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Abstract 

 

This work sought to characterise neurochemical and neurophysiological processes 

underlying tinnitus in humans. The first study involved invasive brain recordings from a 

neurosurgical patient, along with experimental manipulation of his tinnitus, to map the 

cortical system underlying his tinnitus. Widespread tinnitus-linked changes in low- and 

high-frequency oscillations were observed, along with inter-regional and cross-frequency 

patterns of communication. The second and third studies compared tinnitus patients to 

controls matched for age, sex and hearing loss, measuring auditory cortex spontaneous 

oscillations (with magnetoencephalography) and neurochemical concentrations (with 

magnetic resonance spectroscopy) respectively. Unlike in previous studies not controlled 

for hearing loss, there were no group differences in oscillatory activity attributable to 

tinnitus. However, there was a significant correlation between gamma oscillations (>30Hz) 

and hearing loss in the tinnitus group, and between delta oscillations (1-4Hz) and perceived 

tinnitus loudness. In the neurochemical study, tinnitus patients had significantly reduced 

GABA concentrations compared to matched controls, and within this group there was a 

positive correlation between choline concentration (potentially linked to acetylcholine 

and/or neuronal plasticity) and both hearing loss, and subjective tinnitus intensity and 

distress. In light of present and previous findings, tinnitus may be best explained by a 

predictive coding model of perception, which was tested in the final experiment. This 

directly controlled the three main quantities comprising predictive coding models, and 

found that delta/theta/alpha oscillations (1-12Hz) encoded the precision of predictions, beta 

oscillations (12-30Hz) encoded changes to predictions, and gamma oscillations represented 

surprise (unexpectedness of stimuli based on predictions). The work concludes with a 

predictive coding model of tinnitus that builds upon the present findings and settles 

unresolved paradoxes in the literature. In this, precursor processes (in varying 

combinations) synergise to increase the precision associated with spontaneous activity in 

the auditory pathway to the point where it overrides higher predictions of ‘silence’. 
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Chapter 1. Introduction 
 

1.1 Introduction to tinnitus 

Tinnitus refers to the sensation of sound in one or both ears (or perceived inside the head) 

that does not correspond to an external sound source. Tinnitus can be categorised as 

objective, in which the sound is perceived from a source inside the body, in or close to the 

inner ear, or subjective, where no such physical sound source exists. This thesis is 

concerned only with subjective tinnitus. 

 

1.1.1 Epidemiology of tinnitus 

Subjective tinnitus is experienced transiently by almost everybody, for instance if triggered 

by loud sound exposure or a middle ear infection. If unselected adults are placed in a silent 

room for a few minutes, and asked to concentrate on what they can hear, then over half 

report a tinnitus-like percept (Levine et al., 2003; Tucker et al., 2005). Furthermore, over 

half of those not experiencing this type of ‘tinnitus’ in such a setting can reliably elicit a 

tinnitus-like percept by forceful contraction of certain orofacial muscles (orofacial 

movements; OFMs) or other muscles (Levine et al., 2003). Thus, subjective tinnitus, to a 

certain degree, can be considered a normal phenomenon, and thus must be explicable in a 

framework that does not require pathology of the auditory pathway or central nervous 

system. However, 14% of the adult population (in the United States) at some point 

experience chronic tinnitus prompting them to seek medical attention (Shargorodsky et al., 

2010), and the prevalence of tinnitus increases with age and hearing loss. When surveyed, 

2% of all adults report being constantly bothered by tinnitus (Axelsson and Ringdahl, 

1989). 

 

1.1.2 Tinnitus and hearing loss 

Clinically detectable hearing loss is present in the majority of cases of bothersome tinnitus, 

and studies on patients with tinnitus and clinically normal hearing have found group-level 

evidence of subclinical hearing loss, as manifest by increased pure tone thresholds in 

supra-clinical frequencies above 8 kHz (Roberts et al., 2006), decreased performance in 

detecting stimuli in noise (Weisz et al., 2006) or decreased sound-evoked cochlear nerve 

evoked responses to sound (Schaette and McAlpine, 2011). It is thought that this ‘hidden’ 

hearing loss reflects relative sparing of low-threshold auditory nerve fibres, which 
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determine pure tone thresholds, with damage predominantly to high-threshold fibres. It has 

recently been shown in mice that selective acoustic trauma to these high threshold fibres, 

without permanently altering pure tone thresholds, is sufficient to induce tinnitus-related 

phenomena (Hickox and Liberman, 2014), including hyperacusis and a similar pattern of 

brainstem responses to that observed in tinnitus patients. However, behavioural evidence 

of tinnitus was inconsistent in these animals, as discussed in Section 1.3.1. The onset of 

tinnitus sometimes coincides with the development of hearing loss, but often the hearing 

loss is longstanding and tinnitus begins during a psychologically or physiologically 

stressful event (Eggermont, 2012). Studies examining the frequency spectrum of perceived 

tinnitus usually find that tinnitus is perceived in the frequency range corresponding to the 

hearing loss (Noreña et al., 2002), which is typically in the high frequency range, from 

around 4 kHz upwards. 

 

1.1.3 Psychological and psychiatric influences on tinnitus 

The idea of a two-part model of tinnitus has been popular for a long time (Jastreboff, 

1990). In such models, the source of the tinnitus sound is at or below the level of auditory 

cortex (AC), and constitutes one part of the model. The second part involves conscious 

detection of the sound, along with cognitive, autonomic and affective reactions to it. 

Through this additional component, tinnitus may become habituated, or amplified 

depending on the individual’s psychological reaction to it. Contemporary integrative 

models of tinnitus (De Ridder et al., 2013; Roberts et al., 2013) also feature this concept, 

and aim to explain the responsible neurobiological mechanisms. There is substantial 

evidence for psychological comorbidity in tinnitus, including that depression (and to an 

extent anxiety and neuroticism) are associated with increased tinnitus severity as 

determined by standardised questionnaires (Zöger et al., 2006), and that in general medical 

outpatients the presence of tinnitus is associated with depression, anxiety, autonomic 

arousal and somatoform disorders (Hiller et al., 1997). Subtyping tinnitus into help-seeking 

(patients attending a tinnitus clinic) and non-help-seeking (recruited from the general 

population) groups led to the finding that it was predominantly the help-seeking group that 

has high levels of somatoform disorders, whereas the non-help-seeking group was similar 

to controls (Scott and Lindberg, 2000). Likely possibilities are therefore that distress-

causing tinnitus leads to psychiatric comorbidity, and that psychiatric and somatoform 
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disorders, while not necessarily causing tinnitus per se, cause increased distress associated 

with tinnitus. 

 

1.1.4 Tinnitus and hyperacusis 

Hyperacusis is a condition defined by perceiving as uncomfortably loud external sounds 

that are tolerable and comfortable to most normal-hearing people. This is distinct from 

phonophobia (fear of sound) and misophonia (hatred of specific sounds, accompanied by 

an extreme autonomic and/or behavioural reaction to these). Hyperacusis is related to, but 

distinct from, loudness recruitment, which can accompany cochlear damage. Loudness 

recruitment is caused by loss of the usual ‘compression’ of loudness by the ear, and 

effectively increases gain in the auditory periphery. A ‘normal’ degree of loudness 

recruitment, in response to a given pattern of cochlear hearing loss, can be estimated 

mathematically, based on compensatory processes mediated via cochlear outer hair cells 

(Moore and Glasberg, 2004). Both hyperacusis and loudness recruitment can be visualised 

using loudness growth functions, which are graphs of the presented volume of a sound 

(abscissa) and the perceived loudness (ordinate). Hearing loss results in a shallower slope, 

with its origin shifted, which becomes restored to near normal by loudness recruitment 

with increasing input level, whereas hyperacusis is characterised by a steeper than normal 

slope (see Figure 1). 

 

 

Figure 1: Loudness growth functions in normal and abnormal conditions 
This figure shows a schematic of hypothetical loudness growth functions in normal 
hearing, hearing loss (HL), and with the addition of loudness recruitment (LR) and 
hyperacusis (HA). Steeper slopes indicate greater increases in perceived loudness for a 
given increase in input sound pressure level (SPL). 
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Hyperacusis can be quantified subjectively, through questionnaires, or by measuring 

subjective discomfort responses to sounds of varying volumes. Surprisingly, there is only a 

weak correlation between these two types of measure. There is overlap between hearing 

loss, tinnitus and hyperacusis, in that the presence of one is associated with an increased 

prevalence of the others (Hébert et al., 2004; Dauman and Frederic, 2005). Additionally, 

tinnitus patients in general appear to have steeper loudness growth functions than hearing-

matched controls, even in the absence of reported hyperacusis, suggesting that mild 

subclinical hyperacusis may be the norm in tinnitus (Hébert et al., 2013). 

 

1.1.5 Treatments for tinnitus 

A very large number of treatments, including pharmacological, psychological, acoustic and 

electromagnetic, have been tried in tinnitus, and it is beyond the scope of this introduction 

to discuss these comprehensively, but the prevailing situation is that there does not exist a 

treatment for tinnitus that is both applicable to the majority of patients and proven to be 

successful in achieving a lasting reduction in perceived tinnitus loudness. Several meta-

analyses of randomised controlled trials (RCTs) in tinnitus have been published in the 

Cochrane library, though in most cases the number of eligible trials was small and the 

strength of evidence obtained relatively weak. The strongest evidence exists for cognitive 

behavioural therapy (CBT), in significantly reducing the distress associated with tinnitus, 

but not its perceived loudness (Martinez-Devesa et al., 2007). Tinnitus-retraining therapy 

(TRT), a structured psychological intervention to promote habituation to tinnitus, also 

appears to be beneficial for tinnitus-related distress, though the evidence for this is weaker 

than for CBT (Phillips and McFerran, 2010). Repetitive transcranial magnetic stimulation 

(rTMS), a non-invasive technique to alter cortical excitability using sessions of periodic 

magnetic pulses, applied to auditory and other cortical regions has shown a small reduction 

in tinnitus loudness, in the short term, along with an equivocal benefit on tinnitus distress 

(Meng et al., 2011). Acoustic masking devices, which aim to suppress tinnitus using a 

competing sound, have not been found to be beneficial in RCTs (Hobson et al., 2012), but 

remain in clinical use. Hearing aids, for tinnitus in the presence of clinically significant 

hearing loss, are not supported by RCT evidence of a benefit in tinnitus loudness, but the 

evidence available is very limited (Hoare et al., 2014). Antidepressents, while sometimes 

helpful in managing associated mood disorders, are not associated with a benefit in tinnitus 
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loudness (Baldo et al., 2006). Anticonvulsants (Hoekstra et al., 2011) and the herbal 

remedy gingko biloba (Hilton et al., 2013) appear to be ineffective for treating tinnitus. 

 

1.2 Studying tinnitus experimentally 

A major barrier to effective treatments for tinnitus is an incomplete understanding of its 

pathophysiological mechanisms. However, a number of factors make tinnitus a difficult 

condition to study experimentally. Given the close association of tinnitus with hyperacusis 

and hearing loss, plus the myriad direct consequences of hearing loss throughout the 

auditory pathway (Gold and Bajo, 2014), it is difficult to isolate the key processes 

underlying tinnitus itself, and eliminate the confounds of hyperacusis and mechanistic 

consequences of hearing damage. Furthermore, as tinnitus is associated with (causal and/or 

consequential) alterations in cognitive, affective and attentional state, it is important that 

correlates of these changes are not mistaken for those of tinnitus itself. Animal and human 

studies present specific challenges, which are discussed in the following sections. 

 

1.2.1 Animal models 

Animal models of hearing damage allow auditory insults to be carefully controlled, and 

measurements of potentially any type to be made from any part of the auditory and central 

nervous system. As such, they represent an extremely powerful tool for understanding the 

normal functioning of the auditory pathway, and the effects of applying various sorts of 

insults or damage. Various animal models of tinnitus have been created, and broadly these 

fall into the category of either conditioned behaviour, or automatic reflex. Conditioned 

behaviour models (Jastreboff et al., 1988; Bauer and Brozoski, 2001; Heffner and 

Harrington, 2002; Ruttiger et al., 2003; Lobarinas et al., 2004) require animals to perform 

or stop performing a certain act during the presence or absence of a constant high-pitched 

sound resembling tinnitus. These models are most likely quite accurate at determining the 

presence of tinnitus (but not necessarily its loudness or character). The main downside is 

that they are extremely time-consuming and effort-intensive to implement, taking months 

of training. Conversely, the acoustic startle response is an involuntary reflex in response to 

unexpected loud sounds. This reflex can be attenuated by a preceding cue, and a cue in the 

form of a short silent 50 ms gap in an ongoing tinnitus-like tone has been found to be 

effective in attenuating the startle response, in a paradigm known as gap prepulse 

inhibition of the acoustic startle reflex (GPIAS) (Turner et al., 2006). This paradigm 
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theoretically serves as a marker of tinnitus, as a failure to suppress the startle reflex is 

taken as evidence of failure to perceive the gap, which putatively indicates filling in of the 

gap by tinnitus. Due to the low time commitment required for this method, it became 

rapidly adopted by multiple groups since its introduction. However, recent evidence has 

challenged the validity of this method, at least in its existing form. Firstly, it was found that 

rats classified as showing ‘tinnitus’ with the GPIAS model actually showed intact 

suppression of the startle response following the gap, provided the startle-inducing 

stimulus was presented in a frequency range of intact hearing (Lobarinas et al., 2013). This 

finding suggested that hearing loss reduced the magnitude of the startle response, and 

therefore there became less of a response to suppress. In humans, 50 ms gaps in a tinnitus-

range stimulus (as in the GPIAS model) have been found to be no less detectible by 

tinnitus patients with hearing loss than hearing-matched controls (Campolo et al., 2013). 

Additionally, testing GPIAS paradigms in human tinnitus patients with normal hearing has 

found intact GPIAS, but increased startle reactivity in general in these patients (Fournier 

and Hébert, 2013), likely indicative of a degree of hyperacusis. Thus existing animal 

GPIAS studies, and any future ones until methods are made more robust, must be 

interpreted with the caveat that they represent an unknown combination of tinnitus, 

hyperacusis and hearing loss, as made clear in a recent review (Eggermont, 2013). 

Furthermore, the same review noted that, whichever method was used to induce tinnitus, 

no behavioural or neural measure following a tinnitus-inducing intervention has ever 

appeared bimodally distributed. This has two major implications; one is that either all of 

the exposed animals developed tinnitus, none of them developed tinnitus, or that the 

measure in question is not a measure of tinnitus per se. The other major implication is that 

it is not possible to clearly stratify animals that have all undergone the same intervention, 

and have the same degree of hearing loss, into a tinnitus group and a matched control 

group. Therefore at present, as discussed regarding GPIAS studies, all existing animal 

tinnitus studies must be considered inadequately controlled for hearing loss and 

hyperacusis. This is not an argument to disregard the animal tinnitus literature, but to 

simply acknowledge the limitations of its interpretation. However, these problems are not 

insurmountable, and future animal models may become robust by using tinnitus inducing 

insults that result in a bimodal distribution of tinnitus behaviour (perhaps by using lower 

intensities or durations of the insults applied), and then making key comparisons between 

equivalently exposed animal groups with contrasting tinnitus behaviour. High throughput 
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tinnitus screening methods, such as GPIAS, may also prove robust in future, but careful 

elimination of confounding factors, such as those discussed, must be achieved. Ideally, 

these methods should first be validated in animals trained on conditioned behaviour 

paradigms to ensure equivalent results. The methods used in animal studies to induce 

tinnitus have largely been overexposure to noise (excessive loudness and/or duration, so as 

to cause temporary or permanent hearing loss, or prolonged exposure to non-damaging 

sound levels), or administration of salicylate which causes peripheral hearing loss, direct 

effects on the central auditory system (Kenmochi and Eggermont, 1997) and altered firing 

in the auditory nerve (Stypulkowski, 1990; Cazals et al., 1998). The findings from these 

studies are discussed later, in the context of specific types of neural measurement. 

 

1.2.2 Human studies 

Because the diagnosis and quantification of tinnitus (both loudness and distress) relies on 

the subjective report of the patient, human studies have the substantial advantage of being 

able to confidently establish and quantify the presence of tinnitus and its various subjective 

dimensions. Not only this, but human subjects are able to report even subtle and short-term 

changes to tinnitus in response to interventions. The obvious downside to human studies is 

that no invasive measurements can be made (generally). This prevents any measurements 

of neuronal firing rates, and functional or chemical measurements in the subthalamic 

auditory pathway. Opportunities to record from the thalamus are very rare, as are chances 

to record activity directly from AC. Therefore, human studies are generally limited to 

indirect measures of neural activity; specific measures are discussed later. The inclusion of 

real-world patients is helpful, as it is reflective of clinical populations, but there is 

substantial heterogeneity in the aetiology, duration, laterality, perceptual character and 

loudness of tinnitus. Therefore studying unselected tinnitus populations might miss 

important differences relating to these factors, while studying stereotyped and highly 

selected groups might highlight changes not generalisable to tinnitus as a whole. A further 

limitation is that differences in psychological state and auditory-directed attention may 

confound studies of tinnitus. Finally, while the problem inherent in animal studies of not 

being able to disentangle tinnitus from hyperacusis and hearing loss can be overcome in 

human studies, it requires careful explicit matching of control groups, which has only been 

done in a minority of studies. Therefore the same caveats of interpretation apply to much 

of the human literature as to all of the animal literature. The three main approaches to 
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studying tinnitus in humans include making resting-state measurements, measuring 

responses to external sounds, and using experimental interventions to manipulate tinnitus 

loudness. Additionally, results can be compared between tinnitus and control groups, 

correlated with a subjective aspect of tinnitus such as perceived loudness, or within-subject 

comparisons between differing states can be made. Resting-state group comparisons 

(Llinás et al., 1999; Weisz et al., 2005a, 2007; Ashton et al., 2007; Moazami-Goudarzi et 

al., 2010; Adjamian et al., 2012) are potentially able to capture key correlates of tinnitus, 

but are particularly prone to confounding by poor matching for age and hearing loss. 

Furthermore, no attempts have been reported to ensure equivalence of attentional 

deployment between tinnitus patients, who know they are participating in a tinnitus study 

and are likely to attend to their auditory environment, and control subjects, who could be 

idly thinking about anything at all. Even if all of these factors were controlled, group 

comparison resting-state studies, in isolation, are fundamentally unable to separate core 

correlates of tinnitus (the minimum set of processes both necessary and sufficient for 

tinnitus to be perceived) completely from precursor processes and secondary 

consequences. Correlational analyses of resting-state measurements are also often 

performed, to highlight the neural correlates of specific aspects of tinnitus phenomenology 

such as distress (Weisz et al., 2005a; Vanneste et al., 2010a), loudness (van der Loo et al., 

2009), chronicity (Vanneste et al., 2011c) and character (Vanneste et al., 2010b). 

Significant correlations often exist between various tinnitus-related and other factors, but 

provided these potential confounds are properly controlled for then these studies can be 

useful in identifying processes associated with specific aspects of the tinnitus experience. 

That said, it does not follow that any of these neural correlates is unique to tinnitus, or even 

significantly different in tinnitus compared to control groups, but just that there is an 

association. The presentation of sounds intended to match the perceptual character of 

tinnitus (for instance frequency-matched pure tones) has been used as a surrogate marker 

of tinnitus in searching for its central correlates (Smits et al., 2007; Lanting et al., 2008; 

Schlee et al., 2008; Melcher et al., 2009; De Ridder et al., 2011b). Such studies have the 

advantage of being able to easily create a contrast of relatively stimulated and non-

stimulated states, and being able to do the same in control subjects. However, as well as 

susceptibility to hyperacusis as a confounding factor, such studies can only be interpreted 

to a limited extent without relying on the assumption that the external sounds are processed 

in the same way, using the same neuronal populations, as tinnitus. Presently there is a lack 
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of evidence to support this assumption. Short-term changes in tinnitus intensity can 

frequently be achieved using jaw movements or other OFMs (Lockwood et al., 1998), 

intravenous lidocaine (Reyes et al., 2002), direct electrical stimulation (De Ridder et al., 

2011b), masking with a sufficiently loud sound (Adjamian et al., 2012), or remaining 

transiently suppressed after a masking sound finishes (residual inhibition; RI) (Kahlbrock 

and Weisz, 2008). Using within-subject contrasts, these interventions allow the core 

processes of tinnitus to be highlighted with greater selectivity than resting-state studies, 

provided direct consequences of the method of manipulation are controlled for. As well as 

group-level analyses, individual-level analyses are also possible. The latter type can 

highlight inter-individual differences, but risks potentially lacking a clear or 

straightforward ‘take-home message’. It should also be kept in mind that these tinnitus 

manipulations may not cause observable changes in all of the core processes underlying 

tinnitus, but only necessarily a sufficient subset to cause the perception of tinnitus to 

change. Therefore interpretation must be made with the putative mechanism in mind by 

which the tinnitus manipulation operates. 

 

1.3 Theoretical mechanisms of tinnitus 

There are compelling arguments that, despite being strongly linked to hearing loss in the 

periphery, tinnitus is generated in the brain. These have been summarised in a previous 

review (Noreña and Farley, 2013) and, briefly, comprise three observations: 1) Tinnitus is 

often not cured by cutting the auditory nerve, and can be caused or exacerbated by this 

procedure; 2) Tinnitus is generally associated with reduced spontaneous and sound-driven 

firing in cochlea and auditory nerve; 3) Tinnitus is generally associated with excessive 

spontaneous activity (SA) in the central auditory pathway. However, a number of 

observations are not consistent with a purely central origin to tinnitus. Firstly, tinnitus 

(transient or permanent) resulting from a traumatically-loud sound tends to occur 

immediately, rather than after a sufficient delay to be consistent with the development of 

central compensatory processes. Additionally, increased SA in the central auditory 

pathway after noise trauma is strongly correlated to SA in the cochlea (Mulders and 

Robertson, 2009), particularly for the first 8 weeks, after which there is a shift towards 

independence of central activity (Robertson et al., 2013). Treatment with furosemide, 

which inhibits cochlear activity and has no central action, within this initial window results 

in abolition of tinnitus-related behaviour in animals (Mulders et al., 2014). Treatment of 
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human tinnitus patients with furosemide shows efficacy in some cases (Risey et al., 1995), 

suggesting at least a degree of peripheral dependence in a significant proportion of cases. 

Thus, while the perception of tinnitus is probably generated by SA in the central nervous 

system, the origin of this activity may, at least in part, lie in the periphery. The following 

sections discuss key evidence for the type(s) of spontaneous central activity that may 

underlie tinnitus, and how these may arise. These are grouped according to the type of 

neural process, rather than by species or recording methodology. Notably, there is 

significant overlap between these processes in several cases. 

 

1.3.1 Central gain 

Central gain refers to the amount that activity in the auditory pathway is amplified. 

Intuitively, it is akin to the volume dial on a radio, and neurophysiologically may be 

mediated by alterations in the balance of excitation and inhibition, re-weighting of 

neuronal connections and/or neuronal plasticity. In theory, central gain applied to external 

sounds could result in hyperacusis, and applied to intrinsic noise in the auditory pathway it 

could result in tinnitus (Schaette and McAlpine, 2011; Zeng, 2013). Peripheral gain also 

occurs via the activity of cochlear outer hair cells. 

 

Psychophysical examination of human tinnitus patients has found steepened loudness 

growth curves, at tinnitus frequencies compared to those in hearing-matched controls 

(Hébert et al., 2013), suggesting increased gain mechanisms. However, it is difficult to 

know whether this relates specifically to tinnitus, or associated hyperacusis. 

 

Auditory brainstem responses (ABRs) are the averaged electrical responses, across 

multiple stimulations, to acoustic stimuli, and comprise up to 7 waves, each representing a 

different stage in the auditory pathway (Moller, 2007). Wave I represents the compound 

action potential in the cochlear nerve; this has found to be reduced in amplitude in patients 

with tinnitus and clinically normal hearing compared to controls (Schaette and McAlpine, 

2011; Gu et al., 2012). This has been taken as evidence of hidden hearing loss, which 

reduces the afferent drive to the auditory pathway. However, the same studies found 

recovery to normal or elevated response magnitudes at wave V, which indicates input to 

the inferior colliculus (IC), suggesting increased central gain between cochlear nerve and 

IC. A recent study in mice (Hickox and Liberman, 2014) found that noise overexposure at 
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a level sufficient to damage high-threshold auditory nerve fibres, but not permanently 

affect hearing thresholds, resulted in a similar pattern of brainstem responses to that 

observed in human tinnitus patients with normal hearing thresholds. The exposed animals 

also showed elevated acoustic startle responses in certain stimulus conditions, interpreted 

as behavioural evidence of hyperacusis. GPIAS deficits, however, were only found at short 

pre-stimulus gap latencies, raising some uncertainty about whether these animals 

experienced tinnitus. 

 

Responses to acoustic stimulation, in tinnitus, have also been studied with functional 

magnetic resonance imaging (fMRI), which measures blood oxygenation as a surrogate 

marker of population neuronal activity. Initial reports of reduced sound reactivity in the 

contralateral IC (Melcher et al., 2000; Smits et al., 2007) and higher auditory centres 

(Smits et al., 2007) in tinnitus were initially taken to indicate increased SA, and hence 

reduced reactivity due to a ‘ceiling’ effect. However, subsequent work found that relatively 

quiet ongoing sound sources in the scanner environment led to ‘baseline’ activation of 

these structures, and that once these were removed there was actually a contralateral 

increase in sound reactivity in the IC onwards associated with tinnitus (Lanting et al., 

2008; Melcher et al., 2009). While these findings support the presence of increased central 

gain in tinnitus patients, their methodology did not specifically aim to separate tinnitus 

from hyperacusis. More recent work that classified tinnitus patients according to the 

presence or absence of hyperacusis found that the hyperacusis group had increased sound 

reactivity in the IC, MGB and AC, whereas the non-hyperacusis group showed increased 

reactivity compared to controls only in AC (Gu et al., 2010). A more recent similar study 

(Boyen et al., 2014) has found a different pattern of results, with tinnitus patients showing 

elevated sound responses only in the cochlear nucleus and auditory thalamus (Medial 

Geniculate Body; MGB), compared to hearing and age matched controls. Notably, there 

was significantly greater hyperacusis in tinnitus patients, which could have at least 

partially explained the results. Similar work taking a different focus has found moderate 

increases in AC responses to sounds in tinnitus patients, and larger responses in the 

nucleus accumbens (Leaver et al., 2011). This has been interpreted as evidence of removal 

(via the nucleus accumbens) of subcortical gating of auditory responses, thus increasing 

gain at the level of the MGB. However, the subjects were unmatched for age and hearing, 

making the specific relevance of the results to tinnitus unknown. In considering the 
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relevance of AC studies of sound responses as a whole, it must be considered that attention 

affects the magnitude of cortical responses, and is therefore a potential source of 

differences between tinnitus and control groups. Attention might also influence subcortical 

parts of the auditory pathway via corticofugal pathways. 

 

Auditory steady state responses (ASSRs) are evoked (time-locked) responses to amplitude 

modulated (AM) auditory stimuli, wherein the evoked response predominantly contains 

energy at the AM frequency (Galambos et al., 1981). This frequency determines the 

anatomical location primarily generating the measured response, with the most commonly 

used frequency of 40 Hz, for auditory studies, representing the level of initial processing in 

primary auditory cortex (A1) (Pantev et al., 1996). Early work found that the magnitude of 

ASSRs, using a carrier frequency corresponding to the tinnitus frequency, was proportional 

to subjective tinnitus distress, after correcting for the influence of hearing loss (Diesch et 

al., 2004). At group level, ASSRs to all frequencies measured showed increased 

amplitudes and displaced source locations compared to those in control patients 

(Wienbruch et al., 2006), however the controls were unmatched for age and hearing loss. 

More recent work has found no difference, at any carrier frequency, in ASSR magnitudes 

between tinnitus patients and matched controls (Paul et al., 2014), and also a selective 

decrease in ASSR magnitude at the tinnitus frequency (Roberts et al., 2015). Taken 

together, these observations do not make a compelling case for increased population-level 

frequency-specific amplification of auditory inputs in tinnitus patients, applicable to ASSR 

magnitudes. It is possible that the methods of correcting for hearing loss, which differed 

between these studies, were responsible for the conflicting results. This issue is discussed 

further in Chapter 7. Correlation with tinnitus distress (Diesch et al., 2004) might indicate 

that even if tinnitus patients do not show increased gain compared to controls, that the 

extent of gain might increase tinnitus distress. However an alternative and perhaps more 

parsimonious explanation, given that attention increases the strength of ASSRs (Gander et 

al., 2010), is that higher tinnitus distress leads to increased focused auditory attention, and 

hence increased ASSR magnitudes. The effect of attention on ASSRs has been explicitly 

studied in tinnitus (Paul et al., 2014), finding that attention increased all evoked response 

magnitudes (at sub-tinnitus and tinnitus frequencies, both N1 and ASSR responses) in 

controls, but in tinnitus patients the only attentional enhancement was for ASSRs at sub-

tinnitus frequencies. The suggestion, therefore, is that modulation of auditory attention is 
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impaired in tinnitus, which is frequency-specific with respect to ASSRs and non-specific 

for N1 responses, and therefore there is no room for this to increase further with attention. 

Interestingly, healthy controls have been found to show ASSR increases with voluntary 

task-related deployment of attention to the auditory modality, but not further increases 

related to attending specific frequency ranges (Gander et al., 2010). This contrast, where 

voluntary attention increases ASSR magnitudes at all frequencies, except the tinnitus 

frequency in tinnitus patients, may therefore indicate that any resting-state increase in 

focused attention in tinnitus does not operate via a voluntary top-down mechanism, but 

instead might be driven in a bottom-up manner by the tinnitus signal. Short-term 

suppression of tinnitus, using RI, has been found to selectively increase the magnitude of 

ASSRs to tones with carrier frequencies in the tinnitus range (Roberts et al., 2015). Other 

work on ASSRs in tinnitus has found that the presence of multiple competing AM stimuli 

decreases the response magnitude in controls, but increases it in tinnitus (Diesch et al., 

2010), raising the possibility of deficient lateral inhibitory mechanisms associated with 

tinnitus.  

 

The first major negative evoked response to sound (and also the largest evoked response), 

N1 in electroencephalography (EEG) or N1m in magnetoencephalography (MEG), which 

localises to non-primary AC within the planum temporale. This represents a later stage of 

processing than the ASSR that is more dependent on wider brain states, including an equal 

or greater influence of attention. N1(m) responses have been extensively studied in the 

context of tinnitus, and have yielded mixed results without any consistent trends. In broad 

terms, N1 responses have been recorded to stimuli below and within the tinnitus frequency 

range. Below the tinnitus frequency, some studies have reported increased response 

magnitudes in tinnitus (Hoke, 1990; Hoke et al., 1998; Norena et al., 1999; Delb et al., 

2008), while others have reported reduced magnitudes in tinnitus (Attias et al., 1993; 

Jacobson and McCaslin, 2003) and some have found no differences (Jacobson et al., 1991; 

Colding-Jørgensen et al., 1992). Theoretically, alterations in response amplitude below the 

tinnitus frequency range might indicate general auditory hyperexcitability, increased 

attention, or an effect of large-scale lateral inhibition or response reweighting as a result of 

high-frequency tinnitus. However, the overall evidence is not compelling for such an effect 

in tinnitus. Stimuli in the tinnitus frequency range have shown increased response 

magnitudes, in the form of steeper loudness growth functions, in tinnitus compared to 
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normal hearing controls (Kadner et al., 2002; Pineda et al., 2008), with partial 

normalisation after a course of sound-based therapy (Pineda et al., 2008), but in other 

studies has shown no difference in response magnitude (Weisz et al., 2005b), or reduced 

N1m amplitudes that were attributable to hearing loss but not tinnitus (Sereda et al., 2013). 

As with the conflicting findings for the sub-tinnitus frequency studies, overall there is no 

convincing evidence for altered N1m response magnitude to tinnitus-range tones that is 

specifically attributable to tinnitus. 

 

Behaviourally, hamsters previously exposed to traumatic levels of noise have shown equal 

sound loudness thresholds, to unexposed controls, for triggering a startle response (Chen et 

al., 2013), but exaggerated startle responses, indicating increased central gain, have been 

observed in rats (Sun et al., 2012) and hamsters (Chen et al., 2013). These results are in 

keeping with the increased loudness growth functions, and increased hyperacusis, found in 

tinnitus patient groups. In terms of the anatomical level(s) of this increased amplification, 

sound-evoked local field potential (LFP) activity in rats, immediately following noise 

trauma, has been found to be decreased in the IC, but increased in AC (Sun et al., 2012). A 

chronic rat tinnitus model using noise trauma has also found increased sound-evoked 

responses in AC (Engineer et al., 2011). Non-traumatic prolonged acoustic exposure in 

cats, conversely, (an ‘enriched acoustic environment’) has been found to reduce sound-

evoked responses in the frequency region of the prolonged exposure stimulus, and to 

increase responses at its edge frequencies (Noreña and Eggermont, 2006). In addition to 

noise-based models, salicylate has often been used as an animal model for tinnitus. 

Increased stimulus-driven responses in rat AC have been observed following salicylate 

exposure (Yang et al., 2007), which mirror the behavioural time course of tinnitus in rats 

(Sun et al., 2009) and cats (Zhang et al., 2011). Layer-resolved cortical recordings in rats 

have found granular and supragranular response amplitudes to be increased after salicylate 

administration, with responses in controls plateauing at 50 dB, but further increases beyond 

this in the salicylate group (Stolzberg et al., 2012). 

 

1.3.2 Spontaneous firing rates 

If increased central gain is responsible for tinnitus, then one might expect to see evidence 

of increased SA in the central auditory pathway associated with tinnitus. Spontaneous 

firing rate (SFR) of neuronal populations are a commonly-studied form of SA in animals, 
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but such recordings are not generally possible in humans In noise trauma models of 

tinnitus, SFR is increased in the dorsal cochlear nuclei (DCN) of chinchillas (Brozoski et 

al., 2002), hamsters (Kaltenbach et al., 2004; Zhang et al., 2006; Finlayson and 

Kaltenbach, 2009) and rats (Brozoski and Bauer, 2005), however subsequent ablation of 

the DCN has been found not to abolish behavioural evidence of tinnitus in rats (Brozoski 

and Bauer, 2005), suggesting that processes higher in the auditory pathway may be able to 

generate tinnitus in the absence of the DCN. Noise trauma models have also been 

associated with increased SFR in the IC in mice (Ma et al., 2006), chinchillas (Bauer et al., 

2008) guinea pigs (Mulders and Robertson, 2009), the MGB in rats (Kalappa et al., 2014) 

and AC in cats (Noreña and Eggermont, 2006) and rats (Engineer et al., 2011). 

Paradoxically, attenuation of tinnitus behaviour following a targeted plasticity treatment 

was found to further increase SFR in rat AC, as opposed to restoring it to control levels 

(Engineer et al., 2011). While in isolation, barring the aforementioned paradoxical increase 

with successful treatment, these observations appear compelling for a basis of tinnitus in 

increased auditory SFR due to increased central gain, findings in salicylate models of 

tinnitus show very different results. Salicylate toxicity decreases SFR in the rat cochlear 

nerve (Stolzberg et al., 2011), as would be predicted by peripheral deafferentation, but has 

also been associated with decreased SFR in the rat DCN (Wei et al., 2010), mouse IC (Ma 

et al., 2006) and A1 in rats (Sun et al., 2009) and cats (Zhang et al., 2011). SFRs in cat A1 

have also been found to be unchanged (Ochi and Eggermont, 1996), while increased SFRs 

due to salicylate toxicity have been observed in the extra-lemniscal part of the IC in rats 

(Chen and Jastreboff, 1995) and guinea pigs (Manabe et al., 1997), and in non-primary AC 

in cats (Ochi and Eggermont, 1996; Eggermont and Kenmochi, 1998). Given the broadly 

opposite findings in salicylate compared to noise trauma, unless salicylate and noise 

trauma induced tinnitus have different pathophysiological mechanisms, generalised 

increases in auditory pathway SFR seem to be an unlikely mechanism for tinnitus. The 

exception to this might be the extra-lemniscal pathway, projecting to non-primary AC, 

which as mentioned has shown increased SFR in salicylate models, though this has not 

been sufficiently studied across multiple models to make a strong claim that this is a basis 

for tinnitus. 

