers not only

each of the main metabolites separately but also considers both viable and non

viable cells separately. This allows for a more accurate prediction of the

specific antibody production rate, which is dependent on cell death. A similar

approach was adopted by Xing et al. (2010) and Naderi et al. (2011), with

further developments being suggested by Kontoravdi et al. (2007) who again

produced an unstructured model but one which contained expressions for all

metabolites. This increase in complexity of the models is possible due to the

improvements of not only data collection methods but also of the increase in

knowledge of the cell. The model presented by Kontoravdi et al. (2007)

contains many equations for both prediction of rates and concentrations of
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substances, showing how the improvements made in the predictions are at the

expense of increasing computational requirements.

Although first principles models have their place as useful tools for

predicting culture outcomes from small data sets, there are issues in their

application. Gadgil (2015b) states that currently mathematical models for

animal cell growth and metabolism cannot simulate changes to the culture pH,

with this being true for all process operating conditions. It can easily be seen

from literature that changing culture conditions can greatly affect the

performance of a cell culture (Hwang et al., 2011; Yoon et al., 2005; Ahn

et al., 2008). It is Gerdtzen (2012) who summarises the best method currently

available for overcoming this challenge in that statistical information provides

a description of the system which mathematical modelling cannot, showing

that for models which are both adaptive to changes in metabolism and

operating conditions, a hybrid model might prove best. However, to optimise a

production process it is not enough to characterise the synthesis steps, the

purification steps must also be described too.

Developments in mathematical modelling of protein chromatography

have focused on two main areas: intra-particle transport and interactions with

the sorbent surface. The early 1990s saw new theories for intra-particle

convection and diffusion. The adsorption of proteins has also been thoroughly

investigated and the effects of thermodynamic aspects and protein-protein

interaction investigated through the work of researchers such as Jungbauer

(1996). Furthermore the design of a process was considered and aspects such

as incorporating optimisation, flow rate, and column utilisation into the design

stage were considered. However these advancements do not start from a blank

canvas; they build upon the work carried out previously. It is through work

such as that of Giddings (1960) who during the 1950s characterised the

process of chromatography but did this through the method of defining the

kinetics for the system.

Giddings work into kinetic processes and zone diffusion was the first

attempt at characterising kinetic schemes which were representative of real

chromatography processes. These include the effects of adsorption on
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heterogeneous surfaces, simultaneous partition and adsorption, the adsorption

of larger molecules and chemical reactions that occur which are not related to

adsorption. All of these effects are important parameters to consider when

modelling a column (Giddings, 1960). The use of the rate model was

demonstrated by Giddings (1960), it was subsequently built upon by Gu

(1995) and finally the work of Orellana et al. (2009). The rate model uses two

partial differential equations: the first expressing the bulk fluid phase and the

second for the particle phase. There is then an equation which expresses the

rate of adsorption and desorption. This rate equation is chosen depending upon

the system. The type of rate equation used could vary from that of second

order kinetics used by Lienqueo et al. (2009) or using the Langmuir isotherm

as shown by Shene et al. (2006) who show that when the dimensionless

parameters are estimated correctly, it leads to a reasonably accurate prediction

of the elution profile. However as hinted by Orellana the difficulty with

mathematical modelling is in the estimation of the model parameters Orellana

et al. (2009).

In other work carried out by Von Lieres and Andersson (2010) the general

rate model was once again applied and a solver was created that was able to

deal with complex computations and unknown parameter values. Initially

work carried out by Susanto et al. (2008) focused on looking at a stepwise

procedure which is useful when single mechanisms are considered such as the

dispersion in the bulk phase. However due to current trends in separation

science, where industrial mixtures containing several compounds need to be

separated, this method is not applicable. Work by Von Lieres and Andersson

(2010) developed the rate model to create an accurate solver to predict the

concentration of protein in the column over time. Using the rate model as the

basis for their model they have investigated the adsorption and desorption

kinetics. From the evidence presented this method appears to have worked.

However, the interesting observation is that once the main system parameters

have been determined, it is the derivations which seem to be the time

consuming element. Once the equations have been derived a linear solver is

first explored. This linear solver considers iterative methods for solving the

differential equations. It is this method of time integration that has allowed
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Von Lieres and Andersson (2010) to create a simple way of elution profile

prediction.

In the past few years one of the most important pieces of work that has

been published is that of Shene et al. (2006). This explores the mathematical

modelling of elution curves, however it is the first published work that draws

together elements of all the previous research carried out in the twenty

preceding years. This research concentrates on IEX mathematical modelling

for describing a chromatographic separations classified depending on the

simplifying assumptions that are considered in the derivation of the differential

equations used to predict the output concentration. Shene et al. (2006) present

an interesting yet simple solution to mathematical modelling of IEX. They

targeted four key output parameters: the output concentration of desired

protein, purity of desired protein, yield of desired protein and process time.

They also investigated the calculation of unknown parameters which are

generally determined through experimentation but the authors present a

solution which allows for the calculation of these without the pre-requisite of

experimentation. Furthermore their work reports the applicability of a model

at different scales. This is similar to the approach taken by Li et al. (1998),

who also showed how mathematical modelling can be applied to scale up

issues. By being able to mathematically model a system and perform a few

limited experiments, they have been able to predict the response of a larger

column extracting the same product.

As previously discussed, the desired ability to optimise a process and

control it is often achieved through a model-based approach. When

considering the optimisation of a chromatographic system it is first worth

considering the batch mode of operation where the elution stage is considered

to be the most important step. Due to this batch operation the process is not as

efficient as it could be as it would be ideal to operate a counter-current flow

although this is difficult to achieve. As suggested by the work of Broughton

and Gerhold (1961) a simulated moving bed (SMB) would be a working

alternative. A mathematical model of this has been produced by Klatt et al.

(2000). It is a complex model which considers two separate modules: the first
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containing node balances which captures the interconnection and the

switching, the second being the dynamic models. This adds another layer of

complexity to the previous models investigated in literature. However this is

necessary due to the set-up of an SMB system. Detail on the operation of this

system can be found in Klatt et al. (2000). One benefit of this model is that

any type of dynamic model can be incorporated into the dynamic module.

Therefore the mathematical concepts in this paper may be of interest when

developing a mathematical model based upon a partition design. Although this

work provides some interesting ideas, they are not substantiated with evidence

and would have to be developed further to prove they are valid.

3.2.2 Multivariate modelling of mammalian cell cultivation

and purification

Multivariate data analysis (MVDA) and modelling is used to capture

multi-linear structures in high order data sets. MVDA was first proposed by

Karl Pearson in 1901 (Gorban et al., 2008) and then developed by Harold

Hotelling in the 1930s (Wang and Du, 2000). However it was the work of

Tucker (1964) that extended common factor analysis techniques from two way

data sets to higher order data sets and showed that MVDA can be used for

extracting hidden structures and capturing the interactions between variables

in large data sets. Referring to the United States Food and Drug

Administration (FDA) (2004a) PAT framework, MVDA can be used to

enhance and build quality into the process. As Glassey et al. (2011a) state the

use of standard analytical techniques as well as the more advanced methods,

such as near-infrared (NIR) spectroscopy, multi-wavelength fluorescence, and

electronic nose leads to the generation of large data sets. MVDA can be used

to extract useful information which results in better process understanding.

Teixeira et al. (2009b) provide a review of various spectroscopic techniques

and resulting chemometric models. They show that for data sets, such as

spectra where there is a lot of information, it is necessary to first filter the data

to remove redundant information, with a common technique being principal

component analysis (PCA). It is also shown, how after dimension reduction is
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achieved, a model is calibrated between the reduced spectra data and a target

bioprocess variable with various multivariate regression methods existing for

extracting process information. The most frequently used are principal

component regression (PCR) and partial least squares (PLS) (Haack et al.,

2007; Kirdar et al., 2008b; Tsang et al., 2014; Rhee and Kang, 2007).

Selecting the appropriate technique to use is essential in performing

MVDA correctly. As mentioned the first step in data analysis is often

dimension reduction. This can be performed using PCA or PLS. PCA is a tool

which can handle high dimensional, noisy, and highly correlated data (Wall

et al., 2003). Each data point is projected into a lower dimensional space of

orthogonal components, which contain most of the variation of the original

data. The orthogonal components are termed principal components (PCs) and

are linear combinations of the original data. The first principal component

represents the maximum variance of the original data set, with each successive

PC accounting for as much of the remaining variability as possible (Teixeira

et al., 2009b). Other dimension reduction methods include PLS, factor

analysis, projection pursuit, and independent component analysis, all of which

are discussed by Fodor (2002). In the work presented in this thesis PCA is

used as the dimension reduction method as it can be used to determine the

important variables in the original dataset. Where PCA is used to analyse a

data set, PLS can be used to obtain a regression model. These two techniques

are complimentary due to the method of projecting the data into orthogonal

variables (see discussion in Chapter 4), with PLS also modelling the

interactions between the predicting data set and the predicted variables.

With regards to regression techniques, there are various methods reported

in literature for application to pharmaceuticals. Simple regression models

include multiple linear regression (MLR) and principal component regression

(PCR) which correlate cause (X) with effect (Y) (Warnes et al., 1996).

However the most frequently used MVDA regression technique is PLS and its

variants. The PLS algorithm projects the cause and effect data into latent

variables (LVs) and then models the relationship between these new variables.

Ödman et al. (2010) present a comparison of four different methods of

53



variable selection for PLS, namely: genetic algorithms, interval PLS, principal

variables selection, and three-way stepwise variable elimination. They used

these techniques to predict biomass and substrate concentrations, showing that

the variable elimination methods resulted in the best PLS models. Issues can

arise with non-linear data (Wold et al., 2001b). Literature reports several

methods for handling non-linear data. The first is to incorporate polynomial

relationships into the PLS model (Wold et al., 2001b), the second is to use

ANNs (Lee et al., 2006), or through the use of a hybrid structure which

incorporates first principles models or mass balance equations (von Stosch

et al., 2011).

There are various examples in the literature of MVDA applied to

mammalian cell cultivation. Recent literature has focused on the application of

MVDA as a PAT solution (Mercier et al., 2013; Jiang et al., 2011; Teixeira

et al., 2009b) with Mercier et al. (2013) showing that PCA can be used to

explore a data set, identify deviations, and consider sensitivities to scale. They

also showed that data sets which are incomplete and containing gaps are

difficult to use with PLS, but if the experiments are performed correctly and

the MVDA is performed, it can lead to more efficient process development

paths, resulting in lower development costs for new products.

As MVDA techniques can also handle multi-way data sets, they are often

used to investigate batch-to-batch variation (Nomikos and MacGregor, 1995b;

Albert and Kinley, 2001). This highlights one of the key points when handling

multi-way data, the unfolding of the data matrix. Nomikos and MacGregor

(1995b) show how 3D data may be unfolded to maintain the batch

information. The 3D array is defined as X(IxJxK) which is unfolded into a

matrix X(IxJK). A PLS model constructed on the unfolded matrix can be used

to identify any interactions, or anomalous batches.

The application of MVDA to chromatography data can be slightly more

challenging as generally data sets are of limited size and scope. If the

regression model is being created for use as an on-line control or prediction

tool then it is likely that one of the responses of the model will be the

absorbance measurements (Laursen et al., 2010b). This presents challenges in
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handling the data. Zhang et al. (2005) state the need for a data mining system

which can perform peak quantification, peak alignment, and data quality

assurance. However as with other reported methods this primarily deals with

data sets that contain only small batch-to-batch variations (Krishnan et al.,

2013b; Laursen et al., 2010b).

Skov and Bro (2008) published a study which aimed to solve some of the

fundamental issues with multivariate chromatography data analysis. They

suggest methods of peak alignment such as correlation optimised warping

(COW), with success in the application to gas chromatography mass

spectrometry (GC-MS) data. Additionally they introduce the use of parallel

factor analysis (PARAFAC) for the analysis of multi-way data.

3.2.3 Hybrid modelling of mammalian cell cultivation and

purification

Hybrid modelling within the pharmaceutical field expanded quickly in the

early 1990s, with models based on ANNs being widely reported in literature in

1992 (Johansen and Foss, 1992; Kramer et al., 1992; Psichogios and Ungar,

1992). It is in this literature that the basic methodology was established, the so

called parallel method (Johansen and Foss, 1992; Kramer et al., 1992) with

Psichogios and Ungar (1992) developing the serial approach. The main

principle behind both parallel and serial methods was to use the ANN structure

and to supplement these models with first principles. This produced a model,

which when trained using the same process data, could produce predictions

with a higher degree of accuracy. Hybrid modelling combines knowledge

which is usually obtained from separate sources into one model. The

advantage of this is that in combining multiple sources of information, the

overall representation of the system is enhanced (Choi and Park, 2001).

Hybrid modelling is also known as grey box modelling. This developed from

the terms black box (e.g. multivariate) and white box (e.g. first principles).

Hybrid models can be both, prior information incorporated into black box

models or models where both the black box and white box elements can exist
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separately (Sohlberg, 2005).

Understanding why and when to use hybrid modelling can be difficult.

Standard approaches covered by black box and white box modelling

techniques have different traits and thus when one cannot be applied the other

generally can. Development of a white box model requires detailed knowledge

of the process, with the resulting model being limited by the values used for

the model parameters. Black box data driven approaches are quickly

applicable and generally require less knowledge, however again

experimentation is required to provide data to train the model. These black

box models are based upon the underlying relationships in the data, and as

such more data is required for these models that phenomenological ones.

There are three possible structures for a hybrid model: one parallel (Su and

McAvoy, 1993; Klimasauskas, 1998) and two serial (Martinez and Wilson,

1998) (Figure 3.2).

Figure 3.2: Sketch of the three ways of combining black box and
white box models. A shows a parallel configuration B and C show
serial configurations (von Stosch et al., 2014b).

There are various instances in literature which report the parallel method

(Abonyi et al., 2002; Chen and Huang, 2004; Klimasauskas, 1998; Levin and

Narendra, 1997; Potočnik and Grabec, 1999; Su and McAvoy, 1993). There
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are various different methods which can be used to combine the outputs of the

models in the structure. Two of the most commonly used methods are

multiplication and superposition, as discussed by Hu et al. (2009). Johansen

and Foss (1992) also discuss how it is possible to combine these two

techniques, whereby several models can be combined using a weighting

methodology to determine their contribution to the final model. This is further

developed by Su and McAvoy (1993) while their presented weighing

methodology following the Hammerstein model is used to determine the

inclusion of the non parametric model predictions. In contrast to this the

approach adopted by Fellner et al. (2003) focuses more on applying the

weighting criteria to the mechanistic models. Having stated this however, the

most commonly applied method is just the summation of the outputs (Su and

McAvoy, 1993).

The serial structure (Figure 3.2 C) can be used as an alternative to the

parallel structure (Figure 3.2 A), as in the serial structure C the predictions

from the white box are used as inputs to the non parametric model (Aguiar and

Filho, 2001; Hwang et al., 2009; Schenker and Agarwal, 2000). It is only the

series structure shown in Figure C which can be used because the parallel

structure takes the predicted response from both the black and white box

models and sums these based upon a weighting criteria. The structure shown in

C essentially does the same thing but uses the response from the white box as

an input to the black box model. This means that there is less of an emphasis

on the response from the white box model. In contrast the model shown in B

uses the black box model to predict the model parameters for the white box

model, thus the black box and white box are not predicting the same response.

Tsen et al. (1996) proposed an approach which was then further developed by

Martinez and Wilson (1998) and uses first principles models to supplement the

measured data already available and then use this expanded data matrix to train

the non parametric model. Tsen et al. (1996) showed that in using this method

predictions were obtained that were better than those using either the parallel

structure (A) or the serial structure (B). The most popular serial structure used

in literature is structure B where a non parametric model is used to predict

model parameters to be used in the first principles models. Teixeira et al.
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(2009a) and subsequently von Stosch et al. (2011) applied this method to large

volumes of data concerned with the process operation but where very little

knowledge was known about the physical properties. The non parametric

models were used in both of these cases to estimate the kinetics of the system.

In determining whether to use a parallel or a serial structure the main

deciding factor is the uncertainty of the white box model. Where the structural

uncertainty is high, the parallel structure performs better as the non parametric

model can partially account for the issues (Bhutani et al., 2006; Lee et al.,

2002). In the case of the serial structure where the non parametric model is

used to predict the parameters for the mechanistic model the extrapolation

capabilities of the non parametric model are restricted by the underlying model

structure and as such would not be able to predict as well (Mogk et al., 2002;

Fiedler and Schuppert, 2008).

There are significantly fewer examples of application of hybrid models to

mammalian cell cultivation and purification compared to the literature for first

principles and multivariate models. Perhaps the best examples of hybrid

models developed for cell culture are those of Oliveira (2004), Anderson

(2005), von Stosch et al. (2012), von Stosch et al. (2014b), and Thompson and

Kramer (1994). All of these studies have focused on the development of a

semi-parametric model which combines both multivariate modelling with

mass balances. They showed in von Stosch et al. (2012) that the hybrid

structure can lead to significant improvements compared to other standard

modelling techniques for the prediction of cell culture biomass, protein

concentration, and substrate concentration. Singhania et al. (2011) present a

different methodology for structuring a hybrid model. The model presented in

their work is concerned with cell cycle regulation, which is in contrast to the

model described by von Stosch et al. (2012) as it is the internal process of the

cell. Singhania et al. included Boolean variables in their model to represent

activities within the cell being ’on’ or ’off’. Although the model does present

results which suggest it can accurately predict accumulation and degradation

of proteins, the use of the Boolean variable as a ’switch’ could be described as

the simplest discrete system that could be incorporated into a hybrid model,
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which limits its application. von Stosch et al. (2014a) present a case for the

application of hybrid models as a PAT tool in industry. One of the main

benefits is given as the flexibility of hybrid modelling. A hybrid

semi-parametric model allows for the use of existing body of knowledge

within a structured framework which can adapt the projected relationships and

as new data in generated it can be incorporated. Additionally in this work it

states the applicability of hybrid modelling to the upstream cultivation whilst

further discussing the unsuitability of hybrid modelling currently to

downstream units. This is an issue as the downstream units are the critical

section for process development. von Stosch et al. (2014a) and Gao et al.

(2009) state the need for the development of hybrid models which can be used

for chromatography optimisation, product purity characterisation, and

aggregation prediction.

3.2.4 Agent based modelling of cell systems

Constructing a model for a whole bioprocess is time consuming with several

factors needing to be considered to achieve ’fit for purpose’ models. Plant

wide models which characterise every unit in a process for overall bioprocess

efficiency improvements need to consider the interactions between the process

units as well (Davies et al., 2000; Meireles et al., 2003; Zhou and

Titchener-Hooker, 2003). Integrating individual models for each unit together

is both time consuming and has large computational demands. Additionally

when process units are investigated individually it is difficult to understand

how interactions between units will affect the iterative model. Instead Sycara

(1998) suggests the use of a multi agent model, which allows for the model to

evolve as more information is obtained. An agent based technique is defined as

a computer system which is capable of autonomous action in the environment

to meet a specific objective (Wooldridge and Jennings, 1995). A multi agent

system (MAS) is constructed from multiple agents that each represent a unit

and work together to solve problems which are beyond the remit of any single

agent (Gao et al., 2009). As stated by Gao et al. (2009) the agents interact with

one another via a computer network infrastructure shown in Garcı́a-Flores and
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Wang (2002); Jennings et al. (1995); Julka et al. (2002); Labrou et al. (1998);

Wahle and Schreckenberg (2001), MAS can significantly improve the ability

to model, design, and build complex systems and deal with dynamic real time

data such as that in bioprocesses.

Literature shows that compared to other conventional software programs

MAS has certain advantages, as summarised below.

1. MAS uses a modular approach to system development which reduces

the computational demand. Additionally it is an easily adaptable system,

as new agents can be included without significant modifications to the

structure. (Genesereth and Ketchpel, 1994; Nwana, 1996)

2. MAS structure allows for unit agents to communicate in a network. This

information exchange between agents allows for interoperation between

applications. (Bradshaw et al., 1997)

3. MAS can respond to time critical information. Soler et al. (2002) detail

how changes in one unit can then be interpreted in other units in the

MAS structure to create immediate responses.

4. As discussed by Sycara (1998), as the MAS structure contains several

smaller structures this divides the overall problem into sub-problems. In

doing so it allows for the MAS model to solve problems which would be

to complex for a single centralised model to solve.

Each unit agent contains models for the particular unit, which can be

developed based on first principles (Zhou and Titchener-Hooker, 2003;

Boychyn et al., 2004), multivariate techniques (Hiden et al., 1999; Lennox

et al., 2001; Loukas, 2000), or hybrid modelling (Gao et al., 2009). As such

the development of the agent based model can be thought of as bringing

together all the other modelling techniques.
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3.2.5 Summary

The trend for bioprocess improvement, particularly microbial culture, over the

last 15 years has focused on improvements to cell lines, and improvements in

upstream technology. The literature has shown how bioprocess modelling can

be applied as a successful tool for implementing the PAT initiative, which

could be used to lead the way in bioprocess development in the future. The

implementation of a systematic process design and development strategy at

early stage development can greatly improve the knowledge of the process and

subsequently can reduce the time and capital required for optimisation. The

use of bioprocess modelling in this thesis expands on the work of Gnoth et al.

(2007); Carrondo et al. (2012); Mercier et al. (2013) by exploring the

application of QbD and PAT to laboratory scale fermentations of mammalian

cell systems. As Teixeira et al. (2009a) has shown modelling can enhance and

extract important process information allowing for the easy identification of

CQAs in line with the PAT and QbD principles.

The literature has shown that first principles and multivariate modelling

have two very different approaches and outcomes. First principles models have

been shown to be beneficial in early application during the early stages of

process development (Milo, 2002; Guido et al., 2006; Almquist et al., 2014).

They generally require less experimental data to predict the variables within

the models (Morris et al., 2010), however their range of application is limited

as they cannot be used to accurately predict how changes in the operating

procedure effect the process unit (Gadgil, 2014). In contrast multivariate

modelling techniques have been shown to be useful in the optimisation of

process units (Teixeira et al., 2009b) as they can be used to extract useful

information from datasets with multivariate models generally requiring

significant amounts of experimentation. Multivariate modelling can be used to

optimise various process conditions, but their application is limited to the

operating conditions which were varied in the process.

Hybrid modelling combines the best aspects of first principles and

multivariate modelling. A hybrid model can often be used as both a predictive
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and an optimisation tool. The application is dependent on the mathematical

expression used and the data collected. However in general for cell

cultivations it can be said that the multivariate aspect captures the dynamics of

the system i.e. the rates of consumption and production (Le et al., 2012),

whilst the mathematical model captures the metabolism of the cell i.e. the

interaction between the cell and the metabolites (Kontoravdi et al., 2007).

An agent based system brings these three modelling techniques together

producing a single agent for each process unit, which is then co-ordinated in a

multi agent structure (MAS) (Gao et al., 2009). The MAS structure brings

together all the individual agents to solve problems which are beyond the remit

of each individual unit. This means that MAS can significantly improve the

ability to model, design, and build complex systems and handle dynamic real

time data (Julka et al., 2002; Wahle and Schreckenberg, 2001).

62



Chapter 4

Methodologies and protocols

Chapter 3 covered the literature associated with modelling of bioprocesses. It

was shown that there are many different techniques which could be applied to

model mammalian cell manufacture. This chapter introduces the methods used

for data acquisition, along with the modelling methodology.

Mathematical and multivariate statistical techniques have been

successfully applied to provide calibration, validation, and optimisation of

biological processes. The application of multivariate techniques involves data

pre-processing and data analysis (may include data mining, pattern extraction,

identification of system). The raw process data used in the analysis generally

has two issues: the quality of the data, and the applicability of the data.

Pre-processing can often address the issue of data quality, whereas

applicability of data is often only highlighted after the multivariate techniques

have been applied. There are several decomposition methods for handling

multi-way data, with multi-way principal component analysis (PCA), Tucker,

and parallel factor analysis (PARAFAC) most frequently reported in the

literature. All three of these techniques decompose the 3-D array into sets of

scores and loadings which describe the data in a more condensed form than the

original. Bro et al. (1999) shows that PARAFAC is a constrained version of

Tucker, and Tucker is a constrained version of PCA, therefore if a data set can

be modelled with PARAFAC it can be modelled by both Tucker and PCA

methods. PARAFAC can be thought of as the simplest and PCA the most

63



complex. This chapter contains the methodologies and procedures used in this

research. The techniques used are described along with reasoning behind the

application.

4.1 Experimental procedure

The data used in this research was obtained from many sources including

academic and industrial collaborations, and experiments. This section provides

an account of the different sources of the data used and where, generated

through experiments, the procedures used. For the experiments carried out by

third parties, the experimental details are provided entirely to the extent

provided by the third party.

4.1.1 Cultivation

Hybridoma cell line

The cultivation data in chapter 5 work was carried out in collaboration with a

PhD student from ETH Zurich. The cultivation experimentation was

conducted by the collaborators, details can be found in Ivarsson et al. (2014).

In summary the experiments were conducted using a hybridoma cell line

(ATCC CRL-1606) and adapted to chemically defined culture media

(TurboDoma TP6, Cell Culture Technologies). The cells were cultivated in

controlled parallel 1L bioreactors (DasGip) in batch mode. The culture

conditions are reported in Ivarsson et al. (2014). Briefly, the culture

environment was controlled at 37 °C, dissolved oxygen (DO) was set to 50 %

air saturation and controlled by a constant gas inlet flow rate of 0.05 vvm

(volume of air per unit of medium per minute), pH was controlled at 7.2 by

CO2 sparging, stirrer speed was set to 150 rpm (revolutions per minute), and

osmolality was 320 mOsm/kg−1. A parameter shift of one of the selected

process variables was performed in the early exponential growth phase as

described by Ivarsson et al. (2014) together with the sampling procedure and
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Table 4.1: Experimental errors for cell measurements obtained
Ivarsson et al. (2014).

Variable Measurement
error

Viable cell
count

(cells/mL)
±0.2

Product titre
(mg/ml) ±7.2

Glycosylation
(Peak area %) ±2

analytical methods. Viable cell concentration, glucose, lactate, and ammonia

concentrations, amino acid concentration, and mAb concentration were

measured twice a day as off line data. The glycosylation profile was recorded

at the end of the cultivation. The experimental errors for the measurements are

provided in Table 4.1 and obtained from Ivarsson et al. (2014).

Chinese hamster ovary cell line

The cultivation data used in chapter 7 was provided from the industrial

collaborators Fujifilm Diosynth Biotechnologies. This data was generated

during the development of their Apollo™ mammalian expression platform.

Further information on the Apollo expression platform can be found on the

Apollo web page (Fujifilm Diosynth Biotechnologies, 2014). In summary the

experiments were conducted using Chinese Hamster Ovary (CHO) cell line

producing anti-CD20 mAb. The cells were cultivated in shake flasks, micro

bioreactors (Ambr) (15ml capacity), and controlled bioreactors (2L capacity)

in fed-batch mode. The culture conditions for the micro bioreactors and the 2L

bioreactors are provided in Table 4.2. Data from ten shake flask cultivations

was available, all ten cultivations/cell lines were taken forward and cultured in

the micro bioreactors. From these ten cultivations the four cultivations with the

highest yield were then cultivated in the 2L bioreactors. Measurements were

collected throughout the cultivations including viable cell count,

concentrations of metabolites, and the glycosylation profile of the final product

was measured. Due to the confidentiality requirements detailed information

cannot be provided on the techniques used to take the measurements. However
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this work is concerned with the analysis of the data not the data collection, and

so this should not impact on the conclusions within this research. The

experimental error for viable cell count, product titre, and glycosylation peak

measurements are provided in Table 4.1. The same errors were used for the

measurements recorded for both hybridoma and CHO data sets. Ad the

measurement error is associated with the technique for recording the data.

Table 4.2: Culture conditions for cultivations operated using the
micro-bioreactors and the 2L bioreactors.

Micro-bioreactors
Parameter Set point Control limits

pH 7.00 +/- 0.05
Temperature 36.5 °C +/- 0.2
Agitation 1152 rpm +/- 5.0
DO 30.00% +/- 10.0

2L bioreactor
Parameter Set-point Control limits

pH 7.00 +/- 0.1
Temperature 36.5 °C +/- 0.5
Agitation 223 rpm +/- 5.0
DO 30.00% +/- 10.0

Also provided with the CHO cell cultivation was a data set for the

downstream purification of a mAb produced from a CHO cell line. This data

was not the purification data directly related to the experiments conducted for

the cell cultivation, however, the sponsor company provided information

supporting the fact that the mAb produced and the cell line were very similar.

Hence for this research they were used as one data set. The downstream

process units included:

• Cell harvest

• Protein A chromatography

• Virus removal

• Protein A chromatography

• IEX chromatography

• Viral filtrate

• Bulk drug substance (BDS)
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Table 4.3: Summary of the analytical techniques used for the
analysis of the downstream process units.

Measurement
key Full name Description

UV A280
Ultraviolet absorbance

at 280nm

Measured using a spectrophotmeter, used
to detect protein (A280nm).

Is a measure of the product titre at each stage.

Pro A
Protein A

chromatography

Ligand binds to the mAb, which is then
eluted and detect by HPLC. Is a

measure of the product titre at each stage.

CIEX
Cation exchange
chromatography

Different aggregates of the protein have
different charges. CIEX is used as

a measure of the heterogeneity of the protein.

SEC
Size exclusion

chromatography

Size exclusion is used to determine
the molecular weight of the proteins

produced.

ELIZA
Enzyme-linked

immunosorbent assay

The ELIZA test is used to assess the
quantity of host cell protein (HCP).

This is an impurity and there is a maximum
allowance for the final BDS.

CE-SDS
Capillary

electrophoresis gel

Gel electrophoresis is used to determine
if the protein is glycosylated or not.

In this application the distinct glycans are
not determined.

with several analytical measurements being recorded during each of these

stages. These are summarised in Table 4.3.

4.1.2 IEX chromatography

The following methodology is the experimental procedure for obtaining the

lactoferrin data. This is the data used in chapter 6, the experiments were

conducted at Fujifilm Diosynth Biotechnologies’ Billingham site by the author

of this thesis.

Materials and equipment

Recombinant human lactoferrin produced from Aspergillus niger var.

awamori, a food grade organism, was used in these experiments and obtained

form stock solutions at the sponsor company. The lactoferrin was produced via
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a fermentation and subsequently stored in a buffer solution (15 mM sodium

phosphate, 50 mM NaCl, pH 7). Lactoferrin has a molecular weight of 78,000

Daltons (78 kDa) and it is a glycosylated metalloprotein (this is a protein

which contains a metal ion). The data used in chapter 6 is concerned with the

purification of the lactoferrin via IEX chromatography performed using an

Äkta explorer.

The IEX was performed using HiTrap™ SP (Sulphopropyl) Sepharose

Fast Flow (SPFF) columns. These columns are cation exchangers which are

acidic and contain negatively charged groups, termed ligands. In the case of

SPFF the ligand is a straight chain called Sulphopropyl, a strong cation

exchanger. The term strong cation exchanger refers to the pKa value of the

ligand, which for Sulphopropyl is 2-2.5. The ligands are attached to a matrix

which acts as a support. In SPFF the matrix is a 6 % cross-linked agarose. A

property of this matrix is that it is hydrophilic, which is common for resins

used with proteins, as the interactions with the protein are weak. The columns

come pre-packed from the supplier (GE Healthcare). Pre-packed columns

were chosen to eliminate the variability which could have been introduced if

hand packed columns had been employed. The HiTrap columns have a bed

volume of 1 ml, a bed height of 25 mm, and an internal diameter of 7 mm. The

average particle size of the beads is 90 µm, the range of the particle size is 45 -

165 µm. The ionic capacity of the column is 0.18-0.25 mmol H+/ml of

medium. This refers to the concentration of ligands and has been calculated

when the resin is in liquid form (Jansen, 2012).

Figure 4.1 shows a schematic of an Äkta explorer (GE Healthcare), with

the following basic operation. A pump is used to apply the equilibration buffer

to the column, which is packed with the chromatographic medium. The

sample containing the product is applied to the column using a sample pump

and it is allowed to interact with the chromatographic medium. The elution is

carried out using the elution buffer (containing NaCl) and the components are

separated in order of increasing affinity to the chromatographic medium. The

solution leaving the column is monitored to detect the composition of the

stream and fractions are collected and transferred to the next step in the
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purification scheme. Having removed all the target molecules the column is

stripped to remove any remaining bound molecules, and the column is

recharged for the next run.

Figure 4.1: Schematic of Äkta Explorer used in the experiments
conducted in this research (GE-Healthcare, 2010)

The buffers used to perform the chromatography step are summarised in

table 4.4. The first buffer (A) is a phosphate buffer (NaH2PO4/ Na2HPO4) and

has a low ionic strength (see Table 4.4). The second buffer (B) is again a

phosphate buffer, but it has a high ionic strength due to the addition of salt (1M

NaCl). The final buffer (C) is a 0.1 M solution of NaOH, and is used to store

the column. In relation to the diagram shown in Figure 4.1, buffer A is placed

on the line A11, buffer B is placed on B1, and buffer C is placed on A2. This

set up is used so that when two buffers are required (A and B) for the gradient

elution it does not require the system to switch lines on one pump.

Table 4.4: Composition and concentration of the three buffers
used to perform the chromatography step

Buffer Line
NaH2PO4/
Na2HPO4

(mM)

NaCl
(M)

NaOH
(M)

pH

A A11 25 - - 7.5
B B1 25 1 - 7.5
C A2 - - 0.1 7.5

The protein sample is diluted using buffer A to concentrations between

10-30 mg/ml, and is injected into the system at the injection valve. The sample

is washed over the column in a downwards motion and no sample emerges in
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the effluent until on column dead volume has passed (Desai, 2000). This is the

interstatial volume of the resin and is approximately 30-45%, in this instance

0.3-0.45 ml. The column effluent is then passed through different monitoring

instruments and is sent to either waste or is collected. The purification scheme

for lactoferrin, which was designed at Fujifilm, is shown in Table 4.5. This

forms the basis for the design of experiments (DoE) used to generate the data

set for further analysis described in Chapter 6.

Table 4.5: In house methodology used for IEX lactoferrin purifi-
cation with SPFF resin. ( * pH not specified in method ** Depends
upon the sample size being loaded)

Chromatography
stage

Phosphate
(mM)

NaCl
(M)

NaOH
(M)

pH CV
Flowrate
(cm/hr)

Clean - - 0.1 * 2 75
Charge 25 1 - 7.5 2 75

Equilibration 25 - - 7.5 2 75
Sample load 25 - - 7.5 ** 40
Wash (low

flow)
25 - - 7.5 1 40

Wash (high
flow)

25 - - 7.5 2 75

Elution
(gradient)

25 (0-1) - 7.5 10 75

Strip 25 1 - 7.5 1 75
Clean & store - - 0.1 * 2 40

4.1.3 Design of experiments (DoE)

Design of Experiments (DoE) is defined as a structured and systematic method

of designing an experimental set. DoE aims to generate the most informative

results whilst minimising runs, time, and resources (Mercier et al., 2014). The

DoE methodology was used to determine the conditions of the experimental

runs in the lactoferrin data set. The factors which were chosen to be

investigated were: flow rate of buffer (ml/min), pH of load buffer, pH of

elution buffer, number of column volumes gradient was performed over, and

concentration of protein in loaded sample (mg/ml). A minimum resolution IV

design was used where the number of experimental runs is determined by

Equation 4.1.

Number of runs = 2k+2 (4.1)
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where k is the number of factors being investigated (Jones and Montgomery,

2010). Therefore, as 5 factors are being investigated in this experimental data

set the number of runs would be 12. The minimum resolution IV design aims

to estimate all the main effects independently without alias, whilst using the

minimum runs. If however one or more runs were missing this would cause

the design to become a resolution III design, so two extra runs are added to

protect for missing data. Furthermore three centre points were added to the

design. These were used to check reproducibility in the experimentation and to

check for curvature in the response of a factor. So in total for the lactoferrin

data set there are 15 experimental runs. The conditions of each of these runs is

provided in Table B1.

