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Abstract 

MEMS gyroscopes are found across a large range of applications, from low precision low cost 

applications through to high budget projects that require almost perfect accuracy. MEMS 

gyroscopes fall into two categories – ‘rate’ and ‘rate integrating’, with the latter offering 

superior performance. The key advantage that the rate integrating type possesses is that it 

directly measures angle, eliminating the need for any integration step. This reduces the 

potential for errors, particularly at high rates. However, the manufacturing precision required 

is far tighter than that of the rate gyroscope, and this has thus far limited the development of 

rate integrating gyroscopes. 

This thesis proposes a method for reducing the effect of structural imperfections on the 

performance of a rate integrating gyroscope. By taking a conventional rate gyroscope and 

adjusting its control scheme to operate in rate integrating mode, the thesis shows that it is 

possible to artificially eliminate the effect of some structural imperfections on the accuracy of 

angular measurement through the combined use of electrostatic tuning and capacitive forcing. 

Further, it demonstrates that it is viable to base the designs for rate integrating gyroscopes on 

existing rate gyroscope architectures, albeit with some modifications. 

Initially, the control scheme is derived through the method of multiple scales and its potential 

efficacy demonstrated through computational modelling using Simulink. The control scheme 

is then implemented onto an existing rate gyroscope architecture, with a series of tests 

conducted that benchmark the gyroscope performance in comparison to standard performance 

measures. 

Experimental work demonstrates the angle measurement capability of the rate integrating 

control scheme, with the gyroscope shown to be able to measure angle, although not to the 

precision necessary for commercial implementation. However, the scheme is shown to be 

viable with some modifications to the gyroscope architecture, and initial tests on an 

alternative architecture based on these results are presented. 
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Chapter 1. Introduction 

1.1. Project background 

Gyroscopes in one form or another have existed for thousands of years, primarily as toys 

similar to the modern ‘spinning top’. Over the course of the past 250 years or so they have 

been developed for use in instrumentation, beginning with John Serson’s Whirling Speculum 

in 1743, which was used on ocean vessels as a level in poor visibility [1]. Following the 

invention of the electric motor and therefore a method for sustaining the rotation of a rotor, 

the late 19th century saw gyroscopes being used in their more familiar role as heading 

indicators. 

However, it was not until the 20th century that their value in navigational applications was 

fully realised, with them becoming standard components in aircraft and naval systems by 

World War Two [2]. Following this, the development of unmanned weapons systems, such as 

ballistic missiles, and their requirement for reliable accurate instrumentation led to gyroscopes 

being continually miniaturised. 

Currently, the smallest gyroscopes available are on the MEMS (microelectromechanical 

systems) scale and can be found in a large range of consumer electronics such as mobile 

telephones, video game console controllers and virtual reality headsets, as well as car safety 

systems and other lower-accuracy applications [3-5]. However, the difficulty in producing a 

MEMS gyroscope with sufficient measurement precision for military grade measurements 

currently precludes most current-generation MEMS gyroscopes from such applications. 

Due to their potential for inexpensive mass production coupled with small size and high 

accuracy, there is currently a large amount of work being focussed on the development of 

tactical grade MEMS gyroscopes. Such a requirement has given rise to this project, which 

looks to tackle some of the issues surrounding the production of high-accuracy MEMS 

gyroscopes.  

1.2. Gyroscope design 

The gyroscope on which this thesis is based has been provided, pre-packaged, by Atlantic 

Inertial Systems. It consists of a silicon-on-glass ring surrounded by a series of eight equally-

spaced electrodes, where the use of silicon-on-glass is common for MEMS gyroscopes due to 
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the low parasitic capacitances resulting from the manufacturing process [6]. Inside the ring, 

there are sixteen equally-spaced electrodes used for tuning the resonant frequency of the two 

modes of vibration that measure the rotation applied to the gyroscope, the method behind 

which will be discussed later in this chapter. 

The gyroscope is constructed using the Deep Reactive Ion Etch bulk silicon process, which is 

a process that allows deep, steep-sided holes to be etched into wafers [7]. The construction of 

the gyroscope is such that there are no gaps in the structure that can result in stiction adversely 

affecting the performance of the gyroscope [8]. 

Figure 1.1 shows the gyroscope design and electrode layout, with the red electrodes being 

used to excite and measure two modes of vibration in the ring via capacitive forcing and 

sensing, and the blue electrodes used to tune the resonant frequencies of the gyroscope’s 

modes of vibrations, a procedure described further in section 4.3.1.  

The drive and sense electrodes are ‘paired up’. That is, there are two pairs of electrodes that 

excite the two modes of vibration, with the two electrodes in each pair placed opposite one 

another across the ring diameter. Note that the physical coordinates q1 and q2 are chosen such 

that they are aligned with the modes of vibration of the gyroscope, (i.e. they bisect the two 

electrode pairs that are used to excite modal vibration). Each pair of sense electrodes is placed 

such that it is at 90° to its corresponding mode of vibration. 

 

Figure 1.1 - The gyroscope electrode layout with physical axes, where the red electrodes act as drive and pick-offs 

electrodes while the blue are used for electrostatic tuning 
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Figure 1.2 is a diagram of a quarter of the ring and details the key dimensions of the 

gyroscope, where b is the ring width, R its radius and h0 the gap between the drive and sense 

electrodes and outside edge of the ring. Note that for clarity the tuning electrode gap has not 

been included in the diagram, but this is equal to h0. 

 

Figure 1.2 – A quarter section of the ring with key gyroscope dimensions 

1.3. Operating principles 

MEMS gyroscopes utilise Coriolis forces to measure changes in angle and angular rate. 

Coriolis forces arise within rotating reference frames and are best described by considering an 

object travelling laterally over a rotating reference frame.  From a viewpoint outside of the 

reference frame, the object travels in a straight line. However, from a viewpoint within the 

rotating reference frame the object appears to take a curved path, as demonstrated by figure 

1.3, which shows a reference frame rotating anti-clockwise, with the trajectory of an object 

travelling across it represented by a blue arrow and a viewpoint on the object represented by a 

red dot.   
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Figure 1.3 - The apparent movement of an object over a rotating surface (blue arrow) when viewed from a non-inertial 

(i.e. above) reference frame (L) and an inertial (i.e. a point on the disk, red dot) reference frame (R) 

Coriolis forces account for this apparent curvature and can be shown to be related to the 

angular velocity squared [9]. A detailed mathematical description of this behaviour for a 

three-axis vibrating gyroscope is given in [10] but, following similar principles for a single 

axis gyroscope, it will be presented here in brief. 

The radial and tangential displacement of a point on the centreline of a vibrating ring, u and v 

respectively, can be shown to be of the form, where qj represents the contribution of mode j to 

the motion: 

𝑢 =  𝑞1 cos 𝑛𝜃 +  𝑞2 sin 𝑛𝜃 1.1 

𝑣 =  −
1

𝑛
(𝑞1 sin 𝑛𝜃 +  𝑞2 cos 𝑛𝜃) 

1.2 

These can then be used to derive the radial, tangential and axial components of the 

displacement of a point on the centre of mass of the ring, which for a ring with no axial 

movement is given by 𝑟, while the rate of turn around the z-axis for the same ring is provided 

by Ω: 

𝑟 = (𝑢, 𝑣, 0)𝑇 1.3 

Ω = (0, 0, Ω𝑧) 1.4 

These can then be used to calculate the absolute velocity of the centre of mass of any section 

of the ring, Vs, and this can in turn be used to derive the kinetic energy of the uniform ring, T, 
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as rotation is applied, where R, b and D correspond to the physical dimensions ring radius, 

width and thickness, and ρ is the ring density. 

𝑉𝑠 =  𝑟̇ +  Ω  ×  𝑟 1.5 

𝑇 =  
1

2
𝜌𝑅𝑏𝐷 ∫ 𝑉𝑠 ∙ 𝑉𝑠

2𝜋

0

𝑑𝜃 
1.6 

The elastic strain energy for a perfect ring, V, is given in equation 1.7. By applying 

Lagrange’s equation with the Lagrangian L = T - V, the equations of motion in equation 1.8 

can be derived [10, 11]. In these cases, Izz is the polar second moment of area, E is the elastic 

modulus of the ring and the term 𝐹𝐷 corresponds to electrode forcing along the modes and 

will be explained later, while m0, ω0, ζ0, n and k0 represent the normalised mass, natural 

frequency, damping ratio, number of modes and stiffness, respectively. 

𝑉 =  
𝐼𝑧𝑧𝐸

2𝑅3
∫ (

𝜕2𝑢

𝜕𝜃2
−  

𝜕𝑣

𝜕𝜃
)

2

𝑑𝜃
2𝜋

0

 1.7 

𝑚0𝑞̈ + 2𝑚0{𝜁𝜔0 − 𝐺}𝑞̇ + 𝑘0𝑞 =  𝐹𝐷 1.8 

where: 

𝐺 =  [
0 𝑘Ω

−𝑘Ω 0
] 𝑘 =

2𝑛

(𝑛2 + 1)
 

The angular rate appears in the matrix G, and it can be noted that it is derived from the 

calculation of the ring kinetic energy. This is the manifestation of the Coriolis forces. It 

should be noted here that acceleration terms Ω2 and Ω̇ also occur, but have been neglected 

from the analysis as they are of second order magnitude, and thus unlikely to make any 

significant difference to the performance of the gyroscope. 

When applied to MEMS vibratory gyroscopes, these Coriolis forces can be shown to affect 

the vibration pattern in one of two ways. The most common method of exploiting these forces 

is with the ‘rate’ mode, whereby the gyroscope is excited into one mode of vibration.  On 

rotation, Coriolis forces arise and excite the second mode of vibration orthogonally to the first 

and, by measuring either the amplitude of this vibration or the force required to null it, it is 

possible to measure the angular rate of the gyroscope, which is proportional to these 
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parameters. However, in order to gain a measurement of angle integration of the angular rate 

is required, and this can introduce large errors. 

The ‘rate integrating’ mode of operation requires two orthogonal modes of vibration to be 

simultaneously excited. As Coriolis forces arise on rotation, they cause a ‘beating’ energy 

transfer between the two modes, the frequency of which is proportional to the angular rate and 

angular displacement. This beating is demonstrated in the modelling in section 5.1. The 

proportionality between the frequency of this beating, which is measurable using the pick-off 

electrodes, and the angular displacement provides a method for the direct measurement of 

angle. 

1.4. Effect of gyroscope imperfections 

The rate integrating gyroscope relies on cross-coupling between the two modes of vibration to 

produce the beating pattern from which the measurement of angular rate and displacement is 

obtained. Within a perfect gyroscope Coriolis forcing is the sole cause of such cross-coupling, 

and hence the only source of energy transfer between the two modes of vibration. 

However, current manufacturing practices limit, to a varying degree, the precision with which 

gyroscopes can be constructed. As such, gyroscopes suffer from imperfections that cause 

uneven behaviour, and therefore coupling, between the two modes of vibration. This coupling 

subsequently interferes with that caused by the application of rotation and subsequent energy 

transfer – as the energy transfer is no longer caused only by the rotation of the device, its 

frequency is no longer proportional to the rate or angle of rotation. 

Although it is possible to remove many of these imperfections post-production, either through 

manufacturing techniques such as laser ablation or in situ techniques, such as electrostatic 

tuning, it is not currently possible to remove all imperfections.  As such, they must be 

accounted for and minimised by a control system.  
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These imperfections can be represented by perturbations in the density and elasticity of the 

ring, represented as angle-dependent Fourier series: 

𝜌(𝜃) =  𝜌0 +  ∑ 𝜌𝑚𝑐 cos 𝑚𝜃

∞

𝑚

+ ∑ 𝜌𝑚𝑠 sin 𝑚𝜃

∞

𝑚

 
1.9 

𝐸(𝜃) =  𝐸0 +  ∑ 𝐸ℎ𝑐 cos ℎ𝜃

∞

ℎ

+  ∑ 𝐸ℎ𝑠 sin ℎ𝜃

∞

ℎ

 1.10 

This leads to the kinetic and elastic strain energy being defined as: 

𝑇 =  
1

2
𝑅𝑏𝐷 ∫ 𝜌(𝜃)

2𝜋

0

(𝑢̇2 +  𝑣̇2)𝑑𝜃 
1.11 

𝑉 =  
𝐼𝑧𝑧

2𝑅3
∫ 𝐸(𝜃)

2𝜋

0

(
𝜕2𝑢

𝜕𝜃2
−  

𝜕𝑣

𝜕𝜃
)

2

𝑑𝜃 1.12 

By substituting appropriately it becomes possible to derive mass, damping and stiffness 

matrices, the terms of which represent deviations in these parameters from the ideal ring for 

each mode of vibration [11]: 

[𝑀] =  𝑚0 [
1 +  𝛿1 𝛿2

𝛿2 1 − 𝛿1

] 
1.13 

[𝐶̂] =  2𝑚0𝜔0𝜁0 [
1 +  𝛾

1
𝛾

2

𝛾
2

1 −  𝛾
1

] 1.14 

[𝐾] =  𝑘0 [
1 +  𝜇

1
𝜇

2

𝜇
2

1 −  𝜇
1

] 1.15 

where: 

𝑚0 =  𝜋𝜌0𝑅𝑏𝐷 (1 + 
1

𝑛2
) 𝑘0 =  

𝐸0𝐼𝑧𝑧𝜋

𝑎3
(1 −  𝑛2)2 𝜇

1
=  

𝐸4𝑐

2𝐸0
 𝜇

2
=  

𝐸4𝑠

4𝐸0
 

𝛿1 =  (
𝑛2 − 1

2(𝑛2 + 1)
)

𝜌4𝑐

𝜌0
 𝛿2 =  (

𝑛2 − 1

2(𝑛2 + 1)
)

𝜌4𝑠

𝜌0
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The application of these matrices is discussed further in section 3.1.1. Due to the precision of 

the manufacturing processes, it can be assumed that ρ4c << ρ0, ρ4s << ρ0, E4c << E0 and E4sc << 

E0 and, as such, the matrices containing these terms can be considered to be small. 

1.5. Project aims 

This project demonstrates a control scheme to produce a rate integrating MEMS gyroscope 

using the architecture described in section 1.2. It will shortly be shown that the primary 

objective of the control scheme will be to remove the effect of stiffness imperfections on the 

measurement of angle. 

The control scheme described is based upon a perturbation analysis of the gyroscope, using 

the slow time equations of motion to describe changes in the envelope of vibration as rate is 

applied. The imperfections also manifest themselves in the behaviour of this envelope, 

allowing their effect to be measured and therefore reduced through the application of an 

appropriate control scheme.  

The gyroscope behaviour has been described in terms of orbital elliptic parameters, which are 

in turn composed of invariants that are derived from the real and imaginary responses of the 

sense electrodes for each mode of vibration. The reasoning behind this is that these 

parameters can be directly related to total gyroscope energy, level of modal mistuning, angle 

of gyroscope rotation and the phase of vibration. Consequently, they provide the parameters 

necessary to define the gyroscope behaviour using measurable parameters and hence develop 

a control scheme. 

Experimental results are provided to support the underlying theory, with these demonstrating 

the efficacy of the various elements of the control scheme. Primarily they show that, with 

appropriate development, the control scheme proposed is a viable way of measuring angle 

using a rate integrating MEMS ring gyroscope. The results also offer an insight into problems 

with implementing the control scheme derived that must be overcome prior to any 

commercial production. 

A full characterisation of the gyroscope is also undertaken with it operating in rate integrating 

mode, with the control scheme operated in what is deemed to be the most suitable manner for 

the gyroscope architecture.  
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Finally, a novel gyroscope architecture is presented that can be used to overcome the 

problems encountered during the control scheme development. Initial experimental results are 

presented, and in particular the potential ease in reducing the modal mistuning is 

demonstrated.  
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Chapter 2. Literature Review 

2.1. Vibratory gyroscopes 

The vibratory gyroscope is a well-established piece of technology, having been commercially 

available since the 1980s [12]. However, their principles of operation were established as 

early as 1890, when G.H. Bryan described the changing of beats in a ringing wine glass when 

it is exposed to rotation [13]. 

There are a number of designs for vibratory gyroscopes, including the tuning fork [14], 

vibrating shell gyroscope [15] , ring gyroscope [11] and a variety of suspended-mass 

gyroscopes [16, 17].  However, all gyroscopes utilise the same underlying principles, whereby 

Coriolis forces that arise upon rotation cause a change in the vibration pattern of the 

gyroscope.   

Traditionally, this property has been exploited by driving the gyroscope into one mode of 

vibration.  The emergence of Coriolis forces on rotation results in a second orthogonal mode 

of vibration arising, the amplitude of which is proportional to the rate of rotation.  Integration 

of this to find angular displacement, however, can lead to errors in the calculation of angle 

[12]. 

A second application of these principles is in using the Coriolis forces to produce energy 

transfer between the two modes of vibration.  This transfer can be measured, and the 

frequency of the beating pattern it takes can be shown to be proportional to the rate and angle 

of rotation, allowing a direct calculation of angle and eliminating the need for numerical 

integration. Gallacher [11] provides a thorough description of this behaviour. 

As well as their use as standalone instruments, gyroscopes can be combined with other 

devices, such as accelerometers and GPS systems, to provide a highly-refined motion 

measurement system [18]. However, such a system is beyond the focus of this thesis. 

2.2. Elliptic coordinates 

Friedland and Hutton [19] discuss a method for describing the motion of a gyroscope in the 

Cartesian coordinate frame in terms of orbital elliptic parameters.  These parameters consist 

of the length of the semi-major and semi-minor axis of an ellipse, the angle the ellipse makes 

with respect to the Cartesian coordinate system defined and the orbital phase, a quantity that 
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describes the position of a point on the perimeter of the ellipse.  In their paper, Friedland and 

Hutton demonstrate that the length of the semi-major axis, a, is analogous to the total energy 

of vibration, while the length of the semi-minor axis, b, is equivalent to the orbital 

momentum.  Hence, where b is zero, a corresponds to the trajectory of vibration, while any 

change in angle of the ellipse, , is proportional to the angle of rotation of the gyroscope 

when a rate is applied. 

Lynch [20] takes this further by proposing a control system whereby such parameters are 

described by a series of invariants.  These invariants are the components of each mode of 

vibration that are in-phase and out-of-phase with a reference signal.  As such, the orbital 

elliptic parameters are defined in terms of quantities that can be extracted from existing 

gyroscope architectures.  Lynch goes so far as to suggest a control system and describe the 

forcing required to enact this, however he provides no experimental work to demonstrate its 

application.  However, numerous works have made use of such invariants with varying 

degrees of success. 

Painter and Shkel [21] describe a system that uses a feedforward control akin to electrostatic 

tuning to remove large structural imperfections, before using a feedback system that applies 

forcing to null any perturbations that arise during gyroscope operation.  The authors note that 

a dual-stage system such as this is necessary to prevent the feedback control having too great 

an impact on the precession information.  Using Principal Component Analysis, it is shown 

that feedback controls nevertheless introduce a small error to the device. 

2.3. Tuning 

For successful operation, it is a necessity that the difference between the resonant frequencies 

of the two modes of vibration is as small as possible before the application of any control 

system to reduce the effect of this mistuning.  Although this can be done during post-

production using a method such as ion-beam trimming, this is undesirable as it causes 

irreversible changes to the device [22].  As such, a tuning method that can be conducted in 

situ is highly desirable.    

A well-established method to reduce the mistuning without making physical alterations to the 

device is to use electrostatic tuning or similar [21-23].  This method has routinely been shown 

to be effective in tuning gyroscopes. The method in [22] in particular details the challenges 
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and methods behind electrostatic tuning – using the same gyroscope architecture as that used 

in this project it also proves to be particularly relevant. 

By combining electrostatic tuning with novel methods of tuning such as feedback control, 

recent results have shown tuning to be possible to within tens of mHz [24].   

Further to the modal mistuning described, the gyroscope drive signal must operate at the 

correct frequency. It has been shown that this can be achieved using a conventional phase 

locked loop, whereby phase information is used to adjust drive frequency by means of a PID 

or similar controller in order to drive the gyroscope at its resonant frequency [25].  

2.4. Performance criteria 

2.4.1. Performance measurement criteria 

Gyroscope accuracy is assessed according to common criteria, and these are best described in 

the IEEE Specification and Test Procedure for Coriolis Vibratory Gyroscopes [26]. Although 

described in more detail later in section 7.2 they will be briefly discussed here. 

Bias stability and angle random walk are derived from a plot of the Allan variance of the 

gyroscope output. Bias instability measures the minimum stability of the gyroscope bias and 

is the minimum point on the Allan variance curve, and it is a measure of the gyroscope’s 

stability over long averaging times. The angle random walk is a measure of output noise, and 

is defined as the Allan variance for an averaging time of 1s. 

Scale factor is a measure of how closely the output angle of the gyroscope matches the input, 

thus a scale factor of 1 is ideal, and this should be constant for all rates. Linearity determines 

the consistency of the scale factor, in that it is a measure of how linear the response is as the 

input angle is increased. Bandwidth is a measure of the maximum frequency of data that can 

be processed by the gyroscope, whilst asymmetry describes any difference between the 

accuracy of the measured output for positive and negative rotation. 

By combining these criteria, it is possible to assess the application of a gyroscope, with the 

gyroscope being categorised accordingly. Although the precise classification scheme can vary 

between manufacturers and other institutions, vibratory gyroscopes can be broadly separated 

into three areas - ‘rate’, ‘tactical’ and ‘inertial’ [27].  
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Rate gyroscopes are used for low precision applications, where large drift and low 

measurement accuracy can be tolerated (e.g. consumer electronics) whilst tactical grade 

gyroscopes are of the rate integrating type and can be shown to exhibit considerably enhanced 

performance characteristics, with their enhanced bandwidth and lower drift being particularly 

notable. Finally, inertial grade gyroscopes exhibit minimal drift and performance 

characteristics close to the ideal, and are used where accuracy is of paramount importance 

(e.g. long term navigation), with the trade-off being higher cost for the equivalent portability 

[28]. 

2.4.2. Performance benchmarks 

Table 2.1 provides a summary of the approximate performance benchmarks generally 

attributed to the gyroscope grading system [27]. However, these specifications do not cover 

linearity error or bias instability, so averages of existing specifications for rate integrating 

gyroscopes, such as those found in [17, 29-31], are presented in table 2.2. 

 Rate Tactical Inertial 

Angle random walk 

(°/√hr) 

> 0.5 0.5 - 0.05 < 0.001 

Bias drift (°/hr) 10 - 1000 0.1 - 10 < 0.01 

Linearity (%) 0.1 - 1 0.01 – 0.1 < 0.001 

Bandwidth (Hz) 70 100 100 

Table 2.1 - The specifications for the three grades of gyroscope 

Parameter Measurement Average 

Bias instability (°/hr) 7.5 

Table 2.2 - Additional specifications for a rate integrating gyroscope 
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2.5. Existing control schemes 

Park, Horowitz and Tan [32] provide a thorough review of the dynamics of a rate-integrating 

gyroscope, providing a proposal for a control scheme that utilises a damping control that 

matches the energy of both modes coupled with a force balance control to eliminate stiffness 

inequalities between the two modes of vibration.  Simulation results demonstrate the 

effectiveness of the scheme, although no experimental results are presented. 

While Painter and Shkel [21] use orbital elliptic parameters to describe the motion of the 

device, Pridhodko et al [17] demonstrate the use of the parameters to develop a control system 

utilising a gyroscope design based on four coupled proof masses, but with the same 

underlying dynamics to the ring gyroscope so far discussed.  The paper measures the accuracy 

of the gyroscope acting in rate-integrating mode under free vibration, (i.e. there is no 

sustaining force).  However, the control scheme only implements electrostatic tuning, and 

does not apply a feedback control.  

The authors report a bandwidth of 100Hz, with a linearity of 0.4% and a theoretical angular 

drift of 1°hr-1, demonstrating a gyroscope with low-end tactical grade performance. While it 

demonstrates the accuracy of the rate-integrating mode of operation, the lack of a sustaining 

force means that this gyroscope design is not yet suitable for implementation. 

Similarly, the paper by Tatar et al. [33] describes the elimination of errors caused by stiffness 

imperfections through the use of electrostatic tuning, when applied to a rate gyroscope. It 

employs a quadrature control loop to adjust the applied tuning voltages with the objective of 

sustaining the sense mode amplitude at zero. These are then compared to FEM results. The 

paper finds agreement between FEM analysis of the gyro and experimental test results, 

reporting an angle random walk, bias instability and linearity of 0.014°h-0.5, 0.39°hr-1 and 

0.0001%, respectively.  

Despite promising results that would place the gyroscope towards the inertial grade end of the 

spectrum, the paper describes such a control scheme in reference to a rate-type gyroscope. 

Rate-integrating gyroscopes have a much tighter error tolerance, requiring a modal mistuning 

of the order of mHz [24]. The gyroscope reported in the paper has a modal mistuning of 

130Hz following the application of the quadrature control loop and as such the research 

conducted is not relevant to the development of a rate integrating gyroscope control scheme 
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as it does not consider the important advantages of the rate integrating gyroscope type, for 

example enhanced bandwidth. While the level of modal mistuning attained in this paper is not 

of the order of that required for a rate integrating gyroscope, it demonstrates the potential that 

electrostatic tuning offers in the reduction of the effect of stiffness imperfections.  

Gregory et al [34], however, use a system similar to that suggested by Lynch, whereby 

forcing is used to sustain vibration and null quadrature, with the required forcing dictated by a 

model derived using elliptic parameters in a manner similar to [20]. Both damping and 

frequency mismatch errors are tackled in this paper by applying a force that cancels the effect 

of angle-dependent imperfections.  

Although such a system is shown to reduce drift during gyroscope operation, it only tackles 

the angle-dependent source of error. While this is, in the ideal case, an effective method for 

reducing the effect of structural perturbations on measured angle, a large difference between 

the error predicted by the model used to generate the forcing and the measured error is noted, 

which prevents the control loops from fully settling. This demonstrates that before the 

implementation of such a system, considerable refinement is required. 

2.6. Modelling 

Modelling in terms of rate integrating gyroscopes can refer to a range of subjects, including 

the thermoelastic behaviour of the structure, such as in [35], and modal analysis of given 

structures using FEM, as in [36]. Although these are crucial areas of research in the 

development of gyroscope design, the architecture for the gyroscope is already predetermined 

and, as such, it is pertinent to primarily investigate the position that the modelling of any 

control scheme has with regards to the literature. 