 

1.3.3 Neural synchrony 
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Rather than simply examine the firing rates of single neurons or neuronal populations, 

other work has examined SA that is synchronous across neuronal populations. In human 

studies, this takes the form of extracranially-recorded electrical potentials or magnetic 

fields, and occasionally LFPs recorded intracranially. In animal studies, these types of 

measurement are all possible, but are rarely reported. Instead, the more typically-reported 

measurement is neuronal synchrony, defined as the strength of the cross-correlation 

between two or more spatially-separated neurons (usually over the order of a millimetre or 

so). In normal cat AC, this measure has been found to be a better predictor of acoustic 

stimulation than SFR (Eggermont, 2000). 

 

Unlike SFR changes, which develop more slowly, noise trauma causes an immediate 

increase in neuronal synchrony in cat A1 (Noreña and Eggermont, 2003), mirroring the 

immediate onset of tinnitus in these circumstances. Furthermore, SFR actually decreases 

transiently before increasing, again demonstrating poor concordance of its time course with 

that of post—noise trauma tinnitus. This increase in synchrony is specific to the region of 

hearing loss (Seki and Eggermont, 2003). The chronic effects of noise trauma are similar, 

with persistent increases in SFR and neuronal synchrony (Noreña and Eggermont, 2006). 

Chronic exposure to non-traumatic levels of noise was found to increase neuronal 

synchrony in all parts of the tonotopic axis, especially within and above the frequency 

range of the noise (Noreña and Eggermont, 2006; Pienkowski and Eggermont, 2009). 

Notably, when followed up over a long period of time, the increased synchrony did not 

recover to normal (Pienkowski and Eggermont, 2009). Interestingly, while chronic non-

traumatic acoustic stimulation can increase neural synchrony, the immediate and prolonged 

application of equivalent stimulation immediately after noise trauma prevents the usual 

changes in firing rate and neuronal synchrony (Noreña and Eggermont, 2006). Thus, it 

appears that chronic understimulation (from noise trauma) and overstimulation can induce 

persistent changes in neuronal synchrony, and a balance between the two prevents this 

from occurring. 

 

SA of synchronised neuronal populations can be easily measured in humans, in the form of 

oscillations in extracranial or intracranial electrical potentials or magnetic fields. These can 

be divided into frequency bands, according to the frequency with which the signals 

oscillate, and analysis performed either at the level of the sensors, or at the level of 
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estimated brain sources. While altered oscillatory activity has been observed all over the 

brain, in association with various aspects of tinnitus phenomenology, this section 

concentrates on activity within the auditory pathway, specifically AC, as spontaneous 

subcortical activity generally cannot be recorded non-invasively. 

 

Delta (1-4 Hz) and theta (4-8 Hz) oscillations appear to behave similarly in tinnitus, with 

some groups reporting delta and others theta. Given the lack of a clear theoretical 

difference, these are considered together here, and sometimes referred to just as ‘low-

frequency’ oscillations. Early studies reported increased magnitude of spontaneous low-

frequency oscillations in tinnitus patients compared to young, normal-hearing controls 

(Llinás et al., 1999; Weisz et al., 2005a, 2007; Moazami-Goudarzi et al., 2010). Given a 

similar frequency range to spontaneous bursting observed in extra-lemniscal parts of the 

human auditory thalamus (by direct recording in neurosurgical tinnitus patients) 

(Jeanmonod et al., 1996), it was hypothesised that the basis of the cortical delta/theta signal 

was in spontaneous thalamic bursting, in a model called thalamocortical dysrhythmia 

(TCD) (Llinás et al., 1999, 2005), which has been argued to underlie a number of 

neurological and neuropsychiatric conditions; more recently, a noise trauma animal model 

has shown similar bursting behaviour in MGB neurons (Kalappa et al., 2014). However, a 

more recent study including groups of tinnitus patients with and without hearing loss, and 

controls age and hearing matched to both (Adjamian et al., 2012), found no overall 

difference in low-frequency magnitude, but only a significant difference between tinnitus 

patients with hearing loss and normal-hearing controls. Thus, while it appears that 

spontaneous delta/theta magnitude may in some way relate to tinnitus, it does not appear to 

be a generic tinnitus signature. However, a number of other studies highlight the 

importance of delta/theta oscillations. Firstly, transient suppression of tinnitus through 

acoustic masking (Adjamian et al., 2012) and RI (Kahlbrock and Weisz, 2008; Sedley et 

al., 2012a) is associated with contemporaneous reductions in low-frequency amplitude at 

both group and individual level. Secondly, EEG neurofeedback techniques in which 

patients manage to suppress delta magnitude and increase alpha magnitude have been 

associated with significant reductions in tinnitus loudness (Dohrmann et al., 2007; 

Hartmann et al., 2014). Thirdly, tinnitus reduction by electrical stimulation was found to be 

accompanied by simultaneous reductions in delta/theta power (de Ridder et al., 2011b). 

Finally, improvement in tinnitus loudness following a tailored acoustic treatment was 
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associated with reductions in AC delta power at rest (Tass et al., 2012). As the phase of 

low-frequency oscillations is known to organise the timing of activity bursts in high 

frequency bands (Canolty et al., 2006), perturbations of low-frequency activity in tinnitus 

could have various consequences in other frequency bands. 

 

Alpha oscillations (8-12 Hz) are the dominant rhythm in the awake resting EEG. While 

they are strongest in posterior parieto-occipital regions, there is a strong AC alpha rhythm 

also. This is strongest as rest, and decreases with attention or with auditory stimulation 

(Weisz et al., 2011). Like lower frequency oscillations, alpha oscillations also control 

higher frequency rhythms through phase-amplitude interactions (Jensen and Mazaheri, 

2010). The initial report in tinnitus was of reduced alpha magnitude compared to 

unmatched controls (Weisz et al., 2005a), though subsequent work, again using unmatched 

controls, found alpha increases rather than decreases (Moazami-Goudarzi et al., 2010). In 

the only resting-state study with a well-matched control group (Adjamian et al., 2012), 

alpha oscillation magnitude was not found to be different between groups. However, as 

mentioned previously, neurofeedback successful in increasing alpha magnitude caused a 

significant reduction in tinnitus loudness (Dohrmann et al., 2007). Also, studies of illusory 

perception, in the form of Zwicker tones (perceived tones following the end of a notch-

filtered noise stimulus) (Leske et al., 2014) and of illusory continuation of music during 

white noise (Müller et al., 2013) have found that the strength of AC alpha oscillations is 

inverse to that of illusory percepts. 

 

Gamma oscillations occupy all frequencies above around 30 Hz. While initially favoured 

as a close correlate of conscious perception and solution to the binding problem of 

consciousness (Gray et al., 1989; Singer and Gray, 1995; Tallon-baudry and Bertrand, 

1999), the initially-reported narrowband gamma oscillations, peaking at around 40-60 Hz, 

in the visual system have a number of features that point against them being a generic 

correlate of perception. Firstly, they occur only in response to high luminance contrasts, 

and not equally-salient colour contrasts (Adjamian et al., 2008). They also relate solely to 

contrasts within a fairly narrow range of spatial frequencies (number of contrasts per 

degree of visual angle) (Adjamian et al., 2004), which corresponds to the range generating 

visual illusions and unpleasant sensations in normal individuals, and triggering ictal 

discharges in patients with photosensitive epilepsy. They occur in response to large visual 
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patterns (Gieselmann and Thiele, 2008; Jia et al., 2013), of sizes that trigger surround 

suppression both perceptually (Tadin et al., 2003) and neurophysiologically, such that they 

are associated with reduced overall neuronal activity (Gieselmann and Thiele, 2008; Jia et 

al., 2013). Leaving aside narrowband gamma oscillations in the visual system, which do 

not appear to have an equivalent in other systems, there are higher-frequency more 

broadband gamma oscillations, with a distinct origin (Ray and Maunsell, 2011), observed 

in the visual (Lachaux et al., 2005) auditory (Edwards et al., 2005; Griffiths et al., 2010; 

Sedley et al., 2012b) and somatosensory (Bauer et al., 2006; Gross et al., 2007) systems. 

These broadband gamma oscillations appear to be a near-ubiquitous correlate of sensory 

stimulation, attention (Gruber et al., 1999; Fries et al., 2001; Tallon-Baudry et al., 2005; 

Bauer et al., 2006; Ray et al., 2008; Wyart and Tallon-Baudry, 2008; Chalk et al., 2010), 

task performance (Womelsdorf et al., 2006; Fujioka et al., 2009; Hoogenboom et al., 2010) 

and memory (Herrmann et al., 2004). While the origin of gamma oscillations has a basis in 

the rhythmic discharges of inhibitory neurons (Whittington et al., 1995), synchronous 

inhibition of neuronal populations can have a net excitatory effect, by aligning the firing of 

these neurons in time, and hence increasing temporal summation of excitatory post-

synaptic potentials on their targets (Tiesinga et al., 2004). Long-range synchronisation of 

gamma oscillations, between functionally-distinct cortical areas, has been associated with 

increased conscious perception in the context of identical sensory stimulation (Melloni et 

al., 2007; Hipp et al., 2011). However, overall evidence does not support a singular role of 

gamma oscillations in promoting conscious perception, and instead finds that they can 

more parsimoniously be considered a generic signature of cortical activation (Merker, 

2013). However, recent evidence (Arnal et al., 2011; Brodski et al., 2015) and theory 

(Arnal and Giraud, 2012; Bastos et al., 2012) suggests that gamma oscillations may 

constitute a prediction error signal, in that they signal incongruence between ascending 

sensory representations and prior predictions. These predictive coding models of 

perception are discussed in more detail later. In previous work (Griffiths et al., 2010) it was 

observed that the strong gamma responses to pitch stimuli only persist for the whole 

duration of the stimulus where there is ongoing irregularity in that stimulus, and do not in 

cases where the stimulus is completely deterministic (observation presently unpublished). 

Thus, basic auditory gamma responses might also be explicable in terms of prediction 

violations. 
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Early observations in tinnitus patients found gamma oscillations to be increased in scalp 

regions approximately overlying AC (Llinás et al., 1999; Ashton et al., 2007). It was 

claimed that these changes were absent in (young, normal-hearing) controls, but the control 

data were never presented, and not necessarily recorded in identical circumstances. At 

group level, tinnitus patients were found to have increased gamma power in AC compared 

to young, normal-hearing controls (Weisz et al., 2007), and a temporal correlation was 

observed between delta and gamma oscillation increases. A subsequent study by the same 

group, examining amateur rock musicians who regularly developed transient tinnitus and 

hearing loss following band practice, found that transient tinnitus plus hearing loss was 

associated with increased gamma power in the right AC (and no other changes), 

irrespective of tinnitus laterality, and that the gamma power was better explained by 

hearing loss than by tinnitus (Ortmann et al., 2011). The only inter-group comparison well-

matched for hearing loss found no differences in gamma power related to tinnitus 

(Adjamian et al., 2012), supporting the interpretation that gamma power increases are not 

best explained as a direct correlate of tinnitus. Additionally, studies using tinnitus masking 

(Adjamian et al., 2012) and RI (Kahlbrock and Weisz, 2008) found no group-level changes 

in gamma power accompanying tinnitus suppression. However, correlational studies have 

reported that, within a tinnitus group, resting-state AC gamma power was positively 

correlated with self-rated tinnitus loudness (van der Loo et al., 2009). However, the 

influence of hearing loss and other factors on these self-ratings were not explored. Recent 

replications of this analysis, using much larger patient groups, have differed in their 

findings, with one such study, on whole-brain analysis finding no intensity-gamma 

correlation (Vanneste et al., 2015), and another finding a positive intensity-gamma 

correlation after correcting for hearing loss (De Ridder et al., 2015a). In the latter study, 

only subjectively-rated tinnitus, as opposed to loudness-matches to external sounds, 

correlated with brain activity, echoing the distinction made between these (relatively 

uncorrelated) ratings made in a recent study (Balkenhol et al., 2013). Also, successful 

treatment of a tinnitus group with acoustic therapy was associated with reductions in AC 

gamma power (Tass et al., 2012), and exacerbation of tinnitus by a failed sound therapy 

was associated with gamma increases (Vanneste et al., 2013b). Therefore, while there do 

not appear to be group-level gamma increases attributable to tinnitus, once hearing loss is 

controlled for, spontaneous gamma magnitude does appear to be linked to the perceived 

loudness of tinnitus. A further paradox comes from individual subject data examined in the 
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context of RI and its perceptual opposite, residual excitation (RE; a transient increase in 

tinnitus loudness following an acoustic stimulus) (Sedley et al., 2012a); the majority of 

patients experiencing RI showed significant coexistent reductions in gamma power (and 

delta/theta power as previously observed), however one patient’s RI was accompanied by 

significant gamma increases. At the group level there were no gamma changes attributable 

to RI, suggesting the existence of further increases that were not individually significant, 

and potentially explaining the lack of group-level gamma changes seen during previous 

studies of masking and RI. The most striking finding was that in all four patients showing 

RE (tinnitus increase following a sound), this was accompanied by large isolated decreases 

in AC gamma power. These included one patient who also showed RI that was 

accompanied by gamma decreases. Thus the relationship between tinnitus intensity and 

gamma power can be in either direction, depending on the patient and the tinnitus 

manipulation used. This finding was interpreted as suggesting an inhibitory role of gamma 

oscillations, in that reducing the tinnitus drive (in RI) would reduce the amount to which 

inhibitory mechanisms were recruited, while interfering directly with the inhibitory signal 

(RE) would cause tinnitus to become louder. However, this claim was speculative. As an 

alternative explanation, a recently-proposed advance on the TCD model (De Ridder et al., 

2015b) has suggested that these divergent gamma findings are a manifestation of gamma’s 

role as a prediction error signal; i.e. that as tinnitus deviates from its ‘baseline’ state (as a 

reduction or increase relative to this), a prediction error is generated, manifest as increased 

gamma power. However, this claim would predict increased gamma power during RI or 

RE, whereas the opposite was observed. Overall, available evidence suggests that AC 

gamma oscillations are highly relevant to tinnitus, but do not have a straightforward 

relationship to the presence or perceived loudness of tinnitus. 

 

While generally the measures of neuronal synchrony employed in human and animal 

studies are very different, one animal study has attempted to bridge the gap by measuring 

spontaneous LFP oscillations (Noreña et al., 2010) in the guinea pig. This study induced 

used two tinnitus induction methods: salicylate toxicity, followed by recovery and then 

noise trauma. Neither type of auditory insult was associated with alterations in delta/theta 

or gamma power in auditory cortex, but both types produced a decrease in oscillatory 

power in the 10-30 Hz range. The reasons for this discrepancy are unclear, but could 

include differences in the chronicity of ‘tinnitus’, attention and task requirements, 
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recording methods used, the spatial extent of synchrony measured with the different 

techniques, and whether the animals actually had tinnitus (this was not tested 

behaviourally). More recently, a novel rat assay for assessing tinnitus acutely has been 

developed (Stolzberg et al., 2013), which links evidence of current tinnitus with data 

recording epochs of several seconds duration. Initial recordings from a localised region of 

AC made during acute salicylate administration found evidence of tinnitus, accompanied 

by reductions in theta power, increases in low gamma power (around 50 Hz), and 

decreases in high gamma power. The acuteness of the tinnitus, and the method of 

induction, might have been contributed to the discrepancy between these results and the 

human literature. Regardless of the exact causes of the low correspondence between these 

studies and human ones, one must exercise a degree of caution in linking the human and 

animal literature in this respect. 

 

1.3.4 Deficient inhibition 

The previous discussion of increased gain and SA associated with tinnitus can potentially 

be explained, in whole or part, by alterations in excitation/inhibition balance. In addition to 

inhibitory mechanisms simply reducing the gain on neuronal activity, inhibition takes other 

forms. These include forward inhibition/masking, as in RI (Roberts et al., 2008, 2015), and 

also lateral/surround inhibition, in which activation of excitatory ascending projections in 

one frequency inhibits activity in adjacent frequency regions through diagonal or lateral 

connections. Lateral inhibitory mechanisms are necessary to refine and sharpen perceptual 

representations, and may be responsible for the exquisitely narrow frequency selectivity 

observed in auditory cortex neurons (Bitterman et al., 2008). The principal inhibitory 

neurotransmitter is gamma-aminobutyric acid (GABA), which has received the most 

attention in tinnitus. The glycinergic inhibitory system has been less studied in tinnitus, but 

has shown evidence of altered function in the DCN as a result of ageing in chinchillas 

(Brozoski et al., 2002) and rats (Caspary et al., 2005) and hearing loss-related tinnitus in 

rats (Wang et al., 2009). 

 

A rapid consequence of noise trauma in cats is reduced SFR in exposed frequency regions 

of AC, which then resolves, accompanied by increased SFR in the frequency ranges 

immediately above and below the region of trauma (Noreña and Eggermont, 2003). This 

finding has been interpreted as a reduction in lateral inhibition arising from the traumatised 
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frequency range, and is a likely precursor of tonotopic map changes (which are discussed 

later). It is not only traumatic noise exposure that induces such changes, but chronic 

exposure to non-traumatic noise has been found to have the same effect (Noreña and 

Eggermont, 2006). The longer-term effects of noise trauma, as well as increased SFR and 

neuronal synchrony as discussed previously, include re-tuning of neurons in the range of 

hearing damage to the edge frequency (i.e. the highest unaffected frequency) (Norena, 

2005; Noreña and Eggermont, 2006). Reduced lateral inhibition, from first principles, is 

likely to result in larger neuronal populations responding to a given stimulus, which might 

underlie increased neural synchrony observed in tinnitus. 

A body of work has sought to treat tinnitus by restoring the balance of lateral inhibition. In 

this, patients listen to music containing a frequency ‘notch’ corresponding to their 

perceived tinnitus frequency (Okamoto et al., 2010; Stein et al., 2015a), thereby exerting 

asymmetrical lateral inhibitory effects that are the opposite of those putatively associated 

with tinnitus. This was found to reduce the perceived loudness of tinnitus and the 

magnitude of cortical evoked responses. Further work on the subject has found that 

amplifying narrow frequency regions at the notch edges, increasing lateral inhibition 

effects further, led to a stronger subsequent reduction in evoked response magnitude, but 

no difference in effects on tinnitus perception (Stein et al., 2013, 2015b). A further study 

also found that tinnitus-linked cortical activity was only attenuated by actively, not 

passively, listening to notched music stimuli (Pape et al., 2014). 

 

Both ageing and various peripheral auditory insults induce widespread alterations to 

GABA systems in the central auditory pathway, and have been extensively reviewed 

previously (Gold and Bajo, 2014). In the rat IC, ageing was associated with reduced free 

GABA (Banay-Schwartz et al., 1989), GABA-ergic neuronal density (Caspary et al., 

1990), labelling of glutamic acid decarboxylase (GAD; an enzyme responsible for GABA 

synthesis) (Burianova et al., 2009) and stimulus-evoked GABA release (Caspary et al., 

1990), and hearing loss was associated with reduced levels of GAD in rats (Argence et al., 

2006) and GABA(A) receptor transcription in guinea pigs (Dong et al., 2010). Similarly, 

ageing rat AC was found to have reduced GAD levels (Ling et al., 2005) and free GABA 

(Banay-Schwartz et al., 1989). While the above evidence is exclusively from animal 

studies, there has been a recent human study which found that presbyacusis (age-related 

hearing loss) was associated with reduced GABA in AC (Gao et al., 2015).  
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Mice exposed to noise trauma, with behavioural evidence of tinnitus, were found to show 

excessive magnitude and lateral spread of neural responses to focal stimulation of the DCN 

(Middleton et al., 2011). Applying GABA antagonists produced the same response pattern 

in control animals, but did not change the responses in tinnitus animals. Therefore, the 

findings were interpreted as evidence of GABA-ergic deficiency. GABA concentration has 

been measured in noise trauma rats with behavioural evidence of tinnitus, and was found to 

be reduced in the contralateral MGB, but not significantly altered at other levels, including 

AC (Brozoski et al., 2012). However, despite a lack of evidence of reduced GABA 

concentration, there is evidence of AC GABA-ergic deficiency in rodent models of noise 

trauma-induced tinnitus, in the form of reduced GAD expression in rats (Yang et al., 

2011), and increased magnitude and spread of cortical responses in mice, to thalamic 

afferent stimulation, similar to those in the DCN (Llano et al., 2012). In summary, there is 

substantial evidence of reduced GABA-ergic activity in both ageing and hearing loss, and 

also in animals with behavioural evidence of tinnitus from either or both of these causes. 

However, given that reduced inhibition is likely to be a homeostatic response to 

deafferentation, it is difficult to assess which findings, if any, relate specifically to a 

maladaptive deficiency of inhibition that might underlie tinnitus. Human studies including 

tight matching for age and hearing loss might help to answer this question, but presently 

have not been conducted. The nearest study in humans did not use matched controls, and 

reported reduced benzodiazepine binding sites in the mesial temporal lobes of patients with 

severe chronic tinnitus (Shulman et al., 2000). 

 

1.3.5 Plasticity in tinnitus 

Neural plasticity broadly refers to the capacity of the nervous system to change its 

behaviour in response to physical changes and/or past experiences. This encompasses the 

previously discussed changes in firing rates, inhibitory connections, neural synchrony, gain 

controls and other correlates associated with tinnitus and its inducers. This section focuses 

on a few key aspects of plasticity, related to tinnitus, that have not already been covered. 

 

The tonotopic map refers to the distribution of neurons or neuronal populations, at all 

levels of the auditory pathway, according to the stimulus frequencies to which they most 

strongly respond. Further to the previously discussed observation that noise trauma 

exposed animals exhibit consequent changes in lateral inhibition and SFRs, the subsequent 
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re-tuning of neurons in the noise trauma region to the lower edge frequency constitutes 

tonotopic map plasticity (Noreña and Eggermont, 2006). The finding in this study of cat 

AC that immediate immersion in an enriched acoustic environment prevented most of 

these changes from taking place indicates that the observed changes are not inevitable 

consequences of the noise trauma, but most likely gradual plastic processes resulting from 

consequent alterations in excitation and inhibition. However, when the same approach of 

enriched acoustic environments was used to treat human patients with chronic tinnitus 

(Vanneste et al., 2013b), there was no benefit, and in many cases a worsening of tinnitus 

loudness. Therefore it seems like there may be a window of opportunity, beyond which 

acoustic stimulation may further activate and enhance the maladaptive plasticity rather 

than preventing it. Human evidence of tonotopic map plasticity in tinnitus was originally 

reported from MEG studies of N1m responses and ASSRs, which found that the tinnitus 

frequency source locations were displaced in space compared to controls (Mühlnickel et 

al., 1998; Wienbruch et al., 2006). However, these studies (and inherently, all animal 

studies on the subject) were not controlled for hearing loss. More recent work using fMRI 

to examine tonotopic maps in AC in tinnitus patients, against age and hearing matched 

controls, found no differences in tonotopic maps (Langers et al., 2012). This evidence 

builds upon the previous observations that noise trauma-exposed cats with less than 25 dB 

hearing loss did not demonstrate tonotopic map plasticity, but still showed increased SFR 

and neural synchrony (Seki and Eggermont, 2002, 2003). Therefore tonotopic map 

plasticity does not seem necessary for tinnitus, though an optional role cannot be 

discounted. Furthermore, if tonotopic map plasticity were primarily responsible for the 

tinnitus sensation, one might expect the overrepresented edge frequency to relate to the 

perceived tinnitus pitch, whereas evidence on the subject based on psychophysical 

matching has found that tinnitus is experienced across the whole range of hearing loss 

frequencies (Noreña et al., 2002; Roberts et al., 2006). 

 

The notched music approach already described can be considered a way of using lateral 

inhibition to reverse plasticity associated with tinnitus. Another method exploits the action 

of the basal forebrain (BF) cholinergic system which, via its rich cholinergic projections to 

AC, has a major role in shaping sensory responses and promoting plasticity (Sarter et al., 

2001; Hasselmo and Sarter, 2011). This treatment involves using vagus nerve stimulation 

(VNS), which activates the BF in order to cause brief windows of acetylcholine release in 
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which high levels of plasticity can occur. VNS is paired with tone stimulation in the 

tinnitus frequency range that is precisely timed to induce plastic reductions in neuronal 

responses and connections (Engineer et al., 2011). This approach has been successful at 

eliminating behavioural evidence of tinnitus in animals, and early trials in humans are 

encouraging (De Ridder et al., 2014). Another approach has exploited spike timing 

dependent plasticity (STDP) which, depending on the timing with which neuronal 

populations are stimulated, can induce long-term potentiation (LTP) or long-term 

depression (LTD), which refer to strengthening and weakening (respectively) of synaptic 

connections between co-stimulated neurons. This approach, known as coordinated reset 

(CR) neuromodulation (Tass et al., 2012) is applicable only to tinnitus with a pure tone 

character, and involves presenting tones in neighbouring frequencies in a sequence and 

timing that theoretically induces LTD. This has been found to reduce perceived loudness of 

tinnitus, and to reverse the neuronal oscillatory signatures that have previously been 

associated with tinnitus plus hearing loss (Weisz et al., 2007). In summary, plasticity 

relating to asymmetrical lateral inhibition, the BF cholinergic system and STDP all appear 

to be related to the perception of tinnitus. 

 

1.3.6 Cross-modal interactions 

Further to numerous observations of tinnitus coinciding with musculoskeletal disorders of 

the neck and jaw, suggesting a subtype of tinnitus that is sometimes referred to as ‘somatic 

tinnitus’, it has been found that 80% of all people with tinnitus can reliably modulate their 

tinnitus percept through forceful contractions of the head, neck and/or jaw (OFMs), and 

60% of people with no tinnitus can elicit a tinnitus-like sensation with such manoeuvres 

(Levine et al., 2003). Thus, somatomotor-auditory interactions appear not only 

fundamental to tinnitus, but to auditory perception in general. Regarding the mechanism(s) 

for this interaction, it has long been known that such interactions occur in the cat MGB 

(Wepsic, 1966), and it has also been found that fibres from the trigeminal nerve nucleus 

project to the DCN in guinea pigs (Zhou and Shore, 2004). Functionally, the guinea pig 

DCN shows significant responses to trigeminal nucleus stimulation (Shore, 2005), and the 

magnitude of these responses is increased in the presence of hearing loss (Shore et al., 

2009). Therefore these cross-modal inputs are a potential source of SA in the ascending 

auditory pathway. However, it must be remembered that there are cross-modal interactions 
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at all levels of the auditory pathway, and so interactions at other levels less well explored 

may also be relevant. 

 

1.3.7 Deficient noise cancelling 

A model of tinnitus has been proposed, in which the fundamental underlying pathology is 

deficiency of normal noise cancelling mechanisms (Rauschecker et al., 2010). This model 

is based on observations of grey matter (GM) loss in the subcallosal region of cingulate 

cortex (Mühlau et al., 2006; Leaver et al., 2011), which is argued to act as a key centre for 

suppressing certain subcortical auditory inputs. The nucleus accumbens was found to be 

overactive in response to tinnitus-matched tones, in tinnitus patients, and the degree of 

overactivity was related to the extent of subcallosal GM loss (Leaver et al., 2011) and the 

perceived loudness of tinnitus. The proposed noise cancelling mechanism is that the 

thalamic reticular nucleus (TRN) sends rich inhibitory connections to other thalamic 

regions, including auditory regions relevant to hearing loss and tinnitus. The nucleus 

accumbens acts on the TRN to reduce this inhibition, and hence increases the magnitude of 

subcortical activity. The subcallosal region is argued to inhibit the nucleus accumbens, and 

therefore restore subcortical inhibition. It is deficiency of this region, and its consequent 

subcortical inhibitory action, that is proposed to allow subcortical activity to escape from 

inhibition and thus go on to be consciously perceived. While this model has face validity, it 

is supported by limited evidence, and the evidence described above used young, normal-

hearing controls and did not apply any correction for hearing loss. Therefore it is unclear 

whether such a mechanism, if existent, is acting adaptively (to compensate for hearing 

loss) or maladaptively (so as to cause tinnitus). 

‐  

1.3.8 Attention and acetylcholine 

As discussed already, attention is an important factor to consider when studying tinnitus, as 

it is known to enhance sound-evoked responses (Hall et al., 2000; Petkov et al., 2004; 

Gander et al., 2010), and to have neural correlates in sensory cortex that are similar to 

those described for tinnitus (e.g. increased gamma and reduced alpha oscillations). From 

first principles directed attention, as a means of selectively enhancing representations of 

certain stimuli at the expense of others, may also increase the perceptual intensity of 

tinnitus. The importance of the BF cholinergic system in tinnitus has already been 
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discussed in the context of plasticity. This system is also known to be recruited by 

attention, and to facilitate attention by increasing the synaptic gain associated with cortical 

representations of attended stimuli (Hasselmo and Sarter, 2011). Evidence suggests that 

cholinergic action of the BF acts to strengthen thalamocortical connections and weaken 

cortico-cortical ones (Sarter et al., 2005), thereby sensitising cortex to ascending sensory 

inputs (Metherate and Ashe, 1993). Unexpected stimuli evoke a characteristic response, 

called mismatch negativity (MMN), which quantitatively relates to the unexpectedness of 

stimuli (Garrido et al., 2013), and automatically orients attention via a circuit involving 

primary and non-primary sensory cortex and ventrolateral prefrontal cortex (vlPFC) 

(Schönwiesner et al., 2007). vlPFC has a key role in directing attention (Petrides et al., 

2002), and one of several prefrontal cortical regions exhibiting rich bidirectional 

connectivity with the BF (Sarter et al., 2005). A recent EEG study using dynamic causal 

modelling (DCM), which models observed neural activity based on underlying layer-

resolved neuronal populations and their relative connection strengths (Friston et al., 2003; 

David et al., 2006), found that application of a cholinesterase inhibitor (which acts to 

potentiate cholinergic projections) had the effect of increasing the gain of the superficial 

pyramidal cells in the cortex, which receive afferent sensory inputs (Moran et al., 2014). 

This effect explained the differences observed in MMN evoked responses. Directed 

attention is also known to alter the spectrotemporal receptive fields of auditory cortical 

neurons, based on work in ferrets (Fritz et al., 2003), which may also be a precursor to 

long-term plasticity. Further evidence has found that the BF system is linked to task-related 

plasticity in rats, but not ‘passive’ plasticity such as reorganisation following 

deafferentation (Ramanathan et al., 2009). In humans, attention not only enhances 

responses to sounds, but increases the activation of sensory cortex in the absence of 

stimulation (Voisin et al., 2006; Sadaghiani et al., 2009), and alters its ongoing pattern of 

oscillations (Ray et al., 2008). The potential confounding effect of attention makes tinnitus 

difficult to study, as both the presence and intensity of tinnitus, plus psychological 

reactions to it, are likely to result in alterations of attention, which have their own effects 

on spontaneous and driven neural activity. For instance, the increased cortical sound-

driven activity seen in tinnitus (Gu et al., 2010), after matching for hearing loss, could 

represent intrinsic hyperactivity specific to tinnitus, or simply increased auditory-focused 

attention as a result of tinnitus. An alternative, or complementary, explanation is that 

attention is actually causal to tinnitus, rather than consequential (Roberts et al., 2013). In 
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this model, a central representation of tinnitus is created through aberrant plasticity 

following deafferentation. Ascending sensory input, as it is compromised by 

deafferentation, is incongruent with this central representation, and the mismatch 

automatically orients attention towards the modality and frequency region at which it 

occurs. The increased attention can be thought of as a way to resolve this discrepancy, by 

strengthening central auditory representations, and could be mediated by the BF 

cholinergic system. While it does not use the term specifically, this model describes a 

similar framework to predictive coding, which is discussed in more detail later. 

 

1.3.9 Global brain networks 

As well as changes occurring within the auditory system, the involvement of wider cortical 

and subcortical networks in tinnitus has received considerable attention in human studies. 

 

Early studies of altered SA in tinnitus reported changes across large parts of the cerebral 

cortex (Weisz et al., 2005a; Moazami-Goudarzi et al., 2010), and not just auditory regions. 

A study of functional connectivity, using MEG source reconstructions, found abnormal 

connectivity between certain cortical areas, particularly mesial temporal lobe and midline 

cortical regions (Schlee et al., 2009). However, these studies were not controlled for age or 

hearing loss, so there is some uncertainty about what the observed changes represent. A 

series of correlational EEG studies, from a major tinnitus clinic, has reported the within-

group correlates of various aspects of tinnitus phenomenology, including distress 

(Vanneste et al., 2010a), duration (Vanneste et al., 2011c), perceptual character (Vanneste 

et al., 2010b) and laterality (Vanneste et al., 2011b). These findings together implicate an 

extensive array of areas which combined cover most of the brain. A synthesis of these and 

other findings proposes that the multifaceted experience of tinnitus arises due to distinct 

sub-networks each representing a different aspect of tinnitus (for instance, the above 

characteristics, plus loudness), and that these communicate with each other through inter-

regional coherence and cross-frequency interactions (De Ridder et al., 2013). A brain 

region of particular focus is the parahippocampal cortex (PHC), which exhibits increased 

gamma band activity contralateral to the tinnitus percept (Vanneste et al., 2011a), and is 

argued to be part of a ‘core’ tinnitus network, defined as the areas necessary and sufficient 

for conscious tinnitus perception, as well as a specific role in auditory memory relating to 

tinnitus (De Ridder et al., 2013). Other prominent areas are the ventromedial prefrontal 
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cortex (vmPFC) and the adjacent subcallosal cingulate region, which have already been 

discussed in the context of deficient noise cancellation models. Ongoing oscillatory delta, 

theta and beta activity in vmPFC (and adjacent anterior cingulate regions) correlates with 

the proportion of the time in which tinnitus is perceived (Song et al., 2015), which has 

been interpreted as evidence in support of a noise cancellation role. These areas also 

correlate with tinnitus-related distress. Other areas highlighted by these studies include 

anterior and posterior cingulate cortex, precuneus, vlPFC, dorsolateral prefrontal cortex 

(dlPFC) and inferior parietal cortex (IPC). However, a caveat to the interpretation of these 

studies in isolation is that these global brain networks are likely generic (for instance, the 

same distress network is activated regardless of the cause of distress), and thus it is 

difficult to separate generic correlates of cognitive and affective processes from processes 

specific to tinnitus. 

 

Certain functional imaging (fMRI and PET) studies have used short-term tinnitus 

manipulations to create a contrast between ‘high’ and ‘low’ tinnitus states in order to 

isolate tinnitus correlates within the brain. One study, of transient tinnitus suppression, 

found tinnitus-linked activity in right non-primary AC, plus prefrontal and mesial temporal 

lobe sites (Mirz et al., 2000). However, other studies used OFMs or lidocaine to enhance or 

suppress tinnitus, and (once the direct correlates of the interventions were contrasted out of 

the analyses) found activity changes in AC but not wider cortical regions (Lockwood et al., 

1998; Reyes et al., 2002). In a resting-state study, tinnitus duration and distress were 

associated with increased activation in frontal and limbic regions respectively 

(Schecklmann et al., 2013a), mirroring the EEG findings discussed in the previous section. 