4.2 Data treatment

Having performed the experiments and obtained the data as described in

section 4.1 the next step is to put the data into a usable form. Data is required

in this research as a tool for both training and validating models. The scope of

application, prediction quality, and adaptability of the models depends upon

the quantity and quality of the data.

The data for both cultivations and chromatography is multi-way, meaning

the data sets have multiple samples, variables, and batches. Therefore the data

is assembled in a 3D array. This presents various challenges with manipulating

the data. In order to analyse all the batches simultaneously they must be time

aligned. This is achieved by various techniques for example cutting the data,

time shifting, interpolation. Having aligned the data other transforms can be

applied. These transforms are subject to the analysis or modelling technique

being used and are specific to each data set.

4.2.1 Array unfolding

Unfolding a 3 dimensional array reduces the data set down to 2 dimensions

without loosing any information. The 3 dimensional data set is as shown in

71



figure 4.2 (a); with i batches, for measurements of j different variables

available over k time points giving a three-dimensional data array X of size i ×

j × k. There are two ways to unfold this data; the first is batch-wise data matrix

unfolding (Nomikos and MacGregor, 1994; Nomikos and MacGregor, 1995a).

The array X is divided into k slices of size ixj, which are then placed side by

side. This technique produces an unfolded matrix X of size i x jk. Using this

method preserves the batch direction as every row of the unfolded matrix

corresponds to a complete batch. This unfolding technique is demonstrated in

Figure 4.2. The other technique for unfolding the data is variable wise data

matrix unfolding (Wold et al., 1987). In this technique the matrix X is divided

into j slices of size ixk, when these slices are placed side by side the unfolded

matrix is of size j x ik. This method preserves the variable direction. Generally

for batch processes, such as cultivations, batch-wise data matrix unfolding is

the more popular, since the batch-end quality is related to the complete batch

history. In this way batch-wise data matrix unfolding can be used for the

prediction of final product quality. The matrix unfolding in this research was

performed using the batch-wise methodology.

Figure 4.2: (a) Structure of a three-way data array describing in-
put (predictor) variable measurements from a batch process; (b)
unfolding of array into a large two-dimensional matrix (Nomikos
and MacGregor, 1994, p. 100).
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4.2.2 Cubic spline

To compare between experiments where samples have been recorded at

different times a spline was applied. This is a form of interpolation whereby a

polynomial function is fitted between the available data points to predict the

values between measured data points. This research uses a cubic smoothing

spline which is the most common form. This method was chosen as it accounts

for the experimental error, allowing for the cubic curve to be placed within a

specified range of measured values (Wahba, 1978).

(a) Lagrange interpolation of data points

(b) Spline interpolation of data points

Figure 4.3: (a) The increase in height of the data points in the
middle causes an effect on the interpolating polynomial curve at
the ends; (b) ’cubic smoothing spline’ curve through the same
data points, the jump in data point height does not adversely af-
fect the fit of the polynomial. (Baker, 2014)

Figure 4.3 illustrates the difference between another commonly used form

of interpolation, Lagrange interpolation (Berrut and Trefethen, 2004). The

main difference can be seen in that the Lagrange interpolation uses one

polynomial which can be affected by sudden changes in the data. Whereas the

cubic smoothing spline uses a separate polynomial fitted between each data

point, therefore the fitted curve follows the data points more closely. More

information on the mathematics of spline functions can be found in the work

of Wold (1974). This work uses a cubic smoothing spline function developed

for MATLAB® by Henning.
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4.3 Multivariate data analysis (MVDA)

To analyse and model data such as that used in this research, appropriate

methods need to be used. There are various techniques which can be employed

and have been summarised in chapter 3. This research explores using Parallel

Factor Analysis (PARAFAC), Principal component analysis (PCA), and

regression modelling using Partial Least Squares (PLS). These three

techniques are appropriate because they can provide an overview of batch

variation (PARAFAC) (Bro, 1997), the interactions between variables (PCA)

(Wold et al., 1987), and data modelling (PLS) (Wold et al., 2001a).

There are other techniques which would have been equally applicable for

use in this research. One common alternative when using PLS regression is to

analyse the scores and loadings from the PLS model instead of performing a

separate PCA analysis (Westerhuis et al., 1998; Nelson et al., 1996). The main

reason for first applying PCA to analyse the data set is due to its size. As

Kettaneh et al. (2005) discuss for large data sets criteria such as applicability

of PCA and PLS to the larger scale, more difficulty in handling noise and

non-linearities, interpretability of results, and simplicity of use are issues

which need to be addressed. They showed that keeping the analysis simple

made it easier to handle these challenges and interpret the results. As PCA

considers the interaction between the X-block variables, whilst PLS considers

the interactions between both the X-block and Y-block variables this makes

PLS a more complex technique. The interpretation, especially for the loading

values, for PLS becomes much more difficult the larger the data set. Therefore

in this research PCA is applied as a pre-cursor to PLS, to determine the

appropriate variables for use in the regression model.

Additionally there are also other regression techniques which could have

been used. These include other variants of PLS, such as non-linear iterative

partial least squares (NLPALS), orthogonal partial least squares (O-PLS),

sparse partial least squares (SPLS), or other multivariate techniques such as

Canonical Correlation Analysis (CCA), Tucker regression to name a few. The

main choice was between the use of a linear or non-linear technique.
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Relationships and measurements obtained from biological systems are not

generally linear, this would naturally lead to the use of a non-linear technique

for prediction (Jong, 1993). However, the data used in this research is obtained

from industry and as such is not perfect. There are frequently missing values,

through either instrument error or because a sample was not taken by the

operator. This combined with the need for the end model to be used by an

operator with limited in depth knowledge of modelling techniques means that

it is necessary to have a regression model which is both easy to train and apply

(Abdi, 2010). In this way linear PLS is the better option as a fluctuation in one

reading of one batch will not have a significant impact on the end model.

Furthermore it is also worth noting that PLS has fewer computational

requirements and the results are easier to interpret, which again is a benefit for

application by a process operator (Wold et al., 1987; Martens, 2001).

4.3.1 Pre-processing

There are experimental and instrumental effects which are not related to the

process data which can impact the profile of samples. For example, sample

collection, sample preparation, and instrumental calibration. The data needs to

be appropriately pre-treated prior to analysis as the type and extent of

pre-treatment can greatly impact the final results. A good pre-treatment

procedure enhances the process information, whilst an inappropriate

pre-treatment procedure can impact on correlation (Rajalahti and Kvalheim,

2011a). Effective pre-processing is determined by how well the user knows the

data, as too much pre-processing to remove noise may instead remove

information.

The pre-processing steps which are carried out on the data set prior to

PARAFAC are less complex than those used prior to PCA. PARAFAC is able

to account for variations in batch length, whereas PCA is not. Therefore prior

to PCA the data matrix was cut to ensure uniform length of batches.

Furthermore, due to the nature of some of the measurements, particularly

on-line measurements, it was necessary to perform data set sampling, whereby

every 10th data point is included. This reduces the data set down to a size
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which is more appropriate for the computational software.

As with all multivariate modelling applications it is the measurements

that were taken which direct the preprocessing required. For example for cell

cultivation where measurements include pH, DO, temperature etc the

preprocessing steps required would be different to an application such as ion

exchange chromatography which includes measurements for absorbance.

Rinnan et al. (2009) provides a comparison of the most commonly used

pre-processing techniques, although this study is for the application to Near

Infra Red spectroscopy (NIR) it discusses the application of the various

techniques. Considering next the literature for cell cultivation data there are

various studies which discuss the different preprocessing techniques used

(Selvarasu et al., 2010; Dudoit et al., 2002; Heyer et al., 1999; Selvarasu et al.,

2012). These studies have shown that autoscale should be applied. This

technique is a combination of mean centering and scaling the data. The

application of autoscale means that any resulting analysis or regression model

is a result of the variation between the samples instead of the absolute level of

variation. Each variable Xi is mean centred by Equation 4.2.

Xi j = Xi j− X̄i (4.2)

The literature has also shown that for applications to data such as that collected

from ion exchange chromatography (IEX) the preprocessing methodology

would be different. There is no study present in the literature which provides a

direct comparison of different techniques for the application to IEX, hence part

of this research does this (see Chapter 6, Table 6.5). However, there are

similarities between IEX, spectroscopy, and liquid chromatography-mass

spectrometry (LC-MS). Therefore, applications of preprocessing to these areas

formed the basis of the IEX study (Rinnan et al., 2009; Gromski et al., 2014;

Laxalde et al., 2011; Wang and Kowalski, 1992; Skov and Bro, 2007; Luypaert

et al., 2004).
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4.3.2 Parallel factor analysis (PARAFAC)

Parallel factor analysis (PARAFAC) is a tool to analyse multi-way data. A 3-D

data array is used directly in the analysis with the main benefit that the models

produced are simpler and therefore easier to interpret (Bro, 1997). PARAFAC

decomposes the data array into new dimensions which capture the variability

between batches. These new dimensions are captured in components called

modes, comprised of scores and loadings, which describe the data in a

condensed form. Each mode in a model consists of one score and two loadings

vectors. In PARAFAC it is common that no difference is made between the

scores and the loadings, and they are treated exactly the same way. The

decomposition of a 3 way array is shown in Figure 4.4.

Figure 4.4: Pictorial representation of the decomposition of the
array X into a two component PARAFAC model (Bro, 1997).

The array X has 3 dimensions, i (time), j (variables), and k (batches).

Each subsequent component produced from the PARAFAC analysis has three

scores/loadings matrices, with each one corresponding to one of the original

dimensions. This can be represented by the Equation 4.3.

Xi jk =
F

∑
f=1

aib jck + ei jk (4.3)

where ai is the loading in the ith direction, b j is the loading in the jth direction,

ck is the loading in the kth direction, and ei jk is the residual error, and F is the

number of components/modes in the model. The PARAFAC analysis was

performed using the n-way toolbox as developed by Andersen and Bro (2000).
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4.3.3 Principal component analysis (PCA)

Principal component analysis (PCA) compresses data, extracts information,

and visualises observations. PCA reduces data sets with a high-dimensionality

to a few dimensions which capture the main variability in the data. These new

dimensions are defined in terms of principal components (PCs) that are linear

combinations of the original variables. The contribution of the original

variables in the PCs are called the loadings. These can be used to identify

important variables in the PCs and also to show how the original variables

relate to each other. The scores are the coordinates of the original data in the

new space, and they show the sample/batches/experimental runs relate to each

other.

A principal component is obtained by visualising the data in a matrix, X,

the first principal component is then determined as being the ’line of best fit’

which captures the maximum variation. The second principal component is a

line of best fit which captures the second greatest amount of variability in the

data set, and so on. The model aims to reduce the sum of squared residuals

which are a measure of the discrepancy between the data and an estimation

model. Eventually the principal components will reach a stage where they are

no longer capturing process variability but instead are representative of noise

in the data. Determining the correct amount of PCs for a model is subjective.

The most simple approach would be to choose the number of PCs for the

variance to of achieve a predetermined percentage, i.e. 90% (Qin and Dunia,

2000). Another method was proposed by Wold (1978b) who used the predicted

error sum of squares (PRESS) which is calculated by randomly leaving out

samples. This technique is quite time consuming as it requires multiple PCA

models to be constructed in order to calculate the PRESS. There are other less

common techniques such as that proposed by Joreskog et al. (1976) in which

each PC must contribute at least one mth of the total variance, where m is the

number of variables. Another alternative is the technique proposed by Cattell

(1966) which is a scree test based on a plot of the eigenvalues of the correlation

matrix. The number of PCs in the model is selected at the point which the

graph drops sharply followed by a straight line with a much smaller slope. It is
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this technique of using the scree plot which is applied in this research.

Figure 4.5 shows an example of a projection for a data matrix which

contains two variables (x1 and x2), The vector shown in Figure 4.5 is the line

of best fit for the data points, as it captures the maximum variance. The scores

are the values of the data points projected onto the vector as shown in Figure

4.5 (a). The loadings, shown in Figure 4.5 (b), are the direction cosines of the

vector, they are calculated for each variable as the distance from the variable

axis to the vector. Equation 4.4 shows the formula for the scores and loadings

of each PC.

X = t1 p′1 + t2 p′2 + ...+ tn p′n (4.4)

where tn is the scores vector and pn is the loadings vector for the nth PC. For

the overall model, these vectors can be written as a matrix which contains all

the scores and loadings for all the PCs in the model (Equation 4.5).

X = T PT +E (4.5)

where T represents the scores and P the loadings matrices. E is the residual

errors matrix, and is not a part of the model. It is the part of the original X

matrix which is not explained by the model (T P′). This value should be small,

as a large value would suggest too much information has been removed. When

constructing a PCA analysis the relationship can be described in Equations 4.6

and 4.7.

PC0(explained variance) = 0%−→ E0(residual variance) = 100% (4.6)

PCmax(explained variance) = 100%−→ Emax(residual variance) = 0% (4.7)
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(a) Scores are projections onto the
vector

(b) Loadings are the angle cosines
of the vector

Figure 4.5: Determination of principal component for two vari-
ables (x1 and x2). The PC vector is shown to capture maximum
variability in the data. (a) the scores projection onto the PC vec-
tor (b) the loading determination, calculated as the angle between
each variable axis too the PC vector. (Geladi and Kowalski, 1986,
p. 6)

Bi-plot

The analysis of the scores and loadings is carried out using a bi-plot,

constructed using the bi-plot function implemented with Matlab. Bi-plots were

first introduced by Gabriel (1971) as a method of graphically representing the

batch and variable data on one plot. When applied in PCA the axes are

principal components and in PLS they are latent variables. Bi-plots are

obtained by using the singular value decomposition (SVD) to obtain a

low-rank approximation of the data. Carlier and Kroonenberg (1996) provide

information on the algorithm for producing bi-plots. In this research, however,

it is the interpretation of the graphs that is important.

A bi-plot uses points to represent the scores of the observations on the

principal components, and it uses vectors to represent the coefficients of the

variables on the principal components. The location of the points can be

interpreted such that those which are close together correspond to observations

which have similar scores of the principal components displayed in the plot.
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Additionally this corresponds to a similarity in the original observations for

these batches. The vectors represent the variables, with both the length and

direction of the vectors being important. The vector points in the direction

which most closely resembles the variable represented by the vector, as this is

the direction which has the highest squared multiple correlation with the

principal components. Furthermore, the length of the vector is proportional to

the squared multiple correlation between the fitted values for the variable and

the variable itself. Vectors which point in the same direction correspond to

variables which have similar response profiles. In the case of on-line analysis

of cell cultivation data, two vectors which point in the same direction

represents two variables which have a similar influence over the variation in

the data.

4.3.4 Partial least squares (PLS)

Partial least squares (PLS) is a regression technique which can be applied to

noisy and correlated data. Similarly to PCA, PLS reduces the dimensionality

of a data set. However where PCA aimed to capture the maximum variance in

one data set, PLS aims to maximise the covariance between two data sets

(Geladi and Kowalski, 1986). It uses an X matrix (inputs) and a Y matrix

(outputs) , where the regression model is developed so that predictions of Y

can be made from X. This research uses Y data which is both 3 dimensional

and 2 dimensional and unfolding steps for 3 dimensional arrays are performed

as described in section 4.2.1.

A simplified PLS model can be said to have both inner and outer

relationships. There are two outer relationships and one inner, which links the

two data matrices in the model. The outer relationship for the X data is given

by Equation 4.5 which is the main equation used in PCA. These relationships

are shown in Equations 4.8 and 4.9.

X = T PT +EX (4.8)

Y =UQT +EY (4.9)
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where T represents the scores and P the loadings matrices. E is the residual

errors matrix, and is not a part of the model. It is the part of the original X

matrix which is not explained by the model (T P′). Similarly to PCA the errors

of both equations can be reduced to 0, however this often leads to the inclusion

of noise in the model. Model order selection for PLS models is discussed in

section 4.3.5.

In PLS the aim is to describe the Y matrix as well as possible, and hence

make EY as small as possible. This is done through minimising the covariance

of the X and Y scores as displayed graphically in Figure 4.6.

Figure 4.6: Illustration of latent variable determination; the black
line represents PC of outer PLS models, the green and blue lines
show latent variable which maximises the covariance of the X and
Y scores (T and U) (SeparationsNow.com, 2014).

The process shown in Figure 4.6 is performed for each LV in the model,

and is given in Equation 4.10.

ûh = bhth + eh (4.10)

where eh is a vector of errors, bh is a unknown parameter estimated by

bh = u′hth/t ′hth and th is the scores vector for the X matrix. In PLS the

extraction of each pair of latent variables (th and uh) is an iterative process.
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4.3.5 Model structure selection

Selecting the optimum number of components in a PARAFAC model,

principal components in PCA or latent variables in PLS is important to obtain

the best analysis or predictions of the cultivation variables. Section 4.3.5

explains the procedure for model order selection. Additionally the selection of

the most relevant model inputs will be discussed in section 4.3.5, as only the

inclusion of the most relevant variables may improve the prediction

performance of the model (Wold et al., 2001a). For example in PLS not all the

available measurements may be correlated with the data to be predicted.

Including measurements which are not correlated with the data to be predicted

causes a decrease in the model performance and results in poorer predictions.

Model order selection

Determining the number of components to use in a PARAFAC model can be

difficult. The cross-validation method which is used in PCA cannot be applied

here as the data array and the model is calculated for all components

simultaneously. There are three techniques for determining the right number of

components as summarised by Bro (1997). Due to the variation within the data

sets used in this research the technique which utilises external knowledge was

used. This technique relies on the researcher having adequate process

knowledge to know when components are modelling noise. This is a

subjective technique and relies upon interpretation of the loading plots.

The number of variables within each model is determined through

interpretation of the scree plot. Which is a graph displaying the eigenvectors,

and relates to the variation captured in each PC or LV. This means the

interpretation of the scree plot is based on the assumption that important

information is larger than random noise and that the magnitude of the variation

of the noise levels off with the number of components (Qin and Dunia, 2000).

Therefore the eigenvalues can be plotted as a function of number of

components, and as discussed in section 4.3.3, when the eigenvalues start to

show a linear relationship, that is the optimum number of components (Bro
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and Smilde, 2014). A second option for autoscaled data is to use all

components where the eigenvalue is above one (Wu and Manne, 2000). If all

the variables were orthogonal to each other then every component in the model

would have an eigenvalue of one, but if a component has an eigenvalue larger

than one it is capturing variation from more than one variable. Another option

is to look at the variance explained in each component (Joreskog et al., 1976).

If a two component model explains 50 % of the variation, it is likely that more

components are needed. However if a 6 component model is used which

explains 90 % of the variation it is likely that noise is being captured and the

number of components should be reduced. The method of using

cross-validation was introduced by Wold (1978a). For PCA and PLS this

research uses a leave-one-out cross-validation method to select the optimum

model order (R). Here R is the number of principal components or latent

variables in the model. Leave-one-out cross validation systematically leaves

each batch out of the training dataset once. Models are then constructed from

the other batches. Next the models are validated using the left out batch and

the mean Sum of Squared Errors (SSE) over all the batches that were in the

training set is calculated for each model order. Generally the leave-one-out

method has a larger computational requirement, and would not be appropriate

for large data sets (Kearns and Ron, 1999; Kohavi, 1995). However as the data

sets used in this research are relatively small, this is not an issue. The

calculated root mean squared error of cross validation (RMSECV) can be

plotted against the number of PCs or LVs and the point at which it is the

lowest, without being linear is chosen as the number of components in the

model (Bro and Smilde, 2014).

There are various other methods as described in literature to determine the

number of variables in a model such as: Akaike information criterion (AIC),

final prediction error criterion (FPE), bayesian information criterion (BIC),

Normalised residuals sum of squares (NRSS), multiple correlation coefficient

(R2), adjusted multiple correlation coefficient (R2
a), and Wold’s R criterion. A

review of these different techniques can be found in the work of Haber and

Unebnhauen (1990), with a comprehensive study of the most popular

technique (Wold’s R criterion) given in the study carried out by Li et al.
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(2002). However for the application to this research the RMSECV was the

most appropriate as it provides relatively accurate results and is simple to use.

Input variable selection

PCA and PLS have the capability of handling noisy data, as discussed in

section 4.3.1. However the quality of the analysis or predictions of a

regression model can be significantly improved through eliminating

measurements which are not correlated with either the investigating parameter

(PCA) or the final batch quality (PLS) (Kosanovich et al., 1996).

During data pre-processing techniques noise can be introduced to the

system. There are techniques available in literature, such as Andersen and Bro

(2010), which can be used to determine when and if a variable should be

eliminated from the analysis. However due to the nature of the measurements

and the size of the data matrix in this research process knowledge was used.

The loadings (a measure of variable variability) can be related back to the

original process data to give a clear picture of the variation and/or noise

associated with each variable (Jolliffe, 2002). This technique will be used

along with process knowledge to determine the applicability of retaining a

variable in the models.

4.3.6 Model assessment criteria

To assess the performance of the models produced in this research the root

mean squared error (RMSE) is calculated for each model (Equation 4.11).

RMSE =

√√√√( n

∑
i=1

(yi− ŷi)2

n

)
(4.11)

where yi is a vector containing original values, ŷi is a vector containing

predictions and n is the number of samples in the vectors. The RMSE value is

a measure of how well the model predicted the test data set (Ramadan et al.,

2005). As Qi and Zhang (2001) discuss there are other techniques for
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assessing model performance, such as, the Akaike information criterion (AIC)

or the Bayesian information criterion (BIC). When creating a model including

more parameters than are necessary can lead to an over-fitted model. Both the

AIC and the BIC assess the fit of the predictions whilst introducing an

additional criteria to take into account the number of parameters in the model.

This results in an AIC or BIC value which is larger for models that contain

more parameters. Due to the similarity between these two methods only one is

used in this research. The AIC value was chosen because the additional

criteria for model parameters is smaller than for BIC (Ramadan et al., 2005).

The AIC is determined by Equation 4.12 (Akaike, 1987).

AIC = 2k+nlog(
RSS

n
) (4.12)

where n is the number of observations, RSS is the Residual Sum of Squares

and k is the number of model parameters.

4.3.7 Analytical software

The models used in this work were developed using MATLAB® (2013a, The

MathWorks, Massachusetts, United States). Alongside this the PLS Toolbox

chemometrics software (Eigenvector Research Inc., Washington, United

States) was used for the multivariate statistical applications. For the creation of

the DoE used in the chromatography experiments the software

Design-Expert® (Stat-Ease Inc., Minneapolis, United States) was used.

4.4 Mechanistic modelling

This research uses mathematical models in the form of differential equations.

In the last twenty years there have been various attempts to characterise

mammalian cell cultures (Glacken et al., 1988; Suzuki and Ollis, 1989;

Fernandes et al., 2013; Gadgil, 2015a). The mechanistic models used in this

research are specific to CHO cells and as such CHO specific models were

selected (Gadgil, 2015a; Xing et al., 2010; Naderi et al., 2011; Kontoravdi
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et al., 2007). Within this area there is still a broad spectrum of models and two

models were selected of differing complexity in terms of the number of

variables (Naderi et al., 2011; Kontoravdi et al., 2007). The advantage of

studying the model complexity is that a comparison could be drawn not only

between the multivariate and mathematical models, but also between the

hybrid models developed using combinations of multivariate and mathematical

(Psichogios and Ungar, 1992).

4.4.1 Cultivation

Two different mechanistic models were used to characterise the system. These

two models differ in complexity; with one model providing an overview of cell

cultivation, and second expanding this to include all the main metabolite

concentrations as well. Therefore these models can be interchanged when

more is known of the process. The first model which was investigated was

developed by Naderi et al. (2011). This is a series of equations which have

been adapted from a hybridoma metabolic model for CHO cells. The model

includes the main glycolysis pathways, energy related amino acid metabolism

and production of biomass and mAb. The model is constructed using a mass

balance for each metabolite, giving the extracellular concentrations and

specific uptake/production rates during the cell cultivation. The viable cell

concentration is given as a function of time, making it a dynamic model. It is

assumed at the specific uptake/production rates are constant. The equations for

this model are given in Appendix B part B.

The second model used is described by Kontoravdi et al. (2007). This is

the most complex of the two models as it describes the cell growth kinetics and

cell metabolism. The amino acid metabolism is based specifically on CHO

cells (therefore it is not applicable to hybridoma cells), and was determined

based on the work of Alberts et al. (2002). It is different to the model

presented by Naderi et al. (2011) as Naderi et al. (2011) only include the

amino acids which they have deemed to be the most important, whereas

Kontoravdi et al. (2007) have included all twenty amino acids.
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4.4.2 Purification

There will just be one mechanistic model used for the IEX chromatography

unit, which is used to predict the retention time for ion exchange

chromatography. This model is given in Chapter 6 section 6.5. This model was

taken from literature, and is shown in the work of Shellie et al. (2008) and

Madden et al. (2002).

4.5 Hybrid modelling

Hybrid modelling combines the advantages of both models, whilst

simultaneously removing some of the barriers to application. Advantages

include:

• Greater prediction accuracy:

1. Lower number of model parameters when compared to

non-parametric models.

2. Model can account for changes to variables when compared to

phenomenological models.

3. Constraints can be included to avoid infeasible solutions.

• Phenomenological aspects allows for process operation space to be

defined, which reduces the computational demand.

• Improved extrapolation properties when compared to non parametric

models.

• Less phenomenological knowledge is required when compared to white

box models.

• Hybrid models are faster to develop than white box models as less

knowledge is required.

Hybrid modelling combined different sources of information in one

framework. The main issue being the structure of the framework used;
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literature presents two different options, these being serial or parallel and one

step or multi step. The hybrid models can be structures in three different ways

(Figure 3.2), the first (A) is termed a parallel structure with (B) and (C) being

serial structures. Agarwal (1995) discusses these three structures and states

that the black box represents non parametric models and the white box

phenomenological models.

4.6 Summary

This chapter described the sources of data used in the research, including data

obtained from collaborators and data generated through experimentation.

Furthermore the protocol for applying the MVDA techniques used in the

research was discussed, including Parallel Factor Analysis (PARAFAC),

Principal Component Analysis (PCA), and Partial Least Squares (PLS). The

PARAFAC analysis was conducted using the n-way toolbox (Andersen and

Bro, 2000), PCA and PLS was conducted using the PLS toolbox (Eigenvector

Research, Inc.). PARAFAC was selected for this research as it can highlight

variation between batches, PCA was selected for this research as the variance

within time series data sets with multiple variables can be analysed (Kourti and

MacGregor, 1995). PARAFAC, PCA, and PLS were selected for use in this

research because all three methods can handle multi-way data, they reduce

both the dimensions and noise of the data, they are well established tools for

use in the pharmaceutical industry, and there is evidence (in the case of PLS)

of the technique being applied with hybrid modelling. The study presented in

the following chapter (Chapter 5) investigates the use of PARAFAC, PCA, and

PLS to allow for an informed decision as to which techniques to use in the

chromatography modelling and the agent based model. Similarly to the array

of multivariate technique available, there are numerous first principles models

which can be used to describe the cultivation, this research investigates the

incorporation of two cultivation models of varying complexity into a hybrid

structure. One mechanistic model has been chosen for the IEX

chromatography unit, as it is possible to specify the process parameters

specific to the system within the model. The next chapter presents a study of
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hybridoma glycosylation, with the aim of selecting the most appropriate

MVDA techniques.
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Chapter 5

An investigation of the effects of

operating conditions on hybridoma

cell metabolism and glycosylation

of produced antibody

The previous three chapters have provided an overview of bioprocessing,

introduced some of the literature associated with modelling bioprocesses, and

discussed the techniques which this research uses. This chapter covers the

research carried out to investigate the ability to model and predict the

metabolism and final glycosylation profile of Hybridoma cells using

multivariate data analysis (MVDA) and first principles modelling. The MVDA

uses both on-line and off-line measurements with the aim of predictions from

on-line measurements being used for real-time control of a cultivation.

The study presented in this chapter aims to establish the link between

process operating conditions, cell metabolism and the production of different

glycosylated forms of a monoclonal antibody (mAb) produced by a murine

Hybridoma cell line. This is the first step towards the development of a hybrid

model, and provides the link between on line monitoring and control of the

final glycosylated product. Glycosylation is important as it can have a major

impact on the safety and efficacy of the product. When compared to a naturally
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occurring protein, a protein that is missing carbohydrate side chains has the

potential to aggregate, which may enhance a patients immune response (Sofer

and Hagel, 1997). The literature has shown that no strategy currently exists for

on-line control of glycosylation. This is primarily because glycosylation is a

non-template driven cellular process. However recent work by Amand et al.

(2014) suggests that it would be possible to control glycosylation through

cultivation conditions. Therefore as control of glycosylation is possible this

study will aim to investigate the routes by which it can be achieved.

5.1 Methodology

The data used in this study was collected as summarised section 4.1.1. This

work was carried out in collaboration with Marija Ivarsson, a PhD student at

ETH Zürich, and the cultivation experimentation was conducted by the

collaborators. More detailed information on the experimental procedure is

given by Ivarsson et al. (2014).

The data set contains 13 separate cultivations, these experiments were

conducted using the one factor at a time principle. All cultivations were

operated at standard conditions until 30 hours, when a process shift was

introduced. This changed the level of one of the investigated variables in each

batch. The standard cultivation settings were;

• 50 % dissolved oxygen

• 380 mOsm/kg−1 osmolality

• 7.2 pH

• 0.05 vvm aeration rate

The conditions of the 13 batches are shown in Table 5.1. As can be seen

batches 1-3 investigated three different levels of dissolved oxygen, a low level

(10%), a high level (90%) and a centre point (50%). Batches 4-6 and 13

investigated four different levels of osmolarity (mOsm/kg−1), a low level (350

mOsm/kg−1), a high level (420 mOsm/kg−1), a very high level (450
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mOsm/kg−1), and a centre point (380 mOsm/kg−1). Batches 7-9 investigated

changes to pH, with a low level (7.0) a high level (8.0) and a centre point (7.2).

The final three batches, 10-12 investigate changes to aeration rate, with a low

level (0.05 vvm), high level (0.20 vvm), and a centre point (0.10 vvm). It can

be seen that there is a total of 3 batches (1,5, and 10) which are all operated at

the same conditions.

Table 5.1: Experimental conditions of each of the 13 experimen-
tal batches used to construct and validate the PCA and PLS mod-
els. There was a condition change at 30 hours into the cultivation.
Prior to the parameter shift the cultivations were operated at a
standard setting (50 % dissolved oxygen; 380 mOsm/kg−1 osmolal-
ity; 7.2 pH; 0.05 vvm sparging). Highlighted in bold is the parame-
ter that was being investigated in each batch.

Batch
identifier

Dissolved
oxygen

(%)

Osmolality
(mOsm/kg−1)

pH
Sparging

(vvm)

1 50 380 7.2 0.05
2 10 380 7.2 0.05
3 90 380 7.2 0.05
4 50 350 7.2 0.05
5 50 380 7.2 0.05
6 50 450 7.2 0.05
7 50 380 7.0 0.05
8 50 380 7.5 0.05
9 50 380 8.0 0.05

10 50 380 7.2 0.05
11 50 380 7.2 0.10
12 50 380 7.2 0.20
13 50 420 7.2 0.05

Initial treatment

The techniques used for the initial treatment of the data are described in

chapter 4 section 4.2. The matrices were unfolded in a batch wise way

(Nomikos and MacGregor, 1994). Batch wise data unfolding was chosen as it

preserves the variability between batches, which for this data set and

application were important as literature has shown small changes to cultivation

can greatly impact performance (Gomez et al., 2010). Having unfolded the

data the pre-processing steps can then be applied. An example of the raw data
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prior to pre-processing is shown in Figure C1, which corresponds to batch 9 in

Table 5.1. The data set presents various challenges, including:

• variation in the cultivation duration

• random sampling time of the off-line data

• incomplete recordings

The duration of the cultivations varied considerably, ranging from 74.2-94.8

hours. Of the 13 cultivations, 11 were between 72-78 hours and only two

extended to >90 hours. Figure C2 shows a comparison of the raw off-line data

for batches 9 (78 hours) and 11 (90 hours). As can be seen in Figure C2 (a) the

cells have achieved the four stages of cell curve characterised by the cell

growth curve (chapter 2,section 2.3.1, Figure 2.6). Similarly for figures C2

(b-e) the consumption/production profiles which would be expected are shown

for both batches. In particular it is noted that for all five off-line measurements

the expected profile is achieved by 70 hours and as shown by the titre (b) the

maximum production of the product has been achieved. Therefore it was not

detrimental to the modelling of the cultivation to cut the 15 batches to the

length of the shortest run (74.2 hours). It is necessary to cut the data because

when applying MVDA techniques the matrices used must be of equal length as

if there are too many missing data points it becomes difficult to apply.

To account for the random sampling time of the off-line data a cubic

spline was used. Figure C3 shows the data for batch 9 after the cubic spline

interpolation has been applied and after the data cut (to 74.2 hours). The cubic

spline was applied to the off-line data using the time the on-line data

measurements were recorded. This was done so that a comparison could be

achieved at a specific point of time in the cultivation duration. Additionally the

data was sampled, this is to reduce the size of the matrices. The on-line data

consisted of ∼9000 measurements for each variable. This is a very large data

set to work with; therefore the data was sampled whereby every 10th

measurement is used.

The final issue encountered in the data set was incomplete recordings.

The main problem arises with the ammonia measurements as it was only
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successfully recorded for batches (8-11 and 13-15). Models were constructed

which included and excluded the ammonia data to determine if the lack of

available data was influencing the model. This is discussed further in the

following sections.

Pre-processing

The methodology for pre-processing the data is given in Chapter 4. There are

various pre-processing techniques which can be applied to multivariate data,

which can account for scattering (spectroscopy (Næs, 1989)), to show hidden

peaks (spectroscopy (Savitzky and Golay, 1964)), or to smooth noisy data

(Press et al., 2007). In this application the only pre-processing technique

which was used is autoscale, which combines mean centering with division of

each column by the standard deviation. Autoscale was used because it allows

for direct comparison between the variables.

Multivariate data analysis (MVDA)

The protocol for constructing and applying MVDA models is given in chapter

4, section 4.3. The application of multivariate data analysis techniques

(PARAFAC, PCA, and PLS) were carried out using MATLAB® (R2014a, the

MathWorks Inc.) and the PLS Toolbox™ (Eigenvector Research Inc.). PCA

was applied to get an overview of the process data. Combinations of on-line

and off-line data were explored with the aim of establishing the CPPs so that a

predictive model can then be constructed which focuses on using these to

predict CQAs. For PCA all 13 experimental batches were used with a leave

one out cross validation method applied. Having established trends and

clusters in the data, PLS modelling was used to develop regression models.

The on-line measurements collected for each cultivation included the %

of Dissolved Oxygen (DO) in the cultivation medium, the % of Oxygen (O2)

in the air feed to the cultivation, the % of Carbon Dioxide (CO2) in the air feed

to the cultivation, the pH of the cultivation medium (pH), the flow of base to

the cultivation (base), the stirrer speed of the impeller, and the temperature of
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the cultivation.

5.2 Results and discussion

This section presents three analysis/modelling techniques. The first of which

was Parallel Factor Analysis (PARAFAC), which was explored as it is a

multi-way method where there is no rotation issue as there is for PCA or PLS.

Furthermore the resulting models are simple typically and therefore easy to

interpret. This would be an advantage for this research as it is intended to be

adopted in industry. The second technique was principal component analysis

(PCA), and the final technique is partial least squares (PLS). Description of the

application of these tools is given in chapter 4 section 4.3. The results of the

application to a hybridoma cell line regarding the analysis and prediction of

the cell metabolism and product production, but also the applicability of the

technique to hybrid modelling and this research are discussed in the following

sections.