Work by Gallacher has used perturbation analysis to model the behaviour of a rate-integrating 

gyroscope [11, 37]. While the work in [11] demonstrates the principles behind the operation 

of a rate-integrating gyroscope through simulations, the work in [37] goes further by using 

Simulink to provide a model of a gyroscope under electrostatic tuning, providing results that 

are closely matched to experimental results. However, the paper serves to demonstrate the 

potential success of a parametric excitation scheme, and does not address the effect of 

imperfections on the performance of the gyroscope. 
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Park and Horowitz [38] model a quadrature-compensation algorithm for a rate gyroscope. The 

algorithm predicts the changes in gyroscope behaviour caused by quadrature that arises as a 

result of mismatched modal frequencies and is shown to be effective. However, the control 

algorithm does not take into account structural imperfections, which are expected to be 

significant factors governing the performance of rate integrating gyroscopes. 

The work by Yilmaz et al [39] includes structural asymmetries in their modelling of ring 

resonator dynamics. Analysis in this work using FEM demonstrates that the effect of 

perturbations depends on mode azimuth number, with n = 2 yielding the smallest effect. This 

paper also provides a distinct method for the use of FEM in analysing the effect of structural 

perturbations in a ring gyroscope structure. 

2.7. Application of this work to current research 

The use of invariant parameters is well-established in the literature in analysing the behaviour 

of a rate-integrating gyroscope. However, many of the works that exploit these do so through 

the use of the method of averaging, whereby a dynamic system is converted to a series of 

time-invariant systems through averaging out the time-dependency of the system. However, 

similar to the work by Gallacher [11], this thesis exploits the method of multiple scales in the 

gyroscope analysis, whereby a dynamic system is similarly converted to a series time-

invariant systems, but this is achieved by introducing fast and slow time variables in place of 

time, and treating these as independent. This is discussed in more depth in section 3.1.3. 

However, the work in [11]  is taken further through the application of modelling and the 

derivation and testing of a control scheme. 

Furthermore, this work looks at the control scheme as a whole, investigating complications 

that arise when the gyroscope is operated with a fully closed-loop control scheme (i.e. the 

vibration is driven, rather than free as in [17]). Further works have investigated the sustenance 

of the vibration, but have not incorporated details such as the effect of mistuning between the 

drive and resonant frequencies. As such, a detailed model of forcing is produced that 

considers the effect of inappropriately applied capacitive forcing. 

Further, the forcing application is presented in a novel and intuitive manner, allowing the 

creation of a simplified control scheme. 
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Overall, this thesis demonstrates a control scheme for a rate-integrating gyroscope. It builds 

on existing work in using orbital elliptic parameters to model and, later, measure and control 

the vibration pattern of the gyroscope. It is demonstrated that the individual elements of this 

control scheme are effective, and gyroscope architectures are proposed that are suitable for 

fully implementing a closed-loop control scheme for a rate-integrating ring gyroscope.  
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Chapter 3. Gyroscope Dynamics 

3.1. Derivation of the equations of motion in the modal frame 

3.1.1. General dynamics 

Recalling the derivation of gyroscope equations of motion in previous chapters, the 

gyroscope’s behaviour can be described in terms of the physical axes by equation 3.1, where 

𝑞 is a displacement vector describing the motion of the ring along the two physical axes and 

𝐹𝐷 is the force applied from the drive electrodes along these axes. The matrices M, 𝐶̂, 𝐺̂ and 

K are composed of the parameters 𝛿𝑚, 𝛾
𝑚

and 𝜇
𝑚

, which represent imperfections in the mass, 

damping and stiffness matrices, respectively, and m = 1,2 and represents the direct and cross-

terms of the imperfection matrices. The angular rate, Ω, occurs in the rate matrix, G, where it 

is multiplied by the term 
2𝑛

(𝑛2+1)
. This term is known as the Bryan factor and is defined as the 

ratio of the rotation of the vibration pattern to that of the gyroscope body, and recall n is the 

number of modes in the system [39]. It couples the two equations, in addition to the cross 

terms of the imperfection matrices. Finally, m0, ω0, ζ0, n and k0 represent the normalised mass, 

natural frequency, damping ratio, number of modes and stiffness, respectively. Furthermore, it 

should be reiterated that angular acceleration terms (such as those arising from centripetal 

acceleration) have been neglected in this analysis due to their small magnitude. 

[𝑀]𝑞̈ + [𝐶̂ + 𝐺̂]𝑞̇ + [𝐾]𝑞 =  𝐹𝐷 3.1 

recall,  where: 

[𝑀] =  𝑚0 [
1 +  𝛿1 𝛿2

𝛿2 1 − 𝛿1

] [𝐶̂] =  2𝑚0𝜔0𝜁0 [
1 +  𝛾

1
𝛾

2

𝛾
2

1 −  𝛾
1

] 

[𝐺̂] =  2𝑚0

2𝑛

(𝑛2 + 1)
[
0 −1
1 0

] Ω [𝐾] =  𝑘0 [
1 +  𝜇

1
𝜇

2

𝜇
2

1 −  𝜇
1

] 

The cross-coupling between the two modes of vibration caused by the ring’s imperfections is 

clear from equation 3.1, as is the contribution of applied rate to modal cross-coupling. It is 

obvious that, in order for the angular rate to be the sole source of modal cross-coupling, the 

contribution of these structural imperfections must be significantly reduced. 



  19 

 

In a similar manner to [11] it becomes convenient to describe these equations of motion in 

terms of the modal coordinates xm, where m = 1,2 and denote individual modes of vibration. 

This involves the use of the transformation x = [X]q, [X] being the normalised eigenvectors of 

the dynamic matrix [D] = [M]-1[K], to recast the equations of motion in terms of the modal 

coordinates. [X] is described by equation 3.2, where η is the arctangent of the angle between 

the physical and modal coordinate axes. Clearly, if η is zero, the modal axes are aligned with 

the physical axes and the cross-coupling between the modes is zero. 

[𝑋] =  [
1 −𝜂
𝜂 1

] 
3.2 

As a result of this transformation, the equations of motion in the modal frame are described by 

equation 3.3, where 𝜒𝑁 is the forcing projected along the normal modes, the derivation of 

which will be provided later. The mass imperfections described previously are therefore used 

to develop the expression for the gyroscope tuning in [D]. 

𝑥̈ +  [𝐶 + 𝐺]𝑥̇ +  [𝐷]𝑥 =  𝜒𝑁 3.3 

where: 

[𝐶] =  2𝜁0𝜔0 [
1 +  𝛾1 𝛾2

𝛾2 1 −  𝛾1
] [𝐷] =  𝜔0

2 [
1 +  𝜇 0

0 1 −  𝜇
] 

[𝐺] =  2
2𝑛

(𝑛2 + 1)
[
0 −1
1 0

] Ω 
   

Using the modal axes as references for the analysis of the system produces the desirable 

situation for analysis in which the only modal cross coupling that occurs is caused by the 

angular rate and the damping imperfections. However, a further term, μoccurs in the 

stiffness matrix. This term is the mistuning of each mode from the average resonant 

frequency, and will shortly be shown to be a significant source of error. 

The Q-factor of the gyroscope is of the order 104, resulting in the damping ratio ζ0 being very 

small. As such, it becomes possible to derive a small parameter, ε, and use this to describe the 

damping, as in equation 3.4. 
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𝜁0 =  𝜀𝜈0 3.4 

If the parameters are chosen such that ε = 10-5
 (and therefore ν0 = 2.5), it is possible to scale 

all small effects using ε: 

𝜇 =  𝜀𝜉 Ω =  𝜀𝜙 𝜒𝑁 =  𝜀𝐹𝑁 

Equation 3.3 can then be expressed in terms of these, to provide equation 3.5. This expression 

becomes useful for the perturbation analysis described in section 3.1.3. 

𝑥̈ +  2𝜀[𝐶 + 𝐺]𝑥̇ + [𝐷]𝑥 =  𝜀𝐹𝑁 3.5 

where: 

[𝐶] =  𝜐0𝜔0 [
1 +  𝛾1 𝛾2

𝛾2 1 − 𝛾1
] [𝐷] =  𝜔0

2 [
1 +  𝜀𝜉 0

0 1 −  𝜀𝜉
] 

[𝐺] =  
2𝑛

(𝑛2 + 1)
[
0 −1
1 0

] 𝜙 
   

3.1.2. Forcing 

The structural vibrations are sustained by applying forces from a series of drive electrodes 

positioned around the ring structure. By first considering the forcing from a single arbitrary 

electrode placed at angle ψ to the modal axis, as in figure 3.1, the forcing vector in equation 

3.6 provides the forcing exerted by the electrode on the physical axes. 

 

Figure 3.1 - Placement of an arbitrary electrode 
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𝐹𝐷 =  𝛽̌𝑉𝑛
2 [

cos 𝑛𝛹
sin 𝑛𝛹

] 3.6 

This is where β is a constant that describes the maximum capacitive force exerted by the 

electrode and is given by equation 3.7, where it ε0 is the permittivity of free space and α is the 

arc angle of an electrode from its centreline, and it can be recalled that R, D and h0 are the 

ring radius, thickness and electrode gap, respectively. 

𝛽̌ =  
𝜀0𝑅𝐷

ℎ0
3 sin 𝛼 

3.7 

Vn describes the voltage applied at frequency ω to the drive electrode aligned with mode n. It 

can be noted that the drive frequency is separated from the average resonant frequency (i.e. 

the ideal drive frequency) by the drive mistuning term λ. Where its associated voltage 

magnitude is V0n, the voltage delivered to drive electrode n can be expressed as: 

𝑉𝑛
2 =  𝑉0𝑛

2𝑒𝑖𝜔𝑡 +  𝑉0𝑛
∗ 2𝑒−𝑖𝜔𝑡 3.8 

where: 

𝜔 =  𝜔0 +  𝜆 𝜆 =  𝜀𝜆  

By placing the two drive electrodes such that they each align with a physical axis it is clear 

that, for axes at an angle of 
𝜋

4
 radians to one another, the forcing exerted by each electrode, as 

calculated using equation 3.6, can be summed to provide the total forcing from the drive 

electrodes along each axis, shown by equation 3.9.  

𝐹𝐷 =  𝛽̌ {𝑉1
2 [

1
0

] +  𝑉2
2 [

0
1

]} 3.9 

This can clearly be simplified to: 

𝐹𝐷 =  𝛽̌ [
𝑉1

2

𝑉2
2] 

3.10 
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By considering equation 3.7, it becomes clear that 𝛽̌ is small, and as such can be expressed: 

𝛽̌ =  𝜀𝛽̂ 3.11 

Further to this, it will prove useful later to divide the forcing described in equation 3.10 into 

real and imaginary components, providing equation 3.12, which describes the forcing exerted 

by the drive electrodes along the gyroscope physical axes. The vectors 𝑔𝐷 and ℎ𝐷 describe the 

real and imaginary components of the forcing magnitude applied from the drive electrode. 

𝐹𝐷 =  𝜀𝛽̂ {𝑓𝐷𝑒𝑖𝜔𝑡 +  𝑓𝐷
∗𝑒−𝑖𝜔𝑡} 3.12 

where 

𝑓𝐷 =  𝑔𝐷 + 𝑖ℎ𝐷   

Evidently, if the modes of vibration are to be used for analysis of the gyroscope, the 

expression of forcing in equation 3.12 is only valid for forcing along the modal axes if these 

are precisely aligned with the physical axes of the gyroscope. However, it was established in 

section 3.1.1 that any perturbations in the stiffness matrix cause the normal modes to be 

misaligned with the physical axes. Consequently, in the same manner as section 3.1.1 the 

expression of forcing along the physical axes must be rotated to align with the normal axes. 

Thus, the expression for forcing along the normal modes of vibration is expressed: 

𝐹̂𝑁 =  𝜀𝛽̂ {𝑓𝑁𝑒𝑖𝜔𝑡 + 𝑓𝑁
∗𝑒−𝑖𝜔𝑡} 3.13 

where 

𝑓𝑁 =  [
(𝑔𝐷1 +  𝜂𝑔𝐷2) + 𝑖(ℎ𝐷1 +  𝜂ℎ𝐷2)

(𝑔𝐷2 −  𝜂𝑔𝐷1) + 𝑖(ℎ𝐷2 −  𝜂ℎ𝐷1)
] 

 

The presence of η in equation 3.13 causes cross-coupling between the components of applied 

forcing – the forcing applied to one mode has an effect on the other. This has implications in 

developing a control scheme to sustain gyroscope vibration, as the forcing applied to adjust 

one mode will inevitably affect the other mode, generating further errors. This effect provides 

a further motivating factor for ensuring that η is as small as possible. 
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The perturbation values provided in table 3.1 are conservative estimates for a ring gyroscope 

provided by [11]. It can be shown that by finding the eigenvectors of the matrix [D], as 

described in section 3.1.1, and entering these parameters for the ring gyroscope described, η 

has a value of 0.028. Hence, it can be considered a small term and expressed as: 

𝜂 =  𝜀𝜂̂ 3.14 

Parameter Perturbation Value 

𝛿1 Mass (direct term) 1 x 10-6 

𝛿2 Mass (cross term) 5 x 10-7 

𝛾
1 Damping (direct term) 1 x 10-4 

𝛾
2 Damping (cross term) 1 x 10-4 

𝜇
1
 Stiffness (direct term) 1 x 10-5 

𝜇
2 Stiffness (cross term) 1 x 10-6 

Table 3.1 - Conservative estimates for the perturbation values for a ring gyroscope 

3.1.3. Perturbation analysis 

To provide a solvable model of the system, perturbation analysis has been used, similar to that 

in [11, 20, 40]. By expressing the equations in terms of different timescales, it becomes 

possible to separate the effects of angular rate from any secular terms (i.e. those terms that 

grow unbounded), thus allowing the behaviour to be efficiently modelled. 

To facilitate this, the small parameter ε is used to define t in terms of fast and slow timescales, 

equations 3.15 and 3.16, respectively. In the case of this analysis, the fast timescale 

corresponds to high frequency behaviour – the ring vibration – whilst the slow timescale 

corresponds to the movement of the vibration pattern. It will be shown that the separation of 

the gyroscope behaviour into these two timescales is crucial for successful implementation of 

a measurement scheme. 
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𝑡̂ =  𝑡 3.15 

𝑡 =  𝜀𝑡 3.16 

Further, the differential operator can be expressed in terms of fast and slow time scales, as in 

equation 3.17. 

𝐷 =  
𝑑

𝑑𝑡
=  𝐷̂ + 𝜀𝐷 + 𝑂(𝜀2) 

3.17 

where 

𝐷̂ =  
𝜕

𝜕𝑡̂
 𝐷 =  

𝜕

𝜕𝑡
 

 

The solution to equation 3.5 can be expressed as an asymptotic expansion: 

𝑥(𝑡̂, 𝑡) =  𝑥(0)(𝑡̂, 𝑡) +  𝜀𝑥(1)(𝑡̂, 𝑡) + 𝑂(𝜀2) 3.18 

Equations 3.5 and 3.18 can then be taken, along with the expressions for the time scales and 

differential operator, and powers of ε equated to provide two recurrent equations up to the 

order ε: 

𝜕2𝑥(0)

𝜕𝑡̂2
+  𝜔0

2[𝐼]𝑥(0) = 0 
3.19 

𝜕2𝑥(1)

𝜕𝑡̂2
− 2

𝜕2𝑥(0)

𝜕𝑡̂𝜕𝑡
− 2[𝑍1]

𝜕𝑥(0)

𝜕𝑡̂
−  𝜔0

2[𝑍2]𝑥(0) +  𝜔0
2[𝐼]𝑥(1) =  𝛽̂𝐹𝑁 

3.20 

where 

[𝑍1] =  [
0 −𝜙̂

𝜙̂ 0
] +  𝜐0𝜔0 [

1 + 𝛾1 𝛾2

𝛾2 1 −  𝛾1
] 𝜙̂ =  

2𝑛

(𝑛2 + 2)
𝜙 

[𝑍2] =  [
𝜉 0
0 −𝜉

] 𝐹𝑁 =  𝜀𝛽̂ {𝑓𝑁𝑒𝑖𝜔𝑡 +  𝑓𝑁
∗𝑒−𝑖𝜔𝑡} 𝑓𝑁 =  [

𝑔𝐷1 + 𝑖ℎ𝐷1

𝑔𝐷2 + 𝑖ℎ𝐷2
] 

It can be noted here that η no longer appears in the forcing terms as it becomes a parameter of 

the order ε2. Parameters of a higher order than ε have been eliminated as they are expected to 

be of little significance considering that the magnitude of ε is of the order 10-5. In order to 
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remove any singularities, it is necessary to find a solution to these equations that eliminates 

any resonance-producing terms. The derivation of this solution is described shortly. 

A solution to equation 3.19 is given by equation 3.21, where terms 𝛼 and 𝛽 are the real and 

imaginary components of the electrode responses relative to a cos(ω0t ̂) reference wave. Φn 

represents the phase of mode n with respect to the reference wave and χn the magnitude of the 

mode n response. 

𝑥(0) =  𝛼 cos 𝜔0𝑡̂ −  𝛽 sin 𝜔0𝑡̂ 3.21 

where: 

𝛼 =  [
𝛼1

𝛼2
] = [

𝜒1 cos Φ1

𝜒2 cos Φ2
] 𝛽 =  [

𝛽1

𝛽2
] = [

𝜒1 sin Φ1

𝜒2 sin Φ2
] 𝛽 = 𝑖𝛽 

 

 

By using this solution to take the appropriate derivatives of x(0) and substituting these into 

equation 3.20, a new expression solely in terms of x(1) is obtained, where the Coriolis and 

damping effects appear in [Z1] and the mistuning effects appear in [Z2]: 

𝜕2𝑥(1)

𝜕𝑡̂2
+ 𝜔0

2[𝐼]𝑥(1) +  sin 𝜔0𝑡̂ {2𝜔0

𝜕

𝜕𝑡
𝛼 +  2𝜔0[𝑍1]𝛼 + 𝜔0

2[𝑍2]𝛽}

+  cos 𝜔0𝑡̂ {2𝜔0

𝜕

𝜕𝑡
𝛽 +  2𝜔0[𝑍1]𝛽 − 𝜔0

2[𝑍2]𝛼} =  𝛽̂𝐹𝑁 

3.22 

The forcing term can also be re-written in a similar way: 

𝐹𝑁 = 2 cos 𝜔0𝑡̂ {𝑘1 cos 𝜆𝑡 −  𝑘2 sin 𝜆𝑡} − 2 sin 𝜔0𝑡̂ {𝑘1 sin 𝜆𝑡 +  𝑘2 cos 𝜆𝑡} 3.23 

where: 

𝑘1 =  [
𝑔𝐷1

𝑔𝐷2
] 𝑘2 =  [

ℎ𝐷1

ℎ𝐷2
] 

For a gyroscope where the modal axes are aligned with the physical axes (i.e. no cross-

coupling is present) η = 0 and, for a gyroscope where the drive frequency matches its resonant 

frequency precisely, λ = 0. From equation 3.23, it is clear that the presence of drive mistuning 



  26 

 

results in the in-phase components of forcing generating some quadrature motion and vice 

versa. This is compounded by the presence of even limited modal cross-coupling, which has 

already been demonstrated to result in cross-coupling (albeit small) between the forces 

applied to each mode of vibration. It is therefore necessary that, as well as ensuring that the 

modes of vibration are aligned as closely as possible with the physical axes, the drive 

frequency must also match the average resonant frequency of the ring as closely as possible. 

As already established, resonant forcing terms appearing in equations 3.19 and 3.20 would 

lead to unbounded solutions. Consequently, it becomes necessary to equate all resonance-

producing terms to zero, with the conditions for this provided by equations 3.24 and 3.25. 

𝜕

𝜕𝑡
𝛼 +  [𝑍1]𝛼 +

𝜔0

2
[𝑍2]𝛽 +  𝐹𝐴 = 0 

3.24 

𝜕

𝜕𝑡
𝛽 + [𝑍1]𝛽 −

𝜔0

2
[𝑍2]𝛼 − 𝐹𝐵 = 0 

3.25 

where: 

𝐹𝐴 =  
𝛽̂

𝜔0
{𝑘1 sin 𝜆𝑡 +  𝑘2 cos 𝜆𝑡} 𝐹𝐵 =  

𝛽̂

𝜔0
{𝑘1 cos 𝜆𝑡 −  𝑘2 sin 𝜆𝑡} 

These slow time conditions describe the envelope of the gyroscope motion, and hence 

describe how the high frequency behaviour is adjusted by the slow time effects. As these 

encapsulate all imperfections, and therefore all sources of error in the gyroscope, it is 

necessary to describe the control scheme solely in terms of these slow time effects. 

It becomes useful to rearrange the forcing expressions FA,B so that they provide a more 

convenient reflection of forcing behaviour. As opposed to considering the individual forcing 

terms as variables in their own right, it is useful for the implementation of a drive scheme to 

consider them as functions of their associated drive phases, where An is the forcing magnitude 

and θDn the drive phase of mode n: 

𝑔𝐷𝑛 = 𝐴𝑛 cos Φ𝐷𝑛 3.26 

ℎ𝐷𝑛 = 𝐴𝑛 sin Φ𝐷𝑛 3.27 
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where: 

𝜃𝐷𝑛 =  𝜔𝑜 𝑡̂ + 𝜆𝑡 +  Φ𝐷𝑛 3.28 

It is then possible to simplify the forcing to provide expressions in terms of a controllable 

variable, An, and a measurable variable, ΦDn. These prove useful for implementation of the 

control scheme and are given by equations 3.29 and 3.30. 

𝐹𝐴 =  
𝛽̂

𝜔0
[
𝐴1 sin(Φ𝐷1 + 𝜆𝑡)

𝐴2 sin(Φ𝐷2 + 𝜆𝑡)
] 

3.29 

𝐹𝐵 =  
𝛽̂

𝜔0
[
𝐴1 cos(Φ𝐷1 + 𝜆𝑡)

𝐴2 cos(Φ𝐷2 + 𝜆𝑡)
] 

3.30 

From these expressions, it is clear that the drive mistuning λ moves the forcing away from the 

measured drive phase, thus slowly degrading the precision of any phase locked loop. This 

reinforces the importance of the previously stated condition that λ = 0. 

3.2. Description in terms of orbital elliptic parameters 

Equation 3.5 provides an accurate representation of the gyroscope dynamics when expressed 

in the modal frame, while equations 3.24 and 3.25 provide details about the slow time 

dynamics that are of interest in the development of a control scheme. However, in order to 

produce a control scheme that can apply forcing appropriately, it is convenient to recast these 

equations of motion in terms of orbital elliptic parameters. It is worth re-iterating here that the 

equations following have been derived using the assumption that angular acceleration terms 

and terms of O(ε2) have been neglected as they can be considered to have a negligible effect 

when compared to those terms of larger magnitude. 

As alluded to in section 2.2, the use of orbital elliptic parameters allows the trajectory of the 

gyroscope to be described in terms of the parameters of an ellipse. Doing so allows errors to 

be more easily measured and controlled, as well as providing a convenient method for the 

measurement of gyroscope rotation. These parameters are shown by figure 3.2, where a is, for 

a perfect gyroscope, the trajectory of vibration, while b is non-zero in the presence of 

imperfections. The angle that the ellipse makes with the reference axis is represented by 

while is known as the orbital phase and represents the position of an arbitrary point on 

the parameter of the ellipse.  
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Figure 3.2 - The orbital elliptic parameters used to describe gyroscope vibration 

The imperfection that has the dominant effect on the size of b is the modal mistuning of the 

gyroscope [17]. This leads to the conclusion that, for a well-tuned stationary gyroscope the 

trajectory is almost a straight line, that is a >> b. This feature becomes important in devising 

the control scheme for the gyroscope. 

The parameter is known as the orbital phase and can be provided by equation 3.31, where 

Φo is the phase difference between it and the reference phase 

𝜃 =  𝜔0𝑡 +  Φ𝑜 3.31 

It will later be shown that the orbital phase can be used to devise a phase locked loop, the 

benefits and design of which are described further in section 4.2. 

The transformations in equations 3.32 and 3.33 are used to describe cartesian coordinates in 

terms of orbital elliptic parameters. By differentiating these, as well as the solutions for xn 

from equation 3.21, setting like terms in xn equal to each other and simplifying, it becomes 

possible to obtain the expressions provided in equations 3.34 to 3.37, where it can be recalled 

that αn and βn can be considered to be the real and imaginary electrode responses for the 

primary and secondary modal pick-offs, respectively, relative to a cos(ω0t ̂) reference signal. 
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𝑥1 = 𝑎 cos 𝜃 cos 𝜑 −  𝑏 sin 𝜃 sin 𝜑 3.32 

𝑥2 = 𝑎 cos 𝜃 sin 𝜑 +  𝑏 sin 𝜃 cos 𝜑 3.33 

𝛼1 = 𝑎 cos Φ𝑜 cos 𝜑 − 𝑏 sin Φ𝑜 sin 𝜑 3.34 

𝛼2 = 𝑎 cos Φ𝑜 sin 𝜑 + 𝑏 sin Φ𝑜 cos 𝜑 3.35 

𝛽1 = 𝑎 sin Φ𝑜 cos 𝜑 + 𝑏 cos Φ𝑜 sin 𝜑 3.36 

𝛽1 = 𝑎 sin Φ𝑜 sin 𝜑 − 𝑏 cos Φ𝑜 cos 𝜑 3.37 

As the electrode responses are measurable quantities obtained by decomposing the relevant 

pick-off responses, it becomes possible to take combinations of those expressed by equations 

3.34 to 3.37 to form the measurable invariants in equations 3.38 to 3.43. These invariants 

were derived through a trial-and-error process, using a script to cycle through a number of 

combinations of electrode response combinations, with those that provided the most 

convenient measures of ellipse parameters chosen for use in the control scheme. 

