
 

 

 

 

Development of in-vitro human 
and rat proximal tubule cell 

models as a platform for drug 
transporter and drug-drug 

interaction studies 
 

Sarah Faye Billington 

 
Thesis submitted for the degree of 

Doctor of Philosophy 

 

Institute for Cell and Molecular Biosciences, 

Newcastle University, UK 

September 2015 



 

i 
 

Abstract 

The kidney plays a key role in the systemic clearance of new molecular entities 
(NMEs). Approximately 32% of drugs exhibit significant renal elimination. It is 
estimated that nephrotoxicity accounts for 8 % of pre-clinical and 9% of clincal 
safety failures in drug development. Current pre-clinical models used to screen 
NMEs are poor predictors of human nephrotoxicity. The focus of my project is thus 
to develop predictive in-vitro rat and human primary proximal tubule cell models as 
a platform drug transporter and drug-drug interaction (DDI) studies. 

Primary human and rat proximal tubule cells (PTCs) were isolated from renal cortex 
using a combination of enzymatic digestion and density centrifugation. The isolation 
procedure was optimised to maximise cell yield and viability. Human and rat PTCs 
cultured on Transwell® inserts formed confluent monolayers with low paracellular 
permeability. Quantitative PCR showed mRNA expression of key renal transporters, 
OAT1, OAT3, OATP4C1, OCT2, BCRP, MATE1, MATE2-K, MDR1, MRP2, URAT1, 
NaPi-IIa, NaPi-IIc and PiT2, in human PTC monolayers. Orthologs of these 
transporters were also detected in rat PTC monolayers. 

The utility of human and rat PTC monolayers as predictive in-vitro models of 
proximal tubular drug handling were demonstrated using radiolabeled [3H]-tenofovir 
(TFV). Human and rat PTC monolayers exhibited a cell-to-media ratio greater than 
1, which indicated uptake and accumulation of TFV across the basolateral 
membrane. We also observed a predominant absorptive pathway of TFV. The 
transporters mediating the transport of TFV were identified using a cocktail of 
transporter inhibitors. The basolateral uptake of TFV was mediated by OATP4C1 
and OAT1. TFV had low affinities for the apical efflux transporters MRP2, MRP4, 
MDR1 and BCRP. The novel identification of OATP4C1 as a TFV transporter has 
led Gilead to develop assays for investigating OATP4C1-mediated DDIs, and the 
FDA to recognise OATP4C1 as a key renal transporter.  

The handling of radiolabelled inorganic [32P]-phosphate (Pi) by human and rat PTC 
monolayers was also investigated. Pi flux measurement revealed a net absorptive 
pathway of Pi across human and rat PTC monolayers. Uptake of Pi across the 
apical membrane was sodium dependent, saturable, and inhibited by parathyroid 
hormone, fibroblast growth-factor 23 and -klotho. Apical uptake of Pi was also 
inhibited by TFV in a saturable manner. This suggests that the mechanisim of TFV-
induced hypophosphatemia is not via TFV-induced nephrotoxicity, but TFV 
inhibition of Pi reabsorption. The outcomes of this work have initiated a patient 
clinical trial. This finding could have a large translational impact, as over 14.9 
million HIV-patients are pescribed TFV and TFV-related hypophosphatemia affects 
30 % of patients.  

The data highlight the importance of developing holistic cell based models of the 
proximal tubule. The outcomes of this work demonstrate the power of translational 
science to have an impact on how the pharmaceutical industry operates. 
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1. Introduction and literature review 

1.1. Improving research and development productivity  

Without a dramatic increase in research and development productivity, today’s 

pharmaceutical industry is not sustainable. For every dollar lost in declining 

product revenues due to patent expirations in 2012, large pharmaceutical 

companies were only able to replace on average 26 cents with new product 

revenues (Goodman, 2008). A key aspect of this problem is the decreasing 

number of NMEs approved by the regulatory bodies such as the European 

Medicines Agency (EMA) and United States Food and Drug Administration 

(FDA). With an estimated $50 billion in collective annual research and 

development spending by the large pharmaceutical companies, the average 

cost for these companies to bring an NME to market in 2013 was approximately 

$2.87 billion (Tufts Center for the Study of Drug Development, 2014).  

It is estimated that the probability of successful transition from pre-clinical to 

Phase I, Phase I to Phase II, Phase II to Phase III and Phase III to launch is 

59.52%, 35.52%, 61.95% and 90.35%, respectively with an overall success of 

11.83% between Phase I and regulatory approval (Tufts Center for the Study of 

Drug Development, 2014). Miscalculation of drug distribution is a key factor in 

attrition in drug development; it can result in a lack of efficacy or adverse drug 

reactions. This is highlighted in Figure 1.1, where the primary causes of NME 

failure from 2005 to 2010 at AstraZeneca are shown (Cook et al., 2014).  

Intracellular drug concentrations are important in the prediction of drug efficacy, 

toxicity and drug interactions, yet difficult to quantify in humans. Based upon the 

free drug hypothesis i.e. the free drug concentration is the same on both sides 

of any biomembrane (Smith et al., 2010) the plasma drug concentrations are 

typically used as a surrogate measure under the assumption that unbound drug 

concentrations in the systemic circulation mirror intracellular unbound drug 

concentrations (Chu et al., 2013). However this assumption is not valid for many 
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drug molecules which have poor membrane permeability (charged or polar 

compounds) or are extensively metabolised in-vivo (Muller and Milton, 2012). 

 

 

Figure 1.1: The primary reasons for project closures from 2005 to 2010 at 
AstraZeneca.  

Project closures were classified as failing due to safety (toxicology or 
clinical safety), efficacy (failure to achieve sufficient efficacy), 
pharmacokinetics/ pharmacodynamics (PK/PD, Bioavailability, 
formulation, target occupancy) or the strategy (molecular diverse 
back-up candidate molecules). The pre-clinical phase was defined as 
the phase from the first good laboratory practice toxicology dose of a 
candidate drug through to an investigational new drug application or 
first clinical trial application before first-in-human testing. Phase I was 
defined as the phase that included the first-in-human trials within a 
small trial population (<50 patients) and included safety, tolerability 
and dose-ranging studies. These studies were often conducted in 
healthy volunteers. Phase II trials were defined as trials that were 
aimed at evaluating the candidate drug's efficacy in a patient 
population, leading up to clinical proof of concept. Phase II was 
subdivided into Phase IIa and Phase IIb. Phase IIa studies were 
generally smaller (<200 patients) and designed to mainly address 
early evidence of drug activity, whereas Phase IIb studies included 
larger numbers of patients (<400 patients) and were designed to 
demonstrate clinical proof of concept and an understanding of dose 
response. Information taken from Cook et al., (2004). 
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Species and inter-individual differences in the pharmacokinetic and toxicokinetic 

profiles between pre-clinical animals and man result from differential expression 

of transport proteins and metabolic enzymes (Bleasby et al., 2006; Hilgendorf et 

al., 2007). Transport proteins in the cellular membrane assist in the passage of 

specific molecules across the phospholipid bilayer and can thus determine drug 

disposition. Substances may pass through transport proteins by diffusion or 

active transport. Metabolic enzymes are responsible for the conversion of 

lipophilic chemical compounds into more readily excreted hydrophillic products. 

The rate of drug metabolism therefore determines the duration and intensity of a 

drug’s pharmacological action. Predicting metabolic drug clearance from in-vitro 

studies using physiologically based pharmacokinetic models is well validated, 

however prediction of transporter mediated drug disposition has been 

hampered by a lack of critical information on the tissue localisation and 

expression of transporters in human and animal tissue. Unlike metabolic 

enzymes, selective inhibitors or antibodies for most drug transporters have not 

been identified.  

With the realisation that screening of drug molecules through animals is poorly 

predictive of the outcome in man, both the FDA and EMA have endeavoured to 

promote the development of alternative screening technologies to reduce and 

replace animal testing in pre-clinical assessments of drug safety and efficacy 

(Giacomini et al., 2010). One strategy to achieve this would be the development 

of in-vitro cell based screening assays, in which species differences in 

pharmacokinetics and toxicokinetics are identified before animal studies 

commence. In terms of the 3Rs (reduction, replacement, refinement), this would 

effectively reduce the total number of animals entering the mandatory pre-

clinical drug safety testing regime by identifying the 54% of compounds with the 

potential to generate human toxicity at the in-vitro screening stage. 

Realistic cell based models of drug transport in the liver have been established. 

The development of human and rat primary sandwich-cultured hepatocytes has 

given an insight into species differences and the prediction of in-vitro to in-vivo 

handling of drug molecules (Xu et al., 2008; Swift et al., 2010). In contrast, the 

development of similar predictive in-vitro methodology to understand the renal 

handling and metabolism of drug molecules has lagged behind, due to the lack 
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of a suitable in-vitro human or rat proximal tubule experimental model to 

investigate renal drug transport. In this project, we aim to characterise and 

validate primary renal proximal tubule models from human and rat kidney as in-

vitro platform for drug safety studies. 

1.2. Renal clearance of xenobiotic compounds 

The renal clearance of xenobiotic compounds is a mechanism essential to 

protecting the body from toxicity. Foreign chemical substances that undergo 

renal excretion include drug molecules; toxic contaminants found in food; toxins 

produced by micro-organisms; agrichemicals and heavy metals. The process of 

renal clearance can be broken down into three key mechanisms, glomerular 

filtration, tubular secretion and tubular reabsorption.  

Each human kidney is composed of approximately 1.2 million functional units 

called nephrons (Nyengaard and Bendtsen, 1992). Comparatively, each rat 

kidney contains roughly 30 000 nephrons (Haley and Bulger, 1983). Blood 

enters each nephron through afferent arterioles, passes through glomerular 

capillaries then leaves via efferent arterioles. In the glomerular capillaries water, 

urea, glucose, amino acids and other small molecules pass across the 

basement membrane of the Bowman’s capsule into the nephron due to Starling 

forces, in a process named ultrafiltration, leaving red blood cells, proteins and 

other large molecules too large to pass through the capillaries behind. This is a 

highly efficient process; on average the human kidneys collectively receive 20% 

of cardiac output (1000 mL of blood per minute) then form around 120 mL of 

protein free ultrafiltrate per minute (Levey et al., 2006; McArdle et al., 2010). 

The ultrafiltrate within the nephron then passes through the proximal tubule, the 

loop of Henle, the distal convoluted tubule and a series of collecting ducts to 

form urine. During the passage through renal tubules and ducts, solutes and 

water can be reabsorbed from the ultrafiltrate into the blood of peritubular 

capillaries. This two-step process is known as tubular reabsorption. Within the 

first step, solutes are taken up from the tubular lumen into an epithelial cell, by 

transport proteins, driven predominately by an inwardly directed sodium 

gradient. Solutes then exit out of the epithelial cells into peritubular capillaries 

via passive diffusion or transporter-mediated mechanisms.  
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More importantly, in the context of this project, molecules can also be 

transported from peritubular capillaries to the renal tubular lumen through 

proximal tubule epithelial cells in a process named tubular secretion. This two-

step process consists of uptake of molecules across the basolateral membrane 

followed by exit across the apical membrane.  

In terms of renal drug clearance, many drug molecules and their metabolites 

are excreted in urine solely as a consequence of glomerular filtration. If a 

xenobiotic is freely filtered from the renal glomerular capillaries into the 

Bowman’s capsule and is neither reabsorbed nor secreted, then its clearance 

rate will equal the glomerular filtration rate. Several techniques can be used to 

estimate an individual’s glomerular filtration rate, the most common method is to 

collect urine over a timed period to determine the amount of endogenous 

creatinine removed from the blood over a given time interval.  

In addition to clearance by glomerular filtration, some drug molecules 

(particularly small hydrophilic compounds) also undergo tubular secretion. The 

rate of renal clearance of these drug metabolites exceeds the rate of filtration by 

several-fold. For several drug molecules, a combination of glomerular filtration 

and tubular secretion can result in the total removal of the drug molecule from 

plasma in a single pass (compared to a glomerular filtration fractional clearance 

of 20 % in a single pass). Tubular secretion is primarily mediated in the proximal 

tubule of the nephron, to fulfil this role epithelial cells lining the proximal tubule 

express a number of drug transport proteins asymmetrically distributed to either 

the basolateral or apical membrane. 

1.3. Drug transporter expression in the proximal tubule  

Renal proximal tubular cells carry out specialised directional transport of various 

endogenous and exogenous molecules. Whilst all transporters expressed in the 

proximal tubule cells are vital in homeostasis, in the context of drug transport, 

several families of transporters are paramount. In 2010, the international 

transporter consortium (ITC) published a review titled; “Membrane transporters 

in drug development” in which transporters considered to be clinically relevant 

and should be investigated in drug development were highlighted (Giacomini et 

al., 2010). In 2012 and 2014 the EMA and Japanese pharmaceuticals and 
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medical devices agency (PMDA) published similar guidance (European 

Medicines Agency, 2012; Japanese Ministry of Health Labour and Welfare, 

2014). If renal secretion of the NME separately accounts for more than 25 % of 

drug elimination, renal transporters are considered to be clinically relevant. The 

renal transporters that should be studied in this instance according to the 

reviews are summarised in Table 1.1 and discussed in detail in this subchapter. 

Furthermore, a summary of transporters deemed clinically relevant in drug 

development by the regulatory authorities at the human and rat renal 

pharmacological barrier are compared in Figure 1.2. 

 

Table 1.1: Renal transporters that the FDA, EMA and PMDA consider to be 
clinically relevant in drug development.  

These transporters play key roles in determining the bioavailability, 
therapeutic efficacy, and pharmacokinetics of a variety of drug 
molecules. Information gathered from Giacomini et al., 2010; EMA, 
2012; and Japanese Ministry of Health Labour and Welfare, 2014. 

 

The uptake of molecules from circulation across the basolateral membrane of 

proximal tubular cells is generally mediated by the solute carrier (SLC) 

transporter superfamily. Many drugs are known substrates of the SLC 

Transporter ITC/FDA EMA PMDA 

OCT1 - consider - 

OCT2 + + + 

OAT1 + + + 

OAT3 + + + 

MATEs consider consider + 

MDR1 + + + 

BCRP + + + 

MRPs consider - - 

OATP4C1 consider - - 
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superfamily therefore they significantly contribute to the pharmacokinetics and 

toxicity of drugs. SLC transporters can be grouped into three categories by their 

transport mechanisms: (i) facilitated diffusion via a concentration gradient (ii) 

sodium utilisation or hydrogen co-transport, and (iii) substrate exchange 

(Kusuhara and Sugiyama, 2009). All SLC transporters act independently of 

adenosine triphosphate (ATP) hydrolysis. The main renal xenobiotic 

transporters include members of the organic organic anion transport (OAT), 

organic organic anion transporting polypeptide (OATP), and organic cation 

transport (OCT) families. 

The efflux of molecules across the apical membrane of proximal tubule cells 

into ultrafiltrate is typically mediated by the ATP-binding cassette (ABC) and 

SLC transporter superfamilies. The physiological function of ATP binding 

cassette transporters (ABC transporters) is to protect cells against toxic 

compounds and metabolites. ABC transporters utilise energy from ATP 

hydrolysis to efflux substrates by active transport. The main renal efflux 

transporter families include the multidrug resistance-associated protein (MRP) 

and multidrug and toxin extrusion (MATE) familes, in addition to multidrug 

resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP). 

 

 

 

A 



 

8 
 

 

 

Figure 1.2: Species differences in the expression of transport proteins 
clinically relevant in drug development.  

A wide range of transporters are expressed in human (A) and rat (B) 
proximal tubule cells to regulate the excretion and reabsorption of 
endogenous and exogenous organic anions, cations, peptides and 
nucleosides, thereby influencing the plasma levels of these 
substances. Renal transporters that the FDA, EMA and PMDA 
consider to be clinically relevant in drug development include the 
OATs, OATPs, OCTs, MATEs, MDR1, BCRP and MRPs. Species 
differences in renal transporter expression are listed. OAT2/Oat2 is 
present at both the apical and basolateral membrane of human 
proximal tubule cells, but only the apical membrane in rodents. Apical 
OAT4 has only been identified in humans and primates. Only one 
OATP isoform has been characterised at the apical membrane of 
human proximal tubule cells, OATP1A2. In contrast, rodents are 
thought to express multiple isoforms including Oatp1a1, Oatp1a2, 
Oatp1a3_v1 and Oatp1a3_v2. Oct1 has been identified at the 
basolateral membrane of rodent proximal tubule cells but comparative 
studies in humans have failed to detect OCT1 in human kidney. 
MATE2-K appears to be exclusively expressed in the apical 
membrane of human proximal tubule cells. In humans apical MDR1 is 
encoded by one gene, whereas rats possess two isoforms Mdr1a and 
Mdr1b. BCRP is expressed at low levels at the apical membrane of 
human proximal tubular cells, whilst Bcrp is expressed abundantly in 
rat kidney. Additionally, Mrp5 is expressed at the basolateral 
membrane of rat proximal tubular cells but absent from human kidney. 

B 
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1.3.1. OAT family 

The OAT isoforms OAT1/Oat1 (SLC22A6), OAT2/Oat2 (SLC22A7), OAT3/Oat3 

(SLC22A8) and URAT1/Urat1 (SLC22A12) are found in both humans and rat 

proximal tubule cells. OAT4 (SLC22A11) has only been found in humans and 

primates thus far (VanWert et al., 2010). In both species OAT1/Oat1 and 

OAT3/Oat3 are localised to the basolateral membrane and mediate the 

transport of organic anions and anionic drugs (OA-) from blood into the tubule. 

OAT2 is present in the basolateral and apical membrane of human proximal 

tubule cells, but only the apical membrane in rodents (Burckhardt and 

Burckhardt, 2011; Shen et al., 2015). OAT4 and URAT1/Urat1 are located at 

the apical membrane.  

Oat1 was the first OAT to be cloned within rat kidney in 1997 (Sekine et al., 

1997; Sweet et al., 1997). The gene is located on chromosome 11q12.3, and is 

co-localised with the gene for OAT3 (Eraly et al., 2003). Oat3 was first cloned 

from rat brain in 1999 (Kusuhara et al., 1999). OATs are 542 to 556 amino acids 

long with 12 predicted transmembrane spanning domains (Koepsell and Endou, 

2004). They function as antiporters; the uptake of extracellular OA- across the 

basolateral membrane is driven by the efflux of intracellular α-ketoglutarate 

(Berkhin and Humphreys, 2001). Thus, OAT1/Oat1 and OAT3/Oat3 are 

functionally coupled to sodium driven mono- and di-carboxylate transporters 

that establish and maintain the intracellular extracellular gradients of lactate, 

nicotinate and α-ketoglutarate. 

OAT1/Oat1 and OAT3/Oat3 substrates, listed in Table 1.2, are generally 

monovalent or divalent anions that are less than 500 Daltons (Giacomini et al., 

2010); although OAT3 can also transport some positively charged drugs such 

as cimetidine (Wright, 2005). Studies of OAT1/Oat1 and OAT3/Oat3 in 

expression systems such as Xenopus Laevis oocytes and transfected cell lines 

have shown that they have wide overlapping substrate specificities (Rizwan and 

Burckhardt, 2007). OAT1/Oat1 is primarily known for its high affinity transport of 

para-aminohippurate (PAH) from renal proximal tubule cells (Hosoyamada et al., 

1999). OAT3 can also transport PAH but with slightly lower affinity (Cha et al., 

2001). Studies using Oat1 and Oat3 knock out mice have led to identification of 

endogenous OAT substrates and initial assessments of the influence of each 
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transporter on the renal handling of selected compounds (Eraly et al., 2006; 

Vallon et al., 2008). Genetic variants in the OATs have not been associated with 

clinically significant DDIs or changes in the amino acids transcribed (Shin et al., 

2010). 

OAT1/Oat1 and OAT3/Oat3 can be the site of DDIs during competition of two or 

more drugs for the same transporter, particularly for drugs with a narrow 

therapeutic index. For example, several case studies have reported an increase 

in serum urate levels during antihypertensive therapy with low-dose diuretics 

(toasemide and hydrochlorothiazide). The diuretics are substrates of OATs and, 

by counter exchange, cause increased urate absorption resulting in 

hyperuricemia. Furthermore, OAT1 and OAT3 can also mediate cell damage by 

transporting cytotoxic compounds. Probenecid can be used to reduce the 

nephrotoxic liability of therapeutics by inhibiting transport of potentially 

nephrotoxic drugs into proximal tubular cells. Cidofovir is toxic in the proximal 

tubular cells, co-administration with probenecid results in a reduced 

accumulation of cidofovir in the proximal tubule cells and thus reduced 

nephrotoxicity (Cundy et al., 1996).  

Oat2 expression was first identified in rat liver (Simonson et al., 1994; Sekine et 

al., 1998). Oat2 was later found to be highly expressed at the mRNA level in rat 

kidney (Buist et al., 2002; Kobayashi et al., 2005). Evidence for similar renal 

expression of OAT2 in human kidney was not published until recently (Cheng et 

al., 2012). OAT2 interacts with a wide range of nucleobases, nucleosides and 

nucleotides. Three splice variants of OAT2, which result in amino acid changes, 

have been identified (Emami Riedmaier et al., 2012). The clinical consequences 

of these are yet to be investigated. OAT2 has been implicated in the renal 

handling of creatinine; previous evidence suggested that the basolateral organic 

cation transporter OCT2 served as the primary means of uptake into proximal 

tubular cells. This theory was challenged when knock out of Oct1/Oct2 

expression in mice had no effect creatinine clearance, but the presence of 

cimetidine and PAH significantly reduced creatinine secretion (Eisner et al., 

2010). At physiologically relevant creatinine concentrations, the affinity of 

creatinine for OAT2 has been shown to be greater than the affinity for OCT2, 

OCT3, MATE1 and MATE-2K (Lepist et al., 2014; Shen et al., 2015). OAT2 
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mRNA expression is reported to be 3-fold higher than expression of OCT2 

(Cheng et al., 2012). Collectively this suggests that OAT2 plays a major role in 

the tubular secretion of creatinine. 

OAT4 has been linked with drug exit into the ultrafiltrate and the uptake of 

estrone-3-sulphate (E3S) and urate from ultrafiltrate into the cell. It effluxes OA- 

accumulated within the cell by OAT1/Oat1 and OAT3/Oat3 in exchange with 

extracellular chloride ions. Additionally, urate and E3S are reabsorbed by OAT4 

from ultrafiltrate in exchange for dicarboxylate/hydroxyl ions. The gene for 

OAT4 is located on chromosome 11q13.1 and is co-localised with the gene 

encoding URAT1 (Eraly et al., 2003). URAT1/urat1 is the major urate 

reabsorbing transporter in proximal tubular cells and the target of uricosuric 

drugs. Many genetic variants in SLC22A12 (URAT1) have been associated with 

hypouricemia (Enomoto et al., 2002; Anzai et al., 2007; Roth et al., 2012). 
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 Table 1.2: Substrates of OAT1/Oat1 and OAT3/Oat3 transporters. 

 

1.3.2. OATP family 

In human renal proximal tubule cells only two OATP family isoforms have been 

characterised, basolateral OATP4C1 (SLCO4C1) and apical OATP1A2 

(SLCO1A2). In contrast, rodents are thought to express multiple OATP isoforms 

including basolateral Oatp4c1, and apical Oatp1a1 (SLCO1A1), Oatp1a2, 

Oatp1a3_v1 (SLCO1A3, previously known as Oat-K1), and Oatp1a3_v2 

(SLCO1A3, previously known as Oat-K2) (Hagenbuch B, 2004).  

OATPs are located in numerous epithelia throughout the body. They mediate 

the sodium-independent transport of a diverse range of amphiphilic organic 

compounds with a molecular weight greater than 350 Daltons (Hagenbuch and 

Meier, 2003; Roth et al., 2012). The general predicted structure consists of 12 

Substrates of OAT1/Oat1 and OAT3/Oat3 

Endogenous compounds α-Ketoglutarate 

 Prostaglandin E2/F2α 

 Cyclic nucleotides 

 Folate 

 Urate 

 Estone-3-Sulphate 

 Conjugated hormones 

Drugs  

Antibiotic Benzylpenicillin, Cephaloridine, Tetracycline 

ACE inhibitor Captopril 

Antiviral Acyclovir, Adefovir 

Histamine receptor 2 antagonist Cimetidine, Ranitidine 

Anti-inflammatory Ibuprofen, Diclofenac 

Diuretic Torasemide, Chlorothiazide 

Statin Pravastatin, Fluvastatin 

Cytostatic Methotrexate, Chlorambucil 

Uricosuric Probenecid, Benzbromarone, Losartan 
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transmembrane spanning domains (Hagenbuch and Gui, 2008). The majority of 

substrates are OA-, although some OATPs have been reported to also transport 

neutral and cationic compounds (Bossuyt et al., 1996). They function as 

antiporters, the uptake of organic compounds is coupled with the efflux of 

bicarbonate, glutathione, or glutathione-s-conjugates in an electroneutral 

exchange (Takeuchi A, 2001; Badagnani I, 2006). The overall direction of 

transport is dependent upon the local substrate gradients. Examples of 

OATP4C1 and OATP1A2 substrate are listed in Table 1.3 and Table 1.4. 

Oatp4c1 was first cloned from rat kidney in 2004, based upon northern blot 

analysis it was thought to be kidney-specific (Mikkaichi T, 2004). More recently 

however, microarrays have suggested that it is also expressed within the liver, 

however, this has not yet been verified with PCR or protein analysis (Bleasby et 

al., 2006). The human gene is located on chromosome 5q21 (Hagenbuch B, 

2004; Mikkaichi et al., 2004). From rat Oatp4c1 localisation studies it is 

assumed that human OATP4C1 is also located on the basolateral membrane of 

proximal tubule cells. Oatp4c1 is reported to possess multiple substrate 

recognition sites. So far, two distinct recognition sites for E3S and digoxin (DX) 

have been characterised (Mikkaichi et al., 2004). 

Oatp1a2 (SLCO1A2) first cloned within rat liver, is located on human 

chromosome 12p12 (Kullak-Ublick GA, 1995; Hagenbuch B, 2004). In human 

and rat proximal tubular cells OATP1A2/Oatp1a2 is expressed at the apical 

membrane (Lee et al., 2005), where it is thought to be responsible for either the 

reabsorption from or the secretion of xenobiotics into ultrafiltrate. In the kidney 

OATP1/Oatp1 expression is stimulated by testosterone and inhibited by 

oestrogen. As a consequence, kidney Oatp1 is less abundantly expressed in 

female compared to male rats (Lu et al., 1996; Gotoh et al., 2002). Functional 

downregulation of OATP1/Oatp1 can occur via serine phosphorylation by 

extracellular ATP (Glavy et al., 2000). Furthermore, protein kinase C activation 

in Oatp1a expressing Xenopus Laevis oocytes leads to decreased transport of 

E3S (Guo and Klaassen, 2001). Altered expression levels and polymorphisms 

of OATP1A2 are associated with disease states and altered drug disposition e.g. 

imatinib (Yamakawa et al., 2011), and methotrexate (Badagnani et al., 2006). 

Six nonsynonymous single nucleotide polymorphisms (SNPs) have been 
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identified (T38C (I13T), A516C (E172D), G559A (A187T), A382T (N128Y), 

A404T (N135I), and C2003G (T668S)), the allelic frequencies of which appear 

to be ethnicity-dependent (Lee et al., 2005). A516C and A404T variants have a 

reduced capacity for mediating the cellular uptake of OATP1A2 substrates such 

as E3S, whereas G559A and C2003G variants appear to have substrate-

dependent changes in transport activity.  

 

Table 1.3: Substrates of OATP4C1/Oatp4c1 transporters. 

   

Substrates of OATP4C1 

Endogenous compounds Cyclic nucleotides 

 Estrone-3-sulphate 

 Thyroid hormones 

Drugs  

Cytostatic Methotrexate 

Cardiac glycoside Ouabain, Digoxin 

Antidiabetic Sitagliptin 
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Table 1.4: Substrates of OATP1A2/Oatp1a2 transporters. 

 

1.3.3. OCT family 

The OCT isoforms OCT2/Oct2 (SLC22A2), and OCT3/Oct3 (SLC22A3) are 

found in both humans and rat proximal tubule cells. Oct1 (SLC22A1) has been 

identified at the basolateral membrane of rodent proximal tubular cells by 

northern analysis and RNA in-situ hybridisation (Gründemann D, 1994; Karbach 

et al., 2000). However in-situ hybridization studies have failed to detect OCT1 in 

human kidney. It is reported to be primarily expressed in the liver, indicating a 

species difference in renal transporter expression (Gorboulev V, 1997; Zhang et 

al., 1997). 

Oct1 was the first OCT isoform to be cloned in 1994 from rat kidney 

(Gründemann D, 1994). A human orthologue was later cloned in 1997 

(Gorboulev et al., 1997). By homology screening, a second member Oct2 was 

identified in rat kidney (Okuda et al., 1996) and later cloned in human 

(Gorboulev et al., 1997). OCT3/Oct3 was independently cloned and identified 

Substrates of OATP1A2 

Endogenous compounds Anionic cyclic and linear peptides 

 Estrone-3-sulphate 

 Thyroid hormones 

 Bile acids 

 Steroid hormones and conjugates 

Drugs  

Antibiotic Erythromycin, Rifampicin 

Antiviral Ritonavir, Lopinavir 

Antihypertensive Enalapril, Verapamil 

Statin Pravastatin, Rosuvastatin 

Anti-inflammatory Dexamethosone 

Narcotic Naloxone 

Antihistamine Fexofenadine 

Cytostatic Imatinib, Methotrexate 

β-blocker Acebutolol, Atenolol 
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as the extraneuronal monoamine transporter in 1998 (Grundemann et al., 1998; 

Kekuda et al., 1998; Wu et al., 1998). OCTs encode proteins that are 542 to 

556 amino acids long with 12 predicted transmembrane spanning domains 

(Koepsell and Endou, 2004). Oct1, OCT2/Oct2, and OCT3/Oct3 located at the 

basolateral membrane of proximal tubule cells mediate the passive facilitated 

diffusion of a broad range of structurally diverse organic cations (OC+s) down 

their electrochemical gradients (Urakami et al., 1998; Karbach et al., 2000). 

Therefore transport can occur in either direction and is driven not only by the 

difference in substrate concentration but also by membrane potential. Due to 

the negative resting membrane potential of the cell maintained by Na+/K+ 

ATPase, transport is favoured at normal membrane potential (Wright SH and 

Dantzler WH, 2004). The functional characteristics of these transporters have 

been studied in expression systems such as Xenopus Laevis oocytes and 

transfected cell lines. They have extensively overlapping substrate specificities. 

The OC+s range in size from 60 to 350 Daltons, with at least one positively 

charged moiety at physiological pH (Jonker and Schinkel, 2004), examples are 

shown in Table 1.5.  

OCT regulation can occur at the transcriptional or protein level. The OCT2/Oct2 

promoter region has androgen receptor elements. Activation via steroid 

hormones increases both OCT2/Oct2 mRNA levels and activity (Shu et al., 

2001). Additionally phosphorylation of Oct1 and OCT2/Oct2 by tyrosine kinase 

and protein kinase A, C and G can alter activity (Roth et al., 2012). Whilst 

OCT3/Oct3 activity can be altered by both the mitogen activated protein kinase 

pathway and calcium-calmodulin pathway. Oct1, Oct2, Oct3 knock out mice 

have been generated with no obvious phenotype (Jonker et al., 2001; Zwart et 

al., 2001; Jonker et al., 2003). Similarly no polymorphisms in OCTs are 

associated with pathologies. OCT1 has 18 SNPs that alter amino acids – 6 

have reduced transport activity and 1 has increased activity (Kerb et al., 2002). 

OCT2 has 10 variants with the exception of a premature stop codon, all are 

functionally active, though substrate selectivity and the ability to transport may 

be slightly altered (Koepsell et al., 2007). 5 non-synonymous polymorphisms 

have been identified in OCT3, 3 of which show reduced transport activity 

(Sakata et al., 2010). In Chinese and Korean populations the OCT2 variant 

A270S has been associated with a significant reduction in renal clearance of 
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metformin (Song et al., 2008; Wang et al., 2008). Tubular secretion of 

creatainine can be inhibited by OCT2 substrates. Therefore, alternative 

methods should be used to assess golmerular filtration rate in NMEs capable of 

OCT2 inhibition.  

 

Table 1.5: Substrates of OCT2/Oct2 and OCT3/Oct3 transporters. 

 

1.3.4. MATE family 

Within mammals there are two MATE proteins, MATE1/Mate1 (SLC47A1) and 

MATE2 (SLC47A2). MATE1/Mate1 is expressed in both human and rat kidney. 

Substrates of OCT2/Oct2 and OCT3/Oct3 transporters 

Endogenous compounds Creatinine 

 Bile acids 

 Choline 

 Hormones 

 Neurotransmitters 

 L-Carnitine 

 Guanidine 

Drugs  

Antidiabetic Metformin 

Antihypertensive Debrisoquine, Verapamil 

Antiviral Amantadine 

Histamine H2 receptor antagonist Cimetidine, Ranitidine 

Antiparkinsonian Amantadine, Memantine 

Antiarrhythmic Procainamide 

-blocker Propranolol 

Diuretic Amiloride 

Cytostatic Cisplatin, Oxaliplatin 

Nicotinic receptor partial agonist Varenicline 

Antidepressant Citalopram, Desipramine 

Antimalarial Quinine 



 

18 
 

Currently the MATE2 splice variant, MATE2-K, is the only member of the 

subfamily in which functional transport activity has been demonstrated. MATE2-

K appears to be exclusively expressed in the apical membrane of human renal 

proximal tubular cells, whilst MATE2 is expressed in intracellular vesicles 

(Komatsu et al., 2011).  

MATE1, first cloned within humans is highly expressed on the apical membrane 

of both rat and human proximal tubular cells (Otsuka et al., 2005; Terada et al., 

2006). A paralog of MATE1, MATE-2K was first cloned from human kidney in 

2006 (Masuda et al., 2006). The predicted structure is 12 transmembrane 

domains (He et al., 2010). Both MATEs expressed at the apical membrane of 

proximal tubular cells appear to function in conjunction with basolateral OCT2 to 

mediate the excretion of OC+s from blood into ultrafiltrate (Dresser et al., 2001; 

Otsuka et al., 2005). Initial characterisation of the transporter when it was first 

identified within Vibrio Parahaemolyticus described MATE1 as a secondary 

active antiporter (Morita et al., 2000). It couples the movement of toxic OC+ out 

of the cell, against the concentration gradient using the energetically favourable 

inward movement of hydrogen and sodium ions along their electrochemical 

gradient. Similar to OCTs, substrates of these transporters include structurally 

diverse low molecular weight OC+s. In addition select OA-s such as E3S, 

acyclovir and gancyclovir are reported to be substrates for MATE1 (Tanihara et 

al., 2007). Functional characterisation in-vitro studies in membrane vesicles and 

transfected cell lines have revealed an extensive overlapping substrate 

specificity but different binding affinities. The functional characteristics of these 

transporters have been studied in expression systems such as Xenopus Laevis 

oocytes and transfected cell lines. They have extensively overlapping substrate 

specificities (Masuda et al., 2006; Tanihara et al., 2007). Examples of 

endogenous and exogenous substrates are shown in Table 1.6. 

The ubiquitously expressed transcription factors specificity protein 1 (SP1) and 

activator protein 1 (AP1) are reported to affect MATE1/Mate1 transcription in 

both human and rat proximal tubule cells (Kajiwara et al., 2007; Ha Choi et al., 

2009; Baumann et al., 2010). In MATE1 and MATE2-K 11 and 2 

nonsynonymous SNPs have been identified (Chen et al., 2009; Kajiwara et al., 

2009; Yonezawa and Inui, 2011). The mutations G64D and V480M in MATE1 
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and G211V in MATE2-K cause a complete loss of membrane expression. Thus 

these variants can affect the pharmacokinetics of substrates. The allelic 

frequency of dysfunctional mutations is less than 5% and homozygous carriers 

have not been found. Polymorphisms in both the SP1 and AP1 transcription 

factor binding regions have also been identified (rs72466470, rs2252281), 

which result in a decreased binding and a reduced transcriptional activity. The 

frequency of these polymorphisms is 3.7 and 23.1 to 44.5 %, respectively. The 

MATE genes are also located in the commonly deleted region in Smith-Magenis 

syndrome, a genomic disorder of chromosome 17p11.2 (Bi et al., 2002; Slager 

et al., 2003). The disease is a developmental disorder, with major features 

including mild to moderate intellectual disability, distinctive facial features, sleep 

disturbances and behavioural problems. The relevance of MATE1 and MATE2-

K to the progression of this disorder is under investigation. Experiments in 

Mate1 knock out mice have identified the role of MATE1 in the 

pharmacokinetics of many drug molecules. For instance in Mate1 knock out 

mice, plasma and renal concentrating of metformin increased and urinary 

excretion decreased, indicating Mate1 plays a role in the tubular secretion of 

metformin (Tsuda et al., 2009). In heterozygous Mate1 knock out mice the 

pharmacokinetics of metformin were not significantly different from wild type, 

suggesting Mate1 is not the rate limiting step in the tubular secretion of 

metformin (Toyama et al., 2010). 
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Table 1.6: Substrates of MATE1/Mate1 and MATE2-K transporters. 

 

1.3.5. MDR1  

MDR1/Mdr1 (ABCB1) first cloned from human carcinoma cells (Ueda et al., 

1987), is highly expressed on the apical membrane of human and rat proximal 

tubule cells. In humans MDR1 is encoded by one gene, whereas rats possess 

two isoforms Mdr1a and Mdr1b (Bush JA, 2002). 

The function of apically expressed MDR1/Mdr1 is the movement of substrates 

out of the cell for renal clearance. ATP hydrolysis provides the energy for active 

transport, enabling the transporter to function against steep concentration 

gradients. Endogenous and exogenous substrates of human and rat 

MDR1/Mdr1 have been identified through functional studies in membrane 

vesicles and transfected cell lines. They transport a broad range of therapeutics, 

as shown in Table 1.7. Substrates preferentially are neutral or hydrophobic OC+ 

molecules ranging in size from less than 200 to 1900 Daltons. The transporter 

Substrates of MATE1/Mate1 and MATE2-K transporters 

Endogenous compounds Peptides 

 Nucleosides 

 Creatinine 

 Thiamine 

 Guanidine 

 Estrone-3-sulphate 

Drugs  

Antidiabetic Metformin 

Antibiotic Cephalexin, Cephradine 

Antiviral Acyclovir, Gancyclovir 

Antihistamine Fexofenadine 

Cytostatic Oxaliplatin, Topotecan 

Histamine H2 receptor antagonist Cimetidine 

Antiarrhythmic Quinidine, Verapamil, Procainamide 

Antimalarial Pyrimethamine 
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consist of 1276 to 1280 amino acids in a tandem duplicated structure, with 12 

hydrophobic transmembrane domains (Aller et al., 2009). Containing at least 

three distinct substrate binding sites within the ligand binding domain and two 

ATP binding motifs (Shapiro et al., 1999). A high resolution structure of mouse 

Mdr1 has been described (Aller et al., 2009). Cholesterol stimulates basal 

ATPase activity (Rothnie et al., 2001; Gayet et al., 2005). It is an endogenous 

substrate of MDR1 (Garrigues et al., 2002). Furthermore, it has been shown 

that cholesterol effects the affinity of low molecular weight molecules (350 to 

500 Daltons) for MDR1 (Kimura et al., 2007). As a result it has been 

hypothesised that cholesterol may directly bind or allosterically affect the 

substrate binding site to help the recognition of smaller substrates. Many 

inhibitors of MRD1/Mdr1 contain aromatic ring structures, a tertiary or 

secondary amino group, and have high lipophilicity (Wang et al., 2003). They 

can be categorised into either high-affinity substrates that bind non-

competitively, or efficient inhibitors of ATP hydrolysis. 

Protein kinases, chaperones (HSP90), ubiquitin-related enzymes, and 

transcription factors regulate the expression and function of MDR1. A variety of 

mitogen-activated protein kinase signalling inhibitors have been shown to 

reduce expression of MDR1/Mdr1. Some have suggested phosphorylation of 

serine residues in the linker region of MDR1/Mdr1 is essential for the 

translocation and function. Several groups have reported conflicting results on 

the role of the transcription factor, AP1. Some have demonstrated that AP1 

downregulates expression (Liu et al., 2008; Bark and Choi, 2010), whereas 

other have reported that AP1 activates expression (Guo et al., 2008; Chen et al., 

2014). Suggesting that dual regulation must occur at the site of the AP1 site of 

the MDR1 promoter (Katayama et al., 2014). Oestrogen mediates down-

regulation of MDR1/Mdr1 expression (Mutoh et al., 2006). A number of 

microRNAs (miR-27a, miR-451) have been reported to modulate expression of 

MDR1/Mdr1 (Katayama et al., 2014). 

MDR1/Mdr1 is highly polymorphic, over 50 SNPs have been identified in both 

the coding and noncoding regions of the gene, with significant linkage 

disequilibrium (Marzolini et al., 2004; Coller et al., 2006). SNPs in exons 26 

(C3435T), 21 (G2677T/A), and 12 (C1236T) have been characterised in a 
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number of ethnic populations. The frequencies of the variant alleles differ in 

various populations (Marzolini et al., 2004). Expression of G2677T and C3435T 

are reported to protect Chinese but not Caucasian men from late-onset 

Parkinson’s disease (Lee et al., 2004; Tan et al., 2004; Tan et al., 2005). In 

addition, G2677T/A is linked with lower plasma concentrations of fexofenadine, 

a higher risk of cyclosporine A failure in steroid resistant ulcerative colitis, and 

tacrolimus toxicity (Yamauchi et al., 2002; Yi et al., 2004; Daniel et al., 2007). 

C3435T is associated with an increased efflux of rhodamine 123, reduced efflux 

of nelfinavir, and no effect on fexofenadine efflux (Hitzl et al., 2001; Drescher et 

al., 2002; Fellay et al., 2002). C1236T genotype has been linked to an 

increased exposure to irinotecan and increased response to temozolomide, 

cyclosporine A (Zhou et al., 2005; Zhang et al., 2008; Schaich et al., 2009). 

Direct clinical evidence of the contribution of MDR1/Mdr1 inhibition or induction 

to DDIs is limited due to cross specificity of MDR1/Mdr1 substrates with the 

drug metabolising enzymes CYP3A4. DX is a MDR1/Mdr1 substrate that is not 

metabolised by cytochrome P450 enzymes (Hinderling and Hartmann, 1991; 

Lacarelle et al., 1991). Therefore it is commonly used as a model substrate to 

determine MDR1/Mdr1 transporter activity in-vivo (Endres et al., 2006). Co-

administration of DX with other MDR1/Mdr1 substrates or inhibitors (such as 

verapamil, quinidine, itraconazole and ritonavir) can significantly affect the 

bioavailability and/or systemic clearance (Woodland et al., 1998; Hunt, 2005). 