Most recent fMRI studies of SA in tinnitus have not measured the mean level of activity in 

particular brain regions, but have focused instead on resting-state connectivity, which 

infers communication between brain regions based on correlation of slowly-fluctuating 

signal magnitudes between them. There are two broad approaches to this: seed-based 

connectivity techniques specify a particular brain region and quantify correlations between 

that area and the rest of the brain; independent component analysis (ICA) based methods 

identify anatomical patterns in the brain in which spontaneous signal magnitudes correlate 

over time, and do not require specification of a prior ‘seed’ or other location of interest. In 

healthy controls, ICA based methods reveal the presence of multiple distinct resting-state 

networks (RSNs), which are reproducible across individuals (Biswal et al., 1995; Greicius 
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et al., 2002). These RSNs have been named according to their likely functions in light of 

their anatomical constituents and activation patterns (Beckmann et al., 2005). A pair of 

studies (Burton et al., 2012; Wineland et al., 2012) used a seed-based approach to compare 

resting-state connectivity in groups with bothersome and non-bothersome tinnitus against 

age (but not hearing) matched controls. They found a negative correlation between 

auditory and visual cortex in the bothersome group only. The first reported study using 

ICA based methods found reduced connectivity between left and right AC in the tinnitus 

group (Kim et al., 2012), but a subsequent study using near-identical methods but matching 

the controls for hearing loss found no differences of any kind between tinnitus and control 

groups (Davies et al., 2014). However, a more recent study used a different metric to 

quantify interhemispheric connectivity, and found the degree of interhemispheric 

correlation in AC to correlate positively with the presence of tinnitus, and its distress and 

duration, even after correction for hearing loss and other subject variables (Chen et al., 

2015). One study used both ICA and seed based methods to compare tinnitus patients to 

hearing loss matched and normal hearing controls (Schmidt et al., 2013). The ICA analyses 

found abnormal connectivity within the default mode network (DMN) (Raichle et al., 

2001), in the medial prefrontal cortex in both tinnitus and hearing loss groups, and in IPC 

in the tinnitus group only. The seed-based analysis showed a different pattern of results, 

with tinnitus patients showing connectivity increases between auditory and PHC compared 

to normal hearing controls, between PHC and the dorsal attentional network compared to 

hearing loss controls, and decreases between the precuneus and the DMN compared to 

both control groups. Another pair of studies, by the same group, used differing 

methodologies to compare equivalent patient populations (i.e. tinnitus patients and normal 

hearing controls). An ICA-based analysis (Maudoux et al., 2012) found numerous 

differences, including increased connectivity in the brainstem, basal ganglia, cerebellum, 

parahippocampal, parietal and sensorimotor cortex in the tinnitus group, and various 

decreases). The analysis using a variant of ICA-based network selection, based on graph 

theory, compared tinnitus patients to healthy controls, and found increased connectivity 

between AC and PHC. Therefore increased connectivity between AC and PHC has been 

observed in three separate studies with different methodologies, one with correction for 

hearing loss, but not in some other studies. The significance of this finding is not fully 

clear, but is consistent with other studies, both resting-state EEG and tinnitus 

manipulation-based PET, highlighting involvement of this area. 



32 

 

 

1.3.10 Structural brain changes 

In addition to the possibility of abnormal ongoing activity in the auditory pathway being 

responsible for tinnitus, there has been a number of studies examining whether structural 

changes in auditory or non-auditory areas might be associated with tinnitus. The 

predominant methodology used has been voxel based morphometry (VBM) (Ashburner 

and Friston, 2000), which warps individual subjects’ T1 weighted structural magnetic 

resonance imaging (MRI) images to conform to a common template, segments the images 

into GM, white matter (WM) and cerebrospinal fluid (CSF), then tests for group 

differences in tissue composition. However, some studies, alternatively or additionally, 

have measured cortical thickness as a metric of structural changes. An initial study 

compared tinnitus patients with clinically normal hearing to controls matched for age and 

sex, but not hearing (Mühlau et al., 2006), and found tinnitus patients had GM increases in 

MGB, and decreases in the subcallosal cingulate region. A later study by the same group, 

this time using tinnitus with marked hearing loss and normal hearing controls, replicated 

this finding (Leaver et al., 2011). Yet another study by the same group (Leaver et al., 2012) 

compared tinnitus patients to hearing impaired age-matched controls, though the controls 

had better hearing thresholds by an average of 8 dB. This study again replicated the GM 

losses in the same approximate region, though this time in the adjacent vmPFC region, 

rather than the subcallosal cingulate. Cortical thickness in the subcallosal cingulate region 

itself was correlated with anxiety and depression scores. The study also found that tinnitus-

related distress correlated with cortical thickness in the anterior insula. However, a study 

using tightly-matched controls for hearing loss (Melcher et al., 2013) found no differences 

attributable to tinnitus specifically, including in a subcallosal/vmPFC region of interest 

(ROI). What the study did find was that GM loss in the subcallosal region was correlated 

with hearing loss at frequencies above 8 kHz, which had not previously been measured in 

structural studies. Supra-clinical hearing loss also correlated with structural changes in 

posterior cingulate and dorsomedial prefrontal cortex. Six further studies, with and without 

the use of control groups (some of which were matched for hearing loss), have not found 

any structural changes in the subcallosal region attributable to tinnitus, and their positive 

findings were as follows. Reduced volume of A1 (corresponding to all frequencies in 

tonotopic axis) was associated with both tinnitus and hearing loss (Schneider et al., 2009). 

Tinnitus patients were found to have reduced GM in right IC and left hippocampus 
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compared to hearing matched controls (Landgrebe et al., 2009). GM decreases in anterior 

cingulate, medial frontal gyrus and superior temporal gyrus (STG) were found to be 

associated with hearing loss but reversed by the presence of tinnitus, in that they were 

found in a non-tinnitus hearing loss group compared to both normal hearing and tinnitus 

groups (Husain et al., 2011). Another study comparing these three group types found that 

both hearing loss groups, irrespective of tinnitus, had GM increases in middle and superior 

temporal gyri, and only a ROI analysis showing increased GM in A1 attributable 

specifically to tinnitus (Boyen et al., 2013). Two large correlational studies each including 

over 200 patients, but examining only tinnitus patients, found the following: tinnitus 

distress correlated with GM loss in Heschl’s gyrus (HG) and auditory insular regions, even 

after partialling out the effects of age and hearing loss (Schecklmann et al., 2013b); no 

significant correlations were present with any tinnitus variables, except a correlation in the 

cerebellum with tinnitus duration and distress (Vanneste et al., 2015). This latter study also 

correlated brain structure with spontaneous source space EEG oscillations, and found no 

significant correlations between the two measures. 

In summary, the various studies of brain structure in tinnitus have focused on auditory 

regions and subcallosal regions. Changes in auditory regions have been variably observed 

(often only in ROI analyses), occurred in both directions, and appear to relate more to 

hearing loss than tinnitus. Subcallosal changes have been observed only by one group, 

though repeatedly, and never in a study well-controlled for hearing loss. The one study by 

another group finding changes in this area found these to relate to supra-clinical frequency 

hearing loss and not tinnitus. The overall synthesis of these findings is that there is no 

convincing evidence of any brain structural abnormality that is consistently associated with 

tinnitus, and also that brain structure does not appear to have any impact on ongoing brain 

oscillations relevant to tinnitus. 

 

1.3.11 Predictive coding 

While this thesis examines brain bases for abnormal auditory perception in tinnitus, there 

are aspects of normal auditory perception relevant to tinnitus that remain controversial. 

One such model of perception which is gaining substantial popularity, due to multiple 

converging lines of evidence, is predictive coding, which is introduced here before 

proceeding to a discussion of how it might help to explain tinnitus. It has been apparent for 

some time that perception is not simply the unidirectional processing of information from 
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out sensory organs, but is shaped heavily by prior experience and expectation, at both 

conscious and unconscious levels. Well-recognised phenomena in stimulus-evoked brain 

responses such as repetition suppression, priming and MMN require such a framework in 

order to be explained. Furthermore, omission of expected stimuli elicits brain responses 

that are in many ways similar to presentation of those stimuli (Fujioka et al., 2009). 

Generative accounts of perception propose that the brain creates, maintains and tests 

internal models of the environment. Furthermore, they state that observed brain responses 

relate to the testing and updating of these models, rather than the content of perception per 

se. In predictive coding (Rao and Ballard, 1999; Friston et al., 2006; Friston and Kiebel, 

2009), perceptual systems are organised hierarchically, with each level communicating 

with the levels immediately above (forward or bottom-up connections) and below 

(backward or top-down connections) it. Backward connections convey predictions, or 

changes to existing predictions, and forward connections convey prediction errors, which 

are discrepancies between predictions and bottom-up sensory representations. Prediction 

errors may be reconciled by modifying internal models of the environment, or by acting in 

such a way as to change the way the environment is sampled (Friston et al., 2006). Sensory 

perception is more concerned with reducing prediction errors by changing internal models. 

At each level of the hierarchy, the two factors being compared are the (top-down) prior 

(prediction), and the (bottom-up) likelihood, the latter representing ascending sensory 

information. Each of these, mathematically, constitutes a probability distribution (over 

some dimension of perceptual space) characterised by its mean and precision (inverse 

variance). The discrepancy between the two distributions is the prediction error, one 

formulation of which is surprise, which is defined as the negative log probability of the 

likelihood distribution (its mean value) based on the prior. Surprise takes into account the 

precision of the prior, whereas a more generic formulation of prediction error need not 

necessarily do so. Overall inference at each hierarchical level (the posterior, which 

balances prior predictions and new sensory information) is based on comparison of the 

prior and the likelihood, each weighted by its precision. Precision may be determined both 

by stimulus properties (actual precision) and by internal beliefs about the reliability of the 

information (estimated precision). Weighting is also influenced, by the significance of a 

given event or object, for instance the reward or danger associated with it. The system aims 

to minimise surprise in the long term (Friston et al., 2006), which in the context of 

perception is generally achieved by optimising internal models of the environment by 
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making them maximally correspond to sensory input. Thus, prediction errors often result in 

changes to predictions, particularly when the sensory environment is unstable. In a stable 

situation, an equilibrium is reached where predictions are optimised and prediction errors 

are minimised. In the face of noisy, sub-optimal or missing sensory input, the precision of 

the likelihood is low, and therefore the posterior inference is dominated by the prior 

prediction, which has relatively higher precision. Conversely, attention is explained in 

these frameworks as an increase in the precision of bottom-up sensory representations, 

mediated by cholinergic activity increasing the gain of superficial pyramidal cells (Moran 

et al., 2014), thereby biasing perception towards the ascending sensory input. Theoretical 

models of predictive coding based on the functional unit of neocortex, the canonical 

microcircuit (Haeusler and Maass, 2007), have identified suitable neuronal architecture for 

performing and conveying the operations necessary for predictive coding (Bastos et al., 

2012). This theory predicts that superficial pyramidal cells (in the supragranular layers) 

encode prediction errors, manifest as gamma band oscillations, while predictions are 

encoded by deep neuronal population (in the infragranular layers), and manifest as beta 

band oscillations. Prediction errors are conveyed to higher levels, while predictions are 

conveyed to lower levels. Evidence for these theories is largely indirect, and includes the 

following: layer resolved recordings showing the segregation of gamma and sub-gamma 

frequency responses to supra- and infra- granular layers respectively, with antagonism 

between the two (Spaak et al., 2012); feed-forward connections occurring in the gamma 

band, and feed-back in lower frequency bands (Fontolan et al., 2014; van Kerkoerle et al., 

2014); gamma responses correlating with the unexpectedness or incongruence of sensory 

stimuli (Arnal et al., 2011; Brodski et al., 2015); beta rebound responses to omission of 

expected auditory stimuli (Fujioka et al., 2009). For review, see (Arnal and Giraud, 2012). 

 

There are several reasons why it is an attractive prospect to try and explain tinnitus in a 

predictive coding or equivalent framework, as has been proposed (De Ridder et al., 2012, 

2015b). Firstly, these frameworks seem to offer the best account for the range of brain 

responses seen in normal perceptual systems, therefore if normal perception operates in 

this manner then phantom perception (e.g. tinnitus) probably does too. Also, given the 

prominent involvement of PHC in tinnitus networks, it has been proposed that tinnitus and 

phantom limb pain may arise due to ‘filling in’ of missing sensory information from 

memory (De Ridder et al., 2011a). This idea fits neatly into predictive coding frameworks, 
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by stating that precision of sensory input is lowered in deafferentation, and that relevant 

memory circuits therefore generate predictions based on past experience, which dominate 

perception due to their relatively higher precision than the sensory input. Additionally, 

because in these frameworks observed neural oscillations represent only changes to the 

perceptual system, not the percept itself, any given correlate (e.g. gamma oscillation 

magnitude) can potentially correlate with the percept in paradoxical or opposite ways, 

depending on the context (De Ridder et al., 2015b), making such a model easier to 

reconcile with the highly inconsistent literature on neural tinnitus correlates. Other points 

include that a predictive coding-based perceptual system could theoretically generate 

tinnitus without showing any measureable differences versus a system without tinnitus, 

provided both systems were in steady state, and also that predictions and their estimated 

precision can be influenced by a variety of psychological factors, thereby offering a 

potential explanation of how these factors impact upon tinnitus perception. Presently-

proposed predictive coding or equivalent models of tinnitus (De Ridder et al., 2012, 2015b; 

Roberts et al., 2013) thus offer the potential to explain certain paradoxes in the 

experimental tinnitus literature, but presently are under-specified in their level of detail, 

and fail to account for certain observations with respect to tinnitus. This issue is discussed 

further in Section 1.5. 

 

1.4 Unresolved paradoxes in tinnitus research 

While there has been extensive research into tinnitus mechanisms, in both humans and 

animals, at all levels of the auditory pathway and beyond, including structural, metabolic, 

neurochemical and neurophysiological markers, there are several major paradoxes 

remaining that have not been explained, including: 

 

1.4.1 No neural correlate separates tinnitus patients from matched controls 

The situation remains that not even one candidate process or mechanism has been 

identified that consistently differs between tinnitus patients and controls matched for age 

and hearing loss. Furthermore, whatever the processes underlying tinnitus are, and 

wherever they occur, they should have a signature that is present in SA within the auditory 

system. Given the significant peripheral dependence of the central activity underlying 

tinnitus, it is likely that the spontaneous precursors of tinnitus should be present throughout 

the whole auditory pathway as well. As auditory perception is widely assumed to involve 
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AC, even if it also has to involve wider cortical areas, it seems reasonable to assume that 

even if tinnitus originates subcortically, it should still have a detectable signature in AC. 

 

1.4.2 Variable relationship with closest correlates 

The cortical correlates of tinnitus that have previously been proposed (delta/theta and 

gamma oscillations) do not have a consistent relationship with tinnitus across subjects, in 

the context of short-term tinnitus manipulations. Furthermore, gamma oscillations appear 

to have a paradoxical relationship with tinnitus intensity, being positively or negatively 

correlated depending on the manipulation used (Sedley et al., 2012a).  

 

1.4.3 Variable dissociation of hearing loss and tinnitus 

In humans, only certain cases of hearing loss ever result in tinnitus, and the onset of 

tinnitus, perceptually, is often significantly separated in time from the underlying hearing 

damage, meaning that additional processes must sometimes need to operate for tinnitus to 

be caused. Precipitating processes are often psychological, or related to general 

physiological state, yet once these factors are removed, tinnitus generally persists. 

Conversely, in animals, tinnitus behaviour begins immediately after the auditory insult, and 

appears to generally be present in every animal exposed. Given the controversies in the 

validity of certain animal models, one must consider that the behavioural tests for ‘tinnitus’ 

may actually be measuring precursor processes rather than perceived tinnitus. 

 

1.4.4 Most people have a degree of chronic tinnitus 

Tinnitus, to a minor extent, is experienced by the majority of healthy, normal hearing 

adults, if they are in a sufficiently quiet environment, and if they perform orofacial 

movements. Therefore tinnitus models must not absolutely require cochlear or any other 

pathology, but can only include this as an exacerbating factor. The other alternative is that 

if, strictly speaking, the majority of adults have a degree of hearing damage, and tinnitus 

only requires this ‘normal’ level of hearing loss. 

 

1.4.5 Peripheral and central origins 

Initially, tinnitus seems to be dependent on SA in the auditory periphery, and later to be 

dependent predominantly or solely on activity in the central auditory system. Therefore, 

models relying on the thalamus or cortex as the primary generator of the signal that drives 
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tinnitus can only ever be a partial explanation, and require an additional peripheral model 

that produces the same phenomenology. 

 

1.5 Shortcomings of current models 

While all tinnitus models discussed so far and to be discussed, show considerable merit, 

and may well correctly explain certain aspects of tinnitus mechanisms, a comprehensive 

model must be able to account for all the above paradoxes, and presently such a model has 

not been proposed. A host of models has been proposed to explain how SA in the 

ascending auditory pathway is amplified by gain mechanisms (Schaette and Kempter, 

2006; Noreña, 2011; Schaette and McAlpine, 2011), which can easily be extended to 

encompass enhanced neural synchrony and other forms of plasticity. However, these 

models ultimately require that this enhanced SA needs to be propagated to AC (and 

beyond), in which case there should be some measurable abnormality that separates 

tinnitus patients/animals from tightly-matched controls. As explained in the previous 

sections, evidence of such a correlate is presently lacking, despite numerous attempts to 

define one. Furthermore, the closest candidate correlate for the tinnitus percept, AC 

gamma oscillations, behaves paradoxically with respect to short-term modifications in 

tinnitus intensity, in a way that is inexplicable by existing models. As discussed previously, 

the possibility of a predictive coding based model of tinnitus, building on the TCD model, 

has been suggested (De Ridder et al., 2012, 2015b), in which deafferentation causes the 

‘missing’ central auditory representations to be filled in by neighbouring cortical 

representations or from auditory memory; while attractive in many ways, these initial 

attempts are unable to resolve several of the above paradoxes for the following reasons. 

They require a total independence of central tinnitus-related activity from peripheral 

activity, and homeostatic gain increases in the ascending auditory pathway (which are 

strongly suggested by extensive evidence) would actually reduce the cortical 

deafferentation that prompted the filling in process. They predict increased delta/theta 

oscillations in tinnitus, driven by the hyperpolarised thalamic state, and rely on these to 

trigger the cortical activity underlying tinnitus perception; however increased delta/theta 

oscillations are not observed in tinnitus patients as a whole once hearing loss is controlled 

for. Because they explain gamma oscillations as a prediction error signal (mismatch 

between prediction and sensory input or SA), they allow opposite relationships between 

gamma oscillations and tinnitus intensity (i.e. if tinnitus increases or decreases from its 
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prediction, which corresponds to baseline intensity, then gamma-mediated prediction 

errors will increase), however they predict such changes in the opposite direction to what 

has actually been observed (in that gamma generally decreases when tinnitus deviates from 

its baseline state). A similar prediction-based explanation of tinnitus, but in this case driven 

by persistent bottom-up attention, has also been proposed (Roberts et al., 2013). This 

model is based on a central origin to the tinnitus percept, arising in non-primary AC and/or 

auditory memory centres (perhaps due to previous auditory experiences). This central 

representation corresponds poorly to ascending inputs, which are diminished due to 

cochlear pathology, and persistent auditory attention is recruited to resolve the 

discrepancy, which only amplifies the central representation further. This model is also 

very attractive, and the multifaceted influences on attention can potentially explain diverse 

aspects of tinnitus phenomenology via a single converging mechanism. However, like the 

predictive coding based model, this account requires a total independence of the central 

tinnitus-related activity from the ascending auditory pathway and periphery. Furthermore, 

both models require a significant void of peripheral auditory input, and therefore struggle 

to explain tinnitus in the presence of minimal hearing loss, and the ‘normal’ tinnitus 

experienced by the majority of normal-hearing individuals in quiet enough environments. 

Another aspect that is hard to reconcile with the phenomenology of tinnitus is that these 

models propose that directed attention strengthens the centrally-generated tinnitus 

representation at the expense of the (compromised) peripheral input. However, in normal 

sensory systems, attention biases perception towards the peripheral representation by 

increasing the gain on thalamocortical connections. The concept of ‘misdirected’ attention 

has been proposed in the context of functional neurological symptoms (also called 

‘hysterical’ or ‘psychosomatic’ disorders), whereby attention is applied to the 

consequences of the symptom, not to the sensation itself, and therefore reinforces 

maladaptive internal predictions (Edwards et al., 2012). However, this describes a 

psychological/psychiatric pathology that is applicable to only a small minority of 

individuals, and has particular correlates in terms of personality traits. Given the high 

prevalence of tinnitus, and the identification of particular psychological and personality 

traits only in highly-distressed tinnitus patients (as discussed earlier), tinnitus must be 

explicable within a normal psychological framework, though misdirected attention could 

theoretically apply to explain a minority of severe cases. Finally, these models stop short of 

explaining how the process of phantom perception actually arises within the specified 
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framework, and instead begin with the assumption that a fully-formed tinnitus-like percept 

exists already in the brain, and simply needs to ‘fill in’ a gap left in AC due to 

deafferentation, but do not explain the origin of this representation. More generally, certain 

models can potentially explain diverse aspects of tinnitus phenomenology, including the 

sound itself, attention, emotional, cognitive and autonomic reactions, but are far from 

complete, on account of not being linked to specific neurobiological processes (Jastreboff, 

1990; Searchfield et al., 2012), or by including ever-increasing numbers of brain processes, 

regions and networks to incorporate these functions, without specifying the details of how 

tinnitus is actually generated and manipulated within such a framework (De Ridder et al., 

2013). 
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Chapter 2. Aims 

The broad aim of this body of enquiry was to work towards a model of tinnitus capable of 

accounting for all the paradoxical aspects described in the previous sections. Specifically, 

the experimental approaches taken aimed to satisfy as many of the following criteria as 

possible: 

- Studies in humans, where all subject variables not directly relating to perceived tinnitus 

could be controlled (e.g. age, hearing loss, hyperacusis) 

- The inclusion of hearing loss as a variable, and controlling this between groups 

- The separation of current from baseline tinnitus loudness, in order to disentangle fixed 

predictors of loudness from factors affecting current state (i.e. a ‘state-trait’ distinction) 

- The use of direct brain recordings from human tinnitus patients where possible, in order 

to maximise signal to noise ratio (SNR) and spatial localisation accuracy 

- Measurements of neurochemical concentrations, particularly GABA, from human AC 

- Explicit linking of neuronal oscillations to the processes involved in predictive coding 

 

A number of hypotheses were tested in the execution of these experiments, including that: 

- Tinnitus patients would show neurochemical evidence of relatively decreased inhibition 

compared to controls, manifest as either absolute reductions in cortical GABA 

concentration, and/or a negative concentration between GABA concentration and tinnitus 

loudness 

- Gamma oscillations may reflect a signature of local inhibition, in which case they should 

either be reduced in tinnitus, or have a negative relationship with state or trait tinnitus 

loudness 

- Gamma oscillations may reflect prediction errors, or a related process, rather than an 

inhibitory process 

- Tinnitus might be associated with altered cortical acetylcholine (ACh) concentration, 

reflective of abnormalities of attention and/or perceptual weighting of sensory information 
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Chapter 3. Generic methods 

 

Certain methods used herein are applicable to multiple individual experiments, and thus 

are discussed in detail here, and briefly referred back to in the respective experiments. 

 

3.1 Spectral and time-frequency analysis of local field potentials and MEG/EEG data 

LFPs reflect the synchronised ensemble activity of large numbers of neurons, recorded 

from a sufficiently large distance from any individual neuron that it does not dominate the 

recording. Contributing neurons must be oriented the same way, such that their activity is 

summed rather than cancelling itself out, and must fire with a common periodicity on order 

that the ensemble activity varies meaningfully over time. LFPs are influenced by axonal 

and synaptic activity, both of which are transmitted from source to recording site through 

volume conduction. EEG measures ensemble electrical activity from outside the scalp, 

which is thus volume conducted over a large distance, and is attenuated and spatially 

smeared as it passes through the skull. MEG measures magnetic fluctuations resulting from 

locally synchronised neuronal activity at sensors outside the head. The magnetic field 

fluctuations pass unimpeded through the skull, unlike EEG. Also, magnetic fields 

generated by electrical activity project perpendicularly to electrical potentials, making 

MEG only sensitive to sources not oriented radially to the brain’s outer surface. Both EEG 

and MEG can only detect sources that operate as equivalent current dipoles. Action 

potentials do not behave as dipolar sources, and instead these modalities record excitatory 

and inhibitory post-synaptic potentials. 

Despite their differences, intracranial EEG (iEEG) measuring LFPs, EEG and MEG all 

measure the synchronous ensemble activity of large numbers of neurons. Brain activity of 

this sort comprises ongoing oscillations within a number of frequency bands. The bands 

most commonly studied include delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-

30 Hz) and gamma (>30 Hz). Note that precise definitions vary, and these bands are often 

subdivided, particularly the beta and gamma bands. Any experimental effects of interest 

are generally very small in comparison to the much larger ongoing brain activity in these 

frequency bands, and thus specific techniques exist to extract these effects. 

Early techniques involved quantifying effects by conducting a number of ‘trials’, and 

averaging the brain activity within each trial. This has the effect of averaging out all 
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ongoing brain activity not related to the experiment, and highlighting activity that has a 

time-locked relationship to the experimental stimulus or event. Such recordings are known 

as event-related potentials (ERPs) or evoked potentials. While ERPs have many 

advantages, such as a high SNR, it is understood that many responses to experimental 

events are not rigidly time-locked to the stimulus, but instead represent an interaction of 

the event with ongoing brain rhythms. These effects, known as ‘induced’ responses, are not 

detected in ERPs. Additionally, where no experimental event exists (e.g. in the study of 

spontaneous brain activity), ERPs cannot be calculated at all. The study of spontaneous or 

induced brain activity requires the quantification of brain activity within specific frequency 

bands, and is termed ‘spectral’ analysis. Induced responses also require brain activity to be 

quantified within specific time windows with respect to the event, in a process termed 

‘spectrotemporal’ or ‘time-frequency’ analysis. Both approaches involve transforming the 

recorded time series into the frequency domain, with the difference being that this is done 

for the whole time series in spectral analysis, and for multiple subdivisions of the time 

series in spectrotemporal analysis. Various methods exist for transforming data into the 

frequency domain, including the Fourier and wavelet transforms, but ultimately they 

produce similar results, with the main difference being the exact pattern of signal leakage 

between frequencies. Of greater impact than the method used is the trade-off chosen 

between time resolution (samples per s) and frequency resolution (samples per Hz); in that 

the product of these cannot exceed 1. Thus, a researcher must decide how to optimally 

balance these for the specific data being analysed and research question being addressed. 

In Fourier-based analyses, time and frequency resolutions are determined by the length of 

time window used for analysis, with a Fourier transform being performed for each time 

window. Data are generally tapered before Fourier transformation, for example by 

applying a Hanning window, to smooth the edges and hence reduce leakage between 

frequencies. In wavelet based methods, a family of wavelets is created, with a wavelet 

being a complex sinusoid of a specified frequency, multiplied by a Gaussian function. One 

wavelet is created per desired frequency, and the time/frequency resolution is determined 

by the width of the Gaussian function applied. The wavelets are then sequentially time 

shifted and convolved with the time series to yield spectrotemporal data. In both kinds of 

methods, one can have overlap in time or frequency points sampled (e.g. by having time 

windows or wavelet frequencies overlap), and thereby obtain output data with as high a 

time and frequency resolution as desired. However, this amounts to oversampling, which 
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does not add any actual information, but just affects the results aesthetically. Output results 

from any spectral or spectrotemporal analysis are complex, in that they contain both a real 

and imaginary component. A complex data value can be represented as a point in two-

dimensional Cartesian space with the origin at (0,0), and each dimension taking either a 

positive or negative value. A more intuitive and useful representation is in polar 

coordinates, where each point is represented by its phase (angle with respect to the origin) 

and amplitude (distance from the origin). In a polar representation, a time series can be 

represented in a cylindrical space, and in the case of a sinusoidal time series the amplitude 

remains constant while the phase rotates around the origin over time. Thus, in cylindrical 

space a sinusoid takes a helical path, as opposed to the more familiar sinusoidal shape in 

two dimensional space that only considers time and the real component. Analysis of the 

strength of activity in a particular frequency band (which can be influenced by either the 

magnitude of underlying neural activity, and/or the degree of synchronisation between 

neurons) is performed by just taking the amplitude values and discarding phase 

information. These values are sometimes squared to represent power, and are sometimes 

subsequently log transformed to normalise the values. If averaging across trials (or 

regression against an experimental parameter) is performed before converting to 

amplitude, then the evoked response is obtained, as only activity with consistent phase 

across trials will remain (plus a small amount of residual noise). Conversely, if conversion 

to amplitude or power is performed before averaging over trials then total amplitude/power 

is obtained. The term ‘induced’ is often used to refer to the remaining amplitude/power 

after the evoked response has been subtracted. As well as contributing to the evoked 

response, phase information can be used to infer communication between anatomically 

separate brain regions. One such measure used herein is the phase locking value (PLV). 

PLV values range from 0 to 1, and indicate the consistency of the phase relationship 

between two different time series (here the data from two different brain sites) sampled at 

the same time-frequency point(s). A value of 1 (perfect consistency) is still possible even if 

there is a phase difference between the two signals, as long as that phase difference is 

consistent over time or across trials. Both Fourier and wavelet based, plus amplitude and 

phase based, analyses are used in the experiments described herein, with the particular 

analysis determined by the dataset under analysis. 

 

3.2 Source space projection of MEG data 
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MEG samples brain activity at a number of sensors outside of the head: 275 in the setup 

used in these experiments. While it is straightforward to process the sensor data directly, 

interpretation of results is problematic for a number of reasons. Firstly, the majority of 

signal at the sensors does not originate within the brain. Non-brain sources include intrinsic 

noise in the sensors, environmental electromagnetic activity, ocular, muscular and cardiac 

activity. While the physical design of modern MEG setups reduces environmental activity 

significantly, other sources, particularly muscle artefacts, are less straightforward to 

remove from the data. Secondly, the position of each subject’s head relative to the sensors 

is different, therefore there is no direct correspondence of activity recorded at any 

particular sensor between subjects. Thirdly, the magnitude of activity is influenced by head 

size (larger heads have brain tissue closer to the sensors which therefore gives a stronger 

signal) and position. Finally, any results obtained cannot be attributed to specific brain 

areas, limiting the usefulness of the results. Issues of muscle artefact are very important in 

resting-state studies of brain activity comparing patient populations, as even small 

differences in arousal, mood, attention, apprehension, or chronic symptoms could manifest 

as small differences in resting muscle tone, which would have large effects on sensor data. 

A complete or partial solution to all of these problems is to project brain activity into 

source space, i.e. to use the sensor data to make inferences about activity within specific 

brain locations. 

As mentioned previously, sources of brain activity can be modelled as equivalent current 

dipoles, with a particular strength (or ‘moment’) and orientation. For a given brain location 

and dipole orientation, the pattern of projection to the MEG sensors can be calculated quite 

precisely and easily. Information required is the size and shape of the subject’s brain 

(which can be obtained from their MRI scan, or estimated using a template), the volume 

conduction properties of brain tissue, the position of their head relative to the sensors, the 

location of interest within the brain, and the strength of activity at that location. This 

pattern is known as the lead field, and calculating it is known as solving the ‘forward 

problem’. Less trivial is the ‘inverse problem’, which is how to use the pattern of activity 

recorded at the sensors to infer the location and pattern (e.g. time-frequency profile) of 

brain activity that caused it. Theoretically, the inverse problem has no unique solution, and 

infinite possible solutions for each instance of the problem. However, there are widely-

used approaches to solving the problem, which each allow a unique solution to be reached 

through the use of certain assumptions. Broadly speaking, approaches are sparse or 



46 

 

distributed (sometimes termed ‘volumetric’). In sparse solutions, the brain activity of 

interest (either all the activity, or a contrast between brain states) is modelled using a 

limited number of dipoles, with the number, locations, orientations and moments of these 

dipoles as free parameters which must be optimised using an appropriate algorithm such as 

to best fit the sensor data. Distributed methods divide the brain into a large number of 

sources (typically with 2 or 3 dipole orientations at each), and assume that each source 

makes a contribution to the signal measured at the sensors. One such approach, known as 

‘beamforming’ (Van Veen et al., 1997; Gross et al., 2001), uses the assumption that 

sources of brain activity are not correlated with each other over long distances (though in 

reality the method is robust to most correlations within the physiological range). For each 

brain location, the covariance matrix of the sensor data (or its frequency domain 

counterpart, the cross-spectral density matrix) is used in conjunction with the inverse of the 

lead field in order to create a spatial filter that converts sensor data to activity at a 

particular source, by taking a weighted contribution from each sensor. By incorporating the 

covariance matrix, the filter is optimised to the subject’s own data, and prioritises the 

contributions from sensors that better match the lead field from a particular location, and 

greatly reduces the influence from non-brain sources of activity. Disadvantages of 

beamforming include insensitivity to highly correlated sources, occasional difficulty 

resolving extremely strong sources (spatial resolution is related to signal strength, and very 

strong sources can appear so small as to be missed with the spatial sampling used), and 

decrease in performance in the face of inaccurate lead field estimation (for instance with 

errors in co-registration between MEG and MRI data, or due to excessive head movement 

within the MEG recording).  

 

3.3 Non-parametric analysis of large, multivariate datasets 

MEG, EEG and iEEG datasets are often particularly rich in information. For instance, even 

just the analysis of spontaneous brain activity can involve thousands of source locations, 

each with activity measured at multiple frequency bands. When a time dimension is also 

included, in event-related experiments, the number of observations is increased several-

fold. Where communication between different brain regions is measured (within different 

frequency bands, and often at different time points), the number of potential comparisons 

can become very large indeed (for instance, 1000 brain locations by 1000 brain locations 

by 8 frequencies by 8 time points, giving 64,000,000 points in data analysis space). On top 
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of computational demands, two main issues arise from this situation: how to appropriately 

correct for this large number of comparisons, statistically, and how to maintain statistical 

sensitivity to experimental effects. More conservative measures of multiple comparison 

correction, such as the Bonferroni method, assume independence between the multiple 

tests used. Clearly this is not the case in multivariate brain data sets, where neighbouring 

spatial, time and frequency points often show similar trends, and where there is 

dependence between observations, conservative measures incur an inappropriately heavy 

penalty. A commonly employed solution is to use a permutation approach (Maris and 

Oostenveld, 2007). In this method, the data analysis is repeated for each of a large number 

of permutations (typically 1000 or more), with the difference that in each case a shuffling 

process is performed. This is often across trials (e.g. by randomising the trial category 

labels), but can theoretically be any kind of shuffling that abolishes the relationship with 

the experimental parameter under study while preserving other important data 

relationships. A particular method of quantification is performed in each permutation, 

which is at the experimenter’s discretion, so as to give a single or maximum statistic for 

each permutation. The permutations are then sorted according to the value of this statistic, 

and a threshold for significance set according to the appropriate point on this distribution 

(e.g. for p < 0.05 corrected, with 1000 permutations, the threshold would be the 50th-largest 

statistic). The method of quantification used for each permutation, and for the actual data, 

can potentially be anything, provided it is consistently applied, but common approaches 

include the following: 1) taking the largest single value in each permutation, then all points 

in the actual data exceeding that value are considered significant – this method is relatively 

conservative, with the advantage of strong confidence in positive results obtained, but the 

disadvantage of relative insensitivity to large, flat areas of experimental effects; 2) 

identifying contiguous clusters of activation within the data space, based on neighbouring 

points exceeding an arbitrary threshold – this method can potentially be over-inclusive, in 

that some peripheral parts of significant clusters might not ‘truly’ be significant in and of 

themselves, but it has the advantage of having sensitivity to large flat areas of activation, 

and rewards consistency across regions of brain/time/frequency space, which may reflect 

the character of brain activity. Both methods are appropriate, and are inherently corrected 

appropriately for multiple comparisons, and the choice of a particular method should be 

determined by the characteristics of the dataset and the particular research question. In the 

experiments described herein, both methods are used.  
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Chapter 4. Direct neurophysiological recordings of core tinnitus 

processes 

 

This work exploited a rare opportunity to directly study electrophysiological brain activity 

associated with tinnitus, in a patient undergoing invasive electrode monitoring for 

incidental focal epilepsy. The experimental facility was set up and maintained by the 

Human Brain Research Laboratory team at the University of Iowa. The neurosurgical team 

within this group recruited the patient and performed the surgery. Clinical audiological 

testing was performed by Dr Rich Tyler and Dr Phillip Gander. Experiments were 

designed and coded by me, and run by Dr Gander. Data analysis methods were planned 

and implemented by me. This work has now been published in Current Biology (Sedley et 

al., 2015). 