𝐸1 =  𝛼1
2 +  𝛼2

2 +  𝛽1
2 +  𝛽2

2 =  𝑎2 + 𝑏2 3.38 

𝐸2 = 2(𝛼1𝛽2 −  𝛼2𝛽1) =  −2𝑎𝑏 3.39 

𝐸3 =  𝛼1
2 −  𝛼2

2 +  𝛽1
2 − 𝛽2

2 =  (𝑎2 −  𝑏2) cos 2𝜑 3.40 

𝐸4 = 2(𝛼1𝛼2 + 𝛽1𝛽2) =  (𝑎2 −  𝑏2) sin 2𝜑 3.41 

𝐸5𝑅 =  𝛼1
2 +  𝛼2

2 −  𝛽1
2 −  𝛽2

2 =  (𝑎2 −  𝑏2) cos 2Φ𝑜 3.42 

𝐸5𝐼 = 2(𝛼1𝛽1 +  𝛼2𝛽2) =  (𝑎2 −  𝑏2) sin 2Φ𝑜 3.43 

As discussed previously, it is assumed that a >> b. Therefore, from these it is possible to 

surmise that E1 ≈ a2, which in turn leads to the conclusion that E2 is proportional to b. These 

properties provide convenient measures of a and b. Finally, it is clear that the ellipse 

precession and orbital phase, φ and Φo, can be calculated using equations 3.44 and 3.45. 
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𝜑 =  
1

2
tan−1

𝐸4

𝐸3
 

3.44 

Φ𝑜 =  
1

2
tan−1

𝐸5𝐼

𝐸5𝑅
 

3.45 

With equations 3.38 to 3.43 providing measurable quantities, it becomes logical to rewrite the 

conditions described in equations 3.24 and 3.25 in terms of these invariants. It is first 

necessary to express these conditions in terms of the orbital elliptic parameters by substituting 

in the expressions for electrode responses in equations 3.34 to 3.37. By expanding the 

conditions in equations 3.24 and 3.25 to provide those in equations 3.46 to 3.49, it becomes 

possible to rearrange them using the processes detailed in equations 3.50 to 3.53 to provide 

the coupled equations 3.54 to 3.57. 
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𝐴 =  𝛼̇1 + 𝜐0𝜔0{(1 +  𝛾1)𝛼1 + 𝛾2𝛼2} −  𝜙̂𝛼2 + 
𝜔0𝜉

2
𝛽1 +  

𝛽̂

𝜔0
𝐴1 sin(Φ𝐷1 + 𝜆𝑡)

= 0 

3.46 

𝐵 =  𝛼̇2 +  𝜐0𝜔0{(1 −  𝛾1)𝛼2 +  𝛾2𝛼1} +  𝜙̂𝛼1 − 
𝜔0𝜉

2
𝛽2 + 

𝛽̂

𝜔0
𝐴2 sin(Φ𝐷1 + 𝜆𝑡)

= 0 

3.47 

𝐶 =  𝛽̇1 +  𝜐0𝜔0{(1 +  𝛾1)𝛽1 +  𝛾2𝛽2} −  𝜙̂𝛽2 − 
𝜔0𝜉

2
𝛼1 −  

𝛽̂

𝜔0
𝐴1 cos(Φ𝐷1 + 𝜆𝑡)

= 0 

3.48 

𝐷 =  𝛽̇2 +  𝜐0𝜔0{(1 +  𝛾1)𝛽2 +  𝛾2𝛽1} −  𝜙̂𝛽1 + 
𝜔0𝜉

2
𝛼2 −  

𝛽̂

𝜔0
𝐴2 cos(Φ𝐷1 + 𝜆𝑡)

= 0 

3.49 

{𝐴 cos 𝜑 +  𝐵 sin 𝜑} cos Φ𝑜 +  {𝐶 cos 𝜑 +  𝐷 sin 𝜑} sin Φ𝑜 = 𝐸 3.50 

{𝐶 sin 𝜑 +  𝐷 cos 𝜑} cos Φ𝑜 − {𝐴 sin 𝜑 −  𝐵 cos 𝜑} sin Φ𝑜 = 𝐹 3.51 

{𝐶 sin 𝜑 +  𝐷 cos 𝜑} sin Φ𝑜 +  {𝐴 sin 𝜑 −  𝐵 cos 𝜑} cos Φ𝑜 = 𝐺 3.52 

{𝐴 cos 𝜑 +  𝐵 sin 𝜑} sin Φ𝑜 −  {𝐶 cos 𝜑 +  𝐷 sin 𝜑} cos Φ𝑜 = 𝐻 3.53 

𝐸 =  𝑎̇ + 𝑎𝜔0𝜐0(1 + 𝛾1 cos 2𝜑  + 𝛾2 sin 2𝜑) +  
1

2
𝑏𝜔0𝜉 sin 2𝜑 −  𝐹1 = 0 

3.54 

𝐹 =  𝑏̇ − 
1

2
𝑎𝜔0𝜉 sin 2𝜑 + 𝑏𝜔0𝜐0(1 −  𝛾1 cos 2𝜑 −  𝛾2 sin 2𝜑) − 𝐹2 = 0 

3.55 

𝐺 =  𝜑̇ −  𝜔0𝜐0(𝛾1 sin 2𝜑 −  𝛾2 cos 2𝜑) +  
𝑏

𝑎
(Φ̇𝑜 +  

1

2
𝜔0𝜉 cos 2𝜑) +  𝜙̂ +  𝐹3 = 0 

3.56 

𝐻 =  Φ̇𝑜 −  
1

2
𝜔0𝜉 cos 2𝜑 +  

𝑏

𝑎
{𝜙̂ +  𝜑̇ +  𝜔0𝜐0(𝛾1 sin 2𝜑 − 𝛾2 cos 2𝜑)} −  𝐹4 = 0 

3.57 
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where: 

𝐹1 =  
𝛽̂

𝜔0

{𝐴1 sin 𝜎1 cos 𝜑 + 𝐴2 sin 𝜎2 sin 𝜑} 

𝐹2 =  
𝛽̂

𝜔0

{𝐴1 cos 𝜎1 sin 𝜑 −  𝐴2 cos 𝜎2 cos 𝜑} 

𝐹3 =  
𝛽̂

𝜔0

{𝐴1 sin 𝜎1 sin 𝜑 −  𝐴2 sin 𝜎2 cos 𝜑} 

𝐹4 =  
𝛽̂

𝜔0

{𝐴1 cos 𝜎1 cos 𝜑 +  𝐴2 cos 𝜎2 sin 𝜑} 

𝜎𝑛 =  Φ𝐷𝑛 +  𝜆𝑡 + Φo 

By assuming that a >> b, so that E1 ≈ a2 and therefore any components of forcing multiplied 

by b are negligible in comparison to those multiplied by a, extensively rearranging and 

substituting E1 and E2 into these, the equations in 3.58 to 3.61 are derived, where ω0 is the 

average resonant frequency of the two modes of vibration, υ0 scaled damping ratio, γn are 

damping perturbations, ξ is the scaled modal mistuning, 𝜙̂ the scaled applied rate, φ the 

ellipse precession and Fn is the force applied by the drive electrodes to the relevant parameter. 

𝐸̇1 = −𝜔0𝜐0(1 +  𝛾1 cos 2𝜑  + 𝛾2 sin 2𝜑)𝐸1  + √𝐸1𝐹1 3.58 

𝐸̇2 =  −𝜔0𝜉 sin 2𝜑 𝐸1 − 2𝜔0𝜐0𝐸2 −  √𝐸1𝐹2 3.59 

𝜑̇ =  𝜔0𝜐0(𝛾1 sin 2𝜑 − 𝛾2 cos 2𝜑) −  (
1

2
𝜔0𝜉 cos 2𝜑)

𝐸2

𝐸1
−  𝜙̂ −  

1

√𝐸1

𝐹3 
3.60 

Φ̇𝑜 =  
1

2
𝜔0𝜉 cos 2𝜑 −  {𝜔0𝜐0(𝛾1 sin 2𝜑 −  𝛾2 cos 2𝜑)}

𝐸2

𝐸1
+  

1

√𝐸1

𝐹4 
3.61 

These coupled equations describe the envelope of the gyroscope vibration, crucially allowing 

its angle to be extracted. It is clear from these that, in the absence of imperfections and 

forcing,  ̇ = -ϕ̂ and hence the input angle to the gyroscope is proportional to the change in 

angle of the ellipse. It therefore becomes clear that any control system must be focussed on 
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removing as many imperfections as possible, while ensuring that any force used to do so is 

appropriately nulled. 
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Chapter 4. Control scheme description 

4.1. Control scheme design 

Equation 3.60 states that, in the absence of any imperfections in the structure of the gyroscope 

and in the absence of forcing, the rate of precession of the ellipse is proportional to that of the 

gyroscope. Consequently, the angle of gyroscope rotation is proportional to the angle of 

precession of the ellipse.  As such, any control system must eliminate the effect of these 

imperfections as far as possible, while ensuring that any forces that arise as a result of doing 

so do not have any influence on the ellipse angle. 

Due to the high Q-factor of the device, it can be assumed that the damping perturbations are 

far smaller than the mistuning perturbations. Consequently, a scheme for increasing the 

accuracy of the gyroscope should primarily focus on reducing the effect of mistuning. 

The mistuning manifests itself in the form of the mistuning parameter, ξ, which is the scaled 

quantity that describes the level of mistuning between response frequencies of the two modes 

of vibration. For angular rate to be the dominant effect in the behaviour of the ellipse 

precession, the input rate must be much greater than the term 
𝜔0𝜉𝐸2

2𝐸1
 in equation 3.60, where 

E2/E1 corresponds to the ratio of minor axis to major axis of the measurement ellipse. 

Although the precise magnitude of the minimum rate varies according to the level of 

mistuning, for a gyroscope similar to that described in this project with no control scheme 

applied the rate must exceed 1rad.s-1 to achieve an error of less than 10%, with the rate 

applied in practice generally being much higher than this [11]. 

While ξ can be reduced by using an offline tuning method such as electrostatic tuning, as 

described in section 4.3.1, it also becomes clear from equation 3.60 that its effect on measured 

precession angle can be minimised further by driving the ratio 
E2

E1
 to zero.   

As stated previously, if the major axis of the ellipse, a, is much greater than its minor axis, b, 

E1 ≈ a2. Therefore, maintaining E1 at a constant value will ensure that a is constant, in which 

case it becomes clear from equation 3.39 that E2 is proportional to b.  Hence, a control system 

to reduce the effect of stiffness imperfections on the measurement of gyroscope angle should 

involve the reduction of modal mistuning, the sustenance of E1 at a constant value and the 

minimisation of E2 to reduce the effect of modal mistuning on ellipse precession. It is clear 
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that, if E2 is proportional to b, this control scheme has the effect of flattening the ellipse 

described by figure 3.2.  

The effectiveness of such a control scheme is studied further in chapter 5. 

4.2. Phase locked loop 

The analysis in section 3.1.2 indicates that to achieve an appropriate response, the forcing 

applied via the drive electrodes must have a frequency that is equal to the average resonant 

frequency of the two modes of vibration, ω0. The use of a phase locked loop, (PLL), is a 

convenient method to achieve this. 

The orbital phase, Φo, has been chosen as the parameter to be used in controlling the drive 

frequency. This has the advantage of not relying on the response phases, which vary as 

rotation is applied to the gyroscope, so provides a stable parameter to be used for the control 

of drive frequency. Furthermore errors inherent in the system, such as electronic delays, result 

in the phase values of both modes of vibration being away from their expected values of 90º. 

Coupling this with the requirement that the gyroscope must be driven at the average resonant 

frequency of the two modes of vibration to achieve equal modal amplitude, Φo becomes a 

convenient parameter to achieve this, as it is not dependent on the phase of either mode. 

Nevertheless, it can be noted from equation 3.61 that the orbital phase is modulated by cos(φ), 

that is it is dependent upon the angle of ellipse precession, φ, and is acted upon by the forcing 

term F4. The cos(φ) term is multiplied by the mistuning parameter, which should be 

minimised prior to production using electrostatic tuning, so can be considered of little 

importance when compared to the F4 term. It is likely that F4 would have a considerable effect 

on the behaviour of Φo and as such must be nulled if the phase locked loop is to be a success. 

Section 6.1 provides experimental results that demonstrate the effectiveness of such a PLL 

when implemented. Finally, section 6.4.4 describes the performance of the PLL while under 

rate. 
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4.3. Modal tuning 

4.3.1. Initial tuning 

As described previously, it is a necessity for a successful control scheme that the modal 

mistuning, along with any cross-coupling present, must initially be as small as possible. Due 

to the proportional relationship between mistuning and ellipse width, it is this condition that 

makes the assumption a>>b valid, and as such is of crucial importance to any control scheme 

that is derived using orbital elliptic parameters (as this makes possible the use of the 

relationships E1 ≈ a2 and E2 is proportional to b). 

In order to achieve a small level of modal mistuning electrostatic tuning has been 

implemented. This method, as described in [22], uses a series of tuning electrodes around the 

inside of the ring to apply electrostatic forces that act upon the stiffness matrix in equation 3.1 

to independently adjust the direct mistuning terms and the cross terms. The electrostatic 

forces can therefore be represented as a modification to a stiffness matrix, where for a single 

electrode placed at angle ψ from the modal axis and with arc angle α this modification is 

provided in equation 4.1, where Vj is the voltage applied through the electrode. 

[𝐾𝐸𝑗] =  𝛽̌𝑉𝑗
2 [

2𝛼 +  
1

𝑛
cos 2𝑛𝜓𝑗 sin 2𝑛𝛼

1

2𝑛
sin 2𝑛𝜓𝑗 sin 2𝑛𝛼

1

2𝑛
sin 2𝑛𝜓𝑗 sin 2𝑛𝛼 2𝛼 −  

1

𝑛
cos 2𝑛𝜓𝑗 sin 2𝑛𝛼

] 4.1 

The gyroscope tuning arrangement consists of sixteen tuning electrodes placed around the 

inside perimeter of the ring in pairs such that each pair is bisected by the direct response of its 

corresponding drive or pick-off electrode. The placement of such a pairing is shown in figure 

4.1. There are two sets of tuning electrodes, with each set consisting of four pairs positioned 

at 90° from one another. Note that ψ is chosen such that it provides the simplest solution to 

the stiffness matrix.  

By taking combinations of the voltages applied through these electrodes, as detailed in [22], 

the terms in equations 4.2 to 4.4 are derived, which in turn can be applied to the electrostatic 

stiffness matrix to provide equation 4.5. This matrix can then be expressed in terms of the 

calculable Cn and Dn, as in equation 4.6. 
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Figure 4.1 - The placement of a pair of tuning electrodes relative to a modal axis 

𝐾11 = 𝛽̌ {2𝛼(𝑉𝑀1
+ 2

+  𝑉𝑀1
− 2 +  𝑉𝑀2

+ 2
+  𝑉𝑀2

− 2)

+  
1

𝑛
sin 2𝑛𝛼 cos 2𝑛𝛼 (𝑉𝑀1

+ 2
+ 𝑉𝑀1

− 2 − 𝑉𝑀2
+ 2

− 𝑉𝑀2
− 2)} 

4.2 

𝐾12 =  𝐾21 = 𝛽̌
1

2𝑛
sin 2𝑛𝛼 cos 2𝑛𝛼 (𝑉𝑀1

+ 2
−  𝑉𝑀1

− 2 −  𝑉𝑀2
+ 2

+  𝑉𝑀2
− 2) 4.3 

𝐾22 = 𝛽̌ {2𝛼(𝑉𝑀1
+ 2

+ 𝑉𝑀1
− 2 + 𝑉𝑀2

+ 2
+ 𝑉𝑀2

− 2)

−  
1

𝑛
sin 2𝑛𝛼 cos 2𝑛𝛼 (𝑉𝑀1

+ 2
+ 𝑉𝑀1

− 2 + 𝑉𝑀2
+ 2

+ 𝑉𝑀2
− 2)} 

4.4 

[𝐾𝐸] =  [
𝐾11 𝐾12

𝐾21 𝐾22
] 4.5 

[𝐾𝐸] =  [
𝜚1(𝐶1 +  𝐶2) +  𝜚2(𝐶1 −  𝐶2) 𝜚3(𝐷1 −  𝐷2)

𝜚3(𝐷1 −  𝐷2) 𝜚1(𝐶1 +  𝐶2) − 𝜚2(𝐶1 −  𝐶2) 
] 4.6 

Where: 

𝜚1 = 2𝛽̌𝛼 𝜚2 =  
𝛽̌

𝑛
sin 2𝑛𝛼 cos 2𝑛𝛼 𝜚3 =  

𝛽̌

2𝑛
sin 2𝑛𝛼 cos 2𝑛𝛼 

𝐶1 =  𝑉𝑀1
+ 2

+  𝑉𝑀1
− 2 𝐶2 =  𝑉𝑀2

+ 2
+  𝑉𝑀2

− 2 𝐷1 =  𝑉𝑀1
+ 2

− 𝑉𝑀1
− 2 

𝐷2 =  𝑉𝑀2
+ 2

−  𝑉𝑀2
− 2  
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Using this method, both cross and direct stiffness perturbations can be nulled by adjusting the 

relevant voltages to achieve suitable values of Dn and Cn respectively. The procedure 

employed involves tuning the gyroscope in rate mode (i.e. exciting the first mode of vibration 

only to resonance), and then first reducing the second mode amplitude to zero by adjusting the 

cross terms of the stiffness matrix. The ratio of the real to imaginary components of the 

second mode response is then maximised by adjusting the direct terms. This method has the 

effect of reducing coupling between the first and second mode of vibration first through the 

elimination (as far as possible) of the ‘undesired’ mode, and then by rotating this second 

mode to a more desirable alignment. 

By following this method, the gyroscope has been electrostatically tuned to a low level of 

modal mistuning, which is demonstrated to be of the order of mHz in section 6.1. This is a 

very small difference in resonant frequency between the two modes and provides a convenient 

starting point for the implementation of the control scheme described. 

4.3.2. Application of E2 to tuning 

The width of the ellipse described in section 3.2 is primarily affected by the level of modal 

mistuning [20], which leads to the result that the size of E2 is proportional to the level of 

modal mistuning within the gyroscope, as it was previously established that E2 ∝ b. This 

behaviour can be observed by the contour plot of the ratio E2/E1 in figure 4.2. This clearly 

shows that, when the gyroscope is described in terms of its physical coordinates (i.e. by using 

equation 3.1), E2/E1 exhibits a minimum where the cross coupling and direct mistuning fall to 

zero.  

This relationship suggests that it may be possible to devise an algorithm that can 

automatically tune the gyroscope by searching for the minimum value of E2 as the cross and 

direct terms are independently adjusted by using the tuning electrodes described in section 

4.3.1. However, this relationship is complicated somewhat on the application of angular rate. 

It is clear from figure 4.3 that the value of E2/E1 at any given level of modal mistuning is 

modulated by the ellipse angle. Nevertheless, this problem only arises if rotation is applied to 

the gyroscope while tuning is in progress. 
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Figure 4.2 - Contour plot of E2 showing the effect of mistuning in the stiffness matrix 

 

Figure 4.3 - Plot of E2/E1 showing the effect of angle at a range of levels of modal mistuning 

Consequently, it becomes clear that, while there is no rotation applied to the gyroscope, it is 

possible to produce a control scheme that can utilise E2 to maintain a high degree of tuning 

within the gyroscope through adjustment of the electrodes used for the electrostatic tuning 

described previously. Although not practical to tune the gyroscope in real-time, the scheme 

provides a reliable post-production automatic tuning method. 

Due to the complexity imposed by the effect of rate, the implementation of such a scheme is 

beyond the scope of this project but is a very useful avenue for future research. 
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4.4. Control scheme implementation 

The gyroscope is mounted onto a custom printed circuit board, which is in turn connected to 

an Analog Devices ADSP 21469 processing board. The signals to and from the gyroscope are 

processed using a combination of C and assembly code, with the control scheme being 

implemented in a C program. For experimental purposes, a Matlab-based graphical user 

interface is used to operate the program and log data. 

As discussed in section 4.2 the orbital phase, Φo, has been used to construct a PLL. This PLL 

uses a conventional PID control to adjust the drive frequency according to Φo, the required 

value of which is discussed in section 6.1. 

The conditions required of E1 and E2 are achieved through the use PID controls that alter the 

gains of the two drive electrodes, A1 and A2, which are used to control E1 and E2 respectively. 

The set point of E1 has been chosen such that it produces a clear modal response but does not 

approach the limit of the ring’s vibration, while the set point of E2 is zero. The drive phases 

have been chosen such that the size of E2 is reduced as far as possible before activation of the 

control scheme. For this gyroscope, that is equal drive phases, (i.e. Φ1 = Φ2, hence σ1 = σ2). 

Finally, it has been established previously that, in order for the measurement of angle to be as 

accurate as possible, there must be no forcing acting upon the precession of the ellipse. 

Similarly, there must be no forcing acting upon the orbital phase if it is to have a consistent 

value when the ring is vibrating at resonance.  

The conditions described in equations 4.7 and 4.8 can be implemented (subject to the phases 

described above being used in the forcing) to ensure that forcing on the ellipse precession and 

orbital phase is zero.  

𝐴2 =  𝐴1 tan 𝜑 4.7 

𝐴1 =  −𝐴2 tan 𝜑 4.8 

It is clear that, with just the two drive electrodes in A1 and A2, it is not possible to operate a 

control loop for E2 while ensuring that the force exerted on the precession and orbital phase is 

zero. However, it will be possible to activate all three conditions separately in order to 

demonstrate their effectiveness if extra control electrodes were to become available. Possible 

gyroscope designs that would facilitate this control scheme are described in chapter 8. 
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Furthermore, where φ = 45° these conditions ensure that there is no forcing on the orbital 

phase or precession angle if A1 = A2. This is a useful condition for stationary tests, such as the 

frequency sweeps and phase locked loop assessment described in chapter 6.  

At this point, it may be postulated that a control scheme can be devised that only nulls E2, and 

ignores the value of E1, as equation 3.58 indicates that any gain used to do so will elicit a 

response in E1. Such a scheme would therefore allow the required degrees of freedom in the 

system to be reduced and hence aid simplification of the control scheme. 

However, recall from section 4.1 that, in order for E2 to be proportional to b (a requirement 

for the proposed control scheme), a must be constant. Therefore, as E1 is proportional to a2, 

E1 must be sustained at a constant value and, as a result, all four drive gains must be 

controlled.  
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Chapter 5. Gyroscope Modelling 

5.1. Simple model 

In order to take advantage of the ease with which continuous systems can be modelled, 

Simulink has been chosen to produce a simulation of the control scheme described in chapter 

4. 

Initially, the gyroscope motion described by equation 3.3 has been modelled assuming that 

the gyroscope design is perfect, (i.e. there is no cross-coupling). The intention behind this 

model is to demonstrate the basic principles behind the operation of the rate integrating 

gyroscope. The model incorporates the realistic properties derived from those in table 3.1 to 

model the gyroscope, these being provided in table 5.1. The Simulink model produced is 

shown in figure 5.1. 

Parameter Parameter Name Value 

ω0 (rad.s-1) Average resonant frequency 2π14259 

ε Scaling parameter 10-5 

ζ0 Damping ratio 5 x 10-5 

γ1,2 Damping perturbations 10-4 

μ (Hz) Modal mistuning 10-5 

𝛽̌ (N) Capacitive force from electrodes 1.4 x 10-8 

Table 5.1 - Parameters used in the gyroscope model 
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Figure 5.1 - Simulink model of the ring gyroscope 
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Figure 5.2 - The subsystems in the model of a ring gyroscope – as viewed from landscape, mode 1 subsystem is top and 

mode 2 subsystem  is bottom 

Figure 5.3 shows the effect of rate on the free vibration trajectory in modal space over a time 

period of 0.5s, where the vibration trajectory is described by the displacement of the ring 

relative to the two orthogonal modes x1 and x2 – as such, figure 5.3 can be considered to be 

the trace of a point on the ring during free vibration. With no rate applied the vibration 

trajectory takes the form of a straight line. However, on the application of rate this starts to 

rotate, where it should be noted here that due to the unforced nature of the vibration the 

magnitude of vibration can also be seen to be reducing as the vibration pattern rotates. It is 

this rotation that is proportional to the gyroscope input angle and is measured by the control 

scheme described previously. 

This rotation arises from the transfer of energy between the two modes of vibration on the 

application of rate. This ‘beating’ energy transfer is shown in figure 5.4, which demonstrates 

the magnitude of vibration for two different applied rates. The increased frequency of energy 
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transfer at higher rates can be noted from these, and they therefore provide an excellent 

visualisation of the vibration behaviour described in section 1.3. 

 

Figure 5.3 - The modal vibration pattern where no rate is applied (top) and a rate of 100rad.s-1 is applied (bottom) 

With imperfections included in the modelling, changes in the vibration envelope become 

apparent.  This is most clearly manifested in figure 5.5, which is a plot of the angle of the 

envelope of the modal vibration pattern (i.e. φ) with and without imperfections included at 

zero rate. With no imperfections included in the model, the vibration trajectory remains at a 

constant angle. However, as imperfections are introduced there is both drift and an oscillatory 

noise element, which appear in any measurement of rate. It is these sources of error that the 

control scheme must eliminate. 
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Figure 5.4 - Modal response with a rate of 50rad.s-1 (top) and 100rad.s-1 (bottom) applied 

 

Figure 5.5 - Measured precession at zero rate without imperfections (top) and with all imperfections (bottom) 
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5.2. Control scheme proof of concept 

Although it would be possible to make a relatively simple adaptation to the model described 

in section 5.1 to obtain a description of the gyroscope motion in terms of the orbital elliptic 

parameters, such a system would incorporate the fast-time components of vibration, which are 

of little interest when considering the control scheme proposed. Consequently, equations 3.58 

to 3.61 have been modelled directly to demonstrate the feasibility behind the control scheme 

proposed while using a computationally efficient model.  

In order to produce a computationally more efficient model, the equations of motion were 

scaled by defining each of the variables measured as a product of a scaling parameter and 

corresponding scaled variable, as shown below, where subscript c represents the scaling 

parameter for a given variable:  

𝐸1 =  𝐸1𝑐𝜀1 𝐸2 =  𝐸2𝑐𝜀2 𝜑 =  𝜑𝑐Ψ Φ𝑜 =  Φ𝑐Γ𝑜 

𝑡 = 𝑡𝑐𝜏  Φ𝐷𝑛 =  Φ𝑐Γ𝐷𝑛   

By substituting these into the equations of motion described previously and rearranging, 

equations 5.1 to 5.4 are derived. These provide a description of the gyroscope motion that can 

be modelled efficiently, thus considerably reducing the time required to run each simulation 

of gyroscope behaviour.  The values assigned to the scaling parameters are provided by table 

5.2. 

