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Proposal Summary 

Mitochondrial myopathies are a clinically multifarious group of genetic disorders that affect 

the central nervous system and skeletal muscles and other organs heavily dependent on 

aerobic metabolism. They are typically characterised by multi-system involvement and have 

extensive phenotypic and disease burden variability. These diseases are often relentlessly 

progressive with high morbidity and mortality. The biochemical and molecular basis of many of 

the common mitochondrial myopathies has been elucidated over the last decade, yet the 

association between mitochondrial gene mutations and clinical symptoms, requires further 

elucidation. I propose to clearly define the clinico-pathological and molecular features of 

adults with mitochondrial disease and evaluate if there is a clear correlation between clinical 

phenotype and the underlying genetic defect. Identifying clear clinical features should help 

guide genetic diagnosis and enable tailored counselling regarding potential disease 

progression. 

Unfortunately, to date, there are few effective treatments and no known cure for patients with 

mitochondrial myopathies. Exercise has been shown to hold significant positive effects upon 

skeletal muscle function and perceived health- related quality of life in patients with 

mitochondrial myopathies. The molecular basis of many of the common mitochondrial 

disorders has been elucidated over the last decade and although there is a vast spectrum of 

phenotypic expression throughout different genotypes, common symptoms are reported. 

Perceived fatigue is often a prominent symptom in patients with mitochondrial disease but to 

date, its prevalence, severity and aetiology is poorly understood. I wish to determine the 

prevalence and nature of perceived fatigue in a large, genetically heterogeneous group of 

patients with mitochondrial disease and systematically assess potential covariates of fatigue 

compared to healthy controls and patients with Myalgic Encephalopathy /Chronic Fatigue 

Syndrome. 

Health-related quality of life is important for understanding the impact and progression of 

chronic disease and is increasingly recognised as a fundamental patient-based outcome 

measure in both clinical intervention and research. Generic outcome measures have been 

extensively validated to assess health-related quality of life across populations and different 

disease states. However, due to their inclusive construct, it is acknowledged that not all 

relevant aspects of a specific illness may be captured. Hence there is a need to develop a 

disease-specific health-related quality of life measures that centre on symptoms characteristic 

of a specific disease or condition and their impact. SF-36 and its abbreviated version SF-12 are 

currently the only tools used routinely for measuring patient-reported outcomes in our 



 

 
 

patients with mitochondrial myopathies. I wish to explore the conceptualisation, development 

and preliminary psychometric evaluation (validity and reliability) of a mitochondrial disease -

specific health-related quality of life measure, which may be used both in research and clinical 

settings. Indeed, in a condition where the natural history of the disease is poorly understood 

and therapeutic options are limited, long-term preservation of health-related quality of life in 

patients with mitochondrial disease poses a real challenge. 
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Chapter 1. Introduction to the mitochondrion 
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1.1 MITOCHONDRIAL MOLECULAR BIOLOGY 

1.1.i Discovery of the mitochondrion 

Swiss anatomist Rudolph Albert Von Kölliker (1817-1905) first identified ‘sarcosomes’, in 1857, 

as granular cytoplasmic compartments with their own membrane present in skeletal muscle. 

(Liesa, Palacin et al. 2009) The term ‘mitochondrion’ was first proposed by the German 

microbiologist Carl Benda (1857-1932) in 1898, derived from the Greek words ‘mitos’ meaning 

‘thread’ and ‘chondron’ meaning ‘grain’ (Benda 1898), as he assumed their role was to help 

hold the shape of the cell and became widely accepted from the 1930s onwards to describe 

these granular organelles (Liesa et al., 2009).  

With the evolution and rapid advances in biological electron microscopy (EM), several 

important discoveries were made. George Emil Palade (1912-2008), who with Albert Claude, 

and Christian de Duve, pioneered these techniques, determined mitochondria were ‘isolated’ 

organelles. These EM images showed the intimate structure of mitochondria and these 

techniques were sensitive enough to visualize what were later identified as the ATPase 

molecules (Palade, 1952). Formulation of the citric acid cycle and identification of other 

elements of the respiratory chain forged the way to the localization of cellular respiration to 

the mitochondria (Lehninger and Greville, 1953; Drahota et al., 1964) and its identification as 

the ‘powerhouse of cells’ (Philip (Siekevitz et al., 1958; Siekevitz, 1959; Liesa et al., 2009). 

These tiny cellular organelles would be shown, in time, to increase the amount of usable 

energy, in the form of ATP, from one molecule of glucose by 1700% over glycolysis alone. 

 

Nucleus

Mitochondria
 

 

Figure 1: Diagrammatic representation of a cell showing the nucleus and mitochondria in 

relation to other organelles. 
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Two decades later the ‘blueprint of a cell’s hereditary information, namely DNA, was 

discovered within mitochondria by EM (Nass and Nass, 1963a; Nass and Nass, 1963b) and its 

subsequent biochemical verification (Schatz, 1963; Schatz et al., 1964), spearheaded 

biochemical and molecular studies of human mitochondrial diseases. 

 

1.1.ii Evolution of the mitochondrion 

To date, there are two main theories on the evolution of mitochondria. These theories differ 

with regard to their conjectures on the attributes of the host organism, in addition to the 

physiological proficiency of the mitochondrial endosymbiont. Furthermore, the nature of the 

ecological interactions facilitating the resultant symbiosis is strikingly different.  

1.1.iii Autogenous theory 

This theory of the evolution of mitochondria purports that the recipient host was a prokaryote 

and ancestral mitochondrion, a facultative anaerobe, that is, able to survive with and without 

the presence of oxygen. It is speculated that production of hydrogen by the endosymbiont, 

acts as a source of energy and electrons for the host organism that was postulated to have 

been hydrogen dependent. This theory purports to account for the ubiquitous nature of 

mitochondria amongst all eukaryotic lineages and the various aerobic and anaerobic forms of 

mitochondria that are observed as independent functional entities (Taylor, 1976). 

1.1.iv Endosymbiosis theory 

An alternative and more widely accepted theory today suggests that the evolutionary origin of 

mitochondria, proposed by Lynn Margulis, suggests that a nucleated, eukaryote cell 

characterised metabolically by anaerobic respiration, ‘hosted’ the prokaryotic, aerobic, 

mitochondrion resulting in an obligate aerobic, mitochondrial endosymbiont with evolutionary 

advantages (Margulis and Fester, 1991).  

 

1.1.v Anatomical structure of the mitochondrion 

Mitochondria are tubular-shaped, double-membrane, ubiquitous, cellular organelles 

comprising an outer mitochondrial membrane, inner mitochondrial membrane, 

intermembrane space, cristae space and matrix (Ogata and Yamasaki, 1997).  

 



 

4 
 

1.1.vi Outer mitochondrial membrane 

The outer mitochondrial membrane (OMM) is a relatively simple phospholipid bilayer and 

comprises a family of integral proteins known as ‘porins’ or voltage dependent anion channels. 

These form channels that traverse the OMM and facilitate the passive diffusion of molecules 

up to 10kDa in size. This allows the free permeability of substrates including nutrients, ions, 

ADP, and ATP. 

1.1.vii Inner mitochondrial membrane  

The inner mitochondrial membrane (IMM) unlike the OMM is relatively impermeable and only 

permits the passage of carbon dioxide, oxygen and water. Architecturally and functionally, it is 

extremely complex and contains highly specialized proteins including the complexes of the 

electron transport system, the ATP synthetase complex, and affiliated transport proteins. 

1.1.viii Intermembrane space 

The inner membrane space is the intervening space between the OMM and IMM and the seat 

of oxidative phosphorylation. 

1.1.ix  Cristae space 

Intricate folding of the Inner mitochondrial membrane into lamellae or ‘cristae’ conspicuously 

increase the total surface area of the IMM. 

1.1.x  Matrix  

The mitochondrial matrix acts as a site for important energy producing cellular processes that 

Includes the citric acid cycle responsible for the oxidation of carbohydrates and fats and 

production of electrons for the electron transfer chain (ETC); in the IMM resulting in the 

production of ATP. Other functions include β -oxidation of fatty acids, and amino acid 

metabolism. 

In addition, it also contains dissolved water, carbon dioxide, oxygen and the intermediate 

energy shuttles. IMM structure and relative proximity of the matrix to the cristae, facilitates 

the timely movement of matrix components to the inner membrane complexes and transport 

proteins. 
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1.1.xi Physiological function of the mitochondrion 

Mitochondria play a central role in cellular metabolic energy production. These cytoplasmic 

organelles are critical integrators of intermediate metabolism in a variety of cellular metabolic 

pathways including oxidative phosphorylation, fatty acid oxidation, Kreb’s cycle (TCA cycle), 

urea cycle, gluconeogenesis and ketogenesis (Duchen, 2004). However, their function is not 

limited to cellular ATP production. Mitochondria play a cardinal role in several cellular process 

including non-shivering thermogenesis, amino acids and lipid metabolism, biosynthesis of 

heme and iron-sulfur clusters, calcium homeostasis, and apoptosis (Lill and Kispal, 2000; 

Nedergaard et al., 2001; Newmeyer and Ferguson-Miller, 2003; Vieira and Kroemer, 2003; 

Green and Kroemer, 2004; Berdanier, 2005; Johnson et al., 2005; Lill and Mühlenhoff, 2005; 

Dolezal et al., 2006; Hopper et al., 2006; Ryan and Hoogenraad, 2007; Gvozdjáková, 2008; 

Hughes et al., 2009; Nunnari and Suomalainen, 2012). 

 

1.1.xii Oxidative phosphorylation 

Oxidative phosphorylation is the process in cell metabolism by which respiratory enzymes in 

the mitochondria generate and amplify ATP from ADP and inorganic phosphate during the 

oxidation of NADH. Whilst the metabolism of glucose generates two molecules of ATP during 

glycolysis, up to 38 molecules are generated by the mitochondrial respiratory chain (Berg et 

al.) (Figure 1). 

 

1.1.xiii Complex I (NADH:ubiquinone oxidoreductase) 

Complex I (NADH:ubiquinone oxidoreductase) is the largest (1MDa) of the five enzyme 

complexes constituting the OXPHOS system (mitochondrial respiratory chain), responsible for 

amplifying mitochondrial ATP production, by coupling electron transfer to the oxidative 

phosphorylation of ADP, generating an electrical and pH gradient across the inner 

mitochondrial membrane and stimulating mitochondrial ATP synthesis. 

Mammalian complex I is a prodigious multiheteromeric enzyme that comprises 44 pre-

assembled structural subcomplexes (Walker, 1992; Balsa et al., 2012a) that are assembled into 

an L-shape configuration with one-arm embedded in the inner mitochondrial membrane and a 

peripheral arm extending into the mitochondrial matrix (Clason et al., 2010). CI requires 14 

evolutionary conserved core subunits for its catalytic function: seven mitochondrial DNA (mt-

DNA)-encoded NADH-dehydrogenase (ND) core subunits (ND1-ND6, ND4L) and a further seven 



 

6 
 

subunits that are encoded by nDNA (NDUFV1, NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS7 

and NDUFS8) (Koopman et al., 2010; Hirst, 2011). The remaining accessory subunits, 

incorporating 16 additional subunits of the peripheral arm and 14 hydrophobic membrane arm 

components are thought to be intricately involved in regulating complex I assembly and 

stabilisation (Angerer et al., 2011). The assistance of more than 11 extrinsic assembly factors 

(AF) for CI assembly is also recognised yet their specific roles are yet to be fully elucidated 

(Andrews et al., 2013). 

Mutations in the genes encoding subunits of this complex have been associated with Leigh 

syndrome; cardiomyopathy; epilepsy; encephalopathy; mitochondrial encephalomyopathy, 

lactic acidosis and stroke-like episodes (MELAS); Leber hereditary optic neuropathy (LHON) 

and an overlap syndrome comprising clinical features of both LHON and MELAS (Kirby et al., 

2004b; Valentino et al., 2004b; Blakely et al., 2005; Malfatti et al., 2007; Moslemi et al., 2008; 

Patsi et al., 2012; Delmiro et al., 2013)  

 

1.1.xiv Complex II (succinate dehydrogenase; succinate 

ubiquinone oxidoreductase) 

Complex II is a nuclear encoded, tetameric enzyme that intricately links the tricarboxylic acid 

cycle (TCA) to the electron transport chain (ETC); uniquely constituting a membrane bound 

component of the TCA cycle and also forming the second component of the ETC. It has two 

major roles: firstly, it is responsible for succinate oxidation (to fumarate) in the matrix and 

secondly, ubiquinone reduction (to ubiquinol) in the inner mitochondrial membrane. This 

tetrameric structure is composed of two hydrophilic and two hydrophobic subunits. The 

hydrophilic components consist of a large subunit that houses a covalently bound flavin 

adenine dinucleotide (FAD) cofactor and the succinate-binding site (termed SdhA) and a 

smaller subunit (termed SdhB) that contains three iron-sulfur clusters (2Fe-2S, 3Fe-4S and 4Fe-

4S) that transfer electrons from the flavin to ubiquinone. The remaining two hydrophobic 

subunits (termed SdhC and SdhD) comprise cytochrome b (six transmembrane α-helices, a 

haem b group and a ubiquinone binding site) (Sun et al., 2005). 

Mutations in the genes encoding subunits of this complex cause highly variable phenotypic 

expression of mitochondrial disease and include Leighs disease (Riggs et al., 1984; Bourgeois et 

al., 1992; Parfait et al., 2000; Ghezzi et al., 2009), Kearns Sayer Syndrome (Rivner et al., 1989), 

dilated cardiomyopathy (Rustin et al., 1993; Reichmann and Angelini, 1994; Alston et al., 2012) 

and exercise intolerance and muscle weakness (Arpa et al., 1994). 
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1.1.xv Complex III (cytochrome bc1 or ubiquinol cytochrome c 

oxidoreductase) 

Complex III is a homodimeric transmembrane protein. Each monomer comprises 10 nuclear 

encoded subunits and a single mitochondrial encoded subunit (cytochrome b) located within 

the inner mitochondrial membrane that facilitates two-electron quinone oxidation/reduction 

with one-electron cytochrome c reduction/oxidation. In addition, it is also now recognised that 

it likely plays as an important role in regulating electron flow, in response to bioenergetic 

fluxes within the cell. It comprises two respiratory, two core proteins and six low molecular 

weight protein subunits (Chen et al., 2003b; Acıń-Pérez et al., 2004; Solmaz and Hunte, 2008).  

Mutations in the genes encoding subunits of this complex often cause early onset, often fatal 

multisystem disorders including neonatal proximal tubulopathy, hepatic involvement, 

encephalopathy, lactic acidosis and Leigh-like syndromes (de Lonlay et al., 2001; De Meirleir et 

al., 2003; Fernandez-Vizarra et al., 2007; Blázquez et al., 2009; Ramos‐Arroyo et al., 2009; 

Morán et al., 2010). 

 

1.1.xvi Complex IV (cytochrome c oxidase) 

Cytochrome c oxidase (COX) is a large transmembrane protein responsible for the terminal 

enzymatic reaction of the ETC. It comprises 10 nuclear encoded subunits and three, 

hydrophobic, mitochondria-encoded subunits (cytochrome oxidase I, cytochrome oxidase II, 

and cytochrome oxidase III) (Saraste, 1983). Although the nuclear encoded subunits are 

thought to play a regulatory and structural role in COX, the mitochondria-encoded subunits are 

essential to its catalytic (MT-CO1, MT-CO2) and core structural (MT-CO3) roles. In addition, the 

mitochondrial subunits contain three copper atoms and two heme A molecules; that are 

integral to electron transfer and function as prosthetic groups in the holoenzyme complex 

(Balsa et al., 2012b). 

