

The Effect of Programming Competency on Success

in Undergraduate Team Projects in Computing

Science

Thesis by

Marie Devlin

In Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

Newcastle University

Newcastle upon Tyne, UK

 (19th May 2015)

i

Abstract

As part of the Centre for Excellence in Teaching and Learning Project, Active

Learning in Computing (CETL ALiC) Newcastle University, in partnership

with Durham University, developed a Cross-Site Software Development

Activity in their Stage 2 Software Engineering modules (FHEQ level 5) and

both universities carried out this activity during the academic years 2005/06 to

2008/09. This initiative involved ‘Companies’ of Newcastle and Durham

students working in partnership to develop a software solution together

throughout the academic year. This initiative was risky because assessment and

marking of deliverables for the project was conducted between staff at both

sites. Each module had differing assessment weightings, learning outcomes and

taught content. Therefore it was imperative that CETL ALiC staff kept a close

eye on assessment outcomes during the project to ensure that no students were

disadvantaged by the Cross-Site work.

This thesis outlines an initial review of assessment carried out at Newcastle

University, the findings of which led to some concerns about fairness in

attainment between students on different programmes at Newcastle due to

student perceptions about the ‘higher’ value of programming skills and the

‘lower’ value of soft skills. These findings were the motivation for the deeper

investigations into the assessment framework used in the Software Engineering

Team Project (SETP) at Newcastle University that are presented in this thesis.

The investigations show that student perceptions of the value of technical roles

in the project teams led to students in non-technical roles being awarded lower

peer percentage weightings, which in turn meant they achieved lower overall

marks for the module.

The thesis introduces remedial work in the form of competency matrices that

was carried out in an attempt to address this problem. This remedial work led to

the development of the Student Appraisal Method, a 360 degree feedback

method of formative assessment that is presented at the end of this thesis. This

method of assessment can be generalised for other disciplines and should

ensure students become more aware of their own personal competency

development in team projects in the future and that they make better

ii

judgements about the contribution of their teammates, irrespective of whether

their role is technical or non-technical during Software Engineering projects.

iii

For my mum Mavis, the best teacher of all.

iv

Acknowledgements

I would like to thank my supervisor Professor Chris Phillips for his support and

patience all the way through this project (it took me quite a while to get this

far). Thanks too for all the ice cream, the opportunities to go to conferences in

interesting locations and for all the nagging to get the work finished. I would

also like to thank Dr Lindsay Marshall for all his support and for fighting with

me about ideas on a daily basis, which is always good fun. Thanks too for all

the coffee and cake when it was needed. A big thank you also goes to all the

support staff in Computing Science. Your patience and efficiency has been

much appreciated. Thanks for putting the technical infrastructure in place to

make the team project work and for not batting an eyelid when I make strange

requests for things like hula-hoops and footballs. I would like to thank my

friends Debbie, Shirley, Mairin, Heather and Shane, just for being my friends

but also for supporting me through everything I do and for putting up with me

when I whinge - kudos to you all. I must say a big thank you to my colleagues

in CETL ALiC: Prof. Liz Burd, Dr Sarah Drummond, Janet Lavery, Prof. Janet

Finlay, Jakki Sheridan-Ross, Andrea Gorra, Andrew Hatch and Phyo Kyaw. A

special thank you also to Tim Smith for setting up all the equipment for the

CETL and getting us great deals. We had a great time during the CETL. It was

hard work but I loved it and learned a lot from you all. Special thanks also to

Dr Terry Charlton for putting up with years of team games and with me filling

his car with loads of eggs, cardboard and bubble-wrap, all in the name of

Active Learning. I would also like to thank all the students I have taught over

the years for all their hard work and for being enthusiastic and eager to learn,

passionate about their work and insatiably curious. I learned a lot from you all.

Finally, the biggest thank you goes to my family for all their support and just

for being brilliant.

v

Declaration

All work contained within this thesis represents the original contribution of the

author. This study has given rise to a number of publications which are listed

below. In particular, I make occasional reference to early work arising from the

CETL ALiC project in Chapter 1and 2 (1, 2,). Most of Chapter 3 has been

published in 3 and 4 and part of Chapter 6 has also been published in 5.

1. Devlin M, Marshall L, Phillips C. Active Learning in Computing:

Engaging Learners in a Cross-Site Team Project. In: SOLSTICE

Conference 2006. 2006, Edge Hill, Ormskirk: Edge Hill Centre for

Excellence in Teaching and Learning.

2. Devlin M, Phillips C, Marshall L. Organised Chaos - Learning

Outcomes from trialling Active Learning Methods in Computing

Science. In: International Conference in Engineering Education.

New Challenges in Engineering Education and Research in the 21st

Century. 2008, Pécs-Budapest, Hungary: Pollack Mihály Faculty of

Engineering, University of Pécs.

3. Devlin M, Drummond S, Phillips C, Marshall L. Improving

Assessment in Software Engineering Student Team Projects. In: 9th

Annual Conference of the Subject Centre for Information and

Computer Sciences. 2008, Liverpool Hope University, UK: Higher

Education Academy, Subject Centre for ICS.

4. Devlin M, Phillips C, Marshall L. Assessment in Software

Engineering- Towards a new Framework for Group Projects. In:

Proceedings of the ICEE & ICEER 2009 Korea International

Conference on Engineering Education and Research. 2009, Seoul,

Korea: Se Yung Lim, Korea University of Technology and

Education.

5. Devlin M, Phillips C. Assessing Competency in Undergraduate

Software Engineering Teams. In: IEEE Education Engineering

Conference (EDUCON). 2010, Madrid, Spain: Universidad

Politecnica de Madrid.

vi

Table of Contents

Abstract i

Acknowledgements iv

Declaration v

Table of Contents vi

List of Tables and Figures xii

Chapter 1. Introduction 1

1.1 Problem Overview .. 1

1.2 Experiences with cross-site assessment ... 3

1.3 Research Motivation: Fair Assessment .. 4

1.4 Research Questions ... 5

1.5 Research Objectives.. 6

1.6 Primary Research Contribution .. 6

1.7 Structure of Thesis .. 7

Chapter 2. Literature Review 9

2.1 Introduction .. 9

2.2 Learner autonomy and motivation ... 9

2.3 Theories of Learning .. 13

2.3.1 Constructivism ... 13

2.3.2 Social Development Theory .. 15

2.3.3 Experiential Learning Theory .. 16

2.3.4 Constructive Alignment .. 19

2.4 Instructional Design – Models and Taxonomies .. 20

2.4.1 Bloom’s Taxonomy .. 20

vii

2.4.2 Anderson and Krathwol’s Revision ... 21

2.5 The Assessment Culture (Higher Education UK) .. 25

2.5.1 Assessment of Learning – Summative Assessment ... 28

2.5.2 Assessment for Learning (Formative Assessment) ... 31

2.6 Assessing Teamwork .. 34

2.6.1 Using Peer Assessment .. 36

2.7 Assessing Software Engineering Competency .. 43

2.7.1 Determining Competence .. 43

2.7.2 Competency in Programming ... 45

2.7.3 Programming in Teams ... 46

2.7.4 Accreditation, Frameworks and Standards .. 48

2.7.5 QAA: Software Engineering-specific Skills and Abilities 50

2.7.6 British Computer Society: Skills and Abilities for Computing

Science .. 53

2.7.7 Institution of Engineering and Technology: Self-Assessment of

Competency ... 53

2.7.8 Content of Software Engineering Modules ... 55

2.8 Summary ... 58

Chapter 3: Case Study: The Software Engineering Team Project Module at

Newcastle University 60

3.1 Introduction .. 60

3.2 Module Design and Pedagogy .. 60

3.2.1 Introduction of Cross-Site Development ... 62

3.2.2 Supporting Technologies and Materials Provided ... 64

3.2.3 Assessment Methods .. 65

3.2.4 Peer Assessment Methods ... 68

3.2.5 Formative Assessment and Feedback .. 69

3.3 Calculating a Final Individual Mark .. 69

viii

3.3.1 Weighting for individual effort ... 71

3.4 Feedback and Experiences of Students and Staff .. 72

3.4.1 Project Issues .. 72

3.4.2 Communication and Coordination Issues ... 72

3.4.3 Technical Issues ... 73

3.5 Assessment Issues.. 73

3.6 Implications from the Initial CETL ALiC Review of Assessment 77

3.7 Summary ... 78

Chapter 4: Methods 80

4.1 Introduction .. 80

4.2 Sources of evidence: .. 80

4.3 Preparation of Data for Statistical Analysis ... 82

4.3.1 Student Marks Data .. 82

4.3.2 Individual Student Reflective Report Data ... 82

4.3.3 Reliability Analysis of the Reflective Report Coding Mechanism 83

4.3.4 Preliminary Statistical Tests ... 86

4.4 Common Statistical Assumptions used in this Research 88

4.5 Quantitative Statistical Methods used in this Research 88

4.5.1 Correlation ... 88

4.5.2 Correlation Coefficients .. 89

4.5.3 Multiple Regression Technique .. 90

4.5.4 Hierarchical Multiple Regression (Sequential Regression) 90

4.5.5 Logistical Regression ... 90

4.5.6 Two-Way ANOVA ... 91

4.6 Qualitative Methods used in this Research .. 92

4.6.1 Focus Groups ... 92

4.6.2 Module Evaluation Questionnaire Responses ... 92

ix

4.7 Merits of Statistical Tests Used ... 93

4.8 Limitations of the Data and of this Study ... 94

4.9 Summary ... 94

Chapter 5: Results 96

5.1 Introduction .. 96

5.2 Quantitative Data Collection and Preparation .. 96

5.3 Preliminary Statistical Testing .. 101

5.4 Statistical Analyses ... 106

5.4.1. Correlation .. 106

5.4.2 Correlation Coefficients .. 107

5.4.3 Further examination of Programming Score and Module Mark by

Year 109

5.5 Multiple Regression Technique ... 110

5.6 Hierarchical Multiple Regression ... 113

5.6.1 The Effect of Adding Other Role Variables .. 114

5.7 Logistic Regression ... 115

5.8 Investigating the impact of Role Choice on Module Mark and Mark

Range ... 118

5.8.1 The Effect of Role Choice and Mark Range (Classification of

Mark awarded) ... 120

5.9 Two Way ANOVA: The influence of Peer Assessment on Module

Mark .. 123

5.9.1 The Impact of Individual Effectiveness and Team Effectiveness

Marks ... 125

5.9.2 Summary of Statistical Results ... 125

5.9.3 Lessons Learned from Statistical Tests ... 127

5.9.4 Key themes emerging from Focus Groups .. 128

5.9.4.1 Poor Quality Feedback ... 128

x

5.9.4.2 Disagreements about Roles and Responsibilities 128

5.9.4.3 Concern over levels of Staff Involvement ... 129

5.9.4.4 Distribution of Workload ... 130

5.9.4.5 Concerns over Peer Assessment .. 131

5.9.5 Results from Module Questionnaires ... 131

5.9.6 Evaluation of Module Assessment using Anderson and

Krathwohl’s Revision ... 133

5.9.7 Evaluation using Professional Standards and Frameworks 135

5.9.8 Discussion of Results.. 137

5.9.9. Summary ... 141

Chapter 6: A New Assessment Framework for Software Engineering Team

Projects 144

6.1 Introduction .. 144

6.2 Drivers for Creating a New Assessment Framework for SETPs 144

6.3 The New Assessment Framework: The Student Appraisal Method

(SAM) ... 147

6.3.1 Components of the Student Appraisal Method .. 150

6.3.2 Experiment 1 - Individual Category and Holistic Peer Assessment 153

6.3.3 Experiment 2 – Team Holistic and Category Based Assessment 156

6.4 Implementation of more elements of the Student Appraisal Method 159

6.4.1 Discussion of Peer Assessment and Assessment in the Opening

Lecture ... 159

6.4.2 A Greater Balancing of Skills Required in the Problem Brief 159

6.4.3 A Wider Variety of Assignment Types .. 160

6.4.4 Clearer Overview of Marking Criteria and the Final Module

Mark Calculation .. 160

6.4.5 The Involvement of Software Engineers (from all roles) in

Feedback .. 161

xi

6.4.6 The Introduction of Formative Assessment ‘Events’ 161

6.4.7 How SAM can be generalised for other Team Projects 163

6.5 Summary ... 163

Chapter 7: Conclusion 166

7.1 Review of Research Questions ... 166

7.2 Thesis Summary.. 167

7.3 Future Work.. 168

7.4 Conclusion ... 169

References 171

Appendix A 189

Appendix B 191

Appendix C 197

Appendix D 200

Appendix E 209

xii

List of Tables and Figures

Table 1: Learning Outcomes mapped to Project Deliverables 66

Table 2: Marks of Coders and Non-Coders from Newcastle .. 76

Table 3 Cross-tabulation .. 85

Table 4: Symmetric Measures ... 86

Table 5: Description of the Sample Population by Course ... 96

Table 6: Distribution of the Population by Year of Study .. 97

Table 7: Mark Percentiles for SETP module ... 98

Table 8: Mark Range ... 99

Table 9: Percentiles for Programming Score ... 100

Table 10: Peer Assessment Weight ... 100

Table 11: Tests of Normality ... 102

Table 12: Correlation results for Programming Score and Year 109

Table 13: Correlations by Year ... 110

Table 14: Model Summary Tables .. 111

Table 15: SPSS output from Multiple Regression ... 111

Table 16: ANOVA .. 112

Table 17: Impact of Other Variables on Mark: Model Summary 113

Table 18: Dependent Variable Encoding .. 115

Table 19: Categorical Variable Coding .. 115

Table 20: SPSS output from Logistic Regression Test .. 116

Table 21: Hosmer and Lemeshow Test ... 116

Table 22: Model Summary .. 117

Table 23: Model Table ... 117

Table 24: Block 0 Output ... 117

Table 25: Variables in the equation .. 118

Table 26: Roles Taken by Students for Each Course during the Project 119

Table 27: Module Mark Classifications by Role for the sample population 121

Table 28: Levene's Test .. 123

Table 29: Peer Assessment Averages .. 123

Table 30: Tests of Between-Subjects Effects .. 124

Table 31: Multiple Comparisons ... 124

Table 32: Tukey's Honestly Significant Difference ... 125

Table 33: Assignment Match to Anderson and Krathwohl's Taxonomy 134

xiii

Table 34: SEEK Comparison Summary .. 137

Table 35: Smith and Smarkusky's Competency Matrix Example 149

Table 36: Incorrect Example of Holistic Assessment .. 155

Table 37: Example of team-based category assessment 2011/12 157

Figure 1: Kolb’s Experiential Learning Cycle ... 18

Figure 2: Anderson and Krathwohl’s Revision of Bloom’s Taxonomy 24

Figure 3: Grid for Matching Cognitive Processes and Types of Knowledge 24

Figure 4: Goldfinch 1994 Peer Assessment Form .. 38

Figure 5: Peer Assessment form used by Conway et al. 1993 ... 38

Figure 6: Method 3 matrix (Source: Leik and Wyvil 1996).. 40

Figure 7: IET Competency Levels (Source: IET, 2014) .. 55

Figure 8: A sample contribution matrix ... 67

Figure 9: Student feedback on peer assessment... 75

Figure 10: Distribution of Module Mark for CS Students ... 103

Figure 11: Distribution of Module Marks for IS students .. 104

Figure 12: Plots for CS Marks ... 105

Figure 13: Plots for IS Marks .. 105

Figure 14: Correlations .. 106

Figure 15: Comparison of Correlation Coefficients for each Course 107

Figure 16: Example of Module Questionnaire Feedback ... 132

Figure 17: Student Comment on Module Structure .. 133

Figure 18: The Student Appraisal Method .. 153

Figure 19: An example of a detailed category-based review .. 155

Figure 20: A student reflection on peer assessment, 2010/11 156

1

Chapter 1. Introduction

1.1 Problem Overview

In the academic years 2005-2008, Newcastle and Durham Universities, partners

in the Active Learning in Computing (ALiC) project, part of the UK Centre of

Excellence in Teaching and Learning (CETL) initiative, (CETL, 2005),

introduced a collaborative learning model of Software Engineering to second

year undergraduate students to reflect current industry practice by introducing

cross-site software development between ‘virtual teams’. A virtual team is a

“group of geographically and/or organisationally dispersed co-workers that are

assembled using a combination of telecommunications and information

technologies to accomplish an organisational task” (Bell and Kozlowski, 2002).

In this thesis the term ‘Company’ is used to refer to a collection of students

from Newcastle and Durham (a virtual team) and the term ‘Team’ is used to

refer to a collection of students from either Newcastle or Durham; two teams,

one from Newcastle and once from Durham, form a company.

The motivation for this initiative was that the prevailing pedagogical model at

the two universities reflected an unrealistic view of modern software

engineering practice which involved the participation of co-located software

designers, programmers, end-users and domain experts with easy access to each

other’s expertise and opinion i.e. students in the same classroom; the use of

‘customers’ in the form of lecturers and assignments that could be viewed as

‘toy’ development problems in terms of their applicability to systems that

genuine customers would request.

Increasingly, in reality, cross-site software development (‘off-shore

development’), where projects are distributed between virtual teams which

must work together, is becoming prevalent in the industry and has many

attractions for employers, not least that it allows them to:

 develop software more cheaply in certain locations, by taking

advantage of exchange rates and low labour costs;

 take advantage of time differences between countries to work round the

clock on projects and deliver more quickly;

 have access to a greater pool of potential employees and their expertise.

2

All employers want employees who can communicate well and work in teams,

take direction, yet are self-motivated, able to problem-solve and find things out,

make intelligent judgements, test ideas and turn them into plans, meet deadlines

and pay attention to detail, and therefore having some or all of these skills

makes a person more employable (Ferguson, 2004). However, as corporate

activity becomes more complex and dynamic, employers need workers who are

adaptable and flexible enough to cope within fast-moving and demanding

environments (O’Neal 2004; Bell, 2002). The use of virtual teams can help an

organisation respond quickly to changes in their customer needs and many

companies are turning to their use to make the most of knowledge and

resources. Virtual teams provide access to the most qualified individuals for a

particular job, regardless of their location and will play a major role in the

organisations of the future (Bell and Kozlowski, 2002, Suchan, 2001).

These factors make it essential for UK HEIs to help undergraduate Computing

Science students increase their employability by providing relevant and realistic

learning experiences that will allow them to compete more effectively in the

expanding global market (Ferguson et al., 2004; Devlin et al., 2006).

The pedagogical aims of the cross-site initiative between Newcastle and

Durham were therefore to align students’ group-work activities to their

anticipated future work-based practices by providing an insight into Software

Engineering in an industrial context, to make problem-solving more realistic, to

allow staff and students to evaluate and use various technologies for

cooperative working and to encourage the development of transferable skills

such as communication, organising and team-working (Devlin et al. 2008a,

2008b). Skills and intended learning outcomes for a module encompassing this

development at Newcastle were specified as initiative, adaptability, teamwork,

numeracy, problem-solving, interpersonal communication, written

communication and oral presentation and the assessment scheme was

formulated around measuring student development of these skills during the

module (MOF, 2014).

During each academic year of the project, teams were formed at Newcastle and

each was paired with a corresponding team at Durham to form a virtual

company. Usually the major project task was the design and implementation of

a large software system (e.g. in 2005/6 the task was a tourists’ guide application

that could be loaded onto a PDA or mobile phone). Students worked together as

a ‘virtual company’ across the sites and to facilitate this style of working, each

3

university provided video conferencing facilities and access to instant

messaging and email addresses for teams. To share code and documentation,

the teams were also provided with Subversion repositories and online document

repositories in the School of Computing Science’s Virtual Learning

Environment - NESS (Newcastle eLearning Support System) (Devlin et al.

2009a).

1.2 Experiences with cross-site assessment

The changes in the module and the introduction of the cross-site aspect really

stretched students’ learning by making them more aware of the necessity for

good communication and development practices and for professional working

attitudes. However, this approach to teaching the module was not always

wholly successful in terms of reducing student workload or in creating

assessments that can clearly differentiate an individual’s learning outcomes

from the module (Devlin et al., 2008a, 2009a).

Assessment of teamwork could be relatively straightforward if we were simply

addressing the tangible deliverables and products of teamwork, and if our

marking criteria were just based on the standards of the discipline and not the

personal characteristics of the participant. However, teamwork assessment

invariably involves allocating individual marks for both product and process,

which can prove problematic (Race, 2001). It is much harder to assess the

processes involved in teamwork, as it is necessary to know the contributions of

each team member to determine an individual mark. It is vital that each

individual is assessed fairly so that those who significantly contribute are

rewarded, and those who do not, will not benefit from the effort of their more

conscientious colleagues. Accurate assessment of an individual is however,

difficult in an environment that allows students to contribute at varying levels

whilst also trying to ensure they gain the maximum benefit from the teamwork

experience (Devlin et al., 2008a, 2008b). The assessment of virtual team

deliverables therefore presented a challenge as staff had to agree on what was

meant to be delivered and then how the process would be marked. This often

meant compromising on format for the tangible deliverables, and always

required in-depth discussion of marking criteria for both product and process

assessment. What was necessary was to ensure that we had agreed

comprehensive marking criteria coverage and, more importantly, to reassure

4

students that poor collaboration would not necessarily be detrimental to them as

individuals. To aid in the individual assessment process and to mitigate the risk

of unequal contribution, students at both sites also undertook self and peer

assessment (only within their local teams).

Student feedback in the early stages of the project (verbal and informal

feedback as well as feedback collected from standard module questionnaires),

showed that there were a number of concerns about fair assessment, which is a

common complaint in group projects. However, this was exacerbated when

involving two universities working and assessing together. The addition of the

collaboration to the respective Software Engineering modules meant that as

well as the fear of unequal contribution, students felt they would be penalised if

the cross-site interactions did not go well, or paradoxically, if they went very

well, that too much collaboration would be viewed as cheating. To alleviate

these concerns some changes were made to the assessments and their

weightings in subsequent iterations of the module and variations were made in

the coupling of marks allocated to teams at each site to strengthen collaboration

but weaken dependency between sites. Unfortunately the students’ perception

that assessment was somehow unfair remained. Students reported good learning

outcomes and experiences in questionnaires and set up to evaluate the module

design but the assessment and their distrust of its accuracy tended to dominate

the feedback received and began to overshadow some of the original aims and

objectives of the work.

1.3 Research Motivation: Fair Assessment

As part of the ongoing CETL evaluation process, and with concern about the

feedback received on assessment in mind, I conducted a brief review of

assessment practices two years before and two years after the CETL ALiC

implementation of cross-site Software Engineering between Durham and

Newcastle (the academic years 2003/04, 2004/05, 2005/06 and 2006/07) of the

grades received by Newcastle students and of the feedback we had received

during that time. This work was conducted within the framework of a virtual

team environment, but this was not, of itself, of great relevance to the study. I

found that, in general, during all of these years, students who did not contribute

to the coding of the product during the team project on average received lower

grades, in comparison to those who did contribute. In total, over 4 cohorts,

5

there were 109 non-coders (34% of the total of completing students) and 215

coders. The data indicated that 57% of non-coders scored less than their team’s

average mark in comparison to 39% of coders. So, it appeared from these basic

statistics, coders tended to perform better during the module, or at least, receive

higher marks. I also looked at some of the qualitative feedback from students

who took the module during these years and this showed that students felt there

was unequal effort invested in the team project between coders and non-coders,

specifically:

Coders often feel they contribute more to the project and do not get rewarded

for it fairly.

Non-coders often feel they have not got enough work to do during the project

and that their efforts are generally ‘less important’ than the efforts of coders.

As tutors, we emphasised to the students during the module that the ‘product’

(a piece of working software) was not the main focus and we believed this was

borne out in how we assessed the module – the actual product solution was

worth only 5% of the overall coursework marks, a very small percentage.

Coding the product is certainly an important part of the Software Engineering

process but of equal importance for learning are the other phases and the

students’ development of transferable skills such as communication,

organisation, planning and teamwork. The assessment should therefore be

based on students’ overall performance and how well they achieve all the

learning outcomes, irrespective of the role they take on during the project. The

differences in attainment and student perceptions of the value of their efforts

during the project caused concern and led me to ask questions about the

‘fairness’ of our assessment regime. These questions were the following.

1.4 Research Questions

1. What were the ‘differences’ between what coders and non-coders did during

the project and how exactly had this impacted on their attainment / success in

the team project that we had designed?

2. Had we missed something fundamental in the way we taught the background

material or organised the assessment that affected student perceptions of the

value of their role?

3. Was there a bias towards those who did the coding in our marking criteria for

both product and process?

6

4. Had we fallen into the trap of “specifying assessment criteria for

performance based on our perceptions of ability, rather than on what the

students actually did” (Black and William, 1998)?

5. Did a student have to be ‘good’ at programming to do well?

1.5 Research Objectives

The objectives of this work are as follows.

1. To identify and examine the factors that might impact on attainment in

software engineering team projects, including programming

competency, using the Software Engineering module at Newcastle

University as a case study.

2. To determine if programming competency is a primary predictor for

team/ individual success in our project and if so, to recommend

alternative assessment methods that can measure overall achievement

and learning outcomes more fairly.

3. To use the results to:

o Construct a framework for assessment in Software Engineering

team projects that could also be generalised for other

disciplines;

o Find ways of improving the quality of assessment design in

these team projects to ensure fairness and promote greater

student learning;

o Make recommendations on assessment methods that can help

build individual and team confidence in the early stages and

throughout team projects;

o Create material to help students evaluate their performance

during team projects, individually and as a team, so they can

adjust their approach, if needed, to be more successful.

1.6 Primary Research Contribution

The main contribution of this study is the creation of an assessment framework

for Team Projects in Software Engineering that could be adapted to other

disciplines as well as the primary area of focus in Computing Science. This

framework stems from an evaluation of the assessment approaches used in the

Software Engineering Team Project (SETP) module in the second year of the

7

undergraduate programme in Computing Science at Newcastle. This review

includes a statistical analysis of student learning outcomes and achievement in

the module over the course of four academic years, as well as the qualitative

results of student questionnaires, three Focus Groups on assessment and two

(unsuccessful) experiments with peer assessment. In particular this framework

sets out to make assessment a more formative, fair and reliable process, that

focuses on all the required and desirable Software Engineering skills that a

student should demonstrate and learn in Year 2 of their studies, not just the

tangible products of their work or their technical competency in programming.

This work also contributes to the debate on the merits of current classification

systems for degrees in the UK HE community and to the general academic

debate and effort on how to improve assessment and feedback which are areas

of educational practice most UK HEIs seek to improve.

1.7 Structure of Thesis

Chapter 2 of this thesis provides a review of the relevant background literature

used during this study. In Chapter 3 I provide an overview of the CETL ALiC

Cross-Site Activity which was the primary motivation for this work. This

review includes an overview of assessment methods and issues raised by

students during the activity. Chapter 4 outlines the statistical methods used to

evaluate the student data for this study. This chapter also includes a brief

overview of the qualitative methods used to further investigate assessment

issues. Chapter 5 details the results from both the quantitative and qualitative

analyses carried out and summarises the findings and their implication for

assessment on the SETP module. Chapter 6 outlines two experiments with peer

assessment and then outlines the Student Appraisal Method that arose from

these findings. The chapter also details how this method could be generalised to

other disciplines. In conclusion of this thesis I summarise the work carried out

and provide an insight into further work that will be carried out. Finally a full

set of references and appendices are provided.

8

9

Chapter 2. Literature Review

2.1 Introduction

Assessment systems in UK Higher Education are generally underpinned by a

theory of learning and a way of seeing the particular ‘world’ of the discipline

being studied. Assessment systems in general outline both the standards and

expectations of the institution in which the learner is situated, and those of

practitioners of the discipline outside the institution, in the work place and

wider social environment. Before evaluating the success of the existing

assessment framework at Newcastle or making changes to it therefore, it is

important to explore our knowledge about learners and also the theories of

learning and teaching that have contributed to its adoption into institutional

philosophy and teaching practice. It is also important to understand the levels of

competency expected for newly qualified practitioners of the discipline on

leaving university that may have contributed to its design.

 In this chapter I briefly discuss the goals of higher education and define learner

autonomy. I then focus on learner characteristics including self-perception and

motivation and explore how these characteristics might impact on student

attainment and the realisation of learner autonomy. I review some well-known

theories of learning and assessment, giving a brief overview of their origin and

examples of how they have contributed to the development of present-day

instructional design and the current UK assessment ‘culture’. I then detail some

examples of what is currently considered to be good practice in assessment and

feedback. This review includes an overview of previous work on assessing

teamwork, including the issues of validity and reliability in terms of fair

assessment of an individual’s contribution to the team effort and in determining

overall effectiveness when awarding a grade for the team, as a collective. I also

explore definitions of competence and how Software Engineering and

programming are currently assessed in the undergraduate Computing Science

curriculum in the UK. Finally, I review previous work that focuses on how

best to evaluate and construct an assessment framework.

2.2 Learner autonomy and motivation

The goal of higher education has often been debated and the definition

fluctuates depending on the economic and political aspirations of the time in

10

which the question is being asked. The debate tends to focus on two important

and oft-thought mutually exclusive philosophical arguments: (1) that the main

goal is to facilitate a high level of personal development and intellectual growth

for the student, and (2) that the primary purpose of Higher Education is to

produce workers and practitioners to suit the needs of industry and society at

the time and/or in the long term (Oxford, 2014) An easier way of looking at

this is perhaps to focus on the motivations of the student and why they are

undertaking a university degree. Each student will have their own goals in mind

when signing up for a university programme. Their decision to pursue the

programme may have been influenced by either the basic need for employment

or for the (often viewed as ‘higher’ purpose) of intellectual challenge and

stimulation, or both these things, but essentially, it is a matter of personal

choice for the learner. Higher Education for the learner is an individual pursuit

in a social landscape which makes its goals complex and contextual, but always

essentially personal. As a teacher, I think my own view of the purpose of

academic teaching in Higher Education is to help create autonomous learners,

thinkers and practitioners of the discipline of interest that is in line with both

the personal aspirations of those learners and the needs of society in general.

For me, therefore, the two oft-debated arguments of purpose are not unrelated;

they are sub-sections of a complex whole. There is also much debate about

what being an autonomous learner actually means. For some it is simply

having the ability to take charge of one’s own learning (Holec, 1981), whereas

for others the definition is wider in the sense that it depends on factors such as

willingness and motivation to assume responsibility for the choices required

(Littlewood, 1996). For Blondy, a self-directed (online) learning environment

requires learners to establish their own learning goals and activities but also

requires a curriculum that is focused on process versus content (Blondy, 2007).

This means that tutors may need to give up their control of the course and allow

learners to be empowered. In this respect, “traditional forms of higher

education remain valid because students in these environments are used to

expressing thoughts, ideas, opinions and solutions in written form, and

reflection on the learning process is often as important as content” (Denicolo et

al., 1992). However, there has to be a balance between what students do and

what we teachers do to enable the growth of autonomy during a student’s

learning programme. Spratt et al. suggest, like Littlewood, that motivation is a

key factor that influences the extent to which learners are ready to learn

11

autonomously and that teachers therefore might try to ensure motivation before

they ‘train’ students to become autonomous (Spratt et al., 2002).

According to Torrance and Pryor, people’s “attributions to achievement either

to effort, intelligence or difficulty in learning activities, are both socially and

individually constructed and affect how they respond to learning challenges and

feedback from assessors” (Torrance and Pryor, 1988). This means that student

motivation is affected by relationships between peers and with teachers and by

individual experiences of learning. A learner’s ability to develop their personal

autonomy will be affected by their learning career and the experiences they

have had previously. Their level of motivation and confidence will play a large

part in determining how much they are able to exploit assessment criteria and

feedback to improve their learning and achievement rather than just to get

better grades. Students need to be aware of their own motivations and how they

determine achievement and what is a good outcome for them personally.

Students rely on feedback from teachers and its interpretation is often viewed

as the teacher’s responsibility rather than their own or something that peers can

help with (Torrance and Pryor, 1988). For the majority of educators and

students, ability is viewed as the most important determinant for success but

some studies have shown that “measured ability on entry does not explain all

the variance in eventual achievements” (Emler, 2001). Self-esteem can be a

factor in this, as people with low self-esteem expect to fail. Emler showed that

when performance is influenced by effort rather than by expectations of success

or failure, there are few differences in achievements of low and high esteem

individuals. People with high self-esteem can show greater persistence but,

perhaps surprisingly, according to Emler, in such a way that “results in no

consistent advantage”.

Dweck also studied students’ motivations and attitudes towards study and her

theory is highly influential. The theory centres around four attributions: ability,

effort, task difficulty and luck, and how often a person uses the same kind of

attributions over time to explain their success/failure determines whether their

attribution style is self-enhancing or self-defeating (Dweck, 1988).

Dweck divides students into two types based on the student’s own theory about

their ability.

 “Fixed IQ theorists – these students believe their ability is fixed and

there is very little they can do to improve it. They believe ability comes

12

from talent rather than from the gradual development of skills through

learning e.g. “I can’t do Math”.

 Untapped Potential Theorists – these students believe that ability and

success are due to learning, and learning requires time and effort. In

case of difficulty, these students believe they should try harder, try

another approach, seek help etc.”

(Source: Dweck, 1988).

For Dweck, the most motivated and resilient students are the ones who believe

their abilities can be developed through their effort and learning – the Untapped

Potential Theorists. Dweck and Legget’s investigation of motivation and

personality set out to identify behaviour patterns and link them to underlying

psychological processes (Dweck and Legget, 1988). They described two

patterns of student behaviour.

 The Helpless Pattern – characterized by the student avoiding challenge

and a worsening of their performance when faced with obstacles.

Students following this pattern did so, not because they lacked skill –

the author’s research shows that those who avoid challenge and follow

this pattern are initially equal in ability to those who seek challenge and

show persistence. Their study also showed that “those most concerned

with their ability behaved in ways that impaired its functioning and

limited its growth.”

 The Mastery-Oriented Pattern – students who follow this pattern seek

challenging tasks and generate effective strategies when they are faced

with obstacles.

(Source: Dweck, 1988).

Overall the results of the Dweck and Legget’s 1988 study showed that students

viewed effort and ability as inversely related, where high effort implies low

ability and low effort implies high ability. The authors also differentiated

between performance goals and learning goals – those with learning goals

were more likely to view effort as a means for activating their ability for

mastery whereas those with performance goals use an inference goal that says

effort, even when it accompanies success, signifies a lack of ability.

13

According to Butler, an organizational environment and assessment regime

“that focuses on ability rather than development and learning” can help to

“perpetuate the myth of fixed intelligence” (Butler, 1988). Butler’s results and

those of Black and William (1998) support the view that a pre-occupation with

grade attainment can lower the quality of performance. Some students will

perform at a less than optimal level because they believe that is all they are

capable of. They may have been told this before in previous educational

experiences and it is the level they believe they deserve.

This work on motivation and student perceptions about attainment is relevant to

the current research effort on the evaluation of the assessment regime used in

the Newcastle SETP because the studies show that these are all factors that can

influence the performance of students, irrespective of the assessment design or

methods used by teachers.

These factors may have influenced the non-coders mentioned in the initial

study outlined in Chapter 1. To clarify if these factors have impacted on

attainment and influenced students I will need to investigate students’ attitudes

and perceptions about themselves as learners and their views on assessment in

the module. I also need to look at some of the theories about learning that are

commonly used in UK universities to create curricula and design assessment

for students as these will have contributed to the design of the original

assessment regime in the module.

2.3 Theories of Learning

2.3.1 Constructivism

Arguably, one of the most popular and widespread theories of learning still

used as a basis for defining teaching and learning approaches today is

constructivism. Its origins can be traced to the work of 18th century

philosopher Giambattista Vico (1668-1744), who believed essentially that the

only way of “knowing” a thing is to have made it and to be able “to account for

the elements it contains and to trace the steps in putting them together” (von

Glasersfeld, 1992). This philosophy made Vico a pioneer and moved attention

from the “supposedly pre-existing world” (von Glasersfeld, 1992) towards the

view where humans take a practical, “active involvement in the creation and

acquisition of knowledge” i.e. they are ‘builders and makers’ of knowledge.

Later educationalists and psychologists developed a more rounded idea of what

14

this constructivism comprises and these included John Dewey and Jean Piaget.

John Dewey (1859-1952) was a liberal social reformer with a background in

philosophy and psychology. He is held as one of the people most responsible

for the success of the Progressive Education Movement (Reese, 2001).

Progressivists base the curriculum around the experiences, interests and

abilities of students and believe that students must learn by doing. Dewey

stated that people learn well by interacting with others and also that our

learning increases when we are engaged in activities that have meaning for us.

To Dewey, education is a reconstruction of experience and an opportunity to

apply previous experiences in new ways (Dewey, 1938). In a similar vein,

Piaget, a developmental psychologist, argued that people produce knowledge

and make meaning based on their experiences. Two key components of his

position are assimilation and accommodation. Assimilation means the

individual adds new experiences into their old experiences. This means they

develop new outlooks, rethink misunderstandings and evaluate what is

important – their perceptions are changed. Accommodation is where

individuals have a view of how the world operates. When things do not operate

in the way they expect or in new ways, they must accommodate and reframe

their ‘world view’ with the results. Piaget focused very much on how learning

occurs rather than what influences learning. He viewed the role of the teacher

as very important and quite clear (and rather in contrast to more traditional

views) i.e. they should function as facilitators who aid the student when it

comes to their own learning. According to Piaget, the teacher must begin by

asking questions rather than answering them. The student must come to his or

her own conclusions, instead of relying on the teacher as the ‘giver’ of

knowledge. Teachers need therefore to be in continual dialogue with students

and should create learning ‘experiences’ that depend and focus on the needs of

the student. He advocated that the teacher must challenge students by making

them effective critical thinkers. Piaget’s philosophy therefore emphasises

learner-centeredness and advocates ‘active discovery’ (Koschman, 1996). This

means that experiences and activities should be planned to allow students to

explore, manipulate, experiment, question and to search out answers for

themselves. For Piaget, learning is more meaningful if the student is allowed to

experiment on their own and if teachers showed confidence in the students’

ability to learn on their own. Within constructivist learning, the emphasis is on

the learner rather than the teacher. The learner interacts with their environment

15

and constructs their own ideas, finds their own solution to problems and

eventually becomes autonomous and independent. Learning is the result of the

learner matching new information against information or knowledge already

known or experienced to form meaningful connections and create new

knowledge. This means that learning is heavily influenced by the context in

which it takes place and also by the beliefs and attitudes of the learner.

Constructivism therefore emphasises learning and not teaching. The learner

interacts with their environment – gains an understanding of it and then

constructs their own ideas and finds their own solutions. Learning is the result

of individual mental construction and provides the opportunity for students to

take responsibility for their own learning. Constructivism shifts responsibility

for learning from the teacher to the learner, who is no longer seen as passive or

powerless. The teacher becomes a facilitator rather than a dictator of learning.

In constructivist models of learning, people learn by active construction of

ideas and building of skills, through exploration, experimentation, receiving

feedback and adapting themselves accordingly. “This leads to integration of

concepts and skills into the learner’s existing conceptual or competency

structures” (Koschman, 1996). Constructivist pedagogies recommend that

learners are supported or ‘scaffolded’ by expert tutors and environments that

present new material and questions at the appropriate time.

2.3.2 Social Development Theory

Another highly influential theory is the work of Russian Psychologist Lev

Vygotsky, who lived during the Russian Revolution. Vygotsky’s work was

largely unknown to the west until it was published in 1962. His theory is also

viewed as one of the foundations of constructivism. It has three major themes:

Social Interaction, the More Knowledgeable other (MKO) and the Zone of

Proximal Development (ZPD). For Vygotsky, social interaction played a

fundamental role in the process of cognitive development and social learning

preceded development. The MKO refers to anyone who has a better

understanding or a higher ability than the learner, with respect to a particular

task – normally thought of as the teacher, but could also be peers, a younger

person or even computers. The ZPD is the distance between a student’s ability

to perform a task under guidance from an adult and/or peer collaboration and

the student’s ability to solve the problem independently. According to

16

Vygotsky, learning occurs in this zone. He focused on the connections between

people and the socio-cultural context in which they act and interact in shared

experiences (Crawford, 1996). In contrast to a ‘transmissionist’ view of the

teacher’s role (i.e. the teacher transmits their knowledge to students who

receive it passively), his theory promotes the idea that students take an active

role in their learning. The roles of the teacher and student are transferred and

learning becomes more of a shared experience for the student and the teacher.

2.3.3 Experiential Learning Theory

A more modern theory that borrows from both Dewey’s Experiential Learning

and also Constructivist pedagogies is Kolb’s Experiential Learning theory

(1984), which provides a descriptive model of the adult learning process.