Parameter Value 

tc 10-5 

E1c 10-12 

E2c 10-15 

φc 10-2 

Φc 10-5 

Table 5.2 - Parameters used to scale the equations of motion 
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𝜀1̇ = −𝜔0𝜐0(1 +  𝛾1 cos(2𝜑𝑐Ψ)  +  𝛾2 sin(2𝜑𝑐Ψ))𝜀1𝑡𝑐  + 
√𝜀1𝑡𝑐

√𝐸1𝑐

𝐹1 
5.1 

𝜀2̇ =  −𝜔0𝜉 sin(2𝜑𝑐Ψ)
𝐸1𝑐𝑡𝑐

𝐸2𝑐
𝜀1 − 2𝜔0𝜐0𝜀2𝑡𝑐 −  

√𝐸1𝑐𝜀1

𝐸2𝑐
𝐹2 

5.2 

Ψ̇ =  𝜔0𝜐0(𝛾1 sin(2𝜑𝑐Ψ) −  𝛾2 cos(2𝜑𝑐Ψ))
𝑡𝑐

𝜑𝑐
−  (

1

2
𝜔0𝜉 cos(2𝜑𝑐Ψ))

𝐸2𝑐𝑡𝑐

𝐸1𝑐𝜑𝑐

−  𝜙̂
𝑡𝑐

𝜑𝑐
−  

𝑡𝑐

𝜑𝑐√𝐸1𝑐𝜀1

𝐹3 

5.3 

Γ̇𝑜 =  
1

2
𝜔0𝜉 cos(2𝜑𝑐Ψ)

𝑡𝑐

𝜙𝑐
−  {𝜔0𝜐0(𝛾1 sin(2𝜑𝑐Ψ) −  𝛾2 cos(2𝜑𝑐Ψ))}

𝜀2𝐸2𝑐𝑡𝑐

𝜀1𝐸1𝑐𝜙𝑐

+  
𝑡𝑐

𝜙𝑐√𝐸1𝑐𝜀1

𝐹4 

5.4 

In order to prove the concept of the control system the model was simplified somewhat, with 

the drive forces assumed to be at resonance and not modulated by either the angle or any of 

the phases, as they are in the full equations of motion. Further, forcing on the orbital phase 

and precession angle was set to zero, as is the ideal condition. Therefore, the model contains 

stiffness imperfections – the targets of the control system – and damping imperfections as the 

only sources of error.  

The parameters described by table 5.1 have again used in the model, but by scaling these with 

ε as described in chapter 3, the parameters in table 5.3 are obtained. 

Parameter Value 

υ0 5 

ξ (Hz) 1 

𝛽̌ (N) 1.4 

Table 5.3 - Rescaled parameters 

Figure 5.6 shows the Simulink model produced, with figure 5.7 showing the various 

subsystems – representing E1, E2, φ and Φ0 (the major and minor axes of the ellipse, and the 

vibration precession pattern and orbital phase, respectively). From these figures, it can be 
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noted that PID controls have been used to simulate the application of forcing that can sustain 

E1 (and therefore the gyroscope vibration) and null E2 (the effect of modal mistuning) as 

required, whereas the inputs to F3 and F4 are constants of value zero. This fulfils the control 

scheme requirements on a basic level to allow proof of concept without the need for 

incorporating sources of error such as parasitic forcing between electrode pairs that, while 

they may occur on implementation of the control scheme, are not relevant to assessing the 

effectiveness of the control scheme described in reducing the effect of modal mistuning.   

 

Figure 5.6. Simulink model of the control scheme 
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Figure 5.7. Subsystems in the simple Simulink model (clockwise from top left as viewed in landscape, E1, E2, φ and Φo) 
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With a rate of 10rad.s-1 applied, it can be noted from figure 5.8 that, while E1 is sustained, E2 

can be driven to be close to zero. Although this is not a surprising effect considering the 

simplified nature of the model, the effect of this reduction in magnitude of E2 on the accuracy 

of measured rate is evident from figure 5.9, where the ratio of measured rate to input rate is 

driven to be much closer to minus one, (where it has been established from equation 3.60 that 

minus one would be the ideal value). This improvement translates to a 100-fold improvement 

in measurement accuracy over a rate integrating gyroscope where E2 is not controlled.  

 

Figure 5.8 - E1 and E2 magnitude before E2 control activation (top) and after control activation (bottom) 
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Figure 5.9 - Improvement in measurement accuracy on activation of the control for E2 

Figure 5.10 shows that the potential improvement occurs for a range of rates and levels of 

modal mistuning. It is clear from these that increasing rate has no effect on the mean ratio of 

input to output angle for both the case where E2 is controlled and where it isn’t, although 

activating the E2 control loop drives the ratio closer to its ideal value. However, it is clear that, 

with no control loop, the ratio of input to output angle increases as modal mistuning increases. 

Nevertheless, the control loop is successful at consistently reducing this ratio back to its ideal 

value and as such can be deemed to be effective at all levels of modal mistuning that are 

likely to be encountered once the gyroscope has been successfully tuned. 

Despite the promising results, the control scheme described by the model is very much 

idealised, and during operation there are likely to be further sources of inaccuracy, including 

drive mistuning and electronics delays. Such errors will result in the control scheme being 

less effective than predicted by this modelling. However, many of these inaccuracies are later 

shown by experimental results to be small, or to have an effect that is easily nullified.  
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Figure 5.10 - Average ratio of input to measured angle for increasing levels of rate (top) and modal mistuning (bottom), 

input rate = 100rad.s=1, where in both cases the uncontrolled case is red and controlled case is blue 



  54 

 

Chapter 6. Initial gyroscope characterisation 

6.1. Experimental set-up 

The gyroscope is mounted upon a custom printed circuit board, which is in turn mounted on 

an Analog Devices ADSP-21469 processor for the purposes of signal analysis. For the testing 

of performance under rate, the gyroscope and associated circuitry are mounted upon a CUPE 

oscillating rate table, as shown in figure 6.1. 

 

Figure 6.1 - The gyroscope (circled in red) mounted on a PCB, DSP board and CUPE rate table 

For the purposes of data collection, gyroscope data is output via serial connection to a data 

file on a separate laptop by means of a custom-designed Matlab program. 

The CUPE rate table can operate at rates of up to 300°s-1, although being an oscillating rate 

table the maximum rate is dependent upon frequency of oscillation. It is operated using a 

square wave signal, which produces the displacement input seen in figure 6.2. It should be 

noted that the input signal oscillates about zero degrees precession, whereas due to the drive 

conditions of the gyroscope the output will oscillate about 45°. However, the change in angle 

of the output, for an ideal gyroscope, should match that of the input. 

For the purposes of any tests that involve the application of rate, the positive slopes are to be 

considered continuous inputs of positive rate, and the negative slopes continuous inputs of 

negative rate. The rate applied is further restricted by limitations on the data acquisition 

program loaded onto the control laptop, which allows a sampling rate of just 10Hz, (although 

the DSP board is of a sufficient standard for data processing). To obtain meaningful results 

(i.e. greater than 10 samples per period of applied rate in both the positive and negative 
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directions) the input signal frequency should not exceed 0.5Hz, thus allowing 1s of 

continuous rate to be applied in either direction per cycle. Considering the displacement limits 

of the rate table, this leads to a theoretical maximum rate of 300°s-1 being applicable. Despite 

this, the maximum rate that can be applied to the rate table is limited to approximately 80°s-1. 

This limit arises because the momentum of the rate table at higher rates generates flexure in 

the gyroscope fixture at the points where the rate table direction of rotation changes between 

oscillations. This flexure in turn results in undesired movement of the gyroscope, which is 

likely to influence any measurements taken close to these points of direction change. 

The information regarding direction change of the rate table is not necessarily distinguishable 

as the precise location of the direction change will be at some unspecified point between the 

two data points either side of the change in gradient. As such, during the analysis of data from 

the linearity and scale factor tests described in section 7.2 the most extreme data points of 

each sample of gradient have been disregarded. 

 

Figure 6.2 – A full cycle of a 1Hz 200deg.s-1 step input signal 

All tests conducted on the gyroscope have been taken from the IEEE Standard 1431 [26]. 

These tests have been chosen as they are broadly in line with what is reported in the literature, 

and as such produce results that are comparable to existing research. In line with these 

standards, the output data to be measured is the recorded change in angle over one sample of 

time, with there being sufficient samples taken to ensure repeatability of the experiment.  

With the experiment being somewhat limited by the performance of the rate table apparatus, 

for all experiments involving tests of increasing rate the range of angular rates tested was 

between 5°s-1 and 80°s-1 with an oscillation period of 2s. Although these rates are low for the 

usual applications of a rate integrating gyroscope, they are relevant as it is at low rates that 

errors caused by structural perturbations have the most noticeable effect of measured rate. It 
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was established in section 4.1 that a rate of 1rad.s-1 (approximately 57°s-1) forms a rate 

threshold for performance of the gyroscope – as such, the range of 5°s-1 to 80°s-1 comfortably 

encloses this threshold and allows a demonstration of performance in the range of operating 

rates where such a control scheme is likely to be most necessary. 

6.2. Bandwidth and frequency measurement 

The Q-factor of a mode of vibration is a measure of damping, and can be defined as the ratio 

of maximum energy in the system to that dissipated during one radian of system oscillation 

[41]. It defines how underdamped a system is. 

For a perfect freely-vibrating system, the modal response is maximised at the resonant 

frequency, with the response decaying symmetrically as the frequency reduces or increases. 

For a one degree of freedom system (i.e. a single mode of vibration), the Q-factor can be 

simply defined by equation 6.1, where B is the bandwidth and ω the resonant frequency of 

that mode of vibration. This also leads to the expression presented in equation 6.2 where τ is 

the decay constant of the system and is an indicator of the decay time of a resonating one 

degree of freedom system’s vibration with no force applied. It will be shown shortly that this 

expression also applies to a gyroscope operating under resonance with two closely-matched 

modes of vibration. 

𝑄 =  
𝜔

𝐵
=

1

2𝜁
 

6.1 

𝜏 =  
2𝑄

𝜔
 

6.2 

It is well-established that for MEMS gyroscopes to attain maximum sensitivity, both modes of 

vibration must have equal Q-factors [42]. Furthermore, uneven Q-factors introduce coupling 

between the modes of vibration that could adversely affect the measurement of rate. By taking 

the individual frequency sweeps of each mode it becomes possible to measure the bandwidth 

and resonant frequency of each one, using these to compare the Q-factors as well as to 

establish the modal frequency split, the average resonant frequency and the orbital phase at 

resonance.  

The frequencies have been swept up from a frequency known to be lower than the resonant 

frequency, with the drive frequency being maintained for 1s before the frequency increase 
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(the rationale for this choice of drive time is related to the decay constant of the modes and is 

discussed later in this section).  

The two modes were swept simultaneously as both modes will be activated simultaneously 

during operation. This differs from exciting each mode individually as it measures Q-factor 

along the sense axes – the axes of interest in the gyroscope. By measuring the Q-factor for 

each individual mode, measurements would not account for the contribution of the other 

mode to that mode’s total damping, and this cross-damping may be a crucial contributor to the 

Q-factor for that mode.  

Within the measurement for each mode’s damping as taken using this method, information 

concerning these damping perturbations is encapsulated. Although these prove useful in the 

mathematical model, it is not possible to separate them out experimentally and the Q-factor 

can therefore only provide a measurement of how damped the system is, as opposed to 

providing an insight into the magnitude of these damping perturbations.  

Plots of the modal responses from the frequency sweep are provided in figure 6.3. Each 

response is similar to what would be expected from a one degree of freedom resonator. 

However, other effects appear to be manifesting themselves in the plot shape, with the modal 

response rising more rapidly prior to the natural frequency being reached and falling away at a 

slower rate following this. A possible explanation for this could be electrostatic softening 

arising as a result of voltage bias or similar effects within the gyroscope structure. Although 

further investigation may be able to confirm whether this is a valid postulation, the behaviour 

and, as will be shown shortly, the measurements recorded are broadly similar to those 

expected indicating that the conclusions drawn from the frequency sweeps are valid 

irrespective of the causes of the irregular behaviour. 

The frequency split when both modes are excited simultaneously is approximately 9mHz, 

which is of the magnitude required for the control scheme and is derived by finding the 

difference between the frequencies at the maximum response amplitudes for the frequency 

sweep for each mode. The average resonant frequency occurs at approximately 14258Hz, 

although it will be demonstrated later that this value can be variable. This level of tuning and 

resonant frequency closely matches that described by [11, 24].  
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Figure 6.3 - Modal response plots following a frequency sweep of both modes of vibration 

The results of the analysis of the plots in figure 6.3 are provided in table 6.1, where ωn is the 

resonant frequency of mode n, B is the bandwidth of the modal response, Q is the modal Q-

factor, τ is the decay constant and Φ0 is the orbital phase. 

Parameter Mode 1 Mode 2  

Max response 0.0609 0.0621 

ωn 14257.825 14257.816 

B 0.7588 0.6650 

Q 18790 21439 

τ 0.4195 0.4786 

Φ0 at resonance 83.2954 84.7779 

Table 6.1 - The parameters derived from the bandwidth measurements 

The Q-factors were calculated using equation 6.1, with the frequency for each mode being 

measured as previously described and the bandwidth being calculated as the difference 

between the upper and lower frequencies indicated by the frequency sweep curve at half-

power (that is, the maximum response divided by √2). Although it may reasonably be 

suggested that the irregular shape of the curves would influence the calculation, the Q-factors 

calculated were very close to the gyroscope’s intended Q-factor of 2×104. 
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The uneven damping between modes is clear from these, where the Q-factors differ by 2649, 

with mode 2 having a slightly higher amplitude and smaller bandwidth. While this difference 

in Q-factor is unlikely to be of an order of magnitude that would produce an error more 

significant than that caused by the modal mistuning, its reduction may become a priority for 

later control schemes.  

As alluded to previously, it becomes possible to use the information in table 6.1 to validate 

the frequency scans generated in the previous section. Gregory et al [42] state that, in order 

for a frequency scan to be reliable, the drive time at any given frequency must exceed the time 

constant τ to ensure that the decay of the associated peak does not affect the peak for the 

following frequency. Having a drive time of 1s per frequency sample, the frequency scan 

meets this condition.  

The relationship between orbital phase and frequency is demonstrated by figure 6.4 with the 

average resonant frequency appearing to occur at Φ≈ 84º where the drive phase for mode n, 

ΦDn, is ΦDn = 0° and Φ≈ -7º where ΦDn = 90°. It can be shown that the orbital phase at 

resonance rotates according to the drive phase chosen, with resonance occurring at Φo ≈  -ΦDn  

+ 84°. It can be noted here that the irregular difference of 84º is likely to be the result of 

electronics delays during implementation of the control scheme and other similar effects. The 

orbital phase at resonance is nevertheless consistent and can therefore be used in the creation 

of a phase locked loop. 
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Figure 6.4 - Orbital phase following a frequency scan with a drive phase of 90deg (top) and 0deg (bottom), with the 

position of resonance marked on as a red dotted line 

A further point to note is that the average resonant frequency fluctuates slightly with time, a 

phenomenon demonstrated by figure 6.5. This variation is likely to be due to a number of 

factors, such as environmental changes. However, the orbital phase at resonance does not 

change, with the result that the PLL can be used with constant effectiveness regardless of the 

precise resonant frequency. 

 

Figure 6.5 - The change in frequency over time for a stationary gyroscope 
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6.3. Phase locked loop performance 

It has been established that the orbital phase can be used to measure the proximity of the drive 

frequency to the average resonant frequency of the two modes of vibration. In order to take 

advantage of this, the simple phase locked loop has been derived. With the appropriate gains 

selected, it is evident from figure 6.6 that, for a stationary gyroscope, the drive frequency can 

be locked to within a few mHz of the average resonant frequency in a time of approximately 

0.2s. Although the locking time is relatively long, the drive frequency is locked to within 

18mHz of the average resonant frequency. This is a very close match and of the same order of 

magnitude as similar errors in the system, such as the modal mistuning, which has been 

shown previously to be 9mHz. 

 

Figure 6.6 - Drive frequency response on activation of the PLL, where the red dotted line represents the average resonant 

frequency of the two modes of vibration 

6.4. Gain control 

6.4.1. Control application 

Owing to delays caused by the electronics within the DSP board, the phase of the drive signal 

is offset from that of the reference wave. As such, any forcing applied is not applied in the 

required direction. However, this is a constant error and can easily be rectified by means of a 

simple compensation. This compensation consists of, prior to the transmission of the drive 

wave to the gyroscope, a phase offset that is the negative of the drive offset being applied to 

the drive signal.  

The box plots in figure 6.7 show that the mean drive phase remains very small as rate 

increases, validating the effectiveness of the phase locked loop in sustaining the drive phase at 
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zero. It should be reiterated here that the rate applied has been adjusted for the Bryan factor – 

that is, the ratio of input precession to the precession of the vibration pattern.  

Although there is a marginal increase in the distribution of data, indicating that the drive 

phase begins to fluctuate slightly, this nevertheless remains very small and is therefore 

unlikely to have a significant effect on the performance of the gyroscope. With the outliers 

reaching a maximum of approximately 0.08° it becomes possible to conclude that nulling the 

drive phase error by the application of a constant drive offset is an effective way of 

eliminating constant drive phase errors.  

 

Figure 6.7 - Box plots of drive phase magnitude under increasing rate 

As has been described previously, the term E1 provides a measure of the major axis of an 

ellipse that is aligned with the trajectory of the ring vibration, while E2 is a measure of the 

minor axis of the same ellipse and is proportional to the mistuning between the ring’s modes 

of vibration if E1 is constant. As such, in order to null the effect of modal mistuning, the 

control scheme must sustain E1 at a constant value while nulling E2. For these tests, the 

magnitude of E1 chosen such that the vibration amplitude will be large but within the limits 

defined by the structure of the gyroscope   

The success of the control scheme in achieving these requirements can be noted from figure 

6.8, which shows that E1 is sustained at a value of 2.5x10-3V2 with minimal variation, while 

the ratio E2/ E1 is reduced to a mean value of 0.6x10-3 within 3s, which roughly translates to a 

120-fold reduction in the size of the ratio. The PID control locks to these values within 3s  

Although the set-point for E2 is zero, this is not attained, because the magnitude of forcing 

required to null E2 completely during rotation is too precise for the control loop to handle, and 

the value of E2 subsequently oscillates about zero. Nevertheless the reduction in magnitude of 
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the ratio E2/ E1 is considerable with the oscillations having small fluctuations about zero – this 

is likely to represent a large, although not perfect, reduction in the effect of modal mistuning. 

The standard deviation of each set of measurements has been chosen quantify the level of 

fluctuation about the mean for each invariant, and hence assess the stability of the control 

loop. E1 is controlled to a standard deviation of 7.13x10-8 V2, which translates to a deviation 

of just 0.0029% of its required value. When considered alongside the measurements of 

amplitude, this demonstrates that the control scheme is effective in sustaining a constant value 

of E1, both in terms of amplitude and stability. However, the level of amplitude reduction of 

E2/E1 is not as great as that demonstrated in the modelling in section 5.2, with it having a 

standard deviation of 4.71x10-4, where its mean value is 0.6x10-4. This behaviour can be noted 

in figure 6.9. While this appears to suggest that the sustained value of E2 is relatively volatile 

about its mean, the large reduction in amplitude of the ratio E2/E1 ensures that this ratio is at 

all times considerably smaller than its uncontrolled value, and hence the control scheme is 

reducing the amplitude of E2 /E1 at all times.  

 

Figure 6.8 - The amplitude of E1 (top) and the ratio E2/E1 (bottom) for a stationary gyroscope as the control is activated 
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Figure 6.9 - A plot of E1 and E2/E1 for the time period following the settling of the control loops showing the large 

variation in the amplitude of E2/E1 

This large variation of E2 about the mean is likely to be in part due to the inability of the PID 

control to drive the value of E2 to precisely zero, compounded by electronics delays, drive 

mistuning and imprecision in the design of the drive electrodes. Perhaps most significantly, 

the unwanted influence of forcing from other controls could also reduce the impact of the 

direct forcing upon the value of E2.  

Nevertheless, the maximum amplitude of these fluctuations is approximately 1×10-3, which 

corresponds to a minimum reduction of ratio size by a factor of 70 at all times, with the mean 

reduction being closer to a factor of 120, as discussed previously. The reduction in the size of 

E2/E1 is considerable and, where a control is designed such that the forces exerted do not 

interfere with the measurement of angle, will reduce the effect of modal mistuning on the 

accuracy of the gyroscope by a corresponding amount, which will yield a significant increase 

in gyroscope accuracy. However, this test considers only a stationary gyroscope. With the 

application of rate, the forcing changes and this results in some deviation from the set-point. 

This effect is studied further in the next section. 

6.4.2. Performance under rate 

It has already been established that when rotation is applied to the gyroscope, the forcing 

acting upon the parameters of the ellipse change. Consequently, the PID loops controlling E1 

and E2 must react to this change. Figure 6.10 is a series of box plots showing the behaviour of 

these parameters under increasing rate. Each boxplot was derived from the measurement of a 

series of data recorded at the indicated rates, measured over a minimum of 10 cycles of rate 
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table oscillation to ensure a suitably large set of data was recorded. The ideal PID control 

should maintain each of these at a constant value, with very little distribution of data. 

 

Figure 6.10 - Boxplots of samples of E1 (top) and E2/E1 (bottom) as applied rate increases 

While the control is able to sustain the mean value of E1 under increasing rate, the distribution 

of data increases. This relationship is almost proportional to rate, as can be noted from the 

plot of standard deviation in figure 6.11. Despite this increase in the distribution of data, the 

maximum standard deviation for E1 for the rates tested is 3.9×10-12. This is approximately 

10% of the set point of E1. Although this is a relatively large number, figure 6.10 indicates 

that the median does not fluctuate considerably, which in turn indicates that the control is 

succeeding in maintaining E1 at a set value.  

It is probable that any deviation from the mean is purely a result of applied rate. It has already 

been established that applied force is dependent on the ellipse angle φ, and it is this 

dependence that causes the increasing distribution of data at higher rates – the gyroscope 
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covers a larger angle as rate is increased, thereby changing the forcing required to sustain E1 

at an appropriate value.  

 

Figure 6.11 - Plots of the standard deviation of E1 (top) and E2 (bottom) with increasing rate 

It is clear from figure 6.10 that the control is less effective for the ratio E2/ E1, with figure 

6.11 showing that the standard deviation in this case increases with rate considerably faster 

than in the case of the control for E1. Nevertheless, it was established in the previous section 

that a large deviation is expected for this ratio even for the stationary gyroscope. Figure 6.12 

is a series of boxplots of E2/ E1 and the associated standard deviation when E2 is uncontrolled. 

In this case, a condition is applied to the second electrode whereby there is no forcing on the 

ellipse angle. 

In the controlled case the mean value of the ratio E2/ E1 is reduced significantly, although the 

standard deviation remains of a similar order of magnitude. An overall reduction in the mean 

value of E2/ E1 is useful in that it generally reduces the effect of modal mistuning on the 

measured angle. However, the large deviation of data may somewhat reduce this effect.  
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While it may be possible to reduce the deviation in the value of E2/ E1, the application of 

forcing to this parameter has a detrimental effect on precession measurement, as detailed in 

the following section. 

 

Figure 6.12 - Boxplots of E2/E1 (top) and the associated standard deviation (bottom) as rate is increased 

6.4.3. Effect on precession measurement 

From equation 3.60 it is apparent that the forcing acting on the precession of the ellipse, φ, is 

itself dependent upon . Therefore, any change in angle will result in a change of forcing, 

affecting the measurement of precession. The result is that the forcing acting upon the ellipse 

angle, even if the gains do not change, is not simply a bias that can easily be accounted for. 

The effect of forcing can be shown to manifest itself in the measurement of ellipse precession 

by figure 6.13. This figure consists of computer-generated plots of the input displacement 

pattern placed over plots of the measured precession. While the input oscillates about the zero 

point, the output oscillates about the ‘zero’ for the gyroscope, which in this case is a 

precession angle of 45°. Therefore, the bias for each plot has been adjusted to best match that 

of the output as this is of little concern with the control scheme, providing that it is constant. 
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While velocity is applied in the form of a square wave, forming the ‘sawtooth’ displacement 

output shown, the output precession deviates significantly from this pattern when E2 is 

minimised. There is no discernible angle information and it is clear that the forcing used to 

null E2 has a considerable effect on the precession, as discussed in previous sections. The 

effect of forcing on precession measurement is compared to other control-based error sources 

in section 7.1, but it is clear that it will be a huge source of error if this an E2 control is 

implemented on the existing gyroscope architecture. However, by applying the force nulling 

scheme described in section 4.4 instead, it becomes clear from figure 6.13 that the effect of 

forcing on the precession angle can be nulled to a great extent by choosing the appropriate 

drive electrode gains. 

This outcome is useful as it demonstrates that it is possible to reduce the effect of forcing 

acting on a given ellipse parameter. With the appropriate gyroscope design, which is 

discussed further in chapter 8, it becomes possible to use the drive electrodes to null unwanted 

forces. However, the electrode layout of the gyroscope used in this project precludes this from 

being implemented alongside the control scheme described. 

A further advantage to this behaviour is that the success of the force nulling scheme goes 

some way to validating the forcing conditions described in section 3.2. 
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Figure 6.13 - The measured precession (blue line) and input angle (red dashed line) where E2 is controlled (top) and 

where F3 is controlled (bottom) 

6.4.4. Effect on modal and orbital phase (and phase locked loop) 

According to equation 3.60 any forcing used to excite the gyroscope also acts upon the orbital 

phase unless an appropriate forcing condition is applied. Further, the orbital phase is 

modulated by this effect being particularly compounded by the requirement for a large E1 

in comparison to E2. This forcing effect results in the orbital phase at resonance for a rotating 

gyroscope being forced to a different value than that for a stationary gyroscope. 

The effects of forcing and ellipse angle as the gyroscope is rotated are clearly manifested in 

the orbital phase shown in figure 6.14, which displays samples of orbital phase and frequency 

when a rate is applied that alternates between ±50deg.s-1 at a frequency of 0.5Hz. It is clear 

from these that even at such low rates, there is a regular deviation from the mean drive 

frequency of approximately 100mHz, which is clearly considerable considering that it has 

been established that the modal mistuning is approximately 9mHz. This large variation is 

supported by this frequency sample having a standard deviation of 73.2mHz which, when it is 

taken into account that there may be some deviation of the mean from the ring’s resonant 
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frequency (a phenomenon that it is not possible to accurately measure due to the variation in 

resonant frequency described previously), may result in adverse effects on the phase locked 

loop.  

With the orbital phase displaying a regular variation of ±0.5° it is clear that the orbital phase 

is very sensitive to frequency change and the nulling of any forcing acting upon the orbital 

phase is necessary to reduce the variation in frequency as rate is applied. 