Cytochrome c oxidase deficiency can be caused by mutations in both nuclear-encoded and 

mitochondrial-encoded genes. Mutations in the genes encoding subunits of this complex cause 

a heterogeneous group of clinical syndromes manifesting in early infancy or adulthood and 

ranging from isolated myopathy and exercise intolerance to severe multisystem disorders (Van 

Biervliet et al., 1977; Willems et al., 1977; DiMauro et al., 1987; Haller et al., 1989; Eshel et al., 

1991; Chabrol et al., 1994; Bakker et al., 1996; Rubio-Gozalbo et al., 1999; Shoubridge, 2001b; 

Shoubridge, 2001a; Ghezzi et al., 2008; Lim et al., 2014). 
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1.1.xvii Complex V (F1F0-ATP Synthase) 

Complex V is composed of 16 subunits, of which, only six are encoded by mtDNA. ATP synthase 

sits in the IMM and is a tripartite structure consisting of a membrane motor, a rotating 

transmission device and three catalytic sites. This machinery converts transmembrane 

electrochemical proton gradient energy (proton motive force) into subunit rotation and then 

transmits this to the catalytic sites where this mechanical energy is converted into the 

chemical bond energy of ADP and Pi, catalysed by F1F0-ATP Synthase (Senior et al., 2002). 

Mutations in the genes encoding subunits of this complex cause a myriad of syndromes 

including neonatal-onset hypotonia, lactic acidosis, hyperammonemia, hypertrophic 

cardiomyopathy, and 3-methylglutaconic aciduria, maternally inherited Leigh syndrome, 

bilateral striatal necrosis and neuropathy, ataxia and retinitis pigmentosa (NARP) (Mayr et al., 

2010). 

 

 

 

 

 

 

Figure 2. The mitochondrial respiratory chain and oxidative phosphorylation. Reproduced from 

(Nijtmans et al., 2004). 
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1.2 HUMAN MITOCONDRIAL GENETICS 

1.2.i Mitochondrial biogenesis 

This section will review the anatomical structure and biogenesis of the human mitochondrial 

genome. 

1.2.ii Identification of mitochondrial DNA 

The discovery of DNA, the ‘blueprint of a cell’s hereditary information’, within mitochondria by 

electron microscopy (Nass and Nass, 1963a; Nass and Nass, 1963b) and its subsequent 

biochemical verification (Schatz, 1963) paved the way for the biochemical and molecular 

studies of human mitochondrial (mt) diseases.  

 

1.2.iii Structure of mitochondrial DNA 

The human mtDNA genome is a circular, double stranded molecule composed of an inner light 

(L) strand and outer heavy (H) strand composed of only 16,569 base pairs. Although there are 

37 genes found on mtDNA; only 13 essential respiratory chain polypeptides of the OXPHOS 

system: seven subunits (ND1-ND6 and ND4L) of complex I, cytochrome b of complex III, three 

catalytic subunits (COI-COIII) of complex IV and ATP6 and ATP8 of complex V are encoded by 

human mtDNA. Of the remaining genes, 22 are responsible for the formation of mt-transfer (t) 

RNA and two genes encode mt-ribosomal (r) RNAs (RNR1 (12S rRNA) and RNR2 (16S rRNA) for 

mitochondrial protein synthesis. The remaining major non-coding regions of the genome 

include the origin of L-strand replication and the 1.1 kb D-loop in which the origin of H-strand 

replication (OH) and regulatory elements and binding sequences for key factors involved in 

mtDNA transcription initiation and termination are located (Taylor and Turnbull, 2005a; 

Tuppen et al., 2010) (Figure 3). 

 

 

 

 



 

10 
 

 

 

 

Figure 3: Human mitochondrial (mt) genome. (A) Schematic diagram of the 16.6 kb circular, 

double-stranded human mitochondrial genome with an enhanced, linearised view of the D-

loop and transcription termination regions. The outer circle represents the heavy (H) strand of 

the genome and the inner circle the light (L) strand. Human mtDNA encodes the two mt-rRNA 

genes (shown in red) RNR1 (12S rRNA) and RNR2 (16S rRNA), 22 mt-tRNAs (black bars) 

identified by their single letter abbreviation, and 13 essential respiratory chain polypeptides: 

seven subunits (ND1-ND6 and ND4L) of complex I (green), CYTB of complex III (purple), three 

catalytic subunits (COI-COIII) of complex IV (yellow) and ATP6 and ATP8 of complex V (blue). 

Major non-coding regions of the genome (grey) include the origin of L-strand replication (OL) 

and the 1.1 kb D-loop in which the origin of H-strand replication (OH) and regulatory elements 

and binding sequences for key factors involved in mtDNA transcription initiation and 

termination Reproduced from (Gorman and Taylor, 2011). 

 

1.2.iv Functional organisation of mitochondrial DNA 

The human mt genome which is 16.5kb in size is organised into compact protein–DNA 

complexes called mt-nucleoids (Satoh and Kuroiwa, 1991; Bereiter-Hahn and Vöth, 1998; 

Ashley et al., 2005). Each mitochondrion may contain between one and 10 mt-nucleoids; with 

~ 2-10 mt genomes per nucleoid (Iborra et al., 2004; Legros et al., 2004; Malka et al., 2006). In 

addition, essential mtDNA proteins may also co-localise with these structures including TFAM 

(Ghivizzani et al., 1994), a non-specific DNA-binding protein and a key player in mtDNA 

transcription and nucleoid packaging (Fisher et al., 1992; Pohjoismäki et al., 2006; Kaufman et 
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al., 2007; Spelbrink, 2010), the mtDNA replication proteins including POLG (Di Re et al., 2009), 

Twinkle (Spelbrink et al., 2001) and mt-SSB (Bogenhagen et al., 2003; Garrido et al., 2003; 

Wang and Bogenhagen, 2006; Bogenhagen et al., 2008) and the tumour suppressor proteins 

BRCA1 and PRSS15; which are integral in protein degradation (Chen and Butow, 2005; 

Spelbrink, 2010). 

The roles of several other proteins implicated in mt nucleoid organisation including ATAD3 (He 

et al., 2007; Holt et al., 2007) and human Dna2 (Duxin et al., 2009) have yet to be fully 

elucidated. One important function of these nucleoid proteins appears to be in the regulation 

of mt genome copy number. 

 

1.2.v Control of mitochondrial DNA copy number 

Human mitochondrial DNA replication and turn-over continues in post mitotic tissues; this is 

the antithesis of nuclear DNA replication. Although cellular mitochondrial genome copy 

number remains relatively stable during proliferation; copy number may vary widely 

depending on the energy demands of the tissue or organ (with estimated copy numbers up to 

20,000 in the ovum) involved (Shoubridge, 2000; Moraes, 2001). The exact proteins and 

mechanisms regulating mtDNA copy number in human cells and the role of mt-nucleoids are 

not fully understood; and require further elucidation; beyond the remit of this thesis(Montier 

et al., 2009; Spelbrink, 2010).  

 

1.2.vi Inheritance of mitochondrial DNA 

Human mitochondrial DNA inheritance is strictly through the maternal lineage (Giles et al., 

1980). A recent paper postulates the mechanism of strict maternal inheritance occurs during 

development when the head of the sperm (permatozoon) binds to the membrane of the 

oocyte and releases its contents into it, facilitating the fusion of the pronuclei contents of the 

sperm and egg, resulting in a diploid cell (zygote) with a complete complement of 46 

chromosomes. Although the entire spermatozoon enters the oocyte during fertilisation, 

sequestration and elimination of sperm components including paternal mitochondria occurs 

within minutes of fertilisation by a process of autophagy instigated by the oocyte (Al Rawi et 

al., 2011) (Figure 4). 
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A. B. C.

 

Figure 4: Maternal inheritance of mtDNA: A) Sperm binds to the membrane (zona pellucida) of 

the female egg and releases its contents into it. B) The mitochondria from the sperm rapidly 

undergo sequestration and elimination. C) The mitochondrial genetic material in the resulting 

embryo is inherited exclusively from the mother.  

 

1.2.vii Replication of mitochondrial DNA 

Currently there are several theories of mtDNA replication; but as yet, there is still no 

consensus on its exact mechanism. Two pivotal models of mitochondrial genome replication 

exist: the strand-displacement model (Clayton, 1982) and the strand coupling model (Holt et 

al., 2000). The core components of mtDNA replication machinery are related to their phage T7 

analogues (Taanman, 1999). This includes the catalytic subunit of DNA polymerase γ (POLγA) 

(Carrodeguas et al., 2001; Bailey et al., 2009), the DNA helicase TWINKLE (Korhonen et al., 

2003), and the mitochondrial RNA polymerase (POLRMT), which, during the initiation of 

mtDNA synthesis, constructs RNA primers (Saada, 2004; Falkenberg et al., 2007; Gowher, 

2013). The asynchronous, strand-displacement model (Brown et al., 2005) of mitochondrial 

genome replication is initiated at the heavy strand origin of replication, within the D-loop, 

creating a leading H-strand, which proceeds in a clockwise manner until exposure of the light-

strand (L-strand) origin of replication. This then initiates replication of the lagging L-strand, in a 

counterclockwise direction, resulting in the formation of two daughter mtDNA molecules at 

different time intervals. This process purports that mtDNA synthesis is continuous on both the 
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heavy and light strands of the mitochondrial genome with the hallmarks of this model being 

single-stranded DNA intermediates with the conspicuous absence of Okazaki fragments 

formation (McKinney and Oliveira, 2013). A modification of this model proposes that long 

stretches of RNA intermediates, termed RITOLS, (instead of DNA), are arranged on the mtDNA 

lagging-strand (Yasukawa et al., 2006). It is only during the maturation phase that these RNA 

segments are converted into DNA (Yang et al., 2002; Yasukawa et al., 2006).  A second theory 

of replication, known as the strand coupling model, first proposed by Holt et al (Holt et al., 

2000), proposes that mtDNA replication is initiated within a single replication zone and 

proceeds bi-directionally by means of coupled leading- and lagging-strand synthesis (Holt et 

al., 2000; Yasukawa et al., 2005). 

 

 

Figure 5: Replication of mtDNA (a–c) Asynchronous model of replication. (a) mtDNA replication 

begins at OH (in the D loop), displacing the L-strand from the H-strand. The L-strand is single 

stranded until synthesis of the incipient H-strand exposes OL. (b,c) At this stage, replication of 

the L-strand begins in the opposite direction until both strands have been fully replicated. (d) 

Synchronous or coupled model of replication. Replication begins bidirectional from a zone of 

replication (OriZ) on the genome and proceeds synchronously via conventional coupled leading 

and lagging strand synthesis. (e–g) RITOLS model: the ribonucleotide incorporation throughout 

the lagging strand (RITOLS) model of replication initiates in the noncoding region close to or at 

OH, displacing the light strand from the heavy strand. The RITOLS model is similar to the 

asynchronous mode of replication, but RNA intermediates are produced (dashed lines) on the 

L-strand before conversion to DNA. (Reproduced from (Krishnan et al., 2008). 
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1.2.viii  Transcription and translation of mitochondrial DNA 

Three mitochondrial transcription sites within the D-loop are recognised: two on the H-strand 

at nucleotide positions 561 (ITH1) and 638 (ITH2) and one on the L-strand (ITL) at nucleotide 

position 407 (Ojala et al., 1980a; Ojala et al., 1981; Martin et al., 2005). The two H-strand 

initiation sites facilitate independent mRNA and rRNA synthesis; with ITH1 most frequently 

employed for the process. ITH1 produces two tRNAs (tRNAPhe and tRNAVal) and two rRNAs; 

whilst ITH2 transcription creates a large, polycistronic mRNA molecule (Ojala et al., 1980b; 

Montoya et al., 1983; Bonawitz et al., 2006). Key proteins essential to this process include 

TFAM-mediated recruitment of the mitochondrial RNA polymerase (POLRMT), to the promoter 

sites (Diaz and Moraes, 2008). Other essential regulatory mitochondrial transcription factors 

that have been identified to date include TFB1M, TFB2M; (Shoubridge, 2002; Ekstrand et al., 

2004) factors that are required for efficient transcription and a combination of either MTIR1, 

MTIR2 (Wenz et al., 2009) or MTERF3 (Park et al., 2007; Rebelo et al., 2011); recognised as 

important terminators of the process. 

Mitochondrial translation is less well understood. Only two subunits (12S, 16S) of 

mitochondrial ribosomes are of mitochondrial origin (O'Brien, 2003). The process is initiated by 

mitochondrial translational initiation factor 2 (IF2mt) which promotes the binding of tRNAmet to 

the 12S subunit. Ribosomal initiation complex formation, on the other hand, is facilitated by 

mitochondrial translational initiation factor 3 (IF3mt) (Christian et al., 2009). Elongation of the 

resultant polypeptide chain is regulated by three leading mitochondrial elongation factors: EF-

G1mt, EF-Tsmt, and EF-Tumt while termination of the process is facilitated by RF1amt (Christian 

and Spremulli, 2012). 

 

1.3 MITOCHONDRIAL DNA MUTATIONS 

1.3.i Location of mitochondrial DNA mutations 

The mitochondrial genome exhibits a very high mutation rate, ranging from 10- to 17-fold 

higher than that observed in nuclear DNA (Tuppen et al., 2010). Since the discovery of the first 

pathogenic mtDNA mutations over two decades ago (Holt et al., 1988b; Wallace et al., 1988b) 

more than 250 novel, pathogenic mtDNA point mutations have been identified in association 

with human disease (Tuppen et al., 2010). Currently there are several mtDNA mutational 

hotspots that are recognised including point mutations in mitochondrial tRNA genes (Figure 6) 
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and genes encoding the structural subunits of complex I (Moraes et al., 1993; Chinnery et al., 

2001; Kirby et al., 2004a; McFarland et al., 2004; Valentino et al., 2004a; McFarland et al., 

2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Pathological mutations in tRNALEU(UUR)  The significant variability in phenotypic 

expression is illustrated in the MTTL1 gene where different base substitutions (at nucleotide 

pair(np) 3243, 3252, 3271, and 3291) give rise to the same clinical syndrome (MELAS); whilst 

the m.3243 AA>G mutation can manifest as maternally inherited diabetes and deafness 

(MIDD) or a hypertrophic cardiomyopathy (HCM) phenotype. Other clinical syndromes 

associated with MTTL1 mutations include HCM and mitochondrial myopathy (MM) (np 3303 

and 3260). (Reproduced from http://www.mitomap.org (Brandon et al., 2005)). 

 

1.3.ii Heteroplasmy and homoplasmy of mitochondrial DNA mutations 

There are unique genetic rules underpinning the clinical expression of mtDNA disease. 

Mitochondrial DNA is exclusively maternally-inherited and is present in multiple copies in all 

nucleated cells (Taylor and Turnbull, 2005a). The multicopy or polypoid nature (that is, 

multiple copies of mtDNA are present within each mitochondrion with several thousands of 

copies present in individual cells) means that mtDNA mutations can either be homoplasmic 
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(that is, all copies of mtDNA carry the mutation) or heteroplasmic (varying proportions of 

mutated and wild-type mtDNA). All offspring of a woman with homoplasmic mtDNA mutation 

will unequivocally carry the mtDNA mutation (Taylor and Turnbull, 2005a). However the 

situation with women carrying heteroplasmic mtDNA mutations is much more complicated. 

During the development of the oocyte there is a genetic bottleneck with a marked reduction in 

the copy number of mtDNA followed by a rapid expansion of mtDNA copy number during 

oocyte formation (Cree et al., 2008; Wai et al., 2008; Freyer et al., 2012). This means that some 

heteroplasmic mtDNA mutations (eg. single, large scale mtDNA deletions) are rarely 

transmitted due to purifying selection (Stewart et al., 2008). Other heteroplasmic mtDNA 

mutations (eg. the m.3243A>G MELAS mutation and the m.8344A>G MERRF mutations) are 

transmitted, but the developmental genetic bottleneck can lead to offspring being born with a 

range of different mtDNA mutation levels. 

 

1.3.iii Replicative segregation and tissue variation in threshold  

1.3.iv The mitochondrial bottleneck (purifying selection) 

Mechanisms thought to be responsible for the mitochondrial bottleneck that determines the 

variability in heteroplasmy seen in off-spring of females harbouring mutant mtDNA, have 

raised much intrigue over the ensuing two decades and remain contentious (Jenuth et al., 

1997; Cao et al., 2007; Cree et al., 2008; Stewart et al., 2008; Wai et al., 2008; Cao et al., 2009; 

Samuels et al., 2010). One theory suggests that during embryonic oogenesis, between 

generations variation in heteroplasmy results from the partition of mtDNA into different cells, 

both before and after implantation, followed by the segregation of replicating mtDNA between 

proliferating primordial germ cells (Cree et al., 2008). Another model suggests that this occurs 

during early post-natal folliculogenesis as a result of replication of a subpopulation of mtDNA 

molecules (Wai et al., 2008).  