Kolb’s theory emphasises the central role that experience plays in the learning

process. It has its origins in the experimental work of Dewey and Piaget and

forms a unique perspective on learning and development. He suggests that there

are four stages in learning, a four stage learning cycle. This learning cycle is a

central principle of the theory. The cycle process begins with Concrete

Experiences, which provide a basis for reflection on that experience,

(Observations and Reflections). These observations and reflections are then

distilled into abstract concepts (Abstract Conceptualisation), where the person

derives general rules for the description of the experience or the application of

known theories to it. The next part in the process is the construction of ways of

modifying the next occurrence of the experience (Active Experimentation),

leading to the next Concrete Experience. The most direct application of the

model is to use it to ensure that teaching and activities cover each phase of the

process. The teacher can do this by asking questions that encourage the student

to reflect, help them grasp or conceptualise the ideas and find ways of testing

the ideas. The four quadrants of the cycle are associated with four different

forms of knowledge. There is emphasis on developing students’ skills and

higher order thinking (analysis, synthesis and evaluation) and the emphasis is

placed on students’ exploration of their own attitudes and values. Experiential

learning gives students greater autonomy and control over the subject matter

and resources, their learning methods, pace of assessment etc. It focuses on

experiential learning, or learning by doing. Sometimes the term Active

Learning is used interchangeably with Experiential Learning. Kolb also

17

outlined four basic learning styles (developed by Kolb) Diverging,

Assimilating, Converging and Accommodating and these are described as

follows.

“Diverging – People who have this as their dominant learning style are best at

viewing concrete situations from many different points of view. They perform

better in situations that call for the generation of ideas – brainstorming, tend to

be interested in people, to be imaginative and emotional and tend to specialise

in the arts. These students also prefer to work in groups, listening with an open

mind and like receiving personalised feedback.

Assimilating - These people are best at understanding a wide range of

information and putting it into concise logical form. They are less focused on

people and more on ideas and abstract concepts. They find it more important

that a theory has logical soundness than practical value. They prefer reading,

lectures, exploring analytical models and having time to think things through.

Converging – People with this learning style can solve problems and find

solutions to practical problems, prefer technical tasks. They like to experiment

with new ideas and to work with practical applications.

Accommodating – These learners are hands on and rely on intuition rather

than logic. They prefer to take a practical and experiential approach. These

learners like new challenges and to carry out plans and will rely on others for

information then carry out their own analysis. They prefer to work in teams,

set targets and actively try different ways to achieve an objective” (Kolb, 1984).

Kolb explained that various factors influence a person’s preferred learning

style. The learning style itself is the product of two pairs of variables depicted

as lines of axis in Figure 1 each with conflicting modes at either end

(Businessballs, 2012).

According to Kolb, we choose our approach to a task or experience by opting

for either a) reflective observation i.e. watching others involved in the

experience and reflecting on what happens, or b) through jumping straight in

and just doing it ourselves (i.e. active experimentation) and at the same time,

“we choose how to transform the experience into something meaningful for

ourselves by either a) thinking, analyzing or planning (i.e. abstract

conceptualization – thinking) or b) experiencing the concrete qualities of the

world (concrete experience – feeling)” (Businessballs, 2012).

18

Outcomes of experiential learning are diverse e.g. a student may acquire a new

skill or a group of students may develop a stronger social conscience as the

result of the activity. In this sense, Kolb’s theory also relates to Vygotsky in

terms of the value of social learning, but it is seen as a side effect of, rather than

central to the individual’s learning.

Figure 1: Kolb’s Experiential Learning Cycle

The key to experiential learning really depends upon both experience and

reflection and the quality of both aspects. If the experience is of limited quality

and the reflection is also limited, then the experiential learning is also limited.

If the experience is of good quality but the reflection limited, then the learning

will also be limited. These factors need to interact meaningfully to enhance the

learning. Experiential learning has a specific teaching style associated with it

and that is facilitation. The teacher is viewed as an external motivator

encouraging the interaction of the students’ experience and reflection. Barriers

to experiential learning include competing priorities e.g. workload and

complexity could drain the student, as could personal or social problems.

Concrete

Experience

Reflective

Observation

Active

Experimentation

Abstract

Conceptualisatio

nn

Accommodating

g

Diverging

Converging Assimilating

19

However, the same could be said of these issues as barriers to most types of

learning.

Our knowledge of how students learn and the learning process influences our

approach to design learning and teaching for the SETP module at Newcastle.

Undoubtedly, this knowledge, and our own particular views on learning, has an

influence on how we set out to assess students and therefore impact directly on

student attainment and achievement. The work of Dewey, Piaget, Vygotsky and

Kolb and their contributions to the development of the theories of

Constructivism and Experiential Learning have had a lasting impact on Higher

Education today in terms of recognizing the importance of the human and

social aspects of learning and the need to allow students to create their own

knowledge and take an active part in their own learning. The facilitator role

within Experiential Learning is also akin to the teaching approach that has

evolved over the years in the SETP at Newcastle. The focus of the curriculum

and learning design for the module has also become much more experiential

and ‘problem-based’ over the years and part of the reason for change was due

to the demands of industry. There was recognition that student assignments

needed to be more authentic in terms of the relevance to employers and their

similarity to the work of a software engineer in industry. Reflection on the

effectiveness and impact of the particular teaching approach within the module

are important to the current research study in terms of understanding where our

assessment regime originated and the personal or institutional learning theories

that support the learning design.

2.3.4 Constructive Alignment

A more recent learning theory that reflects and includes large portions of the

theory of experiential learning and other views of learning presented so far, is

that of Constructive Alignment. Constructive Alignment has emerged as the

pre-dominant approach to developing teaching and learning in Higher

Education in the UK today. The concept of Constructive Alignment was first

introduced by Biggs in 1999 and the basic premise of this idea is that the

curriculum is designed so that the learning activities and assessment tasks are

aligned with the learning outcomes that are intended for a course or programme

of study (Biggs, 1999). Teachers must define learning outcomes, and choose

the learning and teaching methods that can lead to attainment of these outcomes

20

and specify what students need to learn to achieve the intended learning

outcomes and then assess student learning and achievement of these. In other

words, the learning activities and the assessment must be aligned.

There are a number of different ways of defining learning outcomes and these

include: “A learning outcome is a statement of what a learner is expected to

know, understand and or be able to do at the end of a period of learning”, or “A

written statement of what the successful student/learner is expected to be able

to do at the end of the module/course unit or qualification” (Donnelly and

Fitzmaurice, 2005). Generally, these statements are used to describe what

students are expected to achieve and how they are expected to demonstrate their

achievement (Kennedy et al. 2007). There is, however, still some debate in the

educational community and in the educational literature on a standard way of

defining learning outcomes to align European standards of Higher Education

qualifications and whether learning outcomes should or must be achieved, how

defining learning outcomes affect student learning and how learning outcomes

are assessed (Directgov, 2010; Ofqual, 2011; Kennedy et al., 2007; Sweeney,

2010). In some studies the term ‘competence’ is associated with learning

outcomes and defined as “a dynamic combination of attributes, abilities and

attitudes”, but there seems to be no common understanding of the term and the

term learning outcomes is more commonly adopted (ECTS, 2005; Kennedy et

al., 2007). Generally, learning outcomes are understood to be clear statements

of what the learning is expected to achieve and how they are expected to

demonstrate achievement. However Constructive Alignment can be difficult to

achieve in practice and we can sometimes find learning outcomes we had not

anticipated but are nonetheless valuable and valued by students. The fact that

learning outcomes may also emerge over a period of time means teachers

should allow for frequent modification of learning activity descriptions and

perhaps use consistent methods to help review, identify and classify educational

goals.

2.4 Instructional Design – Models and Taxonomies

2.4.1 Bloom’s Taxonomy

Bloom’s Taxonomy provides a way for teachers to classify educational goals in

terms of their complexity and hence scaffold the learning for students to some

degree. The taxonomy was originally produced by a group of college and

21

university examiners, along with Bloom, in 1956 and aimed to promote the

exchange of test materials and ideas about testing and of stimulating research

on examining and on the relation between examining and education. In the

taxonomy educational objectives are arranged into a hierarchy of six levels with

knowledge at the lowest level and evaluation at the highest level. Between

these are comprehension (level 2), application (level 3), analysis (level 4) and

synthesis (level 5) with evaluation at level 6. Bloom and his team claimed that

all cognitive educational objectives could be located in this hierarchy. However

users often disagree about where to locate their particular educational

objectives, as some of the definitions of the levels are vague, and this causes

problems e.g. the category where least detail is provided is application, which

according to Bloom is, “the use of abstractions in particular and concrete

situations and may include general ideas, rules or procedures, generalised

methods, technical principles, ideas and theories which must be remembered

and applied” (Bloom, 1956). No single theory of learning is represented in the

educational objectives they tried to classify.

2.4.2 Anderson and Krathwol’s Revision

An interesting revision of Bloom’s work on defining educational goals has

recently emerged and could be deemed more ‘usable’ for teachers seeking to

determine learning outcomes for a module or programme of study. In the

original Bloom framework all the categories were labelled as abilities and skills

and for each of these, knowledge was deemed a pre-requisite. Each category

presumes to build on the next and is a more advanced achievement. Anderson

and Krathwol’s 2001 revision retains six cognitive process categories –

remember, understand, apply, analyse, evaluate and create (Figure 2). It

involves a two-dimensional table with six cognitive processes and four types of

knowledge and orders the cognitive process categories according to their degree

of complexity (Figure 3). Anderson and Krathwohl define four different

Knowledge types and these are as follows.

(i) Factual Knowledge is “knowledge that is basic to specific disciplines. This

dimension refers to essential facts, terminology, details or elements students

must know or be familiar with in order to understand a discipline or solve a

problem in it.”

22

(ii) Conceptual Knowledge is “knowledge of classifications, principles,

generalizations, theories, models, or structures that are relevant to the

discipline.”

(iii) Procedural Knowledge is knowledge that “helps students to do something

specific to a discipline, subject, or area of study. It also refers to methods of

inquiry, very specific or finite skills, algorithms, techniques, and particular

methodologies.”

(iv) Metacognitive Knowledge is “the awareness of one’s own cognition and

particular cognitive processes. It is strategic or reflective knowledge about how

to go about solving problems, cognitive tasks, to include contextual and

conditional knowledge and knowledge of self.”

(Source: Anderson and Krathwohl, 2001).

This revision no longer claims that the process categories are in a hierarchy

where the learner can only move to a higher level after mastering all the levels

below. The grid emphasises the use of the taxonomy in course planning,

teaching and assessment and in aligning these three elements. The original

Bloom’s Taxonomy was designed for Higher Education but Anderson and

Krathwohl’s version can also be used at primary or secondary school level.

Anderson and Krathwohl recommend that their grid be used as an analytical

tool so that the teacher can match activities and objectives to the types of

knowledge and to the cognitive processes they outline. The dominant theme of

Anderson and Krathwohl’s work is the alignment of learning objectives,

instruction and assessment. It is less concerned with how teachers teach, as it is

their view that “most instructional decisions depend on the teacher’s creativity

and ingenuity” and therefore this framework can be used by many teachers,

irrespective of their personal philosophical perspective on teaching. This

revision and the grid (Figure 3) provided by Anderson and Krathwohl seem a

useful starting point for evaluating assessment within the SETP module at

Newcastle and should generate an initial way of evaluating the type of learning

that currently takes place (and is/is not assessed). It could also help to define a

set of assessment criteria that should be used within the module. The

pedagogical stance of Anderson and Krathwohl is that cognitive performance

can be improved through the alignment of learning objectives, assessment and

instruction – very much like Biggs (Biggs, 1999). Biggs’ views assessment as

the most critical element teachers can get right to help students learn. He argues

23

that: “Assessment is almost certainly the most important single component in

the system: get assessment wrong and you get everything wrong. We therefore

need to be clear about why we assess, what we assess, how we assess, and who

is involved in assessing” (Biggs, 2001).

Biggs’ work on assessment, and the work of Bloom, Anderson and Krathwohl

on learning outcomes highlight a need to explore the influence theoretical work

on learning and teaching has had on the assessment of the SETP module and

also how our own motivations as teachers may have influenced its design. It

may be that some aspects of the original aims of the module have been

forgotten or eroded over time due to changes in priority and focus at school,

institutional or national level. To do this, it is perhaps best to first explore the

wider approach to assessment in Higher Education in the UK (i.e. the

assessment ‘culture’) and then attempt to clarify and understand our own

approach to assessment within the various contexts in which the SETP module

takes place.

24

Bloom’s Original Framework Revised Framework

Figure 2: Anderson and Krathwohl’s Revision of Bloom’s Taxonomy

The

Knowledge

Dimension

Remember Understand Apply Analyse Evaluate Create

Factual

Knowledge

Conceptual

Knowledge

Procedural

Knowledge

Meta-

Cognitive

Knowledge

Figure 3: Grid for Matching Cognitive Processes and Types of Knowledge

(Source: Anderson and Krathwohl, 2001)

Separate Dimension

(KNOWLEDGE)

Factual

Conceptual

Procedural

Metacognitive

Knowledge Remember

Comprehension

Application

Analysis

Synthesis

Evaluation

Understand

Apply

Analyse

Evaluate

Create

Cognitive

Process

Dimension

25

2.5 The Assessment Culture (Higher Education UK)

According to Balla and Boyle, assessment is very much a “value-laden

activity” which is “surrounded by debates about academic standards, preparing

students for employment and measuring quality” (Balla and Boyle, 1994;

Entwistle, 1996). In institutional terms, it has a wide range of aims other than

guidance for students in their learning e.g. summative decision making relating

to grades and levels of award and the “derivation of quality and performance

indicators or profiles for institutions or units within institutions” (Balla and

Boyle, 1994). Previous work (Brown and Race, 1999; Freeman and Lewis,

1998; Yorke, 2001) has found that there are at least six main purposes to

assessment:

1. To help select people in terms of their suitability to undertake

something in the future;

2. To certify that a student has reached a particular standard or level of

competence;

3. To assist learning by helping students see what they are achieving and

their strengths and weaknesses;

4. To track progress;

5. To improve teaching by enabling us to make adjustments if our current

approach is not effective;

6. To reassure stakeholders (such as industry) about quality and standards

of teaching and learning.

Historical approaches to assessment in Higher Education were focused on the

teacher’s perspective of how well students had learned the material being

taught and did not make allowances for student learning styles, any prior

learning experiences or the assessment of skill and knowledge development

over time. These approaches tended to produce a student who was curriculum-

driven and very much used to a classroom in which instructors instructed and

learners learned. Students grew used to working towards pre-set objectives and

to being assessed, rewarded or penalised by teachers, rather than forming their

own judgements about progress or by taking ownership of their learning.

Thankfully, practices have changed somewhat in the last 30 years and teachers

have found new ways to give students more control over their learning and to

motivate them beyond the needs of merely passing the exam. However, as

26

Ecclestone argues, these changes have arisen partly as “defensive responses to

resource pressures and criticisms of outdated teaching” (Ecclestone, 2000),

rather than as a deliberate plan to overhaul assessment practices. Increasing

student numbers, higher tuition fees and the subsequent demands for greater

quality assurance mean that despite institutional and teacher efforts to make

teaching and learning more ‘student-centred’, assessment still tends to follow a

“unilateral agenda of authority” which is incompatible with the idea of a

student that actively takes responsibility for their own learning (Boud and

Falchikov, 2007).

Gibbs and Dunbar-Goddet (2007) reviewed the impact of assessment regimes

on student learning. In their work, data were collected in 3 subject areas in three

contrasting HE environments – “one pre-1992 institution, one ‘elite’ institution

and one research-intensive institution”, in the UK. They do not clarify what is

meant by elite and research-intensive or the difference between these two. Their

study confirmed that institutional differences have a significant effect on the

nature of the prevailing assessment regime, which in turn, impacts on student

learning. They outlined factors that have a strong effect on assessment cultures

and these include:

- The value placed on scholarship of learning, teaching and assessment

- The extent of risk tolerated and therefore how much teachers can

challenge students through assessment.

- Resource constraints which might lead to less relevant assessment tasks

- A strong focus on results as a means of quality assurance and

enhancement, rather than the learning process, leading students to

emphasise performance.

- Resources and systems are designed around the need to deliver material

rather than creating effective learning opportunities.

- Incongruence between rhetoric of culture and reality

(Source: Gibbs and Dunbarr-Goddet, 2007)

An assessment regime therefore embodies many assumptions about what an

education is and signals very much to students about the priorities of an

institution or school in which they are based. As teachers we may have a

tendency to frame assessment primarily in terms of the needs of the institution

and accreditation bodies and focus on grades to classify students rather than

27

focusing assessment on the learning opportunity that it presents. This can lead

to assessment regimes that focus on “demonstrating current knowledge but

focus little on the process of learning and how students will learn after a

particular instance of assessment” (Boud and Falchikov, 2007). Student

expectations of assessment are very high and therefore our approach has a

powerful effect on how students feel about their discipline and how they

approach their studies. Differences in expectations formed from prior

experience of assessment regimes at secondary school can also have an effect

on students’ attitudes and effectiveness in engaging with different assessment

methods and approaches at university level and on their view of themselves as

effective learners (Dweck, 1988; Torrance and Pryor, 1988).

The Burgess report (Burgess, 2007) highlighted many concerns about

assessment practices and identified difficulties with the assumptions on which

higher education assessment processes are based. The report states that the

honours degree classification system is “no longer fit for purpose” as it cannot

adequately describe the range of “knowledge, skills, experience and attributes

of a graduate in 21st Century”. Burgess argued that current systems concentrate

on a single summative judgement that “results in a fixation on achieving a

number that is considered ‘good’” (Burgess, 2007). Burgess was convinced that

a summative system (i.e. one that provides a final grade as an indicator of

achievement e.g. first class or 2.1) “gives the appearance of ‘signing off’ a

person’s education with a simple numerical indicator, which is at odds with

lifelong learning principles that we aspire to for our graduates” (Burgess,

2007). The report led to the development and pilot of the HEAR, (Higher

Education Achievement Record) an extended academic transcript that includes

skill descriptions as a key way of measuring and recording student achievement

(HEAR, 2014). The HEAR could radically reform how we represent students’

achievement by providing employers with a more detailed set of information

about what a student has done, within the curriculum and outside it, in terms of

skill development as well as knowledge acquisition. Reasons for this change

are manifold but stem from an increased political emphasis on widening

participation and skills, the transformation of the higher education experience,

changes to the labour market and perceptions of what constitutes a worthwhile

degree and good institutional practice. Burgess also found that the current

approach encourages students and employers to focus on “one final outcome

and perceived end point, rather than opening them up to the concept of a range

28

of different types and levels of achievement which are part of the on-going

process of learning for all students that should continue long after their degree”

(Burgess, 2007). Assessment is one of the most important forms of

engagement that a student has with the institution, staff and their discipline. For

students it should help them to determine where they are ‘at’ in their studies

and what they need to do further to develop their skills and knowledge as a

practitioner. Assessment thus forms part of the learning ‘dialogue’ between

students and teachers, between students and the institution, and between

students and the professional bodies and industry that they hope to become part

of. It is therefore important for students and teachers that the purpose of

assessment, and its wider context, is clear. Assessment practice naturally varies

widely across the UK, both at institutional and discipline levels and in terms of

whether assessment should be primarily for learning (formative) or of learning

(summative) or a mixture of the two, which I will discuss in more detail in the

next sections.

2.5.1 Assessment of Learning – Summative Assessment

Assessment of learning and achievement is often termed ‘high stakes’ or

‘summative’ assessment. According to the Quality Assurance Agency (QAA),

an independent body that reviews the performance and standards of Further and

Higher Education Institutions in the UK, the main purpose of summative

assessment is “to measure student learning in a way that recognises it through

the award of credits or equivalent (the combination of which can then lead to a

named qualification)”. Grades and classifications are therefore primarily

performance indicators for the student, the department, the institution,

employers, funding bodies and quality agencies, but the QAA emphasise that

summative assessment “can, and does, facilitate student learning” (QAA,

2011). Some teachers argue that summative assessment has no real value to

learning as it often takes place at the ‘end’ of a period of learning in the form of

an examination and results in a number that really does not represent the

learning that has taken place.

The balancing act between designing assessment that motivates and challenges

the learner, but also tests the achievement, accredits learning and provides

evidence to meet measures of quality, is a difficult one for teachers to

accomplish. Some of the difficulties for teachers in ensuring that learning is a

29

major concern of assessment involve a battle against this emphasis on grades.

When designing assessment teachers also need to consider the prior learning

experiences of students in old-fashioned ‘transmission’ or ‘banking’ models of

education as outlined by Freire (1970), the need to report on achievement and

to quantify and validate what has been learned via some form of numerical

judgement. Assigning marks to students means that student achievement is

often “abstracted into just a few numbers” (McNamara, 2004), which can also

cause difficulties for a student when they try to articulate the skills they have

learned and how these skills have developed and changed during their course of

study. Feedback received on work may also vary in quality and this may lead to

a piecemeal view that might not help a student much in clarifying their overall

proficiency as a practitioner of their discipline. Quality of feedback is further

compounded by the fact that a lot about learning is indeterminate and ‘fuzzy’

rather than discrete and easily measured and therefore what has actually been

learned is sometimes difficult to capture for summative assessment purposes

and relies heavily on ‘academic judgement’.

The importance of summative assessment as an indicator of standards for

institutions and students (and other stakeholders such as employers, funding

bodies and in comparison to nationally agreed frameworks etc.) means a lot of

emphasis is placed on the reliability and validity of marking rather than on

learning. Stakeholders need to be confident of measurements and qualitative

information used to indicate level of performance. According to Balla and

Boyle “the validity of a result or piece of information is the extent to which it is

meaningful for a particular assessment or purpose” and “the level of

consistency or replicability of data indicates reliability over time, equivalent

task and observer” (Balla and Boyle, 1994). The QAA views these two

principles as fundamental to the assessment process. It states that “Assessment

is understood to be valid when it is testing precisely what examiners want it to

test, bearing in mind the learning outcomes. Reliability in this context means

that as far as possible, markers acting independently of each other but using the

same assessment criteria would reach the same judgement on a piece of work”

(QAA, 2011).

There are however, a few problems with these interpretations when it comes to

the actual practice of assessment. HE institutions are expected to have learning

goals that are “far more extensive and complex than mastery of the subject

alone and are being held to account for student achievement in terms of these

30

goals e.g. employability” (Knight, 2002). Teachers often use a variety of

assessment techniques that can lead to a wide range being used across a

programme of study or even within one module. The variety of techniques

often makes it difficult to compare performance between modules and to

aggregate this into a ‘score’ at the end. Our search for evidence of reliability in

these situations means that sometimes we tend to settle for assessment of the

simpler forms of achievements that are more easily measured (Boud, 1995).

More trouble arises when the idealised ‘transferable’ skills are to be assessed

(e.g. skills such as leadership or communication) because it can be difficult to

generalise about a student’s ability i.e. “how the skill will transfer and manifest

itself outside of a particular context or instance of learning and assessment”

(Knight, 2002). Repeated observations to prove reliability of assessment are

difficult, even within one module. Modularisation of programmes, differences

between programmes within the same discipline, and wide variations between

disciplines, exacerbate this issue. There is no common curriculum or common

view of assessment. Knight argues that we need to critically reflect continually

on assessment practice in our learning communities and with all the

stakeholders involved, to ensure that our assessment methods are valid as

assessment is a “communicative practice” (Knight, 2002). He also recommends

that we should perhaps consider narrowing assessment to the achievements

upon which we can be sure we will make reliable judgements. Some would

argue that narrowing the range of skills and knowledge we assess might move

us more towards the situation where students strategically focus on ways to get

the best marks rather than considering the wider implications of their learning,

and where skills development and really important instances of learning that

give a more ‘rounded’ view of their achievements are ignored. Knight’s reason

for narrowing the assessment range is that what grades or degree classifications

signify may not be very transferable because summative assessments are

“usually silent on learning processes”. Hopefully the HEAR will go some way

to demonstrating a student’s efforts and learning ‘journey’. However, another

way to assess complex skill development and learning is to find ways to

examine the learning processes of a student continually throughout their

learning experience, perhaps via formative assessment, before making a final

judgment at the end, otherwise, simplifying what is assessed may lead to a

simplification of what is taught and, indeed, what is learned.

31

2.5.2 Assessment for Learning (Formative Assessment)

Assessment becomes formative when the evidence is used to adapt the teaching

approach to meet the learning needs of students (Black and William, 1998).

Ideally formative assessment motivates students and helps them gain greater

autonomy in their learning. Formative assessment strategies include

questioning, requiring students to respond to feedback comments on their work

(reflect) and peer and self-assessment. Summative and formative assessments

have different “rules of engagement” because they have different intentions

(Torrance, 2007). A key element of formative assessment is the use of feedback

to feed forward and help students improve their performance over time by

reflecting on their learning processes and goals. According to Hume and Coll,

when using formative assessment, the teacher’s theory of learning is important.

Formative assessment centres mainly on cognitivist views that emphasise goal-

setting, mental planning and the importance of organisation and it increasingly

involves social interaction with peers (Hume and Coll, 2009). Formative

assessment therefore fits very neatly into constructivist designs of teaching,

particularly the areas of experiential and social learning outlined earlier. In

formative assessment, teachers play a facilitator role to help students manage

their own learning processes and they do this through the provision of active

and engaging learning activities which typically involve open-ended problem-

solving and the need for creativity and the use of a variety of assessment

methods. However, it is vitally important when employing a formative

assessment strategy not to focus on assessment procedures and practices or

become too prescriptive and virtually ‘coach’ students to help them meet

assessment criteria. It is important to keep focused on learning as the main

purpose rather than compliance with procedures. Formative assessment is much

more than a set of procedures as it takes a relational view of learning. Miller

and Lavin argue that this requires us to “consider the interaction between all

elements in the learning situation” (Miller and Lavin, 2007). Opinion is

divided on whether formative assessment can sit comfortably alongside

situations in which teachers have to make final accreditation judgements for

qualifications i.e. high stakes summative assessment. Torrance and Pryor

differentiate between convergent and divergent formative assessment.

Convergent formative assessment tends to emphasise a linear view of the

curriculum and assumes a relatively passive role for the student. In contrast, in

32

divergent formative assessment there is an emphasis “on the teacher finding out

how students think, rather than concentrating on whether they are ‘right’ or not.

Importantly, this type of formative assessment usually takes place and is a view

of learning where students work together to create or construct new ideas. It

allows students a greater say, both in the nature of their goals and their

progression towards them. In this way the links between divergent formative

assessment and experiential and social learning are clear. Also, the link

between this type of assessment and the move towards greater student

autonomy become evident” (Torrance and Pryor, 2007).

However, for formative assessment to be successful, tasks have to be justified

in terms of the learning aims that they serve and can only work well if

opportunities for students to communicate their evolving understanding are

built into the planning. We need to get a clearer understanding of the student’s

thinking rather than steer them towards the expected answer. If we don’t do

this, students get the message that they are not required to think about their own

answers and sometimes play a guessing game and try to work out what the

teacher expects to see or hear. A key element of formative assessment is

feedback that helps students to improve.

This element has its dangers as it can lead to students being more dependent on

their tutors rather than less. Clarity in assessment procedures are important but,

according to Torrance, this has also “underpinned the widespread use of

coaching, practice and provision of formative feedback to boost individual and

institutional achievement” (Torrance, 2007). The clearer the task of how to

achieve a grade or award becomes and the more detailed assistance given by

tutors and assessors, the more likely it is that candidates are to succeed. Too

much clarity is in danger of removing the challenge of learning and reducing

the quality and validity of outcomes achieved. When this happens assessment

procedures completely dominate the learning experience and compliance with

criteria comes to replace learning. Torrance argues that achievement is thus

routinely defined in narrow terms i.e. that of securing the evidence and grades

necessary to achieve an award. This may not necessarily mean achieving the

highest grades available nor the depth of knowledge and skill needed for

competent practice e.g. it may mean the minimum effort needed to pass.

At present it could be said that teachers are prone to spoon-feeding students in

Higher Education (and indeed at other levels of education in the UK) when it

comes to assessment. Students and teachers tend to focus on the pursuit of

33

grades and how to achieve the best grade possible. Students are allowed to draft

and redraft assignments and often receive feedback on strengths and

weaknesses and what needs to be done to improve their grade. Torrance states

that “none of this support, even exam coaching, is necessarily inappropriate or

unfair, in and of itself. Such practices are at the heart of professional

judgements about the performance/competence interface which tutors and

assessors must make” (Torrance, 2007). This behaviour is perhaps

understandable in the context of results driven accountability that all HEIs face

but can raise issues of equality and fairness. However the approach can be

detrimental to learning and to enabling students to become independent

learners. It really depends on the support culture and the pedagogical

relationship between students and teachers that exists in the institution. As

teachers, we need to ensure that we do not make learning objectives and

teaching processes so explicit that we effectively ‘dumb down’ the learning

process and call into question the validity and ‘worthwhileness’ of the

outcomes students achieve. Assessment is most effective when its purpose is

clear and where students can use the feedback from it in further work. Balla and

Boyle state that good practice in assessment of student performance is

associated with selection of the method “which matches the purpose of the

assessment, the properties or characteristics being assessed and the objectives

(intended outcomes) of instruction” (Balla and Boyle, 1994). Teachers also

have to maintain the standards expected by the institution and the discipline so

that the quality of graduates does not diminish. To do that we need to have

confidence in measurements and in the qualitative information we use to

indicate a student’s level of performance. A degree programme is designed to

equip students to learn for the long term, “to pave the way for a lifetime of

learning where they will encounter little or no formal assessment or formal

instruction in the same way again” (Boud and Falchikov, 2007). So we need to

ensure that the correct attributes, skills and knowledge are taught and then

assessed appropriately. We also need to maintain a balance in terms of the level

of support provided to students so as not to impede increasing learner

autonomy.

In the following sections I focus on a variety of current practices for assessing

teamwork and methods that we might use to determine programming and

software engineering competency. This review also includes an overview of the

assessment criteria that can be derived from quality standards used in HE and

34

from the accrediting bodies of the computing industry. It is important to get an

overview of current practice in these areas to inform the evaluation of the

assessment regime in the SETP at Newcastle.

2.6 Assessing Teamwork

Teamwork assignments have become the norm in most HEI undergraduate

programmes for the sound pedagogical reason that university education is not

just about developing what people know and understand in isolation but about

learning from and with others, for the benefit of society. Teamworking helps

students “shift away from simple academic achievement to much broader goals

– preparing them for their working lives.” (Leik and Wyvil, 1996). Leik and

Wyvil (1996), outline five benefits for students who work and are assessed in

small groups (teams), these are:

 Students gain insight into group dynamics;

 Group assessments allow for the development of more comprehensive

assignments than is possible for individual assignments;

 Group assessments develop students’ interpersonal skills;

 Students are exposed to other points of view;

 Students are prepared for the real world.

(Source: Leik and Wyvil, 1996)

Other educational benefits of students working in groups are well-recognised.

These include:

 Studying collaboratively has been shown to directly enhance learning;

 Employers value the teamwork and other generic skills that teamwork

may help to develop;

 Teamwork enhances student understanding, students can learn from

each other and benefit from activities that require them to communicate

and discuss their ideas and knowledge;

 Teamwork provides an opportunity for students to clarify and refine

their understanding of concepts through discussion and rehearsal with

peers;

 Working with a team and for the benefit of the team motivates some

students;

35

 Team assessment helps some students develop a sense of responsibility.

(Source: James et al. 2002).

However, group/team assessment makes students uncomfortable in general,

especially if the assignment marks will have an effect on the classification of

their degree at the end of their studies. With any assessment, the mark given is

the final interpretation of learning achievement but often associated with this

mark is the assumption, somewhat tacit, that if a student has performed well

and achieved a high personal score, they have been highly engaged in the

teamwork process and this level of engagement has contributed to their success

(James et al. 2002). Teamwork can be a challenging way to learn because it

requires the student not only to engage with the material but to work together

with others to produce something that would not be possible to produce on their

own. The task requires that they delegate and share tasks and therefore they

share the responsibility for the quality of the work that is produced. Students

are often sceptical about the abilities of some team members to produce work

that meets their own personal standards and expectations. Students who have

performed well in their studies up until the point of a team assignment are often

the most reluctant to rely on others to produce the work needed to achieve the

level of marks they may be used to receiving or feel they deserve.

Teamwork can also be difficult to assess because group learning cannot be

‘captured’ or measured as easily or in the same way as individual learning can,

i.e. by the production of an assignment or body of work submitted by an

individual. Teachers have to generate a summative mark that fairly represents

the effort each student has put into the team activity and the level of success

they have achieved, based on the expected standard for their level of study.

However, “converting a student’s contribution on a group task into a numeric

grade is a complicated and problematic task” (Leik and Wyvil, 1996). It can be

difficult to determine exactly what each student in a team has contributed to the

products the team submit at the end of the activity. This is especially true if the

activity takes place during more than one instance or over a long period of time.

Often team activity on longer-term projects takes place outside of normal

classroom sessions, away from the observation of the teacher. This lack of

observation means it can be very difficult to determine if all team members are

contributing effectively and equally to the team effort and the products/work

submitted. Because of this lack of continuous observation, assessing individual

36

performance in teamwork fairly and accurately means we often need to

measure the effectiveness of the team process in some way, as well as the

quality of the product/s delivered at the end of the learning activity. To do this

teachers rely on self-reporting from teams, often via a form of peer and/or self-

assessment.

2.6.1 Using Peer Assessment

Peer assessment involves students evaluating each other’s performance and

contribution to a team task, against a set of agreed performance criteria. A peer

assessment process benefits teachers as it provides an inside view into the parts

of a team’s process that are often not possible to be observed by the teacher.

This makes team and individual effort easier to understand and assess, both

formatively and in a summative manner. It provides a clearer picture than any

tangible assessment product can of how the team works together and shares

responsibilities for tasks (Linn et al., 1975). It also helps to increase teacher

understanding of the team’s approach to the task and their shared understanding

of what is expected from them. Thus it helps teachers clarify if there are any

misunderstandings or gaps in students’ knowledge about taught course material

or standards and to understand the assumptions that students make about the

work they are doing (Topping, 2009). Some of the benefits of peer assessment

to the student include being able to reflect on their own role in the team’s

performance and compare it to the contribution and effort of their teammates.

This enhances the student’s learning about the material and their understanding

about different standards and ways of measuring performance and contribution.

It also enhances their understanding of themselves in terms of their actions,

attitudes and their strengths and weaknesses in team work and in the

disciplinary work they are undertaking (Race, 2005). Peer assessment allows

the student to receive feedback on their performance, from colleagues in the

team who have worked closely with them, rather than from the teacher who is

always an external observer and assessor. Peer assessment skills are valuable to

students because they are transferable to the workplace e.g. when reviewing

their own annual performance or that of a project team they are part of or are

leading. Peer assessment and working in groups also allows students to free

themselves from dependence on the authority of the teacher (Falchikov, 1995).

However, peer assessment is not always effective and can sometimes even

37

backfire and detract from student learning and the aforementioned benefits of

teamwork. Often the reasons peer assessment is not effective are based around

three issues:

 Lack of explanation of the assessment criteria or the purpose of peer

assessment;

 Not allowing students to practise peer assessment before they undertake

it for real;

 Selecting a peer assessment method that is inappropriate to the task or

too complex for students to understand.

Freeman et al. (2006) outline that we need to address these design and support

issues in peer assessment if they are to allow students to improve their ability to

make judgments on what constitutes good teamwork. We need to engage the

students with the assessment criteria, the assessment process and with giving

and receiving feedback. This will help students to understand the assessment

criteria and how they should be applied. Leik and Wyvil outline several

methods for assessing group contributions that are used in HE today (Leik and

Wyvil, 1996) and these are outlined in the following sections.

Method 1: Multiplication of Group Mark by Individual Weighting Factor.

This method is based around the allocation of a group mark by the tutor to the

work produced by the group and manipulation of this mark to derive a mark for

individuals in the group, i.e.:

Individual student’s mark = Peer assessment factor × Group mark

The peer assessment factor allows for a percentage of the group mark to be

given to every group member and the rest of a student’s marks to reflect the

individual contribution made by that student. Students assess themselves as

well as their peers. This is similar to what currently happens in the SETP.

Goldfinch adopted a similar form of peer assessment. In this interpretation

students are presented with a form (figure 4) and asked to grade their peers

using the following rating scheme:

 A mark of 3 for better than most of the group in this respect

 A mark of 2 for about average for this group in this respect

 A mark of 1 for not as good as most of the group in this respect

 A mark of 0 for no help at all in this respect

38

 A mark of -1 if the individual was a hindrance to the group in this

respect

Source: Goldfinch, 1994)

Write the names of the other group members

in the blank boxes on this row:

Level of enthusiasm/ participation

Suggesting ideas

Understanding what was required

Helping the group to function well as a team

Organising the group and ensuring things get

done

Performing tasks efficiently

Figure 4: Goldfinch 1994 Peer Assessment Form

(Source: Goldfinch, 1994)

Conway et al. (1993) used a variant of Goldfinch’s method that was more task-

related but their grid does not include any self-assessment and does not

attribute marks alongside the rating scheme. This variation can be seen in

Figure 5. The rating scheme or marking criteria used by Conway et al. were as

follows:

 Did not contribute in this way;

 Willing but not very successful;

 Average;

 Above average;

 Outstanding.

(Source: Conway et al., 1993)

Group members’ names

(a) Literature search

(b) Analysis of literature

(c) Writing a report

(d) Group presentation

Figure 5: Peer Assessment form used by Conway et al. 1993

(Source: Conway et al., 1993)

39

This method is actually very similar to the Contribution Matrices used in the

SETP module at Newcastle (as outlined in Chapter 3). The difference is that the

matrix requires students to attribute a contribution weighting in Conway et al.’s

version, whereas the Contribution Matrices in SETP ask for a description of

contribution type and we do not attribute a numerical value to these.

Method 2: Distribution of a Pool of Marks

This method allows students to split up a group mark as they see fit e.g. if a

group is given 60% as a group and the group has three members i.e. 60 x 3,

they may decide to allocate it as follows: student 1 gets 70% of this mark,

student 2 gets 40% of this mark and student 3 gets 70%. The students may

agree the criteria for distribution beforehand or not. Unless criteria are specified

for the distribution of marks, this becomes a more ‘holistic’ form of peer

assessment – i.e. students are using their judgment to arrive at an overall figure

for the contribution of their peers rather than breaking the assessment criteria

down into categories. A variation of this method was used in the School of

Computing & Mathematics at the University of Huddersfield (Leik and Wyvil,

1996). In this new derivation, each student distributed the group grade

individually as they saw fit and the results were averaged by the teacher to

derive the overall individual result for each student.

Method 3: Group Mark Plus or Minus Contribution Mark

Another method outlined by Leik and Wyvil, (1996) is one where group

members peer assess one another according to certain group working tasks and

record whether the member’s contribution was major, average or small. These

evaluations are then converted into numbers as the example shows in figure 6.

In this way it is possible to attach different importance weightings to the group

work aspects e.g. report writing, presentations, coding, leadership etc. So a

group member who makes a strong contribution in all areas would receive an

average rating of zero and receive the group mark. A member who made little

contribution in all areas would have 20 marks deducted from the group mark.

The number of criteria can be varied, as can the associated penalties.

40

Figure 6: Method 3 matrix (Source: Leik and Wyvil 1996)

A variation of this method gives an average contribution a zero mark, a below

average contribution receives a negative mark (-1 or -2) and an above average

contribution receives a positive mark (+1 or +2). These are then added to the

group mark to give an individual mark. However Leik points out that “the

average of the moderated mark must equal the group mark to avoid everyone

marking everyone else up” (Leik and Wyvil, 1996). This method is interesting

and might be useful for the Newcastle Computing Science SETP in the future

because it allows the teacher to specify a range of contribution terms for

students to use (as in those outlined by Conway et al. in Method 2) which can

then be converted into numerical values for summative assessment. It is

important though that students are clear that a value of 0 is not a negative

evaluation of their performance.

Method 4 – Separation of Process and Product

Method 4 divides the assessment of process and product for team projects,

where a tutor or expert performs assessment of the product and the students

themselves using peer and self-assessment perform assessment of the team

process. In this method, which was outlined by Falchikov in 1988, peer

assessment is performed using a questionnaire that analyses the group process

and student performance in two areas: task functions and group-maintenance

functions (Falchikov, 1988). Task functions include assigning roles performed

during each task based on student behaviour e.g. Information and Opinion

Giver, Information and Opinion Seeker, Starter, Direction Giver, Coordinator,

 Major Contribution Some Contribution Little

Contribution

Leadership & direction 0 -1 -2

Organisation &

management

0 -1 -2

Ideas & suggestions 0 -1 -2

Data collection 0 -2 -4

41

Diagnoser, Feasibility Tester and Evaluator. ‘Group Maintenance Functions’

include Encourager of Participation, Harmoniser and Compromiser, Tension

Reliever, Communication Helper, Process Observer, Standard Setter, Active

Listener and Trust Builder. Each group member then allocates a High, Medium

or Low rating to themselves and their peers for each of these ‘functions’ This

method is different from Methods 1 and 2 in that the mark awarded for the

process is independent of the mark awarded for the product. This method might

not be very practical for a SETP as there are a lot of roles that would require

clear explanation to avoid misunderstanding. Students might also confuse the

‘roles’ here with the Software Engineering Roles they take in their team.

However, the idea of adding professional behaviours to the list of criteria for

assessment is one that could be transferred.