 

Figure 6.14 - The orbital phase (top) and drive frequency (bottom) as the PLL is used to control frequency while an 

alternating rate of ±50deg.s-1 is applied to the gyroscope and the ratio E2/E1 is controlled 

This behaviour is observed across a range of rates, where figure 6.15 shows the standard 

deviation of the frequency samples where applied rate is increasing. It clearly shows that 

increasing rate leads to the increasing distribution of drive frequency from the mean, due to 

the effect that forcing has on orbital phase. It should be noted here that the mean has not been 

considered in demonstrating the effect of rate on orbital phase past that given in section 6.3. 

This is due to changes in the resonant frequency that occur during testing and that have been 

described in section 6.2. 
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Figure 6.15 – Standard deviation of drive frequency as applied rate is increased where the ratio E2/E1 is controlled 

When the ratio E2/E1 is controlled there is significant effect on the drive frequency due to the 

forcing affecting the orbital phase at resonance. However, it can be noted from figure 6.16 

that where the forcing is applied such that F3, the forcing acting upon the ellipse precession, is 

zero (i.e. no forcing on φ) the standard deviation of the drive frequency is much smaller at 

higher rates, indicating that the applied rate has less of an effect on the orbital phase at 

resonance with this condition applied.  

In addition, the gradient of the pattern appears to reduce at higher rates. This provides a 

preliminary indication that increasing the rate further would cease to have any effect. 

However, this postulation requires further investigation with a rate table that is capable of 

higher rates. 

 

Figure 6.16 - Standard deviation of drive frequency as applied rate is increased where F3 is controlled 

This demonstrates that the use of the orbital phase in the creation of a PLL would require the 

nulling of forcing acting on it. While this appears to add a layer of complexity to the control 

scheme, the orbital phase is the most viable measurement for generating a PLL as there is no 
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forcing information concerning the force acting upon the first mode phase, which would be 

the only viable alternative available from the control scheme. Furthermore, the first mode 

phase would excite the ring at the resonant frequency of the first mode of vibration, rather 

than the average, which would have a detrimental effect on gyroscope accuracy where modal 

mistuning is present, as it would generate modes of vibration of differing amplitudes. 
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Chapter 7. Gyroscope characterisation 

7.1. Choice of condition for characterisation 

The gyroscope used in this project has been fully characterised, as will be demonstrated in 

this section. However, it is clear from previous sections that it is not possible to fully 

implement the control scheme described due to limitations regarding the architecture of the 

gyroscope. Consequently, it is necessary to select the operating conditions that would provide 

the most accurate interpretation of its performance as a rate integrating gyroscope. 

This translates to a choice of three conditions – minimise the value of E2 in order to reduce 

the effect of mistuning on angular rate, eliminate the forcing on the ellipse angle or eliminate 

the forcing on the orbital phase. 

As the objective of a rate integrating gyroscope is to measure angular displacement, the 

accuracy of this measurement will be used to determine the condition under which the 

gyroscope behaves with the most accuracy. 

It is clear from figure 6.13 that the control loop for E2 has a large effect on the output 

precession. Further, it has been established in section 6.4.4 that the application of forcing such 

that the forcing on the precession, F3, is zero vastly reduces the effect of forcing on the orbital 

phase as well as the measured precession. Therefore, it is apparent that the gyroscope 

measures with the greatest accuracy if the force on the precession angle is minimised as a 

priority.  

As such, for the gyroscope characterisation with existing architecture the control scheme will 

maintain E1 at a constant value, while nulling the force on the measured precession. 

7.2. Angle measurement performance 

7.2.1. Scale factor 

The gyroscope scale factor is the ratio between the change in input angle and the change in 

angle as indicated by a line fitted to the output data by the least squares method. It is also 

possible to use this data to measure both the asymmetry of the gyroscope – the difference 

between the scale factor when a positive and when a negative rate is applied – and the 

linearity of the gyroscope.  
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The scale factor is defined as the gradient of a line fitted by the least squares method to a plot 

of the input against output data [26]. Thus, for a MEMS gyroscope it is the gradient of a line 

fitted by the least squares method to a plot of the input versus output rate.  

However, to gain an insight into the behaviour of how the scale factor changes as rate is 

increased, it becomes useful to first take the scale factor from within a set of measurements at 

a constant applied rate. By taking the scale factor as the gradient of a line fitted to a plot of 

input angle against measured angle, where the angle is measured for k samples and 𝜑̂𝑖 is the 

input angle at sample i and 𝜑
𝑖
 the output according to a line fitted to the output data, the scale 

factor can be defined as: 

𝑆𝐹 =  
1

𝑘
∑

(𝜑
𝑖+1

−  𝜑
𝑖
)

(𝜑̂𝑖+1 −  𝜑̂𝑖)

𝑘

𝑖=1

 

7.1 

Figure 7.1 shows the change in scale factor with rate. Although the calculation of scale factor 

for each rate is not in line with the standards in [26] it serves as a useful indicator of how 

scale factor changes with increasing rate and emphasises some otherwise less detectable 

trends. 

At lower rates, below approximately 20°s-1, the scale factor is considerably away from the 

ideal of one, and exhibits a considerable increase as rate increases. Following this the scale 

factor becomes relatively constant for both positive and negative rates, although it does not 

reach its ideal value of 1. This is likely to be because the control scheme is unable to eliminate 

all errors in the system – damping imperfections are not addressed by this control scheme and 

the forcing serves to minimise, but not completely eliminate, the effect of modal mistuning. 

As such, it is likely that these will manifest in some assessments of performance, including 

the measurement of gyroscope scale factor. For full gyroscope operation, a consistent and 

constant scale factor away from one is acceptable as this would require a simple adjustment 

factor to be implemented into the control scheme. 
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Figure 7.1 - The scale factor measured as rate increases for positive rate (blue markers) and negative rate (red markers) 

The low rate behaviour is a manifestation of the dominant behaviour that angular rate exhibits 

over other imperfections as it increases – it can be noted from equation 3.60 that the rate must 

exceed any forcing acting on the ellipse, as well as the effects  of damping and stiffness 

perturbations.  

With damping being small on account of the high Q-factor, it can be noted from the box plots 

in figure 7.2 that, at these low rates, the ratio E2/E1 – that is, the ratio of minor to major ellipse 

axis - has a varying mean and standard deviation as rate is increased. As the modal mistuning 

is a constant value, a change in E2 can be attributed to the effect of forcing on E2. 

Subsequently, it must be concluded that a combination of modal mistuning and forcing on E2 

influence the measurement of angle at low rate, with the remnants of forcing on angle also 

likely to be having an effect despite the force nulling routine. This may be resolvable by 

switching between rate mode at low rates and rate integrating mode at higher rates, where the 

higher bandwidth would prove advantageous. 
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Figure 7.2 - Box plots of the ratio E2/E1 for increasing rate 

It is evident that, in order to use the method discussed in [26], the scale factor for this 

gyroscope architecture should be measured at rates above 20°s-1 only. The output for these 

tests is the average change in angle measured for each time sample, while the input is the 

input change in angle per time sample. Where Δt is the length of time sample (in this case 

0.1s) and recall the term 
2𝑛

(𝑛2+1)
Ω is the input rate multiplied by Bryan factor, the input change 

in angle used for scale factor calculations is expressed as in equation 7.2. 

Δ𝜑𝑖𝑑𝑒𝑎𝑙 =  Δ𝑡 {
2𝑛

(𝑛2 + 1)
Ω} 

7.2 

The measured output, Δφ, is the average change in angle between each sample for the given 

experimental run time. 

Figure 7.3 provides plots of the input against output angle for both positive and negative rates. 

Each point on these figures corresponds to the average change in input angle per time period 

for the sample data for each of the rates tested and can be used to examine the linearity of the 

gyroscope behaviour. From visual inspection, both appear to follow a broadly linear pattern, 

although this will be examined more closely when the linearity error is analysed in section 

7.2.2. 
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Figure 7.3 - Plots of average input against output angle for a single time period with the application of positive rate (top) 

and negative rate (bottom) 

By fitting lines to these charts using the least squares method, it can be shown that for positive 

rates the gyroscope has a scale factor of approximately 0.95, whereas for negative rates the 

scale factor is shown to be approximately 0.81. Although these differ slightly from those 

indicated by figure 7.1, this can be attributed to the differing calculation method (i.e. the use 

of all rates to calculate scale factor, as opposed to its calculation for each individual rate). 

This is a large difference and is explored further during the investigation of asymmetry in 

section 7.2.3 and its subsequent analysis in section 7.4. 

7.2.2. Linearity error 

An important measure of gyroscope performance is linearity error (also referred to as scale 

factor accuracy), and is a measurement of how accurately the measurement of precession 

reflects a linear rate input. The linearity error is obtained by finding the deviation of the 

output at each applied rate from the fitted line calculated in section 7.2.1 [26].  

 



  78 

 

Where the data sample consists of k rates the linearity of the gyroscope, L, can be expressed, 

as a percentage, by: 

𝐿 =  (
1

𝑘
∑

𝜑𝑖 − (𝑆𝐹)𝜑̂𝑖

(𝑆𝐹)𝜑̂𝑖

𝑘

𝑖=1

) 100 7.3 

A lower linearity error is beneficial for gyroscope performance as it represents a response that 

fits to that dictated by the scale factor. 

The gyroscope examined here has a linearity error of 6.93% and 6.04% for positive and 

negative rates, respectively. Although this appears to be relatively high, these measurements 

incorporate the low rate behaviour discussed is section 7.2.1. This can be better visualised by 

figure 7.4 which shows the deviation from the line of best fit for the measurement of each 

applied rate. The large deviation of the low rate behaviour is clearly evident, with the 

deviation dropping to a minimum of 0.5% and 0.2% at 28°s-1 for positive and negative rates 

respectively. 

It is clear from figure 7.4 that the massive deviation from linearity at low rates is somewhat 

skewing results. By neglecting those measurements below the 20°s-1 limit identified 

previously, the linearity error of the gyroscope falls to 1.53% and 1.20% for positive and 

negative rates, respectively. This leads to an average linearity error of 1.37%. 
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Figure 7.4 - The deviation of the measured angle from the line of best fit for positive (top) and negative (bottom) rate 

7.2.3. Asymmetry 

The asymmetry of a gyroscope is a measure of how closely the performance of the gyroscope 

with positive rate applied matches that with negative rate applied. Where SFP is the scale 

factor in the positive direction and SFN the scale factor in the negative direction, the 

asymmetry, A, for a given rate is defined as [26]: 

𝐴 =  
2(𝑆𝐹𝑃 −  𝑆𝐹𝑁)

(𝑆𝐹𝑃 + 𝑆𝐹𝑁)
 7.4 

An asymmetry of zero is perfect, as this indicates no difference between the application of 

positive and negative rate. It has already been established in section 7.2.1 that this gyroscope 

exhibits asymmetry, and this can be quantified to be an asymmetry of 0.16, or 16%. 

Although this value is very large, it does reduce somewhat when the lower rate results 

discussed previously are discounted. Having a mean value of 6% for higher rates, this is 

clearly an improvement on the asymmetry for the whole range of testing. However, it is 

nevertheless a large number, with values in the region of 100ppm (0.01%) being preferable 

for high-performance gyroscopes [27]. 
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Asymmetry is commonly caused by slightly mismatched control electrodes [28], although the 

causes behind it being particularly high for this gyroscope are unclear. It is possible that the 

structure of the gyroscope exhibits abnormally high imperfections or the implementation of 

the control scheme has resulted in some mismatch, although there has been little evidence of 

this during previous experimental work.  

7.2.4. Drift measurement 

Drift measurements provide information regarding the long-term performance of the 

gyroscope. The bias drift is measured as the average rate of measured rotation when the 

gyroscope is stationary and earth rate has been removed, and is obtained by taking an average 

of the change in precession as a gyroscope is left stationary for a finite period of time.  

Where D is the bias drift, it is calculable using:  

𝐷 =  
1

𝑘
∑ 𝜑̇𝑖

𝑘

𝑖=1

−  𝜙𝑒𝑎𝑟𝑡ℎ 7.5 

This is where k is the number of samples, φi the angle of precession and ϕearth is the angular 

rate of rotation of earth, which is approximately 15°hr-1 where the gyroscope was tested. 

Figure 7.5 is a sample of output precession measurement data while the gyroscope is held 

stationary, prior to the removal of earth rate. Although it appears that only a small amount of 

bias drift is exhibited, when the contribution of earth rate is taken into account, the absolute 

value of measured drift is approximately 15°hr-1.  

 

Figure 7.5 - A sample of output precession for a stationary gyroscope prior to the removal of earth rate 
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Random drift must also be accounted for, and this is done through the use of an Allan 

variance test, whereby the gyroscope is activated but stationary for a long period of time. The 

rate data is then divided into several time segments of equal length, and the average variance 

for these segments taken. This is better expressed by equation 7.6, where AV is the Allan 

variance, n is the number of the data segments measured and Τ is the averaging time. 

(𝐴𝑉(Τ))
2

=  
1

2(𝑛 − 1)
∑(𝜑̇(Τ)𝑖+1 − 𝜑̇(Τ)𝑖)

2

𝑖

 
7.6 

This process is repeated for segments of increasing length, allowing the variance to be plotted 

against sample time on a log scale. This plot gives the angle random walk (a measure of 

gyroscope noise) as the Allan variance for a sample time of 1s, while the bias instability (the 

minimum rate at which bias may change over time) is the minimum point on the plot.  

Allan deviation is used to measure the performance of a gyroscope over long time scales. The 

requirements of a gyroscope with respect to Allan deviation vary according to the application. 

For example, for space navigation operations, where it is viable to average measurement data 

over a long period, a low bias instability would be desirable. However, for shorter averaging 

times, such as in video game controllers, a lower angle random walk may be desirable to 

ensure noise is minimal. 

The Allan variance plot for this gyroscope is provided in figure 7.6. This plot shows that the 

angle random walk has a value of 0.3°hr-0.5, while the bias stability has a value of 6.55x10-4°s-

1, or 2.36°hr-1.  

 

Figure 7.6 - Allan variance plot for the gyroscope 
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7.3. Bandwidth measurement 

The bandwidth test measures the maximum frequency of oscillation the gyroscope can 

measure – it is a measure of how many measurements the gyroscope can take per second. It is 

ordinarily conducted by applying a sinusoidal rate to the gyroscope at a set amplitude and 

measuring the noise of the signal. 

However, as discussed in section 6.1 the data transfer rate of the experimental apparatus will 

severely limit this. Only able to measure 10 data points per second, it is possible to measure 

the bandwidth up to 10Hz, which, as is demonstrated in section 7.4, is insufficient for a rate 

integrating gyroscope.  

Enhanced bandwidth is one of the major advantages to using a MEMS gyroscope in rate 

integrating mode and, as such, it is crucial that any characterisation with a view to full 

implementation of the gyroscope must incorporate bandwidth measurements to validate the 

use of rate integrating mode. However, this would require extensive redesign of the hardware 

used in this project and as such is out of its scope. 

7.4. Comparison to existing gyroscope specifications 

As discussed in section 2.4.1, there are specifications available that divide gyroscopes into 

three distinct types – ‘rate’, ‘tactical’ and ‘inertial’. These specifications are presented again 

in table 7.1 and table 2.2. 

To demonstrate the effectiveness of the rate integrating gyroscope described in this paper, the 

specifications in table 7.1 have been compared to the measurements described in section 7.2. 

It should be noted here that due to the limitations of the rate table described in section 6.1 it 

has not been possible to measure the full range of the gyroscope or the bandwidth. 
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 Rate Tactical Inertial 

Angle random walk 

(°/√hr) 

> 0.5 0.5 - 0.05 < 0.001 

Bias drift (°/hr) 11 - 1000 0.1 - 10 < 0.01 

Linearity (%) 0.1 - 1 0.01 – 0.1 < 0.001 

Table 7.1 - The specifications for the three grades of gyroscope 

Parameter Average 

Bias instability (°/hr) 7.5 

Table 7.2 - Additional specifications for a rate integrating gyroscope 

The measured specifications for the gyroscope used in this thesis are listed in table 7.3. 

Parameter Measurement 

Bias instability (°/hr) 2.36 

Angle random walk (°/√hr) 0.3 

Bias drift (°/hr) 12 

Linearity (%) 1.37 

Table 7.3 - The measured gyroscope specifications 

The measured drift is of a magnitude that puts the gyroscope within the performance 

parameters normally attributed to higher-end rate gyroscopes, as is shown in table 7.1. A 

contributing factor to this drift is likely to be the damping asymmetry, which manifests itself 

as the uneven Q-factors found in section 6.2. As the effect of mistuning is reduced, it will 

become necessary to account for this in future control schemes as it becomes a significant 

effect. A control scheme to minimise the effect of damping imperfections can be implemented 

using methods such as velocity feedback tuning [34]. 

However, the angle random walk, which is a measure of the random drift exhibited by the 

gyroscope, is relatively low and places the gyroscope in the realm of tactical grade devices. 
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This drift performance is further exemplified by the relatively low bias instability, which 

implies that the variation of bias is lower than that reported in some of the literature. It should, 

however, be noted that the bias instability measured in the literature varies considerably and, 

while the gyroscope provides much enhanced performance over many designs, it can be 

shown to have a considerably lower performance than others. Nevertheless, these results 

indicate that the random drift has a smaller impact on the gyroscope performance than the bias 

drift, implying that it may be possible, in future schemes, to reduce the effect of such drift by 

applying a known tuning voltage. 

However, a particularly negative aspect of the gyroscope performance is the linearity. At 

1.37%, it falls outside of the required specification for rate gyroscopes, indicating particularly 

poor performance. This non-linearity is likely to be the result of forces acting upon the 

precession angle as, although a condition is imposed to set such forcing to zero, there is a 

minimum forcing that can be applied from the secondary electrode to sustain the second mode 

of vibration. Should the required forcing drop below this, it is clear that forcing will begin to 

influence the precession angle. 

A solution to this problem is proposed in section 8.1. By implementing further control 

electrodes it becomes possible to allow further degrees of freedom in the gyroscope control, 

thus ensuring that the control electrodes are always able to be used such that the applied 

forcing cannot influence the measurement of precession. 

7.5. Test limitations 

While the tests conducted have followed the IEEE standards closely, there are nevertheless 

some shortcomings in the experiment that may be rectifiable following further study on the 

subject. 

The most notable of these were the limitations imposed on the applicable rate. With the data 

transfer link between the DSP board and data processing laptop severely limiting the 

frequency of signal input, this should form the primary area of improvement should an 

oscillating rate table continue to be used for tests. By increasing the frequency of data transfer 

it becomes possible to apply higher rates due to the potential for increased frequency of 

oscillation. This will allow the gyroscope to be tested over a much greater range of rates than 

described previously. 
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However, another option to resolve this issue would be to use a continuous rate table. By 

applying rate continuously, as opposed to in an oscillatory manner, a longer sample time is 

acceptable provided that the applied rate is linear, as there is no direction change resulting 

from rate table oscillations. This, however, will obviously not resolve the issues with 

bandwidth testing discussed in section 7.3. 

There were also environmental factors that were not addressed during this project. The most 

notable of this is temperature. It is known that changes in ambient temperature affect the 

performance of MEMS gyroscopes and it would therefore be informative to include 

temperature performance tests in any further characterisation. 
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Chapter 8. Gyroscope re-design 

8.1. Additional electrodes 

It was demonstrated in section 3.2 that by applying a force along the minor axis of the ellipse 

in order to adjust the value of the invariant E2, the effect of mistuning on the measured angle 

of gyroscope precession can be reduced. However, it has been established in section 6.4.3 

that, with the current gyroscope design, the application of this control scheme will cause 

considerable errors in the measurement of precession angle. Although it is possible to reach a 

compromise whereby the gyroscope is well-tuned and E2 is not controlled, with the forcing 

from the second drive electrode instead being used to null the forcing on the gyroscope 

precession, it would be preferable to reduce the effect of modal mistuning by controlling E2. 

In order to achieve all necessary conditions, however, more drive electrodes are required. 

The gyroscope architecture described by figure 8.1 consists of four pairs of drive electrodes 

four pairs of pick-offs, with the drive electrodes being those placed at equal intervals between 

0° and 67.5° (labelled 1 to 4 in the diagram). Such a design permits the excitation of two 

orthogonal modes of vibration, while generating a quadrature-nulling force that does not 

influence the precession measurement. The sixteen tuning electrodes have also been retained 

inside the ring to allow the use of electrostatic correction for providing close initial mode 

matching. 

In this case, the homogenous equations of motion would not differ from those produced by 

defining equations 3.58 to 3.61 in section 3.2 as unforced. However, the inhomogenous 

equations of motion would exhibit altered forcing terms, which would take the form of those 

provided by equations 8.1 to 8.4, where An are control gains applied to the drive electrodes n 

= 1 to 4. These are derived using the same method as that described in section 3.1.2, but by 

inserting additional electrodes at appropriate angles to the modes and then rearranging in the 

same manner as for the conventional gyroscope architecture. 
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𝐹1 =  
𝛽̂

𝜔0

{𝐴1 sin 𝜎1 cos 𝜑 + 𝐴3 sin 𝜎3 sin 𝜑 +  𝐴2 sin 𝜎2 (sin 𝜑 +  cos 𝜑)

+  𝐴4 sin 𝜎4 (sin 𝜑 − cos 𝜑)} 

8.1 

𝐹2 =  
𝛽̂

𝜔0

{𝐴1 cos 𝜎1 sin 𝜑 −  𝐴3 cos 𝜎3 cos 𝜑 −  𝐴2 cos 𝜎2 (cos 𝜑 −  sin 𝜑)

−  𝐴4 cos 𝜎4 (cos 𝜑 +  sin 𝜑)} 

8.2 

𝐹3 =  
𝛽̂

𝜔0

{𝐴1 sin 𝜎1 sin 𝜑 −  𝐴3 sin 𝜎3 cos 𝜑 −  𝐴2 sin 𝜎2 (cos 𝜑 −  sin 𝜑)

−  𝐴4 sin 𝜎4 (cos 𝜑 +  sin 𝜑)} 

8.3 

𝐹4 =  
𝛽̂

𝜔0

{𝐴1 cos 𝜎1 cos 𝜑 +  𝐴3 cos 𝜎3 sin 𝜑 +  𝐴2 cos 𝜎2 (sin 𝜑 +  cos 𝜑)

+  𝐴4 cos 𝜎4 (sin 𝜑 −  cos 𝜑)} 

8.4 

 

Figure 8.1 - Alternative ring gyro design with four pairs of capacitive drive electrodes (1&9, 2&10, 3&11 and 4&12) and 

four pairs of sense electrodes (5&13, 6&14, 7&15 and 8&16)  

Considering equations 8.1to 8.4, if the gains from electrodes 1 and 3 (and their corresponding 

drive electrode), A1 and A3, are used to excite the two modes of vibration and null quadrature, 

the gains from the remaining drive electrode pairs, A2 and A4, should be used to remove 

forcing effects from the measurement of angle and orbital phase. By rearranging equations 8.3 

and 8.4 to provide F3 = 0 and F4 = 0 (nulling the forcing effects on the precession and orbital 

phase measurements), it becomes possible to derive the pairs of conditions in equations 8.5 

and 8.6 or in equations 8.7 and 8.8. By implementing these, the forcing on the precession and 

orbital phase can be nulled.  
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The advantage to this design is that the combination of forcing conditions described 

previously can be chosen according to which will provide the most effective forcing given the 

gyroscope’s state at the time. For example, as the gyroscope rotates the contribution of the 

gains A1 and A3 to the magnitude of E1 and E2 will change as the contributions of these gains 

to their respective parameters are modulated by the angle φ.  By devising a forcing scheme 

that alternates between the use of electrodes 1 and 3 in controlling the vibration magnitude 

according to which will permit the greatest range of applied gain, it becomes possible to 

derive a control scheme that can operate across the widest possible range of conditions and 

produce the largest response.  

It would prove similarly advantageous to switch between electrodes 2 and 4 in controlling the 

forcing on the ellipse angle or orbital phase, according to which condition would null the 

contribution of forcing most effectively. 

𝐴2 =  
𝐴1 sin 𝜎1 sin 𝜑 −  𝐴3 sin 𝜎3 cos 𝜑 −  𝐴4 sin 𝜎4 (cos 𝜑 +  sin 𝜑)

sin 𝜎2 (cos 𝜑 −  sin 𝜑)
 8.5 

𝐴4 =  
𝐴1 cos 𝜎1 cos 𝜑 + 𝐴3 cos 𝜎3 sin 𝜑 +  𝐴2 cos 𝜎2 (sin 𝜑 +  cos 𝜑)

cos 𝜎4 (cos 𝜑 −  sin 𝜑)
 8.6 

𝐴4 =  
𝐴1 sin 𝜎1 sin 𝜑 −  𝐴3 sin 𝜎3 cos 𝜑 −  𝐴2 sin 𝜎2 (cos 𝜑 −  sin 𝜑)

sin 𝜎4 (cos 𝜑 +  sin 𝜑)
 8.7 

𝐴2 =  
−{𝐴1 cos 𝜎1 cos 𝜑 +  𝐴3 cos 𝜎3 sin 𝜑 + 𝐴4 cos 𝜎4 (sin 𝜑 −  cos 𝜑)}

cos 𝜎2 (sin 𝜑 +  cos 𝜑)
 8.8 

8.2. Initial experimental results 

8.2.1. Tuning 

With the gyroscope design described in section 8.1 having been fabricated, tests have been 

conducted in order to provide an initial overview of the gyroscope performance. 

A further advantage of the design is the sixteen tuning electrodes, half of which are directly 

aligned with the relevant driven modes of vibration. This design allows the tuning electrodes 

to alter individual elements of the stiffness matrix, simplifying the tuning process.  

Using a process equivalent to that described in section 4.3.1, the tuning electrodes placed 

between the primary and secondary modes can be used to eliminate the cross-coupling in the 
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matrix, while those aligned with the driven modes can be used to tune the direct terms. This 

design therefore allows a greater degree of flexibility in the tuning regime, and this behaviour 

is demonstrated in figure 8.2. This is a plot of the shift in resonant frequency of each mode 

from its untuned value as the electrode configurations in table 8.1 are used at their maximum 

voltage, where direct and cross refer to the electrodes that alter the direct and cross terms in 

the stiffness matrix – in figure 8.1 the direct tuning electrodes are those directly opposite their 

corresponding modal sense and drive electrodes (the drive electrodes being electrodes 1, 3, 9 

and 11, with their sense electrodes at 90°), while the cross term tuning electrodes are placed 

between these. It is clear that the direct tuning electrodes affect their corresponding modes 

considerably more than the other, while the cross terms have effects on both modes.  