5.2.1 Parallel factor analysis

The first multivariate technique used on the data set was parallel factor analysis

(PARAFAC), section 4.3.2 in chapter 4 provides details on the application of

PARAFAC. As described in section 4.3.2 PARAFAC analysis uses data

contained within a 3-D array, therefore data unfolding was unnecessary. The

aim of this case study was to determine whether PARAFAC can be used as a

tool in industry for analysing mammalian cell cultivation. It was compared

with principal component analysis in section 5.2.2 to determine which is the

most appropriate technique to take forward in this research. With PARAFAC

there is no rotation problem, which is beneficial for data sets such as that being

investigated in this study where batch length and sampling intervals are

irregular. PARAFAC allows for the visualization of the data in a way that is

relative to the raw information, therefore making it useful as a precursor to

principal component analysis (Bro, 1997). The data was arranged in a

96



three-way array with time, batches and variables representing the dimensions,

respectively. Where batch lengths were unequal, ’not a number’ was entered.

To construct the PARAFAC analysis, the n-way toolbox was used.

On-line data

The PARAFAC model constructed for the on-line data contained three

components (Model 1). This was selected as the analysis was shown to explain

the effects of interest, i.e. the constructed model was shown to explain

variability in cultivation duration (Figure C4 (a)), variables (Figure C4 (b)) and

batches (Figure C4 (c)). Using more components did not yield any further

useful observations. The analysis indicated that PARAFAC can capture the

variation in the system and the controlled parameter shift at 30 hours. Figure

C4 (a) demonstrates this shift in Mode 1 of the model for each of the three

components, but primarily in component 3. PARAFAC was especially

beneficial in assessing the quality of the experimental runs as it highlighted

specific runs deviating from the typical observed behaviour (as illustrated by

Figure C4 (c)). However this deviation was not excessive and could be

explained by the different operational conditions each experiment operated

under. Figure C4 (c) shows that of the 13 batches used in the analysis (Table

5.1), batch 3 was highlighted as exhibiting different behaviour. This batch was

carried out with a DO shift to a high value at 30 hours. Subsequent analyses

also highlighted the different behaviour of this batch (see results of PCA in

section 5.2.2).

Off-line data

The PARAFAC model constructed on the off-line data also contained three

components (Model 2). Again additional components did not yield further

results. The model shows variability in cultivation duration (Figure C5 (a)),

variables (Figure C5 (b)) and batches (Figure C5 (c)). Figure C5 (a) shows the

variation during the duration of the cultivation. As can be seen component one

highlights the variation at the beginning of the cultivation, component two

97



during the middle and component three at the end of the cultivation. This

reflects the cell growth curve, and suggests that the dominant variation in mode

one is to do with growth and production. Figure C5 (b) highlights that the

most important variables were viable cell count, percentage viability, glucose,

lactate and titre, with the amino acids not having much influence over any of

the three components in the model. Figure C5 (c) shows the analysis of the

batch variation. As can be seen there is a great deal of variation and influence

over the model in all 13 batches. Component one highlights that all 13 batches

are important to the model, component two illustrates the difference between

the pH runs (7-9) and the other runs. Finally component 3 highlights a big

difference between runs (1-3 and 13) and the rest of the runs used to build the

model. The reason for this is not clear as run 2 was operated at the same

conditions as runs 5 and 10, and run 13 was investigating osmolality whereas

runs 1-3 investigated DO. PARAFAC has shown to be good at identifying

sources of variation within a data set, but not the reasons for the variation.

5.2.2 Principal component analysis

Principal components analysis (PCA) was used to increase understanding of

the cell cultivation data, with the aim of establishing the influence of various

operating parameters on the final CPPs and CQAs which include titre and

glycosylation profile. The PCA analysis performed on the on-line data was

used as a variable reduction method, whereby the data was analysed to

determine which variables account for variation and which are sources of noise

in the data. The PCA analysis on the off-line data was used to understand the

influence of changes to operating parameters on various measured parameters

and to establish whether it would be possible to predict or control these

measured CQAs.

On-line data

The first PCA carried out on the data was conducted on a matrix which

included all 13 experimental batches with the 7 on-line variables. The aim of
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this analysis was to determine if all variables had an equal effect upon the

variation in the batches, and if the conditions of certain batches impacted the

analysis more. The resulting model contained 5 principal components (PCs)

and accounted for 84.41% of the variation in the data. Figure 5.1 is a bivariate

scores plot for PC1 and PC2, which are the two PCs that captured the most

variance. It can be seen that for PC1 there is a wide spread in the batches

which investigated pH (blue), with batch 9 lying close to the 95% confidence

limit, this is due to the fact batch 9 was operated at pH8 which is outside the

normal operating pH for mammalian cells (Table 2.1, 13). PC2 shows a wide

spread in the dissolved oxygen (DO) experiments, suggesting that the variation

in PC2 is accounted for by DO. Batch 3 was close to the confidence limit and

as this batch was operated at 90% DO this was not surprising.
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Figure 5.1: Bivariate scores plot showing PC1 and PC2 for the
PCA analysis containing the on-line data for all 7 measured vari-
ables. The scores are grouped to show dissolved oxygen (red), os-
molality (yellow), pH (blue), and sparger (green).

Although Figure 5.1 suggests a relationship between PC1 and pH, and

PC2 and DO, the random scatter of most of the points shows that there are

other influences which are causing variation. To investigate these the loadings

for the model can be used to see how each of the variables influence the

variation. Figure 5.2 shows the loadings for all 7 variables for PC1, the figure
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speed.

suggests that temperature and stirrer speed have a significant impact on the

variation in the data. However when observing the raw data it can be seen that

these two variables change very little. Therefore it is more likely that the effect

seen in Figure 5.2 is due to the scaling of the data. During the scaling process

each data measurement within a variable was weighted and scaled down,

therefore if a variable only changes by a small amount this small change will

be magnified. Due to this process and technique knowledge a PCA was

subsequently performed with stirrer speed and temperature removed from the

analysis.

Figure 5.3 shows the weightings for the analysis with stirrer speed and

temperature removed. The new model was constructed using 3 PCs and

accounted for 89.04% of the variation in the data. As can be seen from the

weightings the variable dissolved oxygen is now the most significant. It can be

seen that the weightings for the variables O2, CO2, and base vary over time

with the importance of O2 and CO2 decreasing with time whilst the

importance of the base variable increases over time. This would suggest that

O2 and CO2 are important during the cell growth stage of the cultivation, with

the base being important during the production stage. The weightings for PC2

and PC3 are given in the appendix in Figures C6 and C7. As can be see

dissolved oxygen is the mots important variable when considering the

variation captured in each of the three principal components.

The weightings have then been used along with the scores values for each
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batch to produce the bi-plot shown in Figure 5.4.
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Figure 5.4: Bi-plot for PC1 and PC2 for the PCA model con-
structed using 5 on-line variables. The scores are label with their
batch number, and the variables are highlighted in ellipses.

It can be seen that there is a direct correlation between the variable DO

and the batch which was operated at the highest concentration of DO (batch 3).

Additionally it can be seen that there is a relationship between the DO

concentration and the O2 in the cultivation which is as would be expected.

Similarly the relationship between the base concentration and the pH is as

expected, along with the importance on batch 9 (the high pH batch). What is
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perhaps a less obvious relationship is that between the low pH batch (batch 7)

and the level of CO2 in the cultivation. From analysis of the loadings values it

is known that the group of carbon dioxide points, batch 7 is close to, relate to

near the end of the cultivation, i.e. during the end of the growth phase and

through the production phase. This strong correlation to the carbon dioxide

concentration suggests that the cells are growing more. This links with the low

pH level this batch was operated at because as shown in Trummer et al. (2006)

high pH levels inhibit cell growth.

In summary the PCA analysis of the on-line data has shown that for any

subsequent models the temperature and stirrer speed data should be discarded.

Furthermore the analysis has shown a correlation between the operating

conditions and the on-line data showing that there is a link between the CPPs

and the CQAs.

Off-line data

There were various off-line measurements taken from the 13 cultivations these

include; glucose concentration, lactate concentration, titre, viable cell count,

amino acid concentrations, and glycosylation of final product. These

measurements can provide a lot of information on whether the variation in the

data set is ordered or random. The first PCA analysis performed combined the

DoE operational set point data given in Table 5.1 with the final product titre.

The resulting model contained 3 PCs which explained 72.75% of the variation

in the data. Figure ?? shows the bivariate scores plot for PC1 and PC2. It is

shown that there is a strong link between the variation captured in PC1 and

pH, and the variation captured in PC2 and the concentration of gases dispersed

in the media. To obtain a more thorough understanding of how the variables

contribute to this variation a bi-plot has been produced (Figure 5.5).

As can be seen there is a strong relationship for all batches which were

operated under the extreme condition and the variable they were testing. For

example batch 9 operated at the high pH value of pH8, and this batch is shown

to be strongly related to the pH variable, similarly batch 12 which operated at

102



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1

2

3

4

5

6

7 8 9
10

11

12

13

PC 1 (31.63%)

P
C

 2
 (

20
.9

0%
)

pH

Sparging
vvm

Osmolality

Yield

Dissolved
oxygen

Figure 5.5: Biplot showing PC1 and PC2 for the PCA analysis
containing the off-line data for operating parameters and titre.
The scores are grouped to show dissolved oxygen (red), osmolality
(yellow), pH (blue), and sparger (green). The variable loadings
are shown in black and labelled as to the variable they relate to.

0.2 vvm is shown to be closely correlated to the sparging variable. What is

perhaps not as expected are the results for the DO batches (1, 2, and 3).

Batches 1 and 2 are shown to be more closely related to the variable pH than to

the DO variable. A possible reason for this is that the affect of the pH of the

cultivation media and the affect of the level of dissolved oxygen on the cell are

closely related. As discussed by Naciri et al. (2008) at lower concentrations of

dissolved oxygen the cells are more susceptible to changes in pH. Whereas

when the DO is in excess small changes to the pH do not influence the cells as

much.

The variable ’yield’ is shown to be positively correlated to the dissolved

oxygen levels and the osmolality, suggesting a higher level of dissolved

oxygen promotes a higher titre. Additionally there is a negative correlation

between titre and pH suggesting pH can inversely affect the production of

protein. This is supported by batch 7, which operated at pH 7 and is shown to

be closest to the yield variable. With regards to using this data in a PLS model

some difficulties may arise around batches which are far from the centre

cluster i.e. batches 6, 9, and 12. This is because the data set is small in size and
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with some of the batches being extreme values it means these batches

influence the trained model more. Additionally if these batches are used for

validation they are so different to the batches which would be used to train the

model that the prediction would be expected to be poor.

The second PCA model constructed from the off-line data included in the

matrix the variables; glucose concentration, lactate concentration, titre, and

viable cell count. The resulting model contained 4 PCs and explained 89.15%

of the variation in the data. Figure 5.6 shows a bi-plot of the resulting scores

and loadings for the model. It can be seen that there is a relationship between

the batches testing DO level and the viable cell count. This is as expected as

the cells require oxygen to grow and thus changes to DO levels would result in

higher or lower growth. What is perhaps not expect is the position of batch 1,

as although this batch is considered to be one of the DO test group, it has

similar conditions to batches 5 and 10. These three batches are relatively

spread out across PC1, indicating that PC1 captures a variable which is not

measured and varies between these three batches. The glucose concentration is

indicated to be important in batches 7, 8, and 9, with batch 7 especially the

glucose is important during the end of the cultivation. As the pH for batch 7 is

the lowest for all the pH test set (pH 7) it suggests that higher pH affects the

cultivation more (Naciri et al., 2008). All the batches relating to the sparger

vvm and the high osmolality batch are related to the lactate concentration and

the product titre. This is an interesting grouping, as all the batches within the

group are concerned with mass transfer parameters and it could indicate that it

is the distribution of the different components within the media that affect the

cell production.

With regards to the variables it can be seen that the product titre is closely

linked to the lactate concentration, and the viable cell count is inversely related

to the glucose concentration. This follows what is known of the cell cycle in

that glucose is used for cell growth, and lactate is a by-product of growth.

With respect to using this data in a PLS model it can be seen that all 4

variables are important to the data variation and should be included. The

batches have again shown that there is some variation in this case with batches
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Figure 5.6: Bi-plot showing PC1 and PC2 for the PCA analysis
containing the off-line data for glucose (yellow circles), lactate
(red circles), titre (purple circles), and viable cell (green circles).
The scores are grouped to show dissolved oxygen (red stars), os-
molality (yellow stars), pH (blue stars), and sparger (green stars).

1, 2, 3, and 13 which may prove challenging in a predictive model. The bi-plot

for PC3 and PC4 is given in Figure C8 in the appendix. As can be seen there

are no strong links between the operating conditions of the batches and the

profiles of the different off-line variables.

So far the PCA analyses presented in this chapter have focused on the

CPPs given in the experimental plan, and the CPPs of viable cell count and

product titre. These are important parameters and will be included in the final

model network, however the main focus of this chapter is to investigate the

CQA of the final product glycosylation profile. It is known that there is a link

between the amino acids in the media and the glycosylation of the final

product (Ivarsson et al., 2014), thus the next PCA analysis considered the

operating parameters, titre, and glycosylation profile. The resulting model

contains 5 PCs and captures 89.18% of the variation in the data.

Figure 5.7 shows the bi-plot of the model for PC1 and PC2, with a bi-plot

for PC3 and PC4 given in Figure C9. The figure suggests a relationship

between the operating parameters and the final glycosylation profile. The

variable pH seems to be strongly related to the concentration of G0F, further
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supported by the scores for batches 8 and 9, which shows that an increase in

pH causes a stronger correlation to G0F. This is the only glycan which is

positively correlated to pH. In the opposite quadrant (bottom left) it can be

seen that there are 3 glycans (G1F, G2F, and G2F-GalS). The main difference

here is that G0F does not contain any galactose, whereas G1F (one galactose),

G2F (two galactose) and G2F-GalS (two galactose) all do, with all four

glycans being fucosylated. This indicates that pH can influence the ability of

galactose to bind to the protein. This is supported by the work of Borys et al.

(1993), who showed that cell external pH can influence glycosylation. This

study focuses on glycosylation as a whole and not the individual glycans,

therefore there is scope for a study investigating the effect of pH on the

individual glycosylation mechanisms. Considering now the fucosylation of the

glycans; returning to G0F in the top right quadrant, if we compare this to G0 in

the bottom right quadrant it can be seen that both of these are influenced by the

pH, which affects the binding of galactose. However G0, which is not

fucosylated is shown to be correlated to the gas flow rate (VVM) and is

confirmed by the placement of batch 12 (0.2 vvm) indicating that higher the
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flow rate of air the more the glycosylation pathway is influenced to produce

G0. This is suggested to be further supported by the glycans G2F-S, G2F-S2,

G2F-Gal found in the top left quadrant and which are all negatively correlated

to the VVM and found to be fucosylated. The issue however arises with the

glycan G0-GalS, also found in the top left quadrant, which is not fucosylated.

With this in mind, considering the placement of the variable OSM (osmolality)

it suggests that the processes of fucosylation and sialylation (addition of sialic

acid) are negatively correlated to osmolality. This is confirmed in the work of

Konno et al. (2012) and Ivarsson et al. (2014) who showed that the fucose

content of monoclonal antibodies could be controlled by culture medium

osmolality. The placement of the glycan G0-GalS does indicate that sialylation

is the more dominant process step, with the placement of the glycan G2F-GalS

(in the top right quadrant) suggesting that the addition of galactose must occur

before sialylation occurs. This is supported by Raju et al. (2001) and Kaneko

et al. (2006) who both discuss how sialic acid commonly binds to galactose.

The placement of the DO variable near the origin shows that, when

operated at 50%, the DO does not influence the glycosylation. It is only when

the DO is operated at extremes that it becomes an influencing factor (batches 2

and 3). Meuwly et al. (2006) conducted a study to increase production and

scale up of a cell culture process. They successfully increased product titre

whilst maintaining a similar glycosylation profile. To summarise the findings

of the effects of operating parameters a list is given below.

1. pH is correlated to the addition of galactose.

2. A higher pH means galactose does not bind.

3. The processes of fucosylation and sialylation are negatively correlated.

4. A higher osmolality promotes sialylation.

5. Higher gas sparing (vvm) appears to have some inhibitory effects on the

sialylation and fucosylation.

Having established that there are relationships between the operating

parameters and the final glycoyslation profile, this indicates that it should be

107



possible to produce a PLS model that can predict glycosylation.

Although the last PCA model established that there is a link between the

operating parameters and the final glycosylation profile, there are references in

literature which suggest the metabolism of the cell is an indicator of

glycosylation (Yi et al., 2012; Nyberg et al., 1999; Butler, 2006; Wong et al.,

2005a). The amino acids are a measurement of the metabolism, therefore they

would be used as an intermediate in the modelling scheme. Using the

operating parameters (DO, pH, osmolality, and gas flow rate) to predict amino

acid concentrations and then use the amino acid concentrations to predict

glycosylation. Additionally this is perhaps the point at which multivariate

modelling would be most useful as there are currently no mathematical models

reported in literature which fully characterise the metabolism of hybridoma or

CHO cells. Therefore a final PCA model was constructed using the amino acid

concentrations at the time the glycosylation profile was recorded, and the

glycosylation profile for the 9 glycans. The resulting model contained 4 PCs

and captured 93.35% of the variation in the data with the majority of the

variation being captured in PC1 (63.92%).
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Figure 5.8: Bi-plot showing PC1 and PC2 for the PCA analysis
containing the off-line data for the amino acid concentrations
and final product glycosylation profile. The scores are coloured
to show dissolved oxygen (red), osmolality (yellow), pH (blue), and
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Figure 5.8 gives the bi-plot for the model for PC1 and PC2. The variables

have been colour coded to shown glycans (black) and amino acids (purple).

The scores have also been colour coded to show the batch groupings i.e.

batches 1-3 relating to DO (red), osmolality (yellow), pH (blue), and sparger

vvm (green). Initial observations suggest that there is not a strong correlation

between the end amino acid concentration and the end glycosylation profile.

This observation comes from the close grouping of 18 of the amino acids in

the two right hand quadrants. There are two positive observations: firstly that

concentration of tryptophan (TRP) seems to be correlated to the glycans which

contain no galactose. Literature can aid in understanding this relationship:

Lécorché et al. (2012) conducted a study showing that the use of both

tryptophan and galactose in glycosylation is related. This has also been shown

by Vliegenthart and Casset (1998) who showed that the addition of tryptophan

occurs prior to the addition of galactose. This can be related back to Figure 5.8

suggesting that the higher concentration of tryptophan occurs when more of

G0 and G0F are formed as these two do not consume the tryptophan. The

second observation is that glutamine (GLN) appears to be important in the

formation of the majority of the glycans. This disagrees with the findings of

Taschwer et al. (2012) who showed that CHO cells produced in normal media

and glutamine free media contained no significant differences in the final

glycosylation profile. Therefore considering again Figure 5.8 the position of

the GLN and TRP loadings relative to the other amino acid loadings suggests

that the cell metabolism is being captured with glutamine being important to

cell growth and the other amino acids being subsequently used in the

production of protein. On this basis it suggests the variation in PC1 is related

to cell production of protein, and the variation in PC2 is related to cell growth.

Subsequently the clustering of the amino acids on the right hand side of the

figure suggests that the individual concentrations of the amino acids have less

of an impact on the glycosylation of the product. Figure C10 shows the bi-plot

for PC3 and PC4, some of the labels have been removed for the variables

which are close to the origin for ease of interpretation. The proximity of these

variables to the origin shows that they have little influence on the variation

captured by either PC3 or PC4. This figure shows little influence of the

operating set points or the amino acids on the final glycosylation profile.
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However it does again highlight that glutamine and tryptophan are important

to the variation captured. In summary this analysis indicates that the off-line

variables from the previous analysis (DO, VVM, pH, and OSM) would be

better to use as predictors for final product glycosylation. This can be

concluded from the fact that there appears to be two relationships apparent in

Figure 5.8, the first being the importance of the amino acids in cell growth and

the production of protein. The second being the relationship between

operating conditions and glycans.

In summary the PCA analyses presented in this section have shown that it

was necessary to remove two of the on-line variables (temperature and stirrer

speed) as they introduced noise in to the system. From the off-line data it has

been shown that there are strong correlations between the operating parameters

and three of the target CPPs and CQAs (titre, viable cell count, and final

product glycosylation profile). Additionally the analyses have shown how

changes to these parameters made through the experiments have influenced the

final CPPs/CQAs. The next section will consider using these data matrices to

develop predictive models using partial least squares (PLS).

5.2.3 Partial Least Squares

Partial least squares (PLS) is a regression technique used to predict a Y matrix

from an X matrix (see Chapter 4 section 4.3.4 for details). PLS was applied in

this research to predict various CPPs/CQAs, namely titre, viable cell count,

and glycosylation profile. The aim was to assess how well various input data

correlates with these to enable their accurate prediction.

From the PCA analyses performed in the previous section it was known

that there are relationships between the operating parameters, the on-line

measurements, and the off-line measurements (glucose and lactate) and the

CPPs/CQAs of interest (titre, viable cell, and glycans). Therefore for each of

the CPPs/CQAs three models were constructed to predict them using each of

the three identified sets of input variables. For all the PLS models constructed,

the training data consisted of 11 batches with 2 batches being used as
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validation data. The batches used for validation were batch 5 and batch 13.

These batches were chosen because they were not extremes of any of the

variables, hence the model was not predicting outside of the range it was

trained. Additionally both batches were part of the osmolality group of which

there were more experimental batches. Therefore, selecting these two would

not decrease the models ability to predict osmolality changes.

Three models are used to predict each of the viable cell, product titre, and

glycosylation profile. This produces nine models in total. Table 5.2 reports the

number of latent variables, the variance captured in the X and Y blocks, the

RMSE, and AIC values for these models.
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Table 5.2: Model information for the three models constructed to predict the viable cell count, product titre, and final glycosylation.
The RMSE and AIC values are reported as mean values for the training and validation batches respectively.

CPP/CQA Model X-Block
data LVs X-block

variance
captured

Y-block
variance
captured

RMSE AIC
train
mean

val
mean

train
mean

val
mean

Viable
cell

count

A Operating
parameters 3 74.27 48.11 0.28 0.43 11.57 4.73

B Glucose +
Lactate 3 80.00 73.44 0.24 0.21 14.36 12.12

C On-line
data 4 81.08 74.56 0.23 0.36 15.20 17.04

Product
titre

D Operating
parameters 4 80.18 89.50 7.29 6.12 27.30 29.46

E Glucose +
Lactate 3 84.52 81.66 6.84 9.88 29.77 35.76

F On-line
data 4 69.47 87.79 6.57 9.57 28.42 35.59

Glycosylation
G Operating

parameters 3 76.66 46.16 0.83 1.37 0.87 1.10

H Glucose +
Lactate 4 93.91 65.36 0.63 1.40 1.90 3.51

I On-line
data 4 80.16 70.18 0.62 1.31 0.97 3.50
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The first model (model A) to predict the viable cell count used the

operating parameter set points as the X-block, the second model (model B)

used the off-line glucose and lactate measurements as the X-block, and the

third model (model C) used the on-line measurements (DO, O2, CO2, pH, and

base) as the X-block. Table 5.2 shows that model B offers the lowest RMSE

value for both the training and the validation batches. Models A and C show

relatively low RMSE values for the training batches but higher values for the

validation batch. However, the AIC values for the validation batch of model B

is significantly higher than for model A. As the AIC is a measure of model

complexity it suggests that whilst there is a slight improvement on the

prediction made with model B the resulting increase in model complexity

would mean model A would be a better choice. The predictions of the three

models for the validation batches are shown in Figure 5.9.
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(b) Batch 13

Figure 5.9: Measured and predicted values for viable cell count
for the two validation batches using three models. Model A (X-
block: operating parameters), Model B (X-block: glucose and
lactate), Model C (X-block: on-line data). Measurement error
(±0.2) is included for the measured data (black dotted lines).
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Figure 5.9 shows that model B does indeed predict closest to the

measured data. When the measurement error for the viable cell count is

included (Ivarsson et al., 2014) it can be seen that only model B remains

within the limits for the prediction of batch 5, but is outside the limit for batch

13. The main variation between the measured and predicted data for model B

occurs at the cell count maxima, where the prediction is shown to achieve a

higher maximum than the measured data. This is likely to be due to variations

in the batch data used to train the model.

Figures C11-C22 in the appendix show the predictions for the training

runs using each of the models. For ease of interpretation the batches have been

split into groups, for example Figure C11 shows the predictions for the DO

batches (1-3) for model A. It can be seen for model A for the predictions the

greatest error is associated with the maximum growth phase for all batches,

whereas for model B the issue is not with a particular phase of the growth

curve, but more with individual batches, in particular the training predictions

for batch 6 and batch 8 are poor. For model C the issue is again with individual

batches, but in this case it is batches 4 and 6 which show a large error.

To understand these errors the data used to train the models should again

be considered. For model A, the X-block contained the set points of the

cultivation operating parameters post shift (30 hours). Figure C23 shows the

correlation between batch 3 and DO, batch 6 and osmolality, batch 9 and pH,

and batch 12 and sparger vvm. These batches were the highest setting for each

of the variables i.e. batch 3 is the 90% DO oxygen batch. As the predictions in

the appendix for the training runs have shown these four batches to be the best

predicted ones, it suggests that the model predicts better for the extremes of

the operational parameter settings. For model B the X-block contained off-line

glucose and lactate concentrations. Figure C25 shows this bi-plot for the

model. As can be seen, batches 6 and 8 are closely correlated to the lactate

concentration during the shift in cultivation conditions. Observing again the

predictions for these graphs it can be seen that the predictions for batches 6

and 8 are very similar. This suggests that the glucose and lactate measurements

for these batches were similar. This indicates that for high osmolality (batch 6)
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perhaps lactate and glucose are not good indicators of viable cell count as they

do not capture the effect of high osmolality (Ozturk et al., 1992). Finally the

training predictions of model C are shown in Figures C19-C22. For all batches

except 4 and 6 the predictions were good. Batches 4 and 6 are both part of the

osmolality group, Figure C27 shows no clear correlation between these two

batches and any of the variables used to train the model.

Similarly to the models constructed for viable cell count, three PLS

models were constructed using the product titre as the Y-block. The first

model (model D) used the operating parameter set points as the X-block, the

second model (model E) used the off-line glucose and lactate measurements as

the X-block, and the third model (model F) used the on-line measurements

(DO, O2, CO2, pH, and base) as the X-block. The number of latent variables,

the variance captured in the X and Y blocks, the RMSE, and AIC values are

reported in Table 5.2 which shows that when considering both the training and

predicted RMSE and AIC values, model D provides the lowest values for all of

these. Models E and F offer comparatively low RMSE and AIC values for the

training batches, but the values associated with the validation batches are

much higher. The predictions of the three models are shown in Figure 5.10

demonstrating that model D predicts within the measurement error for both

validation batches, and model E predicts within the limits for batch 5 but not

for batch 13. Additionally it can be seen that model F does not predict within

the limits for either validation batch. This suggests that the input data used for

models E and D might be very similar between the batches resulting in the

prediction for the validation batch resembling one of the training batches. This

effect can also be seen in model D, where the input data was the operational

parameter set points which were distinctly different for each batch and the best

predictions were obtained. Figures C29-C40 show the predictions made for the

training runs for each model. It can be seen that the trend observed in the

validation data, of model D predicting best, is also shown here. The training

predictions for all three models do not highlights any outliers, i.e. there are no

batches which heavily influence the models.
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Figure 5.10: Measured and predicted values for titre for three
models. Model D (X-block: operating parameters), Model E (X-
block: glucose and lactate), Model F (X-block: on-line data).
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Glycosylation profile of the final product was also used as the Y-block.

Again three PLS models were constructed, with the first model (model G)

using the operating parameter set points as the X-block, the second model

(model H) using the off-line glucose and lactate measurements as the X-block,

and the third model (model I) using the on-line measurements (DO, O2, CO2,

pH, and base) as the X-block. The number of latent variables, the variance

captured in the X and Y blocks, the RMSE, and AIC values are reported in

Table 5.2 which shows that for all three models the RMSE and AIC values are

very similar, with models G and I offering the lowest errors. The predictions of

the three models for the validation batches are shown in Figure 5.11.

It is shown that the predictions for both validation batches for 7 of the

glycans have a similar accuracy across all three models. Issues predominantly

arise in the predictions of two of the glycans G0F and G1F. The predictions for

the training data (Figures C41-C52) show the same trend, where the

predictions for G0F and G1F are consistently the poorest predictions for all

three models. Figures C53-C55 show bi-plots of the Y-block data for each

model (A-C). In all three models three groups of glycans can be distinguished.

The first group contained G0 and G0F, of which G0F is one the most

abundantly present glycans. These two glycans represent core-fucosylated,

bi-antennary structures with no galactose. The next group contained G1F

(most abundant glycan), G2F, and G2F-GalS all of which which were

fucosylated and either had one galactose, or were fully galactosylated. The

final group contained G2F-Gal, G2F-S2, G2F-S, and G0-GalS which are of a

higher complexity to the rest (Ivarsson et al., 2014). In all three models there

is shown to be a correlation between the fucosylation of the initial protein

(G0F) and the pH. This is supported by Gawlitzek et al. (2000) and Pacis et al.

(2011b) who showed that pH affect the kinetic rates of glycosyltranserases

within the Golgi apparatus thereby affecting the glycosylation. These three

groups, which appear in all three models, suggest that glycosylation is a

step-by-step process, with one step having to occur before another can (Hooker

et al., 1995). In all three models batches 8 and 9 (high pH) show a correlation

with the glycan G0F. This can be explained through the study presented by

Ivarsson et al. (2014) who showed that higher pH caused a significant decrease
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in terminal galactosylation (glycans G1F and G2F) of which G0F is the

starting point. Figures C54 and C55 show that there is a correlation between

G1F and G2F with batches 1 and 2. This suggests that the terminal

glycosylation is affected not only by variations in pH but also by variations in

other operating parameters, suggesting that the operating parameters can be

used to control the glycosylation profile (McCracken et al., 2014).
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Figure 5.11: Measured and predicted values for glycosylation
for three models. Model G (X-block: operating parameters),
Model H (X-block: glucose and lactate), Model I (X-block: on-
line data).

5.2.4 First principles modelling of cell cultivation

Mathematical modelling has been applied for the characterisation of biological

phenomena (Bailey, 1998a), to organise high throughput data (Schilling et al.,
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1999), and to guide experimentation for applications such as improving media

(Gadgil, 2014) or, as in the case of this research, for optimising process

operation(Fernandes et al., 2012). The models presented in this section are

unstructured in that they do not take into account the inner structure of the

cells. The models were primarily used to provide a comparison to the results

obtained from the PLS modelling. Two models are described: the first was

presented by Naderi et al. (2011), and the second by Kontoravdi et al. (2007).

These two models were used, with model parameter values from literature, to

predict viable cell count and product titre. With regards to the glycosylation,

there are two reports in literature of mathematical models which can be used to

predict glycosylation, as presented by Krambeck and Betenbaugh (2005) and

del Val et al. (2011). However these models rely upon having accurate values

of components inside the cell, and the calculation of various model

parameters. With the data sets available for this research it is not possible to

apply either of these models.

The main limitation encountered during the first principles (FP) model

development was the lack of ability to account for varying process conditions.

Within the hybridoma data set used in this chapter, the process conditions were

varied from batch to batch and it has been shown that these variations have

caused a significant change to the outputs of the cultivation. Thus the FP

models were used primarily to capture changes to variables such as the

metabolites. This presents a situation whereby the data reflects operating

changes but the FP models capture variation in media composition. Matlab

was used to run the models, with the differential equations being run as

functions. An average batch length of 79 hours was used for both models, with

the integration for each loop being over a one hour period. The values of

model parameters used are provided in Tables B2 and B3, with the starting

conditions obtained from the experimental hybridoma data set. As the levels of

starting cell count and basic metabolites were uniform for all 13 batches the

average for each of these values was used as the starting parameter. The

average was taken to account for any minor variations in levels between

batches. This resulted in one prediction for each FP model.
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Similarly to the approach adopted for the PLS models two FP models

were used. Both models predicted cell growth, cell death, consumption and

production of the main metabolites, and product titre. The main difference

between the two models was the inclusion of all 20 amino acids in the second

model. The model prediction accuracy is summarised in Table 5.3.

Table 5.3: Model information for two first principles models and
the best performing PLS model for viable cell count. The RMSE
values are reported; to enable direct comparison with PLS models
the values have been listed with regards to the training and valida-
tion batches used in section 5.2.3.

CPP Model Reference RMSE
Training
batches

Validation
batches

Viable cell
count

A Naderi et al. (2011) 0.49 0.18
B Kontoravdi et al. (2007) 0.58 0.22

Best PLS
(model B)

Section 5.2.3
Subsection:Viable cell 0.24 0.21

Product
titre

A Naderi et al. (2011) 17.56 14.04
B Kontoravdi et al. (2007) 14.43 10.13

Best PLS
(model D)

Section 5.2.3
Subsection:Titre 7.29 6.12

The first noticeable difference is that the predictions of the FP models

vary significantly. The predictions of model A are significantly better and are

comparable to the predictions of the best PLS model. This is shown in Figure

5.12, which shows these predictions along with the original measured data for

both validation batches (5 and 13). To understand why one FP model is better

than the other, the structure of the two models should be considered. Model A

uses equations to determine cell count, product titre, and only the basic

metabolites (glucose, lactate, glutamine, ammonia, glutamate, asparagine,

aspartate, and alanine). Only the basic metabolites are included as the authors

stated that these are the main components for the cell metabolism. On the

other hand model B included equations for cell count, product titre, glucose,

lactate, ammonia, and all 20 amino acids. This makes the second model

significantly more complex.
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Figure 5.12: Measured and prediction data for viable cell count
for validation batches. The predictions shown are the first prin-
ciples model derived from the Naderi equations (Model A), the
first principles model derived from the Kontoravdi equations
(Model B), and the best performing PLS model from the previ-
ous section (PLS model B).
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Considering the predictions shown in Figure 5.12 it can be seen that the

predictions of both FP models are quite simplistic. The three main stages of

cell growth can be observed (lag, growth, and production), with the peak viable

cell count accurately predicted. To explore the large RMSE values the entire

data set batches are shown in Figure C56 (showing the raw viable cell count

for all 13 batches and model A and B predictions). As can be seen there is a lot

of variation between the 13 batches, which results in larger RMSE values.

The models presented by Naderi et al. (2011); Kontoravdi et al. (2007)

were also used to predict the final cell titre, with the results being summarised

in Table 5.3. It can be seen that there is a noticeable difference between the

RMSE values for both FP models, and that the prediction from the best PLS

model is significantly better. This is supported in Figure 5.13, which shows the

measured and predicted data for the two validation batches. It can be seen that

the PLS prediction made for batch 5 is comparable to the FP model

predictions, whereas for batch 13 the PLS prediction is significantly better.

This is again showing the influence of the varying operating conditions on the

ability of the FP model to predict the batches.
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Figure 5.13: Measured and prediction data for product titre for
validation batches. The predictions shown are the first principles
model derived from the Naderi equations (Model A), the first
principles model derived from the Kontoravdi equations (Model
B), and the best performing PLS model from the previous section
(PLS model D).

123



The higher RMSE values obtained for the titre predictions over the viable

cell predictions can be explained through the comparison of all batches given

in Figure C57. As can be seen the output of the product titre varies

significantly with the end titre value ranging from ≈ 60−100mg/ml.

It is easy to understand the benefits of FP mathematical models for the

biopharmaceutical industry. Being able to use a model which requires only a

small amount of experimentation to make predictions as to the performance of

a process unit is advantageous. However this rarely happens in practise. The

models presented in this chapter used model parameters from literature. These

values were specific for hybridoma cells but not for the specific cell line. To be

able to use these models in industry these model parameters would have to be

determined and a certain amount of experimentation is required. Once the

system specific parameters have been determined the first principals models

can be used to predict how changes to the media would impact the cultivation.