Method 5 – Equally Shared Mark with Exceptional Tutor Intervention

In Method 5 all group members receive the group grade, unless there is a

problem with a group member, which results in the tutor being approached and

made aware of the problem. Students are encouraged to write comments about

the group process and the tutor reserves the right to penalise a group member

whose contribution is seen to be defective. The tutor decides the penalty. Leik

and Wyvil point out that an alternative is for the tutor to call a meeting and

negotiate a distribution of marks within the group (Leik and Wyvil, 1996). This

latter process is time-consuming and requires good negotiating skills on the part

of the tutor. In the Newcastle Computing Science SETP students write reports

about the group process at the end of the module. If problems occur with a

group member, students usually approach the module leader and ask for advice

to try and fix the problem. It has been rare for the module leader to intervene in

peer assessment cases but it has happened and agreement has been reached after

discussion with the team and the individual concerned.

In Leik and Wyvil’s study students carried out peer assessment using both the

holistic and category-based peer assessment methods highlighted here. Holistic

methods assign a mark or grade after reviewing performance from a ‘global’

perspective whereas category-based is assessment based on a set of categories

(outlined by the teachers in this case).

The holistic methods (Methods 5 and 2) led to a larger percentage of group

members awarding equal grades to each other, than the category-based

approach. It also led to greater differences within the groups between the mark

42

of the best performer and the student awarded the lowest grade. Leik and Wyvil

concluded that holistic peer assessment supports the goal of fair measurement

of an individual’s contribution better than category-based assessment, in terms

of reaching a summative mark, because it focuses more on actual behaviour and

contribution rather than focusing on attributes and skills as in category-based

assessment. Their study also showed that category-based assessment is best

used for formative assessment purposes, as it is qualitative. They suggest that if

possible, both approaches could be used and that it is beneficial to allow

students to have input into the development of categories for the formative

assessment portion (Leik and Wyvil, 2001).

This section has highlighted the important learning benefits of working in

teams. Team work allows students not only to gain insight into how a team

might work in practice, in the world of work, but also to the industry and

university expectations and standards within their discipline and community of

professional practice. It has also highlighted that assessing the contribution of

individuals in teams fairly can be a difficult task. Team marks are often a bone

of contention for students, especially those who view themselves as high

performers. Team working can be difficult for those students who lack

confidence in their skills. Often when such students are placed in teams, they

feel pressured by peers to perform and they are perhaps not as strong as other

members of the team. This pressure can be a good thing as it often motivates

students to work hard but can also cause some to give up easily and let the

stronger students take the lead and the responsibility for major parts of the task.

This section has also introduced some peer assessment methods that are

currently used in higher education. Peer and self-assessment is an important

element in our drive to engage students more with their learning, and to help

them to become more autonomous and critically reflective about their own

learning and performance. It allows students to reflect on their own personal

skills development and to understand the purpose of assessment design and

assessment criteria. Student worries about team assessment and the

recommendations from Leik and Wyvil’s study are an important point of

reference for the current work as they are elements that need to be taken into

consideration when reviewing the team structures and peer assessment methods

used in the SETP at Newcastle.

43

2.7 Assessing Software Engineering Competency

So far this chapter has reflected on generic concepts of learning, teaching and

assessment in Higher Education in the UK. To ensure that the current work

considers all pertinent aspects of assessment for reviewing our SETP, we need

to look specifically at how Software Engineering Competency is currently

assessed within academic institutions and within discipline communities and

industry.

2.7.1 Determining Competence

The definition of the term Competence differs between disciplines and

institutions and is often associated more with the human resources function in

industry where core competencies are defined for roles and job descriptions.

Modern competency modelling definitions and approaches stem from studies

carried out in the Aviation Psychology program of the United States Air Force

during World War II. Colonel John Flanagan had to try and improve military

flight training and bombing mission effectiveness. He asked his trainees and

veterans to describe their activities exactly in terms of what they had done

successfully and unsuccessfully and later he formalised this process into the

Critical Incident Technique, which is a method of identifying critical job

requirements. This technique defines a set of behaviours that contribute to the

success or failure of individuals in specific situations. Flanagan developed this

technique because he found “Too often, statements regarding job requirements

are merely lists of all the desirable traits of human beings. These are practically

no help in selecting, classifying or training individuals for specific jobs”

(Flanagan, 1954). The modern-day core competence approach now outlines

what is important for collective learning in an organisation and recognises “the

complex interaction of people, skills and technologies that drives performance

and addresses the importance of learning” (Delamare LeDeist and Winterton,

2005). However, Delamare LeDeist and Winterton stress that a rigid adherence

to a generic list of competencies can undermine success. Boon et al. view

competency as a “useful term, bridging the gap between education and job

requirements” (Boon et al., 2002). Competence, in general, is a term that can be

used to describe what people need to be able to do in employment, tasks that

people do and personal traits and characteristics. We may not be able to

identify a universally applicable set of competencies and getting agreement on

44

critical competencies can be difficult if we are to concentrate on competency

for the purposes of a course or level of study. Most HE providers would view a

pass mark in exams and coursework as sufficient evidence of reaching the

required level of competence in a module of study but the issue for academics

teaching a course of study is to identify the complex set of competencies that

are important and therefore must be demonstrated by the student. It is then

necessary to identify what needs to be assessed at relevant stages within the

unit of study and how that assessment will take place. Jeris and Johnson argue

that skill level is characteristic not only of a person but of a context and that

competence is a function of the context in which it is applied (Jeris and

Johnson, 2004). Dreyfus and Dreyfus agree with the idea that competencies are

difficult to view solely as generic, stating that “attributes used in accomplishing

work are bound to the work context, regardless of the level of competence

attained and that in the work situations individuals acquire situational or

context-dependent knowledge and skills” (Dreyfus and Dreyfus, 1986).

Interestingly, some of the early literature on competency development in the

United States focuses on a behavioural view of competency i.e. competency

captures skills and dispositions beyond cognitive ability such as self-awareness,

self-regulation and social skills which are behavioural, and therefore these

skills can be learned through training and development. Boyatzis (1982) studied

2,000 managers holding 41 different positions in 12 organisations and proposed

an integrated model of managerial competence, giving competency a broader

definition including knowledge and skills alongside behavioural characteristics.

Competency models are now widely used to align individual capabilities with

the core competences required in an organisation.

One of the key research objectives of this current study (as outlined in Chapter

1) is to determine if programming competency is a primary predictor of team or

individual success in the SETP module. To do this it is therefore important to

determine what constitutes competency in programming, in industry and

academic Computing Science and in Software Engineering programmes. This

will involve determining if there is a common set of competencies or a

competency model that is used and/or if these are currently appropriate for the

module. Only then can I determine if the assessment methods and design

adequately capture the skills, knowledge and behavioural characteristics that

are appropriate to the level of study (FHEQ 5) within the Computing Science

45

programme at Newcastle and in the wider aim of preparing students to work in

the Software Engineering industry.

2.7.2 Competency in Programming

When trying to define competency in terms of programming or the

competencies that a programmer should have ‘mastered’, it can be difficult.

Most programmers will have their limitations e.g. a limitation might be that

they do not know the full power of the language or they are unaware of certain

algorithms or may be unable to grasp a sufficiently large portion of the problem

at one time. However, when a programmer is writing a program or learning to

program, in Weinberg’s view, their learning takes place “in the context of a

particular machine, a particular programming language, in a particular working

environment and a particular set of historical events that determine not just the

form of the code but also what the code does” (Weinberg, 1971). This view of

judging competence, in terms of programming context, fits well with those of

Jeris and Johnson and Dreyfus and Dreyfus mentioned in the previous section.

If we are to attempt to measure programmer performance and competency

levels then we need to answer the following question - what measurements or

criteria can we use to determine if one programmer is better than another? The

answer to the question, according to Weinberg, is not as simple as we might

wish because programming is “complex human behaviour” (Weinberg, 1971).

Some assessors/evaluators might discuss years of experience or number of

projects completed as indicators of programming competency but neither of

these factors could be deemed to accurately describe how ‘good’ a programmer

is at programming. One of the reasons for this is that, in real projects,

programmers rarely program on their own. It can therefore be difficult to

distinguish their particular or individual effort or impact upon a project (a

difficulty replicated in assessing all team projects). Any measurement or

criterion for assessment in Higher Education needs to take the problem context

and working environment into account. It is difficult also to measure the

‘goodness’ of individual programs as there is rarely one solution to the problem

being solved and problems tend to vary in terms of difficulty level. We can

make comparisons of such elements as “scope of language covered, reliability

of object code and execution-time monitoring” (Weinberg, 1971), however it is

still very difficult to determine absolutely if one program is ‘better’ than

46

another in all aspects. More often therefore, we tend to evaluate programs and

thus programmers, not in comparison to one another, “but with an holistic view

of the situation in which their system or programs are being developed”

(Weinberg, 1971).

In Higher Education, determining competency in a programming module is

subject to the assessment of abilities, skills and knowledge that are deemed

appropriate for the level of the module and the assessment regime in which the

module takes place. The criteria for marking vary across programmes and

programme levels in all HEIs. In first year modules assessment criteria are, of

course, determined as measuring programming competency at a less advanced

level than that of second year level and so on. However, the skills, abilities and

knowledge which are assessed are fairly concrete and technical i.e. we tend to

focus on knowledge and application of programming constructs that have been

taught in class that the student must use to design programs that solve specific

problems they have been given. There is however uniformly across all HEIs in

the UK, little or no focus on teaching, learning and assessing programmer

‘behaviour’ or ‘soft skills’ such as planning, scheduling and managing

deadlines. These skills tend to be associated more with other modules, such as

Project Management, that are taught later than FHEQ Level 4 or 5 in most

undergraduate Computing Science (CS) degree programmes. This is certainly

the case at Newcastle. Programming is a creative process and this creativity

often involves an individual setting their mind, skill and effort towards the

solution of a problem. A lot of programmers prefer to work alone especially

when designing something new. Most undergraduate CS programmes also

begin teaching programming to the individual and focusing on an individual’s

skill and knowledge development. However, most software projects in industry

are large projects that cannot be programmed by an individual on their own.

Projects in industry are generally made up of teams of programmers and so it

becomes necessary to teach students how to work together on larger scale

program and system development throughout their programme, before they

leave university i.e. to teach them Software Engineering.

2.7.3 Programming in Teams

Software Engineering is defined as “the application of a systematic, disciplined,

quantifiable approach to the development, operation and maintenance of

47

software, that is, the application of engineering to software” (IEEE Standard

Glossary of Software Engineering Terminology, IEEE610 1990) (SE2004). It

concerns the development of large programs and is otherwise known as

“Programming in the Large” (DeRemer and Kron, 1976). DeRemer and Kron

made a distinction between programming-in-the-large and programming-in-the-

small, although the borderline between large and small is not sharply defined.

Typically a program of 100 lines is small and a program of 50,000 lines is

considered large but generally “programming in the large” refers to a multi-

person job that spans more than half a year.

According to Weinberg, the worst way to run a programming project is “to hire

a horde of trainees and put them to work under pressure and without

supervision although this is the most common practice today” (Weinberg,

1971). Aspects of this statement very much describe undergraduate team

projects in software engineering. Students who have never experienced

teamwork or team programming situations are put together, under pressure, to

develop a software system. The one redeeming thing in contrast to this

statement is that teachers do tend to supervise student teams quite closely.

Weinberg also maintains that there is a complementary relationship between

ability and schedule and we could almost produce a programme with less talent

“if we are willing to allow a stretching of the schedule and if we have not

dropped below the minimum competence” (Weinberg, 1971). Weinberg

therefore could be said to define a form of minimum competency within a

programming team as the ability to both work to tight deadlines and deliver the

system, but his interpretation of competency is not precise enough to determine

the quality of the system or to measure/assess an individual programmer’s skill

levels. When designing team projects in the Software Engineering curriculum

at tertiary level, university teachers tend to base assessment criteria on a range

of different standards and expectations including those specified for the

discipline by course-accrediting bodies within industry and academic discipline

communities and those specified by quality assurance bodies within UK Higher

Education. Added to this, teachers must bear in mind other skills and attributes

that are specified as part of all degrees by their institution e.g. at Newcastle we

have the Graduate Skills Framework (Newcastle, 2013). In the following

sections I will discuss these in broad terms and then use them to evaluate the

SETP module outlined in the case study in Chapter 3.

48

2.7.4 Accreditation, Frameworks and Standards

The Software Engineering curriculum at most HEIs and its assessment are

influenced by accrediting bodies and professional organisations and of course

national and inter-national quality standards for the discipline at tertiary level,

such as those defined by the Quality Assurance Agency in the UK (QAA), The

British Computer Society (BCS), The Institute of Electrical and Electronics

Engineers (IEEE),The Association for Computing Machinery (ACM) and the

IET (Institute of Engineering and Technology).

In practice, according to these standards a software engineer analyses user

needs and then designs, tests and develops software to meet those needs. The

process involves tasks such as choosing technologies, designing the

architecture for the system, creating algorithms, programming, testing,

maintaining and evolving an organisation’s computer systems. Among the

skills that are needed is an ability to problem-solve, to communicate to a

variety of audiences and to work well in a team and to pay attention to detail.

Software engineers need to commit to life-long learning to keep their technical

skills current and relevant because technologies change rapidly and business

methods and social needs tend to change over time. Communication skills,

leadership skills and team-working skills also need to be updated periodically

as software engineering is “a social process as well as a technical one and a

failure to recognise the issues involved in social interaction many result in a

compromise on the technical quality of a project” (Layzell et al., 2000). The

nature of the work of software engineers means that they have to be adaptable

and flexible, learn on the job, cope well with solving problems and manage

many things going on at once. Professional practice is generally “dominated by

team collaboration” (Brodie et al., 2008). Programmers need to be able to work

in teams, often in multidisciplinary teams, and it is in this arena that

interpersonal or ‘soft skills’ as well as technical skills are most needed. The

Association for Graduate Recruitment in the UK outlines the difficulty some

firms have in recruiting students with suitable ‘soft skills’ as well as academic

ability (AGR, 2014). It seems that these days employers expect more from

students than just academic knowledge and skills. Many focus on additional

qualities such as their proactivity in gaining ‘extra’ skills during their studies

and in terms of demonstrating the skills they already have (Ford, 2007). Joseph

et al.(2010) also support the need for students to acquire and demonstrate a

49

range of skills beyond the core curriculum and recognises that “there is a

growing (and gnawing) awareness that technical skills alone are insufficient for

success in IT, particularly in today’s dynamic, distributed and complex

workplace. Companies are exploring outsourcing and offshoring to become

more flexible and contain costs while strategically leveraging IT. Consequently,

IT professionals must acquire a broader set of skills beyond their technical

skills” (Joseph et al., 2010). These broader managerial or interpersonal skills

are generically labelled “soft skills” or, as Joseph et al. define them – “practical

intelligence”.

Teaching emphasis and provision for the subject of Software Engineering

ranges across HEIs, from whole programmes on Software Engineering to

elective streams in single honours Computer Science programmes and single

modules in Computing Science degrees. Universities that offer whole

programmes or single modules/streams for Software Engineering (both in the

UK and abroad) generally recognise the need for students to develop skills and

attributes that will ensure they cope well with the demands of the rapidly-

changing environments and diverse teams that are needed in today’s software

engineering industry. A large number of universities address this need by

providing some form of team assignment that requires the development of a

software product and its supporting documentation. Typically these projects

are also designed to teach students about transferable skills such as team

working, leadership and communication, as well as help them to learn more

about the particulars that characterise software development in the modern

working environment

Some examples of team projects as an aspect of Software Engineering

provision from HEIs in the UK include Birmingham University, who run a

four-year MEng Software Engineering degree with team projects in the first

and second year (Birmingham, 2010); York University who run a year-long 30

credit Software Project module during the second year of its BSc. (Hons.)

Computer Science degree (York, 2010) and Queen Mary University of London,

who offer a second year Software Engineering module as part of the BSc.

Computer Science (G400) degree, where the emphasis is on “large-scale

software engineering teamwork, covering design, systems analysis and team

skills required by industry” (Queen Mary, 2010). All of these courses on

Software Engineering are subject to external evaluation of their teaching quality

and fitness for purpose by industrial and academic organisations in the

50

Computer Science disciplinary community as well as Higher Education quality

inspections in the UK. Some of the most common and relevant standards and

guidelines used to assess Software Engineering programmes are outlined in the

following section.

2.7.5 QAA: Software Engineering-specific Skills and Abilities

The Quality Assurance Agency (QAA) Code of Practice and Subject

Benchmarks for Computing inform assessment practices in all UK HE

institutions that offer degrees in Computer Science. Subject benchmark

statements are an “important external source of reference for higher education

institutions. They provide general guidance for articulating learning outcomes

associated with the programme but are not a specification of a detailed

curriculum in the subject” (QAA, 2000; QAA, 2006; QAA, 2007). The

Benchmark statements from the QAA describe the nature and characteristics of

programmes in a specific subject and outline the general expectations about the

standards for the award of qualifications at a given level. Standards outlined in

the documents reflect practice of Computing Science in the UK (and hence

Software Engineering as part of that practice) and enable the Learning

Outcomes for a particular programme to be reviewed and evaluated against

agreed general expectations about standards on a national level.

The QAA standards were drawn up by a group of subject specialists acting on

behalf of the academic community and address five major topics – curricular

issues, course design, learning, teaching and assessment and finally the

benchmark standards themselves. They capture the “intellectual and practical

attributes that ought to be developed by study of the subject of Computing to

honours degree level and aim to reflect Computing as practised within the UK”,

(QAA, 2000; QAA, 2006; QAA 2007).

Computing is such a fast paced, rapidly changing discipline that frequent

updating of these standards is necessary. Both the QAA 2000 and 2007

documents outline standards for Computing Science course design to ensure

“an appropriate balance of theory and practice, including methodologies that

ensure students will adopt a disciplined approach to their tasks” but the subject

benchmark does not “prescribe any core of material guaranteed to be present in

all courses”. It does expect that the course should “be up to date in terms of

developments in computing and current thinking on curriculum development

51

and delivery and it should take appropriate account of issues such as

employability of its graduates and the needs of employers” (Section 4,

Principles of Course Design, QAA 2007).

Part of the knowledge that the QAA standard states Computing Science

students should have is “how different teams can be structured” and

“approaches to group activity”. This description is brief and quite generic in

nature and is not directly or specifically related in the document to the

curriculum area of Software Engineering. The document specifies that in

practical coursework there should be “an opportunity for students to gain

experience of working in groups and as an individual” and that the assessment

strategy associated with the course be “clearly documented and will allow the

Higher Education Institution (HEI) to show that graduating students meet the

criteria set in this subject benchmark statement” (QAA, 2007).

Computing Science students and hence, most students studying Software

Engineering, are expected to develop a wide range of abilities and skills and

these are divided into three broad categories in the QAA documents. The

categories are:

1. Computing-related cognitive abilities and skills i.e. abilities and

skills related to cognitive tasks;

2. Computing-related practical skills;

3. Additional transferable abilities and skills that may be developed in

the context of computing but which are of a general nature and

applicable in many other contexts.

(Source: QAA, 2007).

The nature of the additional transferable skills mentioned in Category 3 is not

specified. Further to this, the document states that “Cognitive, practical and

generic skills need to be placed in the context of the programme of study as

designed by the institution and that “the implicit interplay between these

identified skills both within and across these categories is recognised” (QAA,

2007).

A student of a Software Engineering Single Honours programme is expected to

develop the following practical abilities and skills:

52

1. The ability to specify, design and construct computer-based

systems;

2. The ability to evaluate systems in terms of general quality

attributes and possible trade-offs presented within the given

problem;

3. The ability to recognise any risks or safety aspects that may be

involved in the operation of computing equipment within a given

context;

4. The ability to deploy effectively the tools used for the

construction and documentation of computer applications, with

particular emphasis on understanding the whole process involved

in the effective deployment of computers to solve practical

problems;

5. The ability to operate computing equipment effectively, taking

into account its logical and physical properties.

 (Source: QAA, 2007)

The QAA qualifies the extent to which students should acquire these abilities

and skills as “dependent on the emphasis of individual degree programmes”

where students are expected to deploy these “to a greater and deeper extent than

someone who is merely an interested practitioner” (QAA, 2007). These

statements are quite vague and the document does not offer specific suggestions

as to how these skills and abilities should be taught, developed or assessed. The

QAA specifies additional transferable skills that are expected from all graduates

in Software Engineering and these are:

1. The ability to work as a member of a development team,

recognising the different roles within a team and different ways

of organising teams;

2. The ability to manage one’s own learning and development,

including time management and organisational skills;

3. The recognition of the need for continuing professional

development as part of lifelong learning.

(Source: QAA, 2007)

53

These skills are also reiterated in the Higher Education Academy Student

Employability Profiles (HEA, 2007).

2.7.6 British Computer Society: Skills and Abilities for Computing Science

Many HEIs seek British Computer Society (BCS) accreditation of their

programmes as a form of industrial verification of their educational and

practical standards. The BCS undertakes a programme of visits to HEIs to

consider their programmes for accreditation leading to CITP, CEng, or CSci

status. The society supports the benchmark statements established by the QAA

in that they are “broad statements about standards for the awards of honours

and Masters Degrees and “embrace the BCS definitions” of these

qualifications. It views the undergraduate subject benchmark as an “excellent

framework that the society and higher education can use to support the

accreditations process”. The Society also looks at a range of issues relating to

the department in which courses are delivered as well as a range of programme-

specific issues as their view is that “The quality of a programme depends not

only on its content, syllabuses and assessment, but also on the environment in

which it is developed, implemented and improved” as it requires evidence that

“students are adequately supported by appropriate learning resources” (BCS,

2014). For a programme to achieve accreditation from the BCS it is expected to

meet the requirements set out in the QAA Computing Benchmark statement for

honours degrees and the Society specifically seeks evidence that the

programme learning outcomes appropriately reflect the abilities and skills

defined in the QAA benchmark statement. The BCS visit HEI Computer

Science Schools in universities in the UK normally every five years to assess

programmes. Their generic guidelines on the quality of programmes are

relevant to the current study, as is their code of conduct (BCS, 2011) because

they can be used as guidelines for designing modules and their assessment and

also to evaluate how effective current assessment practice is in the module at

Newcastle.

2.7.7 Institution of Engineering and Technology: Self-Assessment of

Competency

The Institution of Engineering and Technology (IET) suggests a self-

assessment method for determining competency for engineers who are already

54

working in industry. The IET also accredits some IT/ Computing courses at

third level institutions in the UK (IET, 2014). The IET see no need to define

absolute scales for competency but set measures and definitions that focus on

areas needed for development. The competency categories or degrees of

competency they define are as follows: “Category A - fully competent in the

area; Category B - can demonstrate competence in most elements associated

with the area; Category C - can demonstrate competence in some elements

associated with the area.; Category D - unable to offer any evidence of

competence in the area” (IET, 2014).

The IET also define more specific levels of competency that practitioners can

use to gauge their degree of competency in some aspect of their work and these

can be found in Figure 7.

Whilst these levels are useful, they are vague and open to personal

interpretation. In terms of the current study they express qualities that are

pertinent to the development of behavioural attributes of a professional

software engineer. The difficulty is that these might be difficult to test in any

undergraduate module using typical assignments. However, they could perhaps

be used as a basis to formulate a self-assessment task for students to help them

reflect on their work.

So far in this Chapter the literature on learning and assessment in relation to the

SETP module has been reviewed, including a review of the assessment culture

in Higher Education in the UK and the assessment frameworks and standards

that have influenced its development. No review of the literature that relates to

the current work would be complete without an examination of the curriculum

for Software Engineering as it is from this that all our decisions about the

module teaching, assessment and learning stem. The ACM and IEEE

recommendations for the curricula of Software Engineering are discussed in the

following section.

55

Level 1

 Performs the activity with significant supervision and guidance.

 Performs basic routines and predictable tasks.

 Little or no responsibility or autonomy.

Level 2

 Performs the activity in a range of contexts.

 Supervision is only required in more complex circumstances.

 Some individual responsibility or autonomy.

Level 3

 Performs the activity in some complex and non-routine contexts.

 Significant responsibility and autonomy.

 Can oversee the work of others.

Level 4:

 Performs the activity in a wide range of complex and non-routine contexts.

 Substantial personal autonomy.

 Can develop others in the activity.

Level 5:

 Can take a strategic view.

 Applies a significant range of fundamental principles and complex techniques

across a wide and often unpredictable variety of contexts.

 Wide scope of personal autonomy.

Figure 7: IET Competency Levels (Source: IET, 2014)

2.7.8 Content of Software Engineering Modules

In 1998 The Educational Activities board of the IEEE Computing Society and

the ACM Education Board set up a joint task force to review curriculum

guidelines for undergraduate programmes in Computing Science. The activity

relating to the Software Engineering section of this review was known as the

Computing Curricula Software Engineering (CCSE). They defined a set of

Knowledge Areas that were deemed core to the curricula and matched their

respective learning outcomes to the levels of Bloom’s Taxonomy (Bloom,

1956). The resulting body of knowledge is known as Software Engineering

Education Knowledge (SEEK), (SEEK, 2003). The steering committee stressed

that the core material selected was not a complete curriculum and the learning

outcome levels were not necessarily limited to introductory courses early in an

undergraduate degree programme. Instead, the curricula provide a foundation

for a set of educational modules (or units) that make up the Software

56

Engineering Curriculum. The Knowledge Areas (KAs) they identified as core

were as follows.

 Computing Essentials

 Mathematical and Engineering Fundamentals

 Professional Practice

 Software Modeling and Analysis

 Software Design

 Software Verification and Validation

 Software Evolution

 Software Process

 Software Quality

 Software Management

 Systems and Application Specialties

(Source: SE2004, 2004)

Details of the full content of these Knowledge Areas can be found at (SE2004,

2004). The final draft of the Software Engineering Body of Knowledge was

published in 2004. The document now includes Knowledge Areas such as

Software Engineering Economics (SE2004, 2004).

The document presents a set of high-level characteristics for Software

Engineering graduates and also suggests how the knowledge and skills that are

deemed fundamental to Software Engineering can be taught, including a set of

skills that students should master as well as the knowledge content outlined. In

SE2004 a graduate of an undergraduate Software Engineering programme

should:

1. Show mastery of the software engineering knowledge and skills, and

professional issues necessary to begin practice as a software engineer –

these include ethics, professional conduct and societal needs;

2. Work as an individual and as part of a team to develop and deliver

quality software artefacts;

3. Reconcile conflicting project objectives, finding acceptable

compromises within limitations of cost, time, knowledge, existing

systems, and organizations;

57

4. Design appropriate solutions in one or more application domains using

software engineering approaches that integrate ethical, social, legal, and

economic concerns.

5. Demonstrate an understanding of and apply current theories, models,

and techniques that provide a basis for problem identification and

analysis, software design, development, implementation, verification,

and documentation;

6. Demonstrate an understanding and appreciation for the importance of

negotiation, effective work habits, leadership, and good communication

with stakeholders in a typical software development environment;

7. Learn new models, techniques, and technologies as they emerge and

appreciate the necessity of such continuing professional development.

 (Source: SE2004 Volume – 8/23/2004/15)

Learning outcome 2 is particularly relevant to the SETP at Newcastle as it

further details the level of knowledge a student should have of team work

including “an emphasis on the importance of such matters as a disciplined

approach, the need to adhere to deadlines, communication, and individual as

well as team performance evaluations” (SE2004, 2004). The steering

committee also stresses that there should be a strong real world element to the

work students carry out and that they should experience at least one major

activity during their studies that involves producing a solution for a client.

This section of the literature review is relevant to the current work because it

outlines the external and internal evaluation mechanisms and standards that are

used to evaluate the quality of the teaching and learning in undergraduate

Computing Science and Software Engineering degrees in the UK. These can be

used as a source of comparison to the content and learning design of the SETP.

The SETP is however but one module on the Computing Science degree at

Newcastle and it is important to evaluate the extent to which one module can

encapsulate the learning outcomes, best practice and required content outlined

by these standards. The SE2004 and SEEK Knowledge Areas give a good

starting point for evaluation of the module content in terms of relevance and

breadth of coverage. This document gives a clearer overview of skills and

knowledge that should be part of the teaching, learning and assessment in the

SETP module.

58

Overall the formal standards outlined by accrediting and quality assurance

bodies such as the BCS and QAA and from discipline committees from the

ACM and IEEE are somewhat vague in terms of providing guidance on what

teachers should teach and how they should assess that standards are met.

Whilst this makes standards and frameworks more flexible for HEIs to

implement, it can also make it very difficult to design a whole Software

Engineering curriculum for a degree programme or a single software

engineering module as part of a curriculum, perhaps more so in terms of the

soft skills that are outlined. Testing knowledge is somewhat easier than testing

relevant skills and whether those skill levels have been reached, especially in

terms of soft skills. It can sometimes prove more difficult to design suitable

assessments to capture skill development and learning as well as practical

technical skills and the required body of knowledge.

2.8 Summary

This literature review has shown that we need to take the focus off marks and

onto the learning needed for students to become autonomous learners and

software engineers in the real world as the current focus on degree

classifications and marks does not fit well with our aim to create lifelong

learners (Burgess, 2007). To do this we may need to change current assessment

practice and focus more on the characteristics, behaviours, skills and

knowledge needed to demonstrate competency in such a practical subject as

Software Engineering rather than relying on some judgement of innate ‘ability’

(Black and William, 1998; Dweck, and Leggett, 1988). Designing assessment

schemes to do this is not easy. We need to make students aware of the level of

difficulty involved in their work and how much effort and practice might be

required to achieve a specific level of competence and one way we can do this

is to build time for reflection into our teaching and also via the use of formative

feedback (Kolb, 1984; Torrance, 2007). The literature review has also shown

that students need help in assessing their own existing knowledge and

competence in order to progress and improve and we can do this by scaffolding

learning using taxonomies such as that outlined by Anderson and Krathwohl

(2001). In classes, students need frequent opportunities to perform and receive

suggestions for improvement and at various points they need chances to reflect

on what they have learned, what they still need to know and how to assess

59

themselves and their peers. We need to “forge educationally strong links

between learner needs, learning outcomes, resources, learning and teaching

strategies, assessment criteria and evaluation” (Chickering and Gamson, 1987,

1991). Donnelly and Fitzmaurice, (2005) advocate that to do this, we must

start “within the context of a theoretical framework” as well as adhere to

expected standards outlined by accrediting bodies. However, as teachers, we

also need to identify our own theory of learning and remember that there is no

universal way of learning. We need a broad value system for our theory of

learning and need to consider the learning experience in terms of a student’s

whole programme of study and their prior learning experiences. Teachers need

to formulate their ideas about learners and why the subject matter they are

teaching is important. They need to focus on learning rather than teaching and

factor in ways in which students are able to demonstrate their learning and their

progression towards learning goals. Taxonomies (such as those of Bloom, and

Anderson and Krathwohl) provide frameworks for all intended types and levels

of learning and a basis for designing appropriate and fair assessment tasks.

Examples from the literature of higher education show that learning can often

be neglected because of the distractions of institutional or ‘political’ concerns

about assessment and the increasing pursuit of grades (Boud and Falchikov,

2007; Burgess, 2007). We also need to remedy the fact that assessment is not

always considered an integral part of teaching and learning and that we may

need to review the alignment between the two to improve our expectations of

students and the way we set learning goals (Biggs, 2001; Brown, 2004). The

development or adaptation of an assessment framework is “an act of

scholarship and development” (Imrie, 1995) and that is one of the intentions of

this research. Assessment should be for learning, rather than just the assessment

of performance and good assessment is “an intrinsic part of teaching” which

initiates and manages learning (Imrie, 1995).

In the following chapters, a case study of the SETP Module at Newcastle

University is presented. The assessment methods used are then analysed to

determine their ‘fitness’ for purpose, using both statistical and qualitative

methods, bearing in mind the issues raised in this literature review and in

fulfilment of the research objectives 1, 2 and 3 as outlined in Chapter 1.

60

Chapter 3: Case Study: The Software Engineering

Team Project Module at Newcastle University

3.1 Introduction

This chapter examines the Software Engineering Team Project module (SETP)

at Newcastle University that will be used as a case study for the current

research. It outlines the format of the module and its assessment prior to 2005

and then details the changes made when it became a focus of the CETL project

Active Learning in Computing (CETL ALiC, 2005-2010). The teaching

approach and assessment methods introduced by CETL ALiC are described and

a brief overview of student and staff experiences and feedback, including some

initial work conducted on assessment at Newcastle, is presented. Finally the

results and implications of the feedback and experiences of assessment for the

current research work are discussed.

3.2 Module Design and Pedagogy

Prior to 2005, the Software Engineering module in the School of Computing

Science at Newcastle University was taught in the manner of most

undergraduate modules in the UK, i.e. via a series of lectures and practical

laboratory sessions. The assessment regime for the module was also based on a

typical team project model with the submission and examination of individual

items of coursework from each student for partial fulfilment of the module

assessment criteria and of collaborative work from small teams for the rest of

the module. Pre-requisite modules of study for the module included (and still

include) a combination of programming modules that involve problem solving,

program design and development and data structures and algorithms, with a

focus on Object-Oriented programming techniques. Over the years the module

has evolved to have a strong team-based focus with increased emphasis being

placed on the ‘soft skills’ required for working in a team of developers, as well

as the technical skills needed for large software development projects. One

reason for the more emphasis on soft skills is that the needs of the Software

Engineering discipline itself have changed over time and the module has been

61

adapted to reflect industrial practice more accurately, with a view to helping

increase student employability in a competitive global market. The modern

industrial software engineering process “typically involves participation of

software designers, programmers, end-users and domain experts and is

essentially a team-based activity, involving a wide variety of stakeholders”

(Layzell et al., 2000). Improvements in communication technologies and

economic pragmatism also mean that many software development companies

now find it more efficient to develop their products collaboratively across

different geographical sites. This division of effort allows them to access skills

and expertise across the globe and to take advantage of different time zones to

develop software 24 hours a day. It also allows the industry to save money on

travel and to manage their interests more easily even though they are

distributed around the globe. So, for example, it is possible to manage a project

in India from your desk in the UK and to use communication technologies to

contact your development team. This change in practice necessitated an

additional shift in focus when teaching and learning Software Engineering. Use

of modern communication technologies and the ability to work in a distributed

team are now part of the skill set undergraduate software engineers need to

acquire so that they can be desirable employees upon graduation. Cross-site

software development necessitates consideration of the following issues for

teaching:

- Most cross-site interactions are dependent on technology to facilitate

the collaboration;

- There will likely be time restrictions for communications between

teams and on how often they can work together;

- There may be cultural differences in working practices between the

sites involved in the interactions;

- Working relationships may be more difficult to develop and sustain

than they would if teams were co-located.

For a graduate software engineer to be more employable in the current job

market, it is in their interests not only to have acquired the requisite team-

working and communications skills for working in a modern software

engineering environment, but to have experienced or mastered the ability to

develop software collaboratively under cross-site conditions.

62

3.2.1 Introduction of Cross-Site Development

Active Learning in Computing (ALiC) was a five-year collaborative CETL

(Centre of Excellence in Teaching and Learning) funded by the Higher

Education Funding Council for England (HEFCE) from 2005-2010. The CETL

involved four consortium partners from the discipline of Computing Science

and these were Durham University (project lead), Newcastle University, Leeds

Metropolitan University and the University of Leeds.

The fundamental aim of ALiC was to identify ways of engaging students more

in their learning of computing, through project and team work, and to enable

these students to become more independent learners and more employable.

In 2005, in response to the perceived need for inclusion of cross-site software

development experience in the teaching of Software Engineering, the CETL

ALiC team extended the Software Engineering modules at Durham and

Newcastle to include inter-institutional collaboration between student

development teams. Teams were formed into ‘companies’ with each company

comprising a team of students from Durham University and a team from

Newcastle University (geographically separated by 18 miles). In the academic

year 2005-06 we had 12 companies, in 2006-07 there were 12, in 2007-08 there

were 10 and in 2008-09 there were 12. These companies collaborated over the

course of the academic year to produce a software product and its associated

documentation.

The pedagogical aims of the cross-site collaboration were to give students some

experience of Software Engineering in an industrial context, to make problem

solving more realistic and engaging, to allow staff and students to use and

evaluate various communication technologies for cooperative working, and to

encourage the development of transferable skills.

The intended knowledge outcomes of the respective Software Engineering

modules were, and still are, an understanding of the issues that relate to

planning and the execution of a team-based software development project. The

intended skills outcomes were practical experience in issues such as team

structure, document preparation, project management and the design and

implementation of a large software system, the ability to work as a member of a

team and to fulfil appropriate roles and apply these skills to the project at hand

(Module Outline, 2014). The module, as part of the undergraduate degree

structure at Newcastle, was outlined formally in the module description as

63

having the value of 20 credits (10 ECTS) out of the 120 credits allocated to

Stage 2 (FHEQ Level 5) and involved 12 hours of lectures, 20 practical hours

and 168 hours of private study (200 hours of student study in total). The

practical hours were used for team meetings at Newcastle where teams could

organise the work of the project. The assessment methods were based on 100%

coursework. At Durham the credit weighting of the Software Engineering

module differed in that it was essentially a double credit module (40 credits, 20

ECTS). There were also differences in the number of timetabled lecture and

practical sessions, with Durham having more in-depth lectures on the subject

and also more formally supervised and scheduled laboratory hours in their

timetable to work on the project. Newcastle’s laboratory work for the project

was not supervised but staff members acting as ‘monitors’ attended one hourly

meeting per week for their team/s. Monitors were in attendance to observe the

teams and provide guidance to them throughout the project, if needed. Each

Durham team had a project manager who was a third year Computer Science

student studying a Level 6 Project Management module. These Level 6

students took responsibility for project management for the local Durham team,

making recommendations for the co-ordination and allocation of tasks as well

as being involved in the setting and tracking of internal deadlines. These project

managers also met their teams on a weekly basis.

Lectures focusing on Software Engineering theory took place at Newcastle

during the first 5 weeks of the first semester only and thereafter students were

to meet in their teams and conduct the project work without formal lecture

slots. The initial lectures gave a flavour of Software Engineering as a

discipline and included an overview of Software Lifecycle stages and Process

Models, Project Planning, Team Organisation and Structure, Project

Management, Requirements Elicitation and Analysis, Design, Configuration

Management, and Testing and Debugging.

The necessity for cross-site collaboration to complete the project placed a

strong emphasis on students managing their own teams, communicating with

their colleagues at the partner site, distributing tasks and responsibilities

between the two halves of their company, and planning the project together, all

of which emulate current practice in the software industry. This design also

mapped directly to one of the fundamental goals of ALiC i.e. to introduce a

strong element of independent learning that would allow students to practice

and develop their skills with minimal time spent ‘receiving’ knowledge in a

64

static classroom environment. Cross-site teams had to define an organisational

structure, choose their preferred software design methodology, plan the

software design, estimate the effort needed, consider the schedule for

implementation, and allocate the work fairly between sites. They also needed to

plan for software integration across sites and the testing and final demonstration

of their product. Throughout the whole process teams also had to produce

reports, update module leaders on the status of their project and deal with any

personnel and technical issues that arose during the development process.

Cross-site companies had to arrange meetings in their common practical hours

so they could collaborate and complete the work.

3.2.2 Supporting Technologies and Materials Provided

Communication and cooperation are an “inherent part of the social process of

Software Engineering” and therefore access to good communication

technologies was critical to the successful functioning of cross-site teams,

especially as the task was complex (O’Neal, 2004; Johnston and Miles, 2004).

 Video-conferencing equipment was provided for the companies to facilitate the

collaboration (and to emulate communication conditions of globally dispersed

Software Engineering work). Both sites used Access Grid software (Access

Grid, 2014). Access Grid provides multimedia capability that allows the

interconnection of a high number of geographically distributed groups and is

often used by academic institutions in the UK. We used Access Grid because at

the time Skype was unreliable for some connections and not as well-used or

effective as it is now.

The preferred development environment for the software was the Eclipse IDE

that also facilitated version control via Subversion (Eclipse, 2014; Subversion,

2014). The shared version control was very important as students at each site

needed to be able to edit code simultaneously and also to see the edits and

revisions made by others. Discussion forums and document repositories were

also provide by Newcastle via NESS (Newcastle E-learning Support System), a

customised online learning environment. NESS is a web-based system

developed within the School of Computing Science at Newcastle by Dr Lindsay

Marshall (NESS, 2014). It allows students to submit coursework, view results

and to receive online feedback from their tutor. It also supports staff in the

management of learning, teaching and assessment. Cross-site teams were also

65

provided with Wikis, FAQ pages and had access to instant messaging for

communication.

The nature of the project, and ALiC’s drive to encourage autonomy of the

companies, meant that students were not explicitly taught how to use all of the

communication technologies. They were given basic instructions but were

expected to learn how to use them effectively as part of the project work. This

approach was in line with the design of other group projects within the

discipline (Liu et al., 2002).

3.2.3 Assessment Methods

The Software Engineering modules were re-designed to collectively fulfil the

standard learning outcomes of both Durham and Newcastle’s original modules.

Table 1 illustrates the mapping between the learning outcomes at Newcastle

and the project deliverables. It also denotes which deliverables were individual

submissions (I), local team only deliverables at Newcastle (T) and cross-site

company deliverables (C), which were shared assignments between the

companies at Durham and Newcastle.