DX has a narrow therapeutic window thus increases in plasma concentration 

can cause digitalis toxicity. 
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Substrates of MDR1/Mdr1 transporters 

Endogenous compounds Steroids 

 Lipids 

 Bilirubin 

 Bile Acids 

 Guanidine 

 Estrone-3-sulphate 

 Opioid peptides 

Drugs  

Analgesic Asimadoline 

Anticancer Vinblastine, Paclitaxel, Etoposide 

HIV protease inhibitor Saquinavir, Ritonavir 

-blocker Talinolol 

Histamine H2 receptor antagonist Cimetidine, Ranitidine 

Antigout agent Colchicine 

Antidiarrheal agent Loperamide 

Antiemetic Domperidone, Ondansetron 

Antifungal Ketoconazole, Itraconazole 

Antihistamine Fexofenadine, Cetirizine 

Calcium channel blocker Verapamil, Diltiazem 

Cardiac glycoside Digoxin 

Antiarrhythmic agent Quinidine, Losartan 

Statin Atorvastatin 

Immunosuppressant agent Cyclosporine A, Tacrolimus 

Corticosteroid Dexamethasone, Hydrocortisone 

Antibiotic Erythromycin, Gramicidin D 

 

Table 1.7: Substrates of MDR1/Mdr1 transporters. 

 

1.3.6. BCRP 

BCRP/Bcrp (ABCG2) was first identified within MCF-7/AdrVp breast cancer 

cells (Doyle LA, 1998). It is primarily expressed in the small intestine, blood 

brain barrier, liver and placenta. The transporter is also expressed within human 

proximal tubular cells (Huls et al., 2008); however its expression level is very 
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low in comparison to the small intestine and liver. Alternatively the transporter is 

abundantly expressed in rat kidney. 

BCRP/Bcrp has a major role in drug disposition and distribution, similar to 

MDR1. BCRP/Bcrp is an apical efflux transporter that mediates the movement 

of substrates out of the cell for renal clearance. ATP hydrolysis provides the 

energy for active transport, enabling the transporter to function against steep 

concentration gradients. Unlike the other multi-substrate transporters 

BCRP/Bcrp consists of 655 amino acids and six transmembrane domains (Ni et 

al., 2010). This implies that the transporter need to dimerise to be functional 

(Nicolle et al., 2009). A homotetramer structure has been reported in humans 

(Xu et al., 2004; McDevitt et al., 2006). The transporter possess a very broad 

substrate specificity that overlaps with MDR1/Mdr1 which increases the barrier 

function of the efflux transporters. 

Table 1.8 lists examples of BCRP/Bcrp endogenous and exogenous substrates. 

High-speed screening and quantitative structure activity relationship analysis 

methods suggest that one amine bonded to one carbon of a heterocyclic ring is 

an important component for drug interaction with BCRP/Bcrp (Saito et al., 2006; 

Nicolle et al., 2009; Giacomini et al., 2010). Many inhibitors of MRD1/Mdr1 are 

also inhibitors of BCRP/Bcrp with varying affinity. They can be categorised into 

either high-affinity substrates that bind non-competitively, or efficient inhibitors 

of ATP hydrolysis. 

BCRP expression can be regulated at the transcriptional and protein level. In 

humans the predominant promoter is E1B/C that contains multiple SP1 sites, 

followed by E1A (Bailey-Dell et al., 2001). Transcription factors that bind to cis 

elements upstream of the BCRP E1B/C promoter with subsequent activation or 

repression of the promoter include hypoxia-inducible factor 1α, estradiol, 

progesterone, interleukin-6, aryl hydrocarbon receptor agonists, peroxisome 

proliferators-activated receptor gamma, zinc finger protein - GLI1, nuclear factor 

2, and transforming growth factor-β (Natarajan et al., 2012). Epigenetic 

regulation of the ABCG2 gene has been reported in renal cancer cell lines. 

Elevated BCRP levels have been associated with hypomethylation and 

unmethylation of CpG islands, and histone hyperacetylation of the promoter 

region (To et al., 2006). BCRP expression can be downregulated by microRNAs 
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(miR-519c, miR520h, miR328) (Mao and Unadkat, 2015). Serine/threonine-

protein kinase 1 phosphorylates BCRP/Bcrp which promotes its dimerisation 

and trafficking to the plasma membrane (Xie et al., 2008).  

More than 80 SNPs of the ABCG2 gene have been identified although few 

modify transport activity (Mao and Unadkat, 2015). Of these, the V12M and 

Q141K alleles are found at high frequency in East Asians (30 to 60%) with a low 

frequency in Caucasian and African-American populations (5 to 10%). The 

Q141K variant results in a reduced protein expression of BCRP/Bcrp 

(Vethanayagam et al., 2005). Clinically this allele has been linked with higher 

plasma levels of BCRP substrate drugs such as topotecan, rosuvastatin, 

sulfasalazine, gefitinib, atorvastatin and methotrexate (Sparreboom et al., 2005; 

Cusatis et al., 2006; Urquhart et al., 2008; Warren et al., 2008; Keskitalo et al., 

2009) but not of irinotecan, pitavastatin and lamivudine (de Jong et al., 2004; 

Ieiri et al., 2007; Kim et al., 2007). 2 SNPs result in a premature stop codon 

(Q126stop, E334stop). 
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Substrates of BCRP/Bcrp transporters 

Endogenous compounds Flavonoids 

 Porphyrins 

 Estrone-3-sulphate 

Drugs  

Antibiotic Anthracycline, Daunorubicin 

Anticancer agent Topotecan, Methotrexate 

Nucleoside analogue Azidothymidine, Lamivudine 

Antianxiety Prazosin 

Proton pump inhibitor Pantoprazole 

Statin Rosuvastatin 

Antiarthritis Sulfasalazine 

Histamine H2 receptor antagonist Cimetidine 

Antidiabetic Glibenclamide 

 

Table 1.8: Substrates of BCRP/ Bcrp transporters. 

1.3.7. MRP family 

The isoforms MRP1/Mrp1 (ABCC1), MRP2/Mrp2 (ABCC2), MRP3/Mrp3 

(ABCC3), MRP4/Mrp4 (ABCC4) and MRP6/Mrp6 (ABCC6) are expressed in 

both human and rat proximal tubular cells. Additionally rat proximal tubular cells 

also express Mrp5 (ABCC5). MRPs are unidirectional efflux transporters. 

MRP2/Mrp2 and MRP4/Mrp4 are located at the apical membrane (Schaub et al., 

1997; van Aubel et al., 2002). MRP1/Mrp1, MRP3/Mrp3, Mrp5 and MRP6/Mrp6 

are located at the basolateral membrane. Of all the MRPs MRP2/Mrp2 is 

deemed the most clinically relevant. 

MRP1 was the first isoform to be characterised; it was originally identified in a 

human multi-drug resistant lung carcinoma cell line (Cole et al., 1992). By 

searching the human genome with an expressed sequence tag of ABCC1 the 

other isoforms of MRP were identified (Allikmets et al., 1996; Kool et al., 1997). 

Each of the MRPs contain two ATP-binding cassettes and two core membrane 

spanning domains each consisting of 6 transmembrane regions (MSD1 and 

MSD2). MRP1/Mrp1, MRP2/Mrp2, MRP3/Mrp3 and MRP6/Mrp6 also contain an 

additional membrane-spanning domain (MSD0) containing a further 5 
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transmembrane regions (Toyoda et al., 2008). It has been shown that this 

additional transmembrane domain within MRP1 is not required for function of 

MRP1/Mrp1 nor for localisation to the basolateral plasma membrane (Bakos et 

al., 1998). However, mutation of Cysteine (7) residue within MSD0 changes 

the amino-terminal conformation of MRP1, thereby reducing the maximal 

transport rate (Vmax) of leukotriene C4 5 to 7-fold (Yang et al., 2002). 

Suggesting that MSD0 may have some function. The energy of ATP hydrolysis 

is used to actively efflux substrates across either the apical of basolateral. The 

MRPs again have a broad substrate specificity they act as a defence 

mechanism effluxing potentially cytotoxic endogenous and exogenous 

molecules from cells. They are able to transport hydrophobic anionic molecules, 

and conjugates of glucoronate, sulphate and glutathione. Lipophilic glutathione-

s-conjugates are transported predominantly by MRP2/Mrp2 (Konig et al., 1999; 

König J, 1999), while cyclic nucleotides, uric acid, anticancer agents and 

antiviral drugs are transported by MRP4/Mrp4 (van Aubel et al., 2002). 

Examples of MRP substrates are listed in Table 1.9. The development of knock 

out animal models has led to a better understanding of the role of MRP1 and 

MRP2 in drug disposition (Endres et al., 2006). The remaining isoforms have 

not been sufficiently characterised to date. 

MRP expression is regulated at the transcriptional and protein level in response 

to substrate concentrations, oxidative stress, and disease states. 

Characterisation of the human and rat promoter region of the ABCC2 identified 

numerous transcription factor binding sites, such as SP1 and AP1. A hormone 

response element in rat ABCC2 promoter has also been recognised. Many 

lipophilic compounds are ligands for nuclear receptor hormones (such as 

farnesoid X receptor, pregnane X receptor, or constitutive androstane receptor). 

The binding of heterodimers of the retinoid X receptor-α with the ligand-

activated nuclear receptor hormones at the hormone response element induces 

transcription of ABCC2 (Nies and Keppler, 2007). Oxidative stress leads to 

activation of nuclear factor 2. Once activated this transcription factor binds the 

antioxidant response element to up-regulate transcription of ABCC1 and 

ABCC2 (Toyoda et al., 2008). In an in-vivo rat model of cholestasis it has been 

shown that ABCC2 expression in the liver is down regulated whilst expression 

in the kidney is upregulated (Lee et al., 2001). This adaptation in transporter 
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expression is thought to limit liver injury and facilitate extrahepatic excretion of 

bile salts. 

More than 200 naturally occurring sequence variants have been identified in the 

human ABCC2 gene (Nies and Keppler, 2007). Many of these sequence 

variants are SNPs that do not result in amino acid changes and are thus without 

functional consequence. Impairment of MRP2 function by polymorphisms (i.e. 

splice site, premature stop codons, deletion and frame insertion mutations) or 

chemical inhibitors results in Dubin-Johnson syndrome. An autosomal recessive 

disorder that causes an increase of conjugated bilirubin in the serum without 

elevation of liver enzymes (Nies and Keppler, 2007). 
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Table 1.9: Substrates of MRP/ Mrp transporters. 

   

Substrates of MRP/Mrp transporters 

Endogenous compounds Bilirubin 

 Leukotrienes 

 Bile salts 

 S-glutationyl- estradiol 

 Cholecystokinin peptide 

 E3S 

 Conjugates of 17β-estradiol 

 Leukotriene 

 Cyclic nucleotide 

 Urate 

 Prostaglandins 

 PAH 

 Taurocholic acid 

 Folic Acid 

Drugs  

 Glutathione and glucuronide conjugates 

Anticancer Methotrexate, Etoposide 

HIV protease inhibitor Saquinavir, Ritonavir 

Angiotensin II receptor antagonist Valsartan, Olmesartan 

Anitviral Acyclovir 

Diuretic Frusemide 

Antibiotic Ciprofloxacin, Cefazolin 

Antihistamine Fexofenadine 

Analgesic Paracetamol 

Statin Rosuvastatin, Atorvastatin 

Stimulant Para-methoxy-N-ethylamphetamine 
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1.4. Current proximal tubule cell models 

Models of the renal proximal tubule commonly used to measure transport 

activity in drug development pre-clinical in-vitro screening assays include; 

expression systems, transfected cells, immortalised animal and human renal 

cell lines, membrane vesicles, cortical renal slices, and primary cells. The 

advantages and disadvantages of these models are discussed herein. These 

models are commonly used for mechanistic studies, to determine the rate 

limiting step in transepithelial transport, and identify transporter based DDIs. In 

academia radiolabelled or fluorescent substrates are commonly used to 

measure transporter expression in these expression systems. Alternatively 

pharmaceutical companies utilise expensive, high-throughput, sensitive liquid 

chromatography – mass spectrometry techniques. 

1.4.1. Expression systems 

One of the earliest techniques to determine the function of a transport protein is 

microinjection of the transport protein cRNA into an expression system such as 

a Xenopus Laevis oocyte (Gurdon et al., 1971). This provides a platform for the 

study of only the transporter of interest, without the influence of others. The 

structure, substrates and inhibitors of OCTs and OATs have been elucidated 

using this technique (Gründemann D, 1994; Okuda et al., 1996; Sekine et al., 

1997). A drawback of this model is its lack of physiological relevance due to the 

absence of other transporters that may influence a molecules distribution. 

Another disadvantage is that oocytes only provide transient expression of 

transport proteins. As a result marked variation in expression levels and thus 

kinetic parameters (such as maximum rate of transport and transporter affinity 

values) between batches of oocytes have been reported (Walker, 2008). 

Furthermore, kinetic values derived from oocytes differ from those from 

mammalian expression systems due to differences in the plasma lipid 

membrane (Goldin, 1992).  

1.4.2. Transfected cell lines 

Transporters of interest have also been transfected in to immortalised animal 

and human cell lines. This is achieved by inserting a vector such as a plasmid 
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containing the cDNA of the desired transporter. Recombinant transporter that 

are stably of transiently expressed in various cell lines can be used to 

characterise drug transporter interactions. Cultured renal cell lines commonly 

used to study drug transporter interactions include MDCK, LLC-PK1 and 

HEK293 cells. MDCK have been transfected with OATPs and MDR1 (Takeuchi 

et al., 2001; Kuteykin-Teplyakov et al., 2010). Cells can be stably transfected to 

express multiple transporters. A quintuple multi-transporter renal model of 

creatinine clearance containing OAT2, OCT2, OCT3, MATE1 and MATE2-K is 

commercially produced by Optivia biotechnology. Transfection of cells with 

recombinant uptake and efflux transporters endogenously missing enables the 

study of transcellular transport (Cui et al., 2001; Sasaki et al., 2002). However, 

transporter expression in these cell lines does not reflect the transporters’ 

physiological expression levels as they are driven by the vector promoters and 

the cells’ translation transcription machinery. 

1.4.3. Immortalised animal and human renal cell lines 

Immortalised mammalian renal epithelial cell lines commonly used include LLC-

PK1 (porcine), MDCK (canine), and OK (opossum) cells. Immortalised human 

renal cell lines include HK-2, RPTEC, HEPTEC and ciPTEC cells. Immortalised 

renal epithelial cells inherently express some transport proteins. However, 

overall expression of renal transporters is low in comparison to primary tissue. 

For example the LLC-PK1 and HK-2 renal epithelial cell lines express functional 

MDR1 and have been used to investigate the efflux of prototypic substrates 

(Ryan et al., 1994; Ohtomo et al., 1996; Tramonti et al., 2001). Advantages of 

such cells are that they are easy to cultivate in large quantities and have an 

infinite lifespan. Some, but not all of these cell lines can be grown on 

Transwell® inserts to form polarised monolayers. This enables measurement of 

the molecules tubular secretion and reabsorption.  

A further limitation is that the cells lose differentiation over time with repeated 

passages. Often they lack expression of key transporters and fail to maintain 

brush-border microvilli. The LLC-PKI cells lack expression of the enzyme 

fructose- 1,6-bisphosphatase, rendering them incapable of gluconeogenesis, 

which is a key metabolic pathway in proximal nephron cells (Gstraunthaler et al., 

1985). In addition, LLC-PKI cells are not responsive to parathyroid hormone and 
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lack a probenecid-sensitive organic anion transporter (Gstraunthaler et al., 1985; 

Pfaller and Gstraunthaler, 1998). MDCK cells, on the other hand, do not 

express type 2 sodium/phosphate transporters, Sodium/glucose cotransporter 1 

and 2, or amino acid transporters. HK-2 cells lack expression of OAT1, OAT3 

and OCT2 (Jenkinson et al., 2012). ciPTEC cells lack expression of OATs 

(Jansen et al., 2014). SLC transporter expression is yet to be characterised 

within RPTEC cells (Aschauer et al., 2013). Additionally, slight variations in 

culture conditions (i.e. culture medium, passage frequency, passage protocol) 

between laboratories has been shown to effect transporter expression.  

1.4.4. Membrane Vesicles 

Basolateral and apical brush border plasma membrane vesicles can be used to 

study transporter activity. The technique was commonly used in transport 

studies in the 1970s and 80s but has been effectively superseded by cell 

transfection. Membrane vesicles have previously been prepared from intact 

renal tissue and primary, immortalised or transfected cell lines. The approach 

has provided a wealth of information on the quantitative structure activity 

relationship and interaction of many substrates and inhibitors with various 

transporters and provided much of the background to our current understanding 

of epithelial membrane transporters. Advantages of the methodology are that 

substrates and inhibitors of a known concentration are directly applied to the 

cytoplasmic compartment, and gradients can be easily optimised to drive 

transporter activity. But the procedure provides no molecular knowledge about 

transporter identity, and is unsuitable for hydrophobic compounds due to the 

molecule binding to the vesicle membrane or cellular systems. More data is 

available for apical membrane transporters than basolateral transporters as 

preparation of basolateral membrane vesicles is technically difficult and has 

mixed yields of membranes orientated in the outside-out and inside-out 

configuration, which makes experimental design and data interpretation difficult. 

1.4.5. Cortical renal slices 

An alternative to immortalised cells which dedifferentiate over time is the use of 

fresh primary tissue. Isolated cortical renal slices represent the truest 

anatomical in-vitro model of the kidney. 80% of each renal slice is composed of 
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proximal tubule cells, therefore they have potential to provide good information 

on renal drug handling (Lohr et al., 1998). Cisplatin was shown to competitively 

inhibit tetraethylammonium uptake in renal slices in 1984, indicating that it was 

an OCT2 substrate (Nelson et al., 1984). Cross sections are available from 

human and animal kidneys which allow direct comparison between species. 

However, the lumen of the tubules within the slices collapse, which means they 

provide information only on basolateral uptake, not apical membrane transport 

nor net direction of movement (Atterwill, 1987). Other drawbacks are they 

contain a heterogeneous population of cells and discriminating between which 

cell type can be difficult. They have a short finite lifespan, and a skilled 

experienced worker for kidney dissection. 

1.4.6. Primary proximal tubular cells 

The need for a robust in-vitro model of drug transport that expresses a full 

complement of transporters has been highlighted. Primary cells are derived 

from intact tissue, which, at the time of isolation express the full complement of 

drug transporters present in the tissue of interest. Proximal tubular cells can be 

isolated by a wide range of techniques that include enzymatic tissue digestion, 

differential sieving, gradient density centrifugation and fluorescence-activated 

cell sorting. Isolated proximal tubular cells in suspension are physiologically 

relevant intact cell models containing all the relevant transporters (Lohr et al., 

1998). However they are only viable for 2-3 hrs, after this functional integrity 

declines rapidly (Jones et al., 1979). Furthermore during the course of an 

experiment polarity of the cells is lost, which results in a marked down 

regulation of transporter expression. 

In recent years, proximal tubule cells isolated from intact tissue by collagenase 

digestion and isopynic centrifugation have been successfully cultured from 

human and rat kidneys. Cultures are structurally polarised, with numerous 

microvilli and tight junctions at the apical side, and preserved characteristic 

features of proximal tubule cells e.g. alkaline phosphatase and γ-glutamyl 

transferase enzyme activity (Racusen et al., 1997; Kim et al., 2001). Human 

primary proximal tubule cells also express the OA- and OC+ transporters absent 

from many immortalised proximal tubule cell lines in addition to ABC 

transporters MDR1 and MRP2 (Lash et al., 2006; Brown et al., 2008). The cells 
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have shown prototypic transport of endogenous OA- and OC+ such as PAH and 

creatinine and xenobiotics such as rosuvastatin (Lash et al., 2006; Brown et al., 

2008; Verhulst et al., 2008). Similarly cultured rat proximal tubule cells have 

shown sodium dependent uptake of α-methyl-D-glucopyranosine, ergothionine 

and carnitine suggesting expression of sodium-glucose (SGLT) and 

OC+/carnitine (OCTN) transport proteins (Nakanishi et al., 2011). Furthermore, 

Dr Lawrence H Lash (Wayne State University) has published several studies 

confirming the suitability of rat and human primary proximal tubular cells 

cultures as an in-vitro models to study nephrotoxicity (Cummings and Lash, 

2000; Cummings et al., 2000; Lash et al., 2001; Lash et al., 2003; Lash et al., 

2005; Lash et al., 2006). A disadvantage of primary culture is the finite lifespan 

of cells (approximately 14 days). A further limitation is human tissue availability 

and the expense of transport from hospitals. 

As discussed, a key deficiency in the drug development process is the 

availability of applicable pre-clinical in-vitro models that can be used to predict 

toxicological and efficacious outcomes in the clinical setting. Many widely used 

pre-clinical in-vitro models of transport in the kidney are based on transfected 

human or animal cells. These models express a limited number of human renal 

transporters, and so do not accurately reflect the situation in-vivo. Wherein the 

complex interplay between multiple transporters is key to transepithelial 

transport. In contrast, cultured primary renal proximal tubule cell monolayers 

appear to maintain a full complement of key renal transporters, resulting in a 

more physiologically relevant, and thus predictive model of drug handling in the 

clinical setting. 

1.5. Development of human and rat in-vitro models of 

drug transport. 

As previously mentioned a major challenge in drug development is the 

extrapolation of drug safety information from animals to humans. Approximately 

40.42 % of compound fail at Phase I (Tufts Center for the Study of Drug 

Development, 2014). Meaning that large numbers of animals are being 

sacrificed in pre-clinical trials with little to no benefit. For each drug lost at this 

stage $740 million is lost in developmental costs and 6.5 years in lead time to 
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clinic (Paul et al., 2010). Overall this results in a delay in getting molecules to 

clinic and an increased cost of successful drug molecules.  

Rat is the initial test species in drug development and safety determination 

(Bass et al., 2009). Due to the unpredictable differences in renal drug handling 

between species (Rasmussen, 1983) the development of a parallel rat primary 

proximal tubule cell model in addition to a human is encouraged. It enables 

clear unambiguous transport data on the handling drug molecules in either 

species to be ascertained. It allows direct comparison of the renal handling of a 

molecule between human and rat kidney, which would flag up any differences in 

handling that might impact upon the progress of the candidate drug molecule 

into a pre-clinical study. Furthermore, the data could be crucial in validating the 

cell-based assay as an acceptable surrogate for renal clearance experiments in 

rats.  

1.6. Project Aims 

The aims of this project are 3-fold. Firstly; to optimise the human and rat 

primary proximal tubule cell isolation technique. Secondly; to characterise 

expression of key renal transporters in human and rat primary proximal tubular 

cells. Thirdly; to validate their use as a screening tool to identify drug transporter 

interactions and transporter mediated DDIs. In the hope that further 

characterisation and validation of human and rat primary proximal tubular cell 

model will encourage their use of as an in-vitro proximal tubule cell model in 

industry and academia.  
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2. Materials and Methods 

2.1. Materials 

2.1.1. Cell Culture 

Cell culture reagents used in this project included high-glucose Dulbecco’s 

modified eagles medium (HG-DMEM), Ham’s F-12 nutrient mixture, Roswell 

Park Memorial Institute (RPMI)-1640 medium, foetal calf serum (FCS), penicillin, 

streptomycin, L-glutamine, trypsin with 0.02% ethylenediaminetetraacetic acid 

(EDTA), collagen, Dulbecco’s phosphate-buffered saline (PBS) and mouse 

epidermal growth factor (EGF) purchased from Sigma-Aldrich (UK). Percoll® 

was bought from GE Healthcare Life Sciences (UK), type 2 collagenase from 

Worthington Biochemicals (USA), and 10X Hanks’ balanced salt solution (HBSS) 

from Invitrogen (USA). Renal epithelial cell growth medium (REGM) SingleQuot 

kit supplements and growth factors (containing insulin, hydrocortisone, 

gentamycin amphotericin-B (GA) - 1000, adrenaline, tri-iodothyronine (T3), 

transferrin, FCS and human EGF) were procured from Lonza (Switzerland). 

The renal proximal tubular epithelial cell line, RPTEC, was licensed from 

Evercyte (Austria), along with ProxUp-2 ready-to-use medium (consisting of 

HG-DMEM/Hams-F12 (1:1), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffer, glutamax, human epidermal growth factor, tri-iodothyronine, 

ascorbic acid, holo-transferrin, prostaglandin E2, hydrocortisone, sodium 

selenite, insulin and geneticin (G418)). 

Cells were grown on various cell culture vessels bought from Corning (UK). 

These included 24-well Transwell® permeable insert cell culture plates (with a 

surface area of 0.33 cm2 per insert and polycarbonate filter pore size of 0.4 µm), 

plastic 96-well plates (0.33 cm2 surface area), plastic 12-well plates (3.8 cm2 

surface area), T25 flasks (surface area 25 cm2) and T75 flasks (surface area 75 

cm2).  
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2.1.2. Quantitative polymerase chain reaction 

SV Total RNA isolation System, purchased from Promega (UK), was used to 

isolate total cell RNA. Moloney murine leukaemia virus (M-MLV) reverse 

transcriptase, M-MLV 5x reaction buffer, RNasin, Magnesium Chloride, 

deoxyribonucleotide triphosphate (dNTP) mix, 5x Green GoTaq® reaction buffer, 

GoTaq polymerase, and pGem-T-easy cloning vector kit (consisting of T4 DNA 

ligase, pGem®-T vector, 2x ligation buffers) were also procured from Promega 

(UK). Random hexamers were obtained from GE Healthcare Life Sciences, and 

MiniElute PCR purification kit from Qiagen. Agarose, EDTA, sodium hydroxide 

pellets, boric acid, ethidium bromide, bacto-tryptone, bacto-yeast extract, 

isopropyl β-D-1-thiogalactopyranoside, 5-bromo-3-indolyl β-D-

galactopyranoside, dimethylformamide, ampicillin, GenElute Plasmid Miniprep 

were gifts from Dr Judith Hall, and sourced from Sigma-Aldrich. Competent 

E.coli strain, DH5, was bought from New England Biolabs (UK). The 125U 

ThermoStart Taq DNA polymerase and 1x ThermoStart buffer were acquired 

from ABgene. Bespoke primers were ordered from IDT DNA (Belgium). Human 

and Rat Drug Transporter RT2 Profiler PCR array plates from SABiosciences 

(UK). 

2.1.3. Uptake and Flux Assays 

Radiolabelled [1-14C]-mannitol D, [32P]-monosodium phosphate ([32P]-Pi), and 

Optiphase Hisafe 2 scintillation solvent were purchased from PerkinElmer 

(USA). Bisbenzimide Hoechst 33342 (H33342), 5-(3-(2-(7-Chloroquinolin-2-

yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid (MK-571), 

mannitol, sodium chloride, potassium chloride, monosodium dihydrogen 

orthophosphate, magnesium sulphate, monopotassium phosphate, calcium 

chloride, HEPES, glucose, tris base, ethanol, chenodeoxycholic acid (CDC), T3, 

rosuvastatin (RSV), cimetidine (CIM), PAH, DX, E3S, GF120918, Ko143 

hydrate, heparin sodium, molecular-grade water, bovine serum albumin (BSA) 

and chloroform were purchased from Sigma-Aldrich. 5-chloromethylfluorescein-

diacetate (CMFDA) was purchased from Invitrogen (USA), and coomassie blue 

dye reagent from ThermoFisher Scientific (UK). Scintillation vials were 

purchased from Meridian Biotechnologies Ltd (UK). TFV and radiolabelled 

[adenine-2,8-3H]-TFV ([3H]-TFV) were gifts from Gilead (USA), and sourced 
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from Bio-techne and Hartmann Analytic GmbH respectively. Recombinant 

human Klotho- (amino acid residues 32-981) was purchased from Bio-techne 

(USA), recombinant fibroblast growth factor 23 (FGF-23) from BioVision (USA), 

and recombinant human parathyroid hormone (amino acid residues 1-84, PTH) 

from Cambridge Biosciences (UK). Trisodium phosphonoformate (PFA) was 

bought from Santa Cruz Biotechnology (USA).  

2.1.4. Nephrotoxicity 

CellTiter 96® AQueous one solution cell proliferation assay was purchased from 

Promega.  

2.2. Methods and Protocols 

2.2.1. Primary human proximal tubular epithelial cell isolation 

Primary human proximal and distal tubular and collecting duct epithelial cells 

(human PTCs) were isolated from healthy human kidneys unsuitable for 

transplant supplied by the human tissue bank Scievita Ltd. The donations came 

from a variety of anonymous UK hospitals. The demographics of the donors 

such as age, gender and ethnicity were unknown to protect patient anonymity. 

Ethical approval and consent for medical research were granted to Scievita 

prior to tissue procurement. The work carried out at Newcastle University was 

approved by the Scientific Review Board at Scievita in line with the ethical 

approval for medical and commercial usage granted to Scievita acting as a 

human tissue bank. 

Once excised from the donor, the kidney was stored with saline solution in 

sealed surgical bags placed in a polystyrene box filled with ice and transported 

to Newcastle University Medical School within 18 hours (hrs). All cell culture 

conducted at Newcastle University was performed in a class II vertical laminar 

flow hood to ensure sterility. The isolation procedure, summarised in Figure 2.1 

has been previously published (Van der Biest et al., 1994; Helbert et al., 1997; 

Helbert et al., 1999; Helbert et al., 2001; Brown et al., 2008). 

Under sterile conditions, the kidneys were decapsulated and macroscopically 

normal cortex slices were dissected, cut into pieces of about 1 mm3 and 
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enzymatically digested using type 2 collagenase in isolation medium. In order to 

optimise the enzymatic digestion phase of the isolation procedure renal cortex 

was incubated with different concentrations of collagenase over two different 

incubation periods. The cell suspension was shaken vigorously either (i) 

overnight at 4 °C followed by 37 °C for 1 hr (an overnight incubation) or (ii) for 2 

hrs at 37 °C (an acute incubation). 

Following enzymatic digestion of the renal cortex, the resulting cell suspension 

was passed through a 40 µm nylon mesh cell strainer to remove undigested 

cortex and glomerular endothelial cells. The collagenase was then removed by 

centrifuging the cell suspension at 1200 revolutions per minute (rpm) for 7 

minutes (min) in a 4 x 200 mL swing-out rotor at 4 °C. To remove any residual 

collagenase the cell pellet was resuspended in fresh isolation medium and 

recentrifuged at 1200 rpm for 7 min, this wash process was repeated twice. 

After the second wash, the heterogeneous cell population was separated by 

gradient density centrifugation. The cell suspension was loaded on top of a 

discontinuous Percoll® gradient then centrifuged at 3000 rpm for 25 min 

(minutes) at 4 ˚C. The densities of the gradient were 1.04 g / mL and 1.07 g / 

mL. Proximal and distal tubular epithelial cells from the intersection of the 1.04 g 

/ mL and 1.07 g / mL densities were carefully aspirated, washed and cultured as 

a mixed population of approximately 80 % proximal and 20 % distal tubule cells 

in 37 °C human REGM. The yield of cells collected from the isolation was 

quantified using a haemocytometer (Hawksley, UK). The compositions of the 

isolation medium and human REGM are shown in Table 2.1 and Table 2.2, 

respectively. 
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Figure 2.1: A schematic flow diagram of the proximal tubule cell isolation 
procedure.  

The enzymatic digestion of renal cortex was optimised in both species 
to generate the highest yield of viable cells. 

 

 

Table 2.1:The composition of isolation medium used in both human and 
rat PTC isolation. 

   

Cortex excised

Cortical slices 
taken from rat or 
human kidneys 
and minced.

Enzymatic 
digestion 

Minced cortex 
incubated with 

type 2 collagenase. 
Efficacy of an 
overnight and 
acute exposure 
compared.

Density 
centrifugation

PTCs separated 
from 

heterogeneous cell 
populations using 
Percoll® gradients 
of 1.04 g/mL and 

1.07 g/mL. 

Cell culture

Isolated PTCs 
culutred on 

Transwell® inserts 
and plastic cell 
cultureware at 
37˚C with 5% 

CO2/95% air in a 
humidified 
incubator.

Supplements Amount Final concentration 

Basal Medium   

RPMI-1640 Medium 500 mL - 

Supplements   

FCS 25 mL 5 % 

Penicillin/Streptomycin 2.5 mL 
200 units/mL, 200 

µg/mL respectively. 
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Ingredient Amount 

Basal Medium  

DMEM/Ham’s F-12 (1:1) 500 mL 

Supplements  

L-Glutamine 2.5 mL 

Human EGF 0.5 mL 

Insulin 0.5mL 

Hydrocortisone 0.5 mL 

GA 0.5 mL 

FCS 2.5 mL 

Adrenaline 0.5 mL 

T3 0.5 mL 

Transferrin 0.5 mL 

Penicillin/Streptomycin 2.5 mL 

 

Table 2.2:The composition of human REGM. 

The REGM SingleQuot Kit (CC-4127) was purchased from Lonza 
(Switzerland). The concentrations of the supplements and growth 
factors are withheld from consumers.  

 

2.2.2. Primary rat proximal tubular epithelial cell isolation 

Primary rat proximal and distal tubular epithelial cells (rat PTCs) were isolated 

from healthy 8 to 12 week old male Sprague-Dawley rats (weighing 250 - 300 g) 

purchased from Charles River (UK). The rats were euthanised by trained 

university staff in accordance with Schedule 1 of the Animals (Scientific 

Procedures) Act 1986. The kidneys were excised using sterile tweezers and 

scissors, and stored in ice-cold sterile isolation medium. The isolation procedure, 

which commenced within 30 min of the kidneys retrieval, was identical to the 

human isolation protocol described in subchapter 2.2.1. Isolated rat PTCs were 

cultured in rat REGM. The composition of rat REGM can be found in Table 2.3. 
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Ingredient Amount 

Basal Medium  

DMEM/Ham’s F-12 (1:1) 500 mL 

Supplements  

L-Glutamine 2.5 mL 

Mouse EGF 0.5 mL 

Insulin 0.5 mL 

Hydrocortisone 0.5 mL 

GA 0.5 mL 

FCS 2.5 mL 

Adrenaline 0.5 mL 

T3 0.5 mL 

Transferrin 0.5 mL 

Penicillin/Streptomycin 2.5 mL 

 

Table 2.3: The composition of rat REGM.  

The REGM SingleQuot Kit (CC-4127) was purchased from Lonza 
(Switzerland). The concentrations of the supplements and growth 
factors are withheld from consumers. 

 

2.2.3. RPTEC cell line cell culture 

The RPTEC cell line was also used in this project. It was developed by 

overexpressing the catalytic subunit of human telomerase (hTERT) in primary 

renal proximal tubular epithelial cells isolated from human kidney. The cells 

were cultured in ProxUp-2 ready-to-use medium, whose composition can be 

found in Table 2.4. Upon confluency, the cells were detached from the plastic 

flasks by incubating the cells with 5 mL trypsin/0.02 % EDTA for 5 min. After 

detachment of the cells, 5 mL of fresh culture medium was added to neutralised 

the trypsin before the cells were pelleted by centrifuging the suspension at 1500 

rpm for 5 min. The cell pellet was resuspended in fresh culture medium and cell 

yield determined using a haemocytometer. The cells were then seeded out onto 

cultureware as described below. The cells were cultured up to passage 20.  
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Ingredient Final concentration 

DMEM/Ham’s F-12 (1:1) _ 

HEPES Buffer 10 mM 

Glutamax 2 mM 

Human EGF 10 ng / mL 

T3 5 pmol 

Ascorbic Acid 3.5 g / mL 

Holo Transferrin 5 g / mL 

Prostaglandin E2 25 ng / mL 

Hydrocortisone 25 ng / mL 

Sodium Selenite 8.65 ng / mL 

Insulin 5 µg / mL 

G418 100 g / mL 

 

Table 2.4: The composition of ProxUp-2 Medium purchased from Evercyte. 

 

2.2.4. Cell Culture 

The human PTC, rat PTC and RPTEC cells were grown on a variety of cell 

culture flasks and plates. They included plastic 12-well plates at a density of 

200 000 cells per well with 1 mL of culture medium, plastic 96-well plates at a 

density of 20 000 cells per well with 200 L of culture medium, and 24-well 

Transwell® inserts at a density of 75 000 cells per insert with 200 L of culture 

medium in the apical chamber and a further 1000 L in the basolateral well. All 

cells were also seeded on plastic T75 culture flasks at a density of 3 million 

cells with 25 mL of culture medium. The type of cultureware used for each 

experiment is defined in the relevant methods subchapter. Once seeded, cells 

were incubated at 37 ˚C with 5 % carbon dioxide and 95 % air in a humidified 

incubator. 

The cells were grown until confluent to allow tight junction formation and cell 

polarisation. Cell confluency within 12-well, 96-well plates and T75 flasks was 

monitored regularly using a phase contrast microscope. Due to the opacity of 



 

44 
 

the Transwell® polycarbonate filter the confluency of cells on 24-well 

Transwell® inserts could not be observed using the microscope. Alternatively, 

the trans-epithelial electrical resistance (TEER) was measured at regular 

intervals to determine tight junction integrity using an epithelial voltohmmeter 

(EVOM, World Precision Instruments, UK). The silver metal and silver chloride 

chopstick electrodes were stored in 70 % ethanol to maintain sterility. The 

following calculation was used to determine TEER values (Ω.cm2). 

TEER = (RM – RF) x A 

RM = Cell TEER measurement (Ω) 

RF = Resistance of the filter (80 Ω) 

A = Area of the filter membrane (24-well filter surface area is 0.33 cm2) 

Experiments were performed when monolayers had a TEER value of 80 Ω.cm2 

or greater. 

2.2.5. Cell Growth Assays 

In order to optimise the enzymatic digestion phase of the isolation procedure, 

samples of renal cortex were incubated with different concentrations of 

collagenase for an overnight and acute incubation period and the resulting yield 

of cells and their growth over 8 days was compared. The collagenase 

concentrations used to enzymatically digest human and rat renal cortex were 10, 

20, 25, or 30 mg collagenase / gram of renal cortex (activity of around 300 units 

/ mg). The yields of isolated proximal tubular cells per gram of renal cortex for 

each concentration of collagenase were estimated 3 times using a 

haemocytometer (Hawksley, UK) and the average yield was recorded (n = 3). 

Following isolation the cells were seeded onto six plastic 12-well plates. In total 

8 wells were seeded from cells isolated from each of the above mentioned 

conditions. The growth of these cells was then determined by quantifying the 

number of cells in the well at 24 hrs (Day 1), 48 hrs (Day 2), 72 hrs (Day 3), 96 

hrs (Day 4), 120 hrs (Day 5), 144 hrs (Day 6) 168 hrs (Day 7) and 192 hrs (Day 

8) after seeding. At the designated time point, the wells were washed with PBS 
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solution twice, trypsinised with 500 L of trypsin / 0.02 % EDTA for 5 min at 37 

C, neutralised with 500 L of human or rat REGM, and the number of cells in 

each well quantified using a haemocytometer. The number of cells in each well 

were counted 3 times and the average recorded (n = 3). The cell yield and 

growth measurements were performed in triplicate using samples derived from 

3 individual kidneys (N = 3). 

2.2.6. Total cell RNA isolation and quality assessment 

In order to understand how cell culture conditions may affect cellular expression 

of transport proteins, total cell RNA was isolated from: 

 Freshly isolated human PTCs and rat PTCs, 

 Human PTCs, rat PTCs and RPTEC cells cultured on 24-well Transwell® 

inserts, and 

 Human PTCs, rat PTCs and RPTEC cells cultured in plastic T25 flasks. 

This was achieved using the SV Total RNA Isolation System according to the 

manufacturer’s protocol. The yield and purity of the isolated RNA samples were 

determined using a NanoDrop ND-1000 UV-Vis Spectrophotometer 

(ThermoFisher Scientific, USA). The yield was calculated from the absorbance 

at 280 nm on the basis that an optical density reading of 1 is equivalent to 40 μg 

/ mL single stranded RNA. The purity of each sample was estimated from the 

relative absorbance at 260 nm and 280 nm (A260 / 280) to assess protein 

contamination, then at 260 nm and 230 nm (A260 / 230) to determine guanidine 

contamination. Values of 1.8 to 2.2 for both ratios indicated the samples were of 

sufficient purity for downstream applications. Isolation was performed in 

triplicate using samples derived from 3 individual kidneys or 3 different passage 

numbers (N = 3). 

2.2.7. Reverse transcription of total cell RNA and endpoint PCR 

Total cell RNA was reverse transcribed into cDNA using MMLV-RT. Initally, 1 

µg of total cell RNA was mixed with 1 µL of 0.5 mg / mL random hexamers for 5 

min at 65 ˚C then immediately cooled on ice. Once cooled 0.5 µL MMLT-RT 
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(activity: 200 units / µL), 4 µL of 5x MMLT-RT buffer, 5 µL of 2 mM dNTPs and 

0.25 µL of RNasin (a ribonuclease A inhibitor, activity: 40 units / µL) was added 

to create a final reaction volume of 20 µL. The reaction was performed in a Px2 

Thermo Cycler (ThermoScientific, UK), where the reaction mixture was 

incubated at 42 ˚C for 2 hrs, then 70 ˚C for 10 min. Once the reaction was 

completed, the resulting cDNA was diluted using molecular grade water (1 

cDNA: 3 water). 

Primers for transport protein genes of interest were designed using Primer-

BLAST from the National Center for Biotechnology Information website (NCBI, 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/), unless otherwise stated. When 

designing the forward and reverse primer pairs, the following criteria were set:  

 A product size of around 100 base pairs should be amplified by the 

primer pair,  

 Each individual primer should be 18-22 base pairs in length,  

 The total guanine and cytosine (GC) content of each primer should be 

40-60 %, 

 The melting temperature of each primer should be between 58 and 64 ˚C, 

 Within each pair the difference in the melting temperature between the 

forward and reverse primer should be no more than than 2 ˚C, and  

 One of the primers in the pair must cross an exon-exon boundary.  

The retrieved primers by Primer-BLAST were analysed for hetero-dimer, homo-

dimer, as well as hairpin formation, using the NetPrimer software 

(http://www.premierbiosoft.com/netprimer/). The specificity of a primer pair to 

the intended gene was analysed by running the basic local alignment search 

tool on their sequences. High performance liquid chromatography purified 

primers with customised sequences were then ordered from IDT DNA (Belgium). 

The genes of interest and their relative primer pair sequences are listed in Table 

2.5 and Table 2.6.  
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In order to confirm the specificity of the primers, endpoint PCR followed by gel 

electrophoresis was carried out for each gene of interest. The endpoint PCR 

reaction mixture included 0.25 µL GoTaq DNA polymerase (activity: 5 units / µL), 

2 µL of 2 mM dNTPs, 0.5 µM of each primer for the gene of interest (forward 

and reverse), 4 µL of 5x Green GoTaq buffer, 1.5 µL of cDNA template and 

enough molecular grade water to make the total reaction volume to 20 µL. 

Using a Px2 Thermo Cycler, the reaction mixture was incubated at 95 ˚C for 2 

min to activate GoTaq DNA polymerase (initialising step), then amplified for 35 

cycles by incubating the reaction mixture at 95 ˚C for 30 seconds (denaturation 

step), Ta ˚C for 30 seconds (primer annealing step) and 72 ˚C degree for 30 

seconds (elongation step). This was followed by 72 ˚C for 10 min (final 

elongation step). Ta denotes the annealing temperature of the primer pair. The 

Ta was calculated by subtracting 5 ˚C from the melting temperature of the least 

stable primer. In order to check if the PCR had generated the anticipated DNA 

fragment, the PCR products were separated by agarose gel electrophoresis and 

visualised with ethidium-bromide staining (0.01 % volume for volume). PCR 

products were separated on 1.5 % agarose gels. The sizes of PCR products 

were determined by comparing them with DNA ladders containing fragments of 

known size that were run on the gels alongside the PCR products. 
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Table 2.5: Sequence of human primers used in endpoint and qPCR for the 
amplification of drug transporters.  