 

1.3.v Replicative segregation and the threshold effect 

Replicative segregation is responsible for the percentage variation in generational 

heteroplasmic alleles during both mitotic and meiotic cell division. In the presence of such 

heteroplasmy, and as the percentage of mutant mtDNA increases, there is a threshold level of 

mutation that determines both clinical phenotype and biochemical defect expression (Poulton 

and Marchington, 2002; Taylor and Turnbull, 2005a; Wallace and Chalkia, 2013) (Figure 7). 



 

17 
 

Conversely, mutant mtDNA may disappear, as seen in fast-dividing tissues. This is perhaps best 

exemplified by the observation of an annual one percent reduction in m.3243A>G mutation 

levels in blood (Rahman et al., 2001); with selection against pathogenic mtDNA mutations 

occuring in a stem cell population (Rajasimha et al., 2008). 

Heart

Muscle

Brain

Mitochondria containing normal gene

Nucleus

Mitochondria containing the mutant gene

 

Figure 7: The distribution and degree of defective mitochondria in different tissues results in 

variation in clinical symptoms and severity. 

 

1.3.vi Clinical syndromes of mitochondrial DNA 

‘’Mitochondrial disease’’ conventionally defined by defective oxidative phosphorylation 

includes a wide, overlapping spectrum of diseases, with some groups of patients manifesting 

as distinct clinical syndromes. Mitochondrial disease  arises not only from mutations in genes 

encoding oxidative phosphorylation subunits, but also to genes intimately involved in their 

translation and assembly, as well as determining their subcellular environment (Schon et al., 

2012b) resulting in a huge variation of clinical phenotypes (Figure 8). On the one hand, the 

same genetic defect can cause different phenotypes in different members of the same family. 

On the other hand, a similar phenotypic spectrum can be seen with different genetic lesions in 

the nuclear or mitochondrial DNA. For mitochondrial DNA diseases, the concept of 

heteroplasmy further complicates the situation, with different percentage levels of mutation in 
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different cells within the same organ, and different levels between different organs in the 

same individual (Figure 7).  

Hence mitochondrial disorders encompass a wide, overlapping spectrum of diseases, with only 

some groups of patients manifesting as distinct clinical syndromes including myoclonic 

epilepsy, lactic acidosis, stroke-like episodes (MELAS) (Pavlakis et al., 1984), myoclonic 

epilepsy, with ragged red fibres (MERRF) (Fukuhara et al., 1980; Chinnery et al., 1997), Kearns-

Sayer Syndrome (KSS)(Kearns, 1965), Leber’s Hereditary Optic Neuropathy (LHON) (Leber, 

1871), neurogenic weakness with ataxia and retinitis pigmentosa (NARP) (Holt et al., 1990) and 

Leigh syndrome (LS) (Ciafaloni et al., 1993) 

 

 

 

Figure 8: The human mitochondrial genome demonstrating the common mtDNA mutation 

sites and associated clinical syndromes (Reproduced from (Tuppen et al., 2010)  
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1.4 NUCLEAR BASIS OF MITOCHONDRIAL DISEASE 

1.4.i Nuclear (n)DNA-mtDNA interactions 

Over the past decade, there has been an exponential increase in the recognition of Mendelian 

inherited mitochondrial disorders of the nuclear genome cogent to the discovery of more than 

1000 nuclear genes that encode mitochondrial proteins. More than half of all adult 

mitochondrial diseases result from genetic malfunction or disruption of the nuclear genome. 

The pathological consequences of dysfunction of nuclear- mitochondrial interactions include 

defects of 1) mtDNA maintenance (secondary mtDNA mutations or mtDNA depletion); 2) 

mitochondrial protein synthesis; 3) coenzyme Q10 biosynthesis and 4) the mitochondrial 

respiratory chain complexes or their assembly (Chinnery, 2014). The mitochondrial genome is 

inextricably dependent on several nuclear encoded proteins, for replication and repair, 

including DNA polymerase gamma (Bolden et al., 1977), Twinkle helicase, ANT1 and thymidine 

phosphorylase (TYMP) (Kaukonen et al., 2000; Korhonen et al., 2004; Wanrooij et al., 2008). 

Disruption in these nuclear encoded processes may manifest qualitatively in the generation of 

multiple point mutations or large scale mtDNA deletions that can appear over a patient’s 

lifetime (Ashley et al., 2007) or by the loss of the complete mitochondrial genome (mtDNA 

depletion) (Moraes et al., 1991) or both (Nishigaki et al., 2003). 

Currently, nuclear maintenance genes appear to fall into distinct genetic categories. Firstly, 

there are those genes that affect protein function at the mitochondrial DNA replication fork 

such as POLG, POLG2, and PEO1 (also called C10orf2, encoding the Twinkle helicase) (Spelbrink 

et al., 2001; Van Goethem et al., 2001a; Longley et al., 2006); or secondly, those genes that 

encode proteins involved in nucleotide metabolism such as TK2, DGUOK, SUCLA2 , SUCLG1, 

TYMP and RRM2B. (Nishino et al., 1999; Kaukonen et al., 2000; Mandel et al., 2001; Saada et 

al., 2001; Bourdon et al., 2007; Ostergaard et al., 2007; Dimmock et al., 2008b; Fratter et al., 

2011). 

Progressive external ophthalmoplegia (PEO) and ptosis is the most common presenting 

neurological feature seen in adults with mitochondrial DNA maintenance disorders. Of the 

known maintenance genes, the majority have been associated with PEO, although it is 

increasingly recognised that the clinical phenotype is not necessarily restricted to the extra-

ocular muscles. 

A skeletal muscle biopsy remains central to the diagnostic algorithm of adult-onset PEO with 

key diagnostic features of a mosaic pattern of cytochrome c oxidase (COX)-deficient fibres and 
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ragged-red fibres (indicative of mitochondrial sub-sarcolemmal accumulation) present in most 

(but not all) cases (Taylor et al., 2004). 

1.4.ii Qualitative defects of mitochondrial DNA 

The mechanisms attributable to multiple mtDNA deletion formation remain a contentious 

issue (Krishnan et al., 2008) (Figure 9). The primary genetic defect in individuals with multiple 

mtDNA deletions involves nuclear genes encoding proteins involved in either mitochondrial 

nucleotide metabolism (TYMP and SLC25A4 or ANT1) or mtDNA (replication or repair) 

maintenance (C10orf2, POLG and POLG2). The majority of mtDNA deletions occur within the 

major arc of the mitochondrial genome flanked by short, homologous, direct repeats 

(Samuels et al., 2004; Bua et al., 2006; Krishnan et al., 2008) between the replication origins of 

OH and OL. Current theories of mtDNA deletion formation favour replication slippage errors as 

the causative mechanism (Krishnan et al., 2008). A slipped strand model of replication, cogent 

to the strand-displacement model of replication, (Clayton, 1982) proposes that during 

replication a single-stranded repeat of the L- strand misaligns with a newly exposed H-strand 

repeat. This process results in the generation of a downstream loop of L-strand, that is 

susceptible to breaks within the mtDNA molecule. Subsequent exonuclease degradation and 

ligation of the L-strand loop, with resumption of replication, results in the formation of a wild 

type and a deleted mtDNA molecule (Krishnan et al., 2008). However, discrepancies between 

this theory and recent findings in rapidly dividing colonic crypt cells have begun to emerge that 

fundamentally challenge this theory (Greaves et al., 2006). 

An alternative model suggests that mtDNA deletion formation is not linked to replication; 

moreover to the process of repair of damaged DNA. This theory proposes that mtDNA 

deletions are secondary to double stranded breaks that are susceptible to exonuclease activity 

resulting in single strand formation. Subsequent repair mechanisms are inept, and result in the 

formation of a deleted mtDNA molecule (Krishnan et al., 2008). 
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Figure 9: Model of mtDNA replication. Slipped- strand model of replication (a) mtDNA 

molecule demonstrating two direct repeats (5' and 3'). (b) The process of mtDNA replication 

begins at OH, (in the D loop) displacing the L-strand from the H-strand. (c) A single-stranded 

repeat of the L-strand misanneals with a newly exposed H-strand repeat. This process results 

in the generation of a downstream loop of L-strand, that is susceptible to breaks within the 

mtDNA molecule. (d) The damaged loop is degraded until it reaches the double-strand regions, 

and ligation of the free ends of the H-strand occurs. (e,f) Replication is resumed resulting in the 

production of a wild type and a deleted mtDNA molecule. (Reproduced from (Krishnan et al., 

2008). 

 

1.4.iii Quantitative defects of mitochondrial DNA 

1.4.iv Fission and fusion 

Although originally thought of as static, isolated intracellular organelles, mitochondria 

constitute a group of organelles that form dynamic networks that constantly undergo fusion 

and fission (division), and programmed turnover; facilitating exchange of mitochondrial 

content in addition to replication and degradation of mtDNA. These processes of fission and 

fusion intimately regulate mitochondrial function via a number of processes, including 

recruitment, cellular exchange, morphology control, cytosolic communication, quality control 

and mtDNA integrity of mitochondria (Chen and Chan, 2005; Twig et al., 2008; Youle and Van 

Der Bliek, 2012). Hence these dynamic organelles can adapt rapidly to physiological or 
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environmental cues; however disruption of fission and/or fusion leads to dysfunction in 

cellular mechanisms and is thought to be the unifying mechanism underlying several 

mitochondrial diseases. 

Mitochondrial fusion is regulated in humans by three proteins: Optic atrophy protein 1 (OPA1), 

(inner membrane fusion) Mfn1 and Mfn2 (outer membrane fusion) (Chen et al., 2003a; Cipolat 

et al., 2004; Chen and Chan, 2005; Lee et al., 2007). Mutations in OPA1 are responsible for 

dominant optic atrophy resulting in atrophy of the optic disc and visual impairment (Delettre 

et al., 2000). Mutations in Mfn2 cause Charcot Marie Tooth type 2A, a sensorimotor axonal 

neuropathy characterized by distal weakness and wasting (Züchner et al., 2004). Although 

initially perceived as phenotypically divergent, it is increasingly recognized, that disease 

manifestations may overlap in both disorders (Detmer and Chan, 2007).  

Mitochondrial fission is regulated by another protein: dynamin-like protein (Drp1) (Smirnova et 

al., 2001; Yoon et al., 2003; Chang and Blackstone, 2010). This cytosolic dynamin-related 

GTPase, is recruited to the mitochondrion during fission and mediated by other outer 

membrane located proteins. The role of fission is postulated to ensure equal segregation of 

mitochondria, during cell division, into daughter cells in addition to augmenting the dissipation 

of mitochondria along cytoskeletal structures (Frank et al., 2001; Otera et al., 2013). Moreover, 

fission appears to be integral in the promotion of mitochondrial degradation via autophagy 

(‘mitophagy’), as it identifies defective sections of mitochondria (Poulton et al., 2010; Santos et 

al., 2010; Frank et al., 2012). If these integral systems fail, mitochondrial fission may espouse 

apoptosis. Disruption in mitochondrial dynamics has also been implicated in other common 

neurodegenerative disorders (Chen and Chan, 2009).  

 

1.4.v Clonal expansion 

Clonal expansion is a process whereby accumulation of progeny of one initial mutation 

expands within individual cells to attain suprathreshold levels resulting in a biochemical defect 

and cellular dysfunction (Elson et al., 2001). This is frequently characterized by a mosaic 

pattern of COX-deficient fibres in skeletal muscle of patients with nuclear gene mutations 

(Oldfors et al., 1992; Sciacco and Bonilla, 1996). Several causal theories governing clonal 

expansion include a combination of random genetic drift with or without selection to preserve 

wild-type (Coller et al., 2001a; Coller et al., 2002) or a replicative advantage for smaller mtDNA 

species (Fukui and Moraes, 2009; Nicholas et al., 2009). Neither theory accounts for other 

important factors that are likely to be influencing the rate of clonal expansion including 
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mitochondrial dynamics and mitophagy. Although conceptually central to our understanding of 

mitochondrial disorders, further validation of the processes driving clonal expansion are still 

warranted.  

1.4.vi mtDNA mutation accumulation  and Ageing 

It is now increasingly recognized, that with normal ageing, there is an accumulation of both 

mtDNA point mutations (with a predilection for rapidly dividing tissues) and deletions (with a 

predilection for post mitotic tissues) at varying levels in different tissues including brain, 

muscle and heart (Corral-Debrinski et al., 1992; Simonetti et al., 1992; Pallotti et al., 1996; 

Krishnan et al., 2008; Meissner et al., 2008; Greaves and Turnbull, 2009). 

Current evidence suggests that mtDNA mutations appear to arise spontaneously as the result 

of somatic mutation in post mitotic tissue and each individual mutant species may expand 

clonally (see section 1.4.V) in individual cells, resulting in mosaic respiratory chain deficiency 

(Larsson, 2010). This process is commonly seen in ageing muscle from normal subjects (Bodyak 

et al., 2001) and is identical to that seen in adult-onset Mendelian PEO (Vu et al., 2000; Schon 

et al., 2012b).  The precise role of these somatic mutations in normal ageing is yet to be fully 

elucidated; but their presence in ageing tissue, has led to multiple studies focusing on these 

mtDNA defects to support the mitochondrial theory of ageing. It remains unknown whether 

such mutations are responsible for such age-related disorders as Parkinson’s disease, 

Alzheimer’s dementia and sarcopaenia.  

1.4.vii Polg mouse models and Ageing 

Increasing evidence has emerged to suggest that the majority of somatic mtDNA mutations 

arise from the indigenous error rate of mtDNA polymerase gamma (Larsson, 2010). Transgenic 

and knockout mouse models have been developed to interrogate the mitochondrial theory of 

ageing. Transgenic mouse models of mtDNA instability exhibiting a point mutation in a 

catalytic subunit of polymerase gamma (POLG) that is responsible for proofreading newly 

formed mtDNA have been developed by two independent groups of investigators (Trifunovic 

et al., 2004; Kujoth et al., 2005). Homozygous mutant mice (PolγD257A/D257A) exhibit a 

progressive accumulation of mtDNA point mutations and a marked reduction in lifespan 

compared to their wild type mice controls and a clinical phenotype consistent with accelerated 

ageing and characterised by muscle and weight loss, hearing loss, reduced bone density, 

infertility and anaemia (Kujoth et al., 2005). Interestingly at a molecular level, there was no 

difference detected in oxidative damage or mitochondrial ROS production between mutant 

mice and controls, suggesting the observed clinical phenotype was not directly mediated by 
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ROS production (Kujoth et al., 2005) or the loss of proof-reading had more complex and more 

far reaching effects on the mitochondrial genome (Jang and Van Remmen, 2009). However, 

Vermulst and colleagues (2007)(Vermulst et al., 2007), in a subsequent study demonstrated 

that heterozygous mice harbouring a single mutant allele (Polγ+/D257A), exhibited almost a 500-

fold increase in mtDNA point mutations, but a normal lifespan and phenotype. These findings 

were further supported by an ensuing study by the same authors evaluating the accumulation 

of mtDNA deletions in the same mouse model.  They demonstrated that only the homogenous 

mutant PolγD257A/D257A mice had accelerated accumulation of such mtDNA defects and that 

perhaps more intriguingly that the rate at which the accumulation of mtDNA mutations 

reached a critical threshold of phenotypic expression varied widely between tissues. This led to 

Vermulst and colleagues (2008) concluding that the mtDNA deletions were driving the 

accelerated ageing phenotype in Polymerase gamma mutant mice (Vermulst et al., 2008). This 

was in contrast to a previous report of a transgenic mouse model with a mutated allele of 

mitochondrial helicase (TWINKLE) with marked elevation of mtDNA deletions but no 

associated accelerated ageing phenotype (Tyynismaa et al., 2005); however the discrepancies 

observed, maybe, in part, due to the experimental approaches employed (Jang and Van 

Remmen, 2009). These findings support the need for further work to provide insights into the 

role of mitochondrial dysfunction and somatic mtDNA mutations in the ageing process. 