Learning Outcomes Deliverables

Communication with customer (C) – requirements analysis

meeting

Email, notes.

Problem solving, Requirements Analysis

Use of initiative, planning, choice of

software development model

Project Plan (C), Project

Specification (C) Team Structure

Essay (I)

Software Design, industry standards and

practices for design notation

Project Design document (C)

Programming, testing, software

development

Software source code and

documentation (C), user manuals

(C), Completed Project

Specification and Design (C)

Adaptability, Leadership, inter-personal

communication, reflection, cross-site

communication and collaboration, work as

a member of a team, fulfil roles, time

Team Reports (T), Personal skills

analysis (I) Meeting minutes and

observations (T), Team Contract

(T), Project Log Books (I) and

66

Table 1: Learning Outcomes mapped to Project Deliverables

Initially, at the beginning of the cross-site work, it was decided that all shared

deliverables for each company would form part of the summative assessment

for the module at both sites and reports from the local teams and individuals

would then be used to help determine individual effort. Making shared

deliverables high in value in terms of assessment credit was intended to ensure

good cooperation between companies as they would each receive the same

mark for these aspects of the work i.e. they needed to collaborate well in order

to obtain good marks for the company assignments. In practice, quite early on

in the first semester of the cross-site initiative, it was realised that such a simple

approach was not possible. Some students at each site felt they had contributed

much more than others and deemed the approach unfair if their share of the

work was particularly good but another section was perceived as bringing the

overall assessment mark down. To overcome the problem of determining

contribution from each site and each individual, a contribution matrix was

designed by staff at Durham (Figure 8).

management and organisation, Project

Management

(T), peer assessment, individual

reflective report (I)

Team and Company Communication Team Presentation (T) Interim

and Final Report (T), Minutes and

Log Book (T)

Written communication skills Team Report (T), Individual

Reflective Report (I),

Documentation (C)

Professionalism CV and Covering Letter (I) Mock

Interview (I)

67

Figure 8: A sample contribution matrix

The contribution matrix allowed students to specify the exact nature of each

individual’s contribution to a project deliverable, for both local team

deliverables and cross-site company deliverables. The module leaders specified

that a contribution matrix should be included at each site for every company

submission. The matrix provided the opportunity for each team member to

describe their contribution in terms of the action they had taken on the

deliverable e.g. creating (C), modifying (M), editing or reviewing (R) and for

each company to specify which half of the company had contributed to each

section of the deliverables. The matrix example in Figure 8 illustrates clearly

those sections that were completed by Newcastle and those completed by

Durham (student names have been changed). Teams at each site did not have

to agree with the contributions in the matrices but staff at each site compared

them and students were made aware that this would happen. The team project

also provided an opportunity for students to evaluate their own performance

and the performance of others in their team and cross-site company. It is

common for most university courses to include some form of peer assessment

in teamwork scenarios and staff felt this was an important aspect of the work

that would allow students to reflect on their performance as a cross-site unit as

well as on their local performance. Durham and Newcastle used different peer

assessment methods as part of their team projects and these are outlined in the

following sections:

Sections Joe (Dur) Kirill (NCL) Mike (Dur) Tom (NCL)

1.0 Introduction CMR R M R

1.1 Purpose CMR R R

2.1.1 PC Modules MR MR CMR CMR

2.1.2 PDA Modules M C MR C

3.1.1 PC Modules CMR CMR R R

3.1.2 PDA Modules CM MR CM MR

3.2 Inter-process deps. MR CM MR CMR

3.2.1 PC Modules CMR R MR CMR

Key:

C – Create

M – Modify

R - Review

68

3.2.4 Peer Assessment Methods

Newcastle: Percentage Sharing

At Newcastle, an holistic percentage-sharing form of peer assessment was

carried out at two intervals during the academic year for the project. Teams

were asked to share 100% between their team members based on their

contribution to the team effort, once during each semester. The exact share for

each person in the team was to be discussed openly in a formal team meeting

and the agreed percentages noted down and then submitted to the module

leader. Coming to an agreement publicly in this way often proved difficult for

students and was quite emotive so staff monitors were to provide guidance to

students on how to conduct the exercise, including allowing all student

opinions to be heard during the discussion.

Durham: Self and Peer Ranking

Durham students completed four self and peer-assessment tasks throughout the

duration of the project. Each student was asked to place themselves and their

team members on a grid of 15 places (a low value being for the most

contribution). In this way, they were able to demonstrate exceptional or non-

exceptional contribution. This process forced students to evaluate their own

performance in comparison to other team members. Project managers were also

tasked with completing peer rankings for each of their team members.

Cross-site Percentage Sharing

In addition to these preferred methods of self and peer-assessment that had

already been in use by each site prior to the cross-site initiative, each company

was asked to divide 100% between each half of their development team (i.e.

between their respective team members at Newcastle and at Durham). The

CETL team were interested to see how students perceived the contribution of

their local team in comparison to their colleagues at the other site. Unlike the

other peer assessment methods used, this cross-site percentage sharing was not

intended for summative assessment purposes for the project. Students were told

that they did not need to confer with the other site to derive the percentages but

they could if they wanted to.

69

3.2.5 Formative Assessment and Feedback

As part of the learning process, each company had to submit a draft version for

each of the two major written deliverables (Project Requirements and Design

documents), and feedback was provided. This feedback was a combination of

the comments from coordinating staff at both Newcastle and Durham and came

in the form of comments on the draft document and as verbal feedback to each

team at their own site. Other methods of formative feedback used during the

project were comments and advice from monitors (Newcastle) and project

managers (Durham) during weekly meetings. At Newcastle each team was

given an overview of their progress based on their average grade for team and

company deliverables throughout the year. This meant that teams knew if they

needed to make more effort as final marks and weightings were not calculated

until the end of the project.

3.3 Calculating a Final Individual Mark

All Company deliverables had common marking schemes at Durham and

Newcastle and were essentially double marked. Durham students’ team marks

were calculated in the same way for company deliverables. The differences in

module credits meant that Durham students had to take an exam and other

individual assessments as part of their Software Engineering module. The

cross-site team project only constituted 75% of their coursework mark, with the

other 25% spent on assignment tasks unrelated to the team project and with the

overall weighting value for the module of 60% coursework and 40% exam.

Newcastle students were not given explicit marks for collaboration but

elements of their coursework did depend on their interactions with the Durham

half of their Company. They had, for example, to compile reports on what

effects using the software on differing hardware would mean for the user and

this involved a comparison of features and functionality across sites. Newcastle

students also had to report on how collaborations had gone in a presentation

and in both their individual reflective report and the final team report at the end

of the module.

Durham students had to compile a personal diary of all meetings, either local or

cross-site, logging items agreed and any other issues and concerns that had

arisen. In addition, each student had to produce a legacy report where they

discussed the team project, primarily from a local perspective e.g. team

70

dynamics, how improvements could have been made and an overview of their

own contribution to the project. A section of this report also contained

discussion on the impact of the cross-site collaboration on the work.

Team and individual marks for process and product were combined and

calculated at Newcastle to form the overall module mark. This was carried out

by separating deliverables and processes into team deliverables, individual

deliverables and individual and team effectiveness marks (observations from

monitors). The components A, B, C and D were then multiplied by a student’s

contribution weighting which was derived as an average of their peer

assessment marks. The peer assessment marks were moderated by Team

Monitors and adjusted if deemed unfair in comparison to information recorded

on contribution matrices and from direct observations.

The component assignments for A, B, C and D were assessed and combined as

follows.

Mark A was the team mark worth 25% of the overall module mark.

Deliverables that contributed 70% of this mark were:

- Team contract (25% of 70%);

- Interim Team Report (20% of 70%);

- Final Team Report and Log Book (25% of 70%).

The remaining 30% of Mark A was allocated by the team monitor based on

their view of Team Effectiveness throughout the project and was assessed by

observation of the process in meetings and reading reports. Areas that were

considered when assigning this mark were e.g. good distribution of effort,

professional behaviour in and outside of formal meetings, how the team

followed and updated the project plan, how the team dealt with issues such as

absenteeism, communication and problem solving.

Mark B was an individual mark that constituted 15% of the Module Mark. It

was based on individual deliverables. Deliverables that contributed to the Mark

B were the Individual Reflective Report and Individual Log book (5% of the

Module Mark). The remaining 10% of Mark B was allocated by the team

monitor based on their view of each student’s individual effectiveness during

the project and was assessed by observation of their performance in the team

process. Areas that were considered when assigning this mark included e.g.

71

each student’s contribution in meetings, their contribution to the technical and

non-technical deliverables (e.g. documentation, presentations) as well as

organisational and leadership aspects of managing the project and whether the

student was constructive, proactive, contributed to decision making and

completed their tasks on time, was reliable.

Mark C was a team mark that constituted 40% of the Module Mark. Mark C

was based on the following tangible team (and Company) deliverables:

- Final Project Specification and Design Document (10% of the Module

Mark);

- Prototype Demonstration (10% of the Module Mark);

- Implementation (Design, source code and associated documentation)

(10% of the Module Mark);

- Final Product Demonstration (10% of the Module Mark).

Mark D was an individual mark and was worth 20% of the overall Module

Mark. Mark D was the mark awarded by the Module Leader for the following

individual deliverables:

- Personal Skills Analysis (10% of the Module Mark);

- CV and Covering Letter (5% of the Module Mark);

- Mock Interview (5% of the Module Mark).

3.3.1 Weighting for individual effort

To come up with the final individual mark for the module for each student, the

team monitor reviewed contribution matrices and peer assessment scores to

make a judgement of a student’s overall effort in relation to their team members

for all team deliverables and processes. This weighting (derived from the 100%

sharing in the peer assessment exercises by dividing each average score by 10)

was then used as a multiplier on all team deliverables and then the final Team

Project Mark (M in the following equation), was computed as:

Mi = B × 0.15 + (A × 0.25 + C x 0.40) x wi / maxi wi + D x 0.20

 Here wi is the student’s weight allocated by Team Monitors and maxi wi is the

maximum weight given to any member of the team. Thus a student with the

72

maximum weight got the full Mark A and Mark C marks awarded to the team,

a student with half the maximum weighting got half the Mark A and Mark C

marks etc. until all team member weightings were allocated. Professor P.A. Lee

and Dr C. Phillips from the School of Computing Science at Newcastle devised

the original assessment scheme and use of peer assessment weights in this way.

3.4 Feedback and Experiences of Students and Staff

Throughout the CETL ALiC cross-site initiative between the academic years

2005 to 2010, we gathered feedback from students and staff in a number of

ways. We used Focus Groups, module questionnaires, observations from team

meetings and anonymised reports and log books from teams to gather

information on the student experience and to assess the effectiveness of our

work in light of the original aims of the CETL ALiC project. We compared

module quantitative results across sites and also compared student learning

outcomes and performance with results and experiences at the end of each year

with results from the modules in the years prior to the cross-site initiative.

3.4.1 Project Issues

Feedback across both sites and across all years indicated that there were issues

that needed to be addressed in our module design. These issues presented

themselves in a number of ways but can be categorised as falling under one of

the following three categories of Communication and Coordination, Technical,

and finally, Assessment.

3.4.2 Communication and Coordination Issues

Staff purposely did not specify that teams should meet face to face before the

cross-site work began. Some companies did choose to meet of their own

accord. Those that did not were unfamiliar with each other when work began

and had not built up any form of relationship or rapport before their first online

meeting. A major consequence of this was that the majority of companies found

it hard to view their off-site team as being part of the same company. This lack

of relationship meant that students were not greatly motivated to help each

other across site and often found it hard to respond in a timely fashion to help

each other solve problems. This is similar to a reported problem in industry

73

where cross-site work introduces delays, with a significant slow-down of work

in geographically distributed sites (Hersleb, Mockus et al., 2000).

Students also found it hard to schedule meetings because of differing

programmes of study within the cohort and the cross-site element exacerbated

this issue, even though the CETL ALiC team had aligned their respective

timetabled hours for the project.

Each set of students assumed that the content, delivery and emphasis of the

Software Engineering module at both sites were exactly the same i.e. the

practical work had the same objectives and deliverables and the same deadlines.

This was true for all the company deliverables but not for the individual

assignments associated with the module. The emphasis at each site was in fact

different. At Durham the emphasis was primarily on the production of a

complete requirement specification followed by the design and implementation

of the software i.e. a standard waterfall model of development whereas at

Newcastle, it was on early implementation and prototyping.

3.4.3 Technical Issues

Students experienced connection difficulties in the video conferencing sessions.

The majority of these issues were mainly due to the use of inferior hardware

that resulted in patchy audio, poor images from the small webcams, server

crashes, and loss of video or audio during meetings. There was also a marked

lack of contingency planning on the part of staff and students if things went

wrong during the video-conferencing. The reality of communication

difficulties overshadowed the students’ interest and enthusiasm for cross-site

working and often left them feeling demotivated. Students thought that video

conferencing was to be the main form of communication and therefore

mandatory. Staff did not convey strongly enough that communication was the

most important aspect and that video conferencing was just one way to ensure

this. A full overview of Communication and Technical issues experienced by

the students during the project can be found in (Charlton et al., 2009).

3.5 Assessment Issues

The cross-site work put assessment and team assessment in particular, more

sharply into focus. Teamwork assessment invariably involves allocating an

individual mark for both product and process and, as mentioned earlier, it is the

74

individual and team marks for process contribution that often proves

problematic to derive. With either co-located or cross-site work, it is vital that

each individual is assessed fairly so that those who contribute significantly are

rewarded and those that don’t contribute do not benefit from the effort of their

more conscientious colleagues (non-contribution is a well-recognised problem

in student groups where a member of the group contributes little or nothing to

the group’s activities). Working across sites / universities made addressing

these issues more imperative. It was very important to make the assessment

methods clear to the students at both sites to reassure them that a poor

collaboration between two teams would not necessarily be detrimental to their

overall marks for the module.

The cross-site percentage sharing exercise turned out to be quite problematic.

Some of the companies decided that they would confer for this distribution and

consequently the discussions turned out to be quite heated. There was

considerable disagreement over which site had contributed the most effort. The

CETL ALiC team had some idea that a few collaborations had not been as

productive as was hoped and the sharing of percentages across sites bore this

out, with several companies completely disagreeing over the appropriate

distribution. Students worried about the balance in workloads because

Durham’s Software Engineering module was a double credit module and they

wondered if they should take on double the amount of work Newcastle did for

the project. In a similar vein, at Newcastle, the teams were mainly made up of

Computing Science (CS) and Information Systems (IS) students - two different

programmes that run within the School of Computing Science. The difference

between these programmes is that IS students take modules from the Business

School as part of their course whereas CS students concentrate on modules

provided within The School of Computing Science. During the project most IS

students from Newcastle reported that they did all the documentation for their

team whilst the CS students tended to report they did more of the technical

work (Charlton et al., 2009). The CETL ALiC team felt that it was important

that whilst students were encouraged to work to their strengths, this should not

have precluded them from improving on skills they viewed as weak or in need

of improvement. The idea of a student being pigeon-holed because of the focus

of their degree programme was worrying.

The introduction of contribution matrices helped to reassure students, to some

extent, that all their efforts were taken into account. During the course of these

75

projects in the past, it had been noticed that students at both sites tended to

view the coding of the system as the most important part of the Software

Engineering process and that soft skills such as organising meetings, project

planning and management etc. were often viewed as less crucial to the overall

team performance. Completion of the contribution matrices not only helped to

reassure students that their efforts were recorded but also made some realise the

importance of all types of effort to the process, regardless of whether the task

was writing code, project management or writing documentation. There were,

however, arguments among Newcastle teams and mention of team members

who had kept all the work to themselves so they would get a greater share of

the marks. Staff at Newcastle also observed early on in the CETL ALiC project

that during the first peer percentage sharing exercise, teams tended to divide the

100% quite evenly across all team members whereas the second set of peer

percentages allocated during or just after the rather difficult implementation and

delivery phase (towards the end of the project), reflected a greater difference

between percentages awarded to team members. At this point they tended to be

more inclined to debate and actively discuss the distribution of the 100%

locally. It was the second peer assessment, the summative exercise, which

seemed to cause the most friction between teams. Feedback from the module at

Newcastle on peer assessment was quite negative as can be seen in Figure 9:

Figure 9: Student feedback on peer assessment

Students needed reassurance that the assessment methods used by staff were

reliable and fair. As there had been so much negative feedback on assessment

and its fairness within local teams and across sites, each site decided to review

its assessment methods for the programme in more detail, to determine if the

“I was not happy with my original peer percentage for the second semester which

was 14.4, mostly because I felt like I had done more work than some others. After

listening to my objections, my mark was increased by the team. However, this

meant that two other students lost some marks as a result. Obviously they were not

happy about this. Eventually, we all (reluctantly) agreed on a mark that was fair.

Personally I don’t think this is a good system as it can be abused easily, for

example, two members could unfairly rate each other. Also, there is only one role

for IS students to play. This means that they will never get high marks.”

76

methods introduced by CETL ALiC had in some way disadvantaged the

students taking part, in comparison to previous cohorts who had not taken part

in cross-site work. As part of the CETL mid-term review in 2007-08 I analysed

student grades, team reports, module feedback and individual feedback reports

from the years 2003-2007 i.e. from two years before CETL ALiC started. I

found that, in general, students who did not contribute largely to the coding of

the product during the project received lower grades, on average, across all

years, even those prior to CETL ALiC.

As can be seen in Table 2, there were 108 non-coders (33.5% approximately of

the total number of completing students, across all years) and 212 coders. The

data indicated that 57% of non-coders and 39% of coders scored less than their

team’s average mark. These figures were quite interesting considering that the

coding effort and software product were worth only 5% of the total module

marks available. The reason the product is worth so very little in the module

assessment percentages is that the module leaders wanted to emphasise that all

aspects of Software Engineering are important, not just the end product but the

process. But the questions the CETL ALiC team asked were, were these basic

statistics reasonable in terms of what any student can hope to attain in the

module and were non-coders just naturally ‘weaker’ students?

Implement 1st (70+) 2.1 (60-69) 2.2 (50-59) 3rd (40-49)

No 26 42 31 9

Yes 67 91 46 8

Total 93 133 77 17

Table 2: Marks of Coders and Non-Coders from Newcastle

Student feedback also indicated that IS students were often given a lower peer

percentage mark as their tasks and contribution were not deemed as strong as

the coding effort made by the programmers from CS and this seemed to be

borne out in the overall attainment in terms of marks for these students across

all the years reviewed. It was felt that these basic statistics indicated there was

something more going on with assessment in the module and the CETL ALiC

work, which had prompted the review, had unearthed a possible weakness in

the assessment strategy and design for the Team Project module.

77

3.6 Implications from the Initial CETL ALiC Review of Assessment

CETL ALiC staff believed that the learning outcomes for the module (detailed

earlier in Table 1) were sufficiently broad to cater for a range of abilities

amongst the student cohort and that terms such as “practical experience in

design and implementation” (MOF, 2014) should cater for all the processes

associated with the design and implementation of a system, including

documentation and other ‘non-coding’ aspects. If a student demonstrated that

they had achieved these learning outcomes (to varying levels, of course), then

the differences between what coders and non-coders did during the project,

should have been largely irrelevant. One of the main emphases of the module is

teamwork and the complex processes involved in developing a software

product. Those who taught the module deliberately wanted to emphasise all

aspect of Software Engineering i.e. that it is not just about coding and there is

so much more involved in meeting the goal of delivering a quality software

product.

The results from the analysis of marks and feedback made the CETL team

wonder if coders were perceived as ‘better’ Software Engineers, or even as

‘better’ students, by the students themselves and whether the design of the

module and its assessment serve to reinforce this perception. The results also

raised questions about the effectiveness of the assessment regime and its

fairness. The CETL ALiC team found that there were a number of questions

that arose e.g. what skills and learning were really being assessed by all these

deliverables and were we capturing the process accurately enough to assess it?

Is a mark for the project a sufficient indicator for an employer in industry to

determine the extent of a student’s Software Engineering skills? Is the mark

generated by the assessment methods used during the module a true reflection

of what the student has learned about Software Engineering? And most

importantly, was there a bias towards coders in the assessment methods used or

in the way they were marked and if so, did peer-assessment contribute to or

further exacerbate this bias?

These initial results provided the motivation for the current research as they

highlighted a need to conduct a more in-depth analysis of the effectiveness of

the assessment methods used during the module and a deeper evaluation of

student learning outcomes and experiences. These results also illustrated that

peer assessment and student perception of the value of technical and non-

78

technical contributions to the project were particular areas that merited

examination.

3.7 Summary

This chapter has provided an overview of the SETP module at Newcastle

during the CETL AIiC project. It has also outlined the findings from an

informal review of the assessment of the SETP module at Newcastle’s School

of Computing Science that were highlighted when the CETL ALiC initiative

undertook cross-site team work with Durham University. These findings

stemmed from both student feedback and staff experiences during the module

and were the origin of the research questions outlined in Chapter 1 of this

thesis. The following chapter outlines the methods used to further evaluate the

assessment regime for the module at Newcastle in a bid to find answers to these

questions.

79

80

Chapter 4: Methods

4.1 Introduction

This chapter outlines the sources of evidence used during this research, details

how the data were gathered and structured, and describes the methods used in

analysing the data. A description of each of the sources is given and an

overview of the statistical methods that were used to evaluate the quantitative

data is presented. The techniques for gathering qualitative data and the methods

used for evaluating these sources are also presented. Finally, limitations of the

data and data collection methods used during this study are outlined.

4.2 Sources of evidence:

To begin evaluating the assessment regime used in the SETP module in more

detail, a more detailed review of results and student learning outcomes needed

to be collected. It was decided to take the results from two years prior to the

CETL ALiC initiative (academic years 2003/04 and 2004/05), and to compare

these with the outcomes and results from the first two years of the CETL ALiC

project (2005/06 and 2006/07), as in the preliminary analysis from the CETL

review. There had been notable differences in the conditions prevailing when

assignments were set for students during these two time periods. Thus it was

felt that it would be easier to determine if the cross-site work had unduly

influenced student experiences and resulted in a negative fashion and/or

exacerbated the perceptions of staff or students about coders and non-coders.

The datasets considered most relevant to the current enquiry and assessment

regime evaluation were as follows.

1. Summative module marks for all students completing the SETP at

Newcastle for the academic years 2004/05-2006/07.

2. Peer assessment results from the Team Project at Newcastle for the

academic years 2004-2007. These comprised two sets of peer

assessment values for each year from the 36 student teams that

participated in the SETP module.

81

3. Individual Reflective Reports from 2003/4-2006/07 for completing

students. There were 322 reflective reports in total, each averaging

1500 words.

4. Focus group results and feedback on experience with an employer as

focus group host from 2003/04-2006/07. This focus group comprised

24 students, 12 from Newcastle and 12 from Durham University (1

student per team from each site).

5. Focus group results and feedback with CETL ALiC staff (a PhD

researcher who was not involved in assessing students), and

representatives from all student teams from the academic year 2007/08.

This focus group comprised 20 students, 10 from Newcastle and 10

from Durham.

6. Focus group results and feedback with representatives from all student

teams with an employer as facilitator from the academic year 2008/09.

This focus group comprised 24 students, 12 from Newcastle and 12

from Durham (1 student per team from each site).

7. Student programming marks from first year programming/technical

modules at Newcastle. The results from two modules were used:

Programming and Data Structures (a CS module) and Web

Development (an IS module). The reason for the choice of these two

modules was to ensure that the programming competency and

achievement level (be it conventional OO programming or Web coding)

was considered for all of the Computing Science and Information

Systems students from the first year of their degree.

8. Module evaluation questionnaire results. These comprised free text

comments from the module questionnaires for the Software

Engineering module at Newcastle (two sets per year) for the academic

years 2004/05, 2005/06 and 2006/07.

A review of the module design was also conducted. This included an evaluation

of the teaching approaches in terms of the application of learning theories, its

adherence to professional and academic standards and the design of assessment,

assignment marking criteria and learning outcomes. The review of the

assessment marking criteria and learning outcomes from all the assignments

was performed using Anderson and Krathwohl’s revision of Bloom’s taxonomy

(Bloom, 1954, Anderson and Krathwohl, 2001).

82

4.3 Preparation of Data for Statistical Analysis

The data sets involved in the quantitative statistical analysis were student

record data and student reflective report data (Individual Reflective Report

Assessment).

4.3.1 Student Marks Data

The final summative module marks for all completing students for the

academic years 2003/04-2006/07 were collated. In total there were 325 students

in this data set. The only students from the four cohorts not included in the data

were those that did not complete the module. The reason for not including the

students that did not complete was that in each case there was an incomplete set

of marks and most non-completing students had dropped out of the module

before the end, so they did not complete the required reports and evaluations

that could be used – in particular there was no reflective report and no second

set of peer percentages for or from these students. The marks data were

anonymised and all records for students who did not finish the module

removed. Duplicate records were also removed (students repeating the year due

to non-completion the previous year). Failing or repeating student reports were

retained. The data fields as follows: an identification number (a cut down

version of the student ID number, year, team number, team average, a module

mark and individual component marks for all assignments. Peer assessment

marks for Semesters 1 and 2 and overall weighting were also included. Student

record data were updated to include the programming marks from the

aforementioned programming modules from the first year of study for all those

students who completed the SETP. These marks were transferred to one of the

spreadsheet columns in SPSS.

4.3.2 Individual Student Reflective Report Data

322 Individual Reflective Reports were mined for the following information –

the nature and description of each student’s role in the project and the areas

where they had taken part or contributed in terms of requirements analysis,

design, implementation, documentation, testing, organisation and leadership.

Teams were identified as to whether they had worked with Durham or not.

Each report was also mined to determine student learning outcomes in terms of

the skills they stated they had learned, developed or improved during the

83

project, for example, organisation skills, leadership skills or technical skills

such as design, coding and testing.

These results were then codified in the SPSS spreadsheet for the purpose of

analysis – with 1 for Yes and 0 for No for each of the roles and tasks

undertaken and for the skills learned, developed and improved. If a student did

not mention a role or skill that was undertaken or learned in their report then

that role or skill was given a value of 0. A copy of this spreadsheet can be

found in Appendix A.

4.3.3 Reliability Analysis of the Reflective Report Coding Mechanism

To determine the reliability of the coding of student individual reports in terms

of their role and activity declaration a reliability analysis using Cohen’s Kappa

(ĸ) was performed. Cohen’s Kappa (ĸ) measures inter-rater agreement for

categorical or nominal scales when there are two raters involved. In this case

the binary coding method used in the original coding of the individual reports

for the SETP module was repeated by another member of academic staff from

Newcastle University School of Computing Science. The analysis was

performed using a sample of the individual reports from two teams (13 students

in total).

Cohen’s Kappa has five assumptions that must be met (Laerd, 2014) and these

are detailed in the following section along with an explanation of how well

these are met in the current study, making it suitable for performing Cohen’s

Kappa.

1. The response is measured on an ordinal or nominal scale and that the

categories are mutually exclusive.

In the original coding of student responses, participation in a role or activity

was categorised as a 1 for Yes and a 0 for No and these values indicated that a

student had carried out an activity/role (1) or they had not (0), so these

categories are mutually exclusive. These values were then translated to did (1)

and didn’t (0) to make them suitable for the reliability analysis. So, the study

design meets assumption 1 for running Cohen’s Kappa.

2. The response data are paired observations of the same phenomenon, i.e.

that both raters assess the same observations.

84

In this case, both raters reviewed the same student reports and used the same

rating method. So, the study design meets assumption 2 needed to run Cohen’s

Kappa.

3. Each response variable must have the same number of categories and the

cross-tabulation must be symmetric.

In this case response data from student reports for the activities and roles of

Research, Design, Implement, Test, Organise, Lead and Document were

translated into two columns, one column for each rater, and the 1’s and 0’s

were translated into Did and Didn’t respectively. This meant that the responses

of both raters were measured on a dichotomous scale. With this translation, the

study design meets the third assumption needed to run Cohen’s Kappa.

4. The two raters are independent.

In order to remove the potential for bias, the second coder in this study

performed their analysis in another room, using anonymised reports and an

anonymised spreadsheet to fill in their values. The student records were also

arranged in a different order from the original spreadsheet and the second coder

had never viewed the spreadsheet or data that resulted from the original coding.

This design ensures that the study meets the fourth assumption needed to run

Cohen’s Kappa.

5. The two raters are fixed – specifically selected to take place in the study.

In this case the second rater was specifically selected to take part in the study as

they had taught on the SETP module before and understood what the reports

were detailing and the general format of the SETP module. With this selection,

the study design meets the fifth and final assumption for performing Cohen’s

Kappa.

Result: SPSS generates two tables of output for Cohen’s Kappa: Cross-

tabulation and Symmetric Measures.

The Cross-tabulation table (Table 3) helps us to understand the degree to which

the two raters (the researcher and an academic) agreed or disagreed on judging

whether a student participated in an activity or took on a certain role in the

SETP module. The Symmetric Measures table presents Cohen’s Kappa which

85

is a statistic that takes into account chance agreement. This means the

likelihood that if both raters in this study were to guess randomly about each

student’s behaviour, they would end up agreeing by chance. We don’t want this

chance to make agreement appear better than it actually is. Therefore Cohen’s

Kappa measures the proportion of agreement over and above the agreement

expected by chance (i.e. chance agreement).

Table 4 shows that 91 pairs of participation values were compared between the

raters i.e. each rater indicated a 1 or a 0 for participation/non-participation in

the 7 role and activity categories (Research, Design, Implement, Test, Organise,

Lead and Document) for the same set of 13 students. For the 91 pairs of values

compared, both raters agreed that students did participate in the same set of

activities and roles in 49 cases and that in 24 cases students did not participate

in the same set of activities and roles. There were only 18 cases of the 91

examined (i.e. 7 + 11) on which the two raters could not agree. The percentage

of agreement between raters was 80% (49 + 24/91). This is quite a high

percentage and illustrates that the method used to code student responses from

the reports was quite reliable.

In Table 4 Cohen’s Kappa (ĸ) is .573. This is the proportion of agreement over

and above chance agreement. Cohen’s Kappa (ĸ) can range from -1 to 1.

Altman shows (1999) that a kappa (ĸ) of .573 represents a moderate strength of

agreement, in line with the guidelines outlined by Landis and Koch (1977).

Furthermore in table 4 as p <= .001, the kappa (ĸ) coefficient in this study

means that p < .0005 and is therefore statistically significantly different from 0.

This result is reassuring as it means the agreement between the two raters on

the codes assigned to student responses, was based on more than a random

guess and that the coding method used was valid.

 John Total

Did Didn’t

Marie
Did 49 11 60

Didn’t 7 24 31

Total 56 35 91

Table 3 Cross-tabulation

86

Table 4: Symmetric Measures

The coding method for the data obtained for individual reports was found to be

reliable and valid, so now both the student marks data and the report data were

prepared for preliminary statistical tests.

4.3.4 Preliminary Statistical Tests

The most commonly used statistical procedures are known as parametric tests

(Vassar, 2014) and are based on an assumption of a normal distribution of data.

Parametrical tests make assumptions about the population from where the data

has been drawn. Normal distribution is the term used to describe a symmetrical

bell-shaped curve on a histogram of values, which has the greatest frequency of

values in the middle, with smaller frequencies towards the extremes. If the data

are not normally distributed then it will be necessary to use non-parametric

statistical tests to perform the analysis. Parametric statistics are more powerful

and make assumptions about the data that are more stringent. To determine

whether the data gathered from student assessment records and student reports

were normally distributed the data needed to be tested for Skewness and

Kurtosis.

 Skewness is the test of the symmetry of distribution i.e. whether there

is bunching of the data at either end of the scale depicted by the

distribution curve e.g. in marks. Negative skewness values indicate a

clustering of scores at the high end or right hand side of a distribution

graph (i.e. the higher end of the scale) and positive skewness indicates

a positively skewed distribution i.e. where the scores are bunched

together at the lower end of the scale (Pallant, 2010).

 Kurtosis is a method of describing the distribution of data around the

average – it is concerned with the ‘peak’ of the distribution curve,

rather than the extremes. Kurtosis values below 0 indicate a

distribution that it relatively flat – i.e. too many cases in the extremes

(Pallant, 2010).

 Value Asymp. Std.

Errora

Approx. Tb Approx. Sig.

Measure of Agreement Kappa .573 .089 5.491 .000

N of Valid Cases 91

87

According to Tabachnick and Fidell in large data samples (i.e. those with 200+

cases), “skewness will not make a great difference in the analysis and Kurtosis

can result in an underestimate of the variance, but this risk is again reduced

with a large sample” (Tabachnick and Fidell, 2007, p80).

The Shapiro-Wilk test can be used to find out whether a sample came from a

normally distributed population. This is normally used for relatively small

sample sizes. This test compares the scores in the sample to a normally

distributed set of scores with the same mean and standard deviation. If the test

statistic result is:

1. Non-significant i.e. p > 0.05 (p is the probability of obtaining a result

close to the one observed) this means that the distribution of the sample

is not significantly different from a normal distribution and you can run

parametric tests such as t-tests and ANOVA (Analysis of Variance) and

Pearson Correlation.

2. Significant i.e. p < 0.05 then the distribution is significantly different

from a normal distribution and you should run non-parametric tests

such as Kruskal-Wallis and Mann Whitney and Chi–square. These tests

are deemed to be less sensitive than parametric tests in determining

differences between groups (Pallant, 2010).

To overcome distribution abnormalities or skew and kurtosis on the samples a

researcher needs to transform the data in some way to make it more normalised

and easier to analyse statistically using SPSS. The methods that can be used

are:

1. Log transformation – takes the log of a set of numbers and squashes the

right tail of the distribution to reduce positive skew.

2. Square root transformation – takes the square root of large values and

brings them close to the centre, again reducing positive skew.

There is some argument about whether a researcher should perform these

transformations and by doing so, ‘manipulate’ the statistical data to fit. In the

case of the student data for this study it was decided to use these tests for

normality even though the data set was quite large.

88

4.4 Common Statistical Assumptions used in this Research

Before outlining other statistical tests that were used it is important to detail a

set of assumptions that statisticians make about data that are common to all the

techniques used in this research and these are as follows.

 Related pairs – each subject must provide a score on both variables X

and Y – (related pairs) and both pieces of information must be from the

same subject (Pallant, 2010, pp. 125). In this case, the subject, means

the person whose response data is being statistically tested.

Independence of observations – observations that make up the data

must be independent of one another. Each observation or measurement

must not be influenced by any other observation or measurement.

According to Stevens “This is particularly problematic when studying

the performance of students working in pairs or small groups. The

behaviour of the group influences all group members” which is a factor

in this particular research study in terms of the peer assessment data. In

this case, Stevens recommends using a more stringent alpha value (p <

.01) (Stevens, J, (1996) in Pallant, 2010, pp.125, 126).

 Linearity – The relationship between two variables should be linear.

 Homoscedasticity – This stipulates that the variability for all scores X

should be similar for all values of variable Y. In this case Pallant

recommends that the researcher review the scatter plots that are

produced and these should show “a fairly even cigar shape” along their

length (Pallant, 2010).

4.5 Quantitative Statistical Methods used in this Research

4.5.1 Correlation

Correlation determines if there is a link between two data items or data sets.

This statistical test “describes the relationship between two continuous

variables in terms of both the strength of the relationship, and the direction”

(Pallant, 2010, pp.129).

There are two types of correlation that can be evaluated in SPSS. The first is a

simple bivariate correlation that assesses the relationship between two

89

variables. The second method will allow you to assess the correlation between

two variables whilst ‘controlling’ for another variable.

 The statistic that is generated in a bivariate correlation is known as Pearson’s

product-moment correlation (r) (Pallant, 2010, pp.123). The statistical

significance of r is also provided. The test determines if there is a positive or

negative correlation between two variables (indicated by + or – before the

value). A positive correlation means that as one variable increases, the other

does too. A correlation of 0 means there is no relationship between the two

variables and a negative relationship means as the value of one variable

increases, the other decreases. This statistical test was deemed relevant to the

evaluation of the student results as it could show if there was a relationship

between role (for example, programmer) or Course (IS and CS) and a student’s

final mark in the SETP.

An important element of determining correlation is to determine if there was a

sampling error that might have affected the results of a correlation test. The

tests for this are known as the test of Correlation Coefficients.

4.5.2 Correlation Coefficients

These statistical techniques test the probability that the difference in the

correlations of two groups would occur as a function of a sampling error, when

in fact there was no real difference in the strength of the relationship between

the two e.g. between the Module Mark and Programming Score for CS and IS

students. This step cannot be done by SPSS so requires a calculator. The value

obtained is assessed using a set of decision rules to determine “the likelihood

that the difference in the correlation noted between the two groups could not

have been due to chance” (Pallant, 2010).

Assumptions made with this technique are that the r values for both groups

were obtained from random samples and that the two groups of cases are

independent (not the same participants tested twice). SPSS ensures this by

allowing a user to split cases. This technique also assumes that the distribution

of scores is normal and the data set has more than 20 cases in each group. For

the purposes of the calculation using a calculator the researcher must convert

each of the r values into a z value (see table of z values in Appendix B).

90

4.5.3 Multiple Regression Technique

Multiple Regression Technique can help us learn how well a set of variables is

able to predict a particular outcome and which variable in a set of variables is

the best predictor of an outcome. The variables tested are usually continuous

variables but they do not have to be. Dichotomous variables (e.g. yes or no) can

also be used as predictors (Psychstat, 2013). This test was deemed relevant in

terms of finding out whether programming competency (programming score) is

a predictor of good marks in the SETP.

4.5.4 Hierarchical Multiple Regression (Sequential Regression)

In this test, the independent variables are entered into the equation in an order

specified by the researcher. They are entered in steps or blocks and each

independent variable is assessed in terms of what it adds to the prediction after

the previous variables entered have been controlled for. When all the variables

have been entered, the overall model is assessed in terms of its ability to predict

the dependent measure e.g. to predict a good mark for the module. The

contribution to this of each block of variables is also measured (Pallant, 2010,

pp.149).

This technique was deemed relevant, for example, to evaluate if a student’s role

choice was a positive predictor of Module Mark. It is common for students to

take on more than one role during the course of the project and this statistical

method could be used to determine if the more technical roles in the team

project resulted in higher marks. It could also be used to determine if the

student’s course (IS or CS) was a predictor of a good Module Mark.

4.5.5 Logistical Regression

There are many situations where the dependent variable is categorical.

Unfortunately the Multiple Regression Technique is not suitable for when you

have categorical dependent variables. Logical regression allows you to test

models to predict categorical outcomes. In this research, for example, Mark

Range is a categorical variable, which has several associated categories i.e. 1

(First Class), 2 (Second Class, First division), 3 (Second Class, Second

Division), 4 (Third Class) and 5 (Fail). For this test, the ‘predictor’ variables

can either be categorical or continuous or a mix of both in one model. The

default procedure in SPSS is known as the Forced Entry method. In this test, all

91

predictor variables are tested in one block to assess their predictive ability

while controlling for the effects of other predictors in the model. Other

techniques in Logistical Regression allow you to specify the potential

predictors from which SPSS can pick a subset that provides the best predictive

power. These stepwise procedures have been criticised in both logistic and

multiple regression because they can be heavily influenced by random

variations in the data (Pallant, 2010, pp. 168) but were deemed relevant in this

case because of the need to determine what variables in the data can be used to

predict a good grade.

There is an assumption about the data associated with the Logistic Regression

technique and this is Multi-collinearity. In this test an ideal situation is if the

predictor variables are strongly related to the dependent variable but not

strongly related to each other. There is no test for multi-collinearity in SPSS.

To determine if multi-collinearity is occurring between the variables selected,

Pallant recommends that the researcher focus on the coefficients table that is

produced in SPSS and the columns labelled collinearity statistics. Tolerance

values that are very low (less than .1) indicate that the variable has high

correlations with other variables in the model. The researcher “may need to

reconsider the variables to be included in the model if this is the case and

remove one of the highly inter-correlated variables” (Pallant, 2010, pp. 169).

4.5.6 Two-Way ANOVA

A two-way ANOVA is a ‘between-groups’ analysis of variance. This means

that there are two independent variables and ‘between groups’ means that there

are different people in each group. This allows us to look at the individual and

joint effects of the two independent variables and one dependent variable. For

example, in the student data gathered for this research, the dependent variable

might be peer assessment score, peer assessment weighting or module score

and the independent variables might be ‘Course’ and ‘Implement’ (i.e. whether

a student contributed to the implementation by programming). This test allows

us to test for the main effect for each independent variable and to test whether

there is any interaction effect between them. “An interaction effect occurs when

the effect of one independent on the dependent variable depends on the level of

the second independent variable” (Pallant, 2010, pp. 265).

92

4.6 Qualitative Methods used in this Research

4.6.1 Focus Groups

Three Focus Groups were conducted, taking place in the academic years

2006/07, 2007/08 and 2008/09 respectively. It was decided that these Focus

Groups would give students from both Durham and Newcastle an opportunity

to discuss the Software Engineering Team Project in more detail than they

could via module questionnaires. The Focus Groups were facilitated by guest

employers who had acted as customers for the project, and a PhD student who

had interest in the cross-site work but no active involvement in the assessment

of students. It was felt that a facilitator who was neutral in terms of assessment

would make students feel more at ease when speaking about their project

experiences. Students from each team at Durham and Newcastle were invited to

an informal one-hour session and their responses were recorded on paper

anonymously. The questions asked were designed to be high level and not to

lead the students in any way in terms of focusing on assessment only. The

topics covered areas such as how they felt about the overall project experience,

and working with employers, about difficulties faced and what they felt they

had learned. Detail of the questions asked can be found in Appendix C.