 

4.1 Aims 

Working with this patient provided a unique opportunity to obtain brain recordings of 

tinnitus that combined: high temporal resolution, high spatial resolution, precise 

anatomical localisation, high SNR, contemporaneous subject report of tinnitus 

phenomenology. The principal aim was to test existing models of tinnitus against empirical 

evidence of significantly greater sensitivity and detail than had been previously possible. In 

particular, the model of TCD (Llinas et al., 1999; Llinas et al., 2005; de Ridder et al., 2015) 

predicts delta/theta oscillations to occur in regions of hearing loss, and gamma oscillations 

to occur at the cortical ‘edge’ regions between abnormal delta-manifesting areas and 

normally functioning areas. The high spatial resolution would allow this hypothesis to be 

explicitly tested. A related assertion that could be tested was that tinnitus correlates are 

limited to tonotopic cortical areas corresponding to the tinnitus frequency (i.e. that 

frequency-matched tones might be a viable surrogate marker for tinnitus), as again the high 

spatial resolution would allow this to be examined. Finally, the previous findings of 

gamma oscillations correlating positively or negatively with tinnitus intensity, depending 

on the manipulation used (Sedley et al., 2012a), are at odds with current models of tinnitus 

proposing gamma oscillations as an intensity code of tinnitus. As these results were 

derived using a beamformer source reconstruction, which theoretically can be blind to 
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heavily correlated but anatomically separated sources, corroboration of these findings with 

direct recordings would lend support to the validity of the results. 

 

4.2 Methods 

As this was a study of a single case, the most crucial aspect of any experiment conducted 

was to be able to create a within-subject contrast of tinnitus loudness or intensity. There are 

a limited number of ways to achieve this, which include the following: exploit spontaneous 

variations in tinnitus intensity (these were sought, but did not occur); manipulate tinnitus 

pharmacologically, such as with intravenous lidocaine (this could not safely be done in an 

epileptic patient); use orofacial sensorimotor stimulation to modulate tinnitus (this creates 

very large electrophysiological artefacts); use cortical electrical stimulation (this was 

attempted in limited time available, but did not succeed); use acoustic stimulation, i.e. RI 

or RE. Pre-implantation psychophysics was performed, using acoustic masker stimuli, and 

RI was found to be modestly successful, thus this was used as the basis of actual 

experimentation. 

 

4.2.1 Subject and clinical case study 

The subject was 50 years old, male and left-handed, with left hemisphere language 

dominance confirmed by Wada test. He had moderate-severe high-frequency hearing loss 

bilaterally, as the result of noise trauma from handgun firing recreationally. His tinnitus 

had been present for 15 years, was described as tonal in character, and was bilateral and 

symmetrical. It had begun gradually, and remained constant perceptually over most of the 

15 year period since its onset. Frequency matching revealed a 5 kHz frequency to his 

tinnitus, and loudness matching a 24 dB HL loudness, based on a 500 Hz tone. Minimum 

masking level, using speech-spectrum noise was 54 and 60 dB in left and right ears 

respectively. These audiometric data are shown in Figure 2. 
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Figure 2: Audiometric profile of the subject 
Red and blue plots indicate pure tone thresholds for right and left ears respectively. MML 
= minimum masking level, in the right ear, using noise with a speech-shaped spectrum. 

 

His Tinnitus Handicap Inventory (THI) (Newman et al., 1996) score was 20, 

corresponding to ‘mild’ tinnitus severity. 

The subject’s epilepsy had begun when he was 10 days old, and took the form of complex 

partial seizures, which did not feature an auditory aura. Due to sub-optimal seizure control 

on various anticonvulsants, most recently levetiracetam monotherapy, he underwent two 

weeks of invasive electrode monitoring, prior to resection of the presumed location of 

seizure onset. He did not have any seizures during the first week of monitoring, so his 

levetiracetam was discontinued for the second week in order to try and provoke a seizure. 

The experiments described herein were performed during this second week, during which 

he took no medications. No seizures occurred during the second week either, so 

subsequently a subtle congenital malformation in the left posterior inferior temporal lobe 

was resected. 

  

4.2.2 Recording setup 

iEEG data were recorded from 164 intracranial electrode contacts (Ad-Tech Medical 

Instruments, Racine, WI). 18 of these contacts on depth electrodes, placed along left HG 

(which included A1), into left anterior and posterior temporal lobes, the cortical 

malformation, and right anterior temporal lobe. 146 electrodes were on subdural grids and 
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strips, covering most of the temporal lobe convexity, inferior temporal lobe, temporal pole, 

parts of parietal, occipital and sensorimotor cortex on the left, and the temporal pole and 

PHC on the right. Electrode numbering, from 1 to 250, was based on connection position 

to the amplifier (Tucker Davis Technologies, Alachua, FL), and some connections were 

left empty. Signals were recorded at 2034 Hz, with a bandpass of 0.7-800 Hz, and 

downsampled to 1 kHz offline. Electrical noise was removed by notch filtering. 

Experiments were run from a computer in a dedicated research room, using functions from 

the Cogent 2000 (Wellcome Laboratory of Neurobiology, London, UK) toolbox for Matlab 

(MathWorks, Natick, MA). Auditory stimuli were generated at a 44.1 kHz sampling rate, 

and presented via insert headphones (ER4B; Etymotic Research, Elk Grove Village, IL). 

 

4.2.3 Auditory response characterisation 

In order to establish responses to normal auditory stimuli, and those matched to tinnitus, 

the following stimuli were presented passively, in separate experiments: 

1) 125 repetitions of a 1 s duration tone of 5 kHz carrier frequency (his tinnitus frequency 

match). This was loudness matched to a 55 dB tone at a relatively normal hearing 

frequency (1 kHz). A 40 Hz sinusoidal amplitude modulation was applied to the tones, in 

order to be able to characterise both onset and steady-state responses at the tinnitus 

frequency. 

2) 50 repetitions of each of two types of click train: one with 100 Hz click rate and the 

other with 25 Hz. These were 200 ms in duration each. 

3) 50 repetitions of a consonant-vowel /da/ stimulus of 180 ms duration. 

 

4.2.4 Residual inhibition paradigm 

The main results were obtained from an experiment using broadband Gaussian noise 

maskers, presented for 30 s duration diotically at the loudest comfortable volume, to 

achieve reductions in tinnitus loudness lasting beyond the end of the masker stimuli (RI). 

A total of 60 identical maskers were presented, across two days. After each masker the 

subject was immediately verbally prompted to provide a verbal rating of his current 

tinnitus loudness, on an integer scale from -2 (very quiet) through 0 (normal loudness) to 

+2 (very loud). After this rating was given, a 10 s time period was designated during which 

there was no task to perform, no stimulus and no speech or action by subject or 

experimenter. This was followed by three further ratings of his tinnitus loudness, each 
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separated by a 10 s gap (total 4 ratings, 3 gaps after each masker). Data during these 10 s 

inter-rating periods were used for further analysis, except where otherwise specified.  

 

4.2.5 iEEG data processing 

Spectral analysis was performed to decompose the data into nine pre-defined frequency 

bands which aimed to achieve a tradeoff between adherence to pre-defined functional 

bands, and logarithmic spacing: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta1 (12-

20 Hz), beta2 (20-28 Hz), gamma1 (28-44 Hz), gamma2 (44-60 Hz), gamma3 (60-92 Hz) 

and gamma4 (92-148 Hz). The delta band was analysed as two separate bands (1-2 Hz and 

2-4 Hz), and then the results averaged, as certain measures of signal quality can be 

compromised if bandwidth exceeds lowest frequency. 

 

To analyse oscillatory power, averaged across the whole 10 s time period, each 10 s epoch 

was subdivided into ten one-second sub-epochs. Each sub-epoch was mean-centred and 

multiplied with a Hanning window in the time domain, before calculation of the FFT. To 

compensate for the 1/f amplitude distribution over frequency, each spectral amplitude 

value was multiplied by its frequency. Amplitude values were then squared (to yield 

power) and log transformed, before being averaged across sub-epochs and across 

frequency. This yielded one power value per epoch per frequency band per electrode. A 

tinnitus regressor was calculated, containing one value per epoch, which consisted of the 

average of the tinnitus loudness ratings immediately before and after that epoch. The 

regressor was partialised with respect to the recency of the end of the most recent masker 

stimulus, and the time with respect to the start of the experiment. Although the 

experimental design largely eliminated any direct stimulus-related effects, this 

partialisation corrects for any small residual influences (for instance if response times 

differed according to the level of tinnitus suppression, or tinnitus suppression 

systematically changed over the course of the experiment). Notably, the results did not 

change qualitatively after application of the partialisation process. Finally the regressor 

was inverted, so that positive values reflected tinnitus suppression, and mean centred. For 

each electrode/epoch/frequency band combination, a Pearson product moment correlation 

coefficient (‘r’) value was calculated, across the 179 epochs used for analysis, between 

oscillatory power values and the tinnitus regressor. 
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To analyse power changes over time, before, during and after maskers, the procedure 

described in the paragraph above was followed, but with the following differences. Instead 

of using the 10 s epochs between ratings for analysis, epochs (one per masker presentation) 

covered a time period of 5 s before the start of the masker to 30 s after masker offset (total 

65 s). The sub-epoch length was 2.5s instead of 1 s, and power values were not averaged 

over time, so as to retain the time dimension in the data. Power values were averaged 

across electrodes within a pre-defined ROI covering HG and all of STG (electrode 

numbers 23, 24, 61, 66, 82, 87, 161, 162, 163 and 164), representing all AC sites sampled. 

For display purposes, the mean ‘baseline’ power in the 5 s preceding masker onset was log 

subtracted for each frequency, such that power values were expressed relative to this 

baseline value. Epochs were then categorised based on whether the first tinnitus loudness 

rating after the masker offset was zero (non-RI trials) or negative (RI trials). Note that 

some RI did occur on non-RI trials, but was simply so short-lived as to have ceased by the 

time the first tinnitus loudness rating was given. For statistical analysis, each time-

frequency point was subject to a two-sample T test (comparing RI to non-RI trials).   

 

To analyse local cross-frequency coupling, for each electrode/epoch combination, the time 

domain signal was Hanning windowed across the whole 10 s window, band-pass filtered in 

the frequency domain into the nine frequency bands, and Hilbert transformed to yield a 

complex time series. The Hilbert envelope (absolute value) was taken, squared (to yield 

power), log transformed, mean-centred, shifted to mean zero and normalised to unit 

standard deviation. Normalised envelopes were then Fourier transformed to yield the 

complex spectrum of the power envelope for each frequency. These time series could be 

directly compared across frequencies. To do this, the cross-spectral density (CSD) was 

calculated for each possible pair of frequencies (except identical or adjacent frequencies) 

by averaging over frequency the product of the lower frequency spectrum with the 

complex conjugate of the higher frequency spectrum, then averaging across frequency. The 

resulting complex valued metric thus indicates the strength of the correlation between the 

amplitudes of the two frequency bands, by its magnitude, and the phase lag inherent in the 

coupling, by its phase. The measure is similar to covariance, but offers the advantage that 

lagged relationships can also be detected. For each electrode/frequency pair combination a 

(complex) pair of r values was calculated against the tinnitus regressor. These were 

converted to polar coordinates to reflect magnitude and phase lag of coupling. 
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To analyse long-range coupling PLV was calculated, within each frequency band, between 

each possible pair of electrodes. This involved taking the complex time series of the 

Hilbert transformed raw data, dividing it by its magnitude (to retain only phase 

information). The resulting time series were then used to calculate instantaneous phase 

differences, for each electrode pair, at each point during the epoch. Phase differences were 

complex-valued, and the vector sum of these was taken, over time. The magnitude of the 

resultant vector is the PLV (range 0 to 1, with 1 indicating a perfectly consistent phase 

relationship between the two signals), and the angle of the vector is the phase lag inherent 

in the coupling. Complex PLVs were regressed against the tinnitus regressor, to yield a 

complex pair of r values. At the request of a reviewer, the analysis was performed using 

bipolar electrode montages, in order to eliminate the influence of widespread synchronous 

coherence on measured results. i.e. Individual (common reference) time series were 

converted into bipolar pairs, by subtracting one time series from that of its immediate 

neighbour, and PLV was calculated between the time series of one bipolar pair and that of 

another pair. This approach is highly conservative; although it reduces the chance of signal 

leakage influencing results, it also discards any genuine widespread zero lag synchrony. 

Specifically, instead of using individual electrode time series, adjacent electrode pairs were 

used as bipolar montages, and PLV was calculated between each electrode pair and each 

other electrode pair. Because there is no straightforward interpretation of ‘positive’ and 

‘negative’ phase coherence in bipolar pairs (because some signals become inadvertently 

inverted), the results were expressed as the absolute magnitude of PLV change with 

tinnitus suppression, ignoring direction. It was putatively assumed (based on inspection of 

PLV changes between pairs of individual electrodes rather than bipolar pairs) that all 

changes occurring during tinnitus suppression would be reductions in PLV. 

 

Induced oscillatory responses to external sounds were analysed in two ways. To identify 

electrodes showing significant stimulus responses, an equivalent analysis was performed to 

that described for oscillatory power during tinnitus suppression, except that only a 0-300 

ms post-stimulus time window was used, coinciding with the maximum stimulus response. 

This was compared to an equal length pre-stimulus baseline. For display purposes, time-

frequency decomposition with Morlet wavelets was performed, and the results expressed 

on a decibel scale relative to prestimulus baseline power at a given frequency (i.e. event-
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related spectral perturbations; ERSPs). Evoked responses were calculated by averaging the 

time domain waveforms for each stimulus across trials, middle latency responses by doing 

the same after high-pass filtering from 10 Hz, and frequency following responses to 100 

Hz click trains by band-pass filtering around 100 Hz. 

 

4.2.6 Statistical analysis 

In light of the large size of the data spaces involved, the basis of all statistical analysis was 

permutation testing, as discussed in Section 3.3. Permutations involved randomly shuffling 

regressor values, trial labels, or time points, depending on the experiment being analysed. 

For spectral power changes accompanying tinnitus suppression, the statistic of interest was 

simply the largest absolute r value obtained for any electrode/frequency combination. For 

the actual data, all r values exceeding this threshold were deemed significant. 

For peri-masker time-frequency analysis, T scores were assessed for significance using a 

cluster-based non-parametric permutation approach, with clustering determined by 

adjacency in time-frequency space. A point threshold of p < 0.25 was used, and a cluster 

significance threshold of p < 0.05 (corrected) was set. 

For cross-frequency coupling analysis, two metrics were subject to statistical analysis: 1) 

the magnitude of cross-frequency CSD change; 2) the cross-frequency CSD angle (phase) 

change, multiplied by the mean magnitude. For each permutation, the largest absolute 

change occurring for any electrode/frequency pair combination was used to generate the 

null distribution. 

For long-range within-frequency coupling, the largest magnitude of PLV change occurring 

for any frequency/electrode pair combination was used to generate the null distribution. 

 

4.3 Results 

 

4.3.1 Responses to external sounds 

Responses to external sounds were limited to HG only, and the 5 kHz (tinnitus-matched) 

tone significantly activated only the most medial two electrodes, corresponding to A1. 

These results are shown in Figure 3. From physiological classification criteria based on the 

presence of a 100 Hz frequency following response (FFR) (Brugge et al., 2008), it was 

determined that electrodes 161 and (to a lesser extent) 162 sampled A1.  
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Figure 3: Responses to external broadband and tinnitus-matched sounds 
Left column: anatomical location of the four electrodes in Heschl’s gyrus (HG; 161:164) in 
the context of coronal sections (top), and superior view of superior temporal plane 
(middle), and also middle latency response to 100 Hz click train in electrode 161 (bottom). 
Middle column: ERP (black) and frequency following response (FFR; red) to 100 Hz click 
train from medial (top) to lateral (bottom). The transition from primary to non-primary 
auditory cortex is defined physiologically by the disappearance of the FFR, and occurs 
around electrode 162. Right columns: time-frequency responses to click trains, speech 
syllable and 5 kHz tone with 40 Hz AM (left to right) in the four HG electrodes. Colour 
scale indicates event-related spectral perturbations (ERSP; 10 x base-10 logarithm of 
power ratio versus baseline). Note the 40 Hz sustained response to the AM tones, 
corresponding to the 40 Hz modulation frequency. 
 

4.3.2 Psychophysical RI responses to masker stimuli 

On each day, half of the masker presentations resulted in RI that lasted until after the first 

tinnitus rating was given (RI trials). A higher proportion of trials yielded RI in the first half 

of the experiment than the second half, in both cases. Response times were slightly longer 

for RI trials than non-RI trials. These results are illustrated in full in Figure 4. 

 



57 

 

 

Figure 4: Psychophysical results of residual inhibition (RI) experiment 
The horizontal axis represents time, and the two rows the two days on which the same 
experiment was performed. Masker stimuli (grey blocks) were 30 s each, and were each 
followed by four prompts (green) to provide a current rating of tinnitus loudness, separated 
by 10 s blocks in which no stimuli, task or responses occurred. Note the variable duration 
of the (green) response blocks, depending on response time, which resulted in a longer 
overall experiment duration on Day 2. Also note the halfway break in each day. The 
vertical axis on each row indicates tinnitus loudness in the range -1 to 1, which were the 
minimum/maximum ratings given during the experiment. Each value displayed is the mean 
of the ratings that immediately preceded and followed the 10 s epoch to which the rating 
applies. In all but one instance, the first two post-masker ratings were -1 and 0, or 0 and 0, 
respectively. Averaging these thus yielded mean ratings of -0.5 or 0, which are displayed 
in the figure as blue rectangles. Later responses were generally all zero, except in one 
instance on Day 2 where a mean rating of 1 occurred. This trial was removed from analysis 
due to incongruence with the rest of the experiment. Red circles indicate the tinnitus rating 
after partialisation, for masker recency and position in the experiment, and mean centring. 
Note the waning efficacy of the maskers in producing RI over the duration of each 
experiment. 
 

4.3.3 Reproducibility across days 

As illustrated in Figure 5, the results of the experiment were highly reproducible across the 

two days. Therefore, the results were pooled for further analysis. A striking pattern of 

widespread low frequency (delta, theta and alpha) power decreases and high frequency 

(beta2 and gamma) power increases accompanied tinnitus suppression. These changes are 

discussed in more detail in Section 4.3.4. 
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Figure 5: Full oscillatory power change matrix across the two experimental days 
Left and middle plots indicate Pearson’s r values from the two experimental days. In each 
plot, the columns indicate the nine frequency bands (bracketed numbers denote Hz), and 
rows indicate individual electrodes. The right plot is organised equivalently, and shows 
only significant power correlations based on the described permutation approach. All 
electrodes are in left hemisphere except where (R) indicates right hemisphere. aMTL = 
anterior mesial temporal lobe, including possible contributions from lateral nucleus of 
amygdala and anterior hippocampus. HG = Heschl’s gyrus. PHC = parahippocampal 
cortex. TP = temporal pole. S1 = primary somatosensory cortex. M1 = primary motor 
cortex. 
 

4.3.4 Oscillatory power changes 

The oscillatory power correlates of tinnitus suppression are shown in full in Figure 5, and 

mapped onto brain anatomy in Figure 6. The most widespread changes were reductions in 

delta, theta and alpha (1-12 Hz) power, which encompassed lateral HG (a non-primary 

region of AC), STG, posterior middle temporal gyrus (MTG), IPC, primary sensorimotor 

cortex (S1/M1) and inferior temporal pole (iTP). The next-most widespread changes were 
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increases in high frequency beta and gamma (20-148 Hz) power with tinnitus suppression, 

which occurred in primary and non-primary AC, MTG, IPC, S1/M1 and PHC. The 

distribution of beta/gamma power changes covered almost all AC areas sampled, well 

beyond areas tonotopically representing or responding to the tinnitus frequency. A limited 

number of electrodes showed theta and alpha (4-12 Hz) power increases during tinnitus 

suppression. These were confined to PHC, aMTL and IPC. 
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Figure 6: Changes in oscillatory power and phase locking value (PLV) with tinnitus 
suppression 
Each black circle denotes one electrode from which data were analysed, with hollow 
circles indicating depth electrodes and solid circles subdural electrodes. Hollow coloured 
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circles indicate significant oscillatory power changes accompanying tinnitus suppression, 
with circle radius proportional to strength of correlation. The three circle colours indicate 
the three main response types observed, with blue, magenta and orange circles indicating 
delta-alpha suppression, theta-alpha enhancement and beta2-gamma enhancement 
respectively. Circle radius specifically indicates the largest r value for any of the 
frequencies within the indicated range. Blue lines indicate PLV changes (all within the 
delta band of 1-4 Hz) accompanying tinnitus suppression, and link two bipolar electrode 
pairs (with each line end midway between the two electrodes comprising the bipolar pair). 
Green squares indicate the five electrodes showing significantly altered cross-frequency 
coupling with tinnitus suppression. Black and yellow dashed squares indicate electrodes 
showing significant responses to the passive presentation of a tinnitus-matched (5 kHz) 
tone. A: Lateral view of the left hemisphere surface. Ai: Coronal sections illustrating the 
positions of the Heschl’s gyrus (HG) electrodes (no activations shown on these). Aii: 
Superior view of the superior temporal plane surface. B: Inferior view of the inferior brain 
surface, with parts other than the temporal lobes faded. Bi: Sections through the anterior 
temporal lobes. Bii: Section through the left mid-posterior temporal lobe, with mesial grey 
matter corresponding to parahippocampal cortex (PHC). Biii: Section through posterior 
temporal and occipital lobe, including the lesion responsible for the focal epilepsy (red) 
and the area that went on to be resected (dark grey). In this section, the deepest electrode is 
in posterior PHC. LN Amyg. = lateral nucleus of amygdala. Hip. = hippocampus proper. S 
= superior. I = inferior. A = anterior. P = posterior. L = left. R = right. 
 

4.3.5 Peri-masker time-frequency power changes 

Figure 7 shows the mean peri-masker time-frequency power changes, across all AC 

electrodes. Both RI and non-RI trials were associated with transient broadband power 

increases at masker onset, followed by weak sustained gamma responses for the masker 

duration. Masker offset was associated with a similar, but weaker, response to the onset 

response. After this, both RI and non-RI trials showed strong low-frequency power 

decreases and high-frequency power increases. In non-RI trials, these finished by around 6 

s post-masker, while in RI trials they persisted, gradually waning over tens of seconds. 

These power changes from around 6 s were significantly different between RI and non-RI 

trials, but no earlier, intra-masker or pre-masker changes showed a significant difference. 
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Figure 7: Peri-masker time-frequency power changes across auditory cortex 
Each plot shows the power at each point in time (horizontal) and frequency (vertical) 
space, averaged across auditory cortex and expressed relative to the last 5 s before masker 
onset. Masker timing is indicated by the grey outline box. Hot colours indicate power 
increases and cool colours decreases. A: in RI trials, where tinnitus suppression persisted 
into the first inter-rating epoch (mean position and standard deviation indicated by 
horizontal box plot), were characterised by post-masker low frequency power decreases 
and high frequency increases which persisted for tens of seconds. B: In non-RI trials, 
where tinnitus returned to normal before the first epoch, similar power changes were 
observed, but these returned to baseline by around 5 s post masker. C: RI trials, compared 
to non-RI trials, were characterised by significantly greater high frequency, and lesser low 
frequency, power from around 6 s post masker onwards. Only clusters of significant 
difference are shown in this plot. ERSP = event-related spectral perturbations (10 times the 
base-10 logarithm of the power ratio versus baseline). 
 

4.3.6 Cross-frequency coupling changes 

Unlike the widely-distributed power changes, significant cross-frequency coupling changes 

occurred only in five discrete electrodes. These were in lateral HG, posterior STG, IPC and 

PHC. The overall pattern of coupling changes was complicated (Figure 8). A summary of 

the main observations accompanying tinnitus suppression is that in auditory regions 

(lateral HG and posterior STG) delta-alpha inverse coupling changed to weak positive 

coupling, and the coupling of low (delta, theta and alpha) frequency to high frequency 

(beta2) oscillations either shifted from positive to inverse, or from inverse to more strongly 

inverse. In PHC and IPC, a strengthening of positive coupling was observed between low 

(theta and alpha) and high (beta2 and gamma1) frequencies. Cross-frequency coupling 
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changes in other electrodes, even immediately adjacent ones did not come near to the 

threshold for statistical significance. 
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Figure 8: Cross-frequency coupling changes accompanying tinnitus suppression 
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Each polar plot indicates one electrode where cross-frequency coupling (its magnitude, 
angle, or both) changed significantly during tinnitus suppression. The origin and terminus 
of each black arrow indicate the coupling state during non-suppressed and maximally-
suppressed tinnitus intensity respectively, and the path of the arrow indicates the projected 
trajectory between these. Each point in polar space is characterised by its magnitude 
(distance from the origin, with greater distance indicating stronger coupling: indicated by 
dashed circles) and its phase lag (angle: indicated by dashed line). Greek letters below each 
plot indicate the frequency pair in which coupling is denoted. Within polar plots, the 
horizontal distance from the origin (real component) indicates the covariance of the 
coupling. Vertical distance from the origin indicates the imaginary component of coupling, 
with points above the origin indicating the lower frequency is leading (on account of its 
phase being further ahead), and points below indicating the higher frequency leading. 
Numbers above each plot indicate the electrode number in which the changes were 
observed, and these are grouped into boxes according to anatomical region. HG = Heschl’s 
gyrus. PHC = parahippocampal cortex. STG = superior temporal gyrus. IPC = inferior 
parietal cortex. 
 

4.3.7 Long-range PLV changes 

PLV changes were found only in the delta band, and are displayed in Figure 6. These 

occurred between STG and iTP, PHC, S1/M1, and between aMTL and iTP.  

 

4.4 Discussion 

In a study where subjective tinnitus loudness was manipulated through RI, while keeping 

stimulus factors (and others such as task) constant, widespread significant changes in the 

power and both local and widespread coupling of LFP oscillations were observed. Given 

the tight control over factors not directly related to tinnitus, the observed changes can be 

considered directly related to the processing of tinnitus itself. That said, it must still be kept 

in mind the putative route by which tinnitus was manipulated. RI can be considered a 

temporary reversal of deafferentation, by forward masking, and therefore is likely to 

suppress any subcortical drive underlying tinnitus (if one exists), and exert its effect on 

cortical correlates of tinnitus via that route. However, other possibilities cannot be 

discounted. The most striking, and immediately-apparent, finding was that tinnitus-linked 

oscillations were not confined to the tonotopic part of AC relating to the tinnitus, or 

hearing loss, frequency, or even to all of AC, but instead spanned a large and generally 

contiguous area of cortex including extra-auditory temporal regions, plus sensorimotor, 

parietal and PHC. A more detailed discussion of the observed changes follows. 

 

4.4.1 Low frequency (delta/theta) oscillations 
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It was predicted that tinnitus suppression would coincide with suppression of delta/theta 

oscillations in AC, based on previous observations of suppression in these frequencies 

accompanying short-term (Kahlbrock and Weisz, 2008; Adjamian et al., 2012; Sedley et 

al., 2012a) and long-term (Tass et al., 2012) suppression of tinnitus. These oscillations are 

likely to relate to thalamocortical connections, based on observations of spontaneous burst 

firing of auditory thalamic neurons, in this frequency range, in both human tinnitus patients 

(Jeanmonod et al., 1996) and noise-exposed animals with behavioural evidence of tinnitus 

(Kalappa et al., 2014). Changes in this oscillatory band were the most widespread of all 

observed tinnitus-linked oscillations, and the delta band was the only frequency in which 

long-range phase coherence (PLV) changes were linked to tinnitus suppression. Based on 

these observations, it seems reasonable to speculate that this pattern of low-frequency 

changes, particularly in the delta (1-4 Hz) frequency band, represents a ‘tinnitus drive’ 

network, which links the thalamic input, and the multiple cortical regions involved in the 

processing of tinnitus. The lack of low-frequency changes in A1 is notable. This could 

indicate that non-primary regions play a more crucial role in brain tinnitus systems, or 

alternatively that there is tinnitus-linked low-frequency activity in A1 that does not 

suppress with the degree of RI achieved in this experiment. 

 

4.4.2 Alpha oscillations 

Early reports of spontaneous brain oscillatory abnormalities in tinnitus found alpha 

oscillations to be reduced in magnitude (Weisz et al., 2005a, 2007), though at least one 

similar study found the opposite (Moazami-Goudarzi et al., 2010). Also, neurofeedback-

aided increases in alpha power (albeit coinciding with reductions in delta power) have been 

found to cause reduction in subjective tinnitus loudness (Dohrmann et al., 2007), and 

successful acoustic-based treatment of tinnitus was associated with increases in alpha 

power, along with decreases in all other bands (Tass et al., 2012). Additionally, during 

studies of illusory percepts (Zwicker tones and imagined music during noise) in healthy 

individuals, alpha power reductions were associated with increased presence and strength 

of illusory percepts (Müller et al., 2013; Leske et al., 2014). In light of these findings, the 

observed reduction in alpha power with tinnitus suppression is surprising, but not 

unprecedented. Recent tinnitus theory proposes a much less strict distinction between theta 

and alpha oscillations than has previously been applied, highlighting instances where theta 

behaves like ‘low alpha’ and alpha behaves as ‘high theta’ (De Ridder et al., 2015b). In the 
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present results, alpha oscillations behave almost identically to theta, which would be 

consistent with this assertion. 

In addition to the widespread areas of alpha power decrease with tinnitus suppression, a 

few areas (circumscribed parts of PHC and IPC) showed theta and alpha increases. Based 

on recent tinnitus theory, these regions are associated with auditory memory (De Ridder et 

al., 2013), and may have a role in generating tinnitus through ‘filling in’ of missing central 

auditory representations from memory (De Ridder et al., 2011a, 2012, 2013, 2015b; 

Roberts et al., 2013). Though the following assertion is speculative, it could be that the 

increased activation in these regions during RI signalled an increased reliance on memory 

during suppression of the afferent tinnitus drive. 

 

4.4.3 High frequency (beta/gamma) oscillations 

The theory of TCD proposes that the underlying drive to tinnitus is the delta/theta 

oscillations in deafferented tonotopic regions, and that the cortical interfaces between 

deafferented, delta/theta oscillating, and normal, alpha oscillating, cortical regions generate 

gamma oscillations in a phenomenon called the ‘edge effect’ (Llinás et al., 1999, 2005; De 

Ridder et al., 2015b). This theory therefore makes the explicit prediction that gamma 

oscillations are present only in circumscribed parts of AC corresponding to these normal-

pathological cortical interfaces. The present finding of tinnitus-linked gamma oscillations 

throughout all of AC, and a wider array of cortical regions, strongly contradicts this 

hypothesis, suggesting either that it is not correct, or that a secondary mechanism must 

operate via which gamma oscillations are widely propagated across AC and beyond. While 

gamma oscillations have previously been argued to represent the conscious perception of 

tinnitus, or its perceptual intensity (Llinás et al., 1999; Weisz et al., 2007; van der Loo et 

al., 2009), more recent evidence has either not detected gamma changes at all (Adjamian et 

al., 2012), or found variable relationships between tinnitus intensity and gamma power, 

which could be either positive or negative depending on individual and context (Sedley et 

al., 2012a). Given these findings, the prior hypothesis was that tinnitus suppression would 

be associated with changes in gamma power, but that these could be positive or negative. 

Given that contemporary accounts of the role of gamma oscillations either propose that 

they are a generic signature of local cortical activation (Merker, 2013), or a signal of 

incongruence between prediction and ascending sensory information (Arnal and Giraud, 

2012; Bastos et al., 2012), it seems reasonable that a change in a chronic stable percept 
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should be associated with increased gamma power, regardless of whether it were a change 

towards a stronger or weaker percept. While the present finding of increased gamma power 

with tinnitus suppression can be explained in such a manner, previous findings of reduced 

gamma power during tinnitus increases (Sedley et al., 2012a) are harder to explain, and are 

beyond the scope of this individual study; further discussion on this issue occurs in Chapter 

9. 

 

4.4.4 Local cross-frequency interactions 

The first striking characteristic of the cross-frequency coupling changes observed is that, in 

contrast to the widespread power changes, they occurred only in a few highly localised 

cortical regions. Therefore, even if very large cortical areas are involved in tinnitus, the 

orchestration of these large-scale systems may be conducted only in circumscribed areas. 

In interpreting the patterns of cross-frequency coupling within these areas, it is helpful to 

consider ‘normal’ patterns of coupling based on invasive layer-resolved recording from 

monkey visual cortex (Spaak et al., 2012). These found a strong anti-correlation (negative 

covariance) between alpha power, generated in deep cortical layers, and higher frequency 

power, generated in superficial layers. In the present results, auditory cortical regions 

showed either weakly negative, or positive, alpha-beta2 coupling in the baseline tinnitus 

state, with a shift to negative, or more strongly negative, coupling during tinnitus 

suppression. This could be considered a shift from abnormal to normal coupling. Other 

coupling changes in auditory cortical regions are harder to interpret, given the lack of 

established reference ranges. In putative auditory memory regions, PHC and IPC, all 

coupling (between theta, alpha, beta and gamma oscillations) was positive, and became 

more positive during tinnitus suppression. Again, these findings are difficult to interpret, 

but follow a distinctly different pattern to those in auditory regions. The anatomical 

distribution of these cross-frequency coupling ‘hubs’ (AC, PHC and IPC) closely matches 

the hypothesised layout of a ‘core tinnitus network’ (De Ridder et al., 2013), comprising 

the minimum set of areas necessary for tinnitus perception to occur, and which interacts 

with other wider networks responsible for non-essential parts of the tinnitus experience. 

 

4.4.5 A cortical ‘tinnitus system’ 

The observations discussed in the preceding sections are summarised in Figure 9. 

Distinctions of activity patterns based on frequency band and direction of power changes, 
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anatomical regions, long-range connectivity and cross-frequency coupling suggest the 

existence of three distinct but overlapping sub-networks, which together can be considered 

a cortical tinnitus system. As discussed previously, the low frequency (especially delta) 

oscillatory decreases appear to delineate a network of areas subject to a common afferent 

tinnitus drive (blue in Figure 9). These exhibit delta-band coherence linked to tinnitus, 

which appears to be the predominant or sole frequency band of coherent communication. 