 

1.4.viii mtDNA mutations and Cancer 

Genetic instability has been implicated in the development of both inherited and sporadic 

cancers. Although the precise molecular mechanisms remain unclear two models have been 

devised to explain models of cancer: 1) Mutator model; 2) Replication stress model. The 

‘Mutator hypothesis’ of tumour formation suggests that genetic instability is present in 

precancerous lesions and drives tumorigenesis by increased spontaneous mutation rate (Loeb 

et al., 2008). This is supported by the identification of DNA repair gene mutations 

predominantly in inherited cancers. In the second model of cancer development, it is 

postulated that in sporadic cancer, oncogene-induced collapse of DNA replication and 

replisome stability at defective DNA replication forks results in genetic instability (Zeman and 

Cimprich, 2014). 
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Polyak and colleagues (1998) first suggested a role of mtDNA in carcinogenesis following the 

identification of numerous homoplasmic mtDNA mutations in cancer cell lines with normal 

mtDNA in adjacent healthy cells (Polyak et al., 1998); findings that have been prolifically 

reproduced several times since then (Yu, 2011). These findings led Polyak and colleagues to 

postulate that these mtDNA mutations bestowed the cancer cells with a physiological growth 

advantage (‘replicative advantage’) resulting in wild-type mtDNA being eventually replaced 

completely by the mutant mtDNA. However, this theory has subsequently been challenged 

with the high frequency of homoplasmic mtDNA mutations in cancer cells, postulated to have 

simply arisen due to other processes such as random genetic drift (Chinnery et al., 2000b; 

Coller et al., 2001b).  

In cancer cells, mitochondrial function is altered in multifarious ways, allowing tumour cells to 

evade cell-death (Gogvadze et al., 2008). Firstly this may result from loss of p53 function via 

mutated or lost TP53 in tumour cells, resulting in either gain (Dittmer et al., 1993) or loss of 

function with depression of the respiratory chain (Wahl et al., 1996; Madan et al., 2011). 

Various cancers exhibit a high frequency of mutations in TP53, resulting in perturbations in p53 

signalling pathways and (Muller and Vousden, 2014). 

The regulation of cell death by apoptosis is intimately dependent on the balance between 

interacting pro-apoptotic factors and anti-apoptotic factors; with a shift towards the later in 

tumour cells (Schon et al., 2012a).  

Hypoxia- inducible factor 1(HIF1), a transcription factor mediating hypoxia mediated cell death 

has been implicated in tumorigenesis. This factor is stabilised by increased levels of TCA-

derived succinate in tumours inhibiting its degradation and it is evasion of hypoxic-mediated 

cell death via this pathway that has been implicated in the development of such tumours such 

as phaechromocytomas, paragangliomas and leiomyomas (Tomlinson et al., 2002; van 

Nederveen et al., 2009; Schon et al., 2012a). 

Recently, it has been shown that tumours uniquely use the metabolite glycine that is produced 

by mitochondria from serine and tetrahydrofolate (as opposed to cytosolic glycine production), 

providing further evidence of the mediation of purine biosynthesis in the development of 

cancer by mitochondria (Jain et al., 2012).  
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1.4.ix mtDNA mutations and neurodegeneration 

The potential role of mitochondrial dysfunction including somatic mtDNA mutations in age-

related neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s dementia, motor 

neuron disease, Huntington’s chorea and hereditary spastic paraplegia has gained significant 

momentum over recent years. Moreover, neurodegeneration would appear to be due 

primarily to inherent problems in mitochondrial dynamics (see section 1.4 IV) and/or quality 

control (such as autophagy) (Schon et al., 2012a), rather than to mutations in mtDNA (Bender 

et al., 2006; Kraytsberg et al., 2006; Khrapko and Vijg, 2009; Kukat and Trifunovic, 2009).  For 

example, in Parkinson Disease associated with mutations in PINK1 and PARK2, altered 

mitochondrial quality control has been implicated in disease pathogenesis in both sporadic and 

familial cases (D'Aurelio et al., 2010; Vives-Bauza et al., 2010a; Vives-Bauza et al., 2010b; Vives-

Bauza and Przedborski, 2011). In addition high levels of mtDNA deletions have been isolated 

from substantia nigra neurons from both healthy-aged controls and patients with Parkinson’s 

disease suggesting that these mtDNA defects may eventually have a deleterious effect on 

tissue function resulting in disease expression (Bender et al., 2006; Kraytsberg et al., 2006; 

Khrapko and Vijg, 2009; Kukat and Trifunovic, 2009). Further studies are currently warranted 

to help further elucidate these issues. And whilst altered mitochondrial trafficking has been 

implicated in the development of other neurodegenerative conditions including Amyotrophic 

Lateral Sclerosis (Shi et al., 2007; Bosco et al., 2010), relating pathology to specific defects in 

mitochondrial dynamics has proven difficult (Schon and Przedborski, 2011)(Schon 2011).   

Hereditary spastic paraplegia (HSP) and Spinocerebellar atrophy (SCA), are another group of 

late-onset neurodegenerative disorders associated with mitochondrial dysfunction. The 

mechanism underlying the mitochondrial defects caused by mutations in specifically two 

causative genes, namely spastic paraplegin7 (SPG7) and AFG3L2 are discussed in relation  to 

two original studies that will be presented later in this thesis (see Chapter 4, sections 4.4 and 

4.5).  

Hereditary spastic paraplegias (HSP) are a clinically and genetically heterogenous group of 

neurological disorders characterised by length-dependent distal axonal degeneration of the 

corticospinal tracts.  HSP is defined as ‘uncomplicated’ in those individuals in whom their 

neurological deficits are limited to progressive spasticity and weakness and mild sensory 

dysfunction in the lower limbs that maybe associated with bladder dysfunction (Harding, 

1983). In individuals, in whom, there are additional systemic clinical features such as dementia, 

ataxia, neuropathy, amyotrophy, extrapyramidal features and seizures; these cases are defined 

as ‘complex’ HSP (Fink, 1993). More recently HSP classification has been revised to refer 

mainly to their genetic classification (Durr, 2008). At the time of writing this thesis, 72 spastic 
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gait disease-loci and 55 HSP genes have been identified, including mutations in the SPG7 gene 

(Wedding et al., 2014). 

SPG7, a relatively common form of autosomal recessive HSP, is similarly characterised by 

length dependent axonopathy of the corticospinal tracts, manifesting as lower limb spasticity 

and weakness. The molecular mechanisms underlying the phenotypic expression of HSP 

remains unknown. However, increasing evidence suggests dysfunction in the endoplasmic 

reticulum and intracellular membrane trafficking and distribution are the primary defects 

underlying HSP. At this stage, it would be important to revise the anatomy of the corticospinal 

tracts. Pyramidal neurons originating from layer V of the cerebral motor cortex, classically 

decussate in the caudal medulla and descend as the lateral corticospinal tracts. These 

corticospinal axons primarily synapse with spinal interneurons that then connect to lower 

motor neurons, with only a small number of corticospinal axons synapsing directly with lower 

motor neurons. The lower motor neurons then form specialised synapses at the 

neuromuscular junctions (Blackstone, 2012). An elaborate neuronal cytoskeleton scaffold 

facilitates complex intracellular machineries responsible for the distribution of essential 

proteins, lipids and mRNAs. A group of enzymes including kinesin, dynein and myosin proteins 

predominantly mediate anterograde and retrograde transport (Goldstein et al., 2008; Arnold, 

2009).  

Pathological and recent neurophysiological techniques have shown evidence of axonal 

degeneration in a retrograde degenerative manner involving the longest ascending sensory 

fibres and descending corticospinal tracts in HSP (Deluca et al., 2004).  Two mitochondrial 

proteins mutated in HSP include paraplegin (ARSPG7) and HSP60 (ADSPG13).  

SPG7 encodes paraplegin (a member of the AAA family), a mitochondrial protein composed of 

two peptide regions, a metallo-peptidase domain and an ATPase domain that mediates 

ribosomal assembly and protein quality control in the mitochondrial inner membrane (Casari 

et al., 1998). To date, almost all SPG7 variants are nonsense loss-of-function mutations or 

missense mutations in the metallo-peptidase domain (Casari et al., 1998); however, a number 

of mutations cause an amino acid substitution mapping in the AAA-domain. Paraplegin is 

implicated in several cellular processes including ribosomal assembly and the processing of 

mitochondrial proteins (Nolden et al., 2005; Karlberg et al., 2009).  

SPG7 often manifests as uncomplicated or pure HSP; but cerebellar involvement is not 

uncommon. Additional clinical features have been extensively reported in complex cases of 

SPG7-related HSP including optic atrophy, deafness, pes cavus, neuropathy (motor and 

sensory), scoliosis and ophthalmoplegia (Casari and Marconi, 1993; Wedding et al., 2014). 
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Studies of skeletal muscle have shown evidence of COX negative fibres consistent with 

mitochondrial respiratory chain dysfunction (Casari et al., 1998; McDermott et al., 2001; 

Arnoldi et al., 2008; van Gassen et al., 2012); whilst fibroblast studies have shown variable 

evidence of complex I deficiency (Atorino et al., 2003). SPG7 null mice have been shown to 

exhibit evidence of impaired mitochondrial function and axonal transport associated with 

axonal swelling and accumulation of neurofilaments and mitochondria (Ferreirinha et al., 

2004). Further supportive evidence of mitochondrial dysfunction has been observed in SPG13 

HSP in which impaired HSP60 chaperone activity has been shown to result in impaired 

mitochondrial quality control (Bross et al., 2008). Dysfunction in the complex interplay 

between endoplasmic reticulum, plasma membranes, endosomes and mitochondrial have also 

been implicated in the development of HSP (Carrasco and Meyer, 2011; Toulmay and Prinz, 

2011; Blackstone, 2012). Endoplasmic reticulum mitochondrial contacts have gained much 

interest recently in both mammalian and yeast models of HSP.  A model of pulmonary arterial 

hypertension has been created, with reduced endoplasmic reticulum to mitochondrial 

phospholipid transfer and intra-mitochondrial calcium, exhibiting increased expression of 

Nozo-B, (an endoplasmic reticulum shaping protein of the reticular family), and resulting in 

disruption in the contacts between endoplasmic reticulum and mitochondria, providing further 

evidence of the role of endoplasmic reticulum shaping protein in mitochondrial dysfunction 

(Sutendra et al., 2011).  

As outlined above, paraplegin co-assembling with AFG3L2 protein forming integral membrane 

proteins (Atorino et al., 2003) and forming a high molecular weight complex that appear 

absent in the fibroblasts of patents with HSP. The inactivation of parplegin-AFG3L2 complex 

causes a reduction in complex I activity that maybe reversed with the increased expression of 

wild type paraplegin, mediating mitochondrial ribosome assembly. Null or missense AFG3l2 

mouse models have been shown to demonstrate conspicuous impairment of axonal 

development and transport resulting in severe early onset tetraparesis with complex I and III 

activity with abridged myelinated spinal cord fibres resulting in premature neonatal death 

(Maltecca et al., 2008) akin to a more severe phenotype than paraplegin-deficient mice.  

I present a cohort of patients with complex PEO including spasticity and ataxia to varying 

degrees and associated with multiple mtDNA mutations in muscle. Fifteen patients were 

identified with either compound or single heterozygous mutations in SPG7 (Pfeffer et al., 2014) 

and a further two patients with novel heterozygous mutations in AFG3L2 (Gorman et al., 

2015d). Simultaneously another group reported a further four adult patients with a 

combination of spastic paraplegia and PEO with muscle restricted mtDNA deletions due to 

mutations in the SPG7 gene (Wedding et al., 2014). These findings combined, suggest that 
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SPG7 and AFG3L2, are linked to mtDNA maintenance. Preliminary evidence is provided 

indicating that mutations in these genes may induce mitochondrial biogenesis. However 

significantly more work interrogating the molecular mechanisms underlying spasticity ataxia 

syndromes is required.  

 

1.4.x Clinical syndromes of nDNA 

Although qualitative and quantitative deficiencies of mtDNA are often associated with 

different mutations and clinical phenotypes, several clinical syndromes are historically 

recognised. These include Alpers-Huttenlocher syndrome (Davidzon et al., 2005), the most 

severe phenotype, characterised by hypotonia, intractable seizures, renal tubulopathy and 

liver failure, ataxia neuropathy syndromes and chronic progressive ophthalmoplegia (Cohen et 

al., 2012). More recently, a group of disorders with impaired mitochondrial dynamics, 

including mutations in OPA1 (optic atrophy, ataxia and deafness) and MFN2 (CMT type 2A), 

have emerged, that indirectly lead to qualitative deficiencies of mtDNA (Ishihara et al., 2006; 

Verhoeven et al., 2006). 

 

1.4.xi Ataxia neuropathy syndromes 

These groups of disorders encompass a myriad of clinical features and recognised syndromes 

frequently related to mutations in POLG. These include ataxia neuropathy spectrum (ANS) 

previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia 

neuropathy dysarthria and ophthalmoplegia (SANDO) and myoclonic epilepsy myopathy 

sensory ataxia (MEMSA) previously known as spinocerebellar ataxia with epilepsy (SCAE) 

(Cohen et al., 2012). The cardinal clinical features of these syndromes include sensory axonal 

neuropathy with variable sensory and cerebellar ataxia. Other clinical manifestations include 

progressive external ophthalmoparesis, seizures, dysarthria, dementia, spasticity and 

myopathy. 

 

1.4.xii Chronic progressive external ophthalmoplegia  

Progressive external ophthalmoplegia (PEO) and ptosis, a common manifestation of adult 

mitochondrial disease, is a disorder of eye movements delineated by extra ocular muscle 

paresis that is biochemically defined by skeletal muscle restricted mitochondrial DNA 
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deletions. PEO is commonly associated with either primary mitochondrial DNA mutations or 

acquired mtDNA defects secondary to a nuclear genetic disorder of mtDNA maintenance.  

To date, of the 12 known maintenance genes, three quarters have been identified in adult-

onset mendelian PEO. These include recessive mutations in TYMP, encoding thymidine 

phosphorylase (Nishino et al., 1999), POLG1, encoding the catalytic alpha-subunit of DNA 

polymerase γ (Van Goethem et al., 2001a), C10ORF2 encoding Twinkle, the hexameric mtDNA 

helicase (Spelbrink et al., 2001), TK2 (Tyynismaa et al., 2012), RRM2B (Takata et al., 2011) and 

DGUOK (Ronchi et al., 2012) or dominant mutations in POLG1, POLG2, encoding the accessory 

beta-subunit of polγ (Longley et al., 2006), SLC25A4, encoding adenine nucleotide translocator 

1 (ANT-1) (Kaukonen et al., 2000), C10ORF2 (Spelbrink et al., 2001) or OPA1 (Hudson et al., 

2008). Despite the recognition of these causative genes in patients with clinically confirmed 

PEO, the underlying nuclear gene defects remain unexplained in a significant number of 

patients. This is, in part, due to the poor characterization of genotype-phenotype correlates in 

PEO (Figure 10).  

 

Figure 10: Mendelian disorders of mtDNA maintenance. A cartoon identifying the major genes 

(italicised in blue) which have been associated with disorders of mtDNA maintenance including 

adult-onset PEO and multiple mtDNA deletion syndromes and/or mtDNA depletion. In addition 

the sub-mitochondrial localisation of the proteins encoded by these genes are demonstrated. 