However this presents an issue in that if the operating conditions are changed

then this can significantly impact the ability of the FP model to predict the

outcome.

For this data set, where the variation between batches is introduced

through operational changes, the FP models fail to capture the variation. The

resulting predictions of the FP models can be viewed as being ’blocks’ with

the first block being the cell lag phase, the second being cell growth, and the

final being production. Figure 5.13 has shown that neither of the FP models

can handle variation in the operating conditions well. This is because the rates

of production and consumption of metabolites and the cell growth rate are

assumed to be constant or are calculated. The first model (Naderi et al., 2011)

used literature values for the rate of production/consumption of the metabolites

and the rate of cell growth which are constant. For the second model

(Kontoravdi et al., 2007) the rates of cell growth and production/consumption

of metabolites were determined by an equation for each individual rate. This

means that the rates vary with every iteration of the model, but are again

constrained by the fact that the model cannot handle operational changes. The

next section introduces a hybrid model whereby a training data set is used to
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predict the rates of production and consumption of the various metabolites as

well as the cell growth rate, which are subsequently used in the FP models.

5.2.5 Hybrid modelling

As has been shown in previous sections, there are benefits in applying both the

multivariate and the first principles techniques. The multivariate data set

captured the dynamic changes in the process conditions showing how varying

the conditions impacted on both the CPPs and CQAs. This shows how changes

to the final product titre and glycosylation profile can be captured. In contrast,

the first principles models allowed for predictions with significantly less input

data required. Additionally the first principles models can predict for

parameters which are not necessarily measured in the cultivation such as

amino acid concentrations. The models presented in this section are a

combination of both of these techniques with the aim of combining the

benefits of both. The model structure used both the first principles models was

presented in the previous section (as given by Naderi et al. (2011) and

Kontoravdi et al. (2007)), with multivariate modelling predicting model

parameters required for these equations.

In the previous section the first principles models relied heavily upon

values from literature for the rates of production/consumption of metabolites,

and the cell growth rate constant. In this section PLS was used to predict these

values, to take into account the variation between batches introduced by

different operating conditions. Additionally as the rates were predicted using

PLS, this should allow for the variation over time to be accounted for. There

are hybrid models presented in literature which aim to achieve the same

purpose, such as Galvanauskas et al. (2004) who used artificial neural

networks for the prediction of parameters in first principles models, or von

Stosch et al. (2011) and von Stosch et al. (2014a) who used PLS models for

the same purpose. The work presented in this section aims to build upon the

knowledge of hybrid modelling by using a more complex first principles

model, and predicting not only titre, viable cell count, and main metabolites,

but also other metabolites such as all amino acids. This additional
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characterisation of the cultivation can lead to better predictions of the

glycosylation profile, as the predictions of the profile can be made from

multiple sources and combined.

Methodology

The basic structure of the hybrid models used in this section is shown in

Figure 5.14, in that PLS models are used to predict the rates and these are then

fed into a system of ordinary differential equations (as used in section 5.2.4).

The PLS models were constructed for each individual metabolite, and

predicted independently. Additionally the cell growth rate was also predicted

in a similar manner. The rates were predicted at 445 time points during the

cultivations as this was the sampled data matrix produced in section 5.1.

Having trained the PLS models each validation batch was predicted separately,

and these predicted values were then used in the differential equations to

obtain a prediction for the cultivation.

Figure 5.14: Basic hybrid model construction: the backbone
of the model is a mass balance, which is represented by ordi-
nary differential equations and is given by Naderi et al. (2011)
and Kontoravdi et al. (2007). PLS models are used to predict
the rates. Where C0 is the initial concentration of metabolites,
cell count, and product titre; Op is the operating parameter set
points; R is the rates of production and consumption of metabo-
lites and the cell growth rate; and C is the time series data for
metabolites, viable cell count, and product titre.

Two PLS models were constructed, the first using the on-line data as the

X-block. The second used the operational parameter set points as the X-block.

The operational parameter set points were chosen as the inputs to the model

because they are factors which the operator can directly influence. Thus as this

is ultimately a tool for use in industry it has to meet the needs of the person

using the model. Initially the results of the hybrid models were compared

against each other, with comparisons to the models produced using just PLS
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Table 5.4: Hybrid model key, specifying how each model was con-
structed.

Model key Model construction

Hybrid model A
Model constructed using the on-line data as the PLS X-block,
and using the Kontoravdi ODE system.

Hybrid model B
Model constructed using the operational parameter set point
as the PLS X-block, and using the Kontoravdi ODE system.

Hybrid model C
Model constructed using the on-line data as the PLS X-block,
and using the Naderi ODE system.

Hybrid model D
Model constructed using the operational parameter set point
as the PLS X-block, and using the Naderi ODE system.

and first principles presented in the discussion section (section 5.2.5). Matlab

was used to run the models, with the differential equations being run as

functions. An average batch length of 79 hours was used for both models, with

the integration for each loop being in steps of the 445 sample points. A more

detailed flow chart of the hybrid model is given in Figure 5.15, showing the

flow of work within the model network. The following sections present the

predictions, with the key for the models given in Table 5.4.
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Figure 5.15: Model network, showing the flow of information.
The blue box shows the data pre-processing and manipulation,
the red box shows the PLS model, and the green box shows the
first principles ODE equations. Four predictions were made
from the system, relating to the two first principles models used
with two different multivariate models predicting the input data.
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Four predictions were made from different models. The aim of the hybrid

model was to investigate whether it could more accurately predict not only the

start and end cell count but also the inflections seen during the cultivation.

This includes the maximum cell count and the points at which cell growth and

cell death accelerate. The models produced using only PLS or first principles

struggled with predicting these changes accurately.

The predictions made for the validation batches (batches 5 and 13) are

shown in Figure 5.16 with the model assessment criteria reported in Table 5.5.

Table 5.5: RMSE values for four hybrid models, as given in Table
5.4, for viable cell predictions shown in Figure 5.16.

CPP Model Details
and reference

RMSE
Batch

5
Batch

13

Viable
cell

count

Hybrid model A
On-line X-block

Kontoravdi et al. (2007) 0.33 0.32

Hybrid model B
Operational parameter X-block

Kontoravdi et al. (2007) 0.26 0.17

Hybrid model C
On-line X-block

Naderi et al. (2011) 0.49 0.51

Hybrid model D
Operational parameter X-block

Naderi et al. (2011) 0.51 0.28

Titre
Hybrid model A

On-line X-block
Kontoravdi et al. (2007) 15.72 19.84

Hybrid model B
Operational parameter X-block

Kontoravdi et al. (2007) 11.56 9.96

Hybrid model C
On-line X-block

Naderi et al. (2011) 11.56 10.55

Hybrid model D
Operational parameter X-block

Naderi et al. (2011) 12.56 9.48

As with the first principles only models in section 5.2.4, there is a distinct

difference in the predictions from both ODE systems. The predictions using

the Kontoravdi et al. (2007) ODEs are marginally better than those made using

the Naderi et al. (2011) ODEs. The results of the predictions suggest that as

the more complex model which includes all 20 amino acids (Kontoravdi et al.,

2007) predicts the viable cell count better some of the amino acids included in

the model have more significance on the system than is suggested by Naderi

et al. (2011). Additionally it can be seen that the operational parameter set

point X-block has also produced lower RMSE values for both validation

batches. This suggests that using the on-line data (which contains significantly

129



more information) does not produce models which are more accurate and

therefore to simplify the hybrid model the rate predictions made using the

operational parameter set points is best.

Figure 5.16 shows the three main stages of cell growth can be observed

(lag, growth, and production), for all four models. It can be seen that the

greatest error is introduced after the maximum cell count has been reached.

This is most likely due to the variation introduced in the data used to train the

PLS models, as certain batches vary greatly (batch 9, pH8). Additionally,

hybrid models 1 and 3 show a profile which is not smooth, which can be

attributed to the calculation of the rates. The rate was calculated between each

sample point from the on-line data. On the other hand the rates calculated

using the operational parameters produce a much smoother profile because

only one value is used to predict the rate at all sample points. In summary for

the viable cell count the model which produced the most accurate predictions

was hybrid model 2.
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Figure 5.16: Predictions for viable cell count from four hybrid
models. Hybrid model one uses on-line X-block data and Kon-
toravdi et al. (2007) ODEs, hybrid model two uses operational
parameter X-block data and Kontoravdi et al. (2007) ODEs,
hybrid model three uses on-line X-block data and Naderi et al.
(2011) ODEs, and hybrid model four uses operational parameter
X-block data and Naderi et al. (2011) ODEs. The corresponding
model assessment values are reported in Table 5.5.
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The models given by Naderi et al. (2011); Kontoravdi et al. (2007) were

also used to predict the product titre, with the results being summarised in

Table 5.5. It can be seen (Figure 5.17) that there is a distinct difference

between the models constructed using the two ODE systems. For both

validation batches it can be seen that hybrid models 1 and 2 over-predict the

titre, whilst hybrid models 3 and 4 under-predict the titre. This is because both

models directly link viable cell count to product titre; models 1 and 2 predicted

higher values for the viable cell count and models 3 and 4 predicted lower

values. The viable cell count prediction based on the Naderi et al. (2011) ODE

system showed a profile which was not smooth, however the titre predictions

are smooth. This suggests that although the product titre is linked to the viable

cell count it is the predicted rate of production of protein which is the critical

component. The predictions of titre based on the Kontoravdi et al. (2007) ODE

system are similar to those made for the viable cell count in that the profile is

not smooth. This is particularly evident for model A, where an anomalous peak

shown in the viable cell count is reflected in the product titre. In summary the

RMSE values and Figure 5.17 suggest that the best model is hybrid model 2.
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Figure 5.17: Predictions for product titre using four hybrid mod-
els. Hybrid model one uses on-line X-block data and Kontoravdi
et al. (2007) ODEs, hybrid model two uses operational parameter
X-block data and Kontoravdi et al. (2007) ODEs, hybrid model
three uses on-line X-block data and Naderi et al. (2011) ODEs,
and hybrid model four uses operational parameter X-block data
and Naderi et al. (2011) ODEs. The corresponding model assess-
ment values are reported in Table 5.5.
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The hybrid model also allows for the prediction of metabolites. Using the

hybridoma data set, which contains concentrations of amino acids and base

metabolites (glucose, lactate, and ammonia) predictions can be made for the

validation batches. These predictions are shown in Figure 5.18 with the

remaining predictions shown in Figures C56 and C55 in appendix C.
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(b) Glucose - Batch 13
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(c) Ammonia - Batch 5
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(d) Ammonia - Batch 13
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(e) Lactate - Batch 5
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(f) Lactate - Batch 13

Considering first the predictions for glucose (Figure 5.18 (a) and (b)) it

can be seen that a general trend is observed in that there was a sharp initial

decline which levels out. This can be seen for all four models, with hybrid
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(g) Glutamine - Batch 5
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(h) Glutamine - Batch 13

Figure 5.18: Predictions for glucose, lactate, and glutamine from
four hybrid models for batches 5 and 13. Hybrid model one uses
on-line X-block data and Kontoravdi et al. (2007) ODEs, hybrid
model two uses operational parameter X-block data and Kon-
toravdi et al. (2007) ODEs, hybrid model three uses on-line X-
block data and Naderi et al. (2011) ODEs, and hybrid model four
uses operational parameter X-block data and Naderi et al. (2011)
ODEs. The corresponding model assessment values are reported
in Table 5.5.

model 4 providing the best prediction. For ammonia predictions (Figure 5.18

(c) and (d)), there was no measured data with which to compare the validation

batches. The ammonia model was trained from the two batches which

contained measurements. As the training set was so small this is likely the

cause for variation in the predictions of the four hybrid models. As can be seen

hybrid model 2 did not predict ammonia concentration accurately, even though

there was no measured data to compare to this, it can be said with confidence

because ammonia is produced as a by product in the cultivation so the

concentration should rise with time. The final lactate concentration (Figure

5.18 (e) and (f)) was most accurately predicted with hybrid models 1 and 2,

however it can be seen that the time series profile of the lactate concentration

did not follow the same trend as the measured data. This difference is likely

caused by the models used, which are not specific to this cell line. The work

presented in this chapter is a precursor to the agent based model for CHO cell

products, and as such the equations used were for CHO cells. It is possible to

use these models for hybridoma production as they were adapted from

equations for hybridoma cells. Therefore the issue observed with the lactate

predictions is likely due to a variation in this equation which adapts it for use
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with CHO cell metabolism. Therefore, to be able to comment on the

applicability of the models it is other factors which are important, such as

accurate end predictions, and realistic cultivation profile. By this it is meant

that the prediction reaches an end value which is approximately the measured

end value, the profile is approximately the same as the measured. The model

applicability was better tested with the CHO cell data (Chapter 7). The final

main metabolite is glutamine (Figure 5.18 (g) and (h)), for which all four

hybrid models provided accurate predictions, showing all glutamine to be

consumed by ≈ 30hours. As Jeong and Wang (1995) discuss, glutamine plays

an important role in stimulating the growth of the cells. They showed that the

specific growth rate is a strong function of glutamine. Additionally glutamine

is important in mAb production, hence why the glutamine is consumed at the

beginning (cell growth) and the consumption rate increases (cell growth and

mAb production).

The FP model presented by Naderi et al. (2011) takes into account

asparagine, aspartic acid, and glutamic acid and the model presented by

Kontoravdi et al. (2007) takes into account all 20 amino acids. Focusing first

on the predictions made for asparagine, aspartic acid, and glutamic acid it can

be seen that hybrid models 3 and 4 provide a much smoother profile and for all

three provide the most accurate prediction. For the other amino acids, which

are only predicted using hybrid models A and B, it can be seen that the

predictions are most accurate, and show the greatest accord between models

prior to the shift change at 30 hours, with the greatest variation from the

measured data being after the 30 hour point. This shows that the models are

very easily influenced by the variation in the operational parameters captured

by the rates. For all amino acids the concentration is very low, for example

histidine (Figure C56 (h)) concentration is approximately 1.1 mmol/L for the

duration of the cultivation. The predictions of both hybrid models A and B

give the concentration as being approximately 0.7 mmol/L for the cultivation

duration. The difference between these two is relatively small, hence the

predictions can be classed as good.

The RMSE values for all metabolites are reported in Table 5.6. To
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Table 5.6: Model assessment values for four hybrid models, as
given in Table 5.4, for viable cell predictions shown in Figures C56
and C55 (beginning on page 333. – denotes that RMSE was not
calculated as model does not include this metabolite.

RMSE
Batch 5 Batch 13

Hybrid model number 1 2 3 4 1 2 3 4
Glucose 5.15 3.62 3.25 2.95 2.12 4.64 2.52 1.55
Ammonia ** ** ** ** ** ** ** **
Lactate 4.02 4.92 2.55 2.51 6.22 6.58 2.75 2.64
Alanine 0.20 0.20 – – 0.26 0.18 – –
Arginine 0.10 0.07 – – 0.09 0.06 – –
Asparagine 0.08 0.04 0.04 0.04 0.02 0.03 0.05 0.06
Aspartic acid 0.06 0.04 0.02 0.02 0.02 0.03 0.06 0.06
Cysteine 5.15 3.62 – – 2.12 4.64 – –
Glutamine 0.09 0.10 0.14 0.15 0.59 0.56 0.44 0.43
Glutamic acid 0.10 0.08 0.07 0.07 0.08 0.10 0.11 0.10
Glycine 0.51 0.51 – – 0.73 0.70 – –
Histidine 0.53 0.49 – – 0.59 0.60 – –
Isoleucine 1.08 1.13 – – 1.61 1.43 – –
Leucine 0.48 0.34 – – 0.16 0.24 – –
Lysine 1.37 1.31 – – 1.45 1.47 – –
Methionine 0.12 0.14 – – 0.18 0.16 – –
Phenylalanine 0.07 0.07 – – 0.04 0.05 – –
Proline 0.502 0.43 – – 0.25 0.17 – –
Serine 0.40 0.25 – – 0.38 0.40 – –
Threonine 0.27 0.26 – – 0.29 0.30 – –
Tryptophan 0.66 0.63 – – 0.71 0.72 – –
Tyrosine 0.50 0.41 – – 0.22 0.41 – –
Valine 0.47 0.41 – – 0.41 0.35 – –

** RMSE not calculated as there was no measured data to com-
pare too.

determine which model is best is difficult as the values are comparable for

most of the metabolites, therefore the best model is determined as the one

which provides the best prediction of the main metabolites. The model which

predicts glucose, lactate, ammonia, and glutamine best is hybrid model 4. This

model used the operational parameter set points to predict the rates and the FP

model as presented by Naderi et al. (2011).

For all the PLS models used to predict the rates 5 latent variables were

used. This value was chosen as it captured the maximum variation in the data

without including noise. The eigenvalues and RMSECV values were checked
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for all models and for this data set 5 LVs was determined to be the correct

amount. As the data used in the X and Y blocks in each model was very similar

i.e. the X-block were the same, and the Y-block was always a rate, it means

the model structure is similar. The data for the rates was preprocessed using a

Savgol smoothing (Savitzky and Golay, 1964) filter with a window of 15, and

autoscale. The predictions of the rate of glucose consumption are shown in

Figure 5.19. It can be seen for batch 5 that the main features were preserved.

For batch 13 it can be seen there was a slight delay in the predictions.
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Figure 5.19: Predictions for glucose consumption rate for batches
5 and 13. For the model which used on-line measurements as the
X-block data.
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The best predictions from the four hybrid models were shown to be using

the models which use the operation parameter set points as the X-block for the

rate predictions. As can be seen from Figure 5.19 there are features within the

rate data, such as the sharp peaks, and the sudden changes in the rate (e.g. at

≈ 32hours). When the on-line data was used as the X-block, the PLS model

captured the variation within both blocks of data and tended to over-predict the

features in the validation batches predictions. However when the operational

parameter set points were used as the X-block data, this relied only upon the

features contained in the Y-block rates used to train the models. This produced

smoother predictions and did not introduce as much noise into the data set.

The predictions of the best PLS, first principles, and hybrid models are

shown in Figures 5.20 and 5.21 with Table 5.7 summarising the RMSE values

for each model.

Table 5.7: Model information for two first principles models and
the best performing PLS model for product titre. The RMSE val-
ues are reported; to enable direct comparison with PLS models the
values have been listed with regards to the training and validation
batches used in section 5.2.3.

CPP Model Reference RMSE
Batch

5
Batch

13

Viable
cell

count

PLS model B
Section 5.2.3

X-block: glucose and lactate 0.24 0.21

FP model A Naderi et al. (2011) 0.49 0.18
Hybrid

model B
PLS: operational parameters

Kontoravdi et al. (2007) 0.26 0.17

Product
titre

PLS model D
Section 5.2.3

X-block: operational parameter set points 7.29 6.12

FP model A Naderi et al. (2011) 17.56 14.04
Hybrid

model B
PLS: operational parameters

Kontoravdi et al. (2007) 11.56 9.96

It can be seen that for both the viable cell count and the titre the worst

predictions were provided using the first principles models. For the viable cell

count the hybrid model was the best (clearly illustrated in Figure 5.20 (b)).

However for product titre, the PLS only model produced a more accurate

prediction. The ODEs used to determine both the viable cell count and the

product titre are linked in that the product titre is a function of the viable cell
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count. To determine the titre, the viable cell count was multiplied by the

production factor. This is a simple relationship and states that every viable cell

will produce the same amount of product. In the case shown in Figures 5.20

and 5.21, the relatively accurate viable cell count but the poorer titre prediction

for the hybrid model suggests that this relationship is too simple for the model.

It suggests that instead the relationship is dynamic, and as with the rates of

metabolites, the rates of production should be calculated at various time

points. This is supported by Figure 5.21(a) which shows the titre is initially

under-predicted and then over-predicted.
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Figure 5.20: Predictions for the best PLS (model B), first princi-
ples (Naderi et al., 2011), and hybrid models (operational param-
eter set points PLS, (Kontoravdi et al., 2007) FP model).
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Figure 5.21: Predictions for the best PLS (model D), first princi-
ples (Naderi et al., 2011), and hybrid models (operational param-
eter set points PLS, (Kontoravdi et al., 2007) FP model.)
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5.3 Conclusions

There were three main aims of this study. The first was to analyse the

interactions in the hybridoma data set, the second was to study glycosylation

of the final product mAb to determine if any conclusions could be drawn about

the formation of glycans, and to explore if it was possible to model final

glycosylation profile. The final aim was to assess the different modelling and

analysis techniques to ensure the appropriate methods were chosen to meet the

needs of this research and the industrial partner.

The PLS models presented in this study have shown that for this data set

the best models are achieved with the removal of stirrer speed and

temperature. This would have to be reassessed for subsequent data sets. The

cultivation is highly dependent on the conditions it is operated at, with small

changes to operating variables producing large changes in the cultivation

variables profile (illustrated in Figure C13 in appendix C). This can be clearly

seen with run 9, which increased to pH9, and resulted in cell death. PLS

models were used to predict viable cell count, product titre, and glycosylation

profile relatively accurately. The first principles models presented in this

chapter have shown that when there is little available data on a system, it is

possible to model it and obtain fairly accurate predictions. In this way it could

be said that first principles models would be appropriate to use at the

beginning of a new study to focus the experimentation subsequently

performed. However, this study has also shown that statistical modelling may

be used with first principles modelling to achieve a better prediction through a

hybrid network. The statistical models can be used to predict rate of

consumption/production of amino acids and take into account cultivation

changes, and the first principles models can be used to predict the

concentration levels. The hybrid models are able to predict both final product

titre and to account for changes throughout the production (where rate of

production changes). This shows that the PLS aspect of the hybrid model is

able to incorporate changes from conditions (which cause the rate changes) to

produce more accurate responses with the first principles models accounting
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for the relationship between metabolites in the cultivation.

The PCA analysis of the final product glycosylation profile suggests that

for the glycans measured, the mechanism of fucosylation is very important.

This is the initial glycosylation mechanism which attaches a fucose molecule

to the protein. As has been shown in both the analysis and the regression

models, the greatest variation is with G0F, G1F, and G2F. This variation

suggests fucosylation is sensitive to changes in culture conditions. The other

glycans which are formed through the addition of more molecules to one of

G0, G0F, G1F or G2F have a much lower error associated with the prediction.

This indicates that the mechanism for attaching these further sugar molecules

is independent of the conditions. Due to the lack of appropriate first principles

models for glycosylation, as the main mechanisms behind glycosylation

control are not yet fully understood, the hybrid model did not take into account

prediction of the glycosylation profile. The ability of the PLS model to predict

the glycosylation profile is satisfactory for further use in this research.

The final important aspect of the study presented in this chapter was to

assess the applicability of the different techniques for use in subsequent work.

PARAFAC was investigated as literature showed that it is both easy to apply

and interpret (Bro, 1997). This is an advantage in the work presented in this

thesis as it is to be used by the industrial sponsor and creating a model which

can be applied by any operator without specific training would be beneficial.

However to achieve the goals of the project PARAFAC was not adequate. It

has been shown that it can capture variation in the data, however it is difficult

to determine the causes of variation without prior knowledge of the system.

Furthermore, interactions between the different variables were not captured,

PARAFAC places greater importance on the variables which cause variation in

the data set as a whole. In contrast to this PCA has been shown to be an

effective analysis technique. Some of the issues highlighted by literature

(Rajalahti and Kvalheim, 2011a), such as ensuring correct data pre-processing

is carried out in industry, can be overcome by script formation and

development of functions which carry out the pre-processing for the operator.

PCA can clearly identify which variables are important for the analysis and
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which are just generating model noise. Additionally the influence of variables

on batch variation can be easily determined. The similarities between PCA and

PLS (as described in chapter 4) mean that they can be easily used together,

with conclusions from PCA informing the construction of PLS models.

Furthermore the wide application and adoption of PLS to all areas of industry

make it the obvious choice for this research as it can easily be used within the

industrial sponsor company. The use of the first principles models in the

hybrid network is beneficial for industry where one cell line is used as the

main producer. This means that the same model structure can theoretically be

applied to different systems where CHO cells are the expression system. This

then just requires the inclusion of a data set relevant to the specific mAb to

train the PLS models for the estimation of the relevant rate values.

5.4 Summary

Over the last ten years since the introduction of the PAT guidelines by the

FDA, the biopharmaceutical industry has placed a greater importance on the

identification of critical quality attributes and critical process parameters.

There have been applications of PAT and QbD to bacterial expression system

cultivations (Gnoth et al., 2007; Carrondo et al., 2012; Mercier et al., 2013),

and developments to mammalian cell lines and culture media. The research

presented in this study has shown that the MVDA techniques used by Mercier

et al. (2013), Kirdar et al. (2008a), Glassey et al. (2011b), and Teixeira et al.

(2009a) can be successfully applied to hybridoma cell data sets, which include

glycosylation information. Of the various MVDA techniques available, this

study has focused on PCA and PLS as these are already widely used in

industry. There are other analysis and regression techniques which could be

used in this scenario such as O-PLS (orthogonal PLS) or NL-PLS (non-linear

PLS) which could also be applied but as this work is for transfer to the

industrial partner PLS was used. PCA has been highlighted as an appropriate

tool for mammalian cells as it not only assesses the variables but also the

interactions between the variables. This captures information which it is not

possible to capture with standard measurement techniques. For example cell
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metabolism, is not easily measured on-line as it is a system of processes within

the cell and is dependent on many factors. PCA has been shown to feed into

PLS, with the identification and removal of unimportant factors in PCA

yielding better results in the PLS regression models. This study has also

shown how first principles models can be applied to model systems where

there is little information available. This is useful for early stage development

of a process, meaning that the models can guide subsequent experimentation

thereby reducing development costs. These PLS and first principles models

can be applied through a hybrid network to improve predictions of the system.

The PLS models effectively capture variation in process conditions whilst the

first principles models go some way towards capturing aspects of the cell

metabolism such as the production and consumption of metabolites. The

conclusions in this chapter have highlighted the possibility of using a hybrid

modelling technique to improve the performance of the predictions for the

cultivation stage, chapter 6 investigates the application of a similar model

network for ion exchange chromatography.
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Chapter 6

Modelling of ion exchange

chromatography

As discussed in Chapter 3 optimising downstream processes can have a

significant impact on manufacturing costs. This can be achieved in a number

of ways, such as decreasing the number of process steps, avoiding complex

steps, and reducing the raw materials costs. Shukla and Thömmes (2010b)

show that many companies when faced with a new impurity challenge just

select from a set of standard chromatographic platforms. In the purification

process many criteria have to be met not only for cost effectiveness but also to

meet stringent purity specifications. Particularly challenging in this context

can be optimising a process within the design space allowed by the regulating

bodies. Ideally ion exchange (IEX) modelling of mAbs would be considered in

this chapter, however, due to limitations of available data the purification of a

single component system containing the protein lactoferrin (LF) is used. This

chapter therefore deals with downstream processing (DSP) modelling.

6.1 Research aim

Various methods for modelling of IEX chromatography, such as the

multi-component first principles model presented by Gu (1995) or the

multivariate control model presented by Laursen et al. (2010a, 2011), are
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described in literature. All of these techniques have in common a need for data.

In the case of first principles models data is required to determine the constants

such as the equilibrium constant, and for multivariate models data is required

to train the models. This chapter presents a structured approach to modelling

chromatographic data sets which can be used to establish a design space.

Starting point

• data set of chromatographic data: for the purification of lactoferrin on an
SP Sepharose Fast Flow resin

• single component system with known physiochemical properties (charge
and hydrophobicity)

• specifications for desired protein in terms of recovery level

Research aims

• to determine operating conditions from a predetermined final yield

• to develop a model which can be used within the ABM framework

• to produce predicted chromatogram of a system based upon changes to
the inputs of the model

The main challenge in the modelling will be handling a data set which

varies greatly. The following sections discus background information, raw data

collection, interpretation and the methodology employed to model the system.

6.2 Background information

This section aims to provide additional information not covered in Chapter 2

which is necessary for the understanding of the research presented in this

Chapter.

6.2.1 Protein

Lactoferrin (LF) belongs to the group of transferrin proteins. These are

proteins which are involved in the transportation of iron in the body. LF is a
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globular protein (as opposed to being fibrous, disordered or membrane), and

has a molecular mass of approximately 80 kDa. LF is naturally occurring in

various secretary fluids such as milk, saliva, and tears but it can also be

produced using recombinant technology (Van Berkel et al., 2002; Adrio and

Demain, 2003). LF consists of one polypeptide chain containing

approximately 700 amino acids. Figure 6.1 shows that it contains two

homologous domains, called the N- and C- lobes, with the two domains being

connected by a short section of α-helix (Spik et al., 1994; Baker and Baker,

2005). As can be seen in Figure 6.1 both of the lobes contain two sub-domains

known as the N1, N2 and C1, C2 respectively. Additionally each of the lobes

contains one iron binding site and one glycosylation site. The degree of

glycosylation of the protein can be different which is why the molecular

weight of the molecule can vary from 76 to 80 kDa (Hakansson et al., 1995).

LF belongs to the group of proteins known as basic proteins, which have a

high isoelectric point (pI) and therefore they tend to be positively charged at

physiological pH (7.4) with the isoelectric point of LF reported as 8.7 (Preedy

et al., 2013).

LF was selected as the target protein for this chapter from the stock

proteins at the sponsor company because it is a glycoprotein. In the previous

chapter the glycosylation profile of the final product was as discussed a key

CQA. As such models developed for the IEX purification of LF should be

transferable to other glycoproteins more readily than non-glycosylated

proteins.

In order to purify LF by IEX (see section 2.3.2 for details of IEX

principles) it is necessary to modify the protein charge. The adsorption of the

protein onto the resin is driven by the ionic interaction between the oppositely

charged groups on the molecule and the functional ligand on the resin.

Increasing the salt concentration (by a gradient) causes the molecules with the

weakest ionic interactions to elute from the column first, and the molecules

with a stronger ionic interaction to elute later in the gradient. The optimum pH

of column operation depends on the pI of the protein and the pKa of the ligand

on the resin. LF has a pI of 8.4 and with most cation exchangers having a pKa
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Figure 6.1: Image of lactoferrin showing the N-lobe with the N1
and N2 sub-domains, and the C-lobe with the C1 and C2 sub-
domains. Also shown is the alpha helix which connects the two do-
mains, and the iron binding site (highlighted as red balls) (Frank,
2014).

of 1.2. The buffer should be somewhere between the two at pH 6.0. If the pH

of the mobile phase is increased it causes the molecule to become less

positively charged, meaning the protein can no longer form an ionic

interaction with the ligand causing the protein to elute.

6.3 Experimental data

This section presents the data collection method, and a preliminary analysis of

the raw data used for model development.

The experiments conducted for this case study were performed at Fujifilm

Diosynth Biotechnologies (Billingham) by the author of this thesis. The

experiments were carried out using the framework of the company’s platform

process, that was developed in-house and is an optimised process. A design of

experiments methodology was applied that investigated changes to key process

parameters to see how these changes would affect operational performance,
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with the aim of producing a set of experiments which characterise the design

space. A full summary of the experimental procedure is given in Chapter 4.

The DoE used in this work was a minimum resolution IV design. This

design is routinely used at the sponsor company as a way of performing

scouting experiments (Tamhane, 2009). Scouting experiments are used to

characterise a design space and Monks et al. (2012) summarises how this aids

in the development of a design space. Figure 6.2 shows how the use of a

design of experiments methodology to establish the design space is a key

aspect of designing a new process.

Within the DoE the variation in buffer pH was obtained through variation

of the concentration of sodium phosphate added during buffer preparation.

The initial concentration of protein in the load samples was obtained through

measuring the optical density of the sample. With the same methodology

employed to determine the yield at each stage of all the experiments.

Figure 6.2: Quality by design work flow as presented by Monks
et al. (2012)

Table 6.1 provides a summary of the conditions of the 13 batches (see

section 4.1.2 for full details on experimental procedure). For all 13 batches the

same column was used, having been cleaned and regenerated at the end of

each batch.
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Table 6.1: Operating conditions for all 13 batches, showing the
values which were varied within the DoE.

Batch
Flow rate
(ml/min) Load pH Gradient CV

Load
concentration

(mg/ml)
Elution pH

1 1.0 7 12 20 7
2 1.5 8 8 10 8
3 1.5 8 8 30 8
4 0.5 8 16 30 8
5 0.5 8 8 10 8
6 1.0 7 12 20 7
7 1.5 6 16 30 6
8 1.5 6 8 10 6
9 0.5 6 16 10 6

10 0.5 6 16 10 6
11 1.5 6 16 10 8
12 0.5 8 8 30 8
13 0.5 8 8 30 6
14 1.5 8 16 10 6
15 1.0 7 12 20 7

6.4 Data preprocessing

The MVDA techniques applied in this chapter are used to establish

relationships between the inputs and outputs of the process. Therefore the data

is time aligned between batches and variables (for information on the time

alignment procedure see Chapter 4).

The elution can be used to show the efficiency of the separation, the

resolution, and the yield of each component. This research is focused on the

prediction of the elution peak for LF. As the conditions of each batch (Table

6.1) vary greatly it causes similarly high levels of variation in the elution. One

such variation in the elution peak is the retention time, which can cause issues

with batch alignment. The literature offers various techniques for dealing with

peaks which are not aligned between batches of similar conditions. These

include dynamic time warping (Sakoe and Chiba, 1978), correlation optimised

warping (Nielsen et al., 1998), and icoshift (Tomasi et al., 2011). However,

these techniques are more commonly used in multicomponent systems, where

there are patterns and interactions between peaks, and in data where there is
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not as much batch to batch variability. The batches used in this study have

retention times ranging from 14 minutes to 51 minutes, thus the method of

cutting the batches to the length of the shortest batch, used in Chapter 5, can

not be applied here. Cutting the batch data would in many cases loose all the

data relating the elution, whereas extrapolating the shortest batches to fit the

length of the longest ones would not work either as this distorts the nature of

the data.

As each batch contains a pure sample of lactoferrin it is assumed that the

elution peak corresponding to the protein will be Gaussian (Giddings, 2002).

The retention time and peak width values were used to determine the start and

end point of the elution peak as given in Equations 6.1 and 6.2.

te,start = tR−
1
2

σ (6.1)

te,end = tR +
1
2

σ (6.2)

where te,start and te,end represent the start and end point of the elution peak

respectively, tR is the retention time, and σ is the peak width. Having

determined the values of te,start and te,end the elution peak from each batch and

the on-line variable measurements corresponding to the same time points can

be isolated. As all the on-line measurements were recorded at slightly different

times the data was aligned to the times of the absorbance readings so that a

direct comparison can be made between the sample points of all the variables.

Subsequently the ’maxcellsize’ function in Matlab was used to assess which

batch had the maximum number of sample points for the peak data. This value

was then used to interpolate all the batches so that each batch had the same

number of sample points, the resulting batch information is shown in Figure

6.3. Information on the interpolation technique employed can be found in

Chapter 4.

The resulting matrix was formed from only the peak data, aligned

between variables and between batches.
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Figure 6.3: lactoferrin elution peaks for 15 experimental batches
(Table B1) the figure is not representative of the retention time
of each batch, as the peaks have been over layed to demonstrate
variations in peak height and width.

6.5 First principles prediction of retention time

Initial attempts were made to predict the retention time using PLS modelling

(Figure D4 in appendix D shows the predictions), however the predictions

made from the resulting models were very poor highlighting the need for an

alternative modelling technique. First principles models, based on the

fundamental concepts of chromatography offer an alternative solution. In the

case of IEX chromatography these models include aspects associated with

mass transfer and adsorption. As highlighted in the methodology the

prediction of the correct retention time is very important, this section presents

a model based upon one from literature used to predict the retention time

(Shellie et al., 2008; Madden et al., 2002).
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6.5.1 Methodology

The LF purification was performed under a gradient elution, therefore the

retention model used was the ’Gradient Elution Retention Model’ as described

by Shellie et al. (2008). In this model the retention factor (kg) under gradient

conditions is given by Equation 6.3.

log(kg) = ag +bglogR (6.3)

where the subscript g is used to denote that it is under gradient conditions and

R is the slope of the gradient ramp. A plot of logkg versus logR can be used to

determine the retention behaviour where ag is the y-intercept and bg is the

slope of the relationship.