4.6.2 Module Evaluation Questionnaire Responses

Module questionnaires are conducted in the School of Computing Science at

Newcastle at least once per iteration of a module. A 10-credit module normally

runs for one semester (12 weeks). Module questionnaires are usually conducted

towards the end of a module (normally during weeks 10 and 11 of the 12 week

period). As the SETP module is a 20-credit module, it runs over two semesters.

This means that the module questionnaires are conducted twice each time the

module is run. This can be very useful for the teacher in terms of being able to

recognise problems from the feedback early in the first semester and remedy

them as much as possible for the second semester. Module questionnaires at

Newcastle are conducted anonymously. Students filled in the questionnaires

online in the NESS system (NB: as of 2013/14 the system in use is EvaSys).

All the questionnaire feedback responses for the SETP module during the years

2003/04, 2004/05, 2005/06 and 2006/07 were reviewed during this study.

93

4.7 Merits of Statistical Tests Used

The quantitative statistical methods used in this study each have their own

merits and the selection of those statistical methods was based on their

suitability for the nature and type of quantitative and qualitative data collected.

Specifically, the merits of the main statistical tests carried out (other than

preliminary statistical tests made on the data and the codifying method used for

the qualitative reports) are as follows.

 Correlation and Correlation Coefficients – The correlation method

allows us to make predictions and therefore if two variables are related,

we can predict one using the other. Correlation does not measure cause

and effect, merely relationships. The advantage of Pearson Correlation

Coefficient is that it allows us to calculate the correlation of data even if

the data is formatted in an interval/ratio scale.

 Multiple Regression Technique – This technique predicts the

unknown value of a variable from the known value of two or more

variables (also called predictors). The technique is used when one is

interested in predicting a continuous dependent variable from a number

of independent variables. The method is very flexible as the

independent variables can be numeric or categorical and we can

discover the collective effects of the independent variables and explore

the interplay among each factor on predicted outcomes. We can also

measure the amount of variation in the dependent variable that can be

attributed to the variables in the model and how much of the variation is

unexplained. This technique also measures how well prediction of

behaviour matches with actual observation of behaviour.

 Logistical Regression and Hierarchical Regression – The Logistical

Regression technique allows us to determine the order of importance of

variables and to select useful subsets of variables to examine in a

stepwise manner. Hierarchical Regression is good for correlated

variables and is used to analyse the effects of a predictor variable after

controlling for other variables. Hierarchical regression is usually better

at predictability than Logistical Regression as the order of variable

entry is determined by the researcher before the analysis is carried out.

Both techniques can suffer from error sampling problems but the

94

likelihood of this is reduced in the Hierarchical technique because there

is more interaction between the researcher and the data (Lewis, 2007).

4.8 Limitations of the Data and of this Study

Pedagogic research is often criticised for using non-rigorous methods to gather

and analyse both quantitative and qualitative data. Student feedback and the

results of experiments during discrete instances of learning are often viewed as

being subjective and of being too specific to one cohort and instance of time,

making it hard to replicate results. Therefore the validity and reliability of

quantitative and qualitative data in this type of research can be difficult to

verify. However, this type of data is still invaluable to a teacher and serves the

purpose of informing practice and providing guidance and that is the overall

intention of this current research. Using the Individual Reflective Report that

has been a common assignment throughout all the years of the SETP module,

and attempting to quantify and evaluate responses to this in a structured way

using statistical analysis, was viewed as one way to make the evaluation more

‘scientific’ and reliable. With the quantitative data also, different markers

assessed students throughout all the years included in this study and their

influence and judgements are difficult to measure. The SETP itself changed

over time, the module evolved each year, the problem scenario given to

students changed, the cohorts changed the module leaders changed, all during

the course of the study. However, the assignment outline, assessment rubrics

and the high level learning outcomes remained the same for the module during

all the years of the study, so these are viewed as common indicators of quality

that the students’ performance was measured against.

4.9 Summary

In this chapter I have outlined the methods that were used to evaluate the

effectiveness and fairness of the prevailing assessment framework in the SETP

module from 2003/04 to 2006/07. This outline includes details of the data

collection process and the nature and limitations of the data used. The statistical

techniques discussed should allow me to objectively evaluate the student

learning outcomes from the module and determine if there is a bias in terms of

grade achievement towards students who programmed and those who did not,

or towards students with higher programming competency in the module during

95

this time period. The results of the qualitative evaluation should provide a

global picture of the module’s effectiveness in terms of teaching, learning and

assessing Software Engineering competency and in terms of the overall

learning objectives and learning theories used in the module. Finally the

limitations of the data and data collection methods used in this study are

acknowledged and steps to ensure validity and reliability of the results are

outlined. The combined results, regardless of their limitations, should allow me

to meet the research objectives of this study as outlined in Chapter 1 of this

thesis. These results are presented and discussed in the next chapter.

96

Chapter 5: Results

5.1 Introduction

This chapter outlines the results from the statistical analysis and qualitative

techniques used in this study that were outlined in Chapter 4: Methods. The

basic characteristics of the data are presented and then the statistical results are

presented along with discussion of the main findings relevant to the research

study i.e. the impact of programming competency on success in the SETP and

its implications for the module assessment strategy. The qualitative results of

three Focus Groups and questionnaire results that outline student experiences of

the module are then presented, including student views on assessment. The

module is then reviewed in terms of the assessment design and learning

outcomes using Anderson and Krathwohl’s revision of Bloom’s taxonomy

(Bloom, 1954, Anderson and Krathwohl, 2001) and in comparison to academic

and industrial standards of assessing Software Engineering competency as

outlined in Chapter 2 (the discussion on learning theories and how the

assessment climate affects the module design will be discussed later in Chapter

7). The implications of the results for the assessment of the SETP module at

Newcastle University are then discussed at the end of the chapter.

5.2 Quantitative Data Collection and Preparation

322 sample academic records from the student population taking the Software

Engineering Team Project Module at Level 5 (2nd Year) were taken from the

years 2003/04-2006/07 (Tables 5 and 6).

97

Table 5: Description of the Sample Population by Course

From each of the three Courses (Programmes) offered in the School of

Computing Science at Newcastle for Undergraduates, there were 185

Computing Science students, 132 students from the Information Systems

course and 5 students from ‘Other’ courses (Table 5). The term ‘Other’ courses

means students who are taking the Team Project module as part of another

programme from another School within the Faculty (Faculty of Science,

Agriculture and Engineering (SAGE)), for example, Computer Systems

Engineering (School of Electrical and Electronic Engineering). All students

were in their second year of degree studies and all students were studying for

an Honours degree. There were differences in entrance qualifications between

the groups for their first year of study as Information Systems courses require

A-level results of one grade lower than Computing Science students i.e.

Computing Science students require AAB- ABB, whereas Information Systems

students require A-level grades between ABB-ABC (typical offer).

Table 6: Distribution of the Population by Year of Study

Of the population selected for the study, 145 participants had taken the SETP

module with the CETL ALiC implementation of working with Durham

University and 177 had not. The number of students taking the programmes at

Newcastle had fallen from 98 in the academic year 2003/04 to 66 in 2006/07

(Table 6). The module marks for the test sample population were examined

 Frequency Percent Valid Percent Cumulative Percent

Valid CS 185 57.5 57.5 57.5

IS 132 41.0 41.0 98.4

Other 5 1.6 1.6 100.0

Total 322 100.0 100.0

 Value Count Percent

Standard Attributes Label <none>

Valid Values 2003-04 98 30.4%

2004-05 79 24.5%

2005-06 79 24.5%

2006-07 66 20.5%

98

(Tables 7 and 8). Most students tend to do well on the module traditionally,

and the lower percentile for the years examined bears this statement out, with

the 25th percentile achieving an average mark of 59%, just below a 2.1

performance. Of the 322 cases selected for analysis, the 75th percentile had an

average mark of 71%, a First-class performance. A further breakdown of

numbers per classification is shown in Table 6. Across all the years of the

study, 93 students received a First-class mark for the module (marks in the

range from 70-100%), 132 achieved a 2:1 grade (marks between 60-69%), and

76 obtained a 2:2 grade (shown in the table as 3, marks between 50-59%).

Table 4 (Mark Range) also shows that 17 students received a Third class mark

(marks between 40 and 49%) and 4 students from the sample population were

recorded as a Fail (a mark below 40%) during the years of the study.

Table 7: Mark Percentiles for SETP module

 Value

Standard Attributes Label

N Valid

 Missing

Central Tendency and Mean

Dispersion

 Standard Deviation

 Percentile 25

 Percentile 50

 Percentile 75

<none>

322

0

64.34

9.436

59.00

65.00

71.00

99

 Value Count Percent

Standard Attributes Label <none>

Valid Values 1 First Class 93 28.9%

2 2:1 132 41.0%

3 2:2 76 23.6%

4 Third 17 5.3%

5 Fail 4 1.2%

Table 8: Mark Range

One of the main research questions for this current study is to find out if

students who do well in the First Year programming modules will do well in

the SETP module in Second Year i.e. is programming competency a predictor

for success? So, the next information that was needed was the programming

scores for each student. Since the academic year 2006/07 at Newcastle,

students on the Information Systems programme have taken a different set of

programming modules to Computing Science students during the first year of

their studies. For the first three years of this study 2003/04-2005/06,

Information Systems students took the same programming modules as

Computing Science students i.e. students began programming in Java. For the

final academic year of the study, 2006/07, the Information Systems and

Computing Science programmes were changed, with both cohorts taking a

common module in JavaScript programming for Semester 1 of the first year;

Computing Science students then took a module in programming with Java and

Information Systems students took a module in Web Programming in Semester

2.

100

Value

Standard Attributes Label <none>

N Valid 322

Missing 0

Central Tendency and Dispersion Mean 66.52

Standard Deviation 18.323

Percentile 25 54.00

Percentile 50 67.00

Percentile 75 82.00

Table 9: Percentiles for Programming Score

It was decided to take the average programming score for each student from

their first module in programming, irrespective of year, as this score reflects

their achievement in programming in the first year of their programme and the

assessment examines the same basic programming concepts for all students,

irrespective of Course. As can be seen in Table 9, most students did well in the

programming modules with the 25th percentile scoring an average of a 2:2 mark

in programming, the 50th percentile scoring an average of 67% (2:1) and the

75th percentile scoring a high First class mark. Another related area to look at in

terms of marks and programming was whether those who took on the main role

of programming in the Team Project are given a higher weight in the Peer

Percentage exercise because they have contributed largely to the programming

effort during the SETP.

Table 10: Peer Assessment Weight

It was found that all weightings were available for students across all years.

The weighting is the score given to an individual student by their Team

Monitor, based on an average of the two Peer Percentage exercises undertaken

by each team, one during each Semester of the SETP module (as outlined in

 Value

Standard Attributes Label <none>

N Valid 322

Missing 0

Central Tendency and Dispersion Mean .1517

Standard Deviation .03147

Percentile 25 .1400

Percentile 50 .1500

Percentile 75 .1700

101

Chapter 3 Case Study). However, a breakdown of the two Peer Percentage

Scores for the academic year 2003/04 was not recorded in the source system

(NESS) and was therefore unavailable for detailed study so statistical studies

involving the raw individual Peer Percentage scores have a smaller sample

population. As can be seen in Table 10, the average peer weighting of team

members was .14 for students in the 25th percentile, .15 for students in the 50th

percentile and .17 for students in the 75th percentile of all cohorts across all

years of the study.

5.3 Preliminary Statistical Testing

The sample population data for both Programming module scores and SETP

scores were examined to determine normality. Normality describes a

distribution of data that resembles a bell-shaped curve on a Histogram, with the

greatest frequency of scores located in the middle of the curve and smaller

scores at either of the two extremes of the curve (Pallant, 2010, pp.59). The

Kolmogorov-Smirnov statistic shown in Table 11 assesses the normality of the

distribution. A non-significant result (significance value of more than 0.05)

indicates normality. In Table 9, it can be seen that the SETP scores (Mark) are

significant for two of the three courses being examined (CS – Computing

Science at .046 and IS –Information Systems with a significance of .016) and

that the Programming Score (ProgScore on the table) is significant at .003. This

would usually indicate that the data violates the assumption of normality.

However, violation of the assumption of normality is common in larger

samples (200+) (Pallant, 2010, pp.63) and therefore it was felt that rather than

remove outliers and artificially manipulate the data to become more ‘normal’, it

was best to leave outliers and raw scores in the analysis, as this is the true

picture of the scores achieved by students. The higher and lower scores at the

extremes of the curve or the bunching of scores in the middle, whilst being

classed as outliers or skewed in statistical terms, are of interest to this study.

The Shapiro-Wilk test for skewness in the distribution (as outlined in Chapter

4) is not significant for Computing Science students nor for students in the

category ‘Other’, for Mark (module mark for the SETP module) but for IS

students, it is, as there is a skew (significance .001) which suggests that the

distribution is not symmetrical. For the variable Programming Score

(ProgScore) there is some clustering at the higher end of the distribution for CS

102

students, which is significant (Significance .000). However, according to

Pallant (Pallant, 2010, pp 57) “if the distribution is perfectly normal you would

obtain skewness and kurtosis value of 0” which is rather an “uncommon

occurrence”.

These small violations of the assumption of normality are common in larger

samples, and again, of interest to the researcher, so the outliers were left in the

study and the data was not ‘artificially’ normalised for the purpose of further

statistical

analysis.

Course

Kolmogorov-Smirnov Shapiro-Wilk

 Statistic df Sig. Statistic df Sig.

Mark CS .066 185 .046 .987 185 .099

IS .087 132 .016 .959 132 .001

Other .215 5 .200 .962 5 .818

ProgScore CS .083 185 .003 .955 185 .000

IS .069 132 .200 .984 132 .113

Other .284 5 .200 .887 5 .341

Table 11: Tests of Normality

103

Figure 10: Distribution of Module Mark for CS Students

Figure 10 shows the distribution of marks for the Computing Science students

on the SETP module. There are several scores that could be termed as outliers

on the left-hand side of the graph but all of these are above the module pass

mark of 40%. At the other end of the scale, on the right-hand side of the graph,

there is a large cluster of scores above the start of the First class threshold of

70%. The average mark for Computing Science students for the module, during

the years 2003/04-2006/07 is 65.41%, a 2:1 mark.

Figure 11 shows the distribution of marks for the Information Systems student

sample taking the SETP during the same years of interest, 2003/04-2006/07.

This graph again illustrates a number of low scores on the left-hand side, but

the range is greater, beginning at a Failing mark of just under 30% and ranging

to a set of First Class marks just below 90%. Again, for IS students, the average

mark for the module is in the 2:1 area at 62.91, slightly lower than for the CS

marks.

104

Figure 11: Distribution of Module Marks for IS students

There are some outliers but again it was felt important to keep them in the

sample to reflect all scores and to test more accurately if marks were over

inflated for programmers during the module. The next result to look at in terms

of preliminary statistical tests and to determine the normality of the distribution

was the Q-Q plot. In a Q-Q Plot “A reasonably straight line suggests a normal

distribution” (Pallant, 2010, pp.63). In this plot, the observed value for each

score is plotted against the expected value from the normal distribution. Both of

the plots for CS and IS have reasonably straight lines in the plots (Figures 12

and 13) and show a distribution that was viewed normal ‘enough’ for the use of

the stronger parametric statistical analysis techniques available is SPSS

(version 19.0). The plot for the “Other” courses was not reviewed as there was

not a big enough sample.

105

Figure 12: Plots for CS Marks

Figure 13: Plots for IS Marks

106

5.4 Statistical Analyses

5.4.1. Correlation

The Pearson correlation coefficient (r) is designed for interval variables

(continuous variables) such as the variable Mark (the overall module mark of

students on the SETP module). It can also be used if you have one

dichotomous variable such as Yes/No e.g., in the student Individual Report data

where students identified what tasks and roles they undertook, such as

‘Implement’. The Spearman Rank order correlation is designed for ordinal

level or ranked data e.g. Mark Range, where the range of achievement of a

student is indicated by 1st Class, 2:1, 2:2, 3rd Class, Fail.

Figure 14: Correlations

Correlation measures the direction of the relationship between two variables

indicated by a correlation coefficient value. If there is a negative sign in front of

the result then there is a negative correlation between the two variables. In this

case, the correlation between Mark and Implement was measured and as Figure

14 shows there is a correlation of .122 between the mark a student obtained on

the module (Mark) and whether a student implemented or not (Implement). A

correlation of 0 indicates no relationship, a correlation of 1 indicates a perfect

positive correlation and -1.0 indicates a perfect negative correlation. In this case

there is a small positive correlation between the two variables Mark and

Implement. The nature of the effect size of the correlation was measured using

the following criteria as outlined by Cohen (1988): Small r = .10 to .29,

Medium r = .30 to .49, Large r = .50 to 1.0

Result: The relationship between Implement and Module Mark (Mark) was

investigated using the Pearson product-moment correlation coefficient.

Preliminary analyses were performed to ensure no violation of the assumptions

 Mark Implement

Mark Pearson Correlation 1 .122*

Sig. (2-tailed) .029

N 322 322

Implement Pearson Correlation .122* 1

Sig. (2-tailed) .029

N 322 322

107

of normality, linearity and homoscedasticity. There was a small, positive

correlation between the two variables, r = .12, n = 322, with a higher Module

Mark being associated with Implementation.

5.4.2 Correlation Coefficients

The statistical difference between correlation coefficients for other groups of

variables from the student data were then tested to see if they were significantly

different i.e. is the difference big enough to be considered significant? The

correlation coefficients between groups (Computing Science and Information

Systems students and students on “Other” courses, and their respective Module

Marks (Mark)) were tested. The significance test assesses the probability that

the difference in the correlations of the two groups would occur as a function of

a sampling error, when in fact there was no real difference in the strength of the

relationship between two continuous variables. SPSS cannot do this step I so

needed to perform it using a calculator (Pallant, 2010, pp.139).

Course Mark ProgScore

1 Spearman's rho Mark Correlation Coefficient 1.000 .268**

Sig. (2-tailed) . .000

N 185 185

ProgScore Correlation Coefficient .268** 1.000

Sig. (2-tailed) .000 .

N 185 185

2 Spearman's rho Mark Correlation Coefficient 1.000 .249**

Sig. (2-tailed) . .004

N 132 132

ProgScore Correlation Coefficient .249** 1.000

Sig. (2-tailed) .004 .

N 132 132

3 Spearman's rho Mark Correlation Coefficient 1.000 .205

Sig. (2-tailed) . .741

N 5 5

ProgScore Correlation Coefficient .205 1.000

Sig. (2-tailed) .741 .

N 5 5

Figure 15: Comparison of Correlation Coefficients for each Course

108

In Figure 15 the strength of the correlations for each group are indicated and

each course is identified as follows: 1 = CS, 2 = IS, 3 = Other.

Result: Using this test we can see that there is a positive correlation between

Mark and Programming Score (ProgScore) for all groups, although the

correlation is greater for CS than for the other two groups, but only just. The

correlation between programing marks and module mark for CS students was

.27, while for IS it is slightly lower at .25.

To test if the difference between the two sets of students is significant I needed

to test the statistical difference between these two correlation coefficients. This

significance test assesses the probability that the difference in the correlations

of the two groups would occur as a function of a sampling error, when in fact

there was no real difference in the strength of the relationship between the two

(Mark and ProgScore) for CS and IS.

Assumptions needed for this test are that the r values for both groups were

obtained from random samples and that the two groups of cases are

independent (i.e. not the same participants tested twice). The distribution of

scores is normal and there are more than 20 cases in each group. In this case,

the assumptions are not violated. The r values of each group were then

converted into z values i.e. the two values for r obtained in the previous test

were to be converted into standard score form (referred to as z scores) and these

are as follows:

CS r1 =.268 N1 = 185 IS r2 =.249 N2 = 132

Next I found the z value that corresponds with each of the r values then

constructed the following equation:

CS z1 = .277 IS z2 = .255

(Source, Pallant 2010)

If -1.96 < Zobs < 1.96 the correlation coefficients are not statistically

significantly different.

109

Result: The result of this equation is that the Zobs value is 0.1748 which means

that Module Mark (Mark) and Programming Score (ProgScore) are not

statistically significant in terms of Course, which is a ‘good’ result for the

module leader and their approach to marking. This result illustrates that the

Module Mark is not adversely affected by the students’ programme of study

and nor is the Programming Score.

5.4.3 Further examination of Programming Score and Module Mark by Year

There was a need to investigate further into Programming Scores and Module

marks, by academic year, to see if the CETL ALiC intervention had made any

impact on the correlation between the two sets of scores or had maintained

some form of marking consistency, despite the changes introduced into the

SETP Project module. The results of the correlation test can be viewed in

Tables 12 and 13.

Result: The results of the raw correlation value for each year between the two

variables (to 2 decimal places) for Mark and Programming Score was as

follows:

.20 in 2003/04

.47 in 2004/05

.22 in 2005/06

.31 in 2006/07

Table 12: Correlation results for Programming Score and Year

These values showed that there was a significant correlation between Module

Mark and Programming Score across all years but with a more stringent lower

alpha value of .01, the correlation that was most significant is highlighted one

year before the CETL ALiC intervention in 2004/05 (correlation of .479,

Significance .000). It was felt, that while these statistical correlations were

interesting, it was difficult to determine if the results reflected a natural

difference in cohort ability from year to year or if these results were because of

the assessment methods used or some other factor not taken into consideration.

It was not easy to discern from comparing correlations across years and the

result was difficult to generalise. In an attempt to clarify, a comparison between

the Marks and Programming Scores in terms of correlation coefficients for the

academic years 2003/04 and 2004/05 was performed and gave a Zobs value of -

2.019, which is statistically significantly different. What this shows is that there

110

was more of a variance in Module Mark and Programming Score in 2004/05

than there was in 2003/04, even though the population was smaller. The test

does not show a ‘cause’ for this and does not illustrate if a high Programming

Score could be said to have led to a High Module Mark (Mark) conclusively

across all years of the study.

Table 13: Correlations by Year

5.5 Multiple Regression Technique

An exploration of other variables that might impact on Module Mark was

needed. A Multiple Regression technique was used with Mark as the

Year Mark ProgScore

2003-04 Mark Pearson Correlation 1 .207*

Sig. (2-tailed) .041

N 98 98

ProgScore Pearson Correlation .207* 1

Sig. (2-tailed) .041

N 98 98

2004-05 Mark Pearson Correlation 1 .479**

Sig. (2-tailed) .000

N 79 79

ProgScore Pearson Correlation .479** 1

Sig. (2-tailed) .000

N 79 79

2005-06 Mark Pearson Correlation 1 .225*

Sig. (2-tailed) .046

N 79 79

ProgScore Pearson Correlation .225* 1

Sig. (2-tailed) .046

N 79 79

2006-07 Mark Pearson Correlation 1 .315**

Sig. (2-tailed) .010

N 66 66

ProgScore Pearson Correlation .315** 1

Sig. (2-tailed) .010

N 66 66

111

dependent variable and using independent variables Team Average and

Programming Score, for example, how much of the variance in Module Mark

can be explained by Team Average and Programming Score? There is a lot of

output generated from SPSS for this test. Tables 14 and 15 describe the

variables used in the test - Team Average Mark (Team Av), Average Module

Mark (Mark) and Average Programming Score (ProgScore):

Table 14: Model Summary Tables

Table 15: SPSS output from Multiple Regression

Descriptive Statistics

 Mean Std. Deviation N

Mark 64.34 9.436 322

TeamAv 63.98 5.683 322

ProgScore 66.52 18.323 322

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate

1 .604a .365 .361 7.541

 Mark TeamAv ProgScore

Pearson Correlation Mark 1.000 .545 .278

TeamAv .545 1.000 .029

ProgScore .278 .029 1.000

Sig. (1-tailed)

Mark . .000 .000

TeamAv .000 . .302

ProgScore .000 .302 .

N Mark 322 322 322

TeamAv 322 322 322

ProgScore 322 322 322

112

Table 16: ANOVA

Result: The Multiple Regression test showed that there is a high correlation

between Mark and Team Average (.545) as expected, but a fairly low

correlation between Programming Score and Mark (.278), and an even lower

correlation between Programming Score and Team Average (.029). The lowest

correlation between Programming Score and Team Average, is heartening, in

the sense that this statistic would support the idea that there is more to the

team’s overall average score than being a good programmer or at least, having a

good score in programming the year before the team project.

In the Model Summary Table (Table 14) the value R Square was checked to

assess how much of the variance in the dependent variable Mark is explained

by the model, which includes the variables Team Average and Programming

Score. In this case the value is .365 or 36.5 of the variance. The Adjusted R

Square, in the same table corrects this value (for small samples) “to provide a

better estimate of the true population value” (Pallant, 2010, pp.161). To assess

the statistical significance of the result the next table to look at was the table

labelled ANOVA (Table 16). The model in this example reaches statistical

significance (Sig .000; this really means p < .005). The researcher needs to

check which of the independent variables in the model most contributed to the

prediction of the dependent variable Mark. This information is found in

Coefficients Table 1 (can be found in Appendix B). To do this the column

Standardized Coefficients and the Beta value of each of the independent

variables were checked. The variable with the largest Beta value is Team

Average (.537), with Programming Score at .262. The significance of both

values was also checked. If the Significance value is less than .05, then the

variable makes a significant contribution to predicting the independent variable

Mark. In both cases, Team Average and Programming Score gave a

Model

Sum of

Squares df Mean Square F Sig.

1 Regression 10440.677 2 5220.339 91.803 .000a

Residual 18139.745 319 56.864

Total 28580.422 321

113

Significance value of .000, which means both variables make a significant

contribution to predicting an individual student’s Mark in the SETP module.

Result: Multiple Regression was also performed on the variables Course and

Programming Score to see the impact of these variables on a student’s Mark

during the module. The coefficients table for this test can be found in Appendix

B. In this case the variable with the largest Beta value was Programming Score

(.135), so this makes the strongest unique contribution for explaining the

dependent variable Mark between the two, when the variance explained by all

other variables in the model is controlled for. The value for Course was very

low (-1.219) so it did not make a strong contribution.

5.6 Hierarchical Multiple Regression

Hierarchical Multiple Regression was performed using other variables from the

students’ Individual Reflective Reports. These variables were indicators of the

roles that students had performed during the project and included Test,

Research, Implement, Design, Organise, Lead, Document). The analysis was

designed to test if a student’s role was a significant predictor of their overall

achievement on the module, in terms of the Mark they received at the end.

Model R

R

Square

Adjusted

R Square

Std. Error

of the

Estimate

Change Statistics

R Square

Change

F

Change df1 df2

Sig. F

Change

1 .151a .023 .010 9.387 .023 1.843 4 317 .120

2 .261b .068 .047 9.211 .045 5.071 3 314 .002

a. Predictors: (Constant), Test , Research, Implement, Design

b. Predictors: (Constant), Test , Research, Implement, Design, Organise, Lead,

Document

c. Dependent Variable: Mark

Table 17: Impact of Other Variables on Mark: Model Summary

Table 17 illustrates Model 1 and Model 2. Model 1 refers to the first block of

variables that were entered (Test, Research, Implement and Design) and Model

2 includes all the variables that were entered in both blocks (Test, Research,

Implement, Design, Organise, Lead, and Document).

114

In this test we check the R Square values in the table. After the values in Block

1 have been entered, the overall model represents only 2.3% of the variance in

Mark. After the variables in Block 2 have been entered, the model as a whole

explains 4.7%.

The Second R Square Value includes all the variables from both blocks. To

find out how much the overall variance in our dependent variable Mark is

explained by Organise, Lead, Document roles we need to look at how the

column labelled R Square changes. On the line marked Model 2, the R Square

Change value is .045 – this means that Organise, Lead and Document adds

4.5% of the variance in Mark. This is statistically significant as indicated by

Sig. F. Change value for this line .002 (< .05). Next we look at the Coefficients

Table 2 (Appendix B) in Model 2 Row for this test. This summarises the results

with all variables entered into the equation. Looking at the Sig. column, we

can see that there is one variable that makes a unique statistically significant

contribution <.05 – Lead (with a value of .006) i.e. whether a student led their

team or not.

Result: This result means that leading a team is statistically significant and the

best predictor of variance in marks from all the values tested. Whether a student

implemented (i.e. programmed) is less of a good predictor of module mark with

a value of .125.

5.6.1 The Effect of Adding Other Role Variables

It was decided that Hierarchical Multiple regression should be retried, again

with the addition of the variables Course and Programming Score, to find if

these were better predictors of a variance in Mark than the roles taken by

students during the project. The coefficients table for this test can be found in

Appendix B.

Again, the R Square values in the Model Summary table were checked.

After the first set of variables has been entered, the model explains 8.2% of the

variance in Mark. In Block 2 the variables Research and Design have been

added and the model as whole explains 9.2% of the variance. After the Block 3

variables have been added the model explains 12.7% of the variance, which is

not a high score. Then the R Square Change column was reviewed and it was

noted that Course and Programming Score are the strongest predictors of Mark

with Lead, Organise and Implement being the strongest predictors after that.

115

Statistically significant contribution was made by both Course and

Programming Score and this is indicated in the Sig. F Change column where

the significance is .000 and signifies that Model 1 is statistically significant.

Result: Hierarchical Multiple Regression was used to assess the ability of

Programming Score and Course to predict Mark on the SETP module and

explained 8.2% of the variance in Mark. At Step 2, with added variables

Research, Design and Implement, the total variance was 9.2%. With the

addition of Organise, Implement and Lead in the final model, only

Programming Score was found to be the most statistically significant predictor

of variance in Mark for the module.

5.7 Logistic Regression

Logistic regression was used to find out what factors could be used from the

student data to predict the likelihood that a student will take part in

programming during the SETP.

This test needed one categorical (dichotomous) dependent variable (implement)

(Table 16: Implement: Yes/No, Coded 1/0) and two or more continuous or

categorical predictor variables (independent) and I chose Course (CS/IS coded

1=CS and 2 = IS, 3 = Other) and Programming Score (ProgScore). SPSS

produced the following tables when this test was run (Tables 18, 19 and 20):

Original Value Internal Value

No 0

Yes 1

Table 18: Dependent Variable Encoding

Frequency

Parameter coding

(1) (2)

Course CS 185 .000 .000

IS 132 1.000 .000

Other 5 .000 1.000

Table 19: Categorical Variable Coding

116

Omnibus Tests of Model Coefficients

 Chi-square Df Sig.

Step 1 Step 97.976 3 .000

Block 97.976 3 .000

Model 97.976 3 .000

Table 20: SPSS output from Logistic Regression Test

The Omnibus Tests of Model Coefficients (Table 20) gives an overall

indication of how well the model performs. This is referred to as a ‘goodness of

fit ‘test. For this set of results, we want a highly significant value to indicate a

good fit (the .Sig value should be less than .05). In this case the value is .000

therefore the model with our set of variables as predictors is a good one. The

chi-square value was 97.976 with 3 degrees of freedom, meaning that the

model is a good fit and that Course is a good predictor of whether a student

implements or not.

Step Chi-square Df Sig.

1 13.571 8 .094

Table 21: Hosmer and Lemeshow Test

The results for the Hosmer and Lemeshow Test (Table 21) also support our

model as being worthwhile. This test, which SPSS states is the most reliable

test of model fit available in SPSS, is interpreted differently to the Omnibus

Test previously outlined. For the Hosmer-Lemeshow Goodness of Fit Test,

poor fit is indicated by a significance value of less than .05, so to support our

model we need a value greater than that. The chi-square value for this test is

13.571 with a significance level of .094. This value is larger than .05 and

therefore indicates support for the model. The table Model Summary, Table 22,

gives another piece of information about the usefulness of the model:

117

Step -2 Log likelihood

Cox & Snell R

Square

Nagelkerke R

Square

1 314.210a .262 .363

Table 22: Model Summary

Table 23: Model Table

The Cox & Snell R Square and the Nagelkerke R Square values in Table 22

provide an indication of the amount of variation in the dependent variable

explained by the model (from a minimum value of 0 to a maximum value of

approximately 1). These are described as pseudo R square statistics, rather than

the true R square values seen in multiple regression output. In this case, the two

values are .262 and .363 suggesting that between 26.2% and 36.3% of the

variability is explained by this set of variables. The next table to consider was

the Classification table (Table 24). This provides an indication of how well the

model is able to predict the correct category for each case. In Block 0 without

our variables the model correctly predicted 77% of cases which is quite good.

Table 24: Block 0 Output

Observed

Predicted

 Implement Percentage

Correct No Yes

Step 0 Implement No 0 109 .0

Yes 0 213 100.0

Overall Percentage 66.1

Classification Table

Observed

Predicted

 Implement

Percentage

Correct

 No Yes

Step 1 Implement No 84 25 77.1

Yes 49 164 77.0

Overall Percentage 77.0

118

Table 25: Variables in the equation

Table 25 gives information about the contribution of importance of each of the

predictor variables. The test used here is known as the Wald Test (Pallant,

2010). We scan down the column labelled Sig. looking for values less than .05.

These are the values that contribute significantly to the predictive ability of the

model.

The positive predictive value is the percentage of cases that the model classifies

as having the characteristic that is observed in this group. To calculate this we

need to divide the number of cases in the predicted = yes cell (164) by the total

number in the predicted =yes cells (25+164) and multiply by 100 to give a

percentage = 86.7%. Therefore the positive predictive value is 86.7%,

indicating that of the people predicted to have implemented, the model

accurately picked 86.7% of them.

The negative predictive value is the percentage of cases predicted by the model

not to have the characteristic that are actually observed not to have the

characteristic. So that is 63%.

Result: This test showed that there are two major factors that could be used to

predict whether a student Implements or not during the SETP and they are (1)

whether you are a Course 1 student (CS student) and (2) the programming score

from the 1st Year of studies (ProgScore). Its predictive value however is not

100%.

5.8 Investigating the impact of Role Choice on Module Mark and Mark

Range

Next it was decided to further investigate Roles taken by students during the

project to find out if there were particular roles taken by students from IS and

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)

Lower Upper

Step 1a Course 68.634 2 .000

Course(1) -2.406 .290 68.632 1 .000 .090 .051 .159

Course(2) -1.483 .946 2.460 1 .117 .227 .036 1.448

ProgScore .017 .008 4.494 1 .034 1.017 1.001 1.033

Constant .806 .568 2.012 1 .156 2.240

119

CS courses, and what impact did each kind of role have on their final Module

Mark. There were assumptions that could be made about the answer but the use

the self-reported data from the Individual Reflective Report assignment would

help to clarify these. In the SETP module, students are encouraged to take on a

number of roles in their team throughout the year. This is so that they can get

as much experience as possible of all the stages/areas in the software

engineering process and they can reflect on which areas they prefer to work in

and where their skills are best used for the good of the team. A summary of the

roles students reported in taking on during the project during all four years is

outlined in Table 26:

Role CS Yes CS No IS Yes IS No Other

Yes

Other

No

Research 159 26 116 16 4 1

Design 168 17 114 18 5 0

Implement 162 23 48 84 3 2

Test 138 47 90 42 4 1

Organise 73 112 55 77 3 2

Lead 75 110 48 84 2 3

Document 130 55 124 8 3 2

Table 26: Roles Taken by Students for Each Course during the Project

Table 26 illustrates that the majority of students (279/322, 86.6%) conducted

Research and 78.8% took a role in Documenting during the project. The area of

the project where most students took part was Design with 287/322 or 89.13%

of the sample population contributing to this area. Testing was also a role that

a large proportion of students participated in, with 228 of the 322 students in

the sample population (70.8%), stating in their reflective reports that they

performed testing. The roles that fewer students took on during the project were

Leadership (125/322 or 38.81%), Implementation (110/322, 34.16%) and

Organisation (39.75%) and there were fewer IS than CS students who took on a

programming role during the project, 48 across all the four cohorts (48/132 IS

students, 36.3%).

120

Result: Interestingly, fewer students took on the roles that are best at predicting

the variance in student marks for the module, i.e. higher marks (as described

earlier in section 5.6).

5.8.1 The Effect of Role Choice and Mark Range (Classification of Mark

awarded)

The next thing to check was whether a student’s role choice had any impact on

their final classification mark at the end of the module. Ideally the answer

would be that, irrespective of the role taken on by a student during the module,

the chances of getting a good mark would be the same for all students. If the

assessment regime for the module is fair, then role should not matter, only

performance in that role. Students are encouraged in the module to view the

whole Software Engineering process as important and not just the technical

aspects. There is no denying that programming and the ability to program are

essential to any team seeking to create software for a customer, but in Software

Engineering the development methods used, the requirements analysis, the

design, the organisation, leadership, planning and testing and how the team

works together are all crucial to ensure that a high quality product are delivered

to the customer on time and within budget. Given this, the whole process and

all the roles in the team should be considered as equally important in the

assessment process. Overall as can be seen in Table 27 there were 93 students

from the sample population (28.88%) who received a First Class mark (70+) in

the Software Engineering Team Project module (during the academic years

2003/04 – 2006/07). Of these 93 students, 86% had conducted Research for

their team, 93.5% had taken part in the Design process, 72% had contributed to

Implementation, and 71% had contributed to the Testing effort in their team.

The percentages of these 93 students who achieved a First Class mark who

indicated ‘Yes’ for other roles were 55.91% for Organise, 49.46% for Lead and

74.19% for the Document role. So, from these figures it can be seen that the

areas of the software engineering process these students contributed to the most

were Research and Design. What is reassuring is that the majority of students

indicated they took part in all parts of the project.

121

Table 27: Module Mark Classifications by Role for the sample population

NB: The researcher bore in mind that the indication of roles and contribution

from each student was ‘self-reported’ in the Individual Reflective Report

assignment. This assignment was part of the coursework assessment for the

SETP module and students received marks for this work. As an historical and

common source of information from students for all years of the study, the

reports proved a very useful and amenable source for analysis. However, other

sources of information about roles and contribution (Contribution Matrices and

Team Structure documents which were collaboratively constructed) could have

been used to verify individual student claims but anonymity would have had to

have been removed for the purpose and it was felt that this would prove an

onerous process with no guarantee of gaining useful additional data at the end.

There is a possibility, of course, that some students exaggerated claims about

Role Mark Range Total

First Class 2:1 2:2 Third Class Fail

Research

No

Yes

Total

13

80

93

20

112

132

9

67

76

1

16

17

0

4

4

43

279

322

Design

No

Yes

Total

6

87

93

16

116

132

12

64

76

1

16

17

0

4

4

35

287

322

Implement

No

Yes

Total

26

67

93

42

90

132

31

45

76

9

8

17

1

3

4

109

213

322

Test

No

Yes

Total

27

66

93

38

94

132

20

56

76

4

13

17

1

3

4

90

232

322

Organise

No

Yes

Total

41

52

93

75

57

132

39

37

76

11

6

17

3

1

4

169

153

322

Lead

No

Yes

Total

47

46

93

82

50

132

50

26

76

16

1

17

2

2

4

197

125

322

Document

No

Yes

Total

24

69

93

30

102

132

9

67

76

2

15

17

0

4

4

65

257

322

122

their contribution and role during the project, but the Individual Reflective

Reports were deemed the best source available for analysis and comparison

(from a historical perspective, certainly).

Result: The review of the role and classifications data showed that 93/322

students received a first class mark during the project. The reassuring aspect of

this was that the majority of these students indicated that they had taken part in

most aspects of the Software Engineering Process. The results from this

analysis also indicated that those who had received a 2.1 mark (132 students)

had mainly participated in all the stages of the software engineering process

too. However, it can be seen in table 27, the majority of students who received

a 2.1 mark took part in areas such as Implementation and Testing (90 and 94

respectively) but fewer took part in roles that were found to be predictors of a

good mark in Section 5.6 i.e. Leadership and Organise (50 and 57 respectively).

Students who received a 2.2 mark in the module (76 students), played a large

part in the Research (requirements gathering and analysis) and Design aspects

of the project (67/76 and 64/76 respectively) but less of a role in areas such as

Implement (45/76), Testing (56/76), Organise (37/76) and Leadership 26/76

respectively). In many ways the relationship of good marks in the module to the

breadth of roles played and greater participation in all aspects of the Software

Engineering Process during the module is very reassuring. This tells me that the

more effort a student puts in to all aspects of the project (not just the

programming), the more likely they are to receive a good module mark, and

that is how it should be. The worrying aspect of these results are that fewer IS

students took on roles that would give them higher marks. When assignments

are marked for the module, a student’s role is not an issue for the module

leaders as it is the quality of the deliverables produced by the team and the

individual that are assessed. However, there are two sets of marks missing from

all the data analysed so far that may throw some light as to why a student’s role

is so important for gaining good marks. These two sets of marks are (1) the

Individual and Team Effectiveness Marks and (2) the Peer Assessment marks

that make up a student’s weighting within their team (as outlined in Chapter 3

Case Study). The Individual Effectiveness and Team Effectiveness marks are

awarded by Team Monitors and Peer Assessment Marks are awarded by a

student’s teammates. It is important that these sets of marks are considered in

terms of their influence on an individual’s overall success on the module.