Reproduced from (Sommerville et al., 2014)  
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1.4.xiii Nuclear genes linked to Mitochondrial Disease 

Mutations in the nuclear genome encoding essential mitochondrial processes may manifest as 

a spectrum of disorders as opposed to a discrete clinical syndrome; resembling that of mtDNA 

related mitochondrial disease. Next generation sequencing is currently revolutionising our 

approach to the diagnosis of mitochondrial disease, moving the goal posts from sequence 

detection, to the functional validation of new mutations. And perhaps this has been best 

evidenced in the rapid identification of nuclear gene mutations responsible for mitochondrial 

disorders. Pathogenic nuclear mutations are discussed in depth in chapter 4 and the current 

known and putative nuclear genes are listed (following) in table 1. 
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Gene 
mutations 

                  Clinical syndrome RCD Molecular role of protein 

AARS2 Hypertrophic cardiomyopathy 
(HCM), CI and IV defect 

 aminoacylates alanyl-tRNA 

ABAT psychomotor retardation, 
intractable seizures, and hypotonia 

 catalyzes conversion of gamma-
aminobutyrate and L-beta-
aminoisobutyrate to succinate 
semialdehyde and methylmalonate 
semialdehyde 

AGK HCM, cataracts, lactic acidosis (LA), 
skeletal myopathy  

+/-I catalyzes formation of 
phosphatidic and lysophosphatidic 
acids 

AIF1 Mitochondrial Encephalomyopathy  Combined 
 

enhances activity of LCP1. Binds 
calcium; plays a role in 
phagocytosis 

APOPT1 Leukoencephalopathy IV mediates mitochondria-induced 
cell death in vascular smooth 
muscle cells (release of 
cytochrome c; activation of the 
caspase cascade) 

ATPAF2 Encephalopathy   V encodes an assembly factor for the 
F(1) component of the 
mitochondrial ATP synthase 

BCS1L Encephalopathy, liver failure, renal 
tubulopathy  

III encodes a homolog of the S. 
cerevisiae bcs1 protein (involved in 
the assembly of complex III) 

C12orf62 Brain hypertrophy, diffuse 
alteration of the white-matter 
myelination, numerous cavities in 
the parieto-occipital region, 
brainstem, and cerebellum, 
hepatomegaly, HCM, renal 
hypoplasia, adrenal-gland 
hyperplasia, fatal neonatal lactic 
acidosis 

Combined; 
IV 
 

plays a role in the assembly or 
stability of the cytochrome c 
oxidase complex (COX). 

C12orf65 PEO, Leigh Syndrome (LS), optic 
atrophy, axonal neuropathy, 
intellectual disability, spastic 
paraparesis  

Complex V encodes a mitochondrial matrix 
protein;  may help rescue stalled 
mitoribosomes during translation 

CARS2 Epileptic encephalopathy, complex 
movement disorder; progressive 
myoclonic epilepsy 

Combined plays a critical role in protein 
biosynthesis by charging tRNAs 
with their affiliated amino acids 

CHKB Congenital muscular dystrophy  MDS catalyzes 1st  step in 
phosphatidylethanolamine 
biosynthesis 

CLPB Cataract, Neutropenia, Epilepsy, 
and Methylglutaconic Aciduria 

I/III may function as a regulatory 
ATPase and be related to 
secretion/protein trafficking 
process 

COQ2, COQ9, 
CABC1, ETFDH 

CoQ10 deficiency  involved in the ubiquinone 
biosynthetic pathway 
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COX10 Leukodystrophy and renal 
tubulopathy 

 converts protoheme IX and 
farnesyl diphosphate to heme O 

COX15,ELAC2 HCM I putative role in the biosynthesis of 
heme A; Involved in tRNA 
maturation. 

DARS2  LBSL:  Leukoencephalopathy with 
Brain Stem and Spinal Cord 
Involvement and elevated Lactate  
progressive pyramidal and 
cerebellar dysfunction, dorsal 
column dysfunction and sometimes 
with axonal neuropathy 

 aminoacylates aspartyl-tRNA;  
protein homodimerization activity 
and aspartate-tRNA ligase activity 

DGUOK Encephalomyopathy and liver 
failure 
 

 responsible for phosphorylation of 
purine deoxyribonucleosides and 
several nucleoside analogs 

EARS LTBL: Leukoencephalopathy with 
thalamus and brainstem 
involvement and high lactate 

 catalyzes the attachment of 
glutamate to tRNA(Glu) in a two-
step reaction 

EFTu Macrocystic leukodystrophy, 
polymicrogyria 

 promotes binding of aminoacyl-
tRNA to the A-site of ribosomes 
during protein biosynthesis 

ELAC2 HCM I involved in tRNA maturation, by 
removing a 3-trailer from precursor 
tRNA 

ETHE1 Chronic diarrhea, EE, relapsing 
petechiae, acrocyanosis;  
glomerulonephritis 

 metabolises hydrogen sulphide, 
preventing the accumulation of 
supraphysiological levels 

FARS2 Alper syndrome  responsible for the charging of 
tRNA(Phe) with phenylalanine in 
mitochondrial translation;  
catalyses direct attachment of m-
Tyr (an oxidized version of Phe) to 
tRNA(Phe), 

FBXL4 Neonatal LA, encephalomyopathy 
cerebral atrophy and variable 
involvement of the white matter, 
deep gray nuclei, and brainstem 
structures, dysmorphism, skeletal 
abnormalities, poor growth, 
gastrointestinal dysmotility, 
seizures, and episodic metabolic 
failure 

MDS encodes a member of the F-box 
protein family  that function in 
phosphorylation-dependent 
ubiquitination 

FLAD1* Myopathy Combined catalyzes the adenylation of flavin 
mononucleotide (FMN) to form 
flavin adenine dinucleotide (FAD) 
coenzyme 

GARS* Myopathy, cardiomyopathy,  MRC 
defect;  Distal weakness (CMT2D/ 
distal SMA type V-like), facial and 
respiratory muscle weakness/failure 

 catalyzes the attachment of glycine 
to tRNA(Gly);produces diadenosine 
tetraphosphate (Ap4A), a universal 
pleiotropic signaling molecule 
needed for cell regulation 
pathways 
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GFER Myopathy with cataract  Combined Isoform 1: regenerates the redox-
active disulfide bonds in 
CHCHD4/MIA40, a chaperone 
essential for disulfide bond 
formation and protein folding in 
the mitochondrial intermembrane 
space;  
Isoform 2:  may act as an autocrine 
hepatotrophic growth factor 
promoting liver regeneration 

GFM1 IUGR, LS, mild microcephaly, LA, 
early fatal hepatoencephalopathy;  

Combined catalyzes the ribosomal 
translocation step during 
translation elongation 

GFM2 microcephaly, simplified gyral 
pattern, and insulin-dependent 
diabetes 

 mediates the disassembly of 
ribosomes from messenger RNA at 
the termination of mt protein 
biosynthesis 

GTPBP3 HCM, LA, encephalopathy  involved in the 5-carboxy-
methylaminomethyl modification 
(mnm(5)s(2)U34) of the wobble 
uridine base in mt tRNAs 

HARS2 Perrault syndrome: (AR) ovarian 
dysgenesis with SNHL 

 Involved in synthesis of histidyl-
transfer RNA; regulation of protein 
biosynthesis 

IARS Fatal infantile cardiomyopathy  catalyze the aminoacylation of 
tRNA by its affiliated amino acid 

ISCA2 Leukodystrophy, neuroregression I, MDS involved in the maturation of 
mitochondrial 4Fe-4S proteins 
functioning late in the iron-sulfur 
cluster assembly pathway 

KARS severe infantile visual loss, 
progressive microcephaly, 
developmental delay, seizures, and 
abnormal subcortical white matter 

 catalyzes two-step reaction:1)  
amino acid (AA) is activated by ATP 
to form AA-AMP; 2) then 
transferred to the acceptor end of 
the tRNA 

KARS, YARS, 
AARS 

Charcot Marie Tooth (axonal)  catalyzes two-step reaction: 1) 
tyrosine is activated by ATP to 
form Tyr-AMP and 2) then 
transferred to the acceptor end of 
tRNA(Tyr). (or tRNA (Ala)) 

LARS2 Perrault syndrome  aminoacyl-tRNA editing activity 
and leucine-tRNA ligase activity 

LETM1 Wolf-Hirschhorn syndrome (WHS)  maintains mitochondrial tubular 
shapes; required for normal 
mitochondrial morphology and 
cellular viability. 

MARS2 (AR) Spastic Ataxia with 
Leukoencephalopathy (ARSAL) 

 functions as a monomer; predicted 
to localize to the mitochondrial 
matrix 

Mfn2 CMT mtDNA 
deletions 

mediates mitochondrial fusion;  
clearance of damaged 
mitochondria via selective 
autophagy (mitophagy);  acts as an 
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upstream regulator of EIF2AK3 and 
suppresses EIF2AK3 activation 
under basal conditions. 

MGME 
(Ddk1, 
C20orf72) 

PEO, emaciation, respiratory failure  single-stranded DNA (ssDNA) 
exonuclease involved in 
mitochondrial genome 
maintenance 

MPV17, POLG,  
C10orf2, 
DGUOK 

Hepatoencephalopathy; LA; 
hypoglcaemia 

 MPV17: involved in mitochondria 
homeostasis; may be involved in 
the metabolism of ROS and control 
of oxidative phosphorylation and 
(mtDNA) maintenance 

MRPL12 Growth retardation Combined encodes a 39S subunit protein 
which forms homodimers; RNA 
binding and structural constituent 
of ribosome.  
 

MRPL3 HCM, psychomotor retardation Combined encodes a 39S subunit protein that 
belongs to the L3P ribosomal 
protein family. 

MRPL44 HCM, pigmentary retinopathy, 
hemiplegic migraine, Leigh-like 
lesions, renal insufficiency, 
hepatopathy 

Combined assembly/stability of nascent 
mitochondrial polypeptides exiting 
the ribosome 

MRPP1 Progressive neurological 
abnormalities and cardiomyopathy 
(17β-Hydroxysteroid 
dehydrogenase type 10;  HSD10 
disease) 

 functions in mitochondrial tRNA 
maturation; component of 
mitochondrial ribonuclease P, an 
enzyme composed of 
MRPP1/RG9MTD1, 
MRPP2/HSD17B10 and 
MRPP3/KIAA0391, which cleaves 
tRNA molecules in their 5-ends 

MRPS Agenesis of corpus callosum, 
dysmorphism, fatal neonatal lactic 
acidosis 

I and IV multispecific organic anion 
transporter, with oxidized 
glutatione, cysteinyl leukotrienes 

MRPS7 SNHL, hepatic and renal failure, LA  encodes a 28S subunit protein 
involved in protein synthesis 

MRPS16 Agenesis of corpus callosum, 
dysmorphism, fatal neonatal LA 

I and IV encodes a 28S subunit protein that 
belongs to the ribosomal protein 
S16P family 

MRPS22 Severe muscle hypotonia, marked 
lactic acidaemia and 
hyperammonaemia, HCM, 
tubulopathy, or Cornelia de Lange-
like dysmorphic features, brain 
abnormalities and HCM 

Combined encodes a 28S subunit protein  

MTFMT LS I or 
Combined 

formylates methionyl-tRNA  

MTO1 HCM, LA; isolated SNHL Combined involved in the 5-
carboxymethylaminomethyl 
modification (mnm(5)s(2)U34) of 
the wobble uridine base in mt 
tRNAs 
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NARS2 Alpers syndrome  putative member of the class II 
family of aminoacyl-tRNA 
synthetases;  plays a critical role in 
protein biosynthesis by charging 
tRNAs with their affiliated amino 
acids 

NDUFAB1   carrier of the growing fatty acid 
chain in fatty acid biosynthesis; 
accessory and non-catalytic 
subunit of the mitochondrial 
membrane respiratory chain NADH 
dehydrogenase 

NDUFB11 Microphthalmia with linear skin 
defects syndrome 

I Accessory subunit of the 
mitochondrial membrane 
respiratory chain NADH 
dehydrogenase (Complex I),  

NDUFS1, 
NDUFS3, 
NDUFS4,  
NDUFS6, 
NDUFS7, 
NDUFS8, 
NDUFV 

LS  I core subunits of the mitochondrial 
membrane respiratory chain NADH 
dehydrogenase (Complex I)  
 
 

NDUFS2 Cardiomyopathy and 
encephalopathy  

I core subunits of the mitochondrial 
membrane respiratory chain NADH 
dehydrogenase (Complex I) 

PARS2 Alpers syndrome ?V catalyses the ligation of proline to 
tRNA molecules 

PET100 LS  plays a role in the biogenesis of 
complex IV 

PNPLA8 Mitochondrial myopathy, 
hypotonia, LA 

 catalyses the hydrolysis of the sn-2 
position of glycerophospholipids, 
PtdSer and to a lower extent 
PtdCho.  

PNPT1 Chorioretinal defect, microcephaly, 
seizures, SNHL 

 processing and polyadenylation of 
mt mRNAs 

POLG Alpers syndrome  catalytic subunit of mt DNA 
polymerase. The encoded protein 
contains a polyglutamine tract near 
its N-terminus that may be 
polymorphic;  Involved in mt DNA 
replication 

POLG, 
C10orf2, 
OPA1, SPG7, 
AFG3L2 

Ataxia neuropathy syndromes  OPA1: required for mitochondrial 
fusion and regulation of apoptosis; 
may form a diffusion barrier for 
proteins stored in mitochondrial 
cristae; putative role in 
mitochondrial genome 
maintenance; SPG7:  involved in 
diverse cellular processes including 
membrane trafficking, intracellular 
motility, organelle biogenesis, 
protein folding, and proteolysis;  
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AFG3L2:  ATP-dependent protease 
which is essential for axonal 
development 

POLG, PARS2, 
NARS2 

Alpers syndrome  NARS2: thought to catalyse the 
ligation of asparagine to tRNA 
molecules; PARS2: catalyse the 
ligation of proline to tRNA  

POLG, POLG2, 
C10orf2, 
SLC25A4 

Autosomal PEO  C10orf2: encodes a hexameric DNA 
helicase which unwinds short 
stretches of double-stranded DNA 
in the 5' to 3' direction and, along 
with mitochondrial single-stranded 
DNA binding protein and mtDNA 
polymerase gamma; key role in 
mtDNA replication;   SLC25A4: 
catalyzes exchange of cytoplasmic 
ADP with mitochondrial ATP across 
MIM 

PTCD1* Cardiomyopathy Combined implicated in negative regulation of 
leucine tRNA levels, and negative 
regulation of mitochondria-
encoded proteins and COX activity 

PUS1, YARS2 Myopathy and sideroblastic anemia  converts specific uridines to PSI in 
a number of tRNA substrates.  

QARS  EOEE; progressive microcephaly 
with diffuse cerebral atrophy (+/-
cerebellar), severely deficient 
myelination, intractable seizures, 
and developmental arrest 

 catalyze the aminoacylation of 
tRNA by its affiliated amino acid 

RARS2 Pontocerebellar hypoplasia/PEHO-
like syndrome 

 arginyl-tRNA synthetase; arginine-
tRNA ligase activity 

RMND1 Severe encephalopathy, LA, and 
intractable seizures; neonatal LA, 
infantile onset renal failure, 
deafness, severe myopathy, 
dysautonomia 

 mitochondrial translation,? by 
coordinating assembly or 
maintenance of the mt ribosome 

RRM2B Hypotonia, LA, renal tubulopathy  repairs damaged DNA in a 
p53/TP53-dependent manner; 
supplies deoxyribonucleotides for 
DNA repair in cells arrested at G1 
or G2; forms an active 
ribonucleotide reductase (RNR) 
complex with RRM1 which is 
expressed both in resting and 
proliferating cells in response to 
DNA damage. 

SARS2 Hyperuricemia, PAH, renal failure in 
infancy and alkalosis, HUPRA 
syndrome 

 catalyses attachment of serine to 
tRNA(Ser); aminoacylate tRNA(Sec) 
with serine, to form misacylated 
tRNA L-seryl-tRNA(Sec) 

SCO1 Hepatopathy and ketoacidosis  plays a role in cellular copper 
homeostasis, mitochondrial redox 
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signaling or insertion of copper 
into the active site of COX. 

SCO2 Cardiomyopathy and 
encephalopathy 

 acts as a copper chaperone, 
transporting copper to the Cu(A) 
site on COX2 

SDHA LS or OA and ataxia II involved in complex II of the 
mitochondrial electron transport 
chain; responsible for transferring 
electrons from succinate to 
ubiquinone; may act as a tumor 
suppressor. 