Having determined the constants of the system, equation 6.4 first

presented in Jandera and Churáček (1974) and later applied by both Baba et al.

(1985) and Shellie et al. (2008), predicting retention time, can be used.

tg =
(

1
u

)(
1
B

)[(zbi +1)Bait0u+C(zbi+1)
s ]

1
zbi+1 −C

1
z
s

B

+ t0 (6.4)

where tg is the retention time under gradient conditions, u is the mobile phase

flow rate, B is the normalised gradient ramp (B = R/u, mM/mL of column), z

is a parameter used to describe the shape of the gradient profile (z=1 for linear

gradients), Cs (mM) is the starting concentration for the gradient, t0 is the void

time, and ag and bg are as determined from Equation 6.3.

6.5.2 Results and discussion

To be able to produce a model which can predict the retention time, a data set

must first be used to generate the constants. In the case of the model presented

in Equation 6.4, the slope of the gradient ramp (R), the value used to describe

the gradient (z), the dead time (t0), and values of ai and bi need to be

determined from the behaviour of the system. A summary of the Matlab files

constructed for the retention time prediction model are listed as a flow chart in
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Figure 6.4.

Figure 6.4: Flow chart showing the progression of files within the
Matlab code used to predict retention time

Table 6.2 shows the values generated using the Matlab script for the 14

batches used to train the model. Issues arose during the application of the

model due to the wide scouting nature of the data set. Some of the factors

tested in the DoE, such as elution duration (CVs) and concentration of protein,

can greatly affect the behaviour of the system. Therefore within the model

code the influence of these factors could be considered separately. This allows

the user to specify how long the gradient occurs for and predicts the retention
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Table 6.2: Values generated from lactoferrin data set for the con-
stants in Equation 6.4 and used to estimate the constants for the
validation batch.

Batch t0
(min) k Ey

(mM)
R

(mM/min)
B

(mM/mL)
1 1.00 22.35 76.20 8.34 8.34
2 0.67 10.17 64.87 18.75 12.50
3 0.67 11.82 61.53 18.75 12.50
4 2.00 71.81 124.40 3.12 6.25
5 2.00 51.46 194.60 6.25 12.50
6 1.00 14.85 77.50 8.34 8.34
7 0.67 7.49 44.47 9.38 6.25
8 0.67 6.40 66.67 18.75 12.50
9 2.00 68.24 135.80 3.12 6.25

10 2.00 61.42 145.60 3.12 6.25
11 0.67 6.56 46.80 9.38 6.25
12 2.00 56.38 198.60 6.25 12.50
13 2.00 53.26 184.40 6.25 12.50
14 0.67 6.15 46.07 9.38 6.25

time based upon this. A similar approach was adopted by Madden et al. (2002)

who used the differentiation based on R.

The impact of this can be seen in Figure 6.5, where the data points can be

seen to separate based upon the gradient CV and the velocity. It can be seen

that k is influenced by the velocity and Ey is influenced by the gradient CVs.

This is as would be expected as k is the retention factor and it is a function of

time and Ey is the concentration of eluent species. The gradient CVs are

related to the eluent species because if a gradient is to achieve 100%

concentration, then a shorter gradient duration would mean a higher

concentration.

It is from the slopes shown in Figure 6.5 (b) that the constants given in

Equation 6.3 are determined and subsequently the normalised gradient ramp

(B). These values are then used in Equation 6.4 to predict the retention time.

This example highlights how even first principles models are reliant upon the

data collected and used to construct them. To predict the retention time for the

system presented in this section outside of the operating parameters used (i.e.

flow rate outside of 0.5-1.5 ml/min or CV gradient 8-16) extrapolation could be

used but accurate predictions would only come from further experimentation.
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Figure 6.5: (A) Plot of log k versus log Ey, where k is given in
Equation 2.8 and Ey is the concentration of the eluent species. (B)
Plot of log k versus log R, where k is given in Equation 2.8 and R
is the slope of the gradient, this graph is used to calculate the con-
stants ai and bi as given in Equation 6.3. The ellipses represent the
groups of data points, which are separated based upon gradient
column volumes and flow rate.
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For the validation batch (batch 15) the values generated using the Matlab

code, together with the predicted and measured retention time, are shown in

Table 6.3.

Table 6.3: Values generated from lactoferrin data set for the val-
idation batch, and the subsequent predicted retention time using
equation 6.4.

t0
(min)

R
(mM/min)

B
(mM/mL)

Cs
(mM) z ai bi

Predicted
retention

time

Measured
retention

time
1.00 8.34 0.92 3.12 1 2.27 -0.98 23.44 23.48

This model is limited in the sense that the maximum and minimum CV

gradient, flow rate are specified by the limits of the experimental DoE. To use

the current data set to be able to predict within these limits would be possible,

as the values for equation 6.4 could be interpolated.

In summary the application of the first principles model to the data has

produced an accurate prediction of the retention time. This study has shown

that the prediction method is reliable, however issues may arise from the fact

that a dataset is required to derive the constants needed for the equation.

Therefore this equation cannot be applied to a completely new process,

without exploratory experiments first being conducted. Within industry this is

generally not an issue as standard practise requires preliminary experiments to

be conducted which, as was shown here, can be adapted to provide the

necessary information.

6.6 Principal component analysis of IEX data

This section presents two principal component analyses; the first using the

off-line data (Table 6.1) and the second using the on-line data (conductivity,

pH, temperature, concentration, pressure). The aim is to identify the variables

which have the greatest impact on the CPP, yield. PCA analysis is used in this

research as a data reduction technique to determine significant input variables

to include in the PLS models. Inclusion of variables having a large influence
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on the model due to pre-processing as opposed to the amount of variation in

data they explain can be very detrimental to the model accuracy (Li et al.,

2014). The removal of variables should be done in such a way that the main

sources of variation in the data are retained. Therefore this study uses PCA as

it allows for the variables’ impact on the variation to be seen (through loadings

values). Through process knowledge and comparison of the loadings values

and raw data it can be assessed as to whether each individual variable is a

source of data variation. Traditionally PCA is also used to determine batches

which are termed outliers, from the data set (Bro and Smilde, 2014). This is

done by unfolding the data batch-wise and analysing the scores. In this

analysis the data was unfolded in this manner, however due to the scope of the

DoE and the lack of repeats of experiments no batch removal occurred. It

would be expected that there would be a few batches highlighted as being

outside of the 95% confidence limit, but as the experiments were conducted

using a scouting DoE design (Tamhane, 2009), it will be assumed that these

batch variations can be accounted for due to the operating conditions.

6.6.1 Methodology

The protocols to perform the multivariate analysis and modelling are described

in Chapter 4 for principal component analysis (PCA). The first PCA analysis

was performed using the operational parameters from the DoE, namely flow

rate, load pH, gradient CV, elution pH, and loading concentration. As yield is a

CPP of interest, the batches were categorised as high yield, medium yield, and

low yield as this allowed for easy determination of the variables that influence

the yield. The PCA analysis of the on-line data included the variables

measured on-line: conductivity, buffer concentration, pH, pressure, flow rate,

and temperature.

For both the off-line and on-line analyses the data matrices were unfolded

in a batch wise manner to preserve the variation between batches. The cross

validation technique ’leave-one-out’ was applied to both the off-line and

on-line analyses. The number of PCs selected for each analysis was

determined from the eigenvalues and root mean squared error of cross
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validation (RMSECV) (Bro et al., 2008). Matlab software along with the

Eigenvector program PLS-Toolbox were used to perform the data analysis.

Pre-processing

Section 6.7 provides a detailed case study of the pre-processing techniques

which could be applied to this data set. However, the PCA analyses covered in

this section are used as a precursor to determine the underlying variable

interactions and whether any variables need to be removed prior to the

pre-processing study. Therefore for the PCA analyses the only pre-processing

technique which was applied was autoscale as this will allow for direct

comparison between variables. For a detailed explanation of autoscaling refer

to Table 6.5 on page 180.

6.6.2 Results and discussion

Off-line data analysis

Process knowledge can be expanded by obtaining a better understanding of the

interactions between the variables in the process. With respect to this research

this means determining the variables which impact on the CQAs and CPPs

(Huang et al., 2009). A PCA analysis was performed to identify the main

sources of variation in the data and to identify the variables that cause this

variation and thus have the greatest impact on the CQAs and CPPs. In terms of

this study the main CPP can be said to be the yield of the product obtained

from the process. The data collected for this study was obtained as part of a

scouting DoE and as such the recorded yield for each batch varied greatly.

Therefore separate analyses were performed; the first being on all of the data

in one matrix, then the next three considered the batches as groups of high,

medium, and low yield.

The conditions for the DoE are summarised in Table 6.4 along with the

corresponding off-line measurement of the yield. The yield measurements
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Table 6.4: DoE conditions and yield obtained during elution for
all batches. The batches were categorised as high yield (y > 70%)
in red, medium yield (30% < y < 70%) in yellow, and low yield
(y < 30%) in blue

Batch
Flow rate
(ml/min) Load pH Gradient CV

Load
concentration Elution pH

Elution
yield (%)

1 1.0 7 12 20 7 67.64
2 1.5 8 8 10 8 6.59
3 1.5 8 8 30 8 83.65
4 0.5 8 16 30 8 81.06
5 0.5 8 8 10 8 6.37
6 1.0 7 12 20 7 35.41
7 1.5 6 16 30 6 64.57
8 1.5 6 8 10 6 1.11
9 0.5 6 16 10 6 63.15

10 0.5 6 16 10 6 7.85
11 1.5 6 16 10 8 7.19
12 0.5 8 8 30 8 95.29
13 0.5 8 8 30 6 94.06
14 1.5 8 16 10 6 1.84
15 1.0 7 12 20 7 44.17

were categorised as high yield (y > 70%), medium yield (30% < y < 70%),

and low yield (y < 30%). There is a large range in the achieved yields from the

batches, ranging from 1.12% to 95.29% of the original sample loaded on the

column. Within the biopharmaceutical industry the aim is to achieve as high a

yield as possible whilst minimising the cost of the process, therefore the aim of

the PCA is to identify the conditions by which the highest yields were

achieved and then in subsequent work determine if it is possible to

economically achieve these levels.

The constructed PCA model accounts for 73.33% of the cumulative

variance in the first 3 PCs. It was decided further PCs should not be included

in the model through studying the eigenvalues and RMSECV values. The

RMSECV values showed a considerable increase after 3 PCs, which

corresponded to a levelling in the eigenvalue at the same point (see Figure 6.6).
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Figure 6.6: RMSECV and eigenvalues for off-line (DoE condi-
tions) measurements PCA analysis. The eigenvalues show an sig-
nificant increase after 3 PCs, which corresponds to a levelling off
of the RMSECV.

To assess the variation between batches the bivariate scores plots were

used. For this particular model PC 1 and PC2 capture 33.33% and 26.67% of

the variance respectively (Figure 6.7). Figure 6.7 shows that there is a

relationship between the DoE operating parameters and the yield. With

regards to batches 7 and 10 shown on the left of the plot and batches 3 and 5

shown on the right hand side of the plot the distinction should be made that

although the same score value was obtained for PC 1 there was a slight

difference in PC2. Batches 5 and 10 both had positive scores and batches 3

and 7 were both negative. To determine why these batches have the same score

for PC1 and similar scores for PC2, the values of the initial conditions (Table

6.4) are considered. Batches 3 and 5 both have load and elution pHs of 8 and

gradient CVs of 8, and batches 7 and 10 both have load and elution pH of 6

with gradient CV of 16. Looking now at batch 2, it can be seen that for these

three variables the conditions are the same as for batches 3 and 5. Also for

batch 9 the conditions are the same as for batches 7 and 10. It is known that for

cation chromatography a higher pH means there are more positively charged

ions to compete with the binding sites on the resin. Thus a higher pH causes

the elution to occur faster. Similarly if the gradient is operated from 0% -

100% over a shorter time frame then the protein will elute quicker, as the

concentration is increased more rapidly. This suggests that PC 1 is capturing

the retention time of the protein with the positive scores being a shorter
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retention time and the negative scores being a longer retention time. As the

retention time is independent of the final yield this is why there is no grouping

of the batches by yield in the first PC.

Considering now the variation in PC 2, there appears to be two variables

influencing the variation captured in PC2. Considering first the load

concentration there is an implied relationship between the positive score

values and the high concentration, and between the negative score values and

the low concentration. However there is an exception to this in batch 9. This

shows that the more product loaded onto the column the more product there is

eluted. However considering now the batches with the positive PC2 scores

(batches 4, 5, 9, 10, 12, and 13) all have a flow rate of 0.5 ml/min, and the

batches with negative scores (batches 2, 3, 7, 8, 10, 11, and 14) all have a flow

rate of 1.5 ml/min. This shows that there is a degree of independence between

the yield and the flow rate, with the flow rate determining instead the

percentage of original sample that is eluted. As Shoji et al. (2009) mentions a

high flow rate gives less time for the product to bind to the resin within the

column therefore suggesting the performance of the adsorption as a possibility

for having impact on the yield. In summary the scores for PC2 suggest that

load concentration influences yield whilst flow rate can be used to control it.

To further assess the influence of the different variables on the variation, the

loadings plots for both PC1 and PC2 can be used (Figure 6.8).
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The loadings plot for PC 1 confirms that the variables contributing most to

the variation in PC 1 are load pH, elution pH, and gradient CV with weightings

of approximately 0.6. As highlighted from the analysis of the scores plot all

three of these variables contribute equally to the variation in PC 1. The

variables of flow rate and load concentration do not influence the variation in

PC 1, instead they can be seen to be responsible for all the variation captured

in PC 2, where again these two variables have equal loadings weights of ≈ 0.6

and equally influence the variation in PC 2. Plot (c) shows the loadings for

PC3, the scores did not show a distinct relationship, thus a plot of them is not

included. However, the loadings show that for PC 3 the load pH accounts for

the variation captured in this PC. The high weighting for load pH, and the

subsequent smaller weightings for gradient CV and elution pH suggest that

this PC captures the absorption of the protein on to the resin. As discussed

previously the pH of the mobile phase can significantly affect the ability of the

protein to bind. If the pH is closer to the isoelectric point of the protein then

there is more competition with the protein for available binding sites, and vice

versa, if the pH is (in the case of cation exchange) lower than the isoelectric

point, it means less competition for binding sites.

On-line data analysis

The on-line data analysis was performed on the data after the process of peak

identification and isolation as described in section 6.4. This is in line with the

method developed by Lu et al. (2004), who state that a process may occur in

stages and it would be advantageous to analyse and model these stages

separately. Therefore for this PCA analysis the matrix contains only the

on-line variables after they have been cut to the duration of the elution peak.

The purpose of performing a PCA analysis on the on-line data is to reduce the

data set. There are several on-line variables measured but not all of them

account for the maximum variation in the system, some may only have a small

influence. Therefore it would be unwise to build a model using variables

which do not characterise the outputs. The PCA analysis identifies variables

for removal and variables for inclusion in subsequent models. Furthermore it
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is important to ensure that the variables included in the models are

representative of process variation and not noise, which is why process

understanding is a key factor in variable removal. Process understanding can

cover not just the operation of the units but also the process of modelling, for

example as Fransson et al. (2001) explain certain data pre-processing

techniques, such as autoscale, can manipulate the variables, making them

appear to contribute more to the variation when in reality they have little

influence on the process. PLS regression can be similarly used for variable

reduction and it has the added advantage of considering not only the variation

in X-block data but also Y-block data, and how they interact. PCA was chosen

as the variable reduction technique as one potential application from this

research is whether the process can be monitored on-line whereby it might be

possible to use the changes in the correlation of the variables to control them.

This technique has been successfully developed and applied for batch

processes by Lu et al. (2004). Additionally Maitra and Yan (2008) discuss the

relative methods of both techniques and show that even though PCA is used

here as the primary variable reduction technique it is also worthwhile checking

any subsequent PLS models to ensure the correct variables are used.

An initial PCA analysis was performed using all the on-line variables.

The model was constructed using 5 PCs after observation of the RMSECV and

eigenvalues, capturing 89.60% of the variance in the data. As can be seen in

Figure 6.9 after 5 PCs the value of the RMSECV increases with the inclusion

of PC6 suggesting that by this PC the model is beginning to capture noise.

168



2 4 6 8 10 12 14
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Principal Component Number

R
M

S
E

C
V
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for PCA analysis. Plot suggests that the increase in RMSECV for
PC6 could indicate that PC6 captures noise.

To assess whether any variables have a negligible impact on the analysis

the first principal component, which captures the maximum variation, is

examined (Figure 6.10). The first observation is that the significance of all the

variables is low, with the highest weighting being ≈ 0.03. However relative to

each other the most significant variables are shown to be pressure, flow, and

temperature.

The raw data shows that these variables are controlled to relatively narrow

set points with only small fluctuations of ±0.5. Therefore it can be assumed

that the larger weighting given by this analysis to these variables is due to the

aforementioned effects from pre-processing techniques. As a result of this, if

these variables were included in a predictive model they would place a greater

emphasis on noise which does not influence the absorbance.
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McGuffin and Chen (1997) showed that the small compressibility of the

mobile and stationary phases means that in liquid chromatography pressure

has a negligible influence on solute retention in liquid chromatography. Thus

the relative importance of pressure shown in Figure 6.10 is more likely due to

issues in scaling the data. Therefore pressure is removed from the analysis. As

shown in the analysis of the off-line (operating parameter) data the flow rate of

the mobile phase is an important variable in the process. However with the

time series data used here in the on-line analysis, the flow rate was held at a

constant value throughout the process. Therefore, a similar effect to that seen

with the pressure variable is observed, in that when all 6 variables were scaled,

the small variation in the fluctuations of the flow rate were given a greater

importance. So flow rate was removed from the on-line analysis and only

considered through the off-line data. Rubinson and Rubinson (2000) stated the

importance of temperature in IEX separations and show that temperature can

be changed to improve liquid chromatography separations. However if

reproducibility is critical then the column should be held at a constant

temperature. In the case of this data set temperature was not an investigated

parameter, and for column reproducibility it was held at a constant. Slight

fluctuations of ±0.3°C were observed around the set point of 25.5°C.

Similarly to the pressure and flow rate the supposed importance of this

variable is more likely to be due to scaling issues.
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A second PCA analysis was performed with these three variables

removed, and containing conductivity, concentration, and pH only. Upon

reviewing the RMSECV and eigenvalues, 3 PCs were included in the model,

explaining 86.72% of the variation. The loadings plot for PC 1 is shown in

Figure 6.11.
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Figure 6.11: Loadings of PC1 (a), PC2 (b) and PC3 (c) for the on-
line data analysis; (1) conductivity (2) concentration (3) pH. All
three PCs show relatively small weightings for all three vari-
ables. The vertical dashed black lines are used to distinguish
between the individual variables.
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Similarly to the first analysis the weightings of the variables in all 3 PCs

were relatively small with the largest weighting being only 0.08. However,

considering the variable loadings relative to each other it can be seen for PC1

the most important variable for the variation was the pH (blue), with pH

remaining important throughout the entire duration of the elution peak. This

confirms the finding of the off-line analysis that the pH affects not just the

ability of the protein to bind to the resin but also the subsequent desorption of

the protein during the elution. Observing the weightings given to the

conductivity (red) over the duration of the elution peak, it can be seen that

initially the weightings were negative, with a gradual change to being positive.

This corresponds to the gradient performed over the elution peak, whereby the

conductivity is increased promoting desorption of the protein. Finally, in the

case of the concentration (green) it can again be seen that there was a change

from the weightings from positive to negative. This is likely to be

representative of the concentration gradient achieving 100%. For PC 2 it can

again be seen that the weightings for pH remained constant, which is as

expected as the pH was held constant for the duration of the elution. Unlike for

the removed variables (temperature, pressure, and flow) this does not warrant

the removal of pH as there is still batch to batch variation. A similar trend to

that which is shown in PC1, is shown for concentration. With a sudden change

in the weightings from positive to negative. This highlights the concentration

reaching 100% of buffer B. The variable with the largest weightings value in

PC 2 is conductivity, with the largest value occurring at approximately sample

number 150 indicating that this is where the elution peak maximum was

attained. PC 3 again shows similar findings for all 3 variables as was shown in

PCs 1 and 2.

To summarise, the PCA analysis performed on the on-line data showed

that the variables within the measured data which are not directly correlated to

the variation in this data set are temperature, pressure, and flow rate. Having

said this, however, the analysis also showed that for all the on-line variables,

the weightings shown in the loadings plots were very small. As PCA is a

method for projecting data onto a subspace, it is based on the principle of

maximising, for each component, the sum of squares of the correlation
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coefficients. This results in each component being strongly correlated with

some variables and weakly correlated with the others. This means the loadings

values are a measure of the correlation between the original variables and the

components used to make the model. Low values show there is little

correlation between the original data and any of the variables. This suggests

that the variation in the data set is caused by variables which are not included

in this analysis (Suhr, 2005).

6.7 Pre-processing of chromatographic data

A review of the literature showed that there was no comprehensive study

conducted for pre-processing of IEX chromatography data, therefore this

section presents such a study. The basis for this work was determined from

similar applications to chemometrics and spectroscopy.

The previous section presented a principal component analysis of the

data, to perform the analysis a pre-processing method outlined in literature

was used. Engel et al. (2013) showed that for the type and form of data

analysed in the on-line PCA, autoscale was an appropriate technique to use, as

there was not a great deal of variation between batches for each variable. The

PCA analysis served the purpose of understanding the data better. Having

performed the analysis and considered the additional data, which was used as

the Y-block in PLS, it was determined that autoscale alone might not be

sufficient pre-processing. This conclusion was drawn primarily through the

variation shown in the absorbance readings. There is plenty of literature

concerned with spectroscopy where a similar range of variation is shown,

specifying the need for other pre-processing techniques such as normalisation

and smoothing (Rinnan et al., 2009; Gromski et al., 2014; Laxalde et al.,

2011; Wang and Kowalski, 1992; Cervera et al., 2009). However, there exists

no comprehensive list of the pre-processing methods which should be applied

to liquid, and in particular ion-exchange, chromatography. Therefore in order

to perform the next analysis using PLS, to continue the variable investigation

from the previous section and to produce predictive models, this section
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investigates pre-processing techniques.

Pre-processing a data set is an integral part of being able to perform data

modelling. Various effects can be introduced into collected data through

instrumentation and experimental differences, which are not related to the

differences between the outputs of the batches. Data pre-processing is used to

remove these effects and to ensure that all experimental batches can be

analysed. The methods of data pre-processing used can heavily influence the

final results of the model and should therefore be carefully considered. A good

pre-processing procedure enhances the chemical/compositional information

content of the data, whilst an inappropriate procedure affects the correlation

structure. Rajalahti and Kvalheim (2011b) state that a crucial factor of data

analysis is the analytical technique used to collect the data, as there is no

’catch all’ method which can be used for all data sets.

This study is concerned with the pre-processing of on-line ion exchange

(IEX) chromatographic data, in particular measurements associated with

conductivity, pH, concentration, and UV absorbance. One example of a similar

application in the literature is that of Skov and Bro (2007), which presented a

solution to the problem of peak shift. The effects introduced through

experimental issues like column bleed are accounted for through the use of

alignment and warping of the peaks. Skov and Bro (2007) showed that it is

possible to produce a predicted chromatogram which is easier to interpret and

analyse. However the data set used in the research presented in this case study

has peak shifts which are dependent on changes introduced to the system

deliberately. Skov and Bro (2007) detailed a methodology for analysis of

unintentional peak shifts, this research aims to present a methodology for the

optimisation of a design space where peak shifts are viewed as a consequence

of operating conditions.

Although there is no literature directly relating to the pre-processing of a

data set used to characterise a design space for IEX, comparisons can be made

to literature concerning spectroscopy through the similarities in the

measurements recorded. Stordrange et al. (2002) present a comparison of

different pre-processing procedure applied to NIR data, using standard
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techniques such as normalisation, differentiation and multiplicative scatter

correction (MSC). There are other techniques presented in the literature such

as orthogonal signal correction (OSC) (Wold and Sjöström, 1998), optimised

scaling (OS) (Karstang and Manne, 1992), or standard normal variate (SNV)

which was investigated by Barnes et al. (1989). Luypaert et al. (2004) presents

a methodology for NIR pre-processing which applies SNV, detrend correction,

offset correction, and derivation. Another methodology presented by Artursson

et al. (2000) to X-ray powder diffraction uses wavelength transforms, Fourier

transforms, and Savitzky-Golay derivative (Savitzky and Golay, 1964), to

improve PLS predictions. These examples all show that the type of

pre-processing applied is very dependent on the characteristics of the data set.

The literature was investigated to find applications of pre-processing to

similar types of data. The aim of this was to identify pre-processing methods

to use in this research, and subsequently eliminate techniques which would not

be appropriate. These applicable techniques were then investigated through a

study which built PLS models and used the fit of the model to determine the

applicability of the pre-processing techniques. Factors which were considered

include time alignment of data, normalisation to account for differences in

signal intensities (Arneberg et al., 2007), smoothing of noise data (Savitzky

and Golay, 1964), use of 1st or 2nd derivative to remove background noise

(Savitzky and Golay, 1964), and scaling of variables (Karstang and Manne,

1992). The root mean squared error (RMSE), normalised root mean squared

error (NRMSE) and the Akaike information criterion (AIC) were used to

determine the models which provide the best fit.

6.7.1 Review of techniques

This section provides a review of the literature and presents the techniques

which are applicable to the data used in this research.
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Time alignment

Time alignment is an important step in preparing a data set for multivariate

analysis, and is one of the more challenging aspects. Skov et al. (2006) state

that the reason for time aligning data is to bring the data to a form where the

elements in the matrix for each sample describe the same phenomena. Not

performing time analysis means that the assumption made in multivariate

analysis of bi-linearity (2-way analysis) or tri-linearity (3-way analysis) is no

longer valid. The literature shows various methods for time aligning

chromatographic data. One method is correlation optimised warping (COW)

which works by using assumed peak shape and area properties (Nielsen et al.,

1998; Bylund et al., 2002; Pravdova et al., 2002; Skov and Bro, 2007). COW

is useful in applications where the goal is to determine the difference between

a experiment and a control experiment. Where alignment of corresponding

features in the measurements is important, COW uses a reference experiment

(control) and a user defined shift window which determines by how much a

peak can shift, and in this way is useful for minor peak corrections (Skov et al.,

2006). Fourier transforms are also regularly used in the literature to correct for

time alignment issues (Grung and Kvalheim, 1995; Wong et al., 2005b; Zheng

et al., 2013). Methods which use Fourier transforms differ from those of

warping methods in that the whole chromatogram is used, and multiple peaks

are detected using a transform which then aligns these based upon a reference

chromatogram. Literature has shown both warping and Fourier transform

methods to be effective, however, the use of reference chromatograms in all

the methods means they are not appropriate for this study.

The techniques described are generally applied to data sets where there

are only small variations from the control experiment. However the data set

used in this research was collected via use of a DoE to characterise the design

space for the purification of the protein. This presents a challenge in the fact

that each of the experiments varied greatly and no one control experiment

could be used as a reference. Therefore a method which isolates each peak was

developed. Hoffmann et al. (2012) present a solution which uses peak group

identification instead of retention time to determine peaks to align, this is then
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combines with the time warping methods shown in (Nielsen et al., 1998;

Bylund et al., 2002; Pravdova et al., 2002; Skov and Bro, 2007). Although this

method goes some way towards the peak isolation needed in this work it still

relies on having one control experiment and peak shape similarity between

experiments.

This research presents a new methodology for time alignment of single

component chromatograms, through peak isolation. A methodology is

provided in section 6.4 detailing how the peaks are aligned in this research.

Once the peaks were aligned this allowed for the other pre-processing

techniques to be investigated.

6.7.2 Methodology

When considering pre-processing techniques there are four distinct categories

which the different methods can fall into. These are transformations,

normalisation, filtering, scaling, and variable alignment. When processing

data, the first method to consider is transformations, followed by normalisation

methods. After this the filtering and finally the scaling methods can be applied.

Table 6.5 summarises the results of a review of the literature, where the

techniques which might be appropriate to this application are outlined. The

table lists the category the technique falls under, the name of the technique, a

brief description of the basic principles, the advantages and disadvantages, and

finally references which provide either theory or application of the technique.

To perform the study each of the technique groups was investigated

individually. Each of the normalisation methods being tested was applied to

the data set and a PLS model was constructed. The RMSE and NRMSE values

were calculated for each training batch and the validation batch to show how

well the pre-processed data can be modelled. The model with the lowest

RMSE and NRMSE values was selected as the appropriate technique. This

was also compared against the values obtained from a model constructed with

no pre-processing applied to ensure that it was necessary to apply the

technique group, i.e. to check whether the data needed to be normalised at all.
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The Akaike Information Criterion (AIC) was also used as it accounts for the

model complexity as well as the model fit. Further information on AIC is

provided in Chapter 4. In order to compare between the models constructed

using different pre-processing techniques all the models contained 3 latent

variables. The models all used a cross validation (leave one out) method.
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Table 6.5: Summary table of the pre-processing techniques selected to be applied to the on-line measurements. The techniques are cate-
gorised into; normalisation, filtering, scaling, and variable alignment. For each section the technique, basic principles, advantages, limi-
tations, and references are provided.

Pre-processing
technique
sub-heading

Technique Basic principles Advantages/Limitations References

Normalisation

Normalise
(1-Norm)

Divides each variable by the
sum of the absolute value of
all variables.

xcorr =
xorg(i)

∑
n
j=1 |xorg(i,j)|

Adv: Applied to all variables as one
Lim: Outliers can cause other
variables to be incorrectly
normalised.

Listgarten and Emili (2005)
Rinnan et al. (2009)
Eigenvector Inc. (2015)

Normalise
(2-Norm)

Divides each variable by the
sum of the squared value of
all variables.

xcorr =
xorg(i)

∑xorg(i,j)
2

See 1-Norm
Listgarten and Emili (2005)
Rinnan et al. (2009)
Eigenvector Inc. (2015)

Normalise
(Inf-Norm)

Divides each variable by the
maximum value observed for
all variables.

xcorr =
xorg(i)

max(xorg(i))

See 1-Norm
Listgarten and Emili (2005)
Rinnan et al. (2009)
Eigenvector Inc. (2015)
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Normalisation

Multiplicative
Scatter Correction
(MSC)-Mean

Sample chromatogram, xorg
is regressed against a reference,
xref and the fit used as a
correction.
xorg = b0 +bre f ,1 ·xref + e
The data is then corrected
using this reference
xcorr =

xorg−b0
bre f ,1

= xref +
e

bre f ,1

In this instance xref is the
mean sample.

Adv: Spectral features are
preserved, whilst background offsets
and slopes are largely removed.
Lim: Selection of mean maybe
inappropriate for data set.
The corrected data is not
representative of the relationship
between the X and Y blocks,
so MSC can remove information
from X that is related to
Y and vice versa.

Wold et al. (1998)
Geladi et al. (1985)
Rinnan et al. (2009)
Dhanoa et al. (1994)

Multiplicative
Scatter Correction
(MSC)-Median

See (MSC) mean.
In this instance xref is the
median sample.

Adv: See (MSC)-mean
Lim: Selection of median
chromatogram may not be
representative of the whole
data set.
See (MSC)-mean for corrected
data issues.
NOTE: Both (MSC) mean and
median were tested to determine
which reference sample was
most appropriate.

Wold et al. (1998)
Geladi et al. (1985)
Rinnan et al. (2009)
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Normalisation Standard Normal
Variate (SNV)

Calculates the mean and std
dev for a chromatogram,
assigning weightings to the
samples deviating the most from
the mean. Entire sample is
normalised by the std dev and a
user definable offset, δ .

xcorr =
xorg−a0

a1

a1 =

√
∑

n
j=1(Xi, j− x̄i)2

(n−1)
+δ

−1

Adv: Known to work well
for processes where similar
signals are obtained for
each sample. No common
reference signal is required.
Lim: Can be sensitive to
noisy samples (outliers)
NOTE: SNV and (MSC)-mean
are similar but with SNV
a common reference signal
is not required. Instead, each
sample is processed on its
own, isolated from the remainder
of the set.

Rinnan et al. (2009)
Dhanoa et al. (1994)
Li et al. (2004)
Barnes et al. (1989)

Filtering Smoothing
(SavGol)

The SavGol smoothing filter is
a 2nd order polynomial which
is fitted within a window of
defined size to smooth the data.

xsmooth =
i=n

∑
i=−n

CiXi+n

Adv: Removes high frequency
noise. Lim: If window is two large,
it can over fit the data.
Causing loss of important
information.

Savitzky and Golay (1964)

182



Filtering Derivative
(SavGol)

To find the derivative at centre
point, a polynomial is fitted within
a window of the raw data. The
parameters from this polynomial
can then be used to calculate
the derivative of any order for
this function. This is applied to all
points in the batch sequentially.
The size of the window and the
degree of the derivative are
user defined.

Adv: Accentuates high frequency
characteristics of the data, such as
hidden peaks and removes low
frequency features such as
baselines
Lim: Accentuates high frequency
noise.

Savitzky and Golay (1964)
Rinnan et al. (2009)
Laxalde et al. (2011)

Scaling Autoscale

First the data is mean centred,
then each column is divided by
the standard deviation of that
column.

Adv: Each variable has equal
influence of the output signal.
Lim: The noise in signals is also
given equal influence, can
accentuate noise.

Detroyer et al. (2000)
Hendriks et al. (2005)
Eigenvector Inc. (2015)
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Group scale

Similar to autoscale, the main
difference being that the variables
are split into equally sized
blocks and each block is scaled
by the grand mean of their
standard deviations. Within each
block, the mean of the standard
deviations for each variable
included in the block is used to
scale all columns.

See Autoscale
NOTE: Group scale is typically
applied when the variables are
within equally sized blocks, and
within these blocks they are
for a given unit of measure.

Eigenvector Inc. (2015)
Kukharev and Kuźmiński (2005)
Hua et al. (2008)

Scaling

Mean centre
(MC)

The mean of each variable is
subtracted from the value recorded
for the variable at each sample.

Adv:Reduces all data relevant
to the mean.
Lim: Not always sufficient for
heteroscedastic data.

Moco et al. (2008)
Shaw et al. (1993)
Liu et al. (2003)
Wang and Kowalski (1992)

Median centre
(MedC)

The median of each variable is
subtracted from the value recorded
for the variable at each sample.

Adv: Reduces all data so
variation is relative to
the median.
Lim: Variable of interest can
often be independent of
the median value.

Laxalde et al. (2011)
Eigenvector Inc. (2015)
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Pareto*
Measurements for each variable
are divided by the square root of
the variable standard deviation.

Adv: Scales variables so that
noise level is equal for
all, providing it is the
magnitude of the scaling factor.
Lim: Sensitive to large fold
changes.

Ma et al. (2008)
Gromski et al. (2014)
Eigenvector Inc. (2015)
Kim et al. (2015)

Poisson*
Measurements for each variable
are divided by the square root of
the mean of the variable.

See Pareto
Keenan and Kotula (2004)
Engel et al. (2013)
Kim et al. (2015)

Scaling Variance (std)*
Measurements for each variable
are divided by the standard
deviation of the variable.

See Pareto
Engel et al. (2013)
Eigenvector Inc. (2015)

Log Decay*

Each measurement is scaled
by a continuously decreasing
log function of the form:

xscaled,i = e
−xi
nτ

Adv: Takes into account
sensitivity of
instrumentation.
Lim: Typically used in mass
spec. as opposed to LC.

Engel et al. (2013)
Kim et al. (2015)

Variable alignment
Correlation
Optimised
Warping (COW)

Performs a piece-wise
transformation of each sample
adjusting the segments to best
correlate to a reference sample.

Adv: Can align multiple peaks.
Lim: Can compress and distort
chromatographic data.