Also as discussed previously, the areas showing theta and alpha increases appear to relate 

to auditory memory, and may comprise a sub-network relating to mnemonic contributions 

to tinnitus representations (magenta in Figure 9). As beta and gamma oscillations, at a 

minimum, relate to local cortical activation and processing (Merker, 2013), and may well 

constitute changing predictions and prediction errors respectively (Arnal and Giraud, 2012; 

Bastos et al., 2012), the areas showing tinnitus-linked gamma oscillations can be 

considered to be showing altered processing of local representations coincident with 

changes to the tinnitus percept. Thus, these are putatively considered to comprise a 

‘tinnitus perception’ network (orange in Figure 9). Importantly, this includes not only 

auditory cortical areas, necessary for auditory perception, but multimodal global perceptual 

areas (MTG and IPC) which, based on previous research, appear to relate to high-level 

perceptual responses such as whether or not equivalent stimuli are consciously perceived 

(Brancucci et al., 2011; Turken and Dronkers, 2011; Hoffman et al., 2012). 
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Figure 9: Summary of findings from the study, expressed in terms of a three-part 
tinnitus system 
Text boxes represent distinct anatomical regions in which tinnitus-linked activity changes 
were observed. Note that for reasons of clarity these are not necessarily placed in their 
correct locations. Dashed outlines indicate deep areas, and solid outlines superficial areas. 
Boxes contain the area name (top), its putative function with respect to tinnitus (middle), 
and the local neural activity changes accompanying tinnitus suppression (bottom). Long-
range delta phase coherence (PLV) changes are shown as blue lines. Part c shows a 
separation of these activity changes into four patterns (three frequency ranges, plus the 
distribution of cross-frequency interactions), based on the type, frequency, direction and 
distribution of activity changes. S1/M1 = sensorimotor cortex. IPC = inferior parietal 
cortex. STG = superior temporal gyrus (in some cases subdivided into anterior and 
posterior parts). HG = Heschl’s gyrus (including A1). MTG = middle temporal gyrus. 
aMTL = anterior mesial temporal lobe (including amygdala and hippocampus). PHC = 
parahippocampal cortex. TP = temporal pole. δ = delta (1.4 Hz). θ = theta (4-8 Hz). α = 
alpha (8-12 Hz). β = beta (12-30 Hz). γ = gamma (>30 Hz). 
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4.4.6 Limitations of study 

The most obvious limitation of this study is that it is just based on a single case. While a 

group study of this type is unfeasible, a small number of further cases would help to 

determine how homogeneous or heterogeneous these observed changes are. While the 

subject’s laterality, character, loudness and distress of tinnitus were all typical, the degree 

of hearing loss was perhaps greater than average. Furthermore, it is not yet clear whether 

there are neurobiological subtypes of tinnitus, even within groups of patients with similar 

phenomenology. Attention is a very important factor in all tinnitus research measuring 

cortical activity. While the present study was based on a contrast of states between which 

attention should not have differed, the absence of small attentional changes cannot be 

confidently assumed. However, this study was in this respect far more tightly controlled 

than all resting-state studies performed so far, which almost certainly features large 

differences in attention between groups. Furthermore, it is unlikely that attention could 

have been the sole explanation for the observed findings, as previous iEEG examination of 

auditory attention affects found only weak and highly localised changes in AC in 

association with a switch from somatosensory to auditory task-related attention (Ray et al., 

2008). As well as attention as a potential confound, attention could also alter the magnitude 

or anatomical extent of tinnitus-linked activity changes, and as such would be an 

interesting variable to explore. Future research might use varying tasks, during the epochs 

from which iEEG data are processed, to manipulate the focus and degree of attention.  
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Chapter 5. Group-level MEG correlates of tinnitus 

This study was conducted at the Wellcome Trust Centre for Neuroimaging, University 

College London. I received limited assistance with patient recruitment from Dr Rudrapathy 

Palaniappan, Consultant Neuro-Otologist at University College London Hospitals, who 

provided two patients. MEG and MRI scans were performed with the assistance of 

radiographers and technicians at the centre, in accordance with local policy. Experimental 

conception, design, piloting, creation of experimental scripts, running of experiments, data 

analysis and interpretation was performed entirely by me. 

 

5.1 Aims 

The principal motivation for this experiment was to better understand the relationship 

between resting-state AC gamma oscillations and the perception of tinnitus, in light of two 

unresolved discrepancies in the literature. Firstly that resting-state AC gamma power 

increases in tinnitus subjects compared to controls, which form a crucial part of prominent 

tinnitus models, have only been found in certain studies which were poorly controlled for 

hearing loss (Llinas et al., 1999; Weisz et al. 2007; Ashton et al., 2007), and not others 

including particularly a recent study well-controlled for hearing loss (Adjamian et al., 

2012). Furthermore, when resting-state gamma changes in tinnitus have been found, they 

have always been positively correlated to either the presence or perceived loudness of 

tinnitus (Weisz et al., 2007; Ashton et al. 2007; van der Loo et al., 2009; Balkenhol et al., 

2013; de Ridder et al., 2015a). However at group level, gamma correlates of short-term 

changes in tinnitus loudness have always been absent (Kahlbrock and Weisz, 2008; 

Adjamian et al., 2012) and individual-level changes can take the form of positive or 

negative correlations depending on the tinnitus manipulation used (Sedley et al., 2012a). 

Positive correlations reported between subjective tinnitus loudness and gamma power have 

either lacked detail about the loudness quantification used (van der Loo et al., 2009), or 

only used sensor-level EEG as the measure of gamma power (Balkenhol et al., 2013), 

which is dominated principally by muscle activity at that frequency range and hence likely 

confounded. The aims of this study were therefore to examine group-level differences in 

gamma power, where the control group was well-controlled for age, sex and hearing loss, 

and also to make a detailed and explicit assessment of subjective tinnitus loudness with 

which to correlate gamma power, taking account of confounds such as tinnitus distress and 
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hearing loss. Other frequency bands would also be examined, with the delta/theta bands of 

particular interest. These have shown the most consistent group and individual level 

correlations with tinnitus presence and loudness (Llinas et al., 1999; Weisz et al., 2005a, 

Weisz et al., 2007, Kahlbrock and Weisz, 2008; Sedley et al., 2012a; Tass et al., 2012), but 

a recent well-controlled study found that delta power only differed between the ‘tinnitus 

with hearing loss’ and ‘no tinnitus with normal hearing’ groups, as opposed to being 

increased in tinnitus groups in general (Adjamian et al., 2012). Importantly, the 

quantification of oscillatory power must be in source space, where confounds of muscle 

and other artefacts are greatly reduced, and localised in AC. 

 

5.2 Methods 

 

5.2.1 Subjects 

Sixteen subjects with chronic tinnitus were recruited, through a local neuro-otology clinic, 

and via advertisement on a local mailing list for potential research participants and in the 

magazine of the British Tinnitus Association, ‘Quiet’. Inclusion criteria included chronic 

subjective tinnitus of over 6 months duration, age 18 years or over, the absence of a wider 

neurological condition, and the absence of medications causing sedation or acting on 

GABA-ergic systems. Importantly, subjects were required to have tinnitus that was entirely 

or predominantly lateralised to one ear (half left, half right). The reason for this was to be 

able to assess whether any observed tinnitus correlates had either a contralateral or 

right/left hemisphere bias. Half of the subjects had clinically normal hearing, defined as 

mean hearing threshold between 0.25 and 8 kHz less than 20 dB, no individual frequency 

exceeding 30 dB threshold, and a maximum of one frequency per ear exceeding 20 dB 

threshold. Once each tinnitus patient participated in the study, a search began for a control 

subject individually matched for age, sex and hearing thresholds. For the normal hearing 

tinnitus subjects, matched controls were sought through advertisement on the same 

research participant mailing list. For the hearing loss subjects, limited computerised 

records, consisting of just age, sex, latest audiogram results, name and contact details, were 

screened within the database of the Royal National Throat Nose and Ear Hospital. 

Individuals identified who provided a close match for age, sex and hearing profile were 

then contacted to explain the study and offer an invitation to be screened for participation. 

The screening procedure and contacting of patients was performed by me, who held an 
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honorary clinical contract with the hospital trust, and participated in occasional clinics 

within Neuro-Otology. Importantly, the procedure was approved by the trust’s R&D 

department, and the research ethics committee that assessed the study as a whole. 15 out of 

16 required matched control subjects were successfully recruited. As age, sex and hearing 

were matched at group level with these numbers, it was decided that these numbers would 

suffice. 

 

5.2.2 Psychophysical assessments 

Pure tone audiograms were performed for each subject as follows. For each frequency 

from 0.5 to 8 kHz, in octave steps. A series of tones started at -10 dB, and was gradually 

increased until the subject could perceive it. The procedure was done three times per 

frequency per ear, starting with 5 dB steps, followed by 1 dB steps. The median of three 

repetitions was taken as the final result. For tinnitus subjects, tinnitus ‘spectra’ were 

determined based predominantly on a previously published method (Norena et al., 1999). 

Briefly, a number of frequencies were tested in random order. For each frequency, the 

subject first tuned the loudness of a pure tone at that frequency to match the loudness of 

their tinnitus in each ear in turn. Next they were presented the tone in both ears at the 

specified loudness, and gave a rating of 0 to 10 for how much it resembled their tinnitus in 

pitch. Each frequency was tested twice, and the mean rating used. Spectra were then scaled 

such that the lowest rating given was 0, and the highest was 1. Group averaging took place 

after this scaling process. Frequencies from 1 to 8 kHz, in 1 kHz steps, comprised the 

spectra. 

Questionnaires completed by subjects were as follows. All subjects completed the 

Modified Hyperacusis Questionnaire used by the Tinnitus Practitioners Association 

(http://csd.wp.uncg.edu/wp-content/uploads/sites/6/2014/01/Hyperacusis-Qx1.pdf), which 

is similar in content to the Khalfa Hyperacusis Questionnaire (HQ) (Khalfa et al., 2002), 

the Hospital Anxiety and Depression Scale (HADS), and the Physical Health 

Questionnaire 15 (PHQ-15). The inclusion of general chronic symptom scales was so that 

if abnormalities outside AC were observed then it could be assessed whether they were 

tinnitus-specific or related to chronic unpleasant symptoms in general. Tinnitus subjects 

also completed the THI (Newman et al., 1996), and gave subjective ratings of tinnitus 

phenomenology on bespoke visual analogue scales (VAS). VAS scores were given for 

tinnitus loudness and tinnitus distress. For each of these, an ‘overall’ rating was given, to 
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reflect the score on a typical day, with 0 being silence or no distress, and 10 being the 

loudest or most distressing thing in existence. Additionally, a ‘current’ rating was given, 

where 0 and 10 represented the quietest/least distressing and loudest/most distressing their 

tinnitus had been within the last 6 months, with 5 being a typical or average day. The 

purpose of making this distinction was to distinguish between theoretically distinct ‘static’ 

and ‘dynamic’ processes. Static processes could include correlates of cortical plasticity or 

the underlying tinnitus drive, while dynamic processes could include compensatory 

processes, attention and/or interaction with global perceptual networks (GPNs). To aid the 

distinction of these factors, subjects were preferentially recruited if they indicated that their 

tinnitus showed significant day to day or week to week variation, though this was not a 

strict inclusion criterion. 

 

5.2.3 Magnetoencephalography (MEG) data acquisition 

Subjects were requested to refrain from alcohol for 24 hours prior to the MEG recording, 

and from caffeine on the day of the recording. The recording setup used was a Canadian 

Thin Films (CTF MEG International Services Ltd., Coquitlam, BC, Canada) magnetometer 

incorporating 275 axial third order gradiometers. Recordings were performed in a 

magnetically-shielded and vibration-damped room, which was moderately-lit, and quiet. 

Before the recording, subjects had three fiducial points marked on their heads, namely the 

nasion, plus left and right preauricular points. Radiofrequency coils were attached to these 

locations for the MEG recording, and used for constant head localisation. Sessions lasted 

600 seconds, during which a black screen with a white cross was in front of the subjects. 

Subjects were instructed to remain relaxed and still, to keep their eyes open and to fixate 

on the point on the screen. A video feed, and the MEG data, was monitored throughout to 

ensure the subjects remained awake and kept their eyes open. Data was recorded with a 

sampling rate of 600 Hz. 

 

5.2.4 MRI data acquisition 

After MEG, subjects underwent acquisition of a structural T1-weighted MRI scan of their 

whole head. The same fiducial locations used for the MEG recording were marked with 

vitamin E capsules, which appear as high signal on T1-weighted images due to their high 

lipid content. 
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5.2.5 MEG Data analysis 

Data analysis was performed in Matlab, using the SPM12 toolbox (Wellcome Trust Centre 

for Neuroimaging, London, UK) and custom analysis routines. Preprocessing of MEG data 

was performed in the FieldTrip (Oostenveld et al., 2011) toolbox for Matlab. 

 

MRI scans were segmented into GM, WM and CSF tissue types, which were used to 

generate a cortical mesh by warping a template brain mesh to fit the individual’s scan. A 

single shell head model was created from the mesh, and co-registered manually by 

alignment of the fiducial markers used in the MEG and MRI scans. A regular 3D grid was 

created, with 10 mm spacing, throughout the brain substance, and at each grid point the 

lead fields were calculated for each of three orthogonal dipole orientations. To ensure 

equivalence of grid points across subjects, SPM12 implements an approach in which the 

grid is created in a template brain common to all subjects, and for each individual it is 

warped to fit their individual anatomy. Thus, any given grid point can be considered to 

represent the same brain area in all subjects. 

 

MEG data was divided into 60 epochs of 10 s duration each. Epochs were visually 

inspected, and those with significant muscle or other artefacts were rejected. Eye 

movements and blinks were not removed. ICA was performed on the data after artefact 

rejection. Components that included line noise, eye movements, blinks or cardiac activity 

were removed from the data. 

 

Source space analysis was preferred to sensor space, as sensor level data is relatively 

insensitive to brain activity in the gamma range, with most observed activity representing 

muscle artefact. As changes in orofacial muscle tone could plausibly accompany tinnitus 

presence and/or distress, this type of analysis could not be relied upon to be valid. Data 

were initially divided into the following frequency bands, and the sensor covariance matrix 

calculated within each band: delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta1 (12-20 

Hz), beta2 (20-30 Hz), gamma1 (30-45 Hz), gamma2 (45-70 Hz), gamma3 (70-150 Hz). 

+/- 1 Hz from line noise harmonics (i.e. 50, 100 and 150 Hz) were excluded from analysis. 

A dynamic imaging of coherent sources (DICS) beamformer (Gross et al., 2001) was used 

to create a set of spatial filters for the transformation of sensor space into source space 

data. One filter was created per frequency per brain location. Oscillatory activity in source 
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space was expressed as power. Due to the theoretical limitations of beamformers in 

resolving widely coherent sources, an initial comparison was performed between the 

beamformer source power estimates, and those obtained using eLORETA (Pascual-Marqui 

et al., 2011). This is a similar method in many ways to beamforming, but assumes 

maximum smoothness of activity across brain sources rather than independence of sources. 

As the intracranial study of tinnitus (Chapter 4) found highly correlated activity across 

large areas of cortex, it seemed important to ensure that such widely coherent activity was 

not missed due to the technical limitations of methods used. The comparison found similar 

results in the two modalities, with higher spatial resolution with the beamformer. Thus the 

beamformer method was used for final analysis. 

 

The principal area of interest was AC. Given that the intracranial study of tinnitus (Chapter 

4) found AC activity to be extensive, and confluent with inferior parietal lobe activity, a 

cuboidal ROI was defined, in each hemisphere, that encompassed the whole superior 

temporal plane, and extended posteriorly and superiorly enough to encompass IPC. 

Analyses were then performed in the regions of interest, and in the whole brain. A 

permutation approach was used, treating each subject as a single observation for each 

brain/frequency point, with shuffling of subjects for each permutation. Analyses were 

performed separately for each frequency band, but with the two beta bands forming one 

analysis, and the three gamma bands forming one analysis. A cluster, rather than single 

point, thresholding approach was used, as large, flat areas of activation were identified in 

the intracranial study of tinnitus (Chapter 4), which would be better captured with a cluster 

approach. Correlations were calculated for each point in source space. The point threshold 

applied before sorting into clusters was p < 0.05 uncorrected. Comparisons of interest 

included tinnitus vs. control groups, and regression against subjective tinnitus loudness 

(overall and current), THI score, and mean hearing thresholds. Group comparisons used T 

tests, and regression used Pearson’s product moment correlation coefficient (‘r’). When 

used with permutation approaches, parametric statistics are appropriate, even if data are not 

normally distributed, as any violations of normality will apply equally to generation of the 

null distribution used to determine the significance threshold. 

 

5.3 Results 
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5.3.1 Subject characteristics 

16 tinnitus subjects and 15 matched controls were studied. The tinnitus group comprised 8 

left ear and 8 right ear predominant tinnitus. Within each set of 8, half had hearing loss and 

half clinically normal hearing. Overall, control subjects had higher pure tone thresholds 

(i.e. worse hearing), but the difference was not significant at any frequency at p < 0.05 

uncorrected. Figure 10 shows the group hearing thresholds, and Table 1 summarises 

subject characteristics. 

 

 

Figure 10: Audiometric assessments 
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A: Pure tone thresholds for tinnitus and control groups. Error bar plots indicate the group 
mean and standard errors for the tinnitus (dashed) and control (solid) groups. No 
difference, at any frequency, was significant at p < 0.05 uncorrected. B: Tinnitus spectra 
for tinnitus group. Grey lines indicate individual spectra, and black line represents mean 
spectrum, with error bars indicating standard error of the mean. The ordinate axis ranges 
from 0 to 1 (lowest and highest rating, respectively, given by each subject). 
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 Tinnitus (n = 16) 

Mean (SD) 

Control (n = 15) 

Mean (SD) 

p =  

Age 46.1 (14.8) 43.3 (14.5) 0.59 

Female:male 5:11 5:11  

Mean HL (dB) left 12.1 (14.4) 17.3 (19.0) 0.40 

Mean HL (dB) right 10.9 (13.6) 18.2 (19.9) 0.24 

mHQ score 17.8 (8.6) 6.5 (6.9) 0.0004 

HADS anxiety 4.1 (2.7) 2.7 (2.1) 0.14 

HADS depression 4.3 (4.3) 2.6 (2.9) 0.20 

PHQ15 5.9 (4.1) 2.5 (2.7) 0.01 

T duration (years) 7.5 (7.5)   

T laterality (left/right) 8:8   

THI score 30.4 (18.8)   

VAS loud overall 4.2 (1.9)   

VAS loud current 6.2 (2.1)   

VAS distress overall 4.6 (2.7)   

VAS distress current 5.3 (2.0)   

Table 1: Subject characteristics 
Where applicable, open and bracketed numbers indicate group mean and standard 
deviation (SD) respectively. p values, based on two-tailed Student’s T tests are shown 
where a comparison between tinnitus and control groups can be made. Significant (p < 
0.05 uncorrected) group differences are indicated by bold p values. HL = hearing loss. 
mHQ = modified Hyperacusis Questionnaire. HADS = Hospital Anxiety and Depression 
Scale. PHQ15 = 15-point Physical Health Questionnaire. T = tinnitus. THI = Tinnitus 
Handicap Inventory. VAS = visual analogue scale (0-10). 
 

While there were no significant group differences in age, sex or hearing thresholds, tinnitus 

subjects had significantly higher mHQ scores (p = 0.0004) and the PHQ15 (p = 0.01), 

which measures somatic symptoms. Two control subjects had unforeseen contraindications 

to MRI, and thus had template MRI scans used to generate their head models and lead 

fields. 

 

5.3.2 MEG source space power 
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There were no significant group level differences in source space power between tinnitus 

and control groups, either in the whole brain or ROI analyses, in any frequency band. 

In the ROI analyses, overall subjective tinnitus loudness, rated by VAS score, correlated 

positively with delta power in left auditory cortical regions (Figure 11A). Current tinnitus 

loudness correlated positively with alpha power in the left ROI (Figure 11B), but 

inspection of the distribution of the changes suggested that the main site of power change 

was in IPC, with little involvement of AC itself. In the tinnitus group, mean hearing 

threshold (hearing loss) correlated positively with activity in all three gamma bands in the 

right AC ROI (Figure 11C), whereas in the control group the correlation was much weaker 

and did not reach significance. 
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Figure 11: Significant correlates of tinnitus and hearing characteristics within the 
tinnitus subject group, in left and right auditory cortex regions of interest (ROIs) 
Images are shown in neurological convention (i.e. left on the left), and ROI boundaries are 
indicated in yellow. Coordinates refer to MNI space. Significant clusters of correlation, 
between source power in the particular frequency and the parameter of interest, are 
highlighted in red. All significant correlations were positive. A: Correlation between delta 
power and overall subjective tinnitus loudness. B: Correlation between alpha power and 
current subjective tinnitus loudness. C: Correlation between gamma power and mean 
hearing loss. 
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None of these correlations were present contralaterally (i.e. in right AC for tinnitus 

loudness measures, or in left AC for hearing loss), even after relaxing statistical thresholds. 

Also, none of the observed effects were influenced by tinnitus laterality (i.e. the effects 

were not observed if the analyses were performed in ipsilateral and contralateral ROIs, as 

opposed to left and right). No significant correlations were found in the whole brain 

analysis. 

 

5.4 Discussion 

No group-level source power differences were found between tinnitus patients and 

matched controls, either in whole brain analysis or a ROI AC analysis, despite the use of 

optimally sensitive MEG processing and statistical analysis techniques. However, 

frequency band-limited correlations were found with tinnitus and hearing phenomenology, 

and these are discussed below according to the frequency band concerned. 

 

5.4.1 Gamma oscillations 

A principal hypothesis under investigation, driven by previous findings, was that AC 

gamma oscillations would correlate with the presence and/or subjective intensity of 

tinnitus. The present results suggest against any hypothesis of this sort, and favour the null 

hypothesis. While previous studies have reported increased resting state gamma power in 

tinnitus patients (Llinás et al., 1999; Ashton et al., 2007; Weisz et al., 2007), these studies 

were not controlled for hearing loss. The present finding of a strong correlation between 

hearing loss, in tinnitus patients, and gamma power raises the question of whether previous 

results can be explained by matching for hearing loss in control groups.  Notably, a recent 

resting-state MEG study of tinnitus patients against hearing-matched controls, using sensor 

and beamformer source power comaprisons, found no difference in AC gamma power 

between groups (Adjamian et al., 2012). This is consistent with an explanation that hearing 

loss is a bigger determinant of gamma power than tinnitus, but does not provide any 

directly supportive evidence. A separate MEG beamformer study recorded from amateur 

rock musicians before and after band practice (Ortmann et al., 2011). During the post-

practice recordings the subjects had transient hearing loss and experienced transient 

tinnitus; in these recordings, they exhibited localised gamma power increases in right AC 

(irrespective of perceived tinnitus laterality), and no other changes in oscillatory source 
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power. The present findings are entirely consistent with these (provided acute and chronic 

hearing loss share certain neural correlates), including in the laterality of power changes, 

and support the authors’ conclusion that the gamma power probably relates more to 

hearing loss than to tinnitus. The present results go further, in suggesting that the gamma 

power is not simply a correlate of hearing loss, but also represents an interaction between 

hearing loss and tinnitus. In considering how these gamma power changes relate to tinnitus 

and hearing loss, it is helpful to bear in mind that, based on the study just described, they 

seem to appear very quickly after the underlying auditory insult; thus they are unlikely to 

represent long-term plastic changes, although changes in receptive fields and lateral 

inhibition can occur rapidly after auditory insults. One possibility for why gamma 

oscillations should increase in hearing loss is that they are a manifestation of increased 

spontaneous firing or neural synchrony in the auditory pathway, as is observed 

subcortically in animal models (Eggermont, 2013). However, this does not explain why the 

relationship is stronger in tinnitus patients than controls, nor why short term changes in 

tinnitus perception seem to usually be accompanied by significant changes in gamma 

power (Sedley et al., 2012a). Alterations in attention in tinnitus patients could explain the 

stronger relationship in tinnitus patients, in that attention to the auditory modality would be 

expected to increase the gain of the superficial pyramidal cells that generate gamma 

oscillations. An explicit attention-driven model of tinnitus has recently been proposed 

(Roberts et al., 2013), in which there is a mismatch between higher predictions and 

ascending auditory input, which drives persistent auditory attention and thereby generates 

or amplifies the perception of tinnitus. The present findings are consistent with increased 

attention in tinnitus patients (i.e. in this account, hearing loss would cause the gamma 

oscillations, and increased attention due to tinnitus would enhance them). This hypothesis 

could be explicitly tested by experimentally manipulating auditory-directed attention in 

future studies. Furthermore, while not explicitly expressed in these terms, the description 

of this model bears significant similarity to predictive coding accounts of brain function 

(Rao and Ballard, 1999; Friston, 2005). Given that gamma oscillations have been proposed 

as a generic prediction error signal (Arnal and Giraud, 2012; Bastos et al., 2012), one 

would therefore expect that gamma oscillations in tinnitus reflect ongoing prediction 

errors, rather than the tinnitus percept per se. This assertion has very recently been made 

explicitly (De Ridder et al., 2015b). Increased prediction errors in hearing loss could come 

about for either of two reasons. Firstly, if perception is dominated by top-down predictions 
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which are not accompanied by compatible sensory information then a prediction errors 

would arise due to the missing sensory information. Secondly, and perhaps more 

relevantly, the prediction errors might occur in the absence of any particular perception, 

simply because there is spontaneous sensory activity which does not match higher 

predictions or the overall percept (including not matching a prediction of silence). In the 

latter case, higher parts of the sensory hierarchy would act to ‘tune out’ this prediction 

error signal, which would amount to noise. Regardless of the type of prediction error, if 

increased attention were present in tinnitus patients, this would be expected to increase the 

gain on prediction error signals and hence lead to stronger gamma signals. The role of 

prediction errors in brain tinnitus systems is discussed in more detail in Chapter 9. An 

alternative, or complementary, explanation for stronger gamma correlations with hearing 

loss in tinnitus patients is that the stronger gamma signal arises from greater gamma 

synchrony between different parts of AC, which would give the appearance of a single 

more powerful source. Increased synchrony could arise through attention, differences in 

certain neurotransmitter systems such as GABA or ACh, changes in lateral inhibition or 

connectivity, synchronisation through lower frequency oscillations, or other tinnitus-

related plastic changes. 

 

5.4.2 Delta oscillations 

This experiment was approached with a strong expectation that delta and/or theta 

oscillations would be a strong correlate of tinnitus, in that they would be stronger in 

tinnitus than control groups, and would positively correlate with subjective tinnitus 

loudness. This was motivated by relatively consistent observations, reported in the 

literature, of a positive relationship between the strength of these oscillations and the 

presence and intensity of tinnitus. Specifically, that these low frequency oscillations are 

increased in tinnitus patients compared to controls (Llinás et al., 1999; Weisz et al., 2005a, 

2007; Moazami-Goudarzi et al., 2010), that they are reduced in tinnitus patients following 

a successful course of treatment (Tass et al., 2012), that they are reduced by transient 

abolition of tinnitus through electrical stimulation (De Ridder et al., 2011b), and that they 

are transiently reduced along with tinnitus reduction in RI or tinnitus masking (Kahlbrock 

and Weisz, 2008; Adjamian et al., 2012; Sedley et al., 2012a). However, as with gamma 

oscillations, the resting-state MEG study best-controlled for hearing loss (Adjamian et al., 

2012) only found a significant increase in delta oscillations in the tinnitus with hearing loss 
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group compared to the control without hearing loss group, as opposed to a main effect of 

tinnitus. In the present results, a correlation with hearing loss was not observed in either 

the tinnitus or control group, making the results of the studies not quite equivalent. 

Nonetheless, both studies were well-controlled for hearing loss, unlike previous resting-

state studies, and neither found group-level delta/theta power changes specifically 

attributable to the presence of tinnitus. Furthermore, a recent animal study searched for, but 

did not find, altered delta/theta oscillations accompanying behavioural evidence of tinnitus 

(Noreña et al., 2010). However, the present results did indicate a positive relationship 

between perceived tinnitus loudness and the strength of delta oscillations, which is 

consistent with most of the literature and part of the hypothesis. On balance, available 

evidence suggests that low-frequency delta/theta oscillations play an important role in 

promoting the development and/or perception of tinnitus, but are not essential for its 

development. Mechanistically, delta oscillations accompany deafferentation, including 

functional deafferentation due to internally-directed attention (Harmony, 2013) or sleep 

(Steriade et al., 1993), and physical deafferentation due to sensory organ damage or 

disconnection below the level of cortex. In tinnitus a prominent model for cortical 

delta/theta oscillations, TCD, is based on the observation of delta-frequency bursting in the 

deafferented non-specific thalamus (Jeanmonod et al., 1996) and cortex (Llinás et al., 

1999), with a hypothesised causal link between the two. However, it has also been 

demonstrated that deafferented cortex develops coherent delta oscillations even when 

disconnected from the thalamus. Thus while TCD may help to explain part of the 

mechanisms of tinnitus, it appears neither necessary nor sufficient to explain tinnitus as a 

whole. 

In recent years there has been a lot of interest in delta/theta oscillations as a means of 

organising and modulating other forms of brain activity. Initial, and repeatedly-confirmed, 

observations found that gamma power is linked to the phase of theta oscillations (Canolty 

et al., 2006), such that bursts of gamma activity occur preferentially during a certain phase 

of the theta cycle. Further evidence has found that low frequency phase tracks the envelope 

of speech stimuli, and this effect is enhanced by comprehension (Peelle et al., 2013), and 

that the phase of theta oscillations when a stimulus is presented predict the speed with 

which that stimulus is processed (Stefanics et al., 2010). Taken together, these observations 

point to a role for low frequency oscillations in optimising sensory responses through 

organising higher frequency oscillations into discrete time windows optimised to the 
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stimulus, which may be generic as opposed to specific for speech (Arnal and Giraud, 

2012). Increased delta/theta phase to gamma amplitude coupling has recently been 

identified in tinnitus patients compared to controls, with reversion towards the control level 

following successful tinnitus treatment (Adamchic et al., 2014). This follows previous 

observations of abnormal delta/theta amplitude to beta/gamma amplitude coupling in 

tinnitus patients (Llinás et al., 1999; De Ridder et al., 2011b; Vanneste et al., 2013a). It has 

been proposed that delta/theta oscillations have a role in predictive timing in tinnitus (De 

Ridder et al., 2012), similar to what has been proposed for timing in general (Arnal and 

Giraud, 2012). However, tinnitus rarely has a time-varying quality to its percept (and when 

present the periodicity is generally slower than the delta frequency range), so it is rather 

unclear what predictive timing means in the context of tinnitus. The intracranial tinnitus 

results (Chapter 4) found that delta oscillations showed widespread tinnitus-linked 

coherence throughout and beyond AC, which is consistent with EEG source 

reconstructions finding the spatial extent of delta changes in tinnitus to be similarly large 

(Tass et al., 2012). Based on the intracranial results, it was argued that the delta oscillations 

represented a driving or coordinating network that allowed synchronous communication 

between parts of the tinnitus network. As the phase lags inherent in the delta coupling were 

very short, this meant that different parts of the tinnitus network were in approximately the 

same phase of the theta cycle at any given time. Given the role of low-frequency phase in 

delineating temporal windows for processing through higher frequency oscillations, the 

effect of such widespread delta synchrony would be to synchronise sensory processing 

across a wide area of cortex. This might allow onward connections from these cortical 

areas to simultaneously stimulate their target brain areas, increasing the consequent 

depolarisation of neurons in these target areas and thus strengthening the effect on them. In 

this capacity, increased strength or coherence of delta/theta oscillations may therefore act 

to increase the impact of tinnitus-related activity on AC on global brain networks 

responsible for conscious perception, thus increasing its perceptual salience. 

 

5.4.3 Alpha oscillations 

Alpha oscillations in posterior parieto-occipital regions are the most prominent type of 

brain oscillation in the awake state, particularly during relaxation and/or rest. Less 

prominent resting-state alpha oscillations are found in AC, which are reduced during 

attention and acoustic stimulation. Alpha power findings in tinnitus are somewhat 
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inconsistent; while some studies have found reduced AC alpha power in tinnitus patients 

(Weisz et al., 2005a; Tass et al., 2012), and alpha power reductions have been associated 

with the presence of illusory percepts in normal subjects (Müller et al., 2013; Leske et al., 

2014), while other group level studies have found no alpha power changes (Adjamian et 

al., 2012) or alpha power increases in tinnitus (Moazami-Goudarzi et al., 2010). The 

intracranial tinnitus data (Chapter 4) found alpha decreases in auditory and other cortical 

regions coinciding with suppression of tinnitus. Thus a clear relationship with tinnitus is 

not apparent. Recent proposals for the role of alpha in tinnitus include signalling the status 

quo (which is the presence of sound in tinnitus patients, compared to silence in controls), 

or that in some instances it represents ‘high theta’ oscillations, rather than what is typically 

called ‘alpha’ (De Ridder et al., 2015b). In the present results, alpha power changes 

appeared to localise to inferior parietal lobe, which forms part of GPNs and appears to be 

important for tinnitus perception. It may therefore be the case that alpha power here does 

signal the status quo, i.e. the presence of a tinnitus sound, and that stronger alpha power is 

associated with an increasingly strong baseline percept of tinnitus. Thus, while overall 

tinnitus loudness may be influenced by delta/theta synchrony across AC, day to day 

variations may be due to the influence of AC tinnitus brain activity on (GPNs). 
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Chapter 6. Auditory cortex neurochemical correlates of tinnitus 

 

This experiment was performed at the Newcastle Magnetic Resonance Centre (NMRC). 

Significant assistance was provided by a postdoctoral magnetic resonance physicist at the 

NMRC, Dr Jehill Parikh. Dr Parikh implemented the MRI scanner sequences necessary for 

the acquisition of the magnetic resonance spectra (MRS), analysed the non-GABA 

neurochemical estimates, and set up the analysis tools for GABA spectrum estimation. A 

scanner patch and data processing tools were provided by Dr Richard Edden. The scans 

themselves were performed by radiographers at the NMRC. Limited patient recruitment 

was performed by Valerie Tait, a clinical audiologist at the Freeman Hospital, Newcastle 

upon Tyne. My roles were to conceive and design the study, plan and conduct screening 

and phenomenological assessments, recruit subjects, position the voxels used for MRS 

acquisition in each subject, analyse all data except the non-GABA metabolite 

concentrations, perform statistical analyses, interpret results and produce figures. This 

work has been submitted for publication. 

 

6.1 Aims 

Inhibitory neurotransmission is of considerable interest in tinnitus, as deficiency of 

inhibition could underlie or exacerbate tinnitus, and augmentation of inhibition could prove 

a viable treatment. GABA systems are of considerable interest in tinnitus, as discussed in 

Section 1.3.4, with deficient levels and action of GABA identified in the auditory pathway 

of animals with behavioural evidence of tinnitus (Brozoski et al., 2012). However, 

dramatic changes in excitatory and inhibitory neurotransmission occur as direct 

consequences of peripheral auditory insults (Gold and Bajo, 2014), so it is difficult to 

know how these findings relate specifically to tinnitus as opposed to other consequences of 

underlying auditory deafferentation. The main aim was therefore to establish whether 

GABA concentrations in AC are altered in patients with tinnitus once other factors such as 

hearing loss are controlled for. 

The role of the cholinergic system in tinnitus has received less attention, though a recent 

model links persistent overactivation of auditory attention, mediated by the BF cholinergic 

system, to the presence and/or severity of tinnitus (Roberts et al., 2013). Furthermore, both 

ACh, and the membrane phospholipid parts of the cholinergic system, are likely to be 
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linked to neuronal plasticity, which has received considerable attention in tinnitus. Thus a 

secondary aim was to establish whether total choline concentrations correlated with the 

presence or perceived loudness of tinnitus. 

Observed findings could help to identify which neurotransmitter systems might be most 

fruitfully targeted in the treatment of tinnitus, and the way in which they might best be 

targeted. 