SDHAF1 Leukodystrophy II assembly of SDH;  promotes 
maturation of the iron-sulfur 
protein subunit SDHB of the SDH 
catalytic dimer; may act together 
with SDHAF3 

SERAC1 LS, transient neonatal LA and 
hyperammonemia, SNHL, OA, 
dystonia, tubular aggregates 

II, III may catalyze the remodeling of 
phosphatidylglycerol and be 
involved in the transacylation-
acylation reaction to produce 
phosphatidylglycerol-36:1;  
may be involved in bis- 
(monoacylglycerol)phosphate 
biosynthetic pathway 

SLC25A3 Cardiomyopathy, lactic acidosis (mt-
phosphate carrier defect  

 Transport of phosphate groups 
from the cytosol to the 
mitochondrial matrix; may play a 
role regulation of the 
mitochondrial permeability 
transition pore 

SUCLA2 LS with MMA and/or hypotonia, 
movement disorder 

 provides instructions for making a 
beta subunit of succinate-CoA 
ligase; catalyzes the ATP-
dependent ligation of succinate 
and CoA to form succinyl-CoA 

SURF1, 
LRPPRC 

LS; LSFC  SURF1: ? involved in biogenesis of 
the COX complex;  LRPPRC: ? may 
play a role in cytoskeletal 
organization, vesicular transport, 
or transcriptional regulation of 
both nuclear and mitochondrial 
genes; may bind mature mRNA in 
the nucleus outer membrane.  

TACO1 LS, dystonia and OA Combined  
or IV 

acts as a translational activator of 
mitochondrially-encoded 
cytochrome c oxidase 1 

TARS2 Axial hypotonia and severe 
psychomotor delay 

Combined  
 

encodes mitochondrial aminoacyl-
tRNA synthetase 

TAZ Barth syndrome  some isoforms may be involved in 
cardiolipin metabolism 

TK2 Spinal muscular atrophy/infantile 
myopathy  

 phosphorylates thymidine, 
deoxycytidine & deoxyuridine; 
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Table 1: List of current known (and putative) pathogenic nuclear genes related to 

mitochondrial disease and associated clinical phenotypes. 

  

phosphorylates anti-viral/cancer 
nucleoside analogs 

TMEM70 HCM, LA, 3-methylglutaconic 
aciduria; PAH 

V biogenesis of mt ATP synthase 

TRIT1 Microcephaly, myoclonic epilepsy, 
global neurodevelopmental delay, 
Diabetes 

Combined catalyses the transfer of a 
dimethylallyl group onto the 
adenine at position 37 of both 
cytosolic and mitochondrial tRNAs 
resulting in formation of N6-
(dimethylallyl)adenosine (i(6)A) 

TRMU Death at 3-4 months or reversible 
hepatopathy, LA (normal copy 
number) 

 catalyses the 2-thiolation of uridine 
at the wobble position (U34) of 
mitochondrial tRNA(Lys), 
tRNA(Glu) and tRNA(Gln); required 
for the formation of 5-
taurinomethyl-2-thiouridine 
(tm5s2U) of mitochondrial 
tRNA(Lys), tRNA(Glu), and 
tRNA(Gln) at the wobble position 

TSFM Encephalomyopathy,+/- concentric 
HCM, hepatopathy 

CI, III, and IV induces the exchange of GDP to 
GTP; remains bound to the 
aminoacyl-tRNA.EF-Tu.GTP 
complex up to the GTP hydrolysis 
stage on the ribosome 

TUFM Leukodystrophy, microcephaly, 
polymicrogyria 

 promotes binding of aminoacyl-
tRNA to the A-site of ribosomes 
during protein biosynthesis 

TYMP MNGIE  catalyses the reversible 
phosphorolysis of thymidine.  

UQCRB Hypokalemia and LA III component of the ubiquinol-
cytochrome c reductase complex  

VARS2* Microcephaly, epilepsy I or 
Combined 

gene expression and tRNA 
aminoacylation 
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1.5 DIAGNOSTIC APPROACHES TO MITOCHONDRIAL DISEASE 

1.5.i Current diagnostic algorithms 

Despite significant advances in our understanding of the molecular basis of mitochondrial 

diseases, identifying and confirming the diagnosis still remains a formidable challenge. Part of 

the difficulty is due to the expanding spectrum of clinical phenotypes; and the ever increasing 

recognition of causative genes.  

Once the diagnosis is considered, then at present the investigations are often highly 

specialized and complex. Initial clinical evaluation documenting the personal and family 

history, using clinical investigations to document the extent of the phenotype remain pivotal to 

building the clinical evidence base in support of the diagnosis. This may lead to a specific 

phenotype or syndrome which implicates a specific gene defect (McFarland et al., 2010).  

Often this is not the case, and the clinician must adopt a multidisciplinary approach, linking 

together information from clinical, histopathological, histochemical and biochemical testing to 

target molecular genetic analysis. Performance of a muscle biopsy often remains central to 

diagnostic algorithms of adult mitochondrial disease (McFarland et al., 2010) (Figure 11). 
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Figure 11: Algorithm for the investigation of mitochondrial disease (reproduced from 

(McFarland et al., 2010). 

 

1.5.ii Future diagnostic algorithms 

Currently, making a comprehensive diagnosis is only possible in approximately two thirds of 

patients thought to have mitochondrial disease. The implementation of next generation whole 

exome and whole genome sequencing over the next five years is likely to inordinately modify 

our diagnostic approach. However, interpreting the immense genetic diversity present in the 

exome and the genome will be challenging, and a biopsy may still be needed to prove that the 

underlying punitive pathogenic variants are causative. Also, it is important to remember that, 

for mitochondrial DNA disorders, the molecular defect may not be detectable in a blood 

sample. Urinary epithelium and buccal mouth swabs may provide an alternative to an invasive 

procedure such as a muscle or liver biopsy for mtDNA analysis. However, 25 years after the 

discovery of the first genetic causes of mitochondrial disease, the diagnostic yield is still 

critically dependent on the meticulous clinical and biochemical characterisation of patients.  
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1.6 CURRENT TREATMENT AND PREVENTION STRATEGIES 

1.6.i Clinical management 

Unfortunately to date, there are few effective treatments and no known cures for 

mitochondrial diseases. Definitive pharmacological treatment for patients with mitochondrial 

disease, except for patients with deficiency of coenzyme Q10, is lacking. Non-pharmacological 

therapies that have been investigated include nutritional supplements, the ketogenic diet and 

exercise. Preventative strategies have gained much interest recently with the development of 

pioneering new in vitro fertilization (IVF) techniques. 

 

1.6.ii Nutritional supplements 

Standard doses of vitamin C and K, thiamine, and riboflavin are reported to be of conflicting 

benefit in isolated cases and open label studies; however ubiquinone (coenzyme Q10) may 

have a beneficial effect in patients with isolated Q10 deficiency (Horvath, 2012). To date, the 

largest, therapeutic, randomized, placebo, control-trial of idebenone in patients with LHON 

was performed by Klopstok and colleagues. Although this study failed to reach its anticipated 

primary end-points, supportive evidence of the therapeutic benefits of idebenone continues to 

mount (Klopstock et al., 2011). 

 

1.6.iii Noxious metabolite removal 

Several studies have specifically targeted the removal of noxious metabolites. Initial studes 

performed to buffer lactate with bicarbonate resulted in exacerbation of cerebral dysfunction 

(De Vivo and DiMauro, 1999). Dichloracetate has also been trialled to reduce lactic acid levels 

with noted improvement in cerebral metabolic parameters (De Stefano et al., 1995). However 

a follow-up clinical trial showed unacceptable side effects (a partially irreversible toxic 

neuropathy) (Kaufmann et al., 2006). For patients with mitochondrial neurogastrointestinal 

encephalopathy (MNGIE), initial studies of attempting to reduce thymidine by haemolysis 

proved fruitless (Yavuz et al., 2007). However, allogeneic hematopoietic stem cell 

transplantation (Schupbach et al., 2009; Halter et al., 2011; Filosto et al., 2012) and TPase 

enzyme replacement therapy appear more promising (Lara et al., 2006). 
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1.6.iv Ketogenic diet 

The role of ketogenic diet in mitochondrial disease therapeutics remains controversial with 

limited robust evidence of efficacy. It may have a role in respiratory chain and PDH complex 

defects but further studies are warranted (Santra et al., 2004; Kang et al., 2007; Martikainen et 

al., 2012).  

 

1.6.v  Exercise and gene shifting 

Both endurance and resistance training have been extensively investigated in relation to their 

postulated, mechanistic roles in provoking heteroplasmy change and gene shifting (Taivassalo 

et al., 1999; Taivassalo et al., 2003; Jeppesen et al., 2006; Murphy et al., 2008). Variability in 

responses to ‘shift’ in wild type and mutant mtDNA has been reported and larger studies in 

relation to exercise safety and dosing are still warranted. 

 

1.6.vi  Supportive care and surveillance  

The chronicity and heterogeneity (Tein et al., 1993) both clinically and genetically of 

mitochondrial disease complicate the clinical care pathway of patients with mitochondrial 

disorders. Frequently patients require surveillance follow-up over their lifetime, which is often 

characterised by a multispecialty approach (neurologist, cardiologist, endocrinologist, 

nephrologists and ophthalmologists) and multidisciplinary approach (specialist nurses, 

physiotherapists, dieticians and speech therapists). This is often dictated by the clinical 

phenotype of the patient. Several supportive therapies have been investigated including 

antiepileptic efficacy in Alpers syndrome and POLG related seizures (Tein et al., 1993; Kollberg 

et al., 2006; Tzoulis et al., 2006) (that concomitantly identified mitochondrial disease as a risk 

factor for liver failure (Krähenbühl et al., 2000)); levodopa for POLG-related parkinsonism 

(Luoma et al., 2004), anti-depressants for mood disorders in all forms of mitochondrial disease 

(DiMauro et al., 2006); blood transfusion for anaemia related to Pearson’s syndrome (DiMauro 

et al., 2006) and solid organ transplantation related to either cardiac or liver failure (Bonnet et 

al., 2001; Santorelli et al., 2002; Bhati et al., 2005; Dimmock et al., 2008a) with variable 

efficacy. 
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1.6.vii  Prevention of disease transmission  

MtDNA is exclusively maternally-inherited and is present in multiple copies in all cells(Taylor 

and Turnbull, 2005b). The multicopy nature means that mtDNA mutations can either be 

homoplasmic (when all copies of mtDNA carry the mutation) or heteroplasmic (varying 

proportions of mutated and wild-type mtDNA) (Taylor and Turnbull, 2005a). All offspring of a 

woman with homoplasmic mtDNA mutation will unequivocally carry the mtDNA mutation. 

However, the situation with women carrying heteroplasmic mtDNA mutations is much more 

complicated (Grady et al., 2014). During the development of the oocyte there is a genetic 

bottleneck with a marked reduction in the copy number of mtDNA followed by a rapid 

expansion of mtDNA copy number during oocyte formation (Cree et al., 2008; Wai et al., 2008; 

Freyer et al., 2012). This means that some heteroplasmic mtDNA mutations (eg. single, large 

scale mtDNA deletions) are rarely transmitted due to purifying selection (Stewart et al., 2008). 

Other heteroplasmic mtDNA mutations (eg. the m.3243A>G MELAS and m.8344A>G MERRF 

mutations) are transmitted, but the developmental genetic bottleneck can lead to offspring 

being born with a range of different mtDNA mutation levels. 

Current options available in the UK include ovum donation, pre-implantation genetic diagnosis 

(PGD) and prenatal diagnosis. The advantage of ovum donation is that there is no risk of 

transmitting the mtDNA disease. Disadvantages may include the shortage of available oocytes 

and the lack of maternal genetic relationship of any offspring; important issues to be 

considered by women harbouring potentially pathogenic mtDNA mutations. PGD and prenatal 

genetic diagnosis are currently offered in the UK to women with heteroplasmic mtDNA 

mutations and have the advantage of reducing the risk of severely affected offspring (Steffann 

et al., 2006). For prenatal diagnosis there is always the potentially difficult decision around 

termination of pregnancy and neither technique is likely to be of benefit for women with high 

levels of heteroplasmic mtDNA mutations, and of no benefit for women with homoplasmic 

mtDNA mutations. 

 

1.7 Phenotyping 

Phenotype (from the Greek phainein meaning to ‘show’ and typo, meaning ‘type’) is a 

composite of individual characteristic traits that result from the individual’s genotypic 

interaction with its environment (Wanscher, 1975; Arnold and Mayr, 1982). Despite major 

advances in our understanding of the molecular basis of mitochondrial diseases, making a 

definitive diagnosis still remains a formidable challenge. Part of this difficulty is identifying 
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patients with milder phenotypes; in addition to the expanding phenotypic spectrum. Once a 

diagnosis of mitochondrial disease is considered, meticulous documentation of the personal 

and family history, use of clinical investigations to document the extent of the phenotype are 

paramount to building the clinical evidence base in support of the diagnosis. The importance 

of this clinically, is that this may lead to a specific phenotype or syndrome that implicates a 

specific gene defect. If this is not the case, a systematic approach is employed, that, if 

appropriate, involves a biopsy of the affected tissue. This then leads to the histochemical and 

biochemical evaluation of mitochondrial function that can help target the genetic 

investigations. The implementation of next generation whole exome and whole genome 

sequencing will undoubtedly modify the diagnostic approach, in an outpatients setting. 

However, interpreting the huge genetic diversity in the exome and genome may prove 

challenging and diagnostic yield will still remain critically dependent on the fastidious clinical 

and biochemical characterisation of individuals with mitochondrial disease; aspects pertinent 

to several studies in this thesis. 

 

1.8 Discussion 

Mitochondrial diseases are a group of genetic disorders that may give rise to a conspicuous 

spectrum of clinical symptoms, in any organ or tissue, at any age, and with any mode of 

inheritance. Despite significant advances in our understanding of the molecular basis of 

mitochondrial diseases, definitive diagnosis remains a major challenge. This is in part due to 

the expanding phenotypic spectrum of such disorders, genotypic variability and the complexity 

of diagnostic investigations. To date, a definite diagnosis is only possible in approximately two 

thirds of patients with suspected mitochondrial disease. The advent of next generation 

sequencing proposes to revolutionise the diagnostic algorithm of mitochondrial disease; 

however targeted mutational analysis remains our current mainstay approach. Almost 25 

years after the discovery of the first genetic causes of mitochondrial disease, diagnostic yield 

remains dependent on the meticulous clinical and biochemical characterisation of patients. 

Understanding the mechanistic relationship between genotype and phenotype may also prove 

pivotal to discovering an effective treatment; in a group of disorders with currently few 

effective treatments and no known cures. 

In the studies presented here, I sought to further define the clinical and molecular 

understanding of mitochondrial DNA and nuclear DNA mutations in a well-characterised 

cohort of adult patients with suspected mitochondrial disease. I reviewed seminal papers that 

formed and shaped the evolution of Mitochondrial Medicine, investigated the pattern of 
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genotypic and phenotypic expression of defects of both the mitochondrial and nuclear 

genomes and evaluated aspects pertinent to the success of future therapeutic studies 

including appreciation of disease frequency and assessing patient-centred symptom severity 

and outcomes. 

In the first study I was invited to co-author a book chapter in a forthcoming book entitled 

‘Landmark papers in Neurology’, in which my co-author and I were asked to select and critique 

ten seminal papers that we thought epitomised mitochondrial medicine, since its inception. 

Our given remit was that the chapter and chosen manuscripts were to be clinically focussed 

and targeted toward the general neurologist. Firstly, we chronicled the discovery of the 

morphology and function of mitochondria, and the increasing recognition of human diseases 

associated with primary and secondary mitochondrial dysfunction. We reviewed the initial 

description of mitochondrial disease, so-called, Luft’s disease (1962)(Luft et al., 1962), in a 35 

year old woman with hypermetabolic syndrome that heralded the advent of mitochondrial 

medicine. Over five decades later, despite the expeditious advances in genetic analysis, the 

molecular basis of this disease remains elusive. Over the ensuing decades, there was an 

exponential growth in the number of reports of multisystem patient syndromes, purportedly 

related to mitochondrial dysfunction that coincided with the rapid expansion of human 

chemical pathology and the complete sequencing of human mitochondrial DNA (Anderson et 

al., 1981). These advances defined the premolecular era of mitochondrial medicine and 

culminated in the publication of our second selected seminal manuscript. In 1986, John 

Morgan Hughes and colleagues, in London, meticulously described a large case series of 

patients with mitochondrial disease. This exacting characterization of the clinical features of 66 

patients with histologically-defined mitochondrial disease supported the concept of a varied, 

overlapping spectrum of diseases as opposed to distinct clinical entities only, which 35 years 

later, has been vindicated by the molecular portrayal of mitochondrial disorders (Petty et al., 

1986). We then recount pivotal steps in the evolution of the molecular era, including the 

discovery of, the first pathogenic mutation in mitochondrial DNA (Holt et al., 1988a); the first 

pathogenic mtDNA point mutation (Wallace et al., 1988a) and the first description of 

Mendelian inheritance of a mitochondrial disorder, in relation to a new group of mtDNA 

maintenance disorders characterized by muscle restricted mtDNA deletions (Zeviani et al., 

1989). Furthermore we detailed the identification of the genetic basis of the most common 

form of mitochondrial disease, namely a heterogenic point mutation in the tRNALeu(UUR) 

gene, in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes 

(MELAS) (Goto et al., 1990); followed by the identification of the most common nuclear-
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mitochondrial disease gene encoding mitochondrial polymerase gamma (POLG) (Van Goethem 

et al., 2001b). 