Engel et al. (2013)
Eigenvector Inc. (2015)

*Techniques are also applied in series with mean-centering applied first
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6.7.3 Results

Table 6.6 shows the results of the pre-processing study. The first column of the

table details the technique being applied in each model, the highlighted rows

indicate the technique chosen as the best option for the pre-processing method

(i.e. normalisation, filtering, and scaling). Also reported are the RMSE,

NRMSE, and AIC values for both the training and validation batches; for the

training batches the reported values are mean averages. The final column in

the table is the model identifier which is used in the discussion to refer to

specific models.

Although the table shows the mean values for the three assessment

criteria for the training batches, there can be large variations within this. This

is shown in Figure D5 (in Appendix D), where the AIC values are reported for

models 2 and 3 (Table 6.6). It can be seen that there is large variation between

the error for each batch, taking into account only the AIC values for the

validation batch (15) then Figure D5 would suggest that the most appropriate

techniques would be MSC median as this is the lower value. However Figure

D5 also shows that the AIC values for the training batches (1-14) are larger for

each individual batch and also overall (average). Therefore when performing

model selection the values for both the average of all the batches and the value

for the validation was used. In the example shown in Figure D5 (Appendix D)

the training batch average was first be considered which for MSC mean was

65.4 and for MSC median was 92. The AIC values for the validation batch

were subsequently considered; for MSC mean it was 85.8 and for MSC

median it was 73.5. The difference between these two values was lower and

therefore determining the best model involves considering both the best

validation prediction but also the best cross validation of the training batches.
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Table 6.6: Summary of the average training (denoted T) and val-
idation (denoted V) RMSE, NRMSE, and AIC values calculated
for each model. For each group of pre-processing options the op-
timum technique is highlighted in blue to show which techniques
were used in the final model.

RMSE NRMSE AICModel Technique applied T V T V T V
1 No pre-processing 236.7 206.6 4.690 0.450 95.2 85.96

Normalisation
2 MSC (mean) 75.2 204.8 0.138 0.440 65.43 85.83
3 MSC (median) 518.7 90.3 4.708 0.191 92.01 73.56
4 Normalise (1-Norm) 133.5 542.2 0.275 1.182 69.09 100.43
5 Normalise (2-Norm) 126.3 542.1 0.260 1.182 68.45 100.43
6 Normalise (inf-Norm) 143.0 541.7 0.301 1.182 71.05 100.42
7 SNV 99.2 541.4 0.192 1.182 66.39 100.41

Normalisation +
filtering

8 Derivative 1st order 665.0 544.4 1.361 1.191 92.98 100.49
9 Derivative 2nd order 664.8 542.4 1.361 1.189 92.97 100.44
10 Smoothing (Savgol) 69.2 179.8 0.125 0.390 65.89 83.88

Normalisation,
Filtering, Scaling

11 Autoscale 62.0 176.6 0.119 0.38 61.32 79.21
12 Group scale 62.0 176.6 0.119 0.38 61.32 79.21
13 Mean centre (MC) 69.2 177.1 0.125 0.38 64.04 83.65
14 Median centre (MedC) 72.7 161.1 0.136 0.35 65.33 82.23
15 Pareto 71.6 176.5 0.136 0.38 65.12 83.6
16 Poisson 97.1 176.9 0.174 0.38 65.58 83.63
17 Variance (std) 79.1 176.0 0.158 0.38 65.39 83.55
18 Log decay 105.1 185.2 0.200 0.4 66.95 84.32
19 Pareto + MC 71.7 176.7 0.136 0.38 64.09 83.61
20 Poisson + MC 71.9 176.7 0.136 0.38 64.09 83.62
21 Variance (std) + MC 62.0 176.6 0.119 0.38 61.32 79.21
22 Log decay + MC 64.0 177.0 0.136 0.38 64.48 83.64

Variable
Alignment

23 COW 113.4 192.6 0.218 0.41 72.2 99.63
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It was determined that the best normalisation technique to apply was

MSC mean. A distinct improvement can be seen from model 1 where no

pre-processing was applied. Similar improvements to the predictive ability of a

model after the application of MSC were reported in the study conducted by

Isaksson and Næs (1988) or Helland et al. (1995) with NIR data. Maleki et al.

(2007) also used this technique for NIR, but with the application of MSC to

on-line measurements for control. Their study is interesting as normally a

model constructed using MSC is specific to the data set, whereas their study

analyses each spectra as it is produced and then adds it to the data set. Thus it

could be said it adapts as it improves the performance of the model with each

batch.

The next class of pre-processing techniques investigated were filtering

methods, see models 8-10 in Table 6.6. MSC (mean) was applied to both data

matrices before the techniques detailed in models 8-10 were tested. It can be

seen from Table 6.6 that it was not necessary to take the derivative of the data.

The application of the derivative makes the predictions worse therefore it was

not applied in further models. The smoothing filter, on the other hand, showed

a slight improvement to the model (model 10). The application of smoothing

filters in literature was shown to also provide improvements in model

predictions (Reed et al., 2011). Luna et al. (2013) conducted a study of

pre-processing techniques to determine the most appropriate method for their

application to NIR spectroscopy, and applied these techniques in further work

(Luna et al., 2015). Although these studies were not just focused on smoothing

techniques, it can clearly be seen that Savgol smoothing has a beneficial effect

on the final model, hence the smoothing filter was included in further models.

The final class of techniques considered was filtering methods, see

models 11-22 (See Table 6.6). These models were constructed with MSC

(mean) and smoothing functions having been applied. The applied scaling

techniques only offered relatively small improvements to the data. Dalal and

Zickar (2011) made an interesting point that quite often in MVDA scaling

techniques such as mean centering are applied to data without really

understanding the need. Often mean centering is used to reduce collinearity

188



between variables (Kim et al., 2015), and in the application to chromatography

this is essential. As previously discussed the models constructed in this study

are comprised of components which represent a measure of the correlation

between the original variable data. As was shown in the PCA analysis, the

on-line measured variables do not capture the variation in the data, therefore it

is likely that the variation is correlated to a variable which is not measured

such as the binding kinetics of the protein and the ligand. As Craig et al.

(2006) stated scaling data gives equal weight to each data value in a time

series. This means that systematic changes with small variance can be more

easily detected. This is beneficial in this application as some elution peaks

may be broad and shallow whilst others are sharp and intense. Scaling gives

equal weight to each data point and thus the small changes can be seen as well

as large ones. It can be seen that the lowest AIC values are for the models

which used autoscale, group scale, and variance (std) with mean centre. This is

expected as these three methods are all based on the same principle. Autoscale

mean centres the data and then scales using the standard deviation, group scale

does this for blocks of variables, and variance (std) with mean centre is just

applying the techniques separately. This explains why the AIC values obtained

are so similar. Additionally group scale is designed for multi-way models

where the variables are in equally sized blocks. The user defines the sizes of

these blocks and group scale then treats each variable individually within the

assigned block using mean centre and variance scaling techniques to

counteract the effect the different measurement techniques used for the

variables. In the data set used here the data was manually decomposed into a

2D matrix prior to the application of the techniques. This removes the need for

group scaling, as a result the group scale technique is performing in this study

in the same way as autoscale.

Variable alignment is used to align the elution peaks with in the Y-block

and align similar data patterns in the X-block. Although this technique was

explored in this study the peak isolation process discussed in section 6.4 aligns

the peaks over 332 sample points. The additional variable alignment

over-corrects the data by aligning small inconsistencies between the batches.

An example of this would be the distortion in the peaks observed in batches 4
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and 9 as shown in Figure 6.12. The variable alignment technique COW was

applied, which has a narrow window size of 10 sample points. It is assumed

that the poor fit observed in this model (23) is due to the algorithm attempting

to align small inconsistencies in the shape of the elution peaks across the small

sample size, for example the highlighted bump in batches 4 and 9. However

these peaks shown in the data are more likely to be cause by extra resolution,

showing a second peak starting to separate. This is shown as a shoulder in the

main peak.
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Figure 6.12: Inconsistent peak shape shown between batches 4
(blue) and 9 (red).

When the measured and predicted values are then observed for model 23

in Figure 6.13 it can be seen that the predicted values now attempt to align to

the points of change located at the bump. This effect is particularly noted in

the low yield batches where small changes to he peak shape are amplified as

the elution peak occurs over a small absorbance range.
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Figure 6.13: Inconsistent peak shape shown between batches 4
(blue) and 9 (red).

The techniques identified as optimum are replicates of each other. With

the best pre-processing techniques to use for this application being identified

as those in model 11.

1. Normalisation - MSC (mean)

2. Filtering - Smoothing (SavGol)

3. Scaling - Autoscale

4. Variable alignment - N/A

The average RMSE, NRMSE, and AIC values for model 11 across all batches

were 62.0, 0.119, and 61.32, respectively. This combination of pre-processing

techniques showed the smallest variation between the predictions for the

training batches and the prediction for the validation batch. The measured data

and the prediction for the training batches and validation batch are shown in

Figures 6.14-6.17. The training data has been split into three figures showing

the high, medium, and low yield batches for ease of interpretation. Batches 1

and 6 on Figures 6.15 and 6.16 respectively show that the ability of the model

to predict the centre points is poor. One possible reason maybe the wide range

of outputs recorded for the centre points, although it would be expected that

they would of been roughly the same. This could possibly account for the

poorer fit of the model to the validation batch (batch 15) Figure 6.14.
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Discussion of the variation observed between the centre point batches is

provided in section 6.10.

Additionally it can be seen that the model struggles to predict batches 4,

9, 12, and 13. These batches do not display the expected Gaussian peak, which

the rest of the batches do. The model is fitting a Gaussian peak to these four

batches as well, and is a limitation of the PLS algorithm which is discussed

further in the next section.
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Figure 6.14: Measured and predicted absorbance for valida-
tion batch (15) using the pre-processing techniques described
in model 11 (Table 6.6)
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Figure 6.15: Measured and predicted absorbance for the high
yield batches (3, 4, 12, and 13) using the pre-processing tech-
niques described in model 11 (Table 6.6)
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Figure 6.16: Measured and predicted absorbance for the medium
yield batches (1, 6, 7, and 9) using the pre-processing techniques
described in model 11 (Table 6.6)
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Figure 6.17: Measured and predicted absorbance for the low yield
batches (2, 5, 8, 10, 11, and 14) using the pre-processing tech-
niques described in model 11 (Table 6.6)

In summary this study has investigated 23 separate pre-processing

methods which are commonly applied in chemometric and chromatographic

applications to the lactoferrin data set. The data set was split into training and

validation, due to the small size of the set 14 batches were used as training and

1 as validation batch. The methodology of applying each technique and

assessing it using a PLS model and model assessment criteria was taken from

literature, with the intent of evaluating which pre-processing techniques were

best to apply to a scouting data set. For this application the best results were

shown to be normalisation using multiplicative scatter correction (mean),

Savitzky-Golay filtering (smoothing), and centering and scaling the data using
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autoscale. The information used in this study was taken forward and applied in

the next section, which is concerned with the multivariate modelling of the

chromatography data.

6.8 Multivariate modelling of chromatographic data

This section presents the models constructed to predict the performance of the

purification using the CPP of yield. The models presented are described as a

proof of concept to show whether it is possible to both predict CPPs from the

operating conditions, and subsequently if the yield is known predict the

operating conditions which would achieve that yield. Of the three most

commonly used latent variable methods, as given by Rajalahti and Kvalheim

(2011b) the first, principal component analysis (PCA), was presented in

section 6.6. The second, partial least squares (PLS) is presented in this section,

with the final method being principal component regression (PCR). As shown

by Hemmateenejad et al. (2007) PCR and PLS are comparative methods, with

both providing similar predictions. However as Hemmateenejad et al. (2007)

showed in their study PLS is a better tool to use with absorbance data.

Additionally they showed that to obtain similar results from both PLS and

PCR then generally more factors are required in the PCR model making it

more complex. This section aims to describe the use of PLS to extract relevant

information from the measured data. As Rajalahti and Kvalheim (2011b)

states, multivariate methods can be used to simplify complex pharmaceutical

data and thus make visualisation easier. This fits in with the PAT initiative as it

aims to increase process understanding and control whilst at the same time

reducing the uncertainty and variation in the end product (United States Food

and Drug Administration (FDA), 2004a). With the objective to build quality

throughout the manufacturing process, also referred to as Quality by Design

(QbD), multivariate data analysis has a central role in the PAT initiative (von

Stosch et al., 2014a).

The current literature on MVDA applications to chromatography appears

to be very much dominated by liquid chromatography/high-resolution mass
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spectrometry (LC/HRMS) and gas chromatography (GC) (Krishnan et al.,

2013a; Skov et al., 2006). Only limited references to IEX chromatography are

available currently, with the most relevant to the work presented in this section

being Bro et al. (1999) who used PARAFAC to model chromatographic data

which contained retention time shifts. This is a similar issue as shown in this

data set, where the retention times change. However PARAFAC as a

modelling tool was explored in Chapter 5 but it was found that PLS was a

better predictive tool, further confirmed by Bro (1997) and as such was not

explored further in this work.

A study of the currently available modelling literature for IEX

chromatography would not be complete without also referencing the work

produced around the ChromX project from the Karlsruhe Institute of

Technology (KIT). This project aims to produce a toolbox that solves

mechanistic chromatography models and produce a better understanding of

what occurs in the column. There are various publications such as Huuk et al.

(2014) that are related to IEX chromatography.

The research presented in this section differs from the currently published

models in that it aims to use a database of chromatographic data to

characterise the design space and from this predict both how the column will

operate, but also based upon final product measurements the optimum

conditions for the column to operate at. This section presents the first stage, as

it looks at assessing how well PLS models can predict these aspects.

6.8.1 Results and discussion

Off-line data

The PCA analysis of the off-line data presented in section 6.6 highlighted how

the differences in batch yield are influenced by the operating conditions

specified in the DoE. From this a PLS model was developed using the DoE

(operational set points for flow rate, load pH, gradient CV, load concentration,

and elution pH) data as the input and the elution yield as the output. The result
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of this model is shown in Figure 6.18, for a model constructed using 3 latent

variables (LVs) which accounted for 73.33% of the cumulative X-block

variance and 93.69% of the cumulative Y-block variance with the number of

LVs included determined by cross validation of the root mean squared error of

calibration (RMSEC).
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Figure 6.18: Elution yield percentages determined using a PLS
model containing 3 LVs. Batch 15 is the validation batch with
batches 1-14 being used to train the model, measured data is
shown in blue and predicted data is shown in red.

Figure 6.18 shows that for 10 of the training batches the predictions were

accurate to ±5%. One interesting observation is the predictions made for the

three centre points (replicates) which all predicted a value of 43.98% yield,

which is as would be expected as the data in the input (X-block) for these runs

is identical. This further highlights that there were influences on the system

which have not been measured, (see discussion in section 6.10). Putting aside

the centre point batches (1, 6, and 15) it can be seen that poor predictions were

made for batches 11, 12, 13, and 14.
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Figure 6.19: Bi-plot for off-line yield prediction showing the
scores (red dots) and loadings (blue dots) values for LV1 and
LV2 for the X-block data. Highlighted in the green ellipses are
the batches which showed poor predictions.

Figure 6.19 shows a bi-plot (information on construction of bi-plot

provided in Chapter 4) of the scores and loadings for the X-block data. There

is a symmetry to the scores with batches that have the opposite settings for all

DoE variables being mirror images of each other. With regards to being able to

determine why the predictions for batches 1, 4, 6, and 9 are slightly poorer

than for other batches the X-block data does not provide any answers.

However Figure 6.20 which shows a bi-plot for the Y-block data does show a

clear pattern. LV1 (explaining 87.88% of the variation) is clearly related to the

yield percentage, this is shown in Figure 6.20 through the colour coding of the

batches; high yield (red), medium yield (yellow), and low yield (blue).
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Figure 6.20: Bi-plot for off-line yield prediction showing the
scores and loadings values for LV1 and LV2 for the Y-block data.
Shown in red are the batches with a high yield, in orange are the
medium yield batches, and in blue are the low yield batches.

From the PCA analysis it is known that the yield is highly correlated to

the loading concentration of protein. Referring to the loadings concentration

and elution yield given in Table 6.7, it can be seen that in general a loading

concentration of 30 mg/ml produces a high or medium yield batch, and a load

concentration of 10 mg/ml produces a low yield batch. This suggests a linear

relationship between load concentration and total elution yield. This would

imply that the other characteristics of the elution peak i.e. retention time, peak

width (which for multi-component systems is a reflection of the resolution),

and peak shape (is it symmetrical) are influenced more by the other operating

parameters (load pH, elution pH, flow rate, and gradient CVs). There is further

evidence to suggest this in Figures 6.3 and 6.19; Figure 6.3 shows that batches

4, 12, and 13 all have distinctive shapes, especially at the peak maxima as they

do not follow the Gaussian curve. With this in mind, considering Figure 6.19

these three batches (4, 12, and 13) are all grouped together with influences

shown from the load and elution pH.

For batches 2, 5, 11, 10, and 14 in Figure 6.3 the peaks are all

asymmetrical, which is again reflected in Figure 6.19. The distinction as to one

variable being responsible is not clear, instead it is suggested that flow rate,

gradient CV, load pH, and elution pH all equally influence the asymmetry of
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Table 6.7: Load concentrations and yield obtained during elution
for all batches. The batches have been categorised as high yield
(y < 50%) in red, medium yield (10 < y < 50%) in yellow, and low
yield (y < 10%) in blue

Batch
Load

concentration
Elution

yield (%)
Discrete

value
1 20 67.64 0
2 10 6.59 -1
3 30 83.65 1
4 30 81.06 1
5 10 6.37 -1
6 20 35.41 0
7 30 64.57 0
8 10 1.11 -1
9 30 63.15 0

10 10 7.85 -1
11 10 7.19 -1
12 30 95.29 1
13 30 94.06 1
14 10 1.84 -1
15 20 44.17 0

the peaks.

A second PLS model was constructed with the aim of determining

whether a model could predict if the batch has a high, medium, or low yield.

To achieve this the batches were assigned a discrete value of either 1, 0, or -1

depending on if they are classed as high, medium, or low yield. These values

are shown in column 4 of Table 6.7. The model was developed using these

discrete values as the outputs to determine whether the operating conditions

would give a high, medium, or low yield. This analysis could often be carried

out using a clustering method, however, as Rokach and Maimon (2005) state

the goal of clustering is to discover a new set of categories. Whilst

classification methods (as used here) are predictive tool where the classes are

predefined.

The first PLS model used 14 of the batches as training batches, and one as

a validation batch. As the aim is now to predict one of three categories, the

data was split into 12 training batches and 3 validation batches, representing

the high (batch 3), medium (batch 15) and low (batch 5) yield categories. The

X-block and Y-block of the resulting model captured 66.9% and 94.7% of the
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resulting variation respectively. Figure 6.21 shows the resulting predictions

that were made using the model. For ease of interpretation of the graph the

measured data has been offset by +0.05 as the lines were overlying. As can be

seen the model manages to predict both the training and validation batches

with a high degree of accuracy. The only anomalous result was batch 5, which

was measured at a low yield but was predicted to have a medium yield.

Referring back to the DoE batch operating conditions shown in Table 6.4 there

are no obvious causes for why the prediction for batch 5 should be poor.
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Figure 6.21: Yield predictions for discrete yield values for off-line
data prediction. Using 12 batches as training and 3 as validation
(3, 5, and 15). Measured values are shown in blue and predicted
values are shown in red.

On-line data

The literature review presented in section 6.7 detailed the selection method for

choosing the pre-processing steps to use with the on-line data. In that study the

PLS model used to assess the different techniques was constructed from an

X-block containing the on-line variables conductivity, concentration, and pH

and the Y-block contained the on-line absorbance data. From the predictions

presented in Figures 6.14 - 6.17 it can be seen that they are not ideal. Issues

present across the predictions made for all batches include; inaccurate peak

height, width, and baseline. It is important to obtain a good prediction for the

elution peak as it provides information on yield, resolution and behaviour of
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the purification. Therefore another model was constructed to predict this.

From conducting the study in section 6.7 it is apparent that PLS as a tool

can not model data where the general pattern of the X and the Y block data is

different. To illustrate this point, the conductivity had a linear slope, whereas

the absorbance data had a Gaussian slope. Therefore two methods were be

used to try to improve the on-line PLS predictions: the prediction of the

cumulative area under the curve, and the prediction of the slope of the curve.

Area under curve

The X and Y block data was taken from the start of the elution peak till the end

of the elution peak as described in section 6.4. Subsequently trapezoidal

numerical integration was performed on each successive sample point to

obtain the area under the curve, the values were recorded as a cumulative area.

To perform the integration the ’trapz’ function in matlab was used, which takes

the specified sample range and breaks down the area in trapezoids and

calculates this area. Information on the application of the trapz function within

matlab can be found at MathWorks (2015), with explanation of the

background being given by Dautray and Lions (2000).
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Figure 6.22: The cumulative area under the curve calculated us-
ing the trapezoidal numerical integration function within matlab
for each of the 15 batches.

Figure 6.22 shows the cumulative area under the curve, with the data now
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more closely resembling a sigmoid curve. This pattern now more closely

resembles the pattern shown in the X-block data, hence a PLS model was

constructed. The resulting model contained 5 LVs which accounted for 99.02%

of the variation in the X-block data and 61.11% of the variation in the Y-block

data. Figures D6 - D8 show the predictions for the training data set and Figure

6.23 shows the measured and predicted data for the validation batch.
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Figure 6.23: Measured and predicted values for the validation
batch (batch 15) for the PLS model constructed to predict the
cumulative area under the curve.

As can be seen the prediction for the validation batch over estimates the

peak area quite considerably. This suggests that the high yield batches (3, 4,

12, and 13) might be exerting a greater influence over the system. To

investigate this, a bi-plot of the scores and loadings for LV1 and LV2 in the

Y-block data was constructed (Figure 6.24).
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Figure 6.24: Bi-plot for the Y-block data for LV1 and LV2, show-
ing the loadings for the Y-variable in red and the scores values
for all 15 batches in blue.

The bi-plot shows that batches 12 and 13, which are the two highest yield

batches, have a strong influence on the predicted area under the curve.

Referring back to Figure 6.22 showing the original measured data for the area

under the curve, it can be seen that batches 12 and 13 have a different shape to

the other 13 batches. This is due to both the high amount of protein loaded

onto the column and high amount of this binding to the resin. This produces a

much wider peak with a broader and flatter inflection point. A second model

was then constructed with these two batches removed, the model contained 5

LVs and accounted for 98.97% of the X-block variation and 63.98% of the

Y-block variation.

Figures D9 - D11 show the predictions for the training runs and Figure

6.25 shows the measured and predicted values for the validation run. Which

are much better than the predictions presented in section 6.7 (Figures 6.14 -

6.17). Figure 6.26 shows the area under the curve transposed back into

absorbance values. Additionally values for RMSE, NRMSE, and AIC given in

Table 6.8. The predicted data for the validation batch is lower than the

measured data, which is most likely due to the fact the validation batch was

one of the centre point batches and the three centre point batches varied

considerably in their outputs. When comparing the RMSE, NRMSE, and AIC
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values obtained for the mean of the training predictions and the validation

batch, it can be seen that there is not much difference between them. Therefore

it was determined that the model is adequate for the data set.

Table 6.8: RMSE, NRMSE, and AIC mean values for training
runs and final values for validation batch for PLS model con-
structed to predict the area under the curve.

RMSE NRMSE AIC
Mean for

training batches 1616 4.06 91.82

Value for
validation batch 1642 3.40 102.25

This model has been shown to give good predictions for batches 1-12 and

15. However, the model cannot predict accurately the batches which have a

significantly higher yield. This suggests that a ’one model fits all’ approach is

not applicable in this scenario. One possibility would be to conduct further

experiments particularly focused on the operating conditions which produce

the high yield and use these to model for yields > 90%. However for industry

the aim would be to reduce the number of experiments conducted as the

biopharmaceutical industry is highly competitive, and improved

time-to-market can mean a significant business advantage over competitors.

Therefore other modelling techniques were investigated to explore whether

they can handle the higher yield batches.
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Figure 6.25: Measured and predicted values for the validation
batch (batch 15) for the PLS model constructed to predict the
cumulative area under the curve.
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Figure 6.26: Measured and predicted values for the validation
batch (batch 15) for the PLS model constructed to predict the
cumulative area under the curve.

Slope of curve

The second method investigated to transform the curve data into a usable form

was to calculate the slope of the curve at set sample points. This technique was

explored to establish whether it could account for both the lower yield and the

high yield batches which the area under the curve method had difficulties with.

The on-line variables of conductivity, concentration, and pH formed the

X-block, with the slope of the absorbance curve forming the Y-block. Initially

a model was constructed using all of the X and Y block data. The gradient was

determined using Equation 6.5.

slope =
y2− y1

x2− x1
(6.5)

where y1 and y2 are the y-axis co-ordinates for the first and second points,

respectively, and x1 and x2 are the x-axis co-ordinates for the first and second

points, respectively. Figure 6.27 shows the data for the gradient of the

absorbance (mAU/min) prior to pre-processing.
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Figure 6.27: Gradient of the absorbance slope for each batch,
shown prior to pre-processing. Calculated using the relationship
given in Equation 6.5.

The model constructed for this data contained 5 LVs and accounted for

99.27% of the variation in the X-block and 64.78% of the variation in the

Y-block. Figure 6.28 presents the measured and predicted data for the

validation run, with the measured and predicted data for the training runs given

in the appendix in Figures D12 - D14. The measured data is presented after the

savgol smoothing filter was applied for ease of interpretation. As can be seen

from Figures D12 - D14 this model struggled to predict for data which

deviated from the Gaussian curve, for example batch 9 on Figure D13. The

distortion which was identified in the initial half of the curve in Figure 6.12

again caused issues here. In total, five of the training batches (4, 6, 9, 12, and

13) were not predicted with sufficient accuracy.
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Figure 6.28: Measured and predicted values for batch 15 (valida-
tion batch) The plotted measured data is shown after a Savgol
smoothing filter has been applied for ease of interpretation.
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Using the bi-plot shown in Figure 6.29 for the interaction between

batches and output variables, it can be seen again that batch 12, and to some

extent batch 13, influence the model, similarly to the effect observed when

modelling the area under the curve.
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Figure 6.29: Bi-plot for the Y-block data for LV1 and LV2, show-
ing the loadings for the Y-variable in red and the scores values
for all 15 batches in blue.

A new model was constructed with batches 12 and 13 removed from the

training data set. The resulting model contained 5 LVs and explained 99.01%

of the variation in the X-block and 56.33% of the variation in the Y-block. As

can be seen from Figure 6.30, the prediction of this model for the validation

batch was a much better fit. The model managed to predict the initial and final

inflection points accurately, these points are representative of when the protein

begins and finishes eluting. Which would theoretically mean that for

multi-component systems the resolution would be better predicted. Figures

D15 - D17 show the predictions for the training runs using this model.

Although these are accurate for most batches, it appears there is still an issue

in predicting the unusual curve shape seen in batches 4 and 9.
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Figure 6.30: Measured and predicted values for batch 15 (valida-
tion batch). The plotted measured data is shown after a Savgol
smoothing filter has been applied for ease of interpretation.

Figure 6.31 shows the predicted gradient for batch 15 transformed back

into the absorbance curve of the measured data, with the RMSE, NRMSE, and

AIC values for this model reported in Table 6.9. As can be seen the model

accurately predicts the peak width but struggles with predicting the peak

height. This is in contrast to the model built using the area under the curve

(Figure 6.26) which showed a more accurate prediction of peak height with a

worse prediction for the peak width. This suggests that a possible step forward

could be combining both of these models. Revisiting the issue of the
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Figure 6.31: Measured and predicted values for batch 15 (valida-
tion batch), showing the predictions made from the PLS curve
gradient transformed back into the absorbance profile.

predictions for the training batches 4 and 9, it can be seen from Figure 6.32

that the model is attempting to fit a Gaussian curve to the data. The distortion

from this curve at the start of the elution peak is not accounted for, as it only

appears in two batches. It is assumed that this is not a key part of the elution
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Table 6.9: RMSE, NRMSE, and AIC mean values for training
runs and final values for validation batch for PLS model con-
structed to predict the gradient of the slope.

RMSE NRMSE AIC
Mean for

training batches 246.82 0.35 57.61

Value for
validation batch 159.10 0.32 71.90

and were instead a result of experimental error, therefore further models to

predict this were not produced.
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Figure 6.32: Measured and predicted values for batch 9, showing
the predictions made from the PLS curve gradient transformed
back into the absorbance profile.

In summary it is possible to predict the final elution yield using a PLS

model where the operating conditions are the X-block data with high accuracy.

The on-line elution profile presents more significant modelling challenges,

however two possible solutions were shown to predict different aspects of the

curve well. The next step was the evaluation of whether these models can be

combined.

6.9 Combining multivariate models for prediction

of elution peak

This section combines the PLS models presented in the previous section. The

aim was to produce a prediction for the elution peak which was more accurate
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than the predictions for the two models separately. The simplest method as

described by Hastie et al. (2009) is to take the mean of the model predictions.

This could present issues in this case, where the two models predict different

parts of the time series data with higher accuracy. Therefore a more common

approach to use is to have a measurement of the fit of the predictions at each

time point. This has been done by Neuman (2003) who used the Bayesian

information criterion as the measure and from this selected the prediction at

each sample point which was most accurate. As similar method was adopted

by Pan et al. (2006) who used the Akaike information criterion as the measure

of accuracy.

6.9.1 Methodology

As discussed in section 6.8 the predictions of the two models constructed

using the area under the curve and the gradient of the slope showed significant

improvements on the model constructed in the pre-processing study which

used the on-line absorbance measurements as the model output. This section

reports attempts of improving the area under the curve and gradient models

further by combining them into one prediction.

Two different methods were used: the first used a combined average of

the predictions, with the second using an AIC weighted method. The basic

premise for both of these methods is shown in Figure 6.33.

Figure 6.33: Basic premise for combining multiple PLS models
into one prediction.

To produce the first of these models, the average prediction of each of the

261 sample numbers were taken and used as the final value. For the second
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model the AIC value was calculated for both models at each sample point, the

lowest AIC was identified and the value corresponding to this was taken as the

final value. This method is similar to that described by Hastie et al. (2009),

which was applied for example in the work of Pan et al. (2006).

6.9.2 Results and discussion

As the area under the curve PLS model (henceforth referred to as area model)

predicted the peak height accurately, and the gradient of the slope PLS model

(henceforth referred to as gradient model) predicted the peak width accurately,

the combined models were used to produce improvements to these. The

resulting prediction for the average method (henceforth referred to as average

model) showed a significant improvement on the two previous models, with

the AIC weighted method (henceforth referred to as AIC model) providing

further improvements. Figure 6.34 shows the final predictions for the

validation batch, and Table 6.10 provides the RMSE, NRMSE, and AIC values

for the four models.
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Figure 6.34: Predictions for batch 15 (validation batch), blue line
shows original measured data, red line shows the prediction
made using the PLS area model, the green line show the pre-
diction made using the gradient PLS model, the black line shows
the predictions from the average model, and the cyan line shows
the predictions from the AIC weighted model.

As can be seen from Figure 6.34 the average model has improved the
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Table 6.10: RMSE, NRMSE, and AIC values for the area under
the curve PLS model, the gradient of the slope PLS model, the
average hybrid model, and the AIC weighted hybrid model for
the validation batch (batch 15).

RMSE NRMSE AIC
Area PLS model 155.50 0.32 71.60

Gradient PLS model 159.10 0.32 71.90
Average hybrid model 144.26 0.29 70.63
AIC weighted hybrid

model 101.10 0.20 66.01

prediction for the validation batch. The inflection points marking the start and

end of the peak were more accurately predicted. However, it can be seen that

although the peak height prediction improved, there is still an error between

the predicted and the measured data. In comparison, the prediction from the

AIC model can be seen to very closely predict the inflection points and

achieves the peak height to within ±10%. It can also be observed in Table 6.10

that for all 3 model assessment criteria the lowest value was achieved using the

AIC weighted method. Therefore this method was identified as the best fit of

the four tested approaches. However, there appears to be an issue occurring

when one model has the lowest AIC value but then for the next sample point it

is the other model which is lowest. This is illustrated in Figure 6.34 at sample

point ≈ 225. If these curves were being used as the only method of predicting

the yield then this would possibly be more of an issue. However as these

models were constructed with the aim of being used to predict the resolution in

a multi-component system and as a measure of column performance, these

small inconsistencies are not as critical, as it is the width, height, and retention

time that are critical factors.

In summary, both the averaging and AIC weighted methods showed

improvements on the predictions of the area and gradient models, with the

AIC weighting method showing the most significant improvements.
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6.10 Other factors influencing column and model

performance

As mentioned throughout this chapter there are factors which are considered

external influences which may have had an effect on the process. These factors

are ones which were not measured hence their actual impact cannot be

quantified, although they may have contributed to some of the modelling

inconsistencies observed.

Protein

The protein stock in pH 6, 7, and 8 solutions were made at the start of the

working week. From these three stock solutions the 15 experimental batches

were performed. Although lactoferrin is a stable protein, observing the centre

point batches (batches 1, 6, and 15) it can be seen that the measured outputs

are significantly different. Between batches 1 and 6 there is significant drop in

both the on-line and off-line recorded yield. Due to unforeseen experimental

issues an additional stock solution of pH 7 had to be made to run the final

centre point batch (batch 15) and it can be seen that there is an increase of the

yield. This suggests that the protein in some way degraded in the stock

solution. Figure 6.35 shows the measured on-line absorbance for the three

centre point batches. As can be seen the batch run in the middle of the week,

batch 6, has the lowest absorbance, with a similar increase being shown in

batch 15, possibly due to the need to remake the stock solution. This decrease

in protein between batches 1 and 6 may indicate a loss of protein, as the

solution was well mixed before taking a sample suggesting that the protein

degraded. The only possible cause may be attributed to the exceptionally hot

weather the week of experimentation (Abe et al., 1991; Steijns and Van

Hooijdonk, 2000), suggesting possible thermal degradation of the protein

while the solution was out of the cool room during the experiment.

Additionally the work of Sreedhara et al. (2010) suggests that the varying pH

of both the stock solutions and the buffer used to elute the protein may have
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effected the thermal stability of the protein, with a decrease in the pH causing

a decrease in the denaturation temperature.

If thermal stability of the protein was the only issue affecting protein

denaturation then it would be expected in Figure 6.35 that batches 1 and 15

would be very similar. However, it can be seen that there is less protein present

in batch 15, inferred from the smaller elution peak. As the protein

concentration of the stock solutions was checked after they were made this

suggests there is another influence causing the smaller amount of protein in

batch 15. One possible cause could be issues arising from the buffers.
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Figure 6.35: Measured on-line absorbance for centre point
batches (batches 1, 6, and 15).

Buffers

The buffers used throughout the experiments were prepared at the start of the

week and stored in a refrigerator. There is some suggestion that the buffers

may have altered over the course of the experiments. As the centre points,

batch 1 and 15, were both performed using newly made stock solutions where

the protein was stored in the freezer prior to being used suggesting the

obtained results would be very similar. However, it can be seen in Figure 6.35

that batch 15 had a significantly lower yield. This suggests that another factor,

possibly the buffers, was impacting the process. The pH and conductivity of

the buffers was checked prior to each batch, however other not measured

issues can problems can arise, such as flocculation (Piazza and Garcia, 2010).
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Resin

The performance of a column can decrease over time due to excessive use as

shown by Hou et al. (2010). With excessive use it is assumed that the binding

capacity of the resin decreases and hence less protein would absorb onto the

matrix. As with the protein degradation it would be expected that issues with

the resin would be observed in the centre point batches. Generally, excessive

use of a resin refers to hundreds of batches over many months as opposed to

the 15 batches run over a week for this data set. However there are reports in

the literature which show that matrix degradation can occur over as few as 50

batches, as shown by Yang et al. (2015). Although these effects are unlikely to

have influenced the data set used in this chapter they should be considered for

application of the models produced for other data sets.