 

Figure 8.2 - The shift in resonant frequency for each mode as the combination of tuning electrodes used to tune is 

changed, where the combinations are detailed in table 8.1 

Further, it can be noted from figure 8.3 that the minimal modal mistuning of 7.25Hz  is 

achieved where tuning voltages are applied to the second mode and its adjacent cross tuning 

electrode only. This is a shift of 2.02Hz from the pretuned frequency split of 9.27Hz.  

The frequency split remains very large, particularly considering the control scheme derived 

requires the modes to be tuned to the order of mHz. Figure 8.4 shows that the measured 

frequency shift of 2.02Hz is of the order expected for the gyroscope architecture provided, 

and in fact the gyroscope must be provided with enhanced modal tuning before it can be 

electrostatically tuned. An alternative to this is to use a higher range of tuning voltage, with 

the same figure demonstrating the enhanced tuning range provided by a higher voltage. 
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Number Tuning set 

1 All sets 

2 Direct primary 

3 Cross #1 

4 Direct secondary 

5 Cross #2 

6 Direct secondary and Cross #2 

Table 8.1 - The tuning electrode combinations used to produce figure 8.2 

 

Figure 8.3 - The modal mistuning associated with varying combinations of tuning electrodes 
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Number Tuning set 

1 All sets 

2 No tuning applied 

3 Direct primary 

4 Cross #1 

5 Direct secondary 

6 Cross #2 

7 Direct secondary and Cross #2 

Table 8.2 - The tuning electrode sets used to produce figure 8.3 

 

Figure 8.4 - The calculated frequency shift achieved by changing tuning voltage 

Figure 8.5 shows that while the modal mistuning is reduced following the application of 

tuning, the resonant frequency of the second mode of vibration increases following tuning. 

This is an irregular effect, as it indicates that the tuning electrodes are having a hardening 

effect. This indicates that structural irregularities are present during the tuning of the 

gyroscope.  
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Figure 8.5 - Modal response plots of the tuned gyroscope 

8.2.2. Phase locked loop 

The plot of orbital phase in figure 8.6 was taken following a frequency sweep, and 

demonstrates that the orbital phase indicates resonance at approximately equal values for each 

mode, as denoted by the coloured dots on the trace, labelled A, B and C, which are the 

second, average and first mode responses, respectively. However, with there being a large 

frequency split it is clear that the average resonant frequency, ω0, is located between the two 

areas of resonant behaviour indicated, where the value of orbital phase at this is 

indistinguishable from those values further away from average modal resonance. This 

indicates that, in order for orbital phase to be used to produce a phase locked loop, the modal 

mistuning must be much smaller than is possible with this new design. 

 

Figure 8.6 - Orbital phase change during a frequency sweep 

An alternative to the use of orbital phase is the use of first mode phase, with the value 

adjusted to shift the drive frequency closer to the average resonant frequency of the two 
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modes, ω0. However, the frequency sweeps in figure 8.7 show similar behaviour, whereby the 

location of the average resonant frequency of the two modes is at an indeterminate location. 

 

Figure 8.7 - Modal phase plot for both modes of vibration during a frequency sweep 

With neither orbital phase or first mode phase being suitable for locking to the average 

resonant frequency of the two modes of vibration, it is clear that a much smaller degree of 

modal mistuning must be attained before the control scheme can be implemented as planned.  

With the very large modal mistuning, large errors are likely to occur in the system as a result 

of both the aforementioned modal mistuning and drive mistuning. This is further compounded 

by the inability to locate the average resonant frequency of the two modes, with the resulting 

drive frequency likely to be a sizable distance from the optimum. As such, it is unlikely that 

any experimental results will provide a reliable insight into the performance of the device, or 

provide a comparison to that of the device described previously.  
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Chapter 9. Conclusions 

9.1. Control scheme effectiveness 

A control scheme has been devised for a rate integrating MEMS ring gyroscope that can be 

shown through simulations to be effective in reducing the effect of modal mistuning upon the 

accuracy of angle measurement. These simulations show that the potential increase in 

accuracy is massive, with a 100-fold increase in measurement accuracy being attainable. 

However, this increase relies on the perfect application of forcing. 

It has been shown that the gyroscope geometry used in the project possesses insufficient drive 

electrodes to apply the control scheme described, as it is not possible to null the effect of 

control forces upon the measured precession. Furthermore, it is clear that many of the 

inaccuracies concerning the control scheme, particularly drive mistuning, are very difficult to 

eliminate, this effect being compounded by the application of rate. Errors also arise as the 

result of drive electronics, manifesting as a phase shift of the drive signal. However, it has 

been shown that these can be nulled by carefully choosing the initial drive parameters. 

Despite the lack of a fully closed-loop control scheme, the effectiveness of each component 

has been demonstrated. The phase locked loop and vibration envelope controls have been 

shown to be effective across a range of rates, although the outputs do suffer some increase in 

standard deviation as rate increases due to the relationship between ellipse angle and force 

applied. 

Further, a scheme to null any forcing on the measured precession using capacitive forcing 

from other electrodes has been shown to be effective. Furthermore, characterisation of the 

gyroscope using this scheme has shown it to have performance similar to that of a rate 

gyroscope, although the random drift performance appears to be equivalent to that of a 

tactical-grade gyroscope. 

Table 9.1 provides a comparison of the measured performance of the rate integrating 

gyroscope devised in this thesis to the performance or a standard rate-integrating gyroscope, 

as discussed in section 7.4. 
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Parameter Gyroscope developed in 

thesis 

Standard rate 

integrating gyroscope 

Bias instability (°/hr) 2.36 7.5 

Angle random walk (°/√hr) 0.3 0.5-0.05 

Bias drift (°/hr) 12 0.1-10 

Linearity (%) 1.37 0.01-0.1 

Table 9.1 – A comparison of the measured performance of the gyroscope to the performance of a standard commercially-

available rate integrating gyroscope 

Although the immediate indication of these results is that the gyroscope does not meet the 

standard of a rate-integrating gyroscope, as originally intended, they do demonstrate that the 

scheme described can be used to measure angle with some accuracy. More importantly, they 

indicate the changes required to ensure that the gyroscope can measure with the accuracy 

expected from a modern rate-integrating gyroscope.  

Furthermore, the adaptability of the rate gyroscope design in figure 1.1 has been 

demonstrated, with the mode of operation being changed exclusively through the careful 

adjustment of the control program and re-purposing of the drive and pick-off electrodes. 

However, it has also been clearly demonstrated that for a fully-effective rate-integrating 

gyroscope a greater number of degrees of freedom are required in the control architecture than 

are available with that used for the bulk of this project. 

9.2. Gyroscope re-design 

It is clear from section 8.2 that the behaviour of the optimum gyroscope is similar to that of 

the current gyroscope, particularly with regards to tuning. Most notably, the tuning electrode 

arrangement allows the direct and cross terms of the stiffness matrix to be modified 

independently. 

Despite the success in the design of the tuning electrode arrangements, it is clear that the 

construction of the gyroscope is not to a sufficient standard for the implementation of a rate-

integrating control scheme. Solutions to this would be to either physically tune the gyroscope 

through methods such as laser ablation, or to use a larger power supply to provide enhanced 



  96 

 

tuning voltages. Neither of these solutions are possible given the timeframe for the project, 

however, and therefore simply provide directions for any future research. 

Furthermore, it would be useful to examine whether this design has any advantages over the 

use of a parametric drive. 

9.3. Further work 

With the work in this thesis laying the foundations for the creation of a control scheme 

featuring all of the control loops previously discussed, the logical progression is to implement 

these on the proposed gyroscope architectures. It would also be useful to investigate the 

application of the automatic tuning loop discussed in section 4.3.2. 

By implementing a control scheme that features all control loops discussed and comparing the 

accuracy of the gyroscope architectures used to the results detailed in chapter 7, it should be 

possible to demonstrate an increase in accuracy over the current gyroscope architecture being 

used in rate integrating mode. As part of this, it would be prudent to compare the accuracy 

improvements obtained using parametric drive to those using capacitive. 

However, further study of the existing gyroscope architecture may also be necessary. In 

particular, it is important to observe higher rate behaviour than that detailed in this thesis in 

order to better reflect the likely operating parameters. The effect of environmental conditions 

must also be considered. 

9.3.1. Parametric Drive 

An alternative to the use of additional drive electrodes described in section 8.1 is to use 

parametric drive. Such a drive excites the gyroscope with a drive frequency twice that of the 

ring’s resonant frequency, applied in a way such as to not influence the measurement of 

precession. Parametric excitation has the advantage that is excites the gyroscope into 

resonance without affecting the modes of vibration. Conventional capacitive control forces 

can then be used to reduce the effect of imperfections as described previously. 

An example of a gyroscope design that permits parametric excitation is the use of an annular 

electrode to provide excitation, as shown in figure 9.1. However, there are a number of 

electrode layouts that may permit such a scheme, and the appropriate type is an avenue for 

future research in the area. 
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Figure 9.1 - An example of a gyroscope architecture for the provision of parametric drive, where this is provided through 

the blue annular ring 

Parametric drive applies forcing through the stiffness matrix, thus does not affect the 

gyroscope precession. This alters the equations of motion, providing parametric terms in the 

stiffness matrix. The careful choice of such components allows an excitation to be applied that 

does not influence the angle of precession of the gyroscope’s vibratory pattern. 

This design has the advantage that is simpler and does not require forcing components for the 

control system that are much more complicated than those described previously in this thesis. 

However, the addition of parametric terms can have the potential to complicate the gyroscope 

dynamics if not chosen appropriately. 
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Chapter 10. Appendices 

10.1. Published work 

The following is a list of publications that are fully or in part derived from the research 

detailed in this thesis: 

 Bowles, S.R. et al, Control Scheme to Reduce the Effect of Stiffness Imperfections in a 

Rate Integrating MEMS Gyroscope, IEEE Sensors, 2015. 15(1): p. 552-560. 

 Bowles, S.R. et al, Control scheme for a rate integrating MEMS gyroscope, Inertial 

Sensors and Systems (ISISS), 2014 International Symposium on, 2014, Laguna 

Beach: p. 1-4 

 Hu, Z.X. et al, A systematic approach for precision electrostatic mode tuning of a 

MEMS gyroscope, J. Micromech. Microeng., 2014. 24(12) 

10.2. Programs 

The program used to control the gyroscope is provided. Only the primary C and assembly 

routines are provided, as many of the routines used to process signals are generic programs 

that provide little interest to the reader.   

10.2.1. Initial gyroscope design – C routine 

// NAME:     main.c (sample-based Talkthrough)                                              

// PURPOSE:  Function main() for AD1939/ADSP-21469 Talkthrough 

framework 

 

 

#include "ADDS_21469_EzKit.h" 

#include "stdio.h" 

#include "signal.h" 

#include <math.h> 

#include "processor_include.h"  

#include <def21469.h> 

 

#include <string.h>  

 

float * DelayLine; 

 

int Index  = 0; 

int Sine_Index = 0; 

int SPORT1_isr_count = 0; 

int SPORT0_isr_count = 0; 

 

int timer_count=0, timer_c1=0, timer_c2 =0; 
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float fre = 1216675*16; //1216931, frequency PLL start at this  

float reso_f, f_resolution = 0.011718; 

float f_mult = 16; 

float f_lowlimit = 1216650, f_uplimit = 1217000; 

 

float FlagScan =1; 

 

void useUART(void); 

void SPORT1_isr_counter(void); 

void SPORT0_isr_counter(void); 

void timer_isr (int sig); 

 

void FillBuffer(int Num); 

 

extern ftoa(float f); 

extern char outbuf_sign, outbuf_int[6], outbuf_frac[6]; 

 

char source[164]; 

 

//PID parameters and related variables 

float er, er_1 =0, er_2 =0; 

float er2, er2_1 = 0, er2_2 = 0; 

float per, per_1=0, per_2=0; 

 

float de_fm_gain = 5; //desired first mode gain 

 

extern float  buffer_a[75];    /*store sampled drive siganl*/ 

extern float  buffer_q[75];  /*quadrature drive signal 

from Hilbert transform*/ 

extern float  buffer_r[75];  /*store sampled response 

signal*/ 

extern float  buffer_m2[75];  /*second mode signal*/ 

extern float buffer_ar[75]; 

extern float buffer_qr[75];  

 

extern float digi_2f_a, digi_2f_q; 

extern float current_digi_a, current_digi_q; 

extern float aligned_digi_a, aligned_digi_q;  //aligned with 

the actual drive signal 

 

extern float current_a, current_q, current_r, current_m2; 

extern float current_oa, current_qa; 

extern float current_ar, current_qr, current_am, current_qm, 

current_rm;   //low pass filtered cross products 

extern float current_shifted_rm; 

extern int   Extend1_M_reg, Extend2_M_reg, Extend3_M_reg, 

Extend4_M_reg; 

extern float Gain_1f, Gain_1s, Gain_2f;  

extern int  Extend1D_I_reg, Extend2D_I_reg; 

extern float  square_drive, square_response_f, square_response_s; 

extern float de_response_f; 

extern int   Start_control, Param_control, fb_enable; 

extern int   Start_comm; 

 

extern float  amp_orthogonal; 

extern float  amp_drive; 
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extern float  amp_response_f, amp_response_f_pr; 

extern float amp_response_s; 

extern float amp_response_s_inphase, amp_response_s_quadrature; 

extern float  amp_cross_df; 

extern float cos_phase, cos_angle, cos_rm; 

extern float  Phase_resultant_drive; 

extern float    delta; 

extern float  Gain_DirectTerm, Gain_CrossTerm, Gain_feedback; 

extern char  Flag_AMtuning, Flag_AGC, Flag_PLL; 

 

float de_phase = 90; 

float cos_phase_pr =0, cos_rm_pr =0, amp_response_s_inphase_pr, 

amp_response_s_quadrature_pr; 

float cos_phase_pr2 =0, cos_rm_pr2 =0; 

 

float beta =0.62167;    //coefficient of allpass phase 

shift, changes with signal freq and desired phase shift                        

float man_phase = 0, des_phase ; //90; //desired phase shift value, 

for the known resonant frequency 

float beta_90 = 0.62167;   //coefficient for a 90 degrees 

shifter 

float beta_2f; 

 

float Angle_drive, Angle_fr, Angle_sr; 

float Angle_DfRf=0, Angle_DfRs=0, Angle_RfRs =0; //angle Rf relative 

to Rs 

float Primary_angle_err, Primary_angle_errp =0, Primary_angle_errp2 

=0; 

float Secondary_angle_err, Secondary_angle_errp =0, 

Secondary_angle_errp2 =0; 

 

 

float Gain_Sec_2f = 0.1; 

float Gain_Force_Rebalance = 0; 

float fb_control_i =0, fb_control_q =0; 

 

float f_norm;  

float f1_max = 0.6;  //600mv max applied gain 

float f1_min = 0.008;   //8mv min applied gain 

float fm_gain, tp;  //first mode response gain 

 

float Scale = 1.4285;  

float I_2f, Q_2f; 

 

//variables for electrostatic tuning 

char  flag_tuningdata =1; 

       

float ESB_P = 128, ESB_S = 128;    //start from half  

float ESB_P_Ratio =0.5, ESB_S_Ratio =0.50; //0.5 ~ 1.5 

 

float DC_bias = 255, dif_PCW, dif_PACW, dif_SCW, dif_SACW; 

float A_1, B_1, A_2, B_2;  

char SCW0, PACW1, PCW2, SACW3;    //electrostatic 

tuning voltages 

 

//invariables and eliptic parameters  
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float Ee, Qq, Rr, Ss, Lr, Li; 

float Prec_angle, Orbit_phase, Major_amp, Minor_amp, Diff; 

float n = 0; 

float Orbit_phase_mod; 

float Ti = 0; 

float F1, F3; 

float limit = 2.5; 

float A_1_in, A_2_in, B_1_in, B_2_in; 

float p = 0; 

 

void main() 

{  

 

    initPLL(); 

 initDDR2DRAM(); 

 

    // Initialize DAI because the SPORT and SPI signals 

    // which need to be routed 

    InitDAI(); 

     

    // This function will configure the AD1939 codec on the 21469 

EZ-KIT 

    Init1939viaSPI(); 

         

    useUART(); 

 

    // Turn on SPORT0 TX and SPORT1 RX for Multichannel Operation 

 enable_SPORT01_MCM_mode(); 

 enable_SPORT01_DMA_channels(); 

  

 SinTableInit(); 

 BufferInit(); 

  

 // Unmask SPORT1 RX ISR Interrupt  

 interrupts(SIG_SP1, process_AD1939_samples); 

 //SIG_SP1 

   

 // SIG_TMZ0 enables high priority timer interrupt, SIG_TMZ for 

low priority 

 interrupt(SIG_TMZ, timer_isr); 

  

    timer_set(1000000, 1000000);      // set tperiod and tcount of 

the timer(in cycles) 

    timer_on();  

     

   // Set up small delay buffer 

 DelayLine = (float *) 0x000C4000; 

  

 // read electrostatic tuning voltages from EEPROM,  

  DPeeprom_read(); 

  

 // calcualte voltage difference between DC bias and tuning 

voltages 

 dif_PCW  = 255 - PCW2; 

 dif_PACW = 255 - PACW1; 

 dif_SCW  = 255 - SCW0; 
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 dif_SACW = 255 - SACW3; 

  

 // calcualte initial A1 A2..., B1 B2 can be negative 

 A_1 = dif_PCW*dif_PCW + dif_PACW*dif_PACW; 

 B_1 = dif_PCW*dif_PCW - dif_PACW*dif_PACW;  

 A_2 = dif_SCW*dif_SCW + dif_SACW*dif_SACW; 

 B_2 = dif_SCW*dif_SCW - dif_SACW*dif_SACW; 

  

 A_1_in = A_1; 

 A_2_in = A_2; 

 B_1_in = B_1; 

 B_2_in = B_2; 

  

  // TuningVoltageUpdate();   

  Update_wiper_RAM_EEPROM();  

  

 for (;;) 

   {      

      

     //send measurements via UART0 DMA every 100ms  

     if(timer_count > 100*0.45 && Start_comm ==1) 

    { 

          

    timer_count =0;    

     

    if(flag_tuningdata ==1) 

     { 

     flag_tuningdata =0;  //send once when 

one of them is changed 

       

     ftoa(0); 

     FillBuffer(0); 

   

     ftoa(Gain_DirectTerm); 

     FillBuffer(1); 

   

     ftoa(Gain_CrossTerm);  

     FillBuffer(2);   

   

    ftoa(B_1);  

     FillBuffer(3); 

   

    ftoa(B_2);        

   FillBuffer(4); 

     

    ftoa(A_1);  

     FillBuffer(5); 

     

    ftoa(A_2);     

     FillBuffer(6); 

  

    source[162] = 0x0a; 

     source[163] = 0x0d; 

   

       *pUART0TXCTL =0; 

       *pIIUART0TX = (unsigned int) &source[0]; 
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       *pIMUART0TX = 1; 

       *pCUART0TX = 164;   //86, sizeof(source);     

       *pUART0TXCTL = UARTEN | UARTDEN; 

     } 

     

    else 

     { 

 

     ftoa(reso_f);    //drive frequency 

     FillBuffer(0); 

      

     ftoa(Ee*1000); 

     //ftoa(A_1); 

     FillBuffer(1); 

   

     ftoa(Qq*1000); 

     //ftoa(B_1); 

     FillBuffer(2);   

   

     ftoa(Gain_1f); 

     //ftoa(n); 

     FillBuffer(3); 

   

     if(fb_enable != 0) 

      ftoa(fb_control_i); 

     else 

      ftoa(amp_response_s_inphase*Scale);  

      

     ftoa(Gain_1s); 

     FillBuffer(4); 

 

     ftoa(Angle_drive); 

     FillBuffer(5); 

     

     ftoa(Orbit_phase_mod); 

     FillBuffer(6); 

      

     ftoa(current_ar); 

     FillBuffer(7); 

      

     ftoa(current_qr); 

     FillBuffer(8); 

      

     ftoa(current_am); 

     FillBuffer(9); 

      

     ftoa(current_qm); 

     FillBuffer(10); 

      

     if(Flag_AMtuning == 1) n++; 

  

    source[162] = 0x0a; 

     source[163] = 0x0d; 

   

       *pUART0TXCTL =0; 

       *pIIUART0TX = (unsigned int) &source[0]; 
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       *pIMUART0TX = 1; 

       *pCUART0TX = 164;   //86, sizeof(source);     

       *pUART0TXCTL = UARTEN | UARTDEN; 

     } 

                               

    } 

     

      } 

} 

 

void FillBuffer(int num) 

{ 

 int i, k; 

  

 k=14*num;  

 source[k] = outbuf_sign; 

  for (i=1; i<7; i++) source[k+i]=outbuf_int[6-i]; 

  for (i=7; i<13; i++) source[k+i]=outbuf_frac[12-i];   

  source[k+13] = 0x20; 

} 

 

//this interrupt takes about 50 cycles overhead to call in and //50 

cycles to call out,  

//therefore, Tperiod can not be too low,  

void timer_isr (int sig) 

{ 

 int i, value; 

 float AM_radian, pi = 3.14159;  

   

 float fblimit_l = -0.06, fblimit_h = 0.06; 

 float ctemp =0; 

  

 //PID control variables for the primary electrode 

 float Kp = 1;  

 float Ki = 0.1; 

 float Kd = 0.1;  

  

//PID control variables for the secondary electrode 

 float Kp2 = 6; 

 float Ki2 = 0.01; 

 float Kd2 = 0.01; 

  

 timer_count++; 

 timer_c1++; 

  

 timer_c2++;   

 AM_radian = 2*pi*timer_c2/5000.0; //varies from 0 ~ 2pi 

 if(timer_c2 >= 5000) timer_c2 =0; 

  

 //----------measure all necessary elements before closing control 

loops------------- 

 //amp_orthogonal is always unit, better calcualte square of inphase 

and quadrature  

 //in CODEC interrupt, in case use diffrent values due to higher 

priority. 
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amp_orthogonal = sqrtf(current_digi_a * current_digi_a + 

current_digi_q * current_digi_q); 

amp_drive = 2*sqrtf(square_drive)/amp_orthogonal; 

amp_response_f = 2*sqrtf(square_response_f)/amp_orthogonal; 

amp_response_s = 2*sqrtf(square_response_s)/amp_orthogonal; 

   

 // phase angles relative to internal reference 

  Angle_drive = atan2f(current_qa, current_oa)*57.2958; 

  Angle_fr = atan2f(current_qr, current_ar)*57.2958; 

  Angle_sr = atan2f(current_qm, current_am)*57.2958; 

  

 // Phases relative to real primary drive, avoid electronics //and 

processing phase shifts 

Angle_DfRf = Angle_fr - Angle_drive; //First mode phase wrt drive

  

  if(Angle_DfRf > 180)         

   Angle_DfRf = Angle_DfRf - 360;      

  if(Angle_DfRf < -180)  

   Angle_DfRf = Angle_DfRf + 360;   

    

Angle_DfRs = Angle_sr - Angle_drive; //Second mode phase wrt drive

    

  if(Angle_DfRs > 180)       

   Angle_DfRs = Angle_DfRs - 360;      

  if(Angle_DfRs < -180)  

   Angle_DfRs = Angle_DfRs + 360;   

   

Angle_RfRs = Angle_fr - Angle_sr; //Difference between primary and 

secondary phase      

  if(Angle_RfRs > 180)  

   Angle_RfRs = Angle_RfRs - 360;     

  if(Angle_RfRs < -180)  

   Angle_RfRs = Angle_RfRs + 360; 

    

//Calculation of invariants 

Ee = current_ar * current_ar + current_qr * current_qr + current_am 

* current_am + current_qm * current_qm;  

Qq = 2*(current_ar * current_qm - current_am * current_qr);  

Rr = current_ar * current_ar + current_qr * current_qr - current_am 

* current_am - current_qm * current_qm;  

Ss = 2 * (current_ar * current_am +  current_qr * current_qm );  

Lr = current_ar * current_ar - current_qr * current_qr + current_am 

* current_am - current_qm * current_qm; 

Li = 2*(current_ar * current_qr + current_am * current_qm); 

    

Prec_angle = 0.5* atan2f(Ss, Rr) * 57.2958;  

Orbit_phase = 0.5 * atan2f(Li, Lr) * 57.2958; 

Orbit_phase_mod = Orbit_phase; 

 if(Orbit_phase_mod < 0) Orbit_phase_mod = Orbit_phase_mod + 

180; 

  

 // calculate drive frequency from index register Extend1_M_reg:  

reso_f = Extend1_M_reg * f_resolution/f_mult; 

    

Extend1_M_reg = (int)fre; 
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  if(Extend1_M_reg > f_uplimit*f_mult) Extend1_M_reg = 

f_uplimit*f_mult; 

  if(Extend1_M_reg < f_lowlimit*f_mult) Extend1_M_reg = 

f_lowlimit*f_mult;   

  Extend2_M_reg = Extend1_M_reg; 

  Extend3_M_reg = Extend1_M_reg << 1; //2f signal, for parametric 

application 

  Extend4_M_reg = Extend1_M_reg << 1; 

   

//  Calculate phase error for Phase lock loop. Due to JFET //buffer 

inside the device, 90 ahead of drive, the real //vibration phase is 

90 behind.  