These rapid developments in our understanding of the genetic basis of mitochondrial 

disorders, by the year 2000, had paved the way for several studies that attempted to estimate 

the prevalence of disease; no mean feat given the clinical heterogeneity of these disorders. We 

chose to critique two cardinal papers evaluating the prevalence of mitochondrial diseases; 

which may reflect our groups’ biases, in terms of historical research interests (Majamaa et al., 

1998; Chinnery et al., 2000a). Accurate mitochondrial disease epidemiology encounters many 

additional challenges including variable genotype-phenotype correlates, expanding and diverse 

clinical features, the complex nature of referral pathways, population founder effects and 

genetic bottlenecks that may result in under or over representation of specific mtDNA 

(Macmillan et al., 1998) or nuclear disorders (Skladal et al., 2003). The first epidemiological 

studies were of a single pathogenic mtDNA mutation associated with discrete clinical 

phenotypes. These studies reported a widely variable frequency of m.3243A>G in diabetes 

ranging from 0.13% to 60%; with such discrepancies most likely due to study design and 

population under investigation (Kadowaki et al., 1994; Newkirk et al., 1997). In 1998, the first 

population based study of a single pathogenic mutation was carried out northern Ostrobothnia 

in Finland (Majamaa et al., 1998). Majamaa et al, estimated a minimum point prevalence of 

16.3/100,000 (95% CI=11.3–21.4/100,000) (equivalent to one in 6135). This was soon followed 

two years later by a population based study of all forms of mitochondrial DNA disorders 

(Chinnery et al., 2000a). This main study estimated that 12.48/100,000 (equivalent to one in 

8013) either had mitochondrial disease or were at risk of developing mitochondrial disease. 

The discrepancies between both studies may have, in part, been due to study design and, in 

part, due to the makeup of the study populations. Subsequent work by this group (Schaefer et 

al., 2008), and a study presented in this thesis (Gorman et al., 2015e), would suggest the 

original prevalence figures were a gross under estimation, with a revised adult mitochondrial 

disease prevalence closer to one in 5,000 for mtDNA disease and one in 4300 when including 

pathogenic mutations of both the mitochondrial and nuclear genomes. 

We then sought to appraise, the first large, therapeutic, randomized, placebo, control-trial of 

idebenone in patients with LHON performed by Klopstok and colleagues (Klopstock et al., 

2011). Lessons gleaned from this study included review of the validity and appropriateness of 

the peremptory, primary end-points, which this study failed to achieve in the first instance and 

which only achieved statistical validity following post hoc interaction analysis of all secondary 

end-points. Given the inherent spurious nature and serious limitations of statistical post-hoc 
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analysis, we would advise caution in the authors’ interpretation that patients with discordant 

visual acuities at baseline, showed a difference in response to Idebenone.  

We finalised this book chapter by highlighting another pivotal paper that has framed our 

current understanding of the genetic basis of mitochondrial disease with the advent of new 

molecular techniques that hold potential to revolutionize the diagnosis of mitochondrial 

disorders, from a genetic perspective (Calvo et al., 2012). However, reminiscent of the 

premolecular era, we would suggest that irrespective of the diagnostic yield of these new 

technologies, the accepted diagnostic algorithm is still intimately dependent on the meticulous 

clinical and molecular phenotyping of patients with mitochondrial disease.   

In several studies presented in this thesis, I provide additional evidence of the benefits of deep 

phenotyping of patients on diagnostic yield. In summary, I have shown that a targeted gene 

approach may be implemented in the diagnosis of adult patients with mtDNA maintenance 

disorders manifesting with progressive external ophthalmoplegia (PEO) and additional clinical 

features. Of the known maintenance genes, ten had been associated with PEO (POLG, POLG2, 

SLC25A4, C10orf2, RRM2B, TK2, MFN2, OPA1, MGME1 and DNA2), at the outset of this thesis. 

To better understand the phenotypic and genotypic heterogeneity of adult-onset PEO 

associated with disordered mtDNA maintenance, I firstly evaluated the distinct clinical and 

molecular characteristics of mutations in the nuclear-encoded mitochondrial maintenance 

gene RRM2B in 31 adult patients with mitochondrial disease causing PEO, characterised by a 

mitochondrial DNA maintenance defect in muscle (Pitceathly et al., 2012). Despite notable 

clinical overlap between the mitochondrial maintenance genes, I identified salient clinical 

features including hearing loss, bulbar dysfunction and gastrointestinal disturbance that may 

help prioritise genetic analysis towards the RRM2B gene. These findings were prompted by a 

previous short report (Fratter et al., 2011) from a collaboration between Newcastle and 

Oxford, and subsequent review publications that I performed critiquing the clinical spectrum 

of RRM2B-related mitochondrial disease (Gorman and Taylor, 2014). In a further two studies, 

after excluding known mitochondrial maintenance gene defects, a range of sequencing and 

molecular biological techniques were employed to study a large cohort of 68 adult patients 

with PEO either with and without multiple mtDNA deletions in skeletal muscle. This led to the 

identification of autosomal recessive (nine patients) and autosomal dominant (six patients) 

mutations in the SPG7 gene encoding paraplegin (Pfeffer et al., 2014) and novel autosomal 

dominant mutations in the AFG3L2 gene, typically associated with spinocerebellar ataxia type 

28 (SCA28) (two patients) (Gorman et al., 2015d). These findings combined, suggested the 

emergence of clinical features that in addition to careful documentation of family history, may 

help formulate a simple diagnostic algorithm (Figure 12) in adult-onset Mendelian PEO 
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associated with mitochondrial disease. The presence of optic atrophy and early onset visual 

loss would prioritize genetic testing towards OPA1 analysis; prominent features of 

parkinsonism and/or sensory neuronopathy would prioritize genetic testing towards POLG 

analysis; prominence of hearing loss, bulbar dysfunction and gastrointestinal disturbance 

would prioritize genetic testing towards RRM2B analysis; isolated PEO with or without mild 

proximal myopathy and exercise intolerance would prioritize genetic testing towards PEO1 

analysis; a dystrophic muscle phenotype with prominence of respiratory failure would 

prioritize genetic testing towards TK2 analysis; whilst a complex neurological phenotype 

characterised by spastic ataxia would prioritize genetic testing towards either SPG7 or  AFG3L2 

analyses.  

 

 

 

Figure 12: Diagnostic algorithm in adult-onset Mendelian PEO associated with mitochondrial 

disease 

RRM2B is a gene involved not only in mtDNA replication but also in nuclear DNA repair. During 

external review of one of the studies presented in this thesis that chronicled the distinct 

clinical and molecular characteristics of adults with RRM2B-related mitochondrial disease 

(Pitceathly et al., 2012), we were asked by one of the reviewers to comment on any clues 

suggesting abnormalities in DNA repair in the RRM2B mutant patients. We suspected that the 

reviewer was alluding to the association between p53R2/RRM2B and cancer and revised the 
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final manuscript accordingly, to take account of this point raised (Discussion, paragraph 3 of 

the manuscript). Notably, two patients developed solid tumours: oral and breast carcinoma. 

We concede our numbers were small and no mutational analysis of tumour tissue was 

performed, hence no definitive causal association could be inferred. Similarly, we endeavoured 

to highlight the conspicuous absence of proximal renal tubulopathy in adults with RRM2B-

related mitochondrial disease, a common finding in children with RRM2B mutations and 

mtDNA depletion. In these adult-onset cases, the nature of renal involvement was primarily 

glomerular in nature. 

Isolated human complex I (CI) deficiency is the most frequent respiratory chain defect 

reported in mitochondrial disease, exhibiting conspicuous genotypic and phenotypic 

heterogeneity. In less than half of patients, the genetic basis of the enzyme deficiency is 

known. I describe the detailed clinical, physiological, biochemical and molecular 

characterisation of two patients, who presented only in their twenties and whose clinical 

pictures were dominated by progressive exercise intolerance and severe isolated 

mitochondrial complex I deficiency in muscle, which I show are due to novel heteroplasmic 

mutations in the mitochondrial DNA-encoded MTND1 gene. I present their distinctive clinical 

features that exemplify the importance of serum lactate testing in cases of persistent 

unexplained exertional weakness or dyspnoea. In addition, together with colleagues, I 

characterise their VO2 kinetics during graded cardiopulmonary exercise testing, assess in vivo 

mitochondrial function using phosphorous spectroscopy and evaluate the molecular 

mechanisms underlying this purely muscular phenotype to elucidate the structural 

consequences of both mutations on complex I biogenesis. We demonstrate for the first time, 

that mitochondrial supercomplex reorganisation occurs as a response to a compensatory 

mechanism to extricate the clinical phenotype involving upregulation of complex I assembly 

factors; a phenomenon not previously reported with MTND1 mutations (Gorman et al., 

2015a). 

Following a previous study describing the phenotypic heterogeneity of the 8344A>G mtDNA 

"MERRF" mutation (Mancuso et al., 2013), I present a fascinating case, expanding the clinical 

spectrum associated with this gene (Blakely et al., 2014). The patient presented with marked 

facial and distal muscle weakness and respiratory failure, with a muscle biopsy showing 

evidence of severe COX deficiency. The marked mitochondrial histochemical abnormalities 

with a phenotype strongly suggestive of a limb girdle muscular dystrophy, were more 

suggestive of a rare, mild mt-tRNA mutation, exhibiting high mutation threshold hence initial 

genetic testing was directed to whole mtDNA genome sequencing in preference to targeted 

m.8344A>G mutation analysis. This case illustrates that the m.8344A>G mutation can cause 
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indolent distal weakness with respiratory failure, with marked histochemical defects in muscle 

and hence extends the evolving phenotypic spectrum attributable to the m.8344A>G “MERRF” 

mutation. 

Now with the increasing shift in emphasis from diagnosis to the development of therapeutic 

pharmacological and prevention strategies, I sought to assess important aspects pertinent to 

this. Recent advances in diagnostic techniques, streamlining of referral pathways in the United 

Kingdom and fastidious family tracing have permitted, for the first time, recording of the 

minimum prevalence of adult mitochondrial disease, to include pathogenic mutations in both 

mitochondrial and nuclear DNA. The included prevalence paper (Gorman et al., 2015e) 

describes the minimum point prevalence for all mitochondrial DNA mutations as 1 in 5,000; 

consistent with our previously published and highly cited work in Annals of Neurology. 

However, in addition, I have now evaluated the prevalence of nuclear mutations to be 

responsible for overt mitochondrial disease with a minimum point prevalence of 2.9 in 100,000 

adults. Combined these data suggest that mitochondrial disorders, including pathogenic 

mutations of both the mitochondrial and nuclear genomes, are a common form of inherited 

neuromuscular disease (≈one in 4300). I propose that these findings are fundamental to 

assessing current interventions, providing evidence-based health policies and planning future 

services. This is perhaps most pertinent at present because of the development of new IVF 

based techniques (pronuclear and metaphase II spindle transfer) that hold potential to prevent 

the transmission of mitochondrial DNA disease and thus significantly reduce patient and 

societal disease burden.  

The Wellcome Trust Centre for Mitochondrial Research in Newcastle has pioneered some of 

these techniques, however, before these techniques could be used in the UK, a change in the 

Human Fertilisation and Embryology Act was required. At the time of writing this thesis, the UK 

Parliament was due to debate these regulations and if passed this would represent the first 

legislation of its kind in Europe. Central to the parliamentary debate was how many women 

could potentially benefit from the development of either pronuclear or metaphase II spindle 

transfer. This was a challenging question because of the unique genetics of mitochondrial DNA 

disease and the clinical heterogeneity of these diseases. I undertook an observational cohort 

study (Gorman et al., 2015c) to address this issue and estimated that there is a minimum of 

2,472 women with pathogenic mitochondrial DNA mutations in the UK of childbearing age that 

are at risk of transmitting serious mitochondrial disease to their offspring, which equates to 

152 pregnancies per year. These figures translate to 12,423 women of childbearing age with 

pathogenic mitochondrial DNA mutations and 778 estimated live births per year involving 

potential transmission of serious disease in America. Our findings have considerable 
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implications not only for the UK and US, but also for other jurisdictions throughout Europe, 

and indeed Australia that are considering these techniques, pending the UK parliamentary 

decision. These data will facilitate projection of future averted healthcare costs, in these 

countries, in terms of determining the number of women requiring provision of, or 

reproductive advice on, these new IVF techniques offsetting the cumulative lifetime, 

healthcare costs of managing such debilitating genetic disorders. 

The molecular basis of many of the common mitochondrial disorders has been elucidated over 

the last decade and although there is a vast spectrum of phenotypic expression throughout 

different genotypes, common symptoms are reported. Perceived fatigue is a prominent 

symptom in patients with mitochondrial disease but to date, its prevalence, severity and 

aetiology is poorly understood. My aim was to determine the prevalence and nature of 

perceived fatigue in a large, genetically heterogeneous group of patients with mitochondrial 

disease and systematically assess potential covariates of fatigue compared to healthy controls 

and patients with Myalgic Encephalopathy /Chronic Fatigue Syndrome (Gorman et al., 2015b). 

I demonstrate for the first time, that clinically relevant fatigue is common and often severe in 

patients with mitochondrial disease irrespective of age, gender or genotype. Sleep impairment 

can readily be distinguished from perceived fatigue arising as a primary manifestation of 

mitochondrial disease whilst there is a more complex association between perceived fatigue 

and mood disorders, warranting further assessment. The challenge now, is to identify causal 

factors that may help direct tailored pharmacological and non-pharmacological symptomatic 

therapeutic strategies; with potential for a shared therapeutic paradigm with patients with 

other chronic neurological disorders, exhibiting clinically relevant fatigue. 

Heath related quality of life (HRQOL) is important for understanding the impact and 

progression of chronic disease.  However, there is a need to develop disease-specific HRQOL 

measures that focus on the characteristic symptoms of a certain disease or condition and their 

impact. We sought to present the conceptualisation, development and preliminary 

psychometric assessment of a mitochondrial disease-specific health related quality of life 

measure: the Newcastle Mitochondrial Quality of life measure (NMQ) (Elson et al., 2013). The 

item validation processes resulted in the removal of 40 items, including three whole domains 

that included stroke, seizures and work. The final questionnaire consisted of 63 items within 

16 unidimensional domains. As many patients with severe clinical phenotypes of mitochondrial 

diseases suffer from intractable seizures or recurrent strokes or are unable to work due to 

their disease, it was surprising to know that the three domains (stroke, seizures and work 

domains) of the initial pilot questionnaire did not show adequate construct validity or internal 

consistency reliability and were therefore excluded from NMQ. Although the initial bias was to 
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include domains that were considered from a physician-centred perspective as relevant to a 

patient’s quality of life such as stroke and seizures; repeatedly these aspects were not 

considered important to the patient group as a whole. This may reflect the low prevalence of 

strokes (8%) and seizures (12%) within the cohort and the genotypic-phenotypic specificity of 

such symptoms; aspects that are critiqued in the final manuscript. This study is, to my 

knowledge, the first to devise a disease-specific, patient-centred quality of life tool. We 

propose to perform further psychometric assessment and revision of NMQ, with a follow-up 

multicentre analysis, that is currently underway. 