6.11 Recommendations

From the work presented in this chapter there are a few recommendations

which can be made to further improve both the accuracy of the models but also

the scope of application. This section summarises the main recommendations

with possibilities for future development.

Dataset

A main factor impacting the accuracy of the models is the size of the data set

used to both train and validate them. Generally applications of MVDA in

literature use data sets which are both large and include more replicates. The

variation seen in the three centre point batches suggests that similar effects

would be observed in the other 12 batches had replicates been performed.

The small number of experiments used to construct the models in this

chapter was deliberately chosen, as a key driver for industry is the reduction of

both time-to-market and resources. Having said this, the experiments in this
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research have shown that obtaining ’good’ data for use in model development

and design space characterisation is often very dependent on external factors.

As a result of this data generated in this way could not be applied to produce

an on-line monitoring tool. Hence it is the recommendation of this work that

although DoE designs such as that used here can be applied, the need for

replicates of experiments cannot be avoided.

Model scope

The models produced in this chapter focused primarily on off-line predictions

of yield, which were accurate, and suggest the models could be similarly

applied to predict other CPPs and CQAs. The second focus of this research

was on-line predictions. This chapter considered only the prediction of the

elution peak of a single component system and further work could be carried

out to predict other aspects of the chromatogram such as the flow-through and

wash, the strip, and the caustic stages.

Multi-component systems

Another limitation of the models developed in this chapter is that they only

apply to single component systems. The techniques used for the predictions

made from and for the off-line data could be readily applied to

multi-component systems. However, for the models generated for on-line data

significant changes would need to be accounted for. Figure 6.36 shows a

simple drawing of two multi-component systems, the bottom one shows a

system where good resolution is achieved with all three components

(highlighted in red squares) distinctly separated. The problems arise when

applying the models to systems such as that shown in the top chromatogram.

The blue box highlights three components where the resolution is worse, and

the peaks are not distinct.
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Figure 6.36: Example multi-component chromatograms, showing
poor resolution (top) and good resolution (bottom).

The on-line models produced in this chapter rely on being able to

calculate both the gradient of the slope and the area under the curve for the

complete elution peak. Where the resolution is poorer and the peaks over lap,

this is not possible. To be able to deal with this type of a system, further

modelling techniques should be explored, such as first principles, which would

give an indication as to the character of each individual component.

217



6.12 Conclusions

There were two main aims of this study; the first was to be able to predict

CQAs from process operating conditions. The second was to see whether it is

possible to predict the chromatogram of the system with the aim of being used

for on-line control with the goal of using multivariate data analysis to achieve

both of these aims and where necessary supplement with additional modelling

techniques.

The work presented in this study addressed firstly the need to isolate the

elution peaks when there is a lot of variation in the retention time. The

methodology suggested within the work used a first principles model to predict

the retention time, and then isolated the single component peak. The on-line

data measured over the duration of the elution peak was then aligned between

batches to the length of the longest batch, and the variables were then aligned

within the batches. This allowed for a direct comparison of measurements at a

given time point.

The results of the PCA analysis on the off-line data showed that the yield

of lactoferrin was directly related to the load concentration, with the flow rate

also being an important factor. The PCA analysis of the on-line data, which

was used for variable removal, showed that when building a predictive model

the variables which accounted for the variation in the data set were

conductivity, pH, and the concentration of buffers over the gradient. The PCA

analysis also showed that although no batches were considered as falling

outside the 95% confidence limit, the analysis was influenced more by batches

12 and 13. These two batches were the highest yield batches, and were

significantly higher than the rest.

Having performed the PCA analysis the results were then used to

construct a PLS model to predict absorbance. An initial pre-processing study

was carried out to determine the pre-processing which was most appropriate

for the data set. To ensure that the only the batch to batch variation was

captured and not noise, whilst also making sure the data was not over
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pre-processed. It was determined that the necessary techniques were MSC

mean, Savgol smoothing, and autoscale. The resulting PLS model showed a

prediction which was Gaussian in shape, however the correct peak width,

height, and baseline were not achieved. It was determined that the reason for

this was that PLS can only operate when the shape of the data is similar in

both the X-block and the Y-block.

Therefore two subsequent PLS models were constructed, the first which

used the cumulative area under the curve and the second used the slope of the

gradient. Both of these techniques improved the baseline prediction, with the

area under the curve improving the peak height, and the gradient improving

the prediction for peak width. This lead to two final models which looked at

combining the outputs from the area under the curve and the gradient models.

The first of these combined models used an average, and again gave

improvements to the prediction. The second used an AIC weighted response,

which gave the most accurate prediction of all the models.

Additionally PLS was used to predict the yield from the operating

conditions. Two models were constructed, the first to predict the actual yield

percentages attained and the second to predict the discrete yield attained (i.e.

predicting if the batch was high, medium or low yield). Both of these models

performed well, leading to the conclusion that a similar model could be

applied to other final CPPs allowing them to be predicted in a similar manner.

Having developed the tools for the prediction of both on-line and off-line

chromatography measurements on the single component lactoferrin process,

these techniques could be transferred and applied to a more complex system.
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6.13 Summary

Over the last twenty years there have been significant developments to the

modelling of chromatography, the most notable examples being Gu (1995) and

Skov and Bro (2007). The examples presented in literature have predominately

focused on modelling the chromatogram with less emphasis to prediction of

off-line measurements. The research presented in this chapter has shown that

the MVDA and first principles techniques described by Mercier et al. (2013),

Bro and Smilde (2014), Shellie et al. (2008), and Madden et al. (2002), to

name a few, can be successfully applied to be used for the prediction of

off-line CPPs. Additionally, it has been shown that a data set used to collect

the maximum information through the minimum number of experiments can

successfully be applied to predict within the limits of the design. This works

with the PAT guidelines given by the FDA which places a greater importance

on the identification and control of CQAs and CPPs. Most importantly this

chapter has succeeded in demonstrating a proof of concept study, showing that

MVDA and first principles techniques can successfully be used to characterise

various aspects of IEX chromatography. The conclusions highlighted the fact

that these models could now be transferred to a mAb system, and can be used

in conjunction with an agent based model, which is presented in Chapter 7.
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Chapter 7

Agent based model for Chinese

Hamster Ovary (CHO) cell

cultivation and purification

The work presented in the previous two chapters presented the initial

modelling and characterisation of the bioreactor and Ion Exchange

Chromatography (IEX) process units. This chapter covers the research

performed to investigate the applicability of agent based modelling (ABM) to

multiple bioprocess units. The work utilises the models constructed in the

previous two chapters and applies them to a Chinese Hamster Ovary (CHO)

cell line producing a monoclonal antibody (mAb).

The growth in the mAb market over the last decade is set to continue, and

over the next 3-6 years the antibody market is projected to grow to $30bn or

more (Ziegelbauer and Light, 2008). These and other therapeutic proteins are

produced on a large scale in industry using various recombinant cell lines as

the expression system. These cell lines can be bacterial (e.g. E. coli), yeasts, or

mammalian cells (e.g. Chinese Hamster Ovary (CHO)), with CHO cells being

the most popular expression system as they offer various benefits. The main

one being that produced products bear a similarity to human produce proteins.

This similarity it mainly in the post translational modifications, such as the

glycosylation of the proteins, which is incorrect can produce an immune
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response in the human patient.

Biopharmaceutical products must have a very high purity, and the

concentration of host cell proteins (HCP) and DNA should be in the range of

parts per million relative to the target product. Regulations also state that the

final product should contain no micro-organisms, should contain less than 10

ng of DNA per dose and less than one virus per million doses (Low et al.,

2007). This means a very stringent purification process is needed for mAbs.

Typically this purification process includs a three-column chromatography

process consisting of a protein A affinity column (initial capture), followed by

cation exchange (CIEX) and anion exchange (AIEX) columns as polishing

steps and finally a virus filtration (VF) step. This process is summarised in

Figure 7.1, which gives details on the substances removed in each stage.

Figure 7.1: Purification process for mAbs. Showing a three col-
umn chromatography stage with ultrafiltration/diafiltration
(UF/DF). The three column chromatography included an affinity
step, a cation exchange step, and an anion exchange step. *CHOP
refers to Chinese Hamster Ovary Proteins (Host cell proteins pro-
duced by CHO cells) (Mehta et al., 2008)

The three stage chromatography purification process is used because it is

able to meet the stringent purification requirements. However this process is

very expensive, especially the protein A affinity step which accounts for

almost 35% of the total raw materials costs for downstream purification

(Kelley, 2009). The growing demand for mAbs and the increasing market

competition has lead to a focus on reducing manufacturing costs and

improving the efficiency of processes on the industrial scale.

There are various methods which can be employed to reduce the total cost
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of production. Low et al. (2007) discuss the benefits of changing the current

standard process units to include other units such as high-flow high capacity

chromatography resins, non-chromatographic processes such as membrane

absorbers, precipitation, flocculation or crystallization. Suggestions have been

made for an alternative capture step as protein A does have several major

drawbacks. Apart from the high resin cost, protein A also has a limited

binding capacity and issues with clean in place (CIP) due to the sodium

hydroxide damaging the ligands. Various authors have suggested the use of

cation exchange chromatography as an alternative capture step in mAb

purification (Arunakumari et al., 2007; Stein and Kiesewetter, 2007; Urmann

et al., 2010). The consensus is that although CIEX is not as efficient as protein

A in terms of selectivity of HCP it can be used with a HCP precipitation step

to get similar HCP removal levels as protein A. In cases such as this the

deciding factor is whether cost of process complexity is the main issue.

This chapter presents agent based modelling (ABM) as a tool for

reduction in cost of production. Providing a flexible framework for the use of

multiple bioprocess models each characterising a separate process unit. This

method is able to handle process interactions, and can provide a plant wide

process characterisation. As Gao et al. (2009) state, an agent based framework

is constructed using process knowledge, process models, and a group of

functional agents. Initially the process knowledge and process models are

applied for each process unit individually. Then the functional agents act as

the connection between the units. This form of modelling is a move away from

the more traditional form of bioprocess modelling which considers each

process unit separately. The literature has shown that ABMs are commonly

used in applications such as social sciences where it is the interactions

between various variables that are of interest. They have more recently started

to be applied to bio applications such as Segovia-Juarez et al. (2004) who

applied an ABM to characterise tuberculosis in the lung. This work shows the

scope that ABMs have for applications to biosystems which have a higher

level of unpredictability than say chemical systems. Whilst Gao et al. (2009)

developed an ABM for the production and purification of alcohol

de-hydrogenase (ADH) from a Saccharomyces cerevisiae, this work shows the
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Table 7.1: Summary of available data for mAb process. ’Measure-
ment’ refers to the technique used and the comments give details
on what the technique is measuring. The experiment section shows
whether the measurement was recorded for that particular experi-
ment.

Experiment

Measurement Comments Lab
scale 1

Lab
scale 2 Demo MCC

UV A280 Titre X X X X
Protein A Titre X X X X

CIEX Measure of
heterogeneity X X – –

SEC Measure of
molecular weight X X X X

HCP Host cell protein X X X X

CE-SDS
Measure of

whether protein is
glycosylated

X X X X

applicability of ABMs to optimisation of mammalian cell based production

and the subsequent purification.

7.1 Process data

Data set one

Two data sets were used for the construction of the models in this chapter. The

first data set was generated by the sponsor company Fujifilm Diosynth

Biotechnologies for the characterisation of a new process. Fujifilm have two

sites for contract manufacturing, one based in the UK at Billingham, the

second in the United States of America in North Carolina. The primary aim of

the experiments was to determine the repeatability of the culture and

purification process at the two sites, to check that the end product had the same

purity, glycosylation profile, level of aggregation, and molecular weight. This

data set included off-line measurements which were obtained using different

analysis techniques Table 7.1 summaries the different measurements that were

recorded.
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As can be seen form Table 7.1 the data set is relatively small, containing

only 4 experimental runs. This is standard procedure in that the main

development for each process unit is carried out individually, so when the

entire process is checked, less experimentation is required. This method is

beneficial for the company in that it reduces costs, however it is not ideal for

constructing a model as more experiments and replicates would produce a

more robust model. However, the data set is sufficient to be able to use as

proof of concept in this chapter.

The analytical measurements were taken after each process unit (as

summarised in Figure 7.1). However for the virus inactivation and virus filtrate

stages there is a high proportion of missing data. This is not an issue for this

research as the main area of focus is the cultivation and ion exchange stages.

Data set two

The second data set used in this research was again supplied by the sponsor

company Fujifilm Diosynth Biotechnologies. This data set was produced as

part of their work to establish their mammalian cell systems platform process.

The data was from the upstream cultivation of CHO cells and the production

of a mAb product. Due to confidentiality the exact mAb product has not been

disclosed however it has a similar structure, glycosylation profile, molecular

weight, and downstream purification process to the mAb used in the first data

set. Therefore for the purpose of this research they will be assumed to be

sufficiently close to demonstrate the proposed concepts of ABM. However any

subsequent development work on this tool should be carried out using the

upstream and downstream data from a single production system.

The data set included fed batch shake flask, lab scale, and 2L cultivations.

The work was originally used as a cell line and scale up study, and thus

included data on 10 different cell lines. Furthermore the data included both

off-line measurements for viable cell count, titre, glutamine, glutamate,

glucose, lactate, ammonia, and the glycosylation profile for the end of

cultivation product. Additionally there were on-line measurements for the 2L
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bioreactors, providing measurements for dissolved oxygen (DO), CO2, air

flow, pH, stirrer speed, and temperature. Finally provided for the fed batch

shake flasks and lab scale reactors were the set points for pH, temperature,

agitation, and DO (Table 4.2 on page 66).

7.2 Methodology

Unit models

The individual process units were characterised using the models determined

in Chapters 5 and 6. These chapters used a hybridoma data set and a

lactoferrin data set to determine the modelling methodology which provided

the most accurate predictions. The identified best models were then used in

this chapter and applied to the CHO cell data. Table 7.2 summarises the

models, providing the target CPP or CQA and the model used to predict it.
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Table 7.2: Summary of the best models from Chapters 5 and 6. The table lists the target CPP or CQA that the model is predicting, the
type of model used, and the data required as an input to the model.

Process unit CPP/CQA Model type Data input /
X-block Comments

Bioreactor

Viable cell
count

Hybrid
Kontoravdi et al. (2007)

Operational
set points

Uses PLS to determine rates of consumption/production of
metabolites. First principles models then used to provide
concentrations of metabolites.

Titre PLS
Operational
set points

The hybrid model used for viable cell count also contained
a prediction for titre. However PLS only model was less
complex a produced a better prediction.

Glycosylation
profile PLS

On-line
measurements

No hybrid or first principles model available. The PLS only
model produced accurate results.

Ion exchange
chromatography

Retention
time First principles

Data needed to
calculate constants

A potential issue is that data is required to predict the
constants for the model. This data is not available for the
mAb purification data set.

Yield PLS
Operational
set points

The PLS only model produced an accurate prediction for
yield, and the operational set points were available for the
mAb data set.

Elution profile Hybrid
AIC weighted

(Area under curve
and gradient of slope)

Similarly to the retention time model, data was required for
the mAb data sets to be able to train this model. Therefore
it can not be applied to this data set, but could be used in
further research where more data was available.
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Not all of the models listed in Table 7.2 can be used in this chapter as the

CHO data set does not contain the required data to train the models. For

example the downstream IEX data only includes the analytical measurements

and the operational set points of the platform process used within the sponsor

company. Therefore the CPPs of retention time and elution profile could not

be determined as these require on-line data sets. However, the model used to

predict the CPP yield could be used as the model only required the operational

parameters.

Agent framework

The agent framework is used to support the integration of the unit operation

models and to simulate the interactions between them. Figure 7.2 shows the

hierarchical nature of the ABM framework.

Figure 7.2: Agent based model (ABM) framework, showing the
hierarchical nature of the model. The model can be adapted and
improved by the use of different or additional data to train the
process unit models.

This chapter is concerned with the higher level agent which co-ordinates
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the process unit models. This higher level agent is able to integrate the unit

operations and communicate between them to simulate the interactions

thereby giving the desired whole process description. This ability to

communicate between process units allows for the investigation of how

changing process parameters affect plant performance, and thus determine the

optimum operating conditions. The ’models’ (see Figure 7.2) called by the

unit agent, can contain multiple models such as first principles or multivariate

(such as those in Table 7.2). This allows for different CPPs or CQAs to be

modelled. Furthermore there is no limit to the number of process units that can

be investigated so long as the data and models are available.

The co-ordination agent acts as a link between the unit operation agents.

This allows the unit agents to operate as one when evaluating the process

conditions to improve the whole process performance. Communication

between the unit agents is through a common parameter, which is modelled,

predicted, or optimised. This common parameter can be any measurement

which is recorded for each unit, for example in data set one the level of host

cell protein could be used. The unit agent then builds various models using the

common parameter as a reference. The ABM presented in this chapter was

constructed using matlab software.

7.3 Results and discussion

The models and results presented in this section act as a proof of concept for

applying an agent based model to a mammalian cell system. The models

presented in this section show how to apply this technique to achieve

improvements in process performance. Additionally suggestions are made for

further work to further develop the overall model.

Unit CPP and CQA prediction

Initially to develop the agent model the first data set, which contained

measurements of key parameters after each process unit, was used. This data
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set included measurements on titre (measured using both UV and protein A),

remaining HCP (host cell protein), heterogeneity (CIEX (cation exchange

chromatography): reported as main peak, acidic variants and basic variants),

molecular weight (SEC (size exclusion chromatography): reported as main

peak, high molecular weight, and low molecular weight), and whether the

protein is glycosylated or not (CE-SDS (capillary electrophoresis-Sodium

Dodecyl Sulfate gel): reported as main peak or none glycosylated heavy

chains). The data for most of these measurements was incomplete, with values

for the harvest only being recorded for titre. The value of the harvest is the

point which can be related to the end of cultivation data (linking to the models

in Chapter 5). Therefore this proof of concept uses the titre as the main

predictor matrix.

The first models constructed focused on being able to predict the

CPPs/CQAs listed in Table 7.1 from the titre values. Six PLS models were

constructed all using the product titre (UV) as the X-block data, the other

CPPs/CQAs listed in Table 7.1 were the Y-block for each successive model.

The titre was used as the X-block data because it was the only CPP in the data

set which contained values for the end of the cultivation. This was important

because the unit agents for the cultivation and ion exchange chromatography

could be used to determine how changes to one unit would impact the

operating parameters of the other unit. As the overall agent model is designed

so that it can be used by anyone regardless of modelling knowledge, the PLS

models would ultimately use automated selection for the number of latent

variables. However for demonstration in this proof of concept all models

contain 3 LVs. This value was checked for all six model shown here to ensure

that significant amounts of data were not being missed or noise included.

Table 7.3 details the Y-block used in the models and the RMSE value for

predicted measurement after each process unit.

The predictions for HCP at each stage of the DSP are shown in Figure

7.3, as can be seen the predictions made for virus removal and the subsequent

units is relatively accurate when compared with the prediction for the protein

A eluate. This is reflected in the RMSE values (see Table 7.3) which are
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significantly higher for the protein A eluate. This variation is most likely a

reflection of the small data set size. Three training batches are not sufficient to

construct an accurate model, especially as the variation between these three

batches is significant. For the HCP values recorded after the protein A the

range is 1364 - 5234. Additionally, as Figure 7.1 shows, the protein A and IEX

steps are used to remove DNA. As the levels of HCP vary greatly prior to these

stages it confirms that HCP levels cannot be controlled.
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Figure 7.3: Measured and predicted values for HCP (host cell
protein) for batch 3. Prediction based on the product titre val-
ues after each process unit. Model contained 3 training batches, 1
validation batch, and 3 latent variables.
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Table 7.3: Table showing the data used to train the model (Y-block) and the RMSE value for the predicted measurement of each pro-
cess unit. *- demotes that there was not measured data so the model could not predict the unit value.

RMSE

Model Y-block
CPP/CQA Harvest Pro A elute

Virus
removal Pro A load Pro A elute IEX load IEX elute

Viral
filtrate UF/DF BDS

1 HCP - 1977.20 0.00 685.83 97.79 72.87 3.99 0.00 3.84 3.57

2
SDS main

peak - 0.43 1.55 0.22 1.70 0.50 0.24 0.01 0.30 0.78

3
SDS NGHC

peak - 0.28 0.33 0.23 0.33 0.21 0.13 0.13 0.31 0.21

4
SEC main

peak - 1.78 0.00 0.59 0.38 0.42 0.40 0.00 0.29 0.69

5
SEC HMW

peak - 1.57 0.00 6.86 0.23 0.25 0.16 0.00 0.38 0.49

6
SEC LMW

peak - 0.23 0.00 0.06 0.06 0.06 0.16 0.00 0.03 0.02
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As HCP is an uncontrolled variable it means that there is a lot of variation

in the recorded levels, this makes it difficult to predict. Therefore only the end

process units (i.e. virus removal onwards) can be said to be predicted with any

accuracy, as the level of removal is known (i.e. 98% removed by protein A).

Figure 7.4 shows the predictions of product glycosylation. As can be seen

both visually using Figure 7.4 and from the RMSE values in Table 7.3 the

predictions initially appear to be accurate. However, considering the relatively

narrow range of the measurements recorded, the predictions do not appear to

be as good. For example in Figure 7.4(a) the prediction is worse for the virus

removal and second protein A eluate. This suggests that the most variation

between batches occurred for these units. Taking for example the prediction

made for the virus removal Table 7.4 shows the values used to train the model

(batches 1, 2, and 4) and the values for the validation batch (batch 3).

Comparing batches 3 and 4, it can be seen that the glycosylated main peak

values are approximately the same, however the titre value for batch 3 is much

lower than the rest. Therefore when the model was trained with batches 1, 2,

and 4 and subsequently the titre for batch 3 was used to predict the

glycosylated main peak the value predicted was much lower. This shows two

things; the first that a larger data set would be better. Secondly, it suggests that

there is not a direct relationship between the recorded titre and the

glycosylated product, and thus titre cannot be used to predict it. The agent

model would also be able to predict the glycosylation profile after each unit, as

shown for the fermenter (Chapter 5) and this prediction could be used as an

additional input to the DSP models. Due to lack of data this could not be

implemented in this research, however the models in Chapter 5 show that it is

possible to accurately predict.
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Table 7.4: Comparison for the viral unit of the X-block data, titre,
used to train the model, and the Y-block data, SDS main peak, pre-
dicted by the model.

Virus removal unit

Titre (mg/ml) Glycosylated form
SDS main peak (%)

Batch 1 12.10 97.70
Batch 2 14.40 97.80
Batch 3 11.70 96.40
Batch 4 12.20 96.20
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Figure 7.4: Measured and predicted values for glycosylation ((a)
main peak (b) NGHC (non-glycosylated heavy chains)) for batch
3. Prediction from the product titre values after each process unit.
Model contained 3 training batches, 1 validation batch, and 3 la-
tent variables.
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Figure 7.5 shows the predictions of the size of the product, with (a)

showing the main peak, (b) showing the high molecular weight (HMW) peak,

and (c) showing the low molecular weight (LMW) peak. For the main peak the

predictions are good, however there is little variation between the

measurements for each batch, therefore no firm conclusion can be drawn as to

the appropriateness of using titre as a predictor. In contrast for the HMW and

LMW peaks there was variation in the measurements used to both train and

validate the model. The variation in the HMW and LMW peaks is not directly

linked to the titre measurements, and thus the titre can not be used to

accurately predict the SDS main, HMW and LMW peaks. Similarly to the

glycosylation profile, the molecular weight could be predicted after the

cultivation and used as an input to the DSP models.

The final measurement recorded in data set 1 was the measure of

heterogeneity using CIEX. These values were only recorded for two of the four

batches, and as such no model could be constructed as there would only be one

training and one validation batch. Figure 7.6 shows the measured data for the

main, acidic, and basic peaks which further demonstrates why a model could

not be constructed, as there is significant variation between the two batches.

Having considered using titre as a way of predicting the other

CPPs/CQAs it can be seen that this is not a viable method for any of the

variables. This presents a challenge, as for this data set there are no other

measurements which can be used.
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Figure 7.5: Measured and predicted values for protein size ((a)
main peak (b) HMW (High molecular weight) (c) LMW (low
molecular weight)) for batch 3. Predicted using the product
titre values after each process unit. Model contained 3 training
batches, 1 validation batch, and 3 latent variables.
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Figure 7.6: Measured heterogeneity values for batches 1 and 2
((a) main peak (b) acidic variants (c) basic variants).

237



Titre as agent model parameter

As previously mentioned to co-ordinate between the unit agents a common

parameter is needed. From the data sets used in this research the only

measurement which has been recorded for both the cultivation and the DSP

steps is the product titre. Considering the models constructed in Chapters 5 and

6 which showed that the operating conditions can be directly related to titre,

the titre was used in the following models as the communicating parameter.

Obviously other process parameters relevant to the task would be used in a real

application, titre is used here to demonstrate the concept of ABM.

Data set one was used to construct a model where in the Y-block data is

the titre recorded after the 9 process units of harvest till UF/DF. The X-block

data is the titre obtained at the end of the whole process i.e. the BDS (bulk

drug substance). The model structured in this way should allow for the

operator to specify the desired attributes of the end product and from this be

able to predict the operating conditions for the various process units.

Additionally the model could be applied by adjusting the set points of the

cultivation to determine the impact downstream.

As both data set one and data set two are for mAb products and the

downstream processing units were operated according to in house operating

procedures at the sponsor company, it is assumed that the relationship

characterised in the downstream processing of data set one also apply to data

set two. Therefore the model is trained using all four batches within data set

one, and tested using data set two. Two consequences of this are that there are

more batches included in the training data set, and there is information

provided on the operating parameters for the batches in data set one. This

means that from variations to the titre implemented by the co-ordination agent,

the operating parameter set points can be predicted and these can be compared

to actual values. Figure 7.7 shows the measured data from data set one, and the

prediction made using batch 3 of data set two.
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Figure 7.7: Measured data for batches 1 to 4 from data set one.
These four batches were used to train the model which predicts
the titre for each process unit from the titre of the BDS (bulk drug
substance). The measured data (batches 1-4) were as the X-block
to train a model for predicting unit titre. The black columns show
the prediction made for batch 3 from data set 2.

As can be seen from the predicted batch, a higher titre achieved at the

BDS stage is reflected in the a higher titre obtained at the end of the

cultivation. It is shown across all the training and validation batches that a

higher titre at the end of the cultivation means a lower titre during the first and

second protein A stages with the protein becoming more concentrated in the

elution of the second protein A column with all subsequent stages having a

higher titre. It can not be confirmed if the predicted titre for the downstream

processing units from the first protein A eluate are correct. However the

predicted value for the harvest, was 2.3 mg/ml and the measured titre was 2.25

mg/ml, showing that for this unit at least the prediction is good.

Having predicted the end of cultivation titre this allowed for the culture

conditions to be predicted. A new model was constructed using the titre as the

X-block with the Y-block consisting of the initial conditions and set points for

glucose, lactate, ammonia, glutamine, glutamate, dissolved oxygen, agitation,

temperature, and pH. The model was trained using data set two, with batch 3

being used as the validation batch. The inclusion of dissolved oxygen,

agitation, temperature, and pH was redundant for this data set as for all batches

the set points were the same. However as they did not negatively impact the

model they were retained, so that the model is established in its final form for

use within the sponsor company at a later date. Having established the initial
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set points for the cultivation a model was constructed using data set two. The

model used was hybrid model D from Chapter 5 as this model only required

the initial concentrations and rates of the main metabolites. Therefore, the

glucose, lactate, ammonia, glutamine, and glutamate concentration profiles

were predicted throughout the cultivation duration.

Figure 7.8 shows the prediction for glucose for batch 3. As can be seen

the general profile for the concentration is shown over the entire duration.

However the model does not seem to have predicted the high extremes as

accurately. In particular the recording at day 11, which is representative of

when the bioreactor was batch fed. This suggests that the model may provide

better predictions for instances where the cultivation is operated without

subsequent human interferences such as feeding. However to be able to draw

firm conclusions as to the ability of the model to predict instances such as

batch fed cultivations then more data is required. Additionally a parameter

should be included in the model which allows the operator to specify the day

the feed will occur on, to see how this affects the cultivation. This would

require significant amounts of experimentation to fully characterise.
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Figure 7.8: Measured and predicted values for glucose concentra-
tion for batch 3 of data set two. Model was constructed using end
titre to predict initial conditions. Which were then used with the
operating parameter set points in a hybrid model which predicts
the rates for the equations presented by Naderi et al. (2011).

Figure 7.9 shows the measured and predicted lactate concentration for

batch 3. The general trend is well represented however there appears to be an
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offset, with the predicted concentrations being higher for each day. There are a

few possible reasons as to why this might have occurred. The first is that the

X-block data used to predict batch 3 may have been very similar values to one

of the training batches and thus the predicted result is similar to that training

batch. This would suggest then that there is variation between the batches

which is not captured in the variables used in the models, such as the variation

between cell line. The variation in cell lines is difficult to capture as it is not a

quantifiable measurement.
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Figure 7.9: Measured and predicted values for lactate concentra-
tion for batch 3 of data set two. Model was constructed using end
titre to predict initial conditions. Which were then used with the
operating parameter set points in a hybrid model which predicts
the rates for the equations presented by Naderi et al. (2011).

Figure 7.10 shows the measured and predicted ammonia concentration for

batch 3. The model predicts the concentration accurately for the first 6 days,

and fairly accurately after. Between days 6 and 12 it could be said that the

model is not as accurate, however when it is considered that the only actual

measurement that was provided was the BDS titre, and this is the prediction

made after 3 models have been applied it can be seen that relatively speaking

the prediction is good.
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Figure 7.10: Measured and predicted values for ammonia concen-
tration for batch 3 of data set two. Model was constructed using
end titre to predict initial conditions. Which were then used with
the operating parameter set points in a hybrid model which pre-
dicts the rates for the equations presented by Naderi et al. (2011).

Figures 7.11 and 7.12 show the glutamine and glutamate concentration

profiles respectively. The predictions made for both of these are accurate

throughout the cultivation. This suggests that they are independent of the fed

batch process, as the glucose which is dependant on it showed issues with

predictions the concentration after the culture has been fed. Considering the

growth curve of the cells the glutamine can be seen to be consumed during the

cell production stage, and produced during the cell death/product production

stage. In contrast the glutamate can be seen to be produced during cell

production and consumed during the cell death/product production stage. This

is in agreement with the study conducted by Altamirano et al. (2001) who

investigated CHO cell metabolism. They also showed that glutamate could be

used as a limiting factor similar to glucose.
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Figure 7.11: Measured and predicted values for glutamine con-
centration for batch 3 of data set two. Model was constructed us-
ing end titre to predict initial conditions. Which were then used
with the operating parameter set points in a hybrid model which
predicts the rates for the equations presented by Naderi et al.
(2011).
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Figure 7.12: Measured and predicted values for glutamate con-
centration for batch 3 of data set two. Model was constructed us-
ing end titre to predict initial conditions. Which were then used
with the operating parameter set points in a hybrid model which
predicts the rates for the equations presented by Naderi et al.
(2011).

The final CPP predicted for the cultivation was the viable cell count

(Figure 7.13). As can be seen the lag, and initial growth phases are predicted

well, as is the final viable cell count. The prediction for the maxima is not as

good. However as this model is used as a guide, it can provide a lot of

information such as the growth rate, the time point of the cell count maxima,

and the final cultivation condition.

243



2 4 6 8 10 12 14
0

5

10

15

20

25

V
ia

bl
e 

ce
ll 

(x
10

6  c
el

ls
/m

L)

Time (Days)

 

 

Measured
Predicted

Figure 7.13: Measured and predicted values for viable cell count
for batch 3 of data set two. Model was constructed using end
titre to predict initial conditions. Which were then used with the
operating parameter set points in a hybrid model which predicts
the rates for the equations presented by Naderi et al. (2011).

In summary it has been shown that using the titre as the communicator

between the process units is possible, and does yield good results.

Subsequently it has also been shown that if the final product titre is known for

the cultivation, it is possible to predict the initial conditions and operating set

points with a relatively good degree of accuracy. The limitations of the data set

mean that it is not possible to test the ability of using the end unit titre to test

other process units. Initially the aim was to predict the operating conditions

and subsequent elution of the IEX unit, but the information is not available.

The following illustrates the method that would be used when a complete data

set becomes available.

Using the titre predicted as the end value for the IEX unit as the X-block

of the model, the operating parameters would be predicted. This is similar to

the development shown in Chapter 6. To illustrate the point, a model was

shown here which used the lactoferrin yield and operational parameter

information to train the model, and the CHO cell data titre to predict the

operating conditions. This model (as presented in Chapter 6 and trained using

the lactoferrin data) is not a true representation of the operating conditions for

the CHO cell, as the lactoferrin is a completely different protein and thus

would be operated differently. The aim was just to show the application of the

modelling technique. The resulting predictions for the operating conditions are
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Table 7.5: Predictions for the operation of the IEX process unit.
Predictions made using a PLS model which was trained with the
lactoferrin data set from Chapter 6. Model and predictions aim to
illustrate how they should be applied for this unit when the appro-
priate is obtained.

Operating parameter

Flow rate
(ml/min)

Load
pH

Gradient
(CV)

Load
concentration

(mg/ml)

Elution
pH

Batch 3 0.62 6.98 17.02 44.84 6.96

given in Table 7.5. The model predicts the optimum load and elution pH

values, the optimum flow rate, the column volumes the gradient should be

performed over, and the concentration of the load sample which would achieve

an end titre as specified.

The models shown here for the cultivation and IEX are relatively simple.

However they allow for simultaneous optimisation of process units to achieve

one desired end goal. The next step in the process would be to predict and

optimise for multiple end CPPs and CQAs. It would be possible to predict

these by incorporating further models into the unit agents. The main

limitations are lack of available data. For many CPPs and CQAs, such as

glycosylation profile, it is not common practise to measure them after every

process unit. This limits the applicability of the agent based model. Another

limitation is the ability to model, it has been demonstrated in Chapter 5 that it

is possible to predict the glycosylation profile at the end of the cultivation.

However, as no data is currently available it is only speculation that other

measurements, such as aggregates, could be predicted.

Perhaps one of the main benefits of adopting an ABM is the ability to

predict how changes to the operation of one unit affect other units. An ABM

could be used to determine how changes to the operating parameters of the

cultivation would impact on the down stream processing. This then allows for

predictions to the operating conditions of the DSP units to maintain the same

product quality attributes. For example if a change in the temperature or pH of

the cultivation causes a change in the aggregation of the product (Hwang et al.,

2011; Bollin et al., 2011) this can be predicted and the subsequent DSP unit
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operating conditions altered to account for this. This results in a BDS which is

uniform across all batches.

7.4 Suggestions for further development

The work presented in this chapter was carried out to provide a framework for

process development. The main suggestion for further development would be

to test the model using more data. In which the upstream and downstream

units have been characterised, and preferably with more batches and repeats.

This would allow for testing of the IEX models developed in Chapter 6.

One of the main issues encountered within the research presented in this

chapter was that the main process unit characterisation was for the bioreactor,

however the data supplied for process units (data set one) was predominantly

for downstream and measurements of final cultivation output were not

included. The only CPP which was measured was titre. In further development

it would be beneficial to see if any other measured factor could be used as the

communicator between process units, i.e. the glycosylation profile.
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7.5 Conclusions

The main aim of the study presented in this chapter was to determine if it was

possible to predict the operating conditions of process units having specified

the end product. A second aim was to determine whether the models presented

in previous chapters could be used to characterise the profile of the operation

of the individual units. The work in this chapter mainly focused on the

bioreactor cultivation due to insufficient data for downstream units.