The number in brackets underneath the gene name is the NCBI 
reference number, from which the mRNA sequence of the gene was 

Gene 
(NCBI Reference) 

Primer Sequence 
Ta 

(C) 

Product 
Size (base 

pairs) 

MATE1 
(NM_018242.2) 

F 1353ATC GGG ATC GCG CTG ATG TT1372 
58 149 

R 1501TGT ACC TGA GCC TGC TGA CA1482 

MATE2-K 
(NM_152908.3) 

F 614 TCC AGG TTG ACC CAG GAC TA633 
58 106 

R 719CCT TCA GCC ATC CCT GAT TTT699 

MDR1a/b 
(NM_000927.4) 

F 1683TTC ACT TCA GTT ACC CAT CTC1703 
56 76 

R 1758GTC TGC CCA CTC TGC ACC TTC1738 

MRP1 
(NM_004996.3) 

F 2161TGG CAT CAC CTT CTC CAT CC2180 
58 81 

R 2241GAG AGC AGG GAC GAC TTT CCG2221 

MRP2 
(NM_000392.4) 

F 4735CAC CAT CAT GGA CAG TGA CAA GG4757 
60 60 

R 4794CCG CAC TCT ATA ATC TTC CCG4774 

MRP3 
(NM_003786.3 ) 

F 3140TCT GCA AGG GTT CTT GGT GAT G3161 
60 120 

R 3259AAG AAG GAC TGT GGC GAG CG3240 

MRP4 
(NM_001105515.2) 

F 195CGT GTT CTT CTG GTG GCT CAA T216 
60 70 

R 264CAT ATC ATC TTC CTC TAA TCT CCG241 

BCRP 
(NM_001257386.1) 

F 593CAG GTG GAG GCA AAT CTT CG612 
58 54 

R 646TTG GAT CTT TCC TTG CAG CTA626 

URAT1 
(NM_001276326.1) 

F 241AAA CTT AGG CCT CCC CAA GA260 
58 158 

R 398TGA CCG GTG ACA CTT ATG GA379 

OAT1 
(NM_004790.4) 

F 1586ACCAGTCCATTGTCCGAACC1605 
56 116 

R 1701TGTCTGCCGGATCATTGTGG1682 

OAT3 
(NM_001184732.1) 

F 15AGAGCTGAGCTGCCCTACTA34 
58 117 

R 131AGAAGGTCATGGCACTGGTGG111 

OAT4 
(NM_018484.2) 

F 879AGG AAG CCG ATG CTG AGC TG898 

59 162 
R 1040GGT CCA CTC CAC CAT CAG TG1021 

OATP4C1 Purchased from Qiagen 60 

OCT2 
(NM_003058.3) 

F 1446ACC TGG TGA TCT ACA ATG GCT1466 
58 145 

R 1590TGA GGA ACA GAT GTG GAC GC1571 

NPT1 
(NM_005074.3) 

F 737TTG TGG CTG TGC CGT ATG TC756 

57 126 
R 862CTT GAA CTG ACC TGC TGG AC843 

NPT4 
(NM_001098486.1) 

F 530GCG AGT GGT TGG CAT TTC T548 

51 127 
R 656TAT TGA GGA CTG GCT TAG G638 

NPT5 
(NM_001286121.1) 

F 1382TCA GAT CCA GCC ACA GCA TG1402 

57 118 
R 1499AAG CCA GTG TAC CGA GGA GC1479 

NaPi-2A 
(NM_003052.4) 

F 351GAG CAG AAG CCA GAG TCC AG370 

50 170 
R 520TCC TTG AAG ATG TCA CCA GC501 

NaPi-2C 
(NM_001177316.1) 

F 811TCT TCA ACT GGC TCA CAG TGC831 

57 174 
R 984AGT CAG CAG CTT AGC AGC CA965 

PiT2 
(NM_006749.4) 

F 2173GAC GTG AGT AAT GCC ATC GG2182 

57 80 
R 2252GTA GCT GCT TCT TGC GTT ACC2231 

GAPDH Purchased from Primer Design 60 
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obtained. F and R denoted forward and reverse primer sequence, 
respectively. The superscript numbers are the position of the bases in 
the mRNA sequence. Ta denotes the annealing temperature of the 
primer pair. 

 

Table 2.6: Sequence of rodent primers used in endpoint and qPCR for the 
amplification of drug transporters.  

The number in brackets underneath the gene name is the NCBI 
reference number, from which the mRNA sequence of the gene was 
obtained. F and R denoted forward and reverse primer sequence, 
respectively. The superscript numbers are the position of the bases in 
the mRNA sequence. Ta denotes the annealing temperature of the 
primer pair.  

 

Gene 
(NCBI Reference) 

Primer Sequence 
Ta 

(C) 
Product Size 
(base pairs) 

Mate1 
(NM_001014118) 

F 442CCA GAT GTA TCC AGG CTC ACC462 
59 123 

R 564AAC CTG AGG CAG AAC GAT GC545 

Mdr1a 
(NM_133401.1) 

F 5CAG AGC CGC TGC TTC TTC C23 
57 195 

R 199CAT TGT GAG CAC ACT GAC CGC179 

Mdr1b 
(NM_012623.2) 

F 129GTT GGC ATA TTC GGG ATG TTT CGC152 
57 184 

R 312CAC TTT GA TAG TAA CGC TCG GC290 

Mdr1a/b 
(M81855.1) 

F 1609GTC AAG GAA GCC AAT GCC1626 
59 147 

R 1755AAG GAT CTT GGG GTT GCG GAC1735 

Mrp1 
(NM_022281.2) 

F 1870AGC GTG TCC CTC AAG CGT CTC1890 
60 170 

R 2039AAG GTG ATG CCA TTC AGT GTG2019 

Mrp2 
(NM_012833.2) 

F 1063GTT CTC GTC CTG GAA GAA GC1082 
57 170 

R 1232TTC AGC AGC TGA GGA TTC AG1213 

Mrp3 
(NM_080581.1) 

F 2439TGT GCT GGC AGG CAA GAC TC2458 
59 158 

R 2596TTC GGA GGA AGT TGG CAA AGG2576 

Mrp4 
(NM_133411.1) 

F 2800CAT TCA GAG GCT TGG TTC TTG2820 
57 185 

R 2984CAC TGG AAC ATC CCC ATG AG2965 

Bcrp 
(NM_181381.2) 

F 836TTG ACA GCC TCA CCT TAC TGG856 
59 95 

R 930ACA GTG GTA ACC TGC TGA TGC910 

Urat1 
(NM_001034943.

1) 

F 906ACA GCC AGC CTC TTG ATG G924 
55 109 

R 1051ACA GCC AAC TGC AGC ATC C1033 

Oat1 
(NM_017224.2) 

F 1075ATG CTG TGG TTT GCC ACT AGC1095 
59 119 

R 1193AAC TTG GCA GGC AGG TCC AC1174 

Oat3 
(NM_031332.1) 

F 82TCCAGCTCCAACCACCAGT100 
54 65 

R 146TCCAGAATCTCGGAGAAGG128 

Oct2 
(NM_031584.2) 

F 1358ATC CCT GAT GAT CTA CAG TGG1378 
57 127 

R 1484CAA GAT TCC TGA TGT ATG TGG1464 

Oatp4c1 
(NM_001002024) 

F 330AGC CCT AAC GCA AGG TAT TGT350 
57 101 

R 430ATA TCA GGC CGG TCA GGG AA411 

Gapdh Purchased from Primer Design 60 
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2.2.8. Quantitative real-time polymerase chain reaction 

Following on from the validation of the specificity of the in-house designed 

primers, quantitative real-time polymercase chainr eaction (qPCR) was 

performed on the cDNA of:  

 Freshly isolated human PTCs and rat PTCs, 

 Human PTCs, rat PTCs and RPTEC cells cultured on 24-well Transwell® 

inserts,  

 Human PTCs, rat PTCs and RPTEC cells cultured in plastic T25 flasks. 

A typical qPCR reaction mixture consisted of 2.5 L cDNA, 5 L 2x SYBR®-

green Master Mix, 0.5 µL of 10 µM mix of forward and reverse primers (1:1) and 

2 µL water, contained in wells of a white 96-well format qPCR plate. In a Roche 

LightCycler 480 (Roche, UK), the reaction mixture was heated to 95 ˚C for 10 

min to denature the initial template and activate the enzyme. The amplification 

of the target gene was carried out for 40 cycles by heating the sample to 95 ˚C 

for 10 seconds (denaturation step), Ta ˚C for 20 seconds (primer annealing step) 

and 72 ˚C for 10 seconds (elongation step). A melt curve was also performed 

(cooling to 65 ˚C followed by heating to 97 ˚C) before a final cooling step to 4 ˚C 

complete the reaction. The cycle number during gene amplication and its 

corresponding fluorescence from each sample were logged by the software 

LightCycler 480 (version 1.5, Roche, UK). The software calculated the 

fluorescence baseline during the first 15 cycles of the amplication stage to 

create a common starting fluorescence intensity for all the samples. A threshold 

level of fluorescence intensity was also defined by an algorithm showing it was 

significantly above the background fluorescence but still within the linear phase 

of amplification. The cycle at which a sample produces fluorescence intensity 

that crosses the threshold is termed the threshold cycle (Ct), and is correlated 

to the starting amount of the cDNA template; the greater the amount of starting 

cDNA, the earlier the Ct. As such, for the purpose of analysis, samples that 

produced Ct of 35 and above were disregarded. PCR analysis of gene 

expression was repeated 3 time using cDNA derived from 3 separate kidney 

preaparations. 
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Serially diluted endpoint PCR product of the gene of interest was also used as 

the DNA template and loaded on the same plate as the samples to produce a 

standard curve for quantification. Efficiency of the PCR was determined from 

this standard curve. Data generated from the qPCR were normalised to their 

respective species reference gene, which were human GAPDH and rat Gapdh.  

2.2.9. Drug transporter RT2 profiler array plates 

Human and rat drug transporter RT2 profiler array plates were used to 

charaterise drug transporter gene expression. Each PCR array plate contains 

84 transporter genes and 5 house keeping genes. cDNA from freshly isolated 

human and rat PTCs and human and rat PTCs cultured for 7 days on plastic 

was combined with SYBR green quantitative PCR Master Mix according to the 

manufacturer’s protocol. The mixture was then aliquopted onto the array plates, 

25 µL per well. Real-time PCR detection was then performed using the Roche 

Lightcycler 480 two-step cycling programme of; 1 cycle of 10 min at 95 °C to 

activate the HotStart DNA polymerase, then 45 cycles of 15 seconds at 95 °C 

(denaturation step) and 1 min at 60 °C (annealing and elongation step) at a 

ramp rate of 1 °C per second. The data was analysed with Lightcycler 480 

software. Second derivative maximum analysis was used to indentify the 

crossing point (Cp value). The manufacturer’s web-based software application 

was used to calculate Ct values from this information. 2-∆Ct values were then 

calculated using the following equation. The human data were normalised to 

GAPDH expression and the rat data to ß-actin expression. 

2ିሼ஼௧	ீ௘௡௘	௢௙	௜௡௧௘௥௘௦௧ି஼௧	௥௘௙௘௥௘௡௖௘	௚௘௡௘ሽ 

2.2.10. Cellular H33342 accumulation assays 

H33342 is a cyan/blue fluorescent dye that binds to the minor groove of double 

stranded DNA without intercalation - preferably at adenine thymine-rich regions. 

H33342 is both cell membrane permeable and a substrate of MDR1 and BCRP. 

The functional activities of MDR1 and BCRP within human PTCs and rat PTCs 

can therefore be determined by measuring the level of intracellular retention of 

H33342 in the presence and absence of transporter specific inhibitors. 
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Cells were seeded into plastic 96-well plates at a density of 20 000 cells per 

well in 200 L of medium. The cells were cultured for 6 to 8 days, with medium 

being replaced every 2 days, until they had formed a confluent monolayer. Cell 

confluency was assessed visually using a phase contrast microscope. The 

medium was aspirated from the wells and the cells washed twice with 200 L of 

37 C modified Krebs buffer. The composition of the modified Krebs buffer is 

shown in Table 2.7. The cells were then incubated with a transporter specific 

inhibitor dissolved in 200 L modified Krebs buffer for 40 min at 37 C. 

GF120918 was used to inhibit the efflux of H33342 by MDR1. Ko143 hydrate 

(Ko143) was used to inhibit the efflux of H33342 by BCRP. Inhibitor-only buffer 

was then removed and replaced with 200 µL of modified Krebs buffer containing 

the inhibitor and H33342. The cells were incubated for a further 30 min at 37 C. 

Following this, the cells were washed twice with 200 L of ice-cold modified 

Krebs buffer. Cellular fluorescence levels were then determined using a 

FLUOstar Omega Microplate Reader (BMG Labtech, Germany). DNA 

complexed H33342 fluorescence was measured at 355 nm excitation and 465 

nm emission, as per the manufacturer’s recommendation. The number of 

technical replicates for each experimental condition was 6 (n = 6). Each 

experiment was performed 3 separate times in cells derived from 3 separate 

kidney preparations or passage numbers (N = 3). The concentrations of 

H33342, GF120918 and Ko143 used are detailed in the results chapter. 

Bradford assay was performed at the end of the fluorescence readings to 

ascertain relative amount of protein in each well. Modified Krebs buffer was 

replaced with 100 µL of coomassie blue reagent and incubated at room 

temperature for 5 min. Thereafter, absorbance readings were taken at 595 nm 

using the microplate reader. A protein standard curve was also created using 

known amounts of BSA in the same 96-well plate as the unknown samples. The 

relative amount of protein in each well was thus determined by referring to the 

protein standard curve.  
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Ingredient Concentration (mM) 

Sodium Chloride (NaCl) 140 

Potassium Chloride (KCl) 5.4 

Magnesium Sulphate (MgSO4) 1.2 

Monosodium dihydrogen orthophosphate 
(NaH2PO4) 

0.3 

Monopotassium phosphate (KH2PO4) 0.3 

D-Glucose (C6H12O6) 5 

HEPES (C8H18N2O4S) 10 

Calcium Chloride (CaCl2) 2 

TRIS Base (NH2C(CH2OH)3 Ad hoc to pH 7.4 

 

Table 2.7: Composition of modified Krebs buffer. 

 

2.2.11. Cellular glutathione methylfluorescein accumulation 

assays 

CMFDA is a cell membrane permeable molecule that is transformed into an 

impermeant fluorescent product glutathione methylfluorescein (GSMF), within 

living cells (as shown in Figure 2.2). Cell-impermeant GSMF can be effluxed 

from cells through MRP (ABCC) transport proteins. Therefore, using the same 

protocol as stated in 2.7.1., the functional activity of the MRP family within 

human PTCs and rat PTCs cells was determined by measuring the level of 

intracellular retention of GSMF. MK-571 was used to inhibit the efflux of GSMF 

by the MRP family. Cellular GSMF fluorescence was measured at 492 nm 

excitation and 517 nm emission using a FLUOstar Omega Microplate Reader, 

as suggested in the manufacturers’ product information sheet. 
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Figure 2.2: Intracellular reactions of CMFDA.  

Within cells CMFDA is esterified by intracellular esterase enzymes, 
the chloromethyl group of this product then reacts with thiols in a 
glutathione mediated reaction to create a green fluorescent dye-
thioether adduct, glutathione methylfluorescein (GSMF). The amount 
of GSMF dye can be quantified by measuring the fluorescence at 492 
nm excitation and 517 nm emission. Figure created using ChemDraw. 

 

2.2.12. Cellular radiolabelled-substrate accumulation assays 

in freshly isolated PTCs 

In order to identify the proximal tubule cell transporters that mediate the uptake 

of radiolabelled substrates cells and their relative contributions, freshly isolated 

PTCs were incubated with the substrate of interest in the presence and 

absence of a combination of transporter inhibitors. 

Freshly isolated human PTCs and rat PTCs were suspended at 4 million cells 

per mL in modified Krebs buffer. 400 000 PTCs (100 L of the PTC mixture) 

were incubated with 100 L of modified Krebs buffer in the presence and 

absence of a transporter inhibitor for 30 min. Uptake was initiated by adding the 

radiolabelled substrate (1 Ci / mL); the cells were incubated at 37 C for 30 

min with the radiolabelled substrate and inhibitor in modified Krebs buffer. The 

entire reaction mixtures were then overlaid onto previously prepared 

microcentrifuge tubes containing 100 L of 2N sodium hydroxide (bottom layer) 

and 100 L of filtration oil (middle layer, 74.5:25.5 silicon oil : mineral oil mix). 

Samples were centrifuged immediately at 13 000 rpm for 1 min to transfer the 

cells containing radiolabelled substrate through the filtration oil layer, into the 

sodium hydroxide layer, which lysed the cells. The samples were then frozen for 

at least 1 hr at -80 C. Using a sterile razor blade the microcentrifuge tubes 

were cut through in the middle layer and 50 L of the bottom aqueous layer was 

Esterases Glutathione‐SH 

CMFDA GSMF 
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collected and placed in a scintillation vial. 2 mL of Optiphase Hisafe 2 

scintillation solvent was added to each vial and mixed by vortexing. The 

radioactivity of each vial in disintegrations per min (DPM, nuclear decays per 

min) was determined by liquid scintillation counting using a Beckman LS5000 

liquid scintillation counter, (Beckman-Coulter Ltd, UK). The scintillation counter 

was normalised using a vial containing only 2 mL of scintillation fluid prior to 

each experiment. 

The number of technical replicates for each experimental condition was 3 (n = 

3). Each experiment was performed 3 separate times in cells derived from 3 

separate kidney preparations (N = 3). A negative control where cells were 

exposed to no inhibitor and no radiolabelled substrate was included to measure 

machine background DPM. In addition to a positive control where cells were 

exposed only to the radiolabelled substrate. The following formula was used to 

determine the relative contributions of transporters (%). 

ሺ%ሻ	݁݇ܽݐ݌ݑ	݁ݐܽݎݐݏܾݑݏ	݈݈ܾ݈݀݁݁ܽ݋݅݀ܽݎ	݂݋	݊݋݅ݐܾ݄݅݊ܫ ൌ ቀܯܲܦௌ௉௅	
ା஼்௅ܯܲܦ
ൗ ቁ	ൈ 	100 

DPMSPL = The DPM reading from the sample (DPM) 

DPM+CTL = The average DPM reading from the positive control (DPM).  

 

2.2.13. Cellular radiolabelled-substrate accumulation assays 

in PTCs cultured on 24-well Transwell® inserts 

In addition to freshly isolated human PTCs and rat PTCs. Human PTCs and rat 

PTCs grown on 24-well Transwell® inserts were also used in the investigations 

of transporter functionality. Experiments were performed when monolayers had 

a TEER value 80 Ω.cm2 or greater. Culture medium was first aspirated from the 

inserts and wells. The cell monolayers were washed 3 times in 37 C modified 

Krebs buffer and placed in sterile 24-well plates. Monolayers were matched 

according to their TEER values. 500 L of modified Krebs buffer was added to 

the basolateral well and 100 L to the apical chamber, and the monolayers left 

to equilibrate for at least an hr. Thereafter, the buffer in either one or both 

compartments of the monolayer was replaced with Krebs buffer containing the 

appropriate inhibitor and incubated for a further hr.  
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Uptake of radiolabelled substrates was initiated by introducing the radiolabelled 

substrate (1 Ci / mL) and [14C]-mannitol-D (0.1 Ci / mL) at an equal 

concentration, to the appropriate compartment of the monolayer for a defined 

period of time. These solutions are referred to as the standard solutions. To 

measure uptake across the basolateral membrane the substrate of interest was 

added to the basolateral well, and vice versa. The activity of the radiolabelled 

substrates used were 1 Ci / mL. Following the incubation with the radiolabelled 

substrate of interest the monolayer was then washed in ice-cold modified Krebs 

buffer 3 times to halt all reactions and to remove extracellular isotope. 

In order to measure the cellular uptake of radiolabelled substrate and the level 

of extracellular label left behind after washing, (i.e. the amount of [14C]-mannitol-

D bound to the filter), the filters and hence the adhered cell monolayers, were 

excised from the inserts and transferred to scintillation vials. 2 mL of Optiphase 

Hisafe 2 scintillation solvent was added to each vial and mixed by vortexing. 

The substrate and [14C]-mannitol-D radioactivity of each sample was 

determined by liquid scintillation counting using a Beckman LS5000 liquid 

scintillation counter. 100 L of the standard solutions were also transferred to 

scintillation vials, whose counts were used in converting the radioactivity, 

measured in DPM, to amount of substrate. The number of technical replicates 

for each experimental condition was 3 minimum (n ൒ 3). Each experiment was 

performed 3 separate times in cells derived from 3 separate kidney preparations 

(N = 3). A negative control where cells were exposed to no inhibitor and no 

radiolabelled substrate was included to measure the machine background DPM. 

The following calculation was used to determine cellular uptake of radiolabelled 

substrate (pmol / cm2 / min or hr) and the amount of extracellular label ([14C]-

mannitol-D) bound to the filter.  

݁݇ܽݐ݌ܷ	ݎ݈ܽݑ݈݈݁ܥ ൌ
ቂቀ

ௌ்஽ࢡ
ௌ்஽ܯܲܦ

ቁ ൈ	ܯܲܦௌ௉௅ቃ ܣ	ݔ

ܶ
 

ASTD = The amount of the radiolabelled substrate in 100 L of the standard 

solution (pmol) 

DPMSTD = The average DPM reading from 100 L of the standard solution 

(DPM) 

DPMSPL = The DPM reading from the sample (DPM) 
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A = Area of the filter membrane (24-well filter surface area is 0.33 cm2) 

T = Exposure time to the radiolabelled substrate (min or hr) 

2.2.14. Unidirectional transepithelial flux of radiolabelled 

substrates 

In order to determine the net movement of a radiolabelled substrate across the 

proximal tubule epithelia, unidirectional flux of the substrate in the secretory 

(basolateral to apical, JB-A) and absorptive (apical to basolateral, JA-B) direction 

across PTC monolayers was compared as dpecited in Figure 2.3. Human PTCs 

and rat PTCs cultured on 24-well Transwells® were used in these experiments. 

Experiments were performed when monolayers had a TEER value 80 Ω.cm2 or 

greater. The monolayers were washed as before (subchapter 2.2.13) and 

paired according to TEER values. After the initial incubation, the buffer in either 

one or both compartments of the monolayer was replaced with Krebs buffer 

containing the appropriate transporter inhibitor and incubated for a further hr.  

Flux was initiated by introducing the radiolabelled substrate (1 Ci / mL) and 

[14C]-mannitol-D (0.1 Ci / mL) at an equal concentration, to the appropriate 

monolayer compartments. These solutions are referred to as the standard 

solutions. Sampling of the opposite compartment was done at defined times to 

measure the appearance of the radiolabelled substrate by aspirating 50 µL from 

the apical or 250 µL from the basolateral compartment, and replacing it with 

equal amount of appropriate buffer. The samples and 100 L of the standard 

solutions were then placed in scintillation vials and the radioactivity was 

measured as described in subchapter 2.2.13. In order to decipher between the 

transcellular and paracellular movement of the radiolabelled substrate the 

movement of [14C]-mannitol-D was also measured as a marker of paracellular 

flux. 

The number of technical replicates for each experimental condition was 3 

minimum (n ൒ 3). Each experiment was performed 3 separate times in cells 

derived from 3 separate kidney preparations (N = 3). A negative control where 

cells were exposed to no inhibitor and no radiolabelled substrate was included 
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to measure machine background DPM. The following equation was used to 

calculate the flux of the radiolabelled substrate and [14C]-mannitol-D: 

ݔݑ݈ܨ ൌ
ቂቀ

ௌ்஽ࢡ
ௌ்஽ܯܲܦ

ቁ ൈ	ሺܯܲܦௌ௉௅ ൈ	ܦௌ௉௅ሻቃ ܣ	ݔ

ܶ
	 

ASTD = The amount of the radiolabelled substrate in 100 L of the standard 

solution (pmol) 

DPMSTD = The average DPM reading from 100 L of the standard solution 

(DPM) 

DPMSPL = The DPM reading from the flux sample (DPM) 

DSPL = The dilution factor of the flux sample 

A = Area of the filter membrane (24-well filter surface area is 0.33 cm2) 

T = Exposure time to the radiolabelled substrate (min or hr) 

 

 

 

 

Figure 2.3: A simplified diagram of how to study unidirectional 
transepithelial flux.  

In order to determine the net movement of a radiolabelled substrate 
across the proximal tubule epithelia the secretory (JB-A) and 
absorptive (JA-B) flux of radiolabelled substrate was measured in 
paired resistance matched monolayers. Monolayers were paired 
according to TEER values. 

 

2.2.15. CellTiter 96® AQueous one solution cell proliferation 

assay 

The CellTiter Aqueous one solution cell proliferation assay is a colorimetric 

method for assessing cell metabolic activity. The reagent contains [3-(4,5-

dimethyl-2-yl) – 5 – (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 
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salt (MTS) and an electron coupling reagent (phenazine ethosulfate (PES). In 

metabolically active cells the MTS is reduced by NAD(P)H-dependent cellular 

oxidoreductase enzymes into an insoluble coloured formazan product, as 

shown in Figure 2.4. The formazan dye produced can be quantified by 

measuring the absorbance at 490 nm. The ability of various chemicals to affect 

the metabolic activity of proximal tubule epithelial cells was assessed using this 

reagent. 

Cells seeded onto 96-well plates were used for this assay. When confluent, the 

cells were incubated with a range of concentrations of the compound of interest 

for 48 hrs. Following treatment, the medium was aspirated and the cells washed 

twice with 200 L modified Krebs buffer. The cells were then incubated in 100 

L of modified Krebs buffer with 20 L of CellTiter AQueous one solution regent 

added and for 120 min and maintained at 37 C. The amount of formazan 

product was then quantified by measuring the absorbance at 490 nm using a 

FLUOstar Omega Microplate Reader. In each experiment a positive control 

(cells incubated with only growth medium and modified Krebs buffer, 100 % 

metabolic functionality), and negative control (cells incubated with 10 % Triton-X, 

0 % metabolic activity) was included. The relative viabilities of the treated cells 

were thus calculated with reference to the positive and negative controls. The 

number of technical replicates for each experimental condition was 6 (n = 6). 

Each experiment was performed 3 separate times in cells derived from 3 

separate kidney preparations or passage numbers (N = 3). 

Bradford assay was performed after the absorbance readings to ascertain 

relative amount of protein in each well. Modified Krebs buffer containing 

CellTiter AQueous one solution was replaced with 100 µL of coomassie blue 

reagent and incubated at room temperature for 5 min. Thereafter, absorbance 

readings were taken at 595 nm using the microplate reader. A protein standard 

curve was also created using known amounts of BSA in the same 96-well plate 

as the unknown samples. The relative amount of protein in each well was thus 

determined by referring to the protein standard curve.  
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Figure 2.4: Intracellular reactions of MTS.  

In metabolically active cells, the MTS is reduced by NAD(P)H-
dependent cellular oxidoreductase enzymes into an insoluble coloured 
formazan product. The formazan dye produced can be quantified by 
measuring the absorbance at 490 nm with a plate reader. Figure 
created using ChemDraw. 

 

2.3. Statistics 

Data are expressed as mean ± standard error of mean (SEM) of the specified 

number of replicates, where “n” denotes technical replicates, and “N” denotes 

biological replicates. To test hypotheses normal distribution of the data and 

equal variance was assumed. Statistical comparison of mean values was made 

using a Student’s t test. A one-way analysis of variance test (one-way ANOVA, 

otherwise known as the Kruskal-Wallis test) was used for multiple comparisons 

of 3 or more experimental conditions and significance was assigned using a 

Dunnett post-test. Differences in mean values were considered to be significant 

when p ൑ 0.05. Non-linear regression analysis of the data and other statistical 

analyses were carried out using GraphPad Prism 4.0 software (GraphPad 

software Inc. USA). 

   

MTS  Formazan 
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3. Isolation and characterisation of PTCs 

3.1. Background 

Understanding renal drug handling in man has been hampered by the lack of a 

good model of the human proximal tubule. The current in-vitro screening tools 

rely on immortalised renal epithelial cell lines that are poorly predictive of in-vivo 

drug handling. Immortalised animal and human renal epithelial cell lines 

commonly used in pre-clinical screening include, LLC-PK1 (porcine), MDCK 

(canine), OK (opossum), HK-2 (human), HEK293 (human), and ciPTEC (human) 

cells. Several characterisation studies have reported these cells lack expression 

of key drug transporter and metabolic enzymes, fail to maintain brush-border 

microvilli, or are unable to form confluent monolayers with good tight junction 

integrity. The cells can be stably transfected to express missing transporters. 

However, transporter expression in these cell lines does not reflect the 

transporters’ physiological expression levels as they are driven by the vector 

promoters and the cells’ translation transcription machinery. Primary cells 

derived from intact tissue are a better model as they retain the characteristic 

biochemical and physiological properties. (See subchapters 1.4.3 and 1.4.6 for 

further details.) 

Research has identified that time ex-vivo, isolation protocol and growth medium 

are key in maintaining primary cell differentiation (Taub et al., 1989; Courjault-

Gautier et al., 1995). It is recommended that renal primary cell isolation begins 

less than 18 hrs ex-vivo. The human renal cortex contains at least 18 different 

resident cell types, 10 of which line the tubular basement membrane (Helbert et 

al., 1999). Many renal primary cell culture techniques have been developed. 

Published techniques include a mixture of the following: density centrifugation, 

flow cytometry, free flow electrophoresis, enzymatic digestion, and differential 

sieving (Van der Biest et al., 1994; Helbert et al., 1997; Helbert et al., 1999; 

Helbert et al., 2001; Verhulst et al., 2003; Verhulst et al., 2004; Verhulst et al., 

2008). The most widely used protocol for isolating pure proximal tubular cell 

cultures involves enzymatic dispersion of tubular cells, followed by differential 
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sieving, (Percoll) gradient centrifugation, cell labelling with a fluorescent 

surface marker antibody, and then fluorescence activated cell sorting (FACS) 

(Van der Biest et al., 1994; Helbert et al., 1997; Helbert et al., 1999; Helbert et 

al., 2001; Brown et al., 2008). Following isolation, cells are further selected 

using cultured growth medium that promotes the growth of cells of interest over 

other cell types. 

Proximal tubular cells can be distinguished from distal tubule, interstitium 

glomeruli and collecting duct cells through incubation with anti-human leucine 

aminopeptidase (LAP) monoclonal antibody (Helbert et al., 1997). When 

compared with other fluorescent surface markers, LAP labeling of cell samples 

gave the clearest distinction between positive (proximal) and negative (non-

proximal) cell subpopulations (93  4% purity) (Helbert et al., 1997). Other 

surface markers for proximal tubular cells include neutral endopeptidase, 

dipeptidyl peptidase IV, -glutamyl transferase, alanine aminopeptidase, TN20 

antigen and intestinal type alkaline phosphatase (Helbert et al., 1997). When 

selecting for the most appropriate surface marker antibody, it is important to 

consider that some characteristics may disappear from a cell type during cell 

culture due to dedifferentiation (Eguchi and Kodama, 1993; Hay, 1993), as has 

been shown for -glutamyl transferase and alkaline phosphatase expression on 

human proximal tubular cells (Trifillis et al., 1985). Alternatively, certain 

characteristics may appear, as has been shown for dipeptidyl peptidase IV 

expression on distal tubular cells (Baer et al., 1999). 

In previous years, our research group has identified that seeding proximal 

tubule cultures with a proportion of distal cortical cells gave a more robust 

model than a pure primary proximal tubular cell culture segregated by free flow 

electrophoresis. mRNA expression of key transporters in native human kidney 

cortex and 10-day old purified proximal and distal tubule/collecting duct cell 

monolayers were compared using qPCR. mRNA expression of NaPi-IIa, SGLT2, 

OCT2, OCTN2, NBC, OAT1, OAT3, BCRP and MDR1 were restricted to native 

kidney and proximal tubule cells (Brown et al., 2008). SGLT1, OAT4 and MRP2 

on the other hand were detected in native tissue, proximal and distal 

tubular/collecting duct cell monolayers (Brown et al., 2008). Protein expression 

of key transporters OAT1, OAT3 and NaPi-IIa were investigated using 
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immunohistochemistry and confocal microscopy. In accordance with the qPCR 

data, the results demonstrated the expression of OAT1, OAT3 and NaPi-IIa 

were restricted to human proximal tubular cells (Brown et al., 2008). 

Correspondingly, functional characteristic studies in distal tubule / collecting 

duct cell monolayers showed no transcellular transport of PAH, sodium-

dependent glucose uptake or endocytotic uptake of albumin (Brown et al., 2008). 

A limitation of pure proximal tubule monolayers was the low tight junction 

integrity. The mean TEER value of a pure proximal tubular cell monolayer 

cultured on a Transwell insert was 26  0.8  cm2, compared with 205  3.8  

cm2 for purified distal tubular / collecting duct cell monolayers and 78.3  1.7  

cm2 for a co-culture of proximal and distal tubular cells (Brown et al., 2008). 

When the monolayer tight junction integrity is low studies of secretion and 

absorption is not feasible because of the large paracellular movement of the 

substrate of interest. As a result of the low tight junction integrity of pure 

proximal tubule monolayers and low expression of key transport proteins in 

distal tubular / collecting duct cells, it was concluded that co-cultures of proximal 

and distal tubular cells (PTCs) were a better in-vitro model. Two practical 

advantages of human PTC and rat PTC monolayers are the cell yield generated 

from a single kidney is much greater and with a high TEER value transporter-

mediated absorption and secretion of compounds can be studied. Analysis of 

the human PTC co-cultures produced with the isolation procedure detailed in 

subchapter 2.2.1 deduced that the co-cultures are 80% proximal tubule cells 

and 20% distal tubular / collecting duct cells (Brown et al., 2008).  

A challenge in the use of primary cells is the acquisition of tissues from which 

the cells are derived. The supply of fresh human kidneys is undoubtedly limited, 

not least because of the short fall in organ donation and the long transplant 

waiting list. However, in the occasions of the availability of kidneys that are 

unsuitable for transplants but still viable, it is paramount that an efficient 

isolation protocol is performed maximise the yield of cells. Rat kidneys, on the 

other hand, are more accessible. Nonetheless, the principles of the 3Rs of 

animal use should be practice. Optimisation of the isolation procedure is thus 

essential, and forms the basis of this chapter. 

   



 

64 
 

3.2. Aims 

The aim of this chapter was to develop and optimise the methodology required 

to isolate human and rat PTCs. 

In order to achieve this the enzymatic digestion phase of the isolation procedure 

was optimised. The yield and growth of cells isolated with a range of 

collagenase concentrations were studied up to day 8 of cell culture. Human 

PTC, rat PTC and RPTEC cell monolayer formation was assessed using TEER. 

The correlation between TEER and paracellular permeability of cell monolayers 

was studied using radiolabelled [1-14C]-mannitol D. Then finally the mRNA 

expression of key renal drug transport proteins was evaluated in human PTCs, 

rat PTCs and RPTEC cells grown on different cultureware. 
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3.3. Results 

3.3.1. Collagenase concentration and cell yield 

In order to optimise the enzymatic digestion of renal cortex in terms of the yield 

of isolated PTCs, human or rat renal cortex was incubated with a range of 

concentrations of collagenase using 2 different incubation conditions. The 

concentrations of collagenase investigated were 10, 20, 25, and 30 mg 

collagenase per g of renal cortex. The activity of collagenase was approximately 

300 units per mg. The tissues were exposed to the collagenase overnight (4 C 

for more than 12 hrs followed by 1 hr at 37 C) or acutely (2 hrs at 37 C). The 

number of isolated PTCs per g of renal cortex were estimated using a 

haemocytometer. 

Focusing on the human data, Figure 3.1 shows a positive correlation between 

collagenase concentration and human PTC yield; the higher the concentration 

of collagenase used, the higher the yield, which suggests enzyme concentration 

is the rate-limiting factor (n = 9, N = 3). In order to determine the effect of the 

incubation period on the yield of isolated human PTCs, the number of isolated 

human PTCs per g of renal cortex following an overnight incubation was 

compared to an acute incubation for each collagenase concentration. Except at 

10 mg collagenase per g of tissue, which gave 1.58  0.09 million cells with an 

overnight incubation and 2.13  0.04 million cells with an acute incubation (** P 

< 0.01), the incubation period did not affect cell yield. For instance, overnight 

and acute incubation of human renal cortex with 30 mg collagenase per g of 

tissue yielded 3.07  0.09 million and 3.07  0.03 million cells, respectively. 

Similarly, 25 mg collagenase per g of tissue gave 2.80  0.01 million and 2.62  

0.16 million cells with overnight and acute incubation, respectively. 20 mg 

collagenase per g of tissue gave 2.56  0.04 million and 2.40  0.13 million cells 

with overnight and acute incubation, respectively. 

Enzymatic digestion of rat renal cortex produced similar findings, shown in 

Figure 3.2 (n = 9, N = 3). The number of isolated rat PTCs following an 

overnight or acute incubation at each collagenase concentration was compared 

and no significant difference in the cell yield was found. For instance, an 
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overnight and acute incubation of rat renal cortex with 30 mg collagenase per g 

of tissue yielded 13.75  0.05 million and 13.76  0.73 million cells, respectively. 

25 mg collagenase per g of tissue yielded 11.19  0.36 million and 11.11  0.42 

million cells from an overnight and acute digest, respectively. 20 mg 

collagenase per g of tissue yielded 4.60  0.10 million and 4.51  0.37 million 

cells from an overnight and acute digest, respectively. The lowest concentration 

of collagenase (10 mg collagenase per g of renal cortex) yielded 3.36  0.04 

million and 3.31  0.17 million cells from overnight and acute digests, 

respectively. The significance of the difference in cell yield using an overnight 

and acute incubation was determined using a Student’s t-test. 
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Figure 3.1: The yield of isolated human PTCs following an overnight and 
acute incubation with different concentrations of collagenase.  

Samples of human renal cortex were incubated with 10, 20, 25 or 30 
mg collagenase per g of renal cortex. Cell numbers were estimated 
using a haemocytometer. There were no differences in the number of 
isolated human PTCs per g of tissue in an overnight incubation 
compared to an acute incubation when using 20, 25 and 30 mg 
collagenase per g of tissue. Cell isolation with 30 mg collagenase per 
g of renal cortex gave the highest cell yield, at 3.07  0.09 million 
cells per g of tissue from an overnight digest, and 3.07  0.03 million 
cells per g of tissue from an acute digest. 25 mg collagenase per g of 
tissue yielded 2.80  0.01 million cells from an overnight digest and 
2.62  0.16 million cells from an acute digest. 20 mg collagenase per 
g of renal cortex yielded 2.56  0.04 million cells from an overnight 
digest and 2.40  0.13 million cells from an acute digest. However, 10 
mg collagenase per g of tissue yielded a significantly lower number of 
cells in an overnight digest with 1.58  0.09 million cells per g of 
tissue compared to an acute digest with 2.13  0.04 million cells per g 
of tissue (** P < 0.01). The results are expressed as the mean  SEM 
from 3 samples of renal cortex derived from 3 individual kidneys. The 
significance of the difference in cell yield using an overnight and 
acute incubation was determined using a Student’s t-test.  
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Figure 3.2: The yield of isolated rat PTCs following an overnight and acute 
incubation with different concentrations of collagenase.  

Samples of rat renal cortex were incubated with 10, 20, 25, or 30 mg 
collagenase per g of tissue. The number of cells was estimated using 
a haemocytometer. The mean number of isolated rat PTCs following 
an overnight and acute incubation at each concentration of 
collagenase was compared and no significant difference was found. 
Using 30 mg of collagenase per g of tissue gave the highest yield of 
rat PTCs; 13.75  0.05 million cells per g of tissue was isolated from 
an overnight digest, and 13.76  0.73 million cells per g of tissue from 
an acute digest. 25 mg collagenase per g of tissue yielded 11.19  
0.36 million cells in an overnight digest and 11.11  0.42 million cells 
from an acute digest. 20 mg collagenase per g of renal cortex yielded 
4.60  0.10 million cells in an overnight digest and 4.51  0.37 million 
cells from an acute digest. 10 mg collagenase per g of tissue yielded 
3.36  0.04 million cells in an overnight digest and 3.31  0.17 million 
cells in an acute digest. The results are expressed as the mean  
SEM from 3 samples of renal cortex derived from 3 individual kidneys. 
The significance of the difference in cell yield using an overnight and 
acute digest was determined using a Student’s t-test. 
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3.3.2. Collagenase concentration and cell viability. 

The collagenase used in the isolation process contained a mixture of protease 

enzymes. It has been reported that prolonged exposure to high concentrations 

of protease enzymes can affect cell viability (Boogaard et al., 1990; Cummings 

et al., 2000). In order to determine the effect of collagenase concentration and 

incubation condition upon cell health, growth assays were performed. Isolated 

cells were seeded into plastic 12-well plates at a density of 200 000 cells per 

well. The number of cells in a well per cm2 at 1, 2, 3, 4, 5, 6, 7, and 8 days of 

cell culture were quantified using a haemocytometer. 

Figure 3.3 shows the number of human PTCs per cm2 over 8 days following an 

(a) overnight and (b) acute incubation with different concentrations of 

collagenase (n = 9, N = 3). For both incubation periods, the cells isolated using 

25 mg collagenase per g of tissue displayed the highest rate of cell propagation. 

At day 8 of cell culture, following an overnight incubation, the number of human 

PTCs per cm2 was significantly greater for cells isolated using 25 mg 

collagenase per g of tissue (220 000  3 824) compared to 10 (127 000  3 163, 

**** P < 0.0001), 20 (195 000  3 039, ** P < 0.01) and 30 (197 000  4 558, * P 

< 0.05) mg collagenase per g of tissue. Similarly, at day 8 of cell culture 

following an acute incubation, the number of human PTCs per cm2 was 

significantly greater for cells isolated using 25 mg collagenase per g of tissue 

(221 000  3 039) compared to 10 (87 000  1 519, **** P < 0.0001), 20 (188 

000  4 642, ** P < 0.01) and 30 (182 000  2 321, *** P < 0.001) mg 

collagenase per g of tissue. In order to determine if one incubation period led to 

better cell health the number of cells per cm2 at day 8 following isolation with 25 

mg collagenase per g of tissue was compared. No significant difference in the 

cell number per cm2 was found between an overnight and acute incubation 

period (P > 0.05). Significance was determined using a Student’s t-test. 