Conclusion 

Studies presented in this thesis sought to further define our clinical and genetic understanding 

of mtDNA and nDNA mutations in adult patients with suspected mitochondrial disease.  I have 

demonstrated a simple diagnostic algorithm that may help prioritise gene analysis in cases of 

adult–onset PEO delineated by skeletal muscle restricted multiple mtDNA deletions. I concede 

that evaluations of the underlying molecular mechanisms, as presented are extremely 

preliminary and further in-depth analysis is warranted, particularly in relation to mutations in 

both the SPG7 and AG3FL2 genes. I present two further studies that exemplify the diversity of 

clinical expression of firstly a relatively common mtDNA mutation that extends the clinical 

phenotypic spectrum of m.8344A>G-related mitochondrial disease; and secondly another 

study of two patients with novel mutations in MTND1 with unique clinical symptoms 

characteristic of marked exercise intolerance related to complex I deficiency. I have shown 

that fatigue is highly prevalent and debilitating in patients with mitochondrial disease 

irrespective of genotype and have developed a disease specific quality of life scale that 

demonstrates good internal reliability and construct validity. Such detailed deep clinical and 

symptomatic phenotypic profiling will serve to improve more timely and accurate diagnosis; 

will aid development of a stratified selection approach at targeting the most appropriate 

patients and patient-centred outcome measures in future studies particularly therapeutic 

interventions.  

Future work proposed includes revisiting the clinical phenotypes of other nuclear genes 

including C10orf2-relate mitochondrial disease, as a multicentre collaboration; further 

evaluation of the underlying compensatory mechanisms in one of the patient’s with complex I 

deficiency following a pharmacological trial of an ‘off-label’ medication combined with an 

exercise intervention program; further deep clinical phenotyping of organ specific systems 

(including cardiac and gastrointestinal) in patients harbouring the m.3243A>G mutation and 

evaluation and validation of other patient-centred outcome measures that may serve useful in 
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future intervention studies, as the Wellcome Trust Centre for Mitochondrial Research prepares 

a programme for the next phase of Mitochondrial Medicine, that involves the evaluation and 

discovery of effective therapeutic strategies.   
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Chapter 2. Aims and scope 
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2.1 Aims and scope 

The overall aims of this thesis were to further define the clinical and molecular understanding 

of mtDNA and nDNA disorders by deep phenotyping well-characterized cohorts of adult 

patients with suspected mitochondrial disease; to revisit measures of disease frequency and 

burden; and due to the lack of relevant, consistently applied functional outcome measures in 

trials involving this patient population, we sought to devise a disease-specific quality of life 

scale (Newcastle Mitochondrial Quality of life measure (NMQ)) and validate an outcome 

measure that is relevant to both clinicians and patients (Fatigue Impact Scale) as part of a ‘trial 

readiness’ programme (Figure 13).  

 

 

 

Figure 13: Diagrammatic algorithm of thesis overview. 
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2.2 Seminal papers in Mitochondrial Medicine 

I first critiqued seminal papers, (co-authored with Professor Patrick Chinnery) that personify 

landmark discoveries in the development of Mitochondrial Medicine, from the initial reports of 

a mitochondrial disorder, to the present day, with the advent of next generation sequencing. 

In this body of work, I sought to evaluate the merits of fastidious clinical and biochemical 

characterization of patients in the molecular era; and their contribution to current diagnostic 

yield.  

 

2.3 Pathogenic nuclear DNA mutations in adult 

mitochondrial disease  

I initially endeavoured to meticulously collate the molecular and clinical characteristics of adult 

patients with both genetically determined and suspected mitochondrial disease (genetically 

undetermined). These patients had either attended our specialist clinic or been referred for 

opinion to our diagnostic laboratory in Newcastle. This facilitated collaboration with other 

research centres to evaluate mutation frequency, clinico-pathological features and 

identification of known genes not previously associated with mitochondrial disease. 

Firstly, recent advances in the identification of nuclear genes associated with both paediatric 

and adult-onset mitochondrial disease afforded me the opportunity to review the clinical 

spectrum of disease associated with mutations in the nuclear-encoded mitochondrial 

maintenance gene, Ribonucleotide reductase M2B (TP53 inducible) (RRM2B). Clinical 

manifestations of RRM2B mutations were recognised to range from a rapidly fatal infantile 

neuromuscular syndrome with renal tubular insufficiency (Bourdon et al., 2007; Bornstein et 

al., 2008; Kollberg et al., 2009) to a progressive external ophthalmoplegia presenting in the 

second decade or adult life (Tyynismaa et al., 2009). In a multicentre study, we sought to 

clearly define, for the first time, the clinico-pathological characteristics of adults with RRM2B-

related mitochondrial disease and establish genotype–phenotype correlations. These findings 

formed the basis of two subsequent reviews on RRM2B-related mitochondrial disease. 

Secondly, with the implementation of new diagnostic approaches, and after excluding known 

maintenance disorder genes, whole exome sequencing, followed by targeted Sanger 

sequencing and multiplex ligation-dependent probe amplification analysis were used to revisit 

a well characterised cohort of adult patients with progressive external ophthalmoplegia (PEO) 
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either with or without multiple mitochondrial DNA deletions in skeletal muscle, presenting in 

mid-adult life. This led to the identification of two novel genetic causes of PEO associated with 

muscle-restricted multiple mtDNA mutations and facilitated the interrogation of disease 

mechanisms. 

 

2.4 Clinical and molecular correlates of mtDNA-related 

mitochondrial disease  

Whole mtDNA genome sequencing in preference to targeted gene approach was implemented 

in three fascinating cases, to determine the genetic basis of the mitochondrial disorder. The 

first patient presented with marked facial and distal muscle weakness and respiratory failure, 

with a muscle biopsy showing evidence of severe COX deficiency. The marked mitochondrial 

histochemical abnormalities with a phenotype strongly suggestive of a limb girdle muscular 

dystrophy were more suggestive of a rare, mild tRNA mutation, exhibiting high mutation 

threshold hence initial genetic testing was directed to whole mtDNA genome sequencing. Our 

findings expand the clinical spectrum associated with a known causative gene (m.8344A>G) 

and further define our clinical and molecular understanding of mtDNA-related disease.  

We then sought to detail the clinical, physiological, biochemical and molecular characterisation 

of two patients whose clinical pictures were dominated by progressive exercise intolerance 

and severe isolated mitochondrial complex I deficiency in muscle due to novel heteroplasmic 

mutations in the mitochondrial DNA-encoded MTND1 gene. We characterise VO2 kinetics 

during graded aerobic exercise, assess in vivo mitochondrial function using phosphorous 

spectroscopy and evaluated the molecular mechanisms underlying this purely muscular 

phenotype to elucidate the structural consequences of both mutations on complex I 

biogenesis. 

 

2.5 Epidemiology of adult mitochondrial disease  

Recent advances in diagnostic techniques, streamlining of referral pathways in the United 

Kingdom and fastidious family tracing may facilitate recording of the total prevalence of adult 

mitochondrial disease, including pathogenic mutations of both the mitochondrial and nuclear 

genomes. 
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In the first instance, I identified adult cases (>16 years old) with suspected mitochondrial 

disease following referral to a single specialist mitochondrial centre in a defined geographical 

region. Those adults with pathogenic mtDNA or nuclear DNA mutations, or pathological 

multiple mtDNA deletions evident in muscle by at least two techniques (long range PCR, 

Southern or real-time PCR) and no evidence of other muscle pathology; and in whom clinical 

and biochemical features (>4% COX deficient fibres) were consistent with mitochondrial 

disease and alive at the mid-year period of 2011, were included. Comprehensive pedigree 

tracing from all affected individuals, to define individuals at risk for development of 

mitochondrial disease was undertaken, allowing me, for the first time, to record the minimum 

prevalence of adult mitochondrial disease, to include pathogenic mutations in both 

mitochondrial and nuclear DNA. These figures will hold important implications for the 

evaluation of therapeutic interventions and provision of future services.  

Employing similar methodological techniques of case ascertainment in the same defined 

geographical region, I sought to establish the number of children born each year in the UK with 

potentially serious mitochondrial disease to women of child bearing age harbouring 

pathogenic mtDNA mutations. Using fertility data (live births per 1,000 person-years) obtained 

from the MRC Mitochondrial Disease Cohort UK, we assessed whether fertility is affected in 

pathogenic mtDNA mutation carriers. Additionally, we estimated the national prevalence of 

women with potentially inheritable mtDNA mutations, and used these data together with the 

most recent national total fertility rate (2013) to estimate the number of pregnancies per year. 

These findings are particularly relevant at present with the development of new IVF based 

techniques proposed to prevent the transmission of serious maternally-inherited mtDNA 

disease and with potential to shape legislative change. 

 

2.6  Disease impact and patient reported outcomes  

Although there is a vast spectrum of phenotypic expression throughout different genotypes, 

common symptoms are reported. Consistently, in the clinical setting and during patient focus 

group workshops, fatigue has been ranked the most common, debilitating symptom amongst 

our patients with mitochondrial disease, and is reported as an often neglected aspect of the 

disorder. I sought to determine the magnitude and severity of self-perceived fatigue in patients 

with mitochondrial disease, whilst evaluating putative biological mechanisms that have been 

recognised in other neurological disorders and chronic disease states. These findings will have 

important implications for future prioritisation of the evaluation of patient-centred therapies 
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and targeting of pharmacological interventions in a condition with few effective treatments 

and no known cure.  

Lastly, health related quality of life (HRQOL) is increasingly recognised as a fundamental 

patient-based outcome measure in both clinical and research settings. Generic outcome 

measures such as the SF-36 have been extensively validated to assess HRQOL across 

populations and different disease states. However, it is acknowledged that not all relevant 

aspects of a specific disorder may be captured, due to their inclusive construct. Hence there is 

a need to develop disease-specific HRQOL measures that focuses on the characteristic 

symptoms and impact of a specific disease. I sought to undertake the initial conceptualisation, 

development and preliminary psychometric assessment of a mitochondrial disease-specific 

HRQOL measure (Newcastle Mitochondrial-Quality of life measure (NMQ)). 
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Chapter 3. Introduction to Mitochondrial Medicine 

  



 

62 
 

3.1 Landmark Papers in Mitochondrial Medicine 

Gráinne S. Gorman and Patrick F Chinnery.  ‘Mitochondrial Diseases’ for Landmark Papers in 

Neurology: Oxford University Press, 2015. (in press) 
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Chapter 4. Clinical and molecular aspects of adult 

mitochondrial disease, due to pathogenic mutations 

in nuclear DNA  
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4.1 Adults with RRM2B-related mitochondrial disease have 

distinct clinical and molecular characteristics 

Pitceathly, R. D., C. Smith, C. Fratter, C. L. Alston, L. He, K. Craig, E. L. Blakely, J. C. Evans, J. 

Taylor, Z. Shabbir, M. Deschauer, U. Pohl, M. E. Roberts, M. C. Jackson, C. A. Halfpenny, P. D. 

Turnpenny, P. W. Lunt, M. G. Hanna, A. M. Schaefer, R. McFarland, R. Horvath, P. F. Chinnery, 

D. M. Turnbull, J. Poulton, R. W. Taylor and G. S. Gorman. Adults with RRM2B-Related 

Mitochondrial Disease Have Distinct Clinical and Molecular Characteristics. Brain. 

2012;135(11):3392-403. 

 

4.2 Mitochondrial disorders caused by Nuclear Genes; 

RRM2B-Related Mitochondrial Disease 

Gorman, Gráinne S., Robert D. S. Pitceathly, Douglass M. Turnbull and Robert W. Taylor. 

RRM2B-Related Mitochondrial Disease.  In Mitochondrial Disorders Caused by Nuclear Genes, 

171-182: Springer, 2013. 

 

4.3 GeneReview: RRM2B-Related Mitochondrial Disease 

Gráinne S. Gorman and Robert W. Taylor. RRM2B-Related Mitochondrial Disease 2014.  In: 

Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. 

GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2014. 

 

4.4 Clonal expansion of mtDNA mutations modulate SCA28 

phenotype 

Gorman GS, Pfeffer G, Griffin H, Blakely EL, Kurzawa-Akanbi M, Gabriel J, Sitarz K, Roberts M, 

Schoser B, Pyle A, Schaefer AM, McFarland R, Turnbull DM, Horvath R, Chinnery PF, Taylor RW. 

Clonal expansion of secondary mitochondrial DNA deletions associated with spinocerebellar 

ataxia type 28. JAMA Neurol. 2015;72(1):106-11.DOI: 10.1001/jamaneurol.2014.1753 
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4.5 Mutations in SPG7 cause chronic progressive external 

ophthalmoplegia through disordered mtDNA 

maintenance  

Gráinne S. Gorman, Pfeffer, Gerald, Helen Griffin, Marzena Kurzawa-Akanbi, Emma L. Blakely, 

Ian Wilson, Kamil Sitarz, David Moore, Julie L. Murphy and Charlotte L. Alston. "Mutations in 

the Spg7 Gene Cause Chronic Progressive External Ophthalmoplegia through disordered 

Mitochondrial DNA Maintenance. Brain. 2014;137(5):1323-1336 

 

4.6 Adult-onset Mendelian PEO Associated with 

Mitochondrial Disease 

Ewen W. Sommerville, Patrick F. Chinnery, Grainne S. Gorman, and Robert W. Taylor. Adult-

onset Mendelian PEO Associated with Mitochondrial Disease. Journal of Neuromuscular 

Diseases. 2014;119–133. DOI 10.3233/JND-140041 
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Chapter 5. Clinical and molecular aspects of 

mtDNA-related mitochondrial disease 
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5.1 Distal weakness with respiratory failure caused by the 

m.8344A>G “MERRF”  

Blakely, Emma L., Charlotte L. Alston, Bryan Lecky, Biswajit Chakrabarti, Gavin Falkous, 

Douglass M. Turnbull, Robert W. Taylor, and Grainne S. Gorman. "Distal weakness with 

respiratory insufficiency caused by the m. 8344A> G “MERRF” mutation. Neuromuscular 

Disorders. 2014;24(6):533-536. 

 

5.2 Novel MTND1 mutations cause isolated exercise 

intolerance, complex I deficiency and increased 

assembly factor expression 

Gorman, Grainne S., Emma L. Blakely, Hue-Tran Hornig-Do, Helen AL Tuppen, Laura C. 

Greaves, Langping He, Angela Baker et al. "Novel MTND1 mutations cause isolated exercise 

intolerance, complex I deficiency and increased assembly factor expression. Clinical 

Science.2015; DOI:10.1042/CS20140705 
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Chapter 6. Prevalence of adult mitochondrial disease 
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6.1 Prevalence of nuclear and mtDNA mutations related to 

adult mitochondrial disease 

Grainne S Gorman, Andrew M. Schaefer, Yi Ng, Nicholas Gomez, Emma L. Blakely, Charlotte L. 

Alston, Catherine Feeney, Rita Horvath, Patrick Yu-Wai-Man,Patrick F Chinnery, Robert W. 

Taylor, Douglass M. Turnbull, Robert McFarland. Prevalence of nuclear and mtDNA mutations 

related to adult mitochondrial disease. Annals of Neurology. 2015; DOI: 10.1002/ana.24362 

 

6.2 Mitochondrial Donation: How many women could 

benefit? 

Gorman, Gráinne S., John P. Grady, Yi Ng, Andrew M. Schaefer, Richard J. McNally, Patrick F. 

Chinnery, Patrick Yu-Wai-Man et al. "Mitochondrial Donation—How Many Women Could 

Benefit?." New England Journal of Medicine.2015; DOI: 10.1056/NEJMc1500960 
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Chapter 7. Impact of mitochondrial disease 
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7.1 Prevalence and causal factors of perceived fatigue in 

mitochondrial disease 

Gráinne S Gorman, Joanna L Elson, Jane Newman, Brendan Payne, Robert McFarland, Julia L 

Newton, Douglass M Turnbull. Perceived fatigue is highly prevalent and debilitating in patients 

with mitochondrial disease (in press Neuromuscular Disorders)  

 

7.2 Initial development and validation of a Mitochondrial 

Disease quality of life scale 

Elson, J. L., Cadogan M, Apabhai S, Whittaker R.G., Phillips A., Trennell M.I., Horvath R., Taylor 

R.W., McFarland R.,  McColl E., Turnbull D.M., Gorman G.S. Initial Development and Validation 

of a Mitochondrial Disease Quality of Life Scale. Neuromuscular Disorders. 2013;23(4):324-

329. 
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