The work presented firstly addressed whether a CPP such as titre,

measured after each process unit, could be used to predict other CPPs and

CQAs. The results showed that titre was not an accurate predictor of other

measurements. This is likely because titre is a measure of quantity whereas the

other CPPs and CQAs are measured of the quality of the product. The amount

of the product does not reflect the form the individual proteins take. This was

challenging for this data as it meant to be able to predict the unit operation of

the only unit which was fully characterised and data available for (the

bioreactor) the product titre had to be used as the communicator between the

BDS and the unit. This however does leave the potential for development at a

further stage, in that other measurements such as host cell protein or

glycosylation profile could be used as the communicator to determine how the

unit should be operated to achieve specific end results for these measurements.

Additionally it is worth noting that a better prediction could of been made

through the use of total titre as this would remove issues due to dilution.

The results for the agent model constructed using titre as the

communicator were much more encouraging. The model showed that when a

specific BDS titre was chosen the initial operating conditions, and the

subsequent metabolite profiles could be predicted relatively well. Slight issues

arose around the prediction of the fed batch element, in that the training data

used for the metabolite profiles were fed batch a slightly different times, and

combined with the small data set meant errors were introduced. This is

particularly evident in the glucose profile, however this could be easily

accounted for if more batches were used to train and the time of the fed batch
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was used as a model input.

The validity of the IEX models could not be tested as there was no

available data for the unit. However the application of the operational

parameter prediction shown in this chapter demonstrates the simplicity of the

model. This model should be tested as soon as possible and if it is determined

that the results are valid then it shows how simple it would be to make changes

to the downstream operation. Additionally the simplicity of this model for the

IEX suggests that similar models could be generated for the other

chromatography columns making it easy to provide a quick simple

optimisation of those units as well.

In conclusion the work presented in this chapter has proved the concept

that agent based model can be used for entire bioprocess optimisation of CHO

cells. So far the concept has only been applied using the product titre as the

communicating measurement. However there is evidence to suggest other

parameters could be used instead. This is a critical point as it is this

communicator which is the optimised element.
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7.6 Summary

In summary the work presented in this chapter was carried out as a proof of

concept with the aim being to determine whether agent based model (ABM)

could be adapted to be used for overall optimisation of a CHO cell cultivation

and purification. The results have shown, through the development of the

model for the first CPP, titre, that the ABM is applicable. It is possible to

specify the desired end titre and to predict the titre required to achieve this

after the cultivation, and subsequently the conditions the cultivation needs to

be operated at to achieve this. Due to lack of data the IEX unit models could

not be validated. However this has identified one of the key areas for further

development which has been touched upon in this research, the use of first

principles models. If first principles models were used in the characterisation

of the process units then issues encountered here with the IEX column would

not of had such a big impact. Work was presented in Chapter 5 which

characterised the metabolism of the cells and could predict titre, viable cell

count, and metabolite concentrations. Chapter 5 showed that the predictions

from these models were not as accurate as for multivariate or hybrid models

but the use of them would significantly reduce the experimental data required.

Additionally issues may arise in the mathematical modelling of CQAs such as

the glycosylation profile. Work presented in this thesis managed to predict

glycosylation profile only through the use of multivariate PLS modelling. This

may present issues in further development.
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Chapter 8

Conclusions and future work

This project has covered three areas of bioprocess modelling. The first,

modelling of cell cultivation, the second, modelling of ion exchange

chromatography, and the third, agent based modelling of multiple process

units. The diversity in the units considered is a reflection of the need identified

by Fujifilm Diosynth Biotechnologies, for development of both upstream and

downstream. The research has shown the potential of agent based modelling

for bioprocesses. With the potential for the agent based model to be used with

various CPPs and CQAs to contribute towards the optimisation of a process

within the design space, as defined in the QbD initiative. For a pharmaceutical

product this can improve the efficiency, maintain product quality, and provide

more information of the operation of the system.

8.1 Modelling of cell cultivation

The research presented in this thesis concerning the modelling of cell

cultivation showed that multivariate, first principles, and hybrid models could

be used to predict the final glycosylation profile, the profile of the metabolites

in the cultivation, and the product titre. Of the three modelling techniques only

the multivariate modelling was successfully applied to predict the

glycosylation profile. This is because the mechanism behind the production of

the various glycans is not yet fully understood and characterised. Whereas the
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multivariate models are produced from data. This meant the data fro the

operational set points of each batch could be used with the final glycosylation

measurements. THis produced accurate models which could predict the final

glycosylation profile.

Similarly for product titre the multivariate PLS models produced which

used the operational set points, and concentration of glucose and lactate to

predict the product titre which resulted in satisfactory predictions.

Additionally the product titre could be predicted using first principles models

and through hybrid modelling with the best predictions being with the hybrid

model. A similar situation occurred for the modelling of the metabolites during

the cultivation, with the hybrid model producing the best results. The hybrid

model had the additional benefit of providing predictions for metabolites

which are not regularly measured during standard operating procedures.

With regards to the implementation of these models in industry the

research has shown that the hybrid approach has the most benefits. As the

hybrid models combine the best of both multivariate and first principles.

Considering these two separately it has been shown that the multivariate

models are generally more accurate than the first principles models. However,

the first principles models have the benefit of requiring less data, and thus can

be applied at an earlier stage in the process development. The hybrid model

combines these two approaches and allows for the flexibility of the first

principles model in accounting for changes to the cultivation conditions (i.e.

different starting glucose concentrations) whilst combining the ability of the

multivariate models to account for changes in the operational set points. To

further develop the models presented in this thesis the main recommendation

would be to train the models using a data set specific to CHO cells.

8.2 Modelling of ion exchange chromatography

A similar approach was taken in the modelling of the ion exchange

chromatography column. In that it was considered as a separate unit prior to

consideration for use in the agent based model. Again multivariate PLS
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modelling was used to predict the yield, and the UV absorbance output for the

elution peak. The yield was predicted well. However, problems were

encountered with th prediction of the elution peak. This was due to the

non-linear nature fo the peak. This problem was solved by using the gradient

of the elution peak curve, and the cumulative area under the curve as the

output of the PLS models.

Additionally a problem was encountered in using PLS modelling to

predict the retention time. This problem was solved by using a first principles

model. The model used the lactoferrin data set to determine the constants of

the model and from this predicted the retention time. From the validation

batch used to test the model it suggested that the model performed well.

However, it is uncertain how this model would perform when predicting

batches in which the operating conditions are vastly different to the conditions

of the batches used to train the model.

There is a need for accurate IEX models to be used in industry as they can

be implemented during early stages of development to help direct and

establish the platform process. The benefit of employing the models lies both

in reduction of costs, as fewer experiments would be required, but also that

less time would be required. In order to develop the models presented in this

thesis further, a data set specific to monoclonal antibodies should be used.

Additionally other modelling techniques should be explored, with one

suggestion being the use of non-linear PLS.

8.3 Agent based modelling

This thesis also presented a proof of concept study for the application of agent

based modelling to bioprocessing. The main aim of this research was to

determine whether agent based modelling could successfully be used to

predict how changes to the operational parameters of different units would

effect certain CPPs and CQAs, and what subsequent changes would have to be

made to the operation of other process units in order to maintain the same

product quality, and efficacy of the bulk drug substance.
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The model was limited by the lack of data, in that two distinct data sets

were used, for upstream and one for downstream. Both of these data sets were

for CHO cells but they were not for the same process. This problem was

further exacerbated by the lack of available data in the downstream processing

relating to measurements taken post cultivation. This was a challenge as these

measurements were required to relate the two data sets. This problem was

handled by using the product titre as the communicating CPP between the

process units.

It was shown that the product titre did not predict well the other CPPs and

CQAs (HCP, SEC, CIEX etc). One possible reason for this may be the nature

of the measurements. For example the CIEX measurement after each process

unit was either ’main peak’, ’acidic peak’, or ’basic peak’ which is not a

definitive value. However, the model did show that the use of the product titre

in combination with the hybrid model allowed for changes to be made the

BDS and predictions as to the operational condition set points and cultivation

profile to be made.

Additionally it can be seen for all aspects of this thesis, especially the

agent based work, that high throughput technology would be beneficial in

generating the data required to train and test the models. High through put

technology would allow for the quick generation of data sets with minimal

time, money, and effort required to produce them.

8.4 Summary

In summary the work presented in this thesis has shown that agent based

models can be applied to bioprocesses. To further develop the study, a more

robust data set is required, which is specifically for a monoclonal antibody

producing Chinese hamster ovary cell line. Additionally the agent based

model requires further testing with a data set which contains upstream and

downstream data which is for the same process. However the positive potential

impact of the development of the agent based model would more than justify

this. As the agent based model has the potential to simplify the optimisation of
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the cultivation and purification of mammalian cell products.
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components and pls-analysis. Journal of Chemometrics, 1, 1987. doi:
10.1002/cem.1180010107. URL
http://dx.doi.org/10.1002/cem.1180010107.

Wold, S., Antti, H., Lindgren, F., and Öhman, J. Orthogonal signal correction
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Appendix A

Part 1

Figure A1: Development of a mammalian cell line for recombi-
nant protein manufacture. A vector containing the gene of interest
(GOI) and a selection marker is transfected into the host cell line.
The transfected cells undergo selection and cloning to ensure cells
are derived that contain the GOI. This amplification process can
be repeated with increasing amounts of selection drug to derive
cell clones which are more productive. Cell clones with high prod-
uct titre are expanded before cell banking and further evaluation.
This further evaluation can include tests which look at cell stabil-
ity and quality or protein produced (Lai et al., 2013).

291



Part 2

Figure A2: Modelling of fixed bed axial flow chromatography
(Gu, 1995)

Mass balance for mobile phase (Gu, 1995)
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[
1
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∂
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(
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)]
= Radial diffusion in particle
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Appendix B

Part 1

Table B1: A minimum resolution IV design for five factors (Load
concentration, flow rate, load pH, elution pH, and gradient), show-
ing the experimental conditions for the 15 experimental runs used
to generated the lactoferrin data set.

Run
identi-

fier

Load
concentration

(mg/ml)

Flow rate
(ml/min)

Load pH
Elution

pH

Gradient
(Column
volumes)

Run 1 20 1.0 7 7 12
Run 2 10 1.5 8 8 8
Run 3 30 1.5 8 8 8
Run 4 30 0.5 8 8 16
Run 5 10 0.5 8 8 16
Run 6 20 1.0 7 7 12
Run 7 30 1.5 6 6 16
Run 8 10 1.5 6 6 8
Run 9 30 0.5 6 6 16

Run 10 10 0.5 6 6 16
Run 11 10 1.5 6 8 16
Run 12 30 0.5 6 8 8
Run 13 30 0.5 8 6 8
Run 14 10 1.5 8 6 16
Run 15 20 1.0 7 7 12
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Part 2

d(Xv)

dt
= µ fgr(Xv−Xap)− kDXap

1
1+ k2e−PαN (B1a)

d(Xap)

dt
= kap(Xv−Xap)

2− kDXap
1

1+ k2e−PαN (B1b)

d fgr

dt
=−µ fgr(1− fgr) (B1c)

d(mAb)
dt

= αgXv (B1d)

d[GLC]

dt
=−a11Xg−

(
a1[GLC]

kglc +[GLC]
+0.5

a7[GLC] · [GLN]

(kglc[GLC]) · (kgln +[GLN])

)
Xng

(B1e)

d[LAC]

dt
= a22Xg−

(
2 · a2[GLC]

kglc +[GLC]
+

a3[GLU ]

kglu +[GLU ]

)
Xng (B1f)

d[GLN]

dt
=−a33Xg−

(
a5[GLN]

kgln5 +[GLN]
+

a7[GLC] · [GLN]

(kglc +[GLC]) · (kgln +[GLN])

)
Xng

(B1g)

d[GLU ]

dt
= a44Xg +

(
− a3[GLU ]

kglu +[GLU ]
+

a7[GLC] · [GLN]

(kglc +[GLC]) · (kgln +[GLN])

)
xng

(B1h)

d[ASN]

dt
=−a55Xg−

a4[ASN]

kasn +[ASN]
Xng (B1i)

d[ASP]
dt

= a66Xg +

(
a4[ASN]

kasn +[ASN]
− a8[ASP]

kasp +[ASP]

)
Xng (B1j)

d[ALA]
dt

= a77Xg +

(
− a6[ALA]

kala +[ALA]
+

a7[GLC] · [GLN]

(kglc +[GLC]) · (kgln +[GLN])

)
Xng

(B1k)

d[AMM]

dt
= a88Xg +

(
a3 +[GLU ]

kglu +[GLU ]
+

a4 +[ASN]

kasn +[ASN]
+2

a5 +[GLN]

kgln5 +[GLN]

+
a6 +[ALA]

kala +[ALA]
+

a8 +[ASP]
kasp +[ASP]

Xng

(B1l)
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Part 3

d(V )

dt
= Fin + fglc−Fout (B2a)

d(V Xv)

dt
= µV Xv−µdV Xv−FoutXv (B2b)

d(V Xd)

dt
= µdV Xv−KlysisV Xd−Fd−FoutXd (B2c)

Xt = Xv +Xd (B2d)

µ = µmin +(µmax−µmin)(
[GLC][GLN]

(kglc +[GLC])(kgln +[GLN])

+
[ARG][VAL][LY S][T HR]

(karg +[ARG])(kval +[VAL])(klys +[LY S])(kthr +[T HR])

· [HIS][SER][ILE][PHE][LEU ]

(khis +[HIS])(kser +[SER])(kile +[ILE])(kphe +[PHE])(kleu +[LEU ])
)

(B2e)

µd = µd,max
kd,amm +[AMM]− [AMM]cr

kd,amm
·
(kd,lac +[LAC]− [LAC]cr)

kd,lac
(B2f)
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d(V [GLC])

dt
= QglcV Xv +Fin[GLC]in−Fout [GLC] (B3a)

d(V [LAC])

dt
= QlacV Xv−Fout [LAC] (B3b)

d(V [AMM])

dt
= QammV Xv + kd,glnV [GLN]−Fout [AMM] (B3c)

d(V [ALA])
dt

= QalaV Xv +Fin[ALA]in−Fout [ALA] (B3d)

d(V [ARG])

dt
= QargV XvFin[ARG]in−Fout [ARG] (B3e)

d(V [ASN])

dt
= QasnV XvFin[ASN]in−Fout [ASN] (B3f)

d(V [ASP])
dt

= QaspV XvFin[ASP]in−Fout [ASP] (B3g)

d(V [CY S])
dt

= QcysV XvFin[CY S]in−Fout [CY S] (B3h)

d(V [GLU ])

dt
= QgluV XvFin[GLU ]in−Fout [GLU ] (B3i)

d(V [GLN])

dt
= QglnV Xv− kd,glnV [GLN]+Fin[GLN]in−Fout [GLN] (B3j)

d(V [GLY ])
dt

= QglyV XvFin[GLY ]in−Fout [GLY ] (B3k)

d(V [HIS])
dt

= QhisV XvFin[HIS]in−Fout [HIS] (B3l)

d(V [ILE])
dt

= QileV XvFin[ILE]in−Fout [ILE] (B3m)

d(V [LEU ])

dt
= QleuV XvFin[LEU ]in−Fout [LEU ] (B3n)

d(V [LY S])
dt

= QlysV XvFin[LY S]in−Fout [LY S] (B3o)

d(V [MET ])
dt

= QmetV XvFin[MET ]in−Fout [MET ] (B3p)

d(V [PHE])
dt

= QpheV XvFin[PHE]in−Fout [PHE] (B3q)

d(V [PRO])

dt
= QproV XvFin[PRO]in−Fout [PRO] (B3r)

d(V [SER])
dt

= QserV XvFin[SER]in−Fout [SER] (B3s)

d(V [T HR])
dt

= QthrV XvFin[T HR]in−Fout [T HR] (B3t)

d(V [TY R])
dt

= QtyrV XvFin[TY R]in−Fout [TY R] (B3u)

d(V [VAL])
dt

= QvalV XvFin[VAL]in−Fout [VAL] (B3v)
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Qala =−
mu

Yx,ala
+Yala,x (B4a)

Qarg =−
mu

Yx,arg
+Yarg,gluQglu +Yarg,proQpro−Yarg,aspQasp (B4b)

Qasn =−
mu

Yx,asn
+Yasn,aspQasp (B4c)

Qasp =−
mu

Yx,asp
+Yasp,argQarg +Yasp,x (B4d)

Qcys =−
mu

Yx,cys
+Ycys,serQser (B4e)

Qglu =−
mu

Yx,glu
+Yglu,proQpro−Ygly,hisQhis−Yglu,glnQgln−Yglu,argQarg +Yglu,x

(B4f)

Qgln =−
µ

Yx,gln
−Mgln +Ygln,gluQglu (B4g)

Mgln =
α1[GLN]

α2 +[GLN]
(B4h)

Qgly =−
mu

Yx,gly
+Ygly,serQser (B4i)

Qhis =−
mu

Yx,his
(B4j)

Qile =−
mu

Yx,ile
(B4k)

Qleu =−
mu

Yx,leu
(B4l)

Qlys =−
mu

Yx,lys
+Ylys,x (B4m)

Qmet =−
mu

Yx,met
(B4n)

Qphe =−
mu

Yx,phe
(B4o)

Qpro =−
mu

Yx,pro
+Ypro,gluQglu +Ypro,argQglu−Ypro,argQarg (B4p)

Qser =−
mu

Yx,ser
+Yser,glyQgly (B4q)

Qthr =−
mu

Yx,thr
(B4r)

Qtyr =−
mu

Yx,tyr
+Ytyr,pheQphe (B4s)

Qval =−
mu

Yx,val
(B4t)

Qglc =−
mu

Yx,glc
−Mglc (B4u)

Qlac =−Ylac,glcQglc (B4v)

Qamm =−Yamm,glnQgln (B4w)298



Table B2: Summary of the constants used in the Naderi et al.
(2011) first principles model, values were obtained from literature.

Parameter Value Parameter Value
a11 0.1317 KGLC 2.4100
a22 0.2451 KGLN 0.5090
a33 0.0416 KGLN5 4.9680
a44 0.0148 KGLU 0.2230
a55 0.0023 KASN 0.0960
a66 0.0099 KASP 0.0605
a77 0.0235 KALA 0.1090
a88 0.0416 M 0.0420
a1 0.0486 MD 0.0090
a2 0.0115 K2 5.4200
a3 0.0001 A 1.3970
a4 0.0011 KD2 0.1500
a5 0.0012 K3 0.0500
a6 0.0001 K4 0.0170
a7 0.0012 Kap 0.0093
a8 0.0010 ag 0.0250
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Table B3: Summary of the constants used in the Kontoravdi et al. (2007) first principles model, values were obtained from literature.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value
[AMM]cr 5 KVAL 0.015 YGLU,HIS 0.1 YX ,GLC 7.7x107 α1 2x10−14

KARG 0.06 [LAC]cr 20 YGLU,PRO 0.01 YX ,GLN 8x108 α2 2
Kd,AMM 0.05 MGLC 1x10−14 YGLY,SER 0.065 YX ,GLU 9.6x108 µd,min 5x10−4

Kd,GLN 0.009 YALA,X 5.5x10−12 YGLU,X 4.2x10−13 YX ,GLY 1.6x109 µmin 2x10−3

Kd,LAC 4.5 YAMM,GLN 1.2 YLAC,GLC 1.45 YX ,HIS 4.6x109 µmax 5.2x109

KGLC 0.15 YARG,ASP 0.001 YLY S,X 1x10−13 YX ,ILE 2x109

KGLN 0.22 YARG,GLU 0.01 YPRO,ARG 0.6 YX ,LEU 1.5x109

KHIS 0.005 YARG,PRO 0.001 YPRO,GLU 0.5 YX .LY S 1.3x109

KILE 0.025 YASN,ASP 0.01 YSER,GLY 1x10−13 YX ,MET 5.2x109

KLEU 0.02 YASP,ARG 0.0001 YTY R,PHE 0.5 YX ,PHE 4.1x109

KLY S 0.013 YASP,X 2x10−16 YX ,ALA 1x109 YX ,PRO 2.1x109

KLY SIS 0.0001 YCY S,SER 0.1 YX ,ARG 2x109 YX ,SER 2.5x109

KPHE 0.04 YGLN,GLU 0.1 YX ,ASN 1.5x109 YX ,T HR 1.7x109

KSER 0.03 YGLU,ARG 0.001 YX ,ASP 1.1x109 YX ,TY R 2.6x109

KT HR 0.05 YGLU,GLN 0.7 YX ,CY S 6x108 YX ,VAL 3x109
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Figure C1: Example of the raw data collected for Run 9 (table 5.1
on page 93) the murine Hybridoma cell cultivation. Sub-figures
(a-g) are contained within matrix (a) and are on line measure-
ments; Sub-figures (h-l) are contained within matrices (b and c)
and are off line measurements
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(b) Product titre
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Figure C2: Comparison of raw off line measurements for runs 9
(circular marker with dashed line) and 11 (square marker with
solid line) (table 5.1 on page 93) post cubic spline and data cut.
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Figure C3: Data for Run 9 (table 5.1 on 93) post cubic spline and
data cut.
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(a) Mode one (b) Mode two

(c) Mode three

Figure C4: Loadings vectors for a three component model con-
structed for the on-line data measurements. Model 1 (Table ?? on
page ??) showing (a) Mode one (over time) (b) Mode two (vari-
ables) (c) Mode 3 (Batches)
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(a) Mode one (b) Mode two

(c) Mode three

Figure C5: Loadings vectors for a three component model con-
structed for the on-line data measurements. Model 2 (Table ?? on
page ??) showing (a) Mode one (over time) (b) Mode two (vari-
ables) (c) Mode 3 (Batches)
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Figure C6: Loadings plot for PC2 showing 5 on-line variables; (1)
DO, (2) O2, (3) CO2, (4) pH, and (5) base.
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Figure C7: Loadings plot for PC3 showing 5 on-line variables; (1)
DO, (2) O2, (3) CO2, (4) pH, and (5) base.
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Figure C8: Bi-plot showing PC3 and PC4 for the PCA analysis
containing the off-line data for glucose (yellow circles), lactate
(red circles), titre (purple circles), and viable cell (green circles).
The scores are grouped to show dissolved oxygen (red stars), os-
molality (yellow stars), pH (blue stars), and sparger (green stars).
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to show dissolved oxygen (red), osmolality (yellow), pH (blue),
and sparger (green). The loadings are colour coded to show gly-
cans (black) and amino acids (pink).
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Figure C11: Measured and predicted viable cell count for dis-
solved oxygen experiments (batches 1-3) for model A.
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Figure C12: Measured and predicted viable cell count for osmo-
lality experiments (batches 4 and 6) for model A.
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Figure C13: Measured and predicted viable cell count for pH ex-
periments (batches 7-9) for model A.
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Figure C14: Measured and predicted viable cell count for sparger
(vvm) experiments (batches 10-12) for model A.
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Figure C15: Measured and predicted viable cell count for dis-
solved oxygen experiments (batches 1-3) for model B.
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Figure C16: Measured and predicted viable cell count for osmo-
lality experiments (batches 4 and 6) for model B.
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Figure C17: Measured and predicted viable cell count for pH ex-
periments (batches 7-9) for model B.
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Figure C18: Measured and predicted viable cell count for sparger
(vvm) experiments (batches 10-12) for model B.
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Figure C19: Measured and predicted viable cell count for dis-
solved oxygen experiments (batches 1-3) for model C.
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Figure C20: Measured and predicted viable cell count for osmo-
lality experiments (batches 4 and 6) for model C.
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Figure C21: Measured and predicted viable cell count for pH ex-
periments (batches 7-9) for model C.
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Figure C22: Measured and predicted viable cell count for sparger
(vvm) experiments (batches 10-12) for model C.
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Figure C23: Bi-plot for LV1 and LV2 for X-block data for model
A to predict viable cell count.

−1000 −500 0 500 1000

−1000

−500

0

500

1000

12

3

4 67
8

9
1011 12

5
13

LV 1 (Y−block 34.65%)

LV
 2

 (
Y

−
bl

oc
k 

11
.6

6%
)

cultivation
start

cultivation
end

Figure C24: Bi-plot for LV1 and LV2 for Y-block data for model
A to predict viable cell count.
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Figure C25: Bi-plot for LV1 and LV2 for X-block data for model
B to predict viable cell count.
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Figure C26: Bi-plot for LV1 and LV2 for Y-block data for model
B to predict viable cell count.
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Figure C27: Bi-plot for LV1 and LV2 for X-block data for model
C to predict viable cell count.

−1000 −500 0 500 1000

−1000

−500

0

500

1000

1
2

3

4

6

7

8

9

10
11

12
513

LV 1 (X−block 23.00%)

LV
 2

 (
X

−
bl

oc
k 

29
.6

7%
)

cultivation
start

cultivation
end

Figure C28: Bi-plot for LV1 and LV2 for Y-block data for model
C to predict viable cell count.
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Figure C29: Measured and predicted product titre for dissolved
oxygen experiments (batches 1-3) for model A.
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Figure C30: Measured and predicted product titre for osmolality
experiments (batches 4 and 6) for model A.
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Figure C31: Measured and predicted product titre for pH experi-
ments (batches 7-9) for model A.
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Figure C32: Measured and predicted product titre for sparger
(vvm) experiments (batches 10-12) for model A.
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Figure C33: Measured and predicted product titre for dissolved
oxygen experiments (batches 1-3) for model B.
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Figure C34: Measured and predicted product titre for osmolality
experiments (batches 4 and 6) for model B.
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Figure C35: Measured and predicted product titre for pH experi-
ments (batches 7-9) for model B.
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Figure C36: Measured and predicted product titre for sparger
(vvm) experiments (batches 10-12) for model B.
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Figure C37: Measured and predicted product titre for dissolved
oxygen experiments (batches 1-3) for model C.
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Figure C38: Measured and predicted product titre for osmolality
experiments (batches 4 and 6) for model C.
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Figure C39: Measured and predicted product titre for pH experi-
ments (batches 7-9) for model C.
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Figure C40: Measured and predicted product titre for sparger
(vvm) experiments (batches 10-12) for model C.

322



0

5

10

15

20

25

30

35

P
ea

k 
A

re
a 

(%
)

G0
G0F

G1F
G2F

G0−GalS

G2F−Gal

G2F−S

G2F−GalS

G2F−S2
 

 
Batch 1 measured
Batch 1 predicted
Batch 2 measured
Batch 2 predicted
Batch 3 measured
Batch 3 predicted

Figure C41: Measured and predicted product glycosylation pro-
file for dissolved oxygen experiments (batches 1-3) for model A.
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Figure C42: Measured and predicted product glycosylation pro-
file for osmolality experiments (batches 4 and 6) for model A.
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Figure C43: Measured and predicted product glycosylation pro-
file for pH experiments (batches 7-9) for model A.
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Figure C44: Measured and predicted product glycosylation pro-
file for sparger (vvm) experiments (batches 10-12) for model A.
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Figure C45: Measured and predicted product glycosylation pro-
file for dissolved oxygen experiments (batches 1-3) for model B.
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Figure C46: Measured and predicted product glycosylation pro-
file for osmolality experiments (batches 4 and 6) for model B.
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Figure C47: Measured and predicted product glycosylation pro-
file for pH experiments (batches 7-9) for model B.
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Figure C48: Measured and predicted product glycosylation pro-
file for sparger (vvm) experiments (batches 10-12) for model B.
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Figure C49: Measured and predicted product glycosylation pro-
file for dissolved oxygen experiments (batches 1-3) for model C.
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Figure C50: Measured and predicted product glycosylation pro-
file for osmolality experiments (batches 4 and 6) for model C.
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Figure C51: Measured and predicted product glycosylation pro-
file for pH experiments (batches 7-9) for model C.
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Figure C52: Measured and predicted product glycosylation pro-
file for sparger (vvm) experiments (batches 10-12) for model C.
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Figure C53: Bi-plot for LV1 and LV2 for Y-block data for model
A to product glycosylation profile.
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Figure C54: Bi-plot for LV1 and LV2 for Y-block data for model
B to product glycosylation profile.
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Figure C55: Bi-plot for LV1 and LV2 for Y-block data for model
C to product glycosylation profile.
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Figure C56: Measured and prediction data for viable cell count
for all batches. The predictions shown are the first principles
model derived from the Naderi equations (FP model 1) and the
first principles model derived from the Kontoravdi equations (FP
model 2).
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Figure C57: Measured and prediction data for product titre for
validation batches. The predictions shown are the first principles
model derived from the Naderi equations (FP model 1) and the
first principles model derived from the Kontoravdi equations (FP
model 2).
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(a) Alanine
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(c) Asparagine
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(d) Aspartic acid
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(f) Glutaminc acid
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(h) Histidine
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(j) Leucine
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(k) Lysine

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (hours)

C
on

ce
nt

ra
tio

n 
(m

m
ol

/L
)

 

 

Measured
Hybrid model A
Hybrid model B

(l) Methoionine
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(m) Phenylalanine

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (hours)

C
on

ce
nt

ra
tio

n 
(m

m
ol

/L
)

 

 

Measured
Hybrid model A
Hybrid model B

(n) Proline

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (hours)

C
on

ce
nt

ra
tio

n 
(m

m
ol

/L
)

 

 

Measured
Hybrid model A
Hybrid model B

(o) Serine

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (hours)

C
on

ce
nt

ra
tio

n 
(m

m
ol

/L
)

 

 

Measured
Hybrid model A
Hybrid model B

(p) Threonine
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(q) Tryptophan
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Figure C56: Predictions for metabolites from four hybrid mod-
els for batch 5. Hybrid model one uses on-line X-block data
and Kontoravdi et al. (2007) ODEs, hybrid model two uses op-
erational parameter X-block data and Kontoravdi et al. (2007)
ODEs, hybrid model three uses on-line X-block data and Naderi
et al. (2011) ODEs, and hybrid model four uses operational pa-
rameter X-block data and Naderi et al. (2011) ODEs. The corre-
sponding model assessment values are reported in Table 5.5.
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(a) Alanine
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(b) Arginine
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(c) Asparagine
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(d) Aspartic acid
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(e) Cysteine
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(f) Glutaminc acid
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(h) Histidine
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(i) Isoleucine
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(j) Leucine
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(k) Lysine
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(l) Methoionine
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Figure C55: Predictions for metabolites from four hybrid mod-
els for batch 13. Hybrid model one uses on-line X-block data
and Kontoravdi et al. (2007) ODEs, hybrid model two uses op-
erational parameter X-block data and Kontoravdi et al. (2007)
ODEs, hybrid model three uses on-line X-block data and Naderi
et al. (2011) ODEs, and hybrid model four uses operational pa-
rameter X-block data and Naderi et al. (2011) ODEs. The corre-
sponding model assessment values are reported in Table 5.5.
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Table B1: Run information for 15 experiments comprising the DoE, included are the process parameter set points and the off-line
recorded peak data.

Run identifier Flow rate Load pH Elution CV Load concentration Elution pH Retention time Peak area Peak height Peak width
1 1 7 12 20 7 23.35 3883.66 1828.41 7.35
2 1.5 8 8 10 8 14.09 469.07 421.97 3.47
3 1.5 8 8 30 8 15.16 4107.62 2541.96 4.60
4 0.5 8 16 30 8 50.15 9174.28 2441.52 9.93
5 0.5 8 8 10 8 41.74 1587.07 574.25 8.49
6 1 7 12 20 7 23.54 2152.11 1136.84 6.64
7 1.5 6 16 30 6 17.34 3641.47 1697.60 7.39
8 1.5 6 8 10 6 14.41 123.93 118.18 2.91
9 0.5 6 16 30 6 51.95 10220.59 2208.52 12.03

10 0.5 6 16 10 6 49.51 402.87 120.86 9.30
11 1.5 6 16 10 8 16.43 127.71 89.28 3.72
12 0.5 6 8 30 8 46.11 5326.82 2923.32 5.95
13 0.5 8 8 30 6 44.99 7754.81 2913.67 7.05
14 1.5 8 16 10 6 16.28 40.80 28.25 3.35
15 1 7 12 20 7 23.48 2722.93 1386.37 7.09
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Table B2: Off-line yield data calculated for the 15 experiments in the
DoE, yields were determined by recording the UV at each stage.

Run identifier Wash
(yield %)

Elution
(yield %)

Strip
(yield %)

Caustic
(yield %)

Total
(yield %)

1 0.18 67.64 3.99 0.17 71.98
2 0.30 6.60 18.77 2.04 27.70
3 1.00 83.65 6.24 1.13 92.03
4 0.38 81.07 0.10 0.66 82.21
5 0.15 6.37 20.61 1.28 28.41
6 0.17 35.41 2.46 0.27 38.31
7 -0.15 64.58 0.14 -0.11 64.46
8 -1.15 1.12 6.89 1.08 7.94
9 -0.29 63.16 -0.04 0.14 62.97

10 0.12 7.85 0.06 0.23 8.28
11 -0.13 7.19 0.55 0.17 7.79
12 0.10 95.29 2.32 1.21 98.92
13 0.39 94.06 2.14 1.04 97.64
14 0.34 1.85 -0.10 -0.12 1.96
15 0.11 44.18 2.96 0.32 47.56
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Figure D1: UV absorbance (280nm) for run one (Table B1) show-
ing the elution peak to be isolated along with the retention time
and peak width.
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Figure D2: UV absorbance (280nm) for run one (Table B1) show-
ing the isolated elution peak, peak isolation was determined based
upon the shown retention time and peak width.

341



20 21 22 23 24 25 26 27
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (Minutes)

A
bs

or
ba

nc
e 

28
0n

m
 (

m
A

U
)

 

 

UV
Run 1 UV time aligned

Figure D3: UV absorbance (280nm) for run one (Table B1) show-
ing the isolated elution peak. The black line shows the original
data points, the red line shows the interpolated data points. As
can be seen the interpolation does not effect the UV trace.
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Figure D4: Predictions for retention time of batch 15. Column
one is the original measured data. Column 2 is a PLS model (2
LVs) constructed using the operating parameters form the DoE
as the X-block data. Column three is a PLS model (5 LVs) con-
structed using the conductivity, concentration, and pH as the X-
block data. Column four is a PLS model (4LVs) constructed using
the absorbance as the X-block data.
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Figure D5: AIC values for the training batches in models 2 and
3 where MSC mean and MSC median techniques are applied re-
spectively. The figure shows the variation between batches and
how the mean is used as an overall measure of model fit.
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Figure D6: Measured and predict values for high yield batches
for peak area PLS model containing 14 training batches and 1
validation batch.
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Figure D7: Measured and predict values for medium yield
batches for peak area PLS model containing 14 training batches
and 1 validation batch.
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Figure D8: Measured and predict values for low yield batches
for peak area PLS model containing 14 training batches and 1
validation batch.
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Figure D9: Measured and predict values for high yield batches
for peak area PLS model containing 12 training batches and 1
validation batch.
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Figure D10: Measured and predict values for medium yield
batches for peak area PLS model containing 12 training batches
and 1 validation batch.
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Figure D11: Measured and predict values for medium yield
batches for peak area PLS model containing 12 training batches
and 1 validation batch.
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Figure D12: Measured and predict values for high yield batches
for slope gradient PLS model containing 14 training batches and
1 validation batch.

0 50 100 150 200 250
−40

−30

−20

−10

0

10

20

30

40

50

S
lo

pe
 o

f c
ur

ve

Sample number

 

 
Batch 1 measured
Batch 1 predicted
Batch 6 measured
Batch 6 predicted
Batch 7 measured
Batch 7 predicted
Batch 9 measured
Batch 9 predicted

Figure D13: Measured and predict values for medium yield
batches for slope gradient PLS model containing 14 training
batches and 1 validation batch.
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Figure D14: Measured and predict values for low yield batches
for slope gradient PLS model containing 14 training batches and
1 validation batch.
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Figure D15: Measured and predict values for high yield batches
for slope gradient PLS model containing 14 training batches and
1 validation batch.
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Figure D16: Measured and predict values for medium yield
batches for slope gradient PLS model containing 14 training
batches and 1 validation batch.
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Figure D17: Measured and predict values for low yield batches
for slope gradient PLS model containing 14 training batches and
1 validation batch.
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