123

5.9 Two Way ANOVA: The influence of Peer Assessment on Module Mark

It was considered important to check if there are any differences between the

weightings awarded to students, based on their course, or whether they

implemented or not during the module. For this test a Two Way ANOVA test

was selected. This test requires two categorical independent variables and one

continuous variable. In this case variables Course and Implement were used for

the independent categorical variables and for the continuous variable the value

Weight was selected. This would show if any difference in Weight was due to

Course or whether a student had Implemented or not. Table 29 shows the

average weight given to students from each course and whether they

implemented or not. Interestingly, an IS student who implemented, on average,

got a lower weighting than those who did not.

Result: This test shows, on average that those who implemented got a higher

peer percentage weighting than their peers. Students from Other courses got the

lowest marks for those who did not implement and IS students who

implemented got a lower weighting than those IS students who did not.

Table 28: Levene's Test

Table 29: Peer Assessment Averages

F df1 df2 Sig.

1.070 5 316 .377

Course Implement Mean Std. Deviation N

CS No .1500 .02132 23

Yes .1531 .03520 162

Total .1527 .03375 185

IS No .1510 .02905 84

Yes .1494 .02786 48

Total .1504 .02853 132

Other No .1450 .00707 2

Yes .1533 .02309 3

Total .1500 .01732 5

Total No .1507 .02725 109

Yes .1523 .03347 213

Total .1517 .03147 322

124

In Levene’s test of equality of error variances (Table 28) the required Sig. level

should be greater than .05 and therefore not significant. This suggests that the

variance is equal across the groups. In this case the result was .377.

Source

Type III Sum of

Squares Df Mean Square F Sig.

Corrected Model .001a 5 .000 .155 .979

Intercept .888 1 .888 884.979 .000

Course .000 2 .000 .050 .951

Implement .000 1 .000 .104 .747

Course * Implement .000 2 .000 .172 .842

Error .317 316 .001

Total 7.730 322

Corrected Total .318 321

a. R Squared = .002 (Adjusted R Squared = -.013)

Table 30: Tests of Between-Subjects Effects

The next thing to check is if one variable influences another and if the

interaction is significant. In Table 30 it was necessary to look at the Course and

Implement row to ascertain if the interaction between these two variables is

significant. If it is, then it can be difficult to interpret the main effects. In this

case the value is .842, so the interaction is not significant.

The main effects are the simple effect of one independent variable. In the left-

hand column of Table 31 Multiple Comparisons, the variable Course needs to

be checked to see if there is a main effect for each independent variable by

(I)

Course (J) Course Mean Difference (I-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

CS IS .0023 .00361 .801 -.0062 .0108

Other .0027 .01436 .981 -.0311 .0365

IS CS -.0023 .00361 .801 -.0108 .0062

Other .0004 .01443 1.000 -.0336 .0344

Other CS -.0027 .01436 .981 -.0365 .0311

IS -.0004 .01443 1.000 -.0344 .0336

Table 31: Multiple Comparisons

125

checking the Significance column (Sig). If the value is less than or equal to .05,

there is a significant main effect.

Result: In this case there is not a significant difference between weightings

given to each student based on their course, but CS weightings are slightly

higher - by .0023 on average (Tables 31 and 32).

Tukey HSDa,b,c

Course N

Subset

1

Other 5 .1500

IS 132 .1504

CS 185 .1527

Sig. .972

Table 32: Tukey's Honestly Significant Difference

5.9.1 The Impact of Individual Effectiveness and Team Effectiveness Marks

A check of the module data on NESS showed that the marks for Individual

Effectiveness and Team Effectiveness were only recorded for the module from

academic year 2006/07 onwards. Prior to this, the values were not explicitly

added into NESS but were included in a student’s mark. Given that the data to

assess the effect of these marks on overall student performance was not

complete for three years of the study, it was decided that these values could not

be used in the statistical analysis. This was a real setback in terms of

determining factors that influence student achievement on the module.

However, the data is available for analysis for the years 2007/08-2013/2014

and therefore an analysis of the impact of these marks will be one area of future

work.

5.9.2 Summary of Statistical Results

The findings from the statistical analysis can be summarised as follows:

1. There is a small correlation between Module Mark and whether a

student implemented or not during the project (variable Implement).

This means that a slightly higher module mark is associated with

contributing to programming during the module.

126

2. There is a positive correlation between Programming Competency

(ProgScore) from first year modules and Mark for the SETP. However

neither the module Mark nor the Programming Score from first year are

adversely affected by the students’ programme of study (CS, IS, Other).

3. The correlation between Programming Competency and Module Mark

was strongest the year before the CETL began.

4. A Multiple Regression technique showed that Team Average and

Programming Score make a significant contribution to predicting a

student’s mark on the module but there is a low correlation between the

two variables themselves. A second Multiple Regression test showed

that Programming Score makes the strongest unique contribution to

explain the module mark.

5. Logistic Regression showed that the factors most likely to predict who

will implement are whether you have a good Programming Score and

are a CS student or not. A student was more likely to implement if they

were a CS student.

6. An analysis of student roles showed that students took on a variety of

roles throughout the project and that good marks are related to the

breadth of roles a student takes on.

7. Those who implemented got a slightly higher peer percentage

weighting. CS students get a higher peer percentage weighting on

average and the likelihood is increased because they were more likely

to implement.

8. IS students who implemented got the lowest peer percentage weighting

of all groups.

9. The CETL intervention and cross-site development work did not have a

significant negative impact on student attainment in terms of final mark

during the module, in comparison to marks achieved by students two

years prior to the activities introduced.

127

5.9.3 Lessons Learned from Statistical Tests

The statistical tests used in the study allowed a wide variety of numerical data

from differing sources to be explored which could be viewed as an ‘offsetting’

factor for the limitations of the data as outlined in Chapter 4. This means that a

large number of factors about students and their achievement and skills were

taken into account, including their previous programming experience before

undertaking the SETP, the differences between their programmes of study and

the variations in the initial level of programming skills between members of the

same team. The statistical analyses also allowed factors such as role selection

and the students’ perception of the ‘value’ of each role in a Software

Engineering team to be explored using peer percentages and a comparison of

marks awarded to each role ‘type’.

In terms of lessons learned from these analyses, the variety of tests used and

their results indicate that the real value of statistical testing is its provision of

some useful insights into the quantitative data but the main thing to remember

is that these facts and figures do not tell the whole story on their own. None of

the tests used determined ‘cause’ and ‘effect’ of the differences between

students’ achievement in the SETP module definitively and of course, the

effectiveness of their interpretation is open to debate. With this in mind

therefore the quantitative data analyses and results should be appreciated in the

context from which they have been derived and the purpose or goal of their

derivation. Whilst this view might limit their ‘replicability’ in a scientific sense,

it ensures their applicability and usability for resolving the problem at hand, i.e.

that of variability in assessment and achievement between programmers and

non-programmers in the SETP. With this aim in mind some more qualitative

data from the SETP module was collected via three Focus Groups which are

detailed in the following sections.

Three Focus Groups using student representatives from teams during the

academic years of the CETL ALiC Cross-Site work (the CETL was active

during 2005-2010) were conducted. Two facilitators were guest employers who

had acted as customers during the project and one facilitator was a PhD student

from the School of Computing Science. None of the facilitators had an active

involvement in the assessment of students. It was felt that a facilitator that was

‘neutral’ with regard to assessment would make students feel more at ease with

128

speaking about their project experiences. Students were made aware that their

responses would be anonymous and that they would be recorded (on paper) and

would be used for research and for the improvement of the module for future

cohorts. For the purposes of this current study the focus was on responses from

students that relate to assessment and feedback within the module. There were

12 participants in the first focus group (2006/07) from each site and Proctor and

Gamble staff facilitated the session. Newcastle representation was equal in

respect of course with 3 CS and 3 IS students. There were 20 participants in

Focus Group 2 (2007/08) and these students were from both sites. Again there

was a balance of students from the CS and IS courses, with 5 members of each

course taking part (10 Newcastle students) and 10 Durham students. A staff

member from IBM facilitated Focus Group 3 (2008/09) and 12 students from

each site took part. A full list of focus group questions can be found in

Appendix C.

5.9.4 Key themes emerging from Focus Groups

5.9.4.1 Poor Quality Feedback

From the three Focus Groups it became clear that feedback was not viewed as

formative. The student participants made it clear that they tended to “just get

the grade and move on” rather than base any of their decisions on feedback

received for a deliverable or element of the SETP work. This illustrates that

students tended to understand the feedback as summative and not something

they could build on for improvement in future work on the module. This might

indicate that the feedback was not of sufficient quality because student

expectations and reactions to assessment were different from what the module

leaders would have liked (Boud and Falchikov, 2007). Good feedback should

feed forward and ensure that students know what is good about their work,

what they need to do next and what they need to do to improve (Hume and

Coll, 2009). This clearly was not happening.

5.9.4.2 Disagreements about Roles and Responsibilities

In Focus Group 1 concerns were expressed that simply forcing the role of

project manager on IS or CS students at Newcastle in future iterations of the

module would be unfair as everyone has their own strengths and weaknesses.

Students stated that having to apply for the position of project manager would

129

“expose the person keenest to do it” and would probably be a better approach to

selection for this role. In some senses the students’ view on roles was not

reassuring as it seemed they wanted staff to choose the best candidates for

project manager rather than taking responsibility for their own learning choices

and role selections (Littlewood, 1996; Holec, 1981). Focus group 2 also

reported disagreements about roles. Some students reported that they had team

members who dominated the conversation during meetings and were quite

forceful in getting their opinions across. Some teams stuck to their roles for the

first semester but team members had to switch roles during the second semester

and help out in areas such as programming and testing when deadlines were

approaching. Factors leading to these views might be that the SETP module

did not make it clear to students about the value of each role in the Software

Engineering Process.

5.9.4.3 Concern over levels of Staff Involvement

Wanting the teacher to take more of the responsibility for what happened in

teams became a clear element of concern in all three of the Focus Groups as

students also expressed concern about the variability in monitor support

between teams and most wanted more help. In Focus group 2 non-contribution

from teammates was viewed as a big issue among the participants. Students felt

that there should be harsher penalties for students that did not do their fair share

of the work allocated to the team. Teams were unsure what the penalties should

be but some thought that students should be ‘sacked’ from a team for not doing

any work or penalised via their marks. It was explained to students that peer

assessment and weightings could be one method that the team could use to

‘penalise’ such behaviour but the students felt they did not want to affect the

person’s marks and that it was the role of module leaders to impose such

penalties and not their responsibility. In Focus Group 3 some students felt that

their teammates were prone to ‘act up’ in supervised meetings so that the

monitor would think they had done a lot of work, whereas the students felt this

was not always the case. In this group also students wanted module leaders to

punish those students who did not pull their weight during the project and to

monitor performance outside of formal meetings if they could. The module

leader aimed to allow students to experiment on their own and to explore so

that they could take an active role in their learning (Koshman, 1996; Crawford,

130

1996) but feedback from the Focus Groups illustrated that perhaps Piaget’s idea

that the role of module leader or teacher should be as a ‘facilitator’ was a bit too

difficult for students to cope with as they had not encountered it to such an

extent in any other module during their degree up until the SETP.

5.9.4.4 Distribution of Workload

Teams in Focus group 1 (2006/07) reported an ‘unfair’ balance in the

importance of deliverables across sites and many voiced concerns over the

apparent skew in workloads and accreditation between sites. These issues were

largely resolved in later iterations of the module, with clearer information being

provided about the assessment weight of deliverables at each site. Focus group

2 reported arguments had taken place about contributions to different elements

of the coursework. They also disagreed about the quality of work produced by

some of their teammates. Teams often had difficulty in allocating tasks to their

team members, especially when some were deemed unreliable. Newcastle

students undertook a skills assessment at the beginning of the project and felt

this would have been beneficial for all teams involved i.e. their counterparts at

Durham. On the whole, programmers felt they had been given an enormous

amount of work to complete whereas others had simpler tasks (such as

documentation) to complete. Some programmers felt that they had contributed

the most to their team’s product and therefore had the biggest contribution to

the project. By the time Focus Group 3 took place (2008/09) students reassured

by the use of Contribution Matrices but they still felt these did not accurately

reflect the time and effort put into a piece of work or the difference in difficulty

between one piece of work and another e.g. programming and documentation.

All three Focus Groups showed that students thought programming was a ‘high

value’ task in comparison to other deliverables or parts of the software

engineering process. Work on documentation or organisation was viewed as

being of lower value to the team effort or simpler in nature. The importance of

instilling the notion that all effort contributed to team outcomes and that all

roles were valuable to team success became more evident with subsequent

iterations of the module. Students also clearly needed more guidance on

allocation of work, managing their time and project planning. The module

leaders had set out to emphasise the values of skills and roles in all parts of a

Software Engineering Team but the message was not getting through. It was

131

apparent that the assessment weightings for code, documentation and

organisational tasks needed to be reviewed so that skills and contributions of

‘value’ were reflected clearly in the workload and assessment practice (Knight,

2002), without producing a rigid set of competencies as this can undermine

success, as outlined by Delamare Le Deist and Winterton (2005). It was also

important to ensure that those in a less technical role did not become less

motivated or feel less important in terms of their contribution (as in Dweck,

1988).

5.9.4.5 Concerns over Peer Assessment

Company peer assessment proved interesting across all three Focus Groups, but

particularly Focus Group 3. The results showed big differences in the

perception between teams in the same company. There were a few arguments

about this and about peer assessment within teams. Students wanted anonymity

when selecting percentages as they found the face to face meetings to discuss

weightings very difficult. Group assessment makes students uncomfortable and

is a challenging way to learn and challenging way to assess (Boud and

Falchikov, 2007). The module leaders recognised that peer assessment was not

being as effective as it could be because the purpose needed more explanation

and students needed more practice, prior to completing it ‘for real’ (Freeman et

al, 2006). It was also important to ensure again that students recognised the

value of all roles in the SETP and the skills outlined in QAA (2007) were just

as valuable. The challenge for teachers was to transfer these skills (aimed at a

complete single honours programme in Software Engineering) could be

distilled into one single module.

5.9.5 Results from Module Questionnaires

During the time period of this study (academic years 2003/04, 2004/05,

2005/06 and 2006/07) there were many positive comments about the SETP

module. Students enjoyed the challenge of creating real applications for real

customers. They enjoyed working in a team, making decisions and working

through the full software lifecycle. Most of the positive comments were in

connection with the improvement in their team, communication and technical

skills. Many students reported on the benefit the module had been in interviews

for placements and how they could see the benefit for their future careers.

132

However, despite our attempts to alleviate concern over assessment with the

introduction of contribution matrices (as outlined in Chapter 3) the students

were still worried. Peer assessment seems to have been an issue at both sites

during the cross-site initiative that began in 2005/06. It did not show up in the

formal module evaluations or in the Focus Groups to a great extent, but was

reported by individual students quite often in their individual reports and in the

module questionnaires. Some examples of the comments pertaining to

assessment in these questionnaires can be seen in Figure 16.

Figure 16: Example of Module Questionnaire Feedback

Information Systems (IS) students also reported that they could not cope with

some of the technical aspects of the module and felt that the project was more

focused on the Computing Science (CS) programme (Figure 17).

“The team monitor and module leader cannot really give justice by marks. Team meetings were

usually all about people talking about pointless things or trying to show their best side for the

monitor whilst in reality they did nothing.”

“The Peer Review Coursework is fully subjective and nobody can really check if the information

written is correct or true and this could lead to confusion, marking problems, etc. We should be

marked on the quality of our physical work (and fulfillment of our roles), rather than on something

so subjective such as a peer review.”

“I am very concerned with how the marks are calculated as there doesn't seem to be enough of a

frequent check in who's doing what, the team contribution matrix doesn't state how much each

person does, just what so it's possible for other members of your team to be argue they should be

in more slots even though they may have done 1% of the overall work. This module definitely

needs more frequent checks on what people are doing and how they are behaving, adding

percentages and providing a report on team members that doesn't have to be agreed by all

members would be a useful way of commenting on teams.”

133

Figure 17: Student Comment on Module Structure

5.9.6 Evaluation of Module Assessment using Anderson and Krathwohl’s

Revision

The assignments for the SETP were reviewed using Anderson and Krathwohl’s

revision of Bloom’s Taxonomy as outlined in Chapter 2 (Anderson and

Krathwohl, 2001). This process was by no means rigorous and it relied on my

own teaching experience to determine which areas were covered by each

assignment. For the purposes of the analysis I outlined all the learning

outcomes and expectations for each assignment on the module and reviewed

what was expected from students in terms of the types of knowledge they

should either use or learn when completing the assignments and the cognitive

processes involved in each task.

Result: The results from this analysis (Table 33) show that all Knowledge

Dimension areas are covered by the assessment objectives. The module is quite

rich in terms of the areas covered and in terms of the cognitive load on students

even though it is only one part of the whole academic year for second year

undergraduates and a small portion of their overall degree programme.

However, the SETP is perhaps one of the most authentic modules in terms of

simulating what a student will do in their career after they graduate.

“I think the way it is structured is unfair on information systems students. The work involves lots

of programming which goes way beyond the teachings in information systems. Often during

meetings and programming tasks it was like working in a foreign language like German and

meetings sometimes were like this. At times you would be listening to a conversation about a

programming problem and you really didn't know what was going on. This could be adjusted by

having not an easier element to the project but one which was covered by teachings in

information systems.”

“Some groups had 6-7 Programmers whilst we has 3 able ones and one lazy useless one. Felt

very unfair. Having 4 IS students in a group made it very difficult because only half the group

could do the programming and high level design work - they often had too much to do while we

couldn't even help. Didn't completely finish the app because of this.”

134

Table 33: Assignment Match to Anderson and Krathwohl's Taxonomy

Assignment Objectives Anderson and Krathwohl

Knowledge Cognitive level

Requirement

Analysis (Meeting)

Gather requirements from customer, review similar systems, evaluate

possible technologies for solution

Factual Understand

Analyse Evaluate

Project Plan To create a plan using deadlines and a defined software development

lifecycle/methodology, allocate tasks and resources to the plan

Factual

Conceptual

Procedural

Remember

Understand

Apply Evaluate

Project

Specification

To use an industry standard template to demonstrate technical and non-

technical aspects of the software product. To practice writing requirements

and using formal notations.

Factual

Conceptual

Procedural

Remember

Understand

Apply Evaluate

Create

Personal Skills

Analysis

To help students reflect on current skills and how they may interact in a

software development team.

To help them think, of their current strengths and weaknesses and how they

can further develop their skills during the module.

 To help develop the ability to evaluate their own performance.

Factual

Conceptual

Meta-

Cognitive*

Analyse,

Evaluate

Remember

Team Contract &

Structure

To define a team structure and software development methodology for the

project. To agree a code of conduct and outline standards and procedures

for the team.

Factual

Conceptual

Meta-

Cognitive*

Remember,

Understand

Apply

Analyse

Evaluate

Project Design

Document

To outline the architecture for the system, decompose the system into

components and highlight functional dependencies. To illustrate how

requirements will be met and to what level, to illustrate how the system will

work and how the user will interact with it.

Factual

Conceptual

Procedural

Remember

Understand

Apply

Analyse

Evaluate Create

Software Source

Code

To produce well structured, well tested, maintainable to meet the

requirements. Use of team standards and conventions in coding, including

good error handling and consideration of usability issues.

Factual

Conceptual

Procedural

Apply

Analyse Evaluate

Create

Software

Documentation

To produce test cases, evidence of testing, user manuals and include good

commenting in the code itself.

Factual

Conceptual

Procedural

Apply Analyse,

Evaluate, Create

Team Log Book To learn about accountability within the team, defining tasks, contribution

and quality assurance methods and noting responsibility for all aspects of

the work.

Conceptual

Meta-

Cognitive*

Apply

Analyse Evaluate

Create

Individual Log

Book

To keep a personal accurate record of all work undertaken during the

project. To make a note of effort and results and account for time during the

project.

Conceptual

Meta-

Cognitive*

Analyse Evaluate

Meeting Minutes To note the teams’ process, professional behaviour and approach to the task

in hand. To provide insight into decision points during the project and their

effect.

Factual

Conceptual

Procedural

Meta-

Cognitive*

Apply

Understand

Evaluate

Analyse

Team Report

(Interim & Final)

To reflect on achievements, areas for improvement, areas of success. To

evaluate the teams’ development process, to demonstrate what has been

learned and could be used for the next development project.

Meta-

Cognitive*

Procedural

Conceptual

Factual

Analyse Evaluate

Team Presentation To discuss ideas, prototypes, the development process and demonstrate

achievements. Includes reflection on the team process.

Factual

Procedural

Conceptual

Metacognitive*

Analyse

Evaluate

135

On balance therefore, the cognitive load on students could be viewed as an

ideal range in terms of what teachers are trying to achieve in the module design

and students will understandably execute the assignments to differing levels of

performance. The results also illustrated that 7 of the assignments make use of

or demand the use of Meta-Cognitive processes and knowledge (highlighted in

Table 33 by use of a *). This shows that there is considerable opportunity for

reflection and the assessment of that reflection in the module in terms of

requiring a student to reflect on and evaluate their own performance and also in

terms of reflecting on their team’s methods and processes during development.

5.9.7 Evaluation using Professional Standards and Frameworks

For the final part of the evaluation of the assessment design and approach in the

SETP, the assignments and learning objectives were reviewed in comparison to

the standards set out in Computing Curricula for Software Engineering

Education Knowledge as outlined by IEEE and the ACM. (SEEK 2003,

SE2004). I decided to use these rather than the QAA and BCS standards set out

in Chapter 2. The reason for this choice is that the QAA and BCS standards are

assessed by Newcastle University in the School of Computing Science on a

regular basis by these bodies. The BCS conducts an accreditation visit and

inspection every 5 years and Internal Subject Review inspects programme

quality in QAA terms also every 5 years. The Software Engineering Module is

always included in these reviews and always seems to be well received in terms

of aims, objectives, teaching methods and standards that are set for students.

The module has never been reviewed using the SEEK curricula and so this was

felt to be a valid and interesting step to take, to find out if the course content

and associated assessment is well-rounded in its aim at teaching Software

Engineering in view of these international curricula revisions.

In SEEK Bloom’s attributes are specified using the following:

 Knowledge (K), Comprehension (C), Application (A)

The relevance of the topic to the core body of knowledge that a student on a

single honours programme in Software Engineering should know at the end of

their studies is highlighted as Essential (E), Desirable (D) or Optional (O)

within each of the SEEK Education Knowledge Areas. With these

classifications in mind, I compared the module taught content and assessment

design structure with the SEEK units for a whole programme in Software

136

Engineering, even though the SETP is only one 20 credit module from the

programme at Newcastle. The full set of tables that show the results of the

evaluation in more detail can be found in Appendix D but for the purpose of

summary reporting, Table 33 shows the high level Knowledge Areas (KA)

from SEEK, the number of topics from each Knowledge Area unit that are

covered in the teaching or practical elements of the module, and the number of

these that are assessed. The SEEK Knowledge Areas for Specialities and their

related topics is not taught in second year of the undergraduate Computing

Science or Information System programmes. Students specialise in the third

year of their studies. Therefore the SEEK Knowledge Areas for Specialities

were not evaluated in this review of the teaching and assessment for the

Software Engineering Team Project module.

Result: The analysis of the teaching and assessment on the SETP Module

using the SEEK Knowledge Areas was interesting as it highlighted areas that

are perhaps over-assessed (Software Modelling & Analysis, 17/20 topics). The

Professional Practice Area is covered very well in terms of the number of topics

covered in teaching and assessment, 10/15 and 8/15 respectively (Table 34).

137

Knowledge Area Number of Units and

Sub- Topics covered in

module

Number of topics that are

assessed.

Computing Essentials 2/4 Units, 11/41 topics 4

Mathematical &

Engineering Foundations

2/3 Units, 3/21 topics 1

Professional Practice 3/3 Units, 10/15 topics 8

Software Modelling &

Analysis

7/7 Units, 20/42 topics 17

Software Design 4/6 Units, 11/39 topics 7

Software Validation &

Verification

2/5 Units, 13/35 topics 6

Software Evolution 2/2 Units, 2/13 topics 0

Software Process 2/2 Units, 3/14 topics

Software Quality 2/5 Units, 3/28 topics 2

Software Management 5/5 Units, 16/31 topics 9

Table 34: SEEK Comparison Summary

Software Management is also covered quite well with 16 out of the 31 topics

being covered in teaching and 9 of these 16 topics being assessed within the

module. The review using SEEK also highlighted some Knowledge Areas that

merit more consideration in both the teaching and the assessment, i.e. Software

Quality with only 3/28 topics covered in the teaching and 2 of these 3 are

assessed and Software Validation & Verification, with only 2/5 units and only

13/35 topics covered in the module.

5.9.8 Discussion of Results

It must be said that the ability to program is an essential skill for all Software

Engineers i.e. to build software solutions. However, one of the main drivers for

including a team project in Software Engineering to the IS and CS students,

was to teach students about the whole Software Engineering process and the

value of every role in a development project. Projects need more than just

programmers. Given some of the feedback on issues and problems faced by

students during the CETL years of this study it is good to see in the statistical

138

analysis that student attainment in the module was not adversely impacted by

the CETL intervention and cross-site work. However the results highlight some

real issues that need to be addressed to ensure fairer assessment on the module.

The results show that student perceptions of the inequality of attainment

between IS students and CS students during the CETL ALiC review were

somewhat justified. Programmers did get higher marks during the module. The

statistical analysis showed that marking procedures on the whole were fair in

the sense that good module marks were not affected by a student’s programme

of study, but that programming score (from First Year) was the strongest

predictor of whether someone would implement or not and those most likely to

implement during the module were CS students. The statistical results also

show that good First class and 2.1 marks in the module were closely related to

the breadth of roles taken on by an individual, not just a programming role, and

that those who led teams and/or took responsibility for organisation or

documentation, also scored well. These results are particularly heartening as

good participation and involvement in all aspects of the module are what is

expected from students. It was hoped that all students would take part in the

programming and as many of the other roles and aspects of the project as they

wanted to, regardless of programming scores or experience. The module was

intended to allow students to try any role they wanted and not to pigeon hole or

penalise anyone for the role they chose.

However, one of the most worrying aspects of the statistical results was the fact

that IS students who programmed tended to be treated poorly in the peer

assessment, i.e. they achieved a lower peer percentage than those IS students

who did not program. This was a particularly interesting result because it

indicated a problem with perception about IS students’ abilities and also

perhaps with the assessment design and balance of tasks within the module. It

also indicated that some roles and tasks were perhaps not valued as much or

deemed as important as programming the actual software product. Also, the

results show that CS students did slightly better in peer assessment and their

peer mark was higher, particularly if they implemented. These results lead to

the understanding that more work needs to be done on reassuring students

about fairness of assessment, especially peer assessment, and on recognising

the value of all contributions, regardless of the role a student plays in the

project. The peer assessment marks and the student’s weighting can be

determined as favouring CS students in particular, more so than any of the

139

other assessment marks reviewed during this part of the study. This imbalance

in marks, especially those of IS students who implemented, illustrated there are

perhaps differences in perceptions about IS and CS students amongst the

students themselves that need to be challenged. Perhaps this is, as Dweck

noted, students pigeonholed themselves and others in the class in terms of what

they could or could not do and the marks they feel they ‘deserved’ (Dweck,

2001). Indeed staff may have also influenced students’ feelings about what

they and others were capable of and this filtered down into peer assessment

marks. It is difficult to know what caused this result or the extent to which staff

influenced peer assessment weights because the Individual and Team

effectiveness data was incomplete. The lack of this additional data is rather

unfortunate as it could either strengthen or totally refute the other statistical

results that show peer assessment was a factor that impacted on IS student

attainment negatively during the study. Nevertheless, peer assessment and

student perceptions about the value of all roles were clearly areas that needed

reviewing and improvement.

The Focus Groups and module questionnaire results during the years of the

study i.e. before the CETL (2003/04 and 2004/05), during the first two years of

the CETL (2005/06 and 2006/07) and afterwards (2007/08-2009/10)

highlighted many areas for improvement in the module, particularly in the area

of the cross-site work. There were numerous problems relating to scheduling,

technologies and communication between the two universities and these were

eventually all rectified as much as possible up until the CETL work ended in

2010. The issues of fairness in workload and assessment remained to a large

extent unresolved. The use of Contribution Matrices (as highlighted in Chapter

3) served to alleviate some of the perceptions about the fairness of assessment

between sites but did not alleviate the problems of perception of effort between

CS and IS students at Newcastle. The feedback from students once again

highlights peer assessment and perception of role value and the value of

differing contributions between those on the two courses as issues of

contention, a finding that is supported by the statistical analysis results.

Students also wanted anonymity when conducting peer assessments and some

way of ensuring that non-contribution was penalised, preferably by some action

from staff, rather than relying on data from contribution matrices and peer

assessment scores. The Focus Groups and questionnaires also show that a

programming role was still viewed by many students as one of the most

140

difficult and demanding parts of the SETP and the one area where contribution

was deemed as being of more value, more so than any other of the ‘simpler’

areas of work in the Software Engineering process. These are elements that I

decided to investigate and attempt to resolve.

The results from the Anderson and Krathwohl review of the module

assignments and their learning objectives proved interesting in terms of the

areas of concentration i.e. the knowledge types covered by each assignment and

the cognitive levels and skills used and required to complete them. This review

showed that there is a high cognitive load in the module and students are

expected to demonstrate and use all of the knowledge areas and skills outlined

by both Bloom and Anderson and Krathwohl (Bloom, 1954; Anderson and

Krathwohl, 2001). This is perhaps too much to expect from a student in one 20-

credit module during the second year of their degree. Nevertheless it is

recognised that each student will attain, use and learn differing levels of

knowledge and cognitive skill during the module and that perhaps aiming high

is what we should do rather than narrow our expectations in terms of what is

learned and assessed (as was suggested by Knight, 2002). The real challenge

for teachers is to ensure that all these cognitive levels and knowledge areas are

clearly recognised and verifiable in our assessment design. Also, in our

teaching, assessment design and feedback we need to ensure that students are

supported as much as possible by teachers to attain the levels we have

specified, in balance with our goal for their learning autonomy (as outlined in

Chapter 1). The final set of results from the SEEK Review of Module Content

and Assessment showed that the module covers quite a lot of the Knowledge

Areas, Units and Topics outlined by IEEE and the ACM as Essential for

Software Engineering graduates. In some ways this result is very positive as it

illustrates that the module covers a lot of the areas required, even though it is

only ‘worth’ 20 credits of a student’s degree studies. A broad range of issues

and topics are covered in lectures but also practised in the team project itself.

Also, the matching of Bloom’s taxonomy to the SEEK Knowledge areas

illustrates that the module relies on the full range of learning outcomes and

cognitive areas covered by SEEK. However, the SEEK curriculum Knowledge

Areas matching does not include the cognitive process dimension areas of

Analysis, Synthesis or Evaluation from Bloom’s Taxonomy nor the Evaluate

and Create cognitive processes from Anderson and Krathwohl’s revision, and

therefore the evaluation of assessment for the SETP module could go one step

141

further to determine which of these areas are actually covered by SEEK in

undergraduate modules of Software Engineering in the UK. However the

review has proved to be of value as it has highlighted the need for more

teaching on Software Quality and Quality Assurance Measures in the module

and also some more concentration on Software Verification and Validation.

5.9.9. Summary

This chapter has outlined the statistical and qualitative results that were used to

gain answers to the research questions outlined in Chapter 1. The review of

module marks, student reflective reports and data from Focus Groups and

questionnaires showed that there were areas of the SETP module that needed

changing as programming competency, or more accurately, the perception of

programming competency (and non-competency) had adversely affected (at

least) the peer assessment portion of the marks of some students from the IS

course and those of Other courses who had not contributed to the programming

effort during their teams’ project. The results showed that some changes were

needed in the overall module design to ensure that all roles in the project were

seen to be equally valued in assessment and also in practice during the project.

This chapter also presented a review of the assessments and learning outcomes

using Anderson and Krathwohl’s Taxonomy Revision of Bloom and the results

indicated that the assignments covered all knowledge areas and cognitive

processes in that taxonomy. These results indicated that the module allowed

students many opportunities to reflect on their learning throughout the module

and that despite a high cognitive load on students, the assignments allowed

potential for a range of learning and honing of cognitive skills and knowledge.

Finally in this chapter a review of the module using the SEEK Knowledge

Areas outlined by ACM and IEEE was carried out. The results of this review

showed that some areas of the SEEK curriculum were not covered as well as

others in the module (Quality Assurance, Verification and Validation) and these

were areas that could be included. The results also showed that the SEEK

curriculum specification assumes that students at undergraduate level will not

reach the levels of learning in Bloom’s taxonomy of Synthesis and Evaluation

or those in Anderson and Krathwohl of Evaluate and Create. Therefore strict

adherence to this curriculum as a guide for learning design may mean that the

142

full range of learning outcomes from modules such as the SETP may not be

captured or valued correctly in assessment design.

The next chapter presents some experiments that were carried out to change

peer assessment in the module in light of these results, where I changed the

assessment from holistic to both holistic and categorical, in an attempt to help

students focus more on the value of all roles and all contributions, especially

those other than programming.

143

144

Chapter 6: A New Assessment Framework for

Software Engineering Team Projects

6.1 Introduction

This chapter reviews the SETP at Newcastle University in terms of learning

theories presented in the Literature review in Chapter 2 and the results

presented in Chapter 5 which were the drivers for creating a new assessment

framework for SETPs. The chapter then outlines a new assessment framework

for undergraduate teams that was first formulated in 20101, the Student

Appraisal Method (SAM). It then presents two experiments (based on a partial

implementation of the SAM framework) that were carried out to try to improve

student perceptions and consideration of the value of all roles and contributions

within the SETP. The chapter then presents the results from each of these

experiments and outlines their implications for future instances of the SETP

module. Finally an overview of other aspects of SAM that have been

implemented since 2010 is provided, along with some guidance on how the

framework could be used by other teachers in their student team projects.

6.2 Drivers for Creating a New Assessment Framework for SETPs

In Chapter 2 a review of the literature illustrated that work from Dweck, and

Torrance and Pryor showed there was a need for understanding student

motivations and self-esteem, as these factors can impact student perceptions

about their work, the assessment they undertake and their attainment (Dweck,

1988; Torrance and Pryor, 1988). It was therefore deemed important to

consider these issues when designing an assessment regime for a module or

programme of study. For the SETP this implied students’ perceptions about

themselves and their abilities (and the abilities of other students) could possibly

influence their behaviour in peer assessment exercises. The findings in the

1 Part of this chapter is a re-working of a paper published in 2010 (Devlin and Phillips, 2010) where the first

ideas about a new assessment approach were indicated.

145

statistical and qualitative analyses presented in Chapter 5 also seem to support

this conclusion as coders and Computing Science students were generally given

higher peer assessment marks and students from the IS discipline were given

the lowest overall peer assessment marks, even though they attempted

programming.

An investigation of learning theories used in HE in the UK in Chapter 2

showed that the approaches most appropriate to the design and aims of the

SETP module before and during the CETL ALiC years are those that advocate

both social and experiential learning (i.e. those of Vygotsky and Dewey

(Crawford, 1996; Dewey, 1938) and also those that take a constructivist

approach and allow for continuous reflection and experimentation such as the

work of Kolb and Biggs (Biggs, 2001; Businessballs, 2012). The CETL ALiC

initiative aimed to make learning more ‘active’ and engaging for students so as

to help them take more control of their learning, to enable them to learn by

doing and to become responsible and autonomous learners, so these learning

theories were deemed as the most appropriate to investigate and apply to the

module (CETL, 2005). However, as also highlighted in the literature review, a

teacher needs to formulate a learning theory and teaching strategy of their own

and it was the facilitator role that stemmed from Dewey’s theory of experiential

learning (1938) that seemed most appropriate at the beginning of the CETL.

This role proved to be the difficult to perform as it involved a lot of risk-taking

on behalf of the teacher. It meant allowing students to make mistakes and

experience being uncomfortable sometimes so that they could learn. This

approach also meant that although learning in the module is scaffolded and

structured, a lot of the time the students had to find their own way and work

through difficulties themselves. The ‘teacher as facilitator’ approach aims to

really benefit students in terms of their journey to becoming autonomous

learners and in their sense of pride and achievement at the end of a module that

involves teamwork, regardless of the marks so therefore it seemed appropriate

and worth the risks and difficulties. In the implementations of this approach

teams in the SETP were supported when they had a crisis and given guidance

or ideas on how to resolve team and technical issues, but the students were

never given the ‘answer’. It was deemed appropriate that the teams should be

resourceful and attempt to resolve their own issues first, before approaching the

teacher to ‘rescue’ them. Teams at Newcastle were in full control of what

happened during their project, in terms of the software development

146

methodology and team structure they used, in terms of the software they used

to build their solution, and in terms of determining the requirements and

designs for the solutions they had to produce. This teaching approach was and

still is somewhat in contradiction to the culture of support that is inherent in a

lot of Higher Education teaching today. Students in Computing are used to

being given detailed assignments that set out exactly what they have to do, that

specify exactly what the solution should do at the end, and exactly which

technologies they should use to realise it. The main point of the module was for

students to learn about different software engineering approaches and what

worked and what did not.

In terms of assuring quality the module at Newcastle managed to strike a

balance between the conflicting priorities of the need to classify student

achievement and the need to view assessment as a learning opportunity for

students (as outlined by Boud and Falchikov, 2007), but there was room for

improvement in the overall learning and assessment design and in the use of

peer assessment, as the results in Chapter 5 also illustrate. The new assessment

design therefore needs to bear in mind the level of willingness and motivation

that students might have at the beginning of a large team project and their self-

esteem (Emler, 2001). It is important also to consider that students may need to

learn how to take responsibility for their choices gradually during the project

(Littlewood, 1996). The new learning design and assessment framework should

include reflection on the learning process so that this gradual transfer of

responsibility can take place. It must also allow for active discovery and

experimentation and continuous feedback so that students may adapt their

approach and explore their own attitudes and values, as advocated by both

Piaget and Kolb (Businessballs, 2012; Koschmann, 1996). Ideally the

assessment framework should also (if possible) provide tasks for different types

of learning styles (as outlined by Kolb) and focus more on formative

assessment of skill development for lifelong learning, in balance with the

necessary summative measures of the institution (Burgess, 2007). For the

particular case of SETPs it should also focus on the essential competencies and

skills required of an apprentice Software Engineer (SE2004, 2004). With these

drivers, results and requirements in mind, in the next section the new

assessment framework for SETPs and student team projects (in general) is

presented.

147

6.3 The New Assessment Framework: The Student Appraisal Method

(SAM)

The findings from Focus Groups (outlined in Chapter 5) showed that students

do not always use the feedback or marks they receive for assignments during

the module to improve their next submission (“we just got our grade and moved

on”) or to improve their approach to the teamwork. Students also do not realise

the value of the peer assessment exercises, especially when we include

category-based assessment as a form of peer feedback. The results of the

quantitative and qualitative analysis show that there is also a real need for more

valuing of all roles in the project, especially in relation to the contribution of

students from other disciplines. The results show that programmers from the

CS course are often favoured with higher ratings in peer assessment exercises

and this affects the mark achievements of “non-programmers” or those that

program from other courses (IS students). With these results in mind, it was

decided there was a need to give each student more personalised and relevant

feedback on their competence as a software engineer, during the project, as well

as at the end i.e. to use more forms of formative assessment, so that students

can adjust areas of their approach (as individuals and as teams) before the final

summative assessments.

In 2010 a new method of peer assessment was proposed that aimed to give

students in these projects a more rounded view of their performance and the

value of their roles. The idea was to adapt the approach used in the SETP

module using ideas and concepts from the technique of 360 degree feedback or

multi-rater feedback (Devlin and Phillips, 2010). 360 degree feedback is a

developmental tool often used as a human resources tool to appraise employees

and involves an individual being rated by managers, peers and sub-ordinates as

well as undertaking a self-assessment (Fletcher, 1999; Tyson and Ward, 2004).