Figure 3.4 shows the number of rat PTCs per cm2 over 8 days following an (a) 

overnight and (b) acute incubation with different concentrations of collagenase 

(n = 9, N = 3). Once again, cells isolated using 25 mg of collagenase per g of 

tissue displayed the highest rate of cell proliferation. At day 8 of culture the 

number of rat PTCs per cm2 was significantly greater for cells isolated overnight 

with 25 mg collagenase per g of tissue (242 000  2 589) compared to 10 (122 
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000  2 321, **** P < 0.0001), and 30 (174 000  7 982, ** P < 0.01) mg 

collagenase per g of tissue. Similarly, at day 8 following an acute incubation, the 

number of rat PTCs per cm2 was significantly greater for cells isolated using 25 

mg collagenase per g of tissue (192 000  3 044) compared to 10 (21 000  382, 

**** P < 0.0001), 20 (166 000  4 487, ** P < 0.01) and 30 (29 000  1 379, **** 

P < 0.0001) mg collagenase per g of renal cortex. When the number of cells per 

cm2 at day 8 following an overnight and acute incubation with 25 mg 

collagenase per g of renal cortex was compared, the number of cells at day 8 

following an overnight incubation was significantly greater (P < 0.001, ***). This 

suggests that an overnight enzymatic digestion of rat renal cortex is better for 

cell health. Significance was determined using a Student’s t-test. 
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Figure 3.3: The growth of isolated human PTCs over 8 days following an 
(a) overnight and (b) acute incubation with different concentrations of 
collagenase.  

The number of cells per cm2 was estimated at day 1, 2, 3, 4, 5, 6, 7, 
and 8 of culture using a haemocytometer. The results are expressed 
as the mean  SEM from 9 human PTC monolayers derived from 3 
individual kidneys. (a) Following an overnight incubation the highest 
number of cells per cm2 at each time point was cells isolated using 25 
mg of collagenase per g of human renal cortex. The number of human 
PTCs was 187 000  3 039 per cm2 at day 6, 207 000  2 321 per cm2 
at day 7 and 220 000  3 824 per cm2 at day 8. The number of human 
PTCs for 20 and 30 mg collagenase per g of renal cortex were very 
similar, 164 000  2 321 versus 153 000  5 478 per cm2 at day 6, 
171 000  4 020 versus 168 000  1 519 per cm2 at day 7 and 197 
000  4 558 versus 195 000 3 039 per cm2 at day 8, respectively. 
The lowest number of cells per cm2 at each time point was wells 
containing cells isolated using 10 mg of collagenase per g of human 
renal cortex. (b) After an acute incubation the highest number of cells 
per cm2 was cortex digested with 20 mg collagenase per g of human 
renal cortex at day 1 and 2 of cell culture, then cells isolated using 25 
mg collagenase per g of human renal cortex from day 3 of cell culture 
onwards. For cells isolated using 25 mg collagenase per g of renal 
cortex the number of human PTCs was 198 000  2 321 per cm2 at 
day 6, 209 000  2 321 per cm2 at day 7 and 221 000  3 039 per cm2 
at day 8. The number of human PTCs for 20 and 30 mg collagenase 
per g of renal cortex were very similar, 177 000  3 163 versus 159 
000  3 163 per cm2 at day 6, 182 000  2 321 versus 170 000  3 
163 per cm2 at day 7 and 188 000  4 642 versus 182 000 2 321 per 
cm2 at day 8, respectively. The lowest number of cells per cm2 at 
each time point was wells containing cells isolated using 10 mg of 
collagenase per g of human renal cortex. 
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Figure 3.4: The growth of isolated rat PTCs over 8 days following an (a) 
overnight and (b) acute incubation with different concentrations of 
collagenase.  

The number of cells per cm2 was estimated at day 1, 2, 3, 4, 5, 6, 7, 
and 8 of culture using a haemocytometer. The results are expressed 
as the mean  SEM from 9 rat PTC monolayers derived from 3 
individual kidneys.(a) In an overnight isolation the highest number of 
cell per cm2 at each time point, with the exception of day 3, was cell 
isolates using 25 mg of collagenase per g of tissue. The number of rat 
PTCs was 229 000  1 529 per cm2 at day 6, 230 000  12 281 per 
cm2 at day 7 and 242 000  2 589 per cm2 at day 8. The number of rat 
PTCs for 20 mg collagenase per g of renal cortex was 138 000  2 
191 per cm2 at day 6, 228 000  6 265 per cm2 at day 7 and 235 000 
 3 267 per cm2 at day 8. The number of rat PTCs for 30 mg 
collagenase per g of renal cortex was 85 000  2 339 per cm2 at day 6, 
122 000  3 824 per cm2 at day 7 and 174 000  7 982 per cm2 at day 
8. The lowest number of cells per cm2 at each time point was wells 
containing cells isolated using 10 mg of collagenase per g of human 
renal cortex. (b) In an acute isolation the highest numbers of cells per 
cm2 from day 2 to day 8 were cells isolated using 25 mg of 
collagenase per g of rat renal cortex. For cells isolated using 25 mg 
collagenase per g of renal cortex the number of rat PTCs was 154 000 
 2 510 per cm2 at day 6, 174 000  1 959 per cm2 at day 7 and 192 
000  3 044 per cm2 at day 8. The number of rat PTCs for 20 mg 
collagenase per g of renal cortex was 92 000  1 444 per cm2 at day 6, 
119 000  3 441 per cm2 at day 7 and 166 000  4 487 per cm2 at day 
8. The number of rat PTCs for 30 mg collagenase per g of renal 
cortex was 28 000  749 per cm2 at day 6, 34 000  608 per cm2 at 
day 7 and 29 000  1 379 per cm2 at day 8. The lowest number of 
cells per cm2 at each time point was wells containing cells isolated 
using 10 mg of collagenase per g of human renal cortex.  
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3.3.3. Cell yield per g of cortex. 

As a result of the growth study findings, human PTCs were isolated from human 

renal cortex by incubating tissue samples with 25 mg collagenase per g of renal 

cortex. Figure 3.5 is a summary of the number of isolated human PTCs per g of 

renal cortex (N = 100). The relationship between number of isolated human 

PTCs and weight of human renal cortex shows strong positive correlation. 

Correlation analysis of the sample data gave a Pearson correlation coefficient of 

0.90 and a coefficient of determination of 0.82. Due to the small p value (p < 

0.0001) we can conclude that the correlation is not due to random sampling. 

The numbers of isolated human PTCs from samples weighting less than 2 g 

were negligible.  

Due to the growth assay findings, rat PTCs were isolated from rat renal cortex 

by incubating tissue samples overnight with 25 mg collagenase per g of tissue. 

Figure 3.6 is a summary of the number of isolated rat PTCs per g of renal cortex 

(N = 100). The relationship between number of isolated rat PTCs and weight of 

rat renal cortex appears to have positive correlation. Correlation analysis of the 

sample data gave a Pearson correlation coefficient of 0.715 and a coefficient of 

determination of 0.511. Due to the small p value (p < 0.0001) we can conclude 

that the correlation is not due to random sampling.  
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Figure 3.5: A summary of the number of isolated human PTCs per g of 
human renal cortex.  

Correlation analysis of the sample data gave a Pearson correlation 
coefficient (r) of 0.90, coefficient of determination (r2) of 0.82 and p 
value < 0.0001. This suggests that the number of isolated human 
PTCs is strongly correlated to the weight of human renal cortex used 
and not the result of random sampling. The numbers of isolated 
human PTCs obtained from samples weighting less than 2 g were 
negligible. The sample size (n) was 100. 
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Figure 3.6: A summary of the number of isolated rat PTCs per g of rat 
renal cortex. 

Correlation analysis of the sample data gave a Pearson correlation 
coefficient (r) of 0.72, coefficient of determination (r2) of 0.51 and p 
value < 0.0001. This suggests that the number of isolated rat PTCs is 
correlated to the weight of rat renal cortex used and not the result of 
random sampling. The sample size (n) was 100. 
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3.3.4. TEER of human PTC, rat PTC and RPTEC monolayers. 

A characteristic feature of epithelial cells is the formation of intercellular 

junctions. Formation of these tight junctions results in a cellular barrier 

separating the apical membrane from the basolateral membrane and apical-

basal polarity. Epithelial cells connect to one another as they grow via these 

tight junctions to form polarised epithelial monolayers. TEER measurements are 

a convenient, reliable and non-destructive method of quantitatively evaluating 

the growth of epithelial tissue cultures on Transwell inserts and cell monolayer 

permeability in-vitro. 

Human PTCs, rat PTCs and RPTEC cells were seeded on to 24-well 

Transwell inserts at a density of 75 000 cells per insert with 200 L of culture 

medium in the apical chamber and a further 1000 L in the basolateral well. The 

TEER of each monolayer was measured daily using an epithelial voltohmmeter 

to determine growth and permeability.  

TEER values of human PTC monolayers grown on Transwell inserts are 

shown in Figure 3.7 (n = 72, N = 3). The human PTC monolayers developed 

TEER. TEER increased steadily from day 1 to 6. Resistance reached a plateau 

of around 120 .cm2 between day 6 and 8, with readings of 110.30  1.00 

.cm2 at day 6, 129.60  0.87 .cm2 at day 7, and 135.50  1.04 .cm2 at day 

8. Resistance then decreased at day 9 and 10 but was still significantly above a 

threshold value of 80 .cm2 . Mean rat PTC monolayer TEER values, shown in 

Figure 3.8, were very similar to that of the human monolayers (n = 72, N = 3). 

rat PTC TEER values plateaued around 110 .cm2. The mean TEER at day 6 

was 107.50  0.84 .cm2, day 7 was 114.30  1.09 .cm2, and 98.90  0.12 

.cm2 at day 8. RPTEC monolayers, on the other hand, had very low TEER 

readings in comparison to the primary cells, as shown in Figure 3.9 (n = 24, N = 

3). The highest individual reading was 27.92  0.33 .cm2 at day 9. The results 

are expressed as the mean  SEM.   
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Figure 3.7: TEER of human PTC monolayers grown on Transwell inserts.  

Human PTCs were seeded on to 24-well Transwell inserts at a 
density of 75 000 cells per insert with 200 L of culture medium in the 
apical chamber and a further 1000 L in the basolateral well. TEER of 
each monolayer was measured daily using an epithelial voltohmmeter 
to determine growth and permeability. TEER developed and increased 
steadily in culture from day 1 to 6 (Day 1: 3.35  0.14 .cm2, Day 2: 
6.93  0.15 .cm2, Day 3: 10.47  0.35 .cm2, Day 4: 18.96  0.18 
.cm2, Day 5: 51.97  0.52 .cm2, Day 6: 110.30  1.00 .cm2). 
Resistance reached a plateau of around 120 .cm2 between 6 and 8 
days in culture (Day 7: 129.60  0.87 .cm2, Day 8: 135.50  1.04 
.cm2). Then decreased to 106.9  1.39 .cm2 and 96.45  0.92 
.cm2 at day 9 and 10, respectively. The results are expressed as the 
mean  SEM from 72 monolayers derived from 3 individual kidneys. 
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Figure 3.8: TEER of rat PTC monolayers grown on Transwell inserts.  

Rat PTCs were seeded on to 24-well Transwell inserts at a density 
of 75 000 cells per insert with 200 L of culture medium in the apical 
chamber and a further 1000 L in the basolateral well. TEER of each 
monolayer was measured daily using an epithelial voltohmmeter to 
determine growth and permeability. TEER increased steadily from day 
1 to 7 (Day 1: 2.64  0.22 .cm2, Day 2: 6.76  0.20 .cm2, Day 3: 
19.19  0.30 .cm2, Day 4: 51.74  0.65 .cm2, Day 5: 74.65  1.14 
.cm2, Day 6: 107.50  0.84 .cm2, Day 7: 114.30 1.09 .cm2 ). 
Resistance then decreased from between 8 and 10 days in culture 
(Day 8: 98.90  0.12 .cm2, Day 9: 50.17  0.70 .cm2 and Day 10: 
27.35  0.22 .cm2). The results are expressed as the mean  SEM 
from 72 monolayers derived from 3 individual kidneys. 
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Figure 3.9: TEER of RPTEC monolayers grown on Transwell inserts. 

RPTEC cells were seeded on to 24-well Transwell inserts at a 
density of 75 000 cells per insert with 200 L of culture medium in the 
apical chamber and a further 1000 L in the basolateral well. TEER of 
each monolayer was measured daily using an epithelial voltohmmeter 
to determine growth and permeability. Resistance was low throughout 
culture. The highest reading was 27.92  0.33 .cm2 at day 9. The 
results are expressed as the mean  SEM from 24 monolayers derived 
from 3 individual passages. 
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3.3.5. The correlation between TEER and paracellular permeability. 

In order to determine the efficiency of TEER as a measurement of epithelial cell 

monolayer permeability, the correlation between TEER and paracellular 

permeability was investigated. Radiolabelled [1-14C]-mannitol D is a non-

metabolised small molecular weight probe (112 kiloDaltons) that can be used to 

determine paracellular permeability. Human and rat PTCs, as well as RPTEC 

cells, were seeded on to 24-well Transwell inserts. The TEER of monolayers 

was measured prior to mannitol flux experiments in the absorptive direction (JA-

B). Radiolabelled [1-14C]-mannitol D (10 M, radioactivity 0.1 Ci / mL) was 

introduced into the apical chamber of the Transwell inserts and its appearance 

in the basolateral well after 1 hr was measured to quantify the paracellular 

permeability of the monolayers. 

Figure 3.10 and Figure 3.11 show the inverse relationship between monolayer 

TEER and paracellular permeability (n = 200, N = 25). As human PTC and rat 

PTC monolayer TEER increased, the paracellular movement of mannitol 

decreased until it reached a plateau of 12.89  8.29 pmol / hr / cm2 and 7.24  

11.05 pmol / hr / cm2, respectively. In both species there was a mannitol flux of 

30 pmol / hr / cm2 or less when monolayer TEER was greater than 80 .cm2. 

This equated to a mannitol paracellular flux of less than 0.01 % of the total 

amount of mannitol used. As shown in Figure 3.12 , RPTEC monolayers that 

failed to develop a high TEER showed a high mannitol flux and permeability.  
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Figure 3.10: The correlation between TEER of human PTC monolayers and 
paracellular movement of radiolabelled 10 M [1-14C]-mannitol D. 

An inverse relationship between the TEER value and mannitol 
paracellular flux was observed. As monolayer TEER increased, the 
paracellular movement of mannitol decreased until it reached a 
plateau of 12.89  8.29 pmol / hr / cm2. Monolayers with TEER of 50 
.cm2 or lower showed a high amount of mannitol flux and thus had a 
high permeability. This is in contrast to monolayers with TEER of 80 
.cm2 or greater that showed low mannitol flux (30 pmol / hr / cm2 or 
less) and thus had a low permeability. Each dot represents the TEER 
of the monolayer and the paracellular movement of mannitol across 
the monolayer in the absorptive direction (JA-B). The sample size (n) 
was 200.  
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Figure 3.11: The correlation between TEER of rat PTC monolayers and 
paracellular movement of radiolabelled 10 M [1-14C]-mannitol D. 

An inverse relationship between TEER values and mannitol 
paracellular flux was observed. As monolayer TEER increased, the 
paracellular movement of mannitol decreased until it reached a 
plateau of 7.24  11.05 pmol / hr / cm2. Monolayers with TEER of 40 
.cm2 and lower had a high permeability, whereas monolayers with 
TEER of 80 .cm2 and greater had a low permeability. Each dot 
represents the TEER of the monolayer and the paracellular movement 
of mannitol across the monolayer in the absorptive direction (JA-B). 
The sample size (n) was 200. 
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Figure 3.12: The correlation between TEER of RPTEC monolayers and 
paracellular movement of radiolabelled 10 M [1-14C]-mannitol D. 

The monolayers failed to develop high TEER values. The maximum 
TEER value was 39 .cm2. Correspondingly, the monolayers showed 
a high paracellular flux of mannitol and thus permeability. Each dot 
represents the TEER of the monolayer and the paracellular movement 
of mannitol across the monolayer in the absorptive direction (JA-B). 
The sample size (n) was 200.  
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3.3.6. mRNA expression of key renal drug transporters. 

In order to understand how primary cell cultureware and immortalisation of 

primary proximal tubular cells may affect cellular mRNA expression of transport 

proteins, total cell RNA was isolated from  

 freshly isolated human and rat PTCs,  

 human and rat PTCs cultured on 24-well Transwell® inserts®,  

 human and rat PTCs cultured in plastic T25 flasks, and  

 RPTEC cells (immortalised human PTCs) cultured in plastic T25 flasks.  

The total cell RNA was reverse transcribed into cDNA using MMLV-RT before 

qPCR. The mRNA expression levels of human drug transporters, OAT1, OAT3, 

URAT1, OATP4C1, OCT2, BCRP, MATE1, MATE2-K, MDR1, MRP1, MRP2, 

MRP3, and MRP4 following culture on Transwell® inserts and plastic 

cultureware, and human PTC immortalisation with TERT (RPTEC cell line) 

relative to freshly isolated cells are shown in Figure 3.13, Figure 3.14, Figure 

3.15, Figure 3.16, Figure 3.17, Figure 3.18, Figure 3.19, Figure 3.20, Figure 

3.21, Figure 3.22, Figure 3.23, Figure 3.24, and Figure 3.25, respectively. The 

data are summarised in Table 3.1. The mRNA expression levels of rat drug 

transporters, Oat1, Urat1, Oatp4c1, Oct2, Bcrp, Mate1, Mdr1, and Mrp2, 

following culture on Transwell® inserts and plastic cultureware relative to freshly 

isolated cells are summarised in Table 3.2. This data was produced in 

collaboration with Git Chung. The expression levels had been normalised to 

reference gene GAPDH/Gapdh expression level prior to comparison. The data 

are presented as the mean ± SEM percentage change in expression levels from 

3 separate batches of RNA (N = 3).  

Human PTCs cultured on Transwell® inserts maintained expression of all the 

key renal transport proteins investigated. At day 8 in culture, there was however 

a significant fall in the mRNA expression of OAT1, URAT1, OATP4C1, OCT2, 

BCRP, MATE1, MDR1, MRP3 and MRP4 compared with mRNA expression 

levels in freshly isolated human PTCs. On average the human PTCs at day 7 

had expression levels around 40-50% of fresh tissue, with some exceptions. 
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Similarly, human PTCs cultured on plastic cultureware maintained a similar 

expression of all transporters proteins tested, again with a significant decrease 

in the expression of OAT1, OAT3, URAT1, OATP4C1, OCT2, BCRP, MATE1, 

MDR1, MRP1, MRP3 and MRP4 when compared with freshly isolated human 

PTCs. In stark contrast, immortalised primary proximal tubule cells (RPTEC) 

showed a profound loss of transporter expression compared with fresh tissue 

there was a significant fall in the expression of all transporters following 

immortalisation. 

Expression in human PTCs cultured on Transwell® inserts was compared 

against cells cultured on plastic. The data show expression of OAT3, OATP4C1, 

BCRP, MRP1, MRP3 and MRP4 was significantly higher following culture on 

Transwell® inserts suggesting that cells grown on Transwell® inserts may retain 

more differentiation than cells grown on plastic. 

Rat PTCs cultured on both Transwell® inserts and plastic showed an almost 

identical pattern with maintained expression of all the key renal transport 

proteins investigated, but with expression levels of all transporters significantly 

lower than freshly isolated rat PTCs, (approximately 80 to 70% lower). In 

contrast to the human PTC data, no significance in expression levels was 

observed between the two culture conditions with rat PTCs. Significance was 

determined using a Student’s t-test. 

Relative drug transporter gene expression was compared using human and rat 

drug transporter RT2 profiler PCR array plates. The plates screen expression of 

84 drug transporter genes and 5 reference genes. Drug transporter expression 

in freshly isolated human and rat PTCs, and human and rat PTCs cultured for 7 

days on plastic were charactersied. In correlation with the other data the results 

in Figure 3.26 and Figure 3.27 show drug transporter mRNA levels were lower 

in cells cultured on plastic.  

The data in Figure 3.26 show high expression of OAT1 and OCT2 in fresh 

human PTCs and expression of OAT2, OAT3, OATP1A2, OCT3, BCRP, MDR1, 

MRP1, MRP2, MRP3, MRP4, MRP5, and MRP6 at lower levels. Human PTCs 

cultured for 7 days on plastic showed expression of OCT2, MDR1, MRP1, 

MRP3, MRP4, and MRP5. Drug transporters of interest absent from the PCR 
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array panel include OAT4, URAT1, OATP4C1, MATE1 and MATE2-K. 

Expression had been normalised to the reference gene, GAPDH. The results 

are representative of a single batch of RNA derived from a single individual (N = 

1).  

Figure 3.27 shows high expression of Oat3 and Oct1 in fresh rat PTCs and 

expression of Oat1, Oat2, Oct2, Bcrp, Mdr1b, Mrp1, Mrp2, Mrp3, Mrp4, Mrp5, 

and Mrp6 at lower levels. Rat PTCs cultured for 7 days on plastic showed  

expression of Bcrp, Mdr1b, Mrp1, Mrp4, and Mrp5. Drug transporters of interest 

absent from the PCR array panel include Urat1, Oatp4c1, Oatp1a isoforms, and 

Mate1. Expression had been normalised to the reference gene, ß-actin. The 

results are representative of a single batch of RNA derived from a single 

individual (N = 1). 

The expression of non-proximal tubule drug transporters was also assessed to 

determine cell contamination. Expression of V-ATPase a marker of collecting 

duct cells and MCT8 a marker of loop of Henle and colecting duct cells was 

very low in all samples. This suggests that proximal tubule cells predominate 

the human and rat PTC cell populations.  
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Figure 3.13: The mRNA expression of OAT1 in human PTCs under 
different culture conditions.  

OAT1 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 76.61  
5.10 % and 88.49  1.11 % decrease in expression in comparison to 
freshly isolated cells (100.00  5.72 %), respectively. The 
immortalised RPTEC cell line showed a 96.05  2.32 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, *** P < 0.001. 
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Figure 3.14: The mRNA expression of OAT3 in human PTCs under 
different culture conditions.  

OAT3 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 35.88  
11.01 % and 94.93  1.99 % decrease in expression in comparison to 
freshly isolated cells (100.00  13.25 %), respectively. The 
immortalised RPTEC cell line showed a 93.90  5.98 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, *** P < 0.001. 

 

Fresh Transwell Plastic RPTEC
0

20

40

60

80

100

120

R
e

la
tiv

e
 m

R
N

A
 e

xp
re

ss
io

n
 le

ve
l (

%
 o

f F
re

sh
)

OAT3

*** 
*** 



 

89 
 

 

Figure 3.15: The mRNA expression of URAT1 in human PTCs under 
different culture conditions.  

URAT1 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 49.61  
9.79 % and 77.96  4.23 % decrease in expression in comparison to 
freshly isolated cells (100.00  5.12 %), respectively. The 
immortalised RPTEC cell line showed a 96.03  3.84 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01, *** P < 0.001. 
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Figure 3.16: The mRNA expression of OATP4C1 in human PTCs under 
different culture conditions.  

OATP4C1 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 48.63  
4.13 % and 95.62  1.21 % decrease in expression in comparison to 
freshly isolated cells, (100.00  7.77 %), respectively. The 
immortalised RPTEC cell line showed a 99.79  0.20 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, *** P < 0.001. 
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Figure 3.17: The mRNA expression of OCT2 in human PTCs under 
different culture conditions.  

OCT2 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 62.04  
6.43 % and 48.16  13.99 % decrease in expression in comparison to 
freshly isolated cells, (100.00  16.67 %), respectively. The 
immortalised RPTEC cell line showed a 99.38  0.56 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, * P < 0.05, *** P < 0.001. 
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Figure 3.18: The mRNA expression of BCRP in human PTCs under 
different culture conditions.  

BCRP mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 78.21  
1.09 % and 93.41  1.52 % decrease in expression in comparison to 
freshly isolated cells, (100.00  13.46 %), respectively. The 
immortalised RPTEC cell line showed a 98.89  0.94 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, *** P < 0.001. 
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Figure 3.19: The mRNA expression of MATE1 in human PTCs under 
different culture conditions.  

MATE1 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 51.44  
7.01 % and 75.86  9.42 % decrease in expression in comparison to 
freshly isolated cells, (100.00  11.28 %), respectively. The 
immortalised RPTEC cell line showed a 98.71  1.11 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01, *** P < 0.001. 
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Figure 3.20: The mRNA expression of MATE2-K in human PTCs under 
different culture conditions.  

MATE2-K mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 37.25  
15.80 % and 33.05  11.55 % decrease in expression in comparison 
to freshly isolated cells, (100.00  5.16 %), respectively. The 
immortalised RPTEC cell line showed an 87.66  11.37 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01. 

 

Fresh Transwell Plastic RPTEC
0

20

40

60

80

100

120

R
e

la
tiv

e
 m

R
N

A
 e

xp
re

ss
io

n
 le

ve
l (

%
 o

f F
re

sh
)

MATE2-K

**



 

95 
 

 

Figure 3.21: The mRNA expression of MDR1 in human PTCs under 
different culture conditions.  

MDR1 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 70.99  
3.12 % and 76.42  8.51 % decrease in expression in comparison to 
freshly isolated cells, (100.00  19.26 %), respectively. The 
immortalised RPTEC cell line showed a 96.13  2.62 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01, *** P < 0.001. 
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Figure 3.22: The mRNA expression of MRP1 in human PTCs under 
different culture conditions.  

MRP1 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 7.71  
10.20 % and 84.87  2.56 % decrease in expression in comparison to 
freshly isolated cells, (100.00  7.91 %), respectively. The 
immortalised RPTEC cell line showed a 96.87  0.81 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, *** P < 0.001. 
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Figure 3.23: The mRNA expression of MRP2 in human PTCs under 
different culture conditions.  

MRP2 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 9.44  
26.22 % and 46.03  17.97 % decrease in expression in comparison 
to freshly isolated cells, (100.00  8.38 %), respectively. The 
immortalised RPTEC cell line showed a 77.53  11.54 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, * P < 0.05. 
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Figure 3.24: The mRNA expression of MRP3 in human PTCs under 
different culture conditions.  

MRP3 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 64.91  
4.26 % and 87.62  4.00 % decrease in expression in comparison to 
freshly isolated cells, (100.00  19.33 %), respectively. The 
immortalised RPTEC cell line showed a 99.00  0.96 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01, *** P < 0.001. 
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Figure 3.25: The mRNA expression of MRP4 in human PTCs under 
different culture conditions.  

MRP4 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 60.57 
3.76 % and 92.18  1.71 % decrease in expression in comparison to 
freshly isolated cells, (100.00  17.42 %), respectively. The 
immortalised RPTEC cell line showed a 96.20  2.05 % decrease in 
expression in comparison to freshly isolated cells. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01, *** P < 0.001. 
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Table 3.1: Summary of the change in relative mRNA expression levels of 
key drug transporters when human PTCs are cultured on Transwell® 
inserts, plastic cultureware and immortalised in comparison to freshly 
isolated human PTCs.  

mRNA expression levels are expressed as percentage expression 
relative to freshly isolated human PTCs. The data show that 
expression of many of the key renal transporters was significantly 
lower in cultured cells. Expression of OAT3, OATP4C1, BCRP, MRP1, 
MRP3 and MRP4 was significantly higher following culture on 
Transwell® inserts when compared with plastic. The expression levels 
had been normalised to reference gene GAPDH expression level prior 
to comparison. The results are expressed as the mean ± SEM from 3 
separate batches of RNA derived from 3 individual kidneys. One-way 
ANOVA statistical test was performed on the data set to determine 
significance, * P < 0.05, ** P < 0.01, *** P < 0.001. 

Transporter 
% expression compared to fresh human PTCs (Mean ± SEM) 

Transwell® Plastic RPTEC 

OAT1 23.39 ± 5.10 *** 11.51 ± 1.11 *** 3.95 ± 2.32 *** 

OAT3 64.12 ± 11.01 5.07 ± 1.99 *** 6.11 ± 5.98 *** 

URAT1 50.39 ± 9.79 ** 22.04 ± 4.23 *** 3.97 ± 3.84 *** 

OATP4C1 51.37 ± 4.13 *** 4.38 ± 1.21 *** 0.21 ± 0.20 *** 

OCT2 37.96 ± 6.43 * 51.84 ± 13.99 * 0.62 ± 0.56 *** 

BCRP 21.79 ± 1.09 *** 6.59 ± 1.52 *** 1.12 ± 0.94 *** 

MATE1 48.56 ± 7.01 ** 24.14 ± 9.42 *** 1.29 ± 1.11 *** 

MATE-2K 62.75 ± 15.80 66.95 ± 11.55 12.34 ± 11.37 ** 

MDR1 29.01 ± 3.12 ** 23.58 ± 8.51 ** 3.87 ± 2.62 *** 

MRP1 92.29 ± 10.20 15.13 ± 2.56 *** 3.13 ± 0.81 *** 

MRP2 90.56 ± 26.22 53.97 ± 17.97 22.47 ± 11.54 * 

MRP3 35.09 ± 4.26 ** 12.38 ± 4.00 *** 1.00 ± 0.96 *** 

MRP4 39.43 ± 3.76 ** 7.82 ± 1.71 *** 3.80 ± 2.05 *** 
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Table 3.2: Summary of the change in relative mRNA expression levels of 
key drug transporters in rat PTCs cultured on Transwell® inserts and 
plastic cultureware compared to freshly isolated rat PTCs.  

mRNA expression levels are expressed as percentage expression 
relative to freshly isolated rat PTCs. The data show that expression of 
all key renal transporters was significantly lower in cultured cells. The 
expression levels had been normalised to reference gene Gapdh 
expression level prior to comparison. The results are expressed as 
the mean ± SEM from 3 separate batches of RNA derived from 3 
individual kidneys. One-way ANOVA statistical test was performed on 
the data set to determine significance, * P < 0.05, ** P < 0.01, *** P < 
0.001.  

Transporter 
% expression compared to fresh rat PTCs (Mean ± SEM) 

Transwell® Plastic 

Oat1 24.97 ± 7.51 *** 16.50 ± 4.93 *** 

Urat1 19.05 ± 6.20 ** 25.17 ± 4.53 ** 

Oatp4c1 22.81 ± 10.68 ** 12.46 ± 7.57 ** 

Oct2 36.98 ± 17.71 ** 27.68 ± 16.88 ** 

Bcrp 24.98 ± 8.50 ** 20.23 ± 6.32 ** 

Mate1 28.09 ± 6.00 ** 18.93 ± 9.44 ** 

Mdr1 72.81 ± 5.39 * 60.25 ± 7.07 * 

Mrp2 37.71 ± 4.30 ** 21.19 ± 10.33 ** 
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Figure 3.26: Characterisation of proximal and non-proximal tubular drug 
transporter expression using the human drug transporter RT2 Profiler PCR 
array.  

The human drug transporter RT2 profiler PCR array was used to 
characterise drug transporter gene expression in freshly isolated 
human PTCs and human PTCs cultured for 7 days on plastic. The 
data shows a fall in drug transporter expression in cell culture on 
plastic. Fresh human PTCs showed high expression of OAT1 (0.228) 
and OCT2 (0.289). OAT2 (0.009), OAT3 (0.074), OATP1A2 (0.022), 
OCT3 (0.029), BCRP (0.030), MDR1 (0.071), MRP1 (0.028), MRP2, 
(0.029), MRP3 (0.025), MRP4 (0.091), MRP5 (0.027), MRP6 (0.025) 
were expressed at lower levels. The expression of non-proximal 
markers was also assessed to determine cell contamination. 
Expression of V-ATPase (0.009), a marker of collecting duct cells, 
and MCT8 (0.006), a marker of loop of Henle and distal tubular cells 
was very low. Human PTCs cultured for 7 days on plastic showed low 
expression of OCT2 (0.009), MDR1 (0.004), MRP1 (0.007), MRP3 
(0.010), MRP4 (0.011) and MRP5 (0.002). Expression of the non-
proximal tubule cell markers V-ATPase (0.001) and MCT8 (0.001) was 
minimal. Drug transporters of interest absent from the PCR array 
panel include OAT4, URAT1, OATP4C1, MATE1 and MATE2-K. The 
expression levels had been normalised to the reference gene, GAPDH, 
prior to comparison. The results are representative of a single batch 
of RNA derived from a single individual. 
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Figure 3.27: Characterisation of proximal and non-proximal tubular drug 
transporter expression using the rat drug transporter RT2 Profiler PCR 
array. 

The rat drug transporter RT2 profiler PCR array was used to 
characterise drug transporter gene expression in freshly isolated rat 
PTCs and rat PTCs cultured for 7 days on plastic. The data shows a 
fall in drug transporter expression in cell culture on plastic. Fresh rat 
PTCs showed high expression of Oat3 (0.224) and Oct1 (0.356). Oat1 
(0.010), Oat2 (0.052), Oct2 (0.066), Bcrp (0.054), Mdr1b (0.002), 
Mrp1 (0.013), Mrp2, (0.013), Mrp3 (0.003), Mrp4 (0.026), Mrp5 
(0.002), Mrp6 (0.003) were expressed at lower levels. The expression 
of non-proximal markers was also assessed to determine cell 
contamination. Expression of V-ATPase (0.005) and Mct8 (0.009) was 
very low. Rat PTCs cultured for 7 days on plastic showed low 
expression of Bcrp (0.007), Mdr1b (0.005), Mrp1 (0.013), Mrp4 (0.001) 
and Mrp5 (0.002). Expression of the non-proximal tubule cell markers 
V-ATPase (0.002) and Mct8 (0.001) was minimal. Drug transporters of 
interest absent from the PCR array panel include Oat4, Urat1, 
Oatp4c1, Oatp1a isoforms, and Mate1. The expression level had been 
normalised to the reference gene, ß-actin, prior to comparison, as 
Gapdh was not included on the PCR array panel. The results are 
representative of a single batch of RNA derived from a single 
individual. 
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3.4. Discussion 

The proximal tubule plays a pivotal role in the renal clearance of xenobiotic and 

endogenous metabolites. The uptake and efflux of molecules across the cell 

membrane of proximal tubule epithelial cells are achieved by the polar 

distribution of transport proteins to either the basolateral or apical membrane. 

From a molecular approach, a good understanding of the substrate profiles of 

the transporters expressed in the proximal tubule has been obtained, but we 

have little knowledge of the contribution of individual transporters or how 

transporters integrate to produce an efficient secretory or absorptive 

mechanism. A holistic model of the proximal tubule epithelial is needed to 

address this problem.  

Many pre-clinical models of transport in the kidney are based on transfected or 

animal cells, which express a limited number of human renal transporters and 

consequently are not accurate models. In contrast, primary renal proximal 

tubule cells retain the full complement of key renal transporters. This makes 

them a more physiologically relevant and therefore predictive model of renal 

handling. Species differences in the properties and expression patterns of renal 

transporters are making data derived from animal studies difficult to extrapolate 

to humans. This highlights the importance of conducting parallel studies using 

primary human and rat models of the proximal tubule. In this chapter, a 

previously published method of isolating primary human proximal tubule cells 

was optimised, and was also adapted to isolate rat proximal tubule cells.  

Samples of renal cortex tissue were enzymatically digested with collagenase 

into a single cell suspension. The cell suspension was then divided in to the 

constituent cell types by sieving and Percoll density gradient centrifugation. In 

order to optimise the enzymatic digestion of the renal cortex, chopped samples 

(approximately 1 mm3) were incubated overnight or acutely with different 

concentrations of collagenase and the yield of isolated PTCs was compared. In 

both species, higher concentrations of collagenase resulted in greater 

enzymatic digestion of renal cortex, and naturally larger yields of PTCs. As 

shown in Figure 3.1 and Figure 3.2, the incubation period had no significant 
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effect on the cell yield when using 20, 25, or 30 mg collagenase per g of renal 

cortex. 

An issue of enzymatic digestion of renal cortex is that the enzyme mixtures 

contain protease enzymes that can be detrimental to cell viability at high 

concentrations (Boogaard et al., 1990; Cummings et al., 2000). In order to 

evaluate the effect of collagenase concentration upon cell health, growth assays 

were conducted on the isolated cells. The numbers of cells per cm2 over an 8-

day period of cell culture were quantified. As shown in Figure 3.3, human PTC 

growth was significantly greater when cells were incubated with 25 mg of 

collagenase per g of tissue. No significant difference was found in cell viability 

human PTC at day 8 of culture following an overnight or acute incubation with 

the same concentration of collagenase (P > 0.05). As a result of these findings, 

samples of human renal cortex were incubated with 25 mg of collagenase per g 

of renal cortex in the enzymatic digestion phase of human PTC isolation, 

despite 30 mg of collagenase per g of renal cortex producing a greater yield of 

cells. This concentration provides a good compromise on cell yield and viability, 

with the latter being crucial for downstream experiments. As the incubation 

period of the tissue with collagenase appeared to have no effect upon cell 

growth, convenience dictated the period of exposure of the human tissue to 

collagenase. Rat renal cortex tissues, on the other hand, were incubated with 

25 mg of collagenase per g of tissue and incubated overnight in this project. 

This is because when rat PTC numbers in Figure 3.4 at day 8 of culture 

following an overnight or acute incubation were compared, the former produced 

significantly greater number of viable cells rat PTC (P < 0.001).  

A limitation of this proximal tubule isolation technique is that the isolated cells 

are a mixture of proximal and distal tubular cells. Our research group has 

previously cultured and characterised transporter expression of pure human 

proximal and distal tubular / collecting duct cell monolayers (Brown et al., 2008). 

qPCR and immunohistochemistry studies of drug transporter expression found 

that pure cultures of distal tubule / collecting duct cells lack expression of key 

drug transport proteins and thus are effectively ‘silent’ in these co-cultures of 

proximal and distal tubular cells. In addition, pure proximal tubular cell 

monolayers have very low TEER values. Therefore, to improve cell yield and 
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monolayer permeability a mixture of proximal and distal tubule cells was used 

rather than a pure culture of proximal tubule cells. A further constraint is that 

this isolation technique is not efficient enough to isolate human PTCs from 

human renal tissue samples weighing less than 2 g. A number of renal cortex 

resection samples from the nephrology unit of the Freeman hospital were 

donated to our research cause, but we were unable to obtain cells from the 

majority of these samples. As shown in Figure 3.5 and Figure 3.6, the weight of 

renal cortex was positively correlated to the number of isolated PTCs.  

Isolated primary cells were then grown on plastic cell cultureware and 

Transwell polycarbonate inserts. Growth of cells on polycarbonate inserts with 

microporous membranes has numerous advantages over solid plastic cell 

growth platforms. Permeable Transwell inserts permit cells to take up and 

secrete molecules on both their basal and apical membranes. This environment 

is a closer representation of the in-vivo environment and thus improves cell 

polarisation, transporter expression and viability (Fulcher et al., 2005). Cellular 

functions such as transport, absorption and secretion can also be studied since 

cells grown on permeable supports provide access to their apical and 

basolateral plasma membranes. 

Cell confluency on plastic cell culture ware was assessed visually using a phase 

contrast microscope throughout the culture. Due to the opacity of the 

Transwell inserts, the confluency of cells grown on 24-well Transwell inserts 

was determined by measuring the TEER of the monolayer daily with an 

epithelial voltohmmeter. TEER is a reliable, quantitative measure of barrier 

strength. In this instance, TEER was used to indicate the confluency and 

permeability of the cell monolayers. TEER values of human PTC monolayers up 

to day 10 of cell culture are shown in Figure 3.7. The findings strongly correlate 

with the human PTC cell growth curves in Figure 3.3. The lag phase of cell 

growth characterised by low growth and TEER was from day 1 to 3 of cell 

culture. After this period of acclimatisation to the new environment, cell numbers 

and TEER increased exponentially until day 6. Cell growth and resistance 

plateaued at around 210 000 human PTCs per cm2 and 120 .cm2 between 

day 6 and 8. Then cell number and TEER decreased from day 9 onwards as 

cell death began. Cell growth and TEER of rat PTCs shown in Figure 3.4 and 
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Figure 3.8 showed very similar trends. Cell growth and TEER plateaued at 230 

000 rat PTCs per cm2 and 110 .cm2 from day 6 to 7 of cell culture.  

In order to determine the efficiency of TEER as a measure of epithelial cell 

monolayer permeability, the correlation between TEER and paracellular flux of 

radiolabelled [1-14C]-mannitol D was studied. Figure 3.10 and Figure 3.11 show 

an inverse relationship between the two. As human PTC and rat PTC 

monolayer TEER increased, the paracellular movement of mannitol decreased 

until it reached a plateau of 12.89  8.29 pmol / hr / cm2 and 7.24  11.05 pmol / 

hr / cm2 respectively. In both primary cell culture models there was a mannitol 

flux of 30 pmol / hr / cm2 or less when monolayer TEER was greater than 80 

.cm2, which equates to a mannitol paracellular flux of less than 0.01% of the 

total amount of mannitol used. These results indicate confluent monolayer 

formation, high tight junction integrity and low paracellular permeability. As a 

consequence of these findings, only monolayers with a TEER greater than 80 

.cm2 were used in transporter absorption and secretion studies.  

The mRNA expression levels of several transporters following incubation on two 

different cell cultureware materials were analysed by qPCR. Human and rat 

PTCs cultured on Transwell® inserts and plastic were compared to freshly 

isolated PTCs. The freshly isolated cells were considered to be representative 

of the native proximal tubule in-vivo. The findings shown in Table 3.1 and Table 

3.2 show that human and rat PTCs cultured on both Transwell® inserts and 

plastic maintained expression of all the key renal transport proteins investigated. 

Including the basolateral uptake transporters OAT1/Oat1, OAT3, and 

OCT2/Oct2 commonly absent from immortalised renal epithelial cell lines 

(Gstraunthaler et al., 1985; Pfaller and Gstraunthaler, 1998; Jenkinson et al., 

2012; Jansen et al., 2014). Although there was a significant fall in the 

expression of most transporters in comparison to freshly isolated cells the 

expression levels are substantially higher than those seen in any previous in-

vitro kidney model. Comparison of mRNA drug transporter expression in human 

and rat PTCs using drug transporter RT2 profiler array plates in Figure 3.26 and 

Figure 3.27 showed little expression of non-proximal tubular cell markers. This 

suggests that proximal tubular cells perdominate the human and rat PTC cell 

populations.  
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A limitation of using primary cell cultures is the finite lifespan of the isolated cells. 

As our results have shown, renal primary cells have a short life span, cell death 

occurred from day 9 onwards regardless of nutrient availability. A number of 

preservation techniques were attempted unsuccessfully. For instance, cells 

were subcultured once confluency was reached. However, many subcultured 

cells were unable to adhere to the culture vessel, and attached cells failed to 

proliferate. Isolated proximal-distal cells were also cryopreserved. 

Cryopreservation involved suspending cells in serum rich medium containing 

DMSO as a cryoprotectant, then cooling cells to -135 C. However, upon 

thawing, the primary cells also failed to attach to the cell culture vessel. 

Due to the difficulties of primary cell preservation, primary proximal tubule cells 

have been immortalised. There are several publications in the literature that 

highlights the advantages of using the immortalised cells. A good example is 

that of the renal proximal tubule epithelial cells transfected with TERT1 

(RPTEC). However, contradictory to some of the publications, RPTEC 

monolayers exhibited very low TEER values (Figure 3.9), when compared to 

human or rat PTCs (Wieser et al., 2008) and high paracellular permeability 

(Figure 3.12) making if difficult to perform transepithelial studies with this cell 

line. Furthermore, the cells appear to lose differentiation. mRNA expression of 

key renal transport proteins were analysed in RPTEC cells. Expression relative 

to freshly isolated human PTCs is shown in Table 3.1. Transporter mRNA 

expression in RPTEC was very low in comparison to freshly isolated cells. In all 

these findings suggest that this cell line may not be a suitable in-vitro model of 

the proximal tubule in this instance. 