 

6.2 Methods 

 

6.2.1 Subjects 

Fourteen subjects with entirely or predominantly unilateral tinnitus (8 left) were recruited 

through a combination of referral from a local audiology clinic and advertisement on local 

research mailing lists and in the magazine of the British Tinnitus Association, ‘Quiet’. 

Inclusion criteria were chronic subjective tinnitus that was at least predominantly 

lateralised to one ear and had been present for at least 6 months, and age 18 years or over. 

Exclusion criteria included contraindications to MRI, a neurological disorder other than 

tinnitus, the use of sedating medications, benzodiazepines, antiepileptic drugs or tricyclic 

antidepressants. Subjects were recruited in such a way that half of the group had hearing 

loss, defined as mean threshold between 0.25 and 8  kHz > 20 dB, more than two 

frequencies in a single ear having thresholds > 20 dB, or any single frequency having a 

threshold of > 30 dB. The groups were not formally stratified for hearing loss, but the 

intention was to obtain a good range of levels of hearing loss, and to include subjects with 

normal hearing. Once each tinnitus subject had been studied, a control subject was sought 

who matched for sex, age and pattern/degree of hearing loss. Control subjects without 

hearing loss were recruited through a local mailing list for volunteers interested in research 

studies. Control subjects with hearing loss were also recruited through this mailing list, and 

through word of mouth via existing participants, but by specifically requesting individuals 

with formally documented mild to moderate hearing loss, or who believed that they had 

hearing loss. These individuals then attended a pre-screening session, which included a 

pure-tone audiogram as detailed in section 5.2.2. Screened controls who were the closest 

matches specific tinnitus subjects were then invited to take part in the full study. 

 

6.2.2 Phenomenological assessment 
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Subjects who had not already had pure tone audiometry had this performed, as described in 

Section 5.2.2. Tinnitus spectra were also measured as described in Section 5.2.2, with the 

exception that frequencies 0.25 to 8 kHz in octave steps, with the addition of 6 kHz, 

comprised the spectra. All subjects completed the following questionnaires: the HQ 

(Khalfa et al., 2002), HADS, PHQ-15. Tinnitus subjects also completed the THI (Newman 

et al., 1996), and gave VAS ratings of their tinnitus loudness and associated distress. For 

each VAS rating, subjects gave four responses: 1) the rating applicable to an average or 

typical day; 2/3) the lowest and highest ratings applicable at any point over the past 3 

months; 4) the rating applicable at the time of the experiment. The ‘average/typical’ rating 

is referred to as the ‘overall’ loudness of distress. The rating applicable to the time of the 

experiment was converted into a ‘current’ loudness or distress rating, ranging from 0 to 10. 

This was done by interpolation, such that the lowest 3-month rating corresponded to 0, the 

average rating to 5, and the highest 3-month rating to 10. The rationale for distinguishing 

overall from current loudness and distress was to be able to make a distinction between 

static and dynamic tinnitus correlates (if one exists), which might help make a ‘state-trait’ 

distinction. 

 

6.2.3 Magnetic resonance spectroscopy (MRS) acquisition 

Data were acquired using a Philips Achieva 3 Tesla (3T) whole body MRI scanner, using 

an 8-channel head coil. To limit the potential influence of diurnal variation in metabolite 

concentrations, scans were all performed in the first half of the morning. As scanner 

heating and cooling, leading to frequency drifts, can affect spectroscopic measurements, no 

scans were performed after any sequences that lead to increased heating of the scanner 

magnets. First, a structural T1-weighted brain image was acquired. Subjects listened to 

music or radio of their choice before, during and after this scan, but this was stopped prior 

to the MRS sequences, in case current auditory environment had any impact on AC 

metabolite concentrations. MR spectra were acquired from left (LAC) and right (RAC) 

AC, in random order. The acquisition volumes were configured, through pilot experiments, 

so as to yield robust spectra while limiting the amount of non-auditory brain tissue 

sampled. These measured 45 (anterior-posterior), by 32 (right-left) by 20 (inferior-

superior) mm. Volumes were positioned by first adjusting the pitch (rotation in the saggital 

plane) until they were parallel with the Sylvian fissure. Next they were positioned with 

their upper edge aligned with the Sylvian fissure, but with as little sampling of parietal 
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cortex as possible while still encompassing the superior temporal plane. In the axial plane, 

the centre of the volume was aligned with Heschl’s sulcus (or the most anterior Heschl’s 

sulcus if HG was duplicated), and moved as far anterolaterally as could be achieved with 

all of the volume remaining within the boundaries of the cortical convexity. This volume 

included A1, almost all of HG, much of the STG, planum temporale, superior temporal 

sulcus, planum polare, and some parts of MTG and insula. See Figure 12A for an example 

of RAC volume placement in one example subject. 

 

 

Figure 12: Volume placement and associated GABA spectrum from one 
representative subject 
A: Coronal (left), axial (middle) and saggital (right) sections from the subject’s T1 
weighted MRI scan. The MRS volume is superimposed in white. The brain image is 
displayed in neurological convention (i.e. left on the left). B: GABA spectrum, obtained by 
contrasting averaged edited and non-edited spectral acquisitions from the volume 
illustrated in A. Note the artefact at 2 PPM due to the editing pulse. C: Zoomed view of 
part of B including the GABA peak at 3 PPM (solid), and the optimal Gaussian fit to that 
peak (dashed). The Gaussian fits to the 3 PPM peaks formed the basis of GABA 
quantification. 
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Once the volumes of interest had been specified, these were used for the acquisition of 

magnetic resonance (MR) spectra. Similarly to the basis for MRI, when hydrogen nuclei 

(protons) are exposed to a strong magnetic field they align to the direction of the field. The 

addition of an appropriate radiofrequency pulse causes the protons to be displaced from 

this alignment, and then to oscillate as they return to an aligned state. The frequency of 

oscillation of a given proton depends on its immediate chemical environment (i.e. the 

molecule in which it exists), and thus each molecule exhibits a characteristic frequency 

profile (i.e. spectrum). The resulting spectra can then be decomposed into the contributions 

of major metabolites, based on their known spectral shapes and frequencies. 

GABA has three peaks in its MR spectrum (close to 2, 3 and 4 parts per million [PPM] on 

the scanner presently used). All of these peaks coincide with the far larger peaks of more 

abundant metabolites, for instance N-acetylaspartate (NAA) at 2 PPM. Therefore 

quantifying GABA directly is not feasible. Several techniques exist for measuring GABA 

spectra, and the approach used here is known as Mescher-Garwood proton resolved 

spectroscopy (MEGA-PRESS) (Mescher et al., 1998). In this technique, each spectral 

acquisition is paired with a radiofrequency pulse coinciding with the frequency of the 

GABA peak that coincides with the NAA peak (1.9 PPM here). This is known as an 

‘editing’ pulse, and acts to remove the contribution of molecules at that frequency from the 

MR spectrum. Though the pulse is applied at the frequency of just one of the GABA peaks, 

it disrupts all three of them. Thus, subtraction of edited from non-edited spectra isolates the 

contribution of GABA, and allows it to be quantified. Is bears mention that GABA is not 

strictly the only metabolite quantified with this method, but there are also macromolecules 

with similar resonance properties which are also quantified. Thus the measurement made is 

more correctly termed ‘GABA+’ to reflect this contribution. While techniques exist to 

suppress macromolecules, they incur a significant loss of SNR, and are therefore not 

usually used (Edden et al., 2012). In the present experiment, the specific acquisition 

parameters were as follows: TR 2000ms; TE 68ms; 320 averages; acquisition bandwidth 

1000Hz; scan duration 11 mins; sinc Gaussian editing pulse applied at 1.9 ppm (during 

EDIT-ON scans) and 7.5ppm (during EDIT-OFF scans); voxel size 45 (AP) x 32 (RL) x 20 

(FH) mm for both LAC and RAC; VAPOR water suppression (Tkác et al., 1999). Non-

water-suppressed spectra were also obtained from each AC (PRESS, TE=68ms, TR: 

2000ms, 10 averages). Prior T1-weighted structural scans (3D MPRAGE, sagittal 

acquisition aligned with the AC-PC line, 1 mm isotropic resolution, matrix 240 x 240 x 
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180, TR = 9.6 ms, TE = 4.6 ms, flip angle = 8o, SENSE factor 2) were acquired to aid 

positioning of the MRS voxels. 

 

6.2.4 Metabolite concentration estimation 

GABA spectra were quantified using the Gannet toolbox for Matlab (Edden et al., 2014). 

The steps involved included correction of drift in creatine frequency (used as a reference 

point) across acquisitions, identifying and rejecting bad acquisitions, subtracting edited 

from non-edited spectra, averaging these subtractions, and fitting a Gaussian function in 

order to quantify the GABA peak at 3 PPM. Figure 12B/C shows an example GABA 

spectrum (subtraction of edited from non-edited spectra), and a zoomed view of the 3 PPM 

GABA peak along with the optimal Gaussian fit. These analysis steps were performed 

while the subject was still in the scanner, so that the scan could be repeated if, for any 

reason, a poor quality spectrum was obtained. Offline, further processing was performed as 

follows. Each subject’s T1 weighted structural image was segmented into GM, WM and 

CSF using the SPM12 toolbox for Matlab. The proportions of each of these tissue types 

within the volumes of interest (tissue fractions) were then calculated. GABA 

measurements were converted to concentrations (in mM), based on a previously published 

correction equation incorporating the GABA measurement, water concentration and tissue 

fractions (Gao et al., 2015). Creatine, Choline and NAA spectra were quantified using the 

AMRES fitting algorithm in jMRUI software. Similarly to with GABA, these were 

converted into tissue concentrations. 

 

6.2.5 Statistical analysis 

Non-parametric statistics were used, namely the Friedman test for main effects of group, 

Wilcoxon rank sum tests for post-hoc group differences in individual hemispheres, and 

Spearman rank correlation coefficients for correlations. GABA and choline were treated as 

primary outcome measures, and therefore not subjected to multiple comparison penalties. 

Creatine and NAA measurements were treated as exploratory, and thus subjected to 

Bonferroni correction. Metabolite concentrations were compared between tinnitus and 

control groups, and regressed against key tinnitus measures of interest, and hearing loss. 

 

6.3 Results 
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6.3.1 Subject characteristics 

Fourteen tinnitus patients and an equal number of matched controls were studied. No 

significant differences were present between groups in terms of age, hearing loss in either 

ear or hyperacusis. There was one extra female subject in the control group compared to 

the tinnitus group. Mean tinnitus duration was 9.4 years (range 2 to 29). Eight of the 

tinnitus patients had left-ear-predominant tinnitus compared to 6 right-ear. Table 2 

summarises the group characteristics, and Figure 13A the group hearing thresholds. 

 

Control Tinnitus Difference (p) 

Group size (n) 14 14  

Age (years) 55.7 (10.6) 53.7 (15.1) 0.87 

Sex (n female) 7/14 6/14  

Mean HL L (dB) 19.4 (14.4) 18.8 (15.3) 0.91 

Mean HL R (dB) 17.4 (11.5) 18.0 (20.2) 0.58 

Hyperacusis (HQ) 11.6 (5.7) 13.6 (6.4) 0.30 

T duration (years)  9.4 (7.6)  

Laterality (n left)  8/14  

THI  26.7 (13.2)  

Overall loudness  3.9 (1.8)  

Current loudness  4.3 (2.3)  

Overall distress  3.1 (1.6)  

Current distress  3.9 (2.2)  

Table 2: Subject characteristics of tinnitus and control groups. 
Non-bracketed and bracketed numbers indicate mean and SD respectively. p = p value 
between tinnitus and control groups, based on Wilcoxon rank sum statistic. HQ = 
Hyperacusis Questionnaire score. THI = Tinnitus Handicap Inventory. 
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Figure 13: Group audiometric assessments, and correlations between tinnitus 
variables 
A: Mean pure tone hearing thresholds of tinnitus and control groups. Error bars represent 
standard error of the mean. Below the left ear plot is the individual (grey) and group mean 
(black) tinnitus spectra from the tinnitus group. Error bars indicate standard error of the 
mean. The values 0 and 1 represent the lowest and highest (respectively) tinnitus likeness 
ratings given by each subject. The spectrum is omitted from one subject, who gave a 0/10 
rating for all pure tones. B: Positive non-parametric correlations between hearing and 
tinnitus measures within tinnitus group. Significant (p < 0.05 uncorrected) correlations are 
denoted by asterisks. No negative correlations close to significance were observed, hence 
only positive correlations are shown. MHL = mean hearing loss (dB; across all frequencies 
shown in A). Dur = tinnitus duration (years). THI = Tinnitus Handicap Inventory. HQ = 
Hyperacusis Questionnaire. OvLoud = ‘overall’ VAS loudness. CurLoud = ‘current’ VAS 
loudness. ‘OvDist’ = ‘overall’ VAS tinnitus distress. ‘CurDist’ = ‘current’ VAS tinnitus 
distress. VAS = visual analogue scale. 
 

There were significant positive correlations between certain tinnitus measures, as 

illustrated in Figure 13B. Most notably, THI score correlated with hearing loss and 
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hyperacusis, and VAS overall tinnitus distress score correlated positively with HQ, THI 

and VAS overall tinnitus loudness scores. Based on these correlations, and the prior 

relative interest in certain measures above others, hyperacusis and overall VAS distress 

were eliminated from further analysis. 

 

6.3.2 Tissue fractions (structural brain changes) 

There were no (uncorrected) significant differences in any of the tissue fractions (GM, 

WM or CSF), in either hemisphere, between tinnitus patients and controls (Figure 14A). 

However, within the subject group as a whole, GM fraction correlated negatively with both 

age (LAC: rho = -0.57, p = 0.0016; RAC: rho = -0.48, p = 0.009) and hearing loss (LAC: 

rho = -0.59, p = 0.001; RAC: rho = -0.49, p = 0.0078), and CSF fraction correlated 

positively with age (LAC: rho = 0.52, p = 0.0047; RAC: rho = 0.56, p = 0.0019) and 

hearing loss (LAC: rho = 0.25, p = 0.20; RAC: rho = 0.40, p = 0.033). These results are 

shown in Figure 14B. 

 

 

Figure 14: Auditory cortex tissue fractions related to tinnitus and other factors. 
A: Grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) fractions from left 
(LAC) and right (RAC) auditory cortex voxels used for spectroscopy, in tinnitus and 
control subjects. No significant differences were present. Boxes indicate interquartile 
range, with horizontal line at the median, whiskers indicate full range, barring outliers 
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which are indicated with ’+’ signs.  B: Non-parametric correlations between tissue 
fractions, and age (left) and mean hearing loss (right). * = p < 0.05. ** = p < 0.01. 
 

6.3.3 GABA spectroscopy 

Compared to controls, the tinnitus group showed GABA decreases in LAC (median 0.99 

vs. 1.08 mM/L) and RAC (median 1.12 vs. 1.28 mM/L). Friedman’s test showed a 

significant main effect of subject group (p = 0.015), and Wilcoxon rank sum tests found 

the difference to be significant in RAC (p = 0.018) but not LAC (p = 0.30). These results 

are shown in Table 3 and Figure 15. There was no significant difference in RAC GABA 

concentration between the left and right ear tinnitus patients (p = 0.85). GABA 

concentrations showed no significant correlation with age, sex, hearing loss, hyperacusis, 

or any of the tinnitus severity measures. 

 

 

Figure 15: Auditory cortex GABA concentrations in tinnitus and control groups. 
AC = auditory cortex. Boxes indicate interquartile range, with horizontal line at the 
median, whiskers indicate full range, barring outliers which are indicated with ’+’ signs. 
GABA was significantly reduced (p < 0.05) as a main effect of subject group (tinnitus vs. 
control) and in RAC. Results displayed here are also tabulated in Table 3. 
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 Left AC Right AC  

Control 

(mM/L) 

Tinnitus 

(mM/L) 

p =  Control 

(mM/L) 

Tinnitus 

(mM/L) 

p = Combined 

p = 

GABA 1.08 

(0.24) 

0.99 

(0.13) 
0.30 

1.28 

(0.12) 

1.12 

(0.10) 
0.018 0.015 

Choline 2.72 

(0.60) 

2.60 

(0.38) 
 

3.43 

(0.82) 

3.23 

(0.71) 
 0.15 

NAA 13.5 

(2.17) 

13.7 

(1.64) 
 

15.2 

(2.22) 

15.3 

(1.47) 
 0.67 

Creatine 8.03 

(2.36) 

7.76 

(1.48) 
 

9.75 

(2.13) 

9.61 

(4.22) 
 0.21 

Table 3: Metabolite concentrations for tinnitus and control groups. 
Where applicable, non-bracketed and bracketed numbers correspond to median and 
interquartile range respectively. Combined p values are uncorrected (though GABA 
represents a primary hypothesis), and are based on Friedman’s test, treating hemisphere as 
a blocking variable. Where these are significant, p values are shown for left and right AC, 
which are based on Wilcoxon rank sum tests. Significant group differences are shown in 
bold. 
 

6.3.4 Choline spectroscopy 

Choline concentration was not significantly different between tinnitus and control groups 

(see Table 3). RAC choline correlated with overall VAS tinnitus loudness (rho = 0.050, p = 

0.069 uncorrected), THI score (rho = 0.73, p = 0.034 corrected for all choline comparisons 

made), hearing loss in the subject group as a whole (rho = 0.62, p = 0.0055 corrected), 

hearing loss in the tinnitus group (rho = 0.81, p = 0.0078 corrected), and hearing loss in the 

control group (rho = 0.41, p = 0.14 uncorrected). These correlations are illustrated in 

Figure 16. As choline is present in higher concentrations in WM than GM (Rae, 2014), and 

tissue composition correlated with age and hearing loss, significant correlation analyses 

were repeated after partialling out age, hearing loss and all tissue fractions from both RAC 

choline concentration and the subject variable of interest.  It should be borne in mind that 

such extensive partialisation removes a lot of variance from the data, therefore the same 

strength of correlation cannot be expected. Nonetheless, these partial analyses showed that 

the correlation between hearing loss and choline in the whole subject group remained 
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significant (rho = 0.39, p = 0.040 uncorrected) and the majority of the correlation between 

choline and THI score remained (rho = 0.41, p = 0.15 uncorrected). 

 

 

Figure 16: Correlations between choline concentration and subject variables 
A:  Relationship between mean hearing loss and right auditory cortex (RAC) choline 
concentration in control (grey) and tinnitus (black) groups. Dots denote individual subjects, 
and lines represent least squares best linear fits. B: Spearman’s rank correlation 
coefficients (rho) between choline and subjective tinnitus variables in bilateral auditory 
cortices, within the tinnitus group. THI = Tinnitus Handicap Inventory. OvLoud = VAS 
overall tinnitus loudness. CurLoud = VAS current tinnitus loudness. CurDist = VAS 
current tinnitus distress. VAS = visual analogue scale. ** = p < 0.01 uncorrected. 
 

6.3.5 NAA and creatine spectroscopy 

There were no group level differences between tinnitus and control groups for NAA or 

creatine, in either AC, even before Bonferroni correction. Choline and NAA both reflect 

neuronal density (Miller et al., 1996), therefore testing was performed to see whether 

similar correlations existed with hearing loss and THI scores with NAA, as there were for 

choline, which might indicate a structural basis to observed changes. NAA did not 

correlate significantly with either mean hearing loss (p = 0.95 uncorrected) or THI score (p 

= 0.76 uncorrected). 

 

6.4 Discussion 

This study featured a group of tinnitus patients and controls matched for age, sex, hearing 

loss and hyperacusis, thus observed differences can reasonably be inferred to relate to 

tinnitus as opposed to any of these confounding factors. As macromolecule suppression 

was not performed, for reasons of preserving SNR and allowing greater robustness to 

subject motion, all GABA results should be considered as indicating ‘GABA+’ (i.e. GABA 
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plus macromolecules). MRS measurements were made from a large voxel spanning almost 

all of AC, encompassing primary and association areas, and including some areas of 

surrounding non-auditory cortex. Such a large sampling area has the advantage of 

providing a robust GABA measurement, and is likely to be appropriate in tinnitus, where 

ongoing abnormal neurophysiological signals have been found to occur across a 

correspondingly large anatomical area as opposed to just circumscribed parts of AC 

(Chapter 4). However, the exact size and position of the voxel used could influence the 

sensitivity for detecting changes in other factors that might correlate with neurotransmitter 

concentrations in more localised parts of AC. Such a voxel size and placement issue might 

explain a relationship was not observed between GABA concentration and hearing loss, as 

was recently reported in association with age-related hearing loss (Gao et al., 2015). 

However, the present study had other methodological differences to this one, including 

studying undifferentiated hearing loss as opposed to specifically the age-related type. For 

all significant results, there were qualitatively similar findings in LAC as in RAC, but the 

findings were much stronger, and only significant in, RAC. The 20% loss of signal 

observed in LAC can be potentially explained by spatial effects influencing GABA MRS 

measurements (Edden and Barker, 2007). Specifically, there are small deviations between 

specified voxel position and ‘actual’ voxel volume from which measurements are made, 

and it is likely that asymmetry in these deviations resulted in diminished signal from LAC. 

Thus, it is possible that in reality the observed neurochemical correlates of tinnitus are 

bilateral. However, direct evidence must be obtained before any conclusion can be made 

that this is the case. While there was a slight excess of left ear-predominant tinnitus 

subjects (8 vs. 6), there were no significant differences between left and right ear tinnitus 

even after markedly relaxing statistical thresholds, making tinnitus laterality a very 

unlikely explanation for hemispheric differences. 

 

6.4.1 GABA in tinnitus 

This study demonstrates, for the first time, an AC GABA deficit in human tinnitus 

subjects. Given the tight matching of the control group for age and hearing loss, this deficit 

can be specifically attributed to tinnitus itself. Presently the implications of this finding for 

understanding tinnitus pathophysiology as a whole are uncertain, though in light of 

findings in animal tinnitus models (Middleton et al., 2011; Llano et al., 2012) it is likely 

that this GABA deficiency is responsible for excessive magnitude and lateral spread of 
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cortical responses to thalamic stimulation. Therefore, GABA deficiency may underlie 

excessive sound-evoked (Gu et al., 2010) activity that has previously been observed in 

tinnitus in humans, even after matching for hearing loss and hyperacusis, and excessive 

amplification or synchrony of SA that is believed to contribute to tinnitus. It is possible 

that GABA deficiency is a primary cause of tinnitus that, in conjunction with hearing loss, 

removes the necessary inhibition to prevent SA in the auditory system from being 

perceived as tinnitus. It is also plausible that it is the direct consequence of chronic 

stimulation (by tinnitus or its precursors originating subcortically) of the auditory cortex, 

but there is a lack of evidence about the effect of chronic sensory stimulation on cortical 

GABA concentration that could address this possibility. It is also uncertain whether this 

GABA deficit is a cause or consequence of tinnitus. While there was not a relationship 

between tinnitus duration and GABA concentration, which would have favoured the 

GABA deficit being a consequence of tinnitus, this question remains open. Regardless of 

the exact origin and role of cortical GABA in tinnitus, it seems probable that it is a 

significant positive force in its pathogenesis, as reduced GABA concentration most likely 

indicates reduced GABA-ergic inhibition and therefore a relative excess of excitation in 

the auditory system. While there is still the need for understanding other aspects of GABA 

systems in tinnitus such as receptor density, which presently only has limited evidence in 

humans, from a study lacking clear controls (Shulman et al., 2000), the current evidence 

suggests that drugs acting to increase GABA concentrations could be an effective way of 

modulating GABA-ergic inhibition in tinnitus. As well as replicating the present findings, 

future studies of GABA systems in humans might involve combining GABA 

measurements using MRS with GABA receptor measurements using positron emission 

tomography (PET). In animals, a number of additional measures, such as GAD expression 

and GABA receptor behaviour, might also be simultaneously measured. Studies might also 

examine acute, as well as chronic, tinnitus to establish the temporal order of tinnitus 

phenomenology and GABA changes, and also the effect of chronic physiological auditory 

stimulation on GABA systems. 

 

6.4.2 Choline in tinnitus 

These results indicate that auditory cortex choline concentration correlates positively with 

both tinnitus severity (in terms of distress, and possibly loudness also) and hearing loss 

(particularly in the tinnitus group). Choline is strongly influenced by neuronal density 
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(Miller et al., 1996), and GM loss (hence increased WM to GM ratio) was found to 

increase with hearing loss, as previously reported (Husain et al., 2011). However, given the 

relative persistence of observed findings after statistically adjusting for the influence of 

GM and WM tissue fractions, it seems probable that choline relates directly to hearing loss 

and tinnitus. As choline measured by MRS reflects increased neuronal membrane turnover 

(Rae, 2014), which may relate to plasticity (Gutiérrez-Fernández et al., 2012), and (though 

ACh barely contributes to the choline signal) correlates strongly with local concentration 

of ACh (Wang et al., 2008), it cannot presently be determined which of these factors is 

perturbed as a function of hearing loss and tinnitus severity. Further work to directly 

measure neuronal plasticity and ACh is required to understand the relationship between 

choline and tinnitus. 

 

6.4.3 Conclusions 

In summary, this study has specifically related the presence and severity of tinnitus, after 

eliminating confounding factors, to non-invasively measured metabolite concentrations in 

AC. The finding of a GABA deficit in tinnitus patients is beyond a homeostatic response to 

hearing loss, and underscores the importance of GABA systems in the pathophysiology of 

tinnitus and may help to direct future treatments. The correlation of choline with tinnitus 

severity is a novel and exciting finding, which requires further study. 
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Chapter 7. EEG auditory steady state responses (ASSRs) in tinnitus 

 

This study was performed on the same subjects who participated in the MRS experiment 

(Chapter 6), barring two who did not complete this stage of the experiments. Aside from 

the limited assistance with recruitment mentioned previously, all aspects of this experiment 

were performed by me. 

 

7.1 Aims 

This study aimed to quantify 40 Hz ASSRs, recorded with EEG, in tinnitus and matched 

control patients, in order to try and gain insight into abnormal auditory gain and inhibition 

mechanisms associated with tinnitus, particularly ones that might relate to AC 

neurochemical measurements. However, the relationship between the presence of tinnitus 

and ASSR amplitudes, at any frequency, is not consistent in the literature (as discussed 

previously), with studies variably finding decreases, no change, or increases associated 

with tinnitus. A number of methodological differences might have been responsible for the 

inconsistent findings, including matching of control subjects for hearing loss, loudness of 

AM tones used, method of determining AM tone loudness, and the presence of 

hyperacusis. With regard to loudness, different results are likely to be obtained by using a 

fixed sound pressure level (SPL; which would lead to smaller responses with increasing 

hearing loss), a fixed sensation level (SL, = SPL – hearing threshold; which would lead to 

increased responses with hearing loss, due to loudness recruitment), and psychophysical 

matching to a normal-hearing frequency (which would be influenced inversely to the 

degree of hyperacusis). A single study found that in control subjects presentation of 

multiple carrier tones with slightly different modulation frequencies reduced the amplitude 

of the ASSRs compared to individual modulated tones, whereas in tinnitus subjects the 

same condition led to increased ASSR amplitudes (Diesch et al., 2010) in the ‘edge’ tones, 

and less suppression of the ‘central’ tone. These findings were interpreted as evidence of 

reduced lateral/surround inhibition in tinnitus, and/or with increased lateral/surround 

summation. The present experiment aimed to address three questions: 

1) How ASSR magnitudes vary between tinnitus and control subjects, once hearing 

loss, hyperacusis and loudness recruitment are controlled for. 
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2) Establish whether the finding of reduced ASSR inhibition during multiple AM tone 

presentations could be replicated and generalised. 

3) Whether the magnitude of ASSRs, or the extent of lateral/surround inhibition 

would correlate with AC GABA or choline concentration. 

 

7.2 Methods 

 

7.2.1 Subjects 

The subjects, and recruitment procedure, have been described in Section 6.2.1. 

 

7.2.2 Phenomenological assessment 

Phenomenological assessment procedures have been described in Section 6.2.2. 

 

7.2.3 EEG data acquisition 

Subjects’ heads were individually measured, and markings were made at 21 electrode sites 

from the 10-20 system. At each location, the scalp was gently cleaned and abraded, and an 

AgCl electrode was attached with electroconductive paste. These were attached to a 

Neuroscan SynAmps 64 channel amplifier (Neuroscan, Compumedics Ltd., Abbotsford, 

Victoria, Australia), operated with standard Neuroscan Acquire software. Cz was used as a 

reference, and impedances were kept under 5 kΩ. Recordings were made with participants 

seated comfortably in a dimply-lit sound-proof chamber. To maintain alertness, subjects 

watched a cartoon film without the sound, and were instructed to remain awake, with their 

eyes open, and to maintain a state of physical muscle relaxation. Subject wakefulness was 

monitored via live EEG data and a video feed. Stimuli were pure tones of 12 s duration, 

with carrier frequencies of 1 or 4 kHz (below and generally within the tinnitus spectrum, 

respectively), and a sinusoidal amplitude modulation (AM) of 40 Hz with 100% 

modulation depth. For each carrier frequency, two conditions were included: one with just 

the individual AM tone, and another with two additional AM tones present. The additional 

AM tones had carrier frequencies one octave above and below the carrier frequency of the 

main tone, and modulation rates of 38 and 42 Hz respectively. The spacing of one octave 

was chosen because it has been shown to result in inhibition of 40 Hz ASSRs - generated 

at the level of A1 - but not of ASSRs with higher modulation rates – generated 

subcortically (John et al., 1998). Thus, it was anticipated that this stimulus configuration 



106 

 

would specifically address lateral/surround inhibition within A1. Thus four stimulus 

conditions were tested: 1 kHz and 4 kHz carriers, each in isolation and with additional AM 

tones. Each stimulus was 12 s long, and a total of 50 repetitions of each stimulus were 

presented in random order. Each AM tone was scaled to a loudness of 60 ‘phon’ in each 

ear (i.e. the perceptual loudness experienced by a subject with pure tone thresholds of zero 

in response to a stimulus presentation at 60 dB SPL), using the following dB to phon 

conversion method, using an algorithm to predict loudness recruitment based on the 

subject’s audiogram (Moore and Glasberg, 2004). Estimation of loudness recruitment was 

performed using a freely available application developed by the authors of this study, 

which takes account of the stimulus power spectrum and the subject’s audiogram. To try 

and avoid subjects with cochlear dead regions, which can influence loudness recruitment 

estimation, only subjects with mild to moderate (or no) hearing loss were included. As the 

loudness recruitment estimation algorithm does not have an easily-implementable inverse, 

the correction was performed by an iterative cycle of estimated loudness recruitment for a 

particular stimulus, then adjusting the stimulus loudness, until the output loudness matched 

the desired loudness. Simuli were presented diotically, with a fixed inter-stimulus interval 

of 1 s. Sound delivery was through Sennheiser HD 380 pro headphones, and prior 

calibration was performed using a Bruel and Kjaer artificial ear type 4153, with pressure 

field microphone type 4192, and sound level meter type 4231 to ensure delivery at the 

appropriate sound pressure level. Mean SPLs (dB), to achieve these 60 phon estimated 

loudnesses, for the 1 kHz stimuli were 64.4 (left) and 63.3 (right), and ranges were 56.9-

79.6 (left) and 60.0-74.2 (right). Mean SPLs for the 4 kHz stimuli were 73.5 (left) and 71.4 

(right), with ranges 57.8-97.8 (left) and 59.1-101.8 (right). Stimulus sensation levels (SLs; 

defined as SPL minus hearing threshold) for the 1 kHz stimuli were mean 50.3 and 53.6 

(left and right ears respectively), and for the 4 kHz stimuli were mean 50.1 in both ears. 

 

7.2.4 EEG data processing 

EEG data were rearranged into epochs of 1 s duration, with the middle 10 epochs used for 

each stimulus and the first/last epochs discarded. Epochs were manually inspected for 

muscle or other artefacts, and artefact-containing epochs discarded. Eye movements and 

blinks were allowed to remain, as these were removed subsequently using ICA, which was 

performed after rejection of bad epochs, and was performed using the FieldTrip toolbox for 

Matlab. Components containing significant line noise, ocular or cardiac artefact were 
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removed from the data. Epochs were then averaged within each stimulus condition, and 

Fourier transformed. Analysis was performed in sensor space, as accurate co-registration 

with individual subjects’ MRI scans was not possible. To determine the electrode pair with 

the highest SNR, contrasts of Fourier transformed data were performed between every 

possible combination of electrodes. For each pair, the absolute value of the spectrum was 

taken. ‘Signal’ was quantified as the value at 40 Hz, and ‘noise’ the average value between 

30 and 50 Hz, excluding 38, 40 and 42 Hz. In nearly all individual subjects, and in the 

group as a whole, the channel pair Cz/Oz gave the highest SNR, and was therefore used as 

the basis for further analysis. Although the use of this pair did not allow distinction of the 

ASSRs in the left and right hemispheres, it was judged that the increased SNR was more 

important than this distinction, which was not necessary for addressing the aims of the 

study. For each condition in each subject, the ‘signal’ value in the channel pair Cz/Oz was 

used as the basis for statistical analysis. The analysis just described provides a frequency 

resolution of 1 Hz. For the purpose of displaying ASSR spectra, 1 s epochs were 

concatenated into blocks of 25 s prior to Fourier transformation, thus producing a 0.04 Hz 

frequency resolution. An example of one subject’s ASSR spectra for the four conditions is 

shown in Figure 17A/B. 

 

7.2.5 Statistical analysis 

ASSR amplitudes for each stimulus condition were compared between tinnitus and control 

groups using a Student’s T test. As there was a prior hypothesis that 4 kHz ASSRs would 

differ between groups, no penalty for multiple comparisons was made here. Other 

comparisons were subject to Bonferroni correction. The same applied to the 4 kHz 

response as part of the multiple AM tone presentation condition. Pearson product moment 

correlation coefficients were also calculated between ASSR amplitudes and metabolite 

concentrations as measured in Chapter 6.  
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Figure 17: EEG auditory steady state responses (ASSRs) to amplitude modulated 
(AM) pure tones presented at 60 phon 
A and B: ASSR frequency spectra, from one tinnitus subject, to 1 and 4 kHz carrier tones 
(respectively), with (solid) and without (dashed) the addition of additional AM tones with 
carrier frequencies one octave above and below, and modulation rates 2 Hz above and 
below. C: Group ASSR amplitudes for the 40 Hz AM tone in the four stimulus conditions, 
expressed as mean and standard error, for the control (grey) and tinnitus (white) groups. 
‘Single’ = AM tone presented in isolation. ‘Multi’ = AM tone presented with additional 
AM tones. 
 

7.3 Results 

Figure 17C summarises the group level results for the four stimulus conditions. Tinnitus 

subjects showed significantly higher amplitude ASSRs to 4 kHz tones presented in 

isolation (p = 0.035), but not to 1 kHz tones. The addition of octave-separated AM tones 

reduced the amplitude of ASSRs to both 1 kHz and 4 kHz carriers, in both tinnitus and 

control subjects. No differences between subject groups were found in the amplitude of 

ASSRs in the conditions where additional AM tones were present, but notably the 

amplitude reduction in the multiple presentation mode was so great that responses were 

close to the noise floor, and therefore may not have been reliably quantified. There were no 

significant correlations between ASSR amplitudes in any stimulus condition and cortical 

concentrations of GABA or choline, even before Bonferroni correction. 