  

Primary_angle_err = (83.7 - Orbit_phase_mod); 

 

//Primary mode PLL  

 if(Flag_PLL == 1 && timer_c1 >= 2) 

   { 

    timer_c1 = 0; 

fre += -50.0*(Primary_angle_err - Primary_angle_errp) - 

10*Primary_angle_err - 0.2*(Primary_angle_err -2*Primary_angle_errp 

+ Primary_angle_errp2); 

     

    //make sure there is drive if not in AGC mode  

    if(Flag_AGC != 1 && Flag_AMtuning !=1)  

    { 

     Gain_1f = 0.25; 

     Gain_1s = 0.25; 

    }   

   } 

 

   //Error in size of E1 and E2 

 er = limit - 1000*Ee; 

   er2 = 0 - 1000*Qq; 

  

  // AGC for primary mode and secondary mode or angle forcing   

//control 

  if(Flag_AGC == 1)   

  { 

 

   Gain_1f += Kp*(er-er_1) + Ki*er + Kd*(er- 2*er_1 + er_2); 

       

   if(Gain_1f > f1_max) Gain_1f = f1_max;  

   if(Gain_1f < f1_min) Gain_1f = f1_min;  

    

  //E2 control 

   //Gain_1s += Kp2*(er2-er2_1) + Ki2*er2 + Kd2*(er2- 

2*er2_1 + er2_2); 

    

  //Angle forcing control 

  Gain_1s = Gain_1f*(tan(Prec_angle/57.2958)); 

    

   if(Gain_1s > f1_max) Gain_1s = f1_max;  

   if(Gain_1s < f1_min) Gain_1s = f1_min; 

   } 
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  // Frequency sweep routine 

   if(Flag_AGC != 1 && Flag_AMtuning == 1 && Flag_PLL != 1) 

   { 

     

    Gain_1f = 0.25; 

    Gain_1s = 0.25; 

     

    Extend1_M_reg = f_lowlimit*f_mult + (n*f_mult*(f_uplimit 

- f_lowlimit))/5000; 

     

    if(Extend1_M_reg > f_uplimit*f_mult)  

    { 

     n = 0; 

    } 

     

   } 

   

// always update phase and amplitude errors after PLL and AGC   

//control calcualtions  

  er_2 = er_1; 

  er_1 = er; 

   

  er2_2 = er2_1; 

  er2_1 = er2; 

      

  cos_phase_pr2 = cos_phase_pr; 

  cos_phase_pr = cos_phase; 

  cos_rm_pr2 = cos_rm_pr; 

  cos_rm_pr = cos_rm; 

   

  Primary_angle_errp2 = Primary_angle_errp; 

  Primary_angle_errp = Primary_angle_err; 

  Secondary_angle_errp2 = Secondary_angle_errp; 

  Secondary_angle_errp = Secondary_angle_err; 

   

  amp_response_s_inphase_pr = amp_response_s_inphase; 

  amp_response_s_quadrature_pr = amp_response_s_quadrature; 

   

  amp_response_f_pr = amp_response_f;   

} 

10.2.2. Initial gyroscope design – assembly routine 

/*******************************************************************

*********************************** 

/                                                                                                     

/ 

/                            AD1939 - SPORT1 RX INTERRUPT SERVICE 

ROUTINE                             / 

/                                                                                                     

/ 

/    Receives input data from the AD1939 ADCs via SPORT1 and 

transmits processed audio data        / 
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/    back out to the four AD1939 Stereo DACs/Line Outputs through 

SPORT0.                             / 

/                                                                                                     

/ 

********************************************************************

*********************************** 

/                                                                                                     

/ 

/   This Serial Port 1 Receive Interrupt Service Routine performs 

arithmetic computations on          / 

/   the SPORT1 receive DMA buffer (rx1a_buf) and places results to 

SPORT0 transmit                    / 

/   DMA buffer (tx0a_buf)                                                                             

/ 

/                                                                                                     

/ 

/  rx1a_buf[8] - DSP SPORT receive buffer - AD1939                                                    

/ 

/  Slot # Description                             DSP Data Memory 

Address                             / 

/  ------ --------------------------------------  ------------------

--------------------------------  / 

/  0      Internal ADC 0 Left Channel             DM(_rx1a_buf + 0) 

= DM(_rx1a_buf + Internal_ADC_L1) / 

/  1      Internal ADC 0 Right Channel            DM(_rx1a_buf + 1) 

= DM(_rx1a_buf + Internal_ADC_R1) / 

/  2      Internal ADC 1 Left Channel             DM(_rx1a_buf + 2) 

= DM(_rx1a_buf + Internal_ADC_L2) / 

/  3      Internal ADC 1 Right Channel            DM(_rx1a_buf + 3) 

= DM(_rx1a_buf + Internal_ADC_R2) / 

/  4      External Auxilliary ADC 1 Left Chan.    DM(_rx1a_buf + 4) 

= DM(_rx1a_buf + AUX_DAC_L1)      / 

/  5      External Auxilliary ADC 1 Right Chan.   DM(_rx1a_buf + 5) 

= DM(_rx1a_buf + AUX_DAC_R1)      / 

/  6      External Auxilliary ADC 2 Left Chan.    DM(_rx1a_buf + 6) 

= DM(_rx1a_buf + AUX_DAC_L2)      / 

/  7      External Auxilliary ADC 2 Right Chan.   DM(_rx1a_buf + 7) 

= DM(_rx1a_buf + AUX_DAC_R2)      / 

/                                                                                                     

/ 

/  tx0a_buf[8] - DSP SPORT transmit buffer - AD1939                                                   

/ 

/  Slot # Description                             DSP Data Memory 

Address                             / 

/  ------ --------------------------------------  ------------------

--------------------------------  / 

/  0      Internal DAC 1 Left Channel             DM(_tx0a_buf + 0) 

= DM(_tx0a_buf + Internal_DAC_L1) / 

/  1      Internal DAC 1 Right Channel            DM(_tx0a_buf + 1) 

= DM(_tx0a_buf + Internal_DAC_R1) / 

/  2      Internal DAC 2 Left Channel             DM(_tx0a_buf + 2) 

= DM(_tx0a_buf + Internal_DAC_L2) / 

/  3      Internal DAC 2 Right Channel            DM(_tx0a_buf + 3) 

= DM(_tx0a_buf + Internal_DAC_R2) / 

/  4      Internal DAC 3 Left Channel             DM(_tx0a_buf + 4) 

= DM(_tx0a_buf + Internal_DAC_L3) / 
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/  5      Internal DAC 3 Right Channel            DM(_tx0a_buf + 5) 

= DM(_tx0a_buf + Internal_DAC_R3) / 

/  6      Internal DAC 4 Left Channel             DM(_tx0a_buf + 6) 

= DM(_tx0a_buf + Internal_DAC_L4) / 

/  7      Internal DAC 4 Right Channel            DM(_tx0a_buf + 7) 

= DM(_tx0a_buf + Internal_DAC_R4) / 

/                                                                                                     

/ 

********************************************************************

**********************************/ 

 

#include "adds_21469_ezkit.h" 

#include <asm_sprt.h> 

#include <def21469.h> 

/*  The following macro def should be uncommented to test the DACs 

only with some generated pure tones... */ 

/*  Running at 96 KHz vs 48 KHz, you should hear a 1-octave 

difference in the tones */ 

/*  Tones are generated a 4K sine wave lookup table (integer divisor 

of 48K/96K/192K */ 

 

#define GENERATE_DAC_PURE_TONES_TEST 

 

.section /dm seg_dmda; 

 

/* AD1939 stereo-channel data holders - used for DSP processing of 

audio data received from codec */ 

// input channels 

.var    _Left_Channel_In1;          /* Input values from the 

AD1939 internal stereo ADCs */    

.var    _Right_Channel_In1; 

.var    _Left_Channel_In2;       

.var    _Right_Channel_In2; 

 

//output channels 

.var   _Left_Channel_Out1;         /* Output values for the 

4 AD1939 internal stereo DACs */ 

.var    _Left_Channel_Out2;         

.var    _Left_Channel_Out3; 

.var    _Left_Channel_Out4; 

.var   _Right_Channel_Out1; 

.var   _Right_Channel_Out2; 

.var   _Right_Channel_Out3; 

.var   _Right_Channel_Out4; 

 

.var   _Left_Channel;              /* Can use these 

variables as intermediate results to next filtering stage */ 

.var            _Right_Channel; 

 

.var   AD1939_audio_frame_timer; 

 

.var    sine4000[4000] = "sinetbl.dat";   

.var   TEMP_M5, TEMP_M1, TEMP_M2, TEMP_L5, TEMP_I6; 

.var   Sine1_B_reg, Sine1_I_reg, Sine1_M_reg, Sine1_L_reg; 

.var   Sine2_B_reg, Sine2_I_reg, Sine2_M_reg, Sine2_L_reg; 

.var   Sine3_B_reg, Sine3_I_reg, Sine3_M_reg, Sine3_L_reg; 
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.var   Sine4_B_reg, Sine4_I_reg, Sine4_M_reg, Sine4_L_reg; 

 

//need to create three sine waves, for the drive, quadrature of the 

drive,  

//and 2f drive for parametric amp! 

.var   Extend1_B_reg, Extend1_I_reg, Extend1_L_reg; 

.var   Extend2_B_reg, Extend2_I_reg, Extend2_L_reg; 

.var   Extend3_B_reg, Extend3_I_reg, Extend3_L_reg; 

.var   Extend4_B_reg, Extend4_I_reg, Extend4_L_reg; 

.extern   _Extend1_M_reg, _Extend2_M_reg, 

_Extend3_M_reg, _Extend4_M_reg; 

.extern   _Extend1D_I_reg, _Extend2D_I_reg; 

.extern   _Gain_1f, _Gain_1s, _Gain_2f, _Gain_Sec_2f, 

_Gain_Force_Rebalance;   

 

//regard the six buffers (_buffer_a, buffer_q ...) as circular 

buffers,  

//define six variables as pointers associated with the 

current(header) position, when read in  

//data (store), pointers always increase. 

.var   digiaBuffer_B_Reg, digiaBuffer_I_Reg, 

digiaBuffer_M_Reg, digiaBuffer_L_Reg; 

.var   digiqBuffer_B_Reg, digiqBuffer_I_Reg, 

digiqBuffer_M_Reg, digiqBuffer_L_Reg; 

.var   oaBuffer_B_Reg, oaBuffer_I_Reg, oaBuffer_M_Reg, 

oaBuffer_L_Reg; 

.var   qaBuffer_B_Reg, qaBuffer_I_Reg, qaBuffer_M_Reg, 

qaBuffer_L_Reg; 

 

.var   aBuffer_B_Reg, aBuffer_I_Reg, aBuffer_M_Reg, 

aBuffer_L_Reg; 

.var   qBuffer_B_Reg, qBuffer_I_Reg, qBuffer_M_Reg, 

qBuffer_L_Reg; 

.var   rBuffer_B_Reg, rBuffer_I_Reg, rBuffer_M_Reg, 

rBuffer_L_Reg; 

.var    rBuffer_shifted_rm_B_Reg, rBuffer_shifted_rm_I_Reg, 

rBuffer_shifted_rm_L_Reg, rBuffer_shifted_rm_M_Reg; 

 

.var   m2Buffer_B_Reg, m2Buffer_I_Reg, m2Buffer_M_Reg, 

m2Buffer_L_Reg; 

.var   arBuffer_B_Reg, arBuffer_I_Reg, arBuffer_M_Reg, 

arBuffer_L_Reg; 

.var   qrBuffer_B_Reg, qrBuffer_I_Reg, qrBuffer_M_Reg, 

qrBuffer_L_Reg; 

.var   amBuffer_B_Reg, amBuffer_I_Reg, amBuffer_M_Reg, 

amBuffer_L_Reg; 

.var   qmBuffer_B_Reg, qmBuffer_I_Reg, qmBuffer_M_Reg, 

qmBuffer_L_Reg; 

.var   rmBuffer_B_Reg, rmBuffer_I_Reg, rmBuffer_M_Reg, 

rmBuffer_L_Reg; 

.var    zero =0; 

 

.var   Original_2f, previous_Original_2f, 

shifted_Original_2f, previous_shifted_Orginal_2f; 

.var   shifted_2f, previous_shifted_2f; 

.var   Parametric_drive; 
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//these variables store the current values, already in float format. 

.extern  _I_2f, _Q_2f; 

.extern  _digi_2f_a, _digi_2f_q; 

.extern  _current_digi_a, _current_digi_q;  

.extern  _aligned_digi_a, _aligned_digi_q; 

.extern   _current_a, _current_q, _current_r, 

_current_m2;  

.extern  _current_oa, _current_qa; 

.extern   _current_ar, _current_qr, _current_am, _current_qm, 

_current_rm; //low pass filtered cross products 

.extern    _previous_a, _previous_r;   

 /*previous first mode value, for phase shift filter use */ 

.extern   _shifted_a, _previous_shifted_a; 

.extern   _shifted_r, _previous_shifted_r; 

.extern   _current_shifted_rm; 

.extern   _second_2f_control, 

_second_forcebalance_control; 

.extern   _current_E1, _current_E2, _current_E3, 

_current_E4, _current_E5R, _current_E5I; 

 

.global   _Left_Channel_In1; 

.global   _Right_Channel_In1; 

.global   _Left_Channel_In2; 

.global   _Right_Channel_In2; 

 

.global   _Left_Channel_Out1; 

.global   _Right_Channel_Out1; 

.global   _Left_Channel_Out2; 

.global   _Right_Channel_Out2; 

.global   _Left_Channel_Out3; 

.global   _Right_Channel_Out3; 

.global   _Left_Channel_Out4; 

.global   _Right_Channel_Out4; 

 

.extern   _rx1a_buf; 

.extern   _tx0a_buf; 

.extern   _tx0b_buf; 

 

//defined by Huzx, to store sampled drive, response and trnsformed 

data 

.extern   _digi_a;    

.extern  _digi_q; 

.extern  _buffer_oa; 

.extern  _buffer_qa; 

 

.extern   _buffer_a; 

.extern   _buffer_q; 

.extern   _buffer_r; 

.extern   _buffer_m2; 

.extern   _buffer_ar; 

.extern   _buffer_qr; 

.extern   _buffer_am; 

.extern   _buffer_qm; 

.extern   _buffer_rm; 
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.extern    _buffer_shifted_rm; /*store phase shifted first 

mode response signal*/ 

 

.extern   _beta;  //parameter of allpass phase shift,                        

.extern   _beta_90; 

.extern   _beta_2f; 

 

.extern   _square_drive, _square_response_f, _square_response_s; 

.extern   _amp_orthogonal; 

.extern    _amp_drive; 

.extern    _amp_response_f; 

.extern   _amp_response_s; 

.extern   _amp_response_s_inphase, _amp_response_s_quadrature;  

.extern   _cos_phase; 

 

.extern   _fb_control_i, _fb_control_q; 

.extern   _Gain_feedback; 

.extern   _Gain_DirectTerm, _Gain_CrossTerm; 

.extern   _reconstr_f, _reconstr_s;  

 //reconstructed primary/secondary responses 

.extern   _reconstr_vel_f, _reconstr_vel_s; 

 //reconstructed velocity 

.extern   _feedback_f, _feedback_s; 

.extern   _delta; 

 

//the FIR low pass filter coefficients are stored in the program 

memory 

.section /pm seg_pmda; 

.var   lowpass[75] = "Gyrolowpass.dat"; 

.var   bandpass[75] = "Gyrobandpass.dat"; 

    

.section/pm seg_pmco; 

//.section/pm seg_swco; 

 

_Receive_ADC_Samples: 

.global _Receive_ADC_Samples; 

 

 dm(TEMP_M5) = M5; 

 dm(TEMP_M1) = I5; 

 dm(TEMP_M2) = M6; 

 dm(TEMP_I6) = I6; //I6 must be protected!!! 

 dm(TEMP_L5) = L5;  

 

//************************************************************** 

// store sampled drive signal into circular buffer (_buffer_a),  

// use bandpass filter. 

//************************************************************** 

 r1 = -31; 

 r0 = dm(_rx1a_buf + Internal_ADC_L1); f0 = float r0 by r1; 

 B5 = DM(aBuffer_B_Reg); 

 I5 = DM(aBuffer_I_Reg); 

 L5 = DM(aBuffer_L_Reg); 

 M5 = DM(aBuffer_M_Reg);  

 dm(I5, m5) = r0;  

 DM(aBuffer_B_Reg) = B5; 

 DM(aBuffer_I_Reg) = I5; 
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 DM(aBuffer_L_Reg) = L5; 

 DM(aBuffer_M_Reg) = M5; 

 

   

 I8 = bandpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

   

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); //I5 still points to the 

oldest data, fine as the filter is symmetrical 

 lcntr = @bandpass-1, do ta until lce; 

ta: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_a) = f12;  // bandpass filtered drive signal 

 

  

 dm(_current_a) = f0; //disable bandpass------------ 

 

// ------------------to measure drive signal--------------------- 

 r0 = dm(_current_digi_a);    

 r1 = dm(_current_a); 

 f0 = f0*f1;   //this is the new cross product in 

r0! 

  

 B5 = DM(oaBuffer_B_Reg); 

 I5 = DM(oaBuffer_I_Reg); //I register always point to the 

oldest data 

 L5 = DM(oaBuffer_L_Reg); 

 M5 = DM(oaBuffer_M_Reg);  

 dm(I5, m5) = r0;   //first push the new product in 

buffer!!! 

 DM(oaBuffer_B_Reg) = B5; 

 DM(oaBuffer_I_Reg) = I5;  

 DM(oaBuffer_L_Reg) = L5; 

 DM(oaBuffer_M_Reg) = M5 ; 

  

 I8 = lowpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

  

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); 

 lcntr = @lowpass-1, do toa until lce; 

toa: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_oa) = f12;  //filtered cross product of 

response and quadrature 

 

 //calcualte qa  

 r0 = dm(_current_digi_q);    

 r1 = dm(_current_a); 
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 f0 = f0*f1;   //this is the new cross product in 

r0! 

  

 B5 = DM(qaBuffer_B_Reg); 

 I5 = DM(qaBuffer_I_Reg); //I register always point to the 

oldest data 

 L5 = DM(qaBuffer_L_Reg); 

 M5 = DM(qaBuffer_M_Reg);  

 dm(I5, m5) = r0;   //first push the new product in 

buffer!!! 

 DM(qaBuffer_B_Reg) = B5; 

 DM(qaBuffer_I_Reg) = I5;  

 DM(qaBuffer_L_Reg) = L5; 

 DM(qaBuffer_M_Reg) = M5 ; 

  

 I8 = lowpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

  

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); 

 lcntr = @lowpass-1, do tqa until lce; 

tqa: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_qa) = f12;  //filtered cross product of 

response and quadrature 

  

 //calculate I^2 + Q^2 

 f12 = f12 *f12; 

 f2 = dm(_current_oa); 

 f2 = f2*f2; 

 f2 = f2+f12; 

 dm(_square_drive) = f2; 

  

//******************************************************** 

//store first mode response, apply bandpass filter 

//******************************************************** 

 r1 = -31; 

 r0 = dm(_rx1a_buf + Internal_ADC_L2); f0 = float r0 by r1;  

 B5 = DM(rBuffer_B_Reg); 

 I5 = DM(rBuffer_I_Reg); 

 L5 = DM(rBuffer_L_Reg); 

 M5 = DM(rBuffer_M_Reg);  

 dm(I5, m5) = r0;  

 DM(rBuffer_B_Reg) = B5; 

 DM(rBuffer_I_Reg) = I5; 

 DM(rBuffer_L_Reg) = L5; 

 DM(rBuffer_M_Reg) = M5;  

 

  

 I8 = bandpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 
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 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); //I5 still points to the 

oldest data, it is fine as the filter is symmetrical 

 lcntr = @bandpass-1, do tr until lce; 

tr: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12; 

 dm(_current_r) = f12;  //bandpass filtered response 

 

   

 dm(_current_r) = f0; //disable bandpass---------   

  

//******************************************************************

****************** 

//----------phase shift first mode response;2010----------- 

// instead of using shifted first mode response for the phase 

sensitive detection 

// it should be better by using digital unit vector, that will lead 

to low noise, 2011 

//still use the same name "_shifted_r", it is unit amplitude 

//no need, in-phase and quadrature will be calcualted from I and Q 

by rotation 

//******************************************************************

****************** 

/* 

 f0 = dm(_current_r); 

 f2 = dm(_previous_r);  //retrieve previous value   

 f1 = dm(_beta);    //_beta is modified in main.c 

 f4 = f1*f0; 

 f0 = f4 - f2; 

  

 f4 = dm(_previous_shifted_r); 

 f2 = f1*f4; 

 f1 =f0 + f2; 

 dm(_shifted_r) = f1; 

  

 f0 = dm(_current_r);  //update previous values 

 dm(_previous_r) = f0; 

 f4 = dm(_shifted_r); 

 dm(_previous_shifted_r) = f4; 

 */ 

   

//-------------------------------------------------------  

 

//******************************************************************

****** 

//---phase shift original 2f signal, aim to amplify coriolis 

response;--- 

//******************************************************************

****** 

/* 

 f0 = dm(Original_2f); 

 f2 = dm(previous_Original_2f);     

 f1 = dm(_beta_2f); 

 f4 = f1*f0; 
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 f0 = f4 - f2; 

  

 f4 = dm(previous_shifted_Orginal_2f); 

 f2 = f1*f4; 

 f1 =f0 + f2; 

 dm(shifted_Original_2f) = f1; 

  

 f0 = dm(Original_2f);   

 dm(previous_Original_2f) = f0; 

// f4 = dm(shifted_Original_2f); 

// dm(previous_shifted_Orginal_2f) = f4;  

  

  

 f0 = dm(shifted_Original_2f);   //phase shift the 

shifted 2f signal: shifted_original_2f again 

 f2 = dm(previous_shifted_Orginal_2f);     

 f1 = dm(_beta_2f); 

 f4 = f1*f0; 

 f0 = f4 - f2; 

  

 f4 = dm(previous_shifted_2f); 

 f2 = f1*f4; 

 f1 =f0 + f2; 

 dm(shifted_2f) = f1; 

  

 f0 = dm(shifted_Original_2f);   

 dm(previous_shifted_Orginal_2f) = f0; 

 f4 = dm(shifted_2f); 

 dm(previous_shifted_2f) = f4; 

 */ 

 

//***************************************************************** 

//store second mode response from channel R2, apply bandpass filter 

//*****************************************************************

  

 r1 = -31; 

 r0 = dm(_rx1a_buf + Internal_ADC_R2); f0 = float r0 by r1; 

 B5 = DM(m2Buffer_B_Reg); 

 I5 = DM(m2Buffer_I_Reg); 

 L5 = DM(m2Buffer_L_Reg); 

 M5 = DM(m2Buffer_M_Reg);  

 dm(I5, m5) = r0;  

 DM(m2Buffer_B_Reg) = B5; 

 DM(m2Buffer_I_Reg) = I5; 

 DM(m2Buffer_L_Reg) = L5; 

 DM(m2Buffer_M_Reg) = M5; 

 

   

 I8 = bandpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

  

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); //I5 still points to the 

oldest data, it is fine as the filter is symmetrical 



 117 

 

 lcntr = @bandpass-1, do tm2 until lce; 

tm2: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_m2) = f12;  //bandpass filtered second 

mode response 

 

  

 dm(_current_m2) = f0; //disable bandpass---------------- 

  

// ************************************************ 

// orthorgonal demodulation of first mode response. 

// ************************************************  

 r0 = dm(_current_digi_a); 

 r1 = dm(_current_r); 

 f0 = f0*f1;   //this is the new cross product in 

r0! 

  

//---low pass filter it and store it into the circular buffer 

(_buffer_ar) 

 B5 = DM(arBuffer_B_Reg); 

 I5 = DM(arBuffer_I_Reg); //I register always point to the 

oldest data 

 L5 = DM(arBuffer_L_Reg); 

 M5 = DM(arBuffer_M_Reg); 

 dm(I5, m5) = r0;   //first push the new product in 

buffer!!! 

 DM(arBuffer_B_Reg) = B5; 

 DM(arBuffer_I_Reg) = I5;  

 DM(arBuffer_L_Reg) = L5; 

 DM(arBuffer_M_Reg) = M5 ; 

  

 I8 = lowpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

   

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); //I5 still points to the 

oldest data, it is fine as the filter is symmetrical 

 lcntr = @lowpass-1, do tar until lce; 

tar: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_ar) = f12;  //filtered cross product value 

of response and drive  

 

// calcualte multiplications of quadrature with response, vector 

product.  

 r0 = dm(_current_digi_q);   

 r1 = dm(_current_r); 

 f0 = f0*f1;   //this is the new cross product in 

r0! 

  

//---low pass filter it and store it into the circular buffer 

(_buffer_qr) 
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 B5 = DM(qrBuffer_B_Reg); 

 I5 = DM(qrBuffer_I_Reg); //I register always point to the 

oldest data 

 L5 = DM(qrBuffer_L_Reg); 

 M5 = DM(qrBuffer_M_Reg);  

 dm(I5, m5) = r0;   //first push the new product in 

buffer!!! 

 DM(qrBuffer_B_Reg) = B5; 

 DM(qrBuffer_I_Reg) = I5;  

 DM(qrBuffer_L_Reg) = L5; 

 DM(qrBuffer_M_Reg) = M5 ; 

  

 I8 = lowpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

  

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); 

 lcntr = @lowpass-1, do tqr until lce; 

tqr: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_qr) = f12;  //filtered cross product of 

response and quadrature 

 

  

 //calculate I^2 + Q^2 

 f12 = f12 *f12; 

 f2 = dm(_current_ar); 

 f2 = f2*f2; 

 f2 = f2+f12; 

 dm(_square_response_f) = f2; 

//---------------------------- 

 

// ************************************************* 

// orthorgonal demodulation of second mode response.  

// ************************************************* 

 r0 = dm(_current_digi_a);    

 r1 = dm(_current_m2); 

 f0 = f0*f1;   //this is the new cross product in 

r0! 

  

//---low pass filter it and store it into the circular buffer 

(_buffer_qr) 

 B5 = DM(amBuffer_B_Reg); 

 I5 = DM(amBuffer_I_Reg); //I register always point to the 

oldest data 

 L5 = DM(amBuffer_L_Reg); 

 M5 = DM(amBuffer_M_Reg);  

 dm(I5, m5) = r0;   //first push the new product in 

buffer!!! 

 DM(amBuffer_B_Reg) = B5; 

 DM(amBuffer_I_Reg) = I5;  

 DM(amBuffer_L_Reg) = L5; 

 DM(amBuffer_M_Reg) = M5 ; 
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 I8 = lowpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

  

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); 

 lcntr = @lowpass-1, do tam until lce; 

tam: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_am) = f12;  //filtered cross product of 

response and quadrature 

 

// calcualte multiplications of quadrature with response, vector 

product.  

 r0 = dm(_current_digi_q);    

 r1 = dm(_current_m2); 

 f0 = f0*f1;   //this is the new cross product in 

r0! 

  

//---low pass filter it and store it into the circular buffer 

(_buffer_qr) 

 B5 = DM(qmBuffer_B_Reg); 

 I5 = DM(qmBuffer_I_Reg); //I register always point to the 

oldest data 

 L5 = DM(qmBuffer_L_Reg); 

 M5 = DM(qmBuffer_M_Reg);  

 dm(I5, m5) = r0;   //first push the new product in 

buffer!!! 