3.5. Summary 

Primary cultures of human and rat PTCs were successfully isolated. The 

enzymatic digestion phase of the isolation procedure was optimised to improve 

cell viability. When grown on Transwell® inserts the primary cultures formed 

confluent monolayers of good tight junction integrity and low paracellular 

permeability. When mRNA expression of transporters following culture on 

Transwell® inserts and plastic were compared, human PTCs cultured on 

Transwell® inserts showed greater expression of many transporters. However, 
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there was a significant fall in the mRNA expression of most transporters in 

cultured cells comparison to freshly isolated cells. In comparison, the 

immortalised human proximal tubule epithelial cell line, RPTEC, failed to form a 

monolayer with low paracellular permeability and transporter mRNA expression 

was very low in comparison to freshly isolated cells. Suggesting that primary 

PTCs are a better in-vitro cell model of the proximal tubule for safety 

pharmacology studies.  
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4. TFV handling by PTCs 

4.1. Background 

The previous chapter characterised transporter mRNA expression in human 

and rat primary PTC monolayers, this chapter expands on this to demonstrate 

the utility of human and rat PTC monolayers as predictive in-vitro models of 

proximal tubule drug handling with a focus on the proximal tubule handling of 

TFV. Pharmacokinetic in-vivo studies in animals and man had previously shown 

that the elimination of TFV is a combination of glomerular filtration and tubular 

secretion (Shaw et al., 1997; Kearney et al., 2004). As such, this molecule was 

an ideal candidate for use in demonstrating the models as suitable screening 

platforms for drug transporter and DDI studies by investigating the renal 

handling of TFV. 

TFV is widely prescribed as part of a combination therapy for the treatment of 

human immunodeficiency 1 (HIV-1) infection in patients 10 years of age and 

older, and chronic hepatitis B virus (HBV) infection in patients 12 years of age 

and older (Gilead Sciences, 2015). TFV alone has poor oral bioavailability, due 

to a negatively charged phosphonate moiety. In order to improve bioavailability 

it is administered as a pro-drug formulation named tenofovir disoproxil fumarate 

(TDF, Viread). In the pro-drug form the two negative charges of the TFV 

phosphonic group are masked by isopropyloxycarbonyloxymethyl moieties, 

which increase the lipophilicity of the compound and thus its permeation across 

membranes (van Gelder et al., 2002). The chemical structure of these 

molecules can be seen in Figure 4.1. 

The enzymatic activation of TDF into its active component is shown in Figure 

4.1. TDF is rapidly converted to TFV in the intestine and systemic circulation 

through esterase hydrolysis (van Gelder et al., 2002). TFV is then di-

phosphorylated by adenylate kinase and nucleoside diphosphate kinase to form 

the active metabolite TFV diphosphate (TFVpp) (Merta et al., 1992; De Clercq 

and Holy, 2005). TFVpp inhibits the activity of HIV reverse transcriptase by 
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competing with the natural substrate deoxyadenosine 5’-triphosphate. The 

incorporation of a molecule of TFVpp at the 3’ end causes replication of the viral 

DNA to cease. TFV can be activated in both living and resting cells to TFVpp 

(Robbins et al., 1998). TFVpp inhibits HIV replication in macrophages and other 

non-dividing cells (Kearney et al., 2004). TFVpp is also a weak inhibitor of 

mammalian DNA polymerases α, β, and mitochondrial DNA polymerase γ 

(Birkus et al., 2002). 

The pharmacokinetics of TDF are dose-proportional, and similar in healthy 

individuals and HIV-1 infected patients. The oral bioavailability of TFV from TDF 

is approximately 25 %. Following oral administration of a single 300 mg dose to 

fasted HIV-1 patients, maximum serum concentrations (Cmax) are achieved in 

1.0  0.4 hrs. Cmax and area under the curve (AUC) values are 0.3  0.1 g/mL 

and 2.29  0.69 g.h.mL, respectively. Following the achievement of Cmax, TFV 

concentration decline in a biphasic manner, with an apparent elimination half-

life of 17 hrs. TFV Cmax and AUC are dose-proportional over a dose range of 75 

to 600 mg and unaffected by repeated dosing. In-vitro binding studies found that 

binding of TFV to human plasma or serum proteins is less than 0.7 and 7.2%, 

respectively, over the TFV concentration range of 0.01 to 0.25 g/mL. The 

volume of distribution at steady state is 1.3  0.6 L/kg. In-vitro and in-vivo 

studies indicate that neither TFV nor TDF are substrates, inducers or inhibitors 

of cytochrome P450 enzymes. Following steady-state dosing, 32  10 % of the 

administered dose is recovered in urine over 24 hrs. Studies have shown that 

the pharmacokinetics of TDF are unaltered by most other antiretroviral agents 

or by concomitant medications that are frequently prescribed to the HIV-1 

infected population. Although clinically important pharmacokinetic interactions 

do occur with didanosine and atazanavir, adjustment of the dosages of these 

agents can readily be accomplished using commercially available dosage forms. 

In HIV-1 infected patients with renal impairment, adjustment of the TDF is 

warranted and accomplished by extension of the dosage interval. This clinical 

pharmacology data has been published by the department of pharmacology and 

pharmacokinetics at Gilead Sciences, Inc (Kearney et al., 2004; Gilead 

Sciences, 2015). 
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Figure 4.1: The enzymatic activation of TDF into its active component, 
TFVpp. 

Figure created using ChemDraw. 
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Post-marketing safety data covering 455 392 patient years of TDF exposure 

showed renal serious adverse events (acute/chronic renal failure, Fanconi 

syndrome) in only 0.5 % of patients and graded elevations in serum creatinine 

in 2.2 % of patients (Nelson et al., 2007; Herlitz et al., 2010; Fernandez-

Fernandez et al., 2011). Reports of proximal tubule dysfunction, Fanconi 

syndrome and acute kidney injury associated with TDF have been published in 

multiple individual case reports and case series. Retrospective histological and 

ultrastructural studies conducted in renal biopsies have demonstrated a 

distinctive pattern of proximal tubule injury characterised by severe 

mitochondrial damage, supporting a mechanism of drug induced-mitochondrial 

toxicity (Cote et al., 2006; Kohler et al., 2009; Herlitz et al., 2010; Perazella, 

2010). Pathology studies indicate that the accumulation of TFV within proximal 

tubule cells results in host cell toxicity (Kohler et al., 2009; Fernandez-

Fernandez et al., 2011; Kohler et al., 2011). At high intracellular concentrations 

TFV inhibits mitochondrial DNA polymerase  (Martin et al., 1994; Birkus et al., 

2002; Fernandez-Fernandez et al., 2011). As a result, a number of the encoded 

enzymes involved in the electron transport chain and oxidative phosphorylation 

become depleted, resulting in disturbed mitochondrial cell function, a deficit in 

ATP production, impaired cell function, cell injury and apoptosis. This in turn 

leads to proximal tubular cell death, and endogenous metabolites such as 

glucose, amino acids, uric acid, phosphate and bicarbonate are passed into the 

urine instead of being reabsorbed. These manifest as polyuria, glycosuria, 

proteinuria, hyperuricosuria, hypophosphatemia, osteomalacia, hypokalemia 

and acidosis in patients. TFV discontinuation has been associated with 

significant renal recovery, however, many patients may suffer from chronic 

kidney disease (Herlitz et al., 2010). 

The literature proposes the uptake of TFV from the basolateral circulation into 

epithelial proximal tubule cells is predominantly mediated by OAT1 with minor 

contribution from OAT3 (Cihlar et al., 1999; Cihlar and Ho, 2000; Ho et al., 

2000; Cihlar et al., 2001; Cihlar et al., 2007; Uwai et al., 2007; Mandikova et al., 

2013). TFV is then effluxed into the urine through apical transporters MRP2 and 

MRP4 (Schuetz et al., 1999; Izzedine et al., 2006; Cihlar et al., 2007; Imaoka et 

al., 2007; Uwai et al., 2007; Mandikova et al., 2013). However, a critique of the 

current proposition is that these studies were performed in poor renal 
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experimental models. Heterologous expression of individual renal transporters 

in expression systems and transfected cells have given crucial information 

about substrate specificities and the potential for DDIs at the level of an 

individual transport system. However, there are no studies in physiologically 

relevant intact cell models to investigate how a plethora of individual 

transporters combine and integrate to form an efficient secretory pathway. In 

addition to investigating the renal handling of TFV by primary models, the 

results from this study may also elucidate the mechanism behind TFV 

accumlation within the proximal tubules, and validate the use of the models in 

drug development studies. 

4.2. Aims 

The aim of this chapter was to demonstrate the utility of human and rat PTC 

monolayers as predictive in-vitro models of proximal tubule drug handling, using 

TFV as a model substrate.  

Firstly, the uptake and flux of [3H]-TFV in human PTC and rat PTC monolayers 

over time were studied to select a suitable time point to conduct transport 

experiments under initial rate conditions. Once a time point had been selected, 

the unidirectional transepithelial fluxes of [3H]-TFV were measured in the 

secretory and absorptive direction across paired human and rat PTC 

monolayers. Uptake of [3H]-TFV across the basolateral and apical membrane of 

human and rat PTC monolayers were also measured. Kinetics parameters such 

as the maximum rate of [3H]-TFV uptake (Vmax) and the affinity of [3H]-TFV for 

PTC uptake transporters (Km) were determined in both models. Then to identify 

the transporters responsible for the uptake of TFV across the basolateral 

membrane, the secretory flux and uptake of [3H]-TFV were measured in the 

presence of various competitive substrates of basolateral uptake transport. 

Similarly, the transporters responsible for the efflux of TFV across the apical 

membrane were characterised by measuring the secretory flux and intracellular 

accumulation of [3H]-TFV in the presence of various competitive substrates of 

apical efflux transport proteins. 
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4.3. Results 

4.3.1. Flux and uptake of TFV by human PTC monolayers over time. 

In order to ensure the renal handling of TFV was measured under initial rate 

conditions, the rate of TFV unidirectional fluxes and uptake over time were 

studied. The secretory and absorptive fluxes of 10 M [3H]-TFV across human 

PTC monolayers following 20, 40, and 60 min of exposure were measured. 

Additionally, the uptake of [3H]-TFV across the basolateral membrane of human 

PTC monolayers was measured at 15, 30, 45, 60, and 90 min of exposure. 

Figure 4.2 shows the secretory, absorptive and net fluxes of [3H]-TFV increased 

linearly between the defined time-points (n = 9, N = 3). Correspondingly, the 

uptake of [3H]-TFV increased linearly between 0 and 90 min, with a gradient of 

0.50  0.01 pmol / cm2 / min (n = 9, N = 3), as shown in Figure 4.3. We can thus 

deduce that 0 to 90 min lies within the linear rate of TFV transport, and 

subsequent experiments of TFV renal handling were performed within the 60-

min time point. The non-specific binding of [3H]-TFV to the Transwell insert 

was also found to be 0.96  0.11 pmol / cm2, which was considered to be 

negligible.  
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Figure 4.2: Time course of unidirectional fluxes of 10 M [3H]-TFV across 
human PTC monolayers.  

The fluxes of 10 M [3H]-TFV across human PTC monolayers over the 
defined periods of time are shown. The fluxes of [3H]-TFV were within 
the initial rate period between 0 and 60 min as secretory, absorptive 
and net fluxes were linear over this time period. The results are 
expressed as the mean ± SEM from 9 human PTC monolayers derived 
from 3 individual kidneys.  
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Figure 4.3: Time course of 10 M [3H]-TFV uptake across the basolateral 
membrane of human PTC monolayers.  

The basolateral membranes of the monolayers were incubated with 10 
μM [3H]-TFV for 0, 15, 30, 45, 60 or 90 min. The rate of uptake of 
[3H]-TFV was linear within the time period investigated. Linear 
regression analysis of the data gave a slope of 0.50  0.01 pmol / cm2 
/ min (R2: 0.96). The non-specific binding of [3H]-TFV to the 
Transwell insert was 0.96  0.11 pmol / cm2. The results are 
expressed as the mean ± SEM from 9 human PTC monolayers derived 
from 3 individual kidneys.  
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4.3.2. Flux and uptake of TFV by human PTC monolayers. 

Unidirectional transepithelial fluxes of 10 M [3H]-TFV over 60 min in both the 

secretory (JB-A) and absorptive (JA-B) direction were studied in the human PTC 

monolayer model. The net flux (Jnet) was calculated from the difference between 

the two fluxes. Uptake of TFV across the basolateral or apical membranes were 

also determined by assaying the amount of intracellular [3H]-TFV accumulated 

within the human PTC monolayers at the end of the experiment.  

Figure 4.4 shows a net absorption of TFV (50.69  1.35 pmol / hr / cm2) across 

human PTC monolayers. The absorptive movement of [3H]-TFV (131.16  2.15 

pmol / hr / cm2) was 1.63-fold greater than the secretory movement of [3H]-TFV 

(80.47 ± 1.00 pmol / hr / cm2) (**** P < 0.0001, n = 9, N = 3). Figure 4.5 shows 

the intracellular concentration of [3H]-TFV, which was representative of [3H]-TFV 

uptake across the basolateral or apical membranes of the human PTC 

monolayers. [3H]-TFV uptake across the basolateral and apical membrane were 

39.09 ± 1.31 pmol / hr / cm2 and 6.67 ± 0.46 pmol / hr / cm2, respectively; 

uptake across the basolateral membrane was 5.86-fold greater than across the 

apical membrane (**** P < 0.0001, n = 9, N = 3). When cellular uptake was 

expressed as cell-to-medium ratio, see calculation below, the findings indicated 

a cell to media ratio greater than 1. Implying TFV is accumulated into the 

proximal tubule cells across the basolateral membrane. 

The cell-to-medium ratio was calculated by dividing the intracellular 

concentration of TFV (µM) by the concentration of test compound in the 

transport medium (µM). Assumptions made in this calculation are the height of a 

proximal tubule epithelial cell is 10 microns i.e. 0.001 cm as measured by 

transmission electron microscopy (Dorup and Maunsbach, 1997), cell 

monolayers form a cylinder, and intracellular space does not contain subcellular 

compartments. These assumptions give ratios which probably substantially 

underestimate the true accumulation  

Volume occupied by a monolayer per 24-well Transwell® insert (surface area 

0.33 cm2) = π.radius2.height 

If radius = 0.32 cm, and height = 0.001 cm,  

Volume (per 0.33cm3)= 0.00032 cm3 = 0.332 µL 
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Volume (per cm3) = 0.332 µL x 3 = 0.996 µL 

TFV concentration per cm3 = 39.09 pmol / cm3 

Intracellular concentration of TFV = 39.09 pmol / 0.996 µL i.e. 39.25 µM 

Extracellular concentration of TFV = 10 µM 

Cell-to-medium ratio = 39.25 µM ÷ 10 µM = 3.93 

 

 

Figure 4.4: Unidirectional fluxes of 10 M [3H]-TFV by human PTC 
monolayers. 

In order to determine the secretory and absorptive fluxes of TFV 
through human PTC monolayers, paired monolayers were incubated 
with 10 μM [3H]-TFV at either the basolateral or apical chamber. 
Buffer samples were collected from the opposing chambers after a 60 
min incubation period. The amount of [3H]-TFV in each sample was 
measured using scintillation counting. The results show a net 
absorptive flux (50.69 ± 1.35 pmol / hr / cm2). The absorptive 
movement of [3H]-TFV (131.16 ± 2.15 pmol / hr / cm2) was 1.63-times 
greater than the secretory movement (80.47 ± 1.00 pmol / hr / cm2) 
(**** P < 0.0001). The results are expressed as the mean ± SEM from 
9 human PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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Figure 4.5: Uptake of 10 M [3H]-TFV across the basolateral and apical 
membrane of human PTC monolayers.  

Paired monolayers were incubated with 10 μM [3H]-TFV at either the 
basolateral or apical chamber for 60 min. The data show that the 
uptake of [3H]-TFV across the basolateral membrane (39.09 ± 1.31 
pmol / hr / cm2) was 5.86-times greater than across the apical 
membrane (6.67 ± 0.46 pmol / hr / cm2) (**** P < 0.0001). The results 
are expressed as the mean ± SEM from 9 human PTC monolayers 
derived from 3 individual kidneys. Significance was determined by a 
Student’s t-test. 
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4.3.3. The effect of pH upon TFV renal handling. 

In order to ascertain if pH had an effect upon TFV renal handling, the 

unidirectional fluxes and uptake of [3H]-TFV by human PTC monolayers at pH 

6.80 and 7.40 were compared. The results in Figure 4.6 show pH had no effect 

upon the secretory, absorptive and thus net movement of [3H]-TFV across 

human PTC monolayers (P > 0.05, n = 9, N = 3). In accordance with these 

findings, the data in Figure 4.7 show pH had no effect upon the uptake of [3H]-

TFV across the basolateral and apical membrane of human PTC monolayers 

(P > 0.05, n = 9, N = 3). 
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Figure 4.6: Unidirectional fluxes of 10 M [3H]-TFV at pH 6.80 and 7.40 by 
human PTC monolayers.  

The effects of extracellular pH upon the secretory and absorptive 
fluxes of TFV by human primary tubular cells were investigated. The 
results show no significant difference in the secretory flux; 82.83  
0.88 pmol / hr / cm2 at pH 6.80 versus 80.47 ± 1.09 pmol / hr / cm2 at 
pH 7.40. Absorptive fluxes of [3H]-TFV at pH 6.8 (130.38  1.79 pmol / 
hr / cm2) and at pH 7.4 (131.16 ± 2.15 pmol / hr / cm2) were also not 
significantly different. The results are expressed as the mean ± SEM 
from 9 human PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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Figure 4.7: Uptake of 10 M [3H]-TFV across the basolateral and apical 
membrane of human PTC monolayers at pH 6.80 and 7.40. 

The effect of extracellular pH upon the uptake of TFV across the 
basolateral and apical membrane of human PTC monolayers were 
investigated. The results show uptake of [3H]-TFV across the 
basolateral and apical membrane were not affected by extracellular 
pH. Uptake of [3H]-TFV across the basolateral membrane at pH 6.80 
was 39.27  1.48 pmol / hr / cm2 compared with 39.09 ± 1.31 pmol / hr 
/ cm2 at pH 7.40, and uptake of [3H]-TFV across the apical membrane 
at pH 6.80 was 5.78  0.27 pmol / hr / cm2 compared with 6.67 ± 0.46 
pmol / hr / cm2. The results are expressed as the mean ± SEM from 9 
human PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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4.3.4. Kinetics of TFV transport by human PTC monolayers. 

The kinetic parameters of TFV transport by human PTC monolayers were 

calculated. Human PTC monolayers were incubated at the basolateral 

membrane with various concentrations of [3H]-TFV (1 to 5000 M) for 60 min 

and the intracellular accumulation of [3H]-TFV was measured. Figure 4.8 shows 

the relationship between [3H]-TFV concentration and uptake of [3H]-TFV across 

the basolateral membrane of human PTC monolayers (n = 9, N = 3). Non-linear 

regression analysis of the data gave a Vmax of 1214.11  134.57 pmol / hr / cm2 

and an apparent Km value of 756.86  166.48 M. 
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Figure 4.8: Kinetic data on [3H]-TFV uptake across the basolateral 
membrane of human PTC monolayers under initial rate conditions.  

In order to obtain kinetic data on TFV uptake under initial rate 
conditions, the monolayers were incubated with a range of [3H]-TFV 
concentrations (1 to 5000 M) for 60 min. Non-linear regression 
analysis of the data gave a Vmax of 1214.11  134.57 pmol / hr / cm2 
and an apparent Km value of 756.86  166.48 M. The results are 
expressed as the mean ± SEM from 9 human PTC monolayers derived 
from 3 individual kidneys. 
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4.3.5. Identifying the transporters mediating the uptake of TFV 

across the basolateral membrane of human PTC monolayers. 

The contributions of various uptake transport proteins in the tubular handling of 

TFV were quantified by measuring unidirectional fluxes and uptake of 10 M 

[3H]-TFV in the presence and absence of various competitive substrates of 

uptake transport proteins. A schematic of this technique is shown in Figure 4.9. 

The inhibitors were added at concentrations that would as selectively as 

possible inhibit the activity of transporters that were expected to be involved in 

the uptake of TFV. Table 4.1 shows the competitive substrates and their affinity 

values (Km) for the corresponding transporter(s).  

The effect of competitive substrates on the secretory and absorptive fluxes of 

[3H]-TFV by human PTC monolayers is shown in Figure 4.10 (n = 9, N = 3). The 

presence of 50 µM PAH, an OAT1 and OAT3 substrate, reduced [3H]-TFV 

secretory flux by 27.64 ± 1.69 % of control (**** P < 0.0001), whilst the presence 

of the OAT3 substrate rosuvastatin (RSV, 20 µM) had no significant effect (P > 

0.05). The presence of the OATP4C1 substrates triiodothyronine (T3, 10µM) 

and chenodeoxycholic acid (CDC, 10µM) also resulted in a marked decrease in 

[3H]-TFV secretory flux (69.26 ± 1.33 % **** P < 0.0001 and 74.34 ± 0.99 % **** 

P < 0.0001, respectively). The presence of the competitive substrates had no 

effect on absorptive flux (P > 0.05).  

Figure 4.11 shows the effect of competitive substrates on the uptake of [3H]-

TFV across the basolateral and apical membrane of human PTC monolayers (n 

= 9, N = 3). The presence of 50 µM PAH reduced [3H]-TFV uptake across the 

basolateral membrane by 23.11 ± 1.10 % of control (**** P < 0.0001), whilst 20 

µM RSV had no effect (P > 0.05). The presence 10 µM T3 and 10 µM CDC 

decreased basolateral [3H]-TFV uptake by 74.47 ± 1.90 % of control (**** P < 

0.0001) and 81.92 ± 2.07 % (**** P < 0.0001), respectively. The presence of the 

competitive substrates had no effect on apical uptake of TFV. In agreement with 

the flux experimental data, these results suggest both OATP4C1 and OAT1 

mediate the initial uptake of TFV across the basolateral membrane in TFV renal 

secretion.  
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A substantial role for OATP4C1 in the basolateral uptake of TFV had not 

previously been reported. In order to determine if the apparent important role for 

OATP4C1 resulted from a loss of OAT1 and OAT3 expression and function as 

the cells were maintained in culture, the inhibition study was repeated in freshly 

isolated human PTCs. The results are shown in Figure 4.12 (n = 9, N = 3). In 

corroboration with the previous findings, 50 µM PAH, 10 µM T3 and 10 µM CDC 

reduced TFV uptake by 18.16 ± 0.84 % (**** P < 0.0001), 57.25 ± 2.19 % (**** P 

< 0.0001) and 44.64 ± 2.02 % of control (**** P < 0.0001), respectively. 

Additionally , a role of OCTs in the basolateral uptake of TFV was ruled out as 

the presence of 1.5 mM cimetidine (CIM, OCT2 substrate) had no effect on the 

uptake of [3H]-TFV across the basolateral membrane of human PTC cells. 

In Figure 4.13 the uptake of [3H]-TFV in (a) fresh and (b) cultured human PTC 

monolayers is compared. The results are normalised to uptake per 300 000 

cells. The data show that uptake of 10 M [3H]-TFV in the cells cultured for 7-

days on Transwell inserts was around 20% of that in freshly isolated cells 

(19.81  0.79 pmol / hr / 300 000 cells v 89.35  2.30 pmol / hr / 300 000 cells). 

The presence of 50 µM PAH reduced [3H]-TFV accumulation by 18.16  0.84 % 

in freshly isolated cells and 23.11  1.10 % in cultured cells, which suggests a 

similar contribution of OATs. In contrast, the presence of 10 µM T3 and CDC 

reduced [3H]-TFV uptake by 57.25  2.19 % and 44.64  2.02 % in freshly 

isolated cells, respectively, and by 74.47  1.90 % and 81.92  2.07 % in 

cultured cells, respectively. 

The identification of OATP4C1 as a transporter of TFV is novel. This important 

discovery can be used to identify potentially toxic DDIs.  
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Figure 4.9: Substrate inhibition scheme to determine the contributions of 
OAT1, OAT3, OATP4C1 and OCT2 to TFV uptake and flux in human and rat 
PTC monolayers. 

 

 

Table 4.1: Competitive substrates used to identify transporters mediating 
the uptake of TFV.  

Listed are competitive substrate of hOAT1, hOAT3 and hOATP4C1. 
The apparent affinity (Km) values of the substrates for transporters are 
shown.  

  

Substrate Transporter System Km (M) Reference 

PAH hOAT1 X.Laevis oocytes 9.3  1.0 
(Hosoyamada et 

al., 1999) 

PAH hOAT3 X.Laevis oocytes 87.2  11.1 (Cha et al., 2001) 

RSV hOAT3 X.Laevis oocytes 7.4  2.5 
(Windass et al., 

2007) 

T3 hOATP4C1 MDCK 5.9  2.1 
(Mikkaichi et al., 

2004) 

CDC hOATP4C1 _ _ 
(Yamaguchi et al., 

2010) 

CIM hOCT2 HEK293 72.6  13.9 
(Tahara et al., 

2005) 
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Figure 4.10: Identifying the transporters mediating the uptake of TFV in 
the unidirectional fluxes of [3H]-TFV across the human PTC monolayer.  

The secretory and absorptive fluxes of 10 M [3H]-TFV were 
measured in the presence of various competitive substrates of uptake 
transport proteins. The presence of 50 µM PAH reduced [3H]-TFV 
secretory flux (27.64 ± 1.69 %, **** P < 0.0001), whilst 20 µM RSV 
had no effect. The presence of T3 (10 µM, substrate of OATP4C1) 
and CDC (10 µM, substrate of OAT1) also resulted in a marked 
decrease in [3H]-TFV tubular secretion (69.26 ± 1.33 % **** P < 
0.0001 and 74.34 ± 0.99 % **** P < 0.0001, respectively). The 
presence of the competitive substrates had no effect on absorptive 
flux. These findings suggest both OATP4C1 and OAT1 mediate the 
uptake of TFV across the basolateral membrane. The results are 
expressed as the mean ± SEM from 9 human PTC monolayers derived 
from 3 individual kidneys. Significance was determined using ANOVA 
and a Dunnett’s post-test. 
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Figure 4.11: Identifying the transporters mediating the uptake of [3H]-TFV 
in to human PTC monolayers. 

Uptake of 10 M [3H]-TFV was measured across either the apical or 
basolateral membrane in the presence of various competitive 
substrates of uptake transport proteins. The presence of 50 µM PAH 
reduced [3H]-TFV uptake across the basolateral membrane (23.11 ± 
1.10 % decrease, **** P < 0.0001), whilst 20 µM RSV had no effect. 
The presence of 10 µM T3 and CDC also resulted in a marked 
decrease in [3H]-TFV basolateral uptake (74.47 ± 1.90 % **** P < 
0.0001 and 81.92 ± 2.07 % **** P < 0.0001, respectively). The 
presence of the competitive substrates had no effect on apical uptake 
of TFV. These findings suggest both OATP4C1 and OAT1 mediate the 
basolateral uptake of TFV in the tubular secretion. The results are 
expressed as the mean ± SEM from 9 human PTC monolayers derived 
from 3 individual kidneys. Significance was determined using ANOVA 
and a Dunnett’s post-test. 
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Figure 4.12: Identifying the transporters mediating the uptake of [3H]-TFV 
in freshly isolated human PTCs. 

The presence of 1.5 mM CIM (OCT2 substrate) had no effect on 
intracellular accumulation of [3H]-TFV. 50 µM PAH reduced [3H]-TFV 
accumulation by 18.16 ± 0.84 % of control (**** P < 0.0001). The 
presence of 10 µM T3 and 10 µM CDC reduced [3H]-TFV uptake to 
57.25 ± 2.19 % (**** P < 0.0001) and 44.64 ± 2.02 % of control (**** P 
< 0.0001), respectively. These findings suggest both OATP4C1 and 
OAT1 mediate the uptake of TFV across the basolateral membrane in 
the tubular secretion of TFV in freshly isolate human PTCs. The 
results are expressed as the mean ± SEM from 9 human PTCs 
samples derived from 3 individual kidneys. Significance was 
determined using ANOVA and a Dunnett’s post-test. 
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Figure 4.13: A comparison of the uptake of [3H]-TFV in 300 000 (a) fresh 
and (b) cultured human PTC monolayers.  

The uptake of 10 M [3H]-TFV was 4.51-fold lower in the cells 
cultured for 7-days on Transwell inserts (19.81  0.79 pmol / hr / 
300 000 cells) when compared to freshly isolated cells (89.35  2.30 
pmol / hr / 300 000 cells). 50 µM PAH reduced [3H]-TFV accumulation 
by 18.16  0.84 % in freshly isolated cells and 23.11  1.10 % in 
cultured cells. 10 µM T3 reduced [3H]-TFV accumulation by 57.25  
2.19 % in freshly isolated cells and 74.47  1.90 % in cultured cells. 
10 µM CDC reduced [3H]-TFV accumulation by 44.64  2.02 % in 
freshly isolated cells and 81.92  2.07 % in cultured cells. The results 
are expressed as the mean ± SEM from 9 human PTCs samples 
derived from 3 individual kidneys. 
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4.3.6. Transport of TFV mediated by OATP4C1 

OATP4C1 is known to possess multiple substrate recognition sites. So far, two 

distinct recognition sites for DX and E3S have been characterised. The affinity 

values (Km) of these substrates for OATP4C1 are listed in  

Substrate 
Transporter System Km (M) Reference 

E3S hOATP4C1 MDCK 26.6  4.9 (Yamaguchi et al., 2010) 

DX hOATP4C1 MDCK 7.8  2.0 (Mikkaichi et al., 2004) 

 

Table 4.2. In order to determine if TFV binds to the same recognition site as DX 

or E3S, the basolateral uptake of 10 M [3H]-TFV across human PTC 

monolayers in the presence of various concentrations of DX and E3S (0.1 to 50 

M) were measured. 

The uptake of 10 M [3H]-TFV across the basolateral membrane of human PTC 

monolayers in the presence of various concentrations of E3S and DX are 

shown in Figure 4.14 (n = 9, N = 3). At concentrations of 1 M DX and greater, 

basolateral uptake of TFV was significantly inhibited, whilst concentrations of 10 

M E3S and greater significantly inhibited uptake. Non-linear regression 

analysis of the data suggested that DX and E3S are only able to bind one 

binding site. With apparent IC50 values of 0.38  0.10 M for DX and 1198 M 

for E3S. These findings indicate that TFV has a higher affinity for the DX 

recognition site compared with the E3S recognition site. 

Substrate Transporter System Km (M) Reference 

E3S hOATP4C1 MDCK 26.6  4.9 (Yamaguchi et al., 2010) 

DX hOATP4C1 MDCK 7.8  2.0 (Mikkaichi et al., 2004) 

 

Table 4.2: Competitive substrates used to identify which hOATP4C1 
recognition site mediates the uptake of TFV.  
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Two distinct recognition sites of hOATP4C1 have been identified 
using E3S and DX. The affinity values (Km) of these substrates for 
OATP4C1 are listed. 

 

Figure 4.14: Identifying the recognition site of OATP4C1 mediating the 
uptake of [3H]-TFV across the basolateral membrane of human PTC 
monolayers. 

To identify which substrate recognition site of OATP4C1 TFV binds, 
basolateral uptake of 10 M [3H]-TFV in the presence various 
concentrations (0.1 to 50 M) of E3S and DX was measured. DX 
inhibition of [3H]-TFV uptake was greater than E3S inhibition at each 
concentration. Non-linear regression analysis of the data suggested 
that DX and E3S are only able to bind one binding site, with apparent 
IC50 values of 0.38  0.10 M for DX and 1198 M for E3S. These 
findings indicate that TFV has a higher affinity for the DX recognition 
site compared with the E3S binding site. The results are expressed as 
the mean ± SEM from 9 human PTC monolayers derived from 3 
individual kidneys. 
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4.3.7. Identifying the transporters mediating the efflux of TFV 

across the apical membrane of human PTC monolayers. 

The contributions of various efflux transport proteins in the tubular handling of 

TFV were characterised by measuring unidirectional fluxes and intracellular 

concentrations of [3H]-TFV in the presence and absence of various inhibitors of 

apical efflux transport proteins. A schematic of this technique is shown in Figure 

4.15. The inhibitors were added at concentrations that would selectively inhibit 

the activity of transporters. Reported IC50 values for the inhibitors are shown in 

Table 4.3.  

The effect of efflux transport protein inhibitors on the secretory and absorptive 

fluxes of [3H]-TFV across human PTC monolayers are shown in Figure 4.16 (n 

= 9, N = 3). The presence of the MRP2/MRP4 inhibitor MK-571 (5 µM), BCRP 

inhibitor Ko 143 (2 µM), and MDR1 inhibitor GF120918 (5 µM) had no effect on 

the secretory and absorptive fluxes of 10 µM [3H]-TFV. Similarly, these 

compounds had no effect on the intracellular accumulation of 10 µM [3H]-TFV, 

as shown in Figure 4.17 (n = 9, N = 3). These findings imply that TFV has a low 

affinity for MRP2, MRP4, BCRP, and MDR1 under physiological conditions. 

In order to determine if the poor affinity of TFV for efflux transport proteins 

resulted from a loss of MRP2, MRP4, MDR1 or BCRP expression in culture, the 

functionality of MRPs, MDR1, and BCRP, in cultured human PTCs were 

investigated. H33342 is a fluorescent substrate of MDR1 and BCRP. Figure 

4.18 shows the presence of the BCRP inhibitor Ko 143 (2 µM) and MDR1 

inhibitor GF120918 (2 M) increased human PTC intracellular retention of 

H33342 2.11-fold (**** P < 0.0001) and 1.43-fold (**** P < 0.0001), respectively. 

The CMFDA metabolite GSMF is a fluorescent substrate of MRPs. Figure 4.19 

shows the presence of the MRP inhibitor MK-571 (5 M) increased the 

intracellular retention of GSMF 2.39-fold (**** P < 0.0001). This information 

confirms functional expression of BCRP, MDR1 and the MRP transport family in 

human PTCs. 
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Figure 4.15: Substrate inhibition scheme to determine the contributions of 
MRP2, MRP4, BCRP and MDR1 to TFV efflux and flux in human and rat 
PTC monolayers. 

 

Inhibitor Transporter System Substrate IC50 (M) Reference 

MK-571 hMRP2 Caco-2 IRT 50.0 (Luo et al., 2002) 

MK-571 hMRP4 
HEK293 

vesicles 
PMEA 10 (Reid et al., 2003) 

Ko 143 hBCRP MDCK-II PH-A 0.01 (Weiss et al., 2007)

GF120918 hBCRP HEK293 MT 0.31 
(Ahmed-Belkacem 

et al., 2005) 

GF120918 hMDR1 MDCK-II DX 0.18 
(Keogh and Kunta, 

2006) 

 

Table 4.3: Inhibitors used to characterise the efflux pathway of TFV in 
human PTC monolayers. 

Listed are inhibitors of MRP2, MRP4, BCRP and MDR1 used to 
characterise efflux transport of TFV. Reported IC50 values for the 
inhibitors are shown. Acronyms – IRT: Irinotecan, PMEA: para-
methoxyethylamphetamine, PH-A: Phenophorbide, MT: mitoxantrone 
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Figure 4.16: Identifying the transporters mediating the efflux of TFV in 
[3H]-TFV flux across the human PTC monolayer. 

Secretory and absorptive fluxes of 10 M [3H]-TFV were measured in 
the presence of various competitive substrates of apical efflux 
transport proteins. The presence of 5 µM MK-571, 2 µM Ko 143, and 2 
µM GF120918 had no effect on the secretory flux of [3H]-TFV. This 
indicates that TFV has a low affinity for MRP2, MRP4, BCRP, and 
MDR1 under physiological conditions. The presence of the 
competitive substrates also had no effect on absorptive flux. The 
results are expressed as the mean ± SEM from 9 human PTC 
monolayers derived from 3 individual kidneys Significance was 
determined using ANOVA and a Dunnett’s post-test. 
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Figure 4.17: Identifying the transporters mediating the efflux of [3H]-TFV 
from the human PTC monolayer.  

Intracellular accumulation of [3H]-TFV by the monolayers was 
measured in the presence of various competitive substrates of apical 
efflux transport proteins. The presence of 5 µM MK-571, 2 µM Ko 143, 
and 2 µM GF120918 at both the apical and basolateral membrane had 
no effect on the intracellular concentration of [3H]-TFV. This suggests 
TFV has a low affinity for MRP2, MRP4, BCRP, and MDR1 under 
physiological conditions. The results are expressed as the mean ± 
SEM from 9 human PTC monolayers derived from 3 individual kidneys. 
Significance was determined using ANOVA and a Dunnett’s post-test. 
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Figure 4.18: Measurement of H33342 retention in human PTCs to 
demonstrate functional activity of BCRP and MDR1. 

Intracellular retention of H33342 was measured in the presence of 
various competitive substrates of apical efflux transport proteins. The 
presence of 2 M Ko143 increased the intracellular retention of 
H33342 2.11-fold (**** P < 0.0001). The presence of 2 M GF120918 
increased the intracellular retention of H33342 1.43-fold (**** P < 
0.0001). The results are expressed as the mean ± SEM from 18 
human PTC monolayers derived from 3 individual kidneys. 
Significance was determined using ANOVA and a Dunnett’s post-test. 
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Figure 4.19: Measurement of GSMF retention in human PTCs to 
demonstrate functional activity of MRP transporters.  

Intracellular retention of GSMF was measured in the presence of 
presence of 5 M MK-571. The presence of 5 M MK-571 increased 
the intracellular retention of GSMF 2.39-fold (**** P < 0.0001). The 
results are expressed as the mean ± SEM from 18 human PTC 
monolayers derived from 3 individual kidneys. Significance was 
determined by a Student’s t-test. 
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4.3.8. The effect of TFV on metabolic activity of human PTCs. 

The effect of TFV on the metabolic activity of human PTC monolayers was 

measured using the CellTiter 96 AQueous assay (MTS). Monolayers were 

incubated for 2 or 7 days with a range of concentrations (0 to 500 M) of TFV in 

the culture medium. The metabolic activity of monolayers was quantified by 

measuring the cellular production of a coloured formazan product via an 

absorbance reading. Formazan is produced through the reduction of MTS by 

NAD(P)H-dependent cellular oxidoreductase enzymes. 

Figure 4.20 shows the effect of prolonged incubation with the concentrations of 

TFV on the metabolic activity of human PTC monolayers (n = 18, N = 3). At 

physiologically relevant concentrations of TFV there was no inhibition of human 

PTC metabolic activity. An extracellular TFV concentration of 50 M or greater 

significantly reduced metabolic activity following a two day incubation period 

(**** P < 0.0001). In comparison, an extracellular TFV concentration of 10 M or 

greater significantly reduced metabolic activity after a 7 day incubation period 

(**** P < 0.0001). Non-linear regression analysis of the data gave an apparent 

IC50 value of 354.20  60.74 M following a 2 day and 113.20  1.30 M 

following a 7 day incubation with TFV. 
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Figure 4.20: The effect of TFV on metabolic activity of human PTC 
monolayers. 

In order to determine the effect of TFV on cellular metabolic activity, 
human PTC monolayers were incubated with a range of 
concentrations of TFV (0 to 500 M) for 2 or 7 days. The metabolic 
activity of cells was measured using MTS. Exposure to high 
concentrations of TFV significantly reduced human PTC metabolic 
activity. However, there was no inhibition of human PTC metabolic 
activity at physiologically relevant concentrations. Non-linear 
regression analysis of the data gave an apparent IC50 value of 354.20 
 60.74 M following two days and 113.20  1.30 M following 7 days 
incubation with TFV. The results are expressed as the mean ± SEM 
from 18 human PTC monolayers derived from 3 individual kidneys. 
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4.3.9. Flux and uptake of TFV by rat PTC monolayers over time. 

The rate of TFV unidirectional fluxes and uptake over time were studied by 

measuring the secretory and absorptive fluxes of 10 M [3H]-TFV across rat 

PTC monolayers following 20, 40, and 60 min of exposure. Additionally, the 

uptake of [3H]-TFV across the basolateral membrane of rat PTC monolayers 

was measured at 15, 30, 45, 60, and 90 min of exposure.  

Figure 4.21 shows the secretory, absorptive and net fluxes of [3H]-TFV 

increased linearly between 0 and 60 min (n = 12, N = 3). Furthermore, as 

shown in Figure 4.22, uptake of [3H]-TFV increased linearly between 0 and 90 

min, with a gradient of 0.43  0.01 pmol / cm2 / min (n = 9, N = 3). From these 

findings we can deduce the initial rate period of TFV transport lies within 0 to 90 

min. A time point of 60 min was therefore selected to conduct future studies to 

ensure linearity in rate of flux and uptake. 
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Figure 4.21: Time course of 10 M [3H]-TFV flux by rat PTC monolayers. 

The flux of 10 M [3H]-TFV across rat PTC monolayers over time is 
shown. The flux of [3H]-TFV was within the initial rate period between 
0 and 60 min as flux was linear over this time period. The results are 
expressed as the mean ± SEM from 12 rat PTC monolayers derived 
from 3 individual kidneys.  
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Figure 4.22: Time course of 10 M [3H]-TFV uptake across the basolateral 
membrane of rat PTC monolayers.  

A progress curve was created by measuring the uptake of 10 M [3H]-
TFV across the basolateral membrane of rat PTC monolayers over 
time. The uptake of [3H]-TFV between 0 and 90 min was linear. Linear 
regression analysis of the data gave a slope of 0.43  0.01 pmol / cm2 

/ min (R2: 0.96). The non-specific binding of [3H]-TFV to the 
Transwell insert was 0.68  0.04 pmol / cm2. The results are 
expressed as the mean ± SEM from 9 rat PTC monolayers derived 
from 3 individual kidneys.  
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4.3.10. Flux and uptake of TFV by rat PTC monolayers. 

Unidirectional transepithelial fluxes of 10 M [3H]-TFV the secretory and 

absorptive direction were studied in the rat PTC monolayer model. Furthermore, 

uptake of [3H]-TFV across the basolateral and apical membranes was 

determined from intracellular accumulation of [3H]-TFV in rat PTC monolayers. 

The results in Figure 4.23 exhibit a net absorption of TFV (62.34 ± 4.70 pmol / 

hr / cm2) by rat PTC monolayers. Absorption of [3H]-TFV (217.20 ± 1.66 pmol / 

hr / cm2) was 1.40-fold greater than secretion (154.80 ± 5.09 pmol / hr / cm2, 

**** P < 0.0001, n = 12, N = 3). Figure 4.24 shows the amount of [3H]-TFV taken 

up across the basolateral and apical membranes of the rat PTC monolayers 

were 25.89 ± 0.68 pmol / hr / cm2 and 18.15 ± 0.28 pmol / hr / cm2, respectively; 

uptake of TFV was 1.43-fold greater across the basolateral membrane (**** P < 

0.0001, n = 9, N = 3). These findings, coupled with the human data, indicate a 

cell to media ratio greater than 1 (See calculation below). This implies TFV is 

accumulated within the proximal tubule cells via the basolateral membrane. 

The cell-to-medium ratio was calculated by dividing the intracellular 

concentration of TFV (µM) by the concentration of test compound in the 

transport medium (µM). Assumptions made in this calculation are the height of a 

proximal tubule epithelial cell is 10 microns i.e. 0.001 cm as measured by 

transmission electron microscopy (Dorup and Maunsbach, 1997), cell 

monolayers form a cylinder, and intracellular space does not contain subcellular 

compartments. These assumptions give ratios which probably substantially 

underestimate the true accumulation. 