Its increasing use indicates that today’s organisations “value and reward self-

awareness and sensitivity to input from colleagues” (Fletcher, 1999). The

results from this form of appraisal have also been shown to improve

performance and if performed ‘correctly’ can encourage learning (Kluger and

De Nisi, 1996). For the SETP it was proposed that students undertake a similar

form of performance appraisal for their work on the module that would outline

their areas of achievement in software competency and would also highlight

those areas that needed more development or improvement. Feedback on the

148

SETP module before this was piecemeal for all the separate assignments and

did not give the students an overarching view of how they were performing

during the project or their achievement in terms of skills and competency

development as software engineers at the end. The peer assessment exercises

using holistic feedback did not give students much idea of how they were

progressing either or the purpose of peer assessment (Leik, and Wyvil, 2001;

Brown, 2006; Freeman et al, 2006). It was proposed that students should be

provided with competency matrices for peer assessment that would allow them

to evaluate each other and themselves in terms of the competencies required of

a novice software engineer including soft skills and technical skills and

encompassing the social nature of software engineering. These competencies

and skills should also match the learning outcomes for the module and those

identified as essential to a software engineer by the QAA and SWEBOK, where

possible, as outlined in Chapter 2 (QAA, 2007, SE2004, 2004; Layzell et al,

2000; Joseph et al, 2010). For this purpose the module team decided to use

competency matrices such as those outlined by Smith and Smarkusky, an

example of one such matrix can be seen in Table 35 (Smith and Smarkusky,

2005). These matrices could be used to capture learning and would give

students early formative feedback on their progress so they could correct any

poor behaviour or maintain their good approach and contributions to the team

effort, as appropriate (Black and William, 1998). The use of these matrices

would also allow students to track their progress and see how far they had

developed since their own skill assessment at the beginning of the module after

each instance of peer assessment. The competencies to be used were derived

from the 38 competencies identified by Turley and Bieman when they

conducted a study to find out what qualities, behaviours, skills and attributes

distinguished exceptional and non-exceptional engineers (Turley and Bieman,

1994, 1995). The authors conducted a review of ten exceptional and ten non-

exceptional professional software engineers to determine the competencies that

are different between the two groups. Their research was conducted in two

phases. In Phase 1 they identified critical competencies from a sample of 10

software engineers from five commercial research and development labs, at

three sites of one Fortune500 company and during this phase they identified 38

essential competencies of software engineers.

149

Classification/ Rank 1st 2nd 3rd

Process

Task performance Consistently

contributes to others

tasks and delivers own

tasks

Supports others in

completing tasks

Does not deliver on

own tasks.

Leadership Exercises leadership

skills regularly

Leads some tasks in the

project e.g. Design

Prefers not to lead

on major tasks but

leads smaller tasks

Communication Shares ideas regularly

in meetings. Asks

questions that direct

conversation to project

solution

Asks questions related

to project basics.

Shares ideas when

asked.

Table 35: Smith and Smarkusky's Competency Matrix Example

In Phase two they surveyed 129 software engineers to try to distinguish the

competencies that are different between exceptional and non-exceptional

software engineers. Their statistical analysis indicated that exceptional software

engineers are distinguished by behaviours with an external focus e.g. a focus on

their team or their customer. Exceptional software engineers are also more

likely to maintain a big picture view of the project and to help other engineers.

Turley and Bieman stated that many of the non-exceptional behaviours

identified by them ‘can be viewed as the behaviours of inexperienced

engineers” because a beginner “will be unsure of their own skills and

capabilities” (Turley and Bieman, 1994). The authors also concluded that no

simple predictor of what makes an exceptional software engineer exists and that

those that are exceptional have no more innate ability than average performers.

However they did identify nine key work strategies that differentiate the ‘stars’

and these are: Taking the initiative, Networking, Self-management, Teamwork

effectiveness, Leadership, Followership, Perspective, Show and tell - sharing

ideas with others and Organisational ‘savvy’. They also found that “the skills

and strategies of the stars can be taught to average performers” (Turley and

Bieman, 1994). Therefore, with this information in mind, defining skills and

behaviours in a similar fashion to Turley and Bieman would mean that teachers

of software engineering could define positive and negative behaviours and

skills sets for students of software engineering (or their own version of them, in

150

line with the module objectives) and these could be used to evaluate progress

throughout a team project. This approach could help students to gain more

confidence and to adjust their behaviour if necessary. This approach would also

improve the relevance of peer assessment reviews. However the number of

competencies identified would need to be chosen carefully, as ideally feedback

would be succinct and not onerous to complete and personalised for every

student. Increasing student numbers might make this a huge task so a limited

set of competencies was recommended. The use of competency matrices and a

3600 feedback approach would also give students an insight into how their

professional work would be assessed by employers and colleagues in their

future careers. It would give a more competency and behaviour-focused (rather

than role-focused) view of a student’s progress and contribution during a SETP

module. These matrices and the competencies associated with them could also

be readily adapted to team projects in other disciplines. It would be feasible to

identify generic skills and competencies associated with teamwork (as

identified in some of the peer assessment tables and methods outlined by Leik

and Wyvil in Chapter 2 (Leik and Wyvil, 2001). These generic skills could then

be substituted in the competency matrices and used as a basis for evaluating the

performance of students.

6.3.1 Components of the Student Appraisal Method

The Student Appraisal Method consists of three instances of competency

matrices that are issued to students throughout the team project. The

competencies that are used will vary from project to project and depend on the

subject being studied. An example of the matrix developed for the SETP at

Newcastle can be found in Appendix E. In the case of the SETP, the matrices

are introduced throughout the software development cycle at crucial feedback

points as follows.

 Competency Matrix 1 – This matrix is used for self-assessment by the

student before the project begins in earnest (i.e. top of circle in Figure

18) and ideally should be completed by the students before they meet

together in their teams. The matrix should highlight the essential skills

that are to be developed or used during the project. The aim of this

matrix is to allow the student to assess what skills or experience they

possess at that moment in time that will be needed to complete tasks

151

during the project, for example, programming, leadership,

communication skills and design. The matrix should allow the student

to highlight what they perceive is their current level of experience or

skill for each element or skill. Skill levels on the matrix could be

outlined in terms of expert level, intermediate level or novice, or the

teacher can use phrases such as “I have no experience in this area” or “I

have a little experience in this area” to describe experience levels. The

idea is to get the student thinking about what they can already do and

also about skills they might need to learn or improve upon during the

project. This matrix should ideally be issued in conjunction with a

report assignment that allows students to elaborate on their skill and

experience levels and to illustrate their current understanding of what is

needed for the project. Completion of this matrix and report gives the

teacher very good insight into where students are starting from, their

previous experiences and also any worries or concerns they may have

about the team project. This matrix (as Competency Matrix 4) is

reused at the end of the project to help the student write their final

report and re-evaluate their skills once the project has finished.

 Competency Matrix 2: This matrix consists of the same set of skills

and experience level descriptions as Matrix 1. This matrix is used for

both self and peer assessment and should be issued part-way through

the project (top right in Figure 18), when some work has been

completed by the teams. Students should use this matrix to evaluate

their teammates and themselves and to reflect on any skills they have

improved or learned anew during the first part of the project. Matrix 2

should ideally be used in conjunction with an initial ‘holistic’ or

numerical judgement from students about contribution to the team

effort so far. In the case of Newcastle SETP the matrix is used in

conjunction with the student allocating 100 percent (in terms of an

effort judgement) between team members for the first part or first

semester of the project. Familiarity with the matrix from the initial

usage should make it clearer to students how they personally have

progressed when they receive feedback from their peers but also

evaluate their own performance. Competency Matrix 2 should always

be preceded by some tutor feedback on elements of the project work so

152

that students can gauge their performance level using this feedback in

conjunction with feedback from their peers.

 Competency Matrix 3: This matrix again consists of the same set of

skills and experience level descriptions as those previously experienced

by the students. This matrix is used towards the end of the project as

part of the project review process (in the blue section/ top left of Figure

18). This matrix comes after formative assessment events that have

provided feedback from experts and tutors. At this point students have

received feedback from their peers, from tutors and from experts and

they have also reflected on their own performance in light of their self-

assessment at the beginning of the project. Towards the project end

another reflection on their skills and achievements during the project

should help them to evaluate their competency (and that of their peers)

in terms of the project results but also their own contributions to the

whole process. Competency Matrix 3 is used for another round of self

and also peer-assessment. Feedback from this task should also assist

each student in writing their final reflective report and help them to

understand what they have learned and achieved during the project and

what they still need to work on for the future and they can use the

feedback from peers to fill in the final matrix, Competency Matrix 4.

153

Figure 18: The Student Appraisal Method

An initial (and partial) implementation of these competency matrices was

carried out in the SETP module, in an attempt to address all the issues raised by

students and the findings from the review of the student data in Chapter 5. The

next section outlines two experiments with peer assessment that involved the

use of both holistic and category-based peer assessment and a set of

competencies that students could use to evaluate themselves and their

teammates.

6.3.2 Experiment 1 - Individual Category and Holistic Peer Assessment

In the academic year 2010/11 there were 163 students who took the SETP

module and these students were divided into 22 teams (each with 6 or 7 team

members). No Durham students were involved in this year. For peer assessment

in this year students were asked to submit their individual views to NESS on

how each team member had performed. They were asked to submit both a

Final Grade (Summative by tutor)

Self-Assessment and Reflection

(Formative by self)

Peer and Self-Assessment

(Formative)

Expert and Tutor Feedback

(Formative)

Expert and Tutor Assessment

(Summative)

Final Demonstration

Trade Fair

Team Report

Final Implementation

and Testing

Role selection

Domain analysis

Understanding brief

Designing prototype

Final Report and

Competency Matrices

 3 and 4

Draft Specification

Prototype Demonstration

Dragon’s Den

Competency Matrix 2

Peer and Self-Assessment

(Formative)

Competency Matrix 1
Tutor Feedback

(Formative & summative)

Self -Assessment and Reflection
(Formative by self)

 Summative Assessment

Formative Assessment

154

holistic assessment i.e. the division of 100% between team members based on

perceived contribution, and a category-based assessment of how each team

member had performed their tasks. Some categories were provided to students

as a guide to help them assess the contributions and performance. These

categories were: Communication, Task Completion, Attendance at Meetings,

and Participation. The students were told that these categories were suggestions

and they could add their own categories for evaluation if they wished. Students

were asked to justify their holistic percentage sharing via the category-based

assessment, for example, “ I gave X only 17% as he did not turn up to all the

meetings and had not always completed the tasks he had been set for that

week.”

Results: There were two instances of peer assessment during this academic

year, as in other years. In both instances students were asked to carry out the

individual category-based and holistic peer assessment. The results of this

experiment were disappointing as students invariably adhered rigidly to the

suggested categories for the category-based assessment. They also did not

elaborate much on these categories and submitted a very brief and rather

unreflective category-based review for each member of their team.

The majority of students also made no real effort to elaborate on the reasons for

their allocation of marks for the holistic peer assessment during this

experiment. Feedback from students from the module questionnaires showed

that they were not sure why they were conducting the category-based

assessment and most said that they were unsure what to write. Some students in

this year also misunderstood what was meant by the holistic division of 100%,

as can be seen in Table 36:

155

 Communication

(Out of 25

marks)

Task

Completion

(Out of 25

marks)

Attendance

(Out of 25

marks)

Meeting

Participation

(Out of 25

marks)

Percentage

/100%

Student A 25 25 25 25 100

Student B 24 25 25 24 98

Student C 22 25 25 22 94

Student D 23 25 25 23 96

Me 25 25 25 25 100

Student E 25 25 25 25 100

Student F 25 25 25 25 100

Table 36: Incorrect Example of Holistic Assessment

Table 34 shows that some students took the categories from the category-based

assessment and used them as a method for calculating each student’s effort out

of 100% for the holistic peer assessment, so they did not come up with one

percentage for the overall performance. In these cases the module leader had to

rely on the team monitor to give an overview of each individual’s performance

to ensure that a fair weighting could be recorded for each team member. These

results illustrated that students were unsure of what to do during the peer

assessment tasks and that they had not given a clear explanation of what they

needed to do in the case of both the holistic and the category-based peer

assessment. However, some good examples of justification of the peer

assessment marks were found during this experiment, as can be seen in Figure

19.

Student X Communication:

 X is extremely good at communication within the group both in person

and using our Facebook Group.

 He has many ideas and is enthusiastic.

 Assigns tasks and make sure things get completed effectively.

 Challenges ideas regularly in order to do the best work possible

Figure 19: An example of a detailed category-based review

156

“To resolve any communication and participation issues we have, I am going

to encourage the individuals within meetings and directly ask for their

opinions. I am also going to talk to X with Z to make sure he attends on time.

There may need to be a slight re-evaluation of roles and positions to make sure

X and Y fit into the team better. Overall the team are working extremely well

together and I am very happy with everyone’s level of commitment and

enthusiasm, I really like my team members a lot. On a personal level I am

going to do more research to improve my own knowledge and results of team”

Figure 20: A student reflection on peer assessment, 2010/11

Some students also reflected on what they could do to improve the category

areas that they thought were weak in their team as can be seen in Figure 20.

The results from the first experiment therefore indicated that more work needed

to be done on ensuring that students knew why they were carrying out the

category and holistic-based assessment. They also illustrated that when students

are given suggestions of categories, many will adhere strictly to the categories

provided and not create their own categories for evaluating their own

performance or that of their teammates. Many students will also not elaborate

much on the categories provided unless they are instructed to do so. The results

of this experiment were a little disappointing but they were also a learning

experience provided more insight into what could be improved for next time.

6.3.3 Experiment 2 – Team Holistic and Category Based Assessment

In the academic year 2011/12 there were 184 students who took the SETP

module and these students were again divided into 22 teams (each with 7 or 8

team members, some teams had 9 members). Again, no Durham students were

involved. Teams were selected at random by the module leader (in previous

years we had ‘seeded’ teams based on programming score but from 2010/11

onwards random team selection was felt to be more authentic). For peer

assessment this year students were asked to submit their views as a team to

NESS on how each team member had performed. They were again asked to

submit both a holistic assessment i.e. the division of 100% between team

members based on perceived contribution, and a category-based assessment of

how each team member had performed their tasks. The same categories used in

157

Experiment 1 were provided to students as a guide to help them assess the

contributions and performance, along with more detailed instruction on how

they could also use categories of their own to arrive at their evaluations. These

categories were as in Experiment 1: Communication, Task Completion,

Attendance at Meetings, and Participation. Students were again asked to justify

their holistic percentage sharing via the category-based assessment. The

purpose of the peer assessment was explained to students and it was also

suggested that the second face-to-face meeting for peer assessment be used to

review the project outcomes and to aid each individual in writing their final

reflective report.

Results:

The results from Experiment 2 were in fact much worse in terms of detail than

those in Experiment 1. Teams typically did not spend much time discussing the

category-based assessments and many complained that they found the whole

process very uncomfortable. An example of one team’s effort can be seen in

Table 37:

Team Member Positive attribute Attribute to improve Contribution

P Participation Technical Input 12.5

L Technical input Research 12.5

D Task Completion Technical input 12.5

I Attendance Participation 12.5

K Organisation Communication 12.5

A Research Organisation 12.5

F Organisation Communication 12.5

S Communication Attendance 12.5

Table 37: Example of team-based category assessment 2011/12

It was unclear what had gone wrong at first but it was found there was an issue

with the instructions that had been given to students. Students said they wanted

personalised feedback on their progress and did not want to discuss their

performance weaknesses with other teammates in the face-to-face meeting.

Students found it difficult to evaluate performance, as they had no other team

158

development experiences to compare this instance to. They said they found it

difficult enough to agree on the holistic percentages and that category-based

assessment seemed pointless. It was at this point that it was recognised there

had also been a problem with Experiment 1. Each student had been asked to

provide their feedback but these had not been sent back to each student

afterwards because of a technical problem. The reason that this did not happen

was the way the exercise was set up in the NESS system. The peer assessment

exercises were set up as exercises that did not receive a mark. In the NESS

system, at the time (and still), when an exercise does not receive any marks

then the lecturer could not provide online feedback about that exercise.

Therefore the students saw the exercise as a waste of time because they did not

get the personalised feedback in time to make any changes or improvement in

their behaviour. The second peer assessment was also viewed as a waste of

time because it came at the end and meant that students could not make any

improvements that might impact on their grade for the module and that was

their main concern. They did not see the value of peer assessment for their

future careers or in terms of feedback on areas they could improve for the next

project and this was because it had not been explained it clearly enough. These

results revealed a real need for a better way of conducting peer assessment,

online. If the first category-based assessment was to be of value to students

then they needed to get the feedback on their personal performance in time to

be able to make changes for the next stage of the project, and if the second

round was to be of value then students needed to understand what the

implications were for their final module mark and for their future career. These

experiments also illustrated more to me about all the peer assessments that had

been conducted before in the module, both at the time of the cross-site work

and before and after this work, at a local team level. Students at Newcastle had

not had any feedback or justification for the holistic peer assessment marks

they were each awarded and they had little or no feedback on their personal

performance during the project, only that which was openly discussed in a

meeting with peers, a meeting that made a lot of students uncomfortable. It

became clear that the methods of peer assessment still needed to be adjusted in

the module so that it became anonymous (as some students had requested in the

Focus Groups discussed in Chapter 5) and also that it was viewed as a

worthwhile exercise which provided useful and timely feedback to students and

159

helped them learn more about themselves and their growing competency as

software engineers.

6.4 Implementation of more elements of the Student Appraisal Method

As well as experiments with category-based competency matrices for peer

assessment during the module, the results of the statistical and qualitative

analyses in Chapter 5 illustrated that students needed more types of feedback if

the SAM assessment framework was going to work similarly to how 360

degree feedback and a competency appraisal process does in industry. Students

needed to get a more rounded view of their progress and development with the

help of different groups of people they interacted with during the project and

the assessment marking criteria needed to be explained more fully. The tasks

and assignments also needed to indicate the value of all roles in the software

engineering process more strongly. To this end a number of changes in the

design and assessment of the module have been implemented since 2010 and

these are outlined in the following sections.

6.4.1 Discussion of Peer Assessment and Assessment in the Opening Lecture

Since the CETL ALiC work ended in 2010 the module leaders have presented

an overview of the assignments and assessment procedures in the SETP in a

lecture at the beginning of every academic year. This hour-long session

includes an in-depth review of peer assessment and the impact of peer

assessment marks on the overall module mark for students at the end. This

session provides the opportunity for students to ask questions and also discuss

their doubts and fears about peer assessment. This session is also used to

explain the value of all roles in the project and to discuss how students need to

be fair and professional when reviewing the contribution of their teammates.

SAM requires that students are very clear about how they will be assessed, who

will be assessing them, the marking criteria and what is expected of them, so

this session is very important.

6.4.2 A Greater Balancing of Skills Required in the Problem Brief

The assignment briefs for the module have been reformulated over the years to

ensure that the technical and academic skills of all students from the different

programmes involved in the module are required to solve the problem. This

160

means that the module team have become more specific about the type of

technologies that can be used to create the solution (whilst also attempting to

allow students some freedom to choose). This is accomplished by providing a

number of different application types and teams can select the one that suits

them best, based on the skills available in their team. If students are to be

appraised on their software engineering competency and the behaviours and

skills associated with that, then all these skills need to be required in the

problem brief and in the solution, in equal weight.

6.4.3 A Wider Variety of Assignment Types

Some different assignment types have been introduced into the module so that

students from different backgrounds and with differing levels of technical and

non-technical skills could contribute equally. These assignment types include

the creation of a poster, the requirement for more evidence of testing and test

case design, assignments such as meeting stakeholders and gathering

requirements via interview etc. All of these involve the use of skills such as

communication, presentation, research skills, documentation skills, graphics

skills etc. and not just programming and design skills. Again for SAM to be

effective this means that all the skills being assessed are required in the

assignments and that there is a fair balance of skills required in each of the

assignment types.

6.4.4 Clearer Overview of Marking Criteria and the Final Module Mark

Calculation

During all the years of the CETL the equation for the final mark calculation (as

outlined in the Chapter 3 Case Study) was not visible to students and was never

explained. This meant that students did not know exactly the specific

assessment values of the team and individual elements of the coursework for

the module. Many students were puzzled by their final grade, because these

marks were ‘hidden’ from view. This was so that it was felt that students would

be inclined to give a narrower range of scores in their peer assessment if they

could see the calculation. From the academic year 2011/12 onwards the

calculation was available to students on Blackboard (a new VLE) and the exact

weighting of each assignment for the module was detailed. It was explained

clearly how team and individual marks worked in the module and this had

161

never really been done before. In some ways the fear of a narrow range of peer

assessment marks has been borne out as in 2013/14 there were no IS students

involved in the module and 7 of the 15 teams awarded all their team members

the same mark. However, it is difficult to argue or corroborate whether this was

because of the lack of IS students in the seven teams or because they had a

team that contributed equally to every part of the work. On balance though, it

was deemed best to be more open and transparent about assessment. Students

are mark-oriented, no matter how much we aim for them to enjoy learning and

see the value of what they are doing in the long term. So, for SAM to work, the

assessment ‘value’ and what it means to their degree should be explained.

Students should also be clear on what we mean by a first-class performance,

and a second-class performance, and so on.

6.4.5 The Involvement of Software Engineers (from all roles) in Feedback

Local software engineering professionals were invited to take part in the final

technical demonstrations of the teams’ applications at the end of the academic

year. The engineers were provided with a feedback sheet for each team and

asked to comment on all aspects of each team’s Software Engineering Process

(they did not award marks). This feedback was given to student teams along

with the mark assigned for the demonstration that was awarded by the module

leader. This type of feedback was very much valued by the students and many

commented that it made the project seem more real and that they really

appreciated getting an industry view on their work. If the aim of a team project

is to provide an authentic view of what students will experience in the

workplace, then people from the workplace should be invited in to give their

views. This is not always easy to manage but some employers are willing to

give their time, especially if they can look at what students are doing and give

comment on it, from their perspective. It is also important that students get a

variety of feedback from a range of employers. The SAM idea requires teachers

to invite expert practitioners in the discipline to comment on student novices

and their performance.

6.4.6 The Introduction of Formative Assessment ‘Events’

Two formative assessment events were introduced to the SETP so that students

could get feedback on their abilities as software engineers and on their work (a)

162

at a very early stage in development from a panel of experts and (b) from the

public and domain experts at the end of the project. The first event was

Dragon’s Den and is based on the TV series of the same name (Dragons Den,

2014). In the TV show entrepreneurs present their ideas for a product to a panel

of would-be investors. The entrepreneurs describe their idea, the target market

for the idea and also detail the technical and financial aspects of their product

that they think will make their idea a business winner. A panel of Software

Engineering specialists (from industry) and some stakeholders for each

particular application were invited to take part. This event takes place very

early on in the module when students are developing their prototypes and still

working out the requirements for the application. In this event each team gives

a presentation on their understanding of the requirements and then gives an

overview of their ideas for the solution. Panel members ask questions and give

feedback to students on the viability of their solution, their proposed software

development approach, proposed technology choices and features of the

application, their development plan etc. Students find this a rewarding

experience and it gives them an early indication of their progress and elements

of the work that they might need to adjust to be able to deliver an effective

solution.

The second formative assessment event that was introduced was a Trade Fair at

the end of the module. The idea originated from a Faculty-based lecturer in

Enterprise and provided a great chance for our students to take part. In the

Trade Fair event each team is given a stand that they must ‘decorate’ and a

table to display their product. We invite the general public, academics from the

School of Computing Science, all the industrial contacts, ‘customers’ and

interested potential users of the product to the Trade Fair. Each team must

demonstrate their product to each visitor at their stand. Visitors then fill in an

anonymous feedback sheet for each team and this feedback is collated at the

end of the event and sent to each team. This event gives students feedback on

their product and also on how well they have fulfilled the brief. It provides an

opportunity to really test their product ‘in the field’. Again, students enjoy this

event and put a lot of effort into it. They also really value feedback from

potential users and from employers and other academics.

163

6.4.7 How SAM can be generalised for other Team Projects

SAM involves considerable effort on behalf of teachers for team project

modules. However, the effort is worth it because students get a wide variety of

feedback from different sources and a more rounded view of their achievements

in Software Engineering. To implement SAM in other disciplines requires some

thought on what a team project is trying to achieve. The method is perhaps

more suited to practical science-based team projects in disciplines such as

Engineering, Chemistry or Biology as it relies on very concrete definitions of

skills, behaviours and attributes that are required of a practitioner of the

discipline in industry. However, subjects in Humanities or Business could run

formative assessment events e.g. poster sessions or student conferences that

require the attendance of professionals and academics from the discipline. The

competency matrices that are part of SAM could easily be adapted to list the

expected skills levels or learning outcomes from such team projects and to

multi-disciplinary projects (although defining competencies might be more

challenging). Nevertheless, the principles of 360 degree feedback could be

generalised to any discipline, with a little imagination.

However, SAM is not a rigorous assessment method designed to make marking

team processes easier, rather it is an assessment method that is formative i.e.

for learning, one that should help students to evaluate their own progress in

terms of skills, knowledge and behaviour, and that of their peers, more easily

and more effectively.

6.5 Summary

In this chapter an overview of the learning theories used in the SETP module

was presented and some insight provided on the teaching approach that

developed during the CETL ALiC years and afterwards. The chapter then

introduced a new assessment framework for SETP that developed from the

issues raised in the research on assessment in the module that are presented

earlier in this thesis and from my experiences teaching the module since 2005.

The chapter then outlined two ‘failed’ experiments using parts of the new

assessment framework that were carried out in a bid to address the issues of

role perception and contribution that were apparent from the earlier research the

learning from these experiments was detailed. Other aspects of the SAM

assessment framework that have been implemented since 2010 are then

164

outlined as well as how SAM could be adapted for other disciplines. The next

chapter concludes this thesis, summarising the outcomes of the work so far and

detailing further work that will be carried out.

165

166

Chapter 7: Conclusion

7.1 Review of Research Questions

In Chapter 1 of this thesis 5 questions to be answered by this research effort

were presented. The first question focused on determining the differences

between the work of coders and non-coders during the project and how this

impacted on their attainment/success in the SETP. The quantitative analysis in

Chapter 5 demonstrated that factors that affected student attainment were two-

fold i.e. peer assessment weightings (based on student perceptions) and the role

that a student took during the project. The analysis showed that more work was

needed on ensuring students understood the value of all roles and contributions

during the SETP. Question 2 was related to perception also as it focused on

determining if the module leaders had missed something fundamental in the

teaching of background material or in the design of assessment for the SETP

that had affected student perceptions about the value of roles. The findings in

Chapter 5 demonstrated again that more work needed to be done on helping

students understand their own skills and contributions and also on teaching

them to value the contribution of others. This is the same problem and required

remedy needed as for Question 1.

The challenge for the third question was to ascertain whether there was a bias

in the assessment marking criteria in favour of those who coded in the SETP.

An exploration of the marks achieved by students from the IS and CS

programmes and in the various roles in the project, over several years of the

SETP, demonstrated that marking by module leaders was not biased in favour

of one group in particular. However, some data was unavailable for exploration

i.e. the marks from team monitors. So, the answer to Question 3 is inconclusive

and needs to be explored further when more comprehensive data is available.

Question 4 queried whether module leaders had fallen into the trap of

specifying assessment criteria based on perceptions of ability rather than what

students actually did (as discussed by Black and William, 1998). This thesis has

contributed to the debate on assessment design and criteria, including the value

167

of classifications for degrees, the importance of formative assessment and has

demonstrated some of the value of focusing on skills and learning for life long

development. The assessment criteria for the SETP were designed to measure

what students did rather than ability. However there was a problem in the way

assessment was explained to students, especially peer assessment, and the

results in Chapter 5 showed clearly that this needed to be remedied to ensure

more fairness.

The last research question in Chapter 1 was “Did a student have to be ‘good’ at

programming to do well?” The research has demonstrated that this question

was a complex one to answer as many factors contributed to student success

during the SETP. The results of Focus Groups and statistical analyses showed

that programmers were often given a slightly higher peer percentage and were

sometimes more ‘valued’ during the module. The answer to this question was

to challenge students’ perceptions, rather than change marking or marking

criteria.

7.2 Thesis Summary

This thesis describes a study undertaken to review the assessment regime of the

Software Engineering Team Project Module at Newcastle University and to

construct an assessment framework that acknowledges the validity and value of

all roles in software development project teams and rewards all student

contributions fairly. In Chapter 1 the thesis outlined the assessment review of

the CETL ALiC cross-site activity implemented by Newcastle University and

Durham University and the research problem of fair assessment of coders and

non-coders in the student teams that emerged from this review. In Chapter 2

key areas of literature relevant to this study were identified from the work on

experiential learning, learner autonomy and motivation, on instructional and

assessment design methods used to evaluate teamwork in Higher Education in

the UK today, and on competency criteria and standards determined by

professional bodies in Software Engineering. In Chapter 3 an overview of the

CETL ALiC cross-site activity was provided and the methods of assessment

used by both Durham University and Newcastle University to evaluate the

performance of cross-site companies were presented. This chapter also detailed

the assessment issues faced by students and the CETL ALiC team during the

CETL years 2005-2010. Chapter 4 introduced the quantitative and qualitative

168

methods used in this study to evaluate the effectiveness of the assessment

methods used during the cross-site activity and on the SETP module before and

after the CETL ALiC initiative. Chapter 5 outlined the results of these analyses

and their implications for the assessment regime of the SETP. The findings

show that students need more help in reviewing their skills development and

achievements during the module and in recognising the value of all

contributions and roles in peer review exercises. The statistical results

illustrated that there were some misconceptions about the value of some roles

during the project, especially those that were deemed non-technical. These

misconceptions led to variations in peer assessment values that needed

correcting. These corrections in the way peer assessment is performed as

outlined in Chapter 6 aimed to ensure that students reward all programmers for

their efforts, regardless of their programme of study (IS and CS) and to

recognise the value of inputs to the team efforts in areas such as planning,

organisation and documentation as well as more technical areas, especially

programming. In Chapter 6 two experiments that sought to help students with

peer assessment were outlined. These experiments provided an insight into

student perceptions about their personal abilities and skills and those of their

teammates but were not wholly successful in addressing the issues raised by the

peer assessment results outlined in Chapter 5. Chapter 6 outlined the solution

that was derived to address the wider issue of helping students review their

personal Software Engineering competency during the SETP module (and upon

its completion) using the SAM formative assessment framework. Chapter 6

also detailed aspects of the Student Appraisal Method that are currently in place

and how these could be adopted by other universities for any module that

involves team work.

7.3 Future Work

This thesis defined a competency matrix as part of SAM to be used (four times)

at three stages of the SETP module during the academic year 2014/15. A copy

of the self-assessment version that is currently in use in the SETP can be found

in Appendix E. This competency matrix, in the form of Smith and Smarkusky’s

Competency Matrices, incorporates skills, abilities and behaviours expected to

be developed by each student during the SETP module and are largely based on

the learning outcomes for the module (Smith and Smarkusky, 2005). These

169

skills, abilities and behaviours are also based on some of those outlined in the

study of Software Engineering professionals carried out by Turley and Bieman

(Turley and Bieman, 1988) and also on aspects of the Software Engineering

Education body of Knowledge (SE2004, 2004). In future iterations of the SETP

the calculation of peer weightings and their contribution to a student’s final

mark will be derived using the marking criteria used by Conway et al. outlined

in Chapter 2 (Conway et al., 1994) where levels of contribution are defined and

then translated into marks. Students will be made aware of the value of each

level of contribution. These matrices will be used four times during the

module. The first time they will be used is during the Self-Assessment/Skill

Evaluation exercise at the beginning of the SETP module. Students will use

these to assess their individual skills and ability levels before being placed into

teams. The second and third time the matrix will be used is to evaluate self and

peers during the two peer assessment periods of the module (once per semester,

one at the midpoint of the project and one near the end) and the final time the

matrix will be used is as part of the Individual Reflective Report written by

each student at the end of the module. Peer assessment matrices and their

results will be sent out to students just after the first peer evaluation session

(module mid-point) and just before they write their Individual Reflective

Report at the end of the module. Students will be able to use their peer review

matrices and their self- assessment matrix to help evaluate and reflect on their

own performance and competency development as a software engineer.

7.4 Conclusion

To address the assessment issues raised during the CETL ALiC review of the

SETP module and to ensure that students recognise the value of all

contributions and roles during their team project, this thesis has outlined a new

approach to assessment for team project modules that encompasses formative

peer and self-assessment along with tutor, public, and professional reviews of

student work. The work conducted in this thesis has helped to identify some

ways in which tutors can help students to reflect and evaluate their own

performance and that of their teammates more effectively via the use of

competency matrices. It has also helped to identify factors that might impact

student attainment in SETPs and reviewed the particular impact of

programming competency on attainment on the SETP module at Newcastle

170

University. It has also determined that programming competency is not a

primary predictor for individual and team success on the SETP module but it

was a factor with strong influence in terms of students’ peer assessment

weightings and the value placed on each role in their development team. The

SAM assessment framework outlined in Chapter 6 of this thesis has created a

more rounded approach to assessment and feedback for students in terms of

their competency development during the SETP module at Newcastle

University. The SAM framework is essentially a set of formative assessment

methods that rely on feedback from the full range of people and groups

involved in and affected by the student development teams on the SETP

module and their software products. SAM’s aim is to provide a wider range of

feedback on all aspects of the project including a team’s professional

behaviour, the quality of their software product and the effectiveness of their

development approach. Parts of the SAM approach that were implemented have

performed extremely well in this regard e.g. the formative assessment events

outlined in Chapter 6, section 6.4.6. However, implementations of other aspects

of SAM towards the end of this study have had varying degrees of success. The

experiments in Chapter 6 showed that much more work is needed on

developing the skills and abilities used in the competency matrices that are

central to the SAM approach. Another future development of this work is to

fully automate the self and peer-assessment process for the SETP module and

to incorporate this into our existing virtual learning environment Blackboard.

Student learning outcomes and module performance using the SAM framework

will also be reviewed again at a later date.

171

References

Access Grid: http://www.accessgrid.org/ < accessed online 21/08/2014>

Altman, D.G. (1999). Practical statistics for medical research. New York. NY:

Chapman and Hall/CRC Press.

Association of Graduate Recruiters, available at http://www.agr.org.uk

<accessed online 17/07/2014>.

Anderson, L., W., Krathwohl, D. with Airasian, P., W. et al, (Eds.), (2001), A

Taxonomy for Learning, Teaching and Assessing: A revision of Bloom’s

Taxonomy of Educational Objectives, New York, Longman, 2001.

ASKe Position Paper on Assessment, Available online at:

http://www.brookes.ac.uk/aske/documents/ASKePositionPaper.pdf

<accessed online 09 September 2014>

Balla, J., Boyle, P., (1994), Assessment of Student Performance: A Framework

for Improving Practice, Journal of Assessment and Evaluation in Higher

Education, Vol. 19, No. 1., pp.7-28.

The British Computer Society Code of Conduct and Good Practice,

http://www.bcs.org/content/conWebDoc/1587 <accessed online 13 April 2011>

BCS Code of Conduct Summary, http://www.bcs.org/upload/pdf/conduct.pdf,

<accessed online 17th July 2014>

BCS Accreditation Criteria http://www.bcs.org/content/ConWebDoc/52296,

<accessed online 17th July 2014>

Bell B., S. & Kozlowski, S., W., J., “A Typology of Virtual Teams:

Implications for Effective Leadership”, Group and Organization Management,

Vol. 27, No.1, 2002, pp.14-49.

http://www.accessgrid.org/
http://www.brookes.ac.uk/aske/documents/ASKePositionPaper.pdf
http://www.bcs.org/content/conWebDoc/1587
http://www.bcs.org/upload/pdf/conduct.pdf
http://www.bcs.org/content/ConWebDoc/52296

172

Biggs, J, (1999), Teaching for Quality Learning at University, Buckingham:

SHRE/OU Press.

Biggs, J, (2001), On Constructive Alignment, seminar notes to LTSN,

University of Edinburgh, July 3rd 2001.

Biggs, J., (2003), Teaching for Quality Learning at University, Buckingham:

SHRE/OU Press.

Biggs, J., & Collis, K., F (1982), Evaluating the Quality of Learning: The

SOLO Taxonomy, New York, Academic Press.

Birmingham University

 http://www.cs.bham.ac.uk/admissions/undergraduate/se.php, <accessed online

31/08/2010>

Black, P. & William D, Inside the Black Box: Raising Standards through

Classroom Assessment by P Phi Delta Kappan, Vol. 80, 1998

Black, P., and William, D., Assessment in Education, Vol. 5, No. 1, 1998

Bligh, D.A. (1998), What’s the use of lectures? (5th ed.), Exeter: Intellect.

Bloom, B., S., (1956), Taxonomy of educational objectives: the classification

of educational goals by a committee of college and university examiners, New

York, Longmans, Green, 1956-64.

Blondy L. C., (2007), Evaluation and Application of Andragogical

Assumptions to the Adult Online Learning Environment, Journal of Interactive

Online Learning, Vol. 6, No. 2.

Boon, J., van der Klink, M., (2002) Competencies: The Triumph of a Fuzzy

Concept, Academy of Human Resource Development, Annual Conference,

Honolulu, HA, 27th Feb -3rd March Proceedings, Vol. 1, pp.327-334

http://www.cs.bham.ac.uk/admissions/undergraduate/se.php

173

Boud, D, (1995), Assessment and learning: contradictory or complementary? in

P.T. Knight (Ed.) Assessment for Learning in Higher Education, pp35-48

(London, Kogan Page).

Boud, D and Falchikov, N, (2007), Rethinking Assessment in Higher

Education, Learning for the longer term, Routeledge, New York, 2007.

Boyatzis, R.E., (1982), The Competent Manager: A Model for Effective

Performance, (NY:Wiley).

Brodie, L., Zhou, H., Gibbons, A., (2008), “Steps in developing an advanced

software engineering course using problem based learning”, Engineering

Education, Vol 3, No 1, 2008, pp.2-12.

Brown S. and Race P., (1999) The Lecturer’s Toolkit (London: Kogan Page)

Brown S., (2004), Assessment for Learning, Learning and Teaching in Higher

Education, Issue 1, 2004.

Brown, S., (2006), Invitation to Assessment, Director of Quality, University of

Northumbria, UK, in Deliberations, Available online at:

 http://www.londonmet.ac.uk/deliberations/assessment/brown.cfm,

<accessed online 20/07/2011>

Burgess, (2007), Beyond the Honours Degree Classification: The Burgess

Group Final Report, October 2007, Universities UK.

 Businessballs, (2012), Available online at

http://www.businessballs.com/kolblearningstyles.htm, <accessed online

12/06/2012>

Butler, R., (1988), Enhancing and undermining intrinsic motivation: the effects

of different feedback conditions on motivational perception, interest and

performance, Journal of Educational Psychology, 79, pp.474-482.

http://www.londonmet.ac.uk/deliberations/assessment/brown.cfm
http://www.businessballs.com/kolblearningstyles.htm

174

 CETL initiative, (2005), http://www.hefce.ac.uk/whatwedo/lt/enh/cetl/,

<accessed online 04/02/2015>

Charlton T, Devlin M, Drummond S., (2009), Using Facebook to improve

communication in undergraduate software development teams. Computer

Science Education, 2009, 19(4), pp.273-292.

Chickering, A. and Gamson, Z., (1987), Seven Principles for Good Practice in

Undergraduate Education, AAHE Bulletin March 1987.

Chickering, A. W. and Gamson, Z. F. (1991), Appendix A: Seven principles for

good practice in undergraduate education, New Directions for Teaching and

Learning, 1991: pp.63–69.

Cohen, J.W. (1988), Statistical Power analysis for the behavioural sciences (2nd

edition), Hillsdale NJ: Lawrence Erlbaum Associates.

Confessore, S. J. (2002), L’autonomie de l’apprenant dans les nouvelles

situations de travail (Learner autonomy in the new workplace). In A. Moisan &

P. Carré (Eds.), L’autoformation, fait social?Aspects historiques et

sociologiques (Self-directed learning as a social fact? (Historical and

sociological aspects) (pp.195-214), Paris: L’Harmattan.

Conway,R., Kember, D., Sivan, A. & Wu, M., (1993), Peer assessment of an

individual’s contributions to a group project, Assessment and Evaluation in

Higher Education, 18(1), pp.45-56.

Coppit D, (2006), Implementing large projects in software engineering courses,

Computer science education, Vol. 16, No. 1 March 2006 pp.53-73

Crawford, K, (1996), Vygotskian approaches in human development in the

information era, Educational Studies in Mathematics September 1996, Volume

31, Issue 1-2, pp.43-62.

Crooks, T, J (1998), The impact of classroom evaluation practices on students,

Review of Educational Research, 58, pp.438-481

http://www.hefce.ac.uk/whatwedo/lt/enh/cetl/
http://www.ncl.ac.uk/computing/research/publication/158459
http://www.ncl.ac.uk/computing/research/publication/158459
http://link.springer.com/journal/10649
http://link.springer.com/journal/10649/31/1/page/1

175

Crooks, T., J (1988), Assessing Student Performance: Green Guide 8, Higher

Education Research and Development Society of Australasia.

Cryer, P., and Elton, L., (1992), Learning Actively on One’s own, Block B:

Preparing Self-Instructional Materials Effective Teaching and Learning in

Higher Education, Module 8 Sheffield USDTU, 1992.

Delamare Le Deist, F. & Winterton, J. (2005), What is competence? Human

Resource Development International, 8(1), pp.27-46.

Denicolo, Pam, Entwistle, Noel and Hounsell, Dai, (1992), Effective Learning

and Teaching in Higher Education, Module 1, parts 1 & 2, What is Active

Learning, , CVCP Universities Staff Development and Training Unit, Sheffield,

1992

DeRemer, F. and Kron, H.H, (1976), Programming-in-the-Large Versus

Programming-in-the Small, IEEE Transactions on Software Engineering, June

1976, Vol. 2, No. 2., pp.80-86

Devlin M, Phillips C., (2010), Assessing Competency in Undergraduate

Software Engineering Teams. In: IEEE Education Engineering Conference

(EDUCON). 2010, Madrid, Spain: Universidad Politecnica de Madrid.