 

7.4 Discussion 
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The finding that 40 Hz ASSR amplitudes to AM tones in the tinnitus spectrum (here 4 

kHz) needs to be interpreted in the context of a disparate literature. While increased ASSR 

magnitudes have been reported in tinnitus patients compared to non-hearing matched 

controls (Wienbruch et al., 2006), in tinnitus compared to non-tinnitus frequencies (Diesch 

et al., 2004), and to correlate with tinnitus-related distress (Diesch et al., 2004), other 

studies have found no differences between tinnitus patients and controls (Paul et al., 2014), 

and decreased amplitudes at the tinnitus frequency (Roberts et al., 2015). As discussed in 

Section 7.1, methodological differences, particularly differences in hearing loss, 

hyperacusis and the method of loudness matching, may have played a part in these 

differences. The present finding of increased ASSR magnitudes at the tinnitus frequency 

was derived from a study involving tight matching for age and hearing loss, no differences 

in hyperacusis (as quantified by HQ score), and the novel use (in this context) of a 

loudness recruitment prediction algorithm to set loudness levels. The downside to the use 

of this algorithm is that is cannot be validated in a patient group, as there is no gold 

standard. However, the lack of a gold standard is part and parcel of the flaws inherent in 

other methods, as discussed earlier, and a non-subjective method equally applicable across 

all subjects has the advantage of not being confounded by any hyperacusis over and above 

‘adaptive’ loudness recruitment, which has been demonstrated in tinnitus patients (Hébert 

et al., 2013). Though the present study may offer some methodological improvements over 

previous ones, it is just one study using a small group. Therefore its findings must be 

interpreted with due caution. That said, the finding of increased ASSR amplification is 

consistent with increased sound response magnitudes present subcortically in ABRs 

(Schaette and McAlpine, 2011; Gu et al., 2012), and cortically in fMRI responses (Gu et 

al., 2010), whereas reduced ASSR magnitudes would have been somewhat paradoxical.  

 

In general, ASSR amplitudes are known to increase with attention, and it has recently been 

found that this effect is absent in tinnitus patients for tones in the tinnitus frequency range 

(Paul et al., 2014). In the present experiment, attention should not have differed between 

stimulus conditions, meaning a different explanation must be sought. The abolition of the 

tinnitus-related increase in ASSR amplitude by the addition of competing AM tones 

suggests that lateral interactions in the auditory pathway may be responsible for the 

tinnitus-related increase in amplitude, because modification of lateral interactions (via 

competing stimuli) appears to remove the effect, however due to the poor SNR of 
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responses in the presence of competing AM tones this assertion cannot be made 

confidently. Evidence of increased lateral spread of cortical responses to thalamic 

stimulation have been found in an animal model of tinnitus (Llano et al., 2012), which 

appeared to be related to GABA-ergic deficiency. A similar increase in lateral spread of 

ASSRs in tinnitus patients would entrain a larger area of cortex into the 40 Hz rhythm, and 

therefore increase the magnitude of the response. Addition of additional AM tones at 

nearby frequencies would be expected to prevent this additional spread by competing for 

the same areas of cortex. While this is a different explanation for the ASSR increase in 

tinnitus to enhancement by tonotopically-specific attention, the two explanations might not 

be mutually exclusive; increased attention may operate by increasing the gain of excitatory 

neurons and broadening receptive fields, hence increasing the lateral extent of AC 

responding to a particular AM tone. Also, if GABA-ergic deficiency were responsible for 

increased ASSR amplitudes, one might have expected to see a correlation between ASSRs 

and cortical GABA concentrations, which were not observed. However, this might have 

been due to relatively small subject numbers, low SNR of GABA measurements, or due to 

the influence of other parts of GABA systems besides total GABA concentration. 
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Chapter 8. Explicit neural codes of sensory inference in pitch perception 

 

The recordings for this study took place in the Human Brain Research Laboratory in the 

University of Iowa, and were performed in epileptic patients undergoing invasive electrode 

monitoring for seizure localisation. I had no role in subject recruitment or electrode 

implantation, and the experimental scripts were actually run by Dr Phillip Gander. In all 

other respects, the experiment was fully conceived, designed, coded, analysed and 

interpreted by me. This work has been submitted for publication. 

 

8.1 Aims 

Bayesian accounts of perception such as predictive coding are growing in popularity and, 

as well as having face validity, appear to more parsimoniously explain the range of 

empirical brain data across the literature than other models. Explicit links between 

computational processes involved in such models and empirical brain responses have 

recently been proposed, and in limited cases these are supported by empirical evidence. In 

particular, gamma oscillations are proposed to encode prediction errors, beta oscillations 

changes to predictions, and delta/theta oscillations to predict timing by orchestrating 

temporal windows for processing via higher frequency oscillations (Arnal and Giraud, 

2012; Bastos et al., 2012). In light of these proposed associations, initial attempts have 

been made to use abnormalities of neural oscillations associated with tinnitus to infer the 

computational processes underlying its generation. However, not all of these associations 

are supported by direct evidence, and the evidence that exists is not that specific about 

exactly what computational quantities are represented. For instance, gamma oscillation 

magnitude correlates with the unexpectedness of a sensory event (Arnal et al., 2011; 

Brodski et al., 2015), but it is not clear whether what is being represented is prediction 

error (difference between the mean of the prediction and the sensory event) or surprise 

(which also takes into account the precision of the prediction), and whether it is also 

affected by the precision of the sensory information (as in ‘precision-weighted prediction 

errors’). A link between beta oscillations and changes to predictions is hypothesised (Arnal 

and Giraud, 2012), but proving the association requires knowing exactly how much 

predictions are being changed at any given moment, which has not so far been achieved 

experimentally. Finally, while there is an established link between delta/theta oscillations 
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and predictive timing (Calderone et al., 2014), their role is far less understood in prediction 

‘what’ rather than ‘when’, which is the aspect of their function that is potentially most 

relevant to tinnitus. In light of these unknowns, this study aimed to quantitatively and 

explicitly correlate the computational processes involved in predictive coding with 

observed associated oscillatory brain activity. Specifically, to achieve this through a 

paradigm where these computational quantities could be explicitly controlled in order to 

associate them with measured neuronal oscillations. Figure 18 shows a schematic of the 

theoretically distinct quantities of predictive coding with respect to the presentation of a 

single auditory stimulus of a given fundamental frequency (usually ‘f0’, but here referred 

to as ‘f’ for clarity). This experiment was approached with hypotheses that gamma 

oscillations would relate to surprise (to a greater extent than prediction error), and the beta 

oscillations would relate to changes in predictions. 

 

 

Figure 18: Computational quantities involved in predictive coding 
The graph displays a schematic probability distribution representing the prior prediction 
about the fundamental frequency (f) of an upcoming auditory stimulus (ft), where t simply 
refers to the number or position of the stimulus within a sequence. This prior is 
characterised by its mean (μt) and precision (Πt), which is the inverse of its variance (σ2). 
The incongruence between the actual ft and the prior can be expressed either as a (non-
precision-weighted) prediction error (ξt), i.e. the absolute difference from the prior mean, 
or as surprise (St), i.e. the negative log probability of the actual ft value according to the 
prior distribution. As a result of a mismatch with bottom up sensory information, the prior 
changes (new prior distribution illustrated by dashed line). The change to the prediction 
(Δμt) is calculated simply as the absolute difference between the old (μt) and new (μt+1) 
prior means. 
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8.2 Methods 

 

8.2.1 Subjects 

In principle, there was a relatively open choice about the recording modality to use for this 

experiment. However, indirect measures of neural activity, such as functional MRI, would 

clearly have been unsuitable, as they do not permit the distinction of different frequency 

bands of neural oscillations. Potentially EEG, MEG or iEEG would have been suitable. As 

gamma oscillations were of paramount importance, it was important to have sufficient 

SNR in the recordings to be able to resolve these. From previous work conducted, it is 

clear that resolving auditory gamma oscillations at all with EEG is extremely difficult. 

With MEG, auditory gamma oscillations can be resolved accurately (Sedley et al., 2012b), 

but with inter-individual variability in the ability to resolve them, and only ever with large 

numbers of trials of highly salient stimuli. Therefore iEEG was the only feasible option, 

and has the further advantage of being able to confidently distinguish different divisions of 

AC and examine local connectivity. 

The subjects were three patients undergoing invasive electrode monitoring for the 

localisation of medically refractory epilepsy. Subjects were all awake and alert at the time 

of the experiment, though two out of three were relatively somnolent due to their recent 

surgery. No subject had a history of any hearing deficit. Figure 19 displays 3D anatomical 

reconstructions of the subjects’ brains, along with the locations of electrodes featured in 

the analysis. The procedure for determining which electrodes to include in the analyses is 

described later. 
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Figure 19: Positions of electrodes used for analysis 
White-filled circles each indicate one electrode. All electrodes shown were included in the 
presented analyses, and were selected based on showing significant responses to the 
experimental stimulus, as described in the Methods section. Top row: lateral surface of the 
cerebral hemisphere recorded from. Solid black circles mark the insertion point for the 
Heschl’s gyrus (HG) depth electrode. Bottom row: depth electrode contacts used for 
analysis (white-filled circles), shown in the context of the surface of the superior temporal 
plane. Depth electrode contacts were positioned along the axis of HG. S = superior, I = 
inferior, A = anterior, P = posterior, M = medial, L = lateral. 
 

8.2.3 Data recording setup 

The data recording setup was as described in Section 4.2.2. Recordings were made from 

one hemisphere in each subject (Subjects 1 and 3: right, Subject 2: left). All subjects had 

an 8-contact depth electrode placed along the axis of HG, including anatomically and 

physiologically-defined A1, and a subdural grid overlying STG. LFP data were 

downsampled to 1 kHz, and electrical noise was filtered out.  

 

8.2.3 Paradigm 

The basis of the experiment was an algorithm in which stimulus segments varied across 

only one perceptual dimension, and values were drawn randomly from populations, i.e. 

Gaussian distributions, each characterised by its mean (μ) and standard deviation (σ). 

These populations constituted hidden states, not directly observable but with inferable 

parameters. The populations were randomly changed according to simple rules, such that 

subjects could be expected to unconsciously learn these rules in order to minimise 

uncertainty about upcoming stimuli. The rules were that for each stimulus segment, there 

was a 7/8 chance that its value would be drawn from the existing population, and a 1/8 

chance that a new population would come into effect. Once a new population came into 
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effect, it became the ‘existing’ population. Each population had its μ and σ drawn 

randomly from uniform distributions. See Figure 20A for a schematic of the paradigm. 

The algorithm was implemented in the auditory domain, with stimuli taking the form of 

harmonic complexes, containing only unresolved harmonics (by high-pass filtering from 

1.8 kHz). Each harmonic had a random phase offset, which was preserved across all 

segments, stimuli and subjects. The variable dimension was fundamental frequency (f0; 

hereafter just ‘f’ for simplicity), which is the major determinant of perceived pitch. 

Population μ was limited to the range 120-140 Hz, and σ to the range 1/128-1/16 octaves. 

Stimulus segments were 300 ms in duration, and were smoothly concatenated to avoid any 

transients at the transitions between segments. This was achieved by defining 

instantaneous frequency at every point in the stimulus, calculating the cumulative sum of 

this, and then creating harmonics individually in the time domain as follows in Equation 1: 
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Where a is the amplitude of the waveform, T is the current time point (measured in 

samples), t is all previous time points, r is the random phase offset for the harmonic, h is 

the number of the harmonic, s is the sampling rate and f is the instantaneous frequency. 

This procedure was repeated for every harmonic, from below the high-pass to above the 

Nyquist frequency. To prevent aliasing, the stimulus was generated at 88.2 kHz sampling 

rate, then downsampled to 44.1 kHz. The segment duration of 300 ms was chosen as the 

minimum duration that would capture most of the transient response to the onset of pitch 

within a stimulus, based on previous work (Griffiths et al., 2010). Stimuli were 2,000 

segments long; 4 different stimuli were created, and used for each subject (i.e. 8,000 

segments per subject). See Figure 20B for an example section of the auditory stimulus. 

Stimuli were presented diotically, via insert earphones (ER4B; Etymotic Research, Elk 

Grove Village, IL) through moulds fitted to the subject’s ear, at the loudest comfortable 

volume. During the experiments, subjects engaged in an irrelevant auditory task to 

maintain attention, but a specific performance on this task was not required. This task 

involved detecting a change to the timbre of individual stimulus segments (64 targets over 

8,000 segments), which was unrelated to their frequencies or underlying population 

parameters. Subject 1 performed well on the task, and subjects 2 and 3 performed poorly, 
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with high false alarm rates. The first 100 stimulus segments, and 10 segments following 

each target, were removed from analysis. 

 

 

Figure 20: Algorithm and example stimulus 
A: The stimulus is composed of a series of concatenated segments, differing only in 
fundamental frequency (f). At any time, a given f population is in effect, characterised by 
its mean (μ) and standard deviation (σ). For each successive segment, there is a 7/8 chance 
that that segment’s f value will be drawn from the present population, and a 1/8 chance that 
the present population will be replaced, with new μ and σ values drawn from uniform 
distributions. B: Example section of stimulus. Bi: Dots indicate the f values of individual 
stimulus segments, of 300 ms duration each. Four population changes are apparent. Bii: 
Spectrogram of the corresponding stimulus, up to 5 kHz, on a colour scale of -60 to 0 dB 
relative to the maximum power value. The stimulus power spectrum does not change 
between segments, and the only difference is the spacing of the harmonics. 
 

8.2.4 Modelling of computational quantities 

The analyses performed so far have been based on the assumption that each subject 

modelled the hidden population states in an approximately optimal fashion. Previous 

evidence suggests that subjects tend to make Bayes optimal sensory inferences based on 

available information (Ernst and Banks, 2002; Körding and Wolpert, 2004). It does not 

matter if subjects’ inference of the hidden states was not actually optimal (as this would 

just reduce the strength of the results), as long as it was not either orthogonal or in any way 

opposite to the modelled ‘ideal’ inference.  
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It is important to emphasise that it is impossible to infer the parameters of the hidden states 

(i.e. the mean and SD of the populations) with complete accuracy. However, there exists an 

upper bound on the certainty with which these parameters can be modelled. This idealised 

inference assumes full knowledge of the rules of the paradigm, the range of values from 

which population parameters can be drawn, and the probability of a population changing at 

any given segment. Obviously the subjects could not have started the paradigm with this 

knowledge, and modelling the learning process was far beyond the scope of the study, 

hence the discarding of the first arbitrary number of trials, namely 100. Once these rules 

and parameter ranges are known, Bayes optimal estimates of the population parameters 

over time can be made, in a process that amounts to inversion of the forward model that is 

the experimental paradigm. Following this, the parameter estimates can be used, in 

conjunction with the forward model, in order to generate predictions at each segment about 

the f value of the following segment. These predictions can be specified by their mean and 

SD, which correspond to the predictions and their precision. The f value of the subsequent 

segment then has an associated prediction error (difference, in octaves, between the 

prediction mean and the segment’s actual value), and also a surprise (the negative log 

probability of the segment’s value, based on the prediction’s probability distribution). The 

procedure used to generate these predictions is illustrated in Figure 21, and was performed 

as follows: 
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Figure 21: Generative model and inversion scheme used for data analysis 
A: Schematic of the full 3-dimensional model space, with dimensions indicating 
population mean (σ), population standard deviation (σ) and stimulus fundamental 
frequency (f). To ease computational demands, the model space was discretised. Each 
point in model space corresponds to the probability of a particular f, given a specific μ and 
σ, i.e. P(f|μ,σ). Therefore each column (along the f dimension) gives the probability 
distribution P(f|μ,σ), and corresponds to the forward model. The planes of the model space, 
conversely, indicate the probability of each given combination of μ and σ, given a 
particular f value, i.e. P(μ,σ|f), or in other words the inverse model. To generate priors 
based on a series of observed f values, the scalar product of the planes for each of these f 
values is taken, and the resulting plane scaled to a sum of 1. This plane represents the 
estimates of the hidden states μ and σ, and is then used to weight the columns of the model 
space. The weighted model space is averaged into a single column (forward model), and 
scaled to a sum of 1, thus providing optimal priors on the assumption that the f population 
does not change. The priors assuming a population change are derived from the same 
procedure, but with uniform weighting across the model space. The change and no change 
priors are then weighted according to the probability of a population change, and then 
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summed. The only part of the process not illustrated here is the inference of population 
changes, determining how many preceding f values form part of the model inversion, 
which is explained in Equations 2 and 3. B: Observed f values from a section of the 
stimulus (white dots), overlaid on prior predictions (colour scale) based on previous 
observations of f, using the model inversion scheme described in A. 
 

1) A discrete three-dimensional model space was generated (represented as a three-

dimensional matrix), with dimensions corresponding to population µ, population σ, and f 

value. Any given value in the matrix indicates P(f|μ,σ), i.e. the probability of a given 

frequency given a particular μ and σ. The columns (all f values for a given μ and σ 

combination) thus constitute the forward model (by which stimuli are generated), and the 

planes (all combinations of μ and σ for a given f value) constitute the inverse model (by 

which hidden parameters can be estimated from observed f values). 

 

2) For each segment, the model was inverted for its particular f value, yielding a two-

dimensional probability distribution for the hidden parameters. 

 
 

3) These probability distributions, for each segment subsequent to the most recent 

estimated population change (as defined later), were multiplied together, and scaled to a 

sum of 1. The resulting probability distribution thus reflects parameter probabilities taking 

into account all relevant f values. 

 

4) This combined parameter probability distribution was then scalar multiplied with 

the full model space, in order to weight each of the forward model columns (each 

corresponding to a particular parameter combination) by the probability of that parameter 

combination being in effect. The resulting weighted model space was then averaged across 

parameter dimensions, to yield a one-dimensional (forward) probability distribution, 

constituting an optimal prediction about the f value of the next stimulus segment, provided 

a population change did not occur before then. A probability distribution applicable if a 

population change were to occur was calculated the same way, but without weighting the 

forward model columns (so as to encompass every possible parameter combination). 
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5) To infer population changes, for each segment the probability of observing the 

present f value was compared for the two probability distributions (the distribution 

assuming a population change, and the distribution assuming no change), i.e. P(f|c) and 

P(f|~c) respectively, with c denoting a population change. The probabilities were 

compared, in conjunction with the known prior probability of a population change (1/8), 

using Bayes’ rule, as stated in Equation 2:  
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Here, P(c|f) is the chance that a population change occurred at that particular time. Given 

that P(c) is known to be 1/8, and P(f), the total probability of the observed f value, can be 

rewritten P(f|c)P(c)+P(f|~c)(1-P(c)), the above equation can be rewritten as Equation 3: 
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6) For each segment, the above calculation of P(c|f) was made not only with respect to 

the immediately preceding segment, but also a number of segments preceding that, up to a 

maximum of 4. Therefore, for segment t, it was possible to conclude that a population 

change had occurred immediately prior to t, t-1, t-2, t-3, or none of the above. A population 

change was judged to have occurred at the time point with the highest value of P(c|f), 

provided this value was greater than 0.5. While truly ideal inference would have kept track 

of every possible location the last population change could have occurred (right back to the 

beginning of the stimulus), this would have been computationally unfeasible. Importantly, 

using more than 4 lags did not appreciably alter the estimates obtained by model inversion. 

 

7) Once the population change positions were estimated, and therefore optimal prior 

predictions were generated for each stimulus segment, these predictions were used to 

calculate the predictive coding quantities of interest. Predictions themselves were 

summarised by their mean (μ) and precision (1/variance). Changes to predictions (Δµ) 

were calculated as the absolute change (in octaves) in μ from one prediction to the next. 

Surprise (S) was calculated as the negative log probability of the observed f value given 

the prior prediction, and prediction error (irrespective of prediction precision) was 
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calculated as the absolute difference (in octaves) between the observed f value and the 

mean of the prior prediction. Finally, Δf was calculated as the absolute difference between 

the current and preceding value of f. 

As the regressors (the quantities calculated above) were highly correlated with each other, 

both instantaneously and over neighbouring segments (Figure 22), these were partialised 

with respect to each of the other regressors, and the preceding and subsequent two values 

of both the other regressors and themselves. This conservative approach removed a lot of 

explanatory power from these regressors, but was necessary to be able to uniquely attribute 

observed neural correlates to a specific process. 

 

 

Figure 22: Correlations between predictive coding quantities 
Correlation matrices between instantaneous (A) and time-lagged (B, C) values of the main 
regressors. Note the strong instantaneous mutual positive correlations between Δf, S and 
Δμ, and the negative correlations between Π and preceding values of Δf, S and Δμ. 
 

8.2.5 iEEG data processing 

iEEG data from AC electrodes HG and over STG were rearranged into epochs spanning 

from 0 to 600 ms with respect to the onset of a given segment (i.e. all of that segment and 

the subsequent one). Spectrotemporal decomposition was performed in the EEGlab 

(Swartz Center for Computational Neuroscience, University of California San Diego) 

toolbox for Matlab, with Morlet wavelet convolution, oversampled at 2 Hz frequency 

resolution and 10 ms time resolution, in the time range 0-600 ms from segment onset (i.e. 

spanning current and subsequent stimulus segments) and frequency range 2-100 Hz. The 

upper frequency bound was limited to 100 Hz in light of previous observations of a lack of 

qualitative response difference to pitch stimuli between the 80-100 Hz range and higher 

frequencies (Griffiths et al., 2010). The number of cycles per wavelet increased linearly 
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from 1 cycle at 2 Hz to 10 cycles at 100 Hz. The absolute value (i.e. amplitude) of the 

wavelet coefficients was calculated for artefact rejection purposes, and these were 

normalised for each frequency (i.e. shifted/scaled to mean 0 and standard deviation 1). The 

largest of each of these values in any channel was then taken, and histograms plotted of the 

resulting trial values. Threshold for epoch rejection were specified based on inspection of 

these histograms, corresponding to the upper bound of the normal distribution shape, 

beyond which individual values appeared to be outliers. Epochs exceeding either the 

maximum or average amplitude value threshold were discarded. Also, as mentioned 

previously, the first 100 epochs were discarded. 10 epochs after each target segment were 

also discarded. After removal of segments at the start of the experiment, following target 

segments, and with outlying amplitude values, 89, 86 and 87% of segments remained, for 

the three subjects respectively. Data were initially processed for all electrodes either in HG 

or over STG, and electrodes were selected for further analysis if they showed a statistically 

significant response to the stimulus as a whole. To determine significant overall stimulus 

responses, a permutation approach was set up (Maris and Oostenveld, 2007), using 100 

permutations. In each of these a 300 ms window was taken, which was randomly displaced 

by up to +/- 300 ms for each segment. The normalised amplitude values within these 

windows were then averaged across trials, and the largest absolute mean value occurring at 

any electrode-time-frequency combination was added to a null distribution. The actual data 

were analysed in the same way, but without randomly displacing each segment in time, and 

an electrode was considered to significantly respond to the stimulus if it contained one or 

more time-frequency points where the mean amplitude exceeded the 5th largest value in 

the null distribution (corresponding to p < 0.05 corrected). The electrodes selected using 

this procedure are displayed in Figure 19. In all subjects, electrodes were included from 

both A1 and non-primary AC. 

 

8.2.6 Correlational analysis 

For each partialised regressor, complex time-frequency data were subject to a two-stage 

regression approach. First, the complex data for every electrode-time-frequency 

combination were regressed against it to yield a pair (real and imaginary) of Pearson 

product moment correlation coefficients (r). The modulus of these constituted the evoked 

(time-locked) response. To calculate the induced response, the residuals from this 

regression were converted to amplitude (by taking their absolute value), and the regression 
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was performed again. The result was a pair (evoked and induced) of time-frequency 

correlation images for each electrode for each regressor. Inspection of these responses 

found no qualitative differences between the responses observed in different divisions of 

AC, hence the correlations were averaged over electrodes for further analysis. To quantify 

the distribution of correlation strengths, the pattern, across time and frequency, of induced 

correlation coefficients for each regressor was averaged across electrodes and subjects. 

This pattern was used as a filter, in that it was scalar multiplied with the correlation 

coefficient pattern for each electrode for each subject, then averaged across time and 

frequency to yield a single correlation value for that electrode/subject combination. These 

values, for each regressor, for each subject, were divided by the largest absolute correlation 

value for that regressor, in order to represent relative correlation strengths on a scale of -1 

to 1. These correlation values are displayed in Figure 23, and show no systematic 

dissociation between the anatomical distributions of the correlations for the different 

regressors. 

 

 

Figure 23: Anatomical distribution of regressor correlations 
Each coloured plot represents one subject. Within each plot, the columns represent 
individual electrodes (positions displayed in Figure 19), with the vertical line separating 
Heschl’s gyrus (HG) from superior temporal gyrus (STG) electrodes. HG electrodes are 
arranged medial (left) to lateral (right). Rows indicate the four main partial regressors. 
Colour values indicate the relative similarity between the correlation pattern for that 
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subject/electrode combination and the mean correlation pattern across electrodes and 
subjects (range -1 to 1). Δf = absolute change in f value (octaves) compared to previous, S 
= surprise, Δμ = absolute change in prediction mean (octaves), Π = precision of prediction. 
 

8.2.7 Statistical analysis 

To compare surprise and prediction error, for each of these regressors, the mean of the 

induced correlation coefficients (across time, frequency, electrode and subject) was 

calculated within the time window 90-500 ms from segment onset and the frequency 

window 30- 100 Hz. This was performed once with the regressors partialised as previously 

described (i.e. for current and adjacent values of Δf, Π and Δµ), and again with additional 

partialisation of each regressor with respect to the other. This latter analysis measures the 

unique contribution of each regressor in explaining the observed data over and above the 

other, and was the analysis subjected to statistical analysis. For statistical testing, a 

permutation approach was used, with 100 permutations (and shuffled trial order in each), 

and each was quantified in the way just described. 

For the main correlation analysis, a permutation approach of 100 permutations was also 

used. For each permutation, the trial order was randomly shuffled, and the analysis was 

repeated otherwise identically. For each permutation, the correlation values were averaged 

across the three subjects, and the largest absolute mean correlation coefficient (at any time-

frequency point, for any regressor) was added to the null distribution. For the actual data, 

points in time-frequency space were considered significant if the absolute value of the 

average across subjects exceeded the 5th largest value of the null distribution 

(corresponding to p < 0.05 corrected). Due to the strong prior hypothesis about gamma 

oscillations correlating with surprise or prediction error, the statistical analysis was 

repeated for these regressors but with only frequencies in the gamma range (30-100 Hz) 

being included in the analysis. 

 

8.3 Results 

 

8.3.1 Surprise (S) versus prediction error (ξ) 

In keeping with prior hypotheses, both surprise and prediction error (the latter not taking 

into account the precision of predictions) were associated with significant gamma band 

responses in the LFP. First, it was established which of these quantities explained the LFP 

data better. Figure 24 shows the strong correlation between these quantities (A), the 
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explanatory power of each with respect to the LFP data (B), and the unique explanatory 

power of each after partialling out the other quantity (C). Both quantities correlated 

positively with gamma magnitude, but surprise showed a stronger correlation in all three 

subjects. In the partial analysis (C), residual surprise (after partialling out prediction error) 

correlated positively with gamma magnitude, whereas residual prediction error (after 

partialling out surprise) showed only a weak negative correlation in two subjects, and no 

correlation in one subject. These correlations were significantly different to each other at p 

< 0.05 corrected, thus it was concluded that the better correlate of gamma magnitude was 

surprise, which was therefore used for further analysis. 

 

 

Figure 24: Comparison between surprise and prediction error 
A: Correlation between surprise (S) and non-precision-weighted prediction error (ξ), with 
each dot indicating an individual stimulus segment and the line indicating a linear 
regression fit. B/C: Mean Pearson product moment correlation coefficients (r) between St 
or ξt, and gamma oscillation magnitude (30-100 Hz) in the 90-500 ms period following the 
onset of stimulus segment t. Regression coefficients were calculated for each time-
frequency point, after partialling out the influences of current and preceding/subsequent 
values of all other regressors. In C, the influence of S on ξ, and ξ on S, was also partialled 
out, thus exposing the unique contribution of each quantity to explaining the observed 
neural response. Regression coefficients were then averaged across time and frequency. 
Partial S showed a higher mean correlation, across subjects, with gamma magnitude than 
partial ξ (p < 0.05). 
 

8.3.2 Induced oscillatory profiles of predictive coding quantities 

Figure 25 shows the induced oscillations uniquely explained by each of the three quantities 

of interest: surprise (S), change in prediction mean (Δμ), precision of predictions (Π), as 

well as the change in f value from one stimulus to the next (Δf). These are shown for each 
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subject, and areas of significant correlation across the three subjects are outlined in white. 

In accordance with the prior hypothesis, S correlated positively with gamma oscillations, 

beginning at around 100 ms from segment onset, and this was significant across subjects 

from 200 ms. Two of the subjects also showed an early positive beta response to surprise 

(around 100 ms), and two showed a late negative low frequency (beta or delta-theta-alpha) 

response, (from around 350 ms) but these were not significant. Also in accordance with 

prior hypotheses, Δμ correlated positively with beta oscillations coinciding with the onset 

of the subsequent stimulus segment (about 100 ms after), which again was significant. Π 

correlated positively with delta-alpha (2-12 Hz) frequency oscillations (for most of the 0-

300 ms period from segment onset) in all three subjects, though this was only significant in 

the alpha frequency range, and fell slightly below significance in the delta-theta range. 

Given the strong negative correlation between Π and the preceding Δf value, it seemed 

likely that the low-frequency correlates of these were being mutually attenuated by the 

partialisation process. The analyses were therefore repeated, with only the 

contemporaneous value of Δf being partialled out (Figure 26). This analysis found highly 

significant correlates of Π in the full delta-alpha range, but could not attribute the delta-

theta component to Π with absolute confidence. 
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Figure 25: Induced spectrotemporal profiles of computational quantities in predictive 
coding 
Each plot shows the time (x axis) – frequency (y axis) correlates of the quantity of interest, 
expressed as Pearson product moment correlation coefficients (‘r’). Vertical dashed lines 
separate the current (left) and subsequent (right) segments with respect to the segment to 
which the quantity of interest is applicable. In the case of change in prior mean, this refers 
to the change occurring as a result of the current segment. Greek letters on the frequency 
axes indicate the different frequency bands, with are separated by horizontal dashed lines. 
Rows of plots indicate different quantities of interest, and columns indicate different 
subjects. δ = delta (2-4 Hz), θ = theta (4-8 Hz), α = alpha (8-12 Hz), β = beta (12-30 Hz), γ 
= gamma (>30 Hz). 
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Figure 26: Induced spectrotemporal profiles of key predictive coding quantities, 
without mutual partialisation 
Layout and notation of this figure is as for Figure 25, except that the Δf regressor is not 
included. Also, colour scales indicate Pearson’s r as a proportion (i.e. 0-1) as opposed to a 
percentage. The difference between the figures is that in the present case, regressors were 
partialised only with respect to the contemporaneous Δf value (for clarity of display). As 
such, overlap territory between the regressors (with and without time lags) is retained, and 
thus results cannot be uniquely attributed to any one particular statistical quantity. In 
particular (see Figure 22), there is positive overlap between contemporaneous S and Δμ 
values (resulting in increased gamma, and attenuated beta, responses to Δμ in the non-
partialled), and between Π values and the preceding values of Δf, S and Δμ (revealing 
strong delta/theta/alpha correlates, which are positive in the 0-300 ms range with respect to 
Π, and negative in the 300-600 ms range with respect to S). 
 

8.3.3 Evoked spectrotemporal profiles of predictive coding quantities 

Evoked results are shown in Figure 27. These were variably present in association with the 

quantities of interest, but unlike the induced results, there was no qualitative distinction 

between the timing or frequency profiles of the different quantities. The only significant 

evoked responses were to Δf and Δμ, and not to S or Π. 
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Figure 27: Evoked spectrotemporal correlates of computational quantities in 
predictive coding 
Organisation and notation of the figure is as for Figure 25. Colour scales represent the 
absolute value of the complex-valued correlation coefficient hence values can only be 
positive. Also, colour scales indicate Pearson’s r as a proportion (i.e. 0-1) as opposed to a 
percentage. 

 

8.4 Discussion 

The finding that gamma oscillations correlated positively with violations of predictions 

was in accordance with prior evidence and theory (Fujioka et al., 2009; Arnal and Giraud, 

2012; Bastos et al., 2012, Brodski et al., 2015). However, previously it has not been 

established whether they represent a correlate of prediction error per se, or the related 

quantity of surprise, which is influenced by the precision of the prediction being violated. 

The present results strongly favour gamma as a correlate of surprise. Current theory 

proposes that beta oscillations are the correlates of changes to predictions (Arnal and 

Giraud, 2012; Bastos et al., 2012), however directly supportive evidence has so far been 

lacking. The present findings strongly support this theory, and provide the first direct 
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empirical confirmation. Theta oscillations, and neighbouring frequency bands (delta and 

alpha), have been linked to predictive timing, via their role in establishing temporal 

windows for processing of sensory inference with higher-frequency oscillations (Arnal and 

Giraud, 2012; Calderone et al., 2014). However a role of these oscillations in predictive 

coding (predicting what rather than when) has not previously been apparent. The present 

findings suggest that these low frequency oscillations, via their amplitude (rather than 

phase) have a role in encoding the precision of predictions. The most relevant existing 

evidence is that alpha oscillation magnitude has been found to correlate with the estimated 

probability of a change in an ongoing visual stimulus will occur at a particular time point 

(Bauer et al., 2014). In the context of alpha oscillations, it has been proposed that as their 

magnitude increases the temporal windows in which gamma activity is facilitated become 

shorter, and hence the overall gamma amplitude decreases (Jensen and Mazaheri, 2010). 

More recent evidence from spontaneous layer-resolved cortical recordings in macaques 

directly supports this hypothesis (Spaak et al., 2012). It is entirely possible that the same 

applies to theta oscillations, which similarly organise higher frequency oscillations 

(Canolty et al., 2006), particularly in the context of the present results, where alpha and 

theta appear to similarly correlate with prior precision. Thus, taking into account the 

present findings, it appears that more precise predictions are associated with higher 

theta/alpha power, which may narrow the temporal window in which gamma-mediated 

prediction errors can occur. However, what is more difficult to reconcile is the theory that 

increased theta/alpha reduces the magnitude of gamma responses, with the present 

observation that gamma oscillations reflect surprise; i.e. a given prediction error gives a 

stronger gamma response if the precision of the prediction which it violates (encoded by 

theta/alpha power) is higher. Put another way, existing theory and evidence expects 

theta/alpha power to negatively correlate with gamma power, while the present findings 

suggest that gamma responses to a given event are stronger when theta/alpha power is 

stronger. That said, the present findings concern dynamics varying on a short timescale 

around discrete events, rather than spontaneous brain activity in coarse epochs, so the same 

correlations need not necessarily apply. For instance, sensory systems may generally 

alternate between states of relatively stable perception (characterised by high theta/alpha 

power and low gamma power) and changing perception (associated with elevated gamma 

power and reduced theta/alpha power), but these might be linked by brief transition periods 

in which both types of activity are elevated (e.g. when an unexpected sensory change 
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occurs during stable perception). Also, even if theta/alpha amplitude causes an overall 

reduction in gamma amplitude, the overall impact on the onward effect of gamma 

oscillations might not be negative; the concentration of gamma activity into narrower 

temporal windows would be expected to increase the temporal coincidence of post-

synaptic potentials generated on target neurons, and hence increase their summative effect. 

Furthermore, it is possible that the negative spontaneous amplitude correlation between 

high and low frequencies is caused by high frequency amplitude changes causing low 

frequency changes, as well as or instead of low frequencies driving high frequencies. The 

finding (in 2 out of 3 subjects) of a late negative low frequency response to surprise, 

following the preceding positive gamma response, is in keeping with this possibility, and 

may therefore reveal something about the dynamic interplay between these frequency 

bands. Overall, as the findings relating theta/alpha oscillations to precision are so new, 

some caution is required with regard to interpretation until further evidence is available. 