 

Volume occupied by a monolayer per 24-well Transwell® insert (surface area 

0.33 cm2) = π.radius2.height 

If radius = 0.32 cm, and height = 0.001 cm,  

Volume (per 0.33cm3)= 0.00032 cm3 = 0.332 µL 

Volume (per cm3) = 0.332 µL x 3 = 0.996 µL 

TFV concentration per cm3 = 25.89 pmol / cm3  

Intracellular concentration of TFV = 25.89 pmol / 0.996 µL i.e. 25.99 µM 

Extracellular concentration of TFV = 10 µM 

Cell-to-medium ratio = 26:10 µM = 2.60 
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Figure 4.23: Unidirectional flux of 10 M [3H]-TFV by rat PTC monolayers. 

In order to determine the secretory and absorptive flux of TFV through 
rat PTC monolayers, paired monolayers were incubated with 10 M 
[3H]-TFV at either the basolateral or apical chamber. The results show 
a net absorptive flux (62.34 ± 4.70 pmol / hr / cm2). The absorptive 
movement of [3H]-TFV (217.20 ± 1.66 pmol / hr / cm2) was 
significantly greater than the secretory movement (154.80 ± 5.09 pmol 
/ hr / cm2) (**** P < 0.0001). The results are expressed as the mean ± 
SEM from 12 rat PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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Figure 4.24: Uptake of 10 M [3H]-TFV across the basolateral and apical 
membrane of rat PTC monolayers.  

In order to measure the uptake of TFV across the basolateral and 
apical membrane of rat PTC monolayers, paired monolayers were 
incubated with 10 μM [3H]-TFV at either the basolateral or apical 
chamber for 60 min. The data show that the uptake of [3H]-TFV across 
the basolateral membrane (25.89 ± 0.68 pmol / hr / cm2) was 
significantly greater than the apical membrane (18.15 ± 0.28 pmol / hr 
/ cm2) (**** P < 0.0001). The results are expressed as the mean ± 
SEM from 9 rat PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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4.3.11. Kinetics of TFV flux and uptake by rat PTC monolayers. 

Rat PTC monolayers were incubated at the basolateral membrane with a range 

of [3H]-TFV concentrations (1 to 5000 M) for 60 min and the intracellular 

accumulation of [3H]-TFV was measured, so as to calculate the kinetic 

parameters of TFV transport. Figure 4.25 shows the sigmoidal relationship 

between [3H]-TFV concentration and uptake of [3H]-TFV across the basolateral 

membrane of rat PTC monolayers (n = 9, N = 3). Non-linear regression analysis 

of the data gave a Vmax of 1597.62  131.70 pmol / hr / cm2 and an apparent Km 

value of 2482.40  404.87 M.  

 

Figure 4.25: Kinetic data on the uptake of [3H]-TFV across the basolateral 
membrane of rat PTC monolayers under initial rate conditions.  

Rat PTC monolayers were incubated with a range of [3H]-TFV 
concentrations (1 to 5000 M) for 60 min. Non-linear regression 
analysis of the data gave a Vmax of 1597.62  131.70 pmol / hr / cm2 
and an apparent Km value of 2482.40  404.87 M. The results are 
expressed as the mean ± SEM from 9 rat PTC monolayers derived 
from 3 individual kidneys. 
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4.3.12. Identifying the transporters mediating the uptake of 

TFV across the basolateral membrane of rat PTC monolayers. 

The contributions of various uptake transport proteins in the rat tubular handling 

of TFV were quantified by measuring unidirectional fluxes and uptake of 10 M 

[3H]-TFV in the presence and absence of various competitive substrates of 

uptake transport proteins. The inhibitors were added at concentrations that 

would selectively inhibit the activity of transporters that were expected to be 

involved in the uptake of TFV. Table 4.4 shows the competitive substrate and its 

affinity value (Km) for its corresponding transporter(s).  

The effect of competitive substrates on the secretory and absorptive fluxes of 

[3H]-TFV across rat PTC monolayers is shown in Figure 4.26 (n = 9, N = 3). The 

presence of PAH (50 µM) reduced [3H]-TFV secretory flux to 19.07 ± 1.36 % 

(**** P < 0.0001), whilst RSV (20 µM) had no effect. Additionally, the presence 

of T3 (10 µM), CDC (10 µM) and DX (10 µM) reduced [3H]-TFV secretory fluxes 

to 52.68 ± 2.03 % (**** P < 0.0001), 58.42 ± 2.29 % (**** P < 0.0001), and 53.15 

± 1.03 % (**** P < 0.0001), respectively, when compared to the control. The 

presence of the competitive substrates had no effect on absorptive flux. 

Figure 4.27 shows the effect of competitive substrates on the uptake of [3H]-

TFV across the basolateral and apical membrane of rat PTC monolayers (n = 9, 

N = 3). The presence of 50 µM PAH reduced [3H]-TFV uptake across the 

basolateral membrane to 18.78 ± 0.67 % of control (**** P < 0.0001), whilst 20 

µM RSV had no effect. The presence of 10 µM T3, 10 µM CDC, and 10 µM DX 

decreased basolateral [3H]-TFV uptake to 70.51 ± 1.22 % (**** P < 0.0001), 

68.75 ± 0.88 % and 63.36 ± 1.44 % (**** P < 0.0001) of the control, respectively. 

The presence of the competitive substrates had no effect on apical uptake of 

TFV. In agreement with the flux experimental data, these findings suggest both 

Oatp4c1 and Oat1 mediate the uptake of TFV across the basolateral membrane.  

As with the human transporter characterisation studies, in order to determine if 

the low contribution of rOat1 and rOat3 were the result of a loss of functionality 

or expression during cell culture, the inhibition study was repeated in freshly 

isolated rat PTCs (Figure 4.28). The presence of the Oct2 substrate CIM 

(1.5mM) had no effect on the uptake of [3H]-TFV. Like the previous findings, 50 
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µM PAH, 10 µM T3 and 10 µM CDC reduced TFV uptake to 19.36 ± 2.31 % 

(**** P < 0.0001), 54.13 ± 1.93 % (**** P < 0.0001) and 44.41 ± 2.90 % (**** P < 

0.0001) of control, respectively. 

 

Table 4.4: Competitive substrates used to identify transporters mediating 
the uptake of TFV.  

Listed are competitive substrate of rOat1, rOat3 and Oatp4c1. The 
apparent affinity (Km) values of the substrates for transporters are 
shown. 

   

Substrate Transporter System Km (M) Reference 

PAH rOat1 
X.Laevis 

oocytes 
14.3  2.9 (Sekine et al., 1997) 

PAH rOat3 
X.Laevis 

oocytes 
64.7  10.0 

(Kusuhara et al., 

1999) 

RSV rOat3 
X.Laevis 

oocytes 
4.7  0.7 

(Windass et al., 

2007) 

T3 rOatp4c1 MDCK 1.9  0.6 
(Mikkaichi et al., 

2004) 

CDC rOatp4c1 _ _ _ 

DX rOatp4c1 MDCK 8.0  2.2 
(Mikkaichi et al., 

2004) 

CIM rOct2 HEK293 68.8  8.0 (Tahara et al., 2005) 
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Figure 4.26: Identifying the transporters mediating the uptake of [3H]-TFV 
in [3H]-TFV flux across the rat PTC monolayer. 

Secretory and absorptive fluxes of 10 M [3H]-TFV were measured in 
the presence of various competitive substrates of uptake transport 
proteins. The presence of 50 µM PAH significantly reduced TFV 
secretory flux when compared to the control (19.07 ± 1.37 %, **** P < 
0.0001), while 20 µM RSV had no effect. The presence of 10 µM T3, 
10 µM CDC, and 10 µM DX also resulted in a marked decrease in TFV 
secretory flux (52.68 ± 2.03 % **** P < 0.0001, 58.42 ± 2.29 % **** P 
< 0.0001, and 53.15 ± 1.03 % **** P < 0.0001, respectively). The data 
suggest both Oatp4c1 and Oat1 are transporters that mediate the 
uptake of TFV across the basolateral membrane. The presence of the 
competitive substrates had no effect on the absorptive flux. The 
results are expressed as the mean ± SEM from 9 rat PTC monolayers 
derived from 3 individual kidneys. Significance was determined by a 
Student’s t-test.  
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Figure 4.27: Identifying the transporters mediating the uptake of [3H]-TFV 
in to rat PTC monolayers.  

Uptake of 10 M [3H]-TFV across the apical and basolateral 
membrane in the presence of various competitive substrates of uptake 
transport proteins was measured. At the basolateral membrane of rat 
PTC monolayers 50 µM PAH reduced [3H]-TFV uptake to 18.78 ± 
0.35 % of control (**** P < 0.0001). 20 µM RSV had no effect while 10 
µM T3 reduced uptake to 70.51 ± 1.22 % of control (**** P < 0.0001), 
10 µM CDC reduced uptake to 68.75 ± 0.88 % of control (**** P < 
0.0001) and 10 µM DX reduced uptake to 63.46 ± 1.44 % (**** P < 
0.0001). In agreement with the flux data these findings suggest 
Oatp4c1 and Oat1 are the transporters that mediate the uptake of 
TFV across the basolateral membrane. The presence of the 
competitive substrates had no effect on apical uptake of TFV. The 
results are expressed as the mean ± SEM from 9 rat PTC monolayers 
derived from 3 individual kidneys. Significance was determined by a 
Student’s t-test. 
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Figure 4.28: Identifying the transporters mediating the uptake of [3H]-TFV 
in freshly isolated rat PTCs. 

Uptake of 10 M [3H]-TFV was measured in suspended rat PTCs in 
the presence of various competitive substrates of uptake transport 
proteins The presence of 1.5 mM CIM had no effect on intracellular 
accumulation of [3H]-TFV. 50 µM PAH reduced TFV accumulation to 
19.36 ± 2.31 % when compared to the control (**** P < 0.0001). 10 µM 
T3 and 10 µM CDC resulted in a marked decrease in TFV 
accumulation when compared to the control (54.13 ± 1.93 % **** P < 
0.0001 and 44.41 ± 2.90 % **** P < 0.0001, respectively). These 
findings suggest both Oatp4c1 and Oat1 are the transporters that 
mediate the uptake of TFV across the basolateral membrane. The 
results are expressed as the mean ± SEM from 12 rat PTCs samples 
derived from 3 individual kidneys. Significance was determined by a 
Student’s t-test. 
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4.3.13. Identifying the transporters mediating the efflux of TFV 

across the apical membrane of rat PTC monolayers. 

The contributions of various efflux transport proteins in the tubular handling of 

TFV by rat PTC monolayers were characterised by measuring unidirectional 

fluxes and intracellular concentrations of [3H]-TFV in the presence and absence 

of various inhibitors of apical efflux transport proteins. The inhibitors were added 

at concentrations that would selectively inhibit the activity of transporters.. 

The effect of efflux transport protein inhibitors on the secretory and absorptive 

fluxes of [3H]-TFV across rat PTC monolayers are shown in Figure 4.29 (n = 9, 

N = 3). The presence of MK-571 (5 µM), and Ko 143 (2 µM) had no effect on 

the secretory and absorptive fluxes of 10 µM [3H]-TFV. The same compounds 

also had no effect on the intracellular accumulation of 10 µM [3H]-TFV when 

compared to the control (Figure 4.30). The functionality of these transporters 

within rat PTC monolayers have previously been confirmed. Therefore, these 

findings imply that TFV has a poor affinity for Mrp2, Mrp4 and Bcrp under 

physiological conditions. 
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Figure 4.29: Identifying the transporters mediating the efflux of [3H]-TFV 
by rat PTC monolayers.  

Secretory and absorptive fluxes of 10 M [3H]-TFV were measured in 
the presence of various competitive substrates of apical efflux 
transport proteins. The presence of 5 µM MK-571 and 2 µM Ko 143 
had no effect on the secretory nor the absorptive flux of [3H]-TFV. 
This indicates that TFV has a poor affinity for Mrp2, Mrp4 and Bcrp 
under physiological conditions. The results are expressed as the 
mean ± SEM from 9 rat PTC monolayers derived from 3 individual 
kidneys. Significance was determined by a Student’s t-test. 
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Figure 4.30: Identifying the transporters mediating the efflux of [3H]-TFV 
from the rat PTC monolayer. 

Intracellular accumulation of [3H]-TFV in the monolayers was 
measured in the presence of various competitive substrates of apical 
efflux transport proteins. The monolayers were incubated at either the 
basolateral or apical membrane with 10 M [3H]-TFV in the presence 
or absence of competitive substrates for 60 min. The presence of 5 
µM MK-571 and 2 µM Ko 143 had no effect on the intracellular 
concentration of [3H]-TFV, suggesting that TFV has a poor affinity for 
Mrp2, Mrp4, and Bcrp under physiological conditions. The results are 
expressed as the mean ± SEM from 9 rat PTC monolayers derived 
from 3 individual kidneys. Significance was determined by a Student’s 
t-test. 
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4.4. Discussion 

In this chapter the renal handling of TFV by human and rat PTC monolayers 

was studied to investigate their use as platforms to predict renal drug handling, 

DDIs and nephrotoxicity. From in-vivo studies it is known that TFV is cleared in 

the kidney by a combination of glomerular filtration and tubular secretion, and 

that it is a substrate of multiple transporters in the kidney. Following on from 

marketing approval, a low rate of nephrotoxicity has been reported with long-

term TFV therapy. 

Unidirectional transepithelial fluxes of radiolabelled [3H]-TFV (10 µM) in both the 

secretory and absorptive direction were measured over 1 hr in paired 

monolayers of human and rat PTCs grown on 24-well Transwell® inserts. In the 

human PTC monolayers, we observed net absorption of TFV (50.69  1.35 

pmol / hr / cm2) as shown in Figure 4.4. The absorptive movement of [3H]-TFV 

(131.16  2.15 pmol / hr / cm2) was 1.63-fold greater than the secretory 

movement of [3H]-TFV (80.47 ± 1.00 pmol / hr / cm2). Figure 4.5 shows uptake 

of TFV across the basolateral membrane (39.09 ± 1.31 pmol / hr / cm2) was 

5.86-fold higher than apical uptake (6.67 ± 0.46 pmol / hr / cm2). Similarly, in rat 

PTC monolayers, Figure 4.23 and Figure 4.24, the absorptive movement of 

[3H]-TFV (217.20 ± 1.66 pmol / hr / cm2) was 1.40-fold greater than the 

secretory movement of [3H]-TFV (154.80 ± 5.09 pmol / hr / cm2) and the uptake 

of TFV across the basolateral membrane (25.89 ± 0.68 pmol / hr / cm2) was 

1.43-fold higher than apical uptake (18.15 ± 0.28 pmol / hr / cm2). Within the 

PTCs these findings would result in a cell to media ratio greater than 1 across 

the basolateral membrane suggesting that TFV is accumulated within the 

proximal tubule cells. These findings support the in-vivo pathology studies 

which have reported an accumulation of TFV within the same cells (Cote et al., 

2006; Kohler et al., 2009; Herlitz et al., 2010; Perazella, 2010; Fernandez-

Fernandez et al., 2011; Kohler et al., 2011). 

The rate of transporter-mediated movement of a drug molecule is approximately 

linear for a period of time once exposure begins; this is known as the initial rate 

period. As the rate of transport proceeds the substrate concentration decreases, 

consequently the rate decelerate. In order to measure the maximum rate of 
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transport, transporter assays are typically carried out in the ‘linear’ initial rate 

period. The length of the initial rate period for each molecule depends on the 

assay conditions and can be milliseconds to hrs. To ensure the flux and uptake 

of TFV was measured under initial rate conditions, the experiments were 

performed at defined time points. From the findings in Figure 4.2, Figure 4.3, 

Figure 4.21 and Figure 4.22 we can deduce the linear initial rate period of TFV 

transport was between 0 to 90 min for both human and rat. Therefore, a time 

point of 60 min was selected to conduct subsequent studies as it was within the 

linear initial rate. This would also ensure the reactions had progressed enough 

to be measured within the radiation detection instrument’s sensitivity. 

The kinetic parameters, Vmax and Km, of TFV uptake across the basolateral 

membrane of both human and rat PTC monolayers were quantified by 

incubating the monolayers with various concentrations of [3H]-TFV. In order to 

determine the maximum rate of TFV uptake, the limiting factor must be the 

transporter activity and not the amount of substrate. Between 0 to 2000 µM [3H]-

TFV in the human monolayers and 0 to 3000 µM [3H]-TFV in the rat, there was 

an exponential increase in the rate of uptake with increasing substrate 

concentration. Within these conditions the rate limiting factor was the 

concentration of TFV, as the substrate recognition site of the transporters 

mediating uptake were unsaturated. As the concentration of [3H]-TFV increased 

beyond 2000 µM in man and 3000 µM in rat, the transporters mediating TFV 

uptake were saturated with substrate and the rate limiting factor was transporter 

activity. Adding more TFV did not significantly affect the rate of uptake. On the 

graph this is represented as a plateau. The maximum rate of TFV uptake when 

the transporter is saturated with a substrate is known as the maximum initial 

velocity (Vmax). Non-linear regression analysis of the data in Figure 4.8 and 

Figure 4.25 gave a Vmax of 1214.11  134.57 pmol [3H]-TFV / hr / cm2 in human 

PTC monolayers and 1597.62  131.70 pmol [3H]-TFV / hr / cm2 in rat PTC 

monolayers. 

The relationship between the rate of uptake and concentration of TFV depends 

on the affinity of the transporter for the substrate. This is usually expressed as 

the Km of the transporter for the substrate. In this instance, Km is the 

concentration of TFV which permits the uptake of TFV to achieve half of Vmax. A 
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transporter with a high Km has a low affinity for its substrate, and requires a 

greater concentration of substrate to achieve Vmax. The basolateral membrane 

transporters within rat and human PTC appeared to have low affinities for TFV. 

Non-linear regression analysis of the data in Figure 4.8 and Figure 4.25 gave an 

apparent Km value of 756.86  166.48 M [3H]-TFV in human PTC monolayers 

and 2482.40  404.87 M [3H]-TFV in rat PTC monolayers. The kinetic 

parameters from previously published in-vitro studies modelling TFV uptake are 

shown in  

Table 4.5. The reason why the Km values generated in our models were higher 

than those published is that our system expresses a full complement of renal 

transporters involved in the renal handling of TFV whilst the published studies 

conducted in transfected cells only expressed a single transporter, for instance 

hOAT1 or hMRP4.  

 

Table 4.5: A summary of published Vmax and Km values for TFV uptake. 

 

TFV is reported to be a substrate for multiple transporters in the kidney. There 

are two methods to elucidate the contribution of individual transporters in the 

renal handling of TFV. The first is the relative activity factor method: selective 

substrates for each individual transporter are used to estimate the contribution 

of transporters to the flux and uptake of drugs when multiple transporters are 

involved (Hirano et al., 2004). However, this method is commonly infeasible due 

to the overlapping substrate specificity of many transporters. Alternatively, a 

method in which the use of available transporter specific inhibitors in 

System Km (µM) Vmax Reference 

hOAT1 oocyte 25.0 129 pmol / oocyte / h (Moss et al., 2011) 

hOAT1 HEK293 400.0 ± 80.0 
5500 ± 400 pmol / min / 

mg 
(Riches, 2010) 

hOAT1 CHO 33.8 ± 3.4 
110 ± 12 pmol / 106 

cells. min 
(Cihlar et al., 2001) 

hMRP4 HEK293 

vesicles 
>1000  (Imaoka et al., 2007) 
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combination with a cocktail of inhibitors with known but overlapping inhibitory 

potencies toward multiple transporters can be used. The method is depicted in 

Figure 4.9 and Figure 4.15. 

The transporters that were initially considered to be involved in the renal 

handling of TFV were OAT1, OAT3, MRP2 and MRP4. Current literature 

proposes that TFV secretion in the kidney begins with the basolateral uptake of 

the compound from general circulation into the epithelial proximal tubule cells 

via OAT1 and OAT3. It is then effluxed into urine through apically located MRP2 

and MRP4. This is also the secretory pathway proposed for similar molecules 

such as adefovir and cidofovir (Cihlar et al., 1999; Schuetz et al., 1999; Cihlar 

and Ho, 2000; Ho et al., 2000; Cihlar et al., 2001; Izzedine et al., 2006; Cihlar et 

al., 2007; Imaoka et al., 2007; Uwai et al., 2007; Weiss et al., 2007; Kohler et al., 

2011; Moss et al., 2011; Mandikova et al., 2013). 

The transporters responsible for the uptake of TFV across the basolateral 

membrane of human and rat PTC monolayers were identified with a 

combination of substrates for those transporters. The findings revealed that a 

significant component of carrier mediated basolateral uptake of TFV was 

unaccounted for. Uptake studies with RSV showed that TFV was not a 

substrate for OAT3. This finding is highly significant as OAT3 is highly 

expressed within the kidney (Hilgendorf et al., 2007). OAT1 was identified as a 

key transporter in the uptake to TFV using a combination of PAH and RSV. 

However, the relative contribution of this transporter in the basolateral uptake of 

TFV was lower than expected. The contribution of OAT1 in human PTC 

monolayers was around 20 to 30 % (Figure 4.10 and Figure 4.11) and around 

20 % in rat PTC monolayers (Figure 4.26 and Figure 4.27). Hence other 

proteins known to transport anions were considered, and OATP4C1 was 

chosen for further investigation.  

OATP4C1 was confirmed as a transporter in the basolateral uptake of TFV with 

the co-administration of TFV with T3 and CDC. The contribution of OATP4C1 in 

TFV uptake was around 70 to 80 % in human monolayers (Figure 4.10 and 

Figure 4.11) and, 50 to 70 % in rat monolayers (Figure 4.26 and Figure 4.27). It 

was thus shown that OAT1 and OATP4C1 were responsible for the basolateral 

uptake of TFV. In order to determine if TFV transport via OATP4C1 was the 
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result of a loss in OAT1 and OAT3 expression or functionality during PTC cell 

culture, the inhibition study was repeated in freshly isolated human and rat 

PTCs. The findings in Figure 4.12 and Figure 4.28, confirmed that OATP4C1 

was the predominant transporter of TFV; it mediated the 45 to 55 % of the 

basolateral uptake of TFV whereas OAT1 contributed only around 20 %. Uptake 

of 10 M [3H]-TFV was 4.51-fold lower in the human cells cultured for 7-days on 

Transwell inserts when compared to freshly isolated cells. The data shown in 

Figure 4.13 suggested that the loss of OATP4C1 expression in cultured cells is 

not as great as loss of OAT expression. This result is consistent with the mRNA 

data in Table 3.1, which reported a 4.27-fold decrease in expression of OAT1 

and a 1.95 decrease in the expression OATP4C1 in human PTCs cultured on 

Transwell® inserts when compared to freshly isolated cells. The identification of 

OATP4C1 as a key transporter in the renal elimination of TFV is novel. 

OATP4C1 is reported to possess multiple substrate recognition sites. Two 

distinct recognition sites for DX and E3S have been characterised (Mikkaichi et 

al., 2004). Apparent Km values of these substrates for OATP4C1 are listed in 

Table 4.2. In order to determine if TFV binds to the same recognition site as DX 

or E3S, the basolateral uptake of 10 M [3H]-TFV across human PTC 

monolayers in the presence of various concentrations of DX and E3S (0.1 to 50 

M) were plotted to generate IC50 values. IC50 represents the concentration of 

an inhibitor required for 50 % inhibition of a cellular response. Non-linear 

regression analysis of the data in Figure 4.14 suggested that DX and E3S are 

only able to bind one binding site. With apparent IC50 values of 0.38  0.10 M 

for DX and 1198 M for E3S. These findings indicate that TFV has a higher 

affinity for the DX recognition site of OATP4C1 than the E3S recognition site.  

Using the Cheng-Prusoff equation, these information, in combination with the 

kinetic data of TFV uptake in human PTC monolayers, the inhibition constants 

(Ki) were calculated. Ki is the concentration of the inhibitor that is required to 

decrease the maximal rate of reaction by half. Therefore, the smaller the Ki the 

smaller the amount of drug was needed to inhibit the basolateral uptake of TFV 

in human PTC monolayers. The calculated Ki values for DX and E3S were 0.38 

± 0.10 and 1182.38 µM, respectively. If the Ki value is much larger than the 

maximal plasma drug concentrations a patient is exposed to from typical dosing, 
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as is the case in this example, then the drug is not likely to inhibit the uptake of 

TFV in-vivo. 

OATP4C1 is the only member of the OATP family expressed on the basolateral 

membrane of proximal tubules in humans and rodents. The overall homology 

between human OATP4C1 and rat Oatp4c1 was found to be 80.4% at the 

amino acid level (Mikkaichi T, 2004). OATP4C1 and Oatp4c1 also have a 

moderate sequence homology with other OATP family members (below 35%) 

(Mikkaichi T, 2004). Oatp4c1 mRNA expression is male-predominat in mouse 

kidneys (Cheng X and Klaassen CD, 2009). Using gonadectomized and lit/lit 

mouse models, gender divergent regulation of Oatp4c1 in mouse kidneys was 

shown to be controlled by sex hormones (Cheng X and Klaassen CD, 2009). 

Based upon these findings, males could be more prone to tenofovir induced 

nephrotoxicity as a result of greater renal expression of OATP4C1.  

The transporters responsible for the efflux of TFV across the apical membrane 

were characterised by measuring the secretory flux and intracellular 

concentration of TFV in the absence and presence of various competitive 

substrates of apical efflux transport proteins. The presence of MK-571 (5µM, 

MRP substrate), Ko 143 (2 µM, BCRP substrate) or GF120918 (5 µM, MDR1 

substrate) had no effect on the secretory flux and intracellular concentration of 

[3H]-TFV in human (Figure 4.16 and Figure 4.17, respectively) and rat PTC 

monolayers (Figure 4.29 and Figure 4.30, respectively). We have confirmed in 

Figure 4.18 and Figure 4.19 that human PTC monolayers exhibit functional 

expression of apical MRP, BCRP and MDR1. Their functional expression in rat 

PTC monolayers has also been characterised by colleagues. Therefore, these 

findings, in contrast to the majority of the published literature, suggest TFV is a 

weak substrate of MRP, BCRP and MDR1 under physiological conditions.  

In conjunction with our findings that the absorptive flux of TFV was significantly 

greater than the secretory flux, the information suggests that TFV accumulates 

within the proximal tubule cells due to the lack of an efficient secretory route. 

TFV enters the tubular cells at the basolateral membrane through OATP4C1 

and OAT1, at a higher rate than the efflux of TFV due to the low affinity for 

efflux transporters; TFV thus accumulates or exits through membrane 

permeation. Similarly, adefovir and cidofovir have been reported to accumulate 
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in the proximal tubule cells and cause nephrotoxicity. The expression of hOAT1 

has been observed to induce the cytotoxicity in the presence of adefovir and 

cidofovir in hOAT1-CHO cells (Ho et al., 2000). Co-administration of cidofovir 

with the OAT1/OAT3 inhibitor has been shown to ameliorate nephrotoxicity. In 

animal toxicity studies, oral probenecid treatment decreased the concentration 

of cidofovir in the cortex of the kidney, whilst levels in other tissues have 

remained unaffected as a result of the reduced renal clearance (Cundy et al., 

1995; Cundy et al., 1996; Lacy et al., 1998; Ho et al., 2000; Mandikova et al., 

2013). Probenecid inhibition studies have also found that tubular secretion of 

low doses of cidofovir are unaffected by probenecid co-administration (Cundy et 

al., 1995). This suggests another unknown transporter maybe involved in 

cidofovir tubular secretion, which could be OATP4C1 based on our findings. At 

low cidofovir doses, the drug may be cleared from the serum by this high-affinity 

unknown transporter (OATP4C1), while at higher cidofovir doses this system 

may be saturated, requiring cidofovir to be transported by a probenecid-

sensitive mechanism (OAT1 and 3). 

The literature associates TFV accumulation with proximal tubulopathies such as 

acute kidney, injury and Fanconi syndrome by disrupting proximal tubule cell 

mitochondrial function (Rifkin and Perazella, 2004; Cote et al., 2006; Kohler et 

al., 2009). The mitochondrial activity of human PTC monolayers following a 2 

and 7 day exposure to different concentrations of TFV was assessed using 

MTS. In metabolically active cells MTS is reduced by NAD(P)H-dependent 

cellular oxidoreductase enzymes into a soluble coloured formazan product. As 

shown in Figure 4.20, at physiologically relevant concentrations of TFV there 

was no inhibition of human PTC metabolic activity. Non-linear regression 

analysis of the data gave an apparent IC50 value of 354.20 ± 60.74 M TFV 

following a 2 day and 113.20 ± 1.30 M TFV following a 7 day incubation. A 

limitation of conducting this study and other measures of nephrotoxicity in our 

primary human PTC model is that the length of exposure to the nephrotoxic 

molecule is limited by the finite lifespan of the cells. 

The information gathered on the renal handling of TFV in the human and rat 

PTC monolayers will have a large translational impact. TFV in combination with 

other antivirals is a first line therapy for both HIV-1 and HBV infected patients, 
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as recommended by the World Health Organisation (WHO, 2014; WHO, 2015a). 

The organisation estimates that in 2014, 36.9 million people were living with HIV 

and 240 million with HBV globally (WHO, 2015c; WHO, 2015b). Approximately 

14.9 million people living with HIV (40.4%) were receiving HIV antiretroviral 

therapy (ART) in 2014 (WHO, 2015c). The number of people taking this 

medication is certain to increase in the future due to the substantial progress in 

access to HIV-1 treatment and the introduction of ‘pre-exposure prophylaxis’. 

The novel identification of OATP4C1 as a key transporter in the renal 

elimination of TFV using the primary models has led Gilead to invest in 

developing assays for OATP4C1 DDI. The life expectancy of HIV-1 and HBV 

infected patients is now comparable to the general population. Therefore, it is 

important to be aware of any potential DDIs that may occur with co-medication. 

Known substrates of OATP4C1 include cardiac glycosides (DX and ouabain), 

thyroid hormones (T3 and T4), cAMP and methotrexate. In addition, the work 

has generated commercial renal drug screening contracts with Gilead and 

Chimerix, which in turn has resulted in a reduction in animal use at both 

companies. Furthermore, this work in combination with other studies has led to 

the FDA flagging OATP4C1 as a key renal drug transporter. The use of the 

primary models as screening platforms for drug transporter and DDI studies 

have thus been validated in this chapter. 
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4.5. Summary 

In both human and rat PTC monolayers the uptake of TFV was greater across 

the basolateral membrane in comparison to the apical. We also observed a 

predominant absorptive pathway of TFV. Within the PTCs this would result in a 

cell to media ratio greater than 1 across the basolateral membrane suggesting 

that TFV is accumulating with the tubular cells. The transporters mediating the 

transport of TFV were identified using a cocktail of transporter inhibitors. The 

predominant basolateral uptake transporter was OATP4C1, followed by OAT1, 

with a negligible contribution from OAT3. TFV had low affinities for the apical 

efflux transporters MRP2, MRP4, MDR1 and BCRP. The novel identification of 

OATP4C1 as a TFV transporter has led Gilead to develop assays for 

investigating OATP4C1 DDI and also the FDA to recognise OATP4C1 as a key 

renal transporter. The primary models has thus been validated as a good model 

for such studies. 

   



 

167 
 

5. Pi handling by PTCs 

5.1. Background 

Phosphorus is an essential mineral. In mammals, it is required for cell structural 

integrity (phospholipid membranes and skeletal tissue), protein synthesis (DNA), 

energy production (ADP, ATP), and cell signalling (IP3, cAMP, cGMP). 

Phosphorus exists freely in plasma as either monovalent (H2PO4
-) or divalent 

(HPO4
2-) phosphate and these are collectively referred to as inorganic 

phosphate (Pi). Plasma Pi is maintained within a narrow range of 0.8 to 1.5 mM 

(Biber et al., 2013).  

As summarised in Figure 5.1, this balance is achieved by four separate but 

intertwined physiological systems – the gastrointestinal, renal, musculoskeletal 

and endocrine systems. On average, 1200 mg of phosphorus is ingested in 

dietary products each day (Hruska et al., 2008). Of this intake, around 950 mg 

is absorbed at the small intestine into the exchangeable Pi pool by either 

paracellular movement or active transport across the intestinal mucosa, whilst 

the remainder is excreted with faeces (Hruska et al., 2008). In-vitro preparations 

of rat small intestine have demonstrated the duodenum and jejunum are 

responsible for the bulk of Pi absorption (Walling, 1977; Marks et al., 2007). The 

active uptake of Pi is mediated by a series of specialised sodium dependent Pi 

transporters NaPi-IIb (SLC34A2), PiT1 (SLC20A1), and PiT2 (SLC20A2). Once 

absorbed Pi enters the exchangeable phosphorus pool which consists of 

intracellular Pi (70 %), the skeletal mineralisation store (29 %), and plasma Pi 

(1 %) (Hruska et al., 2008). Pi exits the pool via changes in skeletal disposition, 

renal excretion and intestinal secretion. Approximately 300 mg day-1 of serum Pi 

undergoes continuous exchange with the conjugates of phosphate that make up 

bone (Hruska et al., 2008). This constant balance between bone reabsorption 

and formation is a process known as bone turnover. The kidney plays a key role 

in regulating plasma Pi. Within the kidney, Pi is freely filtered in the glomeruli of 

the kidney. Approximately 800 mg day-1 (80%) of the filtered load is reabsorbed 

in the proximal tubule by the specialised sodium dependent Pi transporters 
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NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3) and PiT2 (SLC20A2), whilst the rest is 

excreted in urine. The endocrine system uses hormones to regulate the 

processes of gastrointestinal absorption, bone turnover and tubular 

reabsorption to keep serum Pi levels normal despite fluctuations in dietary 

intake, elimination and physiologic need. 

 

Figure 5.1: Overview of human Pi homeostasis. 

The major source of phosphorus is the diet. Dietary Pi is absorbed in 
the small intestine. The skeleton is the major storage pool for Pi, it 
contains around 85% of the total body phosphorous. The main route 
by which Pi is lost from the body is excretion in the urine. Diagram 
taken from Hruska et al., 2008. 

 

The three major hormones that regulate Pi homeostasis are parathyroid 

hormone (PTH), fibroblast growth factor 23 (FGF-23) and calcitriol (the active 

form of vitamin D: 1,25-(OH)2 cholecalciferol). PTH is produced by chief cells of 

the parathyroid glands. It acts through the PTH receptor 1 (PTHR1) in the 

kidney to downregulate the key renal transporters, NaPi-IIa, NaPi-IIc and PiT2, 
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which are abundantly expressed in the proximal tubule, and mediates the 

reabsorption of Pi (Traebert et al., 2000; Yang et al., 2004; Bacic et al., 2006; 

Forster et al., 2006). More Pi is excreted in the urine in response to the down 

regulation of these transporters. Through the same receptors, PTH also 

stimulates the production of calcitriol through stimulation of 1α-hydroxylase 

(Torres and De Brauwere, 2011). 

Calcitriol acts in the negative feedback loop to inhibit the secretion of PTH, in 

addition to stimulating NaPi-IIb and PiT2 in the GI tract, which mediate the 

dietary Pi absorption (Ritter et al., 2006; Torres and De Brauwere, 2011). 

Calcitriol also stimulates the production of FGF-23 in osteocyte cells of the bone 

(Torres and De Brauwere, 2011). FGF-23 acts on the kidney through FGF 

receptors in conjunction with the co-factor, klotho-α (Kuro-o et al., 1997; Hu et 

al., 2010; Kuro, 2011). FGF-23 also down regulates NaPi-IIa, NaPi-IIc and PiT2 

expression in the proximal tubules (Biber et al., 2013). Removal of these 

transporters reduces the proximal tubule reabsorption of Pi and that enhances 

urinary Pi excretion. In contrast to PTH, FGF-23 is a potent inhibitor of 1α-

hydroxylase and thus calcitriol production (Kuro-o et al., 1997; Prie et al., 2009; 

Torres and De Brauwere, 2011). Dentrin matrix acidic phosphoprotein 1, 

Ectonucleotide pyrophosphatase/phosphodiesterase 1 and phosphate-

regulating neutral endopeptidase are several regulators of FGF-23 that have 

been identified (Martin et al., 2012).  

Serum Pi levels in healthy adults ranges from 2.5 to 4.5 mg/dL (0.81 to 1.45 

mmol/L). A drop in this level can lead to hypophosphatemia, and can be defined 

as mild (2 to 2.5 mg/dL, or 0.65 to 0.81 mmol/L), moderate (1 to 2.5 mg/dL or 

0.32 -0.65 mmol/L), or severe (<1 mg/dL, or <0.32 mmol/L). Moderate to severe 

hypophosphatemia is observed in 4 to 32 % of HIV-1 patients on ART (Badiou 

et al., 2006; Buchacz et al., 2006). This adverse reaction is generally related to 

increased urinary excretion of phosphorous (hyperphosphaturia), but the 

underlying aetiology is not completely understood, although HIV infection and 

ART are risk factors for the development of hypophosphatemia (Paccou et al., 

2009). In a study of hypophosphatemia prevalence in HIV-positive patients, 

hypophosphatemia was more frequent in those who were on ART than ART-

naïve (35% versus 10%, n = 123, P = 0.0001) (Wainwright et al., 2013). Of the 
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ARTs, TDF is most frequently associated with hypophosphatemia, 

hyperphosphaturia, and osteomalacia (defective bone mineralisation) (Buchacz 

et al., 2006; Labarga et al., 2009; Cooper et al., 2010; Judd et al., 2010; Calza 

et al., 2011; Havens et al., 2013; Ezinga et al., 2014; Giacomet et al., 2015; Lim 

et al., 2015).  

In drug development toxicology studies conducted in rats, dogs, and monkeys, 

TDF administration caused bone toxicity at exposures greater than those 

observed in humans (based on AUCs) (Gilead Sciences, 2015). In monkeys the 

bone toxicity was diagnosed as osteomalacia and appeared to be reversible 

upon dose reduction or discontinuation of TDF. In rats and dogs, bone toxicity 

manifested as reduced bone mineral density. In addition, increases in 

phosphaturia, calciuria and decreases in serum Pi were observed to varying 

degrees in all species at exposures 2 to 20 times higher than those observed in 

humans. Disappointingly, the mechanism underlying bone toxicity was not 

investigated further.  

In a human clinical phase study conducted in 600 HIV-1 infected adults over 

144 weeks, significant decrease in bone mineral density was reported at the 

lumbar spine in subjects receiving a cocktail of medications containing TDF, 

compared to subjects taking medications with a TDF substitute (Gilead 

Sciences, 2015). The majority of the reduction in bone mineral density occurred 

in the first 24 to 48 weeks of the trial and this reduction was sustained through 

to week 144. In addition, there were more biochemical markers of bone 

metabolism, higher serum PTH levels, and higher calcitriol levels in the TDF-

treatment group relative to the non-TDF-treatment group. However, except for 

bone-specific alkaline phosphatase, despite the increase in levels, the values 

remained within the normal range. Similar findings were observed in other 

paediatric HIV-1 clinical studies (Gilead Sciences, 2015). Indeed, since the 

approval of TDF use, there have been over 45 published cases that reports the 

association of TDF treatment with hypophosphatemia. TDF discontinuation is 

associated with a significant increase in serum Pi levels (Herlitz et al., 2010; 

Judd et al., 2010; Bech et al., 2012b; Lim et al., 2015; Magalhaes-Costa et al., 

2015). But there is no conclusive evidence of a causal link. 
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Predominantly, the literature suggests that TDF-induced hypophosphatemia is 

the result of TFV induced Fanconi syndrome. TFV accumulation within the 

proximal tubular cells results in inhibition of mitochondrial DNA polymerase-γ. 

As a result, the enzymes involved in the electron transport chain and oxidative 

phosphorylation become depleted. Mitochondrial function is disturbed, followed 

by a deficit in ATP production, impaired cell function, cell injury, and eventually 

apoptosis. Endogenous metabolites such Pi and calcium are passed in urine 

instead of being reabsorbed (hyperphosphaturia) with proximal tubule cell death 

(Martin et al., 1994; Birkus et al., 2002; Cote et al., 2006; Kohler et al., 2009; 

Herlitz et al., 2010; Perazella, 2010; Fernandez-Fernandez et al., 2011; Kohler 

et al., 2011). A decrease in Pi reabsorption from ultrafiltrate results in low serum 

Pi levels (hypophosphatemia). When the body recognises there is a low Pi 

serum concentration, bone demineralisation can occur to increase serum Pi 

levels, which could lead to osteomalacia. However medically induced renal 

tubular damage leading to Fanconi syndrome occurs in less than 0.1% of 

patients on TDF and thus cannot account for the high prevalence of 

hypophosphatemia (Nelson et al., 2007; Herlitz et al., 2010; Fernandez-

Fernandez et al., 2011). Recent clinical studies in HIV+ patients on TDF found 

that renal Pi loss was not caused by hyper-secretion of PTH or FGF-23, nor by 

calcium or vitamin D deficiency either (Saidenberg-Kermanac'h et al., 2011; 

Bech et al., 2012a; Bech et al., 2012b). This suggests that other factors, 

possibly a transporter-related one, may be involved in the aetiology of the 

clinical symptoms (Nelson et al., 2007; Hall et al., 2011; Bech et al., 2012a; 

Bech et al., 2012b). 

In fact, a trend between the years of TDF therapy and Pi reabsorption rate of 

patients has suggested that TFV may inhibit Pi reabsorption (Bech et al., 2012a), 

which could lead to the observed TDF related adverse effects. This chapter 

shall therefore consider the renal handling of Pi using the human and rat PTC 

monolayers, and assess their suitability as in-vitro models for the investigation 

of TFV-induced toxicity.  
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5.2. Aims 

The aims of the chapter were threefold (i) to investigate the handling of Pi, (ii) to 

investigate the regulation of Pi handling by PTH, FGF-23 and -klotho, and (iii) 

to investigate the impact of acute exposure to TFV upon the kinetics of Pi 

transport in human and rat PTC monolayers.  

Firstly, the uptake and flux of radiolabelled [32P]-Pi in human and rat PTC 

monolayers over time were studied to select a suitable time point to conduct 

transport experiments under initial rate conditions. Once a time point had been 

selected, the unidirectional transepithelial fluxes of [32P]-Pi were measured in 

the secretory and absorptive direction across paired human and rat PTC 

monolayers. Uptake of [32P]-Pi across the basolateral and apical membrane of 

human and rat PTC monolayers were also measured. Kinetics parameters such 

as the maximum rate of [32P]-Pi uptake (Vmax) and the affinity of [32P]-Pi for PTC 

uptake transporters (Km) were determined in both models. Following this the 

effect of the following compounds on [32P]-Pi uptake across the apical 

membrane of human and rat PTC monolayers were measured: 

 Sodium  

 extracellular pH  

 phosphonoformic acid (PFA) 

 PTH  

 FGF-23 

 Klotho-α 

 TFV 
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5.3. Results 

5.3.1. mRNA expression of Pi transporters in human PTC 

monolayer. 

qPCR was performed to confirm mRNA expression of Pi transporters by human 

PTCs in different culture conditions (N = 3). The mRNA expression levels of 

NaPi-IIa, NaPi-IIc, PiT2, NPT1, NPT4 and NPT5 following culture on 

Transwell® inserts and plastic cultureware relative to freshly isolated cells are 

shown in Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 and Figure 

5.7, respectively. The data are summarised in Table 5.1 The expression levels 

had been normalised to the reference gene GAPDH prior to comparison. 