Devlin M, Marshall L, Phillips C., (2006), Active Learning in Computing:

Engaging Learners in a Cross-Site Team Project. In: SOLSTICE Conference

2006. 2006, Edge Hill, Ormskirk: Edge Hill Centre for Excellence in Teaching

and Learning.

Devlin, M., Phillips, C. and Marshall, L, (2007), Making Computing Science

Students More Employable with Problem-Based Learning and Cross-Site

Teamwork, In International Conference on Engineering Education and

Research (iCEER) 2007, Melbourne, Australia, 2-7 December 2007

International Network for Engineering and Education Research, 2007

Notes : Proceedings on CD-ROM. Session : Industry, Problem and Project

Based Learning. Paper no. 5. 11 pp.

176

Devlin, M., Drummond, S., Phillips, C. and Marshall, L, (2008a), Improving

Assessment in Software Engineering Student Team Projects, In 9th Annual

Conference of the Subject Centre for Information and Computer Sciences, 26th-

28th August 2008, Liverpool Hope University, White, H. (ed.) pp 133-139,

Higher Education Academy, Subject Centre for ICS, 2008

Devlin, M., Drummond, S. and Hatch, A., (2008b), Using Collaborative

Technology in CS Education to facilitate Cross-Site Software Development,

Journal of Systemics, Cybernetics and Informatics, Vol. 6, Issue 6,

International Institute of Informatics and Cybernetics, 2008, pp.1-6.

Devlin, M., Phillips, C. and Marshall, L, (2009a), Assessment in Software

Engineering- Towards a new Framework for Group Projects. In Proceedings of

the ICEE & ICEER 2009 Korea International Conference on Engineering

Education and Research, 23-28 August 2009, Seoul, KoreaKim, H.S. (ed.),

pp.13-18, Se Yung Lim, Korea University of Technology and Education, 2009.

Dewey, John, (1916), Democracy and Education; New York, McMillan, MW

9:179.

Dewey, J., (1938), Experience and Education, Kappa Delta Pi Lecture Series,

Collier-Macmillan Books 1963, London.

Directgov, (2011),

http://www.direct.gov.uk/en/EducationAndLearning/QualificationsExplained/D

G_10039017, <accessed online 15/04/2011>

Donnolly, R and Fitzmaurice, M., (2005). Designing Modules for Learning. In:

Emerging Issues in the Practice of University Learning and Teaching, O’Neill,

G et al, Dublin AISHE, 2005, pp.99-110.

Dragon’s Den http://www.bbc.co.uk/programmes/b006vq92

<accessed online 09/09/2014>

Dreyfus H and Dreyfus, S.E., (1986), Mind over Machine: The power of human

intuition and expertise in the era of the computer (New York Free Press).

http://www.iiisci.org/Journal/SCI/Abstract.asp?var=&id=QE622TT
http://www.iiisci.org/Journal/SCI/Abstract.asp?var=&id=QE622TT
http://www.direct.gov.uk/en/EducationAndLearning/QualificationsExplained/DG_10039017
http://www.direct.gov.uk/en/EducationAndLearning/QualificationsExplained/DG_10039017
http://www.bbc.co.uk/programmes/b006vq92

177

Drummond, S. and Devlin, M., (2006), Software Engineering Students' Cross-

Site Collaboration: An Experience Report, In 7th Annual Conference of the

Subject Centre for Information and Computer Sciences, 29th-31st August 2006,

Trinity College, Dublin, Steede, H. and Hackett, J. (eds.), pp.95-100

Higher Education Academy, Subject Centre for ICS, 2006.

Dweck, C., S. and Leggett, E., (1988), A Social-Cognitive Approach to

Motivation and Personality, Psychological Review, Vol. 95, No.2, pp.256-273.

Dweck, Carol, S., Legget, Ellen, L., (1988) A Social-Cognitive Approach to

Motivation and Personality, Psychological Review, 1988, Vol. 95, No.2,

pp.256-273

Eclipse, (2014) https://www.eclipse.org/ <accessed online 21/08/2014>

Emler, N., (2001) “Self-esteem: the costs and causes of low self-worth”, (York,

Joseph Rowntree Foundation and YPS.

Eneau, J., (May 2008), From Autonomy to Reciprocity, or Vice Versa? French

Personlism’s Contribution to a New Perspective on Self-Directed Learning,

Adult Education Quarterly,, Vol. 58, No. 3, pp.229-248.

Ecclestone, K., (2000) Assessment and Critical Autonomy in Post Compulsory

Education in the UK, Journal of Education and Work, Vol. 13, No. 2, pp.141-

162.

ECTS Users’ Guide (2005) Brussels: Directorate-General for Education and

Culture. Available online at: http://ec.europa.eu/education/lifelong-learning-

policy/doc/ects/guide_en.pdf <accessed online 15/04/2011>.

Entwistle, N, (1996), Recent research on student learning in J. Tait and P.

Knight (Eds.), The Management of Independent Learning, pp.97-112 (London,

Kogan Page).

Falchikov, N., (1995), Peer Feedback Marking: Developing Peer Assessment,

Innovations in Education and Training International, 32(2), pp.175-187.

https://www.eclipse.org/
http://ec.europa.eu/education/lifelong-learning-policy/doc/ects/guide_en.pdf
http://ec.europa.eu/education/lifelong-learning-policy/doc/ects/guide_en.pdf

178

Falchikov, N., (1988), Self and peer assessment of a group project designed to

promote the skills of capability, Innovations in Education and Teaching

International, 25(4), pp.327-339.

Ferguson, F., Kussmal, C., McCracker, D., Robber, M., A., (2004), “Offshore

Outsourcing: current conditions & diagnosis”, Proceedings of the 35th SIGCSE

Technical Symposium on Computer Science Education, Virginia, USA, 2004,

pp.330-331.

Flanagan, John C, (1954), The Critical Incident Technique, Vol 51, No. 4 The

Psychological Bulletin

Available at: https://www.apa.org/pubs/databases/psycinfo/cit-article.pdf

<accessed online 17th July 2014>

Fletcher, C, (1999), The implications of research on gender differences in self-

assessment and 360 degree appraisal, 9(1), pp.39-46.

Ford, L, (2010), “Graduates Lacking Soft Skills, Employers Warn”, Education

Guardian,

http://www.guardian.co.uk/money/2007/jan/30/workandcareers.graduates,

Jan 30, 2007 <accessed online 24/05/2010>.

Fowler, J., (2008), Experiential Learning and its facilitation, Nurse Education

Today, 28, 427-433

Freeman, M., Hutchinson, D., Treleaven, L., Sykes, C., (2006), Iterative

learning: Self and Peer assessment of group work,Proceedings of the 23rd

ascilite conference: Who’s learning? Whose Technology? pp257 265.

Freeman, R., and Lewis R, (1998), Planning and Implementing Assessment

(London: Kogan Page)

Freire, P., 1970, Pedagogy of the Oppressed, Harmondsworth, Penguin,

London.

https://www.apa.org/pubs/databases/psycinfo/cit-article.pdf
http://www.guardian.co.uk/money/2007/jan/30/workandcareers.graduates

179

Gibbs, G and Dunbar-Goddet, H. (2007) The effects of programme assessment

environments on student learning, Report submitted to the Higher Education

Academy, York. Accessible online at:

http://www.heacademy.ac.uk/assets/York/documents/ourwork/research/gibbs_0

506.pdf, <accessed online 18/04/2011>.

Goldfinch, J., (1994), Further Developments in peer assessment of group

projects, Assessment and Evaluation in Higher Education, 19(1), pp.29-35.

HEA, (2006), Higher Education Academy Student Employability Profiles:

Computing, Sept. 2006,

http://www.heacademy.ac.uk/assets/York/documents/ourwork/tla/employability

_enterprise/student_employability_profiles_apr07.pdf, <accessed online

13/04/2011>.

HEA, (2007), Higher Education Academy Student Employability Profiles,

available at:

http://www.heacademy.ac.uk/assets/documents/employability/student_employa

bility_profiles_apr07.pdf <accessed online 17/07/2014>.

HEAR, (2014), Higher Education Achievement Record, available at:

http://www.hear.ac.uk, <accessed online 17/07/2014>

Herbsleb, J. D., A. Mockus, et al., (2000), Distance, dependencies, and delay in

a global collaboration in Proceedings of the 2000 ACM conference on

Computer supported cooperative work, Philadelphia, Pennsylvania, United

States, ACM Press.

Higgs, Bettie, McCarthy, Marian, (2005), Active Learning: From Lecture

Theatre to Field Work in Emerging Issues in the Practice of University

Learning and Teaching. O’Neill, G., Moore, S.., McMullan, B., (eds), Dublin,

AISHE, 2005, pp.37-44.

Holec, H, (1981), Autonomy in Foreign Language Learning. Oxford: Pergamon

http://www.heacademy.ac.uk/assets/York/documents/ourwork/research/gibbs_0506.pdf
http://www.heacademy.ac.uk/assets/York/documents/ourwork/research/gibbs_0506.pdf
http://www.heacademy.ac.uk/assets/York/documents/ourwork/tla/employability_enterprise/student_employability_profiles_apr07.pdf
http://www.heacademy.ac.uk/assets/York/documents/ourwork/tla/employability_enterprise/student_employability_profiles_apr07.pdf
http://www.heacademy.ac.uk/assets/documents/employability/student_employability_profiles_apr07.pdf
http://www.heacademy.ac.uk/assets/documents/employability/student_employability_profiles_apr07.pdf
http://www.hear.ac.uk/

180

Hume Anne and Coll, Richard, K., (2009), Assessment of learning, for learning

and as learning: New Zealand case studies, Assessment in Education:

Principles, Policy & Practice, 16:3, pp.269-290

IET, (2014), Institution of Engineering and Technology, available at:

http://www.theiet.org, <accessed online 17/07/2014>.

Imrie, B.W. (1995), Assessment for Learning: quality and taxonomies,

Assessment and Evaluation in Higher Education 20(2), pp.175-189.

Jarvis, P., (2004), Adult Education and Lifelong Learning, third edition,

Routeledge Falmer, London.

Jeris, L. and Johnson, K., (2004), Speaking of Competence; towards a cross-

translation for human resource development and continuing professional

education, Academy of Human Resource Development, Annual Conference,

Austin, TX, Proceedings Vol. 2, pp.1103-1110.

Johnston, L. and Miles, L. (2004), Assessing contributions to group

assignments, Assessment & Evaluation in Higher Education, 29(6).

Joseph D., Ang, S., Chang, R., H., L., and Slaughter, S., (2010), “Practical

Intelligence in IT: Assessing Soft Skills of IT professionals”, Communications

of the ACM, Vol. 53, No 2, 2010, pp.1480-154.

Kennedy, D., Hyland, A., Ryan, N, (2007), Implementing Bologna in your

Institution: Writing and Using Learning Outcomes: a Practical Guide, Quality

Promotion Unit, University College Cork, 2007, pp.1-30, Available online at:

http://www.bologna.msmt.cz/files/learning-outcomes.pdf <accessed online

15/04/2011>.

Knight, P., (2002), Summative Assessment in Higher Education: Practices in

Dissarray, Studies in Higher Education, 27:3, pp.275-286.

Kolb, D., (1984), Experiential Learning: Experience as the Source of Learning

and Development, Prentice Hall, Englewood Cliffs, New Jersey.

http://www.theiet.org/
http://www.bologna.msmt.cz/files/learning-outcomes.pdf

181

Koschman, T., (1996), Problem-based learning: A principled approach to the

use of computers in collaborative learning in CSCL: Theory and Practice of an

Emerging Paradigm – T. Koschman, Editor, 1996, Laurence Erlbaum

Assoc.,Mahwah, NJ, pp.83-124.

Krathwohl, D., R., Bloom, B., S. and Masia, B., B., (1964), Taxonomy of

Educational Objectives: The Classification of Educational Goals. Handbook II:

Affective Domain. New York: David McKay Co., Inc.

Landis, J.R. and Koch, G.G. (1977), The measurement of observer agreement

for categorical data. Biometrics 33, pp.159-74.

Laerd Statistics, (2014), Available at: https://statistics.laerd.com/spss-

tutorials/cohens-kappa-in-spss-statistics.php, <accessed online 17/07/2014>

Layzell, O Pearl Brererton, Andrew French, (2000), Supporting Collaboration

in Distributed Software Engineering Teams, in Proceedings of Seventh Asia-

Pacific Software Engineernig Conference, ASPEC, 2000, pp.38-45

Leik, Mark, Wyvil, Michael, Farrow, Stephen, (1996), A Survey of Methods

Deriving Individual Grades from Group Assessments, Journal of Assessment &

Evaluation in Higher Education, Vol. 21, No. 3, 1996, pp.267-280

 Lejk, M and Wyvil, M, (2001), Peer Assessment of Contributions to a Group

Project: a comparison of holistic and category-based approaches, Assessment &

Evaluation in Education, Vol. 26, No.1, 2001, pp.61-91.

Lewis, M, (2007), Stepwise versus Hierarchical Regression: Pros and Cons,

Annual Meeting of the Southwest Educational Research Association, Feb 7,

2007, Available at: https://www.academia.edu, <accessed online 5th February

2015>

Linn, B.S., Arsotequi, M amd Zeppa, R., (1975), Performance Rating Scale for

Peer and Self-assessments, British Journal of Medical Education, 9, pp.98-101.

http://chiron.valdosta.edu/whuitt/col/affsys/affdom.html
http://chiron.valdosta.edu/whuitt/col/affsys/affdom.html
https://statistics.laerd.com/spss-tutorials/cohens-kappa-in-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/cohens-kappa-in-spss-statistics.php

182

Liu, J., Marsaglia, J., Olson, D., (2002), “Teaching Software Engineering to

make students ready for the Real World”, Journal of Computing Sciences in

Colleges, Vol. 18, issue 2, (December, 2002), pp.43-50.

Littlewood, W., (1996), Autonomy: an anatomy and a framework. System

24(4), 2, pp.427-435

McInnis, James, R., and Devlin, M., (2002), Assessing Learning in Australian

Universities, Core Principles of Effective Assessment.

http://www.cshe.unimelb.edu.au/assessinglearning/05/index.html, <accessed

online

16/08/2010>.

Miller, D. and Lavin, F., (2007), But now I feel I want to give it a try: formative

assessment, self-esteem and a sense of competence, The Curriculum Journal,

Vol. 18, No.1, March 2007, pp.3-25.

MOF, (2014), http://www.ncl.ac.uk/computing/current/module/CSC2022

<accessed online 21/08/2014>

McNamara, R., A., (2004), Evaluating Assessment with Competency Mapping

in Proceedings of the Sixth Conference on Australasian Computing Education,

Volv. 30., R Lister and A. Young (eds), ACM International Conference

Proceeding Series, Vol. 57, Australian Computer Society, Darlinghurst,

Australia, pp.193-199.

Moseley, D., Baumfield, V., Elliott, J., Gregson, M., Higgins, S., Miller, J.,

Newton, D., P. (2005), Frameworks for Thinking – A Handbook for Teaching

and Learning, Cambridge University Press, 2005.

Natriello G, (1987), The impact of evaluation processes on students,

Educational Psychologist, 2, pp.155-175.

Newcastle Graduate Skills Framework, (2013),

http://www.ncl.ac.uk/quilt/assets/documents/str-gsf-framework.pdf,

http://www.cshe.unimelb.edu.au/assessinglearning/05/index.html
http://www.ncl.ac.uk/computing/current/module/CSC2022
http://www.ncl.ac.uk/quilt/assets/documents/str-gsf-framework.pdf

183

 <accessed online 17/07/2014>

NESS, (2014), https://ness.ncl.ac.uk/index.php <accessed online 21/08/2014>

Nias, J., (1979) Teaching in Groups in Higher Education: Types, Purposes and

Techniques, In Aims and Techniques of Group Teaching, London Society for

Research into Higher Education, 1st Edition, 1970 4th Edition, 1979 edited by

Jennifer Nias.

Ofqual, (2011) European Qualifications Framework,

http://www.ofqual.gov.uk/qualification-and-assessment-framework/eqf

< accessed online 15/04/2011>

O’Neal, M., (2004), “Restructuring Computing Programs to Meet Employment

Challenges”, IEEE Computer, Vol. 37, No. 11, 2004, pp.29-34.

Oxford University (2014) Paper 1, Higher Education and Higher Learning,

Institute for the Advancement of University Learning, University of Oxford:

http://www.learning.ox.ac.uk/media/global/wwwadminoxacuk/localsites/oxford

learninginstitute/documents/supportresources/lecturersteachingstaff/resources/r

esources/Higher_Education_and_Higher_Learning.pdf <accessed online

24/06/2014>

Pallant J, (2010), SPSS Survival Manual Open University Press, McGraw Hill

Education.

Pintrich, P., R. (1999), The role of motivation in promoting and sustaining self-

regulated learning, International Journal of Educational Research 31, Chapter 2,

pp.459-470

Psychstat, (2013):

http://www.psychstat.missouristate.edu/multibook/mlt08m.html,

<accessed online 18/01/013>

QAA, (2000), QAA Subject Benchmarks, AR 009 4/2000, Quality Assurance

Agency for Higher Education, 2000.

https://ness.ncl.ac.uk/index.php
http://www.ofqual.gov.uk/qualification-and-assessment-framework/eqf
http://www.learning.ox.ac.uk/media/global/wwwadminoxacuk/localsites/oxfordlearninginstitute/documents/supportresources/lecturersteachingstaff/resources/resources/Higher_Education_and_Higher_Learning.pdf
http://www.learning.ox.ac.uk/media/global/wwwadminoxacuk/localsites/oxfordlearninginstitute/documents/supportresources/lecturersteachingstaff/resources/resources/Higher_Education_and_Higher_Learning.pdf
http://www.learning.ox.ac.uk/media/global/wwwadminoxacuk/localsites/oxfordlearninginstitute/documents/supportresources/lecturersteachingstaff/resources/resources/Higher_Education_and_Higher_Learning.pdf
http://www.psychstat.missouristate.edu/multibook/mlt08m.html

184

QAA, (2006), Code of Practice for the assurance of academic quality and

standards in higher education,

http://www.qaa.ac.uk/academicinfrastructure/codeOfPractice/section6/default.a

sp

<accessed online 31/08/2010>

QAA, (2007), QAA 170 03/07, Subject Benchmarks, Computing, Quality

Assurance Agency for Higher Education, 2007.

QAA, (2011), Understanding assessment: its role in safeguarding academic

standards and quality in higher education – A guide for early career staff. Sept

2011. Available at:

http://www.qaa.ac.uk/Publications/InformationAndGuidance/Documents/Under

standingAssessment.pdf <accessed online 03/072014>

Queen Mary University, (2010),

http://www.dcs.qmul.ac.uk/undergraduate/programmes/g400.php, <accessed

online 31/08/ 2010>

Race, P, (2001), “A Briefing on Self, Peer and Group Assessment”, LTSN

Generic Centre (2001).

Race, Phil, (2005), Making Learning Happen – A Guide for Post-Compulsory

Education, SAGE Publications.

Reese, W. J., (2001), The Origins of Progressive Education, History of

Education Quarterly, Vol. 41, Issue 1, pp.1-24.

Schön, D., (1983), The Reflective Practitioner, New York: Basic Books.

Software Engineering, (2004), Curriculum Guidelines for Undergraduate

Degree Programmes in Software Engineering

http://sites.computer.org/ccse/SE2004Volume.pdf, <accessed online

18/07/2014>

http://www.qaa.ac.uk/academicinfrastructure/codeOfPractice/section6/default.asp
http://www.qaa.ac.uk/academicinfrastructure/codeOfPractice/section6/default.asp
http://www.qaa.ac.uk/Publications/InformationAndGuidance/Documents/UnderstandingAssessment.pdf
http://www.qaa.ac.uk/Publications/InformationAndGuidance/Documents/UnderstandingAssessment.pdf
http://www.dcs.qmul.ac.uk/undergraduate/programmes/g400.php
http://sites.computer.org/ccse/SE2004Volume.pdf

185

Software Engineering Education Knowledge, (2003), Computing Curricula,

Software Engineering Volume, Final Draft of the Software Engineering

Education Knowledge, eds. Ann Sobel, April 30 2003.

Smith, Harold, H. and Smarkusky, Debera L., (2005), "Competency Matrices

for Peer Assessment of Individuals in Team Projects" in Proceedings of

SIGITE'05, pp.155-161, 2005.

Spratt M., Humphreys, G., and Chan, V., (2002) Autonomy and Motivation:

Which comes first? Language Teaching Research 6(3), pp.245-266.

Steinaker, N, and Bell, R, (1979), The Experiential Taxonomy, Academic

Press, New York.

(Stevens 1996) Stevens, J., (1996), Applied multivariate statistics for the social

sciences (3rd edition.) Mahwah, NJ: Lawrence Erlbaum.

Subversion, (2014), http://www.eclipse.org/subversive/ <accessed online

21/08/2014>

Suchan, J. and Hayzak, G., (2001), “The Communication Characteristics of

Virtual Teams: A Case Study”, IEEE Transactions on Professional

Communication, Vol. 4. , Number 3, Sept. 2001, pp.174-186.

SE2004, (2004), Software Engineering Body of Knowledge, executive editors,

Alain Abran, James W. Moore; editors, Pierre Bourque, Robert Dupuis (2004)

Pierre Bourque and Robert Dupuis Editors, Guide to the Software Engineering

Body of Knowledge - 2004 Version IEEE Computer Society pp. 1–200.

http://www.swebok.org. <accessed online 16/09/2010>

Sweeney, S., (2012), The Bologna Process and the European Higher Education

Area. Available at:

https://www.heacademy.ac.uk/sites/default/files/Simon_Sweeney_bologna_wor

kshop.pdf

< accessed online 19/09/2012>.

http://www.eclipse.org/subversive/
http://www.swebok.org/
http://www.swebok.org/
http://en.wikipedia.org/wiki/IEEE_Computer_Society
http://www.swebok.org/
https://www.heacademy.ac.uk/sites/default/files/Simon_Sweeney_bologna_workshop.pdf
https://www.heacademy.ac.uk/sites/default/files/Simon_Sweeney_bologna_workshop.pdf

186

Tabachnick, B.G. and Fidell, L.S. (2007), Using multivariate statistics (5th edn)

Boston, Pearson Education.

Thanasoulas, Dimitios, (2011), Constructivist Learning, available at:

http://www.seasite.niu.edu/Tagalog/Teachers_Page/Language_Learning_Articl

es/constructivist_learning.htm, <accessed online 03/072014>

Torrance, H, (2007), Assessment as Learning? How the use of explicit learning

objectives, assessment criteria and feedback in post‐secondary education and

training can come to dominate learning. Assessment in Education: Principles,

Policy & Practice, Special Issue: Assessment in Post‐Secondary Education and

Training.

Torrance, H and Pryor, J., (1988), Investigating Formative Assessment:

Teaching, Learning and Assessment in the Classroom, Open University Press,

1988.

Topping, Keith, (2009), Peer Assessment, Theory into Practice, 48(1), pp.20-

27.

Turley, R., T., and Bieman, J., M., (1994), "Identifying Essential Competencies

of Software Engineers", Proceedings of the 22nd annual ACM Computer

Science Conference on Scaling up: meeting the challenge of complexity in real-

world computing applications: Phoenix, Arizona, United States, pp.271 - 278,

1994.

Turley, R., T., and Bieman, J., M., (1995), "Competencies of Exceptional and

Non-exceptional Software Engineers, Journal of Systems and Software, vol. 28,

issue 1, pp.19-38, 1995.

Tynjala, P., Salminen, R., T., Sutela, T., Nuutinen, A and Pitkanen, S, (2005),

Factors related to study success in Engineering Education,

European Journal of Engineering Education, Vol. 30, number 2, pp.221-231.

http://www.seasite.niu.edu/Tagalog/Teachers_Page/Language_Learning_Articles/constructivist_learning.htm
http://www.seasite.niu.edu/Tagalog/Teachers_Page/Language_Learning_Articles/constructivist_learning.htm

187

Tyson, S and Ward, P, (2004), The Use of 360 Degree Feedback Technique in

the Evaluation of Management Development, Management Learning, 35(2),

pp.205-223.

University of York, (2010), http://www.cs.york.ac.uk/undergraduate/ug-

courses/course-profile/, <accessed online 31/08/2010>

Varela, F. (1989). Autonomie et connaissance (Principles of biological

autonomy). Paris: Seuil. (Original work published 1979).

Vassar, (2014), Vassar Stats Online book: Available at:

http://vassarstats.net/textbook/parametric.html, <accessed online 18/07/2014>.

von Glasersfeld, E., (2007), Aspects of constructivism. Sense, Rotterdam: 91-

99, available at: http://www.vonglasersfeld.com/139.2, <accessed online

03/07/2014>

Vygotsky, L, (1978), Mind in Society: the Development of Higher

Psychological Processes, Cambridge MA: Harvard University Press.

Weeden, l P., Winter, J., Broadfoot, P., (2002), Assessment, What’s in it for

schools? (London, Routeledge, Falmer), 2002.

Weinberg, Gerald, M., (1971), The Psychology of Computer Programming,

Computer Science Series, Van Nostrand Reinhold Company Inc., 1971

Weiner, B, (1992), Human Motivation, Metaphors, theories and research,

Newbury Park, CS, SAGE Publications in Assessing Women in Engineering

(AWE) Project (2005), Attribution Theory, AWE Research Overviews, -

available at http://www.aweonline.org <accessed online, 31/07/12>.

Yorke, M., (2001), No. 1, Assessment: A guide for Senior Managers in Smith,

B., Blackwell, R., and Yorke, M., (Eds) Assessment Series (York LTSN

Generic Centre), available online at:

http://www.heacademy.ac.uk/resources/detail/assessment/assessment_series,

< accessed online, 03/07/2014>

http://www.cs.york.ac.uk/undergraduate/ug-courses/course-profile/
http://www.cs.york.ac.uk/undergraduate/ug-courses/course-profile/
http://vassarstats.net/textbook/parametric.html
http://www.vonglasersfeld.com/139.2
http://www.aweonline.org/
http://www.heacademy.ac.uk/resources/detail/assessment/assessment_series

188

189

Appendix A

190

Year Number Research Design Implement Test Organise Lead Document Durham Analyse Communicate Organisation

2003-04 20340519 1 1 0 1 1 0 1 0 0 0 1

2003-04 22064367 1 1 0 1 0 0 1 0 0 1 1

2003-04 10824436 1 1 1 1 1 1 1 0 1 1 1

2003-04 20333441 0 1 1 1 0 0 1 0 0 0 1

2003-04 20901044 1 1 1 0 0 1 1 0 0 0 0

2003-04 22048622 1 1 0 1 0 0 1 0 0 0 0

2003-04 20565433 1 0 0 1 1 0 1 0 1 1 1

2003-04 21269121 1 1 0 0 1 1 1 0 1 0 0

2003-04 23829596 1 1 1 1 0 0 0 0 0 0 0

2003-04 34121799 1 1 1 0 0 0 1 0 0 1 0

2003-04 37055312 0 1 1 1 1 1 0 0 0 0 1

2003-04 1293708 1 1 0 1 1 1 1 0 0 1 1

2003-04 3381573 1 1 0 1 1 0 1 0 0 1 1

2003-04 23195158 1 1 1 0 1 0 1 0 0 0 0

2003-04 33683973 1 1 1 1 1 0 1 0 0 1 1

2003-04 11565912 1 1 1 0 0 1 1 0 0 1 1

2003-04 23171668 1 1 1 1 0 0 1 0 1 1 0

2003-04 20175014 1 1 0 1 1 0 1 0 0 0 1

2003-04 20542652 1 1 0 1 0 0 1 0 1 0 0

2003-04 11916491 0 0 1 1 0 0 1 0 0 0 0

2003-04 34007596 1 1 1 1 0 0 1 0 0 0 1

2003-04 23740671 1 1 1 1 1 1 1 0 0 1 0

2003-04 22774112 1 1 1 1 1 0 1 0 0 0 1

2003-04 21073942 1 1 0 0 1 0 1 0 0 0 0

2003-04 12004481 1 1 0 1 1 1 1 0 0 1 0

2003-04 24201452 0 1 1 1 0 1 1 0 0 1 0

2003-04 22420116 1 1 1 1 0 0 0 0 0 0 0

2003-04 21129995 1 1 1 1 0 0 0 0 0 1 0

2003-04 20543866 1 1 1 0 0 0 1 0 0 0 1

191

Appendix B

192

Coefficientsa

Model

Unstandardized Coefficients

Standardized

Coefficients

t Sig.

95.0% Confidence Interval for B Correlations

Collinearity

Statistics

B Std. Error Beta Lower Bound Upper Bound Zero-order Partial Part Tolerance

V

I

F

1 (Constant) -1.093 4.957 -342 .733 -11.445 8.059

TeamAv .892 .074 .537 12.034 .000 .745 1.037 .545 .559 .537 .999 1

.

0

0

1

ProgScore .135 .028 .262 5.876 .000 .090 .180 .278 .313 .262 .999 1

.

0

0

1

a. Dependent Variable: Mark

COEFFICIENTS TABLE 1

193

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig.

95.0% Confidence Interval

for B Correlations Collinearity Statistics

B Std. Error Beta Lower Bound Upper Bound Zero-order Partial Part Tolerance VIF

1 (Constant) 57.126 2.665 21.434 .000 51.883 62.370

Course -1.219 .987 -.068 -1.235 .218 -3.160 .723 -.129 -.069 -.066 .946 1.057

ProgScore .135 .028 .262 4.746 .000 .079 .191 .278 .257 .255 .946 1.057

b. Dependent Variable: Mark

COEFFICIENTS TABLE 2

194

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig.

95.0% Confidence Interval

for B Correlations Collinearity Statistics

B Std. Error Beta Lower Bound Upper Bound Zero-order Partial Part Tolerance VIF

1 (Constant) 63.579 2.181 29.158 .000 59.289 67.869

Research -2.192 1.544 -.079 -1.420 .157 -5.229 .845 -.077 -.079 -.079 .992 1.008

Design 1.442 1.739 .048 .829 .408 -1.979 4.863 .068 .047 .046 .934 1.070

Implement 2.200 1.141 .111 1.929 .055 -.044 4.445 .122 .108 .107 .939 1.065

Test -.110 1.175 -.005 -.094 .925 -2.423 2.203 .013 -.005 -.005 .983 1.017

2 (Constant) 63.382 2.553 24.830 .000 58.360 68.405

Research -1.807 1.521 -.065 -1.188 .236 -4.800 1.186 -.077 -.067 -.065 .984 1.016

Design 1.076 1.715 .036 .628 .531 -2.298 4.450 .068 .035 .034 .925 1.081

Implement 1.785 1.161 .090 1.537 .125 -.500 4.070 .122 .086 .084 .872 1.146

Test -.228 1.161 -.011 -.196 .845 -2.512 2.056 .013 -.011 -.011 .971 1.030

Organise 1.804 1.045 .096 1.727 .085 -.252 3.859 .107 .097 .094 .968 1.033

Lead 2.968 1.080 .154 2.747 .006 .842 5.093 .190 .153 .150 .951 1.052

Document -1.829 1.347 -.078 -1.358 .176 -4.481 .822 -.133 -.076 -.074 .901 1.110

COEFFICIENTS TABLE 3 - Hierarchical Multiple Regression

195

Coefficientsa

Model

Unstandardized

Coefficients

Standardiz

ed

Coefficient

s

t Sig.

95.0% Confidence

Interval for B Correlations Collinearity Statistics

B Std. Error Beta

Lower

Bound

Upper

Bound Zero-order Partial Part Tolerance VIF

1 (Constant) 57.126 2.665 21.434 .000 51.883 62.370

ProgScore .135 .028 .262 4.746 .000 .079 .191 .278 .257 .255 .946 1.057

Course -1.219 .987 -.068 -1.235 .218 -3.160 .723 -.129 -.069 -.066 .946 1.057

2 (Constant) 57.259 3.240 17.673 .000 50.884 63.633

ProgScore .136 .028 .263 4.786 .000 .080 .191 .278 .260 .256 .945 1.058

Course -1.130 .985 -.063 -1.147 .252 -3.069 .809 -.129 -.064 -.061 .943 1.060

Research -2.380 1.486 -.086 -1.601 .110 -5.304 .545 -.077 -.090 -.086 .994 1.006

Design 1.960 1.626 .065 1.206 .229 -1.238 5.158 .068 .068 .065 .993 1.007

3 (Constant) 56.073 3.357 16.703 .000 49.467 62.678

ProgScore .126 .028 .245 4.456 .000 .070 .182 .278 .244 .235 .920 1.086

Course -1.362 1.116 -.076 -1.220 .224 -3.558 .835 -.129 -.069 -.064 .713 1.402

Research -2.145 1.467 -.077 -1.462 .145 -5.031 .741 -.077 -.082 -.077 .991 1.009

Design 1.689 1.657 .056 1.019 .309 -1.571 4.949 .068 .057 .054 .928 1.078

Implement .272 1.260 .014 .216 .829 -2.208 2.752 .122 .012 .011 .694 1.441

Organise 2.064 1.024 .109 2.015 .045 .049 4.079 .107 .113 .106 .944 1.060

Lead 2.664 1.041 .138 2.558 .011 .615 4.712 .190 .143 .135 .958 1.043

196

197

Appendix C

198

Focus Group Questions

Technologies

What technologies did your company use to communicate?

How well did these technologies help you work together?

Which technologies worked best/ did you prefer?

What technologies would you have liked to use that were not provided?

Did you have any experience of using any of these technologies before the

project?

If so, what did you use it for?

If not, did you find it interesting to work with these technologies?

Scheduling

Did you find it hard to schedule time for local (Newcastle team only) and

company meetings?

If so, why do you think it was difficult?

Did you find the schedule for deliverables easy to follow?

Did you miss any deadlines (individual, team, company)?

What part of the project was the most difficult to schedule/organise between

yourself and Durham?

Module Content

Did you find the lecture materials helped you during the project?

If so, which materials did you find the most helpful/unhelpful?

Can you suggest topics that might have helped you more?

Did the guest lectures from companies help you cope with some aspects of the

project?

Module Support

Did you find it easy to get help when you needed it?

Do you think you were given good support throughout the project?

What kind of support would you have preferred?

Is there anything that the lecturers could have provided before the project that

would have been helpful e.g. examples, invited talks on different subjects?

Project Process

199

What part of the project was the most difficult for you as an individual, team,

company?

Why do you think it was it difficult?

Did you stick to your designated role?

Did the team/company fulfil the terms agreed in the original contract?

How did you deal with disagreements in the company, local team?

Did your team structure work well?

Assessment

How was your experience of the peer review process?

Did the Company peer review go well?

Did you think the local peer assessment process go well?

If there were issues (facilitator should ask), how did you resolve these?

What was the most difficult/easiest assignment during the project?

Overall Experience

What was the best thing about the project?

What was the worst thing about the project? (Individual views, team view)

If you had to do it all again, what would you do differently?

What particular skills do you think you have learned/improved on because of

this project?

200

Appendix D

201

SEEK Knowledge

Area

Bloom’s

Level

Core Status

Essential (E) or

Desirable (D)

Method in

Module -

Lecture (L),

Practiced (P)

Assessed Y/N

Computing Essentials:

API design and Use A E P Y (as part of

code)

Code reuse and

Libraries

A E P Y (as part of

code)

OO Runtime issues A E P Y (as part of

Design &

Code)

Error Handling,

Exception Handling

A E P Y (as part of

Design a&

Code)

Construction methods

for distributed software

A E L, P to a small

extent.

N

Hardware/ Software

Co-design

A E P N

Test-first programming D L N

Development

Environments

A E P N

GUI builders A E P N

Unit Test Tools C E P N

Maths & Engineering

Fundamentals:

Formulation of

problems. Alternative

solutions, Feasibility

C E L, P Y

Value consideration

throughout the

Software Lifecycle

K E L to an extent N

Generating System

Objectives

C E L, P N

202

SEEK

Knowledge Area

Bloom’s Level Core Status

Essential (E) or

Desirable (D)

Method in

Module -

Lecture (L),

Practiced (P)

Assessed Y/N

Professional

Practice:

Working in

Teams

A E L, P Y

Interacting with

Stakeholders

C E L, P Y

Dealing with

ambiguity &

uncertainty

K E L, P Y

Communication

Skills: Reading

& summarising

reading (code,

documentation)

A E P Y

Writing

assignments,

reports,

evaluations and

justifications

A E L, P Y

Team & Group

Communication

A E L. P Y

Presentation

Skills

A E P Y

Code of Ethics

and Professional

Conduct

C E L, (to an extent,

1st year

module)P

Y

Nature & Role of

Software

Engineering

Standards

K E P N (1st year

module)

203

SEEK

Knowledge Area

Bloom’s Level Core Status

Essential (E) or

Desirable (D)

Method in

Module -

Lecture (L),

Practiced (P)

Assessed Y/N

Software

Modelling and

Analysis

Modelling

Principles -

decomposition

etc.

A E L, P Y

Information

Modelling (Class

Diagrams)

A E L, P Y

Behavioural

Modelling (Use

Case)

A E L, P Y

Architectural

Modelling

C E L, P Y

Functional

Modelling

(Component

Diagrams)

C E L, P Y

Traceability C E L, P Y

Analysing

Quality - Safety,

Security

C E L, P Y

Definition of

Requirements

C E L, P Y

Requirements

Process

C E L, P Y

Layers of

Requirements

C E L N

Requirements

Characteristics

C E L N

Requirements

Management

C E L, P Y

Relating

Requirements to

System

 D L, P N

204

Engineering and

Human Centred

Design

Elicitation

Sources

C E L, P Y

Elicitation

Techniques

C E L, P Y

Requirements

Document

Basics

K E L, P Y

Software

Requirements

Specification

A E L, P Y

Specification

Languages

(UML)

K E L, P Y

Prototyping K E L, P Y

Acceptance Test

Design

C E L, P Y

205

SEEK

Knowledge Area

Bloom’s Level Core Status

Essential (E) or

Desirable (D)

Method in

Module -

Lecture (L),

Practiced (P)

Assessed Y/N

Software Quality

Definition of

quality

K E L N

Roles of People,

Process

Methods, Tools

& Techniques

A E L, P N

Quality Planning A E L N

Assessment of

product quality

attributes

C E L, P (to a

limited extent)

N

Software

Management

General Project

Management

K E L, P Y

Project

Management

Roles

K E L, P Y

Evaluation and

Planning

C E L, P Y

Work

Breakdown

Structure

A E L N

Task Scheduling A E L Y (limited

extent)

Organisational

Structures

K E L, P Y

Meeting

Management

A E L, P Y

Building &

Motivating

Teams

A E L, P Y

Conflict

Resolution

A E L, P Y

Change Control K E L, P N

Monitoring & C E L, P Y

206

Reporting

Maintenance

Issues

K E L N

SEEK

Knowledge Area

Bloom’s Level Core Status

Essential (E) or

Desirable (D)

Method in

Module -

Lecture (L),

Practiced (P)

Assessed Y/N

Software Design

Definition of

Design

C E L N

Context of

Design within

lifecycles

K E L N

Interaction

between design

& requirements

K E L, P Y

Design for

quality attributes

C E L, P Y

OO design C, A E L, P Y

Architectural

Styles

C E L Y (Limited)

Architectural

Design

A E L Y

Requirements

Traceability in

architecture

K E L, P Y

Architectural

Notations

C E L, P Y

Design notations C E L N

207

SEEK

Knowledge Area

Bloom’s Level Core Status

Essential (E) or

Desirable (D)

Method in

Module -

Lecture (L),

Practiced (P)

Assessed Y/N

Software

Verification &

Validation

Reviews A E L, P N

Walkthroughs A E L, P N

Inspections A E L N

Unit Testing A E L, P Y

Exception

Handling

A E L, P Y

Black Box

Techniques

A E L, P Y

Integration

Testing

C E L, P Y

Test Cases A E L, P Y

System

Acceptance

Testing

A E L, P Y (limited)

Regression

Testing

C E L N

Analysing

Failure Reports

C E L N

Defect Analysis K E L N

Problem

Tracking

C E L, P N

208

SEEK

Knowledge Area

Bloom’s Level Core Status

Essential (E) or

Desirable (D)

Method in

Module -

Lecture (L),

Practiced (P)

Assessed Y/N

Software

Evolution

Basic Concepts

of Evolution and

Maintenance

K E L N

Software Process

Reengineering

K E L N

Software Process

Themes &

Terminology

K E L, P N

Modelling and

Specification of

Software

Processes

C E L, P Y

Lifecycle

Models

C E L, P Y

209

Appendix E

210

Level Primary

Strength

Secondary

Strength

Weakness I have not

practised this

skill yet

Responding to

email

Suggesting ideas

to the team

Completing Tasks

Efficiently

Helping the team

to function (take

notes, schedule

meetings, book

rooms, organise

task lists, keep

everyone aware of

deadlines).

Planning &

Organisation

 Design of System

Completing

Documentation &

Reports

Organising

meetings

Leadership &

Direction

Presenting ideas

to customer, team,

module leaders

Programming

Graphical Design

– GUI Design

Poster Design

Testing

Commenting Code

Conflict

Resolution

Professional

Behaviour