 DM(qmBuffer_B_Reg) = B5; 

 DM(qmBuffer_I_Reg) = I5;  

 DM(qmBuffer_L_Reg) = L5; 

 DM(qmBuffer_M_Reg) = M5 ; 

  

 I8 = lowpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

  

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); 

 lcntr = @lowpass-1, do tqm until lce; 

tqm: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_qm) = f12;  //filtered cross product of 

response and quadrature 

  

 //calculate I^2 + Q^2 

 f12 = f12 *f12; 

 f2 = dm(_current_am); 

 f2 = f2*f2; 

 f2 = f2+f12; 

 dm(_square_response_s) = f2; 
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// ******************************************************** 

// this is the phase sensitive demodualtion-------------- 

// ********************************************************   

// calculate multiplication of second mode response with shifted 

first mode //response, vector product, to measure the in phase and 

quadrature value of the //second mode first, shift the first mode 

response, so that it forms 90 degrees with //the quadrature (when 

the gyro is in static)  

 r0 = dm(_shifted_r);    

 r1 = dm(_current_m2); 

 f0 = f0*f1;      

 

//---low pass filter it and store  

 B5 = DM(rBuffer_shifted_rm_B_Reg); 

 I5 = DM(rBuffer_shifted_rm_I_Reg); //I register always point 

to the oldest data 

 L5 = DM(rBuffer_shifted_rm_L_Reg); 

 M5 = DM(rBuffer_shifted_rm_M_Reg);  

 dm(I5, m5) = r0;   //first push the new product in 

buffer!!! 

 DM(rBuffer_shifted_rm_B_Reg) = B5; 

 DM(rBuffer_shifted_rm_I_Reg) = I5;  

 DM(rBuffer_shifted_rm_L_Reg) = L5; 

 DM(rBuffer_shifted_rm_M_Reg) = M5; 

  

 I8 = lowpass;    //coefficents stored in 

program memory, addressed by DAG2  

 m8 = 1;      //make sure the same size 

of coeffient array with the data array 

  

 f12 = 0; 

 f2 = dm(I5, M5), f4 = pm(I8, M8); 

 lcntr = @lowpass-1, do shiftrm until lce; 

shiftrm: f8 = f2*f4, f12 =f8+f12, f2 =dm(I5, M5), f4 = pm(I8,M8); 

 f8 = f2*f4;   

 f12 = f8+f12;  

 dm(_current_shifted_rm) = f12; 

*/  

 

// 

********************************************************************

******************   

// second mode force rebalance control: use the created unit digital 

orthogonal pair,  

// and control outputs from measured _amp_response_s_inphase, 

_amp_response_s_quadrature, 

// to generate a sine wave (possibly need phase compensation) to 

balance the second mode 

// 

********************************************************************

****************** 

 //r0 = dm(_aligned_digi_a); 

 //r1 = dm(_aligned_digi_q); 
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 r0 = dm(_current_digi_a); 

 r1 = dm(_current_digi_q); 

  

 f2 = dm(_fb_control_i); 

 f4 = dm(_fb_control_q); 

  

 f2 = f2*f0; 

 f4 = f4*f1; 

 f12 = f2+f4; 

  

 dm(_second_forcebalance_control) = f12; 

//----------------------------------------- 

 

// 

********************************************************************

********************************** 

// reconstructed primary mode response (displacement), multiplied 

with a feedback gain ( between [-5, 5]) 

// used to modify the resonator dynamics, mainly the resonant 

frequency aiming at mode tuning 

// 

********************************************************************

******************** 

 f2 = dm(_current_ar); 

 f4 = dm(_current_qr); 

 

 //displacement feedback   

 f2 = f2*f0; 

 f4 = f4*f1; 

 f12 = f2+f4; 

  

 dm(_reconstr_f) = f12;  // save reconstructed primary 

displacement 

  

 //velocity feedback  //Jan. 2012 to try velocity 

feedback to improve Q factor of primary mode 

 //f2 = f2*f1; 

 //f4 = f4*f0; 

 //f12 = f2-f4; 

  

 f2 = dm(_current_am); 

 f4 = dm(_current_qm); 

 

 f2 = f2*f0; 

 f4 = f4*f1; 

 f12 = f2+f4; 

  

 dm(_reconstr_s) = f12;  // save reconstructed 

secondary response 

   

// --------------------------------------- 

 

 

// 

********************************************************************

***************************** 
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// create parametric signal from I_2f, Q_2f; that should follow 

phase of the resultant primary drive 

// 

********************************************************************

***************************** 

/* 

 r0 = dm(_digi_2f_a); 

 r1 = dm(_digi_2f_q); 

  

 f2 = dm(_I_2f); 

 f4 = dm(_Q_2f); 

  

 f2 = f2*f0; 

 f4 = f4*f1; 

 f12 = f2+f4; 

  

 f2 = dm(_Gain_Sec_2f); 

 f12 = f12 * f2; 

  

 dm(Parametric_drive) = f12; 

 */ 

//----------------------------------------- 

 

  

 M5 = dm(TEMP_M5); 

 I5 = dm(TEMP_M1); 

 m6 = dm(TEMP_M2); 

 I6 = dm(TEMP_I6); 

 L5 = dm(TEMP_L5);  

  

 leaf_exit; 

_Receive_ADC_Samples.end: 

 

 

_Transmit_DAC_Samples: 

.global _Transmit_DAC_Samples; 

 

 r1 = 31; 

  

// I5 = DM(m2Buffer_I_Reg); 

// r0 = dm(I5, 0); 

// r0 = dm(_second_forcebalance_control);  

// r0 = dm(_shifted_r); 

// r0 = trunc f0 by r1; dm(_tx0b_buf + Internal_DAC_R4) = r0; 

  

// I5 = DM(arBuffer_I_Reg); 

// r0 = dm(I5, 0); 

// f0 = dm(_amp_response_s_inphase); 

// r0 = trunc f0 by r1; dm(_tx0b_buf + Internal_DAC_L4) = r0; 

 

// calculate and output full displacement feedback for tuning 

 f0 = dm(_reconstr_f); 

 f1 = dm(_reconstr_s); 

  

 f2 = dm(_Gain_DirectTerm); 

 f4 = dm(_Gain_CrossTerm); 
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 f2 = f2*f0; 

 f4 = f4*f1; 

 f12 = f2+f4; 

 dm(_feedback_f) = f12;  //L3, feedabck to primary mode 

  

 f2 = dm(_Gain_DirectTerm); 

 f4 = dm(_Gain_CrossTerm); 

 f12 = f4*f0; 

 dm(_feedback_s) = f12;  //R3, feedback to secondary 

mode 

   

 r1 = 31; 

 f0 = dm(_feedback_f); 

 r0 = trunc f0 by r1; dm(_tx0b_buf + Internal_DAC_L3) = r0;

 //be careful here, L3/R3 use tx0b_buf 

 f0 = dm(_feedback_s); 

 r0 = trunc f0 by r1; dm(_tx0b_buf + Internal_DAC_R3) = r0; 

  

  

#ifdef GENERATE_DAC_PURE_TONES_TEST 

 Call make_DAC_Pure_Tones; 

#endif 

 

 leaf_exit; 

_Transmit_DAC_Samples.end: 

 

//initialize the buffer pointers 

_BufferInit: 

.global _BufferInit; 

 

 DM(TEMP_L5) = L5; //protect the preserved register 

 

//buffer for digitally created orthogonal pair, hopefuly it will 

imporve accuracy 

 B5 = _digi_a; 

 I5 = _digi_a; 

 L5 = @_digi_a; 

 M4 = 1;  

 DM(digiaBuffer_B_Reg) = B5; 

 DM(digiaBuffer_I_Reg) = I5; 

 DM(digiaBuffer_L_Reg) = L5; 

 DM(digiaBuffer_M_Reg) = M4; 

 

 B5 = _digi_q; 

 I5 = _digi_q; 

 L5 = @_digi_q; 

 DM(digiqBuffer_B_Reg) = B5; 

 DM(digiqBuffer_I_Reg) = I5; 

 DM(digiqBuffer_L_Reg) = L5; 

 DM(digiqBuffer_M_Reg) = M4; 

  

// buffer for drive and its orthogonal counterpart  

 B5 = _buffer_a; 

 I5 = _buffer_a; 

 L5 = @_buffer_a; 
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 M4 = 1;  

 DM(aBuffer_B_Reg) = B5; 

 DM(aBuffer_I_Reg) = I5; 

 DM(aBuffer_L_Reg) = L5; 

 DM(aBuffer_M_Reg) = M4; 

 

 B5 = _buffer_q; 

 I5 = _buffer_q; 

 L5 = @_buffer_q; 

 DM(qBuffer_B_Reg) = B5; 

 DM(qBuffer_I_Reg) = I5; 

 DM(qBuffer_L_Reg) = L5; 

 DM(qBuffer_M_Reg) = M4; 

  

 B5 = _buffer_r; 

 I5 = _buffer_r; 

 L5 = @_buffer_r; 

 DM(rBuffer_B_Reg) = B5; 

 DM(rBuffer_I_Reg) = I5; 

 DM(rBuffer_L_Reg) = L5; 

 DM(rBuffer_M_Reg) = M4; 

  

//buffer for the phase shifted first mode response signal,  

//will use for phase sensitive demodualtion of the second mode in 

phase and quadrature signals  

 B5 = _buffer_shifted_rm;    

 I5 = _buffer_shifted_rm; 

 L5 = @_buffer_shifted_rm; 

 DM(rBuffer_shifted_rm_B_Reg) = B5; 

 DM(rBuffer_shifted_rm_I_Reg) = I5; 

 DM(rBuffer_shifted_rm_L_Reg) = L5; 

 DM(rBuffer_shifted_rm_M_Reg) = M4; 

  

 B5 = _buffer_m2; 

 I5 = _buffer_m2; 

 L5 = @_buffer_m2; 

 DM(m2Buffer_B_Reg) = B5; 

 DM(m2Buffer_I_Reg) = I5; 

 DM(m2Buffer_L_Reg) = L5; 

 DM(m2Buffer_M_Reg) = M4; 

  

//to meassure drive signal 

 B5 = _buffer_oa; 

 I5 = _buffer_oa; 

 L5 = @_buffer_oa; 

 DM(oaBuffer_B_Reg) = B5; 

 DM(oaBuffer_I_Reg) = I5; 

 DM(oaBuffer_L_Reg) = L5; 

 DM(oaBuffer_M_Reg) = M4; 

  

 B5 = _buffer_qa; 

 I5 = _buffer_qa; 

 L5 = @_buffer_qa; 

 DM(qaBuffer_B_Reg) = B5; 

 DM(qaBuffer_I_Reg) = I5; 

 DM(qaBuffer_L_Reg) = L5; 
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 DM(qaBuffer_M_Reg) = M4;   

 

//to measure first mode response 

 B5 = _buffer_ar; 

 I5 = _buffer_ar; 

 L5 = @_buffer_ar; 

 DM(arBuffer_B_Reg) = B5; 

 DM(arBuffer_I_Reg) = I5; 

 DM(arBuffer_L_Reg) = L5; 

 DM(arBuffer_M_Reg) = M4; 

  

 B5 = _buffer_qr; 

 I5 = _buffer_qr; 

 L5 = @_buffer_qr; 

 DM(qrBuffer_B_Reg) = B5; 

 DM(qrBuffer_I_Reg) = I5; 

 DM(qrBuffer_L_Reg) = L5; 

 DM(qrBuffer_M_Reg) = M4; 

 

//to measure second mode response  

 B5 = _buffer_am; 

 I5 = _buffer_am; 

 L5 = @_buffer_am; 

 DM(amBuffer_B_Reg) = B5; 

 DM(amBuffer_I_Reg) = I5; 

 DM(amBuffer_L_Reg) = L5; 

 DM(amBuffer_M_Reg) = M4; 

  

 B5 = _buffer_qm; 

 I5 = _buffer_qm; 

 L5 = @_buffer_qm; 

 DM(qmBuffer_B_Reg) = B5; 

 DM(qmBuffer_I_Reg) = I5; 

 DM(qmBuffer_L_Reg) = L5; 

 DM(qmBuffer_M_Reg) = M4; 

  

 B5 = _buffer_rm; 

 I5 = _buffer_rm; 

 L5 = @_buffer_rm; 

 DM(rmBuffer_B_Reg) = B5; 

 DM(rmBuffer_I_Reg) = I5; 

 DM(rmBuffer_L_Reg) = L5; 

 DM(rmBuffer_M_Reg) = M4; 

  

 L5 = DM(TEMP_L5); 

 

leaf_exit; 

_BufferInit.end: 

 

 

_SinTableInit: 

.global _SinTableInit; 

 

 //  Huzx: can use scratch registers, their values don't need to 

be perseved and restored 

 // this can save some core time. M4, I4, B4, R0, R1, R2, R4 
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 // preserve M1 M2 and L5 registers 

 DM(TEMP_M1) = M1; 

 DM(TEMP_M2) = M2; 

 DM(TEMP_L5) = L5; 

   

 // added by Huzx for extended sine wave generation  

 BIT SET Mode1 CBUFEN; 

  

 B5=0; 

 I5=0; 

 L5 = 4000*4096*16; 

  

 // create the I data for the reference signal, initial 

frequency set at 14.26kHz 

 M1 = 1216931*16;   //1216931, for the drive freq of 

14.260khz! 960000;  

 DM(Extend1_B_reg) = B5; 

 DM(Extend1_I_reg) = I5; 

 DM(Extend1_L_reg) = L5; 

 DM(_Extend1_M_reg) = M1; 

  

 //create drive phase data     //Required phase offset 

to account for electronics 

 I5 = 237822862; //0 = 237822862; //22.5 = 254206862; 45 = 

8446862; 67.5 = 24830862;  

 DM(_Extend1D_I_reg) = I5; //First mode phase 

 I5 = 237822862; 

 DM(_Extend2D_I_reg) = I5; //Second mode phase 

  

 //create the Q data for the reference signal 

 r0 = L5; 

 //r1 = lshift r0 by -2; 

 //r1 = 12288000*16; //three quaters of L5, ahead 270 degrees, 

that is 90 degrees behind;   

 r1 = 4096000*16; //90 ahead  

 DM(Extend2_B_reg) = B5; 

 DM(Extend2_I_reg) = r1;  

 DM(Extend2_L_reg) = L5; 

 DM(_Extend2_M_reg) = M1;  

  

 //2f parametric signal,in phase with reference signal, output 

via L3 

 r0 = M1; 

 r1 = lshift r0 by 1;  //double the frequency by double 

the M register 

  

 //create the I data for the 2f signal 

 DM(Extend3_B_reg) = B5; 

 DM(Extend3_I_reg) = I5; 

 DM(Extend3_L_reg) = L5; 

 DM(_Extend3_M_reg) = r1; //2f 

  

 //create the Q data  

 DM(Extend4_B_reg) = B5;  

 DM(Extend4_L_reg) = L5; 
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 DM(_Extend4_M_reg) = r1; //2f 

  

 r1 = 4096000*16;   //90 ahead for the index register 

 DM(Extend4_I_reg) = r1; 

  

  

 M1 = DM(TEMP_M1); 

 M2 = DM(TEMP_M2); 

 L5 = DM(TEMP_L5); 

  

 leaf_exit; 

_SinTableInit.end: 

 

 

make_DAC_Pure_Tones: 

 // use Compiler Scratch Registers for generating sine tones in 

assembly 

 DM(TEMP_M5) = M5; 

 DM(TEMP_L5) = L5; 

  

 R1 = DM(_Extend1_M_reg); //make sure they definetely the 

same value!! 

 DM(_Extend2_M_reg) = R1; 

 R1 = lshift R1 by 1; 

 DM(_Extend3_M_reg) = R1;  

 

//------------create cos(wt) into _current_digi_a-------------------

--------- 

 B5 = DM(Extend1_B_reg); 

 I5 = DM(Extend1_I_reg); 

 L5 = DM(Extend1_L_reg); 

 M5 = DM(_Extend1_M_reg); 

  

 modify(I5, M5); 

 DM(Extend1_I_reg) = I5;  

 R0 = I5; 

 R1 = LSHIFT R0 by -16; //-12 

 m4 = R1;  

 I4=sine4000; 

 r4 = dm(m4, i4); 

  

// linear interpolation: using Y0(R4) and Y1(R2), in integer or 

fractional format? 

// interpolation coefficient in R1(integer format?) 

 R0 = m4; 

 R0 = R0 +1; 

 R1 = 4000; 

 R2 = 0; 

 comp (R0, R1); 

 if EQ R0 = r2; 

 m4 = R0; 

 R2 = dm(m4, i4);  //read the next value in the sine wave 

table 

  

 R0 = I5; 

 R1 = FEXT R0 by 0:16; //extract the 16 LSB bits 
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 r1 = lshift r1 by 15; //make interpolation coefficient 32 bit, 

with sign bit 0 (0~1) 

  

 R0 = R2 - R4;   //Y1-Y0 

 R0 = R0 * r1(ssfr);   

 R4 = r4 + r0;   //Y0 + k(Y1-Y0)  

  

// store into buffer before adjust its amplitude, as one of the 

orthogonal pair 

 r1 = -31; 

 f0 = float r4 by r1; 

 B5 = DM(digiaBuffer_B_Reg); 

 I5 = DM(digiaBuffer_I_Reg); 

 L5 = DM(digiaBuffer_L_Reg); 

 M5 = DM(digiaBuffer_M_Reg);  

 dm(I5, m5) = r0;   //post modify with m5, update I5 

 DM(digiaBuffer_B_Reg) = B5; 

 DM(digiaBuffer_I_Reg) = I5; 

 DM(digiaBuffer_L_Reg) = L5; 

 DM(digiaBuffer_M_Reg) = M5; 

  

 dm(_current_digi_a) = r0; 

  

//--------------create sin(wt) into _current_digi_q-----------------

------------  

 B5 = DM(Extend2_B_reg); 

 I5 = DM(Extend2_I_reg); 

 L5 = DM(Extend2_L_reg); 

 M5 = DM(_Extend2_M_reg); 

  

 modify(I5, M5); 

 DM(Extend2_I_reg) = I5;  

 R0 = I5; 

 R1 = LSHIFT R0 by -16; 

 m4 = R1;  

 I4=sine4000; 

 r4 = dm(m4, i4); 

  

// linear interpolation: using Y0(R4) and Y1(R2), in integer or 

fractional format? 

// interpolation coefficient in R1(integer format?) 

 R0 = m4; 

 R0 = R0 +1; 

 R1 = 4000; 

 R2 = 0; 

 comp (R0, R1); 

 if EQ R0 = r2; 

 m4 = R0; 

 R2 = dm(m4, i4);  //read the next value in the sine wave 

table 

  

 R0 = I5; 

 R1 = FEXT R0 by 0:16; //extract the 16 LSB bits 

 r1 = lshift r1 by 15; 

  

 R0 = R2 - R4;   //Y1-Y0 
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 R0 = R0 * r1(ssfr);   

 R4 = r4 + r0;   //Y0 + k(Y1-Y0)  

  

// store quadrature into buffer before adjust its amplitude, 

 r1 = -31; 

 f0 = float r4 by r1; 

 B5 = DM(digiqBuffer_B_Reg); 

 I5 = DM(digiqBuffer_I_Reg); 

 L5 = DM(digiqBuffer_L_Reg); 

 M5 = DM(digiqBuffer_M_Reg);  

 dm(I5, m5) = r0;    

 DM(digiqBuffer_B_Reg) = B5; 

 DM(digiqBuffer_I_Reg) = I5; 

 DM(digiqBuffer_L_Reg) = L5; 

 DM(digiqBuffer_M_Reg) = M5; 

  

 dm(_current_digi_q) = r0; 

  

///////ADDED BY SB 12/09/13/////////////////////////////// 

 

//------------create modified cos(wt), drive signal through L1------

--- 

 B5 = DM(Extend1_B_reg); 

 I5 = DM(_Extend1D_I_reg); 

 L5 = DM(Extend1_L_reg); 

 M5 = DM(_Extend1_M_reg); 

  

 modify(I5, M5); 

 DM(_Extend1D_I_reg) = I5;  

 R0 = I5; 

 R1 = LSHIFT R0 by -16; //-12 

 m4 = R1;  

 I4=sine4000; 

 r4 = dm(m4, i4); 

  

// linear interpolation: using Y0(R4) and Y1(R2), in integer or 

fractional format? 

// interpolation coefficient in R1(integer format?) 

 R0 = m4; 

 R0 = R0 +1; 

 R1 = 4000; 

 R2 = 0; 

 comp (R0, R1); 

 if EQ R0 = r2; 

 m4 = R0; 

 R2 = dm(m4, i4);  //read the next value in the sine wave 

table 

  

 R0 = I5; 

 R1 = FEXT R0 by 0:16; //extract the 16 LSB bits 

 r1 = lshift r1 by 15; //make interpolation coefficient 32 bit, 

with sign bit 0 (0~1) 

  

 R0 = R2 - R4;   //Y1-Y0 

 R0 = R0 * r1(ssfr);   

 R4 = r4 + r0;   //Y0 + k(Y1-Y0)  
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 r1 = -31; 

 f0 = float r4 by r1; 

 

// adjust amplitude, and output to DAC 

 r1 = 31; 

 f2 = dm(_Gain_1f); 

 r0 = fix f2 by r1;  //convert float-point gain into 

fractional  

// r0 = 0.05r; 

 r2 = r4*r0(ssfr);  //the inputs are signed fractional 

 r4 = r2;  

 dm(_tx0a_buf + Internal_DAC_L1) = r4; 

  

//--------------create modified sin(wt) output via R1---------------

--  

 B5 = DM(Extend2_B_reg); 

 I5 = DM(_Extend2D_I_reg); 

 L5 = DM(Extend2_L_reg); 

 M5 = DM(_Extend2_M_reg); 

  

 modify(I5, M5); 

 DM(_Extend2D_I_reg) = I5;  

 R0 = I5; 

 R1 = LSHIFT R0 by -16; 

 m4 = R1;  

 I4=sine4000; 

 r4 = dm(m4, i4); 

  

// linear interpolation: using Y0(R4) and Y1(R2), in integer or 

fractional format? 

// interpolation coefficient in R1(integer format?) 

 R0 = m4; 

 R0 = R0 +1; 

 R1 = 4000; 

 R2 = 0; 

 comp (R0, R1); 

 if EQ R0 = r2; 

 m4 = R0; 

 R2 = dm(m4, i4);  //read the next value in the sine wave 

table 

  

 R0 = I5; 

 R1 = FEXT R0 by 0:16; //extract the 16 LSB bits 

 r1 = lshift r1 by 15; 

  

 R0 = R2 - R4;   //Y1-Y0 

 R0 = R0 * r1(ssfr);   

 R4 = r4 + r0;   //Y0 + k(Y1-Y0)  

  

 r1 = -31; 

 f0 = float r4 by r1; 

 

// adjust gain, output to DAC 

 r1 = 31; 

 f2 = dm(_Gain_1s); 
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 r0 = fix f2 by r1;  //convert float-point gain into 

fractional  

// r0 = 0.05r; 

 r2 = r4*r0(ssfr); 

 r4 = r2;  

 dm(_tx0a_buf + Internal_DAC_R1) = r4; 

  

////////////////////////////////////////////////////////////////// 

  

//-------------produce 2f parametric cos(2wt) into _digi_2f_a, 

output into L3----------   

 B5 = DM(Extend3_B_reg); 

 I5 = DM(Extend3_I_reg); 

 L5 = DM(Extend3_L_reg); 

 M5 = DM(_Extend3_M_reg); 

   

 modify(I5, M5); 

 DM(Extend3_I_reg) = I5;  

 R0 = I5; 

 R1 = LSHIFT R0 by -16; 

 m4 = R1;  

 I4=sine4000; 

 r4 = dm(m4, i4); 

  

// linear interpolation: using Y0(R4) and Y1(R2), in integer or 

fractional format? 

// interpolation coefficient in R1(integer format?) 

 R0 = m4; 

 R0 = R0 +1; 

 R1 = 4000; 

 R2 = 0; 

 comp (R0, R1); 

 if EQ R0 = r2; 

 m4 = R0; 

 R2 = dm(m4, i4);  //read the next value in the sine wave 

table 

  

 R0 = I5; 

 R1 = FEXT R0 by 0:16; //extract the 16 LSB bits 

 r1 = lshift r1 by 15; 

  

 R0 = R2 - R4;   //Y1-Y0 

 R0 = R0 * r1(ssfr);   

 R4 = r4 + r0;   //Y0 + k(Y1-Y0)  

  

//--------extract 2f wave fractional data in r4 into foating point 

format-- 

 r1 = -31; 

 r0 = r4; f0 = float r0 by r1; 

 dm(Original_2f) = f0; 

 dm(_digi_2f_a) = f0; 

  

 r1 = 31; 

 f2 = dm(_Gain_2f); 

 r0 = fix f2 by r1;  //convert float-point gain into 

fractional  
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 r2 = r4*r0(ssfr); 

 r4 = r2;  

// dm(_tx0b_buf + Internal_DAC_L3) = r4; 

 

//---------------produce 2f parametric, sin(2wt) into _digi_2f_q----

-------------   

 B5 = DM(Extend4_B_reg); 

 I5 = DM(Extend4_I_reg); 

 L5 = DM(Extend4_L_reg); 

 M5 = DM(_Extend4_M_reg); 

   

 modify(I5, M5); 

 DM(Extend4_I_reg) = I5;  

 R0 = I5; 

 R1 = LSHIFT R0 by -16; 

 m4 = R1;  

 I4=sine4000; 

 r4 = dm(m4, i4); 

  

// linear interpolation: using Y0(R4) and Y1(R2), in integer or 

fractional format? 

// interpolation coefficient in R1(integer format?) 

 R0 = m4; 

 R0 = R0 +1; 

 R1 = 4000; 

 R2 = 0; 

 comp (R0, R1); 

 if EQ R0 = r2; 

 m4 = R0; 

 R2 = dm(m4, i4);  //read the next value in the sine wave 

table 

  

 R0 = I5; 

 R1 = FEXT R0 by 0:16; //extract the 16 LSB bits 

 r1 = lshift r1 by 15; 

  

 R0 = R2 - R4;   //Y1-Y0 

 R0 = R0 * r1(ssfr);   

 R4 = r4 + r0;   //Y0 + k(Y1-Y0)  

  

//--------extract 2f wave fractional data in r4 into foating point 

format-- 

 r1 = -31; 

 r0 = r4; f0 = float r0 by r1; 

 dm(_digi_2f_q) = f0; 

//------------------------------------------------------------------

-------  

 

 M5 = DM(TEMP_M5) ; 

 L5 = DM(TEMP_L5); 

  

 RTS; 

 

Make_DAC_Pure_Tones.end: 
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