Human PTCs maintained expression of key renal Pi transporters, NaPi-IIa, 

NaPi-IIc and PiT2, as well as NPT1, NPT4 and NPT5 under both culture 

conditions. However, there was a significant fall in the expression of NaPi-IIc, 

PiT2 and NPT1 when compared with freshly human PTCs. No statistical 

difference in expression level was observed between the two culture conditions 

for any of the transporters.  
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Figure 5.2: The mRNA expression of NaPi-IIa in human PTCs under 
different culture conditions.  

NaPi-IIa mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 36.31  
9.18 % and 33.91  2.60 % decrease in expression in comparison to 
freshly isolated cells (100.00  29.28 %), respectively. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance. 
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Figure 5.3: The mRNA expression of NaPi-IIc in human PTCs under 
different culture conditions.  

NaPi-IIc mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 65.62  
4.75 % and 76.13  4.12 % decrease in expression in comparison to 
freshly isolated cells (100.00  16.74 %), respectively. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01. 
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Figure 5.4: The mRNA expression of PiT2 in human PTCs under different 
culture conditions.  

PiT2 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 62.71  
8.95 % and 85.01  5.13 % decrease in expression in comparison to 
freshly isolated cells (100.00  6.04 %), respectively. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01, *** P < 0.001. 
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Figure 5.5: The mRNA expression of NPT1 in human PTCs under different 
culture conditions.  

NPT1 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 43.26  
9.26 % and 45.89  1.82 % decrease in expression in comparison to 
freshly isolated cells (100.00  4.65 %), respectively. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01. 
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Figure 5.6: The mRNA expression of NPT4 in human PTCs under different 
culture conditions.  

NPT4 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 16.72  
12.78 % and 24.15  5.32 % decrease in expression in comparison to 
freshly isolated cells (100.00  6.06 %), respectively. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance. 
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Figure 5.7: The mRNA expression of NPT5 in human PTCs under different 
culture conditions.  

NPT5 mRNA expression levels are expressed as percentage 
expression relative to freshly isolated human PTCs. Human PTCs 
cultured for 7 days on Transwell inserts and plastic showed a 25.08  
10.99 % and 1.24  9.12 % decrease in expression in comparison to 
freshly isolated cells (100.00  7.77 %), respectively. The expression 
levels had been normalised to reference gene GAPDH expression 
level prior to comparison. The results are expressed as the mean ± 
SEM from 3 separate batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance. 
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Transporter 
% Expression compared to fresh PTCs 

Transwell® Plastic 

NaPi-IIa 63.69  9.18 66.09  2.60 

NaPi-IIc 34.38  4.75 ** 23.87  4.12 ** 

PiT2 37.29  8.95 ** 14.99  5.13 *** 

NPT1 56.74  9.26 ** 54.11  1.82 ** 

NPT4 83.28  12.77 75.85  5.34 

NPT5 74.90  10.99 98.70  9.12 
 

Table 5.1: Percentage change in mRNA expression of Pi transporters in 
human PTCs cultured on plastic and Transwell® inserts when compared 
to freshly isolated PTCs. 

mRNA expression levels of NaPi-IIa, NaPi-IIc, PiT2, NPT1, NPT4 and 
NPT5 were measured using qPCR and shown as a percentage of 
freshly isolated cells. Expression levels had been normalised to 
GAPDH expression levels. Data are the mean  SEM of expression 
levels determined from 3 batches of RNA derived from 3 individual 
kidneys. One-way ANOVA statistical test was performed on the data 
set to determine significance, ** P < 0.01, *** P < 0.001. 

 

5.3.2. Flux and uptake of Pi by human PTC monolayers over time. 

In order to ensure the renal handling of Pi was measured under initial rate 

conditions, the rate of Pi unidirectional transepithelial flux and uptake over fixed 

periods of time were studied. The secretory and absorptive flux of 100 M [32P]-

Pi across human PTC monolayers at 20, 40, and 60 min of exposure were 

measured. Additionally the apical uptake of 100 M [32P]-Pi in human PTC 

monolayers was measured at 0, 1, 5, 10, and 20 min of exposure.  

Figure 5.8 shows the secretory, absorptive and net fluxes of 100 M [32P]-Pi 

increased linearly between the defined time-points (n = 9, N = 3). 

Correspondingly, the uptake of 100 M [32P]-Pi increased linearly between 0 

and 20 min, with a gradient of 70.18  1.38 pmol / cm2 / min (n = 9, N = 3), as 

shown in Figure 5.9. Non-specific binding of [32P]-Pi to the Transwell insert 
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was also found to be 1.62  0.14 pmol / cm2, which was considered to be 

negligible.  

 

Figure 5.8: Time course of unidirectional transepithelial fluxes of 100 M 
[32P]-Pi across human PTC monolayers. 

The fluxes of 100 M [32P]-Pi across human PTC monolayers at 20, 40 
and 60 min of exposure are shown. The secretory, absorptive and net 
fluxes of [32P]-Pi were within the linear initial rate period between 0 
and 60 min. The results are expressed as the mean ± SEM from 12 
human PTC monolayers derived from 3 individual kidneys.  
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Figure 5.9: Time course of 100 M [32P]-Pi uptake across the apical 
membrane of human PTC monolayers. 

The apical membranes of the monolayers were incubated with 100 μM 
[32P]-Pi for 0, 1, 2, 5, 10 or 20 min. The intracellular accumulation of 
[32P]-Pi was linear over this time period. Linear regression analysis of 
the data gave a slope of 70.18  1.38 pmol / cm2 / min (R2: 0.97). The 
non-specific binding of [32P]-Pi to the Transwell insert was 1.62  
0.14 pmol / cm2. The results are expressed as the mean ± SEM from 
12 human PTC monolayers derived from 3 individual kidneys. 
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5.3.3. Flux and uptake of Pi by human PTC monolayers 

Unidirectional transepithelial fluxes of 100 M [32P]-Pi over 60 min in both the 

secretory (basolateral to apical, JB-A) and absorptive (apical to basolateral, JA-B) 

direction were studied in the human PTC monolayer model. The net flux was 

calculated from the difference between the two fluxes. Initial rates of uptake of 

Pi across the basolateral or apical membrane of monolayer was also 

determined by measuring the intracellular accumulation of [32P]-Pi in human 

PTC monolayers after a 5-minute incubation time. 

Figure 5.10 shows a net absorption of Pi (300.94 ± 5.56 pmol / minute / cm2) 

predominates across human PTC monolayers. The absorptive and secretory 

movement of [32P]-Pi were 301.46 ± 5.56 pmol / minute / cm2 and 0.52 ± 0.02 

pmol / minute / cm2, respectively (**** P < 0.0001, n = 12, N = 3). Figure 5.11 

shows the intracellular accumulation of [32P]-Pi, which was representative of 

[32P]-Pi uptake across the basolateral or apical membranes of human PTC 

monolayers. [32P]-Pi uptake across the apical membrane (312.36 ± 5.13 pmol / 

minute / cm2) was 4.72-times greater than across the basolateral membrane 

(66.22 ± 1.50 pmol / minute / cm2) (**** P < 0.0001, n = 12, N = 3). This 

information suggests the transporters responsible for Pi uptake are 

predominantly located on the apical membrane of human PTC monolayers. 
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Figure 5.10: Unidirectional transepithelial fluxes of 100 M [32P]-Pi across 
human PTC monolayers. 

In order to determine the secretory and absorptive fluxes of Pi across 
human PTC monolayers, paired monolayers were incubated with 100 
μM [32P]-Pi at either the basolateral or apical chamber for 60 min. The 
results show a net absorptive flux (300.94 ± 5.56 pmol / minute / cm2). 
The absorptive movement of [32P]-Pi was 301.46 ± 5.56 pmol / minute 
/ cm2, whilst the secretory movement was negligible (0.52 ± 0.02 pmol 
/ minute / cm2) (**** P < 0.0001). The results are expressed as the 
mean ± SEM from 12 human PTC monolayers derived from 3 
individual kidneys. Significance was determined by a Student’s t-test. 
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Figure 5.11: Uptake of 100 M [32P]-Pi across the basolateral and apical 
membrane of human PTC monolayers. 

Paired monolayers were incubated with 100 μM [32P]-Pi at either the 
basolateral or apical chamber for 5 min. The data show that the initial 
rates of uptake of [32P]-Pi across the apical membrane (312.36 ± 5.13 
pmol / minute / cm2) was 4.72-times greater than across the 
basolateral membrane (66.22 ± 1.50 pmol / minute / cm2) (**** P < 
0.0001). The results are expressed as the mean ± SEM from 12 
human PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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5.3.4. Kinetics of Pi transport by human PTC monolayers. 

Kinetic parameters of Pi uptake across the apical membrane of human PTC 

monolayers were also calculated. Monolayers were incubated at the apical 

membrane with a range of [32P]-Pi concentrations (10 to 500 M) for 5 min and 

the intracellular accumulation of [32P]-Pi was measured. Figure 5.12 shows the 

relationship between extracellular [32P]-Pi concentration and intracellular 

accumulation of [3H]-TFV (n = 9, N = 3). Non-linear regression analysis of the 

data gave a Vmax of 562.90  99.18 pmol / minute / cm2 and an apparent Km 

value of 106.05  36.40 M.  
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Figure 5.12: Kinetic data on [32P]-Pi uptake across the apical membrane of 
human PTC monolayers under initial rate conditions. 

In order to obtain kinetic data on Pi uptake under initial rate 
conditions, the monolayers were incubated with a range of [32P]-Pi 
concentrations (10 to 500 M) for 5 min. Non-linear regression 
analysis of the data gave a Vmax of 562.90  99.18 pmol / minute / cm2 
and an apparent Km value of 106.05  36.40 M. The results are 
expressed as the mean ± SEM from 9 human PTC monolayers derived 
from 3 individual kidneys. 
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5.3.5. The effect of sodium concentration upon Pi renal handling by 

human PTC monolayers. 

The key renal Pi transporters expressed in proximal tubule cells are sodium 

(Na+) dependent. Therefore the Na+ dependence of Pi uptake at the apical 

membrane was investigated in human PTC monolayers. The uptake of 100 M 

[32P]-Pi was measured in the presence and absence of Na+ over several time 

points. In addition, the kinetics of apical Pi uptake in the presence of a range of 

Na+ concentrations (0 to 150 mM) were also determined. 

Figure 5.13 shows the apical uptake of Pi was significantly attenuated by the 

absence of Na+ (n = 12, N = 3). Linear regression analysis of the data gave a 

slope of 70.18  1.38 pmol / cm2 / minute in the presence of 137 mM Na+, and 

0.66  0.11 pmol / cm2 / minute in the absence of Na+. Furthermore, a strong 

correlation between Na+ concentration and apical uptake of 100 M [32P]-Pi was 

observed in Figure 5.14 and Figure 5.15 (n = 12, N = 3). Na+ uptake increased 

linearly with Na+ concentration up to 120 mM. Uptake then plateaued between 

120 and 137 mM Na+. The buffer solution used in this experiment was 

hypertonic at 150 mM Na+, which resulted in cell crenation and little uptake of Pi. 

The maximum rate of Pi uptake was 312.36  5.13 pmol / minute / cm2 at 137 

mM Na+. When the data was plotted as shown in Figure 5.15, non-linear 

regression analysis of the data gave an estimated Hill coefficient of 1.88  0.16, 

and Km value of 38.15  1.89 mM Na+. 
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Figure 5.13: The effect of Na+ on uptake of 100 M [32P]-Pi across the 
apical membrane of human PTC monolayers. 

Uptake of 100 M [32P]-Pi across the apical membrane of human PTC 
monolayers was measured in the presence and absence of Na+ over 
several time points (0 to 20 min). The results show uptake of [32P]-Pi 
across the apical membrane was Na+ dependent. Linear regression 
analysis of the data gave a slope of 70.18  1.38 pmol / cm2 / min in 
the presence of 137 mM Na+, and 0.66  0.11 pmol / cm2 / min in the 
absence (0 mM) Na+. The results are expressed as the mean ± SEM 
from 12 human PTC monolayers derived from 3 individual kidneys.  
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Figure 5.14: The effect of Na+ concentration on uptake of 100 M [32P]-Pi 
across the apical membrane of human PTC monolayers. 

Uptake of 100 M [32P]-Pi across the apical membrane of human PTC 
monolayers was measured over a range of Na+ concentrations (0 to 
150 mM). The results show uptake of [32P]-Pi across the apical 
membrane was Na+ dependent. Uptake of [32P]-Pi was 11.93  1.09 
pmol / minute / cm2 at 0 mM Na+, 111.56  4.10 pmol / minute / cm2 at 
25 mM Na+, 175.29  10.31 pmol / minute / cm2 at 50 mM Na+, 244.63 
 12.90 pmol / minute / cm2 at 100 mM Na+, 306.88  7.48 pmol / 
minute / cm2 at 120 mM Na+, 312.36  5.13 pmol / minute / cm2 at 137 
mM Na+, and 33.07  8.46 pmol / minute / cm2 at 150 mM Na+. The 
results are expressed as the mean ± SEM from 12 human PTC 
monolayers derived from 3 individual kidneys. 

 

0 25 50 100 120 137 150

0

100

200

300

400

Concentration of Na+

(mM)

In
tra

ce
llu

la
r a

cc
u

m
u

la
tio

n
 o

f [
32

P
]-P

i

(p
m

o
l /

 m
in

 / 
cm

2 )



 

191 
 

 

Figure 5.15: The kinetics of Na+ and uptake of 100 M [32P]-Pi across the 
apical membrane of human PTC monolayers. 

Uptake of 100 M [32P]-Pi across the apical membrane of human PTC 
monolayers was measured in a range of concentrations of Na+ (0 to 
137 mM). The results show uptake of [32P]-Pi across the apical 
membrane was Na+ dependent. The Vmax was constrained to 312.36 
pmol / min / cm2 based upon previous findings. Non-linear regression 
analysis of the data gave an estimated Hill coefficient of 1.88  0.16, 
and Km value of 38.15  1.89 mM Na+. The results are expressed as 
the mean ± SEM from 12 human PTC monolayers derived from 3 
individual kidneys. 
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5.3.6. The effect of pH upon Pi renal handling by human PTC 

monolayers. 

The effect of pH on the rate of Pi uptake was studied in human PTC monolayers. 

The apical uptake of 100 M [32P]-Pi was measured in experimental buffer of pH 

6.0, 6.5, 7.0, 7.5 and 8.0. As shown in Figure 5.16, the rate of Pi uptake was 

dependent on pH. For instance increasing the pH from 6.0 (154.45  12.64 

pmol / minute / cm2) to 7.5 (317.09  4.43 pmol / minute / cm2) doubled the rate 

of Pi uptake.  

 

Figure 5.16: The effect of pH on uptake of 100 M [32P]-Pi across the apical 
membrane of human PTC monolayers. 

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in experimental buffer of pH 6.0, 6.5, 
7.0, 7.5 and 8.0. The results show uptake of [32P]-Pi across the apical 
membrane was pH dependent. Uptake of [32P]-Pi was 154.45  12.64 
pmol / minute / cm2 at pH 6.0, 216.37  14.71 pmol / minute / cm2 at 
pH 6.5, 246.28  13.66 pmol / minute / cm2 at pH 7.0, 317.09  4.43 
pmol / minute / cm2 at pH 7.5, and 324.83  11.51 pmol / minute / cm2 
at pH 8.0. The results are expressed as the mean ± SEM from 12 
human PTC monolayers derived from 3 individual kidneys. 
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5.3.7. The effect of PFA upon Pi renal handling by human PTC 

monolayers. 

PFA has been shown to competitively inhibit both NaPi-IIa and NaPi-IIc 

cotransport. In order to confirm expression of NaPi-IIa, NaPi-IIc or both, the 

effect of PFA on the rate of Pi uptake was studied in human PTC monolayers. 

Apical uptake of 100 M [32P]-Pi was measured in the presence of a range of 

PFA concentrations (100 to 1500 M). The results in Figure 5.17 show the 

presence of PFA significantly inhibited Pi uptake (n = 9, N = 3). Non-linear 

regression analysis of the data gave an apparent IC50 value of 570.35  62.50 

M. This observation confirms human PTC monolayers express NaPi-IIa and/or 

NaPi-IIc at a functional level.  
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Figure 5.17: The effect of PFA on the renal handling of 100 M [32P]-Pi by 
human PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence of a range of 
concentrations of PFA (10 to 1500 M). The presence of PFA 
significantly inhibited Pi uptake. Non-linear regression analysis of the 
data gave an apparent IC50 value of 570.35  62.50 M. The results 
are expressed as the mean ± SEM from 9 human PTC monolayers 
derived from 3 individual kidneys. 
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5.3.8. The effect of PTH upon Pi renal handling by human PTC 

monolayers. 

As previously mentioned, PTH binding to PTHR1 on the basolateral membrane 

of proximal tubular cells down regulates expression of NaPi-IIa, NaPi-IIc, and 

PiT2. In order to confirm human PTC cells retain PTH intracellular signalling 

pathways, the effect of PTH on the rate of Pi uptake was studied in human PTC 

monolayers. The uptake of 100 M [32P]-Pi across the apical membrane of 

human PTC monolayers was measured in the presence of a range of PTH 

concentrations (0 to 10 nM). The presence of PTH significantly inhibited Pi 

uptake in a concentration dependent manner, as illustrated by the results in 

Figure 5.18 (n = 12, N = 3). These findings confirm the PTH intracellular 

signalling pathways were retained during culture of human PTCs. 
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Figure 5.18: The effect of PTH on the renal handling of 100 M [32P]-Pi by 
human PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence of a range of 
concentrations of PTH (0 to 10 nM). The presence of PTH significantly 
inhibited Pi uptake in a concentration dependent manner. The results 
are expressed as the mean ± SEM from 12 human PTC monolayers 
derived from 3 individual kidneys. Significance was determined using 
ANOVA and a Dunnett’s post-test. 
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5.3.9. The effect of FGF-23 and -klotho upon Pi renal handling by 

human PTC monolayers. 

FGF-23 and serum soluble α-klotho also down regulate proximal tubular cell 

expression of NaPi-IIa, NaPi-IIc, and PiT2. In order to confirm human PTC cells 

retain FGF-23 and α-klotho intracellular signalling pathways, the effects of FGF-

23 and α-klotho on the rate of Pi uptake were studied in human PTC 

monolayers. FGFs are heparin-binding proteins. Interactions with cell-surface-

associated heparin sulphate proteoglycans have been shown to be essential for 

FGF signal transduction. Therefore an excess of heparin was included in FGF 

experiments. 

The uptake of 100 M [32P]-Pi across the apical membrane of human PTC 

monolayers was measured in the presence 0.89 nM FGF-23 and 0.55 mM 

heparin at either the apical or basolateral membrane. As shown in Figure 5.19, 

the presence of FGF-23 and heparin at the basolateral membrane inhibited Pi 

uptake by 20.33 ± 0.64 %, whereas the presence of FGF-23 and heparin at the 

apical membrane did not have a significant effect (0.15 ± 0.25 % inhibition) (n = 

12, N = 3). These results imply that the FGF receptors were located at the 

basolateral membrane of the human PTC monolayers, and that membrane-

bound α-klotho and the FGF-23 intracellular signalling pathways were retained 

during culture. 

This study was repeated by replacing 0.89 nM FGF-23 with 0.90 nM α-klotho 

and the results are shown in Figure 5.20. The presence of -klotho at the 

basolateral membrane inhibited Pi uptake by 29.04 ± 1.27 %, whilst the 

presence of -klotho at the apical membrane did not have a significant effect 

(5.54 ± 1.50 % inhibition) (n = 12, N = 3). These findings suggest that soluble α-

klotho bound to FGF receptor 1 (FGFR1) at the basolateral membrane of 

human PTC monolayers and caused a decrease in Pi absorption, and the cells 

retained α-klotho intracellular signalling pathway in culture. 

In Figure 5.21, the uptake of 100 M [32P]-Pi across the apical membrane of 

human PTC monolayers in the presence of 0.89 nM FGF-23, 0.90 nM α-klotho 

and 0.55 mM heparin is shown. The presence of FGF-23, heparin and -klotho 

at the basolateral membrane inhibited Pi uptake significantly greater than the 
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presence of each alone (39.18 ± 1.39 % inhibition) suggesting an additive effect 

(n = 12, N = 3). 

The effect of -klotho concentration on the rate of Pi uptake was also studied in 

human PTC monolayers. The uptake of 100 M [32P]-Pi across the apical 

membrane of human PTC monolayers was measured in the presence of a 

range of -klotho concentrations (0.18 to 5.4 nM). Figure 5.22 shows the 

presence of -klotho significantly inhibited Pi uptake in a concentration 

dependent manner (n = 8, N = 2). 
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Figure 5.19: The effect of FGF-23 on the renal handling of 100 M [32P]-Pi 
by human PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence and absence of 0.89 
nM FGF-23. 0.55 mM heparin was in all conditions. A positive control 
of 1 mM PFA was included. The presence of 1 mM PFA inhibited 
uptake of 100 M [32P]-Pi across the apical membrane by 31.06 ± 
2.96 %. The presence of 0.89 nM FGF-23 at the basolateral 
membrane inhibited Pi uptake by 20.33 ± 0.64 %, whilst the presence 
of 0.89 nM FGF-23 at the apical membrane did not have a significant 
effect (0.15 ± 0.25 % inhibition). The results are expressed as the 
mean ± SEM from 12 human PTC monolayers derived from 3 
individual kidneys. Significance was determined using ANOVA and a 
Dunnett’s post-test. 
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Figure 5.20: The effect of –klotho on the renal handling of 100 M [32P]-Pi 
by human PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence and absence of 0.90 
nM -klotho. 0.55 mM heparin was used in all conditions. A positive 
control of 1 mM PFA was included. The presence of 1 mM PFA 
inhibited uptake of 100 M [32P]-Pi across the apical membrane by 
31.06 ± 2.96 %. The presence of 0.90 nM -klotho at the basolateral 
membrane inhibited Pi uptake by 29.04 ± 1.27 %, whilst the presence 
of 0.90 nM -klotho at the apical membrane did not have a significant 
effect (5.54 ± 1.50 % inhibition). The results are expressed as the 
mean ± SEM from 12 human PTC monolayers derived from 3 
individual kidneys. Significance was determined using ANOVA and a 
Dunnett’s post-test. 
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Figure 5.21: The effect of FGF-23 and –klotho on the renal handling of 
100 M [32P]-Pi by human PTC monolayers. 

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence and absence of 1 mM 
PFA, 0.89 nM FGF-23 and 0.90 nM -klotho. 0.55 mM heparin was 
included in all experiments. The presence of 1 mM PFA inhibited 
uptake of 100 M [32P]-Pi across the apical membrane by 31.06 ± 
2.96 %. The presence of 0.89 nM FGF-23 and 0.55 mM heparin at the 
basolateral membrane inhibited Pi uptake by 20.33 ± 0.64 %. The 
presence of 0.90 nM -klotho and 0.55 mM heparin at the basolateral 
membrane inhibited Pi uptake by 29.04 ± 1.27 %. The presence of 
0.89 nM FGF-23, 0.90 nM -klotho and 0.55 mM heparin at the 
basolateral membrane inhibited Pi uptake significantly greater than 
the presence of each alone (39.18 ± 1.39 % inhibition). The results 
are expressed as the mean ± SEM from 12 human PTC monolayers 
derived from 3 individual kidneys. Significance was determined using 
ANOVA and a Dunnett’s post-test. 
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Figure 5.22: The effect of –klotho on the renal handling of 100 M [32P]-Pi 
by human PTC monolayers. 

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence of a range of 
concentrations of -klotho (0.18 to 0.54 nM). The presence of -
klotho significantly inhibited Pi uptake in a concentration dependent 
manner. The results are expressed as the mean ± SEM from 8 human 
PTC monolayers derived from 2 individual kidneys. Significance was 
determined using ANOVA and a Dunnett’s post-test. 
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5.3.10. The effect of TFV upon Pi renal handling by human PTC 

monolayers. 

The effect of TFV on the rate of Pi uptake was studied in human PTC 

monolayers. Initially, the uptake of 100 M [32P]-Pi across the apical membrane 

of human PTC monolayers was measured in the presence and absence of 10 

µM TFV. As shown in Figure 5.23, apical uptake of Pi was 312.40 ± 5.13 pmol / 

minute /cm2 in the absence of TFV, and 201.80 ± 3.28 pmol / minute / cm2 in 

the presence of 10 M TFV, which equates to a 35.40 ± 1.05 % decrease in Pi 

uptake. The kinetics of inhibition were determined by measuring Pi uptake in the 

presence of a range of TFV concentrations (1 to 500 µM). TFV inhibited Pi 

uptake in a concentration dependent manner, Figure 5.24. Non-linear 

regression analysis of the data gave an apparent IC50 value of 52.25  4.71 M 

TFV. 
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Figure 5.23: The effect of 10 M TFV on the renal handling of 100 M [32P]-
Pi by human PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence and absence of 10 
M TFV. The presence of TFV inhibited uptake of 100 M [32P]-Pi 
across the apical membrane by 35.40 ± 1.05 %; apical uptake of Pi 
was 312.40 ± 5.13 pmol / minute /cm2 in the absence of TFV, 
compared to 201.80 ± 3.28 pmol / minute / cm2 in the presence of 10 
M TFV. The results are expressed as the mean ± SEM from 12 
human PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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Figure 5.24: The kinetics of TFV inhibition of apical uptake of 100 M [32P]-
Pi across human PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of human 
PTC monolayers was measured in the presence of a range of TFV 
concentrations. TFV inhibited Pi uptake in a concentration dependent 
manner. Non-linear regression analysis of the data gave an apparent 
IC50 value of 52.25  4.71 M TFV. The results are expressed as the 
mean ± SEM from 12 human PTC monolayers derived from 3 
individual kidneys. 
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5.3.11. Flux and uptake of Pi by rat PTC monolayers over time. 

To ensure the renal handling of Pi was measured under initial rate conditions, 

the rate of Pi unidirectional transepithelial fluxes and uptake over time were 

studied. The secretory and absorptive fluxes of 100 M [32P]-Pi across rat PTC 

monolayers following 20, 40, and 60 min of exposure were measured. 

Additionally the uptake of 100 M [32P]-Pi across the apical membrane of rat 

PTC monolayers was measured at 0, 1, 5, 10, and 20 min of exposure.  

Figure 5.25 shows the secretory, absorptive and net fluxes of 100 M [32P]-Pi 

increased linearly between the defined time-points (n = 9, N = 3). 

Correspondingly, the uptake of 100 M [32P]-Pi increased linearly between 0 

and 20 min, with a gradient of 2.86  0.12 pmol / cm2 / minute (n = 9, N = 3), as 

shown in Figure 5.26. We can thus deduce that 0 to 60 min lies within the linear 

rate of Pi transport. Non-specific binding of [32P]-Pi to the Transwell insert was 

also found to be 0.19  0.03 pmol / cm2, which was considered to be negligible.  
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Figure 5.25: Time course of unidirectional fluxes of 100 M [32P]-Pi across 
rat PTC monolayers.  

The fluxes of 100 M [32P]-Pi across rat PTC monolayers over the 
defined periods of time are shown. The fluxes of [32P]-Pi were within 
the initial rate period between 0 and 60 min as secretory, absorptive 
and net fluxes were linear over this time period. The results are 
expressed as the mean ± SEM from 12 rat PTC monolayers derived 
from 3 individual kidneys.  
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Figure 5.26: Time course of 100 M [32P]-Pi uptake across the apical 
membrane of rat PTC monolayers. 

The apical membranes of the monolayers were incubated with 100 μM 
[32P]-Pi for 0, 1, 2, 5, 10 or 20 min. The rate of uptake of [32P]-Pi was 
linear within the time period investigated. Linear regression analysis 
of the data gave a slope of 2.86  0.12 pmol / cm2 / minute (R2: 0.89). 
The non-specific binding of [32P]-Pi to the Transwell insert was 0.19 
 0.03 pmol / cm2. The results are expressed as the mean ± SEM from 
12 rat PTC monolayers derived from 3 individual kidneys. 
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5.3.12. Flux of Pi by rat PTC monolayers. 

Unidirectional transepithelial fluxes of 100 M [32P]-Pi over 60 min in both the 

secretory and absorptive direction were also studied in the rat PTC monolayer 

model. The findings in Figure 5.27 show a net absorption of Pi (1101.15 ± 24.84 

pmol / minute / cm2) across the rat PTC monolayers. The absorptive and 

secretory movement of [32P]-Pi was 1129.06 ± 25.01 pmol / minute / cm2 and 

27.91 ± 1.09 pmol / minute / cm2, respectively (**** P < 0.0001, n = 12, N = 3). 

These findings suggest the transporters responsible for Pi uptake are 

predominantly located on the apical membrane of rat PTC monolayers. 
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Figure 5.27: Unidirectional fluxes of 100 M [32P]-Pi by rat PTC monolayers. 

To determine the secretory and absorptive fluxes of Pi by rat PTC 
monolayers, paired monolayers were incubated with 100 μM [32P]-Pi at 
either the basolateral or apical chamber. The results show a net 
absorptive flux (1101.15 ± 24.84 pmol / minute / cm2). The absorptive 
movement of [32P]-Pi was 1129.06 ± 25.01 pmol / minute / cm2, whilst 
the secretory movement was very small (27.91 ± 1.09 pmol / minute / 
cm2) (**** P < 0.0001). The results are expressed as the mean ± SEM 
from 12 rat PTC monolayers derived from 3 individual kidneys. 
Significance was determined by a Student’s t-test. 
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5.3.13. Kinetics of Pi transport by rat PTC monolayers. 

The kinetic parameters of Pi transport across the apical membrane of rat PTC 

monolayers were also investigated.  

Rat PTC monolayers were incubated at the apical membrane with a range of 

[32P]-Pi concentrations (100 to 1000 M) for 5 min and the intracellular 

accumulation of [32P]-Pi was measured. Figure 5.28 shows the relationship 

between [32P]-Pi concentration and uptake of [3H]-TFV across the apical 

membrane of rat PTC monolayers (n = 9, N = 3). Non-linear regression analysis 

of the data gave a Vmax of 433.90  30.42 pmol / minute / cm2 and an apparent 

Km value of 1221.36 133.23 M. 
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Figure 5.28: Kinetic data on [32P]-Pi uptake across the apical membrane of 
rat PTC monolayers under initial rate conditions. 

In order to obtain kinetic data on Pi uptake under initial rate 
conditions, the monolayers were incubated with a range of [32P]-Pi 
concentrations (100 to 1000 M) for 5 min. Non-linear regression 
analysis of the data gave a Vmax of 433.90  30.42 pmol / minute / cm2 
and an apparent Km value of 1221.36 133.23 M Pi. The results are 
expressed as the mean ± SEM from 9 rat PTC monolayers derived 
from 3 individual kidneys. 
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5.3.14. The effect of Na+ concentration upon Pi renal handling 

by rat PTC monolayers. 

The Na+ dependence of Pi uptake at the apical membrane was investigated 

using rat PTC monolayers. The uptake of 100 M [32P]-Pi was measured in the 

presence and absence of Na+ over a range of time points. In addition to this the 

kinetics of apical Pi uptake in the presence of a range of Na+ concentrations (0 

to 137 mM) were also investigated. 

Figure 5.29 shows the apical uptake of Pi was significantly reduced in the 

absence of Na+ (n = 12, N = 3). Linear regression analysis of the data gave a 

slope of 2.86  0.12 pmol / cm2 / minute in the presence of 137 mM Na+, and 

0.64  0.04 pmol / cm2 / minute with no Na+. Furthermore, Figure 5.30 shows a 

strong correlation between Na+ concentration and apical uptake of 100 M 

[32P]-Pi (n = 12, N = 3). The maximum rate of Pi uptake was 25.99  1.24 pmol / 

minute / cm2 at 137 mM Na+. Non-linear regression analysis of the data gave an 

estimated Hill coefficient of 2.80  0.29, and Km value of 58.26  2.61 mM Na+. 
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Figure 5.29: The effect of Na+ upon uptake of 100 M [32P]-Pi across the 
apical membrane of rat PTC monolayers.  

Uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence and absence of Na+ over 
several time points (0 to 20 min). The results show uptake of [32P]-Pi 
across the apical membrane was Na+ dependent. Linear regression 
analysis of the data gave a slope of 2.86  0.12 pmol / cm2 / minute in 
the presence of 137 mM Na+, and 0.64  0.04 pmol / cm2 / minute in 
its absence. The results are expressed as the mean ± SEM from 12 
rat PTC monolayers derived from 3 individual kidneys. 
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Figure 5.30: The kinetics of Na+ and uptake of 100 M [32P]-Pi across the 
apical membrane of rat PTC monolayers.  

Uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in a range of concentrations of Na+ (0 to 
137 mM). The results show uptake of [32P]-Pi across the apical 
membrane was Na+ dependent. The Vmax was constrained to 25.99 
pmol / min / cm2 based upon previous findings. Non-linear regression 
analysis of the data gave an estimated Hill coefficient of 2.80  0.29, 
and Km value of 58.26 ± 2.61 mM Na+. The results are expressed as 
the mean ± SEM from 12 rat PTC monolayers derived from 3 
individual kidneys. 
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5.3.15. The effect of pH upon Pi renal handling by rat PTC 

monolayers. 

The effect of pH on the rate of Pi uptake was studied in rat PTC monolayers. 

The apical uptake of 100 M [32P]-Pi was measured in experimental buffer of pH 

6.0, 6.5, 7.0, 7.5 and 8.0. As shown in Figure 5.31, the rate of Pi uptake was 

dependent on pH. For instance increasing the pH from 6.0 (12.27  0.48 pmol / 

minute / cm2) to 7.5 (27.86  0.54 pmol / minute / cm2) more than doubled the 

rate of Pi uptake.  

 

Figure 5.31: The effect of pH upon uptake of 100 M [32P]-Pi across the 
apical membrane of rat PTC monolayers. 

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in experimental buffer of pH 6.0, 6.5, 7.0, 
7.5 and 8.0. The results show uptake of [32P]-Pi across the apical 
membrane was pH dependent. Uptake of [32P]-Pi was 12.27  0.48 
pmol / minute / cm2 at pH 6.0, 18.24  0.31 pmol / minute / cm2 at pH 
6.5, 21.71  0.41 pmol / minute / cm2 at pH 7.0, 27.86  0.54 pmol / 
minute / cm2 at pH 7.5, and 31.82  0.83 pmol / minute / cm2 at pH 
8.0. The results are expressed as the mean ± SEM from 12 rat PTC 
monolayers derived from 3 individual kidneys. 
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5.3.16. The effect of PFA upon Pi renal handling by rat PTC 

monolayers. 

In order to confirm expression of NaPi-IIa and/or NaPi-IIc, the effect of PFA on 

the rate of Pi uptake was studied in rat PTC monolayers. Apical uptake of 100 

M [32P]-Pi was measured in the presence of a range of PFA concentrations 

(100 to 1500 M). The results in Figure 5.32 show the presence of PFA 

significantly inhibited Pi uptake (n = 9, N = 3). Non-linear regression analysis of 

the data gave an apparent IC50 value of 1046.08 ± 158.42 M. This observation 

confirms rat PTC monolayers expressed NaPi-IIa and/or NaPi-IIc at the 

functional level. 
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Figure 5.32: The effect of PFA on the renal handling of 100 M [32P]-Pi by 
rat PTC monolayers. 

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence of a range of 
concentrations of PFA (100 to 1500 M). The presence of PFA 
significantly inhibited Pi uptake. Non-linear regression analysis of the 
data gave an apparent IC50 value of 1046.08 ± 158.42 M PFA. The 
results are expressed as the mean ± SEM from 9 rat PTC monolayers 
derived from 3 individual kidneys. 
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5.3.17. The effect of PTH upon Pi renal handling by rat PTC 

monolayers. 

In order ascertain the retention of PTH intracellular signalling pathways in 

culture rat PTCs, the effect of PTH on the rate of Pi uptake was studied in rat 

PTC monolayers. The uptake of 100 M [32P]-Pi across the apical membrane of 

monolayers was measured in the presence of a range of PTH concentrations (0 

to 10 nM). The presence of PTH significantly inhibited Pi uptake in a 

concentration dependent manner (Figure 5.33, n = 12, N = 3). These findings 

confirm the PTH intracellular signalling pathways were retained during culture. 

 

Figure 5.33: The effect of PTH on the renal handling of 100 M [32P]-Pi by 
rat PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence of a range of 
concentrations of PTH (0 to 10 nM). The presence of PTH significantly 
inhibited Pi uptake in a concentration dependent manner. The results 
are expressed as the mean ± SEM from 12 rat PTC monolayers 
derived from 3 individual kidneys. Significance was determined using 
ANOVA and a Dunnett’s post-test. 
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5.3.18. The effect of FGF-23 and -klotho upon Pi renal 

handling by rat PTC monolayers. 

In order to confirm FGF-23 and α-klotho intracellular signalling pathways in 

cultured rat PTCs, the effect of FGF-23 and α-klotho on the rate of Pi uptake 

was studied in rat PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 

monolayers was measured in the presence of 0.89 nM FGF-23 and 0.55 mM 

heparin at either the apical or basolateral membrane. As shown in Figure 5.34, 

the presence of FGF-23 and heparin at the basolateral membrane inhibited Pi 

uptake by 13.97 ± 1.18 %, whereas the presence of FGF-23 and heparin at the 

apical membrane did not have a significant effect (2.45 ± 1.19 % inhibition) (n = 

12, N = 3). These results imply that the Fgf receptors were located at the 

basolateral membrane of the rat proximal tubular cells, the monolayers express 

membrane-bound α-klotho and the FGF-23 intracellular signalling pathways 

were retained during culture. 

This study was repeated by replacing 0.89 nM FGF-23 with 0.90 nM α-klotho 

and the results are shown in Figure 5.35. The presence of -klotho at the 

basolateral membrane inhibited Pi uptake by 20.28 ± 1.64 %, whilst the 

presence of -klotho at the apical membrane did not have a significant effect 

(4.30 ± 1.87 % inhibition) (n = 12, N = 3). These findings suggest that binding of 

soluble α-klotho to Fgfr1 at the basolateral membrane of rat PTC monolayers 

caused a decrease in Pi reabsorption. This also implies the cells retained the α-

klotho intracellular signalling pathways in culture. 

In Figure 5.36, the uptake of 100 M [32P]-Pi across the apical membrane of rat 

PTC monolayers in the presence of 0.89 nM FGF-23, 0.90 nM α-klotho and 

0.55 mM heparin is shown. The presence of FGF-23, heparin and -klotho at 

the basolateral membrane inhibited Pi uptake significantly more than the 

presence of each alone (38.81 ± 1.23 % inhibition) suggesting an additive effect 

(n = 12, N = 3). 

The effect of different -klotho concentrations on the rate of Pi uptake was 

studied in rat PTC monolayers. The uptake of 100 M [32P]-Pi across the apical 
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membrane of monolayers was measured in the presence of a range of -klotho 

concentrations (0.18 to 5.4 nM). As shown in Figure 5.37, the presence of -

klotho significantly inhibited Pi uptake in a concentration dependent manner (n = 

8, N = 2). 

 

Figure 5.34: The effect of FGF-23 on the renal handling of 100 M [32P]-Pi 
by rat PTC monolayers. 

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence and absence of FGF-23. A 
positive control of 1 mM PFA was included. The presence of 1 mM 
PFA inhibited uptake of 100 M [32P]-Pi across the apical membrane 
by 42.95 ± 1.38 %. The presence of FGF-23 at the basolateral 
membrane inhibited Pi uptake by 13.97 ± 1.18 %, but the presence of 
FGF-23 at the apical membrane did not have a significant effect (2.45 
± 1.19 % of inhibition). The results are expressed as the mean ± SEM 
from 12 rat PTC monolayers derived from 3 individual kidneys. 
Significance was determined using ANOVA and a Dunnett’s post-test. 

10
0 

µM
 [
32 P]-P

i 
(A

)

+ 
1 

m
M

 P
FA

+ 
0.

89
 n

M
 F

GF-2
3 

(B
)

+ 
0.

89
 n

M
 F

GF-2
3 

(A
)

0

20

40

60

80

100

120

In
tra

ce
llu

la
r a

cc
u

m
u

la
tio

n
 o

f [
32

P
]-P

i

(%
) ****

****



 

222 
 

 

Figure 5.35: The effect of –klotho on the renal handling of 100 M [32P]-Pi 

by rat PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence and absence of -klotho. 
A positive control of 1 mM PFA was included. The presence of 1 mM 
PFA inhibited uptake of 100 M [32P]-Pi across the apical membrane 
by 42.95 ± 1.38 %. The presence of -klotho at the basolateral 
membrane inhibited Pi uptake by 20.28 ± 1.64 %, whilst the presence 
of -klotho at the apical membrane did not have a significant effect 
(4.30 ± 1.87 % inhibition). The results are expressed as the mean ± 
SEM from 12 rat PTC monolayers derived from 3 individual kidneys. 
Significance was determined using ANOVA and a Dunnett’s post-test. 
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Figure 5.36: The effect of FGF-23 and –klotho on the renal handling of 
100 M [32P]-Pi by rat PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence and absence of FGF-23 
and -klotho. A positive control of 1 mM PFA was included. The 
presence of 1 mM PFA inhibited uptake of 100 M [32P]-Pi across the 
apical membrane by 42.95 ± 1.38 %. The presence of FGF-23 at the 
basolateral membrane inhibited Pi uptake by 15.47 ± 0.85 %. The 
presence of -klotho at the basolateral membrane inhibited Pi uptake 
by 20.28 ± 1.64 %. The presence of both FGF-23 and -klotho at the 
basolateral membrane inhibited Pi uptake significantly more than the 
presence of each alone (38.81 ± 1.23 % inhibition). The results are 
expressed as the mean ± SEM from 12 rat PTC monolayers derived 
from 3 individual kidneys. Significance was determined using ANOVA 
and a Dunnett’s post-test. 
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Figure 5.37: The effect of –klotho on the renal handling of 100 M [32P]-Pi 
by rat PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence of a range of 
concentrations of -klotho (0.18 to 0.54 nM). -klotho significantly 
inhibited Pi uptake in a concentration dependent manner. The results 
are expressed as the mean ± SEM from 8 rat PTC monolayers derived 
from 2 individual kidneys. Significance was determined using ANOVA 
and a Dunnett’s post-test. 
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5.3.19. The effect of TFV upon Pi renal handling by rat PTC 

monolayers. 

The effect of TFV on the rate of Pi uptake was studied in rat PTC monolayers. 

Initially the uptake of 100 M [32P]-Pi across the apical membrane of 

monolayers was measured in the presence and absence of 10 µM TFV. As 

shown in Figure 5.38, the presence of 10 µM TFV inhibited uptake of 100 M 

[32P]-Pi across the apical membrane by 25.05 ± 3.27 %. Apical uptake of Pi was 

25.99 ± 1.24 pmol / minute /cm2 in the absence of TFV, but fell to 19.48 ± 0.85 

pmol / minute / cm2 in the presence of 10 M TFV. The kinetics of inhibition 

were determined by measuring uptake in the presence of a range of TFV 

concentrations (1 to 500 µM). TFV inhibited Pi uptake in a concentration 

dependent manner, as shown in Figure 5.39. Non-linear regression analysis of 

the data gave an apparent IC50 value of 68.75 ± 5.24 M TFV. 
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Figure 5.38: The effect of 10 M TFV on the renal handling of 100 M [32P]-
Pi by rat PTC monolayers. 