 

8.4.1 Further work on the subject 

As well as just the spectrotemporal profile of the statistical quantities of interest, it is also 

of interest to examine communication between cortical areas, along with communication 

between frequency bands, in order to gain a clearer understanding of the dynamics of the 

system as a whole, and the anatomical hierarchy involved. Such analyses have recently 

been applied to the analysis of normal speech perception data (Fontolan et al., 2014). So 

far, analyses of the present dataset have been restricted to using idealised inference about 

hidden states, hence idealised predictions. It will also be of interest to use different models 

of inference, in order to provide the best possible fit to the iEEG data, and identify which 

methods of inference the different subjects were using. Further experiments might pursue 

various lines of investigation, including transposing the paradigm to different hierarchical 

levels of pitch processing, different auditory attributes besides pitch (e.g. loudness, which 

is of particular relevance to tinnitus), and also examining the effects of attention, and the 

precision of sensory information. 

 

  



132 

 

Chapter 9. Discussion 

The experimental work described in Chapters 4-8 has yielded several novel findings, all of 

which are relevant to current understanding of the brain mechanisms of tinnitus. Section 

9.1 provides a brief summary of the key positive and negative findings of this work, and 

Section 9.2 uses these findings, along with the key points highlighted in the introduction, 

and components from existing models, to propose a new and comprehensive model of 

tinnitus that can potentially explain the current paradoxes in tinnitus neuroscience. 

 

9.1 Summary of findings 

As this summary of findings serves as an introduction to Section 9.2 which presents a new 

model of tinnitus, the chapter summaries below are ordered to produce a coherent 

narrative, rather than in ascending numerical order.  

 

9.1.1 Group-level MEG correlates of tinnitus 

The MEG study of spontaneous brain oscillations in tinnitus found that there were no 

significant difference in source-space oscillation magnitudes, within or outside of AC, 

between tinnitus patients and age/sex/hearing-matched controls. However, the degree of 

hearing loss (particularly in the tinnitus group) correlated strongly with right AC gamma 

power. This finding was entirely concordant with a previous study (Ortmann et al., 2011) 

finding isolated increases in right AC gamma power in amateur musicians with transient 

hearing loss and tinnitus, which appeared to relate more to the hearing loss than tinnitus. 

The lack of group oscillatory power differences also mirrors the same finding in a recent 

similar study that was well-matched for hearing loss (Adjamian et al., 2012). Previous 

studies reporting increased resting-state gamma power in tinnitus patients versus controls 

(Llinás et al., 1999; Ashton et al., 2007; Weisz et al., 2007) must therefore be considered to 

be reporting differences due to hearing loss, not tinnitus, unless proven otherwise. 

The study did, however, find a correlation between delta oscillation magnitude and overall 

(‘trait’) tinnitus loudness, the relevance of which is discussed below, in the context of 

dynamic delta changes. 
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9.1.2 Direct neurophysiological recordings of core tinnitus processes 

Despite tinnitus not being associated with group-level oscillatory power changes, as 

discussed above, the intracranial study of RI in tinnitus found that even small dynamic 

changes in tinnitus are accompanied by substantial and widespread changes in oscillatory 

magnitude and coherence. Taken together, these observations suggest that certain neural 

oscillatory processes may be linked to the perceived loudness of tinnitus, but none in 

isolation is sufficient or necessary to determine whether tinnitus occurs in the first place. 

Delta/theta oscillations appear particularly relevant to the loudness of tinnitus, as they 

tracked it in this experiment, and correlated with it in the MEG experiment, but also have 

been linked to short-term (Kahlbrock and Weisz, 2008; Adjamian et al., 2012; Sedley et 

al., 2012a) and long-term (Tass et al., 2012) suppression of tinnitus loudness. These 

oscillations also appear to be heavily responsible for long-range communication within AC 

and between it and other cortical regions. High frequency (gamma) oscillations were also 

highlighted by this study but, as shown previously during short-term tinnitus manipulations 

(Sedley et al., 2012a) have a variable direction of association with tinnitus loudness. 

Despite relating heavily to hearing loss, gamma oscillations also have been found to relate 

to perceived tinnitus loudness in a large study corrected for hearing loss (De Ridder et al., 

2015a), albeit only on a ROI analysis (which, in the context of such a well-powered study, 

suggests a weak effect). Ultimately, the relationship of gamma oscillations to tinnitus is not 

a straightforward one. Finally, gamma oscillations were observed throughout AC and 

adjacent cortical areas, strongly suggesting that they cannot be explained as an ‘edge 

effect’ of abnormal thalamocortical inputs, as underpins the TCD model of tinnitus (Llinás 

et al., 2005; De Ridder et al., 2015b). 

 

9.1.3 Explicit neural codes of sensory inference in pitch perception 

The intracranial study of predictive coding found that gamma oscillations, in normal 

perception, are a correlate of surprise, i.e. the incongruence of sensory input with prior 

prediction, scaled by the precision of the prior prediction. This specific association may be 

able to explain the paradoxical relationship of gamma oscillations with hearing loss and 

tinnitus. AC beta oscillations feature little in studies of tinnitus. The finding that these 

oscillations encode changes to predictions may explain this lack of observed differences, as 

tinnitus is generally a steady-state phenomenon without dynamically changing predictions. 

However, beta increases were observed during tinnitus suppression in the intracranial study 
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of RI (Chapter 4), and this may have indicated changing predictions accompanying 

changes in tinnitus intensity. Finally, low-frequency (delta, theta and alpha) oscillations 

were found to indicate the precision of sensory predictions. Given the hierarchical 

organisation of predictive coding systems, with the inferred sensation at one level 

constituting the prediction for the level below (albeit often via a nonlinear linking function 

(Friston, 2008)), it may be that relationships between delta-alpha magnitude and tinnitus 

intensity (as seen in the MEG and intracranial studies of tinnitus) are mediated by the 

precision of auditory cortical representations of SA. This possibility warrants further study, 

but is not mutually exclusive with respect to other roles of low-frequency oscillations, such 

as mediating long-range communication or phase-amplitude cross-frequency coupling 

(each may in effect entail the other). 

 

9.1.4 Auditory cortex neurochemical correlates of tinnitus 

The MRS study of tinnitus found that tinnitus patients, compared to tightly-matched 

controls, have reduced cortical GABA concentrations. This finding indicates a deficit in 

cortical-level inhibition, which may be responsible for excessive amplification of SA that 

may underlie tinnitus, and concords with models of tinnitus based on excessive gain, 

particularly at a cortical level. The finding of a positive correlation between choline 

concentration and tinnitus loudness is of uncertain significance. Choline might relate to 

plasticity, or to activity of the cholinergic neuromodulatory system. Both are highly 

relevant to tinnitus. 

 

9.1.5 EEG auditory steady state responses (ASSRs) in tinnitus 

The EEG study of ASSR magnitudes, in tinnitus patients compared to controls, found 

selectively increased responses to tinnitus-frequency tones with a 40 Hz amplitude 

modulation, which reflects the level of early processing in A1. This finding is indicative of 

excessive cortical and/or subcortical gain in the tinnitus frequency range. The lack of a 

correlation between ASSR magnitude and GABA concentration could indicate insufficient 

SNR of one or both measurements, or subject numbers, to expose such a relationship, or 

could indicate that the mechanism responsible for this amplification is reflected in other 

factors than cortical GABA concentration (such as receptor density/binding, other 

neurotransmitter systems, or subcortical changes). 
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9.2 A ‘comprehensive’ model of tinnitus 

This section introduces a novel model of tinnitus. Crucially, this model explains tinnitus as 

arising from a combination of processes, any number of which may be present in 

individuals without tinnitus. The factors themselves predispose towards, or exacerbate, 

tinnitus, but what determines whether or not tinnitus actually develops is a synergy 

between these processes, leading to an attractor state that causes the persistence of tinnitus 

even after a reversal of the precipitating factors. The lack of measurable differences in 

spontaneous neural activity between tinnitus patients and matched controls reflects the fact 

that the predisposing factors, individually, are not necessarily any different at group level 

to those in matched controls, but rather it is the synergy between them that precipitates 

tinnitus. Furthermore, the attractor state aspect to the model means that even if there are 

increases in one or more predisposing factors at the time of onset, once tinnitus is 

established these may well return to baseline levels. The model itself is centred on a 

predictive coding account of perception, and present knowledge about its underpinning 

neurobiology. While just one perceptual dimension is described (loudness), the same 

framework can be applied to other dimensions such as timbre and pitch, and potentially 

even affective and cognitive appraisal of the tinnitus. A further aspect of the model is that 

it describes a reduction in the inferred loudness or strength of the tinnitus representation (or 

its precursor) with increasing hierarchical level. This ‘hierarchical descent’ on salience 

occurs due to a lack of behavioural, affective, cognitive and perceptual relevance of the SA 

(as it is noisy, relatively constant, and relates to nothing of relevance in the internal or 

external environment), and as such forms part of an adaptive system to filter irrelevant 

sensations out of higher perceptual networks and conscious awareness. Tinnitus is usually 

not perceived due to the success of this filtering mechanism. While in reality the specified 

mechanisms may operate across multiple hierarchical levels, the present model description 

just illustrates interactions within just one pair of hierarchical levels for clarity. The 

hierarchical descent on salience is also driven by the low precision of spontaneous auditory 

activity (low estimated precision due to behavioural irrelevance, and low actual precision 

due to its lack of an intrinsic temporal structure), compared with the relatively greater 

precision of higher predictions (the default being ‘silence’). For tinnitus to be perceived, 

the precision of spontaneous auditory activity must become sufficiently high to bias 

perception away from the prediction, such that a threshold for conscious perception is 

crossed. Some further parts of the model are not unique, but have already been proposed in 
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other models of tinnitus. One of these is amplification through attention (Roberts et al., 

2013), whereby stimulus-driven (i.e. by SA) and/or volitionally-directed (‘top-down’) 

attention further increase the precision of the tinnitus signal, leading to further increases in 

its loudness. Another is re-setting of the ‘default’ prediction from ‘silence’ to ‘tinnitus’ (De 

Ridder et al., 2015b). This re-setting constitutes establishment of the attractor state, such 

that even if precision of SA reverts to its previous level, the salience of the representation 

no longer gets attenuated to the same degree by the higher prediction, and is still perceived 

as tinnitus. Unlike this existing account of prediction resetting, the new model involves the 

default prediction only shifting part-way towards the spontaneous auditory activity. The 

reason for this is that even if tinnitus is perceived, many of the factors limiting its 

behavioural relevance remain. This important distinction means that, at least in most cases 

of tinnitus, a hierarchical descent on salience still persists, which is necessary to explain 

certain phenomenological and electrophysiological observations. A further advantage of 

this model is that it does not require a distinction between peripherally-driven and 

centrally-generated SA in the auditory pathway, as both are eventually relayed to AC 

where the process of sensory inference begins. The model incorporates a diverse array of 

factors shown to be related to tinnitus by illustrating how they, individually or in 

combination, act to increase the precision of spontaneous auditory activity. A brief 

conceptual schematic of the model is shown in Figure 28, while the model’s anatomical 

and functional architecture are illustrated in full in Figure 29, and explained in its detailed 

legend. 
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Figure 28: Schematic overview of the model 
The core of the model is that, in all individuals, there is spontaneous activity in auditory 
cortex (red arrow), which may have a subcortical origin, and a higher ‘default’ prediction 
(yellow arrow) that is in conflict with this across one or more perceptual dimensions. Here, 
just the dimension of loudness is considered. Each of these opposing entities is weighted 
by its precision (here denoted by arrow width). Gamma oscillations reflect precision-
weighted surprise, which loosely equates to (prediction precision) x (spontaneous activity 
precision) x (mismatch between spontaneous activity and prediction). As such, they 
provide a window into the workings of tinnitus perception, but are not yoked in magnitude 
to any particular part of the perceptual experience. The relative precision of each entity 
determines how much it influences overall perception; fundamental to the model is that the 
precision of spontaneous activity is significantly lower than that of the prediction, and also 
that the higher prediction is of a less loud sound than is encoded by the spontaneous 
activity. Given that the default prediction is initially of ‘nothing’ or ‘silence’, for tinnitus to 
occur, the precision of spontaneous activity must become sufficiently high for the overall 
inference (or percept; orange) to cross a threshold necessary for conscious perception. In 
blue are a number of factors which are proposed to act individually or synergistically to 
increase the precision of spontaneous activity, and the interdependencies between these. 
Once the precision is increased sufficiently to cause perceptible tinnitus, two processes of 
self-reinforcement occur (orange); attention paid towards tinnitus increases acetylcholine 
release which further boosts precision, and over time the default prediction switches from 
silence to one encompassing tinnitus. 
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Figure 29: Schematic of factors promoting or exacerbating tinnitus 
The culmination of the illustrated factors is a process of Bayesian inference (9) in which 
spontaneous activity (SA) in AC (red; AC = auditory cortex) is compared against prior 
predictions (yellow) generated by higher perceptual centres, resulting in an overall 
perceptual inference (orange). The process of how this Bayesian inference scheme leads to 
perceived tinnitus is illustrated in Figure 30, and in this the key factor that determines the 
emergence of tinnitus, and its loudness, is the precision of SA in AC (height/narrowness of 
red distribution in the Bayesian inference plot). Ordinarily, the precision of SA is so low as 
to preclude conscious perception. However, underlying tinnitus is the influence of one or 
more factors, which synergise to increase the precision of this SA. Because precision is 
determined by a multifactorial synergy, none of the individual processes (nor its neural 
correlates) needs to show group-level differences in tinnitus patients vs. controls. These 
factors are numbered, with black numbers indicating processes mandatory for the 
perception of most clinically-significant cases of tinnitus, and grey numbers indicating 
optional processes that may predispose to tinnitus or increase its severity. The central 
portion of the figure depicts AC, including A1, other parts of Heschl’s gyrus (HG) and 
superior temporal gyrus (STG). Other divisions of AC not illustrated might also be 
similarly involved. The three cortical layers featured are based on the Haeusler and Maass 
canonical microcircuit model, and comprise the granular layer (G) which receives forward 
connections, the supragranular layer (SG) which sends forward connections and receives 
backward connections, and the infragranular layer (IG) which sends backward connections. 
Lateral connections are based on the Felleman and van Essen model, and project from non-
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granular layers to non-granular layers. Three example cortical columns are illustrated, two 
in primary A1 and one in STG. In the latter, inhibitory interneurons are also included 
whereas in the other columns they are omitted for clarity. The right-most column includes 
the main intrinsic excitatory connections, and to the right of this column are example 
oscillatory power spectra associated with the SG and IG layers; the SG layer principally 
generates gamma oscillations, whereas the IG layer generates lower frequency oscillations. 
Other parts of the figure illustrate other brain areas, functional processes and/or 
neurochemical influences relevant to tinnitus. Clockwise from top, these comprise: global 
perceptual networks (GPNs), including (but not necessarily limited to) precuneus (Prec), 
inferior parietal cortex (IPC), parahippocampal cortex (PHC), ventrolateral/medial 
prefrontal cortex (vl/vmPFC) and dorsal anterior cingulate cortex (dACC);  Bayesian 
perceptual inference based on weighted contributions from GPNs and AC; cholinergic 
projections to AC from the basal forebrain (BF) cholinergic system; the influence of 
orofacial movements (OFMs) on both the subcortical auditory pathway and GPNs; the 
cochlea; the subcortical central auditory pathway, including dorsal cochlear nucleus (DCN) 
and inferior colliculus (IC), which are grouped together as it is not necessary to separate 
them in this model, and both specific (S) and non-specific (NS) divisions of the auditory 
thalamus (Medial Geniculate Body; MGB), along with the thalamic reticular nucleus 
(TRN); the action of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) on 
AC and the subcortical pathway. 
The numbered tinnitus-related processes/factors are as follows: 
1) A degree of peripheral deafferentation, usually high-frequency, is typically required, in 
the form of cochlear damage and/or auditory nerve damage. The de-afferented frequency 
region therefore sends reduced input to the central auditory pathway, depicted by the 
dashed line, initially at the level of the cochlear nuclei. However, transient tinnitus, and 
chronic tinnitus at its onset, may be driven by spontaneous firing from the cochlea, 
depicted by yellow spikes. 
2) To maintain mean firing rates in the deafferented tonotopic regions, gain is increased at 
the level of the DCN/IC (and higher auditory centres in principle), which amplifies both 
peripheral input and internal noise (the latter constituting an essential tinnitus precursor). 
The result is reduced (i.e. not fully compensated) responses to external sounds, and 
increased spontaneous ascending activity, with the thick dashed line representing this 
dichotomy. This abnormal pattern of activity is relayed through the specific MGB, to 
multiple divisions of AC. 
3) The TRN exerts a tonic inhibitory influence on thalamic activity, and inhibition (or 
reduced activation) of relevant neuronal populations in the TRN (e.g. by subcallosal 
cortical regions, and/or BF cholinergic inputs) leads to further amplification of ascending 
activity. 
4) Optionally, particularly in cases with more marked deafferentation, deprivation of input 
to the non-specific MGB (not tonotopically organised) causes hyperpolarisataion, which 
leads to spontaneous neuronal bursting in the delta/theta frequency range (depicted by the 
oscillating lines). This induces delta/theta oscillations in AC, which are coherent across 
auditory regions (and thus strongly detectable extracranially). AC projects back to non-
specific thalamus, thus forming a reciprocal loop. Deafferented cortex is also capable of 
generating delta oscillations independently of thalamic connections, so additional 
mechanisms of delta/theta cortico-cortical coherence might also apply. Delta/theta 
oscillations also project widely to non-auditory cortical regions comprising GPNs that are 
relevant to tinnitus. Because delta/theta oscillations control the temporal windows in which 
bursts of higher frequency (beta and gamma) oscillations occur, the effect of widespread 
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delta/theta coherence is that high frequency activity occurs in temporally coincident bursts 
(represented by coalescence of forward connections from AC), which increases the 
summation of excitatory post-synaptic potentials generated by onward connections. 
However, as the phase of the high frequency oscillations orchestrated by the delta/theta 
rhythm is not necessarily coherent across cortical areas, this need not be accompanied by 
increased magnitude of high frequency oscillations. 
5) Deficiency of GABA-ergic activity (tissue concentration, receptor affinity, and/or 
receptor density) reduces one or more of: tonic inhibition, forward inhibition (both 
affecting gain on bottom-up connections), or lateral/surround inhibition (affecting spread 
of activity across cortex). This therefore increases the gain of spontaneous ascending 
activity, and/or the spread and synchrony of this activity across neighbouring cortical 
columns. 
6) Both increased lateral connections and decreased lateral inhibition (due to GABA-ergic 
deficiency, deafferentation and/or neuronal plasticity) have the effect of synchronising 
neural activity across a wider than normal extent of cortex. In the context of responses to 
external auditory stimuli, this is manifest as tonotopic map plasticity, increased evoked 
response magnitude and/or hyperacusis. In the context of spontaneous ascending activity, 
the result is increased synchrony of neural activity along the tonotopic axis. 
7) Cholinergic projections from the BF act in multiple ways, particularly promoting 
plasticity that drives neuronal synchrony between cortical columns (either directly or via 
cortico-thalamo-cortical connections), and increasing the gain of superficial pyramidal 
cells. BF projections may also inhibit relevant parts of the TRN and thereby increase 
subcortical gain. 
8) Spontaneous ascending activity is inherently noisy (i.e. temporally irregular and 
unpredictable), and therefore generates a persistent prediction error signal, manifest as 
gamma oscillations within supragranular pyramidal cells. This signal should arise simply 
due to the presence of any spontaneous ascending activity (hence, to a certain extent it is a 
normal process), but the processes just described that increase its magnitude (3, 5 and 7), 
inter-columnar synchrony (4, 5, 6 and 7) or align the timing of gamma bursts across 
auditory regions (4) all have the effect of increasing the influence of the prediction error 
signal on its target neuronal populations, i.e. they increase the precision of SA. 
9) Ordinarily, the prediction error signal (which constitutes an auditory representation) is 
over-ridden by a prediction in higher cortical areas (i.e. those comprising GPNs) that 
predicts no auditory percept (i.e. silence). Note that higher predictions can also encompass 
auditory memory, particularly in PHC, and also mechanisms for the 
cancellation/suppression of unpleasant or irrelevant stimuli. The substantially higher 
precision of the prediction than the prediction error (driven by the spontaneous activity) 
results in a sensory inference that is too weak to be perceived. However, if the precision of 
the prediction error becomes sufficiently strong then the sensory percept deviates from the 
higher prediction, and a spontaneous, ongoing auditory percept (i.e. tinnitus) occurs. Once 
a tinnitus percept is established, the higher prediction changes to one of tinnitus, rather 
than silence, and thereafter tinnitus will always persist, unless the processes underlying the 
SA itself can be reversed, or the prediction can be abolished. See Figure 30 for further 
details of the sensory inference processes proposed to underlie tinnitus. 
10) OFMs, and other craniocervical somatomotor inputs, increase gain within the DCN 
(and possibly higher centres in the auditory pathway), particularly in the context of 
deafferentation, thus increasing the magnitude of SA. Voluntary OFMs also influence 
activity in GPNs, as they relate to task-related behaviour, motor planning and the multi-
model perceptual consequences of the OFMs. This may mean that OFMs induce a 
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temporal correlation between the magnitude of SA underlying tinnitus, and behaviourally-
relevant representations in GPNs, thereby increasing the behavioural relevance of the SA 
and thus the estimated precision attributed to it by these higher networks. 
11) Selective attention, via the BF system, causes the release of acetylcholine in AC, which 
acts to further increase the precision of spontaneous prediction errors in the ways described 
in 8, and therefore increase the perceived loudness and clarity of tinnitus. It may also 
operate via inhibition of the TRN (3). Attention may be driven through voluntary attention 
to the tinnitus percept (‘top-down’; via higher centres such as the prefrontal cortex), or 
automatically (‘bottom-up’), by the mismatch between prediction and ascending sensory 
activity (i.e. the persistence of a prediction error). Increased attention may also be the 
initial event that raises the precision of the prediction error sufficiently for a tinnitus 
percept to occur. 
 

It is apparent that this model can account for a number of paradoxes present in the tinnitus 

literature, including: the lack of a single reliable neural correlate showing group-level 

differences between tinnitus patients and matched controls; the shift from peripheral to 

central origin of the activity underlying tinnitus; that only a certain proportion of 

individuals with hearing loss develop tinnitus; and that a certain degree of tinnitus is 

present, or can be induced by OFMs, in most individuals in the right conditions. The model 

also brings together a number of disparate accounts of tinnitus generation, including 

increased gain, plasticity, reduced inhibition, deficient noise cancelling, somatomotor 

influences, thalamocortical rhythms, attentional reinforcement and Bayesian inference. In 

doing so, it allows all these account to work together without any conflict between them, 

and rectifies the insufficiencies inherent in using any model in isolation or in its 

previously-proposed context. However, what has not been previously proposed in the 

context of tinnitus, even in part, is the concept of the hierarchical descent on salience. This 

is crucial for explaining how tinnitus actually arises in the Bayesian inference framework 

(which has not been specified in existing models), and for explaining a number of aspects 

of tinnitus phenomenology, such as initial emergence of tinnitus, enhancement by 

attention, attractor state behaviour, habituation, and RI/RE. These processes are illustrated 

and explained in Figure 30. 
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Figure 30: Schematic of proposed Bayesian inference underlying tinnitus 
The inset illustrates the notation used in this figure. The graph shows three probability 
distributions, with the abscissa indicating a particular perceptual dimension (here the 
loudness of tinnitus, with the origin representing silence), and the ordinate representing the 
probability of each particular value. The yellow distribution is the prior, i.e. the existing 
(top-down) prediction about the percept. The red distribution is the likelihood, i.e. the 
(bottom-up) sensory representation (here the direct consequence of spontaneous activity; 
SA). The orange distribution is the posterior, i.e. the overall inference (here the perceived 
tinnitus loudness) based on an optimally weighted combination of the prior and the 
likelihood. The width of each distribution indicates its precision (defined as inverse 
variance), which reflects the level of confidence or certainty attributed to it.  Surprise refers 
to the prediction error (the mismatch between the mean of the prior and the mean of the 
likelihood), weighted by the precision of the prior, such that a more precise prior leads to 
greater surprise for a given mismatch. Surprise is encoded by gamma band oscillations, the 
magnitude of which may also be related to the precision of the likelihood. Ordinarily, 
during stable perception, the prior is quickly adjusted to match the likelihood, so as to 
minimise surprise. Conversely, a fundamental part of this model is that there is a persistent 
mismatch between the prior and likelihood. The mismatch is maintained because higher 
cognitive appraisal of the SA reveals it to be of limited (if any relevance), due to its lack of 
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correlation with events in any other sensory modality (or, generally, within the auditory 
modality), lack of any cognitive or behavioural relevance, and its low precision. Thus, a 
‘hierarchical descent’ on salience is present. The low precision may be related to low 
amplitude, but is principally due to a lack of temporal structure (which forms the basis of 
most higher audition) on account of its origin being in random neuronal firing. The lettered 
panels of the main figure illustrate various time points in the onset and evolution of 
tinnitus. 
A: The predisposition to tinnitus exists because there is SA in the ascending auditory 
pathway (red). This has very low precision, compared to a relatively precise prediction of 
silence (yellow). Therefore the inferred loudness (orange) is biased strongly towards 
silence, and is below the threshold for conscious perception, except perhaps during focused 
attention in a silent environment (note that around 50% of all adults experience mild 
tinnitus in these conditions). 
B: One or more precipitating events (such as increased deafferentation, focused attention, 
increased arousal, and/or altered contextual factors) cause the precision of the SA (red) to 
be increased. This increase in precision causes the posterior inference (orange) to become 
sufficiently strong to result in an auditory percept (tinnitus). At this stage, the prior 
prediction (yellow) has not been altered, and therefore a cessation of the precipitant leads 
to a cessation of perceived tinnitus. 
C/D: Once the prior prediction becomes altered to reflect the tinnitus percept (i.e. the 
‘attractor state’ is established), the posterior tinnitus loudness is always sufficiently strong 
to be consciously perceived (except during distraction or masking). 
C: Attention towards tinnitus (such as occurs in unhabituated patients) increases the 
precision of the likelihood, and therefore increases its influence on overall inference, 
making the tinnitus percept louder. 
D: In unattended or habituated conditions, the precision of the likelihood is reduced back 
to pre-tinnitus levels. However, the prior has been altered, and therefore the overall 
inference is still over the threshold for conscious perception, though not as strong as in 
attended or unhabituated conditions. 
E: Ordinarily, even during attention and when unhabituated, the prior prediction remains 
weaker than the likelihood, as the tinnitus has limited cognitive/behavioural/affective 
relevance. However, if the tinnitus is attributed high levels of importance in these regards 
then the prior can reach anywhere up to the same level as the likelihood. It is also possible 
for the prior to exceed the likelihood; usually attention towards a percept increases 
precision of the likelihood and therefore biases perception towards its value, however a 
recent concept is the misdirection of attention (towards the cognitive/affective/behavioural 
consequences of the symptom, rather than the sensation itself), by which increased 
attention can amplify a symptom well beyond the likelihood, or even generate a symptom 
from only normal SA. In tinnitus, this model proposes that that this type of process may 
exacerbate tinnitus dramatically, rather than be its sole cause, thus constituting a functional 
overlay. 
F: After a masking stimulus has been presented, gain in the ascending auditory pathway is 
reduced (due to temporary reversal of deafferentation, which is therefore accompanied by 
reduced delta/theta oscillations), and thus the precision of the likelihood is reduced. This 
results in the perception of tinnitus being more influenced by the prior, and therefore 
becoming quieter (i.e. residual inhibition; RI). The mismatch between the prior and the 
likelihood remains the same, but the reduced precision of the likelihood reduces the 
magnitude of gamma oscillations. Alternatively (or additionally), RI can be caused by a 
temporary change in the prior prediction (towards silence). In this case, surprise is actually 
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increased (hence gamma oscillations increase), but the tinnitus percept becomes weaker. If 
both mechanisms coexist then the net change in gamma oscillation magnitude may be 
close to zero. 
G: After presentation of a stimulus closely matched to the tinnitus frequency, there is no 
significant change in the likelihood, but the prior prediction related to the tinnitus percept 
has been influenced by the masker stimulus, and therefore starts from a loudness 
representing that of the preceding stimulus (i.e. louder than its usual level). During the 
period while the prior prediction returns to its baseline, the tinnitus percept is strengthened, 
but surprise is substantially reduced, due to the prior being relatively concordant with the 
likelihood. Thus an increase in tinnitus loudness is accompanied by a drop in gamma 
oscillation magnitude. 
H: This model predicts that in patients with a functional overlay, and very loud/severe 
tinnitus, the prior prediction exceeds the loudness of the likelihood. Therefore, conditions 
that suppress spontaneous auditory activity, and hence normally cause RI, lead to the 
tinnitus percept being biased towards the prior prediction, which in these patients means 
getting louder. Hence, these patients should experience RE instead of RI. This RE should 
be associated with a reduction in gamma power, but also a reduction in delta/theta power 
(i.e. should have the same neural correlates as typical RI). 
 

9.2.1 Predictions made by the model 

The model proposed above has a certain face validity, in that it offers the most complete 

and parsimonious reconciliation of known abnormalities in tinnitus with the known 

functional properties and anatomical architecture of sensory systems. However, the model 

also may be tested through a number of predictions it implicitly makes about the results of 

hypothetical experiments. If correct, these would provide further support to the model, and 

if incorrect would prompt reconsideration or revision of the model. 

 

Transient increases in tinnitus precursors precipitating onset 

The model posits that tinnitus is initially precipitated by factors increasing the precision of 

SA in the AC, aspects of which are manifest as delta/theta and gamma oscillations, but that 

the precipitants often revert to normal subsequently. Therefore it predicts that tinnitus 

patients, around the time of tinnitus onset, should show increased levels of delta/theta 

and/or gamma oscillations compared to preceding and subsequent times. 

 

Window of reversibility at tinnitus onset 

Although a window of reversibility is suggested based on animal studies showing abolition 

of behavioural evidence of tinnitus using furosemide to inhibit cochlear activity, this 

window coincides with the period immediately following the auditory insult. The present 

model, is compatible with these findings, but also suggests a different type of window of 
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reversibility, at the time when tinnitus first develops perceptually. This window is based on 

the time period between perceptual onset of tinnitus and establishment of the attractor state 

through re-setting of the default prediction. Though this window sometimes coincides with 

the auditory insult, at other times it occurs much later. In such instances, the model predicts 

that suppression of the cortical or subcortical drive to tinnitus (e.g. through acoustic or 

pharmacological therapies) should result in lasting cessation of perceived tinnitus, 

provided they are effective in the short term. Of course, tinnitus could become re-

precipitated at a later date, in which case an equivalent window of reversibility would 

apply then also. 

 

Correlates of ‘residual inhibition’ in control subjects with hearing loss 

The model explains the predominant type of RI as forward inhibition of the subcortical and 

cortical SA driving tinnitus, which is manifest as delta/theta and/or gamma oscillations. It 

also proposes that the magnitudes of these oscillations reflect tinnitus precursor processes, 

and therefore are approximately equally present in matched control populations. Therefore 

these control populations (e.g. subjects with hearing loss but no tinnitus) should show 

neurophysiological evidence of ‘RI’ after equivalent stimuli, manifest as reduced 

delta/theta oscillations. They should also show reduced gamma oscillations, as the gain on 

prediction errors would be reduced. While a minority of tinnitus patients show RI 

associated with increased gamma oscillations, the model predicts that this operates by 

weakening of the tinnitus prediction. As tinnitus-predisposed controls would not have a 

tinnitus prediction, this mechanism of ‘RI’ should not be applicable to them, and therefore 

they should only show gamma decreases with ‘RI’, and never increases. 

 

Residual excitation, not inhibition, in functional overlay patients 

As explained in the legend to Figure 30, the model predicts that RI generally operates by 

reducing the precision of spontaneous auditory activity, thus biasing perception towards 

the tinnitus prediction. In most patients the prediction is of a quieter sound than that 

encoded by the SA, so tinnitus perception is reduced. In the hypothesised functional 

overlay patients, the prediction is of louder tinnitus than encoded by SA, and therefore 

tinnitus perception is increased by conditions that would normally be associated with RI. 

This type of ‘RE’ in functional overlay patients should be associated with the typical 

correlates of RI in most tinnitus patients (i.e. reduced delta/theta and gamma power). 
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Findings in ‘pseudo-tinnitus’ produced by chronic acoustic stimulation 

The Bayesian inference (predictive coding) framework that features in the model is not 

unique to tinnitus, but could apply equally to any chronic percept that is noisy, 

information-poor, unchanging, and unrelated to any motor actions or stimuli in any sensory 

domain. This could be achieved by presenting an ambient stimulus in animal studies, or 

with chronically headphone-delivered stimuli in human studies (though care would need to 

be taken to dissociate the onset of the stimulus from the putting on of the headphones and 

other subject-identifiable events). Under the right conditions, the model would predict that 

some individuals would ‘tune out’ this stimulus from conscious perception, though they 

would probably perceive it during directed attention in quiet environments. Other subjects 

would develop a default prediction of a sound, though as in tinnitus there should be a 

hierarchical descent on salience. This would be expected to result in phenomena such as 

enhancement by attention, plus phenomena of RI (by reducing the loudness or precision of 

the stimulus, or simply by applying an additional masker stimulus as in tinnitus patients) or 

excitation (by superimposing a frequency-matched stimulus that is louder and/or has 

higher precision). 

 

Cholinergic influences in tinnitus 

A prediction of the model is that in most tinnitus patients (except those with functional 

overlay), ACh acts to bias perception towards the spontaneous auditory activity, thereby 

increasing the perceived loudness or salience of tinnitus. Therefore, administration of 

drugs with a cholinergic agonist or potentiating action should increase tinnitus loudness or 

awareness in these patients. A further point of study might be genetic variation associated 

with the high-affinity choline uptake transporter (CHT), which is a limiting factor in 

cholinergic neurotransmission (Sarter and Parikh, 2005). Genetic variants associated with 

reduced CHT function have been linked to poorer attentional performance (Berry et al., 

2013). Conversely, in tinnitus the model would predict that this genotype is associated with 

less severe tinnitus, and possibly a lower chance of developing tinnitus. Functional overlay 

patients should experience reduced tinnitus loudness with increased cholinergic action, and 

therefore show the opposite relationship with ACh-related factors. 
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Relationship of cortical to subcortical activity 

The model predicts that spontaneous cortical, and thalamic activity, are driven by 

subcortical activity, and from the periphery in some cases. Therefore simultaneous 

recordings, in animal models of noise trauma and tinnitus, should reveal that the time 

courses of activity at various levels of the auditory pathway should be correlated with each 

other. Purely thalamic/cortical models of tinnitus, conversely, would predict a lack of 

correlation, or an inverse correlation (i.e. thalamic/cortical hyperactivity would be driven 

by deafferentation, so spontaneous increases in subcortical/subthalamic activity would 

reduce this). 

 

9.3 Conclusions 

This body of work comprises a literature review on neural bases for tinnitus, a discussion 

of the inconsistencies and paradoxes in the tinnitus literature unaccounted for by existing 

models, five original research studies investigating cortical neurophysiological and 

neurochemical processes associated with tinnitus and directly-related normal perceptual 

processes, and the specification of a new model  to address existing paradoxes, built upon 

aspects of existing models, the reviewed literature and novel experimental findings. The 

new model is built upon the framework of predictive coding, and centrally features sensory 

precision as the synergistic result of diverse precursor processes, which allows spontaneous 

activity to cross a threshold for conscious perception as tinnitus. Finally, a set of testable 

predictions generated by this model are proposed, which may help to direct future work in 

this field. 
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