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence and absence of 10 M TFV. 
The presence of TFV inhibited uptake of 100 M [32P]-Pi across the 
apical membrane by 25.05 ± 3.27 %. Apical uptake of Pi was 25.99 ± 
1.24 pmol / minute /cm2 in the absence of TFV, compared to 19.48 ± 
0.85 pmol / minute / cm2 in the presence of 10 M TFV. The results 
are expressed as the mean ± SEM from 12 rat PTC monolayers 
derived from 3 individual kidneys. Significance was determined by a 
Student’s t-test. 
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Figure 5.39: The kinetics of TFV inhibition of apical uptake of 100 M [32P]-
Pi across rat PTC monolayers.  

The uptake of 100 M [32P]-Pi across the apical membrane of rat PTC 
monolayers was measured in the presence of a range of TFV 
concentrations. TFV inhibited Pi uptake in a concentration dependent 
manner. Non-linear regression analysis of the data gave an apparent 
IC50 value of 68.75  5.24 M TFV. The results are expressed as the 
mean ± SEM from 12 rat PTC monolayers derived from 3 individual 
kidneys. 
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5.4. Discussion 

Understanding renal Pi handling has been hampered by the lack of a good 

model of the mammalian proximal tubule. The characteristics of Pi transport 

across the proximal tubule epithelial cells and the influence of hormones have 

been studied using below par models; such as OK cells, and other heterologous 

expression models. However, using a more physiologically relevant in-vitro 

model, like the human and rat PTC monolayers, could reveal more details in the 

mechanism of Pi transport in the kidney. In this chapter, the handling of Pi by 

human and rat PTC monolayers was investigated to validate their use as a 

platform to study renal Pi handling. Alongside this investigation, the impact of 

TFV on renal Pi transport was explored. 

Pi is required for a myriad of cellular functions and skeletal mineralisation. The 

major source of Pi is the diet, where consumed Pi is absorbed in the small 

intestine. The main route by which Pi is lost from the body is excretion in the 

urine. Under regular physiological conditions 80 % of Pi filtered in the kidney is 

reabsorbed in the proximal tubule and returned to circulation. The proportion 

that is reabsorbed can be rapidly altered by hormonal and metabolic factors. 

The prompt response of the Pi transport system in the proximal tubule to 

changes in the need for Pi means that the kidney plays a major role in the 

regulation of serum Pi levels.  

The apical surface of proximal tubular cells contain multiple microvilli that 

increase the surface area of the brush border membrane and aid reabsorption. 

The uptake of Pi across the apical membrane into the proximal tubule cell 

requires movement against an electrochemical gradient. Pi uptake is coupled 

with Na+ uptake to counteract this gradient. The low intracellular Na+ 

concentration and the negative electrical potential difference inside the cell 

create an electrochemical gradient that drives Na+ entry (Kempson, 1988). 

Following uptake, Pi is effluxed from the proximal tubule cell into circulation 

across the basolateral membrane. The molecular identity of the proteins 

mediating the efflux has not yet been characterised but is thought to be a 

passive process that follows the electrochemical gradient for Pi. The Na+-Pi 

cotransport across the apical membrane is thought to be the rate limiting step in 
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Pi reabsorption (Hartmann et al., 1996). Therefore this step has been the focus 

of renal Pi studies.  

Two genetically distinct families of secondary active Na+ coupled co-

transporters mediate the uptake of Pi across the apical membrane of proximal 

tubule cells; SLC34 proteins NaPi-IIa and NaPi-IIc, and the SLC20 protein PiT2. 

SLC34 proteins are specifically expressed in organs important for Pi 

homeostasis, whilst SLC20 proteins are expressed ubiquitously in all tissues 

(Biber et al., 2013; Forster et al., 2013). Any defects in the regulation of these 

transport proteins or the expression of mutated proteins can lead to severe 

pathophysiological conditions. 

As shown in Figure 5.40, NaPi-IIa and NaPi-IIc preferentially transport divalent 

Pi (HPO4
2-) (Forster et al., 1999; Bacconi et al., 2005), whereas PiT2 prefers 

monovalent Pi (H2PO4
-) (Saliba et al., 2006; Ravera et al., 2007). For SLC34 

proteins (NaPi-IIa and NaPi-IIc), transmembrane transport comprises an 

ordered sequence of binding steps. Two Na+ ions bind sequentially, followed by 

divalent Pi, and a third Na+ ion (Biber et al., 2013; Forster et al., 2013; Fenollar-

Ferrer et al., 2015). The carrier protein then re-orientates to release the 

substrates into the cytosol. NaPi-IIa and NaPi-IIc can be distinguished by their 

electrogenicity - NaPi-IIa is electrogenic whereas NaPi-IIc is electroneutral. 

NaPi-IIa has an intrinsic negative charge due to an aspartic acid residue; its 

transporter rate is a function of membrane potential (Bacconi et al., 2005; Virkki 

et al., 2005; Ghezzi et al., 2009). It mediates transport with a 3:1 Na+: HPO4
2- 

stoichiometry, which results in a net positive charge per transport cycle (Forster 

et al., 1999). In contrast, NaPi-IIc transport kinetics are independent of 

membrane potential. The transporter mediate a 2:1 Na+: HPO4
2- stoichiometry, 

and a Na+ ion is not translocated, which results in no net charge (Bacconi et al., 

2005; Virkki et al., 2005; Ghezzi et al., 2009). For SLC20 proteins (PiT2) the 

transport sequence begins with the binding of Na+ ion, an interaction with a 

monovalent Pi, and then a second Na+ ion (Saliba et al., 2006; Ravera et al., 

2007). Reorientation of the loaded carrier then results in the release of all the 

substrates into the cytosol.  
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Figure 5.40: Summary of the key renal Pi transporters.  

Serum Pi is freely filtered in the glomerulus. Approximately 800 mg Pi 
per day (80%) is reabsorbed into circulation at the proximal tubule, 
whilst the rest is excreted in the urine. The uptake of Pi across the 
apical membrane into the proximal tubule cell requires movement 
against an electrochemical gradient. Therefore, Pi uptake is coupled 
with Na+ uptake. The transmembrane transport of Pi is predominantly 
mediated by NaPi-IIa and NaPi-IIc, with a minor contribution from 
PiT2. NaPi-IIa and NaPi-IIc preferentially transport divalent Pi (HPO4

2-

), whereas PiT2 prefers monovalent Pi (H2PO4-). Within the proximal 
tubule cell monovalent and divalent Pi may react with water to change 
their valency. The transport proteins mediating the export of Pi into 
circulation are not known. Diagram taken from Alizadeh Naderi and 
Reilly, 2010 (Alizadeh Naderi and Reilly, 2010).  
 
 
mRNA expression of proximal tubule renal Pi transporters in human PTC 

monolayers grown on 24-well Transwell® inserts and plastic 24-well plates were 

measured by qPCR. Table 5.1 shows the percentage of mRNA expression 

when compared to freshly isolated human PTCs. Human PTC monolayers 

maintained expression of the key renal Pi transporters, NaPi-IIa, NaPi-IIb and 

PiT2, under both culture conditions. However, there was a significant fall in the 

expression of NaPi-IIc, PiT2 and NPT1 when compared with freshly human 

PTCs. No statistical difference in expression levels was observed between the 
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two culture conditions. Other putative Pi transporters NPT1, NPT4, NPT5 were 

identified, but are not thought to be clinically relevant. 

Unidirectional transepithelial fluxes of radiolabelled [32P]-Pi (100 µM) in both the 

secretory and absorptive directions were measured over 1 hr in paired 

monolayers of human and rat PTCs grown on 24-well Transwell® inserts. A net 

absorption of Pi (300.94 ± 5.56 pmol / minute / cm2) across the human PTC 

monolayers was observed, shown in Figure 5.10. The absorptive and secretory 

movement of [32P]-Pi was 301.46 ± 5.56 pmol / minute / cm2 and 0.52 ± 0.02 

pmol / minute / cm2, respectively. Similarly, as shown in Figure 5.27 the rat PTC 

monolayers the absorptive movement of [32P]-Pi (1129.06 ± 25.01 pmol / minute 

/ cm2) was significantly greater than the secretory movement (27.91 ± 1.09 pmol 

/ minute / cm2), resulting in a net reabsorption of 1101.15 ± 24.84 pmol / minute 

/ cm2. Uptake of [32P]-Pi (100 µM) across the basolateral and apical membrane 

of human PTCs over 5 min was compared. As shown in Figure 5.11, Pi uptake 

across the apical membrane (312.36 ± 5.13 pmol / minute / cm2) was 4.72-

times greater than across the basolateral membrane (66.22 ± 1.50 pmol / 

minute / cm2). This information suggests both human and rat PTC monolayers 

exhibit Pi reabsorption in concurrence with the literature. 

In order to ensure the flux and uptake of Pi was measured under initial rate 

conditions the movement of [32P]-Pi (100 µM) across human and rat PTC 

monolayers over time was studied. The findings in Figure 5.9 and Figure 5.26 

suggest Pi transport across human and rat PTC monolayers between 0 and 20 

min is within the linear initial rate of uptake Pi transport. Due to the high-energy 

β emissions from the 32P radionuclide an incubation time of 5 min was selected. 

This would also ensure the reactions had progressed enough to be measured 

within the radiation detection instrument’s sensitivity and minimise skin and eye 

dose exposure. The non-specific binding of [32P]-Pi to the human and rat PTC 

monolayers was found to be 1.62  0.14 pmol / cm2 and 0.19  0.03 pmol / cm2, 

respectively. 

The kinetic parameters, Vmax and Km of Pi uptake across the apical membrane 

of both human and rat PTC monolayers were quantified. Human monolayers 

were incubated with a range of [32P]-Pi concentrations (10 to 500 µM) for 5 min 

and the intracellular accumulation of [32P]-Pi was measured. Non-linear 
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regression analysis of the data in Figure 5.12 gave a Vmax of 562.90  99.18 

pmol / minute / cm2 and an apparent Km value of 106.05  36.40 µM. This Km 

value is within the range of the published values of human Pi transporters, as 

shown in Table 5.2. In a similar manner rat PTC monolayers were incubated 

with 100 to 1000 µM [32P]-Pi and non-linear regression analysis of the data in 

Figure 5.28 gave a Vmax of 433.90  30.42 pmol / minute / cm2 and an apparent 

Km value of 1221.36  133.23 µM. Unfortunately there are no published Km 

values of rat Pi transporters to compare the data against. 

 

Table 5.2: Published Km values of Pi transporters.  

Km values were determined by expressing the transporters in Xenopus 
Laevis oocytes. 

 

The key renal Pi transporters are secondary active Na+-Pi cotransporters. In 

order to confirm the Pi transport across human and rat PTC monolayers was 

Na+ dependent, Pi transport in the presence and absence of Na+ was measured 

over several time periods. In both species the apical uptake of [32P]-Pi (100 µM) 

was significantly attenuated by the absence of Na+. Linear regression analysis 

of the human data in Figure 5.13 gave a slope of 70.18  1.38 pmol / cm2 / 

minute in the presence of 137 mM Na+, but only 0.66  0.11 pmol / cm2 / minute 

in absence of Na+. Similarly, linear regression analysis of the rat data in Figure 

5.29 gave a slope of 2.86  0.12 pmol / cm2 / minute in the presence of 137 mM 

Na+, and only 0.64  0.04 pmol / cm2 / minute in the absence of Na+. 

Furthermore, the kinetics of apical [32P]-Pi (100 µM) uptake in the presence of a 

range of Na+ concentrations (0 to 137 mM) was determined in both human and 

Transporter System Km (M) Reference 

hNaPi-IIa X.Laevis oocytes 140  10 (Bacconi et al., 2005) 

hNaPi-IIc X.Laevis oocytes 70 (Segawa et al., 2002) 

hPiT2 X.Laevis oocytes 160  40 (Bottger et al., 2006) 

hNPT1 X.Laevis oocytes 290  50 (Miyamoto et al., 1995) 
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rat PTC monolayers. A strong correlation between Na+ concentration and Pi 

uptake was observed; Pi uptake increased linearly with Na+ concentration in 

human PTC monolayers. However, uptake plateaued between 120 and 137 mM 

Na+. The maximum rate of Pi uptake in human PTC monolayers was 312.36  

5.13 pmol / minute / cm2 at 137 mM Na+. Non-linear regression analysis of the 

human data, shown in Figure 5.15, gave an estimated Hill coefficient of 1.88  

0.16, and Km value of 38.15  1.89 mM Na+. A Hill coefficient greater than 1 

indicates strong positive cooperative interaction, suggesting the apical Pi 

transporter(s) contain multiple binding sites and once the first Na+ ion has 

bound the receptor, it’s affinity for other ligand molecules increases (Weiss, 

1997). The reported apparent affinities of human NaPi-IIa and NaPi-IIc for Na+ 

is 40 mM and the apparent affinity of PiT2 for Na+ is 50 mM (Biber et al., 2013). 

A similar Hill coefficient of 1.7 ± 0.2 has previously been reported for human 

NaPi-IIc (Ghezzi et al., 2009). Comparatively, rat PTC monolayers also 

exhibited linearity of Pi uptake with Na+ concentration. The maximum rate of Pi 

uptake was 25.99  1.24 pmol / minute / cm2 at 137 mM Na+. Non-linear 

regression analysis of the rat data, shown in Figure 5.30, gave an estimated Hill 

coefficient of 2.80  0.29, and Km value of 58.26  2.61 mM Na+. The reported 

affinity of rat NaPi-II for Na+ is 63 ± 8 mM, with a Hill coefficient of 3 ± 0.9 

(Fucentese et al., 1995).  

The pH of the luminal fluid changes markedly, from 7.4 to 6.9, along the length 

of the proximal tubule. Transport capacity is strongly pH dependent because pH 

defines the valency of Pi - divalent Pi is common in the proximal tubule lumen 

(pKa ≈ 6.8) (Forster et al., 2000). Therefore the influence of pH on the apical 

uptake of Pi was measured in human and rat PTC monolayers. The apical 

uptake of 100 M [32P]-Pi was measured in experimental buffer of pH 6.0, 6.5, 

7.0, 7.5 and 8.0. As shown in Figure 5.16 and Figure 5.31, an increase in pH 

led to an increased in uptake of Pi. In human and rat PTC monolayers 

increasing the pH from 6.0 (154.45  12.64 and 12.27  0.48 pmol / minute / 

cm2, respectively) to 7.5 (317.09  4.43 and 27.86  0.54 pmol / minute / cm2, 

respectively) doubled the rate of Pi uptake. Similar findings in brush border 

membrane vesicles (BBMVs) of rat and porcine kidney have been reported 

(Burckhardt et al., 1981; Quamme, 1990; Forster et al., 2000). An increase in Pi 

uptake with increasing pH suggests a preferential uptake of divalent Pi. This 
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information in agreement with the published literature, and suggests NaPi-II 

transporters predominantly mediated the uptake of Pi across the PTC 

monolayers.  

Phosphonocarboxylic acids, originally developed as antiviral agents, are known 

inhibitors of Na+-Pi cotransport in rat renal BBMVs (Szczepanska-Konkel et al., 

1986). Of this class of molecules, PFA is the most effective inhibitor. This has 

been attributed to the close structural resemblance between the 

phosphonoformate ion (H2PO3COO-) and Pi (Szczepanska-Konkel et al., 1986; 

Kempson, 1988). PFA competitively inhibits NaPi-II transporters (Villa-Bellosta 

and Sorribas, 2008), but is not an inhibitor of PiT2 (Villa-Bellosta et al., 2007). 

Studies investigating the binding of [14C]-PFA to renal BBMVs show inhibition is 

saturable and dependent upon time, temperature and the Na+ concentration 

(Szczepanska-Konkel et al., 1987), and that PFA may compete with Pi for the 

binding site on NaPi-II.  

PFA inhibition of renal Pi transport was evaluated in human and rat PTC 

monolayers. The apical uptake of 100 M [32P]-Pi was measured in the 

presence of a range of PFA concentrations (0 to 1500 M). The results in 

Figure 5.17 and Figure 5.32 show dose-dependent inhibition of Pi uptake by 

PFA. Non-linear regression analysis of the data gave an apparent IC50 value of 

570.35  62.50 M PFA in human PTC monolayers and 1046.08  158.42 M 

PFA in rat PTC monolayers. Using the Cheng-Prusoff equation, inhibition 

constants (Ki) were calculated from these parameters. The calculated Ki values 

of PFA in human and rat PTC monolayers were 293.55  32.17 and 966.91  

146.43 M, respectively. The relationship between PFA concentration and Pi 

uptake exhibited in human PTC monolayers was similar to the published 

literature, which is summarised in Table 5.3. The reported IC50 and Ki values for 

rat PTC monolayers, on the other hand, were higher than expected. From the 

data in Figure 5.32 it is clear that PFA induced saturation of Pi uptake was not 

reached. Therefore, to gain more accurate data the experiment should be 

repeated with higher concentrations of PFA, due to time constraints this was not 

possible.  
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Table 5.3: Published IC50 and Ki values for PFA inhibition of renal Pi 
transport.  

 

In rodents and humans, the binding of PTH to PTHR1 at either the basolateral 

or apical membrane of the proximal tubule initiates a series of intracellular 

changes that include the generation of cAMP, elevation of the free cytosolic 

Ca2+ level, and the inhibition of Pi reabsorption. Inhibition of Pi reabsorption is 

induced by the retrieval of NaPi-IIa and NaPi-IIc from the apical membrane 

(Traebert et al., 2000; Yang et al., 2004; Bacic et al., 2006; Forster et al., 2006). 

In order to ascertain the retention of PTH intracellular signalling pathways in 

cultured human and rat PTC monolayers, the effect of PTH on the apical uptake 

of Pi was investigated. The uptake of 100 M [32P]-Pi across the apical 

membrane of human PTC monolayers was measured in the presence of a 

range of PTH concentrations (0 to 10 nM). The presence of PTH significantly 

inhibited Pi uptake in a concentration dependent manner in both species as can 

be seen in Figure 5.18 and Figure 5.33. These findings confirm the PTH 

intracellular signalling pathways were retained during culture. 

FGF-23 is synthesised by osteocytes and osteoblasts (Mirams et al., 2004; 

Sitara et al., 2004), and released from the bone in response to high dietary Pi 

intake, hyperphosphatemia, or an increase in serum calcitriol levels (Gupta et 

al., 2004; Shimada et al., 2004; Ferrari et al., 2005; Kolek et al., 2005; Liu et al., 

2006). The regulation of renal Pi transport by FGF-23 is mediated by FGFR1 

and 4 (Gattineni et al., 2014). It has been demonstrated that α-klotho and 

FGFR1 co-localisation converts FGFR1 into a high affinity FGF-23 receptor with 

a high affinity for FGF-23 (Urakawa et al., 2006). FGF-23 is dependent upon α-

klotho to induce FGF-receptor signalling (Kuro-o et al., 1997; Urakawa et al., 

System IC50 (μM) Ki (μM) Reference 

OK cell 320 260 (Villa-Bellosta and Sorribas, 2009) 

X.Laevis 

oocytes 
1000 670 (Villa-Bellosta and Sorribas, 2009) 

OK cells _ 6000 
(Loghman-Adham and Dousa, 

1992) 

Mouse BBMV _ 310 (Harvey and Tenenhouse, 1992) 
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2006). FGF-23 binding to the FGF-23 receptor induces phosphaturia and lowers 

serum Pi levels, by activation of the mitogen-activated protein kinase (MAPK) 

cascade and phospho-ERK1/2, which results in the retrieval of NaPi-IIa and 

NaPi-IIc from the apical membrane. (Yamashita et al., 2002; Urakawa et al., 

2006; Weinman et al., 2011; Andrukhova et al., 2012). This in turn reduces the 

amount of Pi reabsorbed from the urine. 

α-Klotho is a transmembrane protein that is also found in a serum soluble form 

after proteolytic cleavage from the membrane. α-Klotho induced phosphaturic 

effects have also been observed in FGF-23 knock out mice, indicating a direct 

effect on NaPi-IIa (Vervloet and Larsson, 2011). Klotho has a β-glucuronidase 

activity (Tohyama et al., 2004). The proposed mechanism of action is that α-

klotho deglycosylates NaPi-IIa and NaPi-IIc or a putative regulatory protein, 

which results in the inhibition of transporter activity and an increased 

susceptibility to resident proteases. Proteolytic degradation of the transporters 

then ensue and consequently a reduced surface expression of those 

transporters (Hu et al., 2010). 

In order to validate the abovementioned pathways, FGF-23 and α-klotho effects 

on Pi uptake rate by human and rat PTC monolayers were studied. As shown in 

Figure 5.19 and Figure 5.34, the presence of 0.9 nM FGF-23 at the basolateral 

membrane inhibited Pi uptake in human and rat PTC monolayers by more than 

20 % and 13 %, respectively. In contrast, the presence of 0.9 nM FGF-23 and 

heparin at the apical membrane did not change Pi absorption in either model 

when compared to the respective controls. These results imply that the FGF 

receptors were located at the basolateral membrane of the PTC monolayers, 

they expressed membrane-bound α-klotho, and that the FGF-23 intracellular 

signalling pathways were retained during culture. Similarly, the presence of 

soluble 0.9 nM -klotho at the basolateral membrane inhibited Pi uptake by 

more than 29 % in human PTC monolayers, and more than 20 % in rat PTC 

monolayers (Figure 5.20 and Figure 5.35). The presence of -klotho at the 

apical membrane did not exhibit significant effects on either models. The data in 

Figure 5.22 and Figure 5.37 show this is also a concentration dependent effect. 

These findings suggest that binding of soluble α-klotho at the basolateral 

membrane of rat PTC monolayers caused a decrease in Pi absorption, and the 



 

237 
 

cells retained the α-klotho intracellular signalling pathways in culture. In Figure 

5.21 and Figure 5.36 human and rat PTC monolayers were exposed to both 0.9 

nM FGF-23 and 0.9 nM soluble -klotho at the basolateral membrane. The 

presence of both inhibited Pi uptake significantly greater than the presence of 

each alone (39.18 ± 1.39 % in human and 38.81 ± 1.23 % in rat PTC 

monolayers), suggesting an additive effect.  

Human and rat PTC monolayers were thus demonstrated as capable of Pi 

transport with sensitivity to PFA, PTH, FGF-23 and -klotho, typical of the 

proximal tubule. The impact of TFV on renal Pi transport was then investigated 

in the human and rat PTC monolayers. Initially the uptake of 100 M [32P]-Pi 

across the apical membrane of human and rat PTC monolayers was measured 

in the presence and absence of 10 µM TFV. As shown in Figure 5.23 and 

Figure 5.38, the presence of 10 µM TFV inhibited uptake by 35.40 ± 1.05 % in 

human and 25.05 ± 3.27 % in rat PTC monolayers. The kinetics of inhibition 

were determined by measuring uptake of 100 M [32P]-Pi in the presence of a 

range of TFV concentrations (1 to 500 µM). TFV inhibited Pi uptake in a 

concentration dependent manner. Non-linear regression analysis of the human 

data in Figure 5.24 gave an apparent IC50 value of 52.25 ± 4.71 M TFV and Ki 

value of 26.89  2.42 M (using the Cheng-Prusoff Equation). Similarly, non-

linear regression analysis of the rat data in Figure 5.39 gave an apparent IC50 

value of 68.75 ± 5.24 M TFV and Ki value of 63.55  4.84 M. From the MTS 

data in Figure 4.20 we know that an hr incubation with 10 µM TFV will not 

induce proximal tubular toxicity. The findings suggest that TFV induced 

hypophosphatemia may not arise from TFV-induced proximal tubular damage 

but from an inhibition of Pi uptake. The reported serum Cmax of TFV in patients is 

0.30  0.09 g / mL (1.04  0.31 M, MW 287.213 g / mol) (Kearney et al., 

2004). Extrapolation of our data suggests that 1 M TFV would cause a small 

inhibition of transporter mediated Pi reabsorption. The consequent increased 

renal loss of Pi (hyperphosphaturia), would generate decreased serum Pi levels 

(hypophosphatemia), and Pi loss from bone. If TFV is inhibiting transporter 

mediated reabsorption of phosphate it may also have an impact upon the 

absorption of dietary Pi in the small intestine. 
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In order to confirm if TFV inhibition of Pi reabsorption is the result of a drug 

substrate interaction a clinical trial has begun under the supervision of Dr David 

Ashley Price and Dr Brendam Payne in the infectious and tropical medicine 

service in the Newcastle upon Tyne Hospitals NHS foundation trust. Newly 

diagnosed HIV patients suitable for TFV combination ART will provide a urine 

sample before treatment. The concentration of Pi in the urine sample will be 

measured, and this reading will be considered as the baseline reading. The 

patients will then take TFV daily and provide a urine sample 24 hrs and 3 

months after the therapy was first taken. If TFV inhibition of Pi reabsorption is 

the result of a drug-substrate interaction, we would expect to see an increase in 

the urinary Pi concentration within 24 hrs of therapy. Due to the wide spread 

occurrence of hypophosphatemia in HIV ART-naïve and non-TFV ART patients, 

it is not believed that TFV alone is the cause of hypophosphatemia but one of 

many contributing factor in a complex adverse effect. 

In addition, this novel finding has led to a new research initiative at Gilead. They 

have begun investigating the mechanism of TFV interaction with Pi transporters 

in collaboration with academics at the University of Zurich and Newcastle 

University. Preliminary radiolabelled [32P]-Pi uptake electrophysiological studies 

in Xenopus laevis oocytes expressing renal NaPi-IIa and intestinal NaPi-IIb 

have shown inhibition of Pi uptake and suggest TFV binds to the transporters.  

The outcomes of this work may have a large translational impact. TFV in 

combination with other antivirals is a first line therapy for both HIV-1 and HBV 

infected patients, as recommended by the World Health Organisation (WHO, 

2014; WHO, 2015a). In 2014, 36.9 million people were living with HIV and 240 

million with HBV globally (WHO, 2015c; WHO, 2015b). Approximately 14.9 

million people living with HIV (40.4%) were receiving HIV ART in 2014 (WHO, 

2015c). The number of people taking this medication is certain to increase in 

the future due to the substantial progress in access to HIV-1 treatment and the 

introduction of ‘pre-exposure prophylaxis’. Furthermore, the validation of human 

and rat PTC monolayers as platforms to study renal Pi handling will hopefully 

encourage others to use primary models. The implementation of this more 

physiologically relevant model may resolve unanswered questions such as the 
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molecular identity of the basolateral proteins mediating the efflux of Pi into 

circulation.  

5.5. Summary 

Understanding renal Pi handling in man has been hampered by the lack of a 

good model of the human proximal tubule. Therefore in this chapter the renal 

handling of Pi by human and rat PTC monolayers were characterised to validate 

their use as platforms to study renal Pi handling. Using qPCR, mRNA 

expression of the key renal Pi transporters (NaPi-IIa, NaPi-IIc and PiT2) in 

human PTC monolayers was confirmed. Measurement of radiolabelled 100 M 

[32P]-Pi uptake revealed a net reabsorption of Pi across human and rat PTC 

monolayers. Uptake of Pi across the apical membrane of human and rat PTC 

monolayers was sodium dependent, saturable and inhibited by PTH, FGF-23 

and -klotho. 

TFV is the first-line antiviral therapy for HIV and HBV. It is generally safe but 

has been associated with hyperphosphaturia, hypophosphatemia and the onset 

of osteomalacia in around 30% of patients. These adverse effects have been 

attributed to the renal toxicity of TFV and decline in proximal tubule cell function 

resulting from cell death. However medically induced renal tubular damage 

leading to Fanconi syndrome occurs in less than 0.1% of patients on TDF and 

thus cannot account for the high prevalence of hypophosphatemia.  

Uptake of Pi across the apical membrane was inhibited by the addition of TFV in 

a saturable manner with an apparent Ki value of 52.25 ± 4.71 M in human PTC 

monolayers and 68.75 ± 5.24 M in rat PTC monolayers. This suggesting that 

the impact of TFV upon renal Pi handling may not arise from TFV-induced 

proximal tubule damage but rather from an inhibition of transporter mediated Pi 

uptake. The consequent increased in renal loss of Pi and decrease in plasma 

levels could then lead to Pi loss from the bones. The data highlight the 

importance of developing holistic cell based models of the human proximal 

tubule. The outcomes of this work have initiated a patient clinical trial. 
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6. Concluding discussion 

The kidney plays a key role in the systemic clearance of drugs, with around 32% 

of the top 200 prescribed drugs in the USA exhibiting significant (>25%) renal 

elimination (Morrissey et al., 2013). Pre-clinical in-vivo screening of NMEs is 

often poorly predictive of human toxicity (Giacomini et al., 2010). In recognition 

of this problem regulatory authorities requisitioned the development of 

alternative in-vitro cell based screening assays to reduce and replace current 

animal testing. It is estimated that nephrotoxicity accounts for 8 % of safety 

failures in pre-clinical studies and 9 % of safety failures in clinical studies of 

drug development (Cook et al., 2014). The assays currently offered by contract 

research organisations are based on human or animal cells transfected to 

express single or dual human drug transporters on their surfaces. The major 

limitation of these assays is that they do not accurately reflect in-vivo, where 

there may be more than one transporter involved in the drug handling or 

competition with other drug molecules. The focus of my PhD project has been 

the development of rat and human primary proximal tubule cell models as 

predictive in-vitro models of proximal tubule drug handling. 

Primary human and rat primary proximal tubule cells (PTCs) were isolated from 

renal cortex using a combination of enzymatic digestion and density 

centrifugation. A challenge in the use of primary cells is the acquisition of 

tissues from which the cells are derived. It is paramount that an efficient 

isolation protocol is performed to maximise the yield of cells. Therefore the 

enzymatic digestion phase of the isolation procedure in each species was 

optimised and detailed in chapter 3. 

The difference in cell growth and differentiation is also discussed in chapter 3. 

For instance, the changes in transporter mRNA expression levels were 

compared between freshly isolated PTCs with cultured ones. A significant fall in 

the mRNA expression of most transporters in cultured cells were shown. On 

average, at day 7 the human PTCs had expression levels around 40 to 50 % of 

fresh cells and rat PTCs had expression levels around 20 to 30 % of fresh cells. 
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In stark contrast, immortalised primary proximal tubule cells (RPTEC) showed a 

profound loss of transporter expression compared with fresh cells; RPTECs at 

day 7 had expression levels of around 0-5 % of fresh tissue.  

While cultured primary cells retained the full array of transporter expression, we 

also discovered the culture conditions affected expression levels. Human and 

rat PTCs were cultured on Transwell inserts and plastic. Cells on Transwell 

inserts formed confluent monolayers with low paracellular permeability from day 

6 of cell culture. Growth of cells on polycarbonate inserts is reported to improve 

cell polarisation, transporter expression and viability (Fulcher et al., 2005). 

Indeed, at day 7 of culture, mRNA expression of key renal drug transporters in 

human PTCs such as OAT3, OATP4C1, BCRP, MRP1, MRP3 and MRP4, were 

significantly higher following culture on Transwell® inserts when compared to 

cells grown on plastic. This suggests that cells grown on Transwell® inserts 

may be more differentiated than cells grown on plastic. Interestingly, no 

significance in expression levels was observed between the two culture 

conditions with rat PTCs. 

It is thought that this loss of differentiation in culture is due to the lack of 

microenvironmental cues that promote kidney histodifferentiation in-vivo (Jang 

et al., 2013). The apical surface of the epithelium is continuously exposed to 

shear stress due to the constant flow of the glomerular filtrate. Several research 

groups have recently developed microfluidic cell culture devices to mimic the in-

vivo environment. Exposure of mouse proximal tubule cells to shear stress has 

been shown to alter expression of apical and basolateral transporters. The 

presence of shear stress led to an increase in protein expression and 

translocation of Na+/H+ antiporter 3 to the apical membrane and Na+/K+-ATPase 

to the basolateral membrane (Duan et al., 2010). It has also been shown to 

improve albumin transport and glucose reabsorption within human primary 

proximal tubule cells (Jang et al., 2013). Limitations of these models are that the 

microfluidic devices are very expensive to produce and the number of cells 

generated is very low, with some only managing approximately 32 000 cells in 

total. This makes the detection of toxicity biomarkers and substrate 

concentrations difficult to determine. Within our laboratory we are developing an 

alternative platform. We have created a prototype of a chain of 3 polycarbonate 
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inserts with circulating basolateral and apical medium driven by a peristaltic 

pump. Initial characterisation studies have shown increased mRNA expression 

and functionality of several ABC and SLC transporters. Advantages of this 

model are cheaper production costs and higher cell numbers. We have recently 

recieved proof-of-concept funding to develop this model further into a 24-well 

plate format in collaboration with the Medical Physics department. A further 

advantage of these tehnologies is that you could can also link cells from 

different organs. For example a chip or well containing intesinal (Caco-2) cells 

could be linked fluidically to hepatocyte (HepG2) cells then renal (primary 

proximal tubule) cells to mimic the physiological interactions between different 

organs or to study drug distribution in-vitro.  

Unlike metabolic enzymes, selective inhibitors or antibodies for most drug 

transporters have not been identified (Giacomini et al., 2010). Although gene 

expression data can indicate the presence of different transporters in tissues, 

this data cannot be used in PKPB modelling because of the poor correlation 

between mRNA and protein levels (Prasad and Unadkat, 2014). Therefore 

quantitative information on protein expression of drug transporters, mediating 

the uptake and efflux of drugs and their metabolites, is crucial for in-vitro/in-vivo 

prediction of drug distribution and clearance. The University of Washington 

Research Affiliate Program on Transporters (UWRAPT), established by Prof. 

Jashvant Undakat, have developed a novel muliple reaction monitoring 

approach to quanitfy transporter expression which links mass spectrometry with 

liquid chromatography (Prasad and Unadkat, 2014). This technique, which is 

reliant upon selective quantification of surrogate peptides in a digested protein 

sample, has shown greater selectivity, speed, and sensitivity than the current 

semi-quantitative western blotting technique. In order to better understand drug 

transporter expression in human proximal tubular cells at the protein level, we 

have been regularly sending samples of human kidney UWRAPT for analysis. 

Knowledge of transporter expression at the protein level in fresh tissue and 

models of the proximal tubule will allow creation PK/PB models of drug 

clearance, using scaling factors. 

In chapter 4, the utility of human and rat PTC monolayers as predictive in-vitro 

models of proximal tubular drug handling were demonstrated using radiolabeled 
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[3H]-TFV. TFV is the first line antiviral therapy given to HIV-1 and HBV patients. 

Following on from marketing approval, a low rate of nephrotoxicity has been 

reported with long-term therapy. Retrospective histological and ultrastructural 

studies conducted in renal biopsies have reported accumulation of TFV within 

proximal tubular cells results in drug induced-mitochondrial toxicity (Cote et al., 

2006; Kohler et al., 2009; Herlitz et al., 2010; Perazella, 2010; Fernandez-

Fernandez et al., 2011; Kohler et al., 2011). The renal handling of TFV was 

therefore characterised using the human and rat PTC models to elucidate the 

mechanism of drug accumulation. 

Human and rat PTC monolayers exhibited a cell-to-media ratio greater than 1, 

which indicated uptake and accumulation of TFV across the basolateral 

membrane. The transporters mediating the renal transport of TFV were 

identified using a cocktail of transporter inhibitors. The basolateral uptake of 

TFV was mediated by OATP4C1 and OAT1. TFV was found to have low 

affinities for the apical efflux transporters MRP2, MRP4, MDR1 and BCRP. This 

could result in poor effux of TFV from the proximal tubular cells and 

accumulation. Furthermore, from in-vivo studies it is known that TFV is cleared 

by a combination of glomerular filtration and tubular secretion. Thus TFV may 

also enter the proximal tubule across the apical membrane through OATP1A 

isoforms and/or Pi transporters. Thereby inhibiting Pi reabsorption from 

ultrafiltrate and causing hypophosphatemia. A summary of these findings is 

shown in Figure 6.1.  

The novel identification of OATP4C1 as a TFV transporter has led Gilead to 

develop assays for investigating OATP4C1-mediated DDI, and the FDA to 

recognise OATP4C1 as a key renal transporter. The life expectancy of HIV-1 

and HBV infected patients is now comparable to the general population. 

Therefore, it is important to be aware of any potential DDIs that may occur with 

co-medication. Known substrates of OATP4C1 include cardiac glycosides (DX 

and ouabain), thyroid hormones (T3 and T4), cAMP and methotrexate. These 

findings also validate the use of human and rat PTC monolayers as a platform 

for drug transporter and DDI studies. 
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Figure 6.1: An overview of the renal handling of TFV based upon my PhD 
findings.  

The transporters mediating the renal transport of TFV were identified 
using a cocktail of transporter inhibitors. The basolateral uptake of 
TFV was mediated by OATP4C1 and OAT1. TFV was found to have 
low affinities for the apical efflux transporters MRP2, MRP4, MDR1 
and BCRP. This could result in poor efflux of TFV from the proximal 
tubular cells and accumulation. Furthermore, from in-vivo studies it is 
known that TFV is cleared by a combination of glomerular filtration 
and tubular secretion. Thus TFV may also enter the proximal tubule 
across the apical membrane through OATP1A isoforms and/or Pi 
transporters. 

Understanding renal Pi handling has been hampered by the lack of a good 

model of the mammalian proximal tubule. In chapter 5 the renal handling of 

[32P]-Pi by human and rat PTC monolayers was characterised to validate their 

use as platforms to study renal Pi handling. mRNA expression of the key renal 

Pi transporters (NaPi-IIa, NaPi-IIc and PiT2) in human PTC monolayers was 

confirmed by qPCR. Measurement of radiolabelled 100 M [32P]-Pi uptake 

revealed a net reabsorption of Pi across human and rat PTC monolayers. 

Uptake of Pi across the apical membrane of human and rat PTC monolayers 

was found to be sodium dependent, saturable and inhibited by PTH, FGF-23 
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and -klotho. The validation of human and rat PTC monolayers as platforms to 

study renal Pi handling will hopefully encourage others to use primary models. 

The implementation of this holistic model may resolve unanswered questions 

such as the molecular identity of the basolateral protein mediating the efflux of 

Pi into circulation. 

TFV has been associated with hyperphosphaturia, hypophosphatemia and the 

onset of osteomalacia in around 30 % of patients (Badiou et al., 2006; Buchacz 

et al., 2006). These adverse effects have been attributed to the renal toxicity of 

TFV and decline in proximal tubule cell function resulting from cell death (Martin 

et al., 1994; Birkus et al., 2002; Cote et al., 2006; Kohler et al., 2009; Herlitz et 

al., 2010; Perazella, 2010; Fernandez-Fernandez et al., 2011; Kohler et al., 

2011). However, medically induced renal tubular damage leading to Fanconi 

syndrome occurs in less than 0.1 % of patients on TVF and thus cannot account 

for the high prevalence of hypophosphatemia (Nelson et al., 2007; Herlitz et al., 

2010; Fernandez-Fernandez et al., 2011). In order to determine if there was an 

alternative explanation, Pi transport in the presence of TFV was investigated 

using the human and rat PTC models. Uptake of Pi across the apical membrane 

was inhibited by the addition of TFV in a saturable manner with an apparent Ki 

value of 26.89 ± 2.42 M in human PTC monolayers and 63.55 ± 4.84 M in rat 

PTC monolayers. This suggests that the impact of TFV upon renal Pi handling 

may not arise from TFV-induced proximal tubule damage but rather from an 

inhibition of transporter mediated Pi reabsorption at the apical membrane of 

proximal tubular cells. The consequent increase in renal loss of phosphate 

(hyperphosphaturia) due to inhibition of phosphate reabsorption causes 

decreased plasma levels of phosphate (hypophosphatemia) and phosphate loss 

from bone (osteomalacia). The data highlight the importance of developing 

holistic cell based models of the human proximal tubule. If TFV is inhibiting 

transporter mediated reabsorption of phosphate it may also have an impact 

upon the absorption of dietary Pi in the small intestine. The outcomes of this 

work have initiated a patient clinical trial to investigate this hypothesis. The 

results could have a large translational impact, as over 14.9 million HIV and 

HBV pateints are pescribed TFV.  
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Rat and human PTC are not limited to only drug transporter and drug interaction 

studies. Several studies have confirmed the suitability of rat and human primary 

proximal tubular cells cultures as an in-vitro model to study nephrotoxicity 

(Cummings and Lash, 2000; Cummings et al., 2000; Lash et al., 2001; Lash et 

al., 2003; Lash et al., 2005; Lash et al., 2006). However, a limitation to their use 

in nephrotoxicity studies is the finite lifespan of the human and rat PTCs.  

The model can be improved further by identification of biomarkers of proximal 

tubule damage. Identification of NME induced nephrotoxicity within humans at 

the pre-clinical in-vitro screening stage would decrease drug attrition. Segment 

specifc biomarkers have been identified to detect and quantify nephrotoxicity 

better than existing biomarkers. Proximal tubular specific biomarkers include 

kidney injury molecule 1,  - glutathione-S-transferase, N-acetyl--

glucosaminidase, Netrin-1, Retinol binding protein, interleukin-18, exosomal 

feutin A, and L-fatty acid binding protein (Vaidya et al., 2008; Bonventre et al., 

2010). As part of my PhD studies I was able to confirm protein expression of 

kidney injury molecule 1 using an ELISA assay. Further characterisation to 

idenifty a panel of proximal tubular biomarkers is required. This is because a 

biomarker of injury might not detect a functional defect or reliably indicate 

delayed repair. Similarly a biomarker of inflammation may not be sensitive in 

detecting early toxicity in the absence of inflaamation.   

Barriers in the use of tissue for primary cell cultures research studies can be 

grouped in to the following categories: regulatory, supply, and practical barriers. 

Regulatory barriers include ethical approval, licenses and regulatory 

acceptance of data. Supply barriers are the short supply of human tissue, the 

cost of obtaining human material and inter-individual variability. Practical 

barriers include the short lifespan of cells, the requirement of specialist 

equipment, and the shortage of trained technical staff. 

Some of the barriers can be addressed. For instance, to provide a reliable 

source of human cells and limit inter-individual variability, protocols for the 

differentiation of human embryonic stem cells into renal epithelial cells are 

currently under development. Indeed, a protocol for the differentiation of human 

embryonic stem cells into functional proximal tubular cells has been published 

(Narayanan et al., 2013). The resulting culture of a heterogeneous cell 
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population expressed characteristic markers of proximal tubular cells, which are 

comparable to the primary human proximal tubule cells, and generated tubular 

structures in-vitro and in-vivo. However, they still showed signs of 

dedifferentiation, and require further investigation. 

Likewise, further investigation is also required in the human and rat PTCs to 

verify its utility in other aspects of drug development. In this thesis, human and 

rat PTCs have been validated as physiological relevant models of the proximal 

tubule in the kidney, and they have been demonstrated as predictive tools of 

renal drug handling. The robustness of their use is thus presented, and with 

further validation, for instance in their use in nephrotoxicity prediction, would 

greatly impact on drug development.  
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